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Preface

On behalf of the Program Committee, it is our pleasure to present the proceed-
ings of the 14th International Symposium on Recent Advances in Intrusion De-
tection Systems (RAID 2011), which took place in Menlo Park, California, during
September 20-21, 2011. As in the past, the symposium brought together leading
researchers and practitioners from academia, government, and industry to dis-
cuss intrusion detection research and practice. There were eight technical sessions
presenting full research papers on application security, malware, anomaly detec-
tion, network security, Web security and social networks, and sandboxing and
embededed environments. Furthermore, there was a panel discussion on open-
source network intrusion detection systems as well as a poster session presenting
emerging research areas and case studies.

The RAID 2011 Program Committee received 87 full paper submissions from
all over the world. All submissions were carefully reviewed by independent re-
viewers on the basis of technical quality, topic, space, and overall balance. The
final decision took place at a Program Committee meeting on May 26 in Berke-
ley, California, where 20 papers were eventually selected for presentation at the
conference and publication in the proceedings.

The success of RAID 2011 depended on the joint effort of many people. We
would like to thank all the authors of submitted papers and posters. We would
also like to thank the Program Committee members and additional reviewers,
who volunteered their time to carefully evaluate all the submissions. Further-
more, we would like to thank the General Chair, Alfonso Valdes, for handling
the conference arrangements; Gregor Maier for handling the publication pro-
cess; Guofei Gu for publicizing the conference; the Communications Research
Centre Canada for maintaining the conference website; and SRI International
for hosting the conference.

September 2011 Robin Sommer
Davide Balzarotti
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Thorsten Holz Ruhr University Bochum, Germany
Sotiris Ioannidis FORTH, Greece
Jaeyeon Jung Intel Labs Seattle, USA
Syed Ali Khayam National University of Sciences and Technology

(NUST), Pakistan
Christian Kreibich ICSI, USA
Christopher Kruegel UC Santa Barbara, USA
Corrado Leita Symantec Research, France
Gregor Maier ICSI, USA
Benjamin Morin ANSSI, France
Phil Porras SRI International, USA
William Robertson UC Berkeley, USA
Anil Somayaji Carleton University, Canada
Angelos Stavrou George Mason University, USA
Charles Wright MIT Lincoln Laboratory, USA



VIII Organization

External Reviewers

Zahid Anwar
Leyla Bilge
Matt Bishop
Steven Cheung
Brendan Dolan-Gavitt
Manuel Egele
Chris Grier
Payas Gupta
Sharath Hiremangalore

Joshua Hodosh
Johannes Hoffmann
Ralf Hund
Engin Kirda
Marc Kührer
Andrea Lanzi
Meixing Le
Kangjie Lu
Seungwon Shin

Abhinav Srivastava
Gianluca Stringhini
Kurt Thomas
Sebastian Uellenbeck
Nicholas Weaver
Zhaoyan Xu
Chao Yang
Vinod Yegneswaran

Steering Committee

Chair

Marc Dacier Eurecom, France

Members
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Minemu: The World’s Fastest Taint Tracker

Erik Bosman, Asia Slowinska, and Herbert Bos

Vrije Universiteit Amsterdam

Abstract. Dynamic taint analysis is a powerful technique to detect memory cor-
ruption attacks. However, with typical overheads of an order of magnitude, cur-
rent implementations are not suitable for most production systems. The research
question we address in this paper is whether the slow-down is a fundamental
speed barrier, or an artifact of bolting information flow tracking on emulators re-
ally not designed for it. In other words, we designed a new type of emulator from
scratch with the goal of removing superfluous instructions to propagate taint. The
results are very promising. The emulator, known as Minemu, incurs a slowdown
of 1.5x-3x for real and complex applications and 2.4x for SPEC INT2006, while
tracking taint at byte level granularity. Minemu’s performance is significantly bet-
ter than that of existing systems, despite the fact that we have not applied some
of their optimizations yet. We believe that the new design may be suitable for
certain classes of applications in production systems.

Keywords: dynamic taint tracking, JIT compilation, intrusion detection.

1 Introduction

Fifteen years after Aleph One’s introduction to memory corruption [17], and despite a
plethora of counter-measures (like ASLR [3], PaX/DEP [18], and canaries [7]), buffer
overflows alone rank third in the CWE SANS top 25 most dangerous software errors1.
Dynamic taint analysis (DTA) [16,6] is very effective at stopping most memory corrup-
tion attacks that divert a program’s control flow. Moreover, the wealth of information
it collects about untrusted data makes it well-suited for forensics and signature gener-
ation [26]. Unfortunately, software DTA is so slow that in practice its use is limited to
non-production machines like honeypots or malware analysis engines.

In this paper, we describe Minemu, a new emulator architecture that speeds up dy-
namic taint analysis by an order of magnitude compared to well-known taint systems
like taint-check [16], Vigilante [6], and Argos [20]. Specifically, Minemu brings down
the slowdown due to taint analysis to 1.5x-3x for real applications. Unless your applica-
tion really starves for performance, a slowdown of, say, 2x to be safe from most memory
corruption attacks might be a reasonable price for many security-sensitive systems.

Current counter measures do not stop memory corruption. Typical memory corruption
attacks overwrite a critical value in memory to divert a program’s flow of control to
code injected or selected by the attacker. We argue that current protection mechanisms
(like PAX/DEP, ASLR, and canaries) are insufficient. Consider for instance, the buffer

1 Version 2.0, 2010 http://www.sans.org/top25-software-errors/

R. Sommer, D. Balzarotti, and G. Maier (Eds.): RAID 2011, LNCS 6961, pp. 1–20, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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2 E. Bosman, A. Slowinska, and H. Bos

underrun vulnerability in Figure 1. The example is from a Web server request parsing
procedure in nginx-0.6.32 [1]—in terms of market share across the million busi-
est sites, the third largest Web server in the world2, hosting about 23 million domains
worldwide at the time of writing. The buffer underrun allows attackers to execute arbi-
trary programs on the system. They do not trample over canaries. They do not execute
code in the data segment. Since they call into libc, they are not stopped by ASLR either.

In reality, the situation is worse. All defense mechanisms used in practice, includ-
ing the three above, have weaknesses that allow attackers to circumvent them, and/or
situations in which they cannot be applied (e.g., JIT code requires data pages to be
executable). Moreover, a recent report indicates that many programs either do not use
features like DEP or ASLR at all, or use them incorrectly [25]. Finally, legacy binaries
often cannot even be protected using such measures.

Dynamic Taint Analysis. (DTA) is one of the few techniques that protect legacy binaries
against all memory corruption attacks on control data. Because of its accuracy, the
technique is very popular in the systems and security community—witness a string
of publications in the last few years in tier-1 venues, including SOSP [6], CCS [30],
NDSS [16], ISCA [9], MICRO [8], EUROSYS [20], ASPLOS [28], USENIX [5,12],
USENIX Security [29], Security& Privacy [24], and OSDI [13]—it is clearly well liked.

Frustratingly though, DTA is too slow to be used in production systems. In practice,
its use is limited to non-production machines like honeypots or malware analysis en-
gines. With slow-downs that often exceed an order of magnitude, few are keen to apply
taint analysis to, say, their webserver or browser.

Contributions. The research question we address in this paper is whether the slow-
down is a fundamental performance barrier, or an artifact of bolting information flow
tracking on emulators not designed for it? To answer this question, we designed a new
emulator architecture for the x86 architecture from scratch—with the sole purpose of
minimizing the instructions needed to propagate taint. The emulator, Minemu, reduces
the slowdown of DTA in most real applications to a factor of 1.5 to 3. It is significantly
faster than existing solutions, even though we have not applied some of their most
significant optimizations yet. We believe that the new design may be suitable for certain
classes of applications in production systems.

Specifically, what we did not do is rely on static analysis. In principle, it is possible
to improve performance by means of statically analyzing the program to determine
which instructions need taint tracking and which do not. Unfortunately, static analysis
and even static disassembly of stripped binaries is still an unsolved problem. Therefore,
the authors of the best-known work in this category [23], assume the presence of at
least some symbolic information (like the entry points of functions). In practice, this
is typically not available. In fact, we do not even check at (dynamic) translation time
whether the data is tainted (whether we could follow a fast path) as proposed by the
authors of LIFT [22]. In LIFT terminology, Minemu always takes the slow path. As a
result, Minemu’s performance is independent of the amount of taint in the inputs.

2 http://news.netcraft.com/archives/2011/03/09/
march-2011-web-server-survey.html#more-3991

http://news.netcraft.com/archives/2011/03/09/march-2011-web-server-survey.html#more-3991
http://news.netcraft.com/archives/2011/03/09/march-2011-web-server-survey.html#more-3991


Minemu: The World’s Fastest Taint Tracker 3

We show that, despite not using these optimization techniques and using pure dy-
namic translation, Minemu’s performance exceeds that of even the fastest existing sys-
tems [23,22,14].

The first key observation underlying Minemu is that fast DTA requires a fast emula-
tor. Thus, we designed a new and highly efficient x86 emulator from scratch. Compared
to other emulators like QEMU [2], Minemu translates much larger blocks in one go.
Additionally, the emulator applies caching aggressively throughout the system. While
the emulator is fast, we do not claim it is the fastest in the world. There are several
optimizations left that we have not yet applied. For instance, StarDBT is reportedly
faster [22]. However, by design our emulator is very amenable to arbitrary dynamic in-
strumentation in general and taint analysis in particular. The design of the emulator is
our first contribution.

The second key observation is that current DTA approaches are expensive mainly be-
cause they need many additional instructions to propagate taint. For instance, every mov
and add incurs substantial overhead. Minemu reduces the number of these additional
instructions at all cost—sacrificing memory for speed, if need be. Thus, by carefully
designing the memory layout, Minemu propagates taint at a cost of 1-3 additional in-
structions. The novel memory layout is our second contribution.

A third key observation is that many additional instructions are due to register pres-
sure in general and tracking taint in registers in particular. Thus, we use SSE registers
to track the taint for the processor’s general purpose registers—greatly speeding up the
taint analysis. Our use of SSE registers is a third contribution.

Because of Minemu’s design, the overhead of the taint tracker relative to the emula-
tor is considerably lower than that of other systems, even though we did not yet apply
any analysis to prune the taint propagation. Because of this, Minemu’s overall perfor-
mance is also better than that of existing systems, despite the fact that some have faster
emulators [22].

Design issues aside, the concrete outcomes contributed by this paper are a very fast
DTA emulator based on these insights. The emulator provides a sandbox from which
an application cannot escape and offers taint tracking at the byte level. We evaluated
the design elaborately with a host of real-world and complex applications (Apache,
lighttpd, connections, PHP, PostgreSQL, etc.), as well as SPECint 2006 bench-
marks. For all real applications, the slowdown was always less than 3x. Often less than
2x. Only one of the SPECint 2006 benchmarks incurred a slowdown greater than 4x,
while the overall slowdown across the entire benchmark suite was 2.4x.

Minemu is real. Minemu for Linux is available from https://www.minemu.org.
Interested users can install it today to protect mission critical applications (like Apache,
PostgreSQL, or lighttpd) as well as an endless chain of other UNIX tools and shells.
To demonstrate the practicality of our emulator, the Minemu site (lighttpd, php, and
PostgreSQL) itself also runs on the Minemu emulator. Moreover, it provides access to
a vulnerable ProFTPD server, running on Minemu, that we encourage readers to attack.

In the remainder of this paper, we discuss the design and implementation of Minemu
for Linux on 32-bit x86. As Minemu does not rely on Linux-specific properties, except
the size of the address space, porting the design to Windows should be straightforward.
We also discuss how the design applies to 64-bit systems.

https://www.minemu.org
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A buffer underrun vulnerability in Nginx

Nginx is a web server—in terms of market share across
the million busiest sites, the third largest Web server in
the world. At the time of writing, it hosts about 23 million
domains worldwide. Versions prior to 0.6.38 had a partic-
ularly nasty vulnerability.

When Nginx receives an HTTP request, it
calls ngx http parse complex uri with an
ngx http request t structure 1©. data points to a
buffer, in which the current routine will store a normalized
uri path 2©, while ctx points to an array of pointers to
various context structures 3© and 4©. These two buffers
happen to be adjacent in memory. The parsing function
copies the uri path to data, normalizing it at the same
time. When provided with a carefully crafted path, nginx
wrongly computes its beginning, setting data to a
location below the start of the uri query—somewhere in
the buffer underneath it. Next, the user provided query is
copied to the location pointed to by data 5©.

exec 

argument 
for exec

data

ctx

Thus, a pointer to a context structure ngx output chain ctx t (ctx pointer) is over-
written with a value coming from the network 6©. This structure contains a pointer to a function
(output filter), which will eventually be called by Nginx. By overwriting ctx pointer
with a value that points to an attacker controlled buffer, an attacker controls the function pointer,
enabling him to load it with the address of the exec function in libc 7©. An adjacent field con-
tains a pointer to this function argument (filter ctx), again controlled by the attacker 8©.
When the function is called, a new program will be executed - picked by the attacker.

Observe that in the above example no code executes in the data segment, so DEP/W⊕X will
not help. Moreover, the attack corrupts no canary value, and as the text segment is typically not
randomized, ASLR does not stop the attack either.

Fig. 1. A vulnerability in Nginx: DEP, ASLR, and canaries do not stop the attack

2 A New Emulator Design for Fast Taint Tracking

Minemu is a lightweight process-level emulator designed with taint analysis in mind
for the x86 architecture to protect vulnerable Linux applications efficiently, without
special privileges or kernel extensions. Minemu runs standard x86 instructions, so that
the application can be written in any language, including assembly.

Attack detection in Minemu works just like in other DTA approaches, and taint prop-
agation occurs directly on x86 instructions. Minemu propagates taint as it is copied
through, or used as source operand in ALU operations. In addition, it instruments the
call, ret and jmp instructions to raise an alert when a tainted value is loaded in EIP.
Check [20] for the details of the taint propagation rules. This mechanism lets us detect a
broad range of all memory corruption attacks. To deal also with code-injection attacks,
which do not need to overwrite critical values with network data, we have extended
Minemu to check that the memory location loaded on EIP is not tainted.
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Fig. 2. Minemu—high-level overview

Figure 2 illustrates the big picture. We see that at a high-level of abstraction, Minemu
is just like other dynamic translators in that it employs a JIT compiler and caches to
emulate the underlying processor efficiently. Since the emulated processor is an x86

itself, Minemu will execute as much of the code as possible natively. Whenever Minemu
encounters an instruction that it has not yet translated, it fetches a large chunk of code
to translate it in one go. It resolves all simple branches with targets in the chunk itself,
while ensuring that for complicated cases (such as indirect branches), control returns
to the JIT compiler. Initially, Minemu has not yet translated any instruction, so the first
thing it does is translate a maximum sized chunk of instructions—translating until it
either reaches the end of the memory area, or encounters an illegal instruction. The size
of the translation block is much greater than that of other well-known emulators like
QEMU. The translation process also augments the original code with DTA. By caching
aggressively, Minemu minimizes the overhead of recompilation. Moreover, by using
SSE registers instead of the normal general purpose registers for tainting, it alleviates
the register pressure that might otherwise occur due to DTA. Finally, the memory layout
is especially crafted to make it cheap to propagate taint to the taint map. We discuss all
of these aspects in detail in the remaining sections.

Besides dynamic taint analysis (DTA), effective protection against exploits requires
the emulator to provide sandboxing of data and code. Specifically, it must confine
memory accesses of the emulated process to a designated memory region, to protect
Minemu’s sensitive data (e.g., the internal data structures and taint values). Similarly,
we cannot let the emulated process escape the controlled environment.

In this Section, we discuss the overall design of the Minemu emulator, and we con-
tinue with the dynamic taint analysis part in Section 3.

2.1 Memory Layout

To provide an effective sandbox and implement taint propagation in an efficient way,
Minemu reorganizes the emulated process’ address space.

Figure 3a shows that Minemu divides a process’ memory into a number of sections.
First, an emulated process can only use memory within one contiguous block which
starts at the lowest mappable address (user memory). It has a size of almost a third of
the whole address space. Further, since Minemu keeps a one byte taint tag for every byte
of the emulated process memory, it reserves a chunk of the same size for the shadow
memory to store the taint map. In between these chunks, we reserve some memory
for the translated JIT code and Minemu itself (runtime & JIT code), and finally some
runtime read/writable data (runtime R/W memory). We call the distance between the
beginnings of the user and the shadow memory chunks TAINT OFFSET.
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Fig. 3. The figure on the left shows the different sections that make up the address space of an
emulated process, while the figure on the right represents the same address space as a circular
buffer. As all pointed arcs inside the grey disc have the same angle, they represent a constant
offset. So the offset from the start of UM to the start of SM is equal to the offset from the
start of RM to the start of UM, etc. We call this distance TAINT OFFSET. Emulated processes
can access the dark grey chunks, but an access to a light grey chunk causes a protection error.
Whenever a process writes to an address p, Minemu adds an instruction to update the taint value
in p+TAINT OFFSET—making taint propagation cheap. Suppose a malicious process tries to
clean the taint at address p+TAINT OFFSET. Again, during the translation Minemu adds an
instruction to update the taint value at (p+TAINT OFFSET )+TAINT OFFSET. However, this
address is in a protected area (LK) and any attempt to access it leads to a protection error. All
sensitive areas are protected in this way—if the process tries to access an illegal memory location,
either the operation itself or its corresponding taint propagation instruction causes a page fault.

Minemu leaves the two final chunks of the address space (reserved and Linux kernel
memory) unused. All memory accesses in these regions generate a protection fault. The
combined size of LK and RM is exactly TAINT OFFSET. We will show that reserving
this memory and mapping it unreadable allows to run without any boundary checks
during emulation. Also, since Linux on the i386 already uses a quarter of the address
space for itself, we only reserve/waste a small amount of memory (the RM chunk).

While TaintTrace [4] also uses a constant offset for the shadow memory, our layout
additonally makes it possible to run Minemu without boundary checks during emula-
tion, and still confine memory accesses by an emulated process to user memory (UM).

2.2 Data Sandboxing

The memory layout gives each address in user memory a matching one in shadow mem-
ory and the distance between them is equal to TAINT OFFSET. During the translation,
for each memory access by an emulated process, Minemu adds exactly one correspond-
ing memory access which propagates taint to and from the shadow memory. Thus,
taint propagation is extremely cheap, as it mainly consists of an instruction access-
ing memory at a constant offset relative to the original memory location. For example,
just before an access to ($eax), it inserts an instruction to propagate taint, accessing
($eax+disp32(TAINT OFFSET)). Similarly, it couples a push instruction with an
access to ($esp+disp32(TAINT OFFSET-4)).

For data sandboxing, we must confine memory accesses by an emulated process
to user memory (UM). Figure 3b shows that when a regular instruction accesses
UM, its corresponding taint propagation instruction automatically accesses the corre-
sponding location in shadow memory. Indeed, both operations access memory in the
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accessible sections. However, if a regular instruction tries to manipulate one of the for-
bidden chunks (the runtime R/W memory, the runtime & JIT code, or the shadow mem-
ory directly), the inserted taint propagation instruction will access one of the protected
parts of the address space and generate a protection fault. In Figure 3b, these illegal
accesses are illustrated with arrows having at least one of its ends in an inaccessible
light grey chunk. All illegal memory accesses result in page faults—either because of
the instruction itself or because of the corresponding taint propagation operation.

2.3 Code Sandboxing

Minemu is an emulator using fully dynamic just-in-time (JIT) compilation. When a
guest process tries to execute an instruction, Minemu translates the code starting at this
instruction to produce an equivalent code fragment enhanced with taint tracking. Fi-
nally, Minemu jumps to the translated code. After executing, control returns to Minemu
to either locate the next batch of instructions in the cache, or translate them afresh.

A
1

jmp_cache

B
H

A

jmp_cache

B
H
B

codemap

exec_1

codemap

exec_1

2

3

new chunk

A4 5 6

JIT compilation

guest
code

newaddr

newaddr
7 8

execute 

Fig. 4. Minemu translation mechanism

Translation Mechanism. Figure 4 sketches the code translation procedure. The key
steps are cache lookup, used to check whether a guest process code address has been
translated before, and JIT compilation, invoked in the case of a cache miss in order to
translate a new code chunk. We describe each step below by tracking the way Minemu
starts executing code that it has not seen before.

In the first step 1©, a guest process jumps to a guest code address A. Minemu searches
for a translated chunk corresponding to A. It first performs a lookup in the fast cache,
jmp cache 2©—a hashtable to map jump targets in an emulated process to correspond-
ing addresses in the translated code. Since A was not translated before, there is a cache
miss, and Minemu examines the second table, codemap 3©. This table contains one
row per memory mapped (mmap’ed) executable region, and it stores information about
translated chunks of a corresponding binary. Minemu checks whether A belongs to one
of the already translated code chunks. If so, it finds the address corresponding to A, and
inserts a new entry in the jmp cache. In our scenario, however, we assume another
cache miss.

Now the JIT compilation process starts 4©. Unlike Qemu, fastBT [19] or
HDTrans [27], Minemu does not translate small blocks of code. Instead, it keeps go-
ing until it encounters an illegal instruction or the end of the mmap’ed region. Minemu
translates from the guest code address A onwards.

When the JIT compiler hits a direct or relative jump instruction, it adds it to a set of
to be resolved jumps, and continues with the translation 5©. In Figure 4, the guest code
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chunk has two jumps, indicated with little arrows. Thus, to be resolved jumps contains
two elements, depicted as black rectangles in the new chunk.

Once the translation of a chunk of code is complete, Minemu examines which jump
targets in the to be resolved jumps set can be resolved immediately, 6©. Basically, the
JIT compiler determines new jump targets in the translated code for all direct and rel-
ative jumps to the same mmap’ed executable region. The rare case of relative jumps
across separately mmap’ed sections of a binary is handled separately, but the explana-
tion is beyond the scope of this paper. Minemu resolves indirect jumps at runtime. Once
hit by an emulated process, they pass the control back to Minemu. The emulator han-
dles such jump targets in exactly the same way as the address A in Figure 4. Minemu
searches the code cache, and provides an appropriate translated chunk to be executed.

When JIT compilation is finished, Minemu inserts the newly translated code chunk
to both jmp cache and codemap 7©. Finally, it starts the execution 8©.

Additional Optimizations. To further improve performance, we added a few addi-
tional optimizations. The main ones include translated code and return caching.

Translated code caching. An optional file-backed caching mechanism can store the
translated code. When the executable files of an emulated process are mapped at exactly
the same locations as in a previous run of the program, this mechanism allows for
reusing code chunks translated earlier. Doing so speeds up programs by eliminating
double work. Note however, that we cannot use this optimization in the presence of
address space layout randomization.

Return caching. The ret instruction is the most common form of an indirect jump.
To improve performance, Minemu exploits the protocol between the call and ret in-
structions. Whenever the program executes a call, we can expect a corresponding ret
instruction jumping to the program counter following the call instruction. Since the
translated return address is known at compile time, the JIT compiler simply inserts the
right mapping to jmp cache. If necessary later, Minemu is able to retrieve it quickly,
without performing a lookup in the codemap cache.

2.4 System Calls

Minemu catches all system calls and wraps them to return the control flow to trans-
lated code once the execution has completed. Some of them require special handling
by the emulator. For example, when the emulated program invokes mmap to allocate
new executable memory pages, Minemu examines the translated code cache and invali-
dates entries in this memory region. Specific system calls, e.g., read are marked as the
sources of taint (e.g., if an emulated process reads from a network socket). It is easy to
change the sources of taint in case of different needs for information flow tracking.

2.5 Signal Handling

Single instructions from the original program can become multiple instructions in the
translated JIT code. This can lead to the kernel delivering a signal while Minemu is in a
state the original program could never experience. Especially troublesome is the jump
cache (jmp cache). If a signal happens in the midst of writing a jump mapping to our
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cache and the emulated program’s signal handler would in the meanwhile look up that
address, it could start executing the wrong code.

In order to solve this problem we have implemented a wrapper around signals which
allows us to guarantee that signals always get to see a consistent state, as if the program
were run natively. The emulator’s signal handler uses an alternate stack so as not to
disturb any user memory. When a signal comes in, the signal handler checks whether
the instruction pointer is between translated instructions that belong to the same original
instruction, and whether it is in runtime code.

If the instruction pointer is in the midst of executing an emulated instruction, a JIT
translation for that single instruction is made and executed, returning to our signal han-
dler when it is done. In case the instruction pointer is in runtime code or might jump
there, we temporarily replace the instruction at which the runtime code jumps back into
the JIT code to one that returns to our signal handler.

When the emulator is in a consistent state again, a signal stackframe is copied from
the emulator’s alternative stack to user memory as if the kernel wrote it there. The orig-
inal stack frame is then modified to make it reflect the processor state and signal mask
as it should be when delivering the user signal so that the following call to sigreturn
will actually deliver the signal to the user process’ handler.

2.6 Usage

Minemu is a process-based all-user-space emulator. Its invocation is similar to ex-
ecutable wrappers like nice and strace. Instead of executing the given program,
Minemu loads it in its own address space and starts emulating it while doing taint track-
ing at the same time. Child processes and programs started from within Minemu will
also be emulated the same way. For instance, this is how we start the apache webserver:

./minemu -cache /jitcache/ -dump /memdumps/ /etc/init.d/apache start

3 Register Tagging in Minemu

Much of the overhead of earlier DTA systems (e.g., [16,6,20]) stems from the large
number of additional instructions needed to propagate taint—not just for memory ac-
cesses, but also for the registers. Worse still, as the additional instructions require com-
putation to find the location of the taint tags, they typically also increase the pressure
on the x86’s already scarce registers. While liveness analysis on registers can mitigate
the problem [21], the overhead is still considerable.

By explicitly targeting the x86, Minemu is able to exploit architectural features to re-
duce both the number of additional instructions and the register pressure caused by the
instrumentation. Specifically, Minemu uses SSE registers to hold the taint information
for the general purpose registers to minimize register swapping. As a result, the instruc-
tions in need of taint propagation, require as few as 1 − 3 extra instructions. In this
section, we discuss details of Minemu’s register tagging and taint tracking procedure.

3.1 SSE Registers Used by Minemu

To minimize register swapping, Minemu emulates a processor without SSE registers,
and uses instead three SSE registers to hold the taint information for the general purpose
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128 bits
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xmm5

xmm6

xmm7

t_ebx 0 0 0scratch register

(b)

Taint tracking: 

Instruction executed:

t_eax = t_eax|t_ebx

xmm6 = xmm6|xmm5

128 bits

Fig. 5. SSE registers used by Minemu. (a) Minemu uses three SSE registers to store taint tags of
the general purpose x86 registers. t eax, t ebx, and so on, denote taint tags associated with
the corresponding general purpose registers. (b) An example usage of the scratch register.

registers. As shown in Figure 5a, two 128 bit registers, xmm6 and xmm7, hold taint values
for the eight general purpose registers. Both are conceptually split into four 32-bit parts,
and each of these holds the taint value for one of the general purpose registers. We name
the taint tags t eax, t ecx, and so on. xmm5 is used as an auxiliary buffer, and we
call it the scratch register. Note that register tagging in Minemu is more fine-grained
than in most DTA implementations [16,6,20]: each individual byte of a register has an
associated taint tag, instead of one tag per register.

3.2 Taint Tracking

Taint propagation rules in Minemu do not differ from those of existing DTA engines.
We copy tags on data move operations, or them on ALU operations, and clean tags on
common ia32 idioms to zero memory, such as xor $eax,$eax.

What is distinctive about Minemu is the way it tracks taint: it does so without swap-
ping out any registers. The reason is twofold. First, we use SSE registers to store the
general purpose register tags. Second, we do not need to perform any additional com-
putations to determine relevant addresses in the shadow memory. As a result, there is no
need to change (and thus to save and restore) the contents of general purpose registers.

As ALU operations are (slightly) more complicated than, say, moves, we will use
them as an example. When the emulated process executes ALU operations such as
add, sub, and or xor, Minemu inserts instructions to mark the destination operand
as tainted if at least one of the source operands is tainted. The tags are thus or’ed.
Depending on the instruction performed by an emulated process, the destination of
a taint propagation or instruction inserted by Minemu can be either a register or a
memory location. For example, an instruction like $eax:=$eax+$ebx is coupled with
t eax|=t ebx, and ($eax):=($eax)+$ebx with memory tag($eax)|=t ebx, i.e.,
($eax+TAINT OFFSET)|=t ebx.

For efficiency reasons, we use the scratch register to temporarily store one of the
arguments of the taint propagation operation. Since both cases are handled in a similar
fashion, let us assume the destination of the instruction is a register. As depicted in
Figure 5b, we first load the taint value associated with the source operand in the scratch
register, and place it in the part corresponding to the destination register. The remaining
part of the scratch register is zeroed. Now, it suffices to perform an or operation on two
SSE registers: the scratch register xmm5, and either xmm6 or xmm7. By using xmm5 as an
auxiliary buffer, we again manage to avoid swapping out the general purpose registers.
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3.3 Is It Safe to Use SSE Registers?

Minemu emulates a processor without SSE registers and instead uses three SSE reg-
isters to hold the taint information for the general purpose registers. As not all IA32
processors have SSE registers, compilers and software distributers are often usually
very conservative about using them. Even when they are used, there’s almost always
fallback code for processors that do not support it. If a process does try to execute an
SSE instruction, Minemu currently generates an illegal instruction exception. There is
nothing fundamental about this, as it is possible to also translate SSE instructions, by
swapping in the contents of the original registers when needed. However, while we have
not measured it, it is quite likely that with the swapping overhead, fallback code which
does not assume SSE instructions performs better.

4 Evaluation

We evaluate both Minemu effectiveness in detecting attacks (Section 4.2) and its perfor-
mance (Section 4.3). Besides our own measurements, we compare Minemu with other
fast taint tracking tools (Section 4.4). We also want to mention that Minemu is robust.
All tested applications worked out of the box.

4.1 Test Environment

Our test platform is a quad-core system with an Intel i5-750 CPU clocked at 2.67GHz
with 256KB per-CPU cache and 8MB of shared cache. The system holds 4G of DDR3-
1333 memory. For our performance tests we used a 32-bit Debian GNU/Linux 6.0 in-
stall. Because of library dependencies, some of the older exploits were tested using
Debian GNU/Linux 5.0 or a chrooted Ubuntu 6.06 base install. We tested network ap-
plications over the local network loopback device so that our results do not get skewed
by bandwidth limitations of the network hardware. We ran each experiment multiple
times and present the median. Across all experiments, the 90th percentiles were typi-
cally within 10% and never more than 20% off the mean.

In our experiments we mark all input to an application as tainted. Note however, that
unlike the other fast tainting approaches ([22,23,14]) for Minemu the amount of taint
does not change the performance at all.

4.2 Effectiveness

Table 1 shows the effectiveness of Minemu in detecting a wide range of real-life soft-
ware vulnerabilities that trigger arbitrary code execution. We mention that, due to the
reliability of DTA, Minemu did not generate any false positives during any of our exper-
iments. Overall, Minemu successfully detects all attacks listed in Table 1. It spots that
the program counter is affected by tainted input, and raises an alert preventing the mali-
cious code from executing. Our evaluation shows that Minemu detects various types of
attacks in real-world scenarios. For example, the vulnerabilities in Proftpd and Cyrus
imapd are exploited to overwrite the return address on the stack and allow remote at-
tackers to execute arbitrary code. For the 2010 Samba vulnerability, the attacker uses



12 E. Bosman, A. Slowinska, and H. Bos

a buffer overflow to overwrite a destructor callback function. For Nginx, an underflow
bug on the heap allows attackers to modify a function pointer (as explained in Figure 1).
In Socat and Tipxd it is possible to control the fmt parameter to a call to sprintf,
enabling the attacker to write to arbitrary locations in memory—in this case the return
address of a function call.

Table 1. Tested control flow diversion vulnerabilities

Application Vector Vulnerability Security adv. Application Vector Vulnerability Security adv.
Snort 2.4.0 Remote Stack overflow CVE-2005-3252 Aspell 0.50.5 Local Stack overflow CVE-2004-0548
Cyrus imapd 2.3.2 Remote Stack overflow CVE-2006-2502 Htget 0.93 Local Stack overflow CVE-2004-0852
Samba 3.0.22 Remote Heap overflow CVE-2007-2446 Socat 1.4 Local Format string CVE-2004-1484
Nginx 0.6.32 Remote Buffer underrun CVE-2009-2629 Aeon 0.2a Local Stack overflow CVE-2005-1019
Proftpd 1.3.3a Remote Stack overflow CVE-2010-4221 Exim 4.41 Local Stack overflow EDB-ID#796
Samba 3.2.5 Remote Heap overflow CVE-2010-2063 Htget 0.93 Local Stack overflow
Ncompress 4.2.4 Local Stack overflow CVE-2001-1413 Tipxd 1.1.1 Local Format string OSVDB-ID#12346
Iwconfig V.26 Local Stack overflow CVE-2003-0947

4.3 Minemu Performance

We evaluate the performance of Minemu with a variety of applications—all of the
SPECint 2006 benchmarks, and a wide range of real world programs. The slowdown
incurred for the SPECint 2006 benchmark is on average 2.4x. The suite of tested real-
world applications, in addition to single programs such as gzip and lighttpd, con-
tains an entire web stack serving over HTTPS. We show that due to the novel emulator
architecture, the slowdown incurred for these real-world scenarios is always less than
2.8x, with 1.6x for gzip, and less than 1.5x for HTTP/lighttpd. In our opinion, the
results demonstrate the practicality of our emulator.

Figure 6 presents detailed results of our evaluation. The y-axes of all graphs show
how many times slower a test was, compared with the same test run natively. In order
to measure the overhead of Minemu’s binary translator, all of our measurements were
done both with and without taint tracking.

In addition to testing single applications, such as gzip, lighttpd, and Apache, we
also tested an entire web stack serving over HTTPS. For this test, we chose a PHP-based
MediaWiki install running on lighttpd and PostgreSQL. For Apache, lighttpd
and the MediaWiki web stack we used apachebench, and we pinned apachebench

to a different core than the webserver. For the web stack we also gave PostgreSQL a
separate core. Doing so decreases request times for both emulated and native runs and
reflects what real installations would do.

We observe that the slowdown incurred by lighttpd serving HTTP is minimal,
always less than 1.5x, and decreasing with the size of a request. This illustrates that
for IO-bound applications, like serving documents over HTTP, the cost of taint tracking
using Minemu is minimal. In the case of HTTPS, the slowdown increases with the size
of a request, but is still less than 2.8x for large files.

We also ran the whole SPECint 2006 to see the effect of Minemu on applications
which do not spend a lot of time waiting for input. Because the SPECint 2006 bench-
marks are CPU intensive, and spend most of their time doing hard computations, we
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Fig. 6. Overhead of emulation and taint-tracking in Minemu, compared to the native execution

expect these results to represent worst case scenarios. Nevertheless, only one of the
SPECint 2006 benchmarks, h264ref - performing video compression, incurred a slow-
down greater than 4x. Moreover, eight out of twelve benchmarks incur a slowdown
ranging from 1.7x to 2.3x.
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4.4 How Does Minemu Compare to Related Work?

In this section, we compare the performance of Minemu with three systems that are
the most relevant to our work, PTT [14], the dynamic taint tracking tool by Saxena et
al. [23], and LIFT [22]. We refrain from discussing the details of these projects until
Section 6 and focus on performance only. We will see that Minemu outperforms all. In
all graphs in this section, Minemu-T, and Minemu-NT denote the results of Minemu
with- and without taint tracking, respectively.

PTT PTT [14] is a taint tracking system which, similarly to [15], dynamically switches
execution between a heavily instrumented QEMU and fast Xen, depending on whether
tracking is required. As we shall see, even though PTT has numerous optimizations to
reduce the performance overhead, Minemu is much faster.

To evaluate the performance of PTT, its authors present three benchmarks: local
copy, compression and searching. Local copy involves copying of a 4 MB file using the
cp command, and compression - compressing a 4 MB file with gzip. As for search-
ing, the grep command is used to search the input data for a single word. The input
data set is a 100 MB text corpus spread across 100 equal-sized files. Figure 7 compares
the slowdowns incurred by PTT, and Minemu. Since the cp a-4MB-file operation
is dominated by the initialization time, we also present Minemu overhead for a cp

a-100MB-file operation. We can see that in all cases, Minemu significantly outper-
forms PTT. Note, however, that PTT does full system emulation rather than process
emulation.

Saxena et al. The fast taint tracking system by Saxena et al. [23] builds on smart
static analysis. This may be a problem, because as we discuss further in Section 6, the
information required by the static analysis is not always available in practice.

To evaluate the performance of the system, the authors run a rather eclectic mix of
ten SPEC benchmarks. As some of them are so old as to be hard to find (SPEC 92
and SPEC 95), we were not able to fully compare Minemu with [23]. Four of the ap-
plications evaluated in [23] are SPECfp benchmarks. Since FPU registers are rarely, if
ever, involved in attacks, most taint tracking systems, including Minemu and Saxena
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et al. [23], ignore them by default. Thus, the overhead stems only from the usual taint
tracking instructions, such as data movement, arithmetic or logic instructions. For the
sake of comparison only, we present Minemu results for these applications as well.

Figure 8 compares slowdowns for the benchmarks which we had available. The re-
sults show the overhead of [23] in two cases, first, optimized taint-tracking (Saxena-T),
and second, fastpath (Saxena-FP). Similar to LIFT, [23] also optionally implements
fastpath. Before executing a basic block it checks whether the data involved is tainted
or not. If not, execution follows a fast binary version without any information flow
tracking. The authors of the system measured the performance of the fastpath and slow-
path code separately, where the fastpath results do not involve tainted data tracking.
Whenever we do have means for comparison, Minemu is significantly faster. Even with
full taint tracking, Minemu performs better than the Fastpath version of [23].

LIFT. LIFT [22] implements taint analysis in Intel’s highly optimized StarDBT binary
translator and applies three taint tracking performance optimizations. We show that
although currently Minemu does not apply any of these optimizations, in most cases it
performs better. We also point out that the overhead added by the taint tracking relative
to the performance of the bare emulator is significantly lower in the case of Minemu.

To evaluate the performance of LIFT, its authors measured the throughput and re-
sponse time of the Apacheweb server, and run 7 (out of 12) SPECint 2000 benchmarks.
Refer to Figure 9 for slowdown comparisons. The overall overhead incurred by Minemu
is much lower than that of LIFT with gcc as the only exception. Minemu’s performance
when running gcc ranges from 2x to 3.9x (Minemu compiles itself in about 2x native
on our Intel i5-750 CPU), and differs from system to system for the same program.
Since the performance is also poor for Minemu without taint analysis, it is not likely
to be caused by the working set not fitting into cache memory. Rather, it is probably
an emulator problem. Other emulators, such as StarDBT, perform better on this bench-
mark. It shows that there is room for improvement in our emulator implementation. We
also observe that even though StarDBT is mostly faster than our pure emulator, the taint
tracking mechanism implemented in Minemu incurs less additional overhead.

5 Limitations and Future Work

Limitations. Minemu suffers from the same drawbacks as most other DTA implemen-
tations: it does not track implicit flows, and it does not detect non-control data attacks.
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In addition, Minemu consumes more memory than existing approaches. Extremely
memory-hungry applications may not be very suitable for Minemu in its current form.
In the next section, we discuss how the Minemu architecture applies to 64-bit architec-
tures with larger address spaces.

Also, Minemu currently does not support self-modifying code. A possible solution is
to use the write protection mechanism. Executable pages are marked unwritable, so that
whenever an emulated process modifies the original code, Minemu would take control
of the execution. By removing all entries which correspond to the modified user code
page from the translated code cache, the new code will be translated by the JIT compiler
before the emulated process executes it. We leave it as future work.

Finally, the current implementation does not work for applications that insist on using
SSE instructions. However, we do not consider this a fundamental problem, as it is
straightforward to implement register swapping for these cases.

Minemu for a 64-bit architecture. Although our approach is particularly well suited for
32-bit x86 code, we believe we can make it work efficiently on 64-bit x86 also. The
main obstacle is that while on a 32-bit system we can easily pretend that our emulated
CPU does not support SSE extensions, they come standard on 64-bit x86. As a result,
any compiler is free to make use of them without any feature checking. Fortunately, the
latest Intel and AMD processors come with even wider vector registers suitable to hold
taint data3. However, because the lower 128 bits of these registers map to the old SSE
registers, we will need some swapping for lesser-used registers.

A second problem is that the 32-bit displacement in Intel’s addressing mode used
for TAINT OFFSET is not large enough to hold the whole address space. This is no
problem as long as a program does not try to allocate consecutive regions of memory of
more than 2G in size. By interleaving normal memory and shadow memory in chunks
of 2G we can still use the same mechanism for tainting. If we want to support more
than 2G of consecutive memory, the emulator should reserve one (less-used) general
purpose register to hold TAINT OFFSET. Memory accesses which do not use base-index
addressing can be translated into a base-index address with TAINT OFFSET as base.
Accesses which do use base-index addressing will need an additional lea instruction.

6 Related Work
Binary instrumentation for taint tracking. Dynamic taint analysis builds on seminal
work by Peter and Dorothy Denning on information flow tracking in the 70s [10].
Since then we have witnessed a string of publications discussing taint tracking, e.g.,
TaintCheck [16], Vigilante [6], XenTaint [15], and Argos [20]. As all these systems,
however, are too slow to be used in production systems, researchers started working on
optimizations that would render dynamic taint analysis useful in real world scenarios. In
this section, we discuss three recent approaches which aim at decreasing the overhead
incurred by DTA: the work by Saxena et al. [23], LIFT [22], and PTT [14]. We com-
pared the performance of Minemu with these systems in Section 4.4, and we showed
that Minemu outperforms all of them. We focus on the architecture of these tools now.

3 http://software.intel.com/sites/products/documentation/hpc/
composerxe/en-us/cpp/lin/intref_cls/common/intref_avx_details.
htm

http://software.intel.com/sites/products/documentation/hpc/composerxe/en-us/cpp/lin/intref_cls/common/intref_avx_details.htm
http://software.intel.com/sites/products/documentation/hpc/composerxe/en-us/cpp/lin/intref_cls/common/intref_avx_details.htm
http://software.intel.com/sites/products/documentation/hpc/composerxe/en-us/cpp/lin/intref_cls/common/intref_avx_details.htm
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State-of-the-art performance optimization for taint analysis by Saxena et al. [23]
builds on smart static analysis. Prior to execution, it translates the original binary to a
completely new binary that adds highly optimized instrumentation code only to instruc-
tions that really need it. Unfortunately, even static disassembly of stripped binaries is
still an unsolved problem. For this reason, the analysis assumes the presence of at least
some symbolic information (like the entry points of functions), which is typically not
available in practice.

LIFT [22] implements taint analysis in Intel’s highly optimized StarDBT binary
translator. StarDBT uses additional dedicated registers for taint tracking. Specifically, it
translates the IA32 instructions to EM64T binary code. Since the EM64T architecture
has more registers than the IA32, StarDBT does not need to spill registers, giving a
significant performance gain. As a consequence, however, LIFT will not work on a 32-
bit installation. LIFT applies three additional performance optimizations. First, before
executing a basic block LIFT checks whether the data involved is tainted or not. If not,
execution follows a fast binary version without any information flow tracking. Second,
LIFT coalesces data safety checks from multiple consecutive basic blocks into one.
Third, LIFT reduces the overhead of switching between the emulated program and the
instrumentation code by using cheaper instructions and status register liveness analysis,
respectively. While Minemu does not apply any of these optimizations (yet), in most
cases it performs better already. If anything, they show that Minemu’s performance can
be improved even more. Also, our overhead for (just) the taint tracking is lower.

PTT [14] is a taint tracking system which, similarly to [15], dynamically switches
execution between a heavily instrumented QEMU and fast Xen, depending on whether
tracking is required. To improve performance, PTT tracks taint tags at a higher ab-
straction level and in an asynchronous manner. In some more details, instead of in-
strumenting the micro instructions generated by QEMU, PTT creates a separate stream
of tag tracking instructions from the x86 instruction stream itself. Since the emulation
and taint tracking are now largely separable, PTT executes the taint tracking stream in
a parallel asynchronous fashion. This results in a significant performance gain. Still,
Minemu greatly outperforms PTT.

Binary translation. Binary translation has been an important research topic for at least
30 years [11] now. In this section, we limit ourselves to two systems which are most
similar to Minemu, fastBT [19] and HDTrans [27]. Both systems are light-weight pro-
cess emulators that use code caches for translated code, and apply efficient optimiza-
tions for indirect jumps. Since Minemu is more than an emulator - it employs binary
translation to provide efficient taint tracking - we cannot perform a comprehensive com-
parison with the aforementioned emulators. We focus the discussion on the main design
decisions. Whenever relevant, we also refer to QEMU [2]. Even though QEMU uses bi-
nary translation to implement full system virtualization, it has been used as a basis for
multiple taint tracking tools, e.g., Argos [20].

Compared to these three system, Minemu translates the longest chunks of code at a
time. It stops only at the end of a memory region or at an illegal instruction. In principle
QEMU and fastBT translate basic blocks, while HDTrans stops at conditional jumps or
return instructions. Another important aspect of binary translation tools is the way they
handle indirect jumps, and the issue of return caching. Minemu’s handling of indirect
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jumps is most similar to HDTrans - both systems use a lookup table that maps locations
in the code cache to locations in the original program. Keep in mind however, that
in Minemu translated code chunks are much longer than in HDTrans, so that many
jump targets are located inside chunks. As for the return caching mechanism, all three
emulators implement mechanisms that exploit the relationship between call and ret

instructions to efficiently cache the return address.

7 Conclusions

In this paper, we explored the research question of whether or not the slowness of soft-
ware dynamic taint analysis is fundamental. We believe that we have (at least partially)
answered this question in the negative. An emulator that is carefully designed explic-
itly for taint analysis, achieves significant speed-ups. We developed Minemu, a fast
taint-tracking x86 emulator and showed that the slow-down caused by the combination
of taint analysis and emulation ranges between 1.5x and 3x for real applications. The
design introduces a novel memory layout that minimizes the overhead for propagating
taint in memory operations. In addition, it uses SSE registers to alleviate potential regis-
ter pressure due to the instrumentation. We evaluated our solution with standard bench-
marks as well as suites of real and complex software stacks. Finally, we compared our
results with other approaches towards speeding up DTA and show that Minemu is sig-
nificantly faster. Minemu is available for download from https://www.minemu.
org. Because of its excellent performance, we believe that Minemu may make DTA
suitable for production machines.
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Abstract. Code identity is a primitive that allows an entity to recog-
nize a known, trusted application as it executes. This primitive supports
trusted computing mechanisms such as sealed storage and remote at-
testation. Unfortunately, there is a generally acknowledged limitation in
the implementation of current code identity mechanisms in that they are
fundamentally static. That is, code identity is captured at program load-
time and, thus, does not reflect the dynamic nature of executing code as
it changes over the course of its run-time. As a result, when a running
process is altered, for example, because of an exploit or through injected,
malicious code, its identity is not updated to reflect this change.

In this paper, we present Dymo, a system that provides a dynamic
code identity primitive that tracks the run-time integrity of a process
and can be used to detect code integrity attacks. To this end, a host-
based component computes an identity label that reflects the executable
memory regions of running applications (including dynamically gener-
ated code). These labels can be used by the operating system to en-
force application-based access control policies. Moreover, to demonstrate
a practical application of our approach, we implemented an extension to
Dymo that labels network packets with information about the process
that originated the traffic. Such provenance information is useful for
distinguishing between legitimate and malicious activity at the network
level.

Keywords: code identity, process integrity, access control.

1 Introduction

Modern operating systems implement user-based authorization for access con-
trol, thus giving processes the same access rights as the user account under which
they run. This violates the principle of least privilege [21] because processes are
implicitly given more access rights than they need, which is particularly prob-
lematic in the case of malware. A more robust strategy to mitigate the effects
of running malware is to make access control decisions based on the identity of
the executing software. That is, instead of granting the same set of privileges
to all applications that are run by a user, it would be beneficial to differentiate
between programs and to assign different privileges based on their individual
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needs. For example, a security policy could enforce that only a particular (un-
modified) word processing application should access a sensitive document, or an
online banking application might refuse to carry out a transaction on behalf of
a user unless it can identify that the user is executing a trusted web browser.
An even stronger policy could define a set of trusted (whitelisted) applications,
while the execution of any other code would be denied.

Enforcing fine-grained access control policies on an application basis requires
a strong notion of code identity [18]. Code identity is a primitive that allows an
entity (for example, a security enforcement component) to recognize a known,
trusted application as it executes. Code identity is the fundamental primitive
that enables trusted computing mechanisms such as sealed storage and remote
attestation [20].

The state-of-the-art in implementing code identity involves taking measure-
ments of a process by computing a cryptographic hash over the executable file, its
load-time dependencies (libraries), and perhaps its configuration. The measure-
ments are usually taken when a process is loaded, but just before it executes [18].
A measurement is computed at this time because it includes the contents of the
entire executable file, which contains state that may change over the course of ex-
ecution (e.g., the data segment). Taking a measurement after this state has been
altered would make it difficult to assign a global meaning to the measurement
(i.e., the code identity of the same application would appear to change).

Since the code identity primitive is fundamentally static, it fails to capture
the true run-time identity of a process. Parno et al. acknowledge this limitation,
and they agree that this is problematic because it makes it possible to exploit
a running process without an update to the identity [18]. For example, if an
attacker is able to exploit a buffer overflow vulnerability and execute arbitrary
code in the context of a process, no measurement will be taken and, thus, its
code identity will be the same as if it had not been exploited.

In this paper, we address the problem of static code identity, and we propose
Dymo, a system that provides a dynamic code identity primitive that contin-
uously tracks the run-time integrity of a process. In particular, we introduce a
host-based component that binds each process to an identity label that imple-
ments dynamic code identity by encapsulating all of the code that the process
attempts to execute. More precisely, for each process, our system computes a
cryptographic hash over each executable region in the process’ address space.
The individual hash values are collected and associated with the corresponding
process. This yields an identity label that reflects the executable code that the
application can run, including dynamic changes to code regions such as the addi-
tion of libraries that are loaded at run-time or code that is generated on-the-fly,
for example, by a JIT compiler or an exploit that targets a memory vulnerability.

Identity labels have a variety of practical uses. For example, labels can be
used in a host-based application whitelisting solution that can terminate pro-
cesses when their run-time integrity is compromised (e.g., as the result of a
drive-by download attack against a web browser). Also, identity labels can enable
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fine-grained access control policies such as only granting network access to specif-
ically authorized programs (e.g., known web browsers and e-mail clients).

To demonstrate how the use of identity labels can be extended into the net-
work, we implemented an extension to Dymo that provides provenance infor-
mation to all outgoing network connections. More precisely, we extended Dymo
with a component that marks each TCP connection and UDP packet with a
compressed identity label that corresponds to the application code that has gen-
erated the connection (or packet). This label is embedded in the network traffic
at the IP layer, and, therefore, it can be easily inspected by both network devices
and by the host that receives the traffic.

We have implemented our system as a kernel extension for Windows XP and
tested it on several hardware platforms (a “bare metal” installation and two vir-
tualized environments). Our experiments show that identity labels are the same
when the same application is run on different systems. Moreover, when a mal-
ware program or an exploit attempts to inject code into a legitimate application,
the label for this application is correctly updated.

The contributions of this paper are the following:

– We propose a novel approach to track the run-time integrity of a process by
implementing a dynamic code identity primitive. The primitive has a variety
of applications, at both the OS and the network levels, to enable fine-grained
access control decisions based on dynamic process integrity.

– We describe the design and implementation of Dymo, a system that extends
the Windows kernel to implement the proposed integrity tracking approach.

– We demonstrate a practical application of the dynamic code identity primi-
tive by extending Dymo to label network packets based on the application
code that is the source of the traffic. This information is useful for distin-
guishing between legitimate and malicious activity at the network level.

– We discuss our experimental results, which show that our system is able to
track dynamic process integrity in a precise and efficient manner. Moreover,
we show that identity labels are robust and correctly reflect cases in which
malicious code tampers with legitimate programs.

2 System Overview

In this section, we first discuss the requirements for our identity labels in more
detail. Then, we present an overview of Dymo, our system that implements these
labels and provides dynamic code identity for processes.

2.1 System Requirements

A system that aims to provide dynamic code identity must fulfill three key re-
quirements: First, identity labels must be precise. That is, a label must uniquely
identify a running application. This implies that two different applications re-
ceive different labels. Moreover, it also means that a particular application
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receives the same label when executed multiple times on different hardware plat-
forms or with slightly different dynamic libraries. This is crucial in order to write
meaningful security polices that assign permissions on the basis of applications.

The second requirement is that identity labels must be secure. That is, it must
be impossible (or very difficult) for a malicious process to assume the identity
of a legitimate application. Otherwise, a malicious process can easily bypass
any security enforcement mechanism that is based on code identity simply by
impersonating an application that has the desired permissions.

The third requirement is that the implementation of the mechanism that com-
putes identity labels must be efficient. Program execution on current operating
systems is highly dynamic, and events in which a process adds additional code to
its address space (typically in the form of dynamic libraries) are common. Also,
the access permissions of code segments are changed surprisingly often. Thus,
any mechanism that aims to maintain an up-to-date view of the running code
will be invoked frequently, and, thus, must be fast.

2.2 System Design

To capture the dynamic identity of code, and to compute identity labels, we
propose an approach that dynamically tracks all executable code regions in a
process’ address space. Typically, these code regions contain the instructions of
the application code as well as the code sections of libraries, including those that
are dynamically loaded. Dymo computes a cryptographic hash over the content
of each code section, and it uses the set of hashes as the process’ identity label.

Precise Label Computation. Dymo ensures the precision of identity labels, even
in cases where an application loads slightly different sets of libraries on different
executions. This can happen when applications load certain libraries only when
the need arises, for example, when the user visits a web page that requires a
particular browser plug-in. In such cases, two identity labels for two executions
of the same application will contain an identical set of hashes for those libraries
that are present in both processes, while one label will have extra hashes for any
additional libraries that are loaded.

Typically, executable regions in a process’ address space correspond to code
sections of the binary or libraries. However, this is not always the case. For ex-
ample, malicious processes can inject code into running applications (e.g., using
Windows API functions such as VirtualAllocEx and WriteProcessMemory).
In addition, when a legitimate application has a security vulnerability (such as
a buffer overflow), it is possible to inject shellcode into the application, which
alters its behavior. Our identity labels encapsulate such code, because Dymo
keeps track of all executable memory regions, independent of the way in which
these regions were created.

Handling Dynamically Generated Code. An important difference from previous
systems that compute hashes of code regions to establish code identity is that
Dymo supports dynamically generated code. For this, one could simply choose
to hash code regions that are dynamically created (similar to regular program



Dymo: Tracking Dynamic Code Identity 25

code). Unfortunately, it is likely that such code regions change between program
executions. For example, consider a just-in-time compiler for JavaScript that
runs in a browser. Obviously, the code that is generated by this JIT compiler
component depends on the web pages that the user visits. Thus, hashes asso-
ciated with these code regions likely change very frequently. As a result, even
though the hash would precisely capture the generated code, its value is essen-
tially meaningless. For this reason, we decided not to hash dynamic code regions
directly. Instead, whenever there are dynamically created, executable memory
regions, we add information to the label that reflects the generated code and
the library responsible for it. The rationale is that we want to allow only cer-
tain known (and trusted) parts of the application code to dynamically generate
instructions. However, there are no restrictions on the actual instructions that
these regions can contain. While this opens a small window of opportunity for
an attacker, a successful exploit requires one to find a vulnerability in a library
that is permitted to generate code, and this vulnerability must be such that it
allows one to inject data into executable memory regions that this library has
previously allocated. This makes it very difficult for a malicious program or an
attacker to coerce a legitimate program to execute unwanted code.

Secure Label Computation. Identity labels must be secure against forging. This
requires that malicious processes cannot bypass or tamper with the component
that computes these labels. In other words, Dymo must execute at a higher
privilege than malicious code that may tamper with the label computation.

One possible way to implement Dymo is inside a virtual machine monitor
(VMM). This makes it easy to argue that the component is protected from the
guest OS and non-bypassable, and it would also be a convenient location to
implement our extensions, since we could use an open-source VMM. Another
way to implement Dymo is as part of the operating system kernel. In this case,
the threat model has to be somewhat weaker, because one must assume that
malicious processes only run with regular user (non-administrator) privileges.
Moreover, this venue requires more implementation effort given that there is no
source code available for Windows. However, on the upside, implementing Dymo
as part of the operating system kernel makes real-world deployment much more
feasible, since it does not require users to run an additional, trusted layer (such
as a virtual machine) underneath the OS.

For this work, we invested a substantial effort to demonstrate that the sys-
tem can be implemented as part of the Windows operating system. This was a
deliberate design decision that makes Dymo easier to deploy. We also believe
that it is reasonable to assume that the attacker does not have root privileges.
With the latest releases of its OS, Microsoft is aggressively pushing towards a
model where users are no longer authenticated as administrator but run as regu-
lar users [17]. Also, recent studies have shown that malware increasingly adapts
to this situation and runs properly even without administrator privileges [1].

Efficient Label Computation. Computing labels for programs should only incur
a small performance penalty. We add only a few instructions to the fast path in
the Windows memory management routines (which are executed for every page
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fault). Moreover, the label computation is done incrementally; it only needs
to inspect the new, executable memory regions that are added to the process
address space. As a result, our label computation is fast, as demonstrated by
the performance overhead measured in our experiments (which are discussed in
Section 5).

3 System Implementation

In this section, we describe Dymo’s implementation in detail. In particular, we
discuss how our system extends the Windows XP kernel to track the executable
regions of a process and uses this information to compute identity labels.

Dynamically maintaining a process’ identity over the course of its execution
is a difficult problem. The first concern is that processes load dynamic link
libraries (DLLs) during run-time, which makes it difficult to predetermine all of
the code segments that will reside in a process’ address space. Second, processes
may allocate arbitrary memory regions with execute permission, for example,
when dynamically generating code. This is commonly done by packed malware,
which produces most of its code on-the-fly in an effort to thwart signature-based
detection, but also by just-in-time compilers that generate code dynamically.
A third issue concerns image rebasing. When the preferred load addresses of
two DLLs conflict, one has to be relocated, and all addresses of functions and
global variables must be patched in the code segment of the rebased DLL. This
poses a problem because we do not want the identities of two processes to differ
simply because of differences in DLL load order. Dymo is able to track a process’
identity in spite of these problems, as discussed in the following sections.

3.1 System Initialization

We assume that Dymo is installed on a clean machine and is executed before any
malicious process is running. Our system begins its operation by registering for
kernel-provided callbacks that are associated with process creation and image
loading (via PsSetCreateProcessNotifyRoutine and PsSetLoadImageNotify-
Routine, respectively) and hooking the NT kernel system services responsible
for allocating memory, mapping files, and changing the protection of a memory
region (these functions are NtAllocateVirtualMemory, NtMapViewOfSection,
and NtProtectVirtualMemory, respectively).

By registering these callbacks and hooks, Dymo can observe and track all
regions of memory from which a process could potentially execute code. Dymo
also hooks the page fault handler so that it will be alerted when a tracked mem-
ory region has been requested for execution. This allows for the inclusion of this
region into the identity label. This alert strategy makes use of hardware-enforced
Data Execution Prevention (DEP/NX) [16]. DEP/NX utilizes No eXecute hard-
ware support to disallow execute access to memory pages that have the NX bit
set. Note that only those DEP/NX violations that are due to our tracking tech-
nique are processed in the hooked page fault handler. The vast majority of page
faults are efficiently passed on to the original handler.
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3.2 Identity Label Generation

An identity label encapsulates all memory regions (sets of consecutive memory
pages) of a process’ address space that are executed. Since each executable mem-
ory region is self-contained and can be modified independently, Dymo tracks
them individually through image hashes and region hashes.

Image and region hashes are cryptographic hashes (currently we use SHA-
1) that represent images (i.e., .exe files and DLLs) and executable memory
regions, respectively. The primary difference between the two types of hashes
is that the former refer to image code segments while the latter correspond to
all other executable memory allocations. We make this distinction because of
the differences in generating the two types of hashes, as discussed later. A basic
identity label is generated by aggregating all image and region hashes into a set.
In Section 4.2, we discuss an optimization step that allows us to compress the
size of identity labels significantly.

Since the label is a set of hashes, the constituent image and region hashes can
be individually extracted. As a result, the identity label is independent of the
exact layout of executable memory regions in the process’ address space (which
can change between executions). Furthermore, the identity label encapsulates
DLLs that are dynamically loaded according to the run-time behavior of a par-
ticular process execution (e.g., the dynamic loading of a JavaScript engine by a
browser when rendering a web page that contains JavaScript). The creation of
image and region hashes is described next.

Image Hashes. It is easiest to understand the operation of Dymo by walking
through the loading and execution of an application. After a process is started
and its initial thread is created – but before execution begins – Dymo is notified
through the process creation callback. At this point, Dymo constructs a process
profile to track the process throughout its execution.

Just before the initial thread starts executing, the image loading callback is
invoked to notify Dymo that the application’s image (the .exe file) and the
Ntdll.dll library have begun loading. Dymo locates the code segment for each
of these images in the process’ virtual address space and modifies the page pro-
tection to remove execute access from the region. Dymo then adds the original
protection (PAGE EXECUTE READ), the new protection (PAGE READONLY), and the
image base address to the process profile.

Ntdll.dll is responsible for loading all other required DLL images into
the process, so the initial thread is set to execute an initialization routine in
Ntdll.dll. Note that this marks the first user mode execution attempt in the
new process. Since Dymo has removed execute access from the Ntdll.dll code
segment, the execution attempt raises a DEP/NX exception, which results in a
control transfer to the page fault handler. Dymo’s page fault handler hook is
invoked first, which allows it to inspect the fault. Dymo determines that this is
the DEP/NX violation that it induced, and it uses the process profile to match
the faulting address to the Ntdll.dll code segment. Using the memory region
information in the process profile, Dymo creates the image hash that identifies
Ntdll.dll. It does this by computing a cryptographic hash of the code segment.
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Note that special care must be taken to ensure that the image hash is not
affected by image rebasing. Dymo accomplishes this by parsing the PE header
and .reloc section of the image file to find the rebase fixup points and revert
them to their canonical values. That is, those addresses in a library’s code that
change depending on the library’s base address are overwritten with their initial
values, which are derived from the preferred base address. This is necessary
to avoid the generation of different hashes when the same library is loaded at
different addresses in different program executions.

The image hash is then added to the process profile. Finally, Dymo restores
the original page protection (PAGE EXECUTE READ) to the faulting region and
dismisses the page fault, which allows execution to continue in the Ntdll.dll
initialization routine.

Ntdll.dll consults the executable’s Import Address Table (IAT) to find re-
quired DLLs to load (and recursively consults these DLLs for imports) and maps
them into memory. Dymo is notified of these image loads through a callback,
and it carries out the processing described above for each library. The callback
is also invoked when DLLs are dynamically loaded during run-time, which en-
ables Dymo to process them as well. After loading, each DLL will attempt to
execute its entry point, a DEP/NX exception will be raised, and Dymo will add
an image hash for each DLL to the process profile as described above.

Region Hashes. Collecting image hashes allows Dymo to precisely track all of a
process’ loaded images. But there are other ways to introduce executable code
into the address space of a process, such as creating a private memory region or
file mapping. Furthermore, the page protection of any existing memory region
may be modified to allow write and/or execute access.

All of these methods eventually translate to requests to one of three sys-
tem services that are used for memory management – NtAllocateVirtual-
Memory, NtMapViewOfSection, or NtProtectVirtualMemory – which are hooked
by Dymo. When a request to one of these system services is made, Dymo first
passes it to the original routine, and then it checks whether the request resulted
in execute access being granted to the specified memory region. If so, Dymo
reacts as it did when handling loaded DLLs: it removes execute access from the
page protection of the region, and it adds the requested protection, the granted
protection, and the region base address to the process profile. When the sub-
sequent DEP/NX exception is raised (when code in the region is executed for
the first time), Dymo creates a region hash for the region. Unfortunately, gen-
erating a region hash is not as straightforward as creating an image hash (i.e.,
calculating a cryptographic hash over the memory region). This is because these
executable regions are typically used for dynamic code generation, and so the
region contents vary wildly over the course of the process’ execution. Handling
this problem requires additional tracking, which we describe next.

Handling Dynamic Code Generation. To motivate the problem created by dy-
namic code generation, consider the operation of the Firefox web browser. As
of version 3.5, Firefox uses a component called TraceMonkey [15] as part of its
JavaScript engine to JIT compile traces (hot paths of JavaScript code), and it
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executes these traces in an allocated memory region. Since the generated code
will vary depending upon many factors, it is difficult to track and identify the
region (a similar issue arises with recent versions of Adobe’s Flash player and
other JIT compiled code). Nonetheless, care must be taken to effectively track
the JIT code region as it represents a writable and executable memory region
that may be the target of JIT spraying attacks [3].

To overcome this difficulty, Dymo tracks the images that are responsible for al-
locating, writing, and calling into the region in question. The allocator is tracked
by traversing the user mode stack trace when the region is allocated until the ad-
dress of the code that requested the allocation (typically a call to VirtualAlloc)
is reached. Dymo tracks the writer by filtering write access from the region, and,
in the page fault handler, capturing the address of the instruction that attempts
the write. The caller is tracked by locating the return address from the call into
the region. In the page fault handler, this return address can be found by fol-
lowing the user mode stack pointer, which is saved on the kernel stack as part of
the interrupt frame. Dymo creates a (meta) region hash by concatenating the
image hashes of the allocator, writer, and caller of the region and hashing the
result. In the case of Firefox TraceMonkey, a hash that describes that the region
belongs to its JavaScript engine housed in Js3250.dll is generated.

Dynamic code rewriting is handled in a similar fashion. Code rewriting occurs,
for example, in the Internet Explorer 8 web browser when Ieframe.dll rewrites
portions of User32.dll to detour [11] functions to its dynamically generated
code region. In this case, since User32.dll has already been registered with
the system and Dymo is able to track that Ieframe.dll has written to it, the
User32.dll image hash is updated to reflect its trusted modification.

Handling the PAGE EXECUTE READWRITE Protection. When a process makes a
call that results in a memory protection request that includes both execute
and write access, Dymo must take special action. This is because Dymo must
allow both accesses to remain transparent to the application. However, it must
also differentiate between the two, so that it can reliably create hashes that
encapsulate any changes to the region. The solution is to divide the PAGE -
EXECUTE READWRITE protection into PAGE READWRITE and PAGE EXECUTE READ
and toggle between the two.

To this end, Dymo filters the PAGE EXECUTE READWRITE request in a system
service hook and, initially, only grants PAGE READWRITE to the allocated region.
Later, if the application attempts to execute code in the region, a DEP/NX
exception is raised, and Dymo creates a hash as usual, but instead of granting
the originally requested access, it grants PAGE EXECUTE READ. In other words,
Dymo removes the write permission from the region so that the application
cannot update the code without forcing a recomputation of the hash.

If a fault is later incurred when writing to the region, Dymo simply toggles the
protection back to PAGE READWRITE and dismisses the page fault. This strategy
allows Dymo to compute a new hash on every execution attempt, while tracking
all writes and remaining transparent to the application.
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3.3 Establishing Identity

So far, we have described how Dymo computes the identity labels of processes.
However, we have not yet discussed how these labels can be used to identify
applications.

Recall that a label is a set of hashes (one for each executable memory region).
One way to establish identity is to associate a specific label with an application.
A process is identified as this application only when their labels are identical;
that is, for each hash value in the process’ label, there is a corresponding hash
in the application’s label. We call this the strict matching policy.

A limitation of the strict matching policy is that it can be overly conservative,
rejecting valid labels of legitimate applications. One reason is that an application
might not always load the exact same set of dynamic libraries. This can happen
when a certain application feature has not been used yet, and, as a result, the
code necessary for this feature has not been loaded. As another example, take
the case of dynamic code generation in a web browser. When the user has not yet
visited a web page that triggers this feature, the label will not contain an entry
for a dynamically allocated, executable region created by the JIT compiler. To
address this issue, we propose a relaxed matching policy that accepts a process
label as belonging to a certain application when this process label contains a
subset of the hashes that the application label contains and the hash for the
main code section of the application is present.

4 Applications for Dymo

Dymo implements a dynamic code identity primitive. This primitive has a vari-
ety of applications, both on the local host and in the network. In this section, we
first describe a scenario where Dymo is used for performing local (host-based)
access control using the identity of processes. Then, we present an application
where Dymo is extended to label network connections based on the program
code that is the source of the traffic.

4.1 Application-Based Access Control

Modern operating systems typically make access control decisions based on the
user ID under which a process runs. This means that a process generally has
the same access rights as the logged-in user. Dymo can be used by the local
host to enable the OS to make more precise access control decisions based on
the identity of applications. For example, the OS could have a policy that limits
network access to a set of trusted (whitelisted) applications, such as trusted web
browsers and e-mail clients. Another policy could impose restrictions on which
applications are allowed to access a particular sensitive file (similar to sealed
storage). Because Dymo precisely tracks the dynamic identity of a process, a
trusted (but vulnerable) application cannot be exploited to subvert an access
control policy. In particular, when a trusted process is exploited, its identity
label changes, and, thus, its permissions are implicitly taken away.
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To use application-based access control, a mechanism must be in place to dis-
tribute identity labels for trusted applications, in addition to a set of permissions
that are associated with these applications. The most straightforward approach
for this would be to provide a global repository of labels so that all hosts that
run Dymo could obtain identity labels for the same applications. We note that
global distribution mechanisms already exist (such as Microsoft Update), which
Dymo could take advantage of. This would work well for trusted applications
that ship with Windows, and they could be equipped with default privileges.

Furthermore, it is also straightforward for an administrator to produce a
whitelist of identity labels for applications that users are allowed to run, for
example, in an enterprise network. To this end, one simply needs to run an
application on a system where Dymo is installed, exercising the main func-
tionalities so that all dynamic libraries are loaded. The identity label that our
system computes for this application can then be readily used and distributed
to all machines in the network. In this scenario, an administrator can restrict
the execution of applications to only those that have their labels in a whitelist,
or specific permissions can be enabled on a per-application basis.

One may argue that during this training period it may not be feasible to fully
exercise an application so as to guarantee that all possible dynamic libraries
are loaded. The problem is that, after Dymo is deployed, untrained paths of
execution could lead an application to load unknown libraries that would in-
validate the application’s identity label, resulting in a false positive. We believe
that such problems can be mitigated by focused training that is guided by the
users’ intended workflow. Furthermore, an administrator may accept a small
number of false positives as a trade-off against spending more time to reveal an
application’s esoteric functionality that is rarely used.

4.2 Dymo Network Extension

In this section, we describe our implementation of an extension to Dymo to
inject a process’ identity label into the network packets that it sends. This allows
network entities to learn the provenance of the traffic. An example scenario that
could benefit from such information is an enterprise deployment.

In a homogeneous enterprise network, most machines will run the same oper-
ating system with identical patch levels. Moreover, a centralized authority can
enforce the software packages that are permissible on users’ machines. In this
scenario, it is easy to obtain the labels for those applications and correspond-
ing libraries that are allowed to connect to the outside Internet (e.g., simply by
running these applications under Dymo and recording the labels that are ob-
served). These labels then serve as a whitelist, and they can be deployed at the
network egress points (e.g., the gateway). Whenever traffic with an invalid label
is detected, the connection is terminated, and the source host can be inspected.

By analyzing labels in the network, policies can be enforced at the gateway,
instead of at each individual host, which makes policy management simpler and
more efficient. Furthermore, the Dymo network extension allows for other traffic
monitoring possibilities, such as rate limiting packets from certain applications
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or gathering statistics pertaining to the applications that are responsible for
sending traffic through the network.

To demonstrate how identity labels can be used in the network, we imple-
mented the Dymo network extension as a kernel module that intercepts out-
bound network traffic to inject all packets with the identity label of the origi-
nating process. We accomplish this by injecting a custom IP option into the IP
header of each packet, which makes it easy for network devices or hosts along
the path to analyze the label. In addition, as an optimization, the label is only
injected into the first packet(s) of a TCP connection (i.e., the SYN packet).

The injector, a component that is positioned between the TCP/IP transport
driver and the network adapter, does the injection to ensure that all traffic is
labeled. A second component, called the broker, obtains the appropriate identity
label for the injector. These components are discussed next.

The Injector. The injector component is implemented as a Network Driver
Interface Specification (NDIS) Intermediate Filter driver. It sits between the
TCP/IP Transport Provider (Tcpip.sys) and the network adapter, which al-
lows it to intercept all IP network traffic leaving the host. Due to the NDIS
architecture, the injection component executes in an arbitrary thread context.
Practically speaking, this means that the injector cannot reliably determine on
its own which process is responsible for a particular network packet. To solve this
problem, the injector enlists the help of a broker component (discussed below).

When a packet is passed down to the injector, it inspects the packet headers
and builds a connection ID consisting of the source and destination IP addresses,
the source and destination ports, and the protocol. The injector queries the
broker with the connection ID and receives back a process identity label. The
label is injected into the outbound packet as a custom IP option, the appropriate
IP headers are updated (e.g., header length and checksum), and the packet is
forwarded down to the network adapter for delivery.

The Broker. The broker component assists the injector in obtaining appropri-
ate identity labels. The broker receives a connection ID from the injector and
maps it to the ascribed process. It then obtains the label associated with the
given process and returns it to the injector.

The broker is implemented as a Transport Driver Interface (TDI) Filter driver.
It resides above Tcpip.sys in the transport protocol stack and filters the TDI
interfaces used to send packets. Through these interfaces, the broker is notified
when a process sends network traffic, and it parses the request for its connection
ID. Since the broker executes in the context of the process sending the network
traffic, it can maintain a table that maps connection IDs to the corresponding
processes.

Label Size Optimization. Identity labels, which store all image and region
hashes for a process, can become large. In fact, they might grow too large to fit
into the IP option field of one, or a few, network packets. For example, consider
the execution of Firefox. It is represented by 87 image and region hashes, each
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of which is a 20 byte hash value, which results in an identity label size of 1.74
KB. To compress identity labels before embedding them into network packets,
Dymo uses Huffman encoding to condense image and region hashes into image
and region codes. Dymo then simply concatenates the resulting image and region
codes to generate the label that is sent over the network.

The Huffman codes are precomputed from a global input set which includes
all trusted applications and DLLs (with their different versions), with shorter
codes being assigned to more popular (more frequently executed) images. The
codes are stored in a lookup table when Dymo begins operation. To generate
a Huffman code for an image hash, the system uses the computed hash of the
image to index into the lookup table and obtain the corresponding Huffman
code. If the lookup fails, Dymo generates an UNKNOWN IMAGE code to describe
the image; thus, untrusted or malicious images are easily detected. To generate
a region code, Dymo uses the hashes of the allocator, writer, and caller of the
region to compute a hash to index into the lookup table. If the lookup fails,
Dymo generates an UNKNOWN REGION code to describe the region.

In the current implementation, Huffman codes vary in length from 6 to 16
bits. When using optimized codes, Dymo generates an identity label for Firefox
that is 74 bytes, which is 4.25% of its size in the unoptimized case. Note that
the maximum size of the IP option is fixed at 40 bytes. For identity labels that
exceed this 40 byte limit, we split the label over multiple packets.

5 Evaluation

We evaluated Dymo on three criteria that address the system requirements
discussed in Section 2.1: the precision of the identity labels it creates, its ability to
correctly reflect changes to the identity label when a process has been tampered
with, and its impact on application performance.

5.1 Label Precision

In order for an identity label to be meaningful, it must uniquely identify the
running application that it represents. That is to say, two different applications
should receive different labels, and the same application should receive the same
label when it is executed multiple times on the same or different hosts. We say
that a label meeting these criteria is precise.

To evaluate the precision of Dymo’s identity labels, we deployed the Win-
dows XP SP3 operating system on three different platforms: a virtual machine
running under VMware Fusion 2 on a Mac OS X host, a virtual machine running
under VirtualBox 3.1 on an Ubuntu host, and a standard, native installation on
bare metal. We then created a test application suite of 107 executables taken
from the Windows System32 directory. To conduct the experiment, we first ob-
tained our database of identity labels using the training method described in
Section 4.1, that is, by simply running the applications on the test platforms
and storing the resulting labels. We then ran each application from the test
suite on every platform for ten seconds and for three iterations. In addition, we
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performed similar tests for Internet Explorer, Firefox, and Thunderbird, which
are examples of large and complex applications. For these programs, instead of
only running the applications for ten seconds, we simulated a typical workflow
that involved browsing through a set of websites – including sites containing
JavaScript and Flash content – with Internet Explorer and Firefox and perform-
ing mail tasks in Thunderbird.

We found that in all cases, the generated identity labels were precise. There
were small differences in the dynamic loading of a few DLLs in some of the
processes, but according to the relaxed matching policy for establishing identity
as described in Section 3.3, all processes were accepted as belonging to their
corresponding applications. More specifically, for 99 of the 107 programs (93%),
as well as for Firefox and Thunderbird, the generated labels were identical on
all three platforms. In all other cases, the labels were identical among the three
runs, but sometimes differed between the different platforms. The reason for
the minor differences among the labels was that a particular library was not
present (or not loaded) on all platforms. As a result, the applications loaded a
different number of libraries, which led to different labels. For six programs, the
problem was that the native host was missing an audio driver, and our test suite
contained several audio-related programs such as Mplay32.exe, Sndrec32.exe,
and Sndvol32.exe. In one case, the VirtualBox platform was missing DLLs for
AppleTalk support. In the final two cases (Magnify.exe and Internet Explorer),
the VirtualBox environment did not load Msvcp60.dll.

Our experiments demonstrate that identity labels are precise across platforms
according to the relaxed matching policy. In some special cases, certain libraries
are not present, but their absence does not change the fundamental identity of
the application.

5.2 Effect of Process Tampering

An identity label encodes the execution history of a process. We can leverage this
property for detecting suspicious behavior of otherwise benign processes when
they are tampered with by malware or exploits.

Tampering by Malware. We identified three malware samples that perform
injection of code into the address space of other running processes. The first
sample was a Zeus bot that modified a running instance of Internet Explorer by
injecting code into Browseui.dll and Ws2help.dll. The second sample was a
Korgo worm that injected a remote thread into Windows Explorer and loaded 19
DLLs for scanning activity and communication with a Command and Control
(C&C) server. The third sample was a suspicious program called YGB Hack
Time that was detected by 33 out of 42 (79%) antivirus engines in VirusTotal.
YGB injected a DLL called Itrack.dll into most running processes, including
Internet Explorer.

We executed the three samples on a virtual machine with Dymo running. The
identity labels of the target applications changed after all three malware samples
were executed and performed their injection. This demonstrates that Dymo is
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able to dynamically update a process’ identity label according to changes in its
execution.

Tampering by Exploits. An alternative way to tamper with a process’ execu-
tion is through an exploit that targets a vulnerability in the process. Two com-
mon attack vectors are the buffer overflow exploit and drive-by download attack.
To demonstrate Dymo’s ability to detect such attacks, we used the Metasploit
Framework to deploy a VNC server that targets a buffer overflow vulnerability
in RealVNC Client and a web server to simulate the Operation Aurora drive-
by download exploit [24]. For both attacks, we configured Metasploit to use a
sophisticated Reflective DLL Injection exploit payload [5] that allows a DLL
to load itself into the target address space without using the facilities of the
Ntdll.dll image loader. This makes the injection stealthier because the DLL
is not registered with the hosting process (e.g., the DLL does not appear in the
list of loaded modules in the Process Environment Block).

We deployed our attack VNC server and web server and navigated to them
using a vulnerable version of RealVNC Client and Internet Explorer, respectively.
The identity labels changed for both vulnerable applications after the attack
because of the execution of code in RealVNC Client’s stack, Internet Explorer’s
heap, and the DLL injected into the address space of both. This demonstrates
that Dymo is able to update a process’ identity label even in the face of a
sophisticated attack technique designed to hide its presence.

5.3 Performance Impact

Dymo operates at a low level in the Windows XP kernel and must track when
a process loads DLLs and makes memory allocation or protection change re-
quests. Moreover, the system adds some logic to the page fault handler. Since
these kernel functions are frequently invoked, care must be taken to maintain an
acceptable level of performance.

Typically, a process will perform most, if not all, of the code loading work very
early in its lifetime. Figure 1 shows an example of DLL loading over time for
Internet Explorer, Firefox, and Thunderbird (only load-time DLLs are included).
Note that 95%, 93%, and 97% of the DLLs were loaded within one second after
launching Internet Explorer, Firefox, and Thunderbird, respectively.

The loading of DLLs results in the most work (and overhead) for Dymo, be-
cause it means that the system has to compute hashes for new code pages. Thus,
the overhead during startup constitutes a worst case. To measure the startup
overhead, we ran Internet Explorer, Firefox, and Thunderbird on the native plat-
form, and we measured the time until each application’s main window responded
to user input with and without Dymo. We used the PassMark AppTimer tool
to do these measurements. Table 1 shows the results. It can be seen that, with
our system running, the startup times for Internet Explorer, Firefox, and Thun-
derbird increased by 80%, 41%, and 31%, respectively. While the overhead for
Internet Explorer seems high at first glance, the browser still starts in less than
one second. We feel that this is below the threshold of user awareness; therefore,
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Fig. 1. DLL loading over time

it is an acceptable overhead. We speculate that the higher overhead of Internet
Explorer can be attributed to its multi-process, Loosely-Coupled IE (LCIE) ar-
chitecture [23], which results in Dymo duplicating its initialization efforts over
the frame and tab processes.

Table 1. Startup times (in milliseconds)

Application Without Dymo With Dymo Overhead

Internet Explorer 447 804 80%
Firefox 450 634 41%

Thunderbird 799 1047 31%

In addition to the worst-case overhead during application startup, we were also
interested in understanding the performance penalty due to our modifications
to the memory management routines and, in particular, the page fault handler.
To this end, we wrote a tool that first allocated a 2 GB buffer in memory and
then stepped through this buffer, touching a byte on each consecutive page.
This caused many page faults, and, as a result, it allowed us to measure the
overhead that a memory-intensive application might experience once the code
regions (binary image and libraries) are loaded and the appropriate identity label
is computed. We ran this test for 20 iterations and found that Dymo incurs a
modest overhead of 7.09% on average.

6 Security Analysis

In this section, we discuss the security of our proposed identity label mechanism.
In our threat model, we assume that the attacker controls a malicious process
and wants to carry out a security sensitive operation that is restricted to a set
of applications with known, trusted identities (labels). Similarly, the attacker
might want to send a network packet with the label of a trusted process.
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The malicious process could attempt to obtain one of the trusted labels. To
this end, the attacker would have to create executable memory regions that hash
to the same values as the memory regions of a trusted process. Because we use
a strong hash function (SHA-1), it is infeasible for the attacker to allocate an
executable region that hashes to a known value. It is also not possible to simply
add code to a trusted program in order to carry out a sensitive operation on the
attacker’s behalf (a kind of confused deputy attack [10]). The reason is that any
added executable region would contribute an additional, unknown hash value to
the identity label, thereby invalidating it.

A malware process could also attempt to tamper with the data of a process and
indirectly modify its operations so that it could carry out malicious activity. This
is a more difficult attack, and its success depends on the normal functionality
that is implemented by the targeted victim program. The easiest way to carry
out this attack is via a debugger, which allows easy manipulation of the heap
or stack areas of the victim application. We prevent this attack by disabling
access to the Windows debugging API for all user processes when our system is
running. We believe that these APIs are only rarely used by regular users, and
it is reasonable to accept the reduced functionality for non-developers.

Another way to tamper with the execution of an application without injecting
additional code is via non-control-data attacks. These attacks modify “decision-
making data” that might be used by the application while carrying out its com-
putations and interactions. Previous work [4] has shown that these attacks are
“realistic threats,” but they are significantly more difficult to perform than at-
tacks in which arbitrary code can be injected. Moreover, for these attacks to be
successful, the malware has to find an application vulnerability that can be ex-
ploited, and this vulnerability must be suitable to coerce the program to run the
functionality that is intended by the malware author. Our current system does
not specifically defend against these attacks. However, there are a number of op-
erating system improvements that make exploits such as these significantly more
difficult to launch. For example, address space layout randomization (ASLR) [2]
provides a strong defense against attacks that leverage return-oriented program-
ming (advanced return-into-libc exploits) [22]. Because our technique is compat-
ible with ASLR, our system directly benefits from it and will likely also profit
from other OS defenses. This makes this class of attacks less of a concern.

7 Related Work

The goal of our system is to track the run-time identity of executing processes.
This objective is related to previous contributions that focus on identifying local
and remote applications.

Local Identification. Patagonix [14] is a hypervisor-based system that tracks
all executing binaries on a host with the goal of detecting the presence of pro-
cesses that may be hidden by a rootkit. The system runs the target host in a
virtual machine and provides a secure channel to identify and list the host’s
running processes in a separate trusted VM.
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The technique used by Patagonix to identify executing processes is similar to
ours in that both systems leverage NX hardware support to detect code execu-
tion. However, there are some disadvantages to the Patagonix approach: First,
the hypervisor must bridge a semantic gap. For example, it cannot determine
when processes terminate or when requests are made to change page permis-
sions. To combat this, the system periodically refreshes its state by remarking
all pages as non-executable. This adds more overhead as all subsequent execu-
tions of pages that are already monitored will induce spurious page faults that
will have to be checked. Clearly, there is a trade-off between this overhead and
the fidelity of Patagonix’s view of the current state of the operating system. Fur-
thermore, the refresh interval offers a potential vulnerability to attack. Second,
Patagonix does not support JIT compiled code. It can detect and report the
presence of the JIT engine, but it ignores the JIT code itself. In contrast, Dymo
handles these issues.

The problems with static code identity that we have described are closely
related to those surrounding data integrity tools, such as Tripwire [12]. This
has led to the development of various program-level anomaly detection systems
that focus on characterizing application behavior, typically by monitoring sys-
tem calls [6] and their arguments [13]. Likewise, work in the area of digital
rights management (DRM) has recognized how brittle static hashing is for con-
tent identification purposes, and so more robust hashing mechanisms have been
proposed [8].

Remote Identification. Sailer et al. present an approach to integrity measure-
ment that uses a Trusted Platform Module (TPM) to identify applications for
remote attestation [20]. The hashes are computed at application load-time, so
the identity measurements are fundamentally static. Dymo, on the other hand,
implements a dynamic code identity primitive that also measures changes to the
process during run-time. Haldar et al. argue that traditional remote attestation
techniques attest to the (static) identity of a binary, when, in fact, it is an at-
testation to the application’s behavior that is desired. Their proposal, semantic
remote attestation [9], is complementary to ours.

Network access control systems regulate hosts’ access to the network by en-
suring that they abide by a given policy (e.g., the hosts are fully patched and
are running updated antivirus software). Policies are enforced either by agents
on the hosts themselves or in the network [7].

Pedigree [19] is an example of a distributed information flow tracking system
that uses taint sets to record interactions between processes and resources, and
it attaches these taint sets to network packets in order to exchange information
between hosts. Distributed information flow tracking systems are related to our
network extension to Dymo, but the semantics of labels is different.

8 Conclusions

This paper presents Dymo, a system that provides a dynamic code identity prim-
itive that enables tracking of the run-time integrity of a process. Our system
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deploys a host-based monitoring component to ensure that all code that is asso-
ciated with the execution of an application is reliably tracked. By dynamically
monitoring the identity of a process in a trustworthy fashion, Dymo enables
an operating system to enforce precise application-based access control policies,
such as malware detection, application whitelisting, and providing different levels
of service to different applications. In addition, we implemented an application
that extends Dymo so that network packets are labeled with information that
allows one to determine which program is responsible for the generation of the
traffic. We have developed a prototype of our approach for the Windows XP
operating system, and we have evaluated it in a number of realistic settings.
The results show that our system is able to reliably track the identity of an
application while incurring an acceptable performance overhead. Future work
will focus on extending this approach to other platforms (such as Linux) and
on developing sophisticated network-level policy enforcement mechanisms that
take advantage of our identity labels.
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Abstract. Identifying that a given binary program implements a spe-
cific cryptographic algorithm and finding out more information about the
cryptographic code is an important problem. Proprietary programs and
especially malicious software (so called malware) often use cryptography
and we want to learn more about the context, e.g., which algorithms and
keys are used by the program. This helps an analyst to quickly under-
stand what a given binary program does and eases analysis.

In this paper, we present several methods to identify cryptographic
primitives (e.g., entire algorithms or only keys) within a given binary
program in an automated way. We perform fine-grained dynamic binary
analysis and use the collected information as input for several heuris-
tics that characterize specific, unique aspects of cryptographic code. Our
evaluation shows that these methods improve the state-of-the-art ap-
proaches in this area and that we can successfully extract cryptographic
keys from a given malware binary.

Keywords: Binary Analysis, Malware Analysis, Cryptography.

1 Introduction

Analyzing a given binary program is a difficult and cumbersome task: an ana-
lyst typically needs to understand the assembly code and interpret it to draw
meaningful conclusions from it. An attacker can hamper the analysis attempts in
many ways and take advantage of different code obfuscation techniques [10,15].
A powerful way to complicate analysis is cryptovirology [23], i.e., using cryptog-
raphy in a program such that specific activities are disguised. The following list
provides a few recent examples of real-world malware which use cryptography
in one form or another:

– Wang et al. analyzed a sample of Agobot, which uses SSL to establish an
encrypted IRC connection to a specific server [20].

– Caballero et al. showed that MegaD, a malware family communicating over
TCP port 443, uses a custom encryption protocol to evade network-level
analysis [2].

– Werner and Leder analyzed Conficker and found that this malware uses the
OpenSSL implementation of SHA-1 and a reference implementation of MD6.
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Interestingly, the attackers also later patched the MD6 implementation in a
malware update to fix a buffer overflow in the MD6 reference implementa-
tion [7]. Furthermore, Porras et al. found that the malware authors use RSA
with 1024 bits for signature verification [16], in newer versions the attackers
even use RSA with a 4096 bit key.

– Werner and Leder also analyzed the Waledac malware [21]. About 1,000 of
the 4,000 functions used by Waledac have been borrowed from OpenSSL.
Furthermore, AES in CBC Mode with an IV of zero is used. The self-signed
RSA client certificates are used in a key exchange protocol.

– Stewart analyzed the algorithms used by the Storm Worm malware [17].
For the peer-to-peer and fast-flux communication, the malware uses a static
XOR algorithm for subnode authentication and a RSA key with 56 bits [5].

An analyst needs to manually identify the cryptographic algorithms and their
usage to understand the malicious actions, which is typically time-consuming. If
this task can be automated, a faster analysis of malware is possible, thus enabling
security teams to respond quickly to emerging Internet threats. In this paper,
we study the problem of identifying the type of cryptographic primitives used by
a given binary program. If a standardized cryptographic primitive such as AES,
DES, or RC4 is used, we want to identify the algorithm, verify the instance of
the primitive, and extract the parameters used during this invocation.

This problem has been studied in the past, for example by Wang et al., who in-
troduced a heuristic based on changes in the code structure when cryptographic
code is executed [20]. This heuristic has been improved by Caballero et al., who
noted that encryption routines use a high percentage of bitwise arithmetic in-
structions [2]. While these approaches are useful to detect cryptographic code,
we found that they sometimes miss code instances and also lead to false posi-
tives. In this paper, we thus introduce improved heuristics based on both generic
characteristics of cryptographic code and on signatures for specific instances of
cryptographic algorithms. In contrast to previous work in this area, we improve
the heuristics to perform a more precise analysis and also extract the param-
eters used by the algorithm, which significantly reduces the manual overhead
necessary to perform binary analysis.

In summary, this paper makes the following primary contributions:

– We introduce novel identification techniques for cryptographic primitives in
binary programs that help to reduce the time a software analyst needs to
spend on determining the underlying security design.

– We have implemented a system that allows the automated application of
our technique by utilizing a dynamic binary instrumentation framework to
generate an execution trace. The system then identifies the cryptographic
primitives via several heuristics and summarizes the results of the different
identification methods.

– We demonstrate that our system can be used to uncover cryptographic prim-
itives and their usage in off-the-shelf and packed applications, and that it is
able to extract cryptographic keys from a real-world malware sample.
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2 Related Work

2.1 Static Approaches

All static tools we tested use signatures to determine whether a particular, com-
piled implementation of a cryptographic primitive is present in a given binary
program. A signature can match a x86 assembly code snippet, some “magic”
constants of the algorithm, structures like S-boxes, or the string for an import
of a cryptographic function call. If a signature is found, the tools print the
name of the primitive (e.g., DES or RSA), and optionally the implementation
(e.g., OpenSSL or the name of the reference implementation).

We evaluated six publicly available tools using a set of 11 testing applications
for different cryptographic primitives. All analysis tools claim to be able to detect
the listed algorithms. In Table 1, we summarize the performance of the tools.
A + sign denotes that the tool has found the applications’s algorithm, while a -
sign denotes that the tool has not found the specific algorithm. Overall, none of
the tools was able to detect all cryptographic primitives and further tests showed
that most tools also generate a significant number of false positives. Furthermore,
it is in general hard to statically analyze malware [13] and an attacker can easily
obfuscate his program such to thwart static approaches.

Table 1. Detection performance for six publicly available static tools

KANAL
plugin for
PEiD

Findcrypt
Plugin for
IDA Pro

SnD
Crypto
Scanner

x3chun
Crypto
Searcher

Hash & Crypto
Detector

DRACA

Gladman AES + - + - + -

Cryptopp AES + - + + + -

OpenSSL AES + + + + - -

Cryptopp DES + + + + - +

OpenSSL DES + - + + - -

Cryptopp RC4 - - + - - -

OpenSSL RC4 - - - - - -

Cryptopp MD5 + + + + + +

OpenSSL MD5 + + + + + +

OpenSSL RSA - - - - - -

Cryptopp RSA - - - - - -

2.2 Dynamic Approaches

One of the first papers which addresses the problem of revealing the cryp-
tographic algorithms in a program during runtime was presented by Wang
et al. [20]. The authors utilize data lifetime analysis, including data tainting,
and dynamic binary instrumentation to determine the turning point between
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ciphertext and plaintext, i.e., message decryption and message processing phase.
Then, they are able to pinpoint the memory locations that contain the decrypted
message. Wang et al. evaluate their work with an evaluation of their implementa-
tion against four standard protocols (HTTPs, IRC, MIME, and an unknown one
used by Agobot). In their tests, they are able to decipher all encrypted messages
using their implementation. The main drawback of this approach is that only a
single turning point between decryption and message processing can be handled:
if a program decrypts a block from a message, processes it, and continues with
the next block, this behavior will not be identified correctly.

As a followup paper, Caballero et al. [2] refined the methods of Wang et
al. [20]. For the automated protocol reverse engineering [4,9,22] of the MegaD
malware, the authors rely on the intuition that the encryption routines use a
high percentage of bitwise arithmetic instructions. For each instance of an exe-
cuted function, they compute the ratio of bitwise arithmetic instructions. If the
functions is executed for at least 20 times and the ratio is higher than 55%, the
function is flagged as an encryption/decryption function. In an evaluation, this
method reveals all relevant cryptographic routines. To identify the parameters
of the routine (e.g., the unencrypted data before it gets encrypted) the authors
evaluate the read set of the flagged function. To distinguish the plaintext from
the key and other data used by the encryption function, they compare the read
set to the read sets of other instances of the same function. As only the plaintext
varies, the authors are able to identify the plaintext data.

Caballero et al. also cite Lutz [12] on the intuition that cryptographic routines
use a high ratio of bitwise arithmetic instructions. Lutz’s approach is based on the
following three observations: first, loops are a core component of cryptographic
algorithms. Second, cryptographic algorithms heavily use integer arithmetic, and
third, the decryption process decreases information entropy of tainted memory.
A core method of the tool is to use taint analysis [14] and estimate if a buffer
has been decrypted by measuring its entropy. The main problem of relying on
entropy is the possibility of false positives depending on the mode of operation.
If we consider for example cipher-block chaining (CBC) mode, we observe that
the input to the encryption algorithm is the latest ciphertext XORed with the
current plaintext. Thus, the input to the algorithm will have a similar entropy
as its output, because the XOR operation composing the input will incorporate
pseudo-random data from the latest output of the cipher.

In this paper, we refine the heuristics introduced by others and show that we
can improve the detection accuracy. In comparison to previous work in this area,
we also study the identification of a larger set of algorithms (hash algorithms
and asymmetric cryptography) and the identification and verification of input,
output, and key material. In a recent and concurrent work, Caballero et al.
introduced a technique called stitched dynamic symbolic execution that can be
used to locate cryptographic functions in a binary program [3]. We could combine
this technique with the methods introduced in this paper to precisely identify
cryptographic code in a given binary.
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3 Finding Cryptographic Primitives

In this section, we present in detail our heuristics and the intuition behind them.
Furthermore, we provide an overview of the system we have implemented to
automatically pinpoint cryptographic primitives. We start with an overview of
the system and then introduce the trace and analysis implementations separately.

3.1 System Overview

The system implementation is divided in two stages, which are performed for
each analysis of a binary sample. In the first stage, we perform fine-grained
binary instrumentation, and the second stage implements several heuristics to
identify cryptographic code from the data gathered by the first stage.

During the controlled execution of the target binary program (first stage of
Figure 1), we use the technique of dynamic binary instrumentation (DBI) to
gain insight on the program flow. We perform DBI to collect an execution trace,
which also includes the memory areas accessed and modified by the program. We
use the DBI framework Pin [11], which supports fine-grained instruction-level
tracing of a single process. Our implementation creates a run trace of a software
sample to gather the relevant data for the second stage.

monitored Execution

Software

Algorithm

Key

Plaintext Ciphertext

Write File 
Function

Software

Trace

Data
Data

Data

Instruction
Instruction

Instruction

State
State

State

Fig. 1. Schematic overview of implementation for stage 1

In the second stage, the instruction and data trace is used to detect crypto-
graphic algorithms, e.g., RC4, MD5, or AES, and their parameters, e.g., keys or
plaintext. An overview of the second stage is shown in Figure 2. To detect the al-
gorithms and their parameters, we first elevate the trace to high-level structured
representations, i.e., loops, basic blocks, and graphs. Then, we employ different
identification methods and utilize the high-level representation of the trace to in-
spect the execution for cryptographic primitives. Based on the findings, the tool
generates a report that displays the results, especially the identified algorithms
and their parameters.
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Fig. 2. Schematic overview of implementation for stage 2

3.2 Fine-Grained Dynamic Binary Instrumentation

Execution tracing, or simply tracing, is the process of analyzing a binary exe-
cutable during runtime to generate a protocol that describes the instructions
executed and the data accessed by the executable. Dynamic instrumentation is
a technique that performs code transformations to insert analysis code into an
arbitrary program.

As mentioned before, the software sample is traced using the Pin dynamic
binary instrumentation framework [11]. Since Pin uses dynamic instrumenta-
tion, there is no need to recompile or relink the program. Pin discovers code at
runtime, including dynamically-generated code, and instruments it as specified
by the user-supplied Pintool. Using the Pin API, a Pintool has access to con-
text information such as register contents or debug symbols. The Pin framework
deals with the dynamic code injection, code integrity, and restoring of registers
which were modified by the Pintool. Pin differentiates between two modifications
to program code: instrumentation routines and analysis routines. Instrumenta-
tion routines detect where instrumentation should be inserted, e.g., before each
instruction, and then modify the code accordingly. Thus, the instrumentation
routines are only executed the first time a new instruction is executed. On the
other hand, analysis routines define what actions are performed when the in-
strumentation is activated, e.g., writing to the trace file. They occur every time
an instrumented instruction is executed.

Data Reduction. In order to minimize the size of the trace file, we utilize
two filter methods. On the one hand, we exclude instructions from libraries of
which we have a priori knowledge that they do not contain cryptographic code.
Using a DLL whitelist, we are able to circumvent large code portions. This is
especially useful to reduce the trace time and file size. On the other hand, we
can filter by thread ID and are also able to start the trace after a certain number
of instructions already occurred, for example to skip an unpacker (if we have a
priori knowledge that a specific packer is used by the given sample).
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Collected Data. For the analysis we need to record the following information
on an instruction-level granularity:

– Current thread ID
– Current instruction pointer together with involved registers and their data
– Instruction disassembly
– Accessed memory values, before and after the instruction, including mode

(read or write), size, and address
– (Optional:) Debug information of the current instruction location, e.g., DLL

module, function symbol, offset to function symbol

Using this information, we are able to conduct the next step: the analysis of the
trace. The analysis, which is performed after or in parallel to the trace, is divided
into two kinds of procedures. First, high-level information, e.g., the control flow
graph, is generated from the trace. Next, the cryptographic code identification
methods are executed upon the high-level representation.

Basic Block Detection. A basic block is defined as a sequence of instructions
which are always executed in the given order. Each basic block has a single entry
and single exit point. Since the basic blocks are generated dynamically from a
trace, the result of the basic block detection algorithm may differ from a static
detection algorithm [19]. The basic blocks are generated from the dynamic trace,
thus non-executed code will not be considered by the detection algorithm, be-
cause it is not incorporated in the trace. Nevertheless, an advantage of dynamic
tracing is the ability to monitor indirect branches and thus we are able to incor-
porate their result into the basic block detection algorithm. If a basic block is
changed by self-modifying code, the change is noticed when the new code is first
executed. A modified basic block is therefore registered as a new basic block,
because the new block’s instructions are different from the old ones.

Loop Detection and Control Flow Graph Generation. Loops are defined
as the repeated execution of the same instructions, commonly with different
data. To perform the detection of loops, we follow the approach from Tubella
and González [18]. We could use the dominator relationship in the flow graphs
(e.g., via the Lengauer and Tarjan algorithm [8]), but this would not recover the
same amount of information: these algorithms operate on a control flow graph,
and therefore do not convey in which order control edges are taken during ex-
ecution. However, using the Tubella and González algorithm, we are able to
determine the hierarchy of loops and the exact amount of executions and iter-
ations of each loop body. The algorithm detects a loop by multiple executions
of the same code addresses. A loop execution is completed if there is no jump
back to the beginning of the loop body, a jump outside of the loop body, or a
return instruction executed inside the loop body. Loop detection, with the fine
granularity presented here, is a clear advantage of dynamic analysis. For exam-
ple, with static analysis, the number of iterations or executions of a particular
loop cannot always be easily determined.
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A common optimization technique for cryptographic code is the unrolling of
loops to save the instructions needed for the loop control, e.g., counters, com-
pare, and jump instructions, and to mitigate the risk of clearing the instruction
pipeline by a falsely-predicted jump. While many implementations discussed
here partially unroll loops, no implementation unrolls every loop. Therefore, we
find a lot of looped cryptographic code and can still rely on this heuristic.

We also build a control flow graph based upon the basic block detection
algorithm. Given the list of executed basic blocks, we detect the control flow
changes, i.e., which basic block jumps to which block, and use this information
to reconstruct the control flow graph.

Memory Reconstruction. To further analyze the data incorporated in a trace,
we need to reconstruct the memory contents, i.e., generate memory dumps from
the trace at different points in time. This is especially important because crypto-
graphic keys are larger (e.g., 128 or 256 bit) than the word size of the architecture
(e.g., 32 bit). Thus, a cryptographic primitive can extend over several words in
memory and has to be accessed by multiple operations. To reconstruct such a
primitive, we need to consider and combine multiple operations. As we do not
conduct fine-grained taint analysis [1,6,14], we need to reassemble the memory
based on its addresses, which can serve as a rough approximation.

If an instruction involves a memory access, we record the following information
in the trace:

– Memory address and size of access (8, 16, or 32 bit)
– Actual data read or written
– Mode of operation (read or write)

From this information we reconstruct the memory content. Since data at an
address can change during the trace, we may have several values for the same
address. Thus, instead of dumping the memory for a particular point in time,
we instead reconstruct blocks of memory that have a semantic relationship. For
example, a read of 128 bit cryptographic key material may occur in four con-
secutive 32 bit reads. Then, later a 8 bit write operations to the same memory
region may destroy the key in a memory reconstruction. Therefore, we try to
separate the 8 bit writes from the read 128 bit key block.

For this method, we rely on a few characteristics of the memory block, i.e., the
interconnected memory composed of several words. First, we distinguish between
read or write blocks and thus separate the traced memory accesses based on the
access mode. Second, we assume that a block is accessed in an ascending or
descending sequential order. Thus, we save the last n memory accesses, which
occurred before the current memory access. In our experiments n = 6 turned
out to be a reliable threshold. As a third characteristic, we use the size of the
access to distinguish between multiple accesses at the same address.

3.3 Heuristics for Detecting Cryptographic Primitives

In this section, we discuss the different properties of cryptographic code and
elaborate on the implemented methods to detect the cryptographic code and its



Automated Identification of Cryptographic Primitives in Binary Programs 49

primitives. First, we provide an overview of the identification methodology and
then, based on code observations we make, we explain the developed identifica-
tion methods. In order to successfully identify the cryptographic primitives we
have to algorithmically solve the following questions: which cryptographic prim-
itives are used, where are they implemented in code, what are their parameters,
and when are they used?

We distinguish between two classes of identification algorithms: signature-
based and generic. The main differentiation is the knowledge needed for the
identification algorithm. For signature-based identification, we need a priori
knowledge about the specific cryptographic algorithm or implementation. On
the other hand, for generic identification we use characteristics common to all
cryptographic algorithms and therefore do not need any specific knowledge.

Observations. We now point out three important features of cryptographic
code, which we found and confirmed during the course of this work.

1) Cryptographic code makes excessive use of bitwise arithmetic instructions.
Due to the computations inherent in cryptographic algorithms many arithmetic
instructions occur. Especially for substitutions and permutations, the compiled
implementations make extensive use of bitwise arithmetic instructions. Also,
many cryptographic algorithms are optimized for modern computing architec-
tures: for example, contemporary algorithms like AES are speed-optimized for
the Intel 32 bit architecture and use the available bitwise instructions.

2) Cryptographic code contains loops. While substitutions and permutations
modify the internal data representation, they are applied multiple times com-
monly with modifications to the data, e.g., the round key. We can recognize,
even in unrolled code, that the basic blocks of cryptographic code are executed
multiple times.

Solely for an identification method the presence of loops is insufficient. The
observation rather has to be combined with other methods to provide a sound
identification, because loops are inherent in all modern software. Although the
number of encryption rounds is unique to each algorithm and may be used for
an identification, this is not the case for unrolled algorithms, where the original
number of rounds cannot be found in the majority of unrolled testing applications
which we investigated.

3) Input and output to cryptographic code have a predefined, verifiable relation.
The cryptographic algorithms which we consider in this paper are deterministic.
Therefore, for any input the corresponding output will be constant over multi-
ple executions. Given a cryptographic primitive was executed during the trace,
the input and output parameters contained in the trace will conform to the
deterministic relation of the cryptographic algorithm. Thus, if we can extract
possible input and output candidates for a cryptographic algorithm, we can ver-
ify whether a reference algorithm generates the same output for the given input.
Thereby, we cannot only verify which cryptographic algorithm has been traced,
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but we can also determine what cryptographic parameters have been used. Of
course, this observation can only be utilized with a reference implementation: if
the software program contains a proprietary algorithm, we cannot verify it.

Identification Methods. Based on our observations detailed before, we devel-
oped and implemented several identification methods.

Chains Heuristic. The first heuristic is based on the sequence of instructions, i.e.,
the ordered concatenation of all mnemonics in a basic block. For identification,
an unknown sample’s sequence is created and compared to the set of existing,
known sequences in the pattern database. If the sequence can be found, a cryp-
tographic implementation has been detected. We prepared the pattern database
with different open-source cryptographic implementations. To differentiate be-
tween sequences defining an algorithm and sequences defining an implementa-
tion, we generated multiple datasets for each algorithm and each implementation.
Thereby, we can identify implementations and algorithms in different levels of
granularity and compare the effectiveness of the different patterns. Then, we
form different datasets using union, intersection, and subtraction as follows:

– For each implementation of an algorithm
– For each algorithm, based on the intersection of all implementations of the

particular algorithm
– An unique dataset for each algorithm, based on the subtraction with other

algorithms

Mnemonic-Const Heuristic. The second identification method extends the first
one and is based on the combination of instructions and constants. The intu-
ition is that each implementation of a cryptographic algorithm contains unique
(mnemonic, constant)-tuples that are characteristic for this algorithm, e.g., every
MD5 implementation we studied contains ROL 0x7 and ROL 0xC instructions. We
also studied whether constants alone are characteristic enough (e.g., 0xc66363a5
is the first value of the unrolled lookup table for AES implementations), but
found that such an approach leads to many false positives in practice. However,
a combination of instructions and constants leads to a more robust approach,
and thus we developed an identification method which employs a dataset based
on (mnemonic, constant)-tuples. For every implementation we generate a set of
instructions and their corresponding constants, e.g., ROL 0x7. Then, we again
form the different data sets as described in the first heuristic.

An example for the datasets is given in Figure 3. For a given set of (mnemonic,
constant)-tuples from a trace, we can measure to which percentage the tuples
from a signature dataset are included in the trace. We observed that the unique
and intersection datasets have a stronger relation to the algorithm. Implemen-
tation datasets have a looser connection to the traced implementation and pose
a higher risk of generating false-positives. The number of tuples per testing ap-
plication varies between 40 and 454 and the mean value is 165 tuples.

The comparison is implemented as follows: First, we generate the set of
(mnemonic, constant)-tuples found during the tracing. Using this trace-set, we
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Fig. 3. Composition of (mnemonic, constant)-tuple datasets

check for each of the known pattern datasets to which percentage the trace-set
intersects the signature-set. If the percentage is above the threshold of 70%, we
report a positive identification. The threshold was empirically determined during
the development process and in preliminary tests of our tool.

Verifier Heuristic. The third identification method is focused on memory data.
We use verifiers to confirm a relationship between the input and output of a
permutation box. Using the memory reconstruction method described in Sec-
tion 3.2, we are able to verify complete instances of a cryptographic algorithm
using plaintext, key, and ciphertext residing in memory.

As the memory reconstruction method reassembles cryptographic data of any
length, we are able to reconstruct a set of possible key, plaintext, and ciphertext
candidates. These candidates are then passed to a reference implementation of
the particular algorithm, the verifier. If the output of the algorithm matches the
output in memory, we have successfully identified an instance of the algorithm
including its parameters. The main limitation of this approach is the premise
that the algorithm is public and our system contains a reference implementation
to verify the input-output relation.

We do not specifically have to consider and distinguish between encryption
or decryption, because the encryption and decryption are commonly the same
algorithms for stream and block ciphers. The efficiency of this approach is bound
to the amount of candidates: if we can identify specific cryptographic code using
other identification methods before, the efficiency is highly increased, since less
candidates need to be checked. Optionally, we can reduce the set of candidates
using previous identification results (e.g., if a signature has detected AES code,
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we can reduce the memory reconstruction to this code section, instead of the
complete trace). Further, we only need to check for 128, 192, and 256 bit keys
and 128 bit input/output blocks, based on the previous identification of AES.

Interestingly, this method isolates the cryptographic values from further mod-
ifications. Since we only verify and test using the reference implementation, fur-
ther modifications, i.e., padding, encoding, or compression, can be separated and
we detect the exact parameters to the cryptographic algorithm. Because of this
soundness of the method, we already can note that we do not encounter false-
positives using this method, as shown in the evaluation. In our proof-of-concept
implementation, we only focussed on symmetric cryptographic algorithms.

Other Approaches. For comparison, we also implemented the approaches by Ca-
ballero et al. [2] and Wang et al. [20] to evaluate their method. A simple, yet
effective, generic identification method is built upon the first observation: we
evaluate basic blocks and determine whether the percentage of bitwise instruc-
tions is above a certain threshold. If the percentage is above the empirically-
determined threshold of 55%, then we have identified cryptographic code. To
eradicate false-positives, we use a minimum instructions per basic block thresh-
old of 20: this threshold was determined by Caballero et al. and proved to be
successful in our experiments, too.

Following the work from Wang et al. [20], we also implemented a cumulative
measurement of the bitwise arithmetic instructions. Instead of measuring the
bitwise percentage for basic blocks or function names, we update the percentage
of bitwise instructions as we traverse the trace.

4 Experimental Evaluation

We have implemented the heuristics introduced in the previous section and now
evaluate our approach and compare it to related work in this area. First, we
provide an overview of the testing environment and then describe the system’s
performance for the testing applications, an off-the-shelf application, a packed
testing application, and a real-world malware sample.

4.1 Evaluation Environment

The tracing is performed in a Sun VirtualBox 3.1.2 running Windows XP SP3
which is hosted on Mac OS X 10.6.2. The Pin version is 2.7-31933. The virtual
machine is configured to have 1024 MB of RAM and operates with a single core
of the host computer. The trace is written to the disk of the host computer
through a VirtualBox shared folder. The host computer, on which the analysis
VM is running, is equipped with a 2.4 GHz Intel Core 2 Duo with 4 GB of RAM.
The FIFO queue size of the analysis is by default 500,000 instructions. With a
fully loaded queue, the analysis process uses about 1.9 GB of RAM.

For the evaluation, we developed 13 testing applications and Table 2 provides
an overview. The applications take input (e.g., two files holding plaintext and
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Table 2. Overview of testing applications

Implementation Algorithm Version Compiler Mode

Beecrypt AES 4.1.2 VC dynamic ECB encryption

Brian Gladman AES 07-10-08 VC static CBC encryption

Cryptopp AES 5.6.0 VC static CFB encryption

OpenSSL AES 0.9.8g MinGW static CFB encryption

Cryptopp DES 5.6.0 VC static CFB encryption

OpenSSL DES 0.9.8g MinGW static ECB encryption

Cryptopp RC4 5.6.0 VC static encryption

OpenSSL RC4 0.9.8g MinGW static encryption

Beecrypt MD5 4.1.2 VC dynamic

Cryptopp MD5 5.6.0 VC static

OpenSSL MD5 0.9.8g MinGW static

Cryptopp RSA 5.6.0 VC static OAEP SHA1

OpenSSL RSA 1.0.0-beta3 VC dynamic PKCS1.5

key), initialize the cryptographic library including the algorithm, perform the
operation (i.e., encryption or decryption), and then output the result to a file.
An overview of the cryptographic libraries’ versions, used compilers and mode
of operation is also given in Table 2. The compilers used were the Microsoft
C/C++ Compiler version 15.00.21022.08 and the MinGW port of GCC version
3.4.2. We used different optimization levels when compiling the test applica-
tions to study the effect of compiler settings. Furthermore, some cryptographic
libraries were linked statically, others dynamically, to test the Pintool’s handling
of dynamically loaded libraries.

4.2 Results

The performance of the analysis is rated by the successful identification of the
cryptographic algorithm and parameters. Therefore, we analyze each trace of
a testing application and review which identification method has identified the
correct cryptographic algorithm.

Previous Approaches. First, we evaluate existing identification methods which
attempt to identify the cryptographic algorithm only and not the parameters,
and Table 3 shows the results. Note that we did not fully implement Lutz’s
identification method due to the lack of a taint-tracking functionality, thus the
actual performance of this approach might be better in practice. False positives
are abbreviated as FP and basic blocks as BBL. The results of the tools were
compared with the source code and control flow graphs of the testing application
in order to rate the performance of the methods.

The method of Caballero et al. [2] has a good success rate despite its simplic-
ity. It always identifies the cryptographic basic blocks of the cipher and the hash
implementations. It also identifies the key scheduling basic blocks and we rate
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Table 3. Analysis results for heuristics published in previous work

Implementation Algorithm Caballero et al. Lutz Wang et al.

Beecrypt AES success found BBL no result

Brian Gladman AES success only FP no result

Cryptopp AES partial found BBL error

OpenSSL AES success found BBL success OPENSSL cleanse

Cryptopp DES success found BBL error

OpenSSL DES success key schedule success DES ecb encrypt

Cryptopp RC4 partial only FP error

OpenSSL RC4 success no results no result

Beecrypt MD5 success found BBL success md5Process

Cryptopp MD5 success found BBL error

OpenSSL MD5 success partial success MD5 Final

Cryptopp RSA success & FP only FP error

OpenSSL RSA no success & FP only FP no result

this as a successful identification, because key scheduling is a core part of cryp-
tographic algorithms. However, for two Cryptopp applications, the method only
partially identifies the set of basic blocks: it misses parts of the key scheduling
and the encryption phase. In case of the Cryptopp RSA testing application, the
method successfully identifies the asymmetric encryption, but also lists several
false-positive basic blocks. For the OpenSSL RSA implementations, the method
only identifies false-positive basic blocks.

The method of Lutz [12] cannot be completely evaluated, because we did
not implement the taint-tracking needed for it. However, we can note, that us-
ing data comparison without taint-tracking, the method is still able to identify
cryptographic code. For the AES and DES testing applications, it identifies en-
cryption basic blocks or key schedule blocks, due to entropy changes in the data.
Also for the MD5 applications, it identifies the core MD5 functions. Although,
with each successful identification, there is also a high rate of false-positives. For
testing applications with few loops (e.g., OpenSSL RC4) the method shows no
results, because the loop bodies or number of loop iterations are to small. The
identification of plaintext or ciphertext is not successful in all tests.

The cumulative bitwise percentage method by Wang et al. [20] shows a good
success rate for the testing applications with debug symbols. The method is
based on the identification of functions by their debug symbols, therefore it yields
false-positive or no results for the testing applications without debug symbols
(the Cryptopp applications and Gladman’s AES implementation do not contain
debug symbols). Nevertheless, for the Beecrypt and OpenSSL applications the
success rate is 57%.

Improved Heuristics. Next, we evaluate our methods and the results of the
evaluation are shown in Table 4. The performance of the chains method is
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beecrypt beecrypt cryptopp cryptopp cryptopp cryptopp cryptopp gladman openssl openssl openssl openssl openssl
aes md5 aes des md5 rc4 rsa aes aes des md5 rc4 rsa

rc4 unique
des unique
rsa unique
md5 unique
rc4 intersect
aes intersect
des intersect
rsa intersect
md5 intersect
rc4 cryptopp
rc4 openssl
aes beecrypt
aes gladman
aes cryptopp
aes openssl
des cryptopp
des openssl
rsa cryptopp
rsa openssl
md5 beecrypt
md5 cryptopp
md5 openssl

0 % 0 % 100 % 100 % 100 % 100 % 100 % 0 % 50 % 0 % 0 % 100 % 0 %
0 % 0 % 44 % 100 % 44 % 44 % 44 % 22 % 33 % 100 % 11 % 0 % 0 %

22 % 8 % 58 % 61 % 50 % 46 % 89 % 34 % 18 % 1 % 7 % 1 % 89 %
0 % 100 % 6 % 29 % 100 % 6 % 12 % 0 % 0 % 0 % 100 % 0 % 0 %

68 % 68 % 100 % 100 % 100 % 100 % 95 % 64 % 77 % 77 % 68 % 100 % 68 %
100 % 82 % 100 % 100 % 82 % 82 % 94 % 100 % 100 % 88 % 88 % 71 % 88 %
56 % 51 % 87 % 100 % 77 % 77 % 82 % 51 % 74 % 100 % 64 % 46 % 64 %
34 % 28 % 71 % 71 % 63 % 57 % 93 % 41 % 35 % 24 % 29 % 16 % 92 %
40 % 100 % 60 % 67 % 100 % 52 % 62 % 26 % 45 % 43 % 100 % 38 % 52 %
13 % 14 % 83 % 82 % 82 % 100 % 57 % 16 % 17 % 16 % 15 % 11 % 31 %
60 % 58 % 68 % 63 % 58 % 55 % 65 % 38 % 55 % 53 % 50 % 100 % 45 %

100 % 33 % 35 % 34 % 27 % 27 % 58 % 62 % 41 % 29 % 27 % 26 % 40 %
41 % 12 % 27 % 28 % 23 % 22 % 45 % 100 % 21 % 17 % 13 % 11 % 32 %
12 % 13 % 100 % 73 % 64 % 62 % 59 % 15 % 16 % 14 % 14 % 10 % 29 %
52 % 34 % 56 % 55 % 47 % 47 % 62 % 40 % 100 % 45 % 37 % 30 % 52 %
12 % 14 % 74 % 100 % 65 % 62 % 53 % 15 % 15 % 15 % 15 % 10 % 29 %
26 % 22 % 36 % 38 % 29 % 30 % 36 % 22 % 32 % 100 % 29 % 20 % 27 %
12 % 9 % 48 % 43 % 39 % 36 % 72 % 14 % 11 % 9 % 9 % 6 % 23 %
22 % 19 % 47 % 47 % 42 % 38 % 62 % 28 % 23 % 17 % 20 % 11 % 91 %
45 % 100 % 50 % 56 % 74 % 41 % 58 % 26 % 38 % 35 % 73 % 35 % 47 %
11 % 22 % 74 % 76 % 100 % 72 % 57 % 14 % 15 % 13 % 23 % 10 % 30 %
34 % 66 % 49 % 53 % 71 % 41 % 55 % 25 % 37 % 41 % 100 % 27 % 45 %

Fig. 4. Results of the signature matching using (mnemonic, constant)-tuples

overall good if we consider the unique-signatures. Since the signatures are par-
tially generated from the testing applications, their matching performance seems
successful in the evaluation. But if we evaluate against slightly different code,
we expect that the detection rate might decrease. Therefore, a fuzzy matching
algorithm for the mnemonic sequence comparison could mitigate the problem
and we will investigate such a method as part of our future work.

The performance of the (mnemonic, constant)-tuple matching method is the
most successful of the signature identification methods. The details of the results
are presented in Figure 4: the signatures are displayed on the y-axis and the
testing applications are shown on the x-axis. Each highlighted field links the
testing application to the respective signature. If we apply the threshold of 70%,
all implementations are correctly identified.

Third, the verifier heuristic, which also verifies the existence and the param-
eters of a symmetric encryption, is also capable of detection the cryptographic
primitives within a given program. Table 4 shows that the method is able to
detect nearly every instance of the symmetric encryption algorithms (RSA and
MD5 are thus marked as n/a). The only undetected trace is Gladman’s AES im-
plementation. By design, the method does not yield false-positive results. The
success of this method is closely bound to the memory reconstruction method de-
scribed in Section 3.2. In case of the Gladman AES implementation, the memory
reconstruction method is unable to reconstruct the cryptographic parameters.
Thus, the method has no success. Although the memory reconstruction often
leads up to 2000 candidates for encryption key, plaintext, and ciphertext each,
the time for the candidate check is feasible. For AES, our non-optimized AES
candidate check function is able to conduct 400,000 checks per second. If 2000
candidates for each parameter exist, the verification of all the candidates would
only need 20002

400000 = 10s.
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Table 4. Analysis results for our improved identification methods

Implementation Algorithm chains mnemonic-const verifier

Beecrypt AES success success success

Brian Gladman AES success success no success

Cryptopp AES success success success

OpenSSL AES success success success

Cryptopp DES success success success

OpenSSL DES success success success

Cryptopp RC4 success success success

OpenSSL RC4 success success success

Beecrypt MD5 success success n/a

Cryptopp MD5 success success n/a

OpenSSL MD5 success success n/a

Cryptopp RSA success success n/a

OpenSSL RSA success & FP success n/a

4.3 Off-the-Shelf Application

To show the generic usage of our approaches, we tested our system implemen-
tation against off-the-shelf software. We traced and analyzed a SSL session of
the Curl HTTP client. Curl itself utilizes the OpenSSL library for establishing
a SSL connection. In the testing environment, we used Curl version 7.19.7 with
OpenSSL version 0.9.8l. We downloaded a HTML file from a webserver using
HTTPs and traced the execution as explained in Section 3.2. We observed that
the remote SSL server and the Curl client negotiated the following SLL cipher
suite setting: TLS DHE RSA WITH AES 256 CBC SHA. This means that the cipher
suite specifies Diffie-Hellman Key Exchange, with RSA certificates, symmetric
encrypted by AES in CBC mode with 256 bit keys, and integrity checked by
SHA1. Thus, we knew that the analysis should at least detect the RSA and
AES invocation. The selected cipher was used to encrypt three packets of SSL
application data. Obviously, the first packet was the client HTTP request of 160
encrypted bytes, and then followed the server response with 272 bytes for the
HTTP header and 5168 bytes of content.

The results are summarized in Table 5. The method by Caballero et al. suc-
cessfully detected 19 basic blocks in the encryption and key scheduling functions
AES set decrypt key, AES set encrypt key, AES decrypt, and AES encrypt.
Lutz’s method revealed 2,121 entropy changes in 26 loop bodies corresponding to
22 functions, for example in the AES encryption and decryption functions, but
also in false-positive functions like ASN1 OBJECT it or OBJ NAME do all sorted.
The method by Wang et al. generated no results, probably due to the fact that
the trace did not start at the beginning of the application.

The chains method, which compares mnemonic sequences, detected both
AES and RSA without false-positives. An interesting result was revealed by the
signature-based mnemonic-const identification method: since we were not able
to generate an unique or intersecting set for the AES algorithm, we only had
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Table 5. Analysis performance for the Curl trace

Method Results

Caballero et al. detected core AES basic blocks
Lutz detected core AES loops, few FPs
Wang et al. no results

chains detected AES and RSA, including implementation
mnemonic-const detected AES implementation, one false-positive
verifier detected 94.6% of AES instances including parameters

the implementation signature for OpenSSL AES to match the trace. Among the
implementation signatures, the OpenSSL AES signature had a relatively low
match of 49%, compared to the results from the previous section. Nevertheless,
other implementation signatures followed at about 20-30% and OpenSSL AES
still stood out among them. The intersect and unique signatures (available only
for DES, RSA, MD5) detected one high false-positive (intersecting DES with
56%) and some lower false-positives around 35%.

The verifier identification method outperformed all other methods. Of the
350 blocks of encrypted AES data, which we recorded using tcpdump for verifica-
tion purposes, the identification method was able to find and verify the plaintext,
key, and corresponding ciphertext of 331 blocks (success rate of 94.6%). Using
the AES reference implementation, the method checked whether 3395 candi-
date keys and 4205 candidate plaintexts correspond to one of 8037 candidate
ciphertexts. The missed 5.4% of AES primitives were caused by the memory
reconstruction method, because the identification method only uses data from
the reconstruction and verifies it using the reference implementation. Thus, the
missing data has not been reconstructed and therefore could not be verified.

4.4 Distortion with Executable Packers

In order to test the identification performance against binary modification, e.g.,
binary packing and obfuscation, we packed a testing application and analyzed it
using our system. The used packer was ASPack in version 2.12 and the testing
application was a simple XOR application with an input/output of 4096 bytes.
We chose ASPack since it is a common, widely used packer and the tool represent
a large class of packing programs.

While the trace size increased by factor 17 and the analysis took longer,
the analysis tool was still able to identify all blocks of XOR encrypted text.
Interestingly, the packer introduced 24 new loops, but the loop analysis was still
able to point out the original XOR encryption loop, which was also found in the
original testing application. The packed loop still had 32 executions, with 128
iterations each, to encrypt a total of 4096 bytes. While this evaluation is only
brief and we studied only a single packer, the result nevertheless indicates that
the different heuristics are not perturbed by introducing executable packers and
can thus also handle packed binaries.
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4.5 Real-World Malware Sample: GpCode

We also tested the system against a real-world malware sample to demonstrate
that we can indeed identify cryptographic primitives of a given binary sample in
an automated way. The ransomware GpCode is a prime example for the applica-
tion of cryptography in malware: after having infected a system, the malware’s
intend is not to hide its presence on the machine. Instead, GpCode encrypts the
system’s files with a key generated by the malware. Afterwards, the malware
informs the victim of payment methods in order to obtain a decryption tool.
The malware uses a custom executable packer and serves as another test case
for distortion introduced via binary obfuscation.

In our tests, we found that only certain document formats are encrypted, e.g.,
.doc, .pdf, .txt files. For each file, the first three 16 byte blocks were encrypted
and a marker (0x03000000) was appended to the file. Our tool determined that
all encryption operations use the same 256-bit key to perform AES in ECB
mode and the tool correctly extracted this key. Furthermore, the tool found that
the (symmetric) AES key is encrypted using the malware author’s RSA-1024
(asymmetric) public key in order to let the victim forward this information to
the author. When executing the malware sample in our system, we were able to
locate all instances of AES encryptions. Due to the malware’s iteration over the
complete filesystem, the tracing took 14 hours and the analysis phase 8 hours.
Note that no manual intervention was necessary, the tool extracted the relevant
information in an automated way. A victim could use our tool to discover the
AES key and then decode all files accordingly.

5 Limitations

The heuristics presented in this paper also have several drawbacks and limita-
tions which we discuss next. Obviously, dynamic analysis has the general con-
straint that if code is not executed, it cannot be analyzed. Thus, we rely on the
fact that the binary executable unconditionally executes the cryptographic code
that we want to analyze. Otherwise, the code would not be incorporated in the
trace and thus cannot be used by the later identification methods. A drawback of
our current implementation is the fact that the DBI framework Pin cannot han-
dle all kinds of malicious software since the malware might detect the presence
of the instrumentation code. However, we could implement the same heuristic
based on other, more robust DBI or malware analysis frameworks.

The signature-based heuristics we introduced in this paper rely on the knowl-
edge of the cryptographic algorithm such that we can generate the signatures.
If the attacker implements his own cryptographic protocol, then these heuristics
can not detect this fact. Several modifications to the internal functions of crypto-
graphic algorithms can be performed, mostly to gain a space or time advantage.
A very common form is a lookup table, which can be employed instead of bitwise
addition and shifting. Another common programming technique is loop unrolling
to avoid the flushing of the CPU’s instruction pipeline and to save the loop’s
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control instructions, e.g., JMP or INC. Since the correct and efficient implementa-
tion of cryptographic algorithms is a non-trivial task, many public code libraries
exist to support application developers. Since the implementation is hard and
even small changes can break the strength of the software, we expect that cryp-
tographic code is often reused from cryptographic libraries such as OpenSSL or
interfaces such as the Microsoft Cryptography API.

A compiler could generate code that has other characteristics not caught by
our heuristics. To address this problem, our testing applications are created using
two different compilers, because each compiler has a different approach towards
optimizing the assembly code and thus produces different results. Furthermore,
the results might depend on the compiler settings and optimizations used when
creating the binary. Hence, we varied the compiler settings for the different
evaluation programs. A related problem is interpreted code: during our analysis,
we consider mainly C/C++ compiled code. However, an attacker could also
use an interpreted language such as Python to implement his cryptographic
routines which complicates analysis. Although an intermediate language can be
well suited for heuristic identification, this is out of the scope of this work.

6 Conclusion

In this paper, we presented several methods to identify cryptographic code in
binary programs. We pointed out the drawbacks of state-of-the art approaches
in this area and evaluated available tools and techniques. Based on the insights
and characteristics of cryptographic implementations, we developed three im-
proved heuristics to enhance the detection accuracy. The implemented system
was evaluated and we showed that our approach outperforms existing methods.

Availability. We believe that the interest in security analysis of cryptographic
code will increase in the future. To foster research in this area, we publish our im-
plementation of the different techniques and the data sets we used for the evalu-
ation. All information is available at http://code.google.com/p/kerckhoffs.
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Abstract. Shellcode is malicious binary code whose execution is trig-
gered after the exploitation of a vulnerability. The automated analysis
of malicious shellcode is a challenging task, since encryption and eva-
sion techniques are often used. This paper introduces Shellzer, a novel
dynamic shellcode analyzer that generates a complete list of the API
functions called by the shellcode, and, in addition, returns the binaries
retrieved at run-time by the shellcode. The tool is able to modify on-the-
fly the arguments and the return values of certain API functions in order
to simulate specific execution contexts and the availability of the exter-
nal resources needed by the shellcode. This tool has been tested with
over 24,000 real-world samples, extracted from both web-based drive-
by-download attacks and malicious PDF documents. The results of the
analysis show that Shellzer is able to successfully analyze 98% of the
shellcode samples.

Keywords: Shellcode analysis, Binary instrumentation.

1 Introduction

Malware, which is a generic term used to denote software that aims to com-
promise a computer, is the leading threat on the Internet. One of the primary
methods used by the attackers to deliver malware is code injection.

In the case of web-based malware, the user is lured into visiting a malicious
web-page. The JavaScript contained in that page tries to exploit a vulnerability
in the browser. If it succeeds, the exploit triggers the execution of an arbitrary
piece of code, often called shellcode. A shellcode is a small piece of code, whose
goal is to compromise the machine that executes it. The size of shellcode samples
is usually subject to some constraints, and, hence, their actions are commonly
limited. Despite this, they play a fundamental role in the compromise of a host.
The task of the shellcode is often to provide interactive access (through the
invocation of a command line shell, from which the term ”shellcode” is derived),
or download and then execute additional malware.

In this paper, we introduce Shellzer, a tool for the dynamic analysis of mali-
cious shellcode. In particular, we focus our attention on shellcode extracted from
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web-based malware and from malicious PDF documents. Given a shellcode in
input, Shellzer analyzes it by instrumenting each instruction in the code. This
is done to have complete control over the shellcode’s execution, so that it is pos-
sible to detect the use of evasion techniques and to collect detailed information
about the sample under analysis. Two different optimizations have also been
introduced in order to make this approach feasible in terms of performance.
Furthermore, in order to fulfill some specific conditions required for a correct
analysis, the tool dynamically alters both the arguments and the return value of
some API functions. By doing this, the tool is capable of observing the behav-
ior of the shellcode during a real-attack scenario. This technique is used also to
deal with the attempted malicious actions. In fact, since instrumentation is just
a different form of execution, if no countermeasures were taken, the shellcode
would be able to compromise the host that runs the analyzer.

As output, the tool returns an HTML report that contains the following infor-
mation: a complete trace of the API calls (with their most significant arguments
and their return values), the URLs from which external resources have been
retrieved, and the evasion techniques used by the shellcode. Furthermore, the
tool returns the additional binaries that have been downloaded at run-time. It is
worth noting that even if the binary retrieved was originally encrypted, the tool
will automatically return its decrypted version. This is a quite important feature
of our work: indeed, having just the encrypted binary would be useless, since the
decryption routine is implemented in the shellcode, and not in the binary itself.
This key feature is useful also when dealing with shellcode samples extracted
from malicious PDF documents. In these cases, the additional payload is con-
tained in the PDF document itself, and Shellzer will be able to automatically
return it, also if it was originally encrypted.

The tool has been evaluated by running it over 24,000 real-world samples,
which had been previously extracted by Wepawet [5], an on-line service for de-
tecting and analyzing different types of malware, including web-based malware
and malicious PDF documents. The average time for a single analysis is 15 sec-
onds, and only in the ∼ 2% of the cases Shellzer has not been able to analyze the
samples because of one of its limitations. During our discussion, we will provide
an overview about the goals of this kind of shellcode, and we will describe some
interesting samples we found during the analysis.

2 Issues to Be Addressed

In this section we discuss which are the common issues that make shellcode
analysis difficult.

2.1 Additional Resources Have to Be Available

One of the challenges of shellcode analysis is that shellcode often requires that
some additional resources (usually additional malware) have to be available. If
the retrieval of such external resources fails, some samples silently quit, while
others behave in an unexpected way (their execution usually crash). In both
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cases, this outcome is not desirable since our goal is to analyze the behavior of
shellcode as if it were executed during a real-world attack.

2.2 A Specific Execution Context Is Required

Many samples can be correctly analyzed only if they are executed in a specific
execution context. A good example that shows why the context is an important
aspect is the case of shellcode extracted from malicious PDF documents. Most of
these samples make use of the GetCommandLineA API. This API returns a string
that contains the command line that has been used to launch the program. The
execution context is important here, because this kind of shellcode assumes that
it is running inside an instance of Adobe Reader, and, therefore, it makes an
assumption about how the string returned by that API is formatted. This point
constitutes a big issue since if the shellcode is not executed in the appropriate
execution context, the string returned by the GetCommandLineA API will be
completely different from the one that shellcode expects, and, in the general
case, this will cause some malfunctions (in the worst case, a crash).

2.3 Dealing with Malicious Behavior

An important issue is related to the fact that the goal of the shellcode samples is
to compromise the machine that executes it. This fact constitutes a problem for
two reasons: the first is that our system actually executes the malicious shellcode,
and hence there is a concrete possibility that the shellcode under analysis could
be able to take control of the analyzer itself; the second one is related to the fact
that we consider too expensive (in terms of performance) restoring the machine
after the analysis of each sample.

2.4 Performance Issues

Despite the fact that shellcode is usually few hundreds of bytes long, the number
of instructions that are actually executed at run-time is in the order of millions.
This is due to the fact that many loops are present, and some of them are exe-
cuted thousands of times. This constitutes a big issue for our approach, since our
system is based on single-instruction instrumentation, and, hence, the overhead
introduced is directly proportional to the number of instructions executed at
run-time.

2.5 Evasion Techniques

Malware authors often try to make shellcode analysis difficult. Specifically, the
techniques that we are going to describe have the following goals: make the static
analysis unfeasible, increase the difficulty of generating a complete trace of the
API functions called, and mislead the analysis tools by performing some specific
assembly-level tricks.
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  mov eax, API_addr
  push ret_addr
  mov edi, edi
  push ebp
  mov ebp, esp
  lea eax, dword [eax+5]
  jmp eax
ret_addr:
    ...

API_addr:
  mov edi, edi
  push ebp
  mov ebp, esp
    ...
    ...
  ret

jmp hook_address
bp

esp
bp

esp
bp

esp

mov 
e

mov 
e

edi
ebp

mov 
bbbebe

mov 

edi
bpb

Fig. 1. JUMP OVER THE HOOK technique

Encryption. Many of the samples we have analyzed were encrypted. Mainly
two techniques are used. In the first case, the encryption is done by simply xor-
ing all the bytes of the shellcode with a one-byte key. The second technique is
also based on the xor operation, but the shellcode in encrypted in blocks of four
bytes with a four-byte key. Moreover, in these cases, the key is altered for each
iteration. When the second variant is used, encryption makes the analysis tools
based on static approaches unable to extract any useful information.

Uncommon API Functions. Since the Windows DLLs export a huge numbers
of API functions, many malware analyzers do not monitor the calls to all the
API functions, but only the calls to a subset of them (i.e., the security relevant
ones). Malware authors leverage this bias, and they use certain uncommon API
functions that, with a high probability, are not monitored, despite the fact that
this leads to an increase in the shellcode’s complexity. For example, in order to
run additional executables, the WinExec API is commonly used. Instead, some
samples use the CreateProcessInternalAAPI, an undocumented function that
takes twelve input arguments.

Assembly-Level Tricks. We will now describe some low-level techniques that
from the behavioral point of view do not add any contributions, but are used by
shellcode authors to mislead analysis tools.

INDIRECT API CALL. This technique allows the shellcode to call an API
function A, by jumping into the code of a different API function B, with the
aim of misleading some analysis tools. This is achieved in a simple way. When
the shellcode has to call the API function A, it jumps to a specific point of the
API function B, so that, after few assembly instructions, the API function B
will internally call the API function A.

JUMP OVER THE HOOK. This technique is very powerful and it constitutes a
big issue for many analysis tools, since it makes it difficult to generate a complete
trace of the called API functions. Specifically, it affects the monitoring tools that
track the API calls by modifying the first bytes of each API, in order to install
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a hook on each of them. This technique comes into play when the shellcode calls
an API function, and its goal is to jump over the installed hook. This technique
simply consists in jumping to the fifth byte of the API, instead of jumping to
the first one (as it happens in the normal case). Therefore, in the case a hook is
present, it will be bypassed and the call to that API function will not be traced.
This technique skips the first five bytes because it is the common size of a hook.
Figure 1 shows this technique in action. Before calling the API function, the
shellcode executes those assembly instructions that were at the beginning of the
target function, so that the net effect of calling the API function is not altered.

RETURN ORIENTED PROGRAMMING. Occasionally, shellcode uses a simple
form of return-oriented programming. Since this topic has been widely discussed
in literature, we will just discuss an example in order to show the low complexity
of the samples we found.

Listing 1.1. RETURN ORIENTED PROGRAMMING assembly

1 push arg2 n
2 . . .
3 push arg2 0
4 push r e tu rn add r e s s
5 push arg1 n
6 . . .
7 push arg1 0
8 push API 2 address
9 jmp API 1 address

Listing 1.1 shows a small excerpt where the shellcode uses this technique to call
two different API functions in a row, without the need to come back to the
shellcode’s code between the execution of the first function and the second one.

3 Overview of the System

In this section, we provide an overview of Shellzer, the shellcode analyzer we
have designed and implemented. From a high-level point of view, Shellzer takes
as input the shellcode that has to be analyzed, and it generates an HTML report
that includes the following information: the trace of all the API functions called
(with their arguments and return values), the DLLs loaded, the URLs contacted,
and the evasion techniques that have been used by the sample under analysis. In
addition to the binary, the analyzer takes as input all the additional resources
that are required at run-time. For example, if a shellcode has been extracted
from a malicious PDF, the PDF itself is usually needed in order to correctly
analyze the sample, and, for this reason, it has to be passed as input to our tool.
Moreover, it often happens that the shellcode tries to retrieve and run external
executables (presumably malware): if this is the case, these additional binaries
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are also returned as output. It is worth noting that, even if the binary was orig-
inally encrypted, its decrypted version will be returned, since the tool extracts
the binary image of the additional component after it has been decrypted by the
shellcode.

3.1 Architecture

Shellzer dynamically analyzes shellcode samples by instrumenting their execu-
tion at a single-instruction level granularity. The instrumentation is performed
by using PyDbg [7], a Python Win32 debugging abstraction class. In particular,
the core of the analysis is performed in the EXCEPTION SINGLE STEP’s handler
that it is called between the execution of each assembly instruction.

Our goal was to have complete control over the shellcode’s execution, as if
we were using an approach based on emulation. The advantage in using such
a technique is that we can dynamically decide if it is necessary to single-step
through the code or not, so that the overhead caused by the instrumentation is
introduced only when it is strictly required. We will now discuss the three main
components of our system.

Advanced Tracing Technique. One of the most important aspect that has
to be monitored is related to the Windows API functions that are called by
the shellcode. In particular, it is important to be able to retrieve the names,
the argument values, and return value of all the API functions that are in-
voked. Unfortunately, in the general case, this task cannot be accomplished in
a straightforward way, since the shellcode might use evasion techniques (e.g.,
those presented in Section 2.5). For this reason, we had to develop a quite com-
plex tracing technique through which we are able to automatically handle all
the possible situations and all the evasion techniques known to us. We describe
the details of this technique in Section 4.1.

Dynamic Interaction. By using this kind of approach, we are able to inject
custom pieces of code at any moment during the execution of the shellcode that is
instrumented. This is a very powerful feature, since the injected code is executed
in the same execution context of the shellcode under analysis: this means that
it is possible to dynamically read and write the process memory, read and write
the values of the CPU’s register, and so on. Our tool exploits this capability to
handle three of the major issues we presented in the previous section.

The first issue comes from the fact that the shellcode might try to retrieve
additional resources and, if they are not available, the shellcode might behave
in an unexpected way. Therefore, we dynamically simulate that the required
resources are available by properly altering the return values of some specific
Windows API functions.

The second issue we addressed is related to the fact that some shellcode needs
to be executed in a very specific execution context. In order to solve this problem,
we simulate that the whole analysis is performed within the required execution
context. Also in this case, this is obtained by modifying, at run-time, the content
of some specific memory regions and the return values of certain Windows API
functions.
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Finally, since an instrumented execution is still an execution, we have to
handle the malicious nature of the shellcode samples we analyze: if no coun-
termeasures are taken, the shellcode under analysis could easily compromise the
machine that runs the tool, and we would be forced to restore the host after each
single analysis. This issue is resolved thanks to the fact that we have complete
control over the shellcode’s execution. Therefore, we modify the argument values
of some security-relevant Windows API functions. We will discuss in more depth
these modifications in Section 4.2.

Performance Speed-Up. Instrumenting the whole shellcode’s execution with a
single-instruction granularity bears a significant performance overhead. For this
reason, we implemented two optimizations that allow for the disabling of the
single-step mode when it is not necessary. The first aims to disable the single-
step mode during the execution of API functions, while the second is related
to the loops that are often present in shellcode: once the loop’s body has been
analyzed the first time, the single-step instrumentation is often no longer needed
for the other iterations. The details related to these optimizations are discussed
in Section 4.3.

4 Analysis Process

We will now describe how the analysis is performed. Our tool takes as input a
shellcode. Since PyDbg does not allow the instrumentation of code fragments, we
first build an executable starting from the shellcode. This is done by dynamically
writing a C program, whose main() just executes the shellcode’s binary. After
the executable is created and loaded by the debugger, we set a breakpoint on the
shellcode’s entry point (i.e., its first byte), whose position in memory is statically
known, and we then run the executable. When the execution reaches the first
byte of the shellcode, the breakpoint is triggered and the remaining initialization
steps are performed.

Firstly, the tool collects some information related to the DLLs and the API
functions whose usage has to be monitored. In particular, it is determined which
DLLs have been loaded and at which addresses in memory they have been
mapped. The system then retrieves from a configuration file which API func-
tions are exported by those DLLs, their addresses in memory, and the arguments
whose values have to be reported in the output trace. For each argument, the
following information is gathered: the name, used as a label to identify it; the
type, necessary in order to properly interpret the bytes read from memory; the
input/output flag, that indicates if the memory has to be read before or after
the API function’s execution; and the offset, which allows one to determine the
argument’s position in memory. Specifically, the offset indicates the argument’s
position with respect to the value assumed by the stack pointer just before the
API function’s first instruction is executed.

At this point, some specific handlers are registered for the most common
Windows exceptions (e.g., EXCEPTION ACCESS VIOLATION) that could be raised
during the analysis. Then, a handler for the EXCEPTION SINGLE STEP exception
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is registered. This handler plays a fundamental role in our system, since it is
the place where the analysis happens. Indeed, that function is executed between
each shellcode’s assembly instructions. This is achieved by setting the TF flag of
the EFLAGS register before the execution of each instruction: in this way, after
the current instruction will be executed, the processor will execute the int 0x1
interrupt, the EXCEPTION SINGLE STEP exception will be raised by Windows,
and our handler will be then called.

What we have described so far are the operations performed during the ini-
tialization phase. In the remaining of this section, we discuss three important
aspects of our system, namely, how Shellzer traces API functions, how it han-
dles the correct and safe execution of API functions, and how it optimizes the
performance of the shellcode analysis.

4.1 API Calls Detection and Tracing

We now describe how Shellzer detects and traces the API functions called by the
shellcode. The operations discussed here are performed before the execution of
each assembly instruction. First of all, the value of the program counter (PC) is
retrieved. We then determine if the PC points to a memory region where a DLL
has been mapped: if this is the case, the DLL’s name is retrieved. At this point,
we compare the PC’s value with the starting address of all the API functions
exported by that DLL. If a match is found, we are able to determine which
specific API has been called, and we can proceed in reading the arguments’
values, whose position can be calculated by adding their offset attribute to the
current value of the stack pointer (SP). Once this information has been collected,
the API function called by the shellcode can be executed. When the execution
returns (we will see how this can be determined in a reliable way), the API
function’s return value is retrieved by simply reading the value stored in the
eax register. The last operation performed before continuing with the analysis
consists in the retrieval of the API’s output arguments, that can be now read.

The procedure described so far works only if the shellcode called the API
function in a conventional way; however, if the evasion technique we previously
named JUMP OVER THE HOOK is used, additional operations are required. Indeed,
the tool detects that an API function has been called only when the execution
reaches the API’s code, and, in the case such evasion technique is used, this will
occur only after the first three API’s instructions (which represent the first five
bytes of the function) have already been executed by the shellcode (details have
been explained in Section 2.5). This constitutes an issue both in determining
which API function has been called and in properly retrieving the arguments’
values. In fact:

– the current value of the PC will no longer match the starting address of any
API function, since it will point to the fourth API function instruction and
not to the first one;

– the value of the offset attribute of each argument, through which the ar-
gument’s position is found, is relative to the value assumed by the SP just
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before the execution of the first API’s instruction, which, in the general case,
will be different from the current value of the SP register.

For what concerns the identification of the API called, the problem is solved by
identifying which is the API (if any) that satisfies the following expression:

API’s starting address ≤ PC ≤ API’s starting address + 5.

If such API is found, we assume that the shellcode wanted to call that specific
API and that wanted to avoid a possibly installed hook.

To correctly retrieve the argument values, we calculate the value that would
be assumed by the SP just before the execution of the first API’s instruction.
This is done by considering the current SP and by modifying its value, taking
into account the API’s instructions already executed. For example, if between
the first instruction and the fourth instruction, the shellcode has executed a
push ebp instruction, it means that the SP has been altered by subtracting 4:
so, in order to retrieve the SP’s original value, we add 4 to the current SP.

Note that, it is always possible that the shellcode jumps in the DLL’s code,
but we are not able to identify which API has been called: this can happen,
for example, if the shellcode uses the technique we named INDIRECT API CALL,
described in Section 2.5, or if the shellcode jumps in the code of an API function
after its fifth byte (this circumstance has never occurred during the evaluation
phase). In this case, the tool simply continues with the single-step analysis. At
a certain point, either the execution will come back to the shellcode or an API
will be called.

4.2 API Handling

Our system does not perform only passive monitoring of the shellcode’s behavior,
since it would not be sufficient to handle the issues discussed in Section 2. More
precisely, the tool allows one to execute user-specified functions just before and
after the execution of a generic API function. By doing this, the analyzer is able
to read and write the memory and alter the register’s values. As an additional
feature, we designed the system in a way that the shellcode can execute a specific
API function only if that API function has been explicitly labeled to be safe. An
API is considered to be safe in two cases: first, if its execution cannot lead to any
bad consequences; second, if its execution could be problematic, but actually it
is not, thanks to the additional operations performed before and after executing
it. In this way, if the shellcode suddenly start to use a new API that is not
currently handled (i.e., it is not safe), the tool will raise an exception and the
anomaly occurred is signaled in the report generated. We now describe in detail
the additional operations performed and which issues they address.

Resource availability simulation. A shellcode sample might try to retrieve addi-
tional resources. If it is not able to do that, it might behave in an unexpected
way. Unfortunately, the retrieval of such external resources is not always pos-
sible. For example, a common reason is that the URL contacted is no longer
operational.
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In order to address this issue, we inject our custom code before and after the
execution of the API functions that deal with the downloading of the additional
resources. For example, we do so for the URLDownloadToFileA API function.
This API takes as input the URL from which the resource has to be fetched
and the path where the file downloaded has to be stored on the file system.
As output, it returns 0 if the file has been successfully downloaded, while it
returns 1 if an error occurred. After this API function has been executed, the tool
automatically checks its return value, which is stored in the eax register. If the
value indicates that something went wrong, these two operations are performed:
we change the value stored in the eax register to 0, and we create a file where the
shellcode expects to find the resource downloaded. What we found is that these
two operations are sufficient to simulate that the resource has been correctly
downloaded, since the shellcode only checks the return value and not the content
of the file retrieved. Of course, we need to do the same also when similar API
functions are called, such as the InternetReadFile API function.

Environment simulation. Some shellcode must run within a specific execution
context. This is especially true when dealing with samples extracted from ma-
licious PDF documents. These samples usually retrieve the additional malware
not from the web, as it commonly happens, but from the PDF document itself.
In order to do this, they first have to access the malicious document. In a real
attack scenario, the shellcode is executed in the same execution context of the
Adobe Reader instance that opened the malicious PDF document. In order to
better explain the motivations behind this observation, we briefly summarize
what happens from the moment the user opens the malicious PDF document,
up to the shellcode’s execution.

When the user opens the PDF document, Adobe Reader is executed and it
reads and interprets the document’s content. Moreover, if the document contains
a piece of JavaScript, the reader executes it. What distinguishes a malicious PDF
document from a benign one, is that the JavaScript tries to exploit a vulnerability
in the reader. If it succeeds, it will able to trigger the execution of a piece of
arbitrary code (in our case, the shellcode) that will be executed in the same
execution context of the PDF reader.

We now present two examples of environment-aware shellcode. The first one
is based on the GetCommandLineA API function. This API returns a string that
contains the command line used to launch the program. If this API is called
inside an instance of Adobe Reader, the output will be something similar to
"c:\Programs\adobe.exe" "c:\Documents\document.pdf", where the first is
the complete path to the Adobe Reader’s executable, and the second one is the
complete path to the PDF file opened. This returned string is important, because
the shellcode uses it to locate and then access the malicious PDF document.

The problem here is that the shellcode analysis is not performed within a
real instance of Adobe Reader. In order to address this issue, we use the same
mechanism we previously described: when the GetCommandLineA’s execution is
terminated, the tool automatically modifies the returned string. Of course, this



Shellzer: A Tool for the Dynamic Analysis of Malicious Shellcode 71

is done coherently with respect to what the shellcode expects, so that the PDF
document can be correctly retrieved.

In the second example, when the shellcode’s execution is triggered by the
JavaScript code, Adobe Reader should have already opened the malicious PDF
and, hence, a file handler associated with that document should be available
within the current execution context. From a practical point of view, this tech-
nique aims to reuse the file handler associated with the PDF document, pre-
viously obtained by the Adobe Reader instance. In this case, the shellcode has
just to determine which is the correct file handler: this can be done by prop-
erly using the GetFileSize API function. This API function takes as input a
file handler and returns the size of the file associated with it. What shellcode
usually do is a sort of brute-forcing: they repeatedly call the GetFileSize API
function by passing as input all the different possible handlers. The shellcode
will be able to determine which is the correct handler by comparing the API’s
return value, with the size of the malicious PDF document (that is known to the
shellcode): when a match is found and hence the correct handler has been deter-
mined, the shellcode can then access the malicious PDF document and extract
the additional malware.

In order to address this issue, a piece of code that simply opens the PDF docu-
ment is executed before starting the shellcode’s analysis. In this way, a file handler
associated with the PDF document is available within the current context execu-
tion, and the shellcode will be able to access the malicious PDF document.

Security measures. There are some API functions that, if called by a shellcode
in a proper way, can compromise the machine that runs the analyzer. We now
discuss two significant examples, and show how we have addressed these issues.

The first one is related to the WinExec API function. Through this API func-
tion (and a few similar ones), the shellcode can run an arbitrary executable. The
problem here is that malicious shellcode uses this API function to run malware.
Therefore, we dynamically alter the API’s argument that indicates the path to
the executable that has to be run. In this way, the shellcode, instead of running
malware, will execute a fake program that simply sleeps for a while. Therefore,
after this substitution, the code of the WinExec API can be safely executed,
without any negative consequences.

The second example is related to the fact that shellcode could create files
in arbitrary places in the file system. Of course, this can be a problem in the
long run, since our tool needs to be able to analyze thousands of samples. We
consider the CreateFile API function as an example for our discussion. This
API function takes as input, among other arguments, the path of the file that
has to be created. Also in this case, as a countermeasure, we modify at run-time
the value of that specific argument: in this way, instead of creating a new file in
an arbitrary directory, the shellcode will create a file in a temporary directory
of our choosing, which is emptied after each analysis. During the analysis, we
also maintain a mapping between the real file paths (the ones specified by the
shellcode) and the temporary file paths (the ones specified by our tool). By doing
this, if the shellcode requires to access a file that has been previously created,
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we are able to modify the file path consistently. Finally, it is worth noting that
this mechanism comes into play when all those API functions that involve a
file creation are called, including the URLDownloadToFileA API function we
previously discussed.

4.3 Performance Improvements

Instrumenting the execution of all the assembly instructions is not feasible, be-
cause the time required for a single analysis would be too long (several minutes
per sample). This is because the number of instructions executed at run-time
is often in the order of millions, even if the shellcode samples are usually not
bigger than a few hundred bytes.

In order to address this problem, we introduced two different optimizations,
so that the shellcode’s execution is instrumented only when it is really necessary.

Skipping the API’s Code. Once an API is called, and the specific handlers
(if any) have been executed, we disable the single-step mode (i.e., we do not set
the TF bit of the EFLAGS register). By doing this the API’s execution will not be
instrumented. Of course, when the API function returns, we need to set again
the TF bit in order to resume the normal analysis.

The difficult point here is to detect, in a reliable way, when the API function’s
execution is finished. To do this, we exploit the following observation: when an
API is called, the caller has to push onto the stack the return address, i.e., where
the execution has to jump once the API function returns. This implies that, just
before the execution of the API function’s first instruction, the return address
will be the value on the top of the stack. When the tool detects that an API has
been called, it performs the following operations:

1. it retrieves the return address pushed by the shellcode (that is the value on
the top of the stack);

2. it sets a breakpoint on the return address;
3. it clears the TF bit, and it resumes the execution.

When the API’s code will be completely executed, the execution will jump to
the return address, and the breakpoint will be hit: at this point, the tool sets
again the TF bit and the normal analysis is resumed.

Unfortunately, these operations are sufficient only if the shellcode normally
calls the API. If a technique like the one we named JUMP OVER THE HOOK is
used, the value assumed by the SP just before the execution of the first API’s
instruction has to be determined (we previously described how this is done): once
that value is known, the return address can be retrieved in a straightforward way.

Furthermore, we need to resolve another problem: if the shellcode uses the
technique we named INDIRECT API CALL or even simple cases of return oriented
programming, it is possible that the breakpoint is hit and the API’s execution is
not finished yet. In order to understand if the API function has really returned,
we exploit the following information: the value assumed by the stack pointer
when the API’s execution has really ended (expected SP) can be calculated
starting from the current value of the SP, by using the following expression:
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expected SP = current SP + (#args + 1) * 4,

where #args represents the number of arguments to the specific API function
called. Specifically, when the breakpoint is hit, the tool determines that the
execution really came back from the API function’s code to the caller, only
if the SP matches the expected SP. If this is not the case, it means that the
API’s execution has not terminated yet, and the breakpoint is set again (on the
same return address). Then, the analysis can continue with the single-step mode
disabled, until the API’s execution has really ended.

Loop Handler Algorithm. When analyzing shellcode, the number of the
instructions executed at run-time is in the order of millions, despite the fact
that the code is usually constituted of a few hundred bytes. This is because
the shellcode often contains some loops whose body is executed thousands of
times: in particular, loops are used for implementing the decryption routines
and the techniques used to resolve the API addresses, as fully explained in [19].
Since single-step instrumenting all the iterations of each loop significantly hurts
the performance, we designed a loop handler algorithm. Its goal is to provide a
mechanism to disable the single-step instrumentation while the loop’s body is
repeatedly executed, and to re-enable it once the iterations are ended.

Overview. The algorithm is structured as follows. The first step is to determine
if the execution is in a loop. If this is the case, the loop’s body is analyzed in
order to determine which are the exit points, i.e., the set of addresses such that at
least one of them has to be reached once the loop’s execution is terminated. Once
this is done, a hardware breakpoint is set on each of them, the single-step mode
is disabled, and the shellcode’s execution is resumed. When the loop’s iterations
end, one of the breakpoint will be hit, and the tool will be able to re-enable the
single-step mode in order to continue with the normal analysis. Furthermore, the
tool maintains a structure that maps the first address of the loop’s body with
the set of the associated exit points. This is done for optimization purposes (if
the execution reaches again the loop’s starting address, the loop’s body does not
have to be re-analyzed), and, as we will see, for properly handling nested loops.

Loop Detection. In order to detect when the execution is in a loop, the tool
maintains an ordered list of the addresses of the instructions executed. In order
to build this list, the value of the program counter is retrieved and appended
to the list, before the execution of each instruction. Then, the list is walked
backwards in order to find if the current instruction has been already executed
in the past. If this is the case, the execution is in a loop, and the loop’s body will
be constituted by the list’s entries between the two occurrences of the current
instruction’s address (i.e., the one that triggered the loop’s detection). Actually,
our algorithm is not currently able to handle loops that contain instructions like
jmp eax, since the exit points cannot be statically determined if such instructions
are present. What we do to handle this problem is to clear the list each time
this kind of instructions has to be executed. In this way, the tool will lose the
information related to which instructions have been executed in the past, and
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Listing 1.2. calc exit points()

1 def c a l c e x i t p o i n t s ( loop body , l oop s d e t e c t ed ) :
2 e x i t p o i n t s = se t ( )
3 cand idat e s = se t ( )
4 for address in loop body :
5 i f address in l o op s d e t e c t ed . keys ( ) :
6 cand idat e s . add ( l oop s d e t e c t ed [ address ] )
7 continue
8 in s = d i sas semb le ( address )
9 i f i n s in branches :

10 taken , not taken = ge t d e s t add r e s s e s ( i n s )
11 cand idat e s . add ( taken )
12 i f not taken not None :
13 cand idat e s . add( not taken )
14 for candidate in cand idat e s :
15 i f candidate not in loop body :
16 e x i t p o i n t s . add ( candidate )
17 l oop s d e t e c t ed [ loop body [ 0 ] ] = e x i t p o i n t s
18 return e x i t p o i n t s

this will prevent the detection of a loop that includes such dynamic instructions.
Similarly, the list is cleared also when an API function is called, so that, if a
loop contains a call to an API function, its execution will be always single-step
instrumented.

Determining the Exit Points. Listing 1.2 shows how the exit points are deter-
mined starting from loop body (that is the list of the addresses that constitutes
the loop’s body), and from loops detected (that is a map between the starting
address and the associated exit points of the loops previously detected). What
we do is to first build a set of candidates. For each instruction that constitutes
the loop’s body, we check if it is the starting address of an already-detected
loop: if this is the case, the exit points associated with it are added to the candi-
dates set. This is done because only the instructions whose execution has been
single-step instrumented will appear in the loop body variable. Therefore, in the
case of nested loops whose execution is skipped thanks to the loop handler, only
their starting addresses will be included in the loop body list. For this reason,
we have to consult the loops detected variable in order to take into account
the contributions (in terms of exit points) of the nested loops.

Then, we check if the current instruction is a branch instruction: if this is the
case, we determine its two target addresses (or just one, if the instruction is an
unconditional jump), and we add them to the candidates set.

Starting from this intermediate set, we are now ready to build the exit points
set: this set will be populated by all those addresses contained in the candidates
set that point outside the loop’s body.
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Final Steps. At this point, a hardware breakpoint is set on each of the exit
points, the single-step mode is disabled and the shellcode’s execution is resumed.
When the loop’s iterations will be terminated, one of the breakpoints will be hit,
and the tool will be able to resume the single-step instrumentation.

The main reason for using hardware breakpoints is that the shellcode can
easily detect the usage of software breakpoints by calculating a CRC (since
these breakpoints need to modify the memory), while the presence of hardware
breakpoints is much more difficult to be detected. But the usage of hardware
breakpoints carries a big disadvantage: due to a processor’s limit, only four of
them can be used at the same time. This implies that our loop detector algorithm
will not be able to handle more than four exit points: if a situation like this
occurs, the tool will continue the single-step analysis, instead of trying to skip
the loop. This circumstance has never occurred during the evaluation phase.

4.4 Evasion Possibilities

We now make some considerations about how shellcode could detect our tool
and evade our analysis. We also discuss some possible countermeasures.

Firstly, shellcode could determine that its execution is single-stepped. This can
be done by checking if the TF bit of the EFLAGS register is set. The EFLAGS can
be read by executing the pushfd instruction, that pushes the register’s content
onto the stack. As a countermeasure, when the shellcode executes that specific
instruction, we modify the value pushed onto the stack by overwriting the TF
bit with 0, so that the single-step mode will always appear to be disabled.

The shellcode could detect the usage of hardware breakpoints. One way would
consist in reading the content of the Debug registers, but this cannot be done by
processes executing with non-kernel privileges. Another way would be to install a
custom exception handler and then execute an instruction that voluntarily raises
an exception. By properly reading the Context structure, that is passed as a pa-
rameter to the exception handler, the content of the Debug registers can be read
(this procedure is fully explained in [18]). As a countermeasure, the tool could act
in the following way.When an exception is raised, the tool checks if a custom excep-
tion handler has been installed: if this is the case, the execution is redirected to the
handler’s code, and theContext structure is alteredbyproperly overwriting theDe-
bug registers’ content. Actually, the technique that consists in installing a custom
exception handler and then raising an exception could be used not only to detect
breakpoints, but also to mislead tools based on debugging (like ours). But since the
presence of custom exception handlers can be always determined, the tool could
properly redirect the execution to the handler’s code. More in general, there are
many other anti-debugging techniques (like the ones described in [17]) that could
affect our tool. But since Shellzer has the complete control over the shellcode’s ex-
ecution, it should be always possible to implement specific countermeasures.

Another way to mislead our tool could be to modify the API function’s code.
However, these modifications can be easily detected by a trivial integrity check
and, if the shellcode calls an API that has been previously altered, the tool
simply executes its code with the single-step mode enabled.
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Finally, a problem that affects Shellzer, as well as most of the tools based on
a dynamic approach, lies in the fact that only one execution path is examined
during a specific analysis run. Therefore, if a shellcode expresses its malicious
behavior non-deterministically, the report generated might be incomplete. To
address this issue, we are planning to add to the output report an estimation of
the code coverage, that should give an idea about how many shellcode’s instruc-
tions have not been executed, and hence how much of the functionality might
have been remained hidden during the analysis.

5 Evaluation

We will now describe how Shellzer performs at analyzing real-world samples.
As a dataset, we used the Wepawet’s shellcode database. Wepawet [5,10] is an
online service for detecting and analyzing different types of malware (web-based
malware, malicious PDF documents, and others), and several thousands of re-
sources have been submitted during the past few years. Its shellcode database
has been filled with all the shellcode detected during the analysis of those sub-
missions. Specifically, the detection is performed by applying several heuristics
on strings longer than a certain threshold that contain non-printable characters.
We now present the results we obtained. In the following, we will also discuss
some interesting samples we found during the analysis.

5.1 Tool Evaluation

Our dataset is constituted by 29,873 samples. Unfortunately, it turned out that
not all of them were actually valid shellcode. In particular, we found that 5659
entries were not valid shellcode: many of them are pieces of NOP-sleds that
Wepawet wrongly considered to be complete shellcode. We analyzed the remain-
ing 24,214 samples by setting a timeout of 60 seconds, after which the process
is forced to be terminated. Table 1 summaries the analysis results. Shellzer has
been able to fully analyze 20,306 (84%) of them. With the term fully, we mean
that three requirements are satisfied: it has been possible to analyze the shellcode
from the beginning to the end; no exceptions were raised during the analysis; no
external resources required for the correct analysis were missing.

The average time needed for a single analysis is about 15 seconds, but it can
greatly vary from case to case. If the shellcode simply downloads and executes
an external resource, the analysis usually lasts about 5 seconds. However, if
such external resource is not available, the time needed increases, since some
Windows API functions (e.g., the URLDownloadToFileA API function), wait
∼ 5 seconds before the execution returns to the shellcode (a sort of internal
timeout is implemented). Furthermore, the time required is higher than usual
also when the shellcode downloads a big file by calling thousands of times the
InternetReadFile API function to fetch only few bytes at a time.

As we said, we obtained such great results in terms of performance, thanks to
the two optimizations introduced. Table 1 helps to understand their importance.
Specifically, the table shows the number of instructions that had to be single-step
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Table 1. Analysis results

Label Description Number

A Not valid 5659

B Correctly analyzed 20306

C Missing resources 2580

D Corrupted samples 896

E Timeout expired 400

F Not safe API usage 32

Table 2. Optimizations’ impact

Optimizations # of single-stepped
enabled assembly instructions

None 37232470

API Skipping 1173338

API Skipping
639

Loop Handler

instrumented during the analysis of a simple shellcode, depending on the enabled
optimizations: if both are used, the number of the single-stepped instructions is
tremendously reduced.

With reference to Table 1, we now discuss which are the causes that prevent
a complete analysis of the remaining 3908 samples.

C - Missing resources. Some samples download a binary into a buffer in
memory, and then the execution jumps there. In 2580 cases (10%), the external
binary was no longer available, and hence the analysis had to be stopped.
D - Corrupted samples. During the analysis of 896 samples (4%), an unex-
pected exception has been raised. To the best of our knowledge, these samples
are somehow corrupted.
E - Time constraint. In 400 cases (2%), 60 seconds have not been sufficient
in order to perform a complete analysis. Usually, this is caused by the fact that
some samples implement loops in a way that our algorithm cannot handle them:
in those cases, Shellzer has to single-step instrument the execution of all their
iterations, and this causes a huge performance overhead. In these cases, the time
required for the analysis usually varies between 4 and 5 minutes.
F - Not safe API usage. If, during the analysis, a shellcode sample calls an
API function that is not considered to be safe (i.e., an API function that is not
handled), the execution is interrupted as a safety measure, and hence the anal-
ysis is stopped. It is interesting how this happened only in 32 cases (∼ 0.1%),
even if the tool considers safe only 74 API functions. The API functions that
are currently not handled by Shellzer are the ones exported by the ws2 32 DLL
(needed to perform remote connections), the advapi32 DLL (useful to interact
with the Windows Registry), and some others low-level API functions, such as
VirtualQueryEx, CreateRemoteThread, and SetUnhandledException.

In conclusion, the analysis fails due to a Shellzer ’s limitation, just in the cases
labeled with E and F (∼ 2.1%), while in the other two cases (labeled with C
and D) the tool has been able to continue the analysis as far as even manual
debugging has to stop.

5.2 Shellcode’s Database Analysis

We now discuss what we found during the evaluation phase. The vast majority
of the samples we analyzed, aim to retrieve and execute an additional payload.
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In 3,124 cases, they try to retrieve more than one payload. Interestingly, in 1,445
cases the payload was still available, and Shellzer has been able to return its de-
crypted version. Furthermore, not always the resource downloaded is a malware
in the form of a common Windows executable. Instead, in 898 cases, a mali-
cious DLL is retrieved. We also found 2 samples that aim to execute HTA files
(HTML applications) by launching mshta.exe, the HTA Windows interpreter.
3,429 samples allocate a new region of memory, they copy into it a portion of
their own code, and then they jump there. Interestingly, some shellcode samples
do this trick for up to six times in a row, and they download and execute an
additional malware only in the last stage. Some samples contain two distinct
shellcodes, where the first is in clear, while the second is heavily encrypted. This
is probably done to mislead static analyzers that, after detecting and analyzing
the first shellcode, will consider their job completed. In 1,327 cases, the shellcode
calls the API #101 exported by shdocvw.dll (#101 is its ordinal number; it
does not have an associated symbol). To the best of our knowledge, this should
avoid the crash of the browser after the shellcode’s execution. We also found 306
samples that make use of the UNICODE version of some Windows API func-
tions: in these cases, the shellcode’s complexity is increased, but it is more likely
that the calls to those API functions are not monitored.

29 samples extracted from malicious PDF documents, perform the following
additional operations (besides retrieving and running the malware): they first de-
termine the path of the PDF Reader executable (through the GetCommandLineA
API); they access again the malicious PDF document in order to extract a benign
PDF document; they launch the PDF reader executable and, as an argument,
they pass the path to the benign PDF document. In this way, the shellcode’s
execution, instead of ending with a crash, will result in a valid PDF document
that is correctly opened, and this is often sufficient to fool an unsuspecting user.

We also found two samples that try to inject another shellcode in a different
process, by properly using the CreateRemoteThread API function; 14 samples
that try to perform a remote connection; and only 2 samples that interact with
the Windows Registry. This shows how this kind of shellcode is infrequent when
dealing with web-based malware and malicious PDF documents.

6 Related Work

Much work has been done that addresses the problem of shellcode’s detection in
a generic stream of bytes ([3,14,15,16,13,11]), but relatively few attempts have
been proposed that focus on shellcode’s analysis.

One of the most popular way to analyze shellcode is to perform manual anal-
ysis by using debuggers (such as OllyDbg [20], Immunity Debugger [1], and
WinDbg [2]) and static code analyzers, such as IDA Pro [12]. Unfortunately,
this process is too slow to deal with a large number of samples, and it requires
significant domain expertise. Furthermore, static analyzers cannot produce any
meaningful results if strong encryption is used. This makes clear why automatic
programs that dynamically analyze shellcode are needed.
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A common way to dynamically analyze a binary consists in emulating its ex-
ecution, by using tools like QEMU [8] or a library such as libemu [3]. Moreover,
a tool named Spector [9] has been recently proposed: it focuses on shellcode’s
analysis and it uses an approach based on symbolic execution. These works car-
ried big advantages with respect to manual analysis, but they suffer from some
limitations. One of the issues is related with the big overhead introduced by
emulation. This represents a problem since the execution of millions of instruc-
tions has to be emulated, due to the frequent presence of loops whose bodies
are iterated thousands of times. Spector addresses this problem by using signa-
tures that associate a known sequence of instructions to an equivalent high-level
procedure, in a way that just such simple procedure is emulated, instead of em-
ulating the execution of thousands of instructions. But if a simple unseen loop is
introduced, this approach cannot give any performance speed-up. On the other
hand, Shellzer does not have to use signatures to perform well. Indeed, thanks
to the loop handler algorithm, our tool automatically switches from single-step
instrumentation (that is analog to emulation) to normal execution, in a way that
during the loops’ iterations no overhead is introduced. Furthermore, Spector is
limited to the execution of deterministic code, while Shellzer does not suffer
from this problem since the shellcode is really executed. Another issue that af-
fects some emulation-based approaches is that no real-data is downloaded from
the network. This represents a problem, especially when analyzing samples ex-
tracted from web-based malware, since the shellcode must be able to access the
retrieved binaries in order to be properly executed and analyzed. On the other
hand, this kind of limitation provides some advantages. For example, while Spec-
tor can analyze shellcode samples that aim to open a remote command shell for
an attacker, Shellzer is currently not able to do that. A simple solution would
be to emulate the behavior of those specific API functions.

Another advantage of Shellzer with respect to other tools, is that we made
possible to properly analyze shellcode samples that require to be executed in
a specific environment, like the ones extracted from malicious PDF documents.
This is why generic malware analyzers (like Anubis [4] and Threat Expert [6])
cannot provide accurate results in these cases.

7 Conclusion and Future Work

In this paper, we have presented Shellzer, a tool for the dynamic analysis of
shellcode extracted from web-based malware and malicious PDF documents.
Thanks to a series of optimizations, the single-step instrumentation turned out
to be a successful approach, as confirmed by the high success rate achieved
during the analysis of more than 24,000 real-world samples. As output, the tool
returns a detailed report, which includes a complete trace of the API calls, and
the payloads retrieved during the analysis (in their decrypted form). Shellzer
also satisfies all the constraints required to properly analyze shellcode extracted
from malicious PDF documents, and handle all the evasion techniques we found
in the wild. In the near future, this tool will be integrated with Wepawet, and it
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will hence receive public attention. For this reason, our future work will focus on
how shellcode samples could detect Shellzer and evade our analysis. Moreover,
we are planning to introduce the possibility to analyze shellcode extracted from
different sources, other than web-based malware and malicious PDF documents,
and hence to extend the support for different execution contexts.
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tection. In: Julisch, K., Krügel, C. (eds.) DIMVA 2005. LNCS, vol. 3548, pp. 19–31.
Springer, Heidelberg (2005)

14. Polychronakis, M., Anagnostakis, K., Markatos, E.: Network-level polymorphic
shellcode detection using emulation. In: Büschkes, R., Laskov, P. (eds.) DIMVA
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Abstract. Privacy-breaching malware is an ever-growing class of mali-
cious applications that attempt to steal confidential data and leak them
to third parties. One of the most prominent activities to acquire private
user information is to eavesdrop and harvest user-issued keystrokes. De-
spite the serious threat involved, keylogging activities are challenging to
detect in the general case. From an operating system perspective, their
general behavior is no different than that of legitimate applications used
to implement common end-user features like custom shortcut handling
and keyboard remapping. As a result, existing detection techniques that
attempt to model malware behavior based on system or library calls are
largely ineffective. To address these concerns, we introduce a novel detec-
tion technique based on fine-grained profiling of memory write patterns.
The intuition behind our model lies in data harvesting being a good pre-
dictor for sensitive information leakage. To demonstrate the viability of
our approach, we have designed and implemented KLIMAX: a Kernel-
Level Infrastructure for Memory and eXecution profiling. Our system
supports proactive and reactive detection and can be transparently de-
ployed online on a running Windows platform. Experimental results with
real-world malware confirm the effectiveness of our approach.

Keywords: Malware, Memory, Behavior, Keylogging, Detection.

1 Introduction

Malware is still one of the main reasons for security incidents [12]. Among differ-
ent types of malware the one harvesting users’ private information is increasing
in terms of both impact and number of occurrences [17]. Stealing user confiden-
tial data serves for many illegal purposes, such as identity theft, banking and
credit card frauds, software and services theft, disclosure of clinical records, just
to name a few. A common activity performed by privacy-breaching malware
is keylogging, that is the eavesdropping, harvesting, and leakage of user-issued
keystrokes. To address the general problem of malware detection, a number of
models and techniques have been proposed over the years. However, when ap-
plied to the specific problem of detecting malware with keylogging behavior, all
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existing solutions are unsatisfactory. Signature-based solutions have limited ap-
plicability since they can easily be evaded and also require to isolate and extract
a valid signature before they are able to detect a new threat. Behavior-based
detection techniques overcome some of these limitations. They aim at distin-
guishing between malicious and benign applications by profiling the behavior of
legitimate programs [8] or malware [5]. Different techniques exist to analyze and
learn the intended behavior, however most of them are based on which system
calls or library calls are invoked at runtime. Unfortunately, characterizing key-
logging behavior using system calls is a prohibitive task, since there are many
legitimate applications (e.g., shortcut managers, keyboard remapping utilities)
that intercept keystrokes in the background and exhibit a very similar behavior.
These applications represent an obvious source of false positives. Using whitelist-
ing to solve this problem is not an option, given the large number of programs of
this kind and their pervasive presence in OEM software. Moreover, syscall-based
keylogging behavior characterization is not immune from false negatives either.
Consider the perfect model that can infer keylogging behavior from system calls
that reveal explicit sensitive information leakage. This model will always fail to
detect malware that harvests keystroke data in memory aggressively, and delays
the actual leakage as much as possible. Since malicious applications strive to
conceal their behavior, this scenario is the norm rather than the exception.

In this paper, we propose a new approach specifically tailored to detecting
privacy-breaching malware containing any form of keylogging activities. Our ap-
proach is still behavior-based but it profiles memory writes rather than system
or library calls. The basic idea is to analyze the correlation between the dis-
tribution of user-issued keystrokes and the resulting memory writes performed
by the malware to harvest sensitive data. Following this intuition, we inject a
carefully-chosen keystroke stream and observe the memory write patterns of the
analyzed application. High correlation values translate to immediate detection.

Note that our approach does not rely on the observation of the actual leak-
age of sensitive data, but instead leverages the key intuition that identifying
information harvesting is sufficient to infer malicious behavior. As a result, all
malware evasion techniques that conceal or delay information leakage are not
a concern for our detection technique. Another fundamental design choice is to
adopt a fine-grained profiling strategy, to isolate the keylogging behavior from
other concurrent activities. Our analysis shows that this is crucial to eliminate
additional sources of false negatives, since privacy-breaching malware often per-
forms many concurrent activities, possibly including those to actively disorient
behavior-based detection strategies.

A much more effective concealment technique is given by trigger-based be-
havior, namely malware that only starts actively harvesting sensitive data when
triggered by some, possibly external (e.g., bot command), events. This modus
operandi poses a serious challenge to all the known behavior-based detection
techniques, since failing to trigger the intended behavior either at learning or de-
tection time results in poor detection accuracy. The proposed design addresses
this challenge allowing our detection strategy to work in both proactive and
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reactive mode. Proactive detection is activated directly by the user. In reactive
mode, our behavior analysis is automatically activated on demand whenever a
candidate malicious application is recognized at runtime. This strategy is feasi-
ble due to the distinctive runtime characteristics of the keylogging activity, as
better explained later. All these countermeasures against evasion and conceal-
ment techniques allow our approach to achieve a very low false negative rate. In
the remainder of the paper, we also show how careful design strategies allow our
detection technique to achieve a minimum number of false positives as well. To
summarize, the contributions of this paper are the following:

A new behavior-based detection model based on memory write pattern
profiling, which is particularly suited for privacy-breaching malware exhibit-
ing keylogging behavior.

Design and implementation of KLIMAX: A Kernel-Level Infrastructure
for Memory And eXecution profiling based on our new model and ready
to be transparently deployed online on a running Windows platform. The
source code of the infrastructure is publicly available for download1.

Evaluation against real-world malware and against legitimate applications
that leverage keystroke-interception functionalities.

2 Background

Our behavioral model is based on the intuition that the malware actively har-
vests keystrokes and strives to conceal the related leakage. No assumption is
made on the malware internals. Instead, to detect any possible form of keystro-
kes harvesting, we base our analysis on memory write patterns that necessarily
emerge from the keylogging behavior.

Previously proposed approaches that attempted to build a profile of keylog-
ging behavior in terms of I/O patterns [13] are not suitable to solve this problem.
Unfortunately, malicious applications are determined to conceal their presence,
for example by delaying or disguising their I/O activity. Nevertheless, we adopt
two important concepts of that solution. First, we want to control the input of
the system, i.e., the pattern of the issued keystrokes. By obtaining a detection
environment where the input to the system is known, we can compare it to
the memory write patterns a process exhibits. Second, we rely on the Pearson
product-moment Correlation Coefficient (PCC from now on) to determine the
correlation between the two patterns. The reason of this choice is twofold. First,
the detailed analysis made in [13] provides a solid background to use PCC as a
metric to infer malicious behavior. Second, the level of granularity of our detec-
tion technique advocates for a detection strategy that is robust against arbitrary
data transformations that reflect the complexity of memory write activity. This
allows us to ignore the mere amount of bytes written due to an intercepted key-
stroke. However, in order to do any statistical reasoning, we must be able to map

1 https://klimax.few.vu.nl

https://klimax.few.vu.nl
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both the input pattern to a stream of keystrokes, and the amount of bytes writ-
ten to an output pattern. We address this concern by adopting the same abstract
keystroke representation introduced in [13] that discretized and normalized the
stream. (we invite the reader to consult the paper for more details).

3 Our Approach

In our approach we aim to ascertain the correlation between the stream of issued
keystrokes and the memory writes a process exhibits. In case a high correlation
between those is found, the monitored process is flagged as malware with key-
logging behavior. It is important to notice that in our approach we issue the
keystrokes without any application on the foreground. This is to explicitly trig-
ger any eavesdropping behavior in the background, and, at the same time, avoid
the common case of a simple word-processing application raising false alarms.
Malware that explicitly injects itself into a legitimate running process to eaves-
drop keystrokes of a target foreground application is discussed in Section 6.

Profiling memory writes is a fairly complex task. First, even a simple program
performs a huge amount of memory writes in a short period of time. Second,
memory management in the modern x86 architecture is partly responsibility
of the operating system (OS) and partly delegated directly to the hardware.
While software-managed events like page faults are in complete control of the
OS, tasks that occur more frequently like linear-to-physical address translations
are performed directly by the hardware. The OS has no means to intercept or
monitor these events. Performing differential analysis over multiple snapshots
of the physical memory is another loose end: multiple writes performed on the
same memory location would be detected as a single memory write.

The complexity of this challenge advocates for a low-level solution. Since
we wanted our solution to be widely adopted and ready to be deployable in
existing production systems, we ruled out the option of using any form of software
or hardware virtualization support, and opted for a kernel-level solution. This
choice is also crucial to access detailed information on execution contexts and
memory regions that is only available in the kernel. Knowledge about the running
thread and the DLL being used serves to our fine-grained analysis to better
isolate and profile the keylogging behavior among the many possible concurrent
activities performed by the malware. An obvious requirement for our solution is
also the ability to access this information in a thread-safe manner.

In exchange for a low-level development environment, operating in kernel-
space provides us with many advantages: we can intercept and to some extent
control the memory management, override the kernel data structures, access real-
time information, and most importantly, isolate our infrastructure from user-
space threats thus adopting a limited trusted computing base (TCB). This allows
us to target a broad class of malware, only ruling out kernel rootkits. In addition,
kernel-level events can be intercepted and used to trigger malware analysis on
demand when using our detection technique in reactive mode, as better explained
in Section 6. Figure 1 displays a high level view of our solution as a three-
tier architecture. The three components are the monitor, the injector, and the
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detector, of which only the first two are designed to run in kernel space. Even
if in our solution the detector is implemented as a user-space component, it
can be easily moved into the kernel to further limit the TCB. The monitor
exposes a memory write performance counter to the injector, and is divided into
two sub-components, the shadower and the classifier. The former takes care of
intercepting each memory write performed by the monitored process. The latter
classifies which memory region has to be monitored, and which memory write
has to be counted.

Windows Kernel (Ring 0)

Injector

User-land (Ring 3)

Detector
Monitored 
Process

1 - Attach to Process

2 - Injection Pattern 4 - Writes Counters

3b - Memory Writes

3a - Sample Injected

Memory Writes

Monitor

Shadower

Classifier

Fig. 1. High-level architecture

Given a process to be analyzed for keylogging activities, our detection tech-
nique works as follows. First, we move the focus of the graphical user interface
to the desktop. Then, the detector instructs the monitor to intercept the mem-
ory writes of the target process. The classifier classifies the memory regions of
interest. Only for those memory regions the monitor instructs the shadower to
intercept any memory access. The detector, after establishing the nature and
length of the pattern to be used, sends its stream representation to the injector.
The injector has now knowledge of the number of keystrokes it has to inject for
each time interval. The detection process can now start: for each sample the
injector issues the determined number of keystrokes to system, and notifies the
monitor that the sample has been injected. The monitor then replies with the
memory writes that took place. Upon injection of all the samples, the injector
finally replies to the detector with the all the memory write counters. The detec-
tor transforms the write counters into patterns, and it computes their respective
correlations against the pattern previously injected. If any of the correlations is
statistically significant, the process is flagged as a keystroke-harvesting malware.

The solution hereby explained has been implemented for Windows XP 32-
bit version, but the general design is applicable to other OSes as well. The
kernel has been configured to run in single processor mode and without taking
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advantage of the Physical Address Extension (PAE). All the components can be
easily updated to handle PAE and SMP kernels. Porting the implementation to
either Windows Vista or Windows 7 requires the user to disable the PatchGuard
security protection.

3.1 Detector

The pattern generation is the most important task carried out by the detector.
As we explained in Section 2, a pattern is defined in terms of multiple param-
eters (N , T , Kmin, and Kmax) and a characteristic function that describes the
underlying pattern distribution. In order to generate a pattern representation
from these input specifications we used the statistical suite R [15]. To obtain low
predictability of the pattern in question, we leverage all the standard random
distributions supported by R. Throughout our tests adopting different distribu-
tions and parameters yielded comparable accuracy results, as already confirmed
in [13]. Upon completion of the injection, the detector receives a detailed report
of the memory writes the process performed. The report includes a set of write
patterns classified per code segment and thread. Each of these patterns is fur-
ther categorized basing on the written memory regions (data, stack, or heap).
The detection process terminates with a correlation test against all the output
patterns found. The process is then flagged as malicious when at least one of
those shows a PCC ≥ 0.70.

3.2 Injector

The injector runs in kernel space and is implemented as a virtual keyboard
driver. Once it receives the injection pattern sent by the detector, it converts it
into a stream of keystrokes, and starts injecting the samples. After each sam-
ple it retrieves the write counters from the monitor. Once the whole injection
terminates, it forwards the write results to the detector. It may be argued that
simpler solutions exist. For instance, the library function SendInput would have
allowed us to run the whole component in user space, thus reducing the over-
all complexity. However, in order to keep a limited TCB and a higher-priority
injection we opted again for a kernel-level solution.

3.3 Shadower

In the x86 architecture a memory access is cooperatively handled by the CPU
and the OS. Each time a linear address is referenced, the processor checks for
its validity. When the physical page is either not present or its access is re-
stricted, the processor asserts the page fault interrupt (0x0E). It also pushes in
the thread’s stack contextual information of the fault: the page fault error code,
the faulting address, the current instruction pointer (EIP), and the eflags reg-
ister’s content. Finally, the control passes to the OS kernel. In Windows XP the
page fault is handled by the KiTrap0E handler. The handler’s task is to explicitly
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invoke MmAccessFault that is in charge to determine the nature of the occurred
page fault. If the page in question is paged out to the disk, a page-in command
is issued. The control can now safely return to the very same instruction that
triggered the fault, and the program’s execution continues. If the page fault was
due to an access violation (for instance because of an illegal address referenced),
an exception record is built, and passed down to the user program. This will
often result in the application abruptly terminating with a message informing
the user of a protection fault.

KLIMAX places itself in the middle of this execution flow, and exploits its
internals to track down each time a memory address is referenced. The main idea
is to protect all the process’ address space, intercepting each time the processor
asserts the page fault interrupt to signal the access violation. Once we identify
the instruction liable for the access violation, we disassemble it and calculate
the number of bytes the instruction attempted to write. The main issue is how
we make the program gracefully recover from the error, and continue its execu-
tion. Obviously we need to unprotect that memory region (otherwise it would
be impossible for the program to continue its execution). However, if another
instruction later accesses the very same memory region, it will find no protec-
tion in place, thus we would not be able to intercept this memory access. The
only viable instant to restore the protection is exactly after the execution of the
first instruction. The x86 architecture provides a built-in feature to notify the
program after the processor has executed an instruction. This feature is known
as “single step”, and can be enabled by setting the trap flag in the eflags reg-
ister. When the flag is enabled, the process asserts the debug interrupt (0x01)
prior execution of the following instruction. By leveraging this feature we are
able to protect back a memory region exactly once the instruction referencing it
completes its execution. If we programmatically execute all the steps we hereby
outlined, a program’s execution can be thoroughly monitored by means of its
memory accesses.

In KLIMAX the shadower is the component that implements the memory pro-
tection and handles all the memory accesses. KLIMAX installs two customized
interrupt handlers for both 0x0E and 0x01 interrupts by modifying the proces-
sor’s Interrupt Descriptor Table (IDT). These two handlers are the only entry
points needed to selectively unprotect and protect the accessed memory regions.
As soon as we instruct KLIMAX to monitor a process, the shadower asks the
classifier which memory regions shall be protected, and hence monitored. The
classifier reports back the corresponding set of page table entries (PTEs). The
shadower creates a shadow copy of all the PTE’s Owner bit, i.e. it sets their
bit to 0. It then flushes the TLB. This is mandatory in order to cope with the
TLB caching address linear-to-physical resolutions. In case the referenced linear
address is cached in the TLB, the OS needs not to walk the page tables. In
contrast, if the TLB is flushed, any access to the memory referenced by these
PTEs will result in an access violation. Figure 2(a) depicts this scenario. When
this occurs, the shadower (i) reverse-lookups the PTE that references the fault-
ing address, then if the PTE is valid, it replaces the Owner bit with its original
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Fig. 2. The behavior of the shadower and classifier in both scenarios

value; (ii) sets the trap flag in the pushed eflags register; (iii) stores the ad-
dress that caused the page fault along with the current thread identifier in a
private buffer. If the page fault error code reveals that the fault was because of
a write attempt, the shadower invokes the classifier to update the performance
counters. Before giving the control back to the OS we have to be sure that the
current thread will be the next one to be executed. Otherwise any other thread
being part of the same process would have access to an unprotected memory
region. KLIMAX addresses thread safety by temporarily blocking, if present, all
the other process’ threads till the memory region is protected back. This may
cause deadlocks if for some reason the same instruction causing a page fault
blocks the current thread’s execution. KLIMAX automatically intercepts these
events, and restores the environment to safety by immediately protecting the
memory region back, and by making the blocked threads runnable. Note that
no memory write is lost in the entire process. Finally the control is given to the
real interrupt handler KiTrap0E. The function MmAccessFault can now deter-
mine the real reasons of the page fault. In case no reason is found, that is the
page was valid and the page fault took place only because of the shadower, the
kernel gracefully resumes the program’s execution. In any other case the kernel
transparently executes all the steps required to resolve the page fault.

When the program resumes its execution, the very same instruction is ex-
ecuted for a second time. We point out that the same instruction may trigger
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multiple page faults in case multiple memory regions are referenced. KLIMAX
automatically handles these multiple page faults by following again the steps
before outlined. Assuming that all the referenced memory regions are now un-
protected, the execution continues till the following instruction, where, because
of the set trap flag, the processor asserts the debug interrupt (Figure 2(b)). As a
consequence, the shadower is again invoked (this time due to the 0x01 interrupt
handler). It now checks in its private buffer which memory address previously
faulted when the current thread was executing. It reverse-lookups the PTE and
it replaces the Owner bit with the shadowed copy. Eventually it flushes the TLB
entry by means of the invlpg instruction. There are cases in which the shadower
does not have a shadow copy for that PTE yet. This happens when the original
page fault occurred because the page was invalid. In such cases the classifier
is once again invoked, and asked to determine whether the PTE shall be set
protected. The program resumes its execution as soon as all the threads that
KLIMAX previously blocked are restored to their original execution state.

3.4 Classifier

The classifier is invoked in two different courses of action: when the shadower
needs to determine whether a PTE shall be protected, and to update the per-
formance counters after a write took place. To determine if a PTE shall be
shadowed, the classifier analyzes the PTE content. In a number of cases, the
classifier replies negatively, for example when the PTE is not valid, or the PTE
is not user accessible. In any other case it updates the PTE’s shadow copy and
replies affirmatively to the shadower. In case the classifier is invoked to update
the performance counters, several steps are carried out. First, it uses the EIP to
access the instruction that generated the page fault. It then disassembles it to
extract the amount of bytes the instruction attempted to write. It also retrieves
the original ecx register’s value in case the faulting instruction was part of the
rep mov family. This is a mandatory step because a rep mov instruction exe-
cutes the mov instruction ecx times. Once the amount of bytes is computed, the
classifier updates the performance counters. It uses the instruction to infer which
executable component attempted to write (the main program or some DLLs). It
also retrieves the current thread id, so it can discriminate writes performed by
different threads. Depending on the particular memory location found, a memory
write is recorded for the data region, the current thread’s stack, or the heap.

4 Optimizing Detection Accuracy

In this section, we examine in detail how our design deals with potential sources
of false negatives and false positives to maximize detection accuracy.

False negatives arise when a malicious application exhibiting keylogging be-
havior evades our technique and goes undetected. A first attempt for malware
to evade detection is to spawn multiple processes and multiple threads and per-
form keylogging activity in any of newly created execution contexts. To deal
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with this situation, our infrastructure supports simultaneous monitoring of mul-
tiple processes and multiple threads. Keylogging behavior is inferred from any
highly-correlated memory write profile, put together on a per-thread basis.

Another important factor to consider is that malware authors strive to conceal
the malicious behavior and exploit any possible information leakage channel
available. To deal with this scenario effectively, KLIMAX monitors any memory
writes performed by both the application code and the DLLs. This is crucial for
two reasons. First, the keylogging activity may be implemented entirely in a DLL
installed by the malicious application. Second, any form of information leakage
that goes beyond harvesting keystroke-related data in memory must be mediated
by the OS and typically exposed to the application via the library interface. We
have experimented at length with many forms of information leakage, including
storing keystroke-related data on the disk, recording information in the Windows
registry, or sending data over the network. In all the cases, the memory write
patterns exhibited by the system DLLs used to carry out these tasks showed
extremely high correlation with our injected pattern.

A potential evasion strategy is to avoid using any system DLL and reim-
plement the API interface entirely without any significant memory writes that
would otherwise trigger detection. While the concrete possibility of such a strat-
egy remains to be explored—especially in multi-threaded contexts—, our im-
plementation can be trivially extended to enrich the memory write profile with
commonly used in-kernel performance counters that record and expose any form
of I/O activity on a per-thread basis. In our analysis, however, we have not been
able to identify any realistic example of this scenario in practice.

False positives arise when a legitimate monitored application shows high cor-
relation with the injected pattern and triggers detection. In our preliminary
experiments, we found many examples of benign applications showing high cor-
relation when considering generic memory write patterns. In these cases, the ap-
plication would typically register a callback to the kernel to intercept keystroke
events, discriminate those of interest, and trigger some action (i.e. launch spe-
cific application) when a match against a predefined key sequence was identified.
The high correlation was essentially triggered by the mechanics of invoking the
programmer-provided callback—implemented in a system DLL (i.e. USER32.dll
in the version of Windows we experimented with)—, and by transient memory
write patterns observed on the stack at callback execution time.

To deal with these very common scenarios, our key observation is to concen-
trate the analysis exclusively on memory write patterns that clearly indicate a
form of information harvesting or leakage. In this light, our implementation first
avoids logging any memory writes performed by USER32.dll. As a result, this
frequently-used system DLL becomes part of the TCB in our design. We believe
this is not a serious limitation, since any common security suite solution con-
stantly monitors system DLLs to detect any malicious attempt to replace them.
As an option, our implementation can be trivially extended to perform similar
integrity checks on core system DLLs and intercept attempts to replace them.
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Note that USER32.dll does not expose any API that can be somehow exploited
to leak keystroke-related data and potentially evade our technique.

Other sources of false positives are transient memory writes on the stack that
are frequently used in the programmer-provided callback to implement the ap-
plication logic. At a first glance, one might be tempted to exclude the stack from
the analysis altogether. Unfortunately, an attacker could still leverage long-lived
regions of the stack to harvest keystroke-related data and evade the resulting
detection technique. Implementing this strategy is trivial and only involves allo-
cating a sufficiently-large buffer on the stack in the entry point of the program
(e.g. main()), and keeping a global pointer to access the buffer from the callback.
To provide an effective solution to both problems, KLIMAX identifies long-lived
regions of the stack during execution automatically and excludes any other stack
region from the analysis.

To this end, we have designed an adaptive algorithm to safely identify long-
lived stack regions for existing and newly created thread stacks. Initially, the
entire stack is marked as long-lived and no memory write is excluded from the
analysis. As the execution progresses, we sample the stack pointer of each thread
under analysis at regular time intervals and update the deepest value found. This
allows us to avoid any assumption on long-lived regions at thread initialization
time when long-lived stack variables may not have been allocated yet. When a
sampled value of the stack pointer falls behind the deepest value found, we finally
observe the stack shrinking for the first time, and our adaptive identification
strategy can safely start.

The first memory range we observe at the time when the stack first shrinks
becomes the current long-lived region of the stack. As the stack keeps shrinking
during execution, we update the long-lived region of the stack till convergence.
This strategy follows the intuition that the stack pointer is always deeper than
any long-lived stack variable used by the program with the exception of samples
collected at thread initialization time. Our adaptive algorithm converges very
quickly and causes only very few irrelevant memory writes on short-lived regions
of the stack to be accounted for in the analysis at initial stages. Finally, note
that ignoring short-lived regions of the stack in the analysis is hardly a concern
for the generation of false negatives. An attacker can only temporarily harvest
sensitive information on short-lived stack variables and any other global memory
write pattern will still result in high correlation and trigger detection.

5 Evaluation

We have evaluated KLIMAX extensively, first with a syntethic keylogger to as-
sess the ability to detect multiple forms of data harvesting, subsequently experi-
menting with realistic benign applications and malware to evaluate our detection
accuracy in real-world scenarios. Our experiments were performed on a personal
computer equipped with a 2.13GHz Intel Core i7 processor and 4 GB memory,
running Windows XP Professional SP3.
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5.1 Synthetic Evaluation

Our synthetic keylogger is a standard Windows application written in C++ in
less than 100 lines of code. Our keylogger can be configured to emulate several
forms of data harvesting, a feature which turned out to be very useful for evalu-
ating the robustness of KLIMAX and for regression testing purposes during the
development of the overall infrastructure.

Table 1. Synthetic test cases and resulting PCC values

Global+SLS LLS Disk Network

keylogger.exe
Data 1 0 ∼1 0
Stack 0 1 0 0
Heap 1 0 ∼1 0

ntdll.dll
Data - - 0 0.76
Stack - - 0 0
Heap - - ∼1 0.91

kernel32.dll
Data - - 0 0
Stack - - 0 0
Heap - - ∼1 ∼1

mswsock.dll
Data - - - 0
Stack - - - 0
Heap - - - 0.98

wshtcpip.dll
Data - - - 0
Stack - - - 0
Heap - - - 0.94

In Table 1 we show the results of the most representative experiments con-
ducted in common keystroke harvesting scenarios. In the table we represent
every output distribution of interest showing at least one non-null value within
the window of observation. Output distributions were produced at the finest level
of granularity possible, to report PCC values for individual memory regions (i.e.
data, stack, heap) of the program code (i.e. keylogger.exe) and of each DLL.

The first column of the table shows the correlation values estimated by KLI-
MAX for our synthetic keylogger configured to harvest every keystroke inter-
cepted on the heap, on the data region, and on a stack variable allocated at
callback execution time. As expected, full correlation is found on the heap and
on the data region, while no activity was recorded and thus no correlation is
shown for the short-lived stack variable.

The second column shows correlation results for our synthetic keylogger con-
figured to harvest every keystroke intercepted on a long-lived stack buffer allo-
cated in the entry point of the program. Thanks to the quick convergence of our
adaptive algorithm to automatically track long-lived stack regions, full correla-
tion is still found as a result of all the suspicious memory writes detected on the
stack. We also tested our adaptive algorithm in several adverse conditions, for
example, starting the analysis at initialization time or at thread creation time. In
all the cases, the number of spurious writes in the initial stages of the algorithm
was negligible and had no impact on the overall correlation values computed.

Finally, the last two columns of the table show correlation results for two
other interesting scenarios: a keylogger logging every keystroke on the disk, and
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a keylogger sending every keystroke to a remote server. In both cases, the activity
performed by the DLLs is reflected in very high correlation values that would
immediately trigger detection. Note that no DLL-originated memory write on
the stack was recorded in any of test cases. Memory activity on the stack was
only identified for short-lived variables, as expected. Also note that the high
correlation values reported for memory write patterns on the heap and the data
region in the third test case are actually produced by the C Run-Time Libraries,
which on Windows are statically linked by default.

5.2 Malware Detection

To evaluate the effectiveness of our detection technique, we experimented KLI-
MAX with real-world malware. Our analysis started with obtaining a random
sample of the malware dataset described in [16]. The original sample included
64 entries matching at least one keylogger-like label from all the results given
by VirusTotal. Out of the 64 entries initially extracted, we isolated 23 malware
samples that were categorized as active in the original dataset.

For all the identified entries, we conducted extensive analysis and manual in-
spection to determine the real nature of each sample and identify the presence
of any relevant keystroke interception API used for keylogging purposes. Only
in a few cases, the binary was neither packed nor obfuscated and basic static
analysis was sufficient to extract the set of APIs used. In all the cases, however,
we had to repeatedly perform dynamic malware analysis to determine whether
any keylogging API was actually invoked at runtime. To carry out our analysis
we experimented with the most common malware analyzers available online. In
many cases, the analysis was made extremely difficult by malware trying to con-
ceal and obfuscate their behavior, with explicit measures to evade several forms
of static and dynamic analysis. We ran several experiments for each malware
sample considered, even in cases when no keylogging API was detected by static
or dynamic analysis. For these cases, it is important to assess whether any other
malware activity could unexpectedly result in high PCC values and trigger de-
tection. For all the other cases, high PCC values are to be expected every time
a malware sample exhibits any form of keylogging behavior.

To simulate a realistic detection scenario, we assumed that no information
was available on which of the running processes was the malware. To deal with
this setting, we first waited to system to be idle, we then ran KLIMAX against
all the processes for a limited amount of time (N = 4 and T = 500), and
finally we flagged as candidate only the processes performing memory writes
during a warm-up injection phase. This first step greatly reduced the number
of candidate processes and allowed KLIMAX to examine only a few processes
in a second step. In all our experiments (and in any realistic scenario on an
idle system) the number of candidates rarely exceeded a handful of cases, thus
allowing KLIMAX to later on analyze all the remaining processes in parallel, and
minimize the detection time. During the second step of our analysis, we instead
configured KLIMAX with N = 20 and T = 500, and triggered a successful
detection in case of PCC values ≥ 0.70. The remaining configuration parameters
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Table 2. Malware considered for analysis and resulting PCC values

Malware Label Keylogging API API used PCC
Backdoor.Win32.Poison.pg ✔ ✔ ∼1
Trojan-Downloader.Win32.Zlob.vzd - - negligible
Monitor.Win32.Perflogger.ca - - negligible
Suspicious.Graybird.1 - - negligible
Trojan-Spy.Win32.SCKeyLog.am - - negligible
Backdoor.Win32.IRCBot.ebt - - negligible
Worm.MSIL.PSW.d ✔ ✔ 0.74
Worm.Win32.Fujack.cr - - negligible
BackDoor.Generic9.MQL ✔ ✔ ∼1
Trojan.Win32.Agent.arim - - negligible
PSW.Agent.7.AH ✔ ✔ 0.78
Worm.Win32.AutoRun.adro - - negligible
Trojan.Win32.Delf.eq - - negligible
Net-Worm.Win32.Mytob.jxu - - negligible
Trojan-Spy.Win32.SCKeyLog.au - - negligible
Backdoor.Ciadoor ✔ ✔ 0.98
Backdoor.Win32.Agent.su ✔ - negligible
Backdoor.Win32.G Spot.20 - - negligible
Trojan-Spy.MSIL.KeyLogger.oa ✔ - negligible
Downloader.Rozena - - negligible
Downloader.Banload.BDRQ - - negligible
Heur.Trojan.Generic - - negligible
PSW.Generic7.BNDX - - negligible

(Kmin, Kmax, and the underlying distribution of the pattern) played a negligible
role in our experiments, hence producing similar results using different settings.

Table 2 shows the results of our evaluation for the set of malware samples
considered. For each sample, we show: (i) the result of our static and dynamic
analysis to identify any keylogging API; (ii) the result of our fine-grained analysis
to determine whether the keylogging API was actually used at runtime; (iii) the
maximum PCC value reported by KLIMAX for each process and each thread
created by the malware sample at runtime. Negligible correlation is reported
for PCC values below 0.1. The labels adopted to identify each malware sample
are taken from common antivirus software—including Kaspersky, Symantec, and
AVG—depending on availability and discrimination power.

As shown in the table, for 16 malware samples we were not able to identify any
keylogging API and the resulting PCC values were always negligible, as expected.
A manual inspection revealed that these samples were sometimes misclassified,
in other cases we found downloaders instructed to download additional malicious
software, in yet other cases we found privacy-breaching malware not exhibiting
keylogging behavior (e.g. stored password stealers). Furthermore, in 5 cases,
where the keylogging APIs were correctly identified and also used at runtime,
KLIMAX always reported high correlation values triggering detection. Finally,
in the 2 remaining cases, we identified the presence of keylogging APIs in the
malware samples, but those APIs were never actually used at runtime. As a
result, KLIMAX reported negligible correlation.

In both cases, we were able to easily analyze the runtime behavior of the
malware and establish that no keylogging API was actually used. In the case
of Backdoor.Win32.Agent.su, no memory write pattern could ever be recorded
even when using very large windows of observation. The malicious application
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appeared to be completely idle and waiting for input from a remote server. In
this case, it can be speculated that the keylogging behavior is only triggered
on demand, when new input is received from the remote server. In the case of
Trojan-Spy.MSIL.KeyLogger.oa, intensive malicious activity was found in the
memory write patterns recorded by KLIMAX, but not a single memory write
was performed from the DLL that implements the keylogging API.

5.3 False Positive Analysis

We have evaluated KLIMAX with many common benign Windows applications
to assess the robustness of our approach with respect to false positives. In the
simplest cases, we experimented with applications not relying on any form of
keystroke interception mechanism which always resulted in negligible correlation
values, or, more often, no correlation at all. More interesting cases are those
applications that do rely on some form of keystroke interception mechanism for
legitimate purposes. This is the case for popular Windows shortcut managers,
launchers, and key remappers. For this reason, we decided to concentrate our
evaluation on these cases that are particularly prone to generating false positives.

We installed and tested a sample of the most popular free Windows ap-
plications in this category. For each application, we performed static binary
analysis—and dynamic analysis when necessary—to extract the set of rele-
vant Windows APIs used, all taken from USER32.dll. For our purposes, it
is important to distinguish between generic keystroke interception APIs (e.g.,
SetWindowsHookEx, GetKeyState, GetAsyncKeyState), and hotkey registration
APIs (i.e. RegisterHotKey). When RegisterHotKey is used, a programmer-
provided callback is called only when the specified hotkey is detected by the ker-
nel. Since RegisterHotKey only allows registering hotkeys with standard modi-
fiers (i.e., CTRL, ALT, SHIFT, WIN), a carefully-chosen input stream adopted by the
injector will essentially never trigger the execution of the programmer-provided
callback and irrelevant correlation values are to be trivially expected.

Luckily, the majority of the hotkey managers we have encountered rely on
both RegisterHotKey and some other standard keystroke interception API to
provide a broader range of features. Testing applications that always make use
of standard interception APIs is crucial to make our false positive analysis more
effective. When necessary, we updated the default configuration of each appli-
cation to trigger all the necessary code paths that forced the program to use
standard keystroke interception APIs. Before running each experiment, we man-
ually verified this assumption using dynamic analysis.

Table 3 shows the results of our analysis for the set of applications considered.
For each application, we show the APIs identified using static and dynamic
analysis, and the resulting correlation values found. For brevity, we show a single
correlation value for each application, which represents the maximum correlation
value found over all the output distributions considered on a per-process per-
thread basis. Negligible correlation is reported for PCC values below 0.1.

Our analysis shows that in only 1 case KLIMAX reported non-negligible
correlation values. It is important to remark that in all the other cases high
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Table 3. Applications considered for false positive analysis and resulting PCC values

Application Standard API RegisterHotKey PCC
HoeKey 1.13 ✔ ✔ negligible
KeyTweak 2.3.0 ✔ - negligible
Hot Key Plus 1.01 ✔ ✔ negligible
AutoHotkey 1.0.96.00 ✔ ✔ ∼1
ZenKEY 2.3.9 ✔ ✔ negligible
Aquarius Soft Keyboard Hotkey 2.5 ✔ ✔ negligible
Hotkey Recorder Version 2 ✔ - negligible
HotKey Magic 1.3.0 ✔ - negligible

correlation values would have been still reported if we had not explicitly ignored
any memory write patterns on short-lived stack regions or any memory writes
generated by USER32.dll. In the case of AutoHotkey, arguably the most popular
hotkey manager for the Windows platform, the high correlation value reported
admittedly calls for immediate detection.

A closer inspection reveals that AutoHotkey stores all the keystrokes inter-
cepted in a global buffer to implement advanced features and provide a scriptable
interface for the user to handle the keystroke collected in the most convenient
way. This experiment confirms the conservativeness of our approach, which aims
to signal any form of sensitive data harvesting as dangerous, even without ex-
plicitly tracking down information leakage.

Ironically, the case of AutoHotkey shows that our analysis is rarely overly con-
servative. A quick web search reveals that the scriptable interface of AutoHotkey
does allow the user to transfer the previously stored keystrokes elsewhere and
implement a fully-fledged keylogger in as few as 8 lines of code.

6 Discussion

From the experiments presented, some important properties of our approach
have distinctly emerged. First, we confirmed that in-memory keystroke data
harvesting can be used as a good predictor to detect sensitive information leak-
age. Our detection strategy was successful in detecting all the malware samples
examined that explicitly used keystroke interception APIs and exhibited key-
logging behavior. The main strength of our detection strategy is to be able to
detect keylogging behavior within short windows of observation even for mal-
ware buffering sensitive data in memory for a long time. In contrast, existing
techniques that attempt to detect information leakage explicitly yield a higher
number of false negatives in the general case, unless an indeterminately large
window of observation can be possibly used. For example, an information leak-
age tracking mechanism would probably require a window of observation of days,
if a malware were to use a sufficiently large buffer to harvest a substantial number
of keystrokes before transferring all the data elsewhere.

Second, keystroke data harvesting, when identified correctly, leaves a small
margin for false positives. Although it is not possible to draw final conclusions
in the general case, we have only encountered a single hotkey manager that was
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signaled as suspicious. As mentioned earlier, this application can indeed be con-
figured to behave like a keylogger and our detection result reflected its behavior.
An important remark is that false positives are to be expected for benign ap-
plications that unnecessarily harvest sensitive data in global memory regions.
Consider, for example, a sloppy shortcut manager implementation that allocates
all the temporary variables on the global data region. While it is impossible to
rule out the existence of these cases in general, we have not encountered any
example of realistic application in this category during our analysis. Further-
more, in cases where sensitive data harvesting were truly unnecessary, it would
be straightforward to adapt the particular application under analysis to work
with our detection technique. As far as false negatives are concerned, our tech-
nique, when used to proactively detect keylogging behavior, suffers from coverage
problems common to existing solutions that attempt to build models based on
dynamic malware behavior [6]. Namely, if the expected behavior is never trig-
gered within the window of observation but somewhat later, the resulting model
can potentially miss some of the fundamental properties intended. In our exper-
imental analysis, we have seen only two candidate malware samples that could
possibly belong to this category. In these two cases, we have speculated that
the keylogging behavior might only be triggered when an event of a particular
nature occurs. Under these circumstances, our proactive strategy may not be
able to infer detection successfully within the window of observation.

While we believe that the problem of triggering a specific malicious behav-
ior is orthogonal to our work and is focus of much prior research [11,2,3], our
infrastructure design is intended to mitigate this issue. We explicitly designed
KLIMAX to also support reactive detection with practically no runtime over-
head. From the moment KLIMAX is installed into the kernel, some slowdown
can only be perceived for the particular application under analysis. This means
that we can leave KLIMAX inactive inside the kernel without any performance
problem and reactively activate our analysis on a target application only when
some particular event occurs. At the kernel level, we have the ability to support
almost arbitrary detection policies driven by monitored system events. For ex-
ample, a reactive detection policy might consider starting the analysis whenever
a system call that registers a keystroke-interception callback is issued by a given
application. This will immediately trigger a behavior analysis of the application.
If no detection is found, another policy might consider repeating the same analy-
sis on the same application every m minutes, to determine whether the behavior
of the callback changes overtime in face of some particular event. Although we
have not explicitly evaluated the performance of such policies at the system call
level, we envision a negligible runtime overhead. The evaluation of policy-driven
detection mechanisms is part of our ongoing work.

Another source of false negatives is given by malware trying to perform denial-
of-service attacks or confuse our detection technique. A first important observa-
tion is that carrying out this attack successfully is not entirely trivial if we allow
KLIMAX to perform a multi-stage analysis with different configuration parame-
ters for each stage (i.e., typically increasing the size of the time interval at every
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stage). Second, we remind that the adopted correlation metric is known to be
robust against attempts to break the correlation by disguisement. For example,
in [13] we show that the PCC is not affected by keyloggers writing to a file a
random number of bytes for each intercepted keystroke. Finally, a malicious ap-
plication performing any DOS attack should also avoid introducing an excessive
delay not to miss subsequent keystrokes. This is the reason why buffering the
intercepted keystrokes on the short lived stack for too long is also not an option
to evade our detection technique.

7 Related Work

Malware detection has always proved to be a challenging task. If early detec-
tion mechanisms relied on signatures to counter this plague, code obfuscation or
polymorphism easily affected the technique’s accuracy. To overcome this prob-
lem, behavior-based approaches [20] started to focus on sequences of system or
library calls to profile the behavior deemed malicious. Unfortunately, since the
sequence of syscalls only describes a certain implementation rather than a gen-
eral behavior, building a malware evading this technique was a trivial task. Other
approaches overcame this limitation by focusing on information flows rather than
on mere sequences of syscalls. Malware profiles, by leveraging more-contextual
information in terms of library [5] or system calls [9,6], started to grasp the se-
mantics lying behind a malicious activity. However, mimicry attacks were still
possible [7]. To address this concern, Lanzi et al. [8] recently proposed system-
centric profiling of benign applications. This approach results in low false posi-
tives, without hindering the detection accuracy.

All the approaches hereby mentioned, however, can not cope with malware
practically identical to benign applications in terms of system and library calls,
without generating a significant number of false positives. As we showed in Sec-
tion 5.3, malicious applications with keylogging abilities share huge portions of
their logic with rather common user applications. In light of this concern, many
approaches recently emerged to detect keylogging activities [1,4,13]. Instead of
focusing on the APIs used to intercept the keystrokes, they have tried to mea-
sure the potential correlation with the APIs in charge of leaking this information.
However, while this approach may be effective against commonly used keylog-
gers, they can not easily detect malicious applications concealing their presence
by aggressively harvesting sensitive data and hiding leakage to any possible ex-
tent.

This clearly advocates for more fine-grained approaches. Unfortunately, even
taint analysis proved itself ineffective in detecting malware harvesting user-issued
keystrokes [18]. In our work, we ignore the concept of tainting, and instead lever-
age the behavior profiled by a fine-grained memory analysis. This is achieved by
shadowing the entire memory address space of the monitored program. To our
knowledge, similar approaches have only been adopted to evade rootkit detec-
tion [19] or to automatically unpack unknown malware [14]. Our memory mon-
itoring strategy is similar, in spirit, to the technique proposed by Miller [10].
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However, his solution did not monitor the whole address space, nor did it pro-
vide strong thread-safety guarantees. Since our infrastructure is to be used for
malware analysis and detection, our design explicitly took into account every
memory write performed by any process’ component to rule out the possibility
of false negatives.

8 Conclusions

Traditional malware detection techniques are either signature-based or rely on
coarse-grained behavioral profiles that model the interaction of a given appli-
cation with the environment. In the present paper, we focused on detecting
a particular class of malware exhibiting keylogging behavior, and argued that
both models are ill-suited for the task. In addition, existing keylogger detec-
tion techniques are either not tailored to generic malware analysis and detection
or heavily prone to generation of false positives. To address these concerns, we
presented KLIMAX, a kernel-level infrastructure that we proposed to analyze
and detect malware with generic keylogging behavior. Our prototype can be de-
ployed on unmodified Windows-based production systems without interruption
of service. To infer keylogging behavior, we inject a carefully-crafted keystroke
stream into the system and observe the resulting memory write patterns of the
target process.

The experimental results of our proactive detection technique show that our
system leaves practically no margin for false positives and allows for no false
negatives when the keylogging behavior is triggered within the window of ob-
servation. To address trigger-based keylogging behavior, our design supports
policy-based reactive detection that allows for practically no false negatives in
the general case. In our evaluation, we also found that almost every malware
sample with keylogging behavior was misclassified by a number of antivirus pro-
grams. This suggests that our infrastructure can also be used in large-scale mal-
ware analysis and classification to help recognize and classify emerging privacy-
breaching threats in a more accurate way. Finally, we believe that the general
model proposed in this paper can potentially be reused to identify other classes
of malware. Extending the scope of our detection technique to a broader range
of malicious activities is part of our future work.
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Abstract. Return-oriented programming (ROP) is an attack that has
been shown to be able to circumvent W ⊕X protection. However, it was
not clear if ROP can be made as powerful as non-ROP malicious code in
other aspects, e.g., be packed to make static analysis difficult, be print-
able to evade non-ASCII filtering, be polymorphic to evade signature-
based detection, etc. Research in these potential advances in ROP is
important in designing counter-measures. In this paper, we show that
ROP code could be packed, printable, and polymorphic. We demonstrate
this by proposing a packer that produces printable and polymorphic ROP
code. It works on virtually any unpacked ROP code and produces packed
code that is self-contained. We implement our packer and demonstrate
that it works on both Windows XP and Windows 7 platforms.

Keywords: Return-oriented programming, packer, printable shellcode,
polymorphic malware.

1 Introduction

Return-oriented programming (ROP) [23] and its variations [6, 7, 8, 12, 15, 16]
have been shown to be able to perform arbitrary computation without executing
injected code. It executes machine instructions immediately prior to return (or
return-like [7]) instructions within the existing program or library code. Both
the address words pointing to these instructions and the corresponding data
words are usually called gadgets. Since ROP does not execute any injected code,
it circumvents most measures that try to prevent the execution of instructions
from user-controlled memory, e.g., the W ⊕ X [1] protection mechanism.

Although ROP has been shown to be powerful in circumventing the W ⊕ X
protection, it was unclear whether it can be as powerful as non-ROP malicious
code in many aspects, e.g., be packed to make static analysis difficult, be print-
able to evade non-ASCII filtering, be polymorphic [2, 11] to evade signature-
based detection, etc. Investigation into these topics is important as the advances
could make ROP shellcode much harder to detect.

In order to find useful machine instructions, ROP usually expands the search
space from the executable binary to shared libraries. Although ROP has been
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shown to be able to perform arbitrary computation on many platforms, intu-
itively there is little flexibility in constructing an ROP shellcode since there are
limited candidates of such machine instructions. Therefore, it is unclear the ex-
tent to which ROP shellcode can be made polymorphic, i.e., ROP shellcode that
looks different but perform similar functionality.

Making printable ROP shellcode is even more challenging. ROP shellcode
is mainly composed of addresses1, e.g., 0x0303783e, while the range of ASCII
printable characters is between 0x21 and 0x7e. Since printable characters only
account for roughly 36.7% of all characters, if useful gadgets are uniformly dis-
tributed across the entire address space, then roughly (36.7%)4 ≈ 1.8% of these
gadgets (and their corresponding machine instructions) can be used.

We propose using a packer to make ROP shellcode printable and polymorphic.
Our proposed packer is inspired by techniques that make traditional shellcode
printable (e.g., [21]) where alphanumeric opcodes (e.g., pop ecx has an opcode
0x59 which is the ASCII code of the character Y) are used to transform non-
printable shellcode into alphanumeric shellcode. Each non-printable 4-byte ad-
dress is represented by two 4-byte printable addresses by our packer. The packed
ROP shellcode takes the two printable addresses and performs arithmetic op-
erations on them to restore the original non-printable address. Since there are
many options in choosing the two 4-byte printable addresses for any given non-
printable address, we are able to construct polymorphic printable shellcode. We
also propose a two-layer packer to reduce the size of the packed code by reusing
(looping) gadgets that perform arithmetic operations2. The packed code con-
structed is self-contained, i.e., it does not require an external loader to execute.

We implement our two-layer packer and use it to pack two real-world ROP
shellcode on both Windows XP and Windows 7 platforms. All the machine in-
structions used are from common libraries. We demonstrate that the packed
printable shellcode works well on both Windows XP and Windows 7 platforms.
As an extension, we demonstrate another use of our ROP packer as a polymor-
phic converter to make the resulting packed code immune to signature-based
detection. We also show that our packer works not only on ROP using return
gadgets, but also ROP using non-return gadgets [5, 7].

2 Related Work

Shacham et al. proposed Return-Oriented Programming (ROP) [23]. ROP uses
a large number of instruction sequences ending with ret from either the original
program or libc, chains them together to perform arbitrary computation.

1 Besides addresses, there are also constants and junk data in ROP shellcode.
2 It might not be appropriate to call it a packer as most packed code produced by

existing packers performs decompression or decryption. Our packed code, instead,
decodes printable addresses into the original non-printable ones. Therefore, it might
be more appropriate to describe our packed code as containing a decoder. We use the
term packer mainly because of our second-layer decoding which dramatically reduces
the size of the packed code. It makes our solution similar to multi-layer packers.
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ROP is also extended to many platforms such as SPARC [6], ARM [16], Har-
vard [12], and voting machines [8]. On the other hand, some researches are seek-
ing to detect and prevent ROP attacks. Davi et al. [10] and Chen et al. [9] detect
the ROP when the number of consecutive sequences of five or fewer instructions
ending with a ret reaches a certain threshold. Buchanan et al. [6] and Francillon
et al. [13] use the shadow return-address stack to defeat against ROP. Most re-
cently, Onarlioglu et al. [19] propose G-Free, which is a compiler-based approach
to eliminate all unaligned free-branch instructions inside a binary executable and
prevent aligned free-branch instructions from being misused.

It is generally believed that ROP code needs to be carefully prepared and it
is not clear to what extent variations can be made to it without changing the
semantics. This raises a question as whether various attacking techniques pro-
posed for malware can be used on ROP as well, e.g., polymorphic malware [26],
packed malware [25], printable shellcode [21], etc.

Rix proposed a way to write IA32 alphanumeric shellcode [21] which uses
some basic instruction sequences whose opcode is alphanumeric to transform
two alphanumeric operands into one non-alphanumeric code. Others proposed
different shellcode encoding approaches, e.g., UTF-8 compatible shellcode [14],
Unicode-proof shellcode [18], etc. Most recently, Mason et al. proposed to auto-
matically produce English shellcode [17], transforming arbitrary shellcode into
a representation that is superficially similar to English.

Unfortunately, none of these approaches is based on ROP, in which the reg-
ister esp has a special usage as a global state pointer (just like eip) to get
the address of the next group of machine instructions. Existing approaches of
making shellcode printable changes the value of esp only with side effect, and
therefore are not suitable for making ROP printable.

3 Overview

We first present a one-layer packer (resulting in long shellcode) and an overview
of our two-layer packer (with an additional decoder to make shellcode shorter).

3.1 One-Layer Printable Packer for ROP

Many useful instructions in ROP have non-printable addresses. Since they are
hard to find in general, simply not using them has a large negative impact on
what ROP could perform. As shown in Section 1, only 1.8% of the addresses are
printable assuming that useful instructions are uniformly distributed across the
entire address space. Our solution is to transform these non-printable addresses
into printable bytes and then use a decoder to get back the original addresses.

However, the decoder in the packed code has to be implemented by printable
gadgets, which dramatically limits the instructions we can use. We need to find
those with printable addresses that are able to decode any addresses, since we
want to design a packer that works on any unpacked ROP shellcode.

To handle this difficulty, we use multiple (two to three in our experiments)
printable 4-byte codes to represent a 4-byte non-printable address. For example,
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addr

0x2d30466c

0x50294030

junk

junk

➀. pop edx
retn➁. pop ecx

➂. pop eax

➃. add eax, ecx
pop ebp

retn

retn

retn

➄. mov ecx, eax
mov eax, edx
mov edx, ecx
retn ➅. mov [eax+0x1c], ecx

retn

➇. mov ecx, eax
mov eax, edx
mov edx, ecx
retn

➆. add eax, 4

retn
pop esi

ESP

Fig. 1. One-layer packer

a gadget with a non-printable address 0x7d59869c can be represented by two
printable codes 0x2d30466c and 0x50294030with an operation of addition. Fig 1
shows the idea (the actual shellcode is slightly more complicated).

Fig 1 shows two parts of the packed shellcode. The first part consists of one
gadget ➀ and an address addr. addr points to the location (in data segment)
where the decoded (non-printable) addresses will be written, and gadget ➀ loads
it into edx. The second part consists of gadgets and corresponding data for
decoding the first non-printable address. Subsequent parts look similar to the
second part, which are for decoding other non-printable addresses. Next, we look
into the details of decoding one non-printable address (middle portion of Fig 1).

Gadget ➁ and ➂ first load the two printable 4-byte operands 0x2d30466c and
0x50294030 into ecx and eax, respectively. Decoding is performed by gadget ➃
to add the two printable operands and store the result 0x7d59869c to eax. Note
that here we use gadget ➃ with side-effects [28] of popping one 4-byte code, and
that is why we have to add a 4-byte junk between gadget ➃ and ➄.

Next, we move the result 0x7d59869c to ecx with gadget ➄ (again, with side
effects), and subsequently to the location pointed to by addr using gadget ➅.
We then add 4 to eax (gadget ➆) so that it points to the next writable address
beginning at addr, and load it to edx (gadget ➇). With this, we can move on to
decode the next non-printable addresses, after which we use stack pivot [30] to
make esp point to the decoded original ROP shellcode and execute it.

This one-layer packer is simple, but the packed code is long. As shown in
Fig 1, we need 11 4-byte codes to decode one 4-byte non-printable address.
Some non-printable addresses, e.g., 0x0303783e, might need a longer decoder as
it is impossible to find two printable 4-byte addresses whose sum equals to it.
Therefore, we need a better decoder to shorten the packed code.

3.2 Two-Layer Printable Packer for ROP

Analyzing the packed code shown in Fig 1, we realize that only the two 4-byte
operands to be added are unique in each round of the decoding process. The
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other nine 4-byte codes are either addresses of instructions which are the same
in each round of decoding, or junk. Therefore, a key idea of reducing the size
of the packed code is to separate data (the two printable 4-byte operands to
be added) from the decoding routine and to put the decoding routine into a
loop. If this can be done, the size of the packed code will be two times the
original shellcode (each non-printable address is represented by two printable
4-byte operands) plus the size of the decoder (hopefully fixed-size).

Unfortunately, we cannot find all the required printable gadgets to implement
the loop.3 Our solution is to have two layers of decoders where the second layer,
denoted dec2, decodes the original ROP shellcode (possibly using non-printable
gadgets), and the first layer, denoted dec1, decodes dec2 (see Fig 2).

shell

dec2

enc2(shell) enc2(shell)

enc1(dec2)

dec1

original shellcode final packed shellcode

printablenon-printable

non-printable

printable

printable

printable

Fig. 2. Two-layer packer

A by-product with the two-layer design is the flexibility in choosing the 4-
byte operands for decoding, and therefore polymorphism of the resulting packed
code. In the one-layer design discussed in Section 3.1, we only have flexibility in
choosing two 4-byte operands (which adds to the original non-printable address)
and the junk. There is little flexibility to some gadgets shown in Fig 1 and
therefore one could easily find reliable signatures to the packed code. Our two-
layer design introduces a new layer and more opportunities of polymorphism.
Section 6.2 further discusses this and limitations of our approach.

4 Two-Layer Encoding and Degree of Polymorphism

Our two-layer packer enables the conversion from left to right as shown in Fig 2.
enc2 takes as input the original shellcode shell and produces two outputs, dec2

and enc2(shell). dec2 goes through another encoding process which outputs dec1

and enc1(dec2). In this section, we focus on the encoding processes. Section 5
shows how the decoders work to enable the conversion from right to left in Fig 2.

The encoding processes of these two layers are similar in that both use 4-
byte printable operands to represent non-printable addresses in shell and dec2.
A difference that dec1 (output of the second encoding) has to use printable

3 This confirms our earlier conjecture that useful instructions with printable addresses
are difficult to find in ROP.
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gadgets while dec2 (output of the first encoding) does not have to. Therefore it
is more difficult to find gadgets to implement dec1, while gadgets for dec2 are
easier to find.

Due to this additional restriction in implementing dec1, we decide to use three
4-byte printable operands in enc1(dec2) to represent a non-printable 4-byte in
dec2, while use only two 4-byte operands in enc2(shell). Reason is simple — we do
not manage to find printable gadgets whose arithmetic operation can represent
any non-printable 4-byte address with two printable 4-byte operands, while we
do manage to find printable gadgets performing (op1 - op2) xor op3 which
fulfills our requirements. Finding gadgets for dec2 is easier, and in our experiment
we use on that performs ((op1 << 1) + 1) xor op2 = i.

Now, given a 4-byte input code i (most likely a non-printable address in a
gadget), we need to automatically find the values of

– op1, op2, and op3 such that (op1 - op2) xor op3 = i in enc1(dec2); and
– op1 and op2 such that ((op1 << 1) + 1) xor op2 = i in enc2(shell).

To simplify our discussion, we assume that i, op1, op2, and op3 are of one byte
long. A small modification is needed when dealing with 4-byte codes to take care
of the subtraction and shifting operations.

Our algorithm of finding the operands is simple. We first randomly assign a
value from the range of printable bytes [0x21, 0x7e] to one of the operands.
After one of the operands is chosen, we check if the chosen value makes it im-
possible for other operands to be printable. If yes, go back and choose a different
value; otherwise, proceed to determine the next operand in the same way.

We have implemented the two encoders for both Windows XP and Windows 7.
We assume that the address of the data segment of the vulnerable application
is known. On Windows 7, we additionally assume that the base addresses of
ntdll.dll, kernel32.dll, and shell32.dll are known, an assumption previ-
ous work on ROP also makes [6, 22, 23].

Finding operands in enc1(dec2). We first randomly assign op3 a value from the
range [0x21, 0x7e] and calculate op1 - op2 = i xor op3. Note that since
both op1 and op2 have to be printable, op1 - op2 must fall into the range of
[0x00, 0x5d] or [0xa3, 0xff]. If i xor op3 falls outside of this range, we
have to go back and choose a different op3. After op3 has been chosen, we run
the same algorithm to determine op1 and subsequently op24.

Finding operands in enc2(shell). For enc2, the first operand to be determined is
op2. We randomly assign op2 a value from the range [0x21, 0x7e] and calculate
(op1 << 1) + 1 = i xor op2. Since op1 has to be printable, (op1 << 1) + 1

4 Some optimizations are possible in this process. For example, if |(op1− op2) < 0x7e,
we can randomly select op1 from [0x21+ixorop3, 0x7e]; otherwise, we select op1 from
[0x21, (0x7e + ixorop3) AND 0xff ]. op2 can then be obtained by adding ixorop3
to op1. Similar optimizations can be used to calculate op3 and to find operands in
enc2. We do not discuss these optimizations further.
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Table 1. Number of possible operands for enc1

Original byte i Number of Average number of
possible op3 possible op1

0, 1, 2, · · · , 33 61 1964
34, 35, · · · , 63 60 2884
64, 65, · · · , 95 63 3954
96, 97, · · · , 126 92 4372

127 93 4371
128, 129, 130 92 4279

131, 132, · · · , 159 91 4280
160, 161, · · · , 191 63 3891
192, 192, · · · , 220 59 2824

221, 222, 223 60 2823
224, 225, · · · , 255 60 1846

Weighted average 69 3244

Table 2. Number of possible operands for enc2

Original byte i Number of Examples of op1
possible op1

0, 2, · · · , 58, 60 30 {0}: 69, 71, · · · , 127;
1, 3, · · · , 59, 61, 62, 63 31 {1}: 67, 69, · · · , 127;

64, 66, · · · , 92, 94 16 {64}: 97, 99, · · · , 127;
65, 67, · · · , 93, 95, 96, 97,

15
{65}: 97, 101, · · · , 127;

98, 100, · · · , 124, 126 {98}: 67, 69, · · · , 95;
99, 101, · · · , 125, 127 14 {99}: 69, 71, · · · , 95;
129, 130, · · · , 221, 222 46 {129}: 163, 165, · · · , 253;

128, 223, 224, · · · , 254, 255 47 {128}: 161, 163, · · · , 253;

Weighted average 35 N/A

must fall into the range of [0x43, 0xfd] and the last bit must be 1. If i xor op2
does not satisfy this condition, we have to go back and choose a different op2.
After op2 has been chosen, op1 can be determined easily.

One may ask whether it is possible that no printable operands can be found
satisfying the conditions. The answer is no, and that is because we specifically
pick the arithmetic operations to avoid it. Table 1 and Table 2 show the number
of operands that satisfy the conditions when i has a value from 0x00 to 0xff for
enc1 and enc2, respectively. We see that no matter what i is, there are always a
number of possible operands that satisfy the conditions.

Table 1 and Table 2 not only show that our two-layer packer is applicable of
packing any unpacked ROP shellcode, but the degree to which polymorphism
can be applied during the packing. For example, if i = 127 in enc1, there are 93
possible op3 to choose from. Once op3 has been chosen, there are (on average) 47
possible op1 to choose from. That is, for this single byte in the original unpacked
shellcode, we have about 93 × 47 = 4371 different ways of representing it. This
shows the large degree to which polymorphism can be applied when running our
encoders. Note that the above analysis applies to the last two portions in the
final packed shellcode shown in Fig 2. We discuss this further in Section 6.
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5 Decoders in Packed Shellcode

Having explained the encoding process, here we present the detailed implemen-
tation of the decoders. The two decoders dec1 and dec2 are similar in that they
both have an initialization step to set up the environment and the actual decod-
ing step. A difference is that dec2 uses a loop while dec1 does not.

5.1 Implementation of dec1

The initialization of dec1 first arranges some writable memory for temporary
storage, and then initializes some registers. The decoding step loads the encoded
dec2 (i.e., enc1(dec2)) into registers and performs arithmetic operations to decode
dec2. Finally, control is transferred to the beginning of the decoded dec2.

Initializing. The purpose of initialization is to find the starting address of
enc1(dec2) and save it at a temporary storage. We do this to make it easy to
load data of enc1(dec2) into registers for decoding. As shown in Fig 3, there are
four steps in the initialization in dec1, which are clearly explained in the figure.

dec1
esp

offset

enc1(dec2)

enc2(shell)

data segment

addr

1. load the address
of addr to edx

2. store offset to [edx]
3. add esp to [edx]

4. finally, load addr to edx,
pointing to the beginning
of enc1(dec2)

edx

initialization
decoding
rounds

Fig. 3. Initialization of dec1

Decoding enc1(dec2). As shown in Fig 4a, the decoding is done by first load-
ing the three 4-byte operands and then calculating (op1 - op2) xor op3. There
are two types of data in enc1(dec2), un-encoded data which corresponds to print-
able addresses in dec2 and place-holders that are printable and random for non-
printable addresses in dec2 (enc1 is discussed further in Section 4). The former
can be left untouched, while the latter needs to be overwritten by the decoding
routine (including data) in dec1 (see Fig 4b).

There are three steps in the decoding. First, we locate the next non-printable
address in enc1(dec2), and add its offset to edx. Second, arithmetic decoding (see
Fig 4a) is performed, the result of which is stored in [edx] in the last step.

5.2 Implementation of dec2

Similar to dec1, dec2 also has an initializing step and a decoding step. However,
dec2 is slightly more complicated due to the use of a loop.
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op1

op3

op2

junk

junk

➀.pop eax
retn

➁.pop ecx

➂.sub eax, ecx
pop esi

➃.pop edi

➄.xor eax, edi

retn 4

retn

retn

retn

pop edi
pop esi
pop ebp

esp

(a) Arithmetic operations

dec1

enc1(dec2)

enc2(shell)

initialization

decoding
rounds

step 1,2,3
step 1,2,3

...

1. add an offset to edx
to point to current
non-printable code

2. pop operands and calculate

3. store the result to [edx]

op1—>eax
op2—>ecx
op3—>edi

edx

eax=(eax-ecx) xor edi

(b) Decoding

Fig. 4. Decoding in dec1

Initializing. The purpose of the initialization is similar to that in dec1. However,
we need some more temporary storage in dec2, since gadgets in the loop are
separated from data (enc2(shell)). We need pointers to point to the data (addr1
and addr2 in Fig 5 for reading and writing, respectively) and pointer to point
to the starting of the loop (addr3 in Fig 5).

enc1(dec2)

enc2(shell)

initialization

decoding
loop

arithmetic
conditional

addr1
addr2
addr3

jump
op1
op2

loop start
for reading

for writing

data segment

...

Fig. 5. Initialization of dec2

By adding the offset of enc2(shell) to the current value of esp, we obtain
the starting address of enc2(shell) and store it in the temporary storage addr1
and addr2. addr1 is used to hold the address from which operands are read for
decoding, while addr2 is used to hold the address to which the decoded addresses
are stored. We also calculate the starting address of the decoding loop and store
it in addr3 to which execution jumps at the end of every loop.

Decoding enc2(shell). Recall that dec2 might use non-printable gadgets. We
are more flexible in choosing the arithmetic operations in this decoding, and do
not have to go for three operands as in enc1. Again, we aim for arithmetic op-
erations that can represent any non-printable 4-byte address with two printable
4-byte operands, and choose to use ((op1 << 1) + 1) xor op2 as shown in
Fig 6a. See Section 4 for discussions on the choice of this arithmetic operation,
the applicability of it, and the polymorphism of the resulting data.
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addr-delta

junk

junk

➀.pop ecx
retn

➁.mov ecx, [ecx]
➂.mov eax, [ecx]

mov edx, [ecx+4]

➄.xor eax, edx ➃.shl eax, 1

retnretn

retn 4
retn

add eax, 1

mov fs:0, ecx

pop ebp

esp

(a) Arithmetic operations

enc1(dec2)

enc2(shell)

initialization

decoding
loop

arithmetic
conditional

addr1
addr2
addr3

jump
op1
op2

loop start

data segment

...

...

1. load op1 to eax and op2 to edx, then
calculate eax=((eax«1)+1) xor edx

2. load addr2 to edx and
store eax to [edx]

3. update addr1, addr2 to point to
the next retrieving location and
the next storing location respectively

(b) Decoding

Fig. 6. Decoding in dec2

In order to decode enc2(shell), we first load the two 4-byte operands pointed
to by addr1 to eax and edx (indirectly, as shown in Fig 6b, due to unavailability
of gadgets that can do this more directly), and then perform the arithmetic
operations to calculate the non-printable address in shell. Second, we load the
value of addr2 to edx and save the decoded address to [edx]. After that, addr1
is updated with an offset of 8 (two operands) while addr2 is updated with an
offset of 4, and control is transferred back to the beginning of dec2 (pointed to
by addr3) to decode the next address. Fig 6b shows this process.

Note the addition step in dec2 to perform a conditional jump. To signal the end
of the decoding, we append a special word 0x7e7e7e7e to the end of enc2(shell)
as a stop indicator. Fig 7a illustrates the idea.

enc1(dec2)

enc2(shell)

initialization

decoding
loop

arithmetic
conditional

addr1
addr2
addr3

jump

loop start

data segment

0x7e7e7e7e

offset

the next code is end flag ?
1. if not, set esp=addr3

2. else, set esp=addr3+offset

end with 0x7e7e7e7e

(a) Conditional jump in dec2

end flag

junk

junk

➀. pop ecx
retn

➁. sub eax, ecx
pop esi

➂. neg eax
dec eax
pop ebp
retn 4

retn

junk

➃. sbb eax, eax
inc eax
pop ebp
retn 4

➄. neg eax
dec eax
pop ebp
retn 4

➅. inc eax
retn

junk

junk
junk

junk

esp

(b) Gadgets to implement condi-
tional jump

Fig. 7. Conditional jump

5.3 Gadgets Used in Our Implementation

In this subsection, we describe the instruction sequences and the correspond-
ing gadgets we use to construct our two-layer packer. Automatically searching
for printable gadgets is relatively simple. We just modified the Galileo Algo-
rithm [23] to add an additional condition on the address. We search for gadgets
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on both Windows XP SP3 (x86) and Windows 7 Ultimate (x86), and found all
the printable and non-printable gadgets needed for constructing dec1 and dec2.

Gadgets we use are from common shared libraries. For Windows XP, all the gad-
gets we use are from shell32.dll and msctf.dllwith base addresses 0x7d590000
and 0x74680000, respectively. Windows 7, on the other hand, uses ASLR [3, 4, 24,
27, 29] where the base addresses of libraries are randomized after every restarting.
Weassume that the base addresses ofntdll.dll,kernel32.dll andshell32.dll
are known (of values 0x77530000, 0x76710000 and 0x768e0000, respectively in
our experiment), an assumption previous work on ROP also makes [6, 22, 23].
Note that ntdll.dll and kernel32.dll have printable addresses which are used
in dec1, while shell32.dll has a non-printable address and therefore is used in
dec2 only.

To describe the instruction sequences we found and how to build the gadgets,
we take Windows 7 as an example and discuss the gadgets we use in our two-layer
packer, with a focus on printable gadgets.

Basic Gadgets. Gadgets to load and store data are relatively easy to find even
when we limit ourselves to printable gadgets. We use pop to load constants from
the stack, and use mov to load data from other memory locations as well as to
store data at memory locations. Gadgets that perform arithmetic operations are
also easy to find as discussed in Section 5.1 and Section 5.2.

To get the address of the stack, we need some esp related instruction sequences
to store the value of esp to a register or a memory location. In the conditional
jump in dec2, we also need the “stack pivot” instruction sequences. Table 3 shows
some examples.

Table 3. Basic gadgets used in dec1 and dec2

Purpose Instruction Relative address Printable Library

Loading/storing data
pop eax 0x000a6656 Y kernel32.dll

mov edx, [ecx+4] 0x00057a4f Y ntdll.dll
mov [edx], eax 0x0004662a Y ntdll.dll

Arithmetic operations

shl eax, 1 0x00034986 N ntdll.dll
sub eax, ecx 0x000c632b Y ntdll.dll
xor eax, edi 0x000b3f46 Y kernel32.dll
xor eax, edx 0x0005ac24 N ntdll.dll

esp related

add [ecx+0x7760cc7c], esp 0x00072b4d Y ntdll.dll
adc [ecx+0x4fc0007e], esp 0x00055c5b Y kernel32.dll

mov esp, [ecx+0xd8] 0x00004eef N ntdll.dll
xchg esp, eax 0x0009f9d2 N ntdll.dll

Gadgets in dec1. Gadget in dec1 need to have printable addresses. Fortunately,
we manage to implement it with the basic gadgets described in Section 3.

Gadgets in dec2. Although gadgets in dec2 do not need to have printable
addresses, it is more complicated and need additional gadgets besides the basic
ones. The most notable one is the gadget for conditional jump.
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There are a few steps we need to perform in a conditional jump. First, we need
to load the next word to be decoded into a register (eax in our experiment). This
can be done easily with pop ecx, mov edx, [ecx+4], and mov eax, [edx+4].

Second, we need to check whether we have reached the end of the encoded
shellcode. As discussed in Section 5.2, we use 0x7e7e7e7e as an indicator. We
subtract 0x7e7e7e7e from eax, then neg eax to get the corresponding CF flag
value. If eax is zero, CF will be zero; otherwise, CF will be one. Third, we use
CF to help us determine whether we need to add the offset to addr3 (see Fig 7a).
To do this, we set eax to 0xffffffff if CF is zero, or 0x0 otherwise.

Last, we load the offset to ecx, and use and eax, ecx to set eax to either
the offset or zero, which is subsequently added to addr3 and moved to esp by
using mov esp, [ecx+0xd8] to finish stack pivot [30]. The first and the last
step can be done easily with the basic gadgets. Fig 7b shows the gadgets used
to implement the second and the third steps.

6 Experiments and Discussions

6.1 Experiments

In this section, we perform experiments on our proposed two-layer packer by
applying it on two real-world unpacked ROP shellcode. One is a local SEH
exploit [20] on Winamp v5.572 originally published at Exploit Database5. When
users select version history of the vulnerable application Winamp v5.572, a file
whatsnew.txt will be read. Due to vulnerabilities in the string reading procedure,
an attacker can craft the file whatsnew.txt to overwrite the BOF and triggers
SEH. The other is an exploit on RM Downloader v3.1.36 which uses the same
idea as in the Winamp exploit. Attackers use a crafted media file to trigger SEH
in the vulnerable RM Downloader v3.1.3. These two examples both use ROP to
call function VirtualProtect() to make the stack executable, and then execute
the injected non-ROP shellcode to run the calculator (by executing calc.exe).

We download the original ROP exploit and apply our automatic two-layer
packer on it. As mentioned in Section 4, our packer generates packed ROP shell-
code for both Windows 7 and Windows XP (see Appendix A for the shellcode
of the Winamp exploit on Windows 7). Table 4 shows the size of each part in
the packed ROP shellcode as well as the number of instructions executed by the
original unpacked ROP shellcode and the packed ROP shellcode.

As shown in Table 4, the sizes of dec1 and enc1(dec2) are the same for different
ROP shellcode on the same platform. This is because dec2 uses a loop which has
the same size when dealing with different shellcode.

The overhead of the resulting packed shellcode mainly comes from enc2(shell).
As discussed in Section 5, every 4-byte code in the original ROP shellcode is rep-
resented by two 4-byte operands, and therefore the size of enc2(shell) is roughly
two times of the size of the original shellcode. This is confirmed in Table 4. Note
5 http://www.exploit-db.com/exploits/14068/
6 http://www.exploit-db.com/exploits/14150/

http://www.exploit-db.com/exploits/14068/
http://www.exploit-db.com/exploits/14150/
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Table 4. Packing shellcode

Shellcodes Aspects
Windows 7 Windows XP

Original ROP Packed ROP Original ROP Packed ROP

Winamp
v5.572

Printable No Yes No Yes
Size of dec1 N/A 3, 316 bytes N/A 4, 216 bytes

Size of enc1(dec2) N/A 444 bytes N/A 676 bytes

Size of enc2(shell) N/A 2, 232 bytes N/A 2, 274 bytes
Total size 1, 112 bytes 5, 992 bytes 1, 132 bytes 7, 166 bytes

# of instructions executed 741 17, 325 747 22, 932

RM
Downloader

v3.1.3

Printable No Yes No Yes
Size of dec1 N/A 3, 316 bytes N/A 4, 216 bytes

Size of enc1(dec2) N/A 444 bytes N/A 676 bytes
Size of enc2(shell) N/A 42, 360 bytes N/A 42, 404 bytes

Total size 21, 176 bytes 46, 120 bytes 21, 198 bytes 47, 296 bytes
# of instructions executed 21, 687 318, 285 21, 727 324, 420

that although polymorphism can be applied and there are many variations in
the packed shellcode, they all have the same size.

Also note that the number of instructions executed increases more than 10
times. This is mainly due to the loop in the decoding as discussed in Section 5.
Each 4-byte code in the original shellcode needs a few instructions to 1) read
the encoded data, 2) calculate and write the decoded word, and 3) conditionally
jump to the next round of decoding. However, this increase in the number of
instructions executed has small impact on the detectability of the shellcode.

6.2 Discussions and Limitations

We briefly mentioned assumptions we make in decoding and encoding in Sec-
tion 4 and Section 5. In the rest of this section, we more systematically discuss
some issues and potential limitations of our two-layer packer.

64-bit architecture. Our two-layer packer works on 64-bit systems, although the
probability of a 64-bit address being printable is smaller, i.e., it is more difficult
to find printable gadgets. However, the transformation proposed in Section 4
in which non-printable addresses are represented by two or three printable ad-
dresses still works on a 64-bit system.

Addresses of data segment. We use the data segment as temporary storage for
dec1 and dec2 and therefore need to know the address of the data segment.
This address is not randomized and there are existing tools (e.g., PEreader,
readelf) to get it. We could also store temporary data on the stack to eliminate
this requirement. However, it will make the design more complex as we need
registers to keep the address of the stack. We leave it for our future work.

Base address of libraries. When running on Windows XP, our approach
works well without additional assumptions since the base addresses of libraries
are fixed. However, Windows 7 makes the base addresses of ntdll.dll and
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kernel32.dll different after every restart. In our limited tests, we find that
the first byte of the base addresses of these two libraries are always printable,
and the second byte (random) has roughly 36.7% percent probability of being
printable. If these addresses happen to be non-printable, we cannot make use
of instructions in these libraries and our packer cannot generate the printable
shellcode.

Loading of libraries. The libraries we use (ntdll.dll and kernel32.dll) need
to be loaded in the vulnerable application. Since they are common and provide
some basic functionality, they are loaded even in the simplest application (whose
source code contains only a return statement) generated by normal compilers.

Polymorphism in dec1. As discussed in Section 4, polymorphism can be obtained
in encoding shell and dec2. However, dec1 is not encoded and we can only achieve
polymorphism in different ways. Most instruction sequences in dec1 are common
instructions. For example, there are 19 useful pop eax instructions with different
printable gadgets found in shell32.dll. We could randomly choose anyone of
them. For instruction sequences that are relatively hard to find, we could turn our
attention to other equivalent instruction sequences and corresponding gadgets
or those with side effects [28]. This is outside the scope of our paper though.

Size of the resulting ROP. When the ROP shellcode gets bigger, there might
not be enough space on the stack to hold the ROP shellcode. This limits the
applicability of our packed shellcode. In addition, some special ROP shellcode
gets a value on the stack by using offsets to current esp. When the size of the
ROP shellcode changes, this offset might be changed accordingly. In this case,
we need some manual work to change the offset in the packing.

6.3 Implications

We have demonstrated the idea of packing ROP shellcode and making it print-
able and polymorphic. We also show the success in applying our packer to exist-
ing ROP code. Besides that, our experiment results show that ROP is probably
more powerful than what we had believed. Since the introduction of ROP, peo-
ple have realized its power in circumventing the W ⊕ X protection mechanism
and started to propose counter-measures to it. In this paper, we show that ROP
is also powerful in many other aspects, including being packed, printable, and
polymorphic. In other words, ROP inherits many attacking capabilities of exist-
ing non-ROP attacks. This has strong implications in further analysis of ROP
and its counter-measures.

7 Extensions of Our Two-Layer Packer

We have shown the usage of our two-layer packer in making ROP shellcode
printable and polymorphic. In this section, we show that our packer can be used
in a couple of other scenarios including evading detection by signature-based
anti-virus programs and packing shell using ROP without returns.
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7.1 AV-Immune ROP Packer

Although malware based on ROP is not common yet, we expect that anti-virus
programs will have more ROP signatures in the near future. Here we investigate
if ROP shellcode can be packed to avoid specific signatures to evade detection.
The idea is simple. We first scan the original shellcode to find byte streams that
match signatures used by anti-virus programs, and then apply enc2 to use two
random 4-byte operands to represent them.

Shellcode produced by our AV-immune packer is similar to the printable shell-
code presented earlier, see Fig 8, except that some optimizations can be made
when we assume that only a small number of bytes are detected as matching the
signatures and only these bytes need to be encoded by enc2.

Decoder II

Decoder II

AV-Immune
Original
Shellcode

Initialization

Decoding

offset2

Data Segment

Decoder I

Encoded Data
op1

op2

offset2

addr1

addr2

addr3

offset1

Decode decoder II

Decode decoder I
Load data and offset2 from encoded data

Store tamporaty address 

Store tamporaty address 

Load data by pop operation

Fig. 8. Anti-Virus immune shellcode

Encoding shell works in a similar way except that operands are not printable
but random numbers not containing detectable signatures. This leaves many
more choices in the operands and consequently better polymorphism.

Encoding dec2 is also simple. If addresses in dec1 match a signature, the
corresponding gadget cannot be used and we look for alternatives to the gadget.
Fortunately, gadgets in dec1 are quite common and we have multiple choices to
select the right gadgets that do not contain a signature.

In order to evaluate our AV-immune packer, we study the signature database
of ClamAV 0.96.4 to see if it contains any signatures matching ROP shellcode.
We find that the coverage of ROP is extremely small. To better demonstrate the
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effectiveness of our packer, we randomly choose byte streams in unpacked ROP
shellcode and assume that they are used as signatures in anti-virus programs.

Table 5 shows the result when we assume that 5% and 10% of the unpacked
shellcode contains signatures used in anti-virus programs. We see that about 170
more bytes are needed in enc2(shell) (the last part in Fig 8) in order to encode
the additional bytes detected in the original shellcode (with sizes of all other
parts remain unchanged). Again, the number of instructions executed increases
by a few times, although it has little effect on the detectability (please refer to
Appendix B for an example of the packed ROP shellcode).

Table 5. Packing Winamp v5.572 ROP shellcode

5% of shell detected 10% of shell detected
Original ROP Packed ROP Original ROP Packed ROP

AV-immune No Yes No Yes

Size of dec1 N/A 208 bytes N/A 208 bytes

Size of enc1(dec2) N/A 620 bytes N/A 620 bytes

Size of enc2(shell) N/A 176 bytes N/A 344 bytes
Total size 1, 112 bytes 2, 116 bytes 1, 112 bytes 2, 284 bytes

# of instructions executed 741 2, 286 741 3, 644

7.2 Packing shell Using ROP without Returns

Checkoway et al. proposed ROP without returns [7]. In this section, we show
that decoders in printable shellcode produced by our two-layer packer could
be constructed without returns. Since useful gadgets without returns are more
difficult to find, we extend our search space from common libraries to others
including msctf.dll, msvcr90.dll and mshtml.dll. The search space can be
further extended to include other binary files when needed.

Table 6 shows some useful gadgets that we find on Windows XP, whose func-
tionality includes Trampoline (an update-load-branch [7] sequence which acts as
the ret instruction), loading and storing data, and arithmetic.

Table 6. Gadgets for ROP without returns

Purpose Instruction Relative address Library

Trampoline
add ebx, 0x10; jmp [ebx] 0x000832f2 msvcr90.dll
pop ebx; xlatb; jmp [ebx] 0x00299637 mshtml.dll

Loading and storing data

popad; jmp [ecx] 0x000062af msctf.dll
pop edi; jmp [ecx] 0x000a2f9f jscript.dll
pop ecx; jmp [edx] 0x001bd291 mshtml.dll

mov [ecx], eax; call edi 0x0008999f mshtml.dll
mov [eax], edi; call esi 0x001627fe shell32.dll

Arithmetic operations

sub edi, ebx; jmp [edx] 0x00092b2e shell32.dll
sub ebx, esp; jmp [ecx] 0x000056e4 mshtml.dll
sbb esi, esi, jmp [ebx] 0x00018fe9 mshtml.dll
xor edi, edx, jmp [ebx] 0x00021e29 mshtml.dll
xor edx, edi, jmp [ecx] 0x00178b2b ieframe.dll
xchg edx, edi, jmp [ecx] 0x00017e2d ieframe.dll
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To make discussions simple, here we assume that the address of the stack
is known. As shown in Fig 9, we first use gadget ➀ to store two operands to
edx and edi, respectively, and then set other registers (e.g., ecx, ebx, and eax)
with the corresponding values. Gadget ➁ acts as a trampoline to jump to the
appropriate locations during execution. Gadget ➂ carries out calculation using
edx, edi, and jumps to the trampoline. We next use gadget ➃ to store the result
of decoding to eax. We use gadget ➄ to load the address of the trampoline to
edi, and gadget ➅ to load the address of the decoded 4-byte code to ecx. In the
end, we use gadget ➆ to finish the final storing operation.

1.popad
jmp [ecx]

2.add ebx, 0x10
jmp [ebx]

3.xor edx, edi
jmp [ecx]

5.pop edi
jmp [ecx]

esp

.

4.xchg eax, edx
jmp [ecx]

6.pop ecx
jmp [edx]

7.mov [ecx], eax
call edi

Fig. 9. Arithmetic using non-return gadgets

Table 7 shows the result of our experiment on two ROP shellcode (see Ap-
pendix C for the actual shellcode). Note that in our experiment the original
shellcode uses ROP with returns. However, our packer is able to pack shellcode
that uses ROP without returns, too. We did not perform experiments on that
simply because we cannot find existing shellcode that uses ROP without returns.

Table 7. One-layer packer without returns

Exploit example of small size Exploit example of large size
Original ROP Packed ROP Original ROP Packed ROP

Total size 56 bytes 2, 072 bytes 1, 112 bytes 62, 272 bytes
# of instructions executed 19 456 741 17, 784

We have discussed our success in constructing a one-layer packed ROP without
returns. As discussed in Section 5, the two-layer packer uses a loop to decode
the encoded shellcode which needs a gadget that performs a conditional jump.
Unfortunately, after scanning most of the common libraries on Windows XP, we
could not find gadgets to perform the appropriate and and stack pivot for the
conditional jump. We want to stress that this is not a limitation to the idea of
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our two-layer packer, but simply a limitation of ROP without returns in that
gadgets are more difficult to find. We believe that if we can find the appropriate
gadgets in other libraries or programs, our two-layer packer will work.

8 Conclusion

In this paper, we propose a packer for return-oriented programming which out-
puts printable and polymorphic shellcode. We demonstrate that our packer can
be used to pack real-world ROP shellcode to evade signature-based detection and
non-ASCII filtering. Extensions of our packer show that the idea of it applies to
ROP without returns, too.
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A Packed ROP for Winamp Exploit on Window 7

dec1 enc2 (shell)

6C 62 57 77 41 31 B1 47 78 4F 7B 76 65 65 65 65 56 66 7B 76 65 65 55 3A 53 23 21 41 22 41 55 3E 2A 23 21 41 40 41 6A 4D 31 23 22 22

65 65 39 4E 42 42 2E 6F 5E 77 21 21 21 21 2B 63 5F 77 65 65 65 65 22 41 74 3E 22 23 22 22 21 41 38 38 38 38 41 40 40 40 32 33 33 33

34 49 56 77 40 21 21 21 46 3F 7C 76 65 65 65 65 65 65 65 65 65 65 21 22 22 22 38 38 38 38 40 41 41 41 39 39 39 39 41 40 40 40 39 39

65 65 2A 66 57 77 65 65 65 65 56 66 7B 76 65 65 65 65 65 65 65 65 39 39 40 41 41 41 21 6A 2D 23 23 22 22 41 31 30 30 30 22 21 21 21

65 65 65 65 65 65 65 65 73 44 46 28 2E 6F 5E 77 7E 7E 7E 7E 2B 63 31 30 30 30 22 21 21 21 31 30 30 30 22 21 21 21 31 30 30 30 22 21

5F 77 65 65 65 65 34 49 56 77 40 21 21 21 46 3F 7C 76 65 65 65 65 21 21 31 30 30 30 22 21 21 21 31 30 30 30 22 21 21 21 2A 27 5A 23

65 65 65 65 65 65 65 65 48 4A 7C 76 ...... 21 22 22 41 2D 28 24 23 41 40 41 41 ......

enc1 (dec2) dec2

22 6E 55 77 2E 6F 5E 77 65 65 65 65 44 59 55 77 65 65 65 65 6C 62 22 6E 55 77 2E 6F 5E 77 81 B0 47 00 44 59 55 77 65 65 65 65 6C 62

57 77 65 65 65 65 65 65 65 65 65 65 65 65 22 6E 55 77 2E 6F 5E 77 57 77 65 65 65 65 B3 B0 87 B0 5B 5C 93 76 22 6E 55 77 2E 6F 5E 77

65 65 65 65 44 59 55 77 65 65 65 65 6C 62 57 77 65 65 65 65 65 65 85 B0 47 00 44 59 55 77 65 65 65 65 6C 62 57 77 65 65 65 65 B7 B0

65 65 65 65 65 65 22 6E 55 77 2E 6F 5E 77 65 65 65 65 44 59 55 77 87 B0 5B 5C 93 76 22 6E 55 77 2E 6F 5E 77 89 B0 47 00 44 59 55 77

65 65 65 65 6C 62 57 77 65 65 65 65 65 65 65 65 65 65 65 65 2E 6F 65 65 65 65 6C 62 57 77 65 65 65 65 BB B0 87 B0 5B 5C 93 76 2E 6F

5E 77 65 65 65 65 56 66 7B 76 65 65 65 65 65 65 65 65 2E 6F 5E 77 5E 77 98 01 00 00 56 66 7B 76 31 B1 47 00 68 F7 5F 77 2E 6F 5E 77

65 65 65 65 56 66 7B 76 65 65 65 65 ...... 74 01 00 00 56 66 7B 76 35 B1 47 00 ......

B Packed ROP That is Av-Ammune

dec1 enc2 (shell)

6C 62 57 77 41 31 B1 47 78 4F 7B 76 65 65 65 65 56 66 7B 76 65 65 55 3A 53 23 21 41 22 41 55 3E 2A 23 21 41 40 41 6A 4D 31 23 22 22

65 65 39 4E 42 42 2E 6F 5E 77 21 21 21 21 2B 63 5F 77 65 65 65 65 22 41 74 3E 22 23 22 22 21 41 38 38 38 38 41 40 40 40 32 33 33 33

34 49 56 77 40 21 21 21 46 3F 7C 76 65 65 65 65 65 65 65 65 65 65 21 22 22 22 38 38 38 38 40 41 41 41 39 39 39 39 41 40 40 40 39 39

65 65 2A 66 57 77 65 65 65 65 56 66 7B 76 65 65 65 65 65 65 65 65 39 39 40 41 41 41 21 6A 2D 23 23 22 22 41 31 30 30 30 22 21 21 21

65 65 65 65 65 65 65 65 73 44 46 28 2E 6F 5E 77 7E 7E 7E 7E 2B 63 31 30 30 30 22 21 21 21 31 30 30 30 22 21 21 21 31 30 30 30 22 21

5F 77 65 65 65 65 34 49 56 77 40 21 21 21 46 3F 7C 76 65 65 65 65 21 21 31 30 30 30 22 21 21 21 31 30 30 30 22 21 21 21 2A 27 5A 23

65 65 65 65 65 65 65 65 48 4A 7C 76 ...... 21 22 22 41 2D 28 24 23 41 40 41 41 ......

enc1 (dec2) dec2

22 6E 55 77 2E 6F 5E 77 65 65 65 65 44 59 55 77 65 65 65 65 6C 62 22 6E 55 77 2E 6F 5E 77 81 B0 47 00 44 59 55 77 65 65 65 65 6C 62

57 77 65 65 65 65 65 65 65 65 65 65 65 65 22 6E 55 77 2E 6F 5E 77 57 77 65 65 65 65 B3 B0 87 B0 5B 5C 93 76 22 6E 55 77 2E 6F 5E 77

65 65 65 65 44 59 55 77 65 65 65 65 6C 62 57 77 65 65 65 65 65 65 85 B0 47 00 44 59 55 77 65 65 65 65 6C 62 57 77 65 65 65 65 B7 B0

65 65 65 65 65 65 22 6E 55 77 2E 6F 5E 77 65 65 65 65 44 59 55 77 87 B0 5B 5C 93 76 22 6E 55 77 2E 6F 5E 77 89 B0 47 00 44 59 55 77

65 65 65 65 6C 62 57 77 65 65 65 65 65 65 65 65 65 65 65 65 2E 6F 65 65 65 65 6C 62 57 77 65 65 65 65 BB B0 87 B0 5B 5C 93 76 2E 6F

5E 77 65 65 65 65 56 66 7B 76 65 65 65 65 65 65 65 65 2E 6F 5E 77 5E 77 98 01 00 00 56 66 7B 76 31 B1 47 00 68 F7 5F 77 2E 6F 5E 77

65 65 65 65 56 66 7B 76 65 65 65 65 ...... 74 01 00 00 56 66 7B 76 35 B1 47 00 ......

C Packed ROP without Returns

one round

AF 86 68 74 76 32 51 34 41 41 41 41 41 41 41 41 F2 32 5A 78 67 51 26 6F F2 32 5A 78 F2 32 5A 78

41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 2B 8B BC 05 41 41 41 41 41 41 41 41 41 41 41 41

41 41 41 41 31 B5 3D 63 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 9F 2F 42 63 F2 32 5A 78

41 41 41 41 41 41 41 41 41 41 41 41 91 D2 73 63 B4 66 42 01 41 41 41 41 41 41 41 41 41 41 41 41

9F 99 B1 7D 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41
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Abstract. Return-into-libc (RILC) is one of the most common forms
of code-reuse attacks. In this attack, an intruder uses a buffer overflow
or other exploit to redirect control flow through existing (libc) functions
within the legitimate program. While dangerous, it is generally consid-
ered limited in its expressive power since it only allows the attacker to ex-
ecute straight-line code. In other words, RILC attacks are believed to be
incapable of arbitrary computation—they are not Turing complete. Con-
sequently, to address this limitation, researchers have developed other
code-reuse techniques, such as return-oriented programming (ROP). In
this paper, we make the counterargument and demonstrate that the orig-
inal RILC technique is indeed Turing complete. Specifically, we present a
generalized RILC attack called Turing complete RILC (TC-RILC) that
allows for arbitrary computations. We demonstrate that TC-RILC sat-
isfies formal requirements of Turing-completeness. In addition, because
it depends on the well-defined semantics of libc functions, we also show
that a TC-RILC attack can be portable between different versions (or
even different families) of operating systems and naturally has negative
implications for some existing anti-ROP defenses. The development of
TC-RILC on both Linux and Windows platforms demonstrates the ex-
pressiveness and practicality of the generalized RILC attack.

Keywords: Return-into-libc, return-oriented programming, Turing-
complete.

1 Introduction

Computer systems are under constant threat by hackers who attempt to seize
unauthorized control for malicious ends. One popular method of attack is code
injection, in which the attacker injects machine code into the target application’s
memory, then exploits a software bug to divert control flow to the injected code.
Recently, code injection has been largely mitigated with the proposition and de-
ployment of the W⊕X scheme, wherein hardware and OS features are employed
to guarantee that writable memory pages cannot be executed.

R. Sommer, D. Balzarotti, and G. Maier (Eds.): RAID 2011, LNCS 6961, pp. 121–141, 2011.
� Springer-Verlag Berlin Heidelberg 2011
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Because of this, attackers have turned to code-reuse attacks, in which legit-
imate code is reused for malicious purposes. The simplest and most common
form of code-reuse attack is return-into-libc (RILC) [1]. In RILC, the attacker
arranges for the stack pointer to point to a series of malicious stack frames in-
jected into the program’s memory. When the program returns from the current
function, control flow is redirected to the entry point of another function chosen
by the attacker. The stack frame also contains necessary function arguments, so
that the function is executed with attacker-supplied parameters. Moreover, such
calls can be chained, allowing the attacker to execute a sequence of arbitrary
function calls [1]. This capability is most commonly used to execute mprotect()
to disable W⊕X protection or system() to launch another program.

Though the RILC technique is indeed powerful, it is widely believed that a
RILC attack is capable of only linearly chaining multiple functions, but not arbi-
trary computations—i.e., it is not Turing complete [1,2,3,4,5,6]. For example, in
the seminal ROP paper by Shacham et al. [2], it is explained that “in a return-into-
libc attack, the attacker can call one libc function after another, but this still al-
lows him to execute only straight-line code, as opposed to the branching and other
arbitrary behavior available to him with code injection”[2]. This common belief
motivated researchers to develop a new code-reuse attack, i.e., return-oriented
programming (ROP), in which a similar stack exploit is used to weave together
small snippets of code called gadgets.1 Given a sufficiently large codebase (such
as the ubiquitous libc), ROP has been shown to be Turing complete. Since the
introduction on x86, there has been a flurry of research that apply ROP to other
platforms (including SPARC and ARM) and build ROP-based malware to sub-
vert kernel integrity, bypass software-based attestation schemes, compromise elec-
tronic voting machines, and more [7], [8], [9], [10], [11].

In this paper, we investigate the expressiveness of traditional RILC attacks
and make the counterargument that they are in fact Turing complete and there-
fore equal in expressive power to ROP. Specifically, based on the previous ca-
pability of calling one function after another (exhibited in traditional RILC
attacks), our extension uniquely combines existing libc functions to construct
arbitrary computations. We call this variant of RILC Turing-complete return-
into-libc (TC-RILC). This result directly challenges the notion that the tradi-
tional RILC attack is limited in expressive power.

In addition, because TC-RILC relies on the intended semantics of the func-
tions being used, we also show that it inherits one inherent advantage from
traditional RILC attacks over ROP: it is relatively straightforward to port at-
tacks between different versions (or even different families) of operating systems.
For example, the adversary can retarget their RILC-based Linux attack code to
any other UNIX-style operating system (or a Microsoft Windows attack code to
any other version of the Windows from Windows 95 to Windows 7). Specifically,

1 There is some dispute over the precise definitions of return-into-libc attacks versus
return-oriented programming. For clarity, in this paper we adopt the view that the
two are separate techniques which, though they use similar means, differ wildly in
construction.
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if an attack can be constructed from widely available functions (e.g., POSIX
standard functions that are common on virtually all Linux, UNIX, and Win-
dows environments), such attack code can be nearly universal.2 Our experience
indicates that the portability directly comes from traditional RILC attacks and
the implementation-specific data needed are usually the actual function entry
points and certain data structures. This is a stark contrast to ROP, wherein one
needs to implement a scanner to find all the gadgets again. In other words, mov-
ing a ROP attack to a different version of the same OS or a different OS family
requires re-identifying a complete new set of gadgets. Further, even though our
focus in this paper is to correct the record, and not about presenting TC-RILC
as an invincible threat to negate existing defenses, we note that because TC-
RILC attacks do not have certain peculiarities specific to ROP, our technique
naturally has negative implications for some anti-code-reuse defenses [4],[12],[13]
that target ROP.

Recognizing the evolving nature of arms-race between code injection attacks
and defenses, we believe it is important to fully understand the limits and ca-
pabilities of these attack techniques. By clarifying the expressiveness of RILC
attacks with this paper, we hope to rectify the previous misconception of its
capability and further spur research into better defenses.

To summarize, the contributions of this paper are as follows:

– First, we show that traditional RILC attacks can be Turing complete, dis-
proving the commonly held misconception that such attacks are inherently
linear and therefore less expressive than ROP.

– Second, we show that TC-RILC largely depends on the well-defined seman-
tics of libc functions instead of the low-level machine code snippets used by
ROP. As these well-defined semantics are consistently maintained and com-
patible among different versions or even different families of OSs, a TC-RILC
attack can be ported more easily across OS variants and families.

– Third, we demonstrate the practicality of this technique by implementing two
example exploits: a universal Turing machine simulator and an implementa-
tion of the selection sort algorithm. Together, these examples demonstrate
the expressiveness and practicality of the technique.

2 Traditional View of RILC Attacks (on x86)

Our work aims to demonstrate the expressive power of the traditional return-
into-libc (RILC) attack; thus, we adopt the same threat model and assumptions
as prior literature dealing with this technique. Specifically, the traditional RILC
attack requires that an attacker be able to place a payload into memory (i.e.,
onto the stack) and hijack the esp register (which essentially becomes the de-
facto program counter in RILC). Such assumptions are made possible by the
commonality of vulnerabilities such as buffer overruns and format string bugs.
2 There is a caveat on the Windows platform as it is mostly POSIX-compliant, but not

fully POSIX-compliant. This distinction is explored in greater depth in Section 3.
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In addition, the attack depends on the presence of functionality useful to the
attacker being present in the existing codebase. RILC, as the name suggests,
leverages the vast catalog of functions present in the C standard library to fulfill
this requirement, as libc is dynamically linked to all processes in UNIX-like
environments.3 Further, our threat model specifies that the vulnerable programs
are protected via enforcement of code integrity (i.e., the ubiquitous W⊕X policy),
negating the possibility of a direct code injection.

As mentioned above, executing a RILC attack requires the ability to over-
write the stack with arbitrary content via a buffer overflow, format string bug,
or similar vulnerability. The content written to the stack is composed of valid
(in regards to platform-specific calling conventions) but malicious function call
frames that are specially crafted by the attacker in order to achieve an intended
purpose. Once the stack has been populated with malicious content, the frame
pointer (esp) must be redirected such that the next frame accessed is the first
frame crafted by the attacker. There exist several methods by which this redirec-
tion can be achieved and the method often differs from one exploit to the next.
The example exploits presented in this work leverage a pop esp ; ret sequence
that exists as part of the function epilogue in the main method of a vulnerable
application; thus, stack pointer redirection is as simple as injecting the address
of the first malicious frame into the correct stack position.

As powerful as individual libc functions are, they are also highly specific; thus,
using a single libc function limits an attacker to only the most basic of exploits.
However, there are techniques available to chain multiple libc functions[1], [14],
including one called esp lifting [1]. This method operates by using small in-
struction sequences to glue multiple functions (i.e., stack frames) together. In
particular, these instruction sequences are composed of some number of pop
instructions followed by a ret, which are rather common as they are used to
implement standard C function epilogues. By inserting the memory location of
such a sequence into the current stack frame’s return address, an attacker can
advance the stack pointer to the location of the next stack frame, thereby chain-
ing multiple functions together. This method was proposed in 2001 [1] as an
“advanced” RILC attack (at that time), which is being re-assessed in this paper
for its expressiveness.

The format of a malicious stack frame is shown in Figure 1. The first item
in the stack, located at the top of the frame, is the address of the function
to be executed. This is immediately followed by the address of an esp lifting
instruction sequence, which acts as the return address of said function. In this
way, the stack pointer can be immediately advanced to the next frame upon
return from the previously called function. The final entries in the frame are the
parameters to be passed to the function. Such a layout complies perfectly with
the C standard for function frames while still allowing the attacker to maintain
control of the exploit’s execution.

3 Note that Windows environments also support a variant of this attack through the
Visual C++ Runtime (msvcrt.dll) and Windows core libraries (e.g., user32.dll),
which are linked to most Windows applications.
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ESP

FUNCTION ADDRESS

ESP LIFTER ADDRESS

 FUNCTION PARAMETERS

...

Fig. 1. Format of a malicious RILC stack frame. The esp lifter address corresponds to
the function’s return address, allowing sequential execution of functions.

The operation of ROP is in some ways similar to that of RILC. Most ap-
parent is the use of the stack for program control. In addition, both paradigms
utilize the concept of found code segments (“gadgets”, in ROP parlance) in
order to perform arbitrary computations; however, the length and location of
these segments differ greatly between the two. Specifically, ROP typically uti-
lizes small segments (often only a few instructions long) located arbitrarily in
memory. These segments can be either code intentionally emitted by the com-
piler or, because instructions on the x86 are of variable length, unintended code
sequences found by jumping to an offset that does not lie on an instruction
boundary. On the other hand, RILC identifies segments solely by their intended
definitions, namely as pre-defined functions. The esp lifter could be an addi-
tional requirement, but one that is trivially satisfied, due to the nature of the
C calling convention. It is important to clarify that while there may be some
similarities between the esp lifter and ROP gadgets, the former was published
as part of (advanced) RILC attacks six years before ROP was even proposed,
and was in use even earlier. Also, the former serves only the basic purpose of
gluing multiple functions, not any particular functionality such as arithmetic or
logic pursued in the latter. In this paper, our re-assessment of RILC’s expressive-
ness only utilizes the ingredients behind traditional RILC attacks, which include
various legitimate libc functions and the esp lifter.

RILC has been long noted in the past as being capable of executing only
straight-line code, while ROP is capable of conditionally altering program flow
(e.g., [2,4]). As a result, RILC is generally considered as being incapable of fulfilling
the requirements for Turing-completeness – a classification that severely limits
its expressive power and capabilities. This work attempts to correct this miscon-
ception by providing proof of and methods for achieving Turing-completeness by
utilizing commonly-available POSIX functions. By doing so, we can better under-
stand the limits and capabilities of RILC and its comparison with ROP.

3 Turing-Complete RILC

In the traditional view, RILC is limited in its expressive power to perform ar-
bitrary operations. For instance, in a pure RILC attack, parameter data of a
function is static and needs to be pre-stored in stack before its execution. How-
ever, its return value is typically kept in eax, which makes it challenging to carry
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over the result of one libc function to another. Most importantly, during the exe-
cution of a RILC attack, stack frames are unwound in linear order, which makes
it challenging to support conditional branching. Note that conditional branching
is an essential operation for a system to be Turing complete.

In the development of TC-RILC, we have found a solution to the above chal-
lenges. Specifically, our solution is based on the observation that many functions
have side-effects which may modify memory (including the stack) or system state.
For the ease of presentation, we identify the functions whose side-effects are the
result of useful computations and simply call these functions widgets (analogous
to ROP’s gadgets). To demonstrate the Turing completeness of RILC, we define
a variety of essential classes of widgets that are needed to perform arbitrary com-
putation, and show that such widgets are available in commonly deployed code
(e.g., libc).4 It is important to stress that widgets are literally entire functions,
and that they are being exploited for their intended side-effects.

As our attack refines the traditional RILC, the structure of launching a TC-
RILC is basically the same as in traditional RILC. That is, the injected buffer
is comprised of malicious stack frames containing function entry points and pa-
rameters. However, one key difference is the specific functions that have been
chosen and misused in a unique way that makes it possible to support arbitrary
operations. Specifically, we find that widgets are available in commonly deployed
code and can be efficiently misused to solve the two problems listed above. First,
to achieve persistent data across function calls, we observe that widgets can be
found that use pointers to read or write to locations within the attacker’s stack.
Therefore, these functions can “forward copy” the result of one widget into a fu-
ture widget’s input parameters (see Section 3.2). Additionally, functions whose
inputs come via pointers or another method of indirection (e.g., environment
variables) can also be used to side-step this problem. Second, to achieve condi-
tional branching, we find a class of widgets capable of conditionally altering the
program counter in RILC or the stack pointer (see Section 3.3).

We point out that other intended effects may not be useful (or harmful) to
us. Among the intended effects, the returned value of a function – if any – is
typically stored in a register (e.g. eax) and is discarded by design (our widgets
cannot take registers as input). The other intended side effects in the form of
memory changes may be needed for TC-RILC (e.g., memcpy()) or irrelevant as
far as the effects do not change the memory content used in TC-RILC.

In the following, we categorize these widgets by their functional purpose.
When presenting each widget category, we also report example functions found
in libc, as specified in the POSIX standard.

3.1 Arithmetic and Logic

In this category, we consider any function as a candidate arithmetic and logic
widget if the result of an arithmetic or logic operation is made available as a side-
effect, i.e., written to memory as opposed to a register. In libc, the wordexp()

4 These widgets are identified using manual analysis. See Section 5 for further discus-
sion.
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function (specified in POSIX.1-2001 [15]) achieves this in a straightforward way.
In essence, this function performs the expansion of expressions used by UNIX
shells such as bash, and arithmetic is a natural component of that. It turns out
that this functionality serves a number of purposes, including integer addition,
subtraction, multiplication, and division.5 Of course, shell expansion is based
on human-readable strings rather than binary arithmetic. Therefore, to leverage
this functionality, we need to combine the string/integer conversion functions
itoa() and atoi() (as well as the standard string-manipulation functions) to
build input strings for wordexp(). This rather unorthodox approach allows us to
perform arithmetic solely with side-effects, a requirement in constructing the TC-
RILC attack. In addition to wordexp(), we can also make use of other pointer-
driven arithmetic and logic functions, such as sigandset() and sigorset(),
which flip numbered bits in an in-memory data structure.

In our development, we found that some of these functions (e.g., wordexp())
are not included in Windows environments. It turns out that the Microsoft Visual
C++ Runtime only supports a subset of POSIX, which may probably explain
why Windows is mostly POSIX-compliant, but not fully POSIX-compliant. Nev-
ertheless, it still does not prevent us from locating other alternative functions in
core Windows libraries. These core Windows libraries are loaded into almost all
running Windows processes. For example, if we just consider one core Windows
library – user32.dll, a quick examination of one co-author’s Windows XP (SP3)
desktop machine indicates that there are 74 running processes and 71 of them
load this particular library in memory.6 In addition, we have manually verified
its presence in a variety of 32-bit Windows OSs we can install, ranging from
Windows 95 all the way up to and including Windows 7. In our prototype, we
simply choose from the functions or APIs defined in user32.dll7 and use them
to provide the arithmetic/logic operations as needed.

In particular, Windows provides a suite of functions to manipulate geometric
shapes mathematically. For example, to perform the arithmetic addition or sub-
traction operation, we make use of the OffsetRect() function [16]. The intended
use of this function is to move a specified rectangle (in the Cartesian coordinate
system of the screen) by a certain offset along the X and Y axes. By making this
function call, we can effectively cast an arbitrary memory area as four consecutive
integers representing the top, left, bottom, and right coordinates of a rectangle
data structure and then modify it by providing the corresponding offset. In other
words, the intended operation of this function is exploited to perform addition or
subtraction. For simplicity in building our exploits, multiplication is achieved by
leveraging addition operations. The loop operation requires branching support,
5 The POSIX standard actually calls for a full compliment of logical and bitwise

operations as well, but this does not appear to be implemented in our version of
libc. However, this limitation does not hinder the TC-RILC technique.

6 The three which do not load user32.dll are the pseudo-processes System and System
Idle Process, as well as the session manager smss.exe.

7 There are other core libraries in Windows (e.g., kernel32.dll, ntdll.dll, gdi32.dll,
and shell32.dll) that are loaded in almost every running process and can also be
potentially (mis)used for the same purpose.
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which will be discussed later in this section. Multiplication and division can also
be achieved with a function like ScaleViewportExtEx() from gdi32.dll, but
this involves a measure of added complexity, as certain Windows-specific objects
must be prepared first.

3.2 Memory Accesses

Arbitrary access to memory in a RILC attack is as simple as employing any
function which performs a memory copy. These functions can be used to move
data into and out of the RILC stack area. For this, libc provides us with a myriad
of choices: memcpy(), strcpy(), etc. These functions are especially important in
the context of TC-RILC, as they form the key to preserving data between calls.
Additionally, one can make use of more esoteric data storage mechanisms, such
as environment variables, which are automatically expanded by some functions,
including wordexp(). When a widget executes, the only results useful to the
attacker are side-effects. In order for the side-effect to be used as an input to
a later widget, an intervening memory access widget copies this result into a
future stack frame (or into a location referenced by a pointer in a future stack
frame). The end result is a data model where variables in the TC-RILC program
do not occupy a single place in memory, but rather are copied into places (or
carried over) just in time for their next use.

3.3 Branching

Branching, especially conditional branching, is the practice of altering the flow
of execution. In our context of launching a TC-RILC attack, this does not mean
simply altering the CPU’s instruction pointer eip. Rather, one must alter the
stack pointer esp, which serves as the de-facto virtual program counter. This is
a crucial ingredient to Turing complete computation, and has been long thought
to be impossible in a RILC attack. Our solution to this problem has two steps.

First, to perform an unconditional branch, we identify any widget which ex-
plicitly alters the stack pointer. The C89 and POSIX standards define such a
function: longjmp(). The intended use of longjmp() is to support non-local
gotos [17], and is commonly used in threading libraries and error handlers. For
the attacker, however, longjmp() represents a convenient means to alter much
of the CPU state in a single call, including the stack and base pointers (esp and
ebp). This allows for unconditional branching within the RILC attack.

Next, to make this branch conditional, a pointer to the longjmp() function
can be provided as a parameter to another function which will execute the pointer
conditionally. A convenient choice for this role is the lfind() function (defined in
the POSIX standard [15] and supported in Windows). This function is intended
to help with linear searches through an array, and has the form:

lfind(void*key,void*base,size_t*nmemb,size_t size,int(*compar)(void*,void*))

Normally, this function would walk through the array starting at base, calling
compar() with the given key and each iterated element. In TC-RILC, we instead
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Table 1. A subset of POSIX-compliant widgets used in TC-RILC

Category Widgets POSIX?

Branching lfind()+longjmp(), lsearch()+longjmp() Yes

Arithmetic/Logic wordexp(), sigandset(), sigorset() Yes8

Memory access memcpy(), strcpy(), sprintf(), sscanf(), etc. Yes

System calls Usual functions: open(), close(), read(), write(), etc. Yes

set compar to longjmp and key to the address of an attacker-supplied jmp buf
structure (which includes values for a number of registers, including esp and
eip). The nmemb parameter is the conditional variable: longjmp() is called if and
only if this is non-zero. If it is called, execution of lfind() ends and both eip
and esp are rewritten with new attacker-supplied values. In addition to lfind(),
we have also identified that lsearch() can be used for the same purpose. From
this building block, it is relatively straightforward to implement regular control
flow primitives like if() and for(). Note some widgets may destroy the content
of the stack frame below the current esp. To guard against this situation, special
care is taken to backup the whole content of the stack frame that contains the
rest of the TC-RILC program before entering the loop. At the beginning of
each loop iteration, the content of the stack frame is restored. This functionality
successfully preserves the content and allows the creation of arbitrary control
flow branching, which makes TC-RILC possible.

3.4 System Calls

While not strictly necessary for Turing complete computation, almost all useful
attacks will need to make use of system calls. This is straightforward in a RILC
attack, as library functions can be employed just as they would in a user program.
For example, for file input/output, the attack can simply make use of the open(),
close(), read(), and write() functions as normal.

We stress that unlike the machine-code-based gadget scan used in ROP, the
discovery of widgets in TC-RILC is much more straightforward. Because the at-
tack depends only on the intended side-effects of existing functions, the attacker
needs only consult the code’s documentation to locate the necessary functions.
To maximize compatibility of the attack to multiple platforms, we primarily use
functions from the well-documented and widely-deployed POSIX standard [15].
For the Windows port, as it is not fully POSIX-compliant, we first attempt to use
supported POSIX functions. Only when they are not supported, will we fall back
to standard Windows APIs provided in core libraries that are loaded in almost
8 The arithmetic/logic functions are not portable to Windows due to its lack of full

POSIX compliance. Instead, we choose standard, cross-version Windows APIs in
core Windows libraries to compensate for its limited POSIX support. Examples
include OffsetRect(), CopyRect(), and SetRect() in user32.dll to provide the TC-
RILC arithmetic operation. The functions in other categories are all supported in
both Windows and Linux. Also note that sigandset() and sigorset() are Glibc
extensions and are not part of POSIX standard.
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#include <stdlib.h>
#include <string.h>

int main( int argc, char** argv ) {
        char buf[2048];
        strcpy( buf, argv[1] );
}

Fig. 2. The vulnerable application used to launch the example attacks

every running process. It is important to note that these core libraries typically
maintain consistent API interfaces across Windows variants, which contribute
to the compatibility of the proposed TC-RILC attack. In Table 1, we show an
incomplete list of widgets that are used in our implementation. Our prototyping
experience indicates that all functions except in the arithmetic/logic category
are actually supported in Windows. This means that specific TC-RILC attack
code can be readily ported to a different OS revision or even a different OS fam-
ily altogether (as long as the environment supports the same standards). The
changes needed are the adjustment of function entry points and, if necessary,
the format of the jmp buf data structure. This is in contrast to the ROP model,
which requires analysis of individual binaries in order to locate and assemble
specific snippets of machine code.

4 Implementation and Evaluation

To demonstrate the expressive power of the TC-RILC technique, we have devel-
oped two example stack-based buffer overflow attacks. The payload of the first
attack is a RILC-based implementation of a universal Turing machine simulator
while the payload of the second implements the selection sort algorithm. These
two attacks were developed and tested on the 32-bit x86 version of Debian Linux
5.0.4, and solely used POSIX-compliant functions within the included libc bi-
nary.9 After that, we also ported the attack technique to Windows in a straight-
forward manner. Our Windows platform runs Windows XP (with service pack
3), and the vulnerable application was compiled with Microsoft Visual C++ 6.
The library functions employed were found in the standard runtime library for
Visual C++ programs10, and one core Windows library11.

In both environments, the vulnerable program that was exploited to launch
the attacks is given in Figure 2. In this program, the first command line argument
is copied into a fixed-size stack buffer by strcpy(). Because this is done without
bounds checking, an excessively long argument can overflow the return address
of the main stack frame. This straightforward vulnerability allows an attacker
to inject the RILC program into memory and hijack control flow in one step.
9 /lib/i686/cmov/libc-2.7.so, MD5 checksum: e4e7e3c6b4f1be983e00c0daafc3aaf3.

10 msvcrt.dll, MD5 checksum: 355edbb4d412b01f1740c17e3f50fa00.
11 user32.dll, MD5 checksum: b26b135ff1b9f60c9388b4a7d16f600b.
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During our development, we experienced that both Linux and Windows have
features intended to protect longjmp() from malicious exploitation. For exam-
ple, in Linux, the values stored for eip and esp in the jmp buf structure are
rotated several bits and xored by a known value in order to “mangle” them, i.e.,
adjust them in a way unknown to the attacker. Unfortunately, this protection
is not fully implemented, as the known value is currently a hard-coded constant
instead of a per-process random value. Windows instead protects the jmp buf
structure by including a special “cookie” value within it. In theory, this would
prevent the attacker from overwriting the structure, but this protection is flawed
in a way similar to Linux: this value is a hard-coded constant. Therefore, these
protection features do not prevent TC-RILC from being launched (as simple
hacks involving longjmp() remain viable on both platforms).

4.1 Universal Turing Machine Simulator

The term “Turing complete” is generally used as shorthand to indicate the capa-
bility for arbitrary computation. The set of Turing complete systems are equiv-
alent in expressive power, and such systems are said to be universal computers.
There are many ways to demonstrate a system is Turing complete. In this work,
we opt for the most straightforward approach – a Turing machine simulator.

A Turing machine is a computer consisting of a tape T with a movable read-
write head, an internal state register Q, and a fixed state transition table A.
At each interval, the machine reads the current symbol, and, based on that
symbol and the current internal state, updates the symbol, changes the state,
and possibly moves the head one step left or right. This behavior is governed
by the transition table, which constitutes the Turing machine’s “program”. A
system which can simulate this behavior for an arbitrary tape and transition
table is called a universal Turing machine.

We have developed a TC-RILC exploit that acts as a universal Turing ma-
chine, demonstrating the expressiveness of our technique. Instead of delving into
the complexity and details of the binary form of this attack code, we choose to
present an abstracted representation of our POSIX-based variant in Figure 3.
In this figure, the memory state is shown in Figure 3(a). Each definition here
indicates a pointer to a piece of attacker-controlled memory. These definitions
are commented inline. We would like to draw special attention to the jmp buf
structure jb. This structure is crafted by the attacker so that, when passed to
longjmp(), the CPU stack pointer will be redirected to the top of the main loop.

The string of malicious stack frames that make up the TC-RILC program itself
is shown in Figure 3(b). For clarity, each stack frame is indicated with a line of
C-like code. To better understand this particular exploit, we need to explain the
mechanism that is used to store persistent data between function calls. Specifi-
cally, our mechanism relies on the use of environment variables and thus alleviates
the need to rebuild the equation strings during each iteration of the Turing ma-
chine run. As indicated in Figure 3(b), the exploit uses specially-crafted strings
of the form “VARIABLE=VALUE” that are updated with a new VALUE before being
added to the environment via a call to putenv(). In addition, wordexp() caps
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Fig. 3. A visual representation of the universal Turing machine simulator attack code.
The attacker-controlled static memory is shown in (a). The tape T and table A constitute
the program, while the environment variables I, S, Q, P, and M are used with wordexp()

to do the bulk of the arithmetic and logic. When pointer indirection is needed, the
lower two bytes are calculated by wordexp(), then converted to binary and written
into the pointer variables tape ptr and table ptr. The stack frames are represented
in (b) using a C-like notation where each line corresponds to an attacker-crafted stack
frame. The frames are grouped by logical operation; within each group is its symbolic
representation and description. This is the POSIX-based variant of the attack.
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the result of any arithmetic operation at 0x7fffffff – presumably in an attempt to
avoid the ambiguity encountered when representing signed versus unsigned num-
bers. For this reason, all memory offsets are computed by referencing only the
lower two addressable bytes in equation strings, then copying the result of the
arithmetic operation into the lower half of a pointer which already refers to the
stack region. For example, consider that the exploit is known to reside at a loca-
tion spanned by addresses of the form 0xbfffXXXX. To successfully compute a
memory offset, we must populate a known memory location with a value of this
form, then copy the result of any arithmetic operation containing a memory ad-
dress into the XXXX portion of this location. The resulting value can then be used
as a pointer to the desired memory location.

The exploit therefore begins by initializing the environment with the variables
I (the offset into the tape) and Q (the current state). Once these variables are
in place, we begin computing the locations of the elements needed to advance
the Turing machine. Specifically, we determine the memory location and value
of the current tape symbol S, then utilize this in conjunction with the current
state Q to determine the location P of the relevant row in the state-transition
table A. Given this memory location, advancing the machine is simply a matter
of adding the correct offset to P in order to read the new symbol, state, and head
movement direction M. Finally, we advance the head position I by M. Once these
operations have been completed, the machine is ready to execute its next step.
We use the value of the new state Q to determine whether or not the machine
needs to continue. Recall that our approach to conditional branching makes use
of a unique lfind()+longjmp() combination, and utilizes the nmemb parameter
as its conditional value—specifically, the branch is taken only if nmemb is non-
zero. In our Turing machine example, the final state is indicated by Q=0; thus,
we can determine whether or not to continue looping by simply copying the value
of the current state Q into the conditional parameter value.

To validate the correctness of our implementation, we configured the exploit
to simulate a busy beaver—a special Turing machine that performs the greatest
number of steps possible before halting [18]. Specifically, we simulate a 4-state
2-symbol busy beaver. In this exploit, there are in total 24 widgets used for
the TC-RILC implementation of the busy beaver Turing machine. We also im-
plement a Windows-variant of the same attack. The key difference from the
POSIX-variant turns out to be the replacement of wordexp() (in Figure 3) with
a few core Windows API functions. As mentioned earlier, though wordexp() is
a POSIX function, it is unfortunately not supported in Windows. As such, we
fall back on documented Windows APIs to emulate part of its functionality as
needed for our busy beaver Turning machine implementation. In particular, our
prototype makes use of two Windows API functions: SetRect() and OffsetRect().
The OffsetRect() function is used to implement addition in a straightforward
manner with its effect similar to one simple C statement A += B. For multi-
plication, we achieve the same effect by controlling the number of loops (via
lfind()+longjmp()) on an addition operation. More specifically, we use Se-
tRect() to initialize a rectangle data structure which contains the value we want
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to multiply in a member field called left. Then, in the body of the loop, we re-
peatedly add to that field by using OffsetRect(). At the end of the loop, the left
field will contain the multiplication result. In our current prototype, there was
no need to develop support for division and complex logic operations. However,
such support could be developed using the wealth of other Windows functions, in-
cluding ScaleViewportExtEx() from gdi32.dll. In total, our Windows-variant
of the busy beaver Turing machine contains 29 widgets. We have confirmed the
successful run of the busy beaver program written entirely with library functions
in various Windows systems, including Windows 95/98/2000/XP/Vista/7. The
full detail can be found in [19].

4.2 Selection Sort

While the previous example is sufficient to demonstrate Turing completeness in
theory, a Turing machine is not a very convenient model for practical computa-
tion. Therefore, to demonstrate the practicality of the technique, we also present
a TC-RILC exploit that implements the selection sort algorithm,

The algorithm is basically implemented with two for-loops. The inner loop
finds the minimum item by examining each one in the array. In the outer loop,
each iteration exchanges the found minimum item with the first one so that
subsequent iterations can exclude the first one to proceed with sorting. In other
words, after the m-th iteration (of the outer loop), the array is divided into two
parts: the first part contains the leftmost m items of the array, which is sorted
while the remainder constitutes the second part, which is not sorted.

Just as a compiler can analyze this code and produce a series of primitive
arithmetic, logic, and control flow machine instructions, we have been able to
map the algorithm to a sequence of TC-RILC widgets. (The abstracted repre-
sentation for the POSIX variant can be found in [19].) Specifically, we have two
similar for-loops. The outer loop is the main loop, which will sort the first m
items after m iterations. The inner loop instead is responsible for finding the
minimum item in the array. Each loop, either outer or inner, needs to properly
perform conditional control flow, which is fulfilled with the lfind()+longjmp()
combination. In our exploit, we also apply several other techniques used in our
universal Turing machine simulator (i.e., wordexp() for arithmetic operations
and sscanf() for data movement). In total, there are 24 widgets used in the
outer loop and 14 widgets used in the inner loop. The end result is a code-reuse
exploit that can hijack our simple example program and sort an in-memory array.

We point out that implementing selection sort is not an end in and of itself,
but it demonstrates the feasibility of TC-RILC: one can similarly craft complex,
expressive attack codes by chaining entire functions to launch a TC-RILC attack.

5 Discussion

We have shown that the traditional return-into-libc attack, previously considered
to be limited to straight-line code, is actually Turing complete. Given this, it is
interesting to examine the reason why the traditional view of RILC attacks fails
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to properly recognize its expressive power and revisit the comparison between
TC-RILC and ROP as they are now equivalent in expressive power.

Analyzing the Commonly-Held Misconception. The RILC attacks have
been known for more than a decade [20]. However, the reason why we still suffer
from this misconception is in part attributed to the lack of thorough understand-
ing of the side-effects of legitimate C library functions. Specifically, we may have
been used to providing normal input arguments to these functions and do not
give careful and thorough consideration to all possible inputs. For example, the
previously claimed incapability of RILC to perform conditional branching can be
overcome by exploiting the side-effects of combining normal libc functions, i.e.,
lfind()+longjmp() or lsearch()+longjmp(). Also, the presence of a wealth
of libc functions greatly facilitates the selection, construction, and integration of
a variety of functional components in TC-RILC computation, including arith-
metic/logic, data movement, memory access, and system calls. Moreover, thanks
to the POSIX standard, the C library maintains a well-defined, consistent inter-
face across various OS variants and families. This interface not only significantly
contributes to the portability and compatibility of legitimate user programs, but
also equally helps the portability and compatibility of developed TC-RILC at-
tack code. For example, our Windows variant of the busy beaver Turing machine
can run on all 32-bit Windows OSs from Windows 95 to Windows 7. Also, our
experience indicates the cross-OS port is rather straightforward provided that
they support the POSIX standard. The only limitation we have encountered so
far is due to the lack of full POSIX-compliance in Windows.

From another perspective, one interesting open question is the issue of cross-
architecture portability. We have shown that the technique can be used on dif-
ferent operating systems on the x86 32-bit architecture, but it is not clear yet
how to carry the model to other CPU ISAs, especially RISC platforms. Our
technique depends on the calling convention in use, which is influenced by the
CPU architecture. For instance, the MIPS architecture passes most function pa-
rameters via registers rather than the stack, so applying TC-RILC in such an
environment seems problematic. This remains an interesting problem which we
leave to future work.

Revisiting the Comparison with ROP. Arguably due to its capability
to perform arbitrary computation (in which traditional RILC was thought to
be limited), ROP has recently attracted significant attention and development
[2,7,8,9,11]. With this limitation in traditional RILC attacks removed, there is
a need to re-assess the comparison between the two techniques.

As mentioned earlier, TC-RILC has several advantages. First, because it uses
the intended behavior of functions to operate, attacks can be ported to different
implementations by accordingly changing the function offsets and the format
of data; this is true even between very different environments, provided that
they support the same library functions. It is interesting to mention that most
existing work on code-reuse attacks makes a probabilistic argument: if enough
code is present, then it is likely that one can find enough code snippets to
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construct a Turing complete computation. In this work, however, we make a more
concrete claim: because we rely mainly on the intended behavior of standard-
ized functions, the TC-RILC technique is applicable to any standards-compliant
OS environment. Second, because these functions are necessary for the normal
operation of existing software12, they cannot be simply taken away. This is in
contrast with ROP, where the attacker is at the mercy of the specific machine
instructions available in the binary. Also, a TC-RILC attack requires less in-
formation about the library than ROP: TC-RILC needs the locations of used
library functions13, whereas ROP requires an in-depth scan of the binary for use-
ful instruction sequences. Third, certain existing anti-ROP defenses, i.e., DROP
[12] and DynIMA [4] are defeated by the TC-RILC technique. These techniques
observe the frequency or the presence of ret instructions and exploiting the fact
that ROP gadgets are typically 2-5 instructions in length. Though these defenses
are rendered ineffective by the recent ROP refinement [21], with the use of entire
functions, TC-RILC is naturally immune from these defenses.

On the other hand, TC-RILC does have some disadvantages. First, a TC-
RILC attack may require more stack space than an equivalent ROP attack. This
distinction could be important when the vulnerability only permits overflows
of a limited size. Second, our experience indicates that attacks based on TC-
RILC could be more complex to construct manually than ROP attacks. This
is primarily because of the complexity of storing data and operating control
flow entirely through side-effects. In contrast, ROP programs can leverage the
CPU registers to save state, and access memory only as needed. However, this
complexity could be effectively reduced or even eliminated by developing a RILC-
aware compiler, leveraging the same algorithms and techniques that produce
ROP attacks. Third, while performance is not the primary aim of a TC-RILC
attack, it is intrinsically computationally less efficient, especially when compared
to native program execution.

To measure its computation overhead, we adapted our Turing machine ex-
ample to compute a 5-state, 2-symbol busy beaver candidate, which runs for
47,176,870 steps, making it a much more computationally intensive program
than our earlier example. For comparison, we developed a straightforward Tur-
ing machine simulator based on the same algorithm in both Python and C. The
C version, which we use as a baseline, finished in 0.19 seconds, while the Python
version took 42.75 seconds (225 times slower). The TC-RILC execution took
419.38 seconds, and is therefore over 2000 times slower than the C implementa-
tion. Such an overhead is to be expected, as the exploit is rife with memory copy
and string processing operations which are unnecessary in a normal program.

12 Our TC-RILC mainly relies on POSIX functions and does not utilize any “danger-
ous” functions such as system(), which may be removed by some security measures.

13 They can be legitimately obtained by making certain library function calls. Exam-
ples include dlsym() in Linux and GetProcAddress() in Windows. Strictly speaking,
traditional RILC attack also requires the location of esp lifting instructions. How-
ever, they can be replaced with the frame faking technique [1]. Possibilities also exist
with the side-effects from misused library functions, e.g., longjmp().
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It is also interesting to explore some possible defense mechanisms to counter
TC-RILC attacks. At first impression, one may feel that removing vulnerable
functions from applications that do not need them might defeat TC-RILC. This
is indeed a generic approach to defend against traditional RILC attacks, though
in practice, it may be challenging to deploy. Particularly, there are several diffi-
culties: First, how do we know in advance those functions an application is going
to use or not going to use? Second, this approach will not work if it turns out
that the application itself needs those functions behind TC-RILC. One may also
attempt to hinder TC-RILC attacks by trying to improve the protection mech-
anism used in longjmp() function. It is an open question, however, as to how
effective it will remain when the attacker can almost always reverse-engineer the
new mechanism and devise a method to craft the related jmp buf.

From the attacker’s perspective, there are several possible ways to improve
TC-RILC attacks. One possible approach would be to extend the widget catalog.
In the interest of time, our current prototype does not explore other libraries
to find “abusable” widgets – as the current longjmp() and others are sufficient
to demonstrate that RILC is indeed Turing-complete. Given the amount and
size of installed libraries in a typical system (especially Windows), we strongly
believe that similar functions could be found. It is also worthwhile to point out
that in our current prototype, finding widgets requires manual analysis. More
engineering effort will be needed to develop a scanner to harvest widgets from
function specifications (e.g. header files).

We want to stress that, like ROP, TC-RILC is susceptible to some existing
defense techniques. To be clear, the goal of this paper is not to cast TC-RILC as
a threat without peer, but rather to reveal the unexpected fact that the RILC
technique is more expressive and flexible than previously thought. The defenses
available against this and other code-reuse attacks are explored and summarized
in the following section.

6 Related Work

The original return-into-libc (RILC) attack was formalized as early as 1997,
when Solar Designer introduced a single-call exploit which redirected control
flow into the system() function of libc in order to launch a shell [20]. This tech-
nique was subsequently expanded to include multi-function chaining through the
use of esp lifters and other techniques in 2001 [1]. This introduced the RILC
technique as a mechanism for straight-line, chained execution of functions. Not
satisfied with the limited expressive power that RILC was assumed to have,
Shacham et al. put forth the notion of return-oriented programming (ROP) [2].
By arranging and chaining the execution of short code sequences (“gadgets”),
ROP has been shown to be Turing complete. ROP was first introduced for the
x86 and subsequently expanded to other architectures, including SPARC [7],
ARM [8], and others. Further, Hund et al. presented a return-oriented rootkit
for the Windows operating system that bypasses kernel integrity protections [9].
Castelluccia et al. similarly presented a ROP-based rootkit, but deployed it on
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embedded devices to attack existing software-based attestation techniques [10].
Checkoway et al. showed the feasibility of a ROP-based attack against electronic
voting machines [11].

ROP attacks exhibit several peculiarities in their control flow and use of the
stack; these features have been used to develop defenses against the ROP tech-
nique. For instance, ROPDefender [22] rewrites existing binaries to record a
separate shadow stack which is used to verify that each return address is valid;
this prevents return-based attacks, including both ROP and RILC. Other sys-
tems also make use of a shadow stack, either in hardware or software, and can
be used to similarly enforce stack integrity [23,24,25].

Another interesting trait of ROP attacks is their reliance on gadgets—typically
only 2 to 5 instructions in length. This means that the frequency of the ret in-
struction during the execution of a ROP attack is abnormally high. Capitalizing
on this insight, DROP [12] and DynIMA [4] can detect a ROP-based attack. Be-
cause a TC-RILC attack makes use of whole function widgets, it does not exhibit
this anomaly and is therefore indistinguishable from normal program execution
to these defense schemes. From another perspective, the return-less approach
[13] and G-Free [6] prevent return-oriented gadgets from being located or assem-
bled. However, they only de-generalize the ROP back to (and will not block) the
traditional RILC as they still provide the same function-level semantics.

Continuing the arm race between attackers and defenders, various forms of
return-free code-reuses have been introduced. Checkoway et al. chain code snip-
pets ending in a pop/jmp sequences to achieve arbitrary computation with
ROP-like semantics [26]. Bletsch et al. introduce the concept of jump-oriented
programming,which leverages indirect jump sequences instead of ret instructions
to govern control flow [5]. Finally, Davi shows a jump-based attack on ARM is pos-
sible by using a special Branch-Load-Exchange (BLX) instruction [27].14

Other Defenses. In addition to defenses that specifically target ROP, there
are orthogonal defense schemes that protect against a variety of machine-level
attacks. Address-space layout randomization (ASLR) randomizes the memory
layout of a running program, making it difficult to determine the addresses in
libc and other legitimate code on which code-reuse attacks rely [28,29]. However,
there are several attacks which can bypass or seriously limit ASLR, especially on
the 32-bit x86 architecture [1]. Additionally, ASLR can be defeated by leakage
of sensitive information about the memory layout of the process [30]. There-
fore, while ASLR is certainly useful, it is not a silver bullet to the problem
of code-reuse attacks. Instruction-set randomization (ISR) is another attempt
at introducing artificial heterogeneity into program memory [31,32]. Instead of
randomizing address-space, ISR randomizes the instruction set for each running
process so that instructions in the injected attack code fail to execute correctly.
However, it is ineffective against code-reuse attacks, including ROP and RILC.

Many mechanisms have been proposed to enforce the integrity of memory.
Program shepherding is a technique to allow the application of security policy

14 Note that systems described separately in [26] and [27] are now merged [21].
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to control flow transfers [33]. Abadi et al. introduce the notion of Control Flow
Integrity (CFI), which seeks to ensure that execution only passes through ap-
proved paths taken from the software’s control flow graph [34]. Subsequent work
expanded on the notion of CFI to allow for other security features, such as Data
Flow Integrity (DFI) [35]. If CFI is properly enforced, most, if not all, code-
reuse attacks will be prevented. Unfortunately, systems which enforce CFI are
not widely deployed, presumably due to issues of overhead and complexity.

7 Conclusion

Return-into-libc (RILC) is one of the most common forms of code-reuse tech-
nique, but has been long considered to be incapable of arbitrary computation. In
this paper, we present the counterargument that, by chaining existing functions
in unique ways, RILC can be made Turing complete. Specifically, we demon-
strate that the generalized TC-RILC attack satisfies the formal requirements of
Turing completeness. Moreover, by relying mainly on the well-defined semantics
of libc functions, TC-RILC attacks are portable across OS variants and families
and can also bypass some recent anti-code-reuse defenses that target the return-
oriented programming technique. Our prototype development on both Linux and
Windows demonstrates the expressiveness and practicality of this technique.
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Abstract. Web applications have emerged as the primary means of ac-
cess to vital and sensitive services such as online payment systems and
databases storing personally identifiable information. Unfortunately, the
need for ubiquitous and often anonymous access exposes web servers to
adversaries. Indeed, network-borne zero-day attacks pose a critical and
widespread threat to web servers that cannot be mitigated by the use
of signature-based intrusion detection systems. To detect previously un-
seen attacks, we correlate web requests containing user submitted content
across multiple web servers that is deemed abnormal by local Content
Anomaly Detection (CAD) sensors. The cross-site information exchange
happens in real-time leveraging privacy preserving data structures. We
filter out high entropy and rarely seen legitimate requests reducing the
amount of data and time an operator has to spend sifting through alerts.
Our results come from a fully working prototype using eleven weeks of
real-world data from production web servers. During that period, we
identify at least three application-specific attacks not belonging to an
existing class of web attacks as well as a wide-range of traditional classes
of attacks including SQL injection, directory traversal, and code inclusion
without using human specified knowledge or input.
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1 Introduction

Web applications are the primary means of access to the majority of popular
Internet services including commerce, search, and information retrieval. Indeed,
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Fig. 1. Architecture

online web portals have become a crucial part of our everyday activities with
usage ranging from bank transactions and access to web email to social network-
ing, entertainment, and news. However, this reliance on ubiquitous and, in most
cases, anonymous access has turned web services into prime targets for attacks
of different levels of sophistication. Newly crafted attacks, often termed “zero-
day,” pose a hard to address challenge compromising thousands of web servers
before signature-based defenses are able to recognize them [31]. Although recent
research indicates that Anomaly Detection (AD) sensors can detect a class of
zero-day attacks, currently, AD systems experience limitations which prevent
them from becoming a practical intrusion detection tool.

In this paper, we propose a new defense framework where Content Anomaly
Detection (CAD) sensors, rather than traditional IDS systems, share content
alerts with the aim of detecting wide-spread, zero-day attacks. Contrary to pure
alert correlation and fusion [29], we exchange abnormal content across sites as a
means to reduce the inherent high false positive rate of local CAD systems. We
leverage local CAD sensors to generate an accurate, reliable alert stream where
false positives are consumed through a process of alert validation; false positives
rarely make their way in front of a human operator. We implement information
exchange mechanisms enabling the collaborative detection of attacks across ad-
ministrative domains. We believe such collaboration, if done in a controlled and
privacy preserving manner, will significantly elevate costs for attackers at a low
cost for defenders. Our system has a number of core capabilities: high-quality,
verified alert streams that focus on detecting the presence of and learn from zero-
day attacks and previously unseen attack instances; scalable alert processing; and
modular multi-stage correlation. Figure 1 illustrates the overall architecture.

Intuitively, inbound web requests fall into three categories: legitimate low
entropy requests, legitimate high entropy or rarely seen requests, and malicious
requests. Legitimate low entropy requests are the most accurately modeled by
CAD systems. Therefore, each individual CAD sensor will label previously seen,
low entropy requests as normal and will not exchange them with other CAD
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sensors. Legitimate high entropy or rare requests will often show up as abnormal
to the local CAD sensor and will therefore be exchanged. Since remote sites
do not have similar content due to the high entropy nature or rarity of these
requests, no matches will be identified, and thus no alerts will be raised. On
the other hand, malicious requests will appear as abnormal in many local CAD
models. Therefore, when exchanged, they will match other sites and alerts will
be raised. The more sites participating the better the coverage and the faster
the response to wide-spread web attacks. Space and structural constraints due
to HTTP protocol and specific web application parsing limit the ability for an
attacker to fully exploit polymorphism techniques, analyzed in [22], so each zero-
day attack should exhibit similar content across the attacked web services.

In our experimental evaluation, we use eleven weeks of traffic captured from
real-world, production web servers located in different physical and network
locations. We do not inject any artificial or additional data. All attacks and
statistics described are observed on live networks. We measured the detection
and false positive changes from adding an additional server in the sharing system.
Most interestingly, we confirm the theory presented by [4] that false positives
tend to repeat across sites. Additionally, as most of the false positives occur
early and often, we show that CAD systems can benefit greatly from a reasonable
cross-site training period. This reduces the number of the false positives to 0.03%
of all the normalized web requests. Furthermore, we quantify the similarity of
the produced CAD models from each site over long periods of time. Using these
models we provide an analysis of how aggregate normal and abnormal data
flows compare between sites and change over time. Moreover, we furnish results
regarding the threshold of the matching content and the effects of increasing the
set of participating collaborating sites. Finally, we are the first to present a real-
world study of the average number of alerts a human operator has to process per
day. Moreover, we show that the alert sharing and correlation of alerts reduces
the human workload by at least an order of magnitude.

2 Related Work

Anomaly Detection techniques have been employed in the past with promising
results. Alexsander Lazarevic et al. compares several AD systems in Network
Intrusion Detection [12]. For our analysis, we use the STAND [5] method and
Anagram [30] CAD sensor as our base CAD system. The STAND process shows
improved results for CAD sensors by introducing a sanitization phase to scrub
training data. Automated sensor parameter tuning has been shown to work
well with STAND in [6]. Furthermore, the authors in [24] observe that replac-
ing outdated CAD models with newer models helps improve the performance
of the sensor as the newer models accurately represent the changes in network
usage over time. Similarly, in [30] the authors proposed a local shadow server
where the AD was used as a fiter to perform dynamic execution of suspicious
data. In all of the above works, due to limited resources within a single domain,
a global picture of the network attack is never examined. Furthermore, Intrusion
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Detection Systems that leverage machine learning techniques suffer from well-
known limitations [20]. In the past, there has been a lot of criticism for Anomaly
Detection techniques [25] especially focusing on the high volume of the false
positives they generate. With our work we dispel some of this criticism and we
show that we can improve the performance of CAD systems by sharing content
information across sites and correlating the content alerts.

Initially, Distributed Intrusion Detection Systems (DIDS) dealt with data
aggregated across several systems and analyzed them at a central location within
a single organization. EMERALD [23] and GrIDS [18] are examples of these
early scalable DIDS. Recent DIDS systems dealt with collaborative intrusion
detection systems across organizations. Krügel et al. developed a scalable peer-
to-peer DIDS, Quicksand [9,10] and showed that no more messages than twice the
number of events are generated to detect an attack in progress. DShield [27] is a
collaborative alert log correlation system. Volunteers provide DShield with their
logs where they are centrally correlated and an early warning system provides
“top 10”-style reports and blacklists to the public gratis. Our work differs in that
we rely on the actual user submitted content of the web request rather than on
source IP. More general mechanisms for node “cooperation” during attacks are
described in [2,1].

DOMINO [33], a closely related DIDS, is an overlay network that distributes
alert information based on hash of the source IP address. DShield logs are used to
measure the information gain. DOMINO differs from our technique as it does not
use AD to generate alerts. DaCID [7] is another collaborative intrusion detection
system based on the Dempster Shafer theory of evidence of fusing data. Another
DIDS with a decentralized analyzer is described by authors in [34].

Centralized and decentralized alert correlation techniques have been studied
in the past. The authors in [26] introduce a hierarchical alert correlation archi-
tecture. In addition to scalability in a DIDS, privacy preservation of data send
across organizations is a concern. Privacy preservation techniques that do not
affect the correlation results have been studied. A privacy preserving alert corre-
lation technique, also based on the hierarchical architecture [32] scrubs the alert
strings based on entropy. We expand Worminator [15] a privacy preserving alert
exchange mechanism based on Bloom filters, which had previously been used for
IP alerts. Furthermore, Carrie Gates et al. [8] used a distributed sensor system
to detect network scans albeit showing limited success. Finally, there has been
extensive work in signature-based intrusion detection schemes [19] [16]. These
systems make use of packet payload identification techniques that are based
on string and regular expression matching for NIDS [28] [11] [14]. This type of
matching is only useful against attacks for which some pattern is already known.

3 System Evaluation

3.1 Data Sets

We collected contiguous eight weeks of traffic between October and Novem-
ber 2010 of all incoming HTTP requests to two popular university web servers:
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Fig. 2. A normalization example from a confirmed attack. The first line of the original
GET request is shown. We use the output of the normalization function for all future
operations.

www.cs.columbia.edu and www.gmu.edu. To measure the effects of scaling to mul-
tiple sites, we added a third collaborating server, www.cs.gmu.edu. This resulted
in an additional three weeks in December 2010 of data from all three servers.
The second data set allows us to analyze the effects of an additional web site to
the overall detection rate and network load. To that end, we are able to show the
change in the amount of alert parsing a human operator would have to deal with
in a real-world setting and analyze models of web server request content. All
attacks detected are actual attacks coming from the internet to our web servers
and are confirmed independently using either IDS signatures[17,16] developed
weeks after the actual attacks occurred and manual inspection when such sig-
natures were not available. However, that does not preclude false negatives that
could have been missed by both signature-based IDS and our approach. The
number of processed packets across all of our datasets are over 180 million in-
coming HTTP packets. Only 4 million of them are deemed as suspicious because
our normalization process drops simple web requests with no user submitted
variables.

3.2 Normalized Content

Our system inspects normalized content rather than packet header attributes
such as frequency or source IP address. We process all HTTP GET requests and
we extract all user-defined content (i.e. user specified parameters) from the URI
across all request packets. Putting aside serious HTTP protocol or server flaws,
the user specified argument string appears to be primary source of web attacks.
We use these user-specified argument strings to derive requests that are deemed
abnormal and can be used for correlating data across servers serving different
pages. Additionally, we normalize these strings in order to more accurately com-
pare them [4,21]. We also decode any hex-encoded characters to identify potential
encoding and polymorphic attacks. Any numeric characters are inspected and
but not retained in the normality model to prevent overtraining from legitimate
but high entropy requests. Also, we convert all the letters to lowercase to allow
accurate comparisons and drop content less than five characters long to avoid
modeling issues. Figure 2 illustrates this process.

Moreover, we perform tests analyzing POST request data as well. POST re-
quests are approximately 0.34% of the total requests. However, our experiments
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show that the current CAD sensor does not accurately train with data that ex-
hibits large entropy typical in most POST requests. We leave the development
of a new CAD sensor that can accurately model POST requests for future work
and we focus on analyzing GET requests, which dominate the web traffic we
observe (99.7%).

3.3 Content Anomaly Detector and Models

In cross-site content correlation, each site builds a local model of its incoming
requests using a Content Anomaly Detection (CAD) sensor. In our experiments,
we leverage the STAND [5] optimizations of the Anagram [30] CAD sensor al-
though any CAD sensor with a high detection rate could be used with our
approach. However, we apply the CAD sensors on normalized input instead of
full packet content as they originally operated on in order to obtain more accu-
rate results. Moreover, we fully utilize all of the automatic calibration described
in [6] including the abnormal model exchange to exclude repeated attacks from
poisoning the training data. The Anagram normal models are, as described in
[30], Bloom filters [3] containing the n-gram representation of packets voted as
normal by the STAND micro-models. A Bloom filter is a one-way data structure
where an item is added by taking multiple hashes and setting those indices of a
bit array to one. This provides space efficiency and incredible speed suitable for
high speed networks since adding an element or checking if one is already present
are constant time operations. Each normalized content is spilt into 5-gram sec-
tions as in [5] using a sliding window of five characters. See Figure 3(a) for an
example. Requests can then be easily tested as to how many of the n-grams
from their argument string are present in the model. N-grams give us a granu-
lar view of content allowing partial matches as opposed to hashing full content
while maintaining enough structure of the content to be much more accurate
than character frequency models. Previous work [15] calibrated Bloom filters
to have an almost non-existent false positive rate and shows that extracting the
content is infeasible, which allows for the preservation of privacy. The models
we use are 228 bits long and compress to about 10-80KB, a size that is easily
exchanged as needed. The Anagram models test weather new content is similar
to previous content by comparing how many of the n-grams exist in the model
already.

3.4 Alert Exchange

We leverage the initial work of Worminator [15], an alert exchange system that
we heavily extend to meet the needs of our system. A content exchange client
instance runs at each site and receives content alerts and abnormal models. We
use a common format so that any CAD sensor can easily be adapted to work with
the exchange system. In our case, each site’s local STAND/Anagram sensor sends
the content alert packet to the Worminator client as soon as it tests a packet
and finds it abnormal. The Worminator client then encodes the content alerts
as Bloom filters if at a remote site and then sends the content alerts and any
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(a) A string broken into n-grams (b) N-grams added to the Bloom Filter

Fig. 3. n-grams and Bloom Filter

abnormal models through a secure channel over the internet to the Worminator
server. The bandwidth usage with this alert exchange turns out to be minimal
since we only look at GET requests with argument strings and then further
narrow down content by only exchanging the abnormal content alerts. It turns
out that each alert encoded in a Bloom filter takes around 2KB to transmit
on average. For our eight week experiment this translates into an average of
0.9Kb/sec bandwidth needed per site for a real time system, leaving plenty of
room to scale up to a large set of collaborators before running into bandwidth
constraints. A back-end process on the server performs the correlation of content
alerts by comparing the local unencoded alerts to the Bloom filter representation
of alerts from remote sites. We perform all our experiments faster than real time
while exchanging encoded content alerts securely over the internet.

By exchanging content alerts from remote sites only in their Bloom filter form
our system can protect the privacy of legitimate web requests. During the Bloom
filter correlation process only the fact that a match occurs can be determined
not any specific content. If a match occurs then this is a piece of content that a
site has already seen coming to their server, so the only new information revealed
is that the other site also had this content incoming. In this way we can gain
information about the content we have in common, which most likely represents
attacks while keeping the remaining content private in case there is sensitive
information in the web requests.

3.5 Scaling to Multiple Sites

Our initial system deployment consists of three web servers. However, to be
even more effective at quickly detecting widespread attacks, we envision a larger
scale system deployment consisting of many collaborating sensors monitoring
servers positioned in different locations on the Internet. For the system to scale
up to include more sites, the correlation and alert comparison process has to
scale accordingly. If we consider the pair-wise comparison of local alerts with
each remote alert, it appears to grow asymptotically: O(n2). This could turn
can quickly become a problem; however, we can bound this total computation
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Fig. 4. Each model is stored in a Bloom filter, we count the number of bits set in
common and then divide by the total number of bits set

under a constant K by varying the amount of time duplicate alerts are stored
in the system. In practice, we did not observe problems during our experiments
even keeping eight weeks of data for correlation because indexing of alerts can
be done using existing computationally efficient algorithm. Moreover, we only
have to operate on unique alerts which are much smaller in size. Additionally,
if a longer time frame is desirable, we can employ compression to the remote
site alerts into a small number of Bloom filters by trading-off some accuracy
and turn the scaling into order O(n) allowing many more alerts to be stored
before running into any scaling issues. In that case, each time a new site joins
the collaboration our local site must compare its alerts to the Bloom filters of
those from the new site. Therefore, the overall computational complexity scales
linearly with the number of remote sites participating. Since we can bound the
local comparison with a remote site under K, the total computational cost scales
linearly as well, and each site has optional tradeoffs in time alerts are kept and
Bloom filter aggregation if local resources are limited. In practice, based on
our numbers even with an unoptimized prototype we could scale to around 100
similar servers operating in real time and comparing all alerts over a few weeks’
time. If additional utility is derived from having even more participating servers,
then optimizing the code, time alerts are kept, and trading off accuracy in Bloom
filter aggregation should easily allow additional magnitudes of scaling.

4 Model Comparison

Each normal model is a Bloom filter with all the n-grams of all normalized
requests. By comparing Bloom filters as bit-arrays, we are able to estimate how
much content models share. We test how many set bits each pair of models have
in common and divide by the total number of set bits to get a percentage of
set bits in common. The generated Bloom filters are quite sparse; therefore, the
overlap of bits between content should be small as observed in Figure 4. We used
this model comparison metric to compute the server distinctness and change in
normal flows over time, whether servers in the same domain share additional
commonality, and how much abnormal data we see in common across servers.

We first use this comparison to observe the differences in models from distinct
sites with each other. We took every fifth model from our runs and compared the
ones from the same runs to their counter parts at the other location. For normal
models in our eight week run, we see on average 3.00% of bits set in common. We
compare this to the over 40% of bits in common on average comparing models
at the same site (Table 1). There is some overlap indicating that not filtering
out normal content before performing the content alert correlation could lead
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Fig. 5. Model comparison: the higher the figure the higher percentage of set bits the
models had in common. The top and bottom quadrant are intra-site comparisons.
The sides represent the comparison across-sites which, as expected, appear to have
differences.

to increased false positives. While we do not have enough sites to calculate how
important this distinctness is to the accuracy achieved via correlation of alerts,
we do confirm that at least for the distinct web servers our correlation process
achieves effective results. See Figure 5 for a plot of the model comparison results.
Models across long periods seem to keep a core of commonality but differ more
than models close together in time. A product of this gradual change appears
even with only five weeks difference in our datasets. Averaged over eight weeks
both sites keep over 40% of bits in common while in the three week run this
is closer to 50%. This reinforces existing work [5] showing that traffic patterns
do evolve over time indicating that updating normal models periodically should
increase effectiveness.

With our three week data set, we also have an additional web server from
one administrative domain. With two web servers from the same Autonomous
System we compare them to each other to see if our work has the potential to
help a large organization that may have many separate web servers. See Table 2
for empirical details. Interestingly, we find no more commonality among normal
models in the same domain than across domains. The fact that abnormal models
at the these web servers share about as much in common with the server from
another domain as each other suggests that attackers likely do not specifically
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Table 1. Commonality of normal and abnormal models

Comparison
Normal Abnormal
Models Models

Oct.-Nov. Oct.-Nov.

Columbia CS 41.45% 52.69%

GMU Main 41.82% 38.51%

Cross site 3.00% 10.14%

Table 2. Comparison of abnormal and normal models between three sites. (Percentages
of set bits in common shown.)

Comparison -
Columbia CS GMU Main GMU CS

Normal Models

Columbia CS 44.89% 3.89% 4.08%

GMU Main 48.39% 2.41%

GMU CS 56.80%

Comparison -
Abnormal Models

Columbia CS 53.05% 9.46% 9.32%

GMU Main 48.39% 8.55%

GMU CS 70.77%

target similar IP ranges with the same attacks. This suggests that web server
administration and location may not play a factor in the effectiveness of using a
particular web server for collaboration. An organization with sufficiently distinct
web servers might be able to achieve good results without having to overcome
the obstacles related to exchanging data between organizations.

The abnormal models from different sites show some similarity with close to
10% set bits matching, while models from the same site show more similarity. The
high amount of common abnormal data between models at the same site may
be influenced by legitimate requests classified as abnormal. More interesting is
the commonality across sites. These shared bits most likely represent the attack
data that we have found in common. There is an irregularity where some of the
abnormal models are empty and could not be compared. We remove these empty
models before computing the averages to avoid divide by zero issues. Multiple
runs with the data confirm the strange behavior which can be contributed to a
convergence of the STAND micromodels voted to include all the data from that
time period into the normal models leaving the abnormal models empty.

Overall, our model comparisons provide quite interesting results. We find that
each site has normal traffic flows that are distinct although changing somewhat
over long periods of time. We see no major distinctions in comparison of same
domain servers versus servers on separate domains, which indicates that our
system could be deployed by a sufficiently large organization to protect itself
without having to rely on outside collaborators. Finally, our measurements of
abnormal data validate the idea that separate servers will receive similar attacks.
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Table 3. Normalized examples of legitimate abnormal data seen at only one site

cx=:cjygsheid&cof=forid:&ie=utf-&q=machine+learning+seminar&sa=go

o=-&id=&s=uhkf&k=hsbihtpzbrxvgi&c=kg

Table 4. Normalized example of abnormal data one from each site that match

faq=’ and char()+user+char()= and ”=’

id=’ and char()+user+char()= and ”=’

5 Correlation Results

The correlation process compares each unique content alert from the local sen-
sors against the Bloom filter representation of each unique content alert from
other sites. If at least 80% of the n-grams match the Bloom filter and the length
of content before encoding, which is also exchanged, is within 80% of the raw con-
tent then we note it as a match. These matches are what the system identifies as
attacks. Once these attacks are identified, the Bloom filter representation could
be sent out to any additional participating servers and future occurrences could
be blocked. In order to confirm our correlation results with the Bloom filters, we
also perform an offline correlation of results using string edit distance [13] with
a threshold of two changes per ten characters. We cluster together any pair of
alerts from either site with less than this threshold. If a cluster contains alerts
from more than one site, then it represents a common content alert. With only
minor differences, these methods give us similar performance confirming that us-
ing privacy preserving Bloom filters provides an accurate and computationally
efficient correlation. To simulate a production deployment, we use the Bloom
filter comparison as our default correlation technique and use the string edit
distance clustering only to facilitate manual inspection as needed, especially at
a single site. See Table 3 for examples of true negatives where legitimate requests
are not alerted on since each is seen at just one site. Table 4 shows an example
of the same attack with slight variation being matched between two sites.

We run our experiments correlating the abnormal traffic between sites from
our October-November eight week dataset and our December three week dataset
and then manually classify the results since ground truth is not known. We depict
the system’s alerts in Table 5. As we predicted in [4], most of the false positives
repeat themselves early and often so we also show the results assuming a näıve
one week training period which labels everything seen in that week and then
ignores it. While this training technique could certainly be improved upon, we
choose to show this example in order to better show the effectiveness of the
approach as a whole and to preclude any optimizations that might turn out to
be dataset specific. Such a training period provides a key service in that most
false positives are either due to a client adding additional parameters regardless
of web server, such as with certain browser add-ons, or servers both hosting the
same application with low enough traffic throughput that it fails to be included
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Table 5. Main experiment results considering a match to be at least 80% of n-grams
being in a Bloom filter. Note that the 5th column results are included in column 4.
Also, note that due to self training time for the CAD sensor actual time spent testing
data is about two days less.

Oct-Nov
Oct-Nov

Dec.
Dec. Gained by Dec.

with with adding Common to
training training third server Three Sites

Duration of testing1 54 days 47 days 19 days 12 days

Total false positives 46653 362 40364 1031 1006 0

Unique false positives 64 13 48 5 3 0

Total true positives 19478 7599 7404 2805 186 322

Unique true positives 351 263 186 89 9 8

in a normal model. Many of these cases tend to be rare enough to not be modeled
but repeat often enough that a training period will identify them and prevent
an operator from having to deal with large volumes of false positives. Certainly
with such a näıve automated approach, attacks will not be detected during this
training period, but after this period we end up with a large benefit in terms of
few false positives with little negative beyond the single week of vulnerability.
Any attacks seen during training that are then ignored in the future would have
already compromised the system so we do not give an attacker an advantage
going forward. In fact this training period serves an operator well in that many
of the high volume attacks that are left over “background radiation” will be
seen in this training period and thus not have to be categorized in the future.
Adding an additional web server in our last experiment provides a glimpse at
how broadening the scope of collaboration to a larger network of web servers
can help us realize a high detection rate.

Let us now analyze how accurate our system is. The false positive rate is
relatively easy to compute. We manually classify the unique alerts and then
count the total occurrences of each. With regard to the number of requests that
pass through the normalization process the false positive rate is 0.03%. If you
calculate it based on the total incoming requests then it is much less. The true
positive rate or detection rate is much harder to accurately measure since we have
no ground truth. Recall, we are trying to detect widespread attacks and leave the
goal of detecting attacks targeted at a single site to other security methods in
order to better leverage collaboration. With this in mind, there exists two places
where a widespread attack could be missed. An attack could arrive at multiple
sites but not be detected as abnormal by the one of the local CAD sensors and
therefore, never be exchanged with other sites. The other possibility is that an
attack could be abnormal at both sites but different enough that the correlation
method fails to properly match it.

In the first case where a local CAD sensor fails to identify the attack as
abnormal, we have a better chance to estimate our accuracy. Most CAD sensors

1 Due to equipment outages approximately three hours of data is missing from the
Oct.-Nov. www.cs.columbia.edu dataset and less than 0.5% of the Dec. dataset ab-
normal data totals are missing.
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Table 6. Normalized examples of actual attacks seen at multiple sites

mosconfig absolute path=http://phamsight.com/docs/images/head??

config[ppa root path]=http://phamsight.com/docs/images/head??

option=com gcalendar&controller=../../../../../../../../../../../../../../../proc/self/environ%

id=’ and user=–

id=-.+union+select+–

command=createfolder&type=image&currentfolder=/fck.asp&newfoldername=test&uuid=

option=com user&view=reset&layout=confirm

are vulnerable to mimicry attacks where an attacker makes the attack seem like
normal data by padding the malicious data in such a way as to fool the sensor.
We can mitigate this by deploying very different sensors to each site, which while
individually vulnerable to a specific padding method as a whole are very difficult
to bypass. In this way an attacker might bypass some sites, but as the attack is
widespread eventually two of the CAD sensors that the attacker is not prepared
for can detect the attack and broadcast a signature out to the rest of the sites.

In the latter scenario, we have to rely heavily on the vulnerable web applica-
tions having some structure to what input they accept so that attacks exploiting
the same vulnerability will be forced to appear similar. We can certainly loosen
correlation thresholds as seen in Table 8 as well as come up with more correlation
methods in the future. In practice, this is where the lack of ground truth hinders
a comprehensive review of our performance. As far as we can tell, between the
structure imposed by having to exploit a vulnerability with HTTP parameters,
lower correlation thresholds, and finding additional attributes for correlation we
should have a good head start on attackers in this arms race. At the very least,
our layer of security will make it a race instead of just forfeiting to attackers
immediately once a vulnerability is found. Without ground truth, we cannot be
sure that we detect all widespread attacks. We have seen no indication in our
data that attackers are using any of the above evasion techniques yet, so we be-
lieve that our system will provide an effective barrier, one which we can continue
to strengthen using the above approaches.

We detect a broad range of widespread attacks, with some examples shown
in Table 6. Common classes of attacks show up such as code inclusion, directory
traversal, and SQL injection. Our system faithfully detects any wide spread
variants of these attacks, some of which might evade certain signature systems;
however, the novel attack detection our system provides lies with the last two
examples shown. These two attacks are attempting to exploit application specific
vulnerabilities, one attacking an in-browser text editor and the other a forum
system. Since attacks such as these resemble the format of legitimate requests
and lack any distinct attribute that must be present to be effective, existing
defenses cannot defend against zero-day attacks of this class. The fact that our
system caught these in the wild bodes well for its performance when encountering
new widespread zero-day attacks.

An examination of the false positives explains the repeated nature and sporadic
occurrences of new false positives. See Table 7 for some examples of normalized
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Table 7. Normalized examples of false positives seen at multiple sites

ul=&act=&build=&strmver=&capreq=

c=&load=hoverintentcommonjquery-color&ver=ddabcfcccfadf

jax=dashboard secondary

feed=comments-rss

false positives. All the false positives fall into one of two broad categories: rare
browser specific requests or rarely used web applications installed on two or more
collaborating servers. For example the most common false positive we see is an
Internet Explorer browser plug-in for Microsoft Office which sends a GET request
to the web server regardless of user intent. The use of this plug-in is rare enough
that the request shows up as abnormal at all sites. As for server side applications,
we see most of the unique false positives relating to the administrative functions
of isolated Word Press blogs which see so little use that the requests stand out
as abnormal. New false positives will continue to occur in small numbers as web
servers and browsers evolve over time (less than one per three days on average
during our eight week run). We believe that identifying these few rare occurrences
is quite manageable for operators. This task gets easier since as the number of
collaborators grow so do the resources for the minimal manual inspection needed
to identify these isolated occurrences.

Adding a third web server, www.cs.gmu.edu, to the collaboration shows that
additional web servers help us to identify more attacks and allows some basic
insight into what types of web servers might be best grouped together for collab-
oration. Assuming our training method, adding this third server as a collaborat-
ing server exchanging data with www.cs.columbia.edu allows us to detect 11.25%
more unique attacks than just correlating alerts between www.cs.columbia.edu
and www.gmu.edu. This increase over the 80 unique attacks we detect without
it, supports the need for adding substantial numbers of collaborators to increase
the detection rate. Unfortunately this new collaborating server also introduces
false positives that we do not see in previous experiments. We expect as with
previous false positives that future experiments will most likely repeat these with
few new additions. An offline correlation using edit distance shows both GMU
web servers having a number of attacks in common as well. This supports an
idea that collaborating with distinct web servers could be as useful as collab-
orating across sites. False positives seem to be a function of rarely used web
services located at each server, so servers hosting only a few clearly defined and
well used services may give substantially better results.

This additional web server also provides the opportunity to require alerts
to be seen by at least three sites before reporting them as attacks. While this
proposition is hard to accurately evaluate with only one data set and just three
servers, of which www.cs.gmu.edu experiences much lower traffic volumes, a
couple interesting results stand out. As expected, both false positives and true
positives drop off significantly. We see no false positives after the training period.
This shows that for at least our data sets all of the server-side services that
cause false positives drop out once we require three web servers to have the
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Table 8. Experimental results considering a match to be at least 60% of n-grams to
be in a Bloom filter

Oct-Nov
Oct-Nov

Dec.
Dec. Gained by Dec.

with with adding Common to
training training third server Three Sites

Total false positives 47605 439 41845 1017 4 0

Unique false positives 77 23 55 5 1 0

Total true positives 25042 10168 9594 3272 254 293

Unique true positives 488 362 221 109 10 8

data in common. If this continues to be the case as more servers are added,
then only reporting attacks that target three or more servers could solve most of
the false positive issues. While requiring three servers to confirm an attack does
yield less true positives, the ones it does detect are quite widespread and if the
collaboration is expanded, the detection should increase greatly. This method,
while scaling in detection rate more slowly than only requiring two servers to
confirm attacks, could be a much more effective option to keep false positives
low once enough servers collaborate.

We calculate the implications of changing the threshold for matching two
alerts. Increasing the threshold past 80% to require perfect or almost perfect
matches fails to help in reducing the false positives, since at this threshold almost
all of the false positives are exact matches so even requiring all n-grams to match
a Bloom filter exactly does not help. Reducing the threshold to allow more loose
matches does show a trade off in increased detection of attacks at the expense
of additional false positives. By only requiring 60% of n-grams from one alert
to match the Bloom filter representation of another site’s alert, we can expect
to capture attacks with significantly more variance such as similar payloads
targeting different web applications. See experiment details in Table 8. While
at first, the results from a lower threshold appear quite good in terms of raw
numbers of alerts, looking at only the new unique alerts which human operators
have to classify tells a more balanced story. Going from an 80% threshold to
60% for our eight week run with a training period increases the detection of new
unique attacks by 37.6%, while increasing the newly seen unique false positives
by 76.9%. In the three week run, the lower threshold adds no new unique false
positives pointing to the need for threshold optimization once the system scales
up. In fact, it lowers the utility of adding a new server since the existing ones
detect additional attacks without it. However, as the number of web servers
collaborating increases, this matching threshold along with the number of servers
required to share an alert before reporting it as an attack should be key settings
in order to optimize the system as they both key methods in this approach for
controlling the false positive rate.

From the offline generated alert clusters, we conduct a temporal study of the
alerts seen across the three servers. Firstly, we look at the time gap between alerts
across sites. We compute the pairwise time gap of common alert clusters across
the three servers. Additionally, we calculate the minimum time gap between alert
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Fig. 6. Time gap between alerts at collaborating sites

Table 9. Time gap statistics across three sites

Time Gap Across Site CU, Across Site Across Site CU Across Site GMU
in Minutes GMU and GMU CS CU and GMU and GMU CS and GMU CS

Min 0.23 1.48 7.52 0.23

Max 17501.07 25911.00 20589.02 24262.13

Average 4579.85 5477.35 7048.07 6489.08

Std. Dev. 5250.04 6173.61 7038.27 7634.13

clusters common to all of the three servers. Table 9 summarizes the minimum,
maximum, average and standard deviations of the time gaps for the above cases.
A better visual representation of the common alert clusters across all of the
three servers is represented in Figure 6. The graph shows the minimum time gap
between alerts observed at one server and the same alert being observed at the
other two servers. The horizontal axis denotes the relative time elapsed since the
start of observing the first alert. The vertical axis denotes the cluster. Each of
the bars in the graph start at the time when an alert is observed at a site and
ends at a time when it is seen first among the other two sites. The bar graphs
are color coded to represent where the attack was first seen. From the statistics
it can be seen that the average time gap between alerts could be used to our
advantage. The results from the time gap analysis from the October-November
run computed across CU and GMU shows a similar large average value (Min:
1.57min, Max: 71022.07min, Average: 15172.53min, Std. Dev.: 18504.44min).
This gives us sufficient time to take preventive action at the collaborating sites
by exchanging a small blacklist. Furthermore, we analyze the number of unclas-
sified unique alerts that an operator has to manually classify every day. Figure 7
depicts the number of unique alerts generated daily. The graph shows both true
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Fig. 7. Number of new unlabeled unique alerts per day that a human operator would
have to parse. The large number of false positives from AD system is reduced by almost
a magnitude difference when correlated to other sensors.

positive and false positives observed using our collaborative approach alongside
a stand alone approach. The horizontal axis denotes time in one day bins and
the vertical axis denotes the frequency of alerts observed on a log scale. For the
stand alone CAD sensor, a unique alert is included in the frequency when it
is first observed at a site. However, for multiple sites collaborating, an alert is
included in the frequency count at the time when it is confirmed to be seen at all
sites. On average the number of unique alerts observed every day using a stand
alone CAD sensor at CU is 82.84 compared to 3.87 alerts when a collaborative
approach, over an order of magnitude in difference. Therefore, a collaborative
approach clearly reduces the load on the operator monitoring alerts to an easily
managed amount.

6 Conclusions

Web services and applications provide vital functionality but are often suscepti-
ble to remote zero-day attacks. Current defenses require manually crafted signa-
tures which take time to deploy leaving the system open to attacks. Contrary, we
can identify zero-day attacks by correlating Content Anomaly Detection (CAD)
alerts from multiple sites while decreasing false positives at every collaborating
site. Indeed, with a false positive rate of 0.03% the system could be entirely
automated or operators could manually inspect the less than four new alerts per
day on average that we observe in our eight week experiment. We demonstrate
that collaborative detection of attacks across administrative domains, if done in
a controlled and privacy preserving manner, can significantly elevate resources
available to the defenders exposing previously unseen attacks.
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Abstract. Despite their exponential growth, home and small of-
fice/home office networks continue to be poorly managed. Consequently,
security of hosts in most home networks is easily compromised and these
hosts are in turn used for largescale malicious activities without the home
users’ knowledge. We argue that the advent of Software Defined Network-
ing (SDN) provides a unique opportunity to effectively detect and contain
network security problems in home and home office networks. We show
how four prominent traffic anomaly detection algorithms can be imple-
mented in an SDN context using Openflow compliant switches and NOX
as a controller. Our experiments indicate that these algorithms are sig-
nificantly more accurate in identifying malicious activities in the home
networks as compared to the ISP. Furthermore, the efficiency analysis
of our SDN implementations on a programmable home network router
indicates that the anomaly detectors can operate at line rates without
introducing any performance penalties for the home network traffic.

Keywords: Anomaly detection, Network Security, Software Defined
Networking, Programmable Networks, Openflow.

1 Introduction

Over the last decade, widespread penetration of broadband Internet in the home
market has resulted in an explosive growth of SOHO (Small Office/Home Of-
fice) and purely home networks. Since users operating such networks are not well
versed in computer networking, security of these networks is generally unman-
aged or poorly managed. Computers in such networks are often compromised
with malware, mostly without the knowledge of the user.1 On a local level,
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that malware infections have reached an alarming coverage of around 48% (among
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24% of all the detected malware can be linked to financial crimes.
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such malware creates problems for the home users, like hogging their network
bandwidth, leaking confidential information, or tampering financial transactions.
More importantly, criminal elements often employ these compromised machines
as zombies to carry out Internet-wide malicious activities. With the highly di-
verse hardware and software deployed in home networks, ISPs have little visibil-
ity into or control over home networks’ traffic. Consequently, instead of resolving
the problem at its roots (i.e., the home network), ISPs resort to traffic monitoring
and security policing in the network core.

We argue that the emerging concept of Software Defined Networking (SDN)2

offers a natural opportunity to delegate the task of network security to the home
network while sparing the home user from complex security management tasks.
Implementation of such a network can be easily achieved using switches support-
ing the OpenFlow protocol [28], which allows a network controller (e.g. NOX
[21]) to programatically control the forwarding behavior of the switch. While
benefits of SDN are thus far being envisioned for core network environments,
we advocate the use of this technology in the home network where it offers the
flexibility to achieve highly accurate security policing, line rate operation (due
to low traffic rates), and, most importantly, delegation of security policy im-
plementation to downstream networks. Our hypothesis is that a programmable
home network router provides the ideal platform and location in the network for
detecting security problems.

To put theory to practice, we revisit a security solution which has been ex-
plored (rather unsuccessfully) in the past: Deployment of an Anomaly Detection
System (ADS) in the network core. ADSs model the normal traffic behavior of
a network and flag significant deviations from this behavioral model as anoma-
lies. Many ADSs have been proposed during the last few years to detect traffic
anomalies in the network core [20,22,29,30,31]. However, deployment of ADSs
in the network core has been plagued by two problems: 1) Low detection rates :
While some systems can provide high detection rates [12], they are not usable
in a practical setting because they generate a large number of false positives; 2)
Inability to run ADS algorithms at line rates in the network core: Packet and
flow sampling [2,3,4,23,25] is being used to mitigate this problem, but sampling
further degrades anomaly detection accuracy by distorting important traffic fea-
tures [13,27].

Both of the above problems can be mitigated if anomaly detection is per-
formed close to the anomalous sources, i.e. the endpoints in SOHO or home
networks. Thus far, a main obstacle in deployment of security systems in home
networks is that switches and routers run proprietary software and are closed to
outside control. Moreover, most home users either cannot or do not want to be
burdened with the task of configuring and installing such systems. We believe
that Software Defined Networking can provide a viable solution to this prob-
lem. The primary benefit provided by SDN is standardized programmability i.e.
once a solution is developed it can be deployed to a diverse range of networking

2 The SDN concept was originally proposed in [21] and was recently defined more
formally in [24].
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Table 1. Header fields in an Openflow table entry [7]
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hardware which complies with the SDN technology (e.g. Openflow). Further-
more any improvements in the switching hardware or any changes to the SDN
implementations are easy to integrate because of the standardized abstraction
layer.

In order to test our hypothesis, we ask the following questions: 1) Can existing
anomaly detection algorithms be ported faithfully to a Software Defined Net-
work (SDN)? 2) How easy is it to implement these algorithms in a SDN and what
benefits do we get from doing so? 3) How much accuracy degradation (if any) is
caused when an anomaly detector is run in the ISP versus running the same de-
tector in a home/SOHO network? 4) Is there any difference in accuracy between
the SDN and standard implementations running in a home/SOHO network? 5)
Are there any performance problems when running the SDN implementations
at line rate, without any traffic sampling, in a home/SOHO network?

This paper makes the following contributions to answer these questions:

– We show how four prominent anomaly detection algorithms can be imple-
mented in the NOX SDN controller.3

– We perform a detailed accuracy evaluation of our implementations on real-
world traffic datasets collected at three different network deployment points:
the edge router of an ISP, the switch of a research lab (simulating a small
office), and a home network router. Traffic anomalies (including portscans
and DoS attacks) are injected at varying rates into the collected datasets. We
show that these algorithms fail to mine anomalies with satisfactory accuracy
in the ISP level dataset but are able to provide highly accurate detection in
the home network and small office datasets.

– We provide efficiency evaluation of our SDN implementations on the home
and SOHO network datasets showing that, in addition to providing better
accuracy, our approach allows line rate anomaly detection.

2 Background and Related Work

2.1 Background: Software Defined Networking

Software Defined Networking (SDN) has recently emerged as a powerful new
paradigm for enabling innovation in networking research and development. The
basic idea is to separate the control plane of the network from the data plane.
3 Open-source NOX implementations of the anomaly detectors and sanitized traffic

datasets are released publicly [www.wisnet.seecs.nust.edu.pk/downloads.php] to fa-
cilitate future research in this area.
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While there has been significant previous work in this domain [14,16,17], recently
Openflow [7,28] has become the standard bearer for the SDN paradigm.

Openflow is a protocol that allows switches and routers containing internal
flow tables to be managed by an external controller. Each flow table inside a
switch contains a set of flow entries. Each flow entry contains a header (against
which incoming packets are matched) as well as a set of zero or more actions to
apply to matching packets. All packets processed by the switch are compared
against its flow tables. If a matching flow entry is found, any actions from that
entry are performed on the packet. If no matching entry is found, the packet
is forwarded to the controller. The controller may decide to install flows in the
switch at this point based on the packet’s header. It can also forward the packet
through the switch without setting flows.

Table 1 shows the header fields that are present in a flow. Each of these
header fields can be wildcarded (i.e. it is ignored while matching packets). This
allows flexibility in specifying the exact group of packets on which a certain set
of actions is to be performed. For instance, assume a flow entry which has all
fields wildcarded except Ethertype (set to IP), IP proto (set to TCP) and dst
port (set to 80). If we specify the action for this flow entry as “forward out of
port 1”, then all traffic destined towards any http server will be forwarded out
of port 1 of the switch. Readers interested in further details are referred to the
Openflow switch specification v1.0 [7].4

Many SDN controllers are now being developed to manage Openflow compli-
ant switches [21,24,33]. The basic idea in all of these controllers is to central-
ize the observation of network state, decide appropriate policies based on this
state observation and then enforce these policies by installing flow entries in the
switches. NOX [21] and Maestro [33] both provide the concept of a “Network
Operating System”. Other control platforms like Onix [24] focus primarily on
building the control plane as a distributed platform in order to enhance scala-
bility and reliability.

2.2 Related Work

To the best of our knowledge, this work represents the first effort to implement
and evaluate existing anomaly detection algorithms in the SDN context. Re-
cently, however, there has been interest in building better solutions for effective
management of home networks while hiding the complexity from the home users
[1]. Part of this focus has been on improving security and privacy in home net-
works. Yang et al. [32] performed a user study and found that non-expert users
mostly relied on OS-based firewall software as opposed to expert users who re-
lied on firewalls built into the router. The primary reason was the inability of
non-expert users to configure the router based firewalls. Calvert et al. [15] point
out many of the difficulties in home network management due to the end-to-end

4 At the time of the writing of this paper, Openflow Specification v1.1 [8] has also
been released. However, since it has not been widely implemented, our work is based
on OpenFlow 1.0.
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nature of the Internet architecture. They identify security issues, like bot infec-
tions, as one of the major problems and attribute them to inability of users to
properly set up and integrate networking gear into their home networks. They
propose a “smart middle, smart ends” approach which utilizes an intelligent net-
work, as opposed to the “dumb middle, smart ends” approach that forms the
basis of the Internet architecture today. Feamster [19] proposes an architecture
for home network security which outsources the management and operations
of these networks to a third party (e.g. ISP) which has a broader view of net-
work traffic. He suggests the use of programmable network switches which are
managed by a centralized controller (located at the ISP). The controller applies
distributed inference to detect performance and security problems in the local
networks.

3 Anomaly Detection in Software Defined Networks

In this section, we describe implementations of four prominent traffic anomaly
detection algorithms in the context of a Software Defined Network (SDN). The
aim is to answer the first question asked at the end of Section 1, i.e. is it pos-
sible to faithfully implement diverse anomaly detectors in a SDN? Although we
assume a setup having a switch running the Openflow protocol with NOX as an
external controller, the ideas presented here are easily applicable to any similar
SDN paradigm. Similarly, the algorithms ported in this work [20,26,29,31] are
simply proofs-of-concept to illustrate the flexibility and ease of anomaly detec-
tion algorithm implementation on an SDN platform. We show that the OpenFlow
protocol allows us to implement these algorithms within NOX to attain the same
accuracy achievable by inspecting every packet, while in fact processing only a
small fraction of the total traffic. The main idea is to install flows in the switch
whenever a connection attempt succeeds. As a result, only the relevant packets
(e.g. TCP SYNs and SYNACKs) within a connection are sent to the controller
while all other packets are processed at line rate in the switch hardware.

3.1 Threshold Random Walk with Credit Based Rate Limiting

The TRW-CB algorithm [29] detects scanning worm infections on a host by not-
ing that the probability of a connection attempt being a success should be much
higher for a benign host than a malicious one. TRW-CB leverages this obser-
vation using sequential hypothesis testing (i.e. likelihood ratio test) to classify
whether or not the internal host has a scanning infection. For each internal host,
the algorithm maintains a queue of new connection initiations (i.e. TCP SYNs)
which have yet to receive a response (i.e. a SYNACK). Whenever one of these
connections times out without any reply or receives a TCP RST, the algorithm
dequeues it from the queue and increases the likelihood ratio of the host which
initiated the connection (i.e. closer to being declared as infected). On the other
hand, when a successful reply is received, the likelihood ratio is decreased (i.e.
closer to being declared benign). Whenever the likelihood ratio for a host exceeds
a certain threshold η1, it is declared as infected.
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In order to implement TRW-CB in NOX, we employ the fact that the packets
this algorithm uses are either connection initiations or replies to them. Thus
there is no need to check every packet. The OpenFlow Switch Specification v1.0
[7] indicates that a packet not matching any flow entry in the switch is sent to
the controller. We leverage this facility to allow packets related to connection
establishment to be sent to the controller. When a connection is established
successfully, we install flows in the switch to handle the rest of the packets in
the session. The following example explains our implementation:

1. Suppose that internal host A sends a TCP SYN to a new external host B.
Since there are no flows in the switch matching this packet, it will be sent
to the NOX controller.

2. The TRW-CB instance running at the NOX controller simply forwards this
packet through the switch, without setting any flows. At the same time, the
algorithm also does its normal processing (i.e. adds B to a list of hosts pre-
viously contacted by A and adds the connection request to A’s queue).

3. The two possible responses from B are:

(a) If a TCP SYNACK from B to A is received, the switch again forwards
this to the NOX controller (since it still does not match any flows). Upon
receiving the SYNACK, the TRW-CB instance at the controller installs
two flows in the switch. The first flow matches all packets sent from A
to B. It contains A’s IP address in the IP src field and B’s IP address
in the IP dst field. Except for Ether type (which is set to IP), all other
fields in the flow are wildcarded. The second flow is similar to the first,
but matches all packets sent from B to A. Each flow contains an action
to forward matching packets out of the relevant port of the switch. Ad-
ditionally, TRW-CB also does its normal processing (i.e. removing this
connection request from A’s queue and decreasing A’s likelihood ratio).

(b) If the connection times out, then TRW-CB does its regular processing
(for the connection failure case) without interacting with the switch.
Thus no flows are installed.

Our decision to wildcard all fields in the flow other than IP src, IP dst and Ether-
net Type, is a carefully considered one. TRW-CB detects “horizontal” portscans
(i.e. across different external hosts as opposed to different ports on the same ex-
ternal host) and is interested only if an internal host is sending new connection
requests to different external hosts. Typically a benign host can open multiple
TCP connections (each with a different source port) to the same server. The
destination port may be the same for all requests (e.g. an http server) or it may
be different for each request. If each successful connection to the same external
host had a seperate flow in the switch it would wastefully increase the size of
the flow tables and consequently the switch’s processing overhead. Our scheme
ensures that only two flows are installed between two communicating hosts. Any
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new connection requests to the same external host, after the first request, will
be forwarded at line rate by the switch without passing through the controller.
However, any connection initiations to a new external host will still be sent first
to the controller. This allows TRW-CB to attain the same accuracy achievable
by inspecting every packet while actually processing only a fraction of the total
traffic.

3.2 Rate-Limiting

Rate Limiting [30,31] uses the observation that during virus propagation an
infected machine attempts to connect to many different machines in a short
span of time. On the other hand, an uninfected machine makes connections at a
lower rate and is more likely to repeat connection attempts to recently accessed
machines. Whenever a new connection request arrives, it is checked against a
list of recently contacted hosts called the “working set”. If the request is to a
host present in the working set, then it is forwarded normally. Otherwise, it is
enqueued in another data structure called the “delay queue”. Every d seconds
a connection is taken out of the delay queue and allowed to proceed forward. If
the size of the delay queue increases beyond a threshold T, an alarm is raised.

To implement Rate Limiting in NOX, we again employ the same idea used
in TRW-CB that there is no need for the controller to inspect every packet. We
implement separate pairs of working sets and delay queues for every internal
host. The following rules are applied to packets arriving at the controller:

1. Whenever a new connection request arrives and the remote host is in the
working set, we set two flows in either direction between the internal host
and the remote host. Rate Limiting like TRW-CB is a host based anomaly
detector and does not care about traffic to specific ports. Therefore the
flows are also similar (i.e. everything except IP src, IP dst and Ether type is
wildcarded).

2. If a new connection request arrives and the remote host is not in the working
set, we enqueue it into the delay queue. No flows are installed in the switch
in this case.

3. Every d seconds a new connection request is moved from the delay queue
to the working set. We forward this connection request through the switch
without installing any flows.

4. Whenever a positive connection reply (e.g. TCP SYNACK) arrives at the
switch, we again install two flows in either direction to handle the rest of the
traffic for this connection.

3.3 Maximum Entropy Detector

The Maximum Entropy detector [20] estimates the benign traffic distribution
using maximum entropy estimation. Training traffic is divided into 2,348 packet
classes and maximum entropy estimation is then used to develop a baseline be-
nign distribution for each class. Packet classes are derived from two dimensions.
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The first dimension contains four classes (i.e. TCP, UDP, TCP SYN and TCP
RST). In the second dimension each of these four classes is split into 587 sub-
classes based on destination port numbers. Packet class distributions observed
in real-time windows (each of duration t secs) are then compared with the base-
line distribution using the Kullback-Leibler(KL) divergence measure. An alarm
is raised if a packet class’ KL divergence exceeds a threshold ηk, more than h
times in the last W windows.

Unlike TRW-CB and Rate Limiting, Maximum Entropy relies on examining
every packet in order to build packet class distributions every t seconds. One
approach would be to actually make every packet pass through the algorithm
instance running inside the NOX controller. However, this approach will negate
Openflow’s efficiency benefits. Instead, we use an indirect approach to achieve
the same results.

Whenever the switch receives a packet which does not match any flows, it is
forwarded to the NOX controller where our algorithm takes one the following
actions (based on the packet type):

1. If a TCP SYN or RST packet is received, the count for the relevant packet
class, in the current distribution window, is incremented. Next the packet is
forwarded through the switch without setting any flows.

2. If a TCP SYNACK packet is received, we install two flows (each handling
traffic in one direction) in addition to forwarding the packet through the
switch. The flows contain values for the six-tuple consisting of Ether type
(set to IP), IP src, IP dst, IP proto (set to TCP), src port, dst port. Other
fields are wildcarded.

3. If a UDP packet is received, we install two flows similar to the SYNACK
case. Moreover, the count for the relevant UDP packet class is incremented.

As mentioned earlier Maximum Entropy requires the inspection of every packet
for building class distributions. The algorithm described above only takes care
completely of the TCP SYN and TCP RST classes. The Openflow specification
v1.0 [7] states that packet counters are maintained per-flow in the switch. We use
this facility to build packet distributions for the rest of the traffic. We schedule a
timer function to be called every t seconds, to sequentially perform the following
operations:

1. The switch is queried for information on all currently installed flows along
with their packet counts.

2. For each flow returned by the switch:
(a) First the packet class for this flow is determined using its IP proto and

dst port fields.
(b) Next the packet count for this flow during the last t seconds is deter-

mined. Note that the switch returns the cumulative count of all packets
matching this flow since it was installed. In order to calculate count for
the last t seconds, we maintain a shadow copy of the switch’s flow ta-
ble along with the last updated packet counts. We subtract each flow’s
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packet count in our shadow copy from the value returned by the switch
to get the count for the last t seconds. The shadow copy’s packet count
is also updated to the latest value at this stage.

(c) Finally the count for packet class determined in the step (a) is incre-
mented with the value determined in step (b).

Note that all the above operations can be easily implemented using OpenFlow.
Also, note that in the above case we set a more specific flow than TRW-CB. The
reason is that Maximum Entropy builds packet class distributions depending
on specific destination ports. We need to treat different connections between
two machines separately in order to build correct distributions. In addition, we
cannot set flows like “match all packets destined towards TCP port 80”, because
that would result in new TCP SYN requests to port 80 on any remote machine
being forwarded by the switch without the controller’s intervention. This would
result in an incorrect packet class distribution for the TCP SYN class.

3.4 NETAD

NETAD [26] operates on rule-based filtered traffic in a modeled subset of com-
mon protocols. The filter removes “uninteresting traffic” based on the premise
that the first few packets of a connection request are sufficient for traffic anomaly
detection. This includes all non-IP packets, all incoming traffic, TCP packets
starting after the first 100 bytes and packets to any address/port/protocol com-
bination if more than 16 are received in a minute. It computes a packet score
depending on the time and frequency of each byte of packet. Rare and novel
header values are assigned high scores. A threshold is applied on a packets score
to find anomalous packets.

In order to implement NETAD in NOX, we make use of its filtering stage.
The filtering rules imply that typically only the first few packets of a connection
will be used by the algorithm. Therefore we base our implementation on the
constraint that all packets must pass through the controller unless they satisfy
one of the filtering rules. If a rule is satisfied, then we install flows in the switch to
forward the rest of the traffic without controller intervention. For instance, since
the algorithm specifies that it is not interested in TCP packets starting after the
first 100 bytes, we check the sequence number of TCP packets passing through
the controller. In case the sequence number of a packet exceeds 100, we install
two flows in the switch which correspond to either direction of this packet’s
connection. The flows in each case contain values for the six-tuple consisting of
Ether type (set to IP), IP src, IP dst, IP proto (set to TCP), src port, dst port.
Similar to Maximum Entropy, our flows are more specific in this case because
the algorithm requires the first few packets of every new connection even if the
two hosts already have connections on other ports.

4 Dataset Description

In order to effectively evaluate our hypothesis that home networks provide better
accuracy for anomaly detection, we needed network traffic captured at different
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Table 2. Statistics of Benign Traffic Datasets

Dataset
Type

Active
Hosts

Total Con-
nections

Total Packets
Avg. Connec-
tions per sec

Avg. Pkts per
sec

Duration

Home 8 3,422 1,042,282 0.21 62.36 21hrs 13mins
SOHO 29 50,082 15,570,794 2.61 320.4 5hrs 28mins
ISP 639 304,914 28,152,467 523 12,210 9 mins

points in the network for comparison. Furthermore, for comprehensive evalu-
ation, we needed attacks of different types (DoS, portscan, etc.) and different
rates for each attack type. We decided to collect our own benign and attack
datasets and make them available for repeatable performance evaluations.5

4.1 Benign Network Traffic

We collected benign traffic at three different locations in the network. Our aim
was to study the accuracy of anomaly detection algorithms in a typical home
network, a small-office/home-office network and an Internet Service Provider
(ISP). These algorithms have been sanitized using the tcpmkpub tool. Moreover,
due to privacy concerns, only the first 70 bytes of each packet are available in
all the datasets. Some statistics about each dataset are given in Table 2.

Home Network. The home network dataset was collected in an actual residen-
tial setting. The data was collected over a period of one day (approx. 21 hrs 13
minutes). Eight different hosts were active during this time with varying levels of
activity during the day. We collected data from each of these hosts individually
before merging it together using mergepcap. Various applications including file
transfer, web browsing, instant messaging, real-time video streaming were active
during this period.

Small Office/Home Office(SOHO). For the SOHO dataset we gathered data
from a research lab in our School of EECS. The traffic from the lab is relayed
through a 3COM4500G switch. We mirrored all the traffic to one of the ports
of the switch where it was captured and saved in pcap format. The data was
collected over a period of approximately 5.5 hours from 1340 hrs to 1908 hrs on
a working day. During this time, 29 unique hosts were active.

Internet Service Provider. The ISP dataset was collected from the edge
router of a medium-sized Internet Service Provider for about 10 minutes from
1741 hrs to 1750 hrs on a working day. During this time, 639 hosts were active.

4.2 Attack Traffic

In order to collect the attack traffic, we launched (TCP SYN), DoS (TCP SYN)
and fraggle (UDP flood) simultaneously from three end hosts in our research lab.
5 The datasets are available at http://www.wisnet.seecs.nust.edu.pk/downloads.php
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Each host launched attacks at various rates including three low-rate (0.1,1,10
pkts/sec) and two high-rate (100,1000 pkts/sec) instances. Each instance had a
period of two minutes. We labeled each attack packet by setting the Reserved
bit in the IP header. The TCP portscan attack contains two distinct attacks
with the first one targeting port 80 and the second targeting port 135. The TCP
SYN Flood consists of attacks on two remote servers at ports 143, 22, 138, 137
and 21. Similarly the UDP flood also attacks two remote servers at ports 22, 80,
135 and 143.

After collecting the attack traffic, we randomly merged it into different hosts
in each of the benign datasets using the mergepcap tool. In the home dataset, 4
out of 8 hosts were infected, while 8 out of 29 hosts were infected in the SOHO
dataset. In the ISP dataset, 24 out of 639 hosts were infected. We used the same
attack traffic in all three datasets in order to maintain a uniform evaluation base.

5 Evaluation

This section focuses on answering questions 2-5 asked in Section 1. We investigate
the effectiveness and ease of implementation, accuracy comparison between ISP
and home/SOHO network datasets and efficiency of the SDN implementations
described in Section 3.

5.1 Experimental Setup

We implemented all four algorithms in NOX using C++. For comparison, we
also did standard implementations of all algorithms which examine every packet
(i.e. no sampling). For the Home Network and SOHO datasets, we performed ac-
curacy evaluation using both the NOX implementations as well as the standard
implementations. We observed that there was little or no difference in accuracy
between the two evaluations. This was expected, since our objective with the
NOX implementations was to ensure that each algorithm attained the same ac-
curacy achievable by inspecting every packet, while in effect most of the packets
are forwarded at line rate by the switch without any intervention by the con-
troller. The accuracy results we present for these two datasets can therefore be
assumed to represent either implementation. The ISP dataset was tested solely
on the standard implementation.

In the case of Maximum Entropy and NETAD which require training on
network traffic, we use some traffic from the benign datasets. For instance, before
evaluating on the Home Networks dataset we train each algorithm on the first
40 minutes of data. For the SOHO dataset, the training period is the first 30
minutes while for the ISP dataset we train on the first 1 min of data.

For accuracy evaluations, our testbed consisted of a server with a quad-core
Intel Xeon E5420 CPU and 8 GB of RAM running Ubuntu Linux 10.04. It ran
Open vSwitch v1.1.0 [6] which implements the Openflow v1.0 protocol. A NOX
0.9 (Zaku) controller was located on the same machine and communicated with
the Open vSwitch daemon through a Unix domain socket. Another machine was
used to replay traffic from our merged datasets and send it to our server.
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Table 3. Source Lines of Code(SLOC) for NOX and Standard Implementations

Algorithm NOX Implementation
Standard Implementa-
tion

TRW-CB 741 1060
MaxEnt 510 917
RateLimit 814 991
NETAD 587 944

For efficiency evaluation of the Home Network data, we decided to use a real-
istic setting. We assembled a small form-factor wireless home router consisting
of PC Engines ALIX 2c3 [9] board with a 500 MHz AMD Geode LX800 pro-
cessor, 256 MB DDR DRAM and 2GB flash memory. We call this system the
“NOX Box” [5]. We installed Voyage Linux [10] on the NOX Box, which is a
Debian-derived distribution designed to run on low-end x86 PC platforms. In
addition, we installed Open vSwitch v1.1.0 and NOX 0.9 on it, to create a fully
equipped home network router.

5.2 Ease of Implementation

Table 3 compares the NOX and Standard implementations of the four algorithms
based on Source lines of code (SLOC). We observe that NOX implementations
take on average 660 SLOC, while the standard implementations take on average
980 SLOC. Thus in terms of programming effort at least, it is easier to implement
in NOX. This is partly due to the fact that NOX already has a significant
infrastructure in place for packet processing as well as communicating with the
switch. For the standard implementations, however, we had to build our own
packet processing infrastructure.

However, the main benefit of the NOX implementations is not immediately
evident from these numbers. The standard implementations work completely in
userspace and make a system call each time they send and receive a packet. This
does not scale well to high data rates. On the other hand, the NOX implemen-
tations get the fast datapath provided by the Openflow-compliant switches for
free, while actually requiring lesser effort to implement. This datapath may be
a hardware TCAM or a linux kernel module depending on the type of switch
used. We show in Section 5.4 that our NOX implementations direct more than
98% of the network traffic through this fast datapath simply by installing flows
in the switch. The standardized Openflow interface allows the use of the same
NOX implementations regardless of the underlying switching device used. This
makes it easier to update the implementations while maintaining efficiency and
portability.

5.3 Accuracy Evaluation

TCP Portscan Attacks. Figure 1 shows the Receiver Operating Character-
istic (ROC) curves of TCP portscan detection for each of the four algorithms
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Fig. 1. ROC curves quantifying the accuracy of all four algorithms under TCP portscan
attacks; each point is averaged over 5 attack rates

evaluated on all three datasets under varying attack rates. All algorithms per-
form much better on the Home Network dataset as compared to the ISP dataset.
The performance on the SOHO dataset mostly falls in between the performance
on these two datasets. This supports our assumption that detection accuracy
degrades continuously as we move away from the endpoints towards the network
core.

TRW-CB and Rate Limiting perform better than the other two algorithms in
almost all situations. Both of these are host-based algorithms and use outgoing
connections as the key detection feature, which is specifically suitable for TCP
Portscans. Their performance on the home network dataset is excellent: both
achieve 90% or better accuracy for a false positive (FP) rate of 0% to 4%. TRW-
CB maintains the same accuracy on the SOHO dataset while the accuracy of
Rate Limiting degrades significantly and it manages a 90% detection rate for an
FP rate of 30%. On the ISP dataset, they both suffer significant accuracy degra-
dation; the best accuracy point is TRW-CB which manages to attain an 85%
detection rate for a significant FP rate increase of 11%. The reason for the more
rapid accuracy degradation of Rate Limiting is its decline in performance on
low-rate scanners. This is apparent from Figures 3a and 3b which show separate
ROCs for low and high rate scanners. We observe that both Rate-Limiting and
TRW-CB achieve perfect results for high-rate scanners on all datasets. For low-
rate scanners evaluated on the Home and SOHO datasets, TRW-CB maintains
the same accuracy while Rate Limiting is only able to achieve 80% detection
for a 0% FP rate. The reason is that, while Rate Limiting detects port scanners
primarily on the basis of rate of new connection attempts, TRW-CB relies on
the success or failure of successive connection attempts.

In comparison, both Maximum Entropy and NETAD fail to take advantage
of the home network environment. While both algorithms show better perfor-
mance on the home datasets when compared with their respective accuracies on
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(a) TCP Flood
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Fig. 2. ROC curves for evaluating the accuracy of all four algorithms under TCP and
UDP Flood attacks; each point is averaged over 5 attack rates

the ISP datasets, the accuracy improvement is not of the same order as that of
TRW-CB and Rate Limiting. As Figure 1 indicates, Maximum Entropy shows
the worst performance on all datasets. On the home network dataset, it achieves
a maximum detection accuracy of 90% but at a cost of 70% false positives. NE-
TAD performs considerably better as it achieves the same detection accuracy for
a 20% false positive rate. Unlike TRW-CB and Rate Limiting, none of these algo-
rithms are host based and do not directly use outgoing connection information.
Both Maximum Entropy and NETAD use baseline models of network traffic using
predefined attributes and detect deviations from these attributes. They are sensi-
tive to changes in the pattern of benign network traffic. Maximum Entropy is more
rigid in this regard because it builds baseline distributions of packet classes. For
instance, if a host starts using a P2P application but the algorithm was trained on
data containing mostly web traffic, it will result in higher FP rates. This is true
both in Home networks as well as ISPs. The reason for the difference in Maximum
Entropy’s performance between the Home and ISP network is its poor detection
of low-rate scanners as evident from Figure 3b. The high background traffic rate of
an ISP network means that low rate anomalies do not create a significant enough
divergence from the baseline distribution to raise an alarm.

TCP and UDP Flood Attacks. Figures 2a and 2b show the ROC curves for
TCP and UDP Flood attacks respectively. We did not evaluate TRW-CB for
these attacks because it is primarily a portscan detector focused on detecting
“horizontal scans” of different remote hosts. It is clear from the ROC curves that
Rate Limiting provides excellent accuracy on the home and SOHO datasets for
both types of flood attacks, while maintaining a low false positive rate. Rate
Limiting detects anomalies if the size of its delay queue increases beyond a
threshold. Because of the low rate of benign connection requests in a typical
home network environment, we give a small value to the size of the working set
(of recently made connections). Thus a sudden flood of new TCP SYNs will likely
end up in the delay queue and overrun its threshold, raising an alarm. On the
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(b) TCP Portscan Low Rate
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(c) TCP Flood High Rate
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(d) TCP Flood Low Rate
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(e) UDP Flood High Rate
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Fig. 3. Separate ROC results for high rate (100 and 1000 per sec) and low rate (0.1, 1
and 10 per sec) TCP Portscan, TCP Flood and UDP Flood attacks

other hand, in an ISP network, the rate of benign connection requests is quite
high (Table 2). Thus both the working set size and delay queue threshold need
to be large in order to reduce unnecessary false positives. This in turn reduces
the detection rate.
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Table 4. Efficiency of NOX implementations on Home and SOHO datasets

Algorithm:Dataset
% of Total Pkts
handled by con-
troller

Avg. Pkt rate
at controller
(pkts/sec)

Avg. No. of en-
tries in Flow Ta-
ble

Peak No. of en-
tries in Flow Ta-
ble

TRW-CB : HOME 1.15 0.73 16.11 70
TRW-CB : SOHO 0.37 2.91 42.33 71
MaxEnt : HOME 2.48 1.58 39.72 261
MaxEnt : SOHO 1.26 1.00 172.60 408
RateLimit : HOME 1.00 0.64 16.69 59
RateLimit : SOHO 0.56 4.43 38.28 64
NETAD : HOME 3.46 2.21 24.60 107
NETAD : SOHO 1.07 8.47 74.68 196

Maximum Entropy and NETAD show better performance on the home and
SOHO networks as compared to the ISP, but their overall accuracy is lower than
Rate Limiting. The reason is the same as explained in the TCP portscan case.
Both algorithms rely on models of benign network traffic. Since our flood attacks
are to well known ports including port 80 and port 22, these algorithms are not
able to easily detect divergence from the usual, especially for low rate attacks.

5.4 Efficiency Evaluation

Table 4 shows the efficiency evaluation of our NOX implementations on the Home
and SOHO datasets. We compare the algorithms based on four parameters:

1. Percent of total packets that pass through the controller : This is an important
metric because if a large percentage of traffic is passing through the controller
then we do not gain any efficiency benefit from NOX and Openflow. As
described earlier, our objective is to ensure that only the relevant packets
are handled by the controller and everything else is forwarded at line rate
through the switch hardware.

2. Average rate of packets passing through the controller : Given that the con-
troller is implemented in software, we need to evaluate whether the rate of
packets passing through the controller will cause any performance penalties.

3. Average number of flows in the switch’s flow table: The switch needs to
match every incoming packet against entries in the flow table. We need to
measure the average number of flow entries in the switch, at any point in
time, for all four algorithms. A larger average flow table size could impact
the forwarding efficiency of the switch.

4. Peak size of the switch’s flow table: We want to know if any of our imple-
mentations overflows the switch’s flow tables.

As the results clearly show, in most cases, the controller handles less than 2% of
the total traffic. The largest value is 3.46 % for NETAD evaluated on the Home
Network dataset. This slight increase is due to the fact that, while all other
algorithms work on packets related to connection requests, NETAD requires a
few more packets to be examined in certain cases. For instance, in the case of
TCP it examines all packets for the first 100 bytes of the stream.
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Table 5. CPU Usage on the NOX BOX for the Home Dataset

Data Rate
Average CPU Usage (%)

TRW-CB Rate Limiting NETAD
Maximum
Entropy

1 Mbps 1.86 2.1 2.94 3.09
10 Mbps 6.70 8.47 10.43 18.43
50 Mbps 17.54 18.87 19.11 28.26

The packet rate at the controller is also very manageable in all cases. It lies
mostly in the range of 1 to 2 packets per second. Generally, the rate is slightly
larger for the SOHO network as compared to the Home network. This is expected
since there are more simultaneously active hosts in the SOHO network. Overall,
these statistics indicate that there should not be any performance problems at
the controller.

The average and peak flow table sizes also show good results for all algorithms.
Both TRW-CB and Rate Limiting average about 16 flow entries for the Home
Network and about 40 flow entries for the SOHO dataset. The larger value
for the SOHO network is due to more simultaneously active hosts. In contrast,
Maximum Entropy averages about 40 flow entries on the Home Network and 172
entries on the SOHO network. The larger value for Maximum Entropy is because
of the more specific flows we install in the switch. As described in Section 3.3,
we set more specific flows for Maximum Entropy because it relies on building
distributions of packet classes based on destination port numbers. On the other
hand, TRW-CB is a host based detector and does not care about transport layer
ports. Thus we can afford to set more general flow entries which can handle a
larger number of packets and result in a smaller flow table size.

5.5 CPU Usage

Finally, the results of the performance evaluation of the Home Network Dataset
on the NOX BOX (as described in Section-5.1) are shown in Table 5. It shows
the average percent CPU Usage of each of the four algorithms for three different
data rates. While typical home networks do not have data rates of 50 Mbps or
even 10 Mbps, we show the values for comparison and to assess the system’s
limits. It should be noted that none of these results involved any packet loss.

The results clearly show that for a forwarding rate of 1 Mbps through the NOX
BOX, all the algorithms take up a small fraction of the CPU time. Maximum
Entropy, which has the highest value, still averages around 3% of CPU time. This
increased usage is due to the fact that Maximum Entropy has to fetch all flows
in the switch every second, in order to build packet class distributions. As the
rate rises to 50 Mbps, the CPU usage of all algorithms increases. However it still
remains within very reasonable limits. For instance at 50 Mbps, TRW-CB still
takes up only 17.54% of the CPU time. This is quite remarkable because the NOX
Box has a low-end 500 MHz processor. We attribute this efficient performance
to the fact that the NOX controller running in userspace only handles a small
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fraction of the traffic at a low rate (as shown in Table 4). Most of the traffic is
forwarded by the Open vSwitch kernel module.

6 Conclusions and Future Work

In this paper, we have shown that Software Defined Networks using Openflow
and NOX allow flexible, highly accurate, line rate detection of anomalies inside
Home and SOHO networks. One of the key benefits of this approach is that the
standardized programmability of SDN allows these algorithms to exist in the con-
text of a broader framework. We envision a Home Operating System6 built using
SDN, in which our algorithm implementations would co-exist alongside other ap-
plications for the home network e.g. QoS and Access Control. The standardized
interface provided by a SDN would allow our applications to be updated easily
as new security threats emerge while maintaining portability across a broad and
diverse range of networking hardware.

This approach could also provide better opportunities for attack mitigation.
When an anomaly is detected, our application could communicate it to the ISP
where this information could be utilized in a variety of ways. Firstly, it could
be used by a human operator to verify the existence of an attack and then
inform the home-network owner. Secondly, it could be used to correlate threats
from multiple home networks for detecting global network security problems e.g.
botnets. Notice that this has several benefits including: 1) The detection is far
more accurate in the home networks than the ISP (as shown in Section 5.3).
2) The difficulty of running anomaly detection at high data rates in the ISP’s
network core is distributed to thousands of home network routers. The efficiency
evaluation in Sections 5.4 & 5.5 has already shown that this would be feasible.
3) The programmable nature of SDN allows this sophisticated approach to be
implemented in software while still ensuring that almost all the home/SOHO
network traffic continues to traverse the fast datapath of the switch possibly in
hardware.
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Abstract. Masquerade attacks are a common security problem that is a
consequence of identity theft. This paper extends prior work by modeling
user search behavior to detect deviations indicating a masquerade attack.
We hypothesize that each individual user knows their own file system well
enough to search in a limited, targeted and unique fashion in order to
find information germane to their current task. Masqueraders, on the
other hand, will likely not know the file system and layout of another
user’s desktop, and would likely search more extensively and broadly
in a manner that is different than the victim user being impersonated.
We identify actions linked to search and information access activities,
and use them to build user models. The experimental results show that
modeling search behavior reliably detects all masqueraders with a very
low false positive rate of 1.1%, far better than prior published results.
The limited set of features used for search behavior modeling also results
in large performance gains over the same modeling techniques that use
larger sets of features.
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1 Introduction

The masquerade attack is a class of attacks, in which a user of a system ille-
gitimately poses as, or assumes the identity of another legitimate user. Identity
theft in financial transaction systems is perhaps the best known example of this
type of attack. Masquerade attacks are extremely serious, especially in the case
of an insider who can cause considerable damage to an organization. Their de-
tection remains one of the more important research areas requiring new insights
to mitigate against this threat.

A common approach to counter this type of attack, which has been the sub-
ject of prior research, is to apply machine learning (ML) algorithms that produce
classifiers which can identify suspicious behaviors that may indicate malfeasance
of an impostor. We do not focus on whether an access by some user is authorized
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since we assume that the masquerader does not attempt to escalate the priv-
ileges of the stolen identity, rather the masquerader simply accesses whatever
the victim can access. However, we conjecture that the masquerader is unlikely
to know the victim’s search behavior when using their own system which com-
plicates their task to mimic the user. It is this key assumption that we rely
upon in order to detect a masquerader. The conjecture is backed up with real
user studies. Eighteen users were monitored for four days on average to produce
more than 10 GBytes of data that we analyzed and modeled. The results show
that indeed normal users display different search behavior, and that that be-
havior is an effective tool to detect masqueraders. After all, a user will search
within an environment they have created. For example, a user searches for a file
within a specific directory, or a programmer searches for a symbol within a spe-
cific source code file. We assume the attacker has little to no knowledge of that
environment and that lack of knowledge will be revealed by the masquerader’s
abnormal search behavior. Thus, our focus in this paper is on monitoring a user’s
behavior in real time to determine whether current user actions are consistent
with the user’s historical behavior, primarily focused on their unique search be-
havior. The far more challenging problems of thwarting mimicry attacks and
other obfuscation techniques are beyond the scope of this paper.

Masquerade attacks can occur in several different ways. In general terms, a
masquerader may get access to a legitimate user’s account either by stealing
a victim’s credentials, or through a break in and installation of a rootkit or
key logger. In either case, the user’s identity is illegitimately acquired. Another
perhaps more common case is laziness and misplaced trust by a user, such as the
case when a user leaves his or her terminal or client open and logged in allowing
any nearby coworker to pose as a masquerader.

In this paper we extend prior work on modeling user command sequences
for masquerade detection. Previous work has focused on auditing and modeling
sequences of user commands including work on enriching command sequences
with information about arguments of commands [15,10,18]. We propose an ap-
proach to profile a user’s search behavior by auditing search-related applications
and accesses to index files, such as the index file of the Google Desktop Search
application. We conjecture that a masquerader is unlikely to have the depth
of knowledge of the victim’s machine (files, locations of important directories,
available applications, etc.), and hence, a masquerader would likely first engage
in information gathering and search activities before initiating specific actions.
To this extent, we conduct a set of experiments using a home-gathered Windows
data. We model search behavior in Windows and test our modeling approach
using our own data, which we claim is more suitable for evaluating masquerade
attack detection methods.

The contributions of this work are:

– A small set of search-related features used for effective masquerade
attack detection: The limited number of features reduces the amount of
sampling required to collect training data. Reducing the high-dimensional
modeling space to a low-dimensional one allows for the improvement of
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both accuracy and performance. We shall use standard machine learning
techniques to evaluate the system composed of these features. Other work
has evaluated alternative algorithms. Our focus in this work is on the fea-
tures that are modeled. The best masquerade attack detection accuracy was
achieved using a modern ML algorithm, Support Vector Machines (SVMs).
SVM models are easy to update, providing an efficient deployable host mon-
itoring system. We shall use one-class SVM (ocSVM) models in this work.

– A publicly available Windows data set [1] collected specifically to
study the masquerade attack detection problem as opposed to the
author identification problem: The data set consists of normal user data col-
lected from a homogeneous user group of 18 individuals as well as simulated
masquerader data from 40 different individuals. The data set is the first pub-
licly available data set for masquerade attack detection since the Schonlau
dataset [14].

In Section 2 of this paper, we briefly present the results of prior research work
on masquerade detection. Section 3 expands on the objective and the approach
taken in this work. In Section 4, we present our home-gathered dataset which we
call the RUU dataset. Section 5 shows how the malicious intent of a masquerader,
whose objective is to steal information, has a significant effect on their search
behavior. In section 6, we discuss experiments conducted by modeling search
behavior using the RUU dataset. In Section 7, we discuss potential limitations
of our approach and how they could be overcome. Finally Section 8 concludes the
paper by summarizing our results and contributions, and presenting directions
for our future work.

2 Related Work

In the general case of computer user profiling, the entire audit source can in-
clude information from a variety of sources, such as user commands, system
calls, database/file accesses, and the organization policy management rules and
compliance logs. The type of analysis used is primarily the modeling of sta-
tistical features, such as the frequency of events, the duration of events, the
co-occurrence of multiple events, and the sequence or transition of events. How-
ever, most of this work failed to reveal or clarify the user’s intent when issuing
commands or running processes. The focus is primarily on accurately detecting
change or unusual command sequences. In this section, we review approaches
reported in the literature that profile users by the commands they issue.

Schonlau et al. [15] applied six masquerade detection methods to a data set of
‘truncated’ UNIX commands for 70 users collected over a several month period.
Truncated commands are simple commands with no arguments. Each user had
15,000 commands collected over a period of time ranging between a few days
and several months [14]. Fifty users were randomly chosen to serve as intrusion
targets. The other 20 users were used as masqueraders. The first 5000 commands
for each of the 50 users were left intact or ‘clean’, while the next 10,000 commands
were randomly injected with 100-command blocks issued by the 20 masquerade
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users. The commands have been inserted at the beginning of a block, so that if a
block is contaminated, all of its 100 commands are inserted from another user’s
list of executed commands. The objective was to accurately detect the ‘dirty’
blocks and classify them as masquerader blocks. It is important to note that this
dataset does not constitute ground truth masquerade data, but rather simulates
impersonation.

The first detection method applied by Schonlau et al. for this task, called
‘uniqueness’, relies on the fact that half of the commands in the training data
are unique and many more are unpopular amongst the users. Another method
investigated was the Bayes one-step Markov approach. It is based on one step
transitions from one command to the next. The approach, due to DuMouchel
(1999), uses a Bayes factor statistic to test the null hypothesis that the observed
one-step command transition probabilities are consistent with the historical tran-
sition matrix.

A hybrid multi-step Markov method has also been applied to this dataset.
When the test data contain many commands unobserved in the training data, a
Markov model is not usable. Here, a simple independence model with probabili-
ties estimated from a contingency table of users versus commands may be more
appropriate. The method used automatically toggles between a Markov model
and an independence model generated from a multinomial random distribution
as needed, depending on whether the test data are ‘usual’, i.e. the commands
have been previously seen, or ‘unusual’, i.e. Never-Before-Seen Commands (NB-
SCs).

IPAM (Incremental Probabilistic Action Modeling), another method applied
on the same dataset, and used by Davidson and Hirsch to build an adaptive com-
mand line interface, is also based on one-step command transition probabilities
estimated from the training data [6]. A compression method has also been tested
based on the premise that test data appended to historical training data com-
press more readily when the test data stems indeed from the same user rather
than from a masquerader. A sequence-match approach has been presented by
Lane and Brodley [8]. For each new command, a similarity measure between the
10 most recent commands and a user’s profile is computed.

A different approach, inspired by the Smith-Waterman local alignment algo-
rithm, and known as semi-global alignment, was presented by Coull et al. [4].
The authors enhanced it and presented a sequence alignment method using a bi-
nary scoring and a signature updating scheme to cope with concept drift [5]. Oka
et al. [12] noticed that the dynamic behavior of a user appearing in a sequence
can be captured by correlating not only connected events, but also events that
are not adjacent to each other while appearing within a certain distance (non-
connected events). To that extent, they have developed the layered networks
approach based on the Eigen Co-occurrence Matrix (ECM).

Maxion and Townsend [10] applied a näıve Bayes classifier and provided a
detailed investigation of classification errors [11] highlighting why some mas-
querade victims are more vulnerable or more successful than others. Wang and
Stolfo compared the performance of a näıve Bayes classifier and a SVM classifier
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Table 1. Summary of Accuracy Performance of Anomaly Detectors Using the Schonlau
Data Set

Method True Pos. (%) False Pos. (%)

Uniqueness [15] 39.4 1.4

Bayes one-step Markov [15] 69.3 6.7

Hybrid multi-step Markov [15] 49.3 3.2

Compression [15] 34.2 5.0

Sequence Match [8,15] 26.8 3.7

IPAM [6,15] 41.1 2.7

Näıve Bayes (w. Updating) [10] 61.5 1.3

Näıve Bayes (No Upd.) [10] 66.2 4.6

Semi-Global Alignment [4] 75.8 7.7

Sequence Alignment (w. Upd.) [5] 68.6 1.9

Eigen Co-occurrence Matrix [12] 72.3 2.5

to detect masqueraders [18]. Their experiments confirmed, that for masquerade
detection, one-class training is as effective as two class training.

These specific algorithms and the results achieved for the Schonlau dataset
are summarized in Table 1 (with True Positive rates displayed rather than True
Negatives). Performance is shown to range from 1.3% - 7.7% False Positive rates,
with a False Negative rate ranging from 24.2% to 73.2% (alternatively, True
Positive rates from 26.8% to 75.8%). Clearly, these results are far from ideal.

Finally, Maloof and Stephens proposed a general system for detecting mali-
cious insider activities by specifically focusing on violations of ‘Need-to-Know’
policy [9]. Although the work is not aimed directly at masquerade detection, such
a system may reveal actions of a masquerader. They defined certain scenarios
of bad behavior and combined evidence from 76 sensors to identify whether a
user is malicious or not. Our approach is more generalizable and does not spec-
ify what bad behavior looks like. Instead, we only model normal behavior and
detect deviations from that behavior.

3 Objective and Approach

When dealing with the masquerader attack detection problem, it is important to
remember that the attacker has already obtained credentials to access a system.
When presenting the stolen credentials, the attacker is then a legitimate user with
the same access rights as the victim user. Ideally, monitoring a user’s actions after
being granted access is required in order to detect such attacks. Furthermore, if
we can model the user’s intent, we may better determine if the actions of a user
are malicious or not. We have postulated that certain classes of user commands
reveal user intent. For instance, search should be an interesting behavior to
monitor since it indicates the user lacks information they are seeking. Although
user search behavior has been studied in the context of web usage mining, it has
not been used in the context of intrusion detection.
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We audit and model the volume and frequency of user activities related to
search/information gathering and information access, assuming that the mas-
querader will exhibit different behavior from the legitimate user and this de-
viation will be easily noticed. Hence, this approach essentially tracks a user’s
behavior and measures any changes in that behavior. Any significant change
will raise an alarm. User behavior naturally varies for each user. We believe
there is no one model or one easily specified policy that can capture the inherent
vagaries of human behavior. Instead, we aim to automatically learn a distinct
user’s behavior, much like a credit card customer’s distinct buying patterns.

We use one-class support vector machines to develop user behavior models.
SVMs are linear classifiers used for classification and regression. They are known
as maximal margin classifiers rather than probabilistic classifiers. Schölkopf et
al. [13] proposed a way to adapt SVMs to the one-class classification task. The
one-class SVM algorithm uses examples from one class only for training. Just
like in multi-class classification tasks, it maps input data into a high-dimensional
feature space using a kernel function.

The origin is treated as the only example from other classes. The algorithm
then finds the hyper-plane that provides the maximum margin separating the
training data from the origin in an iterative manner. We note that SVMs are
suitable for block-by-block incremental learning. As user behavior changes and
new data is acquired, updating SVM models is straightforward and efficient.
Prior data may be expunged and the support vectors computed from that data
are retained and used to compute a new update model using the new data [17,16].
Also the use of a one-class modeling approach means that we do not need to
define a priori what masquerader behavior looks like. We only model normal user
behavior. We can preserve the privacy of the user when building user models,
as we do not need to intermix data from multiple user for building models of
normal and attacker behavior.

4 Data Gathering and “Capture the Flag” Exercise

As we have noted, most prior masquerade attack detection techniques were tested
using the Schonlau data set, where ‘intrusions’ are not really intrusions, but
rather random excerpts from other users’ shell histories. Such simulation of in-
trusions does not allow us to test our conjecture that the intent of a malicious
attacker will be manifested in the attacker’s search behavior. For this reason,
we have collected our own dataset, which we will use for testing. However, for
completeness, we test our detection approach as a baseline against the Schonalu
dataset. The results will be reported in Section 6.3. In the following subsections,
we describe our home-gathered dataset and the host sensor used to collect it.

4.1 Host Sensor

We have developed a host sensor for Windows platforms. The sensor monitors
all registry-based activity, process creation and destruction, window GUI and
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file accesses, as well as DLL libraries’ activity. The data gathered consisted of
the process name and ID, the process path, the parent of the process, the type of
process action (e.g., type of registry access, process creation, process destruction,
window title change, etc.), the process command arguments, action flags (success
or failure), and registry activity results. A time stamp was also recorded for
each audit record. The Windows sensor uses a low-level system driver, DLL
registration mechanisms, and a system table hook to monitor process activity.

4.2 RUU Dataset

In order to address one of the most significant shortcomings of the Schonlau
dataset, namely the lack of ‘real’ intrusions, we gathered user data and simulated
masquerader data by conducting a user study under IRB approval.1 We refer to
this data as the RUU (Are You You?) dataset.

Collecting Normal User Data. Eighteen computer science students installed
the Windows host sensor on their personal computers. The host sensor collected
the data described in the previous subsection and uploaded it to a server, after
the students had the chance to review the data and their upload. The students
signed an agreement for sharing their data with the research community. This
unique dataset with a size of more than 10 GBytes is available for download after
signing a usage license agreement. The data collected for each student spanned 4
days on average. An average of more than 500,000 records per user were collected
over this time.

Collecting Simulated Masquerader Data. To obtain masquerader data, we
developed a “capture the flag” exercise in our lab with user volunteers acting as
masqueraders. In order to ensure the validity of the experiment and the resulting
data, we have decided to control the ‘user’s intent’. We hypothesize that user
search behavior is a behavioral feature that is impacted by the user’s intent. If
a masquerader is looking to steal information, their intent will be manifested
in their search behavior through the volume of the search activities performed
by the masquerader. To that extent, we have designed a user study experiment,
where the intent to steal information is the independent variable that we control.
A total of sixty computer science students were randomly selected to participate
in the exercise from a list of volunteers. The participants were randomly assigned
to one of three groups. Each group was given a different scenario to execute: a
‘malicious attacker’ scenario, a ‘benign masquerader’ scenario, or a ‘neutral’
scenario. Note that selecting users from a homogeneous group and using specific
and detailed scenarios are known techniques in behavioral sciences used to reduce
subject and experimental treatment variability [7].

Malicious Scenario. The participants in this first scenario were asked to per-
form a specific task, which consisted of finding any information that could be
1 Human user studies of insider threat and masquerade detection are approved at

Columbia University under Human Subjects protocol IRB-AAAC4240.
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used for financial gain from a coworker’s desktop computer. The participants
had access to a coworker’s computer for 15 minutes while he or she left out for
lunch. An attacker can gain access to the victim’s system in a different way, for
instance remotely if they know the access credentials. Regardless of the access
method, we are interested in the attacker’s behavior after they access the vic-
tim’s computer. Our scenario clearly described the financial difficulties that the
user was going through and the personal problems they were having with the
coworker. In particular, they believed that their coworker had been undeserv-
ingly promoted instead of them, making any PII information theft or the cause
of financial damage to their colleague, that they might engage into, justifiable to
them. The task was goal-specific in order to capture the intent of the users.
The participants in this scenario knew that all of their actions were being mon-
itored. While they were encouraged to find relevant information for their task,
they were also urged to hide their masquerade activity. It is also important to
mention that they were not specifically asked to search the file system in the
scenario, i.e. some users could decide to look into the computer owner’s e-mail,
which constitutes another approach for information gathering, instead of search-
ing files. After completing the task, the participants filled a questionnaire about
their experience and behavior during the task, and how different it was from
their own normal search behavior. Most participants indicated that they tried
to leave the desktop in the same state that they accessed it, including the same
list of recently opened documents. Many avoided using desktop search tools and
opted for manually exploring the contents of the file systems by traversing di-
rectories of interest. Some students also cleared the browser’s cache and history.
Others interleaved search and information gathering actions with user normal
actions that should not raise any suspicions, such as checking a news website.

Benign Scenario. Similar to the previous scenario, the participants in this
scenario acted as employees in a certain organization. While their coworker left
out for lunch and stayed logged in to their computer, their own computer ex-
perienced a hard drive failure. Because they had to finish working on an urgent
team project, which they had to provide an update on during a meeting occur-
ring later in the afternoon, they did not hesitate to use the coworker’s computer
to finish working on the project.

Neutral Scenario. The participants in this scenario too had a coworker leave
for lunch while staying logged in to their desktop computer. However, the par-
ticipants in this scenario had no compelling reason to access the coworker’s
computer. They were left to freely choose whether they wanted to access their
coworker’s desktop. We observed the behaviors of the participants, and whether
they decided to access the coworker’s desktop. In particular, we observed what
they did if they decided to access it. The participants had also to describe what
they did and explain their decision after completing the experiment.

The participants in the user study in all three groups had unlimited access
to the same file system for 15 minutes each. None of the users had access to
this file system before, which was designed to look very realistic and to include
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potentially interesting patent applications, personally identifiable information, as
well as account credentials. The file system had more than 100,000 files indexed
by desktop search tools installed on the system, and totaling a size of more than
70 GBytes. The files were copied from a modern Windows XP machine routinely
used in a university research environment. They were created over a period of 5
years. The file system included at least 80 files containing personal information
that could be used for identity theft or financial gain. The contents of certain
personal files were sanitized, so that no personal information was leaked. We also
installed applications that typical computer science students would have on their
own machines, such as programming APIs, media players, etc together with code
projects, games, music, and video files. The goal was to make this machine look
similar to the ones that the normal users in our experiment were using. Special
care was taken to make sure that the desktop appeared in the same state to all
participants in the experiment. While simulating masquerader attacks in the lab
is not ideal, it was the best available option. None of the students who shared
their normal usage data were willing to lend their computers in order to conduct
masquerade attack experiments on them.

5 User Study Experiment

The objective of this experiment is to provide evidence for our conjecture that
the masquerader’s intent has a significant effect on their search behavior. We
extracted three features from the data collected in the user study after exper-
imenting with several features such as the frequencies of the different types of
user actions and application events: (1) the number of files touched during an
epoch of two minutes, (2) the number of automated search-related actions initi-
ated by the masquerader, and (3) the percentage of manual search actions during
the same epoch. Automated search actions are search actions launched using a
desktop search tool such as Google Desktop Search. Manual search actions are
file system navigation or exploration systems. We display the distribution of
these features for the malicious, benign and neutral scenario participants of the
user study in Figure 1. Our experiments show that the manipulation of the user
intent has demonstrated a significant effect on user search behavior.

Figures 1(a), 1(b), and 1(c) are box-and-whisker plots of the three user search-
related features. The horizontal line in the middle of each of the boxes in these
plots corresponds to the median value of the displayed feature. Fifty per cent
of the data falls within this box, while the top and bottom quartiles (25% of
the data) of the data are represented by the whisker lines above and below this
box. Data points whose value is above 1.5 times the upper quartile or lower
than 1.5 times the lower quartiles are considered outliers and are represented as
small crosses. The short horizontal lines above and below the box represent the
maximum and minimum data values exclusing outliers.

Figure 1(a) depicts the distribution of the number of accesses to all files resid-
ing on the file system per a 2-minute epoch. It is clear that the average number
of file touches amongst the malicious scenario group is much higher than in the
other two groups.
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Figure 1(b) shows the distribution of search-related queries to the registries
and accesses to search-related DLLs and applications for the different groups of
the user study. The average number of search-related records in the first group
is comparable to that in the other groups, which might be unexpected. However,
this could be explained by the fact that the participants in the first group were
penalized if their illegal masquerade activities were discovered, which is why
most of them decided to refrain from using desktop search tools to find relevant
information. This choice is reflected in Figure 1(b) and in Figure 1(c).

In the latter figure, one can clearly notice that the percentage of user actions
related to navigating through the file system in order to explore its contents is
much more significant in the first group. The participants in the second group
did not have the intention to steal any information, which is why they did not
engage in file system exploration activities. While most of the participants in
the third scenario decided not to access the coworker’s computer, some of them
did urged by their curiosity, as indicated in the participants’ answers to our
post-experiment questionnaire. Figure 1(c) shows that for this group, the users
explored the directories in the file system in order to satisfy their curiosity.

Finally, Figure 2 shows how the number of personal files accessed by mas-
queraders varies by user study scenario. The results of this user study provide
evidence that search behavior is significantly affected by a masquerader’s intent.
The question that we attempt to answer next is: Can we model normal user
search behavior and use it to detect malicious masqueraders?

6 RUU Experiment

In order to evaluate our conjecture that search behavior modeling can provide
a means for detecting malicious masqueraders, we use the normal user data to
build user search behavior models. We then use the simulated masquerader data
gathered for the participants in the ‘malicious’ scenario of our user study to test
these user models. Here we describe our modeling approach, the experimental
methodology, and the results achieved in this experiment.

6.1 Modeling

We devised a taxonomy of Windows applications and DLLs in order to identify
and capture search and information gathering applications, as well as file system
navigation user actions. The taxonomy can be used to identify other user be-
haviors that are interesting to monitor, such as networking-, communications-,
or printing-related user activities. However, in the context of this paper, we only
use it to identify search- and file system navigation-related activities. Monitoring
other user behaviors will be the subject of future work. The use of the taxonomy
abstracts the user actions and helps reveal the user’s intent.

We grouped the data into 2-minute quanta of user activity, and we counted all
events corresponding to each type of activity within each of the 2 minute epochs.
Eventually a total of three features were selected for each of those epochs. Each
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(a) Distribution of File Touches across the
three User Study Groups

(b) Distribution of Search-related Actions
across the three User Study Groups

(c) Distribution of the Percentage of File Sys-
tem Navigation User Actions across the three
User Study Groups

Fig. 1. Distribution of Search-related Features across the three User Study Groups
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Fig. 2. The personal files accessed by masqueraders

of the features is related to some aspect of the user’s search or information
gathering and information access behavior. These three features provided the
best accuracy results in our experiments:

1. Number of automated search-related actions: Specific sections of the Win-
dows registry, specific DLL’s, access to specific index files, and specific pro-
grams, particularly desktop search tools, are correlated with system
searching. For the 2 minute epoch, we model all search-related activity.

2. Number of file touches: Any file fetch, read, write, or copy action results into
loading the file into memory. We count the number of times files are touched
and loaded into memory by any process within each 2-minute epoch.

3. Percentage of file system navigation user actions: Not all search is performed
using a desktop search tool. Navigating through the file system to explore
its contents is also a form of user search. We model all manual search or
file system navigation user activity occurring during the 2-minute epoch.

To identify the automated and manual search applications and user activities,
we referred to our Windows applications taxonomy. The chosen features are
simple search features that characterize search volume and velocity to test our
hypothesis. While none of the features could be used to achieve high detection
rates alone, the combination of the three features could be very effective. More
complex search features that describe user search patterns could be extracted.
Such features include, but are not limited to search terms and specific directory
traversals. Evaluation of these features is the subject of our future work. for
more personalized and diversified user models that accurately model individual
and unique user behavior.

6.2 Experimental Methodology

For each of the 18 normal users, the first 80% of their data were used for training
a one-class SVM model. The user’s test data and the masquerader data were kept
separate. After the baseline models were computed, the same features used in
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the model were extracted for the test data after dividing them into 2-minute
quanta of user activity. The models were tested against these features, and an
empirically identified threshold was used to determine whether the user activity
during the 2 minute-period was normal or abnormal. If the user activity was
performed by the normal user, but was classified as abnormal by the ocSVM
model, a false positive was recorded.

6.3 Detection Accuracy Evaluation

For evaluation purposes, we conducted two experiments. In the first one, we
used one-class SVM models using the three features listed in Section 6.1. In the
second experiment, we used the frequency of applications and processes within
the 2 minute epoch as features for the ocSVM models. This is the modeling
approach that achieved results comparable to those achieved by the näıve Bayes
approach when applied to the Schonlau dataset [18], even though it is a one-class
modeling approach, i.e. it uses less data for training the user models.

Accuracy Results. Using the search-behavior modeling approach, 100% of the
2-minute quanta that included masquerader activity were detected as abnormal,
while 1.1% of the ones with legitimate user activity were flagged as not confirm-
ing to the user’s normal behavior. The results achieved are displayed in Table 2.
The false positives (FP) rate is significantly reduced compared to the application
frequency-based modeling approach, while a perfect detection rate is achieved.
These results substantially outperform the results reported in the literature.

Monitoring file access and fetching patterns proved to be the most effective
feature in these models. Consider the case where a user types ‘Notepad’ in the
search field in order to launch that application. Such frequent user searches
are typically cached and do not require accessing many files on the system.
Note that if the attacker follows a different strategy to steal information, and
decides to copy whole directories in the file system to a USB drive for later
investigation, instead of identifying files of interest during one user session, then
the ‘file touches’ feature will reflect that behavior.

Since each user has their own model with their own detection threshold, we
cannot build a single Receiver Operating Curve (ROC) curve for each modeling
approach. However we can compare the ROC curves for individual user mod-
els using the two modeling approaches investigated. One way to compare the
ROC curves is to compare the Area Under Curve (AUC) scores. The higher the
AUC score, the better the accuracy of the model. Figure 3 displays the AUC

Table 2. Experimental results of ocSVM modeling approaches using search-behavior
related features and application frequency features

Method True Pos. (%) False Pos. (%)

Search-behavior ocSVM 100 1.1

App.-freq. ocSVM 90.2 42.1
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Fig. 3. AUC Scores By User for the Search Behavior and Application Frequency-Based
Modeling Approaches using one-Class Support Vector Machines

scores for all user models. The search-behavior modeling approach outperforms
the application frequency based modeling approach for each user model. The
average AUC score achieved for all ROC curves when modeling search behav-
ior is 0.98, whereas the average AUC score for the application frequency-based
models is 0.63. The bad performance of the application-frequency-based model-
ing approach can be explained by the high-dimensional feature vectors used in
this modeling approach, which suggest that a lot more data may be needed for
training.

Figure 4 depicts the number of ROC curves having AUC scores higher than a
certain value for both modeling approaches. Note that for 12 user search behavior
models, the AUC score is equal to 1 indicating the absence of any false positives.

The RUU data set consists of user data with varying amounts of data for
different users. The amount of search behavior information varied from user to

Fig. 4. The number of user models with AUC values greater than the value displayed on
the x-axis for the search behavior and the application frequency modeling approaches
using one-class SVMs. (The upper-left point shows 18 user models with AUC scores
greater than 0.5).
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user. False positives were higher for users who contributed less data in general
and less search-related data in particular than for those for whom we collected a
large amounts of such data, such as users 11 and 14. For a 100% detection rate,
the FP rate scored by these user models ranged between 11% and 15%, which
proves the need for more training data for such users in order to improve the
performance of the user models.

In summary, the significant accuracy improvement achieved can be explained
by the fact that features used for modelign are good discriminators between nor-
mal user behavior and legitimate behavior. Despite the simplicity of the search
features used, which only characterize search volume and velocity, we were able
to reliably detect malicious masqueraders trying to steal information. We note
that most masqueraders indicated in the post-experiment questionnaires that
their strategy for finding relevant information started by quickly scanning the
most recently opened documents, or the list of bookmarks. However, they still
engaged in a wider search activity eventually when these sources proved fruitless.

Accuracy Results Discussion. The results achieved using search behavior
profiles require careful thought when considering the prior results using com-
mand sequences from the Schonlau dataset. Recall that the Schonlau dataset is
not a ‘true’ masquerader dataset, since its ‘intrusions’ or ‘masquerade’ command
blocks are just sequences of commands generated by randomly selected normal
users. Search activities of the users may not be significant in this dataset. Fur-
thermore, the Schonlau dataset does not include any timestamps, so temporal
statistics cannot be extracted.

We introduce an alternative modeling technique focusing the analysis on spe-
cific types of user commands, namely information gathering or search commands.
to accomplish the goal of accurately modeling user behavior we developed a tax-
onomy of Linux commands similar to the one we created for Windows applica-
tions and DLLs. We conducted an experiment where we followed the methodol-
ogy described in prior work of Schonlau et al. [15] and Wang&Stolfo [18]. In this
experiment, we measured the performance of one-class SVM models using fre-
quencies of simple commands per command block as features, and we compared
the performance of ocSVM models using frequencies of command categories or
specific behaviors (per the command taxonomy) as features. Table 3 shows the
results achieved by the one-class SVM classifiers. The results confirm that the
information that is lost by compressing the different user shell commands into
a few categories does not affect the masquerader detection ability significantly.
In section 6.4, we show how modeling search behavior by using the taxonomy of
commands and applications reduces computational complexity, both for train-
ing and testing the classifier. This is possible thanks to the smaller number of
features used for modeling, which reduces the amount of sampled data required
for training, as the data becomes less sparse in the new feature space.

In an operational monitoring system, one would be concerned with the error
rate of a detector. The downside of a false positive is essentially annoyance by
a legitimate user who may be alerted too frequently. An interesting problem to
study is how to calibrate the modeling and detection frequency to balance the
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Table 3. ocSVM Schonlau Experimental Results

Method True Pos. (%) False Pos. (%)

ocSVM w/ simple cmds 98.7 66.47

ocSVM w/ taxonomy 94.8 60.68

detector’s false positive rate while ensuring its false negative rate is minimized.
False negatives in this context, i.e. an undetected masquerader, are far more
dangerous than an annoying false positive. A thorough evaluation of the right
model checking and alerting frequency in light of average search times on a file
system inter alia is the subject of ongoing research. Another focus of ongoing
research is the correlation of search behavior anomaly detection with trap-based
decoy files such as [2]. This should provide stronger evidence of malfeasance,
and therefore improve the detector’s accuracy. Not only would a masquerader
not know the file system, they would also not know the detailed contents of
that file system especially if there are well placed traps that they cannot avoid.
We conjecture that detecting abnormal search operations performed prior to an
unsuspecting user opening a decoy file will corroborate our suspicion that the
user is indeed impersonating another victim user. Furthermore, an accidental
opening of a decoy file by a legitimate user might be recognized as an accident if
the search behavior is not deemed abnormal. In other words, detecting abnormal
search and decoy traps together may make a very effective masquerade detection
system. Ongoing work should establish evidence to corroborate this conjecture.

6.4 Performance Evaluation

Computational Complexity. Our experiment can be divided into four main
steps: (1) identifying the features to be used for modeling, (2) extracting the
features to build the training and testing files, (3) building a ocSVM model for
each normal user, and (4) testing each user model against the test data. We
discuss the computational complexity of each of these steps for one user model.

Let o be the total number of raw observations in the input data. We use this
data to compute and output the training vectors xi ∈ Rn, i = 1, ..., l and testing
vectors xj ∈ Rn, j = 1, ..., m for each user u, where n is the number of features.

When using the application frequency features, this step requires reading all
training data (about 0.8 of all observations o) in order to get the list of unique
applications in the dataset. This step can be merged with the feature extraction
step, but it would require more resources, as the feature vectors would have to
remain in memory for updates and additions of more features. We chose to run
this step in advance in order to simplify our program. This step is not required
for the search behavior profiling approach, as all features are known in advance.

In the feature extraction step, we go through all input data once, grouping the
observations that fall within the same epoch, and calculate and output n features
for that epoch. This operation has a time complexity of O(o + n × (l + m)).
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Chang and Lin [3] show that the computational complexity of the training step
for one user model is O(n×l)×#Iterations if most columns of Q are cached during
the iterations required; Q is an l × l semi-definite matrix, Qij ≡ yiyjK(xi, xj);
K(xi, xj) ≡ φ(xi)T φ(xj) is the kernel; each kernel evaluation is O(n); and the
iterations referred to here are the iterations needed by the ocSVM algorithm to
determine the optimal supporting vectors.

The computational complexity of the testing step is O(n × m) as the kernel
evaluation for each testing vector yj is O(n). We experimentally validate the
complexity analysis in the next section to determine whether we have improved
performance both in terms of accuracy and speed of detection.

Performance Results. We ran our experiments on a regular desktop with a
2.66GHz Intel Xeon Dual Core processor and 24GB of memory in a Windows 7
environment. We measure the average running time of each step of the exper-
iment over ten runs. The results are recorded in table 4. As we pointed out in
the previous subsection, the very first step is not executed in the our proposed
search behavior modeling approach, but it takes more than 8 minutes when using
the application frequency modeling approach. The running time of the feature
extraction step shows that the number of raw observations in the raw data dom-
inates the time complexity for this step. We point out that the RUU data set
contains more than 10 million records of data.

The training and testing vectors are sparse, since only a limited number of
the 1169 different applications could conceivably run simultaneously within a
2-minute epoch. This explains why the 389.7 ratio of features does not apply to
the running time of the training and testing steps, even though these running
times depend on the number of features n. While one might argue that, in
an operational system, testing time is more important than training time, we
remind the reader that a model update has the same computational complexity
as model training. For the latter, the use of a very small number of features as
in our proposed approach clearly provides significant advantages.

All of these differences in running times culminate in a total performance gain
of 74% when using the search behavior model versus the application frequency
model typical of prior work. This computational performance gain coupled with
improved accuracy could prove to be a critical advantage when deploying the
sensor in an operational environment if a system design includes automated
responses to limit damage caused by an insider attack.

7 Future Research

While the list of search applications and commands may have to be updated
occasionally (just like an Anti-Virus needs periodic signature updates) for best
detection results, most of the search-related activity would be manifested in
accesses to search index files and regular user files on the system. An attacker
could try to evade the monitoring system by renaming DLLs and applications
so that they are assigned to a different category per our applications taxonomy,
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Table 4. Performance comparison of ocSVM modeling approaches using search
behavior-related features and application frequency features

Step ocSVM app. freq. ocSVM search-beh.

Identifying Features (min) 8.5 0

Extracting Features (min) 48.2 17.2

Training (min) 9.5 0.5

Testing (min) 3.1 0.5

Total (min) (Rounded) 69 18

other than the search or information gathering category. Although we have not
implemented a monitoring strategy to counter this evasive tactic, it is clear that
a simple extension to the monitoring infrastructure can account for this case.

We assume that the attacker does not have knowledge about the victim’s
behavior. However, if the attacker has such prior knowledge, we propose com-
bining user behavior profiling with monitoring access to well-placed decoys in
the file system (as noted in Section 6.3) in order to limit the success of evasion.
This should also help reduce false positives and present additional evidence od
a masquerade attack, thus guiding the appropriate mitigation strategy.

A masquerader could choose to copy data to a USB drive for later exam-
ination. They may even choose to access the victim computer remotely and
ex-filtrate data over the network. We could easily use the application taxonomy
to monitor these specific behavior in case the attacker resorts to such strategies.
As noted in section 6.3, the ‘file touches’ feature already captures some aspect of
this behavior. The applications taxonomy could be used to extract ‘Networking’-
, ‘Communications’- and I/O-related features to be included in the user model,
so that such masquerader behavior gets detected easily.

8 Concluding Remarks

Masquerade attacks resulting in identity theft are a serious computer security
problem. We conjecture that individual users have unique computer search be-
havior which can be profiled and used to detect masquerade attacks. The be-
havior captures the types of activities that a user performs on a computer and
when they perform them.

The use of search behavior profiling for masquerade attack detection permits
limiting the range and scope of the profiles we compute about a user, thus
limiting potentially large sources of error in predicting user behavior that would
be likely in a far more general setting. Prior work modeling user commands
shows very high false positive rates with moderate true positive rates. User
search behavior modeling produces far better accuracy.

We presented a modeling approach that aims to capture the intent of a user
more accurately based on the insight that a masquerader is likely to perform
untargeted and widespread search. Recall that we conjecture that user search
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behavior is a strong indicator of a user’s true identity. We modeled search be-
havior of the legitimate user using three simple features, and detected anomalies
that deviate from that normal search behavior. With the use of the RUU dataset,
a more suitable dataset for the masquerade detection problem, we achieved the
best results reported in literature to date: 100% masquerade detection rate with
only 1.1% of false positives. Other researchers are encouraged to use the data
set which is available for download after signing a data usage agreement [1].

In an operational monitoring system, the use of a small set of features limits
the system resources needed by the detector, and allows for real-time masquerade
attack detection. We note that the average model size is about 8 KB when the
search-behavior modeling approach is used. That model size grows to more than
3 MB if an application and command frequency modeling approach is used.
Furthermore, it can be easily deployed as profiling in a low-dimensional space
reduces the amount of sampling required: An average of 4 days of training data
was enough to train the models and build effective detectors.

In our ongoing work, we are exploring other features for modeling that could
improve our results and extend them to other masquerade attack scenarios.
The models can be refined by adding more features related to search, includ-
ing search query contents, parameters used, directory traversals, etc. Other fea-
tures to model include the use of bookmarks and recently opened documents
which could also be used by masquerade attackers as a starting point for their
search. The models reported here are primarily volumetric statistics character-
izing search volume and velocity. We can also update the models in order to
compensate for any user behavior changes. We will explore ways of improving
the models so that they reflect a user’s unique behavior that should be distin-
guishable from other legitimate users’ behaviors, and not just from the behavior
of masqueraders.
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Abstract. Peer-to-peer real-time communication and media streaming
applications optimize their performance by using application-level topol-
ogy estimation services such as virtual coordinate systems. Virtual coordi-
nate systems allow nodes in a peer-to-peer network to accurately predict
latency between arbitrary nodes without the need of performing exten-
sive measurements. However, systems that leverage virtual coordinates
as supporting building blocks, are prone to attacks conducted by com-
promised nodes that aim at disrupting, eavesdropping, or mangling with
the underlying communications.

Recent research proposed techniques to mitigate basic attacks (infla-
tion, deflation, oscillation) considering a single attack strategy model
where attackers perform only one type of attack. In this work we ex-
plore supervised machine learning techniques to mitigate more subtle
yet highly effective attacks (frog-boiling, network-partition) that are able
to bypass existing defenses. We evaluate our techniques on the Vivaldi
system against a more complex attack strategy model, where attackers
perform sequences of all known attacks against virtual coordinate sys-
tems, using both simulations and Internet deployments.

1 Introduction

Several recent peer-to-peer architectures optimize underlying communication
flows by relying on additional topological information in order to meet the per-
formance requirements of real-time communication and live media streaming
applications. These architectures vary from distributed approaches, where peers
can independently check the traffic specific network conditions and select the
most appropriate candidate [34] to more centralized approaches, where an Inter-
net Service Provider (ISP) is actively helping this process by means of an oracle
service [5]. Specifically, an ISP can help avoid the overlay-underlay routing clash
by ranking peers according to several metrics such that peer-to-peer traffic re-
mains largely within the same Autonomous System (AS). The latter approach is
being followed by the IETF, where the Application-Layer Traffic Optimization
(ALTO) [30] working group has defined a framework for providing a service for
efficiently selecting peers with the objective of improving the performance of
peer-to-peer applications without disrupting ISPs.
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One way of efficiently selecting peers is to leverage an application-level topology
estimation service for defining virtual coordinates for use in the peer selection pro-
cess [30]. Virtual coordinates consist of mapping each host to a multidimensional
metric space, such that the distance metric between coordinates can approximate
network level measurements among the original hosts. This mapping is done iter-
atively, as each host probes one or several other hosts and individually adjusts its
virtual coordinates. Typical network level metrics are bandwidth and round-trip
time (RTT) and several coordinate systems have been introduced in the past. For
an extensive overview on the existing approaches, the reader is referred to [16].

Systems that leverage virtual coordinates as supporting building blocks are
prone to attacks conducted by compromised nodes that aim at disrupting, eaves-
dropping, or mangling with the underlying communications. These attacks aim
at disrupting services relying on virtual coordinates and this is done by biasing
the mapping process. The consequences of such attacks range from traffic eaves-
dropping, where attackers manipulate the virtual coordinates in order to force
their location to be part of the communication path, to denial of service attacks,
that lead to an unstable and inefficient overlay network. Specifically, identified
attacks against virtual coordinate systems are: inflation/deflation - where the
coordinate of a node is made to appear bigger/smaller and oscillation - where an
attacker destabilizes the coordinate system. Previous research [32, 37] proposed
techniques to mitigate these attacks considering a single attack strategy model
in which attackers perform the same type of attack for the entire duration of
the attack. Recent research [10, 11] identified new, more subtle and yet highly
effective attacks called frog-boiling and network-partition that are able to bypass
such defenses. During frog-boiling, attackers lie about their coordinates only by
small amounts, but over time continuously move away from their correct posi-
tions. Network-partition is a variant of the frog-boiling attack where groups of
attackers move their coordinates in opposite directions. No solutions to these
attacks have been proposed to the best of our knowledge.

In this paper, we consider the detection of all existing attacks against decen-
tralized virtual coordinate systems by leveraging supervised machine learning
methods: decision trees and support vector machines. Our approach is able to
detect and mitigate all known attacks used in both single attack strategies where
individual attacks (frog-boiling, network-partition, oscillation, inflation and de-
flation) are launched by an attacker and more complex attack strategies, where
successive attack phases are intermixed without assuming any fixed order in the
attack sequence. Our contributions are as follows:

– We propose a practical method to counter the frog-boiling and network-
partition attacks, or any complex attack strategy in which several individual
attacks are launched by a powerful adversary. For example, the latter can
combine several single attacks following a Markov chain model.

– We develop a feature set, based on a node’s local information, for embedding
it into a multidimensional manifold in order to reveal attacks. This process
has resulted in seven feature variables that prove to be the most relevant for
the prediction and classification task.
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– We provide a quantitative analysis of supervised machine learning methods,
i.e., decision trees and support vector machines, for detecting all known
attacks. We evaluate our techniques using the Vivaldi [15] virtual coordinate
system through simulations using the King data set and real deployments on
PlanetLab. Among the two different machine learning techniques, decision
trees and support vector machines, decision trees are able to mitigate all
known attacks, outperforming support vector machines by achieving a much
lower false positive rate. Our approach works both in a global manner, where
all nodes actively exchange local information and a collective decision is
taken, as well as in an individual manner, where each node locally decides
whether an attack is occurring or not. The results for simulations using the
King data set and for real deployments on PlanetLab both demonstrate good
performance in terms of true positives (∼ 95%) for identifying the different
attacks.

The remainder of this paper is structured as follows. We overview virtual co-
ordinate systems in Section 2. We describe existing known attacks and some
limitations of existing protection mechanisms in Section 3. We describe our de-
fense method in Section 4 and present experimental validation in Section 5. We
discuss related work in Section 6. Finally, we conclude the paper in Section 7.

2 System Model

In this section, we give an overview of virtual coordinate systems and a rep-
resentative decentralized system, Vivaldi, that we use in our simulations and
experiments.

2.1 Virtual Coordinate Systems

Virtual Coordinate Systems (VCS) have been proposed as a way to accurately
predict latency between arbitrary nodes without the need of performing extensive
measurements. In a VCS, each node maintains a coordinate where the distance
between two node’s coordinates is the estimated round-trip time (RTT). The
main service goals of virtual coordinate systems are the accuracy and stability
of the resulting virtual coordinates. Accuracy captures how well the coordinates
estimate actual RTTs between nodes. Stability captures the ability of the system
to converge to the real coordinate values.

Two main architectures for virtual coordinate systems have emerged: landmark-
based and decentralized. Landmark-based systems rely on infrastructure compo-
nents (such as a set of landmark servers) to predict distance between any two
hosts. The set of landmarks can be pre-determined [17, 26, 27] or randomly se-
lected [28, 35]. Decentralized virtual coordinate systems do not rely on explicitly
designated infrastructure components, requiring any node in the system to act as
a reference node. Examples of such systems include PIC [13], Vivaldi [15], and
PCoord [23, 24].
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In this paper, we focus on decentralized virtual coordinate systems as sev-
eral such systems have become popular due to their low cost of deployment and
increased scalability. In particular, we use Vivaldi [15] as a representative decen-
tralized virtual coordinate system. We chose Vivaldi because it is a mature and
widely-deployed system that has been shown to produce coordinates that result
in low error estimations and is able to do so with reasonable performance and
overhead.

2.2 Vivaldi Overview

Vivaldi is based on a spring-mass system where all nodes are connected via
springs, where the current length of the spring is the estimated RTT and the
actual RTT is considered to be the spring length when at rest. Thus as with real
springs, if a spring is compressed it applies a force that pushes the nodes apart
and if the spring is extended the spring pulls them together. Over time, the
tension across all springs is minimized, and the position of each node produces
the resulting coordinate.

Specifically, the Vivaldi protocol works as follows. Each node i is first assigned
a coordinate xi that is at the origin of the coordinate space and also finds several
neighbors with which it exchanges updates. Every node i maintains a local error
value ei that is initialized to 1 and decreases as the RTT estimations improve.
Node i will occasionally request an update from node j, which consists of node
j’s coordinate and local error. Node i also uses this opportunity to measure the
RTT between itself and j. Once node i has this information it follows the update
process as shown in Algorithm 1. An observation confidence w is calculated first
(line 1) along with the error es in comparing the coordinates with the actual
RTT (line 2). The local error value is then updated (line 4) by calculating an
exponentially-weighted moving average with weight α and system parameter ce

(line 3). The movement dampening factor is then calculated with another system
parameter cc (line 5) and finally the coordinate is updated (line 6).

Algorithm 1. Vivaldi Coordinate Update
Input: Remote node observation tuple (〈xj , ej , RTTij〉)
Result: Updated local node coordinate and error (xi, ei)

1 w = ei/(ei + ej)
2 es = |‖xi − xj‖ − RTTij |/RTTij

3 α = ce × w
4 ei = (α × es) + ((1 − α) × ei)
5 δ = cc × w
6 xi = xi + δ × (RTTij − ‖xi − xj‖) × u(xi − xj)

3 Attack Model and Strategies

While Vivaldi produces coordinates that can accurately predict RTTs, it is also
vulnerable to insider attacks. An attacker can lie about its coordinate and local
error, and can also increase the RTT by delaying probes sent to determine the
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RTT between itself and other nodes. As has been shown [6, 21], Vivaldi is vul-
nerable against such attacks that can lead to producing coordinates that have
high error. Such attacks can be conducted by a set of attacker nodes, either in-
dividually or coordinating together. An attacker can mount an attack by using
only one type of attack, or by mixing several attacks.

Below we first describe single attack scenarios where a malicious node applies
the same attack for the entire duration of the experiment and all nodes apply
the same attack. We then extend these scenarios to more complex ones, by
assuming that not only one single attack is applied by all the malicious nodes,
but sequences of different attacks can be launched.

3.1 Single Attack Strategies

Basic Attacks. Several basic attacks specific to coordinate systems have been
identified. They are: inflation and deflation attacks that impact the accuracy of
coordinate systems, and oscillation attacks [37] that impact both the accuracy
and stability of coordinate systems. In an inflation attack, malicious nodes report
a very large coordinate to pull nodes away from correct coordinates. In a defla-
tion attack, to prevent benign nodes from updating and moving towards their
correct coordinates, malicious nodes report coordinates near the origin. Finally,
in an oscillation attack, malicious nodes report randomly chosen coordinates and
increase the RTT by delaying probes for some randomly chosen amount of time.
In each of these attacks, nodes report a small, but randomly chosen, local error
value, signaling that they have high confidence in their coordinate position.

To show how a small number of malicious nodes conducting oscillation attacks
can affect application performance, we evaluated the file-sharing BitTorrent sys-
tem [12] in a real-life PlanetLab [3] deployment of 315 nodes, out of which 10%
act maliciously. We compare three scenarios in Fig. 1: No Vivaldi, the sce-
nario where the BitTorrent tracker does not use virtual coordinates, but simply
chooses nodes at random; Vivaldi - No Attack, the scenario where the tracker
is coordinate-aware, i.e. when a client requests other peers to download from,
the tracker will respond with a selection of nodes that are near the coordinate of
the requesting node; Vivaldi - Oscillation, the scenario where the coordinates

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  100  200  300  400  500  600  700  800

F
ra

ct
io

n
 o

f 
N

o
d

es

Completion Time (seconds)

No Vivaldi
Vivaldi - No Attack

Vivaldi - Oscillation

Fig. 1. Oscillation attacks against BitTorrent, 315 nodes (10% malicious) on PlanetLab



206 S. Becker et al.

used by BiTorrent are impacted by an oscillation attack against Vivaldi. In our
implementation, malicious nodes report randomly chosen coordinates and in-
crease the RTT by delaying probes for up to 1 second. As can be seen in Fig. 1,
when the tracker is aware of coordinates, the download times decreases by 50%
for some nodes. However, when under attack, much of the gains brought on by
the coordinates are lost, and for over 25% of nodes, the download times actually
increase over the scenario when no virtual coordinates are used to optimize peer
selection.

Advanced Attacks. Several proposals have been made to secure virtual coor-
dinate systems against the above described basic attacks [20, 32, 37] and have
been shown to effectively mitigate them. However, recent research [10, 11] has
identified two more subtle and yet highly effective attacks that are able to by-
pass existing defenses. They are the frog-boiling and network-partition attacks.
In a frog-boiling attack malicious nodes lie about their coordinates or latency
by a very small amount to remain undetected by defense mechanisms. The key
of the attack is that the malicious nodes gradually increase the amount they
are lying about and continue to move further away from their correct coordi-
nates, successfully manipulating benign node’s coordinates and thus producing
inaccurate RTT estimations. In a network-partition attack two or more groups
of malicious nodes conduct a frog-boiling attack, but move their coordinates in
opposite directions, effectively splitting the nodes into two or more groups.

We illustrate the effects of a frog-boiling attack conducted by a small group of
attackers on the accuracy of Vivaldi on a real-life PlanetLab deployment of 500
nodes, out of which 10% act maliciously. We measure accuracy by evaluating the
prediction error defined as:

Errorpred = |RTTAct − RTTEst|
where RTTAct is the measured RTT and RTTEst is the estimated RTT. Fig. 2(a)
displays the median prediction error between all pairs of nodes. In this experi-
ment, malicious nodes start the attack after 600 seconds, moving their coordi-
nates only 250 microseconds every time they report their coordinate, and thus
gradually increasing the prediction error over time. We also plot the coordinates
of nodes before and after the attack has an effect, in Fig. 2(b) and Fig. 2(c)
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respectively. The attack thus results in nodes moving away from their correct
coordinates and also away from the origin.

3.2 Complex Attack Strategies

Prior work has considered only single attack strategies, where a malicious node
applies the same attack (inflation, deflation, oscillation, frog-boiling, network-
partition) for the entire duration of the attack and all nodes apply the same
attack. However, single attack strategies can be easily detected using techniques
that leverage change-point detection methods. We extend these scenarios to more
complex ones, by assuming that not only one single attack is applied by all the
malicious nodes, but sequences of different attacks can be constructed. Sequences
of different attacks do raise the stakes significantly, since the observed patterns
are less easy to detect. We also consider cases when attackers do not all apply
the same attack.

Single Random Attack Scenario. One way to extend in a straightforward
way the single attack strategy is to consider the case where nodes do not per-
form all the same attack. In this case, each node randomly selects one of the five
single attacks, and applies no attack for some time, then switches to the ran-
domly selected attack. This designates that one malicious node may conduct the
inflation attack, while another malicious node conducts the frog-boiling attack.
We refer to this attack strategy as Single-Random.

Two Attack Scenario. Another extension of the single attack strategy is a
scenario where an attacker alternates between any of the five single attacks, inter-
leaving them with a period of no attack. Specifically, such a strategy is composed
of four equal time slots, the first time slot is a non attacking slot, the second
consists of one of the five single attacks, followed by another non attacking slot,
and finally the fourth time slot is a second single attack. The idea behind this
model is to see how the existing detection methods, as well as the methods we
propose in this paper, perform in comparison to single attack scenarios. We ex-
periment with several of such scenarios and select the following as representative:
Deflation - Frog-Boiling, Oscillation - Inflation, Network-Partition - Oscillation.

Sequence Attack Scenario. We model more complex attack scenarios, where
the attacker applies different sequences of attacks, by using a Markov chain
model. The states of such a chain represent all the different single attacks in-
cluding the No Attack state in which an attacker does not apply an attack. The
Markov chain is presented in Figure 3. This Markov chain is irreducible, as the
state space is one single communicating class, meaning that every state is ac-
cessible from every state. We consider an irreducible chain, as we assume that
the attacker can change the current attack strategy to any other attack, and
even stop attacking for a while. Therefore, an attacker can execute every attack
at any time, independently of what he has executed previously. Furthermore,
the chain is aperiodic, as a return to a specific state can happen at irregular
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Fig. 3. Markov Chain with the different attacks and the transition probabilities

times. An attack that was already executed previously might be utilized again
from time to time. Summarizing, we can say that the Markov chain is ergodic,
as it is aperiodic, irreducible and positive recurrent. Such an ergodic chain al-
lows to visit individual states indefinitely often and thus leads to more complex
scenarios.

The transition probabilities presented in Figure 3 reflect several design goals
for generating sequences of attacks. From the No Attack state, each attack is
equally probable, except the probability that no transition (and therefore no at-
tack) is only 10%, therefore the transition to any attack state has the probability
18%. We chose these transition probabilities to avoid the risk of the Markov chain
remaining in the No Attack state. From an attack state the transitions to every
other attack state are equally probable with 15%. This results in the transition
probability to the No Attack state to always be 25% such that we ensure that
there are some no attack intervals and that an attacker does not remain in an
attacking state.

Based on the Markov chain presented in Figure 3 we created and assessed
twenty different sequence-scenarios. All sequences start in the No Attack state.
Below we describe the most relevant scenarios in terms of representing the differ-
ent groups of sequences, one group that has a very small amount of non-attacking
intervals, another group with intermediate values of non-attacking intervals, and
the last group that has the highest amount of non-attacking intervals. We base
our selection on the amount of non-attacking intervals as characteristic due to
the importance of these intervals for the detection method leveraged in this
work. Below we utilize the term iteration, an iteration is equivalent to 0.5% of
the duration of an experiment. We focus on the following scenarios:

– Sequence A: No attack 15 iterations; inflation 15 iterations; network-partition
55 iterations; deflation 35 iterations; inflation 45 iterations; inflation 35 it-
erations. Total amount of non-attacking intervals: 15

– Sequence B : No attack 10 iterations; inflation 55 iterations; oscillation 50
iterations; frog-boiling 55 iterations; network-partition 30 iterations. Total
amount of non-attacking intervals: 10

– Sequence C : No attack 30 iterations; network-partition 35 iterations; frog-
boiling 35 iterations; No attack 15 iterations; frog-boiling 40 iterations; in-
flation 45 iterations. Total amount of non-attacking intervals: 45
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– Sequence D : No attack 40 iterations; inflation 30 iterations; oscillation 40
iterations; network-partition 40 iterations; frog-boiling 35 iterations; No at-
tack 15 iterations. Total amount of non-attacking intervals: 55

– Sequence E : No attack 50 iterations; inflation 10 iterations; No attack 50
iterations; oscillation 55 iterations; oscillation 10 iterations; inflation 25 it-
erations. Total amount of non-attacking intervals: 100

– Sequence F : No attack 55 iterations; network-partition 40 iterations; No
attack 15 iterations; frog-boiling 45 iterations; inflation 15 iterations; No
attack 25 iterations; No attack 5 iterations. Total amount of non-attacking
intervals: 100

We note that in these sequences of attacks, we still consider malicious nodes that
work together by applying the same attacks in the same time interval.

4 Mitigation Framework

This section describes our new mitigation framework based on machine learning
techniques, and presents the feature set that we leveraged for use by the machine
learning technique.

4.1 Background

Machine learning techniques, such as classification, have the aim to separate a
given data set into different classes. In our case, the classes that exist are normal
and attack, meaning that we have two different types of data in our data set. On
one side, we have data that represents normal updates of the nodes, and on the
other side, we have data that represents malicious update requests.

We choose to apply supervised classification methods as we know how the
system works under normal circumstances and also how the attacks degrade
performance when they are taking place. These classification methods are fed
with training data to learn the difference between normal and malicious data.
Supervised classification methods can operate directly in the feature space/pre-
dictor variables and identify separable regions that can be associated to a given
class/dependent categorical variable. Such methods are implemented by deci-
sion trees that come in several variants. Simple versions such as Classification
and Regression (Cart) [8] can predict both categorical and numerical outcomes,
while other schemes (C4.5 for instance) relying on information theory [29] are
uniquely adapted to categorical outputs. Another type of classification method,
support vector machines, map the input space into another dimensional space
and then rely on kernel functions for performing classification in the target space
[9].

4.2 Feature Set

We have evaluated three different methods (SimpleCart, C4.5, and support vec-
tor machines) for their efficiency in protecting virtual coordinate systems. We did
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this for several reasons: first, we wanted to compare the individual approaches
and identify the best one. Second, we considered that providing these results
allows a more comprehensive analysis of the detection process, as well as to
highlight some of the peculiar properties related to the different methods.

We have identified seven feature variables to be used in the prediction task.
This process was challenging since several approaches that worked directly on the
raw data were not successful. The raw data consisted, in our case, of statistical
properties of the underlying local error values. We have analyzed the time series
values of both the median and the average local error, but a straightforward
analysis of simple time series values did not perform well. This was due to a
four lag autocorrelation in the observed time series. In order to decorrelate the
time series values, we applied an embedding of the observed one dimensional
data into a seven dimensional manifold. Values in the original time series are
given by the median local error described in Section 2.2. The embedding into a
multidimensional manifold aims at revealing subspaces that can be associated
to attack states and respectively non-attack ones. Thus, at each sample moment
in time, we need to analyze a seven dimensional random vector.

1. Feature A is the median local error of the nodes emedian. This feature repre-
sents the global evolution of the local error. Intuitively, a low median local
error means that most of the nodes have converged to their coordinates.

2. Feature B represents the difference of the median local error at one lag
δ1 = emediant - emediant−1 . This feature captures the sense of the variation in
the local error. Positive values indicate an increase in the error, while nega-
tive values show continuous decrease in the error. This feature can be seen
as a discretized first derivate of the observed process. Although, discrete
time events are used to index the time series, by analogy to the continu-
ous case, we assume that this discretized first derivate captures the sense
(increasing/decreasing) of the underlying time series.

3. Feature C is δ2 = emediant - emediant−2 . This feature relates current values to
previous values at a two lag distance.

4. Feature D is δ3 = emediant - emediant−3 , is similar to feature C, but works at
a three lag distance.

5. Feature E is δ4 = emediant - emediant−4 . It captures longer dependence (lag
four).

6. Feature F captures the discretized form of the second order derivate δ1t -
δ1t−1 . Basically, this feature can indicate the shape (concave/convex) of the
initial time series. We assume a discretized equivalent of the continuous
definition.

7. Feature G is the absolute value of the discretized form of the second order
derivate | δ1t - δ1t−1 |. This absolute value can provide insights in inflection
points (i.e., points, where a switch from convex to concave, or concave to
convex is happening).

We can not visualize a seven dimensional manifold, but bi-dimensional pairwise
scatter plots can illustrate the rationale for our approach. Figure 4(a) shows the



Securing Application-Level Topology Estimation Networks 211

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-0.04 -0.02  0  0.02  0.04

Fe
at

ur
e 

A

Feature E

No attack
Attack

hyperplane

(a) Frog-boiling

 0.6

 0.7

 0.8

 0.9

 1

-0.003 -0.002 -0.001  0  0.001  0.002  0.003

Fe
at

ur
e 

A

Feature F

No attack
Attack

hyperplane

(b) Deflation

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-0.003 -0.002 -0.001  0  0.001  0.002  0.003

Fe
at

ur
e 

A

Feature F

No attack
Attack

(c) Inflation

Fig. 4. Bi-dimensional and pairwise feature representation

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 50  100  150  200

Fe
at

ur
e 

A

Iterations

(a) Feature A - emedian

-0.04

-0.02

 0

 0.02

 0.04

 50  100  150  200

Fe
at

ur
e 

B

Iterations

(b) Feature B - δ1

Fig. 5. Classification features

two dimensional scatter plot for a frog-boiling attack. Feature A is used for the
x-axis and feature E for y-axis. The two classes (attack and non attack) can be
linearly separated in this two dimensional subspace. Figure 4(b) shows another 2
dimensional scatter plot, where feature A and feature F are used. This scenario
corresponds to a deflation attack. In this scenario, the classes can be also linearly
separated, and thus we argue that these features are appropriate for defending
against a deflation attack. However, in Figure 4(c), the same set of features used
during an inflation attack shows very limited detection potential. However, the
global set of all seven features can be leveraged to detect the different (frog-
boiling, deflation, inflation, oscillation and network-partition) attacks.

The attack detection problem is stated thus as deciding whether a seven di-
mensional tuple is representing an attack or not. From a mitigation point of
view, once an attack is identified several measures can be taken. In a first phase,
updating the virtual coordinates can be resumed after the attack stops, or lim-
ited to updates received from known and trusted nodes. The latter assumes an
underlying reputation or trust model. In a second phase, the attacking hosts
should be identified and contained.

To provide some intuition behind our methodology we present in Figure 5
the evolution of two features for a dataset that contains a two attack strategy,
Inflation - Oscillation. This attack scenario consists of four time slots, so the
first is a non-attacking slot. The second is in this case an inflation attack. The
third time slot is again non attacking, and the fourth and last time slot is the
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oscillation attack. The objective of classification is, as already mentioned, to
separate the different classes of the data set. Two classes exist, the non-attacking
and attack class. Within Figure 5, we want to illustrate how the classifier can
identify the different classes. Figure 5(a) shows how feature A, the median of the
error, evolves. In this simple case, the increasing or decreasing trends are easy to
identify and one can define when the attacking time slots take place. Feature A
decreases in a non-attacking time slot, and increases during an attack. However,
feature B captures a smoothed version of the overall evolution. In these plots, we
can identify intervals that correspond to positive y-values for feature B. These
positive values belong to attacking time slots.

5 Experimental Results

In this section, we evaluate the single and complex attack strategies described in
Section 3 using Vivaldi within three different environments. First, we evaluate
the effectiveness of the machine learning techniques on the dataset resulting from
simulation using the p2psim simulator [2] and the King data set topology [18].
Second, we compare our machine learning methods to a previously proposed
solution using outlier detection [37] that can defend against inflation, deflation,
and oscillation. Third, we evaluate our machine learning techniques on the data
set resulting from deploying Vivaldi on 500 nodes on the Internet PlanetLab
testbed[3]. We evaluate our detection method in two setups: global and local.
In the global case, every node’s information is centrally collected and analyzed
together, while in the local case each individual node decides if an attack is
taking place or not based only on its own information.

We use the classification model as described in Section 4. To calculate the
feature set for the global case we take the median local error of each node in the
system, i.e. for 1740 nodes in the simulation and for 500 nodes in the Internet
PlanetLab testbed. The acquired model is applied to three different classifiers,
namely the two decision trees, SimpleCart [8] and C4.5 [29], and the support
vector machines, LibSVM[1]. All experiments for the simulator as well as for
PlanetLab are evaluated using the Java source code of weka[4]. We have tried all
different kernel functions and their corresponding parameters for the LibSVM
and because no significant differences were relevant, we decided to use the default
values that come with this weka composant: C-SVC for the kernel type, radial-
basis kernel function, with the default values (degree in kernel function was set
to 3, gamma parameter to 0.5 and nu to 0.5).

To evaluate the results, we calculate the percentage of attack events that the
classifier correctly classifies, which we refer to as the true positive rate (TPR). We
also calculate the percentage of non-attack events that the classifier incorrectly
classifies as attack events, which we refer to as the false positive rate (FPR). We
computed the TPR and FPR using the well established 10-fold cross-validation
scheme, where the system is trained with randomly extracted 9

10 of the data,
and tested with 1

10 of the data. This process is repeated 10 times for each clas-
sification.
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5.1 Simulation Results

We conduct simulations using the King data set topology[18], as it is represen-
tative of an Internet-wide deployment of a peer-to-peer system and has been
used previously to validate several other VCSes. The King data set consists of
RTT measurements between 1740 nodes, of which the average RTT is 180ms.
For each simulation, all nodes join in a flash-crowd sequence at the beginning of
the simulation. The simulations last for 200 time units, where each time unit is
500 seconds. Each node independently chooses a neighbor set of 64 nodes from
which it receives coordinate updates.

Single Attack Strategies. We start by analyzing single attack scenarios, as
defined in Section 3, where the following single attacks are classified: inflation,
deflation, oscillation, frog-boiling, network-partition, and single-random. Table 1
shows the classification results. The data set consists of the first 30% of the time
where no attack occurs, and the remaining 70% the attack does take place. This
distribution of time intervals was chosen because some amount of samples of
normal data, without attacks, is needed for training.

We note that for the decision trees, SimpleCart and C4.5, the TPR is, for
all the different attacks, around 99%, and the FPR for the two classifiers is
around 3%. This means that these decision trees can classify correctly almost all
entries. Furthermore, while the number of attackers applying the given attack is
increasing, the TPR remains more or less the same, whereas the FPR increases
most of the time. Out of this we see that even though most attacks are still
correctly classified, normal updates are classified incorrectly more often. We also
observe that in these cases support vector machines perform badly, especially
with regard to the FPR. In order to see to what degree decision trees can detect
a frog-boiling attack, we applied a ten-times slower frog-boiling attack as well as
hundred-times and thousand times slower and evaluated. We obtained also for
this case a very good performance as result, for 10%, 20%, and 30% of malicious
peers we achieve always a true positive rate around 98% and a false positive rate
around 2%.

Complex Attack Scenarios. We now investigate more complex sequences
of attacks, specifically the two attack and sequence attack scenarios as defined
in Section 3.2. Table 2(a) describes the classification results regarding the two
attack scenario. It can be seen that the TPR for both decision trees (i.e., Sim-
pleCart and C4.5) is less than for the single attack scenarios and the FPR is in
comparison a bit higher. Overall, the decision trees perform well, although the
results are not as good as the single attack scenario. In comparison, the support
vector machine library seems to ameliorate, especially in the context of the FPR
for the “Network-Partition - Oscillation” attack sequence.

Furthermore, we produced different sequence-examples with the assessed
Markov chain. Table 2(b) illustrates that all techniques have a very good TPR,
whereas the FPRs differ significantly. We find that the difference lies in the
amount of non-attacking intervals that each sequence has. Sequences A and B
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Table 1. p2psim - Single Attack Strategies - Classification Results

Attack Strategy
SimpleCart C4.5 LibSVM
TPR FPR TPR FPR TPR FPR

Inflation
10% attackers 0.99 0.01 0.99 0.02 0.67 0.67
20% attackers 0.99 0.01 0.99 0.02 0.67 0.67
30% attackers 0.97 0.05 0.99 0.02 0.67 0.67

Deflation
10% attackers 0.99 0.013 0.99 0.02 0.67 0.66
20% attackers 0.98 0.021 0.98 0.02 0.67 0.67
30% attackers 0.98 0.016 0.97 0.03 0.67 0.67

Oscillation
10% attackers 0.099 0.008 0.99 0.01 0.67 0.66
20% attackers 0.98 0.02 0.99 0.03 0.67 0.67
30% attackers 0.98 0.020 0.98 0.030 0.67 0.67

Frog-Boiling
10% attackers 0.99 0.011 0.99 0.013 0.68 0.64
20% attackers 0.99 0.016 0.98 0.03 0.67 0.67
30% attackers 0.98 0.025 0.98 0.03 0.67 0.67

Network-Partition
10% attackers 0.99 0.01 0.98 0.014 0.79 0.44
20% attackers 0.99 0.01 0.99 0.01 0.67 0.67
30% attackers 0.99 0.006 0.98 0.03 0.67 0.67

Single-Random
10% attackers 0.99 0.02 0.98 0.03 0.67 0.67
20% attackers 0.99 0.003 0.98 0.02 0.67 0.67
30% attackers 0.99 0.002 0.99 0.02 0.67 0.67

Table 2. p2psim - Complex Scenarios - Classification Results

(a) Two Attack Scenario

Attack Strategy
SimpleCart C4.5 LibSVM
TPR FPR TPR FPR TPR FPR

Deflation -
10% attackers 0.95 0.05 0.94 0.05 0.58 0.41
20% attackers 0.96 0.05 0.95 0.05 0.51 0.47

Boiling 30% attackers 0.98 0.02 0.97 0.03 0.52 0.49

Oscillation -
10% attackers 0.97 0.04 0.97 0.04 0.51 0.48
20% attackers 0.97 0.03 0.96 0.04 0.50 0.49

Inflation 30% attackers 0.96 0.04 0.97 0.03 0.51 0.49

Network-Partition -
10% attackers 0.95 0.05 0.97 0.03 0.67 0.34
20% attackers 0.91 0.09 0.93 0.07 0.54 0.46

Oscillation 30% attackers 0.90 0.10 0.92 0.08 0.55 0.45

(b) Sequence Attack Scenario
SimpleCart C4.5 LibSVM
TPR FPR TPR FPR TPR FPR

A 0.93 0.43 0.94 0.42 0.93 0.86
B 0.96 0.48 0.97 0.33 0.95 0.76
C 0.97 0.08 0.97 0.05 0.79 0.72
D 0.97 0.05 0.98 0.02 0.73 0.73
E 0.98 0.02 0.99 0.02 0.53 0.46
F 0.97 0.04 0.98 0.02 0.7 0.3

are in the group with only a small amount of non-attacking intervals - 10 and
15 intervals. The high FPR thus results due to the classifier not having enough
training data for learning normal behavior. The two other groups show better
results, for example, as sequences C and D have 45 and 55 normal intervals,
respectively. Sequences E and F have in this case a quite high value of non-
attacking intervals, both have 100 of them, so exactly half of the data set is
non-attacking. We can deduce then that having only 5% non-attacking training
data is definitely not enough, whereas 25% already shows good results. This
outcome can be explained by the need for an heterogeneous training set for the
decision trees; thus if we have less “No attack” time intervals, it is difficult for
the classifier to learn what normal behavior is.

Comparison with Outlier Detection. In previous sections we showed that
our classification techniques work well when applied globally. Nevertheless, pre-
vious works proposed mitigation techniques with respect to single nodes, even if
only effective for inflation, deflation, and oscillation attacks. In particular, in the
work from [37], each node independently decides if an update should be considered
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malicious or not by using spatial-temporal outlier detection. We compare our
method, applied in a local manner where each node will classify attacks based
only on its local information, with the work from [37], referred to as Outlier De-
tection in the remainder of the section. As this evaluation depends on the amount
of updates those individual nodes receive, we observed some variety in the clas-
sification results. We illustrate the local classification results when there are 10%
malicious nodes and for fifty randomly chosen benign nodes since this allows us
to have a statistical overview over the whole data set. Based on these fifty nodes
we create box-and-whisker diagrams, as those show the median values, the 25th

and 75th percentiles, and the minimal and maximal value of each data set. These
diagrams are shown in Figure 6 and in Figure 7. We show results only for the C4.5
technique as it has a similar performance with SimpleCart, while being more rel-
evant in recent research, and it outperforms LibSVM.

With respect to Figure 6 we note that for all the different cases of attack
strategies considered, the classification technique performs better than Outlier
Detection. In Figure 6(a), we see that Outlier Detection performs best for the
inflation attack, and we see that frog-boiling has worse results. This is due to
the fact that Outlier Detection can not handle frog-boiling as explained and
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shown in [10, 11]. Regarding Figure 7 we note that for all the different attack
strategies, our classification technique has much better median FPRs than the
Outlier Detection.

5.2 PlanetLab Results

To validate our findings over the real Internet, we implemented Vivaldi and
deployed it on PlanetLab. For our experiments we used 500 nodes, chosen from
all over the world, from which the average RTT is 164ms. Each experiment was
run for 30 minutes, while all other settings were the same as in the simulations. To
find the effectiveness of our techniques, we apply in our PlanetLab experiments
the same attacks and sequences as in the simulations on p2psim.

Single Attack Strategies. In Table 3 the results for the single attack scenarios
are illustrated, from which one can observe that for both decision trees the TPR
and FPR are very good, which is similar to the simulation results. However, in
the PlanetLab testbed we obtain much better results when applying the support
vector machines.

Table 3. PlanetLab - Single Attack Strategies - Classification Results

Attack Strategy
SimpleCart C4.5 LibSVM
TPR FPR TPR FPR TPR FPR

Inflation
10% attackers 0.97 0.04 0.97 0.03 0.90 0.20
20% attackers 0.95 0.08 0.95 0.08 0.91 0.17
30% attackers 0.97 0.05 0.99 0.01 0.93 0.14

Deflation
10% attackers 0.99 0.02 0.98 0.2 0.90 0.21
20% attackers 0.96 0.05 0.95 0.07 0.92 0.16
30% attackers 0.97 0.05 0.98 0.03 0.93 0.13

Oscillation
10% attackers 0.99 0.02 0.99 0.01 0.95 0.10
20% attackers 0.99 0.02 0.99 0.02 0.95 0.11
30% attackers 0.99 0.02 0.99 0.02 0.95 0.09

Frog-Boiling
10% attackers 0.96 0.05 0.97 0.04 0.80 0.21
20% attackers 0.97 0.04 0.98 0.03 0.85 0.15
30% attackers 0.97 0.05 0.98 0.04 0.86 0.15

Network-Partition
10% attackers 0.93 0.10 0.93 0.07 0.83 0.17
20% attackers 0.96 0.04 0.97 0.03 0.79 0.21
30% attackers 0.96 0.05 0.94 0.08 0.85 0.14

Single-Random
10% attackers 0.99 0.03 0.98 0.03 0.92 0.16
20% attackers 0.99 0.01 0.99 0.01 0.96 0.07
30% attackers 0.99 0.014 0.99 0.013 0.94 0.11

Complex Attack Strategies. In addition, we also evaluate the more complex
sequences as shown in Table 4. Table 4(a) provides results for the two-attack
sequences. We note that, similar to the single attacks, the results for support
vector machines are much improved for PlanetLab over the simulator. However,
the opposite is true for the two decision trees, which did not perform as well
on PlanetLab as they did for the simulations, especially for the 20% and 30%
of malicious nodes. Overall, the results are still satisfying though, as the TPR
is around 90% and the FPR does not exceed 11%. Table 4(b) illustrates the
classification results for the sequence attack strategies.
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Table 4. PlanetLab - Complex Scenarios - Classification Results

(a) Two Attack Scenarios

Attack Strategy
SimpleCart C4.5 LibSVM
TPR FPR TPR FPR TPR FPR

Deflation -
10% attackers 0.93 0.07 0.94 0.06 0.83 0.16
20% attackers 0.88 0.11 0.89 0.10 0.86 0.13

Boiling 30% attackers 0.93 0.07 0.91 0.08 0.87 0.13

Oscillation -
10% attackers 0.95 0.05 0.95 0.05 0.92 0.085
20% attackers 0.97 0.03 0.96 0.04 0.90 0.095

Inflation 30% attackers 0.97 0.03 0.97 0.03 0.89 0.11

Network-Partition -
10% attackers 0.92 0.078 0.915 0.085 0.80 0.20
20% attackers 0.89 0.11 0.90 0.09 0.84 0.16

Oscillation 30% attackers 0.91 0.09 0.93 0.07 0.85 0.15

(b) Sequence Attack Scenarios
SimpleCart C4.5 LibSVM
TPR FPR TPR FPR TPR FPR

A 0.93 0.83 0.93 0.65 0.93 0.93
B 0.95 0.95 0.94 0.52 0.95 0.95
C 0.86 0.26 0.84 0.31 0.78 0.78
D 0.87 0.21 0.89 0.22 0.73 0.71
E 0.95 0.06 0.96 0.05 0.95 0.06
F 0.87 0.14 0.88 0.12 0.80 0.19

Local Classification. Furthermore, we also analyze PlanetLab results when
each individual node decides locally if an attack is taking place or not based only
on its individual information. We show the results in Figure 8. We illustrate the
C4.5 classification technique, as it outperforms LibSVM, has similar performance
to SimpleCart, and has been widely adopted. Similar to the simulations, we
evaluate the results when there are 10% malicious nodes and for a set of fifty
randomly chosen nodes to have again a statistical overview of the data. To
illustrate the evaluation we again use box-and-whisker-diagrams.
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Fig. 8. PlanetLab Local Results

Figure 8 illustrates that C4.5 has a very high TPR in all the different attack
strategies, which mirrors the results for the global classification. We also see that
sequences A and B have high FPRs, which is similar to the global classification.
Overall, except for sequences A and B, the results have good FPRs. This shows
that the defined classification technique also work on a local basis when applied
on a real Internet testbed.

6 Related Work

Anomaly detection has been extensively leveraged in developing intrusion de-
tection systems[7, 19, 22], where for instance Bolzoni et al. [7] showed how to
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automatically and systematically classify detected attacks. The main idea was
to compute similarities of the payloads of attack data, and later classify it au-
tomatically, semi-automatically, and even manually. One proposed method used
support vector machines [36] and a rule learner algorithm for classification. While
support vector machines have proved to be efficient (when tuned properly), in
our case, we were surprised to discover that their potential usage was quite lim-
ited, despite extensive tuning with the most common kernel functions parameter
calibration. This anecdotally confirms Sommer et al.’s [33] findings that Machine
Learning techniques have often not been successful in real-world IDS applica-
tions due to that a detected anomaly does not immediately imply an attack.
One major problem with any detection framework is given by the small drifts
that might slowly bias the detection process. Repetitive training [14, 25] might
be a general solution for decreasing the ratio of false positives, but in our work
we show that such a process is not necessary for securing virtual coordinates
systems.

Virtual coordinate systems have been protected against attacks in the past
in several different ways. Kaafar et al. [20] use a trusted node set and anomaly
detection using a Kalman filter to detect and discard malicious updates. Zage
et al. [37] also use anomaly detection, but focus on a decentralized VCS without
any trusted components. Outlier detection is performed by setting two different
thresholds, a spatial and respectively a temporal one. Furthermore, Veracity [32]
is a decentralized VCS that introduces the notion of a verification set. Each
node maintains a verification set where several other nodes attest to whether a
particular update increases their estimation error above a certain threshold, and
if so, ignores it. We note, as described in Section 2, that all of these proposed
systems have been shown to be insecure against the frog-boiling attack [10,
11]. Frog-boiling attacks have been mitigated before in a different context by
ANTIDOTE[31]. ANTIDOTE is a principal component analysis-based poisoning
attack detector that constructs a low dimensional subspace which reflects most of
the dispersion in the data. The required computations are relatively expensive
and assumes an existing multidimensional input space. Such assumptions do
not hold in our case, where we had first to map the one dimensional data to
a higher dimensional space (which is the opposite of ANTIDOTE’s subspace
construction) and then rely on an efficient and online decision mechanism.

7 Conclusion

In this paper, we have addressed the detection of different types of attacks against
virtual coordinate systems. A detection method is presented for the known at-
tacks, such as inflation, deflation and oscillation, as well as the recently identified
frog-boiling and network-partition attacks. Besides these existing attacks, we
have elaborated more complex attack strategies, the single-random attack sce-
nario, two attack scenario, and sequence attack scenario. We have proposed, as
a detection method, to apply supervised machine learning techniques that lever-
age decision trees, namely SimpleCart and C4.5, and support vector machines
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to detect all different attack strategies. For this reason a feature set is proposed
and while representing this set in a multidimensional manifold, attacks can be
revealed as these feature variables are used for the prediction and decision task.

We have validated our detection method through simulation using the King
data set for the p2psim simulator as well as through real deployment on the Plan-
etLab testbed. The detection method is evaluated in a global manner, where the
local information of all nodes are together analyzed, as well as in a local manner,
where each node has only the local information to analyze and evaluate if an
attack is happening or not. We have shown that in our setting, decision trees
outperform support vector machines by achieving a much lower false positive
rate. Regarding the two different types of decision trees, the results are simi-
lar, thus there is no clear better choice. The outcome for the sequence attack
scenarios illustrates that a minimal set of normal data is needed for correctly
classifying normal behavior, pointing to at most 25% of the data is needed to
do so. Furthermore, we compared the proposed detection technique, the decision
tree, to existing detection and mitigation techniques, outlier detection which
is based on a threshold. This comparison has confirmed that the decision tree
as a detection method outperforms the existing outlier detection not only for
the frog-boiling, network-partition, or complex attack strategies but also for the
inflation, deflation, and oscillation attacks. In future work, we plan on further
refining the defense and attack strategies by using a game theoretical model, this
will help in finding the most appropriate of the two different decision trees for
the different attacks, as they have similar performance. To our knowledge, this
is the first work that is capable of mitigating all known attacks against virtual
coordinate systems.
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Abstract. Anonymous communication networks like Tor partially pro-
tect the confidentiality of their users’ traffic by encrypting all intra-
overlay communication. However, when the relayed traffic reaches the
boundaries of the overlay network towards its actual destination, the
original user traffic is inevitably exposed. At this point, unless end-to-
end encryption is used, sensitive user data can be snooped by a malicious
or compromised exit node, or by any other rogue network entity on the
path towards the actual destination.

We explore the use of decoy traffic for the detection of traffic inter-
ception on anonymous proxying systems. Our approach is based on the
injection of traffic that exposes bait credentials for decoy services that
require user authentication. Our aim is to entice prospective eavesdrop-
pers to access decoy accounts on servers under our control using the
intercepted credentials. We have deployed our prototype implementa-
tion in the Tor network using decoy IMAP and SMTP servers. During
the course of ten months, our system detected ten cases of traffic inter-
ception that involved ten different Tor exit nodes. We provide a detailed
analysis of the detected incidents, discuss potential improvements to our
system, and outline how our approach can be extended for the detection
of HTTP session hijacking attacks.

1 Introduction

Internet users often place trust in various systems that are not directly under
their control. With the emergence of cloud computing, and the continuously
increasing number of services migrating to the cloud, it is more so today than
ever. Anonymity and privacy-preserving systems like Tor [15], Anonymizer [1],
and many others [26,19,2,18,7,12] are such systems. They operate by routing
user traffic through a single or multiple proxies, often using layered encryption
schemes [11], and achieve a twofold goal. First, they preserve user anonymity, and
second, they enable users to access services and content which might otherwise be
restricted to them. For example, anonymity networks enable users to avoid being
tracked by governments and Internet service provides (ISPs) when accessing
restricted content [3,34].

Users of anonymous communication systems are able to conceal information
such as their IP address from the provider of the end service. In exchange, they
place their trust in components of the anonymous communication system they
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are using. In all cases, user data are at some point (for instance, before being
relayed to the end-service) available in their original form. Even if encryption is
utilized by the system internally, end-to-end encryption is imperative to ensure
the confidentiality of user communications. This can lead to the exposure of
private user information to rogue network elements, such as intermediate ISP
routers or nodes of anonymity-preserving networks, which can easily eavesdrop
on the users’ traffic.

Corporate, and sometimes even nationwide networks block access to certain
social networking and other popular online services for various reasons. Under
these conditions, users often resort to using distributed proxying systems (both
anonymity-preserving and otherwise) to prevent their traffic from being filtered.
Many of these users are not aware of the discrepancy between the anonymity and
privacy guarantees offered by these systems, and the lack of data confidentiality
which is frequently mistakenly assumed, and use them despite the absence of
end-to-end encryption, revealing sensitive data to the proxies relaying the users’
traffic. Some of these relays may act with malicious intent and misuse sensitive
user information such as user names and passwords or HTTP session cookies.

Note that this problem is not totally alleviated through the use of end-to-end
encryption. Malicious relay operators can employ man-in-the-middle attacks and
snoop on the traffic of even SSL encrypted sessions [33]. Furthermore, although
user authentication is usually performed over HTTPS, many sites then switch
to plain HTTP for the rest of the user session, allowing an attacker to mount
HTTP session hijacking attacks and take over a user’s session [16]. This is the
case with popular websites like facebook.com and twitter.com that use en-
cryption for user authentication, but switch already authenticated sessions to
plain-text communication, unless the user has explicitly opted in for “always-
on” HTTPS access. This is a particularly important issue, given that over than
50% of the HTTP traffic sent through Tor exit nodes is destined to social net-
working sites [22].

In this paper, we explore the use of decoy traffic to detect eavesdropping
in proxying architectures, and in particular anonymous communication sys-
tems. We introduce decoy credentials for various services like SMTP in the Tor
anonymity network, and use them to detect exit nodes that snoop on user traffic.
The use of fake information, or honeytokens [29], for the detection of unautho-
rized use of sensitive data is not new. Decoy information has been previously
used to to detect eavesdropping on unprotected wireless networks [9] and warn
of insider threats [8]. The idea behind these systems is that eavesdroppers will
probably try to use the collected information in some way. By injecting login
credentials for services that we control, we are able to detect the use of a partic-
ular decoy user name and password combination, and trace it back to the Tor
exit node on which it was exposed.

Tor [15] is one of the most popular anonymity networks based on onion rout-
ing [14]. Tor clients form virtual circuits consisting of two or more Tor nodes,
which relay client traffic to the intended server. Their data is encrypted multiple
times before being transmitted over the Tor network, so that the original data
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are available only at the exit node (that is, the last node in the circuit). As
such, unless end-to-end encryption between a client and a service is used, the
confidentiality of the data can be potentially undermined. For instance, data
can be eavesdropped by a malicious or compromised exit node, or even by the
ISP of the exit node. In fact, all proxying architectures face the same threat,
unless end-to-end encryption is used. We evaluate our detection system in the
Tor network mainly because Tor is the most popular anonymous communication
system with a considerable user base and hundreds of exit nodes that can be used
with any TCP-based service, including services that do not employ end-to-end
encryption.

Our prototype implementation uses multiple “bait” credentials for a IMAP
and SMTP servers under our control. We use the different decoy credentials to
connect to these services through Tor using every publicly available exit node.
The decoys are transmitted in plain-text, and each decoy is only sent through
a single exit node, allowing us to pair the use of a particular decoy with an
exit node. The decoy credentials are exposed through realistic user sessions that
include many client-server interactions, so that the decoy traffic becomes nearly
indistinguishable from real user sessions. Our system has been operational for
about ten months, and so far has detected ten incidents of eavesdropping by
public Tor exit nodes.

In summary, the main contributions of this paper are the following:

– We present a generic method for the detection of traffic interception in
anonymity networks and proxy servers in general, based on the transmis-
sion of decoy user credentials.

– We deployed a prototype detection system for the Tor anonymity network,
which detected ten cases in which decoy credentials were used by a third-
party to log in to servers under our control.

– We describe how the proposed method can be extended for the detection of
HTTP session hijacking attacks, which can be used to take over active user
sessions on websites where encryption is not used throughout a session.

The rest of the paper is organized as follows. The next section provides some
background information on the Tor anonymity network, and presents the threat
model we are considering. Section 3 describes the design and implementation
of our decoy transmission and eavesdropping detection engine. We present the
results obtained by deploying our prototype in Section 4. In Section 5, we discuss
limitations and possible extensions to our system, including the detection of
HTTP session hijacking. Finally, related work is discussed in Section 6, and we
conclude in Section 7.

2 Background

In this section we briefly describe the architecture of the Tor anonymity network,
and present the threat model assumed in this work.
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Fig. 1. Basic steps for communicating through Tor. The client obtains a list of the
available Tor relays from a directory service 1©, establishes a circuit using multiple Tor
nodes 2©, and then starts forwarding its traffic through the newly created circuit 3©.

2.1 Tor Anonymity Network

Tor [15] is one of the most widely used low latency anonymity networks, with an
estimated user base of more than 200,000 users as of April 2011 [5]. Tor aims to
protect the anonymity of Internet users by relaying user-generated TCP streams
through a network of overlay nodes run by volunteers. Tor can be used for both
initiator and responder anonymity. Initiator anonymity hides the true identity
(IP address) of user-initiated connections from the actual destination, while the
identity of network servers can also be kept secret from their clients through the
use of hidden services.

The Tor overlay network consists of hundreds of proxies known as onion
routers, which are mostly operated by volunteers around the world. User traffic
is relayed through circuits, which are formed by persistent connections between
different nodes. By default, Tor circuits consist of three nodes: the first one is
known as the entry node, the second one as the middleman, and the third one
as the exit node. A Tor client uses the public keys of the onion routers on the
circuit to encrypt transmitted messages in multiple layers of encryption, starting
with the public key of the exit node. Each of the nodes then first “peels off”
one layer of encryption and then forwards the message to the next node on the
circuit. The exit node decrypts the final layer of encryption, which reveals the
original message of the user, and forwards it to its actual destination through a
regular TCP connection.

Figure 1 presents the basic steps for the creation of a new Tor circuit consisting
of three onion routers.

1. The Tor client queries the directory service to obtain a list of the available
Tor relays.
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2. The client uses a set of relays to create Tor circuits. By default, circuits are
created using three relays.

3. The client selects one of the circuits and creates a TCP connection to its
entry node. Traffic is forwarded through the circuit to the exit node, which
communicates directly with the actual destination.

2.2 Threat Model

Exit nodes act as proxies between the user and the actual destination. This places
them in a powerful position that allows malicious exit node operators to take
advantage of their access to the user’s original network traffic. Consequently, the
trust that the users place on an anonymous communication service like Tor can
be affected by misbehaving or compromised overlay nodes. A rogue exit node
can capture all the incoming and outgoing user traffic between the exit node
and the actual destinations. We expect the attacker to sift through the captured
user traffic and extract user credentials from clear-text application protocols.
This can be easily achieved using custom tools built on top of libpcap [20],
or through the use of existing tools like dsniff [28]. Of course, the attacker
might be eavesdropping for a particular kind of private information, such as the
content of email messages [4], which can then be misused in other, non-obviously
detectable ways.

Credentials such as user names and passwords or sessions cookies can be
reused by the attacker on the same destination server. These might allow him to
take over the user’s account for that service or hijack an ongoing session. Note
that the attacker’s connections using the stolen credentials can be launched
either from the same host that runs the malicious Tor node, or any other host
on the Internet.

Besides unencrypted traffic, even properly encrypted user connections such as
HTTPS sessions to banking or webmail sites can be compromised by malicious
exit nodes. For example, an attacker can mount a man-in-the-middle attack and
intercept the traffic of SSL connections [23]. Attacks of this kind can be easily
detected [23,33], and thus are out of the scope of this work.

3 System Architecture

In this section, we present the overall architecture of our traffic interception
detection system. We describe the design of the decoy traffic transmission mech-
anism and the corresponding decoy services, as well as the approach we used
for incident data collection and correlation. Finally, we discuss some interesting
implementation issues that we faced during the development of our prototype
system.

3.1 Approach

In general, network traffic eavesdropping is a passive operation without any
directly observable effects. However, the fact that some traffic has been inter-
cepted can be implied through potential uses of the intercepted data that have
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Fig. 2. Overall architecture of the proposed traffic interception detection system when
applied on the Tor network

detectable corollaries. For example, the eavesdropper can steal user credentials
for services that do not use application-layer encryption, such as user names
and passwords for websites with poor user authentication implementations, or
for servers that use clear-text sign-in protocols, such as FTP or IMAP. A later
attempt by the eavesdropper to access the user’s account is an observable event
that can be detected by the operator of the respective service.

Our approach is based on enticing a prospective snooper to use intercepted
decoy credentials for accessing a service under our control. The proposed system
transmits decoy credentials through network paths on which there is a possibility
of traffic eavesdropping. Each set of credentials is unique, has never been used
before, and is transmitted solely through a specific network path. All subsequent
unsolicited accesses to any of the accounts on the decoy server are clear indica-
tions that the credentials tied to these accounts have been intercepted during
their initial transmission.

Figure 2 illustrates the overall design of our system when applied on the Tor
anonymity network. A client under our control periodically connects through
Tor to a decoy server, which uses a clear-text application-level protocol requiring
password authentication. As a result, the user name and password used in each
session are exposed to the exit node of the Tor circuit (and any other network
entity between the exit node and the decoy server).

In more detail, as the system is continuously running, the following steps take
place periodically:

1. The client connects and authenticates to the decoy server through the Tor
network. A new connection using a different set of credentials is made through
all available exit nodes by explicitly specifying the exit node of each Tor cir-
cuit.
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Fig. 3. Number of Tor exit routers that allow traffic relaying through different TCP
port numbers, for services that support clear-text protocols

2. The decoy server keeps a detailed record for each session, including the user
name and password used, the IP address of the connection initiator, and the
login time.

3. After a successfully completed session on the decoy server, the system at-
tempts to correlate it with a recently completed client session. If no matching
client session is found, then an unsolicited connection using stolen decoy cre-
dentials has been identified.

Each unique pair of user name and password is tied to a particular exit node
and is transmitted only through Tor circuits terminating at that node. Thus,
the exit node involved in a particular eavesdropping incident is known based
on the given set of credentials used in the unsolicited session seen by the decoy
server. At the same time, the server is aware of the IP address of the connection
initiator, which, as discussed in Section 4, may belong either to the rogue exit
node itself, or to a third-party host on the Internet.

3.2 Implementation

Although Tor can forward the traffic of any TCP-based network service, in prac-
tice not all exit routers support all application protocols. For example, SMTP
relay through port 25 is blocked by the majority of Tor exit nodes to prevent
spammers from covertly relaying their messages through the Tor network. Con-
sequently, the first important decision we had to take before beginning the im-
plementation of our prototype system, was to choose a set of services that are
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supported by a large number of Tor exit nodes. At the same time, candidate ser-
vices should support unencrypted authentication through a clear-text protocol,
while the services themselves should be enticing for potential eavesdroppers.

Tor exit nodes are usually configured to allow traffic forwarding for only a
small set of TCP services. The supported services are defined by the operator of
the exit node through the specification of an exit policy. To determine the most
widely supported unencrypted application protocols, we queried the Tor direc-
tory servers and retrieved the number of exit nodes that allowed each different
protocol. Figure 3 presents the number of Tor exit nodes that at the time of the
experiment allowed the relaying of traffic through various TCP port numbers. In
accordance to the results obtained by McCoy et al. [21], widely used protocols
for applications like web browsing, email retrieval, and instant messaging are
allowed by the majority of exit nodes. Among the services that support user
authentication through unencrypted protocols, IMAP (port 143) and SMTP de-
livery (port 587) are allowed by the exit policies of a significant number of exit
nodes (661 and 522 nodes, respectively). In contrast to SMTP relay (port 25),
SMTP through port 587 is dedicated to message submission for delivery only for
users that have registered accounts on the server.

Credentials for accessing user messages that may contain sensitive private
information, or for sending emails through verified user addresses, can be of
high value for a malicious eavesdropper. This led us to choose the IMAP and
SMTP protocols for our prototype implementation. However, our technique is
not restricted to these two services, and can easily be extended to include bait
traffic for various other unencrypted TCP-based services like FTP, Telnet, and
instant messaging. In Section 5 we also discuss how our technique can be ex-
tended to detect the interception of user login credentials and cookies for various
web services.

Decoy Traffic Transmission and Eavesdropping Detection. Our decoy
traffic transmission subsystem is based on a custom client that supports the
IMAP and SMTP protocols. The client has been implemented using Perl, and
service protocol emulation is provided by the Net::IMAPClient and Net::SMTP
modules. The client is hosted on a server equipped with an Intel Xeon CPU
running Ubuntu Server Linux v8.04.

Every day, for each service, the client creates one connection to the corre-
sponding decoy server through each and every Tor exit node that supports traf-
fic relaying for that service. This is achieved by establishing a new Tor circuit
for each connection, and forcing each circuit to use a particular exit node. Once
a connection has been established, the client authenticates on the server using
a unique set of credentials tied to the particular combination of exit node and
decoy server. In case some exit node is not accessible, the corresponding set of
credentials is skipped. Similarly, when a new exit node joins the overlay network,
a new set of credentials for each decoy service is generated for use only with that
exit node. After the client has successfully signed in, it generates some randomly
selected activity such as browsing through some folders in case of IMAP, or
sending a fake email message in case of SMTP, and then signs out.
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For the decoy services we use Courier IMAP v4.6.0 and Postfix v2.7.0
running on a different host. Under normal conditions, each decoy server should
receive one connection from each unique account per day. If an unsolicited suc-
cessful connection using some of the previously transmitted decoy credentials
is observed, then this connection is labelled as illegitimate. Illegitimate connec-
tions are identified by correlating the connections generated by our client with
all the connections received by the server, based on the logs recorded at the client
and the server. Specifically, upon the completion of a successful connection, the
decoy server sends directly (not through Tor) to the client all the recorded in-
formation about the recently completed session. The client then compares the
connection details, including the set of credentials used and the start and end
times of the connection recorded by both the client and the server, against the
recently completed connections. In case no matching connection is found, the
system generates a report that includes the time of the last generated connec-
tion that used the intercepted credentials, the time of the unsolicited connection
to the server, the IP address of its initiator, and the exit node involved in the
incident.

Important Implementation Considerations. During the implementation
of our prototype system, we had to deal with various issues related to improving
the accuracy of our traffic interception detection approach, or with cases where
interesting design tradeoffs came up. We briefly discuss some of these issues in
the rest of this section.

Time Synchronization. Accurate time synchronization between the client and
the decoy server(s) helps ensuring the proper correlation of the connections gen-
erated by the client with the connections received by the server, and the correct
identification of any unsolicited connections. Although the volume of our decoy
connections is very low, allowing any illegitimate connections to easily stand
out, the clocks of all hosts in our architecture are kept synchronized using the
Network Time Protocol. The sub-second accuracy of NTP allows the precise
correlation of the connection start and end times observed on both the client
and server. This offers an additional safeguard for the verification of the detected
traffic interception incidents.

Amount and Quality of Decoy Traffic. We deliberately chose to generate a con-
servatively small number of decoy connections instead of sending a large amount
of decoy network traffic. On one hand, the probability that some of the transmit-
ted decoy credentials will be snooped increases with the number and frequency of
the generated decoy connections, e.g., in case of intermittent traffic interception
or opportunistic eavesdroppers. At the same time, as the amount of decoy traffic
increases, it can potentially become more distinguishable from the production
traffic. Although keeping the number of decoy connections to one per day for
each combination of exit node and decoy service may not provide the higher
possible exposure of the bait credentials to prospective eavesdroppers, it makes
the identification of the decoy traffic much harder.
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The believability of the decoy traffic [9] is another crucial aspect of the effec-
tiveness of our approach. For instance, a decoy IMAP session using an account
that does not have a realistic folder structure, or that does not contain any real
email messages, might raise suspicions to an eavesdropper. Repeating the same
actions in every session, or launching new sessions at exactly the same time every
day, can also be indications that the sessions are artificially generated. In our
prototype system, we randomly vary the connection times and activity in each
session, we use realistically looking folder structures for the IMAP accounts,
and send legitimately looking email messages that are randomly selected from
a pool of existing messages. As part of our future work, we plan to use more
sophisticated schemes for the generation of even more believable decoy traffic,
such as the one proposed by Bowen et al. [9], which is based on the automatic
modification of real network traffic traces.

Eavesdropping Incident Verification. Besides the accurate correlation between
the start and end times logged by the client and the server, we have taken extra
precautions to avoid any misclassification of our generated decoy connections as
illegitimate. For each connection launched by the client, the system also keeps
track of the circuit establishment times by monitoring Tor client’s control port.
Moreover, we have enabled all the built-in logging mechanisms provided by the
Tor software. On the server side, all incoming and outgoing network traffic is cap-
tured using tcpdump. In addition to the server logs, the captured traffic provides
valuable forensic information regarding the nature of illegitimate connections,
such as the exact sequence of protocol messages sent by the attacker’s IMAP or
SMTP client.

4 Deployment Results

Our prototype implementation has been continuously operational in the Tor
anonymity network since August 2010. During the course of ten months, our
system has detected ten traffic interception incidents. In this section, we give a
detailed description of each incident and an analysis of the consequent activity
on the decoy server.

The observed eavesdropping incidents were related to ten different exit nodes,
and all the related illegitimate connections were received by our decoy IMAP
server. Based on the intercepted credentials used in each unsolicited connection,
we were able to identify the Tor exit node involved in each incident. Detailed
information about the detected incidents is presented in Table 1.

The first four incidents occurred within a short timespan of three days, and
involved four different exit nodes in the US, Hong Kong, UK, and The Nether-
lands. The connect-back attempts on the decoy server had a common pattern,
and in all four cases they originated from the same IP address of the exit node
on which the corresponding credentials had been exposed. Another similarity
among these incidents is related to time difference between the latest exposure
of the decoy credentials in the network and the corresponding connect-back to
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Table 1. Observed traffic interception incidents during a ten month period. In all
cases, the eavesdropper connected to our decoy IMAP server using a set of intercepted
decoy credentials.

Incident Date Exit node Remarks

number location

1 Aug.’10 US Same pattern as in incidents 2, 3, and 4

Connect-back from the same exit node

2 Aug.’10 Hong Kong Same pattern as in incidents 1, 3, and 4

Connect-back from the same exit node

3 Aug.’10 UK Same pattern as in incidents 1, 2, and 4

Connect-back from the same exit node

4 Aug.’10 The Netherlands Same pattern as in incidents 1, 2, and 3

Connect-back from the same exit node

5 Sep.’10 S. Korea Connect-back from a different exit node

6 Sep.’10 Hong Kong Connect-back from a third-party host

Exit node not accessible upon detection

7 Sep.’10 India Connect-back from third-party hosts

Exit node not accessible upon detection

8 Jan.’11 Germany Connect-back from third-party hosts

Attempt to use SSL through the IMAP

STARTTLS command

9 Apr.’11 India Connect-back from third-party hosts

and other Tor relays

10 Apr.’11 India Same as 9. Both exit nodes in the same

ISP network and many of the third-party

connect-back hosts were in the same

networks (mostly in Europe and India)

Was involved in incident 7

the decoy server. Figure 4 presents this time difference for all ten incidents. The
first four incidents had a quite similar connect-back delay of a few hours, which
is significantly shorter compared to the rest of the incidents. Based on the above
facts, we speculate that the first four eavesdropping cases were coordinated by
the same person or group, who probably used the same tools or methodology in
each case.

The fifth incident occurred about three weeks after the previous group of
incidents. The decoy user name and password were exposed through an exit
router in South Korea, and a connection to the decoy server was attempted from
a different exit router in the US—an indication that the adversary probably used
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Fig. 4. Time difference between the exposure of the decoy credentials and the first
connect-back attempt on the decoy server

Tor to hide the real origin of the connection. The sixth incident almost coincided
with the fifth one, and involved an exit router in Hong Kong. After more than
ten hours, the decoy IMAP server received six connections from a different IP
address belonging to a Chinese ISP.

In the seventh eavesdropping case, the decoy user credentials were exposed
through an exit router located in India. The credentials were then reused in five
connections originating from five different IP addresses within the same subnet of
an ISP in Canada. Interestingly, the exit router was not accessible when we dis-
covered the eavesdropping attempt. An analysis of the network traffic captured
on the decoy server revealed that in each session, there were multiple accesses to
default mail folders such as INBOX, INBOX.Sent, and INBOX.Template, although
some of them (e.g., INBOX.Template) didn’t exist in the decoy account. This is
an indication that the attacker probably used an email client that automatically
attempts to browse through some standard folders.

The eighth incident occurred in the first week of January 2011 and involved
an exit node in Germany. Five unsolicited connections were received by the
decoy server from a host located in Ecuador. In all cases, upon successfully
authenticating on the decoy server, the mail client of the adversary issued an
IMAP STARTTLS command, attempting to switch to an SSL connection.

Finally, the most dramatic incidents were recorded in April 2011. Two exit
nodes, both hosted in a government run ISP network, were eavesdropping on the
traffic. Thereafter, there were various login attempts from hosts in approximately
30 different networks in Europe and India. In each of the attempts, the attacker
used standard IMAP client software to access the accounts (similar to the seventh
incident). As evident from Figure 4, the incidents originated approximately 16
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hours after the exit nodes were exposed to the decoy account credentials, and
the IMAP commands issued by the attacker were the same in both cases. Thus,
we suspect that there was some automated program which co-ordinated the
execution of connection replay attempts.

One of the exit nodes involved in this incident was seen previously in the
seventh incident but was not accessible, following the incident. It re-surfaced
after a few months and was now involved in this automated and co-ordinated
attempt with another exit node. Various hosts were used for connection replay
attempts at various times of the day. Some of these illegitimate connections
were even redirected via other Tor relays, in an attempt to confuse our system.
But due to our one-to-one association between exit nodes and decoy accounts, we
were able to determine the exit nodes which were originally exposed to the decoy
user names and passwords. We changed the passwords of the decoy accounts but
the attacker was able to learn them in a day. There were login attempts into
these accounts with the new passwords. We thus believe that the attacker was
actively sniffing the network for passwords, and other sensitive information being
transmitted in cleartext.

Table 2 shows the available bandwidth of the exit nodes that were involved in
the detected incidents. Two out of the ten exit nodes advertised very high avail-
able bandwidth (44 and 20.8 Mbit/s, respectively), and thus are very likely to be
selected in Tor client circuits, as the default Tor circuit node selection mechanism
is biased towards nodes with high advertised available bandwidth [6]. There were
two nodes which advertised much less available bandwidth of approximately 1.4
Mbit/s and 856 Kbit/s. Further, there were three nodes that advertised even
lower available bandwidth of 150, 100, and 56 Kbit/s, respectively.

Table 2. Available bandwidth of the malicious exit nodes as reported by
http://torstatus.blutmagie.de/

Incident Advertised Remarks

number Bandwidth

1 Unknown Relay was not running when accessed

2 Unknown Relay was not running when accessed

3 44 Mbit/s Guard node with high uptime

4 20.8 Mbit/s Guard node with high uptime

5 1.4 Mbit/s Advertises high uptime

6 56 Kbit/s Advertises high uptime, runs directory service

7 Unknown Relay was not running when accessed

8 856 Kbit/s Guard node with high uptime, runs directory service

9 150 Kbit/s Non-guard exit node

10 100 Kbit/s Non-guard exit node
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Fig. 5. Locations of the Tor exit nodes involved in the observed traffic interception
incidents, and the non-Tor hosts that connected back to the decoy servers. Numbers
refer to the corresponding incidents listed in Table 1.

Both of the high bandwidth nodes were guard nodes1 with high up-times.
One of the three low bandwidth nodes was also a guard node. The remaining
two low bandwidth nodes were running directory services. Although their low
advertised bandwidth gives them less chance to be selected in Tor circuits, but
they could misuse their directory services privileges and deliberately publish
relay information like fake bandwidth and uptime and bias the node selection
algorithm during circuit creation.

The map in Figure 5 gives an overall view of the locations of the exit nodes
and the third-party hosts involved in the observed incidents. Tor and non-Tor
nodes are represented using different symbols. We used basic geo-IP address
lookup tools which provide only country-level accuracy, so the points on the
map denote only the country in which each host was located. The number next
to each point corresponds to the incident number, as presented in Table 1.

5 Discussion and Future work

5.1 Detection Confidence

Internet traffic crosses multiple network elements until it reaches its final desti-
nation. The encrypted communication used in anonymity networks protects the
original user traffic from eavesdropping by intermediate network elements, such
as routers or wireless access points, until it reaches the boundary of the overlay
network. However, the possibility of traffic interception is not eliminated, but is
1 Tor clients, by default, create circuits via a fixed set of trusted entry nodes, known

as guard nodes [24], so as to prevent against predecessor attacks [35].
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rather shifted to the network path between the exit node and the actual destina-
tion. Consequently, the transmitted decoy credentials in our proposed approach
might not necessarily be snooped on the exit node of the overlay, but on any
other network element towards the destination. This means that in the inci-
dents detected by our system, the decoy credentials could have been intercepted
at some other point in the network path between the exit node and the decoy
server, and not at the exit node itself.

Although the above possibility can never be ruled out completely, we strongly
believe that in all incidents the decoy credentials were indeed intercepted at the
involved exit node for the following reasons. The ease of installing and operating
a Tor exit node means that adversaries can easily set up and operate rogue exit
nodes, but also that exit nodes operated by honest individuals may be running
on systems that lack the latest software patches, or have poor security configu-
rations. This may enable adversaries to easily compromise them and misuse the
hosted Tor exit node. At the same time, most of the network elements beyond a
Tor exit node are under the control of ISPs or other organizations that have no
incentive to blatantly misuse intercepted user credentials by directly attempting
to access the user’s accounts. Furthermore, in some of the cases, the adversary
connected back to the decoy server from the same exit node involved in the par-
ticular eavesdropping incident, raising even more suspicion that the exit node is
rogue or has been compromised.

In our future work, we plan to use multiple replicas of the decoy servers
scattered in different networks around the world, and associate different sets of
credentials with each one. This can further increase the detection confidence for
incidents involving the same exit node, but different replicas of the same server.

5.2 Decoy Traffic Credibility

Another aspect of our system that can be improved is the credibility of the gener-
ated decoy traffic. For instance, regarding the SMTP traffic, we plan to increase
the number and diversity of the innocuous email messages that we currently use,
and also create new variations based on message templates. Some of the messages
could also contain “bait” documents [10] that would ping back to our system in
case someone opened them. We can also use some of the techniques described
by Bowen et al. [9] to generate even more realistic decoy traffic. For example,
we can capture network traces of protocol interactions using various real IMAP
clients and servers, sanitize and modify them by inserting bait information, and
replay them as part of the decoy traffic.

5.3 Detection of HTTP Session Hijacking

Besides snooping on users’ traffic, an adversary that has access to unencrypted
network data can also mount HTTP session hijacking attacks against users that
are logged in on social networking sites like Facebook or Twitter. Until recently,
these sites had no option to encrypt user traffic except while authenticating
them. Even though now they have options to enable HTTPS to encrypt user
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traffic, there are enough users who are ignorant about it and don’t use it. Even
when using HTTPS, there are various Facebook and Twitter based applications
which switch to HTTP and never switch back to HTTPS again; thereby expos-
ing HTTP session cookies to eavesdroppers. In a session hijacking attack, the
attacker can steal the session cookie that is included in the HTTP requests of
authenticated users and use it to access the user’s account. The fact that social
networking sites are among the most frequently accessed websites through the
Tor network [22], combined with the ease of hijacking user sessions using tools
like Firesheep [16], makes the possibility of mounting session hijacking attacks
on Tor exit nodes quite attractive for adversaries.

In our future work, we plan to extend our system to detect HTTP session hi-
jacking attacks through the use of decoy accounts on popular social networking
websites. In this scheme, the decoy traffic will consist of generated random ac-
tivity using decoy accounts on websites like Facebook. This activity can include
actions such as viewing pictures, browsing through friends’ posts, or sending
fake messages. Instead of decoy credentials, our aim in this case would be to
entice a potential adversary to intercept the session cookie used in the decoy
HTTP requests and hijack the fake user’s session. The hijacking event can be
detected by closely monitoring all information contained in the decoy account
for potential changes that would indicate that someone has gained unauthorized
access. For instance, an attacker might use a hijacked Facebook account to post
links to malicious code or send spam messages to the friends of the user.

5.4 Traffic Eavesdropping and Anonymity Degradation

Traffic eavesdropping on anonymous communication systems might not lead to
direct degradation of network anonymity. However, inadvertently leaking user
information such as login credentials can reveal vital information about the users,
such as identity, location, service usage, social contacts, and so on. Specifically
for Tor, the anonymity set commonly refers to all possible circuits that can be
created, or the set of all possible active users of the system [13].

Traffic eavesdropping might help reveal information like the language and
content of the messages, a particular dialect of the users, or other peculiarities
that might help reducing the size of the anonymity set. For instance, a malicious
exit node operator might see traffic carrying user data in Greek. Combined
with the knowledge that there are about seven ISP networks in Greece, this
information might help reducing the anonymity set significantly. Other clues
such as the actual accessed content, the time of access, and the destination of
the traffic, can as well aid the process of determining a user’s identity.

5.5 Eavesdropping Detection as a Network Service

The proposed system could be modified and deployed as a honeynet-based
system consisting of configurable decoy services with decoy user credentials.
These credentials could be exposed to Tor exits via canned protocol interactions.
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Combined with decoy information generation services [8], this infrastructure
could be used as a composable eavesdrop detection system [27].

6 Related Work

Our work is closely related to research efforts that involve the exposure of en-
ticing decoy information or resources to potential adversaries, with the aim to
observe who and how attempts to use it. One of the first uses of decoy informa-
tion for enabling the observation of real malicious activity has been documented
by Clifford Stoll [31]. In his book, The Cuckoo’s Egg [32], the author recounts his
efforts to trap an intruder that broke into the systems of the Lawrence Berkeley
National Laboratory. As part of his efforts to monitor the actions and trace the
intruder’s origin, he generated fake documents containing supposedly classified
information that would lure the intruder to come back and stay longer on the
compromised computer.

The use of decoy computers with the aim to lure prospective intruders and
monitor their actions is nowadays a popular approach among security adminis-
trators and researchers. These systems, widely known as honeypots [25,30], have
no production value other than being compromised, and subsequently track the
actions of the attacker. Honeypots have been extensively used for modeling,
logging, and analyzing attacks originating from sources external to an organiza-
tion [17,36], as well as internal attacks launched from within its perimeter [10].

Similar to honeypots, honeytokens [29] are pieces of information with no pur-
pose other than being intercepted by an adversary. After their release, any sub-
sequent use of that information can clearly indicate unauthorized access. The
decoy credentials used in our approach can thus be viewed as particular instance
of honeytokens. Bowen et al. [8] proposed the use of decoy documents to de-
tect misbehaving entities within the perimeter of an organization. The decoy
documents contain embedded “beacons,” such as scripts or macros, which are
executed when the document is opened. The authors used fake tax records bear-
ing information appearing to be “sensitive” and enticing to an adversary. In case
a document has been leaked, the embedded beacon will connect to an external
host and notify its author whenever the document is accessed.

In a another related research work, Bowen et al. [9] use real WiFi traffic as
a basis for the generation of decoy traffic with realistic network interactions.
An API is used to insert bait content, such as popular webmail service cookies,
FTP and HTTP protocol messages, and so on into these decoy packets. The
packets are then broadcast through the WIFI network and exposed to potential
eavesdroppers. Unsolicited connection attempts to the services, using the bait
credentials, are marked as illegitimate. In their experiments, the authors replayed
gmail.com and paypal.com messages carrying credentials and cookies for decoy
accounts, and utilized the last login IP address feature of these services for
determining illegitimate connection attempts. Such techniques are not applicable
anymore for the aforementioned popular web mail and financial services, as they
have now switched to using SSL-encrypted connections.
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There has been little effort in detecting misbehaving overlay nodes in anony-
mity networks. In a work most closely related to ours, McCoy et al. [21] attempt
to detect eavesdropping on malicious Tor exit routers by taking advantage of
the IP address resolution functionality of network traffic capturing tools. Packet
sniffing tools such as tcpdump [20], are by default configured to resolve the IP
addresses of the captured packets to their respective DNS names. The proposed
system transmits, via Tor exit nodes, TCP SYN packets destined to unused IP
addresses in a block owned by the system’s operator. When the packet capturing
program attempts to resolve the IP address of a probe packet, it will issue a DNS
request to the authoritative DNS server, which is also under the control of the
system’s operator. Thus, any observed unsolicited requests to this DNS server are
an indication that probe packets have been intercepted by some packet capturing
program, and can be traced back to the network host where they were captured.
However, when capturing traffic on disk, tcpdump by default does not resolve
any addresses, and in any other case the eavesdropper can trivially disable this
functionality, rendering the above technique ineffective.

7 Conclusion

Anonymous communication networks and proxying architectures offer an im-
portant service for users that want to protect their anonymity on the Internet.
Through the use of encryption, anonymity networks like Tor also protect the con-
fidentiality of the user traffic as it is being relayed across the overlay network.
This protects the original user traffic against surveillance by local adversaries,
as for example in the case where the user is connected through an unsecured
public wireless network. However, since these systems by design do not provide
end-to-end encryption, when the traffic reaches the final node of the overlay net-
work, it is exposed to potential eavesdroppers. It is thus imperative for users to
use application-level protocols that support encryption to prevent snooping by
malicious exit node operators or intervening networks.

In this paper, we apply the concept of decoy network traffic injection to de-
tect rogue nodes of anonymity networks engaged in traffic eavesdropping. Our
approach is based on the injection of bait credentials for fake services such as
IMAP and SMTP, with the aim to entice prospective snoopers to intercept and
actually use the bait credentials. The system can then detect that a set of cre-
dentials has been intercepted, by monitoring for unsolicited connections to the
decoy servers that use a set of previously exposed bait credentials.

We have deployed our prototype implementation in the Tor network, where
it has been operational for about ten months. During this period, the system
detected ten incidents of traffic interception, involving ten different exit nodes
across the world. In all cases, the adversary attempted to take advantage of
intercepted bait IMAP credentials by logging in on the decoy server, in many
cases from the same exit node involved in the eavesdropping incident.

As part of our future work, we plan to use more decoy services and increase
the believability and diversity of our bait traffic, vary the location of the decoy
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servers, and use multiple replicas of each service in different networks. We also
plan to extend our system to detect HTTP session hijacking attacks against
popular social networking websites.
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Abstract. In this paper, we analyze a large amount of infection data for
three major botnets: Conficker, MegaD, and Srizbi. These botnets rep-
resent two distinct types of botnets in terms of the methods they use to
recruit new victims. We propose the use of cross-analysis between these
different types of botnets as well as between botnets of the same type in
order to gain insights into the nature of their infection. In this analysis,
we examine commonly-infected networks which appear to be extremely
prone to malware infection. We provide an in-depth passive and active
measurement study to have a fine-grained view of the similarities and
differences for the two infection types. Based on our cross-analysis re-
sults, we further derive new implications and insights for defense. For
example, we empirically show the promising power of cross-prediction
of new unknown botnet victim networks using historic infection data of
some known botnet that uses the same infection type with more than
80% accuracy.

1 Introduction

Recent botnets use several methods to find and infect victims. Among these meth-
ods, most botnets have mainly employed two infection techniques [9] [7] [6]:

– Bots automatically propagate themselves (auto-self-propagating, Type I ). To
do this, bots usually employ network scanning techniques to find vulnerable
hosts and exploit them. This approach is active and aggressive in infecting
victims. Conficker [3] is a good example of this kind of botnets [9].

– Bots spread themselves with the help of people or other methods (non-auto-
self-propagating, Type II ). In this case, since bots cannot find new victims
automatically, malware writers should employ other techniques. They install
a malicious binary into compromised web sites and trick people into down-
loading it (i.e., drive-by-download [12]) or they ask other malware owners,
who have pre-installed malware, to distribute their malware (i.e., pay-per-
installation (PPI) [17] [28]). This approach seems to be relatively passive be-
cause the operation sequence of this approach may depend on human actions
or other tools. The MegaD [7] and Srizbi [5] botnets, which are known as spam
botnets, are representative examples of this type of botnet [7] [17] [6].

R. Sommer, D. Balzarotti, and G. Maier (Eds.): RAID 2011, LNCS 6961, pp. 242–261, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Cross-Analysis of Botnet Victims: New Insights and Implications 243

Both auto-self-propagating and non-auto-self-propagating botnets have become
serious threats to the Internet. For example, some of them have infected millions
of victims [4] and some are infamous for generating a significant amount of spam
emails [8]. Analyzing and understanding them is thus becoming an important
and urgent research task in order to design more effective and efficient defenses
against them.

In this paper, we start our research with a simple yet important question:
are there any similarities/differences in infection patterns (e.g., the distribution
of victims) between these two types of botnets? We believe the answer to this
question can greatly deepen our understanding of the nature of these botnets
and enable us to develop more accurate/targeted Internet malware monitor-
ing, detection, prediction techniques, strategies and systems. Since both types
of botnets have quite different infection approaches, i.e., auto- and non-auto-
self-propagating, we could predict that their infection patterns are likely also
different. To understand whether this hypothesis is right or wrong, one needs
to collect and cross-analyze both types of botnets. However, although there are
several previous measurement/analysis studies that have made significant efforts
to understand botnet infection characteristics [16] [13] [14] [6], they mainly focus
on only one specific botnet, rarely providing cross-analysis of different (types of)
botnets. This is probably due to many reasons, for example practical difficulties
on data collection: (a) collecting a good amount of real-world botnet data is
hard; (b) collecting multiple different (types of) real-world botnet data is even
harder.

In this work, we have collected a large amount of real-world botnet infection
data, including millions of Conficker victims and several hundred thousands of
MegaD and Srizbi victims. They cover the two representative infection tech-
niques mentioned before with reasonably large amount of samples and thus are
suitable for our study. We perform an in-depth cross-analysis of different botnet
types and show what similarities/differences exist between them. Slightly con-
tradictory to the hypothesis we made above, we find that both types of botnets
have a large portion of victims overlapped and the overall victim distributions
in IPv4 space are quite similar. However, they do show several interesting char-
acteristics different from each other. To obtain a fine-grained understanding of
these similarities and differences, we further perform an in-depth set of large-
scale passive and active measurement studies from several perspectives, such
as IP geographical location, IP address population/density, networks openness
(remote accessibility), and IP address dynamism. Our results reveal many inter-
esting characteristics that could help explain the similarities/differences between
the two botnet infection types.

Furthermore, from our measurement results, we have further derived new
implications and insights for defense. We found that due to the heavily uneven
distribution of botnet victims, we can observe strong neighborhood correlation
in victims. Although it is intuitive that Type I malware (specifically scanning
malware) tends to infect neighbor networks and thus neighborhood watch could
be a useful prediction technique [2], it is unknown whether this applies to the case
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of Type II malware. For the first time in the literature we show with empirical
evidence that Type II botnet victims also exhibit this similar property. More
interestingly, we have empirically discovered that even if we only know some
information of one botnet (e.g., past botnet data), we could predict unknown
victims of another botnet (e.g., a future emerging botnet) with reasonably high
accuracy, given that both botnets use the same infection type. This sheds light
on the promising power of cross-analysis and cross-prediction.

In short, the contributions of this paper are as follows.

– We collect a large amount of real-world botnet data and provide the first
cross-analysis study between two types of botnet infections to the best of our
knowledge. This kind of study is useful to understand the nature of malware
infection and help us gain insights for more effective and efficient defense.

– We perform a large-scale passive and active measurement study for a fine-
grained analysis of similarities/differences in two botnet infection types. We
study several aspects such as IP geolocation, IP address population/density,
IP address dynamism, and network openness (remote accessibility). We have
many interesting findings. To name a few (incomplete) examples, (a) different
countries are likely prone to different types of malware infections while some
countries such as Turkey are extremely vulnerable to both infection types; (b)
malware infection seems to have very interesting correlation with geopolitical
locations; (c) IP address dynamism and network openness are likely to cause
more malware infections (for certain type). And they have different effect on
different types of botnet infections.

– Based on our cross-analysis result, we further derive new implications and
insights for defense. We perform an empirical test to predict unknown victim
networks of non-auto-self-propagating botnets by looking up their neighbor
information. We further extend it to cross-predict unknown victim networks
of a new botnet using existing knowledge of botnets with the same infection
type and we show that the prediction accuracy can be reasonably high (more
than 80%).

2 Data Collection and Term Definition

In this section, we provide information of data that we have analyzed and we
define several terms used in this work.

Data Collection. To understand the characteristics of different types of bot-
nets, we have collected data for three major botnets: Conficker, MegaD, and
Srizbi. Conficker [3] is a recent popular botnet known to have infected several
million Internet machines. It propagates automatically through network scan-
ning. It first scans random networks to find new victims and if it infects a host
successfully, it scans neighbor networks of the host to find victims nearby [9].
Thus it is a representative example of Type I botnets. The MegaD [7] and Srizbi
[6] botnets are two recent botnets known for sending large volume of spam since
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2008. In particular, it is mentioned that MegaD was responsible for sending about
32% of spam worldwide [7] and Srizbi was responsible for sending more than half
of all the spam in 2008 [1]. They are representative examples of Type II botnets
because they spread by drive-by-download [7,6] or pay-per-install methods [17].

The Conficker botnet data has been collected by setting up sinkholing servers
because Conficker uses domain-fluxing to generate C&C domain names for vic-
tims to contact [3]. With the help of shadowserver.org, we have collected a large
dataset of Conficker infection including about 25 million victims [2]. The shad-
owserver.org has set up several sinkhole servers and registered the domain names
same as the Conficker master servers to redirect queries of the Conficker bots
to the sinkhole servers. Then, the sinkhole servers capture the information of
hosts contacting them and the hosts can be considered as the Conficker infected
victims.

Table 1. Data summary of collected botnets

Botnet Data Source Main Infection Vector # of Victims Collection Date

Conficker Sinkhole server [20] network scanning 24,912,492 Jan. 2010
MegaD Spam trap [19] drive-by-download or PPI 83,316 Aug. 2010
Srizbi Spam trap [19] drive-by-download 106,446 Aug. 2010

The MegaD and Srizbi botnet data has been collected through the botlab
project [19], of which spam trap servers were used to gather information of hosts
sending spam emails. The detailed summary information regarding our collected
data is presented in Table 1. The botlab project captures spam emails from spam-
trap servers and further investigates the spam emails through various methods
such as crawling URLs in the spam emails and DNS monitoring. From corre-
lating the investigation results, the botlab project finally reports which hosts are
considered as infected by spam-botnets such as MegaD and Srizbi.

Term Definition. Before we perform cross-analysis on the data, there are
several important issues to be addressed which can bias our result. The first
thing is the dynamism of the IP address of a host. Many ISPs use dynamic
IP address re-assignment to manage their assigned IP addresses efficiently [10].
This makes it hard to identify each host correctly. This may cause some biases
in measuring the population or characteristics of the botnet [11]. Second, we are
not likely to collect the complete data of certain botnets but only parts of the
data (e.g., MegaD and Srizbi), and this can also cause some biases.

To account for these issues, instead of basing our analysis unit granularity
on the individual IP address level, we generalize our analysis to examine at the
network/subnet level by grouping adjacent IP addresses. This will help mitigate
the effect of dynamism, because it is common that dynamic IP addresses of a host
come from the same address pool (subnet). Also, we believe that it is sufficient
to examine subnets because even if only one host in the network is infected, the
neighbor hosts are likely to be vulnerable or be infected soon [2].
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In this work, we define our base unit for analyzing, i.e., “infected network”,
as the /24 subnet which has at least one malware infected host. Thus, if a sub-
network is infected by a Type I botnet, we call the subnet a Type I infected
network and a similar definition is also applicable to Type II infected networks.
In addition, we define a Common infected network as an infected network which
has victims of both types of botnets. There may be some infected networks that
are exclusively infected by either Type I or Type II, which are defined as Type I
EX or Type II EX infected networks, respectively.

In our data set, we found 1,339,699 infected networks in the case of the Con-
ficker botnet, 71,896 for the MegaD botnet, and 77,934 for the Srizbi botnet.
Thus, we have data for around 1,339,699 infected networks for the Type I bot-
net and 137,902 infected networks for the Type II botnet1. From this we have
identified 97,290 Common infected networks.

3 Cross-Analysis of Botnet Victims

In this section, we provide detailed cross-analysis results of two types of botnets.

3.1 Point of Departure

We start our analysis with the following Hypothesis 1 that we proposed in Sec-
tion 2.

Hypothesis 1. Since the two types of botnets have very different infection vec-
tors, they may exhibit different infection patterns (e.g., distributions of their
infected networks).

(a) Infected network distributions over IP address spaces (b) Infected network diagram

Fig. 1. Infected network distributions and diagram

To verify this hypothesis, we measure how many infected networks are shared
by both types of botnets and how they are different from each other. The basic
1 There are 11,928 infected networks in common between MegaD and Srizbi.
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measurement results are shown in Figure 1. Figure 1(a) shows the distribution
for infected networks of each type of botnet over the IP address spaces (Type I
(Conficker), II (MegaD and Srizbi), and Common infected networks). Interest-
ingly, the distributions of Type I and Type II botnets are very similar to each
other. Specifically, the IP address ranges of (77.* - 96.*), (109.* - 125.*), and
(186.* - 222.*) are highly infected by both types of botnets and their shared
regions (Common) are also distributed in the similar ranges.

To investigate how many infected networks are “really” shared between them,
we draw a diagram which represents the number of infected networks of each
type of botnet and networks that they share in common in Figure 1(b). There
are 97,290 Common infected networks, 1,242,409 Type I EX networks, and 40,612
Type II EX networks.

Contrary to our expectation, the two types of botnets are distributed over
similar IP address ranges and there are many Common infected networks be-
tween them. However, this observation is only about the distribution over the
IP address space and it is very hard to find semantic meanings such as their
physical locations from this result. For instance, even though we know a /24
subnet 111.111.111/24 is an infected network, we may not understand who are
using the subnet and where the subnet is located. More importantly, why is the
subnet more likely to be infected by certain type (or both types) of botnets? In
addition, the ranges are too broad to comprehend clearly. We show range (77.*
- 96.*) is highly infected, but that does not mean that all IP addresses in the
range are infected, we need more fine-grained investigation. Besides that, we also
find that there are some differences between them (i.e., Type I EX and II EX
infected networks are still significant) and they also need to be understood, be-
cause they can show which ranges are more vulnerable to which type of botnet.
Only considering IP address ranges might not clearly show these differences.

Thus, we are motivated to consider more viewpoints that provide us some
understandable meanings with fine-grained level semantic information. We have
selected four interesting viewpoints (we call them categories): (i) geographical
distribution of infected networks, which lets us identify more (or less) vulnerable
locations and their correlation with certain types of infections, (ii) IP address
population/density, which helps us understand relationships between the num-
ber of assigned IP address to the country and the number of infected networks
of the country, (iii) remote accessibility of networks, which shows us how open
(and thus possibly prone to infection) the networks are and whether there is
a correlation with certain infection types, and (iv) dynamism of IP addresses,
which tells us whether vulnerable networks use more dynamic IP addresses and
the correlation with infection type. In each category, we build a hypothesis based
on some intuition and then we perform a large scale passive or active measure-
ment to verify the hypothesis and gain some insights.

Insight 1. Interestingly, the two types of botnets are distributed in similar IP
address ranges despite of their different infection types. In addition, the ranges
are continuous and it might imply that vulnerable networks are close to each
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other. More fine-grained analysis over the ranges might help us find new results
and insights.

3.2 Geographical Distribution of Infected Networks

In our first test, we have observed that two types of botnets seem to have similar
distributions over the IP address space. Thus, we could infer that the distribu-
tions of two different types of botnets over geographical locations are similar to
each other. From this intuition, we make the following hypothesis.

Hypothesis 2. Type I and Type II infected networks are mainly distributed over
similar countries.

(a) Common (b) Type I and I EX (c) Type II and II EX

Fig. 2. Infected network distributions over the countries (x-axis for country code, y-axis
for percentage)

To verify this hypothesis, we investigate how each type of infected network is
distributed over countries. When we observe the overall distribution of each type
of botnet over the countries, we find that all Common, Type I, Type I EX, Type
II, and Type II EX infected networks spread all over the world (with the exception
of Africa), but there are some concentrated areas. To analyze the result in detail,
we select the top 16 countries of each case and show their distributions in Figure
2. Results are sorted by the number of infected networks of the countries. Here,
X-axis represents the country code and Y-axis represents the percentage of each
infection type, e.g., if there are 100 Common infected networks overall and 14
infected networks are located in Turkey (its country code is TR2), the percentage
of Turkey is 14%.

In Figure 2(a), Common infected networks are mainly distributed in Asia (e.g.,
Turkey, Korea, Russia, China, and India) with more than 35%. Figure 2(b) also
presents that Type I and I EX infected networks are mainly distributed over
Asia. The distributions of Type I EX infected networks are quite similar to that
of Type I. The distributions of Type II and II EX infected networks are shown
in Figure 2(c). Here we still observe more than 30% as being located in Asia.
2 Each country code represents followings; AR Argentina, AU Australia, BR Brazil,

CA Canada, CL Chile, CN China, CO Colombia, DE Germany, ES Spain, FR France,
GB Great Britain, IN India, IT Italy, JP Japan, KR South Korea, MX Mexico,
NL Netherlands, PE Peru, PL Poland, RO Romania, RU Russian Federation, SE
Sweden, TH Thailand, TR Turkey, TW Taiwan, US United States, VN Vietnam.
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From the observations, we find two interesting things. First, the set of coun-
tries that are highly infected are not very different for each type of botnet (i.e.,
if some countries are highly infected by Type I botnet, they are also likely to be
infected by Type II botnets). This implies that these countries are more prone
to be infected regardless of infection methods. Second, there are some countries
that are highly vulnerable to one type of botnet over the other. China is a good
example of this. China has a lot of Type I infected networks. However, it has
relatively small portions of Type II infected networks. We presume that most of
the networks in China are accessible from remote scanning botnets because Type
I botnets usually use network scanning techniques to find new victims. We will
test this in section 3.4 and show whether our presumption is correct.

Insight 2. There are some countries which are prone to be infected by both types
of botnets. However, some other countries are more likely to be infected by one
type of botnet. Management policies of networks (e.g., network access control)
could affect malware infection of the country.

3.3 IP Address Population

From the previous result, we know that the infected networks of each type of
botnet are concentrated mainly within several countries but the infection rates
between them are different. Why is the infection rate between them different?
Are there any possible answers or clues that might explain this? To find out some
clues, we first focus on the number of IP addresses assigned to each country.

IP addresses are not assigned evenly over networks or locations [22] [21]. In
terms of the IPv4 address space, there are some IP address ranges which have
not been assigned to users but registered only for other purposes, e.g., (224.*
- 239.*) is assigned for multicast addresses [22]. In addition, IP addresses have
been assigned differently over locations, e.g., more than 37% of IP addresses are
assigned to the United States, while Turkey only has less than 0.5% [21]. From
this fact, we can easily infer that countries that have more IP addresses could
have more chances to be infected by malware leading to Hypothesis 3. Here, we
will use the term of IP address population to represent the number of assigned
IP addresses and we define high IP address population country as the country
ranked in the top 30 in terms of the number of assigned IP addresses, and low
IP address population country as the country ranked below 30. All ranking in-
formation is based on [21].

Hypothesis 3. Countries with more IP addresses (high IP address population
countries) might contain more of both types of infected networks than low IP
address population countries.

To verify this hypothesis, we compare the number of infected networks of each
type of botnet with the number of IP addresses assigned to each country. The
comparison results are shown in Figure 3. We can see that the number of infected
networks of the Type I, II, I EX, II EX botnets are relatively proportional to
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Fig. 3. Infected network distribution versus IP address population (x-axis for percent-
age of assigned IP addresses to a country, y-axis for percentage of infection of each
type of botnet in the country)

the IP address population (i.e., the more IP addresses a country has, the more
infected networks it contains). However, in the case of Common infected networks,
they are NOT proportional to IP address population. On the contrary, they are
mainly distributed over some low IP address population countries.

Intuitively, countries with more IP addresses have more chances to be infected.
Thus, we can easily accept the results of Type I, II, I EX, II EX. However, why
do some high IP address population countries have less Common infected net-
works while some low IP address population countries have more? There may be
several possible reasons for this. For example, the security education/knowledge
of people may play a role. People may open some vulnerable services or click
suspicious URLs without serious consideration, if they do not have enough ed-
ucation/knowledge of security in some countries. Another possible reason is in
regards to network management. If networks in a country are well managed and
protected very carefully, it is harder for malware to find chances to infect the
networks. Thus, malware infection rate would not be proportional to the number
of IP addresses in the country.

The other interesting point is the percentage of infected networks over all
networks of the country (e.g., if a country has 100 networks and if 10 networks
among them are infected, the percentage of infected networks of the country is
10%). We have observed that high IP address population countries are likely to
have more infected networks. However, it does not mean that most (or a high
percentage) of networks in the country are infected. For example, even though
the United States has more number of Type II infected networks than other
countries (except Turkey), the infected networks may only cover small percentage
of all networks in the United States, because the country has around 38% of IP
addresses of the world. This can reveal some low IP address population countries
whose networks are more vulnerable (in terms of percentage) than other countries
and they could be ignored if only considering the absolute number of infected
networks.
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To investigate the percentage of infected networks of each country, we have
used the data from the IP2Location.com report [21]. In the report, we find that
2,505,141,392 IP addresses have been observed in the world. This may not cover
all observable IP addresses in the world. However we believe that it is close to
the real value. Their report also shows the percentage of IP addresses that each
country has out of all observed IP addresses.

We use this data to calculate the number of IP addresses assigned to each
country. Then, we calculate the number of /24 sub-networks of each country
by dividing the number of IP addresses assigned to the country by 256. At this
time, we make an assumption that “IP addresses are assigned to each country
with the minimum unit size of /24 subnet” to make our calculation easy. And we
calculate the ratio of infected networks in each country with it and the number
of infected /24 subnets. This scenario can be formalized as follows.

– Θ = the number of all IP addresses in the world (i.e., 2,505,141,392)
– εj = the percentage of assigned IP addresses to the country j
– αj = the number of /24 subnets in country j
– γi = the number of infected networks of type i botnet (e.g., γ1 represent the

number of infected networks of Type I botnet)
– ηi = the percentage of infected networks of type i botnet in each country

Our goal is to calculate the value of η of each country, and this can be obtained
by the following formula (here j ∈ {1, 2, ..., 240}, and 240 denotes the number of
countries which have observable IP addresses).

– αj = Θ
256 ∗ εj

– ηi = γi

αj
∗ 100, where i ∈ {1, 2}

The distribution of the values of η over some selected countries are shown in
Figure 4. This result is quite different from the previous result (in Figure 2). In
the case of Common (Figure 4(a)), some top ranked countries in Figure 2 show
quite low η values. Russia, Korea, China, and the United States are examples of
this case, however Turkey still represents high η value. From the results, we can
understand which countries are more vulnerable (i.e., high η value). Peru is an
interesting case. It has not been known as a country containing large number of
infected networks in our previous results. However large portions of its networks
in the country seem to be infected. Type I, I EX, II, and II EX also show similar
characteristics to the Common case and the results are shown in Figure 4 (b)
and (c). Based on these results, we may focus on some vulnerable countries
(e.g., Turkey and Peru) to study infection trends of botnets. They may be good
candidates for monitoring in order to comprehend the infection trends of botnets.

We try to reveal the reason why Turkey and Peru show high η values. From
our investigation, we find a possible reason. It can be caused by geopolitical rea-
sons. Some previous work pointed out that Turkey has been suffered from large
cyber attacks generated by its neighbor countries such as Russia [24]. This ex-
planation is also applicable to Peru, because it is surrounded by several countries
that have a lot of malware infected networks such as Brazil and Mexico.
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(a) Common

(b) Type I and Type I EX

(c) Type II and Type II EX

Fig. 4. η values of selected countries (x-axis for country code, y-axis for η value)

Insight 3. To understand malware distributions, we might put our focus on
not only high IP address population countries with large number of infected net-
works, but also some low IP address population countries where large portions
of their networks seem to be infected. Malware infection of these low IP address
population countries could be affected by geographical neighbors.

3.4 Remote Accessibility

Another category that we consider is the network openness or remote accessibil-
ity (i.e., whether a host can be directly accessed from remote hosts or not). As
we described in the previous section, one major scheme of finding new victims of
the Type I botnet is scanning remote hosts (or networks). Enterprise networks are
usually protected by several perimeter defending systems such as firewalls, in an
attempt to block malicious threats from remote hosts. However, not all networks
are protected as such and if they are not protected, malware can infect internal un-
guarded hosts more easily. From this intuition, we build the following hypothesis.
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Hypothesis 4. Networks that are more open (more directly accessible from re-
mote hosts) might have more infected networks of Type I botnets than that of
Type II botnets.

We have tested the network accessibility by sending several Ping packets (i.e.,
five ICMP echo request packets per host in our test) to several randomly selected
hosts in a network. If any of our Ping queries is successful in selected hosts, we
regard that the network is reachable from remote hosts, otherwise we regard that
the network is unreachable. This test has been already used before to understand
the network reachability by previous work [23]. Note that this test may only
show the lower bound of reachable networks, because some perimeter defending
systems (e.g., firewalls) block incoming ICMP packets, or our randomly selected
hosts may be not alive during testing. In this test, we assume that each /24
subnet have the same network access control policy (i.e., if one of the host in the
same /24 subnet is accessible from the remote host, we consider that all hosts
in the same /24 subnet might also be accessible).

In our test, we can access 54.32% of Type I infected networks, which is more
than half. This indeed shows that Type I infected networks are more open (remote
accessible). It confirms our hypothesis, although we presume this ratio could
be higher for Type I. This could be probably explained by (a) our network
reachability test is only a low-bound estimation, and (b) more networks are
aware of malware scanning attacks and thus more (previously open) networks
installed firewalls. In the case of the result for Type II, it shows 46.85% networks
are accessible, which is much less than Type I. This is probably because the
infection vectors of Type II botnets do not depend on remote accessibility.

The result of Common is interesting, because it shows more than 60% of
networks are accessible. This implies that remote accessible networks are much
more vulnerable to malware attacks. It might be reasonable, because even though
network accessibility may not help Type II botnets infect hosts, at least it helps
Type I botnets.

In addition, we measure the remote accessibility of networks of three coun-
tries: Turkey, China and the United States. These countries show somewhat
interesting patterns (e.g., China has a lot of Type I infected networks, but has
relatively small number of Type II infected networks). In our measurement, we
find that 64.09% of networks in China are accessible from remote hosts. This
corresponds with our previous prediction (i.e., networks in a country that has
a lot of Type I infected networks might be more accessible from remote hosts)
in section 3.2. We discover that 51.8% of networks are accessible in the case of
Turkey and 40.92% of the United States. This result seems to be reasonable,
because these countries are more vulnerable to Type II than Type I botnets.

Insight 4. Open (remote accessible) networks are more likely to be infected, par-
ticularly by Type I infection. However, it does not mean that inaccessible networks
are much more secure, because malware (Type II infection) can still infect hosts in
protected networks by several smart attack methods such as social engineering.
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3.5 Dynamism of IP Address

Previous work has shown that a lot of bots used dynamic IP addresses [10]. We
want to investigate whether the networks with more dynamic IP addresses are
more vulnerable than those with static IP addresses for both types of botnet
infections.

Hypothesis 5. Places (or networks) with more dynamic IP addresses are more
prone to be infected by both types of botnets.

To understand this, we have analyzed how many infected networks are using dy-
namic IP addresses. For the analysis, we apply the technique of finding dynamic
IP addresses proposed by Cai et al. [23]. In their analysis, they used reverse
DNS PTR records of each host. They believed that the reverse PTR record can
represent the status of a host and if some keywords of a reverse PTR record rep-
resent dynamism of IP address, the host is likely to use dynamic IP address. For
instance, if a reverse PTR record of a host A is dynamic-host.abcd.com, it is very
likely for the host A to use dynamic IP address, because its reverse PTR record
has a keyword of dynamic-host. Note that this test only shows the lower bound
of dynamic networks due to the limitation of reverse DNS lookup and selected
keywords. Even though this test can not show all networks using dynamic IP
addresses, it could give us information of which type of botnet has more dynamic
IP addresses. Based on this idea, we use the same keywords mentioned in [23] to
find hosts (and finally networks) which are likely to use dynamic IP addresses.
If we find any host in a subnet using keywords representing the dynamism, we
simply consider that the subnet uses dynamic IP addresses.

We have measured how many infected networks use dynamic IP addresses and
the results are summarized in Table 2. The results are quite interesting. In the
case of Type I, I EX, and II EX we find that around 50% of infected networks use
dynamic and other 50% of infected networks use static IP addresses. However,
in the case of Common and Type II, infected networks use more dynamic IP
addresses than static IP addresses.

The result of Common matches the previous result [10] which mentioned dy-
namic IP addresses are more vulnerable. However, the result of Type I does not
fully match the previous result, i.e., Type I botnet infection does not have no-
ticeable preference on networks with more dynamic addresses. This is actually

Table 2. Comparison of the percentage of dynamic or static IP addresses of each type

Type Dynamic IP Static IP

Common 62% 38%
Type I 50.1% 49.9%
Type II 58.4% 41.6%
Type I EX 49.08% 50.92%
Type II EX 51.87% 48.13%
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reasonable because Type I botnets locate a remote victim by scanning the IP
address space regardless whether the target address is dynamic or static. In the
case of Type II botnet infection, we do observe infection preference on networks
with more dynamic addresses. This is also reasonable because there are probably
more home users in these (dynamic) address space who have less security aware-
ness and potentially more vulnerable computers and web browsing patterns.

Insight 5. Networks with more dynamic IP addresses are more vulnerable to
malware attacks. This is more noticeable in the case of Type II botnet infection
than Type I.

4 Neighborhood Correlation of Botnet Victims

In this section, we provide a prediction approach based on our insights obtained
in the previous section.

4.1 Watch Your Neighbors

Insight 1 in Section 3.1 points out that both types of botnets have heavily un-
even distributions of infected networks and there are several heavily (continuous)
infected areas in some part of the IPv4 space. This implies that infected networks
of both types of botnets might be close to each other, i.e., it is very likely for
them to be located in the same or similar physical locations and neighbor net-
works (e.g., belonging to the same /16 networks). This intuition has already
been discussed before and verified in some previous work for some Type I botnet
[9] [13] [2]. An interesting thing is that one of the previous work provides an
approach of predicting unknown victims based on the intuition and it predicts
unknown victims with more than 90% accuracy with only employing a simple
method (e.g., K-Nearest Neighbor classification) [2]. However, this work has only
focused on the case of Type I botnets.

The reason for strong neighborhood (network) correlation of Type I botnets
is intuitive, because Type I botnets will very likely scan neighbor networks to
recruit new victims. Then, can we apply a similar prediction approach to Type
II botnets? At first glance, this might not be the case because Type II botnets
have very different infection vectors/types from Type I botnets. However, we have
also shown in the previous section that the distributions of both types of botnets
are continuous and seems to be close to each other (in Figure 1(a)). Thus, it is
hard to immediately draw a conclusion whether similar neighborhood correlation
could be found in Type II botnets or not. Next, we plan to empirically verify this
myth.

The previous work [2] has used the K-Nearest Neighbor (KNN) classifier which
is a very popular machine learning algorithm and it uses neighbor information
for classification. We also apply the KNN algorithm and select the same features
for the KNN classifier used in [2]: /24 subnet address and physical location of
infected networks.
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Table 3. Botnet prediction results

Botnet K Prediction Accuracy False Positive Rate

MegaD
1 88.35% 7.35%
3 88.25% 7.36%
5 88.14% 7.54%

Srizbi
1 88.20% 6.23%
3 87.70% 6.04%
5 88.30% 5.77%

To perform this experiment, we first prepare data for representing the class
of benign and malicious networks. At this time, the infected networks of Type
II botnets can be used to represent the malicious class. However, since we do
not have data for the benign class, we also collect many (at the same scale as
malicious networks) clean networks3 to represent it. When we collect benign
networks, we intentionally choose those which are close to infected networks in
terms of the IP address and physical location, and they could be also neighbors
of infected networks.

After the preparation, we divide each Type II botnet data (MegaD and Srizbi)
into two sets for training/testing. And then, we apply the KNN classifier to
predict unknown infected networks.

As shown in Table 3, the prediction results are quite interesting. Even though
the prediction accuracy is lower than the case of Type I botnet (i.e., [2] reported
around 93% of accuracy), our predictor for Type II botnet (in both MegaD and
Srizbi cases) shows more than 88% accuracy with some reasonably small number
of false positives.

The results imply that Type II botnets also have the similar characteristics
as Type I botnets (i.e., if a host is infected, its neighbors are also likely to be
infected). Then, why does this happen? It may be very hard to find concrete
answers or clues for this question (unlike the intuitive explanation for Type I
infection).

From our investigations, we could provide a possible answer. It may be caused
by its infection media. As we described before, one promising infection method of
Type II botnets is drive-by-download, which typically uses spam emails contain-
ing links to compromised web sites, to trick people into downloading malicious
binaries. Thus, the infection pattern of Type II botnet might highly depends on
who receives spam emails. We find articles describing how spammers harness
email addresses [26] [27], and they point out that collecting mailing lists is one
of their main tasks. It is likely for mailing lists to contain email addresses be-
longing to similar locations (e.g., same company and same university). It implies
that spam emails are delivered to people who are likely to be close to each other
and thus victims infected by spam emails might also be close to each other.

3 We checked whether they are clean or not by looking up several DNS blacklists.
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4.2 Cross-Bonet Prediction

We have shown that if a host is infected by a Type II botnet, its neighbor net-
works are also likely to be infected by this Type II botnet. When we perform
this test, we treat data of MegaD and Srizbi separately. However we know that
these two botnets are very similar in terms of infection vectors. To confirm the
similarity of their infected networks, we calculate a manhattan distance between
the distribution of the two types of botnets. The manhattan distance between
two items is the sum of all feature value differences for each of the all features
in the item, and it is frequently used to denote whether two data distributions
are similar or not (e.g., if a distance between data distributions of A and B is
smaller than between that of A and C, A and B are closer to each other than
C). It can be formalized as the following equation (assuming that there are two
items/distributions of x and y, and they both have n elements).

Manhattan Distance =
∑n

i=1 |xi − yi|

We use the probability distributions of infected networks of Conficker, MegaD,
Srizbi over IP address spaces to measure the manhattan distance and we find
that the manhattan distance between Conficker and MegaD is 1.1427, Conficker
and Srizbi is 1.1604, and MegaD and Srizbi is 0.8404. From the results, we can
easily see that the distance between the Type I and Type II botnet distributions
is larger than the distance between the two type II botnets distributions. This
result shows that the distributions of infected networks with the same infection
type are closer to each other than that of different types of botnet (i.e., infected
networks of botnets in the same type show very similar distribution patterns).

This result gives us another insight that if two botnets share the same infection
vectors (i.e., they are of the same type), we might predict unknown infected
networks of one botnet (e.g., a future botnet) with the help of the information of
the other botnet (e.g., historic data). This insight can be verified with a similar
test that we have done before. We can perform a test by simply changing the
training and testing data set to cross botnets. In the previous test, we extract
the training and testing data from the same botnet. However in this case, we
use data from botnet A for training and data from botnet B for testing. For
example, when we predict (unknown) infected networks of the Srizbi botnet, we
use data of the MegaD botnet for training.

The cross-prediction results are quite surprising. As denoted in Table 4, this
approach can predict unknown infected networks of the other botnet with more
than 83% accuracy. This prediction accuracy is slightly less than what we ob-
served previously. We believe that these results show us that even if we have
no knowledge of some botnets (e.g., a future emerging botnet), if we have some
information of a botnet whose infection vector is very similar to them4, we may
be able to predict unknown infected networks. To show a realistic example of
application of the neighborhood correlation, let us first assume that a network
4 Note that this is a very reasonable assumption because fundamental infection types

of botnets are very limited and do not change frequently.



258 S. Shin, R. Lin, and G. Gu

Table 4. Botnet cross-prediction results

Botnet K Prediction Accuracy False Positive Rate

MegaD(train), Srizbi(test)
1 87.80% 7.41%
3 86.75% 7.49%
5 86.45% 7.69%

Srizbi(train), MegaD(test)
1 84.09% 6.53%
3 83.89% 6.31%
5 83.65% 5.09%

administrator knows historic infected networks by Srizbi botnets. Then, he gets
to know that the MegaD botnet starts spreading but he does not have any in-
formation of which networks are and will be infected. In this case, he can use
the information of Srizbi botnet information (e.g., victim distribution). Based on
the physical location and IP address of victims of Srizbi, he can predict future
victim networks that will possibly be infected by MegaD with a reasonably high
probability.

5 Limitations and Discussions

Like any measurement/analysis work, our empirical study has some limitations
or biases. Even though we have collected a large amount of Conficker botnet
data, we have a relatively smaller amount of data for the MegaD and Srizbi
botnets. This might cause some bias in our measurement results and subse-
quent analysis. In addition, the dynamism of IP addresses may lead to some
over-estimation from the collected data. To reduce some of the side effects, we
generalize our analysis over a network consisting of several adjacent IP addresses
(i.e., measuring/analyzing over /24 subnets instead of each individual host).

To discover interesting insights, we leverage some previous work. For example,
we use previous work to obtain how dynamic IP addresses are distributed over
countries, but the information is not complete, i.e., it does not cover all countries.
However, the provided information may help to uncover interesting cases (e.g.,
countries which are highly infected by botnets), hence the information is still
useful.

When we perform the test to find networks with dynamic IP addresses through
looking up reverse DNS PTR records of hosts in the networks, we may not collect
reverse PTR records from all hosts because registration of a reverse PTR record
is not always necessary. However previous work already verified the feasibility
of such kind of test [23], lending credibility to these results (at least providing a
good low-bound estimation).

6 Related Work

There are several studies of measurement or analysis of the Type I botnet vic-
tims. CAIDA provides basic information about the victim distribution of the
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Conficker botnet in terms of their IP address space and physical location [14]. In
[13], Krishnan et al. conducted an experiment to detect infected hosts by Con-
ficker. Weaver [15] built a probabilistic model to understand how the Conficker
botnet spreads via network scanning. These studies provided useful and interest-
ing analysis of the Conficker botnet. Shin et al. provided a large scale empirical
analysis of the Conficker botnet and presented how victims are distributed [2].
However, our work is different from them in that we perform cross-analysis of dif-
ferent botnets and propose an early warning approach based on cross-prediction.
Even though [2] observed neighbor correlation in Conficker, this work differs in
that we empirically verified similar neighborhood correlation in Type II botnets.
In addition, we have proposed and verified cross-botnet prediction techniques to
predict unknown victims of one botnet from the information of the other botnet
if they have similar infection vectors.

Measurement studies of the Type II botnet were also conducted. In [6], Mori
et al. performed a large scale empirical study of the Srizbi botnet. John et al.
set up a spam trap server to capture botnets sending spam emails [16]. This
work also showed the distribution of victims in terms of their IP addresses. Even
though these studies provided detailed analysis of some Type II botnet(s), they
still differ from our work in that they concentrate on a single (or one type of)
specific botnet.

Some interesting studies from the analysis of Type II botnets have been also
proposed. In [17], Cho et al. analyzed the MegaD botnet and showed how it
works. Caballero et al. provided an interesting technique to infiltrate the MegaD
botnet and performed an analysis of its protocol [18].

Cai et al. measured how IP addresses are distributed over the world through
several interesting sampling techniques [23]. Our work leverages some of its re-
sults but is different from their work in the main purpose.

7 Conclusion and Future Work

In this paper, we have collected a large amount of real-world botnet data and
performed cross-analysis between different types of botnets to reveal the dif-
ferences/similarities between them. Our large scale cross-comparison analysis
results allow us to discover interesting findings and gain profound insights into
botnet victims. Our results show fine-grained infection information and nature
of botnet victims. They show some interesting relationships between geopolitical
issues and malware infection, which might be the first work shedding light on
this correlation. This study can guide us to design better botnet prediction or
defense systems.

In our future work, we will study new approaches to explain relationships
between geopolitical locations and malware infection more clearly with some
realistic examples. In addition, we will collect more botnet data and investigate
more diverse categories to discover correlations with different malware infection
types.
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Abstract. Information stealing and banking trojans have become the
tool of choice for cyber criminals for various kinds of cyber fraud. Tradi-
tional security measures like common antivirus solutions currently do not
provide sufficient reactive nor proactive detection for this type of mal-
ware. In this paper, we propose a new approach on detecting banking
trojan infections from inside the web browser called Banksafe. Banksafe
detects the attempts of illegitimate software to manipulate the browsers‘
networking libraries, a common technique used in widespread informa-
tion stealer trojans. We demonstrate the effectiveness of our solution with
evaluations of the detection and classification of samplesets consisting of
several malware families targetting the Microsoft Windows operating
system. Furthermore we show the effective prevention of possible false
positives of the approach.

1 Introduction

Information stealers, and especially banking trojans, are a species of crimeware
that is specialized in stealing login credentials and manipulating online banking
transactions during the communication between an infected computer and the
banks servers. The majority of these types of trojans focuses on stealing money
from a victims bank account, even though the functionality can more generally
be described as versatile information stealers with backdoor functionalities to
create botnets. These are also capable of sending e-mail and instant-messaging
spam, installing additional malware on the victims system and executing dis-
tributed denial-of-service attacks. The technologies used by recent variants to
hijack the system enable cybercriminals to extract account details of virtually
any web-based login system that is not protected by additional security mea-
sures like security tokens. One of these security measures is already under attack
according to recent reports [12] describing that some criminal groups expanded
their arsenal with mobile phone malware enabling them to intercept login cre-
dentials for Mobile-TAN systems. Some trojan horses also have the ability to
intercept FTP login credentials and search the victims hard-drive for specific
files like confidential documents or private keys of digital certificates. Login data
and stolen files are typically automatically uploaded by the malware to so-called
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dropzone servers where the botmasters can collect them and try to monetize the
information theirselves or sell it in underground forums. Among the information
sold in the underground are credit card details, e-mail, social network and web
server administrator accounts. These are typically sold in bulk with hundreds or
often even thousands of units.

There are several advantages for cybercriminals in buying off-the-shelf in-
formation stealers. The outsourcing of development to other parties supplying
extensively tested and regularly updated software was adopted to the under-
ground market from traditional business models over the last years. Extensive
tests and updates in this case promise reliable functionality of the malware and
evasion of common security software. The approach of selling crimeware kits on
a large scale also leads to the emergence of many, often smaller sized botnets
which complicate to track and shut down them down.

Since these types of trojans are a versatile tool in terms of which information
they are able to steal from a victims computer there is also a variety of attack
schemes in which they are used. Most prominent in the news coverage are mas-
sive web-based attacks where computers of thousands of internet surfers with
vulnerable web browsers or plugins are infected by so-called drive-by-downloads
or social engineering tricks to install trojans and finally harvest as much informa-
tion as possible from the victims. In contrast to these mass attacks, information
stealers are also regularly used in targeted attacks against businesses and gov-
ernmental organizations. In October 2010 a group of criminals was arrested after
the investigation of a case the FBI called Operation Trident Breach [18] where
a total of more than $70 million were stolen from bank accounts of at least 390
small and medium businesses in the United States. The groups’ attacks instru-
mented a technique called spear-phishing where the victims were tricked into
executing malware using e-mails with a clever social engineering scheme.

In this paper we make the following contributions:

– we show that traditional security measures fail in protecting users against
infections by banking trojans. This includes both the detection using signa-
tures, which fail due to the obfuscation techniques used in builder tools of
banking trojans as well as behavior blockers, which are not able to detect
infections.

– we propose a method to pro-actively detect banking trojan infections called
Banksafe

– we show that Banksafe is able to reliably detect and identify prevalent bank-
ing trojans including Zeus, Spyeye, Patcher, Carberp, Silentbanker and Be-
bloh

The rest of the paper is structured as follows. The following section gives an
overview about related work. Section 3 gives an overview about the most promi-
nent information stealers found in-the-wild. Section 4 describes our approach for
detecting and classifying this special type of trojans by the manipulation they
perform inside the browser. This includes a description of the different techniques
for manipulation. In order to evaluate our approach a series of experiments has
been conducted, which are described in section 5. A series of 1,045 Zeus and
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SpyEye samples is tested to estimate the success rate in large scale for these two
most prevalent families. The detection of those two families by our Banksafe tool
is compared to the detection by anti-virus software using signatures as well as
behaviour detection. In the last part we outline the detection results of a series
of other information stealer families. In section 6 we discuss some limitations of
our approach before giving a summary and describing future work.

2 Related Work

All of the major banking trojans act inside the browser to intercept and manip-
ulate network data. This is often called man-in-the-browser (mitb). The tech-
niques used by these banking trojans are also often found in user-mode rootkits.
They have to act in user-mode, as opposed to kernel-mode, in order to have access
to network data before it is encrypted. In the following an overview about related
work on root-kits is given together with different approaches to detect them. We
show that we can determine the banking trojan family with a high probability
which is closely related to the classification of malware. A brief overview of other
classification approaches is given, too.

Rootkits and manipulation components can be applied at different levels
which are usually separated into user-mode, kernel-mode, virtualized, and
firmware root-kits. An overview about the different levels and an idea how to
create root-kits below the level of firmware is given in [34]. While the lower level
root-kits are hardly encountered in the wild, a range of user-mode and kernel-
mode rootkits exist. An overview about the techniques used by both types can be
found in [14]. A more detailed explanation about the way how rootkits intercept
and manipulate systems and the architectural relationships behind the required
components can be found in [9]. For banking trojans, it is especially important to
operate and monitor applications in user-mode, because the data passing lower
levels is usually encrypted. This is normally done by hooking relevant functions
inside the victim program, like the network receive functions in a browser. This
is like a detours from the original function into an intermediate filter function
within the rootkit. A wide range of libraries exist that allow this manipulation
[15,17,21,16]. A description of the different kinds of hooks that exist is given in
the sections of this paper following this section.

Related to the topic of hiding software using rootkits is the detection of rootk-
its. This is usually achieved using sanity checks for inconsistent relationships and
data structures. The basic ideas for the detection is described in section 5.3 of [9].
A subset of the techniques is proved to work in [37]. Using a dynamic tracer, con-
trol flow redirections that lead from one executable image to another are used to
identify suspicious modifications. This approach is generic but prone to false pos-
itives. Most of the research around root-kits focuses on the kernel-mode specimen
because they, theoretically, can be developed in a way so that they are hard to im-
possible to detect. [23] detect linux rootkits based on modifications in the system
call table, which are inconsistent to the kernels symbol information and confirm
their results with source code. Both types of information are usually not available
for Windows systems, which are the most targeted platforms nowadays.
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Different frameworks exist that can check the integrity of known code and
data regions in order to identify those types of anomalies that are the result
of root-kits. In [10] a generic framework for writing root-kits detection tools is
presented. The framework provides an API for custom extensions and can be
used for the detection of user- as well as kernel-mode root-kits. [32] is a tool that
checks for all kinds of manipulations on user-mode and kernel-mode. It detects
all kinds of root-kits and is even able to detect previously unknown malware.

Besides available tools and program, a range of academic work around the
detection of root-kits exists. In [20] an approach is presented that detects root-
kits based on the data modifications that are performed by root-kits. In order
to achieve this, they make use of dynamic slicing on sensitive data. This al-
lows to pinpoint the malicious code but only works for known manipulations on
very specific data structures. Another way to pinpoint root-kit code is presented
in[31]. The work is based on the root-kit detection using differential execution
tracing with virtual machines [30]. Execution traces on an infected system are
compared to those on a clean system using the same data. If the execution differs,
the changes are assumed to be happening due to the root-kit. Less sophisticated
but also very reliable detections for root-kits are based on introspection tech-
niques using virtual machines. They monitor the execution from outside the
operating system by adding monitoring components to the virtual machine. Ex-
amples for this are [13,33,24,35]. Whereas the previous work solely focuses on
obvious modifications performed by root-kits, there exist a broad range of ker-
nel structures that may be used to add hidden functionality to a system. In [38]
kernel structures that include pointers to important code are identified at im-
portant operating system interfaces. Based on modification that influence and
change this to a normal form, rootkits are detected.

The work in [25] focuses on inline function hooking in user-mode applications.
For this the log output from a root-kit detection tool of a commercial antivirus
vendor is used. The combination of hooks is used to classify root-kits using the
expected maxima function of the Weka toolkit. [27] extends the approach to
multiple root-kits infecting a system at the same time. Different root-kits have
different modifications but share subsets. The work shows that it is still possible
to identify certain combinations. Another approach that relies on data mining for
classifying root-kits is presented in [26]. The work uses a complex classification
scheme based on system call table modifications and IAT hooks, but not inline
hooking. Unfortunately, no information about false positives and the likelihood
of false clusterings is given.

All of the previous work on root-kit detection, and classification, tries to detect
root-kits system-wide. All of the approaches are therefore generic and are able to
detect new variants that meet certain assumption. Being generic results in the
problem that legitimate system manipulations on the system are detected, but
are false positives. Such modifications are performed by software for performance
profiling, virus detection, as well as a range of other security tools. We overcome
this problem by only monitoring specific applications, i.e. the web browser. Mod-
ifications in the context of our focus are very unlikely which significantly lowers
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the probability of false positives. Other related work is more focused on the
classification of malware in general, and not root-kits in particular. Anti-virus
software is not a good reference for this as shown in [8]. The reason for this
is that anti-virus vendors are interested in reliable detection but only partly in
naming the detected threat correctly. In most cases the vendor just wants to
provide some name to the user. The discrepancy is shown in [8] by comparing
behavioral information from execution monitoring to the signatures of anti-virus
products. A more reliable classification can be achieved using behavioral infor-
mation on the interaction between an application and the operating system. In
[7] different clustering algorithms are compared for their reliability to classify
malware based on behavioral patterns. Similar reliable but less scalable are the
machine learning algorithms applied in [29]. A reliable classification is especially
hard for polymorphic and metamorphic malware, which changes its appearance
from infection to infection. [36] is a classification approach that combines a fixed
set of characteristics that are unlikely to change for these types of malware and
can be used for classification. Other approaches show that a reliable classification
of this malware is possible using characteristic data flow information [39,22]

3 Overview of Banking Trojans

The malware used by the criminals in Operation Trident Breach was a ver-
sion of Zeus, also called Zbot by some antivirus vendors, which is undisputedly
the most successful banking trojan in recent years. This success is based on
its technical sophistication and the fact that the author of Zeus decided not to
use his creation to build hiw own botnet but to sell a ready-to-use package to
interested criminals in underground forums. This package includes a so-called
builder and the PHP files needed to setup a command & control webserver. The
Zeus builder is used to generate new variants of the trojans executable file using
custom-engineered binary obfuscation techniques aiming at the weaknesses of
antivirus signatures to evade detection by security software. Similar to legiti-
mate software products the Zeus package features a copy protection mechanism
for the builder using hardware-based information to prevent the spreading of
pirated copies in the underground scene [19]. Older versions of Zeus were limited
to the infection of computers running the operating system Microsoft Windows
XP whereas newer variants are also able to take over Windows Vista and 7.
After Microsoft added detections for Zeus to the Malicious Software Removal
Tool automatically shipped with the Windows Update service of operating sys-
tems Microsoft Windows XP, Vista and 7 in October 2010, the company released
statistics of Zeus removals [?]. While the removal of 444,292 infections world-
wide in the first month after the release alone is impressive, the MSRT software
uses traditional antivirus signatures to detect Zeus variants and only updates
them once a month. Of these infections 34 percent were detected by old signa-
tures dating back to at least May 2010. Due to the monthly update schedule of
MSRT signatures, botnets that were regularly updated with newly created Zeus
executable files could survive Microsofts efforts unharmed.
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The self-proclaimed successor of Zeus is a trojan horse named SpyEye that
bears great resemblance to its rival regarding the construction kit paradigm,
marketing in underground forums and technical implementation. The SpyEye
toolkit entered the underground market in late 2009 [11] at a price that was
lower than Zeus while the features of both trojans are comparable. In the fight
for market shares in the crimeware business, SpyEye introduced a Zeus removal
routine that enables the malware to take over machines that have been infected
by both trojan horses and make sure that only the SpyEye botnet operator could
steal from the victim. In order to estimate the popularity of SpyEye and Zeus we
evaluated data released by two services operated by swiss security researchers
who are tracking command & control servers for these families of trojans. In
the four months from November 2010 to February 2011 Spyeye-Tracker [5] mon-
itored 179 domains while Zeus Tracker [6] lists 303 domains hosting control
infrastructure.

In late 2010 there was a surprising turn of events when the Zeus developer
announced that he would no longer maintain the project and hand over the
source code to his competitor. Researchers of security company RSA analyzed
a newly found sample of SpyEye in February 2011 and found code pieces that
were identical to the corresponding features of the Zeus trojan [1]. It seems that
the Spyeye developer extracted the most valuable functionalities of Zeus and
implemented them in his creation.

Apart from the most successful information stealers, i.e. Zeus and Spyeye,
there were and are several other crimeware families with information stealing
abilities in-the-wild. We came across trojans named Carberp, Patcher, Gozi,
Silentbanker, Bebloh and Katusha while researching information stealers for the
Banksafe project.

4 Detection of Browser Manipulations

On systems running Microsoft Windows, information stealers utilize techniques
of so-called userland rootkits to intercept and manipulate web traffic. The mal-
ware injects code into the web browser process when it is started and installs
code hooks for API functions into the system libraries loaded into the process.
The following follwing API functions are hooked by the Trojan Zeus version 2
in the library Wininet.dll inside the web browser Microsoft Internet Explorer:

– HttpQueryInfoA
– HttpSendRequestA
– HttpSendRequestExA
– HttpSendRequestExW
– HttpSendRequestW
– InternetCloseHandle
– InternetQueryDataAvailable
– InternetReadFile
– InternetReadFileExA
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By hooking such high-level API communication functions in user-mode code,
information stealers are able to intercept web form data before it gets encrypted
in sessions secured by HTTPS. HTTPS sessions providing end-to-end encryption
are used as a de-facto standard to secure online transactions and are common for
the user login management of web applications. By staying inside the user-mode
application, the trojan can more conviniently intercept data than traditional
kernel-rootkits with keyloggers.

Some trojans like SpyEye and Zeus also inject control code into every user pro-
cess including the Windows Explorer and hook API functions in system libraries
like ntdll.dll, kernel32.dll and advapi32.dll similar to other userland rootkits in
order to hide their processes and files by intercepting API calls to filesystem,
registry and process control functions. Since the list of API function hooks was
different for all trojan families we analyzed, this can be used not only to de-
tect the presence of an information stealer in a Windows system but to identify
its family based on the hooking characteristics. The traces that an information
stealer leaves in the systems web browser by hooking API functions are used
to compute a fingerprint that can be compared with a list of fingerprints of
previously analyzed crimeware for identification and classification.

Information stealer trojans can use different ways to manipulate the related
API functions inside the web browser running in a Windows operating system:
inline hooks, import address table (IAT) hooks, export address table (EAT)
hooks and hook techniques manipulating the windows loader mechanism. We
detect all of the above and compute a fingerprint out of them.

4.1 Inline Hooks

The most common method of intercepting calls being used by information steal-
ers on Windows 32-bit operating systems is so-called inline hooking. In this case
the malware would overwrite code bytes of an API function with a code flow
redirection instruction like the x86 JMP to perform an unconditional jump to a
code section controlled by the trojan. In recent operating systems Microsoft uses
a compiler option to enable the so-called hotpatch functionality in all Windows
API functions of user-level system libraries. This option forces the compiler to
reserve 5 Bytes filled with no-operation opcodes (NOP) in front of every function
entry and precede the typical API function entry setting up the stack with the
2-byte instruction MOV EDI, EDI like shown below.

90 [NOP]
90 [NOP]
90 [NOP]
90 [NOP]
90 [NOP]
8bff [MOV EDI, EDI] (FUNCTION ENTRY)
55 [PUSH EBP]
8bec [MOV EBP, ESP]
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There are different ways to create a reliable code hook for functions. Trojans
Zeus and Spyeye directly overwrite the first 5 bytes of the function code with an
unconditional long jump to their code sections injected into the process.

Since inline hooks require direct modification of the targeted libraries, our
approach to detect trojans that use inline hooks is to compare the code section of
system libraries in memory with a corresponding copy loaded from the filesystem.
When loading a DLL file in portable executable (PE) format into a process,
Windows performs so-called base relocations using a list of relative addresses
that need to be modified according to the actual position of the executable
in virtual memory. In order to decide whether the code section of a system
library was modified by malware, we implemented an emulated Windows loader
that performs the relocations specified in a DLL file loaded from the hard-disk.
Using this approach it is possible to perform byte-to-byte checks of code sections
of libraries in arbitrary user processes in Microsoft Windows. The ability to
compare a code section with an unbiased original also enables the plugin to
create a list of modified API functions if inline hooks were detected.

4.2 IAT Hooks

Another technique to intercept calls to API functions inside a Windows process is
the modification of the import address table (IAT). This table is used to specify
the location of functions or variables in virtual memory that are imported [28]
from dynamically loaded libraries. This structure is filled by the Windows loader
when the executable is loaded into a process. IAT hooks overwrite the original
destination of an imported API function and point it to code controlled by the
malware. In this case, an entry from within the table points outside the code
section of the library. This form of IAT hooks is simple to detect by checking
the entries of the table. A variant of IAT hooks tries to circumvent detection
by inserting a so-called trampoline, a jump instruction, into unused bytes inside
the code section of the library. With the approach described in the previous
subsection we are also able to detect trampolines by comparing the code section
with its unmodified original.

Relying solely on IAT Hooks imposes some drawbacks. First, to hook one
API function, the IATs of all loaded modules have to be parsed to check if the
target API function is imported. Also, the dynamic loading of modules, e.g.
via the LoadLibrary API call, and the dynamic retrieval of function addresses,
e.g. via GetProcAddress, has to be monitored. This is strongly related to the
problem of the Delayed IAT, a table that contains the functions of DLLs which
are scheduled to be loaded on usage only [28] and are extensively used in the
Internet Explorer.

4.3 EAT Hooks

The export address table (EAT) of a module contains the addresses of all API
functions exported by that module. To hook an API function using this table, the
hooking program simply needs to overwrite the corresponding function address
in the table.
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The advantage of this method is that any kind of subsequent (dynamic) import
is automatically handled. However, imports prior to the hook are not handled.
To propagate this change to the IATs of importing modules, the write to the
EAT has to be done before the importing module is loaded. Otherwise, the IATs
of previously loaded modules have to be changed manually (cf. previous section).

The EAT of a module is usually static, i.e. it doesnt change in memory as the
IAT does. Therefore export table hooks can be detected the same way as inline
hooks: by comparing an in-memory copy with a filesystem copy.

4.4 Other Methods

While the hooking methods mentioned above are very straight-forward and
widely used, some other methods exist. When an infested process creates a child
process, hooks inside of the parent process may be used to alter the creation
flags of the child process. A common method is to create the child process in
a suspended state. Processes created in a suspended state are suspended even
before the imported libraries are loaded which allows the infested master process
for example to inject watch threads or to change the operating systems loading
routine, thus effectively being able to modify the API addresses of any function
into the IAT of any loaded module.

It is also possible to use several combinations of any of the abovementioned
hooking methods. For example, a parent process may be modified to start its
child processes in a suspended state. Then a hook is injected into the child
process that places an inline hook inside the loader. This hook then changes the
loader behaviour to modify the resolution of API addresses to place additional
hooks, whereas the inline loader hook may be removed afterwards.

4.5 False Positive Evasion

Legitimate software sometimes also uses hooking techniques to patch certain
functionalities during runtime. One example is the hotpatching introduced by
Microsoft which allows to easily enable inline hooking of WinAPI functions as
described before.

Our approach to prevent false positive detections of legitimate software is
to inspect the destination of each hook found by Banksafe. If a hook points
to code inside a module, Banksafe checks whether the corresponding DLL was
trustfully signed and no code modifications were made to e.g. install trampolines.
All hooks pointing to code inside a signed module that is trusted are ignored
in Banksafes detection mechanism. We give an overview of software that we
encountered hooking functions inside Microsofts Internet Explorer in subsection
5.5 of the evaluation section.

5 Experimental Evaluation

In order to evaluate the performance of our approach, we conducted a series
of experiments. In a first step we analyzed a wide range of specimen from the
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infamous Zeus and SpyEye families. These give an overview about the detection
capabilities and the number of different fingerprints that can be expected within
each family. In a second step, we compared our approach against the detection
capabilities of different anti-virus scanners, i.e. the detection using regular sig-
natures as well as behavioral detection. In a last step of the evaluation, we show
that our approach can also be applied to families of other information stealers.

5.1 Classification of Zeus and SpyEye

In a first experiment, we want to study the detection ratio and ability of our
approach to classify Zeus and Spyeye samples. In order to achieve this, a larger
set of samples has to be analyzed. For the verification of the results it is of
major importance to have a sample set with an existing reference classification.
Without such a set it is hardly possible to verify the results. The classification
provided by anti-virus vendors in their signatures has proved to be very imprecise
as shown in [8].

The most reliable classification known for banking trojans are the samplesets
from Zeus-Tracker [6] and SpyEye-Tracker [5]. The two projects focus on mon-
itoring the botnets behind the most prominent banking trojans, i.e. Zeus and
SpyEye. The total set consists of 1,045 samples.

Setup. An individual experiment is conducted for each sample. Each sample is
used to attempt an infection of a clean Windows XP operating system patched
to SP2. In order to quickly revert to a clean state, a VirtualBox virtual machine
is used. The execution state is reverted to a clean state after each experiment.
The basic steps for each run are:

1. Reset VM to clean state
2. Start VM
3. Execute malware to infect system (and wait 2 seconds)
4. Start Internet Explorer
5. Analyze IE for hooks until hooks are found or timeout occurs

The decision for suitable timeout is difficult. It is closely related to the halting
problem. By only observing a program it can never be known whether a program
will inject itself into a browser or not. When monitoring a falsely classified sam-
ple, it may never modify a browser. A lot of specimen of malware are known to
wait a certain amount of time before they conduct their malicious actions. Zeus
is an example for these. We conducted preliminary tests and found that 96% of
the specimen became active in the first 110 seconds whereas only 41% injected
the mitb-component within the first 30 seconds. A timeout of 130 seconds was
used for the final evaluation.

Sample Pool. A set of 881 Zeus samples from Zeus-tracker was used. In addi-
tion to that 164 SpyEye samples were obtained from the SpyEye-Tracker. Each
sample was run and broken samples discarded. Each malware without a detected
browser hook was manually verified for crashes.
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There are a lot of reasons for broken malware samples. Samples can get broken
during the infection because of incomplete downloads. Another reason for broken
samples is that some variants bind themselves to the first system the sample
infects and crash on all other. This helps to evade the analysis in sandboxes at
a later stage. Other malware crashes after detecting a virtual environment.

Out of the 881 Zeus samples, 75 crashed. Out of the 164 SpyEye samples only
4 crashed.

Results for Zeus. After the removal of all samples that crashed, a set of 12
different hooking fingerprints was found for the remaining 806 samples. The
distribution of the fingerprints including timeouts and the crashed samples are
shown in figure 1. More than 75% (607) of all have a unique fingerprint. A
manual verification showed that this includes specimen of Zeus versions 1 and
2, which illustrates that the browser hooking is not the major reason for the
version change. The second largest group of samples of 12.4% (100) are old Zeus
versions. All of the remaining groups, with between 1 and 20 samples each,
were investigated manually. We were able to identify a group of 20 samples as
a component of a Fake AV software called Kingsoft Antivirus that steals all
kinds of information from the user using mitb techniques. Unfortunately, this
breaks our assumption about a clean reference classification. So do three groups
of two samples that each belong to the SpyEye family. The six remaining groups
contained custom variants of Zeus. It is known that customized versions of Zeus
exist with enhanced functionality. These six underline this.

Thus, a total of 8 Zeus hooking fingerprints were discovered, with more than
96% of the Zeus samples having one of the two most common fingerprints. This
shows that Zeus can be very reliably detected and that only minor variations
from the standard hook fingerprints exist.

Since our Zeus sample set proved to contain specimen from other families a
verification was performed on the remaining samples to ensure that the infections
are Zeus. This was conducted using a combination of known system modifica-
tions that are unique for Zeus. No false positives were encountered for the Zeus
sampleset.

Results for SpyEye. Out of the 164 samples that we obtained as being SpyEye
specimen, only 4 crashed. A possible explanation for the low rate of crashes
compared to Zeus may be that SpyEye does not include machine binding. 23
samples timed out and did not perform any system modifications. Either our
timeout of 130 seconds is too short or the samples detected our tools and the
virtual machine. It is unclear whether these samples are really of this family or
are classified incorrectly by other tools. The remaining 137 samples split into
13 groups with different fingerprints. This is illustrated in figure 2. The largest
group consisted of more than 30% of the samples. The top three fingerprints
were found in 80% of the samples. The remaining groups consisted of only one
to seven samples. Four fingerprints were unique to one sample each.

The amount of fingerprints illustrates the progress in development of the
SpyEye construction kit. Compared to Zeus, which is very established as a
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Fig. 1. Fingerprints and classification results for Zeus
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Fig. 2. Fingerprints and classification results for SpyEye

construction kit, SpyEye is rather new in the market and under heavy devel-
opment. We observed that the basic root-kit component is constant for all of the
fingerprints, just the amount and type of information that is collected changes.
The amount of samples that produce the four most common fingerprints (85%)
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shows that stable versions exist that are distributed more widely. The six speci-
men of SpyEye that were accidently contained in the Zeus sample set contained
fingerprints from those top four.

All in all, the classification of the SpyEye sampleset is not as reliable as the
one for Zeus. We expect that a fix-point for the hooked functions will exist for
new specimen in the near future, when the development of the root-kit reaches
a stable state. This will increase the reliability of our approach. Already, the
classification works perfectly when taking hooks in DLLs other than wininet.dll
into consideration.

5.2 AV Signature Detection

To estimate the detection rates of antivirus software against information stealers
we queried the database of the VirusTotal service [3] using the VT API to check
our Zeus and Spyeye samplesets. VirusTotal scans uploaded samples using more
than 40 antivirus engines. All of these scans are based on signature detection.

Since Zeus- and Spyeye-Tracker sends all samples to Virustotal, we could get
information on AV detection by simply requesting the samples MD5 hashes. By
default the VT API responds with the latest scan results when queried with
the MD5 of a sample but it is possible to also request the results of the first
scan. The overall detection rate of Zeus samples was 86.8% for the latest scans
while the rate of the initial scans was significantly lower with 27.1%. For the
SpyEye sampleset detection rates were 81.7% and 26.5% respectively. Figure 3
depicts the corresponding detection rates of Zeus and Spyeye samplesets using 12
renown antivirus engines. These numbers clearly point out the main problem of
signature based detection with automated builder tools for malware executables.
While antivirus vendors offer an acceptable detection rate after having some
time to issue new signatures, the detection of fresh malware samples is poor. If
a botmaster updates the bot executable regularly he has a good chance to evade
signature detection.

Fig. 3. AV detection rates of Zeus and Spyeye samplesets
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The VirusTotal results for the samplesets also included the virusnames as-
signed to the detected signatures. We used this data to evaluate how well AV
vendors could classify the respective trojans. 30.6 percent of the Zeus samples
were detected as Zeus or Zbot by the AV engines of the same 12 vendors as
before. Microsoft was the best AV engine with 87.1% Zeus samples classified
correctly. The classification of Spyeye was even worse with 17.8% with also Mi-
crosoft topping the list with 36.4%.

5.3 Comparison to Behavior Blockers

In order to compare our proposed detection method to common proactive de-
tection solutions we installed eight popular AV security suites on VirtualBox
machine instances of Microsoft Windows XP SP2:

– Panda Internet Security 2011
– Avast Internet Security 5
– Norton Internet Security 2011
– G Data Internet Security 2011
– F-Secure Internet Security 2011
– McAfee Internet Security
– Kaspersky Internet Security 2011
– TrendMicro Internet Security 2011

Over the course of two weeks all new in-the-wild samples provided by Zeus-
and Spyeye-Tracker [6][5] that had a zero signature detection rate by the afore-
mentioned products were used to evaluate the abilities of the AV suites built-in
proactive detections. The zero signature detection was a requirement in order to
ensure that new samples are really unknown. All in all, 22 Zeus samples and 16
Spyeye samples were tested.

All trojan samples were manually executed first with the security solution
already installed and then in the opposite order to test retrospective detection.
In the retrospective evaluation none of the eight solutions was able to detect
any of the Zeus or Spyeye samples that had already infested the system. With
the security suite already installed only one product was able to detect the Zeus
installation process while two products prevented Spyeye infections proactively.
Another security suite detected the Zeus infections and showed a warning to the
user but did not effectively prevent them.

All of the samples were successfully detected by Banksafe. All of the finger-
prints could also be found in the bigger sample set of the first experiment. Thus
a perfect classification was achieved in this smaller experiment.

5.4 Other Information Stealers

Although Zeus and Spyeye were by far the most prevalent information steal-
ers measured by the 1,045 samples, we also tested Banksafes detection abilities
against other popular information stealing crimeware with smaller samplesets of
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trojans Patcher, Carberp, Silentbanker, Bebloh, Gozi and Katusha. The samples
were identified by searching for their names in the comments of the VirusTotal
[3] database and matching the resulting samples with AV signature names. The
samplesets were manually verified using known features of the respective trojan
like install directory or registry keys modified.

With the exception of Katusha, which uses a malicious browser plugin, all
trojans hook API functions inside the web browser to enable form-grabbing
abilities and were reliably detected by Banksafe. Table 1 shows an overview of the
evaluation results of all samplesets tested against Banksafe. Our implementation
was not able to detect the browser helper object of Katusha since the trojan uses
standard interfaces offered by Microsofts Internet Explorer. This technique is on
one hand very easy to detect but lies outside the scope of our proposed detection
method.

Table 1. Detection results and fingerprint count for different information stealers

family # samples crashed detected fingerprints detection rate

Zeus 855 125 730 8 100%

Spyeye 170 27 143 13 100%

Patcher 45 4 41 1 100%

Carberp 7 1 6 3 100%

Silentbanker 5 3 2 1 100%

Bebloh 4 1 3 3 100%

Gozi 3 0 3 1 100%

Katusha 4 0 0 - 0%

total 1093 161 928 30 99.6%

5.5 Legitimate Browser Hooking

While evaluating the Banksafe BHO implementation we came across several
legitimate software products that were installing hooks into Internet Explorer.
This can lead to false positives if detection of legitimate hooks, as described
above, is missing.

Products that were found to hook functions inside Internet Explorer suppos-
edly to monitor network traffic are: Comodo Firewall, McAfee Internet Security
and Microsoft Bing Toolbar.

With the release of Windows 2000, Microsoft included the first version of their
Shims framework [2], a hooking framework intended to make the behaviour of al-
tered APIs backwards compatible. Shims generally supports loader hooks, EAT
hooks and inline hooks. For developers, Shims is available via the Application
Compatibility Framework [4]. Hooks placed via this framework point to the
signed system library appcompat.dll. For Internet Explorer, Microsoft also gen-
erated custom implementations of Shims. Depending on the version of Internet
Explorer and Windows, the hooks point to one of the signed system libraries
ieframe.dll or ieshims.dll.



Banksafe Information Stealer Detection Inside the Web Browser 277

All of these hooks could be identified as legitimate by checking the hook target
module for a trusted certificate and we did not encounter any false positives while
testing other popular software.

6 Discussion

Despite the generally positive results, some limitations exist. The fingerprint and
therefore the identification of information stealers is dependent on the version
of the trojan, because obviously in future versions the author may change which
functions are hooked. For the Spyeye trojan, we could observe a range of different
fingerprints. Even though the classification may turn incorrect in these cases, the
detection of the hooks is still possible and can be used to identify manipulation
and mitb in general.

Also, the fingerprints may differ between installations on distinct Windows
systems. This is especially true for different major versions, but may even be
for different patchlevels. The reason for that is that the trojan authors may
hook APIs that only exist in some installations of Windows. These functions
can only be hooked - and therefore be integrated into the fingerprint - on these
installations.

Another case is the installation of multiple trojans on a single system. As the
behaviour of the trojans originating from this interference must be considered
as undefined, it is also impossible to tell how exactly our method reacts.

By now, there is no known information stealer that is able to infect 64-bit-
processes so we could not test our proposed detection method with 64-bit web
browsers.

We also found one banking trojan (Katusha) that we could not detect with
our method because it was implemented as a browser helper object and did not
directly hook API calls. In order to detect this type of trojan, other techniques
for inspecting BHOs have to be used.

7 Summary

Information stealers are a growing threat that can easily contaminate any system
connected to the Internet. They steal credit card details, banking credentials,
and all types of information that can be turned into money. Usually, the data
is stolen from inside the browser before it is sent. Since encryption is bypassed
by manipulating the browser, this man-in-the-browser attacks allow criminals to
extract and manipulate all data that is send or received by the browser.

In this paper, we present an approach for detecting and classifying informa-
tion stealers by the manipulations they perform inside browsers. A fingerprint is
created based on the individual manipulations or hooks. An overview about the
different hooking techniques is contained, too. Even though many trojan families
have been around for quite some time, they are not reliably detected by existing
anti-virus solutions. The experiments that we conducted on a range of differ-
ent products has shown that neither the detection based on signatures nor the
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detection based on heuristics is able to reliably identify specimen from known
families. Using the Banksafe tool, we were able to reliably identify all manipu-
lations inside the browser. The tests conducted on a set of 1,045 samples of the
infamous Zeus and SpyEye families have shown that the majority of the speci-
men have a characteristic fingerprint. This fact can be used to reliably classify
the majority of samples. No false positives were found within the class of unique
fingerprints. Besides these most prominent families, Banksafe was also able to
identify other information stealers, like Patcher, Carberp, Silentbanker, Bebloh,
and Gozi. Their detection is just as reliable as the detection of Zeus and Spy-
Eye but more samples have to be tested in order to determine the classification
performance.

8 Future Work

It can be safely assumed that further distribution of 64-bit operating systems
and browsers will lead to the development and distribution of 64-bit information
stealers. It remains to be seen if the techniques currently used in these trojans
can be ported to 64-bit or if new techniques emerge. If new techniques emerge, it
will likely not be sufficient to port the countermeasures presented in this paper to
64-bit. We found only one trojan (Katusha) that was implemented as a BHO. If
this technique becomes more widespread, countermeasures have to be developed.
Another problam that awaits solution is the variability of fingerprints. While it
is possible to generate a fingerprint for each trojan version for each affected Win-
dows operating system, additional research may lead to a more generic approach
of classifying information stealers using their hooking characteristics.
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Abstract. Due to its flexibility and dynamic character, JavaScript has
become an important tool for attackers. The widespread scripting lan-
guage often helps them to perform a broad variety of malicious activities,
for example to initiate drive-by download exploits or to execute clickjack-
ing attacks. Current defense mechanisms as well as reactive analysis and
forensic approaches are often slow or complicated to set up and conduct
since an attacker can use many different ways to obfuscate the code or
make it hard to obtain a copy of the code in the first place.

In this paper, we introduce a novel approach to analyze this class
of attacks by demonstrating how dynamic analysis of websites can be
accomplished directly in the browser. We present IceShield, a Java-
Script based tool that enables in-line dynamic code analysis as well as
de-obfuscation, and a set of heuristics to detect attempts of attacking
either a website or the user accessing its contents. Special care needs
to be taken to implement the instrumentation in a robust and tamper
resistant way since an attacker should not be able to bypass our detec-
tion process. We show how features of ECMA Script 5 can be used to
freeze object properties, so they cannot be modified during runtime. We
implemented a prototype version of IceShield and demonstrate that it
detects malicious websites with a small overhead even on devices with
limited computing power such as smartphones. Furthermore, IceShield
can mitigate detected attacks by changing suspicious elements, so they
do not cause harm anymore, thus actually protecting users from such
attacks.

1 Introduction

During the last few years, we observed a shift in attacks against end-users:
instead of attacking network services, many of today’s attacks focus on vulnera-
bilities in client applications. Especially the web browser is a popular target for
attackers. There are many different kinds of threats and attack vectors against
current browsers, such as for example:

– Drive-by download attacks in which a vulnerability in the web browser or
one of its components/extensions (e.g., Acrobat Reader or Flash plugins) is
exploited to execute code of the attacker’s choice [1].
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– Cross-Site Scripting (XSS) vulnerabilities that enable an attacker to inject
arbitrary client-side scripts into web pages [2,3,4].

– Clickjacking (also known as UI redressing) is a technique in which an attacker
tricks a web site visitor into clicking on an element of a different page that
is only barely (or not at all) visible [5].

These and similar attack techniques target different vulnerabilities within a
browser or one of its components. The root cause of this problem is the fact that
an attacker can compromise the integrity of almost all DOM properties of a web-
site by injecting malicious JavaScript code into the website’s source code. Several
techniques attempting to address this problem have been proposed. On the one
hand, there are analysis frameworks such as Wepawet [6], performing an offline
analysis of a given page in order to detect drive-by download attacks. Cujo [7]
performs on online analysis, but introduces an overhead of more than 1.5 seconds
on JavaScript-heavy sites such as Facebook, which negatively impacts the user
experience. On the other hand, there is a huge body of work in which different
techniques are proposed to avoid attacks in the first place [8,9,10]. Approaches
such as Gatekeeper [8] or Google Caja [9] attempt to find a way to execute
arbitrary JavaScript in a secure environment. Such attempts typically require
working on a subset of the complete JavaScript specification, e.g., Gatekeeper
removes language constructs such as eval() and document.write() from the
JavaScript specification for their analysis. Complementary to these approaches
are novel browser designs, such as Gazelle [10], constructed to address these
problems from the ground up. However, as such approaches tend to focus on a
limited range of attack vectors or lack compatibility with the current infrastruc-
ture, many do not effectively mitigate current threats for the user.

In this paper, we introduce IceShield, a novel approach to perform light-
weight instrumentation of JavaScript, detecting a diverse set of attacks against
the DOM tree, and protecting users against such attacks. The instrumentation is
light-weight in the sense that IceShield runs directly within the context of the
browser, as it is implemented solely in JavaScript. Thus, the runtime overhead
is low, and IceShield even works on embedded browsers used, for example, in
modern smartphones. By performing dynamic analysis, we do not need to worry
about obfuscation since we can inspect the attack attempt during runtime, ex-
actly at the point where the payload is being decoded and available in plain-text.
Furthermore, our approach is (almost) independent of the actual browser since
the detection is implemented in JavaScript, and thus portable across browsers
and platforms.

Special care needs to be taken to implement the instrumentation in a ro-
bust and tamper resistant way: since the tool is implemented in JavaScript,
an attacker could try to overwrite our analysis functions during runtime. We
demonstrate how an instrumentation can be rendered tamper resistant.

By performing the analysis directly in the browser, IceShield can also miti-
gate attacks and protect the user and websites utilizing the tool. We are able to
identify which parts of the page contain suspicious elements and change them
accordingly. To have a minimal impact in case of false positives, we use padding
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to destroy the payload of the potential exploit, but avoid visible impact on the
rendered website. This enables us to actually protect users from attacks, with
only a very low perceivable percentage of false positives.

We have implemented a prototype version of IceShield and evaluated the
tool on a high-end workstation, a netbook, and a smartphone. The runtime
overhead of IceShield is on average below 12 ms for the workstation and 80
ms on a smartphone, and we were able to achieve a detection accuracy of 98%
using live malicious websites. Furthermore, we also successfully detected three
exploits that the tool had never seen before and demonstrate how attacks can
be mitigated successfully.
In summary, we make the following three contributions in this paper:

– We introduce a new way for tamper resistant meta programming in modern
browsers, based on safely overwriting JavaScript core methods and DOM
properties with a minimal performance overhead. This approach works on
all modern browsers supporting ES5.

– We show how specific properties and methods can be overwritten with (al-
most) no footprint by recursivly modifiying the affected toString() and
toSource() methods. This enables the implementation of a robust analysis
framework that an attacker cannot easily detect or affect.

– We implemented a system called IceShield capable of runtime based de-
obfuscation of known and unknown obfuscation techniques based on the
fact that overwriting core methods allows parameter inspection at call time.
IceShield can be used as a framework for detecting and analyzing web
based attacks in real-time with the possibility to defuse malicious payloads
before actual execution.

2 Design Overview

2.1 Motivation and Basic Idea

We assume that almost every JavaScript based attack will have to use native
methods at some point in order to prepare necessary data structures (e.g., to
store the shellcode on the heap or stack) and afterwards perform the actual ex-
ploit by triggering a vulnerable function. This is true for heap and JIT spraying
attacks, exploits against vulnerabilities in a browser plug-in or the user agent
itself, as well as security issues in particular websites. The data set of mali-
cious code samples we assembled during the testing phase of IceShield showed
that most malicious scripts use native JavaScript methods such as concat(),
unescape(), substring(), and similar string functions [11] during preparation
and deployment of their malicious payload. The exploit code utilizing these func-
tions is usually heavily obfuscated, making static code analysis and detection
cumbersome and difficult. The four JavaScript code examples shown in List-
ing 1.1 illustrate several novel obfuscation techniques introduced and discussed
on sla.ckers.org. These code snippets are meant to be a proof-of-concept, thus
performing nothing more than a simple call to alert(/* some data */).

sla.ckers.org
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Listing 1.1. Obfuscated JavaScript code samples executing the alert() method

1) ({0:#0= alert /#0#/#0#(1)});

2) (1.. __proto__ .e0=alert )(1. e0);

3) a=a setter=alert;

4) _=[[$,__,,$$,,_$,$_ ,_$_ ,,,$_$ ]=! ’ ’+[!{}]+{}]

[_$_+$_$+__+$],_()[_$+$_+$$+__+$](-~$)

Especially the last of the four examples in Listing 1.1 is hard to analyze since it
takes advantage of non alpha-numeric characters. This demonstrates the enor-
mous versatility and flexibility of JavaScript and underlines the difficulty of
static JavaScript code analysis. Furthermore, JavaScript allows an attacker to
create morphing code, a fact that has recently been demonstrated by Heyes et
al. [12]. This suggests that an attacker can render any signature based mal-
ware detection lacking advanced de-obfuscation routines useless, similar to the
limitations of signature based shellcode [13] and malware [14] detection. In addi-
tion, filtering mechanisms working on a layer different than the layer to actually
protect against attacks are not capable of detecting obfuscated code as for ex-
ample demonstrated by the large amount of bypasses against the Webkit XSS
Auditor [15] and the Internet Explorer 8 XSS filter [16].

With IceShield, we introduce a new approach to detect and mitigate at-
tacks against web browsers and to protect the integrity of the DOM. We do
not rely on any form of static code analysis, but rather the creation of an alter-
native and light-weight execution context that can be deployed as a script on
arbitrary websites or as a browser extension. We use inline code analysis such
that we do not need to worry about obfuscation: we can perform the analysis
after the de-obfuscation has taken place and can analyze the exploit attempt in
clear text. The analysis itself is based on detecting attack patterns of suspicious
behavior. We describe these patterns in heuristics similar to the ones proposed
by Wepawet [6] and Cujo [7], but we demonstrate how such features can be
extended to cover other attack vectors and be used in a live analysis rather than
in an offline setting. IceShield can be run in a low prioritized execution con-
text such as being included on a website protecting the user of this website from
attacks embedded in the website (e.g. via banner advertisements). The tool can
also be deployed as a browser extension or injected via a proxy to provide a
better protection range and independence from the individual websites poten-
tially including IceShield. Our approach aims to have minimal footprint and
overhead, and we propose a novel way of JavaScript property mimicking which
we discuss in detail in Section 3.

2.2 Dynamic Detection and Protection Framework

IceShield attempts to accomplish several different goals. The first and most
important is to provide the possibility to analyze drive-by download attempts at
the time a malicious websites tries to execute code in the context of the victim’s
browser. By performing this analysis within the context of an actual browser, we
are able to analyze the code dynamically. Thus, IceShield is not affected by any
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level of code obfuscation since it can analyze the code after the decoding/de-
crypting has finished. This is achieved by dynamically instrumenting objects
and functions, and providing an execution context in which we can analyze their
behavior. The instrumentation enables us to perform parameter analysis allow-
ing inspection of the called methods and their parameters during runtime. With
a set of heuristics and a scoring based attestation trained with data mining
techniques, IceShield can determine, if the combination of method call and
parameter setup indicates malicious intent. To illustrate the expressiveness of
the approach, we use a set of heuristics to detect different kinds of attacks. Be-
sides new features, we use several heuristics similar to the ones implemented in
Wepawet. The set of heuristics can easily be extended to enhance IceShield’s
detection features in case completely novel attack vectors become known.

Second, we aim at protecting users against malicious websites: once IceShield
has detected an exploitation attempt, we are able to manipulate potentially ma-
licious code before an attack takes place. This can, for example, be achieved by
modifying or removing malicious content from the DOM tree. This enables us to
protect the victim from the full consequences of an attack and provide detailed
information on the attack technique itself. Preliminary results suggest that this
approach is effective in practice and enables us to effectively mitigate attacks.

The third goal is to implement the instrumentation in a light-weight and tam-
per resistant manner. On the one hand, the overhead of our analysis framework
should be low such that the temporal impact is small and hardly noticeable by
a user. On the other hand, an attacker should not be able to remove our instru-
mentation since this would enable a way to bypass our system. We achieve these
two objectives by implementing our instrumentation in JavaScript and introduc-
ing a novel way to use latest features of ES5. If the browser correctly implements
ES5 functionality, it is hard for an attacker to bypass the system.

In empirical measurements, we show that the overhead is small: on average,
our instrumentation has an overhead of a few tens of milliseconds even on low-
end systems, which is significantly less compared to the loading time of a web
page. The framework can be used on different browsers and it is portable since
IceShield does not depend on specific features or proprietary extensions.

We successfully tested IceShield with all modern major browsers such as
Firefox 4, Chrome 6-10, Safari 5, and Internet Explorer 9. This enables a de-
ployment of IceShield on many different devices in diversity and number. For
each page a user visits, IceShield monitors the behavior of this site by dynam-
ically analyzing the code that was supposed to be executed.

3 System Implementation

In this section, we provide a detailed overview of the dynamic instrumentation
and detection techniques used by IceShield. We discuss how such an instrumen-
tation can be implemented in a robust way and present the different components
and analysis techniques used by the tool.
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3.1 Heuristics to Identify Suspicious Sites

The set of heuristics and rules can be comparably slim, since the parameters
inspected are usually being de-obfuscated by the executing script before hit-
ting the rules. This significantly reduces overhead and enables further and more
detailed analysis on potentially malicious code. Our heuristics are based on a
manual analysis of current attacks, and we tried to generalize the heuristics such
that they are capable of detecting a wide variety of attacks. Some heuristics are
used in a similar way by Wepawet [6], and we extended the coverage by tak-
ing features such as the creation of potentially dangerous elements into account.
Note that these heuristics serve as a proof-of-concept and new heuristics can be
easily added to the system. We found in our empirical tests that our features
already cover all relevant and current attack vectors, and the heuristics can still
be refined if the need arises. The following list describes the heuristics currently
used by our prototype:

1. External domain injection: A script injects an external domain into an exist-
ing HTML element which can indicate malicious activity, for example, link
or form hijacking. We distinguish between injection of <embed>, <object>,
<applet>, and <script> tags, as well as, <iframe> injections.

2. Dangerous MIME type injection: A script applies a MIME type that is po-
tentially dangerous to an existing DOM object such as
application/java-deployment-toolkit.

3. Suspicious Unicode characters : A string used as argument for a native method
containing characters indicating a code execution attempt such as %u0b0c or
%u0c0c.

4. Suspicious decoding results: Decoding functions like unescape() or
decodeURIComponent() that contain suspicious characters indicating code
execution attempts.

5. Overlong decoding results: A decoding function like mentioned above receives
an overlong argument. For now, we use a threshold of 4096 characters based
on our empirical evaluation of current attacks and benign sites.

6. Dangerous element creation: A script attempts to create an element that is
often used in malicious contexts for example, <iframe>, <script>, <applet>
or similar elements. We distinguish between elements being created with and
without an explicit namespace context.

7. URI/CLSID pattern in attribute setter : An element attribute is being applied
with an external URI, data/JavaScript URI or a Class ID (CLSID) string.

8. Dangerous tag injection via the innerHTML property: A script attempts to
set an existing element’s value with a string containing dangerous HTML
elements such as <iframe>, <object>, <script>, or <applet>.

3.2 Dynamic Instrumentation and Detection

We use inline code overwriting and hooking as the basic techniques to perform
the instrumentation such that we can check for the heuristics introduced above.
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We overwrite and wrap the native JavaScript methods into a context that allows
us to dynamically inspect the name of the called function and its parameters dur-
ing runtime. The original, overwritten method is being stored inside IceShield’s
scope in case we want to call it later on. This kind of overwriting is also success-
fully used in other contexts, for example, to perform binary analysis [17,18].

In case the heuristic analysis does not indicate an ongoing attack attempt,
the stored original method will be called with the unmodified set of parameters
to preserve the intended code flow. In case a particular threshold defined by the
internal scoring mechanisms of IceShield has been reached after the analysis,
the method call can either be blocked completely or the set of arguments can
be modified to keep the code flow intact, but prevent the attack. As an example
for mitigating attacks, imagine a long string of shellcode being nulled before
being used as a parameter for the original version of the JavaScript method
unescape(). This approach enables us to generate complete maps, illustrating
the actual code flow of JavaScript code.

IceShield utilizes an ES5 feature called Object.defineProperty() [19] to
implement the instrumentation in a robust way. This method allows us to define
new (and re-define existing) object properties, including methods and native
DOM properties. Furthermore, the method allows us to pass a descriptor literal
specifying the options applying for the defined property.

The most relevant descriptor for IceShield is configurable and the possi-
bility to set it to false, thereby freezing the property state. Freezing means
that no other script can change the property or any of its child properties
again. Even a delete operation will not affect the property value or any of
the descriptor flags. This renders our approach tamper resistant against at-
tackers trying to change or reset the overwritten methods or access the orig-
inal native methods to bypass the inspection and detection process. The same
is true for property retrieval tricks working on Gecko based browsers such as
Components.lookupMethod(top, ’alert’) - an attacker cannot use this tech-
nique to bypass the freezing we used in IceShield either.

The object freezing can also be accomplished by using the method
Object.freeze(). Batch processing of several objects to be frozen at once can
be accomplished by using Object.defineProperties() [20].

All modern user agents such as Firefox 4, Chrome 6-10, and Internet Explorer
9 support object freezing. However, older or obscure browsers that do not fully
support ES5 will not provide reliable tamper resistance for IceShield, which
means that an attacker can potentially bypass the system. We performed several
tests to verify the degree to which browsers support the standard. Some of the
tested user agents such as Safari 5 7533.16 allows to overwrite a frozen object
property. These artifacts can be considered to be software bugs: we tested later
versions of the Webkit engine noticing the problem does not exist anymore.

Our tool will not attempt to modify the user agent protected location
object [21]. Most modern browsers forbid getter access to this object and its
child nodes for the sake of user privacy and avoiding security problems. Java-
Script executed via direct location object access – for example, via the vector
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location=name or location.href=’javascript:alert(1)’ – will be executed
in the scope we control, so no additional protection mechanisms need to be ap-
plied. This is the same for location methods like replace(), apply() or the
document.URL property [22].

To make sure that IceShield will notice even more exotic code execution at-
tempts, it turned out to be not sufficient to just intercept calls to native methods
relating to window and window.document, but also monitor read and write access
for several DOM properties as well as the dynamic creation and manipulation of
HTML elements and tags. Thus, we overwrite the setter and getter methods of sev-
eralHTML element prototypes, such as for example, HTMLScript.prototype.src
or any given HTML element prototypes innerHTML and outerHTML properties.
We also overwrite and seal documentmethods capable of creating new HTML ele-
ments, such as document.createElement()and document.createElementNS().
Malicious code often creates new DOM elements, applies the necessary attributes,
and then attaches the element to the DOM to execute the payload.

3.3 Scoring Metric

We use techniques from the area of machine learning to decide whether or not a
given site is malicious. Specifically, we use the features discussed in Section 3.1 as
input for a decision function F . We treat these heuristics observed by IceShield
when visiting the site as vector x of the form (f1, f2, . . . , fn) and define a linear
decision function F (x) using a weight vector w and a bias term b as

F (x) =

{
wT x − b > 0 if x is a malicious site
wT x − b ≤ 0 if x is a benign site

The decision surface underlying F is the hyperplane wT x+ b = 0, which also in-
duces a way to distinguish between instances of benign and malicious sites based
on the behavior observed by IceShield. In our proof-of-concept implementation
we use Linear Discriminant Analysis (LDA [23]) to find a linear combination of
weights that separate the two classes, but other machine learning algorithms
could be used as well. To find the optimal weights w and bias term b, we use a
corpus of labeled benign and malicious sites as our training set (see Section 4).

The decision function F (x) induces a scoring metric f(x) that we can use
to actually detect malicious sites. The scoring metric is defined as f(x) = wT x
and f(x) > b indicates an instance of a malicious site, while f(x) ≤ b denotes a
benign site. We can also use the scoring metric as some kind of ranking: higher
values of f(x) indicate a site that tries to exploit multiple vulnerabilities of a
visiting browser. As noted above, other scoring metrics can be integrated into
IceShield, we just chose LDA due to its simplicity and to demonstrate how an
actual metric and data mining algorithm can be incorporated into the tool.

3.4 User Protection

IceShield is also capable of changing the parameters passed to native methods
in case the heuristic analysis indicates a malicious attempt. The easiest way



Detection and Mitigation of Malicious Websites with a Frozen DOM 289

to do so is to just overwrite the suspicious argument with an empty string or
add randomly dimensioned padding to maliciously looking strings before passing
them to the actual method. To avoid interference with the user experience, we
null the payload of the possible exploit, which mitigates the danger to the user,
but in most cases has no visible impact. The IceShield prototype currently
defuses a possible exploit payload in case the heuristics indicate any form of
overflow or heap spray. This means that strings longer than 4096 bytes containing
suspicious characters, as well as, suspicious MIME types and CLSID strings
assigned to new and existing DOM elements, are being modified.

Unlike approaches either completely allowing or disallowing JavaScript ex-
ecution such as NoScript or the Internet Explorer XSS Filter, IceShield has
minimal impact on the user experience since only the critical function call is
being defused, whereas the rest of the (possibly benign) JavaScript codeflow is
not affected at all. This also minimizes the negative effects of false positives our
tool might have in practice.

3.5 Implementation as Browser Extension

The purely JavaScript based approach that we introduced so far has a few limi-
tations which we discuss next. We found several ways to circumvent and attack
our own tool while testing our approach, but we also came up with new tech-
niques to be able to harden it against those detection bypasses. In the following,
we first discuss several limitations, before we present a robust design of the
general approach as a browser extension. Note that this reduces the portability
since IceShield needs to be customized for each browser, but the tool is bet-
ter hardened against tampering attempts against our instrumentation. While
the extension is browser-specific, each extension is still portable across operat-
ing systems and hardware platform. Furthermore, the core technology of our
approach remains the same for each browser.

Iframes. One of the biggest challenge for our JavaScript approach and compa-
rable tools are <iframe> tags pointing to JavaScript URIs [24] or resources using
the data protocol handler (so called data URIs as defined in RFC 1998 [25]). An
iframe containing a src attribute pointing to such an URL executes the Java-
Script or similar code contained in the URL as soon as the user agent’s parser
has reached this position in the DOM tree. The JavaScript is not being executed
in the window context we can control with our tool, but in an implicitly cre-
ated fresh context. This of course renders our approach useless since there is no
way we are able to monitor the execution in the previously described manner.
Listing 1.2 illustrates this problem, and we verified this behavior in all major
browsers.

Listing 1.2. Iframe and object tag setup to bypass analysis

<iframe src=" javascript :evil ()"></ iframe >

<object data ="data:x,%3 cscript >evil ()%3c/script >"></object >
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The same effect can be observed for <object> tags since most user agents
have them behave similarly to <iframe> tags depending on what source they
point to. The example in Listing 1.2 also shows how an object tag using a data
attribute acts equivalently to an <iframe> with a src attribute.

Links. Similar to the previously described iframe problem, a <a> tag applied
with a target attribute either set as _blank, _top, or just a bogus value and
a JavaScript or data URI as href attribute value will have the given code be
executed in a new window context. This again bypasses the detection mecha-
nism and renders an implementation in pure JavaScript bypassable. The target
attribute is usually used to specify if a link should open in the same or rather a
new window. The target attribute can also be used to open a link in a specifically
named window context.

This feature is necessary for websites making heavy use of frame sets, frames,
and pop-up windows. In case the user agent receives a target attribute value
that does not exist in the currently existing scope, the link will open in the same
window, but a new window context.

META Redirects. Many user agents provide the possibility to emulate HTTP
header information in-line by using <meta> tags combined with the http-equiv
and the content attributes. An attacker can abuse this feature by forcing the
user agent to perform a redirect after a given amount of time ranging from 0 to
n seconds as shown in Listing 1.3.

Listing 1.3. META refresh example bypassing analysis

<meta http -equiv=" refresh" content ="0; url=javascript :x()" />

Again, JavaScript and data URIs are being used to execute script code. It
strongly depends on the user agent in how far this kind of attack is capable of
bypassing our approach. Browsers based on the Gecko layout engine [26] do not
allow META redirects to JavaScript URIs anymore, but they still support data
URIs to be used instead. All other tested browsers such as Chrome, Opera and
Internet Explorer still support JavaScript URIs in this use case. While some of
them execute the JavaScript code in the scope our tool controls, all browsers
supporting data URIs can use those as a working bypass.

DOM Element Surveillance. The solution to the problems discussed above
can be found in scanning and analyzing the website’s markup during parsing of
the DOM tree. This can be accomplished by using two user agent features: the
DOM event DOMContentLoaded and the possibility to select all existing DOM el-
ements with the query document.getElementsByTagName(’*’) [27]. Before the
document is actually loaded and rendered, the script can loop over the existing
DOM elements and check assorted tag attribute combinations such as <iframe>
and src or <a> and href or the mentioned <meta> and content. Listing 1.4
illustrates how this pre-evaluation of JavaScript code can be implemented.
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Listing 1.4. Example for markup analysis before execution

document .addEventListener (" DOMContentLoaded ", function (){

var elements = document .getElementsByTagName (’*’);

for(var i in elements ) {analyze(elements[i].src );}

}, false);

In case the protocol handlers javascript: or data: appear at the very be-
ginning of the strings to check, a pre-evaluation can take place: the code can be
executed in an environment again controlled by our tool. Most user agents allow
line-breaks, tabs and several more control characters merged into the protocol
handler so a pre-filtering is mandatory.

To avoid interferences with the website’s functionality and user experience,
this can be done in a cloned version of the existing DOM. After evaluation and
analysis, the results can be channeled back to the tool’s logging components
and be merged with the already existing scoring. Tests have shown that this
approach works very well in practice already with most passive attack vectors
requiring user interaction. Active JavaScript execution via <iframe> and src
combinations can be intercepted too, but most user agents besides Chrome add
unnecessary limitations. Note that such an approach is not affected by heavy
obfuscation either since the relevant data is being taken and analyzed directly
from the already existing DOM tree and not the raw markup itself. The script
accesses the code that has already been de-obfuscated and normalized by the
user agent itself.

Nava demonstrated with Active Content Signatures (ACS) [28] how a
<plaintext> tag can be used to render all markup following after an arbi-
trary branch in the DOM tree can be rendered inactive for thorough inspection,
modification, and sanitization before being inserted in the DOM tree again. This
approach can be used to effectively deal with the mentioned problems around
<iframe>, <object> and similar tags. This way, no race conditions can appear
since the plaintext tag is turning every element into a single passive text-only
DOM element providing unlimited amount of time for analysis and removal of
malicious code.

Browser Extensions. Phung et al.[29] showed how similar approaches can
be used to protect specific websites and applications against JavaScript based
attacks such as XSS, CSRF and other attacks targeting the users of the at-
tacked website or application [30]. Their approach encapsulates the native Java-
Script methods and properties with an Aspect Oriented Programming (AOP)
related approach based on a specific policy tailored to the website’s features and
specifics [31]. We suggest to move further and create browser-specific extensions
such as a Firefox plug-in or an Internet Explorer Browser Helper Object (BHO)
to provide more generic protection as well as gain better hardening against tam-
pering attempts against our solution by attacker-provided code.

Extensions for Google Chrome are easy to create, but do not provide the
amount of flexibility necessary for our tool to work. This is due to the technique of
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using isolated worlds, meaning a read-only mirroring for important and security
critical DOM properties [32]. Our approach requires the ability to overwrite
DOM elements of the website to protect users against attacks. An extension for
Gecko based browsers fulfills all requirements necessary to make our approach
work from within the browser as well as BHOs for the Internet Explorer. Besides
the described JavaScript based version of IceShield, we have also implemented
a Greasemonkey user script and a browser extension for Firefox that performs
basically the same task.

3.6 Fingerprinting

IceShield is designed to be hard to detect by an attacker. We consider this to be
important since many drive-by download attacks we observed fingerprinted the
visiting user agent and deployed their payload conditionally. The same behavior
is shown by several current exploit kits [33]. As a first step to be stealth, our tool
consists exclusively of JavaScript code and does not make use of any external
resources such as style sheets or images. Thus, an attacker has no possibility to
read style sheet information via window.getComputedStyles() or utilize image
tags and error handlers to find out about the existence of our tool. IceShield
also does not pollute the global scope such as the OWASP ESAPI tool [34]
or other comparable libraries. Instead, we use an architecture wrapped in an
anonymous function. Any declared variable will reside inside this function scope,
and thus does not leak into the global scope.

Since the tool is making heavy use of overwritten native methods, an attacker
could easily find out about its existence via several child properties of those
methods if no further precautions are met. Let window.alert be overwritten by
a custom function. An attacker can call the toString() or valueOf() method
of window.alert which will result in leaking the source code of the overwriting
function, instead of the string function alert() { [native code] }.

The solution to avoid leakage via toString and its child nodes, is to over-
write the window.alert.toString.toString with its parent method window.
alert.toString. The attacker will not be able to detect the presence of our tool
by using these two methods or a combination thereof. This approach works well
in all tested browsers. Note that an adversary capable of executing arbitrary
JavaScript in the attacked DOM might always find ways to detect the pres-
ence of IceShield. Thus the tamper resistance established via the ES5 object
capabilities is of immane importance for our approach.

A major aspect of fingerprinting are timing attacks, which are in general a
very hard problem to deal with. This aspect can be considered as a limitation
of IceShield that we have so far not managed to get around: an attacker can
make use of the fact that functional string concatenation and operator based
string concatenation will have a completely different code flow as soon as the
String.concat() method has been overwritten. An attacker can thus perform
two concatenation operations: if the timing value for the first one (i.e., done
functionally with concat()) differs significantly from the second one (e.g., per-
formed with the + operator), then a method modification must have taken place.
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This could cause the attacker to not deploy the payload to avoid detection, and
thus waste precious attack code, possibly containing exploits against unreported
vulnerabilities.

4 Evaluation

In this section, we describe the settings and datasets we used to evaluate the
prototype version of IceShield. We also present an overview of the detection
and performance results obtained during several experiments.

4.1 Evaluation Environment

We compiled two datasets for the evaluation of IceShield: Our known-good
dataset consists of the top 61,554 websites chosen from the top list of the Alexa
traffic ranking [35]. To minimize the possibility that malicious sites exist in this
set, we checked all URLs against the malwaredomainlist.com (MDL) block-
list [36], which lists currently active malicious sites. The known-bad dataset is
composed of 81 URLs selected from MDL [36]. While the number of URLs may
seem to be small, all URLs in this dataset point to exploit kits like for example
Phoenix, Neosploit, or Eleonore. An exploit kit is a framework to serve a variety
of pre-built exploits to the unsuspecting user to initiate a drive-by attack [1]. We
chose to focus on exploit kits as each instance of an exploit kit represents a whole
class of exploits, and Curtsinger et al. showed that such a set is representative
for current attacks [37]. Given this result, we can use a smaller known-bad set
to test for a much larger amount of actual malicious sites.

To demonstrate the versatility of our approach, we evaluated IceShield on
three different devices:

– High-end workstation equipped with an Intel Core i7-870 processor and 8
GB RAM, running Ubuntu 10.04 Linux and Firefox 3.6.8

– As an example of a typical mid-range system, we used a netbook ASUS
EeePC 1000H with an Intel Atom N270 and 1 GB RAM, running Ubuntu 10
Linux distribution and Firefox 3.6.12.

– To evaluated the performance of our tool on a low-end device, we performed
tests on a Nokia n900 smartphone with a 600 MHz ARM7 Cortex-A8 pro-
cessor and 256 MB RAM, running a Maemo Linux distribution and Firefox
3.5 Maemo Browser 1.5.6 RX-51

We performed tests on all three devices and did not have to adjust IceShield
for any of them: as long as the browser on the device supports the features we
require, the underlying platform is not relevant.

The evaluation environment is completed by a proxy server to inject IceShield
into the HTML context of the visited pages, and a logging infrastructure, as de-
picted in Figure 1. Once a website has been successfully loaded in the browser, we
log the following data points: the URL visited, execution time of IceShield and
onload time of the respective page as well as the features observed in this web-
site as discussed in the previous section. Furthermore, we log whether the URL
belongs to the malicious or the benign set.

malwaredomainlist.com
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Fig. 1. Evaluation setup for IceShield: We inject the instrumentation code via a proxy
and send the result to a database

4.2 Classification Results

For the proof-of-concept implementation, we developed heuristics for 16 features
that are computed for a given website, as described in Section 3.1. To determine
whether a website is benign or malicious, we use Linear Discriminant Analysis
(LDA) as described in Section 3.3. To instantiate the parameters for our data
mining algorithm, we used the following training data: the complete training set
consists of the top 50 sites from the Alexa traffic ranking and 30 malicious sites
we randomly chose from the known-bad dataset. The test set consists of the
61,504 sites ranked below the top 50 sites we used in our training set and the
remaining 51 exploit kit instances from the known-bad dataset.

Using the model computed from the training set, we were able to detect
50 of the 51 malicious sites in our known-bad test set, while achieving a false
positive rate of 2.17%. We manually investigated the malicious sample that went
undetected and found that this particular exploit relied on a DOM variable for
execution, which was not set by the JavaScript code, but by a Java file (.jar
file) loaded from within the site’s context. As we do not currently execute Java
in our test environment, the de-obfuscation routine lacked said variable. Hence
the execution stopped, and we were unable to observe any relevant feature,
except that the site accessed document.cookie twice. However, a successful
attack would require the execution of the Java applet, and this would enable us
to actually observe the behavior (and a feature vector) indicating a malicious
site. We re-tested this site with a browser that had Java enabled and could
indeed detect this particular exploit successfully.

The false positive rate of 2.17% might sound high. However, to protect the
user, IceShield does not need to block access to a site that triggers an alert.
Instead, the tool can remove the elements in question from the DOM tree. Since
our solution is capable of determining in which method call the possible attack
takes place and which external resources are necessary to conduct and deploy
the attack, we can strip this data from the site, and thus mitigate the attack.
Even if we have a false positive, the user will likely not notice this since only
certain elements are lacking from the DOM tree. We manually evaluated a 10%
sample set (134 sites) randomly chosen from the false positives to confirm that
the majority of pages remain usable even with parts of the DOM removed. The
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removal of the DOM elements was not noticeable by the human test user in 82.9%
of the sites and 9.6% of the websites were partially usable (e.g., banner ads were
not displayed correctly). Only 7.5% of the false positives were rendered unusable
through the removal of the DOM elements. This means that the effective false
positive rate, where the presence of the tool is noticed by the user in a negative
fashion, is roughly only 0.37%.

4.3 Detecting Unknown Exploits

Besides testing our tool against exploit kits and the known-bad dataset, we also
examined if IceShield is capable of detecting attack vectors which it had never
seen before. To perform this test, we manually searched for websites serving in-
dividual exploits like an Internet Explorer exploit (CVE 2010-3962) and sites
exploiting a memory corruption flaw in Apple Quicktime’s QTPlugin.ocx Ac-
tiveX control(CVE 2010-1818). We manually confirmed that both exploits were
not included in our known-bad dataset. We tested IceShield against these ex-
ploits and both attack vectors were labeled as malicious using our heuristics
and model, which underlines the flexibility of our approach to detect both very
recent and older, more widespread threats. Furthermore, we also verified that
both exploits are effectively mitigated, as the respective payload is not executed
since it was removed from the DOM tree.

Similarly positive results were obtained when testing against an exploit deliv-
ered via MHTML (CVE-2011-0096). This way of payload deployment is known
to bypass most existing filter mechanisms since the subset of necessary characters
to execute JavaScript is very small and does not include quotes or parenthesis.
The payload was delivered in Base64 encoding, but had to use a set of native
functions monitored by IceShield during the user agent’s decoding and execu-
tion process. These results suggest that IceShield is also capable of detecting
novel attacks that were unknown to the system in advance.

4.4 Performance Results

Under the aspects of usability on the one hand and stealthiness on the other, it
is important to keep the execution time of IceShield low. As execution time, we
log the time difference between the execution of the first line of code and the time
immediately after we have overwritten and wrapped all required methods and
objects. This is accurate since the first line that is executed is var timestamp
= Date.now();, as IceShield is injected such that it is executed first in the
browser. We measure the onload time as the difference between the execution of
the first line of code and the moment when the process of rewriting the document
is finished, i.e., the DOM is ready. We define the overhead as the percentage of
the onload time that is needed to execute IceShield.

We recorded all times on the high-end workstation. Analyzing the Alexa data
set, we found that the execution time ranges from 2 ms to 760 ms. While the max-
imum execution time seems high, the average execution time measured over all
samples is 11.6 ms, which corresponds to an average overhead of 6.27%. The 99.5th
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Table 1. Execution times on different platforms

Site (#DOM nodes) High-End PC Netbook Smartphone

Google.com (113) 8.2 ms 48.9 ms 80.9 ms
Google Maps (436) 8.0 ms 50.1 ms 93.4 ms
Twitter.com (1032) 8.1 ms 49.4 ms 102.4 ms
Facebook (195) 11.6 ms 56.3 ms 92.6 ms
Yahoo! (818) 8.4 ms 48.5 ms 92.4 ms
Youtube (745) 7.9 ms 50.7 ms 79.8
Baidu (52) 8.4 ms 48.7 ms 83.6 ms

Average 8.7 ms 50.4 ms 89.3 ms

percentile is 25 ms. In summary, these results indicate that the execution time and
overhead is very low for the vast majority of websites and hardly noticeable by the
user in practice given the typical time it requires to load a web page.

We also evaluated the performance of IceShield against several common
JavaScript benchmarks such as SunSpider, Google’s V8 Benchmark, and the
SlickSpeedbenchmark. Only the V8 benchmark showed a significant performance
loss due to its excessive use of native functions: the benchmark result on the
tested workstation changed from 376 points without using IceShield to 222
points with having the tool observing the DOM. However, we believe that this
is not very relevant in practice, since the V8 benchmark focuses on rendering
and number crunching tasks, rather than representing real life web application
test scenarios. SlickTest did not show any noticeable performance changes while
the confidence interval displayed in the SunSpider results insignificantly changed
from 2.7% to 4.4% when having IceShield active and running.

Fast execution and a low overhead is even more relevant on devices that rely
on battery power. Thus, we conducted performance tests on a netbook and a
smartphone (and again on a high-end workstation for comparison). As test cases,
we selected seven interactive, high-profile websites. We accessed each URL ten
times with each device and present the average over all runs in Table 1. Even on
limited hardware, IceShield manages to perform reasonably fast. The execution
time exceeds 100ms only on twitter.com and stays below in all other test cases.
On average, our tool executed in 8.7 ms on a high-end workstation, in 50.4 ms
on a netbook, and in 89.3 ms on a smartphone.

In recent months we have observed a huge improvement in the performance
of JavaScript engines in the different browsers. If this trend continues, we can
expect that the performance of IceShield even increases in the future.

5 Limitations

There are several limitations IceShield is faced with in its current proof-of-
concept state. In case an attacker deploys a malicious PDF, Java Applet, or
Flash file without using any native DOM methods to create the necessary tags
and attributes, the heuristics used by IceShield might not collect enough

twitter.com
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information to deliver an adequate score. A malicious website containing no
more than <embed src="evil.pdf"/> and avoiding utilization of native DOM
methods will still be able to deploy and execute its payload.

Another limitation of the current prototype is the lack of heuristic coverage
on ActiveX based attacks. This is merely due to the fact that legacy versions of
Internet Explorer are not capable of executing the IceShield code. These prob-
lems do not apply for the Internet Explorer 9 Beta we tested on. Note that this
limitation is merely a matter of implementation and not a substantial problem
of scope such as the aforementioned issue. Another limitation of IceShield, de-
ployed in the JavaScript version by a website, is given by the Same Origin Policy
(SOP). In an attack scenario, where an exploit will be deployed after redirect-
ing the victim to another domain, a new window context will be loaded and
the protective mechanisms of our approach cannot work anymore: IceShield
cannot “stick” to the users window context since the domain borders have been
crossed. To mitigate this limitation, we can run the tool on a higher level of
execution privileges than the usual website context, for example, with a Firefox
extension or a user script running on Greasemonkey. The Firefox extension we
created successfully addresses this limitation. The Greasemonkey user script we
created is also not affected by this.

The lack of tamper resistance support for older user agents such as Firefox 3,
Internet Explorer 8 and Opera 10 is another limitation. These older browsers do
not support features such as Object.defineProperty(), and need workarounds
like obj.__noSuchMethod__. The features necessary for making our approach
work safe and successfully have been implemented in the new versions of these
user agents, which support the latest ECMA Script specification as discussed in
Section 3.

The heuristics we used to detect attacks as introduced in Section 3.1 already
cover a diverse set of possible attacks, as also illustrated by the fact that we
detected three attacks with IceShield that the tool had not seen before. The
heuristics are not complete in a sense of them covering each possible attack
vector. Depending on the actual exploit, our heuristics might be bypassed and
allow sophisticated attackers to deploy their payload. However, IceShield can
be easily extended to include more heuristics that then cover more attack vectors.

6 Related Work

We are not the first to propose techniques to address the problem of malicious
code on the web. We briefly discuss related work in this section and compare
the different approaches to the one we presented in this paper.

In the last few years, several different kinds of low- or high-interaction honey-
clients were introduced such as for example HoneyMonkey [38], Capture-HPC,
SpyProxy, Monkey-Spider, or PhoneyC. All of them can only be used in an (of-
fline) analysis setting and are not capable of actually protecting end-users due
to their high runtime overhead and the complexity involved when using them.

Wepawet/JSAND [6] and Cujo [7] are closely related to our approach.
Wepawet is a framework to detect and analyze malicious JavaScript code in
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an offline setting. The tool combines anomaly detection techniques and dynamic
emulation to analyze a given piece of code. Cujo uses similar heuristics to detect
drive-by download, but performs the analysis on a web proxy. This approach
introduces on average an analysis overhead of 500 ms and JavaScript-heavy sites
such as Facebook might even introduce an overhead of more than 1.5 seconds.

Compared to these two tools, we use a similar set of detection heuristics,
but IceShield can analyze the actual DOM tree within the browser and thus
perform a more fine-grained analysis. Furthermore, the overhead is an order of
magnitude lower compared to Cujo. In addition, our tool protects users from
attacks since we can modify parameters passed to native methods to mitigate
potential attacks.

An advantage of our approach compared to recent proposals such as Zozzle [37]
is the light-weight implementation and the portability. However, our current
prototype has a higher false-positive rate which could be lowered by using more
elaborated machine learning techniques.

7 Conclusion

In this paper, we presented IceShield, a tool to perform light-weight dynamic
analysis of JavaScript code directly in the context of a browser in order to de-
tect and prevent attacks. This is achieved by inline code analysis and hooking
to wrap native JavaScript methods into a context that enables us to dynami-
cally analyze the behavior of these methods. We use techniques from the area of
machine learning to compute a model of malicious behavior and can efficiently
apply this model during runtime. Special care is taken to implement the instru-
mentation in a robust way such that an attacker cannot overwrite or infere with
our analysis code. To this end, we introduced a novel technique to use features
of the new ECMA Script 5 standard which allows us to freeze object properties.
In an empirical evaluation, we achieved a detection accuracy of 98% and were
able to detect three previously unknown attacks. The performance overhead of
IceShield is low, even on small devices such as smartphones or netbooks.
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Abstract. Twitter is one of the most visited sites in these days. Twitter
spam, however, is constantly increasing. Since Twitter spam is different
from traditional spam such as email and blog spam, conventional spam
filtering methods are inappropriate to detect it. Thus, many researchers
have proposed schemes to detect spammers in Twitter. These schemes
are based on the features of spam accounts such as content similarity, age
and the ratio of URLs. However, there are two significant problems in
using account features to detect spam. First, account features can easily
be fabricated by spammers. Second, account features cannot be collected
until a number of malicious activities have been done by spammers. This
means that spammers will be detected only after they send a number of
spam messages. In this paper, we propose a novel spam filtering system
that detects spam messages in Twitter. Instead of using account features,
we use relation features, such as the distance and connectivity between
a message sender and a message receiver, to decide whether the current
message is spam or not. Unlike account features, relation features are
difficult for spammers to manipulate and can be collected immediately.
We collected a large number of spam and non-spam Twitter messages,
and then built and compared several classifiers. From our analysis we
found that most spam comes from an account that has less relation with
a receiver. Also, we show that our scheme is more suitable to detect
Twitter spam than the previous schemes.

Keywords: Spam, Spam filtering, Social network, Twitter.

1 Introduction

Twitter has grown tremendously over the past few years. With sites such as
Google, YouTube, and Facebook, Twitter is ranked in the top 10 most visited
sites [1]. In February 2009, Twitter was the fastest-growing website with a growth
rate of 1,382% [2]. In 2011, people sent about 140 million tweets per day and
460,000 new accounts were created per day [3]. The enormous growth of Twitter
allows many users to share their information and communicate with each other.
This popularity, however, also attracts spammers.
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Spammers have several goals, which are phishing, advertising, or malware
distribution. These goals are similar to traditional spam in email or blogs, but
Twitter spam is different. Twitter limits the length of each message to less
than 140 characters. Because of this limitation, spammers cannot put enough
information into each message. To overcome this restriction, spammers usually
send a spam containing URLs that are created by URL shortening services.
When a user clicks the short URLs, he will be redirected to malicious pages.
Since the messages are short and the actual spam content is located on external
spam pages, it is difficult to apply traditional spam filtering methods based on
text mining to Twitter spam.

Many researchers have proposed methods to detect spammers in Twitter [4–
12]. These methods are mostly based on the characteristics of social networks. To
find spammers and collect their information, honeypot-based approaches have
been proposed [4–6]. These studies created several honey-profiles and waited
for spammers’ contacts. After collecting spammer’s activity, they analyzed the
collected data and tried to automatically identify spammers by analyzing spam-
mer’s behavior. Other researchers tried to automatically detect spammers based
on statistical analysis [7–12]. They also collected a large number of user profiles
and manually classified the users into spammers and non-spammers. They con-
ducted a study of the characteristics of user profiles, user behaviors and tweet
contents based on the collected data. Finally they trained a classifier to identify
spammers using data mining techniques.

Previous work has classified spammers with high accuracy, but two critical
limitations exist. First, they used the account features such as tweeting interval,
content similarity, age, the number of followings and the number of followers.
These account features, however, can be manipulated by spammers. For instance,
spammers can post both benign and spam tweets at irregular intervals. They can
also create several spam accounts and follow each other to raise their reputation
in social networks. Moreover, spammers can use accounts created a long time
ago to manipulate the age feature. Secondly, previous work is able to detect
spammers only after spam has already been sent to legitimate users because
user history data is needed to decide whether a user is a spammer or not. To
classify a user, previous methods need to know how a user has been tweeting and
what a user has been tweeting. Therefore, there is an inevitable delay between
spam account creation and its detection. Because of the delay, previous work
has been criticized [13]. Even if spammers are detected and removed, they can
still create accounts and then send spam again.

In this paper, we propose a spam filtering method in Twitter. Instead of
account features, our study considers the relation features between a message
sender and a receiver, which are difficult for spammers to manipulate. We con-
struct directed graphs based on the following and followed relations in Twitter. In
the graphs, we measure two relation features: distance and connectivity between
users. The distance is the length of the shortest path and the connectivity is mea-
sured by using min-cut and random walk. We investigated the distribution of
spam messages according to the distance between users. From the experimental
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results, we are able to find that most spam comes from users at a distance of
more than three hops from receivers. We have also investigated the min-cut and
random walk between normal users, and between spammers and normal users.
From the results, we verify that the connectivity between normal users is differ-
ent from the connectivity between spammers and normal users. Since our system
does not rely on user history data, it allows service managers or clients to iden-
tify spammers in real-time. This means that when a user receives a message from
a stranger, our system identifies the sender at once. If the sender is identified as
a spammer, the message is filtered.

In summary, the main contributions of this paper are as follows:

– We propose a spam filtering system for Twitter. We classify the messages
as spam or benign messages by identifying the sender. Our experiments are
performed on Twitter data, but we believe that our system can also be
applied in other social networks.

– We propose two relation features, which are distance and connectivity, to
identify spammers. These relation features are unique features of social net-
works and are difficult for spammers to forge or manipulate.

– Our system identifies spammers in real-time, meaning that service managers
or clients can classify the messages as benign or spam when a message is
being delivered.

We organize the remainder of this paper as follows. In Section 2, we briefly
present the background on traditional spam and an overview of Twitter. Section
3 explains the overall processes including graph construction and features we
used to identify spam. Section 4 describes the experiments and evaluation results.
In Section 5, we discuss a few issues that need more consideration and in Section
6, we conclude the paper.

2 Background

Spam appears in email, blogs, Short Message Services (SMS), and Social Net-
working Sites (SNS). Many researchers have proposed schemes to detect spam.
The common feature of spam, as defined by the researchers, is that it is unso-
licited one [14]. However, it is difficult to decide whether a message is unsolicited
in receivers’ side. Thus, content filtering methods are widely used [15]. In social
networking services such as Twitter, however, content filtering approaches are
not effective because spam contains only a few words and URLs. Domain and
URL blacklisting techniques have also been proposed to filter spam, but Grier
et al. showed that the blacklists are too slow to protect users since there is a de-
lay before hostile sites are included in blacklists [16]. Moreover URL shortening
services make it more difficult to detect sites in blacklists. Thus, the approach
is not effective in Twitter because almost all users use URL shortening services
due to limitation of message length. Because of these reasons, traditional spam
detection approaches are difficult to apply to Twitter. Therefore, a new approach
is needed with a focus on the characteristics of Twitter.
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Fig. 1. Simple Twitter graph. User A is follower of user B and C and is also following
of user C.

2.1 Twitter Features

There are Twitter-specific features including tweet, mention, reply, retweet, hash-
tag, following, and follower.

Tweet. In Twitter, both a post and posting action are called tweets. Twitter
restricts the length of tweets to no more than 140-characters. Because of this
restriction, people commonly use URL shortening services when they are posting
URLs. Similarly, spammers use shortened URLs and few words to attract clicks.

Following and Follower. Following someone means subscribing their tweets as
a follower. If user A follows user B, B is following of A and A is a follower of B (see
Fig. 1). The updates of user B automatically appear to user A. This is similar
to Really Simple Syndication (RSS). Followings and followers are represented
as edges in Twitter graph. A Following relation means out-edge and a follower
relation means in-edge (see Fig. 1).

Mention. If @username is included in a tweet, it is called a mention. Mentions
appear to a receiver even if the receiver is not a follower of the sender. It is almost
the same as a message function on other social networking sites. Spammers
commonly use this function to send spam because normal users rarely follow
spammers. On Twitter, a reply is also considered a mention.

Retweet. A retweet is a reposting another user’s tweet. When a user finds a
tweet that he wants to share with his followers, he can use the retweet function.

Hashtag. The ’#’ symbol is a hashtag in Twitter. The hashtag is attached
to the front of keywords to categorize tweets. This function is the same as a
tag used in blogs. If a keyword is hashtagged a lot, it will appear in trending
topics that appear to all Twitter users. Spammers often use trending topics in
their tweets even though these topics are irrelevant to the contents of the spam
messages. They also try to make trending topics using the keywords they want.
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2.2 How Twitter Deals with Spam

Twitter users can report a spammer by clicking the “Report to @username for
spam” menu on the spammer’s profile page. Reported spammers are reviewed
by the administrators and then suspended. Users can also report spammers by
mentioning them to the official @spam account [17]. However, these manual
methods require users’ effort and there are many fake reports. Besides the users’
reporting, Twitter has established several restrictions to prevent spam and abuse.
The representative restrictions are as follows:

– Following a large number of users in a short time
– Following and unfollowing someone in a short time or repeatedly
– A small number of followers compared to the amount of following
– Multiple duplicated updates
– Updates mainly consisting of links

The above restrictions, however, are easy to avoid and spammers can always
create new accounts even though their old accounts have been suspended. Still,
about a hundred spam accounts are reported to the @spam account every day.
Twitter published a blog post which stated that spam has been reduced as a
result of their restrictions and that they constantly stand against spammers [18].
According to the posting, the percentage of spam per day has decreased from
11% in August 2009 to about 1.5% in February 2010. However, the data that
only consists of percentages is difficult to analyze objectively. If legitimate tweets
are increased much faster than spam, the percentage of spam is decreased. In
fact, Twitter grew by about 1,400% in 2009 [19]. Moreover, there are about 140
million tweets per day [3]. This means that there may exist about a million spam
messages, if 1% of tweets are spam.

3 Overview

We identify spam using the relation information between users. First, we measure
the distance of user pairs. For example, when two users are directly connected
by a single edge, the distance between the users is one. This means that the two
users are friends. When some user pairs have a small distance longer than one,
this means they have common friends although they are not friends themselves.
In our experiment, almost all messages that come from a user whose distance is
more than four are spam. Thus, the relationship is meaningless or untrustworthy
when the distance is over four. If some user pairs have a distance greater than
four, one of the users has very few relationships or no relationship like spammers.
Therefore, we treat the messages coming from a user whose distance is greater
than four as spam and we only identify the messages coming from a user whose
distance is at least four.

The second feature is the connectivity between users. The connectivity repre-
sents the strength of the relationships. An edge may exist between a legitimate
user and a spammer when the spammer establishes a relationship with a legiti-
mate user. Yu et al. called these edges attack edges [20, 21]. Each spammer has



306 J. Song, S. Lee, and J. Kim

few attack edges because the spammers are difficult to establish relationships
with legitimate users. Thus, the connectivity between a legitimate user and a
spammer is weaker than the connectivity between legitimate users, when the
distance is the same. We measure connectivity by using random walk and min-
cut techniques. To evaluate our system, we collected a considerable amount of
normal messages and spam messages from Twitter and identified the messages
using their features. Distance and connectivity were not used in the previous
work for detecting spam and they are difficult to be manipulated by the spam-
mers. In addition, our system allows service managers or clients to identify each
message in real-time. Thus, there is no delay, unlike in account-based methods.

3.1 Graph

To measure distance and connectivity, we used specialized subgraphs of the social
network graph representing the relation between users. Twitter network can be
represented by directed graph using following and follower relations. Our method
focuses on the relation between the message sender and the receiver. Thus, we
only construct the graph between them. Let a directed graph G = (V, E) be an
entire social network graph and G′ = (V ′, E′) be a subgraph of G satisfying the
following conditions:

1. The graph G′ = (V ′, E′) is a subgraph of a graph G = (V, E).
2. The source node s and terminal node t are included in V ′.
3. All nodes in V ′ are included in the paths from s to t.
4. All edges in E′ are included in the paths from s to t.

We construct the graph G′ and measure the distance and connectivity between
a node s and a node t. In our case, the graph G is the entire Twitter network
graph, the node s a message receiver, the node t a message sender. Our system
evaluates the sender on the receiver’s position; thus, the paths from the receiver
to the senders are considered. In the graph G′, all nodes are included in the
paths from the receiver to the sender. There are three steps to construct the
graph G′ of Twitter.

1. Put the receiver, his followings and followings of his followings to V ′ and
edges between them to E′.

2. Put the sender, his followers and followers of his followers to V ′ and edges
between them to E′. If the distance between the sender and the receiver is
lower than four, G′ will be connected.

3. Remove the nodes which are not included in the paths from the receiver to
the sender from V ′ and edges to them from E′.

We only consider the paths whose length is at least four. Thus, we remove some
nodes from G′ when they are only included in the paths longer than four. Fig. 2
shows a simple example of the graph. The reasons why we used the subgraph G′

are as follows:
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Fig. 2. A simple example of the graph when the distance is three

– Analyzing the relation between the receiver and the sender is the most im-
portant task in this work. We do not need an entire network graph.

– The social network is huge. Twitter has about 190 million users. Thus, we
cannot handle the whole social network.

– We use both the followings of the receiver and the followers of the sender to
reduce crawling data. If we only use the receiver’s followings, the amount of
the crawling data will increase exponentially.

– We only analyze the user pairs whose distance is at least four. As noted
above, the messages coming from a distance greater than four are mostly
spam. Moreover, Kwak et al. showed that 70.5% of user pairs have paths
whose length is four or shorter in the Twitter network [22]. Thus, our research
covers most cases in Twitter.

3.2 Features

Spammers have different characteristics from non-spammers. Our design is based
on an insight similar to the one used by Sybil series [20, 21]. In general, spammers
are difficult to make relationships with non-spammers but they make a group
with other spammers. Spam groups have only a few attack edges to honest
regions. Thus, most non-spammers are not connected with spammers, or have
long and weak connections. Based on these facts, we identify spammers using
the distance and the connectivity between users.

Distance. We measure distance, which is the length of the shortest path be-
tween users. It is the same as the number of hops from a message receiver to a
message sender. In Twitter, an out-edge is following, meaning the follower trusts
the following. We examined the correlation between the distance and spammers.
To investigate the distributions of spam and non-spam messages according to
distance, we randomly selected 10,000 benign and an equal number of spam
messages from our data set (see Fig. 3). Within a distance of two, only 0.9%
messages are spam. However, 57.3% of the messages coming from a distance of
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Fig. 3. The percentages of benign (blue) and spam messages (red)

three are spam and 89% of the messages coming from a distance of four are
spam. From the result, most spam comes from users at a distance of more than
three hops from receivers but there are also many benign messages at a distance
of three or four hops. The connectivity feature discriminates between benign and
spam messages that have arrived from the same distance.

Connectivity. The connectivity represents the strength of a connection. A
simple way to measure connectivity would be counting the number of paths. More
paths mean more friends are connected to the user. A better way to measure
connectivity is counting the edge-independent paths. The collection of paths
is called edge-independent if no two paths share an edge. We used Menger’s
theorem which characterizes that connectivity of a graph in terms of the number
of independent paths between nodes [23, 24]. Menger’s theorem defines edge-
connectivity as follows:

Theorem 1 (Menger’s theorem). Let G be a finite undirected graph and u
and v be two distinct nodes. The size of the minimum edge cut for u and v is
the same as the maximum number of the edge-independent paths from u to v.

This is a special case of the Max-flow min-cut theorem. The problem of finding the
maximum number of the edge-independent paths can be transformed to a maxflow
problem by constructing a directed graph assigning each edge with unit capacity.
We compare the min-cut size when both nodes s and t are non-spammers, and
when a node s is a non-spammer and a node t is a spammer. As expected, the
min-cut sizes of the spammer’s cases are smaller than that of the normal cases.

We also use random walk as another measure. Yu et al. used a special kind
of random walk to identify sybil nodes, not exactly same as random walks [20,
21]. We used random walk technique used in PageRank [25]. The idea behind
PageRank is that when a random surfer visits pages infinitely, the pages linked
more are visited more. PageRank values are computed by the left eigenvectors
xL of the transition probability matrix P such that

xLP = λxL,
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where λ is eigenvalue. The N entries in the eigenvector xL are the steady-state
probabilities of the random walk corresponding to the PageRank values of web
pages. The Perron-Frobenius Theorem tell us that the largest eigenvalue of the
matrix is equal to one which is the principal eigenvector [26, 27]. Thus, the
principal eigenvector of the transition matrix P is the PageRank values. We
used this PageRank values. The web pages are corresponding to the users and
the links are corresponding to the friendships. Because we use the specialized
graph only including the nodes and edges in the paths from the node s to the
node t, the expected result of random walk is different from general graphs. All
edges point toward the node t. Thus the eigenvector of the node t is always
top. Therefore, we convert the directed graph G′ to the undirected graph G′′

replacing all directed to undirected edges. Now, both the nodes t and s have
very high values in their eigenvector because the graph G′′ is created by making
backward-edges of existing edges. All random walks will proceed to both nodes t
and s in normal cases. When the node t is a spammer, however, the eigenvector
of the node t will not be as high as the node s because the spammer only has a
few edges.

4 Experiments and Evaluation

This section is composed of three parts. In the first part, we present how we
collected data used in our experiments. In the second part, we show the spam
detection results using the user relation features. In the last part, we show that
the user relation feature can be represented as a user account feature to decide
whether an account is a spam account or not. And we compare the results using
only the account features used in the previous work and the results using the
account features including the new one to detect spammers.

4.1 Data Collection

Twitter offers API methods for data collection to encourage third-party devel-
opers, but there is a rate limit [28]. A host is permitted 150 requests per hour.
Twitter also had a whitelist for developers but they stopped offering this whitelist
on March 2011 [29]. In order to overcome the rate limit we used four servers and
120 IP addresses. The servers changed their IP addresses when they were stopped
by the rate limit. The collection lasted for about two month from February to
March 2011. We crawled 148,371 profiles, 267,551 tweets, 4,317,161 user’s follow-
ings and 963,181 user’s followers. We randomly selected non-spammers by using
numerical Twitter user IDs. Spam accounts were selected from among the re-
ported accounts to the “@spam” account, which is the official Twitter account.
Legitimate Twitter users can report the spam accounts by mentioning to the
“@spam” account; thus, we searched mentions using the “@spam” keyword and
collected spam accounts from the search results. We manually checked whether
each account is a spammer or not. In total, we collected 308 spam accounts and
10,000 spam messages.
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Table 1. The results of classification using distance and random walk

Classifiers True Positive (%) False Positive (%)

Bagging 93.3 8.5
LibSVM 93.2 8.3
FT 93.1 7.7
J48 92.3 8.7
BayesNet 92.0 8.0

4.2 Spam Classification

In the previous section, we proposed a spam filtering using user relation features.
We identified spam using distance and connectivity features. Connectivity is
measured in two ways: random walk and min-cut. First, we used the results of
random walk with the distance. Given a graph G′′, which is explained in Section
3, the result of random walk is the left eigenvector xL of the transition matrix of
G′′. Let i be the index of a receiver and j be the index of a sender in xL. Then,
their random walk values are xL[i] and xL[j], respectively. When the sender is a
non-spammer, xL[i] and xL[j] are similar values and they are quite higher than
the average value of xL. When the sender is a spammer, however, xL[j] is much
lower than xL[i]. Therefore, we use the ratio xL[j]/xL[i] as a feature from random
walk. We randomly selected 5,000 messages where both senders and receivers are
non-spammer, and 5,000 messages where senders are spammers and receivers are
non-spammers from the data set. Then we constructed graphs for each user pair.
On average, the graphs have about 5,000 nodes. We used Weka [30], which is a
data mining tool, and used 10-fold cross validation option in classification . In K-
fold cross validation, the sample data is randomly partitioned into k subgroups.
Only one partitioned data is used as validation data and the remaining k − 1
partitioned data are used as training data. This process is then repeated k times
in order to use all k subgroups as the validation data. Table 1 shows the results
of applying each classifier. True positive means that spam messages are correctly
classified as spam, which is 1 - false negative. False positive means that normal
messages are classified as spam. All classifiers successfully identify spammers
with about 92% true positive. Fig. 4 shows a decision tree created by the J48
classifier. The decision tree is simple, meaning that if the system uses the distance
and random walk features, the system can easily identify the spammers.

Next, we selected 3,000 messages where both senders and receivers are non-
spammer, and 3,000 messages where senders are non-spammer and receivers are
spammer from the data set. The messages are classified using the results of min-
cut and the distance. Finally, both results of random walk and min-cut were used
with the distance in classifications at the same time. Table 2 and Table 3 show
the results of the classifications. The classifiers also identify spammers with high
accuracy when they only use the distance and min-cut results. In addition, the ac-
curacy increases when the classifiers use the distance, the random walks and the
min-cuts at the same time. From our experiments, we showed that we can iden-
tify spam using only relation information. This means that our system can allow
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Fig. 4. A decision tree created by the J48 classifier

Table 2. The results of the classifi-
cation using the distance and min-
cut

Classifiers
True
Positive
(%)

False
Positive
(%)

Bagging 94.6 6.5
LibSVM 94.0 5.8
J48 93.9 5.3
BayesNet 93.5 5.5
FT 93.5 5.5

Table 3. The results of the classi-
fication using the distance, random
walk and min-cut

Classifiers
True
Positive
(%)

False
Positive
(%)

Bagging 95.1 4.7
LibSVM 94.3 4.3
J48 94.2 4.6
FT 93.8 4.4
BayesNet 93.4 5.9

clients to decide whether or not received messages are spam in real-time. Fig. 5
shows Receiver Operating Characteristic (ROC) curves of classification results.
When we use random walk and min-cut along with distance, the classification ac-
curacy becomes better than when we use only distance.

4.3 Spam Account Detection with Including a User Relation
Feature

We consider that if we can include user relation related feature in the user
account profile it would be easier to detect spam accounts.

One feature we consider is the ratio of mentions sent to non-followers. The
distance of the messages sent to the followers is one. Non-spammers generally
send messages to their followers or followings. On the other hand, spammers
send messages to arbitrary users who are mostly located at a distance greater
than one.
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Fig. 5. ROC curves for each of the relation features

We reproduced previous work’s experiments related to detecting spam ac-
counts in order to show that the results with adding our feature are better than
those with only features used in previous work. The 11 features that are used in
classifications are as follows:

– The standard deviation of tweeting interval
– The ratio of tweets containing URLs
– The ratio of mentions containing URLs
– The ratio of tweets containing hashtags
– The ratio of mentions ( |mentions|

|total tweets| )
– The ratio of duplicate tweets
– Reputation ( |followings|

|followers| )
– The number of lists including the user
– Age (the current time - the account creation time)
– The average content similarity
– The ratio of mentions sent to non-followers

The ratio of mentions sent to non-followers is the only relation feature and the
others are account features which are used in previous work. The average content
similarity is computed in the same as Lee et al [5]. They computed content
similarity using the cosine similarity over the bag-of-words vector representation
V (t) of the tweets:

similarity(t1, t2) =
V (t1) · V (t2)
|V (t1)||V (t2)|

Then, they measured the average content similarity over all pairs of tweets:

∑
t1,t2∈ set of pairs in tweets

similarity(t1, t2)
|set of pairs in tweets|
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Table 4. The top five results of spammer detection using Weka classifiers

Classifiers True Positive (%) False Positive (%)

BayesNet 99.7 0.6
LogitBoost 99.7 0.6
J48 99.6 0.6
Logistic 99.4 0.9
LibSVM 98.3 0.5

Table 5. The results of feature selection

Rank Information Gain

1 The ratio of mentions sent to non-followers
2 Reputation
3 The ratio of mentions containing URLs
4 The ratio of tweets containing URLs
5 Age

Rank ReliefF

1 The ratio of mentions sent to non-followers
2 The ratio of tweets containing URLs
3 Age
4 The ratio of mentions containing URLs
5 The average content similarity

Rank Chi Square

1 The ratio of mentions sent to non-followers
2 Reputation
3 The ratio of mentions containing URLs
4 The ratio of tweets containing URLs
5 Age

We selected 1,000 non-spammers and 300 spammers from our data set and ex-
tracted the most recent 50 tweets from their timelines. The users were classified
using several classifiers in Weka with a 10-fold cross validation option. Table 4
shows the top five results of classification among Weka classifiers. The accuracy
is about 99.7% and the false positive is only about 0.6%. The accuracy are better
than the spam classification in Section 4.2, but spam account detection methods
cannot detect spam in real-time.

We also ranked the features to verify the importance. The feature selec-
tion methods used are also available on Weka, Information Gain, ReliefF and
ChiSquare. Table 5 shows the five most important features for each method. All
feature selection methods rank the ratio of mentions sent to non-followers as the
top feature. It means that the relation feature is more powerful than the account
features.
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5 Discussion

5.1 Combination of Account Features and Relation Features

We only used relation features to detect spam in order to focus on the effect
of the relation features. When a message is being delivered, our system verifies
whether a sender is a spammer or not only using relation information between a
message sender and a message receiver. The results are quite good but if we use
both the account features and the relation features, the spam filtering system
will be more powerful. In Section 4.3, we used both the account features and
the relation feature. The accuracy is better than the results when only used
the relation features. The account features supplement the relation features’
insufficiency.

5.2 Live Detection

Our system can be applied to both client-side and server-side. When our system
is applied to client-side, the system should collect relation information peri-
odically from Twitter. The distance and the connectivity are computed using
collected data. In these processes, the client needs some bandwidth, computing,
storages resources and time. Most of received messages, however, come from the
client’s friends. The messages coming from the friends do not need to identify
senders. Therefore, there will be only a few cases that crawling the data and
computing relation features for indentifying the sender. Given those facts, the
resource problems are not big. When our system is applied to server-side, it is
more practical. Additional bandwidth and storage resources are not needed be-
cause service managers already have user’s relation information. However, the
service managers should compute all users’ relation features. It may cause a
heavy load to the server, so they should prepare separate computing servers.
Computed relation features will be cached and then only updated when the re-
lation features are changed. Caching technique will help both client-side and
server-side to reduce computing overhead.

5.3 Limitations

Spammers have very few relationships or no relationships with normal users.
This is the reason why our system checks the message sender by computing the
distance and the connectivity from the message receiver to the message sender.
However, this method has two problems. First, if a normal user creates a new
account and sends a message to his friend before the new account has any follow-
ers, the message will be filtered. This is because new account’s characteristics
are same as spammer when the new account is created and it has not estab-
lished any relationships yet. This, however, is a temporal problem because the
new account will get followers soon. The second problem is that our system
will identify the messages as normal even though the messages come from in-
fected friends. Sometimes attackers send spam through normal users’ accounts
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by using Cross-Site Request Forgery (CSRF) or password stealing. Also, many
malicious applications use crafty tricks for getting a writing permission of nor-
mal users. The innocent and careless users allow that the applications can write
postings using the user’s own name. Infected users’ friends receive spam from
his infected friends. Only checking relation features cannot solve this problem.
When a user sends the messages using the application that has never been used
by the user, the messages should be suspected. Ultimately, the contents of the
messages should be checked whether the contents are spam or not. Because of
tweet’s short length, identifying only the URLs contained in the messages is a
good solution. There are related work about classifying web pages into spam or
not [31–33].

6 Conclusion

In social networks, traditional spam filtering methods are not effective because
of the characteristics of social networks. We propose a spam filtering method
for social networks using relation information between users. We use distance
and connectivity as the features which are hard to manipulate by spammers
and effective to classify spammers. Moreover, our system identifies spam in real-
time because it does not need a user history data. Services managers or clients
can decide whether or not the messages are spam. We hope that our system
contributes to quarantine a suspected message into spam message box in social
networking services. Also, we showed that user relation concept can be reflected
into user account profile to detect spam accounts. We evaluated the system using
Twitter data but the system is also effective for other social networking services
because all such services contain relation features.
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Abstract. Due to the significance and indispensability of detecting and
suspending Twitter spammers, many researchers along with the engi-
neers in Twitter Corporation have devoted themselves to keeping Twitter
as spam-free online communities. Meanwhile, Twitter spammers are also
evolving to evade existing detection techniques. In this paper, we make
an empirical analysis of the evasion tactics utilized by Twitter spam-
mers, and then design several new and robust features to detect Twitter
spammers. Finally, we formalize the robustness of 24 detection features
that are commonly utilized in the literature as well as our proposed ones.
Through our experiments, we show that our new designed features are
effective to detect Twitter spammers, achieving a much higher detection
rate than three state-of-the-art approaches [35,32,34] while keeping an
even lower false positive rate.

1 Introduction

Spammers have utilized Twitter as the new platform to achieve their malicious
goals such as sending spam [2], spreading malware [12], hosting botnet command
and control (C&C) channels [5], and performing other illicit activities [29]. All
these malicious behaviors may cause significant economic loss to our society
and even threaten national security. In August of 2009, nearly 11 percent of all
Twitter posts were spam [1]. In May of 2009, many innocent users’ accounts on
Twitter were hacked to spread advertisements [2]. In February of 2010, thou-
sands of Twitter users, such as the Press Complaints Commission, the BBC
correspondent Nick Higham and the Guardian’s head of audio Matt Wells, have
seen their accounts hijacked after a viral phishing attack [19].

Many researchers along with engineers from Twitter Corporation have de-
voted themselves to keep Twitter as a spam-free online community. Their efforts
have attempted to protect legitimate users from useless advertisements, porno-
graphic messages or links to phishing or malicious websites. For example, Twitter
has published their definitions of spam accounts and The Twitter Rules [14] to
protect its users from spam and abuse. Any account engaging in the abnormal
activities is subject to temporary or even permanent suspension by Twitter.
Meanwhile, many existing research studies, such as [25,32,22,35,34], also utilize
machine learning techniques to detect Twitter spammers.
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“While the priest climbs a post, the devil climbs ten.” This proverb illustrates
the struggle between security researchers and their adversaries – spammers in
this case. The arms race nature between the attackers and defenders leads Twit-
ter spammers to evolve or utilize tools to evade existing detection features [11].
For example, Twitter spammers can evade some existing detection features by
purchasing followers [6] or using tools to automatically post tweets with the same
meaning but different words [15].

In this paper, we plan to design more robust features to detect more Twitter
spammers through an in-depth analysis of the evasion tactics utilized by cur-
rent Twitter spammers. To achieve our research goals, we collect and analyze
around 500,000 Twitter accounts and more than 14 million tweets using Twitter
API [18], and identify around 2,000 Twitter spammers by using blacklist and
honeypot techniques. Then, we describe and validate current evasion tactics by
both showing some case studies and examining three existing state-of-the-art
approaches [35,32,34] on our collected data set. Based on the in-depth analy-
sis of those evasion tactics, we design ten new features including graph-based
features, neighbor-based features, timing-based features, and automation-based
features to detect Twitter spammers. Through our evaluation experiments, we
show that our newly designed features can be effectively used to detect Twitter
spammers. In addition, we also formalize the robustness of 24 detection features
that are utilized in the existing work as well as our proposed ones.

In summary, the contributions of this paper are as follows:

– We present the first in-depth empirical analysis of evasion tactics utilized
by current Twitter spammers based on a large dataset containing around
500,000 Twitter accounts and more than 14 million tweets.

– We evaluate the detection rates of three state-of-the-art solutions on our
collected dataset. Even the best detector still misses detecting around 27% of
Twitter spammers and the worst detector misses about half of the spammers.

– Based on our empirical analysis of the evasion tactics and the Twitter spam-
mers’ desire to achieve malicious goals, we propose and test our newly de-
signed detection features. To the best of our knowledge, it is the first work
to propose neighbor-based detection features to detect Twitter spammers.
According to our evaluation, while keeping an even lower false positive rate,
the detection rate by using our new feature set significantly increases to
85%, compared with a detection rate of 51% and 73% for the worst existing
detector and the best existing detector, respectively.

– We provide a new framework to formalize the robustness of 24 detection
features that are utilized by the existing work and our work, and categorize
them into 16 low-robust features, 4 medium-robust features and 4 high-
robust features.

2 Related Work

Due to the rising popularity of Twitter, many studies have been conducted with
an aim at studying the topological characteristics of Twitter. Kwa et al. [31]
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have shown a comprehensive and quantitative study of Twitter accounts’ behav-
ior, such as the distribution of the number of followers and followings, and the
reciprocity of following relationships. Cha et al. [25] design diverse metrics to
measure Twitter accounts.

In addition, since spam and attacks are so rampant in online social network-
ing sites, Koutrika et al. [30] propose techniques to detect tag spam in tagging
systems. Benevenuto et al. [24,23] utilize machine learning techniques to iden-
tify video spammers in video social networks. Gao et al. [27] present a study
on detecting and characterizing social spam campaigns in Facebook. In terms
of Twitter, most existing detection work can be classified into two categories.
The first category of work, such as [32,22,35,34], mainly utilizes machine learn-
ing techniques to classify legitimate accounts and spam accounts according to
their collected training data and their selections of classification features. The
second category of work, e.g. [28], detects spam accounts by examining whether
the URLs or web domains posted in the tweets are tagged as malicious by the
public blacklists. Especially, to collect training data, both [32] and [34] utilize
social honey accounts to identify Twitter spammers.

Different from existing studies, our work focuses more on analyzing evasion
tactics utilized by current Twitter spammers and we further design new machine
learning features to more effectively detect Twitter spammers. In addition, we
formalize the robustness of 24 detection features. Our work is a valuable supple-
ment to existing Twitter spammers detection research.

3 Data Collection

In this section, we describe our data collection strategies and results including
crawling Twitter profiles and identifying Twitter spammers.

To crawl Twitter profiles, we develop a Twitter crawler that taps into Twit-
ter’s Streaming API [18]. In order to decrease the effect of the sampling bias [33],
we utilize a new crawling strategy rather than simply using the Breath First
Search (BFS) sampling technique. Specifically, we first collect 20 seed Twitter
accounts from the public timeline [20]. For each of these 20 accounts, we also
crawl their followers and followings. We then repeat this process by collecting a
new set of 20 seed Twitter accounts from the public timeline. For each account
that we crawl, we collect its 40 most recent Tweets as well as any other infor-
mation that Twitter allows us to collect. Due to the large amount of redirection
URLs used in Twitter, we also follow the URL redirection chain to obtain the
final destination URL. This resulted in the collection of nearly 500,000 Twitter
accounts which posted over 14 million tweets containing almost 6 million URLs.
Details about the crawling information can be seen in Table 1.

Then, we need to identify Twitter spammers from our crawled dataset. In our
work, we focus on those Twitter spammers that post harmful links to phishing
or malware sites, since this type of spammers is more deleterious than other
types of spammers. Specifically, we first utilize Google Safe Browsing [9] and
Capture-HPC [7] to detect malicious or phishing URLs in the tweets. We define
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Table 1. Twitter accounts crawling information

Name Value

Number of Twitter accounts 485,721

Number of Followings 791,648,649

Number of Followers 855,772,191

Number of tweets 14,401,157

Number of URLs Extracted 5,805,351

a Tweet that contains at least one malicious or phishing URL as a Spam Tweet.
For each account, we define its spam ratio as the ratio of the number of its spam
tweets that we detect to the total number of its tweets that we collect. Then, we
extract 2,933 Twitter accounts whose spam ratios are higher than 10%. Then,
in order to decrease false positives, our group members spend several days on
manually verifying all 2,933 accounts and finally identify 2,060 spam accounts.

We acknowledge that our collected data set may still contain some bias and
the number of spammers in our examination data set is a lower bound of the
real number. (Detailed discussions can be seen in Section 8). However, even for
a subset of spammers, we can still use them to analyze the evasion tactics and
test the performance of existing work on detecting these spammers.

4 Analyzing Evasion Tactics

This section will describe the evasive tactics that spammers are using to evade
existing machine learning detection schemes. Then, we validate these tactics by
both showing some case studies and examining three existing state-of-the-art
approaches on our collected data set.

4.1 Description of Evasion Tactics

The main evasion tactics, utilized by the spammers to evade existing detection
approaches, can be categorized into the following two types: profile-based feature
evasion tactics and content-based feature evasion tactics.

Profile-Based Feature Evasion Tactics: A common intuition for discovering
Twitter spam accounts can originate from accounts’ basic profile information
such as number of followers and number of tweets, since these indicators usu-
ally reflect Twitter accounts’ reputation. To evade such profile-based detection
features, spammers mainly utilize tactics including gaining more followers and
posting more tweets.

Gaining More Followers: In general, the number of a Twitter account’s
followers reflects its popularity and credibility. A higher number of follow-
ers of an account commonly implies that more users trust this account and
would like to receive the information from it. Thus, many profile-based detec-
tion features such as number of followers, fofo ratio1 [32,34] and reputation

1 It is the ratio of the number of an account’s following to its followers.
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score [35] are built based on this number. To evade these features or break-
through Twitter’s 2,000 Following Limit Policy2 [13], spammers can mainly
adopt the following strategies to gain more followers. The first strategy is to
purchase followers from websites. These websites charge a fee and then use an
arsenal of Twitter accounts to follow their customers. The specific methods
of providing these accounts may differ from site to site. The second strategy
is to exchange followers with other users. This method is usually assisted by
a third party website. These sites use existing customers’ accounts to follow
new customers’ accounts. Since this method does only require Twitter ac-
counts to follow several other accounts to gain more followers without any
payment, Twitter spammers can get around the referral clause by creating
more fraudulent accounts. In addition, Twitter spammers can gain followers
for their accounts by using their own created fake accounts. In this way,
spammers can create a bunch of fake accounts, and then follow their spam
accounts with these fake accounts.
Posting More Tweets: Similar to the number of an account’s followers,
an account’s tweet number usually reflects how much this account has con-
tributed to the whole Twitter platform. A higher tweet number of an account
usually implies that this account is more active and willing to share infor-
mation with others. Thus, this feature is also widely used in the existing
Twitter spammers detection approaches, e.g., [34]. To evade this feature,
spammers can post more Tweets to behave more like legitimate accounts,
especially recurring to utilizing some public tweeting tools or software [3].

Content-Based Feature Evasion Tactics: Another common indicator of dis-
closing spam accounts is the content of a suspect account’s Tweets. As discussed
in Section 1, a majority of spam accounts make profits by alluring legitimate
users to click the malicious URLs posted in the spam tweets. Those malicious
URLs can direct users to websites that may cause harm to their computers
or scam them out of their money. Thus, the percentage of Tweets containing
URLs is an effective indicator of spam accounts, which is utilized in work such
as [32,34,35]. In addition, since many spammers repeat posting the same or sim-
ilar malicious tweets in order to increase the probability of successfully alluring
legitimate users’ visits, especially with the utilization of the public automation
tweeting tools, their published tweets shows strong homogeneous characteris-
tics. In this way, many existing approaches design content-based features such as
tweet similarity [32,34] and duplicate tweet count [35] to detect spam accounts.
To evade such content-based detection features, spammers mainly utilize the
tactics including mixing normal tweets and posting heterogeneous tweets.

MixingNormal Tweets: Spammers can utilize this tactic to evade content-
based features such as URL ratio, unique URL ratio, hashtag ratio [32,35].
These normal tweets without malicious URLs may be hand-crafted or ob-
tained from arbitrary users’ tweets or consisted of meaningless characters. By

2 According to this policy, if the number of following of an account is exceeding 2,000,
this number is limited by the number of the account’s followers.
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using this tactic, spammers are able to dilute their spam tweets and make it
more difficult to be distinguished from legitimated accounts.
PostingHeterogeneous Tweets: Spammers can post heterogeneous tweets
to evade content-based features such as tweet similarity and duplicate tweet
count. Specifically, in this tactic, spammers can post tweets with the same se-
mantic meaning using different terms. In this way, not only can spammers
maintain the same semantic meanings to allure victims, but also they can
make their tweets diversed enough to not be caught by detectors that rely on
those content-based features. Particularly, spammers can utilize public tools
to spin a few different spam tweets into hundreds of variable tweets with the
same semantic meaning using different words [15].

4.2 Validation of Evasion Tactics

In this section, we aim to validate the four evasion tactics described in the previous
section by showing real case studies and public services/tools that can be utilized
by the spammers. We also implement existing detection schemes [32,34,35] and
evaluate them on our collected examination data set. By analyzing the spammers
missed (false negatives) by these works, we can show that many spammers are
evolving to behave like legitimate accounts to evade existing detection features.

Gaining More Followers: As described in Section 4.1, spammers can gain
more followers by purchasing them, exchanging them and creating fake accounts.
In fact, several public websites allow for the direct purchase of followers. The
rates per follower for each website vary. Table 2 shows that followers can be pur-
chased for small amounts of money on several different websites, even including
the online bidding website – Ebay, which can be seen in Fig. 1(a).

Table 2. Price of Online Follower Trading

Website Price Per Follower
BuyTwitterFriends.com $0.0049

TweetSourcer.com $0.0060
UnlimitedTwitterFollowers.com $0.0074

Twitter1k.com $0.0209
SocialKik.com $0.0150
USocial.net $0.0440

Tweetcha.com $0.0470
PurchaseTwitterFollowers.com $0.0490

Also, Fig. 1(b) shows a real online website from which users can directly buy
followers. From this figure, we can find that, spammers can buy followers at a
very cheap price. The website also claims that the user can buy targeted followers
with specific keywords in their tweets.

After showing these online services, through which spammers can obtain more
followers, we examine the detection features of number of followers and fofo ratio
from three existing approaches on our collected dataset. Particularly, we draw
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(a) Bidding followers from Ebay (b) Purchasing followers from website

Fig. 1. Online Twitter Follower Trading Website

the distribution of both metrics of three account sets: missed spammers (false
negatives) in each of three existing approaches [32,34,35], all accounts (around
500,000 collected accounts), and all spammers (2,060 identified spammers). (We
label the results from [35] as A, [32] as B and [34] as C). From Fig. 2(a) and
2(b), we can see that the distributions of these two indicators of those missed
spammers by existing approaches are more similar to that of all accounts than
that of all spammers. This observation implies that spammers are evolving to
pretend to be more legitimate by gaining more followers.

Posting More Tweets: Besides using the web to post tweets, spammers can
utilize some softwares such as AutoTwitter [3] and Twitter API [18] to automat-
ically post more tweets on their profiles. Fig. 2(c) shows the distribution of the
numbers of tweets of the missed spammers in each of three existing approaches,
all spammers and all accounts. From this figure, we can find that missed spam-
mers (false negatives) post much more tweets than all spammers, even though
the tweet numbers of all spammers are much lower than that of all accounts.
This observation also implies that spammers are trying to post more tweets to
not to be recognized as spammers.
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Fig. 2. Profile-based feature examination on three existing detection work

Mixing Normal Tweets: Based on observations of the missed spammers by
the existing work, we can find that some of them post non-spam tweets to dilute
their spam tweet percentage. Fig. 3(a) shows a real example of a spammer that
posts famous quotes, “Winning isn’t everything, but wanting to win is. – Vince
Lombardi”, between tweets containing links to phishing and scam websites.
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Posting Heterogeneous Tweets: In order to avoid content-based detection
features such as tweet similarity and duplicate tweet count, spammers use tools
to “spin” their tweets so that they can have heterogeneous tweets with the
same semantic meaning using different words. Fig. 3(b) shows a spammer that
posts various messages encouraging users to sign up for a service. The service is
eventually a trap to steal users’ email addresses. Notice that the spammer uses
three different phrases that have the same semantic meaning: “I will get more.
You can too!”, “you will get more.”, and “want get more, you need to check”.
An example of tools that can be used to create such heterogeneous tweets, called
spin-bot [15], is shown in Fig. 3(c). By typing a phrase into the large text field
and pressing “Process Text”, a new phrase with the same semantic meaning and
yet different words is generated below.

(a) Mixing Normal Tweets (b) Posting Heterogeneous Tweets (c) Spin-bot

Fig. 3. Case studies for content-based feature evasion tactics

From the above analysis, we can find that Twitter spam accounts are indeed
evolving to evade existing detection methods to increase their lifespan.

5 Designing New Features

In this section, to counter spammers’ evasion tactics, we propose several new
and more robust detection features. A robust feature should either be difficult
or expensive to evade: a feature is difficult to evade if it requires a fundamental
change in the way that a spammer performs its malicious deeds; a feature is
expensive to evade if the evasion requires much money, time or resources. On
the basis of spam accounts’ special characteristics, we design 10 new detection
features including three Graph-based features, three Neighbor-based features,
three Automation-based features and one Timing-based feature, which will be
described in details in the following sections.

5.1 Graph-Based Features

If we view each Twitter account i as a node and each follow relationship as a
directed edge e, then we can view the whole Twittersphere as a directed graph
G = (V, E). Even though the spammers can change their tweeting or following
behavior, it will be difficult for them to change their positions in this graph.
According to this intuition, we design three graph-based features: local clustering
coefficient, betweenness centrality, and bi-directional links ratio.
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Local Clustering Coefficient: The local clustering coefficient [10] for a vertex is
the proportion of links between the vertices within its neighborhood divided by
the number of links that could possibly exist between them. This metric can be
utilized to quantify how close a vertex’s neighbors are to being a clique. For each
vertex v in the Twitter graph, its local clustering score can be computed by Eq.
(1), where Kv is the sum of the indegree and outdegree of the vertex v, and |ev|
is the total number of edges built by all v’s neighbors.

LC(v) =
2|ev|

Kv · (Kv − 1)
(1)

Since legitimate users usually follow accounts whose owners are their friends,
colleagues or family members, these accounts are likely to have a relationship
with each other. However, since spammers usually blindly follow other accounts,
these accounts usually do not know each other and have a looser relationship
among them. Thus, compared with the legitimate accounts, Twitter spammers
will have smaller local clustering coefficient.

Betweenness Centrality: Betweenness centrality [4] is a centrality measure of a
vertex within a graph. Vertices that occur on many shortest paths between other
vertices have a higher betweenness than those that do not. In a directed graph,
betweeness centrality of each vertex v can be computed by Eq. (2), where δst is
the number of shortest paths from s to t, and δst(v) is the number of shortest
paths from s to t that pass through a vertex v, and n is the total number of
vertexes in the graph.

BC(v) =
1

(n − 1)(n − 2)
·

∑
s	=v 	=t∈V

δst(v)
δst

(2)

This metric reflects the position of the vertex in the graph. Nodes that occur
in many shortest paths have higher values of betweenness centrality. A Twitter
spammer will typically use a shotgun approach to finding victims, which means
it will follow many accounts without regard for whom they are or with whom
these victims are connected. As a result, many of their victims are unrelated
accounts, and thus their shortest path between each other is the average shortest
path between all nodes in the graph. When the Twitter spammer follows these
unrelated accounts, this creates a new shortest path between any victim following
of the spam account and any other victim following, through the spam account.
Thus, the betweenness centrality of the spammer will be high.

Bi-directional Links Ratio: If two accounts follow with each other, we con-
sider them to have a bidirectional link between each other. The number of bi-
directional links of an account reflects the reciprocity between an account and its
followings. Since Twitter spammers usually follow a large number of legitimate
accounts and cannot force those legitimate accounts to follow back, the number
of bi-directional links that a spammer has is low. On the other hand, a legiti-
mate user is likely to follow his friends, family members, or co-workers who will
follow this user back. Thus, this indication can be used to distinguish spammers.
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However, Twitter spammers could evade this by following back their followers.
Thus, we create another feature named bi-directional links ratio (Rbilink), which
can be computed in Eq. (3).

Rbilink =
Nbilink

Nfing
(3)

where Nbilink and Nf ing denote the number of bi-directional links and the num-
ber of followings. The intuition behind this feature is that even though the spam-
mers can increase the value of Nbilink through following back their followers or
obtaining “following-backs” from other accounts, compared with their high val-
ues of Nfing, their values of Rbilink will be relatively difficult to increase to be
comparable with that of legitimate accounts. Although this feature still can be
evaded, the spammers need to pay more to evade this feature.

5.2 Neighbor-Based Features

In this section, we design three neighbor-based features to distinguish Twitter
spammers and legitimate accounts: average neighbors’ followers, average neigh-
bors’ tweets, and followings to median neighbors’ followers.

Average Neighbors’ Followers: Average neighbors’ followers, denoted as Anfer ,
of an account v represents the average number of followers of this account’s
followings, which can be computed with Eq.(4).

Anfer(v) =
1

|Nfing(v)| ·
∑

u∈Nfing(v)

Nfer(u) (4)

where Nfer and Nfing denote the number of followers and followings, respec-
tively. Since an accounts’ follower number usually reflects this account’s popu-
larity or reputation, this feature reflects the quality of the choice of friends of an
account. It is obvious that legitimate accounts intend to follow the accounts who
have higher quality unlike the spammers. Thus, the average neighbors’ followers
of legitimate accounts are commonly higher than that of spammers.

Average Neighbors’ Tweets: Similar to the average neighbors’ followers, since
an account’s tweet number could also reflect this account’s quality, we design
another feature, named average neighbors’ tweets, which is the average number of
tweets of this account’s following accounts. Note that these two features can be
evaded by following popular Twitter accounts (seen in Section 6). We also design
another relatively robust neighbor-based detection feature, named followings to
median neighbors’ followers.

Followings to Median Neighbors’ Followers: To extract this feature, we first de-
fine the median number of an account’s all following accounts’ follower numbers
as Mnfer. Then, the followings to median neighbors’ followers of an account, de-
noted as Rfing mnfer, can be computed by the ratio of this account’s following
number to Mnfer, as shown in Eq.(5).
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Rfing mnfer =
Nfing

Mnfer
(5)

Since spammers can not guarantee the quality of the accounts they follow, their
values of Mnfer are typically small. Thus, due to spammers’ large numbers of
followings, spammers’ values of Rfing mnfer will be also high. For the legitimate
accounts, to show the analysis of this feature, we divide them into two different
types: common accounts (legitimate accounts without large numbers of followers)
and popular accounts (legitimate accounts with large numbers of followers). For
the first type of accounts, they may also just follow their friends which leads to a
small value of Mnfer. However, since their following numbers are also not high,
common accounts’ values of Rfing mnfer are not high. For the popular accounts
who are usually celebrities, famous politicians, or professional institutions, they
will usually choose accounts who are also popular to follow. In this way, these
accounts’ values of Mnfer will be high, leading to low values of Rfing mnfer.

From the above analysis, we can find that spammers will have higher values
of this feature than that of legitimate accounts. In addition, since we use the
median value rather than the mean, it will be very difficult for spammers to
increase their values of Mnfer by following a few very popular accounts. Thus,
this feature is difficult to be evaded.

5.3 Automation-Based Features

Due to the large cost of manually managing a large number of spam accounts,
many spammers choose to create a custom program using Twitter API to post
spam tweets. Thus, we also design three automation-based features to detect
spammers: API3 ratio, API URL ratio and API Tweet Similarity.

API Ratio: API ratio is the ratio of the number of tweets with the tweet source
of “API” to the total number of tweet count. As existing work [26] shows, many
bots choose to use API to post tweets, so a high API ratio implies this account
is more suspicious.

API URL Ratio: API URL ratio is the ratio of the number of tweets containing
a URL posted by API to the total number of tweets posted by API. Since it is
more convenient for spammers to post spam tweets using API, especially when
spammers need to manage a large amount of accounts. Thus, a higher API URL
ratio of an account implies that this account’s tweets sent from API are more
likely to contain URLs, making this account more suspicious.

API Tweet Similarity: Spammers can use tricks to evade the detection feature
of tweet similarity as described in Section 4 and still choose to use API to
automatically post malicious tweets. Thus, we also design API tweet similarity,
which only compute the similarity of those tweets posted by API. Thus, a higher
API tweet similarity of an account implies that this account is more suspicious.
3 The source of tweets sent by unregistered third-party applications in Twitter will be

labeled as “API” rather than specific application names, e.g., “TweetDeck” [16]. In
this paper, we use “API” to refer those unregistered third-party tools.
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5.4 Timing-Based Features

Similar to other timing-based features such as tweeting rate presented in [22],
we also design another timing-based feature named following rate.

Following Rate: Following rate reflects the speed at which an account follows
other accounts. Since spammers will usually follow many other accounts in a
short period of time, a high following rate of an account indicates that the
account is likely a spam account. Since it is difficult to collect the time when
an account follows another account, we use the ratio of an account’s following
number to the age of the account at the time to obtain an approximate value.

After designing these new features, we first formalize the robustness of most of
the existing detection features and our designed features in Section 6. Then, we
combine some existing effective features and our features to build a new machine
learning detection scheme and evaluate it based on our dataset in Section 7.

6 Formalizing Feature Robustness

In this section, to deeply understand how to design effective features to detect
Twitter spammers, we formalize the robustness of the detection features.

6.1 Formalizing the Robustness

Before analyzing the robustness, we first build a model to define the robustness
of the detection features. In terms of spammers’ dual objectives C avoiding de-
tection and achieving malicious goals, the robustness of each feature F , denoted
as R(F ), can be viewed as the tradeoff between the spammers’ cost C(F ) to
avoid the detection and the profits P (F ) by achieving malicious goals. Thus, the
robustness of each feature can be computed by Eq. (6).

R(F ) = C(F ) − P (F ) (6)

Then, if the cost of evading the detection feature is much higher than the profits,
this feature is relatively robust. To quantify the evasion cost, we use TF to denote
the threshold for spammers to obtain to evade each detection feature F .

From the viewpoints of Twitter spammers, the cost to evade the detection
mainly includes money cost, operation cost and time cost. The money cost is
mainly related to obtaining followers. We use Cfer to denote the cost for the
spammer to obtain one follower. The operation cost is mainly related to posting
tweets or following specific accounts. We use Ctwt and Cfollow to denote the
cost for a spammer to post one tweet or follow one Twitter account. Spammers’
profits are achieved by attracting legitimate accounts’ attention. Thus, Twitter
spammers’ profits can be mainly measured by the number of followings that they
can support and the number of spam tweets that they can post. We use Pfing

and Pmt to denote the profit of supporting one following account, obtaining one
following back and posting one spam tweet, respectively. Let Nfing and Nmt
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denote the number of accounts that a spammer desires to follow and the number
of malicious tweets that the spammer desires to post.

Then, we show our analysis of the robustness for the following 6 categories of
24 features: profile-based features, content-based features, graph-based features,
neighbor-based features, timing-based features and automation-based features.
The summary of these features can be seen in Table 3.

Table 3. Detection Feature Robustness

Index Category Feature Used in Work Robustness

F1 Profile the number of followers (Nfer , ) [35] Low

F2 (+) Profile the number of followings (Nfing) [34], [35], ours Low

F3 (+) Profile fofo ratio (Rfofo) [32], [34], ours low

F4 Profile reputation (Rep) [35] low

F5 (+) Profile the number of tweets (Ntwt) [34], ours Low

F6 (+) Profile age [32], ours High

F7 (+) Content URL ratio (RURL) [32], [34], [35], ours Low

F8 (+) Content unique URL ratio [32], ours Low

F9 Content hashtag(#) ratio [35] Low

F10 Content reply(@) ratio [32], [35] Low

F11 (+) Content tweet similarity (Tsim) [32], [34], ours Low

F12 Content duplicate tweet count [35] Low

F13 Graph number of bi-directional links (Nbilink) [32] Low

F14 (*) Graph bi-directional links ratio (Rbilink) ours Medium

F15 (*) Graph betweenness centrality (BC) ours High

F16 (*) Graph clustering coefficient (CC) ours High

F17 (*) Neighbor average neighbors’ followers (Anfer) ours Low

F18 (*) Neighbor average neighbors’ tweets (Antwt) ours Low

F19 (*) Neighbor followings to median neighbors’ followers (Rfing mnfer) ours High

F20 (*) Timing following rate (FR) ours Low

F21 (+) Timing tweet rate (TR) [32], ours Low

F22 (*) Automation API ratio (RAPI ) ours Medium

F23 (*) Automation API URL ratio (RAP I URL) ours Medium

F24 (*) Automation API Tweet Similarity (Tapi sim) ours Medium

Robustness of Profile-Based Features: As described in Section 4, spammers
usually evade this type of detection features by obtaining more followers. Ac-
cording to Eq.(6), the robustness of the detection feature fofo ratio(F3), which
is a representative feature of this type, can be computed by Eq.(7).

R(F3) =
Nfing

TF3

· Cfer − Nfoing · Pfing (TF3 ≥ 1) (7)

Since compared with the big value of Pfoing, Cfer could be much smaller as
shown in Table 2, this feature can be evaded by spending little money. Especially,
even when the spammers who desire to follow 2,000 accounts to breakthrough
Twitter’s 2,000 Following Limit Policy, they just need to spend $50. Similar
conclusions can be drawn for the features F1, F2 and F4.

For feature F6, since the age of an account is determined by the time when
the account is created, which can not be changed or modified by the spammers,
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this feature is relatively hard to evade. It could also be evaded if the spammers
can use some tricks to obtain Twitter accounts with big values of ages. However,
unlike obtaining followers, obtaining a specific Twitter account could be very
expensive. For example, the bid value of purchasing a Twitter account that
steadily has over 1,000 followers is $1,550 [17].

Since number of tweets(F5) is related to several content-based features, we
show the analysis of this feature in the next section.

Robustness of Content-Based Features: As shown in Table 3, content-
based features can be divided into two types: signature-based features (F7, F8,
F9, and F10) based on special terms or tags in the tweets and similarity-based
features (F11, and F12) based on the similarity among the tweets. As discussed
in Section 4, both types of features can be evaded by automatically posting non-
signature tweets or diverse tweets. Also, by using these tactics, the spammers
can evade the feature of the number of tweets (F5).

Without the loss of the generality, we use the analysis of the robustness of
the URL ratio (F7) to represent the analysis of this type of features. Similar as
Eq.(7), if a spammer needs to post Nmt tweets with the malicious URLs, the
robustness for F7 can be computed by Eq.(8).

R(F7) =
Nmt

TF7

· Ctwt − Nmt · Pmt (TF7 ≤ 1) (8)

Eq.(8) shows that if spammers utilize software such as AutoTwitter [3] and
Twitter API [18] to automatically post tweets, Ctwt will be small. So even when
we set a small value of TF7 , compared with the big profits of successfully alluring
the victims to click the malicious URLs, the cost is still small.

Robustness of Graph-Based Features: For the graph-based features, we can
divide them into two types: reciprocity-based features (F13 and F14) based on
the number of the bi-directional links and position-based features (F15 and F16)
based on the position in the graph. If we denote CBiLink as the cost to obtain
one bi-directional link, then the robustness of F13 and F14 can be computed in
Eq. (9) and (10).

R(F13) = TF13 · CBiLink (9)

R(F14) = TF14 · Nfing · CBiLink (10)

Since it is impractical to set a high bi-directional link threshold to distinguish
legitimate accounts and spammers, the value of TF13 could not be high. Mean-
while, when TF13 is small, spammers can obtain bi-directional links by following
their followers. Thus, the CBiLink is also not high. Thus, from Eq. 9, we can find
that R(F13) is not big. For feature F14, since the average of the bi-directional
links ratio is 22.1% [31] and the spammers usually have a large value of Nfing,
the spammers need to obtain much more bidirectional links to show a normal
bi-directional links ratio. Even though this feature could be evaded by following
spammers’ followers, due to the difficulties of forcing those accounts to follow
spammers back, it will cost much to evade this feature.
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For the position-based features, since spammers usually blindly follow legiti-
mate accounts, which may not follow those spammers back, it will be difficult for
spammers to change their positions in the whole social network graph. Similarly,
spammers can neither control the accounts they followed to build social links
with each other. In this way, it is difficult for spammers to change their values
of the graph metrics, thus to evade graph-based features.

Robustness of Neighbor-based Features: The first two neighbor-based fea-
tures (F17 and F18)reflect the quality of an account’s friend choice, which has
been discussed in Section 5. If we use Nfollow to denote the number of popular
accounts (the accounts who have very big follower numbers) that a spammer
needs to follow to get a high enough Anfer to evade feature F17, then the ro-
bustness of F17 can be computed as Eq.( 11).

R(F17) = Nfollow · Cfollow (11)

Since there are many popular accounts with very big followers, Nfollow and
Cfollow could be small. Thus, as long as the spammers know about this detection
feature, they can evade it easily. Similar results can be gained for feature F18.

However, for feature F19, since we use the median not the mean of the neigh-
bors’ followers, they need to follow around half of Nfing popular accounts to
evade this feature. With a consideration of spammers’ big values of Nfing, the
cost will be very high and the profit will be decreased dramatically for the spam-
mers to evade this feature. So, feature F19 is relatively difficult to evade.

Robustness of Timing-Based Features: The timing-based features are re-
lated to spammers’ update behavior. Although the profits may drop, when spam-
mers decrease their following or tweeting rate, since these two features can be
totally controlled by the spammers, the cost will be low. Thus, feature F20 and
F21 can still be evaded by losing some profits.

Robustness of Automation-Based Features: As discussed in Section 5,
many Twitter spammers use software or Twitter API to manage their multi-
ple spam accounts to automatically post tweets. Since few legitimate accounts
would use API to post tweets and it is relatively expensive for spammers to only
use web to post a large number of malicious tweets on multiple spam accounts,
the combination use of the features of F22, F23, and F24 are relatively difficult
to evade. (More detailed discussions can be found in our technical report [36].)

In summary, through the above analysis, we can categorize the robustness of
these detection features into the following three scales: low, medium, and high,
as shown in Table 3.

7 Evaluation

In this section, we will evaluate the performance of our machine learning feature
set including 8 existing effective features marked with (+) and 10 newly designed
features marked with (*) in Table 3.
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We evaluate the feature set by implementing machine learning techniques
on two different data sets: Data set I and Data set II. Data set I consists of
5,000 accounts without any spam tweets and 500 identified spammers, which are
randomly selected from our crawled dataset described in Section 3. To decrease
the effects of sampling bias and show the quality of our detection feature schema
without using URL analysis as ground truth, we also crawled another 35,000
Twitter accounts and randomly selected 3,500 accounts to build another data
set, denoted as Data set II.

7.1 Evaluation on Data Set I

In this section, based on Data set I, we evaluate our machine learning feature
set including performance comparison and feature validation.

Performance Comparison: In this experiment, we compare the performance
of our work with three existing approaches4: [32], [34] and [35]. We conduct
our evaluation by using four different machine learning classifiers: Random Forest
(RF), Decision Tree (DT) , Bayes Net (BN) and Decorate (DE). (To better show
the results, we label our method as A, [32] as B, [34] as C, and [35] as D.)
For each machine learning classifier, we use ten-fold cross validation to compute
three metrics: False Positive Rate, Detection Rate, and F-measure5.
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Fig. 4. Performance comparison with the existing approaches

As seen in Fig. 4, our approach outperforms existing work. Specifically, from
Fig. 4(a), we can find that the false positive rates of our work under three machine
learning classifiers (RF, DT and BN), are the lowest and the false positive rate of
our work under the other classifier (DE) is the second lowest. Especially, under
the decision tree classifier (DT), which is a standard and prevalent machine
learning classifier, the false positive rate of our work (0.5%) is less than half of
the best other existing approach (B) and a quarter of the worst one (D). From
Fig. 4(b), we can find that the detection rates of our work under all four machine
learning classifiers are the highest. In particular, the detection rate of our work
(85%) is significantly higher than the detection rate of 51% for the worst detector

4 The features used in these three approaches can be seen in Table 3.
5 F-measure [8] is a measure with the consideration of both precision and recall.
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(D) and the detection rate of 73% for the best other existing detector (B). We
also evaluate our feature set based on the metric of F-measure [8]. Fig. 4(c)
shows that under all four classifiers, F-measure scores of our approach are the
highest. The above results validate that our new feature set is more effective to
detect Twitter spammers.

Through these three figures, we can also observe that the performance of [32]
and [34] is better than that of [35]. That is mainly because both [32] and [34]
utilize the feature of tweet similarity, and [35] only uses the feature of duplicate
tweet count. Since many spammers post tweets with similar terms but different
combinations rather than simply repeatedly posting the same tweet, the feature
of tweet similarity is much more effective than duplicate count. Also, [32] utilizes
a graph-based feature (number of bi-directional links) and a timing-based feature
tweet rate, leading its performance to be better than that of [34].

Feature Validation: To further validate the effectiveness of our newly designed
features, we make the comparison of the performance of two feature sets. The
first one consists of the features in the previous experiment without our newly
designed features. The second one consists of all features used in the previous
experiment. Table 4 shows that for each classifier, with the addition of our newly
designed features, the detection rate (DR) increases over 10%, while maintain-
ing an even lower false positive rate (FPR). This observation implies that the
improvement of the detection performance is indeed proportional to our newly
designed features rather than the combination of several existing features.

Table 4. Comparison Without and With New Features

Without Our Features With Our Features

Classifier FPR DR F-Measure FPR DR F-Measure

Decorate 0.017 0.738 0.774 0.010 0.858 0.877

Random Forest 0.012 0.728 0.786 0.006 0.836 0.884

Decision Tree 0.015 0.702 0.757 0.011 0.846 0.866

BayesNet 0.040 0.644 0.730 0.023 0.784 0.777

7.2 Evaluation on Dataset II

In this section, to decrease possible effect of sampling bias, we evaluate the ef-
fectiveness of our detection feature set by testing it on another data set contain-
ing 3,500 unclassified Twitter accounts. Our goal of the evaluation on another
crawled dataset is to test the actual operation and user experience without the
ground truth from URL analysis by computing the Bayesian detection rate [21]
– the probability of actually being at least a suspicious spammer, whenever an
account is reported by the detection system.

Specifically, we use Data set I, which has been labeled, as the training data
set, and Data set II as the testing data. Then, based on our detection feature
set, we use BayesNet classifier to predict spammers on Data set II. This result
can be seen in Table 5.
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Table 5. Classifier Effectiveness

Total Spammer Predictions 70

Verified as Spammers 37

Promotional Advertisers 25

Benign 8

Identified by GSB 17

When we manually investigated those 70 accounts that were predicted as
spammers, we found 37 real spammers, 25 promotional advertisers6 and only 8
real false positives. In this case, we have a high Bayesian detection rate of 88.6%
(62/70). Then, we further investigate these 8 false positive Twitter accounts.
We find that all of them have odd behavior, but do not appear to have clear
malicious intentions. Specifically, 6 of them are actively tweeting about only
one topic. The other 2 have posted very few tweets, yet have a large number
followings with a high ratio of followings to followers. Also, we examined the
URLs that these 37 verified spammers posted to Twitter, and we found 17 of
them posted malicious URLs according to the Google Safe Browsing blacklist.

8 Limitation and Future Work

Due to practical limitations, we can only crawl a portion of the whole Twitter-
sphere and our crawled data set may still have sampling bias. However, collecting
an ideal large data set from Twitter, a real and dynamic OSN, without any bias
is almost an impossible mission.

In addition, it is challenging to achieve comprehensive ground truth for Twit-
ter spammers. Also, since we collect one major type of spammers, the number of
our identified spammers is a lower bound of them in our dataset. However, even
for a subset of spammers, we can find that they are evolving to evade detection.
And our evaluation validates the effectiveness of our newly designed features to
detect these spammers. We also acknowledge that some identified spam accounts
may be compromised accounts. However, since these accounts still behave fairly
maliciously in their recent histories and are dangerous to the Twittersphere, it
is also meaningful to detect them.

While graph-based features such as local clustering coefficient and between-
ness centrality are relatively difficult to evade, these features are also expensive
to extract. Thus, we extract the approximate values of these two features by
using a sampling technique that allowed us to compute these metrics piece-by-
piece. However, precisely estimating the values of such graph metrics on large
graphs such as the one we have crawled is very challenging and a hot research
issue, which is out of scope of this work.

For future work, to overcome those limitations, we will design better crawling
strategies and crawl more data. We plan to design more robust features, evaluate
6 Since some consider Promotional Advertisements to be spam and others do not, we

label these accounts as another category. At least, These accounts are very suspicious.
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our machine learning detection scheme on larger data sets, and work directly
with Twitter. We also plan to broaden our targeted type of spammers, so that
we can perform a deeper analysis on the evasion tactics by different types of
spammers. We also plan to make more quantitative models for the analysis of
the robustness of the detection features by deeper analyzing the envision tactics.

9 Conclusion

In this paper, we design new features to detect Twitter spammers based on an
in-depth analysis of current evasion tactics utilized by Twitter spammers. In
addition, we formalize the robustness of detection features for the first time in
the literature. Finally, according to our evaluation, while keeping an even lower
false positive rate, the detection rate by using our new feature set increases over
10% than all existing detectors under four prevalent machine learning classifiers.
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Abstract. The execution of malware in an instrumented sandbox is a
widespread approach for the analysis of malicious code, largely because it
sidesteps the difficulties involved in the static analysis of obfuscated code.
As malware analysis sandboxes increase in popularity, they are faced with
the problem of malicious code detecting the instrumented environment
to evade analysis. In the absence of an “undetectable”, fully transparent
analysis sandbox, defense against sandbox evasion is mostly reactive:
Sandbox developers and operators tweak their systems to thwart indi-
vidual evasion techniques as they become aware of them, leading to a
never-ending arms race.

The goal of this work is to automate one step of this fight: Screening
malware samples for evasive behavior. Thus, we propose novel techniques
for detecting malware samples that exhibit semantically different behav-
ior across different analysis sandboxes. These techniques are compatible
with any monitoring technology that can be used for dynamic analysis,
and are completely agnostic to the way that malware achieves evasion.
We implement the proposed techniques in a tool called Disarm, and
demonstrate that it can accurately detect evasive malware, leading to
the discovery of previously unknown evasion techniques.

Keywords: Malware, Dynamic Analysis, Sandbox Detection, Behavior
Comparison.

1 Introduction

Dynamic analysis of malicious code has increasingly become an essential com-
ponent of defense against Internet threats. By executing malware samples in a
controlled environment, security practitioners and researchers are able to ob-
serve its malicious behavior, obtain its unpacked code [17,21], detect botnet
command and control (C&C) servers [30] and generate signatures for C&C traf-
fic [27] as well as remediation procedures for malware infections [24]. Large-scale
dynamic malware analysis systems (DMAS) based on tools such as Anubis [6]
and CWSandbox [35] are operated by security researchers1 and companies2,3.
These services are freely available to the public and are widely used by security

1 Anubis: Analyzing Unknown Binaries (http://anubis.iseclab.org/)
2 SunbeltLabs (http://www.sunbeltsecurity.com/sandbox/)
3 ThreatExpert (http://www.threatexpert.com/)

R. Sommer, D. Balzarotti, and G. Maier (Eds.): RAID 2011, LNCS 6961, pp. 338–357, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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practitioners around the world. In addition to these public-facing services, pri-
vate malware analysis sandboxes are operated by a variety of security companies
such as Anti-Virus vendors. Like most successful security technologies, malware
analysis sandboxes have therefore attracted some attention from miscreants.

One way for malware to defeat dynamic analysis is to detect that it is run-
ning in an analysis sandbox rather than on a real user’s system and refuse to
perform its malicious function. For instance, code packers that include detec-
tion of virtual machines, such as Themida, will produce executables that exit
immediately when run inside a virtual machine such as VMWare [20]. There are
many characteristics of a sandbox environment that may be used to fingerprint
it. In addition to using “red pills” that aim to detect widely deployed emulation
or virtualization technology [29,28,25,10,11], malware authors can detect specific
sandboxes by taking advantage of identifiers such as volume serial numbers or IP
addresses. As we will discuss in Section 2, sandbox detection is not a theoretical
problem; Table 1 holds a number of concrete examples of how malware samples
have evaded analysis in our Anubis sandbox in the past.

One approach to defeating sandbox evasion is to try to build a transparent
sandbox. That is, to construct an analysis environment that is indistinguishable
from a real, commonly used production environment. This is the goal of systems
such as Ether [9]. However, Garfinkel et al. [12] argue that it is fundamentally
unfeasible to build a fully transparent virtual machine monitor, particularly if
code running in the sandbox has access to the Internet and can therefore query a
remote time source. In fact, Ether does not defend against timing attacks that use
a remote time source, while Pek et al. [26] have introduced a tool called nEther
that is able to detect Ether using local attacks. Even if transparent sandbox
technology were available, a specific sandbox installation could be detectable
based on the particular configuration of software that happens to be installed on
the system, or based on identifiers such as the product IDs of installed software [4]
or the universal identifiers of disk partitions.

Another approach relies on running a sample in multiple analysis sandboxes
to detect deviations in behavior that may indicate evasion [8,18,2,15]. This is
the approach we use in this paper. For this, we run a malware sample in several
sandboxes, obtaining a number of behavioral profiles that describe its behavior in
each environment. We introduce novel techniques for normalizing and comparing
behavioral profiles obtained in different sandboxes. This allows us to discard spu-
rious differences in behavior and identify “environment-sensitive” samples that
exhibit semantically different behavior. We implement the proposed techniques
in a system called Disarm: DetectIng Sandbox-AwaRe Malware.

Disarm detects differences in behavior regardless of their cause, and is there-
fore completely agnostic to the way that malware may perform sandbox detec-
tion. Furthermore, it is also largely agnostic to the monitoring technologies used
in the analysis sandboxes, since it does not require heavyweight, instruction-
level instrumentation. Any monitoring technology that can detect persistent
changes to system state at the operating system level can take advantage of our
techniques.
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Previous work on detecting and remediating analysis evasion has required
fine-grained, instruction-level instrumentation [18,15]. In our experience oper-
ating Anubis, a DMAS that processes tens of thousands of samples each day,
we have found that large-scale deployment of instruction-level instrumentation
is problematic. This is because it leads to an extremely slow emulated environ-
ment, to the point that some malware fail to perform network communication
because of server-side timeouts. Furthermore, the produced log files are unman-
ageably large (up to half a Gigabyte for a single execution according to Kang et
al. [18]). Disarm does not suffer from this limitation. This allows us to apply
our techniques to a significant number of malware samples, revealing a variety
of anti-analysis techniques.

Chen et al. [8] also performed a large-scale study of analysis-resistant malware.
However, their work assumes that an executable is evading analysis whenever its
executions differ by even a single persistent change. This assumption does not
seem to hold on a dataset of modern malware: as we will show, about one in
four malware samples we tested produced different persistent changes between
multiple executions in the same sandbox. Disarm executes malware samples
multiple times in each sandbox to establish a baseline for a sample’s variation
in behavior. Furthermore, we introduce behavior normalization and comparison
techniques that allow us to eliminate spurious differences that do not correspond
to semantically different behavior.

Disarm does not, however, automatically identify the root cause of a diver-
gence in behavior. Samples we detect could therefore be further processed using
previously proposed approaches to automatically determine how they evade anal-
ysis. For instance, the techniques proposed by Balzarotti et al. [2] can be used
to automatically diagnose evasion techniques that are based on CPU emulation
bugs. Differential slicing [15] is a more general technique that can likewise iden-
tify the root cause of a divergence, but it requires a human analyst to select a
specific difference in behavior to be used as a starting point for analysis.

We evaluate Disarm using four sandboxes with two different monitoring tech-
nologies: In-the-box monitoring using a Windows device driver, and out-of-the-
box monitoring using Anubis. We tested the system on a dataset of over 1,500
samples, and identified over 400 samples that exhibit semantically different be-
havior in at least one of the sandboxes considered. Further investigation of these
samples allowed us to identify a number of previously unknown techniques for
evading our two monitoring technologies. Most of these evasion techniques can
be trivially defeated with small changes to our analysis sandboxes. Furthermore,
Disarm helped us to discover several issues with the configuration of software
installed inside our sandboxes that, while unrelated to evasion, nonetheless pre-
vent us from observing some malicious behavior.

To summarize, our contributions are the following:

– We introduce a system called Disarm for detecting environment-sensitive
malware by comparing its behavior in multiple analysis sandboxes. Disarm
is entirely agnostic to the root cause of the divergence in behavior, as well
as to the specific monitoring technologies employed.
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– We develop a number of novel techniques for normalizing and comparing
behavior observed in different sandboxes, discarding spurious differences that
do not correspond to semantically different behavior.

– We tested Disarm by running over 1,500 malware samples in four different
analysis sandboxes based on two monitoring technologies, and show that it
can accurately detect environment-sensitive malware.

– As a result of these experiments, we discovered a number of previously un-
known analysis evasion techniques. Concretely, these findings will allow us
to improve the analysis capabilities of the widely used Anubis service.

2 Motivation and Approach

To make the case for Disarm, we will provide a brief history of analysis evasion
against Anubis. Anubis is a dynamic malware analysis system (DMAS) that
is based on an instrumented Qemu [7] emulator. The main output of Anubis
analysis is a human-readable report that describes the operating system level
behavior of the analyzed executable. Our lab has been offering malware analysis
with Anubis as a free service since February 2007. This service has over 2,000
registered users, has received submissions from 200,000 distinct IP addresses,
and has already analyzed over 10,000,000 malware samples.

Public-facing analysis sandboxes such as Anubis are particularly vulnerable
to detection, because attackers can probe the sandbox by submitting malware
samples specifically designed to perform reconnaissance. Such samples can read
out characteristics of the analysis sandbox and then use the analysis report
produced by the sandbox to leak the results to the attacker. These characteristics
can later be tested by malware that wishes to evade analysis. However, because
of sharing of malware samples between sandbox operators, private sandboxes
may also be vulnerable to reconnaissance [36], so long as they allow executed
samples to contact the Internet and leak out the detected characteristics.

The first instance of Anubis evasion that we came across in the wild was a
packer called OSC Binder that was released in September 2007 and advertised
“anti-Anubis” features. Since then, we have become aware of a number of tech-
niques used by malware to thwart Anubis analysis.

Chen et al. [8] have proposed a taxonomy of approaches that can be used by
malware for the detection of analysis sandboxes. These are not limited to tech-
niques that aim to detect virtualized [29] or emulated [28,25] environments, but
also include application-level detection of characteristic features of a sandbox,
such as the presence of specific processes or executables in the system.

Table 1 shows a number of Anubis evasion techniques that we have become
aware of over the years, classified according to an extended version of this taxon-
omy. Specifically, we added one abstraction (Network) and two classes of artifacts
(Connectivity and Unique identifier) to the taxonomy. The unique identi-
fier class is required because many of the detection techniques that have been
used against Anubis are not targeted at detecting the monitoring technology
used by Anubis, but a specific instance of that technology: The publicly ac-
cessible Anubis service. The connectivity class is required because the network
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Table 1. Anubis evasion techniques according to taxonomy [8] (extended)

Abstraction Artifact Test
Hardware unique id disk serial number [4]

Environment execution MOD R/M emulation bug [25]
AAM instruction emulation bug

Application

installation
C:\exec\exec.exe present
username is “USER” [4]
executable name is “sample.exe” [4]

execution popupkiller.exe process running

unique id

windows product ID [4]
computer name [4]
volume serial number of system drive
hardware GUID

Network connectivity get current time from Yahoo home page
check Google SMTP server response string

unique id server-side IP address check [36,19,16]

configuration of a DMAS faces a trade-off between transparency and risk. It is
typically necessary to allow malware samples some amount of network access to
be able to observe interesting behavior. On the other hand, we need to prevent
the samples from causing harm to the rest of the Internet. A malware sample,
however, may detect that it is being provided only limited access to the Inter-
net, and refuse to function. For instance, a DMAS needs to stop malware from
sending SPAM. Rather than blocking the SMTP port altogether, it can redirect
SMTP traffic to its own mail server. Some variants of the Cutwail SPAM engine
detect this behavior by connecting to Gmail’s SMTP servers and verifying that
the server replies with a specific greeting message.

In the past we have mostly become aware of analysis evasion techniques “by
accident”. Some samples that evade Anubis have been brought to our attention
by Anubis users, while a few Anubis evasion techniques have been discussed
in hacker forums and security blogs. In a few instances the Anubis developers
have made more deliberate efforts to identify evasion techniques. In one case, a
collection of code packers were tested to determine whether and how they evaded
Anubis. In another instance, we obtained a number of “red pills” generated by a
fuzzer for CPU emulators [25], and fixed the bugs they identified.

In the arms race between malware analysis systems and malware samples
that evade analysis, we need to be able to rely on more automation. For this,
we require scalable tools to screen large numbers of malware samples for evasive
behavior, regardless of the class of evasion techniques they employ. This is the
role that Disarm aims to fill.

2.1 System Architecture

Disarm works in two phases, illustrated in Fig. 1. In the execution monitoring
phase, a malware sample is executed in a number of analysis sandboxes. For
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Fig. 1. System Architecture of Disarm

the purpose of this paper, we define a sandbox as a combination of a monitoring
technology with a system image: That is, a specific configuration of an operating
system on a virtual disk. We execute a sample multiple times in each sandbox.
The output of this execution monitoring provides us with the malware’s behav-
ior represented as a number of behavioral profiles (one for each execution). In
the behavior comparison phase, we normalize the behavioral profiles to eliminate
spurious differences. We then compute the distances between each pair of nor-
malized behavioral profiles. Finally, we combine these distances into an evasion
score, that is compared against a threshold to determine whether the malware
displayed different behavior in any of the sandboxes. Samples that are classified
as showing signs of evasion can then be further analyzed in order to identify new
evasion techniques and make our sandboxes resilient against these attacks.

3 Execution Monitoring

We analyze malware behavior using two different monitoring technologies. The
first is Anubis [6], which is an “out-of-the-box” monitoring technology that cap-
tures an executable’s behavior from outside the Windows environment using an
instrumented full system emulator. The second system uses “in-the-box” moni-
toring based on system call interception from inside the Windows environment.
The idea is that by using two completely different monitoring technologies we are
able to reveal sandbox evasion that targets a specific instrumentation technique.
Furthermore, we employ sandboxes that use different Windows installations in
order to detect evasion techniques that rely on application and configuration
characteristics to identify analysis systems.

3.1 In-the-Box Monitoring

The Anubis system has been extensively described in previous work [6,3]. For
in-the-box monitoring, on the other hand, we use a custom-built system that
provides lightweight monitoring of a malware’s behavior at the system call level.
To this end, we implemented a Microsoft Windows kernel module that inter-
cepts system calls by hooking the entries of the System Service Dispatch Table
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(SSDT) [13]. This driver records the system call number, a timestamp and se-
lected input parameters, before forwarding the call to the actual system call.
After execution, the driver further records the output parameters and the re-
turn value. To log only relevant data, the driver maintains a list of processes
related to the analyzed malware, and only logs calls originating from these pro-
cesses. Events such as process creation, service creation, injection of threads into
foreign processes, foreign memory writes, and mapping of memory into a foreign
process, trigger the inclusion of new processes into the analysis. To maintain
the integrity of our system, we prohibit the loading of any other drivers by not
forwarding calls to NtLoadDriver and NtSetSystemInformation.

3.2 Behavior Representation

The analysis of samples with either monitoring technology leads to the creation
of a number of analysis artifacts such as a human-readable report summarizing
the observed behavior, a detailed log of system calls, a network traffic trace of
all network communication performed by the malware, the malware’s standard
output and error as well as the content of any files generated during analysis. For
the purpose of this work we chose to represent malware’s system and network-
level behavior as a behavioral profile [3,5]. A behavioral profile is extracted from
system call and network traces and represents behavior as a set of features. Each
feature represents an action on an operating system (OS) resource, and is iden-
tified by the type and name of the resource, the type of action and a boolean
flag representing the success or failure of the action. For example, a feature
could represent the successful creation of a file called C:\Windows\xyz.exe. For
network-related features the resource name is a tuple < IP, domain name >,
representing the network endpoint that the malware sample is communicating
with. We consider two network resources to be the same if either one of the
IP or the domain name used to resolve the IP are the same. The reason is that
fast-flux service networks [32] or DNS-based load balancing may lead malware to
contact different IPs in different executions. Finally, each feature is tagged with
a timestamp, representing the offset into the analysis run when the feature was
first observed [5]. As we will see, this is essential to be able to compare behav-
ior across monitoring technologies with vastly different performance overheads.
The behavioral profiles used in [3] also include features that represent data-flow
between OS resources. To maintain compatibility with lightweight monitoring
technologies that cannot track the flow of data within the monitored programs,
we do not consider such features in this work.

4 Behavior Comparison

When comparing behavioral profiles produced by different monitoring technolo-
gies, it is highly unlikely that they will contain the same amount of features. The
reason is that each monitoring technology is likely to have significantly different
runtime overheads, so a sample will not be able to execute the same number of
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actions on each system within a given amount of time. Nor can we simply in-
crease the timeout on the slower system to compensate for this, since monitoring
overheads may vary depending on the type of load. Thus, given two sandboxes α
and β and the behavioral profiles consisting of nα and nβ features respectively,
Disarm only takes into account the first min(nα, nβ) features from each profile,
ordered by timestamp. In a few cases, however, this approach is not suitable. If
the sample terminated on both sandboxes, or it terminated in sandbox α and
nα < nβ, we have to compare all features. This is necessary to identify samples
that detect the analysis sandbox and immediately exit. Samples that detect a
sandbox may instead choose to wait for the analysis timeout without performing
any actions. We therefore also compare all features in cases where the sample
exhibited “not much activity” in one of the sandboxes. For this, we use a thresh-
old of 150 features, that covers the typical amount of activity performed during
program startup. This is the threshold used by Bayer et al. [4], who in contrast
observed 1,465 features in the average profile.

Not all features are of equal value for characterizing a malware’s behavior.
Disarm only takes into account features that correspond to persistent changes
to the system state as well as features representing network activity. This includes
writing to the file system, registry or network as well as starting and stopping
processes and services. This is similar to the approach used in previous work [1,8]
and, as we will show in Section 5.1, it leads to a more accurate detection of
semantically different behavior.

4.1 Behavior Normalization

In order to meaningfully compare behavioral profiles from different executions of
a malware sample, we need to perform a number of normalization steps, mainly
for the following two reasons: The first reason is that significant differences in
behavior occur even when running an executable multiple times within the same
sandbox. Many analysis runs exhibit non-determinism not only in malware be-
havior but also in behavior occurring inside Windows API functions, executables
or services. The second reason is that we compare behavioral profiles obtained
from different Windows installations. This is necessary to be able to identify
samples that evade analysis by detecting a specific installation. Differences in
the file system and registry, however, can result in numerous differences in the
profiles. These spurious differences make it harder to detect semantically differ-
ent behavior. Therefore, we perform the following normalizations on each profile.

Noise Reduction. In our experience even benign programs cause considerable
differences when comparing profiles from different sandboxes. As a consequence,
we captured the features generated by starting four benign Windows programs
(notepad.exe, calc.exe, winmine.exe, mspaint.exe) on each sandbox, and consider
them as “noise”. These features are filtered out of all behavioral profiles. Similarly,
we filter out the startup behavior of explorer.exe, iexplore.exe, cmd.exe, and
Dr. Watson. This normalization eliminates a number of differences that are not
directly related to malware behavior.
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User Generalization. Programs can write to the user’s home directory in
C:\Documents and Settings\<username> without needing special privileges.
Malware samples therefore often write files to this directory. In the registry, user
specific data is stored in the key HKEY_CURRENT_USERS, which actually points to
HKEY_USERS\<SID>. The SID is a secure identifier created by the Windows setup
program. It is unique for every user and system. Profiles from different systems
certainly differ in the users SID and may also contain different usernames. We
therefore generalize these values.

Environment Generalization. Other system specific values include hardware
identifiers and cache paths. Furthermore, names of folders commonly accessed by
malware, e.g. C:\Documents and Settings and C:\Program Files and their
respective subfolders, depend on the language of the Windows installation. We
generalize these identifiers and paths to eliminate differences not caused by mal-
ware behavior when comparing profiles from different Windows installations.

Randomization Detection. Malware samples often use random names when
creating new files or registry keys. Since Disarm executes each sample multiple
times in each sandbox, we can detect this behavior by comparing profiles obtained
in the same sandbox. Like the authors of MIST [33], we assume that the path
and extension of a file are more stable than the filename. As a consequence, we
detect all created resources (in the filesystem or registry) that are equal in path
and extension but differ in name. If the same set of actions is performed on these
resources in all executions, we assume that the resource names are random. We can
thus generalize the profiles by replacing the random names with a special token.

Repetition Detection. Some types of malware perform the same actions on
different resources over and over again. For instance, file infectors perform a
scan of the filesystem to find executables to infect. This behavior leads to a
high number of features, but in reality only represents one malicious behavior.
Furthermore, these features are highly dependent on a sandbox’s file system
and registry structure. To generalize these features, we take into account actions
that request directory listings or enumerate registry keys. We also consider the
arguments that are passed to the enumeration action, for example queries for files
with extension “.exe”. For each such query, we examine all actions on resources
that match the query. If we find any actions (such as a file write) that are
performed on three or more such resources, we create a generalized resource in
the queried directory and assign these actions to it.

Filesystem and Registry Generalization. For each sandbox, we create a
snapshot of the Windows image’s state at analysis start. This snapshot includes
a list of all files, a dump of the registry, and information about the environment.
We use this information to generalize the user and the environment. We can also
use this information to view a profile obtained from running on one image in
the context of another image. This allows us to remove actions that would be
impossible or unnecessary in the other image. That is, we ignore the creation of a
resource that already exists in the other image and, conversely, the modification
or deletion of a resource that doesn’t exist in the other image.
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4.2 Distance Measure and Scoring

The actions in our behavioral profiles are represented as a set of string features.
We thus compare two behavioral profiles using the Jaccard distance [14]:

J(a, b) = 1 − |a ∩ b|/|a ∪ b|. (1)

Balzarotti et al. [2] observed that two executions of the same malware program
can lead to different execution runs. Our own experiments reveal that about
25 % of samples execute at least one different persistent action between multiple
executions in the same sandbox. Because of this, we cannot simply consider a
high distance score as an indication of evasion. Instead, we consider the devia-
tions in behavior observed within a sandbox as a baseline for variations observed
when comparing behavior across different sandboxes. We therefore calculate an
evasion score defined as:

E = max
1<i<n

{
max

1<j<n,i	=j

{
distance(i, j) − max{diameter(i), diameter(j)}

}}
. (2)

Here, diameter(i) is the full linkage (maximum) distance between executions in
sandbox i, while distance(i, j) is the full linkage (maximum) distance between all
executions in sandboxes i and j. The evasion score is thus the difference between
the maximum inter-sandbox distance and the maximum intra-sandbox distance.
The evasion score is in the interval [0,1], with 0 representing the same behavior
and 1 representing completely different behavior. If this score exceeds an eva-
sion threshold, Disarm declares that the malware has performed semantically
different behavior in one of the sandboxes.

5 Evaluation

To evaluate the proposed approach, we tested our system using our two monitor-
ing technologies and three different operating system images. Table 2 summarizes
the most important characteristics of the four sandboxes we employed. To sim-
plify deployment, we ran the driver-based sandboxes inside an unmodified Qemu
emulator (version 0.11), rather than on a physical system. This limits our ability
to detect evasion techniques targeted against Qemu CPU emulation bugs that
may be present in both monitoring technologies. In the future, we plan to ex-
tend our driver-based monitoring system to automatically analyze samples on a
physical system. For this, we need to be able to reset the system to a fresh state
after each analysis. As an alternative, we could instead use an existing DMAS
such as CWSandbox, that already provides such functionality.

In the following we will refer to the sandboxes used for evaluation by the
names shown in the first column of Table 2. The first image, used in the Anu-
bis and Admin sandboxes, was an image recently used in the Anubis system.
We selected two additional images that included a significantly different soft-
ware configuration. The three images differ in the language localization, the
username under which the malware is running, as well as the available software
and software versions. Each sample is analyzed three times in each of the four
different sandboxes, resulting in a total of 12 runs per sample.
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Table 2. Sandboxes used for evaluation

Sandbox Monitoring
Technology

Image Characteristics
Software Username Language

Anubis Anubis Windows XP Service Pack 3,
Internet Explorer 6

Administrator English

Admin Driver same Windows image as Anubis
User Driver Windows XP Service Pack 3,

Internet Explorer 7, .NET
framework, Java Runtime En-
vironment, Microsoft Office

User English

German Driver Windows XP Service Pack 2,
Internet Explorer 6, Java
Runtime Environment

Administrator German

5.1 Training Dataset

To develop our techniques and select a threshold for evasion detection, we cre-
ated a small, labeled training set. For this, we selected 175 malware samples
among those submitted to Anubis in August 2010. To ensure this small dataset
was as diverse as possible, we selected samples belonging to 175 different mal-
ware families, based on virus labels from Kaspersky Anti-Virus. Furthermore,
we included ten additional samples based on comments from Anubis users, for
a total of 185 samples.

To establish a “ground truth” for the training set we manually inspected the
generated behavioral profiles and in a few cases even the binaries themselves.
Manual classification of these samples showed that 43 (23.24 %) displayed differ-
ent behavior in at least one of the sandboxes. These samples were further split
into four groups: samples evading Anubis, samples evading our driver, samples
requiring the .NET framework and therefore only working in the User sandbox
(see Table 2), samples not working in the German sandbox due to hardcoded
paths, and samples showing different behavior due to various other installation
characteristics (e.g. the missing installation of Java in the Anubis image). Table 3
summarizes the amount of samples for each class.

Our techniques succeeded in assigning low evasion scores to samples with
the same behavior and high scores to samples displaying different behavior. To

Table 3. Observed behavioral differences in the training set

Description of behavior
76.76 % 142 same behavior
9.19 % 17 evasion of Anubis
5.41 % 10 .NET environment required
3.24 % 6 evasion of our driver
3.24 % 6 different behavior due to other characteristics
2.16 % 4 not working in the German environment
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Fig. 2. Maximum diameter (intra-sandbox distance) vs. maximum distance (inter-
sandbox distance) with thresholds (0.4,0.5,0.6)

visualize these results, we plotted the maximum diameter against the maximum
distance discussed in Section 4.2 in Fig. 2. The overall score can be seen as the
distance of each point from the diagonal. Points close to the diagonal represent
samples with low scores, while points farther away from the diagonal represent
samples with high scores. Points close to the y-axis are samples exhibiting little
variation between analysis runs in the same sandbox. This is the case for the
larger part of our training set, confirming the effectiveness of our normalization
techniques. Only 8.11 % display a maximum intra-sandbox variation greater
than 0.1 as a result of non-deterministic behavior such as crashes that occur
only in some executions.

In Fig. 2, the samples classified as exhibiting different behavior are displayed
as filled points, while those with the same behavior are displayed as empty points.
Threshold candidates are displayed as parallels to the diagonal. For the training
set a threshold of 0.4 results in detecting all samples with different behavior,
while incorrectly classifying only one sample.

To measure the effect of the various normalization steps on the results, we
calculate the proportion of correctly classified samples in the training set for
each possible threshold. This metric, called accuracy, is defined as follows:

accuracy =
|True Positives|+ |True Negatives|

|All Samples| · 100. (3)

We applied the normalization steps, as described in Section 4.1 in ascending
order and calculated the accuracy for each step (see Fig. 3): no normalization
(default), the removal of noise (noise), the generalization of user-specific arti-
facts (user), the generalization of environment-specific artifacts (environment),
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Fig. 3. Overall accuracy for each normalization step at thresholds [0,1]

the detection and generalization of random names (random), the detection of
repetitions (repetitions), and the generalization of missing filesystem and reg-
istry resources (missing).

Overall we achieved an accuracy of more than 95 % for thresholds between
0.3 and 0.6, with the highest accuracy of 99.5 % at the chosen threshold of
0.4. Every normalization step improved the accuracy to some degree, with the
removal of noise and the generalization of user and environment yielding the
largest improvements. As we discussed in Section 4, Disarm considers persistent
actions for the behavioral comparison. If we instead consider all actions, we
obtain a maximum accuracy of 89.2 %.

5.2 Large Scale Test

We tested Disarm on a larger dataset of 1,686 samples submitted to Anubis
between December 2010 and March 2011. We selected a maximum of five samples
per sample family as classified by Kaspersky to make sure this dataset is diverse.
We used the evasion threshold of 0.4 selected in the previous section. Note that,
since we do not have a ground truth for this dataset, we are unable to provide
an accuracy score.

In this dataset, a total of 431 (25.56 %) samples resulted in an evasion score
above the threshold. Table 4 breaks these results down for each pair of sandboxes.
The sandboxes Anubis and Admin use the same Windows image. We can therefore
attribute these results to evasion of one of the monitoring technologies employed.
Conversely, different behavior for any combination of Admin, User and German
indicates evasion or environment sensitivity related to differences in the Windows
environment. The results for Anubis-User and Anubis-German are a combination
of both factors and therefore produce the highest rates of evasion.
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Table 4. Samples with evasion scores above the threshold of 0.4 for each pair of
sandboxes

Anubis Admin User German
Anubis - 252 (14.95 %) 333 (19.75 %) 303 (17.97 %)
Admin - - 121 (7.18 %) 58 (3.44 %)
User - - - 138 (8.19 %)
German - - - -

Table 5. Samples with at least one different persistent action for each pair of sandboxes

Anubis Admin User German
Anubis 391 (23.19%) 729 (43.24%) 733 (43.48%) 755 (44.78%)
Admin - 440 (26.10%) 727 (43.12%) 730 (43.30%)
User - - 443 (26.28%) 780 (46.26%)
German - - - 435 (25.80%)

Table 5 demonstrates that simply assuming a malware sample is evading an
analysis sandbox whenever two executions differ by as little as a single persistent
action (as was done in [8]) leads to misleading results. Close to one quarter
of samples display some difference in behavior even among executions in the
same sandbox. The problem is further exacerbated when considering different
sandboxes: Overall 990 samples (58.72 %) behave differently in at least one
sandbox according to this criterion.4

5.3 Qualitative Results

To get a feeling for differences causing a high ranking in our behavior compar-
ison, we manually examined randomly selected samples with an evasion score
above our threshold. The following examples illustrate how Disarm succeeded
in uncovering new methods used by malware to detect the presence of Anubis,
as well as pointing out ways to improve the configuration of the Windows images
in our analysis sandboxes.

Anubis Evasion. We found several timing-sensitive samples, that evade analy-
sis by detecting that the environment in which they are running is much slower
than a real system. For this, they use the GetTickCount API call before and
after executing several benign calls such as GetCommandLine. If the difference
exceeds a threshold, these samples do not exhibit malicious behavior. We are
able to detect these samples because our in-the-box monitoring technology, de-
spite running inside Qemu, is much faster than Anubis and does not exceed the
specified thresholds. This further highlights the importance of evasion detection
techniques that are compatible with lightweight instrumentation. Among these
4 To allow for a fair comparison across different Windows images, we applied our user

and environment normalization and ignored network activity.
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samples were representatives of several well known malware families such as
Zeus, Virut, Agent and Rbot.

Win32.Packed.Krap.ag.5 and Win32.TrojanSpy.Banker.9 evade Anubis by
checking if the parent process is explorer.exe. In Anubis samples are started by
an analysis daemon, which terminates right away. Thus, this condition is not
met and these samples exit without performing any malicious activity.

To render known evasion techniques ineffective, Anubis already randomizes a
number of identifiers at each execution, such as those listed in Table 1. This is
implemented by intercepting the calls to known sources for this information and
forging the results. Inspecting samples detected by Disarm, however, reveals
that this feature needs to be improved. Several samples query a machine GUID
stored in HKLM\SOFTWARE\MICROSOFT\CRYPTOGRAPHY\MACHINEGUID, that is not
yet covered by Anubis randomization.5 In other cases, the randomization was
insufficient to prevent evasion. Trojan-Clicker.Win32.Wistler.d detected Anubis
by querying the computer name. Currently our computer names have the format
“pc” followed by a random number. Clearly, we need to implement stronger ran-
domization of this identifier. Finally, malware can also detect Anubis by checking
the hard drive manufacturer information. The randomization feature of Anubis
already intercepts the device control code IOCTL_STORAGE_QUERY_PROPERTY and
the system call NtQueryVolumeInformationFile and forges the return informa-
tion. Some samples, however, were able to bypass this randomization by instead
using the device control code DFP_RECEIVE_DRIVE_DATA to retrieve the hard
drive serial number and manufacturer.

Environment Sensitivity. The results of our evaluation also exposed various
configuration flaws in the image currently used in Anubis. In this image, third
party extensions for Internet Explorer are disabled. AdWare.Win32.InstantBuzz
queries this setting and terminates with a popup asking the user to enable browser
extensions. Four samples, e.g. Trojan.Win32.Powp.gen, infect the system by re-
placing the JavaUpdate Scheduler. Clearly, they can only show this behavior in the
sandboxes in which the Java Runtime Environment is installed. Microsoft Office
is only installed in one of our sandboxes and is targeted by Worm.Win32.Mixor.
P2P-Worm.Win32.Tibick.c queries the registry for the presence of a file-sharing
application and fails on images where the Kazaa file-sharing program is not in-
stalled. Using this insight we are able to modify the image used in Anubis in order
to observe a wider variety of malware behavior.

Driver Evasion. We prevent samples from loading drivers in order to main-
tain the integrity of our kernel module. Nonetheless, we found samples that not
only detect our logging mechanism, but also actively tamper with our SSDT
hooks. At least 20 samples employ mechanisms to restore the hooks to their
original addresses and therefore disable the logging in the driver. This can be
done from user space by directly accessing \device\physicalmemory and restor-
ing the values in the SSDT with the original values read from the ntoskrnl.exe
5 Note that this is a different identifier than the hardware GUID listed in Table 1,

which Anubis already randomizes.
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disk image [31]. Another ten samples achieve the same effect by using the un-
documented function NtSystemDebugControl to directly access kernel mem-
ory. These techniques are employed by several popular malware families such
as Palevo/Butterfly, Bredolab, GameThief and Bifrose, probably as a counter-
measure against Anti-Virus solutions. By disabling access to kernel memory and
instrumenting additional system calls, it is possible for us to harden our driver
against such techniques, so long as the kernel is not vulnerable to privilege-
escalation vulnerabilities.

False Positives. False positives were caused by samples from the Sality family.
This virus creates registry keys and sets registry values whose name depends
on the currently logged in user: HKCU\SOFTWARE\AASPPAPMMXKVS\A1_0 for “Ad-
ministrator” and HKCU\SOFTWARE\APCR\U1_0 for “User”. This behavior is not
random and not directly related to the user name and therefore undetected by
our normalization.

5.4 Limitations

Our results have shown that Disarm is able to detect evasion techniques used
in current, real-world malware samples. However, a determined attacker could
build samples that evade detection in ways our current system cannot detect. In
this section, we describe a few mechanisms an attacker could leverage, as well
as possible countermeasures.

First of all, malware could evade detection with Disarm if it were able to evade
analysis under all of our sandboxes. Therefore, sandbox characteristics that are
shared across monitoring technologies are of particular concern. Evasion that is
based on a sandbox’s network environment, for instance, would currently be suc-
cessful against Disarm, because all of our sandboxes currently share a similar
network environment. Malware authors could identify the public IP addresses
used by our sandboxes, and refuse to function in all of them. To address this
problem, we plan to configure our sandboxes to employ a large and dynamic pool
of public IP addresses. These can be obtained from commercial proxy services or
from ISPs that provide dynamic IP addresses to consumers. More sophisticated
attacks can try to detect the restrictions placed on a malware’s network traffic to
prevent it from engaging in harmful activity such as sending SPAM, performing
Denial of Service attacks or exploiting vulnerable hosts. Another characteristic
that is common to many different monitoring technologies is the fact that they
impose a performance overhead, and may thus be vulnerable to timing attacks.
As we showed in Section 5.3, our driver-based monitoring technology, even run-
ning inside Qemu, was fast enough to escape timing-based detection from some
malware samples. However, more aggressive timing attacks would presumably
be able to detect it. We can make timing-based detection considerably harder
by running the driver on a physical system instead of in an emulator.

Malware authors aware of the specifics of our system could also attack Disarm
by trying to decrease their evasion score. Since the evasion score is the difference
between the inter-sandbox distance and the intra-sandbox distance, this can be
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achieved by decreasing the former or increasing the latter. To increase the intra-
sandbox distance, an attacker could add large amounts of non-deterministic
behavior to the malware program. Here, one must consider two things, however:
First, a sandbox that can provide fine-grained instrumentation (such as Anubis)
may be able to detect execution that is highly dependent on random values [3],
and flag such samples as suspicious. Second, implementing truly randomized
behavior without impacting the reliability and robustness of the program can be
rather challenging. Unstable malware installations are likely to raise suspicion,
lead to fast removal from a system, or increase attention from malware analysts -
three outcomes truly unfavorable to an attacker.

Conversely, malware authors could try to decrease their intra-sandbox dis-
tance. Since we currently compute the distance between two behavioral pro-
files using Jaccard index, this can be achieved by adding a number of identical
features to the execution on all sandboxes. To defeat this attack, we could ex-
periment with evasion scores calculated from the set difference of each pair of
profiles, rather than from their Jaccard distance.

6 Related Work

Transparent Monitoring. To prevent sandbox detection, researchers have
tried to develop transparent analysis platforms. Examples include Cobra [34],
which is based on dynamic code translation, and Ether [9], which uses hardware
assisted virtualization to implement a transparent out-of-the-box malware analy-
sis platform. However Garfinkel et al. [12] have argued that perfect transparency
against timing attacks cannot be achieved, particularly if a remote timing source
(such as the Internet) is available. Pek et al. [26] have succeeded in defeating
Ether using a local timing attack.

Paleari et al. [25] used fuzzing to automatically generate “red pills” capable of
detecting emulated execution environments. Their results can be used to detect
and fix emulator bugs before malicious code can exploit them. Martignoni et
al. [22] proposed to observe malware in more realistic execution environments by
distributing the execution between a security lab and multiple end-user’s hosts.
They thereby improve analysis coverage and are able to observe user input that
triggers malicious behavior.

Evasion Detection. Chen et al. [8] were the first to develop a detailed taxonomy
of anti-virtualization and anti-debugging techniques. In their experiments, 40 %
of samples showed less malicious behavior with a debugger and 4 % of samples
exhibited less malicious behavior under a virtual machine. However, their results
were based on the comparison of single execution traces from different execution
environments (plain-machine, virtual-machine and debugger) and on considering
any difference in persistent behavior to indicate evasion. Lau et al. [20] focused
on virtual machine detection and employed a dynamic-static tracing system to
identify VM detection techniques in packers.



Detecting Environment-Sensitive Malware 355

Balzarotti et al. [2] proposed a system that replays system call traces recorded
on a real host in an emulator in order to detect evasion based on CPU semantics
or on timing. Kang et al. [18] use malware behavior observed in a reference plat-
form to dynamically modify the execution environment in an emulator. They
can thereby identify and bypass anti-emulation checks targeted at timing, CPU
semantics and hardware characteristics. Moser et al. [23] explore multiple exe-
cution paths to provide information about triggers for malicious actions. Differ-
ential slicing [15] is able to find input and environment differences that lead to
a specific deviation in behavior. The deviation that is to be used as a starting
point, however, has to be identified manually. In contrast to these techniques,
Disarm is agnostic to the type of evasion methods used in malware, as well as to
the monitoring technologies employed. Nevertheless, evasive samples detected by
our system could be further processed with these tools to automatically identify
the employed evasion techniques.

7 Conclusion

Dynamic malware analysis systems are vulnerable to evasion from malicious
programs that detect the analysis sandbox. In fact, the Anubis DMAS has been
the target of a variety of evasion techniques over the years.

In this paper, we introduced Disarm, a system for detecting environment-
sensitive malware. By comparing the behavior of malware across multiple anal-
ysis sandboxes, Disarm can detect malware that evades analysis by detecting a
monitoring technology (e.g. emulation), as well as malware that relies on detect-
ing characteristics of a specific Windows environment that is used for analysis.
Furthermore, Disarm is compatible with essentially any in-the-box or out-of-
the-box monitoring technology. We introduced techniques for normalizing and
comparing behavior observed in different sandboxes, and proposed a scoring sys-
tem that uses behavior variations within a sandbox as well as between sandboxes
to accurately detect samples exhibiting semantically different behavior.

We evaluated Disarm against over 1,500 malware samples in four different
analysis sandboxes using two different monitoring technologies. As a result, we
discovered several new evasion techniques currently in use by malware. We will
apply these findings to our widely used Anubis service to prevent these attacks
in the future.
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Abstract. A large number of embedded devices on the internet, such as
routers and VOIP phones, are typically ripe for exploitation. Little to no
defensive technology, such as AV scanners or IDS’s, are available to pro-
tect these devices. We propose a host-based defense mechanism, which we
call Symbiotic Embedded Machines (SEM), that is specifically designed
to inject intrusion detection functionality into the firmware of the device.
A SEM or simply the Symbiote, may be injected into deployed legacy
embedded systems with no disruption to the operation of the device. A
Symbiote is a code structure embedded in situ into the firmware of an
embedded system. The Symbiote can tightly co-exist with arbitrary host
executables in a mutually defensive arrangement, sharing computational
resources with its host while simultaneously protecting the host against
exploitation and unauthorized modification. The Symbiote is stealthily
embedded in a randomized fashion within an arbitrary body of firmware
to protect itself from removal. We demonstrate the operation of a generic
whitelist-based rootkit detector Symbiote injected in situ into Cisco IOS
with negligible performance penalty and without impacting the routers
functionality. We present the performance overhead of a Symbiote on
physical Cisco router hardware. A MIPS implementation of the Sym-
biote was ported to ARM and injected into a Linux 2.4 kernel, allowing
the Symbiote to operate within Android and other mobile computing
devices. The use of Symbiotes represents a practical and effective protec-
tion mechanism for a wide range of devices, especially widely deployed,
unprotected, legacy embedded devices.

Keywords: Symbiotic Embedded Machines, Embedded Device Defense,
Cisco IOS Rootkit Detection.

1 Introduction

A recent study demonstrates that there are a vast number of unsecured em-
bedded systems on the internet, primarily routers, that are trivially vulnerable
to exploitation with little to no effort. Several new exploits against Cisco IOS
demonstrate the vulnerability of a vast number of high end legacy routers to
easy exploitation. We propose a novel technique to detect and defend against
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advanced malware threats against the internet routing infrastructure, as well as
a vast number of other types of embedded systems.

We present a host-based defense mechanism which we call “Symbiotic Embed-
ded Machines” (SEM). SEM, or simply the Symbiote, is an experimental system
that injects intrusion detection functionality within the firmware of a (legacy)
embedded system and that senses the unauthorized modification of the device
firmware. Symbiote injection may be randomized so that each instance is distinct
from all other injected systems in order to thwart attempts by an adversary to
disable the injected Symbiote. In general, we aim to create a symbiotic software
construct which provides the following four fundamental security properties once
it is active within the firmware of an embedded system or a host program:

1. The Symbiote has full visibility into the code and execution state of its host
program, and can either passively monitor or actively react to the observed
events at runtime.

2. The Symbiote executes along side the firmware or host program. In order
for the host to function as before, its injected SEMs must execute, and vice
versa.

3. The Symbiote’s code cannot be modied or disabled by unauthorized parties
through either online or offline attacks.

4. No two instantiations of the same Symbiote is the same. Each time a Sym-
biote is created, its code is randomized and mutated, rendering signature
based detection methods and attacks requiring predictable memory and code
structures within the Symbiote ineffective.

We aim to demonstrate the highest levels of protection we believe we can achieve
with this technology in a range of embedded system device types. An immediate
application of the system presented in this paper is the fortification of existing vul-
nerable network routing devices. As Section 3 illustrates, the embedded security

Symbiote Manager

Host Program

Symbiote Payload

= intercept point

Fig. 1. Logical overview of SEM injected into embedded device firmware. SEM main-
tains control of CPU by using large scale randomized control-flow interception. SEM
payload executes alongside original OS. Figure 6 shows a concrete example of how the
SEM payload can be injected into gaps within IOS firmware.
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threat is particularly difficult to solve, especially if the goal is to improve the secu-
rity of the existing software infrastructure. Network embedded devices like routers
and firewalls are vulnerable to the same attacks as general purpose computers, but
generally do not have the facility to execute third-party host-based defenses like
anti-virus. Using the Symbiote, we have successfully injected a host-based root-
kit detection mechanism into a closed-source proprietary operating system, Cisco
IOS. We believe that the techniques discussed in this paper can be used to fortify
existing vulnerable devices within the critical infrastructure, like smart power me-
ters, machine to machine control systems, as well as everyday embedded devices
like VoIP phones, home routers and mobile computers.

Figure 1 shows how a Symbiote is typically injected into a host program. A
large number of control-flow intercepts are distributed randomly throughout the
body of the host program, allowing the Symbiote Manager to periodically regain
control of the CPU. Once the Symbiote Manager is invoked, it then executes a
small portion of the its defensive payload before saving its execution context and
returning control back to the host program. This allows the Symbiote and host
program to execute in tandem, in a time-multiplexed manner without affecting
the functionality of the original host program. The Symbiote injection process
provides a probabilistic lower bound on the frequency in which the Symbiote will
be invoked at runtime as a adjustable parameter. The Symbiote, which resides
within the same execution environment as the host program has the ability to
passively monitor or proactively alter the host program’s behavior at runtime.
Since the Symbiote is deeply intwined with its protected host program, attempts
to corrupt or alter the Symbiote binary will either be detected by the Symbiote
or cause the host program to crash. (See Section 5)

As we see in Section 4, Symbiotes can defend any arbitrary executable, even
other Symbiotes. Unlike traditional anti-virus and host-based defense mecha-
nisms which install into and depend heavily on facilities provided by the vulner-
able systems they are meant to protect, the Symbiote treats its host program
as an external and untrusted entity. Symbiotes do not depend on functionality
provided by its host, giving it several critical advantages.

The Symbiote:

Is agnostic to its operating environment. Since the Symbiote injects itself
into its host program, it does not need to conform to any executable format.
The Symbiote will execute as long as its host program is a valid executable,
regardless of operating system type or version.

Can reside within any arbitrary executable, regardless of its functional-
ity or position within the system stack. The unique injection mechanism
allows the same Symbiote to operate within userland applications, device
drivers, the kernel or even other Symbiotes. Furthermore, many instances
of the same Symbiote can simultaneously operate on multiple levels of the
system stack, enabling a new approach to systematically deploying defenses
in depth.

Can be easily and safely be injected into proprietary black box oper-
ating systems. Since Symbiotes are agnostic to the inner workings of its
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host program and execution environment, deploying Symbiotes on propri-
etary systems is as easy as deploying them within well known ones.

Is self-sufficient, and does not depend on facilities provided by its host pro-
gram. The Symbiote threats its host program as an untrusted and foreign
entity. It does not leverage any external code to protect its host, and is
therefore not vulnerable to attacks on other parts of the system.

Is self-protecting and stealthy, and thus is difficult to detect and deactivate
by an adversary.

Is efficiently executed, utilizing the raw computational resource of the hard-
ware platform, bypassing layers of overhead produced by OSs, or VMs that
host an OS. One would prefer to use a SEM implementation of a security
payload, rather than a reference monitor, for example, because of this per-
formance advantage.

We demonstrate the advantages of Symbiotes by tackling a difficult, yet ubiq-
uitous problem for which no effective host-based defenses currently exist. Our
current implementation of a Symbiote, that we call Doppelgänger, is easily and
safely injected into proprietary operating systems to protect resource-constrained
embedded devices from a wide array of memory manipulation attacks. The
unique properties of the Symbiote allows us to systematically fortify many dif-
ferent Cisco routers with the same root-kit defense payloads in an automated
fashion. The Symbiotic approach is not specific to any particular device or op-
erating system, and can be used to effectively mitigate the embedded device
security problem.

This paper is organized as follows. Section 2 discusses existing defenses against
code modification attacks, with an emphasis on the current state of host-based
embedded system defense. Section 3 discusses the vulnerability of embedded de-
vices, defines the threat model and surveys related work. Section 4 describes
the Symbiotic Embedded Machine architecture as well as the white-list based
rootkit detection payload in detail. Section 5 discusses an lower bound on the
computational complexity of a successful attack against software Symbiotes in
an online attack, as well as common attacks which can be levied against SEM.
Section 6 shows experimental results and discusses the theoretical and experi-
mental performance overhead of Doppelgänger, our implementation of SEM, for
IOS versions 12.2 and 12.3 on a Cisco 7121 router. We conclude in section 7
suggesting that proactive protection of network embedded devices using SEMs
with exploitation detection payloads is a viable strategy to mitigate large-scale
compromise of our global communication networks and critical infrastructures.
Appendix A contains performance evaluation data of the rootkit detection SEM
payload running on IOS 12.3 on a physical Cisco 7121 router under load.

2 Related Work

Numerous rootkit and malware detection and mitigation mechanisms have been
proposed in the past but largely target general purpose computers. Commercial
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products from vendors like Symantec, Norton, Kapersky and Microsoft [1] all
advertise some form of protection against kernel level rootkits. Kernel integrity
validation and security posture assessment capability has been integrated into
several Network Admission Control (NAC) systems. These commercial products
largely depend on signature-based detection methods and can be subverted by
well known methods [16,17,18]. Sophisticated detection and prevention strategies
have been proposed by the research community. Virtualization-based strategies
using hypervisors, VMM’s and memory shadowing [15] have been applied to
kernel-level rootkit detection. Others have proposed detection strategies using
binary analysis [9], function hook monitoring [22] and hardware-assisted solu-
tions to kernel integrity validation [19].

Guards, originally proposed by Chang and Atallah [3], is a promising technol-
ogy which uses mechanisms of action similar to Symbiotes. Originally proposed
as an anti-tampering mechanism for x86 software, the guard mechanism have
been used in both security research [5] as well as commercial products1. A Guard
is a simple piece of security code which is injected into the protected software
using binary rewriting techniques similar to our Symbiote system. Once injected,
a guard will perform tamper-resistance functionality like self-checksumming and
software repair. To further improve the resilience of the protection scheme, a
large number of Guards can be deployed in intricate networks as a graph of
mutually defensive security units.

While promising, the Guard approach does have several draw backs and limita-
tions which Symbiotes overcome. For example, since the Guard has no mechanism
to pause and resume its computation, the entire guard routine must complete exe-
cution each time it is invoked. This limits the amount of computation each Guard
can realistically perform without affecting functionality, specially when Guards
are used in time sensitive software and real-time embedded devices. In contrast,
the Symbiote Manager (See Section 4) allows its payload to be arbitrarily com-
plex. Instead of executing the entire payload each time a randomly intercepted
function invokes the Symbiote, the Symbiote Manager executes a small portion
of the payload before pausing it, saving its execution context and returning con-
trol back to the intercepted function. This way, Symbiote payloads can implement
arbitrarily complex defensive mechanisms, even in time sensitive software.

Lastly, the techniques used by Symbiotes, such as function interception, ran-
domized payload injection, have been undoubedly used by malware authors in
the past. Indeed, a Symbiote-like rootkit [4] has recently been disclosed for Cisco
IOS. The Symbiote structure incorporates such traditionally ”offensive” tech-
niques for defensive purposes in order to hide and harden itself against attacks
which aim to disrupt the Symbiote.

3 Threat Model

We assume the attacker is technically sophisticated and has access to both zero-
day vulnerabilities as well as compatible exploits allowing reliable execution of
1 www.arxan.com
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arbitrary code. We further assume that the attacker executes the attacks in an
online fashion. In other words, the attacker must carry out the attack remotely
against a running device without interfering with its function or causing it to
crash or reboot. Attacks involving configuration changes or replacement of the
entire firmware image (which requires a reboot) are excluded from our model
because they can be detected by conventional methods. We also assume that the
attacker has access to the original host program image, before any Symbiotes
are injected into it.

Online attacks against the protected host program can be separated into two
categories; those that attempts to disable or evade the Symbiotes protecting the
host program, and attacks that do not. We first address existing attacks which
target the host program and show how Symbiotes can prevent such attacks.
Section 5 discusses multi-stage attacks which attempts to disable Symbiotes
prior to executing their malicious payloads.

With respect to Cisco routers, we focus on rootkit techniques which make
persistent changes to the IOS operating system. The SEM mechanism intro-
duced in this paper is used to detect injected code that changes portions of the
device that are otherwise static during the life time of the device. The Sym-
biote payload presented in this paper is designed only to detect unauthorized
code modification. However, the SEM approach can also be used to detect ex-
ploitation in dynamic areas of the target embedded device like the stack and
heap. Symbiote control-flow interception methods and payloads which defend
against return-to-libc, return oriented and heap related attacks are currently
under research.

The Symbiote implementation presented in this paper focusses on fortifying
legacy network embedded devices. The next section discusses the embedded se-
curity problem and shows how Symbiotes can be used to defend network routers
against code modification attacks.

3.1 Solving the Embedded Problem with Symbiotes

Network embedded devices are ubiquitous within the modern home, office and
global communication infrastructures. Enterprise networking equipment are spe-
cialized embedded devices which power the world’s communication backbones.
Consumer network devices like wireless access points, web cams, networked print-
ers and smart phones litter our homes, streets, offices and pockets and provide
functionality on which we have come to depend. While network embedded de-
vices like Cisco routers and firewalls constitute a large portion of our commercial,
residential, enterprise and military communication infrastructures, little research
has been devoted to understanding and mitigating the vulnerabilities of these
black box devices. Similarly, since network embedded devices often are closed
systems which use proprietary hardware and software, security mechanisms like
anti-virus and host-based anomaly detectors found on general purpose computers
do not exist for embedded devices. Consequently, there exists a large population
of unprotected vulnerable embedded devices in the world. A recent study esti-
mates that a hypothetical zero-day smart meter worm could propagate to 15,000
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nodes in approximately 24 hours [12]. Large scale exploitation of routers have al-
ready been observed in the wild [2]. Furthermore, the detection of compromised
embedded devices poses significant challenges due to the proprietary and limited
nature of such devices. Therefore, a proactive, preventative defense strategy is
not only the most desirable approach, but is also likely the only practical one.

The proof of concept defensive Symbiote payload we inject detects attempts
and prevents all rootkits from working. Engineering such a generic defensive
mechanism into black box devices is not easy. The challenge is at least twofold.
First, embedded devices often use undocumented proprietary operating systems.
These devices almost never provide an interface for installing new software on
top of the existing firmware. Second, embedded device hardware and software is
very diverse. If one were able to develop a working defense for a popular device,
that defense will most likely not work across even minor software revisions for
the same device, and will certainly not work for different devices from different
hardware vendors.

We demonstrate how Symbiotes overcome both obstacles by targeting two
versions of Cisco IOS running on MIPS. The Cisco router IOS rootkit detection
Symbiote, we call Doppelgänger, requires no modification of IOS, and is auto-
matically loaded into firmware images of two major versions, 12.2 and 12.3. The
SEM injection process requires a handful of parameters specific to the target
firmware, including a list of randomly chosen control-flow intercept points and
locations of usable memory. All such parameters are computed automatically
by a simple single pass analysis of the target binary. Doppelgänger utilizes well-
known code injection methods in a novel way by randomly diverting a very large
set of control-flow intercept points. Doppelgänger uses these hooks to support
the execution of arbitrary payloads which are both invisible to the original OS
and highly resilient against unauthorized deactivation and removal. The Sym-
biote’s control-flow intercepts are randomly distributed through out regions of
the host program which are executed with high probability under normal op-
erating conditions. This ”live” code detection approach allows us to provide a
probabilistic lower bound on the frequency in which the Symbiote will regain
control of the CPU while the host program is in execution. (See Section 5).

We inject payloads with functionality that permits code to operate alongside
the original device OS; not within it as a process, nor under it as a hypervisor
would do. Such payloads allow us to monitor and control the original device’s OS
internals without being restricted by it. The accomplishment of this symbiotic
feat also provides stealth as a by-product.

Several real-world considerations make the use of SEM for security purposes
effective and practical. First, SEM is a deployment vehicle which largely ab-
stracts away hardware and software diversity. This allows sophisticated security
mechanisms to be written once and deployed across many different embedded
devices. Second, the application of white-list based protection mechanisms is
ideal for embedded devices which tend to have monolithic firmwares. Mecha-
nisms, like code integrity verification, can be implemented efficiently and can
detect any change to the code of the device (i.e. function hooking). For example,
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the rootkit detection payload presented in this paper is only 336 bytes (See
Section 6). Furthermore, while many “end of life” embedded devices are still in
use today, vendors have little incentive to invest resources in maintaining and
updating firmware for such devices. Thus, using SEM to retrofit these legacy de-
vices with up-to-date end point defense mechanisms is an attractive and viable
alternative.

4 Symbiotic Embedded Machines

The Symbiote is a self-contained entity and is not installed onto the host pro-
gram in the traditional sense. It is injected into its host program’s code in a
randomized fashion. Current legacy anti-virus and host-based defenses must be
installed onto or into a legacy operating system, which places a heavy depen-
dence on the features and integrity of the operating system. In general, this
arrangement requires a strong trust relationship with the very software (often of
unknown integrity) it tries to protect. In contrast, the Symbiote treats its entire
host program as an external and untrusted entity, and therefore eliminates the
unsound trust on traditional legacy systems.

4.1 The Symbiote-Host Relationship

The Defensive Mutualistic relationship between the Symbiote and host program
can be broadly described as follows:

1. Both the Symbiote and the protected software host are functionally au-
tonomous. Specifically, the Symbiote is not a standard piece of software that
depends on and operate within the software system it is protecting. Instead,
the Symbiote can be thought of as a fortied and self-contained execution
environment that is infused into the host software.

2. The Symbiote resides within the host software, extracting computational
resources (CPU cycles) to execute its own SEM payloads. In return, the
SEM payloads will constantly monitor the execution and integrity of the
host software, fortifying the entire system against exploitation. The Sym-
biote payload may execute repair operations on the host, or carry out any
arbitrarily defined policy enforcement.

3. SEMs are injected into the host software rather then installed in the tra-
ditional sense. Once injected, the code of the SEM is pseudorandomly dis-
persed across the body of the host. Special mechanisms provided by the
SEM injection process will assure that the SEM is executed along-side its
host software.

4. The Symbiote and host program must operate correctly in tandem. The
Symbiote monitors the behavior of the protected host program, and can
alert on and react to exploitation and incorrect behavior. The Symbiote is
also self-fortied with anti-tampering mechanisms. If an unauthorized party
attempts to disable, interfere with or modify the Symbiote, the protected
host program will become inoperable if the attempt is successful.
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5. A Symbiote may be injected recursively into another Symbiote to provide
the same protection to a Symbiote in cases requiring extreme fault tolerance
and security.

6. No two instantiations of the same Symbiote are ever the same. Each time a
Symbiote is created and prepared for injection into a host program, its code is
randomized and mutated using polymorphic engine technology, resulting in
a dissimilar variant of itself. When observed at the macro level, the collective
Symbiote population is highly diverse.

Symbiotically Protected Host Program

Symbiote Injection Engine

Live Code Analysis,
Randomized 
Injection Site 

Selection

Usable SEM 
Memory 

Identification

Binary Rewrite

Randomization & Mutation Engine

Host Program Randomization Symbiote Randomization

Host 
Program

Symbiote

Symbiote 
Manager

Symbiote 
Payload

User Defined 
Policy Engine

Fig. 2. Generic end-to-end process of fortifying an arbitrary host program with a Sym-
biote. Our proof of concept Symbiote, Doppelgänger, is completely implemented in soft-
ware and can execute on existing commodity systems without any need for specialized
hardware.

Each instantiation of a Symbiote is polymorphically mutated and randomized
during the injection process. Therefore, studying and reverse engineering one
instance of a particular Symbiote provides the attacker with little to no useful
information about the specifics of any other instantiation of the same Symbiote.
The Symbiotic Embedded Machine structure creates an independent execu-
tion context from the native operating system at runtime. SEM uses the newly
created context to execute arbitrary payloads. These payloads can be written in
any high level language (typically C). We may view SEM as a structure which
moves the entire IOS environment into one logical context and creates another
for the SEM payload. Once done, the SEM acts as an improvised Virtual Machine
Manager and executes both logical contexts in a time multiplexed manner.

It is important to note that SEM does not use traditional virtualization
techniques. Due to the fact that most network embedded devices do not have
hardware hypervisor or virtualization support, the methods we use to achieve
execution context separation use only standard CPU instructions. Techniques
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such as control-flow interception and inline hooking have also been used in soft-
ware debuggers and reverse engineering frameworks. In this sense, SEM can be
thought of as a sophisticated dynamic debugger rather than a virtualization
mechanism.

4.2 Doppelgänger: A Symbiote Protecting Cisco IOS

Figure 1 shows the three logical components of Symbiotic Embedded Machines:
Control-Flow Interceptors, Symbiotic Embedded Machine Manager (SEMM)
and the SEM Payload. Together, all three components are injected in situ into
the target embedded device firmware. The injection process can be carried out
offline (i.e. creates new fortified firmware) or dynamically (i.e. during exploita-
tion, as a part of a multi-stage shellcode). In practice, the injection process can
be accomplished with minimal invasiveness. Since SEM is injected in situ, the
size of the resulting firmware image is unchanged. For example, our current im-
plementation of Doppelgänger, along with the rootkit detection payload requires
only 1384 bytes to be injected into IOS. Figure 5 illustrates typical “gaps” within
IOS firmware which can safely be used to embed the SEM payload.

For generality, SEM does not rely on firmware specific code features like sys-
tem calls or variants of libc. The Control-Flow Interceptor component uses inline
hooks to intercept a large number of functions within the target firmware. Upon
invocation of an intercepted function, control of the CPU is redirected to the
Symbiotic Embedded Machine Manager (SEMM), which executes a small por-
tion of the SEM payload. For concreteness, the SEMM manages the execution
of injected SEM payload as follows:

1. Store the execution context of the native OS (i.e. IOS).
2. Load the context of the SEM payload.
3. Compute how long the SEM payload can run, based on current native OS

system utilization.
4. Execute the SEM payload for that amount of time.
5. Store the execution context of the suspended SEM payload.
6. Load the execution context of the native OS at the time the SEMM assumed

control.
7. Restore CPU control to the invoked function.

4.3 Live Code Interception with Inline Hooks

Figure 3 illustrates the three step Symbiote injection process. First, analysis
is performed on the original host program in order to determine areas of live
code, or code that will be run with high probability at runtime. Second, random
intercept points are chosen out of the live code regions found. Lastly, each Sym-
biote Manager, Symbiote payload and a large number of control-flow intercepts
are injected into the host program binary, yielding a Symbiote protected host
program.
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Fig. 3. Symbiote Injection Process

Control-flow intercepts are distributed in a randomized fashion through out
the host program’s binaries in order to ensure that the Symbiote regains control
of the CPU periodically. We would like to ensure that these randomly chosen
intercept points are located within regions of code which will be frequently ex-
ecuted at runtime. This problem is difficult to solve with high accuracy in the
general case. However, our purposes do not require the classification mechanism
to be absolutely accurate. In reality, implementing a sufficient solution for real-
world host programs is not too difficult. Section 4.4 discusses the methods used
in our experiments for live code classification.

Once regions of code within the host program are chosen for control-flow
interception, the Symbiote injection process imbeds interceptors as well as the
Symbiote binary into the host program. The Symbiote implementation presented
in this paper uses a Detour [21] style inline function hooking mechanism for
control-flow interception. Note that while we injected our intercepts within the
function preamble in the current Symbiote implementation, this is not a require-
ment. Control-flow intercepts can be embedded in arbitrary positions within the
host program using existing binary instrumentation techniques.

Detour [21] style inline hooking is a well known technique for function intercep-
tion. However, SEM uses function interception in a very different way. Instead
of targeting specific functions for interception which requires precise a priori
knowledge of the code layout of the target device, SEM randomly intercepts a
large number of functions as a means to re-divert periodically and consistently
a small portion of the device’s CPU cycles to execute the SEM payload. This
approach allows SEM to remain agnostic to operating system specifics while ex-
ecuting its payload alongside the original OS. The SEM payload has full access
to the internals of the original OS but is not constrained by it. This allows the
SEM payload to carry out powerful functionality which are not possible under
the original OS. For example, the IOS rootkit detection payload presented in
Section 4.5 bypasses the process watchdog timer constraint, which terminates
any IOS process running for more than several seconds, because the detector
operates outside the control of the OS.



Defending Embedded Systems with Software Symbiotes 369

Stealth is a powerful byproduct of the SEM structure. In the case of IOS,
no diagnostic tool available within the OS (short of a full memory dump) can
detect the presence of the SEM payload because it manipulates no OS specific
structure and is effectively invisible to the OS. The impact of the SEM payload
is further hidden by the fact that CPU utilization of the payload is not reported
within any single process under IOS and is distributed randomly across a large
number of unrelated processes.

4.4 Automatically Locating Control-Flow Intercept Points

Control-flow intercept points are chosen randomly out of candidate live code
regions within the host program. The way code regions are classified as live,
as well as the number of intercepts chosen from each region directly affects the
frequency in which the Symbiote will gain control of the CPU, which in turn
directly affects the performance and overhead of the Symbiote.

Both dynamic and static methods of live code classification are considered for
our experiments. First, the host program is executed under a profiler in order to
observe live code, or code coverage, under normal operating conditions2. Using
code coverage analysis to classify live code is advantageous because it can not
produce false positives, i.e. dead code can not be classified as live code. However,
this dynamic approach can not classify regions of code which are reachable only
through rare or malformed program input. Therefore, we augment our code
coverage based live code classifier with static analysis of the control-flow graph
of the host program. Figure 4 shows the live code regions of a typical IOS router
firmware image after our initial analysis. Control-flow intercept points will be
chosen randomly out of these code regions (shown in white) to periodically divert
CPU control to the injected Symbiote. Note that intercept points can, and should
also be placed in the binary outside of the detected live code regions.

Fig. 4. Live Code Regions (White) Within IOS 12.4 Firmware (Black). Code Range:
0x80008000-0x82a20000.

4.5 Rootkit Detection Payload

To detect IOS malcode and rootkits described in the previous section, we imple-
ment a white-list strategy. Known rootkits operate by hooking into and altering
key functions within IOS. To do this, specific binary patches must be made to
2 In the case of IOS, we profiled the router image using Dynamips under various

workloads.
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executable code. Therefore, a continuous integrity check on all static areas of
Cisco IOS will detect all function hooking and patching attempts made by rootk-
its and malware. The rootkit detection payload described below is not specific
to IOS, and can be used on other embedded operating systems as well. For the
white-list strategy to be effective, the protected kernel code must either remain
static during legitimate operation, or only be allowed to change in predictable
ways. For example, while some embedded operating systems support legitimate
mechanisms to dynamically update the kernel, the contents of those updates are
and static and known a priori. Therefore, the checksums of approved updates
can be calculated and distributed to SEM a head of time.

Formally, let
Hc = Fhash(Sc)

where B is a binary firmware (eg. IOS), and {Sc} is a set of contiguous code
segments within B we wish to monitor. If Hc outputs a cryptographically secure
hash function over all monitored code segments, a change in Hc, then, indicates
a change within at least one code segment in {Sc}.

Hc = {x|x ∈ Sc, Fhash(x)}
Furthermore, we can compute and monitor multiple hash values {Hci} over any
arbitrary subset of {Sc}. By doing so, it will give arbitrary resolution on the
location of code modification at cost of increased memory and computational
overhead.

5 Computational Lower Bound of Successful
Software-Only Symbiote Bypass

This section discusses multi-stage attack strategies which attempt to disable the
Symbiote prior to executing their malicious payload. We provide an intuitive
lower bound of the computational cost of a successful attack against software-
only Symbiotes. We also discuss ways of detecting and defending against such
multi-stage attacks.

Naturally, the software-only Symbiote is not invulnerable to attack, and can
not guarantee absolute protection when deployed as the only security mecha-
nism. Instead, software-only Symbiotes should be deployed in tandem with tra-
ditional network and host-based mechanisms in a defense in depth arrangement.

Generally, software-only Symbiotes can be successfully bypassed in two ways:

Attack 1: Remove control-flow intercepts. If the attacker can remove all
control-flow intercepts within all live code regions before the Symbiote’s detec-
tion latency, the attacker can prevent the Symbiote from ever regaining control
of the CPU.

Attack 2: Deactivate the SEMM or Payload. If the attacker can locate and
patch the Symbiote’s manager or payload code, the Symbiote can be completely
disabled.
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Before we analyze the two attacks mentioned above, consider the set of bi-
naries that constitutes a typical host program. Regions of binaries within the
host program can be classified as live code, reachable code or dead code. Clearly,
dead code is not reachable via any possible execution path. Conversely, reachable
code can be executed under some set of inputs. More importantly, live code, a
subset of reachable code, is frequently executed under typical inputs of the host
program. In other words, live code represents the regions of the host program
active under the normal behavior model of the specific host program in a specific
environment.

The Symbiote control-flow intercepts are randomly distributed within the
live code regions, while the Symbiote Manager and Payloads are distributed
randomly through out the entire host program3.

Both attacks reduce to a common general problem of identifying all P out of
N bytes, P being the bytes belonging to the Symbiote component under attack,
N being the bytes of the host program in which P can exist. In the case of
attack 1, the attacker must identify and remove all control-flow intercepts, P
injected into all live code regions, N (assuming that this is known). Since the
Symbiote binary is polymorphically mutated at injection time, the attacker can
not search for a well-known Symbiote signature through the binary. Instead, the
attacker must compare an unmodified copy of the host program with the victim
host program during an online attack. This is essentially equivalent to at least
a linear operation over the size of all live code regions.

Similarly, since the Symbiote binary is distributed randomly throughout the
host program, an attacker must identify all code regions belonging to the Sym-
biote. There are many ways to do this. However, since no well-known signature
exists for the Symbiote code, the attacker must perform dynamic disassembly
in order to follow control-flow intercepts to a piece of Symbiote code. Alterna-
tively, the attacker can perform a linear comparison of the entire host program
to identify all injected Symbiote code. In the former case, the attacker’s problem
is reduced to attack 1, because unless all control-flow intercepts are removed,
the attacker can not be sure that all Symbiotes are removed. In the latter case,
the attacker must use a linear amount of CPU and network I/O, which again
reduces to the problem of identifying P bytes out of N.

To put these attacks into perspective, the average size of the host programs
analyzed in our experiments is approximately 35 MB, the size of live code regions
considered for control-flow interception is approximately 10 MB. Each host pro-
gram contains approximately 75,000 functions, all of which can be intercepted.
(Note that control-flow interception need not take place only at the function
preamble, but can exist anywhere within the function body.) If the attacker
attempts to perform a linear comparison, at least portions of the unmodified
host program will have to be transferred over the network during the online

3 While the Symbiote is distributed randomly through out the binary of the host pro-
gram, the injection process ensures that the Symbiote code can not be inadvertently
executed by the host program. In other words, the control-flow intercepts are the
only mechanism in which the Symbiote code will be invoked.
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attack. The attacker can also attempt to dynamically disassemble the 10 MB of
live code. Both attack strategies require a very large amount of network I/O or
CPU which raises the bar quite high for the attacker to overcome without being
noticed.

6 Symbiote Performance and Computational Overhead

We randomly choose a set of control-flow intercept points within live regions of
the target host program. The method and parameters used to determine live re-
gions, as well as the number of intercept points chosen gives us fine grain control
of p(αi, δ, τq), and gives us a probabilistic bound on the frequency in which the
Symbiote will gain control of the CPU. Section 4.4 discusses the methods we
used to extract ”live” regions from the host program.

Consider the computational cost of an injected SEM during some time period
τq.

Let {α1...αn} be the set of all functions in binary firmware β.
Let g(αi, τq) be the cost of SEM per invocation at time period τq.
Let h(αi) be the binary function representing whether function αi is “inter-

cepted” by the SEM.
Let p(αi, δ, τq) be the number of times function αi will be invoked during time

period τq, given some probability distribution δ.

Note that the probability distribution δ is derived from the ”live” code anal-
ysis performed during the Symbiote injection process. Suppose a control-flow
intercept is inserted into a piece of ”live” code which is known to execute with
some probability, according to the normal execution model of the host program.
We can claim that the Symbiote control-flow intercept will also be invoked with
at least this probability. Thus, the ”live” code analysis gives us a probabilistic
lower bound on the frequency in which the Symbiote will regain control of the
CPU over any time period τq.

Let the SEM cost function g(αi, τq) be:

g(αi, τq) = OSEMM + Opayload(αi, τq) (1)

Where OSEMM is the (constant) cost of invoking the SEMM and Opayload(αi, τq)
is the amount of the SEM payload to execute (variable), given function αi and
time period τq.

The Lower bound on SEM cost Cq, over time period τq can be expressed
as:

Cq = ΣiOSEMM ∗ p(αi, δ, τq) (2)
= OSEMMΣip(αi, δ, τq) (3)

Intuitively, the lower bound on the SEM cost is simply the overhead of invoking
the SEMM multiplied by the expected number of times that the SEMM will be
invoked over time period τq.
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The computational cost of SEM Cq, over time period τq is:

Cq = Σig(αi, τq) ∗ h(αi) ∗ p(αi, δ, τq) (4)

The Upper bound on SEM cost Cq over time period τq. is a function
of the number and distribution of functions intercepted in order to execute the
SEMM and the cost of the payload execution the SEMM manages. Let h(αi) = 1
for all functions α), then

Cq = Σig(αi, τq) ∗ p(αi, δ, τq) (5)

= Σi(OSEMm + Opayload(αi, τq)) ∗ p(αi, δ, τq) (6)

= OSEMmΣip(αi, δ, τq) + ΣiOpayload(αi, τq) ∗ p(αi, δ, τq) (7)

Observations

– The distribution δ, and therefore, p(αi, δ, τq) can not be changed (without
changing the host’s original functionality), and varies with respect to differ-
ent devices and firmware.

– The function h(αi) can be used to control SEM CPU utilization but is binary
and imprecise.

– The function g(αi, τq) can be used to control SEM CPU utilization4 pre-
cisely.

We can vary the number of control-flow interceptions (h(αi)) and the amount
of SEM payload that is executed at each invocation (g(αi, τq)) to control pre-
cisely the amount of CPU time used by the SEM. We can implement these two
mechanisms in the SEMM to divert more CPU cycles to the SEM during peri-
ods of low CPU utilization and divert less during periods of high CPU utilization.
Figure 6 shows actual CPU utilization when Doppelgänger and our rootkit de-
tection payload are installed on a physical Cisco 7120 router with g(αi, τq) set
to several fixed values. This parameter directly affects the portion of the CPU
that is diverted to executing the SEM payload. Figure 7 and Table 1 shows an
inverse relationship between g(αi, τq) and the amount of time required to detect
a modification of IOS, which we call the detection latency.

Clearly, the more CPU resources the Symbiote Manager diverts away from
the host program, the shorter the detection latency will be. However, this can
also impact the performance of the host program. Therefore, the Symbiote Man-
ager must perform the important task of regulating, or scheduling, the Symbiote
payload for execution in a way which optimizes both detection latency and over-
all host program performance. This can be reduced to scheduling algorithms
which control the frequency of Symbiote payload invocation h(αi), as well as the
duration of the payload’s execution at each invocation g(αi, τq).

Such scheduling algorithms are critical in regulating the resource consumption
of the Symbiote payload, and must be adaptive to the current resource utilization
4 In practice, OSEMm is much smaller than Opayload(), therefore, the second summa-

tion in equation 7 dominates over the first (Section 6.1).
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Table 1. Average Detection Latency at Different SEM Payload Burst Rates IOS 12.2
(Excluding Boot Time)

SEM Payload Burst Rate

0xF 0x1F 0xFF 0x7FF

56s 43s 35s 0.3s

of the host program. For example, an inverse adaptive algorithm can throttle
back the Symbiote payload’s execution rate when the host program is highly
utilized, thus preventing the Symbiote from disrupting the functionality of the
host program when resource utilization is nearing its limits. Similarly, real-time
and batch-like scheduling algorithms can also be implemented in the Symbiote
Manager. The development of such adaptive scheduling algorithms within the
Symbiote Manager is an area of ongoing research.

6.1 Experimental Results: Doppelgänger, IOS 12.2 and 12.3, Cisco
7121

Methodology. Doppelgänger, our proof of concept SEM implementation is
injected into IOS 12.2(27c) and IOS 12.3(3i) on the a Cisco 7120 router. The
rootkit detection payload is implemented in C, and calculates a single hash
covering the .text memory range 0x60008000 to 0x61662000. As a proof of
concept, we implemented CRC-32 as the hashing function used by the rootkit
detection payload.

Two sets of experiments are done to demonstrate both performance char-
acteristics and accurate IOS code modification detection. First, to test CPU
utilization, the Cisco 7120 router is put through a standard workload script
with varying SEM payload execution burst rates. The workload script touches
a cross section of standard router attack surface by performing tasks like enable
/ disabling routing, generating system status dumps, reconfiguring routing pa-
rameters and advertised routes, etc. The CPU utilization is measured by SNMP
polling.

To demonstrate IOS code modification detection, we simulate the installation
of a rootkit by modifying a SEM protected IOS firmware with added function
hooks and code. We then boot the Cisco router with the altered image and
measure the time required for the SEM payload to detect the modification.
We configure the payload detector to halt the router once the modification is
detected. This is also done with varying SEM payload execution burst rates to
demonstrate the relationship between SEM payload execution rate and runtime
detection latency. Performance evaluation data are included in the Appendix.

Experimental Results. Figure 6 demonstrates CPU utilization of the 7120
router when the SEM payload execution burst rate, or g(αi, τq), is varied. Figure
7 shows the total elapsed time (from boot up to router halt) of detection with
various SEM payload execution burst rates. Table 1 is the average detection
latency excluding router boot time (approximately 11 seconds).
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Experimental Findings

– The Cisco router continues to function with Doppelgänger running concur-
rently, even during periods of near maximum CPU utilization.

– SEM CPU utilization can be controlled by varying the payload execution
burst rate within the SEMM.

– Detection Latency is inversely proportional to SEM CPU utilization (and
SEM payload execution burst rate).

– IOS code modification detection rate is 100% with 0% false positive.

7 Concluding Remarks

We presented a Symbiotic Embedded Machine (SEM), a new and novel software
mechanism that provides a means of embedding defensive software into existing
embedded devices. Using a specific SEM implementation we call Doppelgänger,
we were able to automatically inject a rootkit detection payload into a Cisco
7120 router running multiple firmware images across two major IOS versions,
12.2 and 12.3. By injecting under 1400 bytes of code into the IOS firmware,
Doppelgänger protects the router from all function hooking and interception
attempts. Our white-list based rootkit detection payload does not require a
priori knowledge of IOS internals, or signatures of known rootkits, and can
protect the router against any code modification attempts. As the SEM structure
operates alongside the native OS of the embedded device and not within it, it can
inject generic defensive payloads into the target device regardless of it’s original
hardware or software. Due to the unique nature of network embedded devices,
we posit that retrofitting these widely deployed vulnerable devices with defensive
SEM’s is the best hope of mitigating a significant emerging threat on our global
communication infrastructure. SEM is a generic defensive mechanism suitable for
general purpose host protection. Our ongoing research aims to demonstrate the
advantages of the Defensive Mutualistic paradigm and Symbiotes over traditional
AV solutions.
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Appendix

[ Performance Measurements of Root Detection SEM Payload on Physical Cisco
7271 Router Running IOS 12.3 ]

Fig. 5. CPU Utilization on Cisco 7121 Router Using Different SEM Payload Execution
Bursts Rates (g(αi, τq)) for IOS 12.3. Note the Direct Relationship Between g(αi, τq),
SEM Payload Execution Time and Total CPU Utilization. Terms Low, Med, High, and
Really High Utilization Corresponds to Varying SEM Payload Burst Rates, g(αi, τq).
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Abstract. In the last few years, many different attacks against com-
puting platform targeting hardware or low level firmware have been
published. Such attacks are generally quite hard to detect and to de-
fend against as they target components that are out of the scope of the
operating system and may not have been taken into account in the secu-
rity policy enforced on the platform. In this paper, we study the case of
remote attacks against network adapters. In our case study, we assume
that the target adapter is running a flawed firmware that an attacker may
subvert remotely by sending packets on the network to the adapter. We
study possible detection techniques and their efficiency. We show that,
depending on the architecture of the adapter and the interface provided
by the NIC to the host operating system, building an efficient detection
framework is possible. We explain the choices we made when designing
such a framework that we called NAVIS and give details on our proof of
concept implementation.

Keywords: firmware, NIC, network adapter, runtime verification.

1 Introduction

In [8], we demonstrated how it is possible for an attacker to take full control
of a computer by exploiting a vulnerability in the network adapter1. This proof
of concept shows how it is possible for an attacker to take full control of the
adapter and to add a backdoor in the OS kernel using DMA accesses. The vul-
nerability was unconditionally exploitable when the ASF function was enabled
on the network card to any attacker that would be able to send UDP packets to
the victim.

While preventing the network card from tampering with the operating system
is possible using existing mechanisms, having a compromised network card re-
mains a real problem, not only because the network card is a critical component
from the security perspective, but also because a compromised device can be
used to compromise surrounding peripherals on the computer.

Possible countermeasures were considered in [8], but none of them seemed
really convincing. The best way to prevent a network card from being compro-
mised would probably consist in formally verifying that the code running in the
1 See http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-0104.
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firmware is correct. Considering that network adapters’ firmware code is increas-
ingly complex and generally proprietary, the prevention problem is brought down
to a detection problem. In this paper2, we propose a pragmatic approach to de-
tect network card corruptions, where the monitor is located inside the operating
system. As much as we know, the kind of attacks we are trying to detect has
not been the subject of many papers in the intrusion detection community. Still,
these attacks represent a real threat considering the privilege level an attacker
might gain in successfully exploiting the underlying vulnerabilities. Moreover,
we believe that studying a detection approach (as opposed to a prevention one)
is relevant, as the vulnerabilities reside in a component which is not completely
under user control.

Our contribution is twofold. First, we raise the community’s awareness of the
threats associated with widespread devices by illustrating the effectiveness of an
attack against a network device. Second, we present a solution to this problem
in the form of an anomaly detection system called NAVIS (Network Adapter
Verification and Integrity checking Solution). This solution is based on several
detection paradigms and aims at instantly blocking attacks against firmware em-
bedded on the target network device. Our goal is to block attacks corresponding
to a modification of the control flow of the embedded device, while maintaining
good performance and virtually avoid false positives. As an illustration of the
efficiency of the NAVIS framework, we focus on a particular network adapter
and developed a proof of concept implementation of our detection system.

The paper is organised as follows. In section 2, we present existing mechanisms
to assess firmware integrity. Section 3 summarizes our previous attack on a net-
work card and its implications on the security of a system. Then, we present the
assumptions for our work, on which we build our firmware corruption detection
system. Our prototype implementation of the monitor is described in section 5.
Section 6 illustrates the effectiveness of our approach and presents experimental
results. Before concluding and evoking future work, we discuss the limitations
of our approach.

2 Problem Statement and Related Work

2.1 Attacks against Firmware

In the last few years, several researchers have examined the security of firmware
and embedded software in various devices, such as basebands [27], network
cards [25,7], keyboard controllers [6] or chipsets [24].

These attacks might enable an intruder to take full control of the component
and use it as a stepping stone to run other attacks against the OS (through DMA
attacks) or other peripherals. Even without bouncing on the component, the
attack itself might be interesting to eavesdrop data (keylogger on the keyboard
controller) or perform man in the middle stealthily (on the network card).

2 Our results have been presented in the CanSecWest 2011 conference [9].
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2.2 Countermeasures

Defending a system against such attacks is difficult as firmware are running out
of the scope of the operating system and potentially have a wide access on other
systems resources (like the PCI bus) and there is not much control over what
they actually do.

Patching is the most obvious countermeasure. However, one can only patch
known vulnerabilities, and patching firmware is even harder than patching appli-
cations on an operating system. Moreover, adapters often start running resident
firmware in ROM before dynamically loading a newer firmware. This resident
firmware cannot be patched, so there might be a window of opportunity before
a new, fixed firmware can be safely loaded.

As we will see later, IOMMUs can help protect the system, but it is not 100%
efficient as it might not protect other peripherals, as shown by Sang et al. [21].
Besides, IOMMU does not protect the affected subsystem, whose corruption can
be critical, especially in the case of a network card (as previously mentioned, it
may lead to e.g., passive eavesdropping).

Many vulnerability mitigation techniques have been proposed in the literature
for defending against arbitrary code execution attacks ; these include address
space layout randomization (ASLR) [22], canaries [13], W⊕X principle (a.k.a
NX bit), data tainting. However, some of them can independently be circum-
vented by attackers. W⊕X techniques for can instance be circumvented using
Return oriented Programming (ROP) and canaries will fail to be efficient against
ROP without returns [5], [23]. But most importantly, these defense techniques
are impractical in the case of firmware because these systems generally lack
the required basic features since they run on hardware-constrained devices with
embedded CPUs like MIPS.

Our approach basically consists in verifying the integrity of the firmware of
a network card at runtime in order to detect malicious control flow alterations.
Generally speaking, run-time integrity verification consists in checking that an
untrusted target is running untampered. In the remainder of this section, we
focus on two kinds of protection approaches against arbitrary code execution
attacks, namely CFI (Control Flow Integrity) and Remote firmware attestation.

2.3 Control Flow Integrity

Classical Control Flow Integrity (CFI) [1] security policy dictates that software
must follow a path of a Control-Flow Graph determined ahead of time. The
CFG can be determined by analysis (source code analysis, binary analysis or
execution profiling).

In its objectives, our intrusion detection approach is similar to CFI, applied
to a firmware, as proposed by Francillon et al. [11]. We control access to mem-
ory regions, which can be seen as a form of Software Memory Access Control
(SMAC), and we use a shadow call stack to achieve detection. Our monitor uses
an execution profile of the network card, which can be seen as a very coarse and
primitive form of access control policy. The profile is built ahead of time and is
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derived from an inspection of multiple executions of the firmware. It is used by
the monitor at runtime to detect abnormal executions.

However, our approach differs from CFI in its design. First, we do not rewrite
the code of the firmware. Second, we do not have a fine grained model to dy-
namically ensure that the control flow remains within an expected control flow
(i.e., Control Flow Graph).

Similar to CFI, software guards [4,10] use program rewriting techniques in
order to insert code elements in a host program. These elements may perform
arbitrary tasks at runtime to protect the host program against illegitimate modi-
fications (e.g., self-checksumming). They have primarily been used to implement
software cracking protections, but software guards could be used to implement
temper-resistance features inside firmwares.

2.4 Remote Firmware Attestation

Runtime integrity verification can be achieved with software-based remote at-
testation [15]. The verification is performed by a trusted verifier during the
execution of the target. In our case, the target would be the network adapter
and the verifier would be the operating system.

Remote device attestation is based on a classical challenge-response protocol,
where the verifier first sends a random nonce n to the target. The target then
computes a checksum over its entire memory using n as seed3 and returns the
checksum to the verifier. The verifier then checks the correctness of the result.

The target data and unused code memory is erased with a predictable value.
Memory is read in a pseudo-random traversal to prevent checksum precomputa-
tion. All interrupts are disabled during the computation of the checksum. The
device is reset after the checksum is returned.

The verifier has a copy of the expected target’s memory content and compares
the checksum returned by the target with its own computation. The verifier also
checks that the computation time is within fixed bounds.

As discussed by several authors [3,17,12], remote firmware attestation is diffi-
cult. First, a malware could keep a (compressed) copy of the legitimate firmware
code in memory and redirect memory reads to compute the correct checksum. For
this reason, checksum computation time must be predictable and near-optimal in
order to detect checksum computation overheads caused by memory redirects.
Also, the verifier must know the exact hardware configuration of the target.
Second, data memory must be reset into a predictable state before attestation
with pseudo-random values because otherwise, data memory is unpredictable
and may contain malware code.

In [15], remote firmware attestation has been implemented on Apple Alu-
minum Keyboard firmware, which is a rather simple device. Still, attestation
takes up to two seconds, during which the peripheral is unresponsive. This leads
us to the following question : is remote firmware attestation adequate for com-
plex devices such as network adapters? Indeed, the checksum function imposes

3 The nonce is used as a seed to prevent replay attacks.
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severe constraints : it requires to reset the memory of the device and block all
interrupts, which can be time consuming for the device. Moreover, the assump-
tion that the device cannot communicate with a third-party machine during
computation may not hold (especially for a network adapter...). As a summary,
we doubt whether firmware attestation is currently suited for devices with harsh
time constraints.

2.5 Other IDS-Oriented Protections

Other approaches have been proposed to monitor the integrity of a system at a
low level. By using a dedicated hardware coprocessor to monitor the integrity of
the memory (Copilot [18]), by using an embedded microcontroller in the chipset
(DeepWatch [2]), or by embedding the verifier in System Mode Management
(HyperGuard [20], HyperCheck [26]). However, these mechanisms are primarily
designed to protect the main operating system, and it is unclear whether they
can be used to monitor the integrity of peripherals. Moreover, some require a
trusted network card for remote attestation (e.g., [26]), which is “problematic”
in our case.

3 Exploiting Network Adapters Firmware Vulnerabilities

In [8], we demonstrated how it is possible for an attacker to subvert the execution
of a network adapter by exploiting a software fault in its firmware code and then
gain control over the operating system.

Network adapters have become complex objects. Indeed, they are not only
used to process network frames and transfer them between the wire and the
operating system anymore. They are also used as out-of-band low-cost manage-
ment devices. Their position in the hardware stack (i.e., between the operating
system and the network) has led manufacturers to develop new remote adminis-
tration functions like ASF (Alert Standard Format), IPMI (Intelligent Platform
Management Interface) or AMT (Active Management Technology), which allow
network adapters to communicate with a command and control node. More-
over, those administration functions are active even with a broken, powered-off
or even absent operating system, which means that they have a very privileged
position on the motherboard and have access to other components (like System
Management Bus (SMBus), PCI bus or ACPI).

The administration functions are not handled completely in hardware but
rather using a management CPU included on adapters, which runs an embedded
firmware and performs various tasks (network frames handling, authentication,
interactions with the platform, etc.). The CPU inspects network frames before
sending them to the OS and, when the adapter is the final destination, process
the whole packets to perform the administrative tasks.

The vulnerability that was exploited in [8] lied in the authentication part of the
ASF firmware of some Broadcom NetXtreme adapters. When ASF was enabled,
the adapter was vulnerable to remote code execution before any authentication
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was performed, meaning that an attacker could run any code on the embedded
CPU. On the card itself it was possible to examine each and every packet (from
and to the OS), to send packets to a remote machine for later inspection or to
reconfigure the card itself (a proof of concept changing MAC addresses and LED
configuration was done). Attacking the platform was also possible, for example
by forcing an ACPI restart through the SMBus.

Using a DMA attack, it was possible to compromise the running kernel and
insert a backdoor in it. In our attack, the backdoor basically consisted in opening
a reverse shell when certain type of ICMP packet were processed by the host.

Other attacks are conceivable, which do not require to fully compromise the
host operating system (e.g., SSLstrip-like attacks, ARP and DNS caches poi-
soning, packet drops, etc.), which is why it is not sufficient to protect the host
from a compromised network card. We need to be able to detect network card
corruption.

4 Detecting Network Adapter Firmware Corruption

This section describes the principle of the NAVIS network adapter integrity
checker. NAVIS is a kind of anomaly detection system which checks memory
accesses performed by the NIC processor against a model of expected behaviour
based on its memory layout profile. Any memory access that is outside the NIC
memory profile is interpreted as an attempt to divert the firmware control flow.
Of course, profiling the memory layout of the network card is a prerequisite to
try to detect attacks. In the remainder of this section, we first present our basic
assumptions for our detection system before describing the memory profiling
approach. The anomaly detection heuristics are described in the last part of this
section. The details of implementation, the practical obstacles, and how they are
circumvented are described in the next section.

4.1 Assumptions

Our objective is to detect an adapter firmware corruption at runtime from the
host operating system. Therefore, we need to assume that the operating system
is trusted (i.e., that it cannot be compromised by the controller), as it plays
the role of the verifier. We also assume that the firmware is not compromised
in the initial state of the system, i.e., we have to check the controller firmware’s
integrity at system startup. We believe that these two assumptions are realistic
by using standard mechanisms that equip current computers.

Firmware Load-Time Integrity. can be enforced using a TPM (Trusted
Platform Module) [14]. A TPM is a secure cryptographic chip present on most
x86 platforms, whose primary goal is to allow the operating system to verify
the integrity of the platform. Specific software (including embedded software)
can be measured by the operating system using the TPM to detect unexpected
configuration changes. Peripherals’ firmware should be part of the components
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that are measured during the trusted boot pathway. After a (trusted) kernel is
booted, the network driver will force a firmware reload, using a trusted file on
the system (integrity checked via TPM calls) and the reset the embedded CPU.

As pointed out by Rutkowska [19], using so-called Dynamic Root of Trusts
can even solve race conditions at boot time. We consider such techniques to
provide an efficient solution to the problem of integrity verification of embedded
software at load-time. As a result, we do not study such a problem in this paper.

Operating System’s Runtime Integrity. can be enforced by means of an
IOMMU mechanism. Once the system is booted in a trusted state (thanks to a
TPM and the dynamic root of trusts), an IOMMU protects it from DMA attacks
initiated from the devices by only allowing them access to a specific (and private)
area of the main memory. Any attempt to access memory outside that area fails
and triggers an alert on the system.

Other types of attacks against the operating system (either direct or through
userland applications) are outside the scope of this paper.

4.2 Model of the Network Adapter

Figure 1 sketches the typical architecture of a network card. The PHY is re-
sponsible for sending and receiving signals on the wire and performing physical
and logical conversions. The SRAM is the volatile memory area where packets
are temporarily stored before being sent to the operating system by means of
the DMA controller of the card. The management CPU is an on-chip processor
which operates independently of all architectural blocks and is intended to run a
custom firmware that can be used for custom frame processing. Many different
firmware types exist, e.g., management firmware (for ASF, IPMI or AMT) or
accelerators like TSO (TCP segmentation Offloading).

Model of the Memory Layout. As NAVIS monitors NIC memory accesses,
we now focus on the memory of the network card.

In theory, the architecture of a network adapter should be quite simple. Like
most embedded systems, NICs are based on a Von Neumann memory archi-
tecture, where executable code and data are located in a single address space.
The software which makes up a firmware is usually executed as a monolithic
application. As a result, firmware generally lacks memory protections that are
commonly found on custom systems (such as a memory management unit, ran-
domization or NX features) because they do not require memory protection
between different applications or isolation between kernelland and userland.

In fact, one may argue that the integration of additional features in network
adapters (see section 3) should make these protections a requirement. However,
apart from the fact that it would probably degrade the NIC performances, having
a more sophisticated adapter in a computer would give rise to other questions
regarding the security model of the overall system.

To sum up, our approach is based on a flat memory model that combines both
code and data, on top of which we enforce access restrictions and control flow
integrity verifications.



What If You Can’t Trust Your Network Card? 385

Fig. 1. Architecture of network adapter

Next, the memory layout model must distinguish precisely those memory areas
that are used to execute code, to read and write data, and specify which areas
are in read-only mode. In the case of the network card, data read and write
operations can be performed by three components of the card : the management
CPU, the DMA controller and the PHY.

The DMA controller and the PHY are used to transfer packets between the
host and the wire, which are stored in a specific place in the card memory. Some
area is reserved too for storing the structures used to synchronize DMA transfers
between the host and the card (mainly pointers to the packets themselves).

The management CPU uses some memory for the code it executes, for the
read-only data shipped with the firmware and for the various structures usually
needed (like room for a stack and heap). As it usually needs to process some
packets (e.g management packets for ASF or TCP packets for TSO), it can read
and write on the memory area used for storing packets. The management CPU
also has access to the sending area because it might need to send packets.

Building the Reference Memory Layout. One of the obstacles that came
up in building the reference memory layout of the network card used in our
experiments is that the purposes of the various memory areas are not public.

Therefore, we have built the reference memory layout of the network card em-
pirically, by monitoring the NIC activity during typical network sessions : large
HTTP download, SSH sessions and legitimate ASF traffic (session open, a few
”query” commands and session close). The data obtained is a good representa-
tion of the network controller activity. Details on the memory reference model
acquisition are given in section 5.3.
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Figure 3 (p.390) shows the memory map of the card used in our experiments.
Of course, this memory map is highly card-specific, but our acquisition proce-
dure can applied to other card models, provided that the cards can be tightly
controlled by the host.

4.3 Detection Heuristics

Based on the memory model presented previously, NAVIS uses three comple-
mentary detection heuristics to detect network controller firmware corruptions.
The first two aim at enforcing access restrictions on memory areas. The third
one is used to detect potential control flow integrity violations and uses a shadow
return stack.

During the initialization phase, NAVIS records a golden model of the firmware,
which serves as a reference for the subsequent verifications. As a reminder, we
assume that the golden model is authentic (see 4.1). NAVIS then acts as a
debugger to keep track of the NIC CPU operations and update its internal
model of the NIC status. The following verifications a performed at each state
transition.

Step-by-Step Instruction Address Checking: Based on the memory layout
model, NAVIS checks the consistency of the instruction pointer at each execution
step. If the instruction pointer points to a memory area that corresponds to the
heap, the stack or the scratchpad, then a code injection attack followed by a
control flow redirection probably occurred.

Step-by-Step Instruction Comparison: In addition to the previous verifi-
cation, NAVIS also checks that there is a match between the instruction that is
to be run by the CPU and the one that should be run according to the golden
model. A mismatch is indicative of a code injection in the NIC memory, in which
case the NIC is stopped.

Of course, this heuristic is valid only if the code is not self modifying. This
assumption does not seem excessive : despite their increasing complexity, one
does not expect network cards to require the execution of self-modifying code
for their legitimate processing.

This assumption might need to be revisited at some point. Management
firmware already include software like web and application servers, it might be
possible that in the future java-based applications become available, where code
would be written in memory before beeing executed, and thus there would be
no golden model for that part. Anything using just in time execution would fail
the assumption.

Shadow Stack: In order to detect malicious control flow alterations, we main-
tain a simplified copy of the call stack of the firmware on the verifier side, called
the shadow stack. The shadow call stack is used to verify that a function call
returns to the callsite most recently used for invoking the function. Of course,
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the shadow call stack must be maintained in a protected memory, so that the
attacker cannot modify it. In our case, the shadow call stack is maintained on
the host side, in userland, which is assumed to be trusted.

The shadow stack is updated every time a CALL-like or a RET-like instruction
is executed by the firmware as follows:

– on a CALL instruction, the return address is pushed on the shadow stack;
– on a RET instruction, the target return address is matched against the one

that was previously saved on the shadow stack; a difference between the two
addresses is the sign of an anomaly.

The concept of a shadow call stack is not original by itself, but its implemen-
tation turns out to be complex on a concrete network adapter whose firmware
architecture is not known (see section 5.5 for details). The main challenges ac-
tually reside in the identification of CALL and RET instructions and in the
presence of interrupts triggered by components of the NIC. These interrupts are
susceptible to disrupt the control flow of the firmware which is monitored.

This approach is similar in its principle to the Instruction-Based Memory
Access Control mechanism proposed by Francillon [11], except that we do not
have to implement the monitor inside the firmware. This is possible because
the former has physical access to the latter, and because we assume that the
network card cannot subvert the operating system. In a way, our settings are
less constraining than his, but they are also the only viable solution considering
that we do not modify the underlying NIC hardware.

Step-by-step instruction address checking may seem superfluous, considering
that the attack types it detects are included in those that are detected by the
shadow stack. However, step-by-step instruction address checking may prove
useful in practice when the specificities of a given network adapter make the im-
plementation of shadow stack protection inaccurate (in particular, dealing with
on-board interrupts is a difficult task, see 5.5). We chose to use all three tech-
niques considering that our implementation of the shadow stack technique might
not be perfect (because of specificities of the network adapter). The shadow stack
is also the slowest method so it makes sense to enable it only when it is really
needed.

Other Heuristics: Another way to detect code injection attacks could consist
in scanning the memory in search of values whose statistical distribution matches
that of executable code in memory areas that are supposed to contain data only
(heap, stack and scratchpad). Such data locations are used to store ethernet
packets and there is no reason why data stored there should meet the statistical
profile of binary instructions.

We mention this type of detection criterion here, but it has not been imple-
mented. Indeed, due to its statistical nature, this approach is more error prone
than the previous ones, and its benefits are uncertain. Also, scanning the whole
packet area every time a packet arrives would be time consuming and would
degrade the performances of NAVIS.
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5 Implementation of NAVIS

In the remainder, we consider the case of the Broadcom NetXtreme network
adapter. Those adapters can be found on various type of machines but are gen-
erally integrated on mainboard of desktop and laptops sold by HP and Dell. The
variants used in this study are mobile versions of the 575x series.

5.1 Quick Description of the Broadcom NetXtreme Network
Adapters

Broadcom provides a complete set of specifications of their network adapters for
open source driver development which we used as a basis for our work.

The network card follows the model shown in Fig. 1. The management firmware
is run by a MIPS CPU which has access to the various components and especially
the whole memory area.

The memory layout is described in Broadcom documentation though a lot of
space is either undocumented or explicitly marked as unmapped. Depending on
the documentation version, read access to unmapped areas returns all zeros or
unexpected data while write access are dropped internally or have no effect. In
practice, useful data can sometime be found on unmapped areas.

The host communicates with the card through different ways. The driver can
configure it using MMIO address space (including DMA configuration) and then
sends and receives data through DMA reads and writes in a reserved address
space setup initially. The data structures used to communicate with the cards
are called rings since they are circular buffers. Several such rings are used for
sending and receiving packets, both in the card memory and in the main host
memory. The rings contain pointers (in a structure called buffer descriptor) to
the packet, and the ring is controlled by a structure named ring control block.
These structures are located in various places in the card memory.

The firmware uses area allocated from the card memory space. It needs room
for storing the code as well as the various data structures (heap, stack etc.).

5.2 Low Level Interface to the Device

We first need to be able to reach the network card (and especially the embedded
CPU and the firmware) from the operating system to allow NAVIS to perform
various verifications to ensure firmware integrity.

Such an interface was implemented to analyse the vulnerability presented in
section 3, as well as to craft an external debugger for the network adapter’s
embedded MIPS CPU that executes the firmware. The same interface is reused
to analyse the standard behaviour of the firmware and monitor the CPU activity
in real time from the host and detect strange or unusual behaviours.

From our previous study, we know that many interesting components of the
network card are directly accessible to the host, like registers and internal mem-
ory. Everything is accessible in the MMIO region dedicated to interactions be-
tween the network card and the driver.
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Among the registers that are directly accessible from the host:

– the program counter indicates what is the next instruction which will be
fetched and executed by the embedded CPU,

– state registers indicate whether the embedded CPU is stalled or not (and if
so, why),

– control registers allow us to run the embedded CPU of the network adapter
step by step,

– breakpoint registers allow us to selectively enable debug conditions associ-
ated with addresses.

Access to internal memory is achieved by using a memory window (Fig. 2).
This mechanism provides direct access to the firmware running on the adapter:
reading an address in the card memory means writing the base address to the
relevant register and reading at the correct offset in the MMIO address space.

Fig. 2. Memory window

5.3 Memory Profiler

Identifying Code and Data Area: The documentation and driver code show
that firmware files have three areas (text (code), data, and read-only data), but
the exact mappings into the card memory are not specified, so we first need to
identify them.

Thanks to the low-level interface to the NIC, the following operations of the
embedded CPU are monitored:

– code execution: instructions executed by the CPU,
– CPU write operations: addresses written by the CPU (SB, SH, SW4),

4 Store byte, halfword, word.



390 L. Duflot, Y.-A. Perez, and B. Morin

– CPU read operations: addresses read by the CPU (LB/LBU, LH/LHU, LW5),
– other write operations : network packets written to the card memory by

DMA from host and by PHY from the wire.

By monitoring these events we can map the CPU activity. The mapping will be
highly adapter and firmware specific, but the same analysis could be performed
for other combinations.

We made a record of that activity during a somehow standard network session:
large HTTP download, SSH sessions and legitimate ASF traffic (i.e., session open,
a few ”query” commands for the system state and session close). The data obtained
is a good representation of the network controller activity since the host sends and
receives various traffic and the network controller receives, processes and sends
ASF packets, performs authentication and session management, and communi-
cates with the platform for collecting information about the system state.

5.4 Memory Map Analysis

According to the memory map (Fig. 3), we know where the CPU reads and
writes data: first in the structures used for replying to ASF traffic (the ring
control blocks, the transmit ring and the TXMBUF area, where packets are
stored before sending), then in the scratchpad (a generic writeable area, where
received packets are stored for handling), and finally the CPU stack and heap. We
also know where the CPU executes code (in a space taken from the RXMBUF
and scratchpad area where the firmware is stored), with a main area and a
secondary area just before the stack.

Fig. 3. Memory map

5 Load byte, byte upper, half word, half word upper, word .
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We also note that there are external writes to the CPU code area and writes
in areas noted as unmapped in the documentation. Other external writes include
network packets from and to the host, located in the RX and TX rings and network
packets to the adapter (ASF traffic), stored in the scratchpad.

Finally, it’s important to note that there is no way to enforce rodata and that
there is no segmentation/pagination mechanisms.

5.5 Implementation of the Detection Heuristics

Step-by-Step Instruction Address Checking: The instruction checks are
easy but highly specific. The analysis should therefore been done for each NIC
model and each firmware version.

The first heuristic checks the program counter against code bounds. The
recorded model defines some areas where code is expected to be located, and
code execution outside these areas by the CPU is indicative of an attack. This
verification is more complex to implement than the next one because it was not
possible to find a unique code area on this specific card model and firmware
version combination. Thus, multiple checks must be done because there are one
main area and several sub-areas. An incomplete model (i.e, one which does not
cover the whole ranges of operations for the analysed firmware) may lead to false
positives and false negatives.

Step-by-Step Instruction Comparison: The second heuristic compares the
content of the memory area pointed to by the program counter (which is the
address of the next instruction to be executed) and compares it to the recorded
golden model. A mismatch between the two indicates that the code has been
overwritten and that an attack is ongoing (since we assume that the code is not
self-modifying). In this case, the monitor halts the embedded CPU.

Implementation of the Shadow Stack: Maintaining a shadow stack on the
host is complex because we need to identify function CALLs and RETs. Unfortu-
nately, the firmware runs on a MIPS architecture, and there are no such instruc-
tions in MIPS assembly language.

On MIPS architecture with 32 internal general purpose registers, r29 is usu-
ally used as a stack pointer and r31 to hold a return value while r0 is always
zero. Other registers are used for general operations.

MIPS CPU only have jump and branch instructions. For instance, BEQ is
branch on equal, JAL is jump and link (jump to immediate address and store
return address in r31), and JR r is jump register (jump to address stored in
register r).

Fortunately, the firmware that we are monitoring is pretty simple :

– function calls are done through the JAL instructions,
– there are no function pointers. JAL are always performed on absolute values,
– returns from functions are done through JR 31.
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In theory, locating function CALLs and RETs is not difficult. However, we have
to manage interrupts, which can be triggered in the network adapters asyn-
chronously. Some of them can be predicted (by looking at the MIPS CPU status
registers), but it is difficult to predict the exact CPU cycle when the interrupt
will be triggered. Interrupts cause unexpected changes in the control flow of the
network adapter and can cancel instructions (because of the MIPS delay slot).
Therefore, we need to take interrupts into account to implement our shadow
stack.

In the firmware we are looking at, there is only one interrupt handler starting
at a fixed address (interrupt vector), and return from the handler is done through
JR r27. As a result, identifying interrupts is possible : we need to detect unex-
pected jumps to the interrupt vector and check that the program will go back
using JR r27. However, interrupts sometimes cause errors on the shadow stack:
the MIPS delay slot is ignored on interrupt, so we need to take that into account.
Indeed, if an interrupt is taken when a CALL instruction (or a RET) instruction
is in the delay slot, the CPU will indeed perform as if running this instruction
(causing a modification of the shadow stack) when in fact this instruction is
ignored (as if replaced by a NOP in the CPU pipeline). As a consequence, each
time our framework detects an interrupt, we check whether the last instruction
that was supposed to be run was a CALL or a RET instruction. If it is the case,
that means that our shadow stack is incorrect and we have to correct it.

6 Experimental Results

6.1 Effectiveness of the Detection

Needless to say that the kinds of attacks we are trying to detect are extremely
specific. Therefore, it would not make sense to check the effectiveness of our tool
against, e.g. the DARPA evaluation dataset.

Also, our intrusion detection system basically consists in finding evidences
of code injection and control flow redirects in the memory of the network card
using simple heuristics, so our detector cannot actually be tuned. Therefore,
using ROC curves (receiver operating characteristic curves) to test it would
not be relevant either [16] (plotting the true-positive rate of detection against
the corresponding false-positive rate of error implies a degree of freedom in the
settings of the detector).

One way to evaluate the effectiveness of our intrusion detection system exper-
imentally may consist in testing it against a set of various attacks (e.g., stack
overflow, return-oriented programming) and/or vulnerabilities of the same type.
However, implementing variants of arbitrary code execution attacks is time-
consuming, especially on exotic and undocumented architectures. Moreover, as
our detection approach only relies on the measurable effects of the attacks on the
monitored system (not on attack signatures), merely applying code obfuscation
techniques do not seem to be relevant.

As a summary, we can essentially speculate on the detection effectiveness from
a theoretical point of view.
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6.2 Experimental Settings

As a consequence, we chose a very simple experimental setting.
For our experiment, we used a Dell D530 laptop using a 5755M Broadcom

NetXtreme adapter running a firmware vulnerable to the different kinds of at-
tacks we presented in [8]. The laptop is running Debian Squeeze with our NAVIS
detection framework.

In one setting of the experiment, the target PC is directly connected to the
internet through the adapter we are monitoring and we manually simulate stan-
dard user actions (FTP downloads, web browsing etc.). At the same time, we
allowed automatic processes to access resources on the web several days in a
row. In a second setting we directly connect the adapter to a PC emulating an
attacker sending attack packets that will try to exploit vulnerabilities in the
adapter. Three different types of payload are used for the experiments.

In our first experiment, none of the packets associated with regular traffic did
trigger any alert from NAVIS. On the contrary, all three different kind of attacks
using ASF traffic were successfully detected by NAVIS.

6.3 Performance

We were expecting that our detection framework would drastically decrease the
performances of the machine we are monitoring. Indeed, we run the MIPS CPU
in step-by-step mode, at each MIPS cycle we do various tests (bounds, call
stack...), so each MIPS cycle leads to a lot of host CPU cycles. As a result,
NAVIS uses 100% CPU for one core even when the adapter is not processing
traffic. Indeed, when the MIPS processor is idle (because there is no ASF traffic
at all) it loops on an waiting procedure which means the host CPU still analyses
the various steps.

The network adapter speed itself is not impaired by the detection technique.
Even after activating NAVIS, we still achieve gigabit speed. This comes from
the fact that the firmware we are monitoring only processes special kind of UDP
packets (ASF packets) so the fact that this firmware is running in step by step
mode does not have any kind of impact on regular traffic.

The testbed is composed of the Dell D530 laptop (IP 192.0.2.1), a gigabit
switch and a second machine with a gigabit ethernet card (IP 192.0.2.2). The
test is run using pktgen (a packet generator included in the Linux kernel), while
dstat (a statistics collecting tool) is run on the receiving machine (the D530
one) to monitor CPU usage along with network statistics (mainly packet rate).
The test is done in two parts, first on a standard installation (Fig. 4a) then with
(Fig. 4b) NAVIS running. Generated traffic is sent and received on UDP port 9
and packet size is 256 and the source machine sends traffic at rates from 1000
to 250 000 packets per second.

It’s pretty clear that NAVIS does not really prevent the network to reach full
speed on this test, as both packet rate curves have the same shape when send
rate augments and they both reach 250 000 packets per second. At low packet
rates, the 100% CPU usage is mostly the active loop of the debugger. When



394 L. Duflot, Y.-A. Perez, and B. Morin

(a) NAVIS stopped (b) NAVIS running

Fig. 4. CPU usage and packet rate (UDP port 9)

packet rate rises, software interrupts from system calls are starting to become
significant. The packet generator isn’t able to generate more traffic but it seems
likely that NAVIS could handle more packets before slowing down the traffic.

Performances might not be that good with firmware needing to process every
network packets. A good test for that case is to send UDP packets on port 623
(ASF/RMCP port) to the D530. In that case the PHY will detect the packet needs
to be handled by the firmware, which needs to check if the datagram is ASF
traffic or not before relaying it to the host.

So we run the same test, this time sending datagrams to UDP port 623.
Even when NAVIS is not running (Fig. 5a), we have issues sending datagrams

to the network card. Processing done by the firmware to check if the packet
is ASF or not is slowing down the whole packet processing, meaning the PHY
queues are full and ethernet frames are dropped when packet rate is above 11000.

When running the same tests with NAVIS, we can achieve speeds around
24Mb/s, but packet rate drops dramatically and barely exceeds 250 packets per
second (Fig. 5b). The speed issues aren’t related to all the context switches from
the system calls (since interrupts are mostly at 0%) but are due to the time
spent in processing the various memory accesses to the card.

(a) NAVIS stopped (b) NAVIS running

Fig. 5. CPU usage and packet rate (UDP port 623)
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It might be worth implementing the verification part of NAVIS inside the
kernel and optimize all the PCI accesses in order to improve the packet processing
rate of the whole installation.

7 Limitations of the Approach

The solution is specific to the adapter.The kind of live verifications thatwe are able
to carry out will depend on the architecture of the controller we are considering.

This approach allows to detect any unexpected change in the control flow
when a return value is modified on the stack, but data on the stack, heap and
scratchpad can still be modified by the attacker. One could imagine that an
attacker would be able to craft an attack only by being able to modify data
areas. These kind of attacks would not be detected by NAVIS.

Moreover, the fact that the firmware we are considering is quite simple makes
it easier for us to verify its integrity. For instance, the following characteristics
simplify the analysis:

– the firmware is not using any kind of indirection for CALL operations (there
are no function pointers). Function adresses are hardcoded and can be easily
identified by disassembling CALL instructions;

– no paging mechanism is involved. Addresses in the firmware are physical
addresses and therefore our framework does not need to perform any kind
of address translation;

– the firmware is running on the embedded CPU as a single thread.

8 Conclusion and Future Work

In this paper we studied the difficult problem of firmware integrity attestation
or verification. We looked at the problem from a theoretical point of view and
showed that depending on the interface of the device we are considering and
the nature of the firmware, monitoring was possible. In our setting, the host
operating system acts as an external verifier running a framework called NAVIS
that constantly analyses the behaviour of the embedded firmware and stops the
device whenever an unexpected behaviour is detected. We developed a proof of
concept for a popular model of network adapter and showed that our proof-
of-concept was indeed efficient against attacks (even 0-day ones). The proof-
of-concept is highly specific to the adapter but shows that firmware integrity
verification can be achieved in practice.

Future work on this topic involves studying alternate detection mechanisms
such as on the fly virtualisation and control by an hypervisor of embedded
firmware.

References
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