


Lecture Notes in Computer Science 6893
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany



Gabor Fichtinger Anne Martel
Terry Peters (Eds.)

Medical Image Computing
and Computer-Assisted
Intervention – MICCAI 2011

14th International Conference
Toronto, Canada, September 18-22, 2011
Proceedings, Part III

13



Volume Editors

Gabor Fichtinger
Queen’s University
Kingston, ON K7L 3N6, Canada
E-mail: gabor@cs.queensu.ca

Anne Martel
Sunnybrook Research Institute
Toronto, ON M4N 3M5, Canada
E-mail: anne.martel@sri.utoronto.ca

Terry Peters
Robarts Research Institute
London, ON N6A 5K8, Canada
E-mail: tpeters@robarts.ca

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-23625-9 e-ISBN 978-3-642-23626-6
DOI 10.1007/978-3-642-23626-6
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011935219

CR Subject Classification (1998): I.4, I.5, I.3.5-8, I.2.9-10, J.3, I.6

LNCS Sublibrary: SL 6 – Image Processing, Computer Vision, Pattern Recognition,
and Graphics

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

The 14th International Conference on Medical Image Computing and Com-
puter Assisted Intervention, MICCAI 2011, was held in Toronto, Canada during
September, 18–22, 2011. The venue was the Westin Harbour Castle Hotel and
Conference Centre on the waterfront of Lake Ontario in Downtown Toronto, the
world’s most ethnically diverse city.

MICCAI is the foremost international scientific event in the field of medical
image computing and computer-assisted intervention. The annual conference
has a high scientific standard by virtue of the threshold for acceptance, and
accordingly MICCAI has built up a track record of attracting leading scientists,
engineers and clinicians from a wide range of technical and biomedical disciplines.
The year 2011 saw a record 819 paper submissions.

The Program Committee (PC) of MICCAI 2011 comprised 53 members. Each
of the 819 papers was assigned to two PC members (a primary and a secondary)
according to their expertise and the subject matter of the paper. The primary
member knew the identity of the authors, but the secondary one did not. Each
PC member had about 17 papers as primary and a further 17 as secondary mem-
ber. The primary PC member assigned at least three external reviewers to each
paper, according to their expertise and the subject matter of the paper. The ex-
ternal reviewers provided double-blind reviews of the papers, and authors were
given the opportunity to rebut the anonymous reviews. In cases where reviewer
opinions differed significantly and/or the rebuttal made it necessary, the pri-
mary member initiated a discussion among the reviewers. The primary member
summarized the outcome of the discussion in a short report for the secondary.
Finally, the secondary member considered all input (the reviews, rebuttal, dis-
cussion, primary’s report, and, almost importantly, the paper itself) and made
a recommendation for acceptance or rejection. The secondary PC member did
not know the identity of the authors.

A two-day PC meeting was held with 33 of the PC members present. Each
paper received fair consideration in a three-phase decision process.

– First stage: Initial acceptance of papers ranked very high by both the re-
viewers and the secondary PC member. Initial rejection of papers ranked
very low by both the reviewers and the secondary PC member.

– Second stage: groups of five to seven PC members ranked the remaining
papers and again selected the best papers and rejected the lowest ranking
papers.

– Third stage: a different set of groups selected the best papers from the re-
maining undecided papers and rejected the rest.

The PC finally accepted 251 papers, giving a 30% acceptance rate.
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We are greatly indebted to the reviewers and to the members of the PC for
their extraordinary efforts assessing and evaluating the submissions within a very
short time frame.

In 2011, attendees saw two changes in the way the program was organized.
All accepted papers were presented as posters, and a subset of these were also
invited for oral presentation, which were organized in clinical themes rather
than by methodology as in earlier years. Poster sessions were organized in their
traditional technical themes as in the past.

In addition to the main 3-day conference, the annual MICCAI event hosted
an increased number of satellite tutorials and workshops, organized on the day
before and the day after the main conference. This year’s call for submission for
tutorials and workshops led to a record 21 workshops and 8 tutorials accepted by
a committee headed by Randy Ellis (Queen’s University) and Purang Abolmae-
sumi (University of British Columbia). The tutorials provided a comprehensive
overview of many areas in both the MIC and CAI domains, offering a unique ed-
ucational forum for graduate students and postdoctoral fellows. The workshops
presented an opportunity to present research, often in an early stage, to peer
groups in a relaxed environment that allowed valuable discussion and feedback.
The workshop subjects highlighted topics that were not all fully covered in the
main conference, and thus added to the diversity of the MICCAI program.

In reviewing the proposals for these events, emphasis was given to workshop
submissions that provided a comprehensive and interactive forum to address an
open problem in MICCAI. We also promoted tutorials that related to an existing
sub-discipline of MICCAI with known materials, approaches and open problems
to help train new professionals in the field. Among the accepted workshops, sev-
eral focused on emerging trends in the field of multi-modal statistical atlases,
advanced computational and biomechanical models, and high-performance com-
puting. MICCAI 2011 also hosted eight tutorials that spanned a wide spectrum
of topics in basic and advanced software development for medical image analy-
sis, algorithms for image segmentation, registration and visualization, as well as
those highlighting new techniques in image-guided interventions. We would like
to thank the Workshop and Tutorial Committee for their hard work in putting
together such a comprehensive and unique program.

Two of the highlights of the conference were the keynote lectures by two Cana-
dian scientists. Dafydd (Dave) Williams, physician, astronaut, medical robotics
researcher, and recently, Hospital CEO, opened the conference with a presenta-
tion that looked at lessons that the health care system and medical researchers
could learn from the challenges of space travel. The second keynote was given
by Mark Henkleman, Director of the Mouse Imaging Centre, Toronto Centre for
Phenogenomics, who spoke about high-throughput small-animal imaging tech-
niques and quantitative statistical analysis methods for mapping phenotypic
changes associated with genetic disease models in mice.

MICCAI 2011 would not have been feasible without the efforts of many people
behind the scenes. We are particularly indebted to the local Organizing Commit-
tee in London and Toronto consisting of Janette Wallace, Johanne Guillemette,
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Jackie Williams, Jade Orkin-Fenster, Debbie Lilley, Shuo Li, Perry Radau, and
Raphael Ronen. In addition, we are deeply grateful to the Robarts Research In-
stitute, the University of Western Ontario, Sunnybrook Research Institute, and
Queen’s University for their support in ensuring the success of this meeting, and
to the staff at Springer for their continued high standards aimed at maintaining
the MICCAI proceedings as the flagship of the LNCS series.

We thank the MICCAI Society Board for trusting us with the mandate to
organize this conference, and to the Board and staff members for valuable and
continuous advice and support through all phases of the project.

A special word of thanks goes to our sponsors, who generously provided
financial support for the conference as a whole as well as for specific activities.
This greatly assisted with the overall organization of the meeting, enabled us to
continue offering best paper awards in various categories, and provided travel
stipends to a significant number of student participants.

It was our great pleasure to welcome the attendees to Toronto for this year’s
MICCAI conference along with its satellite tutorials and workshops. Next year,
the 15th International Conference on Medical Image Computing and Computer-
Assisted Intervention will be held in Nice, France, October 1–5, 2012. We look
forward to seeing you all there.

September 2011 Gabor Fichtinger
Anne Martel
Terry Peters
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Awards Presented at MICCAI 2010, Beijing

MICCAI Society “Enduring Impact Award” Sponsored by Philips.
The Enduring Impact Award is the highest award of the MICCAI Society. It
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Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675



Sliding Window and Regression Based Cup Detection in
Digital Fundus Images for Glaucoma Diagnosis�

Yanwu Xu1, Dong Xu1, Stephen Lin2, Jiang Liu3, Jun Cheng3, Carol Y. Cheung4,
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Abstract. We propose a machine learning framework based on sliding windows
for glaucoma diagnosis. In digital fundus photographs, our method automatically
localizes the optic cup, which is the primary structural image cue for clinically
identifying glaucoma. This localization uses a bundle of sliding windows of dif-
ferent sizes to obtain cup candidates in each disc image, then extracts from each
sliding window a new histogram based feature that is learned using a group spar-
sity constraint. An ε-SVR (support vector regression) model based on non-linear
radial basis function (RBF) kernels is used to rank each candidate, and final de-
cisions are made with a non-maximal suppression (NMS) method. Tested on the
large ORIGA−light clinical dataset, the proposed method achieves a 73.2% over-
lap ratio with manually-labeled ground-truth and a 0.091 absolute cup-to-disc
ratio (CDR) error, a simple yet widely used diagnostic measure. The high ac-
curacy of this framework on images from low-cost and widespread digital fun-
dus cameras indicates much promise for developing practical automated/assisted
glaucoma diagnosis systems.

1 Introduction

Glaucoma affects about 60 million people [1] and is responsible for approximately 5.2
million cases of blindness (15% of world total) [2]. It unfortunately cannot be cured be-
cause the damage to the optic nerve cannot be reversed. Early detection is thus essential
for people to seek early treatment and prevent the deterioration of vision [3]. In recent
years, much effort has been put into automated/assisted glaucoma diagnosis systems
based on computer vision. The design of a glaucoma analysis system depends on the
image cues and image modality used.

Among the structural image cues studied for glaucoma diagnosis, those based on the
optic disc and cup are of particular importance. The optic disc is located where the gan-
glion nerve fibers congregate at the retina. The depression inside the optic disc where
the fibers leave the retina via the optic nerve head (ONH) is known as the optic cup. The
boundaries of the cup and disc structures need to be identified as it facilitates evaluation

� This work is funded by Singapore A*STAR SERC Grant (082 101 0018).

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAI 2011, Part III, LNCS 6893, pp. 1–8, 2011.
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of glaucoma cues such as cup and disc asymmetry and large cup-to-disc ratio (CDR),
defined as the ratio of the vertical cup diameter to the vertical disc diameter [4]. The
CDR value can be determined by planimetry from color fundus images after the optic
disc and cup are outlined manually. Since it is very time consuming and labor intensive
to manually annotate the cup and disc for each image, computer vision methods have
been proposed to automatically segment the disc and cup in fundus images.

In previous work, researchers have mainly focused on automated segmentation of
the optic disc [5], using various techniques such as intensity gradient analysis, Hough
transforms, template matching, pixel feature classification, vessel geometry analysis,
deformable models and level sets [6][7]. In this paper, we focus only on the challenging
cup detection problem [8][9], using a large clinical dataset called ORIGA−light [10]
in which the ground-truth of discs and cups is marked by a team of graders from a
hospital. Unlike previous segmentation based algorithms, which classify each pixel as
cup or non-cup, our technique identifies a cup as a whole, based on sliding windows
and machine learning.

2 Sliding Window Based Cup Detection

In this work, we start with a disc image for cup detection, which may be obtained using
methods such as [6]. Different from previous image processing based techniques, a
general sliding window based learning framework is proposed for cup localization.

2.1 Sliding Windows

From the suggestion of doctors and graders, in this paper we represent the localized
disc by a non-rotated, arbitrary-sized ellipse denoted by its central point (U, V ), cor-

responding description function (x−U)2

U2 + (y−V )2

V 2 = 1, and rectangular bounding box
delimited by (1, 1) and (2U − 1, 2V − 1). With the disc image, we search for the
candidate cup by sampling non-rotated ellipses at various aspect ratios represented as
(u,v, r, s)Nw×4, where (u,v, r, s) is the description matrix of all the cup candidates
and Nw is the number of cups. For the ith cup candidate denoted as (ui, vi, ri, si), its

description function is (x−ui)
2

r2
i

+ (y−vi)
2

s2
i

= 1 and |ri| + |ui| ≤ |U |, |si| + |vi| ≤ |V |.
Cup candidates are generated by sampling values of (pu

i , p
v
i , p

r
i , p

s
i ). In this work, we

empirically set (ui, vi, ri, si) = (U · pu
i , V · pv

i , U · pr
i , V · ps

i ), where pu
i ∈ [0.75, 1.25],

pv
i ∈ [0.75, 1.25], pr

i ∈ [0.2, 1] and ps
i ∈ [0.2, 1] with a sampling interval of 0.06. In the

detection phase, with this setting, for the input discs with different sizes, Nw = 6691
cup candidates from each disc image can be obtained with the same sampling values of
{(pu

i , p
v
i , p

r
i , p

s
i )|Nw

i=1}.

2.2 Feature Representation

Features play an important role in computer vision applications. In this paper, we in-
troduce a new region based color feature for cup detection. Similar to segmentation
based approaches, it takes advantage of color differences between cup and disc regions
in fundus images. However, it additionally accounts for the elliptical shape of a cup and
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the blood vessels that run through it, which often mislead segmentation algorithms. We
extract features using the following steps:

1. For a given disc image, the green, blue, hue and saturation channels are computed
from the color image. Since the red (RGB model) and value (HSV model) channels
differ little between the disc and cup, they are not used in this work. We linearly
scale hue and saturation values into [0,255] for consistency with the green and blue
color channels. For each color channel, its values are histogrammed by quantization
with different bin numbers B = {Bn|Nn=1} such that each bin has an equal (or as
equal as possible due to quantization) number of pixels, giving equalized channels.
In the experiments, we use B = {3, 4, · · · , 9, 10, 12, 16, · · · , 28, 32}.

2. For each color channel and each number of bins Bn ∈ B, we form three types of
features: 1) L1 normalized histogram of the candidate cup region; 2) L1 normal-
ized histogram of the candidate non-cup region within the disc; 3) for each of the
Bn bins, the proportion of cup pixels with respect to all the pixels within the disc.
Determining the optimal bin numbers in each color channel is non-trivial, so we
used multiple bin numbers to generate redundant features and then employ a group
sparsity based approach to select the most effective and discriminant features. Fi-
nally, each feature is represented as a Bi dimensional vector, and we refer to each
type of feature for a given color channel and bin number as a group.

3. For a candidate cup in a specific disc, referred to as a “cup-disc” candidate, its
original feature fi is obtained by concatenating 3 types of features over 4 color
channels and multiple bin numbers. In our experimental setting, this leads to a
feature dimension of |fi| =

∑N
n=1 3 × 4 ×Bn = 12

∑N
n=1 Bn = 2208.

As illustrated in Fig. 1, after the green channel image is histogrammed into three bins,
the first bin (illustrated as black pixels) occupies most of the vessel region, the second
bin (grey color) mainly occupies the non-cup region, while the third bin (white color)
occupies most of the cup region. Also, it can be observed that the equalized channels
are more clear and they facilitate distinguishing different components, since they are
relatively insensitive to illumination condition (e.g., see the hue channel). For the cup
detection task, it is unclear which color channels to use and how many bins is optimal
for a given channel, so we apply statistical learning methods to select features from
this large redundant feature representation and use only the selected features for cup
localization.

2.3 Feature Selection Based on Group Sparsity Constraint

Identifying and using only the effective elements of the original feature can bring higher
precision and speed. For a cup candidate in the training set with an original feature fi
consisting of g feature groups, we denote its regression value (i.e., the score obtained
from its overlap ratio with the clinical ground-truth) as zi ∈ [0, 1]. We adopt the linear
regression model ωT fi + μ to obtain the estimated value, where ω is the weighting
vector and μ is the bias. We minimize the following objective function:

min
ω,μ

l∑
i=1

‖zi − ωT fi − μ‖2 + λ

g∑
j=1

‖ωj‖2 (1)
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Fig. 1. Grouped feature extraction for cup localization. (a) (b) (c) and (d) represent green, blue,
hue and saturation color channels, respectively.

where ωj is the corresponding weight of the jth feature group, l is the number of train-
ing samples and λ is used to control the sparsity of ω. In Eq. (1), the first term represents
the regression error and the second term is a L1,2-norm based regularizer to enforce
group sparsity. Considering the features are intrinsically organized in groups, we use an
L1,2-norm based regularizer to select features from only a sparse set of groups. In the
experiments, we use the group-lasso method in [11] to solve Eq. (1).

After ω is obtained, it can be used as a feature selection mask to generate the final
features, i.e., the jth group of features is selected when ‖ωj‖2 > 0. We represent the
feature extracted from the ith cup-disc training sample after feature selection as xi.
The lower dimension of the final feature xi leads to faster feature extraction and cup
detection in the testing phase when compared with using the original 2208-D feature.

2.4 Non-linear Regression Model

After feature selection, we introduce a kernelized ε-SVR to further improve accuracy:

min
w,γ,ξ,ξ∗

1
2
wTw + C

l∑
i=1

(ξi + ξ∗i ) s.t.

⎧⎪⎨⎪⎩
wTφ(xi) + b− zi ≤ ε + ξi,

zi − wTφ(xi) − b ≤ ε + ξ∗i ,

ξi, ξ
∗
i ≥ 0, i = 1, · · · , l

(2)

where xi is a training sample after feature selection, ξi and ξ∗i are slack variables for
ε-insensitive loss, C is a regularization parameter, wTφ(xi)+b is the non-linear regres-
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sion function with w as the weight vector in the feature space, b as the bias term, and
φ(·) is the non-linear function mapping xi from the original space to a higher dimen-
sional space. LibSVM toolbox [12] is used to solve this problem in our implementation.

In the testing phase, the feature xi is extracted directly from the ith cup candi-
date (i = 1, 2, · · · , Nw) in the test disc image based on the feature selection mask
ω. Then the regression values of all the cup candidates are calculated, denoted as
γ = (γ1, · · · , γi, · · · , γNw)T . We sort γ in descending order and obtain the final detec-
tion result using the non-maximal suppression (NMS) of the next section.

2.5 Detection Result Fusion with NMS

Various NMS methods have been proposed to reduce redundancy in sliding window
based detection. Let us denote the cup candidates as D = {D1, D2, · · · , DNw}, where
Di is represented as (ui, vi, ri, si). Note that the cup candidates are sorted according to
the regression value γi. A detection result can simply be computed as the mean of the
top T candidates with the highest regression values, DT : (uT , vT , rT , sT ).

Since the top T candidates Di|Ti=1 may not all be of high accuracy, we perform the
following steps to handle outliers, similar to majority voting:

1. Initialize a zero matrix O(2U−1)×(2V −1) of the same size as the disc image.
2. For each cup candidate Di|Ti=1, add a vote for each pixel that lies within Di.
3. Locate the minimal rectangular bounding box BNMS : (El, Er, Et, Eb) containing

the pixels with no fewer than ρ·T votes, where El, Er , Et and Eb represent the left,
right, top and bottom bounds, respectively, and ρ is a threshold empirically fixed to
0.75 in this work.

4. The final detected cup is represented by the ellipse: ( Er+El
2 ,

Et+Eb
2 ,

Er−El+1
2 ,

Et−Eb+1
2 ).

3 Experiments

In this section, we describe the evaluation criteria and experimental setting, then ana-
lyze the two main steps in our framework, i.e., the group sparsity based feature selec-
tion and candidate cup ranking by using RBF based ε-SVR, through comparisons of
three cup detection methods. The first method (referred to as feature selection+ε-SVR)
uses the group sparsity based feature selection method to obtain a low-dimensional
feature and then performs RBF based ε-SVR to rank the cup candidates. The second
method (referred to as feature selection+simple ranking) uses ωT fi to directly rank the
cup candidates after obtaining ω from feature selection. In the third method (referred
to as ε-SVR), we directly perform RBF based ε-SVR ranking using the original fea-
ture fi without conducting the feature selection process. We also compare our feature
selection+ε-SVR approach with level-set based segmentation methods [6][9].

3.1 Cup Detection Evaluation Criteria

Three evaluation criteria are commonly used for cup detection/segmentation, namely
non-overlap ratio (m1), relative absolute area difference (m2) [13] and absolute cup-to-
disc ratio (CDR) error (δ), defined as:
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m1 = 1− area(Edt

⋂
Egt)

area(Edt

⋃
Egt)

, m2 =
|area(Edt) − area(Egt)|

area(Egt)
, δ =

|ddt − dgt|
R

(3)

where Edt denotes a detected cup region, Egt denotes the ground-truth ellipse, ddt is
the vertical diameter of the detected cup, dgt is the vertical diameter of the ground-truth
cup, R = 2V − 1 is the vertical diameter of the disc, and 0 < ddt, dgt ≤ R.

3.2 Experimental Setup

Training samples. The ORIGA−light dataset is divided into two sets SA and SB , which
consist of 150 images and 175 images, respectively. In the training phase, 500 sam-
ples including one ground-truth cup and 499 randomly generated cup candidates are
obtained for each of the 150 disc images from set SA. In total, we have 75,000 cup
candidates in the training set. The method for generating training cup candidates in the
training phase is designed so that the windows of the training cup candidates and those
examined in the testing phase have different description parameters (u, v, r, s). We then
use both image sets for testing our algorithm.

Parameter setting for feature selection. For each cup-disc candidate, its original feature
fi is extracted, and the regression value corresponding to the overlap ratio (1 −m1) of
the cup candidate region and the ground-truth ellipse is also calculated using Eq. (3).
Only the ground-truth cup region will have a full score of 1. We solve the problem in
Eq. (1) using the group-lasso tool [11] to obtain ω by empirically setting the parameter
λ = 0.01. According to the obtained values of ‖ωj‖2, 993 of 2208 feature dimensions
are selected. Using only 44.97% of the original features leads to significant acceleration
in detection speed.

Parameter setting for RBF based ε-SVR. The well-known Lib-SVM toolbox [12] is
used to train the ε-SVR model. We perform cross-validation to determine the opti-
mal parameters by setting the parameters as C ∈ {10−3, 10−2, · · · , 102, 103}, ε ∈
{10−3, 10−2, 10−1}, p ∈ {10−3, 10−2}, and g = 2k · 1

2σ2 with k ∈ {−7,−5, · · · , 5, 7},
where p is the convergence threshold in the training phase and σ2 is the mean of all the
Euclidean distances between any two training samples. The samples xi|li=1 are ob-
tained by applying the feature selection mask ω onto the original features fi|li=1. To
avoid overlap between the training and testing samples in the cross-validation process,
8000 randomly selected samples and the ground-truth cups from the first 100 images
are used for training, while another 6000 randomly selected samples and the ground-
truth cups from the remaining 50 images are used for testing. After conducting cross-
validation, the optimal parameters were determined to be C = 10, p = 10−3, k = −3
and ε = 0.001. With these parameters, all of the 75,000 samples are used to train an
ε-SVR model for the testing phase.

3.3 Comparison of Three Methods in Our Framework

We compared the three methods to show the effectiveness of each step of our frame-
work. The same cross-validation method is used to determine the optimal parameters of
the ε-SVR method for a fair comparison. The results are listed in Table 1. From it, we
have the following observations:
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Table 1. Comparison of three methods in our framework and level-set based methods

Method Set SA Set SB SA&SB

Evaluation criteria m1 m2 δ m1 m2 δ m1 m2 δ

Feature Selection+ε-SVR 0.254 0.252 0.081 0.289 0.409 0.106 0.268 0.315 0.091
Feature Sel.+Simple ranking 0.301 0.398 0.115 0.344 0.643 0.143 0.324 0.530 0.130

ε-SVR 0.269 0.314 0.101 0.320 0.484 0.128 0.290 0.382 0.112
Level-set [6] 0.458 0.625 0.137 0.552 1.189 0.214 0.495 0.847 0.162

Level-set+Hist-analysis [9] 0.458 0.519 0.119 0.491 0.859 0.159 0.476 0.702 0.140
Relative error reduction to [9] 44.5% 51.5% 31.9% 41.1% 52.4% 33.3% 43.7%55.1%35.0%

1. Comparing feature selection+ε-SVR to feature selection+simple ranking shows that
the RBF kernel based ε-SVR is better than simple ranking using the selected fea-
tures from our feature selection method. This demonstrates better generalization
ability of ε-SVR, which is consistent with previous work on image classification.

2. Comparing feature selection+ε-SVR to ε-SVR shows that group sparsity based fea-
ture selection also improves performance by selecting and using the most effective
and discriminant features. Moreover, it accelerates the detection procedure by about
60%. We also observe that the performance improvement from feature selection+ε-
SVR over ε-SVR is not as large as that from feature selection+ε-SVR over feature
selection+simple ranking, possibly because ε-SVR also tunes the weight of each
feature dimension and thus acts as a kind of feature selection.

3.4 Comparison with Level-Set Based Segmentation [6],[9]

One of the few methods for both cup and disc segmentation is the level-set method of
[6], which first identifies the pixels that belong to the cup region, then uses a convex
hull method to generate an ellipse. In [9], histogram based analysis of the color pixel
intensity together with multiple method fusion are also employed to further improve cup
detection accuracy. Table 1 compares our method to these two level-set approaches1.
Compared with the more advanced approach [9], our method is shown to significantly
improve cup localization accuracy in both sets SA and SB , and m1 and CDR error (i.e.,
δ) are reduced by 43.7% and 35.0%, respectively. We note that all methods obtain better
performance on set SA, possibly because of the data distribution itself. Moreover, it is
worth mentioning that the relative CDR error reduction in set SB is more significant
when compared with that in set SA.

3.5 Detection Speed and Limitations

The experiments were carried on an eight-core 2.67GHz PC with 16GB RAM using
the Matlab Parallel Computing Toolbox. In our approach, the extraction of the origi-
nal feature takes about 6 minutes per image, while feature selection reduces the time

1 We did not compare with the Haar+Adaboost method for general object detection, because the
cup detection task was formulated as a regression problem, not a binary classification problem,
and the Haar feature is not suitable for objects with varying aspect ratios.
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cost by about 60%. The RBF based ε-SVR takes about 1 minute per image. The NMS
takes about 0.2 minutes per image on average. The main time cost is for feature extrac-
tion, and the proposed sparsity based feature selection greatly accelerates the detection
speed. In addition, from our observations the proposed method does not handle large
cups as effectively, because NMS suppresses the rim of the cup.

4 Conclusion

We proposed a sliding window based learning framework with a newly developed fea-
ture for cup detection in glaucoma diagnosis. Tested on a large clinical dataset with three
evaluation criteria, it achieves a 26.8% non-overlap ratio (m1) with manually-labeled
ground-truth, a 31.5% relative absolute area difference (m2) and a 0.091 absolute CDR
error (δ). In future work, we plan to elevate performance using new features or by in-
troducing domain-specific knowledge on this problem.
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Abstract. Detecting vascular lesions is an important task in the diag-
nosis and follow-up of the coronary heart disease. While most existing
solutions tackle calcified and non-calcified plaques separately, we present
a new algorithm capable of detecting both types of lesions in CT images.
It builds up on a semi-supervised classification framework, in which the
training set is made of both unlabeled data and a small amount of data
labeled as normal. Our method takes advantage of the arrival of newly
acquired data to re-train the classifier and improve its performance. We
present results on synthetic data and on datasets from 15 patients. With
a small amount of labeled training data our method achieved a 89.8%
true positive rate, which is comparable to state-of-the-art supervised
methods, and the performance can improve after additional iterations.

1 Introduction

As the evaluation of coronary lesions is challenging and tedious, and acquiring
moderate expertise in coronary CT angiography (CTA) may take more than
one year [1], a variety of methods has been proposed to perform this detection
automatically. Most of the algorithms have been directed towards abnormality
modeling, i.e. identifying the particularities of lesions. As the latter are hetero-
geneous by nature, and obtaining a model that copes with all possible abnormal-
ities is difficult, most approaches have tackled the segmentation of one type of
lesion: calcified plaques [2] or soft plaques [3]. However, these methods often rely
on different image acquisition techniques for each task (e.g. non-enhanced CT
for calcium quantification, contrast-enhanced CT for lumen segmentation and
Dual-Source CT for soft plaque locating), which makes it difficult to combine
them, in order to simultaneously tackle the automated detection of both types
of plaques. Recently, a novel family of methods has made use of machine learn-
ing techniques to simultaneously detect the different forms of lesions [4]. Since
such methods use supervised classification schemes, the set of examples used
for training has to be highly reliable. Unfortunately, it is very expensive to col-
lect labeled data that are accurate, as well as representative of all types of lesions.

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAI 2011, Part III, LNCS 6893, pp. 9–16, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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A first attempt to use an unsupervised scheme has been proposed in [5]. However,
it failed to distinguish bifurcations from actual lesions.

To overcome these shortcomings, here we propose to use a semi-supervised
classification scheme that focuses in the healthy vessel sections. It permits both
calcified and non-calcified lesions to be identified as the complement of the
healthy sections. To do so, we introduced a classification algorithm belonging
to a family named Learning from only Positive and Unlabeled data (LPU). Only
a relatively small amount of healthy sections must be provided at the learning
stage of this algorithm. Its use to identify vascular lesions is novel to the best of
our knowledge. We also proposed a strategy that exploits new data that daily
arrive in a clinical environment, in order to refine the learning and thus improve
the classification performance. Our software has been made publicly available1.

2 Method

In the context of lesion identification, classification methods try to differentiate
between two main classes: the healthy and the diseased one. However, while the
appearance of healthy vascular sections does not vary much, the appearance of
the diseased ones may show a large variability. In other words, the healthy class
is likely to form a dense cluster in the feature space, while the diseased class
is represented by sparse points rather than by a cluster. Moreover, we consider
that obtaining reliable labels of only healthy vessel sections is an easier task than
obtaining representative examples of all types of diseased vessels. Based on these
two statements, we addressed the vascular lesion identification through an LPU
framework using support vector machines (SVM) [6]. Such an algorithm can be
applied to the problems where the training input data is made up of labeled
samples (the healthy class) and a large amount of unlabeled samples coming
from the mixture (healthy and diseased samples).

2.1 Learning from Only Positive and Unlabeled Samples

Let Q = (q1, ..., qk), qi ∈ X be a collection of samples generated according to
a probability distribution Pq and X = (x1, ..., xn), xi ∈ X a set generated ac-
cording to a probability distribution Px. The goal is to identify the elements
of X that are similar to the elements of Q. It is assumed that elements in Q
belong to a particular class (our healthy class), and that elements belonging to
X are actually formed by two different distributions. Some are generated by Pq

(healthy samples) and the rest (the diseased samples) by another process Pother .
Therefore, Px is a mixture distribution:

Px = βPq + (1 − β)Pother where 0 < β < 1. (1)

Porter et al. [6] have defined a relative content density function p that can be used
as a similarity measure to quantify the relative concentration of Pq with respect

1 http://www.creatis.insa-lyon.fr/software/public/DLDalgorithms/

http://www.creatis.insa-lyon.fr/software/public/DLDalgorithms/
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Table 1. The LPU algorithm

Input : Q set- Samples of healthy vessel cross-sections

Input : X set- Samples of unlabeled vessel cross-sections

1 : Assign y=1 labels to Q

2 : Assign y=-1 labels to X

3 : Assign the y=1 class weight of a SVM to 2β
4 : Assign the y=-1 class weight of a SVM to 1-2β
5 : Train the SVM

Select f that minimizes R(f)
6 : Classify samples in X using the trained model M

Output : Classified X samples

to Px, and which is given by the Radon-Nikodym derivative p = dPq/dPx. Given
a threshold ρ, the set {x ∈ X : p(x) > ρ} contains samples that are more likely
to be generated by Pq than by Pother.

The latter problem can be solved as a density level detection problem, where
a function f is constructed so that it approximates the set {p > ρ} by means of
the set {f > 0}. Steinwart et al. [7] have proposed a risk function R that can
be estimated from sample data, and serves as a criterion to assess the quality of
the approximation of {p > ρ} by {f > 0}:

R(f) =
2β

1 + 2β
1
|Q|

∑
x∈Q

I(f(x) ≤ 0) +
1

1 + 2β
1
|X |

∑
x∈X

I(f(x) > 0), (2)

where ρ = 1
2β , I(·) = 1 if the argument is true and 0 otherwise.

The main advantage of defining such a risk function R is that it allows us
to use a SVM in order to choose a function f that minimizes R [7]. For this
purpose, a surrogate problem is constructed by automatically assigning labels
y to the available data. The required steps to build the surrogate problem and
solve the LPU algorithm are outlined in Table 1.

Let us note however, that the LPU formulation is theoretically valid in the
infinite sample limit, i.e. |X | = ∞. Additionally, the problem we tackle is highly
unbalanced, i.e the cardinality of one class is much larger than that of the other
one (in our case, this corresponds to a true ρ value close to 1). With unbalanced
classes most learning methods tend to favor a response that assigns all samples
to one class, which can worsen when combined with finite sample effects. Since
infinite samples cannot be achieved, it is at least desired that |X | � |Q|.

2.2 LPU in a Clinical Environment

In the LPU formulation unlabeled data makes part of the training set. This
key difference w.r.t. supervised classification approaches is an advantage in two
aspects. First, the training set can be easily augmented since no labels are re-
quired for the X set. Second, it is desirable and feasible to increase the training
set without great risk of overfitting.
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Fig. 1. LPU in a clinical environment. Positive samples are those identified as healthy
(either by the algorithm or an expert), negative ones are those classified as diseased,
and unlabeled ones are samples that belong to the X set before classification.

Based on this key feature, we proposed to progressively increase the two sets
that make up the training data set: the addition of samples to Q aimed at nor-
mality description improvement, whereas the increase of X kept the relation
|X | � |Q| and reduced the finite sample effect. Consequently, we suggested to
periodically re-train the model M after new data incorporation, instead of keep-
ing it static. Our proposal suits the clinical data workflow where new unlabeled
data arrive daily. Moreover, no additional labeling is required to exploit the ar-
riving data. The algorithm (Fig. 1) starts with an initial pair of sets, unlabeled
data X1 and (manually) labeled data Q1, then it iterates as follows:

1. Training: A pair of sets Qi and Xi is used to train a model Mi.
2. Classification: The model Mi is used to label the data from Xi. A clinician

validates the labels corresponding to actual lesions (subset denoted X−
i ).

3. Set increase: This step is performed for both Q and X sets.
(a) Among the samples that the clinician did not consider as lesions (subset

denoted X+
i ) a sub-subset X̌+

i is randomly removed from the set Xi and
combined with the set Qi to build up the increased set Qi+1 = Qi ∪ X̌+

i .
(b) At the arrival of newly acquired data, this is combined with the subset

Xi \ X̌+
i to make up the increased set Xi+1.

4. Loop: The algorithm jumps to the step 1 in order to obtain a new refined
model Mi+1 by using the increased sets Qi+1 and Xi+1 for training. For this
purpose, the labels previously assigned to Xi are considered as unavailable.

2.3 Features

To select the features that fit our problem we followed some of the guidelines
in [8]. We used a combination of metrics that are able to capture both the circular
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shape with radially decreasing intensity profiles of healthy vessel cross-sections,
and the divergence from such typical patterns. However, we used a different
selection strategy based on the empirical risk R minimization. Four metrics cal-
culated in cross-sections orthogonal to the vessel centerline (Concentric rings [5],
Core, Hessian eigenvalues and Flux [9]) were kept.

3 Experiments and Results

The LPU algorithm was solved using the LIBSVM software [10] with a Gaussian
radial basis function (RBF) kernel. The SVM regularization term λ and the σ2

parameter of the RBF kernel were optimized through a grid search. Different
β ∈ [0.1, 0.2, ...0.80, 0.81, 0.82, .., 0.98, 0.99] values were tested. The selection of
the optimal β value was included in the optimization process. For every {λ, σ, β}
combination, the empirical risk R associated with f , was calculated according
to Equation 2. The learned decision function f , minimizing the empirical risk,
was applied on the X set to evaluate the performance of the method.

We first evaluated our method on synthetic images with known ground truth.
We then applied it to 3D cardiac CT data sets, where lesions had been annotated
by an expert for the purpose of evaluation only. In our experiments, lesion detec-
tion was evaluated using three measures: true positive rate TPR = TP

TP+FN , true
negative rate TNR = TN

TN+FP and balanced error rate BER = 1 − TPR+TPN
2 .

Here TP denotes the number of correctly classified diseased cross-sections, TN
the number of correctly classified healthy cross-sections, while FP and FN re-
spectively are the numbers of falsely classified healthy and diseased cross-section.
We preferred the use of BER instead of the commonly used accuracy, since the
latter is not very meaningful in highly unbalanced problems as the one we tackle.

3.1 Synthetic Data

We first evaluated the performance of our method on 70 artificially generated
volumes containing a variety of cases typically encountered in vascular analysis.
Phantoms were created using the typical Hounsfield Unit values that are found in
CT images for blood, background and plaque components, as well as the typical
image dimensions and voxel size. Gaussian noise was also added, resulting in a
contrast-to-noise-ratio value of 10.

To demonstrate the effectiveness of the iterative increase of the training set,
we simulated five iterations. The cardinality (|Q|, |X |) at each iteration was as
follows: (500, 15000), (1000, 19000), (1200, 22000), (1300, 22000), (1600, 23000).
A sixth case aimed at illustrating the situation, where the condition |X | � |Q|
is broken, with (|Q|, |X |) = (1600, 2000).

The LPU algorithm had a good performance in terms of TPR, which is de-
sirable for disease detection (Fig. 2). As more samples were included in the sets,
the TNR improved. Since the TPR remained unchanged, the total error (BER)
decreased. The 6-th case confirmed the expected poor performance of LPU when
the condition |X | � |Q| is broken.



14 M.A. Zuluaga et al.

Fig. 2. Evolution of TNR, TPR and BER as a consequence of the modification of Q
and X datasets. Left, 5 iterations in synthetic data, and a 6-th case, where |X| � |Q|
does not hold. Right, 13 iterations using patient data. Final TNR, TPR and BER values
were 86.7%, 83.8% and 14.2%, respectively.

3.2 Patient Data

Fifteen cardiac CT datasets, with centerlines available in a total of 53 arteries,
were obtained from two different sources: Hôpital Louis Pradel (Bron, France)
and Rotterdam Coronary Artery Algorithm Evaluation Framework [11], the lat-
ter containing data acquired at the Erasmus Medical Center (Rotterdam, The
Netherlands). Cross-sections orthogonal to the centerlines were calculated, from
which the required features were extracted. Additionally, each cross-section was
labeled as normal or abnormal by an observer. These annotations were used
to evaluate the performance of the classifier and a small percentage of anno-
tated normal cross-sections were used to build up the initial set Q1. At the first
iteration, we used normal data from a healthy subject (|Q1| = 426) and unla-
beled cross-sections (|X1| = 1148) from two patients. Due to a limited amount
of annotated data available for evaluation, only one patient was added at every
new iteration. This allows us to demonstrate the behavior of our method in real
data, although in clinical practice several patients may arrive daily. At the final
iteration, the cardinalities of the sets were: |Q13| = 886, |X13| = 12180.

The evolution of the TNR, TPR and BER as a function of the iterations is
presented in Figure 2. Similarly to the synthetic data, the error decreased as new
samples were added to Q and X . LPU showed a tendency to overestimate the
lesions, possibly because the number of labeled samples |Q| = 886 used for train-
ing was not yet sufficiently representative of all normal configurations. However,
despite a small number of training data, the TNR increased from 0.53 to 0.86 as
new samples were added, i.e. the false alarm rate (1-TNR) decreased from 0.47
to 0.14. From the tendency of TPR, TNR and BER (Fig. 2), we believe that le-
sion overestimation can be reduced by using LPU with an increased training set.
Figure 3 shows examples of classified cross-sections in several coronary arteries.

The same definition of TP has been used in [5], so a direct comparison of
the results can be done. In that work, a TPR=0.860 and TNR=0.812 have been
reported. From this information we have computed the BER=0.164. While, our
new proposal gives a lower TPR=0.838, it has a higher TNR=0.867 that can be
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Fig. 3. Lesion detection results. Color-coded labels on a stretched curved planar
reformatted view of different coronary arteries.

explained by the fact that our novel method does not misclassify bifurcations,
contrary to the one in [5]. Our lower BER=0.142 confirms that our overall perfor-
mance is better. Another related work [4] lacks a clear definition of the evaluation
measurement unit, making direct comparison uneasy. Their evaluation has been
performed in terms of detected lesions, i.e. a lesion is correctly detected (TP) if
at least one cross-section within the extent of the lesion is detected as diseased.
The available information permitted us to compute their TPR=0.890. Using the
latter definition of TP, our approach gave a slightly better TPR=0.898.

4 Conclusions

We proposed a new semi-supervised algorithm to detect coronary artery lesions
in CTA images. The method can achieve a high detection rate (TPR) even when
a small amount of labeled training data is available. Its false alert rate (1-TNR)
can be substantially reduced by increasing the training set, as new data arrive
and new normal samples are validated. The improvement is guaranteed since
adding new samples reduces the finite sample problem. However, recovery is
not guaranteed if the user erroneously validates misclassified samples. The com-
putational time increases with the size of the sets Q and X . After a number
of iterations, the classification error may not significantly decrease despite the
inclusion of additional samples. Therefore, the optimal trade-off between com-
putational time and capacity of improvement is to be carefully evaluated. Let
us note that the LPU formalism uses only one type of labels (here ’normal’) to
train the classifier. It is not straightforward to use the diseased samples correctly
labeled in previous iterations, in order to train the model in the next iterations.
Future work should attempt to overcome this limitation.
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van Pelt, N., Mollet, N.R., Cademartiri, F., Weustink, A.C., Meijboom, W.B.,
Witteman, C.L.M., de Feyter, P.J., Krestin, G.P.: Learning curve for coronary CT
angiography: what constitutes sufficient training? Radiology 251, 359–368 (2009)

2. Saur, S.C., Alkadhi, H., Desbiolles, L., Székely, G., Cattin, P.C.: Automatic detec-
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Abstract. This paper presents a general discriminative dimensional-
ity reduction framework for multi-modal image-based classification in
medical imaging datasets. The major goal is to use all modalities si-
multaneously to transform very high dimensional image to a lower di-
mensional representation in a discriminative way. In addition to being
discriminative, the proposed approach has the advantage of being clini-
cally interpretable. We propose a framework based on regularized tensor
decomposition. We show that different variants of tensor factorization
imply various hypothesis about data. Inspired by the idea of multi-view
dimensionality reduction in machine learning community, two different
kinds of tensor decomposition and their implications are presented. We
have validated our method on a multi-modal longitudinal brain imaging
study. We compared this method with a publically available classifica-
tion software based on SVM that has shown state-of-the-art classification
rate in number of publications.

Keywords: Tensor factorization, Multi-view Learning, Multi-Modality,
Optimization, Basis Learning, Classification.

1 Introduction

Recently, various structural (e.g. MRI, DTI, etc.) and functional (e.g. PET,
resting state fMRI, etc.) imaging modalities have been utilized to develop new
biomarkers for diagnosis. Multiple image modalities can provide a rich multi-
parametric signature that can be used to design more sensitive biomarkers [12],
[10], [14]. For example, while structural MR images provide sensitive measure-
ments for detection of atrophy in brain regions [8], FDG-PET1 can quantify
reduction of glucose metabolism in parietal lobes, the posterior cingulate, and
other brain regions [5]; combination of both modalities can be very instrumental
in early diagnosis of Alzheimer’s disease [7].

An immediate solution to exploit multiple modalities is to concatenate all im-
age modalities into a long vector, but learning a classifier that generalizes well
in such a high dimensional space is even harder than in the uni-modality case
1 fluorodeoxyglucose positron emission tomography.
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because multi-modality datasets tend to be small. Therefore, dimensionality re-
duction plays an even more important role here. Most existing studies extract
features from a few predefined areas [12]. Zhang et al. [14] suggested extracting
features from a few pre-defined regions of interest (ROIs) and combining them
into one kernel that then input to a kernel-SVM classifier. However, predefined
regions might not be optimal for diagnosis on the individual level, i.e. classifi-
cation of subjects into normal and abnormal groups. Ideally, whole image (e.g.
brain scan) should be viewed as a large dimensional observation and relevant
regions to the target variable of interest (class labels, here) should be derived
from such high dimensional observation. High-dimensional pattern classification
methods have been proposed for morphological analysis [6], [9] which aim to
capture multivariate nonlinear relationships in the data. A critical step under-
lying the success of such methods is effective feature extraction and selection,
i.e. dimensionality reduction. Batmanghelich et al. [2] used a constrained ma-
trix factorization framework for dimensionality reduction while simultaneously
being discriminative and representative; however, that method only works for
uni-modality cases. In this paper, we propose a method inspired by the multi-
view setting in the machine learning community [11], [1]. In the multi-view set-
ting, there are views (sometimes in a rather abstract sense) of the data which
co-occur, and there is a target variable of interest (class labels, here). The goal
is to implicitly learn the target via the relationship between different views [11].
Our approach extends [2] to tensor factorization framework to handle the multi-
modality case, but our formulation and optimization method is substantially
different.

One could concatenate all image modalities of a subject into long columns of
a matrix and simply apply [2] or a similar method. However, the advantage of
extending a regularized matrix factorization to a tensor factorization framework
is that because of the structure of a tensor, various factorizations can be pro-
posed, each of which imply different hypotheses about the data. In this paper,
we introduce two factorizations and explain their connotations. We derive the
factorization by solving a large scale optimization problem.

2 General Framework

The novel method proposed in this paper is based on an extension of a previ-
ously presented framework for uni-modality [3], which we briefly present here
for perspective. Similar to [2], the proposed method reduces the dimensionality
in a discriminative way while preserving the semantics of images; hence it is
clinically interpretable and produces good classification accuracy. We use regu-
larized matrix factorization formalism for dimensionality reduction. Regularized
matrix factorization decomposes a matrix into two or more matrices such that
the decomposition describes the matrix as accurately as possible. Such a decom-
position could be subjected to some constraints or priors. Let us assume columns
of X = [x1 · · ·xn · · ·xN ] represent observations (i.e. sample images that are vec-
torized), and B ∈ RD×K and C ∈ RK×N decompose the matrix such that
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X ≈ BC. K is the number of basis vectors, D is the number of voxels in images
and N is the number of samples. The columns of matrix B (called bk) can then be
viewed as basis vectors and the nth column of C (called cn) contains correspond-
ing loading coefficients or weights of the basis vectors for the nth observation.
The columns bk ∈ B and cn ∈ C are subjected to some constraints which define
the feasible sets B and C. We use variable yn ∈ {−1(abnormal), 1(healthy)} to
denote labels of the subjects.

An optimal basis vector (bk) operates as a region selector; therefore its entries
(bjk) must be either on (i.e. 1) or off (i.e. 0) (i.e. bjk ∈ {0, 1}). Since optimizing
integer values is computationally expensive, particularly for the large dimension-
ality characteristic of medical images, we relax this constraint to 0 ≤ bjk ≤ 1
which can be encoded mathematically by a combination of �∞ norm and non-
negativity (b ≥ 0). Assuming that only certain structures of an anatomy are
affected (e.g. atrophy of hippocampus in Alzheimer’s disease), we can impose
sparsity on the basis vectors which also make them more interpretable. The spar-
sity constraint can be enforced by an inequality constraint over the �1 norm of
the basis vectors. These two properties constitute the feasible set for the basis
vectors (B) as follows:

B := {b ∈ RD : b ≥ 0, ‖b‖∞ ≤ 1, ‖b‖1 ≤ λ3}

where the ratio of λ3/D encodes the ratio of sparsity of the basis vectors.
For the feasible set of coefficients (C), we only assume non-negativity (i.e.

C := {c : c ≥ 0}) because our images are non-negative but this is relaxable
based on the properties of a problem.

In order to find optimal B and C matrices, we define the following constrained
optimization problem:

min
B,C,w∈RK

λ1D(X;BC) + λ2

N∑
n=1

�(yn; f(xn;B,w)) + ‖w‖2

subject to: f(xn;B,w) = 〈BTxn,w〉
bk ∈ B, ci ∈ C (1)

The cost function of the optimization problem consists of two terms: 1) The
generative term (D(·; ·)) encourages the decomposition, BC, to be close to the
data matrix (X); both labeled and unlabeled data contribute to this term. 2)
The discriminative term (�(yn; f(xn,B,w))) is a loss function that encourages a
classifier f(·) to produce class labels that are consistent with available labels (y).
The classifier parametrized by w projects each image (xn) on the basis vectors
to produce new features (vn = BTxn) and produce a label. We use a linear
classifier, hence f(xn,B,w) = 〈BTxn,w〉. In this paper, we set D(X;BC) =
‖X − BC‖2

F , where λ1 is a constant. For the loss function, we choose a hinge
squared loss function: �(y, ỹ) = (max{0, 1− yỹ})2, a common choice in Support
Vector Machine (SVM) literature [3].

There are three blocks in the optimization problem in Eq.(1): w,B, and C
which is only jointly convex. In other words, if any two pairs of blocks, are fixed,
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the problem is convex with respect to the remaining block. The optimization
scheme starts from a random initialization of blocks, fixes two blocks, optimizes
with respect to the remaining one, and repeats this process for each block. The
whole process is repeated till convergence. Optimization with respect to C and w
is not challenging but, due to the large-scale dimensionality of a medical image,
optimization with respect to B requires a specialized method (see [3] for details).

3 Extension to Multi-Modality

Unlike the uni-modality case, in which each voxel stores a scalar value, in the
multi-modality case, each voxel of an image is associated with an array of val-
ues. In Section 2, we stored the training data into a matrix (X); while in multi-
modality case, we need to structure the data into a tensor (X). In fact, in the
general framework (Section 2), the matrix f can be viewed as an order-2 tensor2

in which the first index (rows) enumerates voxels and the second index (columns)
enumerates subjects. We simply extend this matrix to an order-3 tensor in which
the third index (faces) enumerates modalities. One can simply concatenate all
image modalities of a subject into long columns of a matrix and simply apply [2]
or a similar method. However, the advantage of extending a regularized matrix
factorization to a tensor factorization framework is that various factorizations
can be proposed each of which implies different hypotheses about the data be-
cause of the structure of a tensor. In this paper, we introduce two factorizations
and explain their connotations (pictorially represented in Fig.1).

Our method can be viewed as multi-view learning [11]. In the multi-view set-
ting, the goal is to implicitly learn about the target via the relationship between
different views [11]. Depending on how to define targets, we can have differ-
ent variations of the method. For example, if multiple modalities are different
frequencies in spectroscopy imaging, different features extracted from diffusion
tensor image (DTI), or time series in fMRI. One assumption could be that there
is one hidden variable (here basis vectors: B) that is shared across image modali-
ties and class labels. Therefore, both class labels (y) and data (X) are the targets;
we will refer to the method as multi-View(X,y).

Unlike multi-View(X,y), an alternative assumption could be that there is
no hidden variable shared across modalities, hence every modality has its own
basis vectors (B(v)), but projection on these basis vectors collaborate to predict
class labels. For example, different modalities may measure quantities on non-
overlapping regions of a brain (e.g. white matter and gray matter) each quanti-
fying complementary features about the class labels. We refer to this variation as
multi-View(y). This assumption is still different than applying the uni-modality
method separately because B

(v)’s need to collaborate on the discriminative term.

2 The order of a tensor is the number of indices necessary to refer unambiguously to
an individual component of a tensor.
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Fig. 1. The difference between the two proposed factorizations: multi-View(y) ver-
sus multi-View(X, y). There are V modalities stored in the data tensor (X); for
multi-View(y), we need to have V sets of basis vectors (B(1),...,B(V )) and correspond-
ing coefficients (C(1),...,C(V )), while for multi-View(X, y), there is one set of basis
vectors (B) shared across modalities.

The definitions of the generative term (D(·; ·)) and the classifier function
(f(·)) in Eq.(1) for tensor are changed accordingly to multi-View(X,y) and
multi-View(y) (depending on the assumptions on data):

multi-View(X, y): multi-View(y):

D(X;B, C) =
∑V

v=1 ‖X
v − BC

v‖2
F D(X; B, C) =

∑V
v=1 ‖X

v − B
v
C

v‖2
F

f(Xn;W, B) =
∑V

v=1 〈wv,BT
X

v
n〉 f(Xn;W, B) =

∑V
v=1 〈wv, (Bv)T

X
v
n〉

where X and C are tensors of order-3 holding respectively all images and coeffi-
cients of the basis vectors. X

v and C
v are order-2 tensors (i.e. matrix) holding

images and coefficients of vth modality respectively. Xn is a order-2 tensor hold-
ing all modalities of the nth subject and X

v
n is a order-1 tensor (i.e. vector)

holding only vth modality of the nth subject. V is the number of modalities
(views), 〈·, ·〉 and ‖ · ‖F indicate inner product and Frobenius norm respectively.
W is a matrix holding parameters of the classifier function and wv is its vth

column corresponding to the vth modality. Notice that in multi-View(y), the
generative term is separable for each modality but basis matrices (Bv’s) are cou-
pled together through the loss function (�(·, ·)) in Eq.(1); therefore, it is different
than applying the uni-modality algorithm (Section 2) separately and concate-
nating extracted features later for a classifier.

4 Experiments

We acquired a subset of images from a longitudinal brain imaging study for
validation of our method. The objective of this choice was to investigate the
longitudinal progression of changes in brain structure (MRI) and brain function
([15O]-water PET-CBF) in relation to cognitive change in cognitively normal



22 N. Batmanghelich et al.

older adults. We used slopes of CVLT3 score over the follow-up period as a
measure of cognitive function to subdivide the entire cohort into two groups:
top 20% (25 subjects) showing the highest cognitive stability (CN: cognitively
normal), and bottom 20% (25 subjects) showing the most pronounced cognitive
decline (CD: cognitively declining).

All T1-MR images used in this study were pre-processed according to [6] and
registered to a template. Two volumetric tissue density maps [13] were formed
for white matter (WM), gray matter (GM) regions. These maps quantify an
expansion (or contraction) to the tissue applied by the transformation to warp
the image to the template space.

Samples are divided into five folds and 4/5 of samples are used for training
basis vectors (an example of which is shown in Fig.2); projections on these basis
vectors are used as features and are fed to a SVM classifier.

Fig. 2. Two examples of the basis vectors shown in different cuts. Left:
Multi-View(X, y), Right: Multi-View(y) (γ∗ = 100; number of basis vectors is 60).

In uni-parametric dataset, the algorithm is relatively stable as long as λ’s are
chosen within reasonable ranges (see [3]). We set the parameters to the most
frequently chosen parameters used for a uni-modality case on a totally differ-
ent dataset. Numbers reported in Table 1 are produced using such parameters.
Nevertheless, we performed sensitivity analysis with respect to ratio of λ1/λ2

and number of basis vectors, K (see Fig.3). For notational brevity, we used γ∗

for ratio of λ1/λ2 we used for Table1. Different curves in Fig.3 denote differ-
ent ratios of λ1/λ2. As Multi-View(y) is relatively stable with respect to K
and different ratios, performance of Multi-View(X,y) improves as K increases.
Although parameters that are more inclined toward the unsupervised setting
(e.g. λ1/λ2 = 10γ∗) underperform settings that are excessively discriminative
(e.g. λ1/λ2 = 0.001γ∗), are more stable. Weak regularization imposed on the
excessively discriminative settings can explain this observation.

Table 1 reports the average classification rates on the left-out folds for dif-
ferent scenarios and methods. We used a publically available software, called
COMPARE [6], for comparison. The COMPARE method has been applied to many
problems and has been claimed to perform very well. Its variants, i.e. COMPARE
and m-COMPARE, are similar to Multi-View(y) and Multi-View(X,y) respec-
tively. For comparison, we have included Single-View results for each scenario
in which basis vectors are extracted independently and features are concatenated
3 California Verbal Learning Test [4].
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Fig. 3. Sensitivity Analysis: accuracy rates with respect to different number of basis
vectors (K) for various ratios of λ1/λ2. Left:Multi-View(y). Right: Multi-View(X, y)

and fed to the same procedure to find the best parameters for a classifier as the
multi-view methods. Since results shown in the table are column-wise compa-
rable, the highest values in the column are magnified with a bold font in each
column. In general, Multi-View(X,y) or its counterpart m-COMPARE perform bet-
ter. In all columns, at least one of the multi-view methods outperforms the single
view equivalent and the best performance is achieved by Multi-View(X,y).

Table 1. Comparison of classification accuracy rates for different scenarios and dif-
ferent methods on “cognitively normal” (NC) versus “cognitively declining” (CD)
subjects. Results are reported in the format: accuracy (sensitivity,specificity); with
γ∗ = 100; total number of basis vectors in each experiment is 60.

NC vs. CD

(WM,PET) (WM,GM) (GM,PET) (GM, WM, PET)

Multi-View(X, y) 0.82 (0.84,0.8) 0.76 (0.72,0.8) 0.84 (0.88,0.8) 0.94 (0.88,1.0)

Multi-View(y) 0.86 (0.84,0.88) 0.84 (0.8,0.88) 0.78 (0.8,0.76) 0.84 (0.84,0.84)

m-COMPARE 0.88 (0.8,0.96) 0.86 (0.88,0.84) 0.8 (0.8,0.8) 0.86 (0.84,0.88)

COMPARE 0.78 (0.68,0.88) 0.82 (0.76,0.88) 0.82 (0.84,0.8) 0.82 (0.76,0.88)

Single-View 0.84 (0.8,0.88) 0.84 (0.8,0.88) 0.82 (0.84,0.8) 0.8 (0.76,0.84)

5 Conclusion

We proposed a framework that exploits all modalities in a dataset simultane-
ously to reduce dimensionality in a discriminative yet interpretable way. Inspired
by multi-view learning, two variants of constrained tensor factorization are sug-
gested each of which implies different hypothesis about the data. We showed
that the algorithm is relatively robust with respect to choice of parameters and
achieves good classification results. Computational expense of the algorithm is
moderate and as future work, we plan to apply it to case for which number of
modalities is large (e.g. HARDI data or time series).
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Abstract. Recently conducted clinical studies prove the utility of Coronary
Computed Tomography Angiography (CCTA) as a viable alternative to invasive
angiography for the detection of Coronary Artery Disease (CAD). This has lead
to the development of several algorithms for automatic detection and grading of
coronary stenoses. However, most of these methods focus on detecting calcified
plaques only. A few methods that can also detect and grade non-calcified plaques
require substantial user involvement. In this paper, we propose a fast and fully
automatic system that is capable of detecting, grading and classifying coronary
stenoses in CCTA caused by all types of plaques. We propose a four-step ap-
proach including a learning-based centerline verification step and a lumen cross-
section estimation step using random regression forests. We show state-of-the-art
performance of our method in experiments conducted on a set of 229 CCTA vol-
umes. With an average processing time of 1.8 seconds per case after centerline
extraction, our method is significantly faster than competing approaches.

1 Introduction

According to the American Heart Association, Coronary Artery Disease (CAD) is a
leading cause of death in the western world. Every year, about six million patients in
the United States emergency departments are examined for acute chest pain [5]. The
current diagnostic standard is conventional invasive angiography which involves a very
high amount of risk and cost. New generations of cardiac Computed Tomography (CT)
scanners enable the acquisition of Coronary CT Angiography (CCTA) images with un-
precedented quality [2]. In the review article [1], Achenbach has summarized the results
of many clinical studies, comparing contrast-enhanced CCTA with conventional inva-
sive angiography. These results prove CCTA a viable alternative with very high negative
predictive value. However, reading CCTA images requires substantial experience and
only well-trained physicians are able to interpret CCTA reliably [12]. An automated
system that can rule out clinically-relevant stenoses (grade> 50%) in the coronary ar-
teries could be used as a second reader in the absence of an expert physician in the
emergency department.
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Detection and grading of coronary stenoses in CCTA is very challenging due to vary-
ing image quality. In an endeavor to reduce the radiation dose during CT scans, often
images with relatively low signal-to-noise ratio are acquired [2]. Motion artifacts are
frequently encountered despite the routine use of beta blockade to reduce the heart rate.
Gated or modulated acquisition protocols may result in stair-case reconstruction arti-
facts which further complicate the analysis. Finally, coronary arteries follow long and
treacherous paths, extending over only a few voxels in diameter in the distal parts. Even
experts sometimes struggle to give a correct diagnosis due to these challenges [12].

In this work, we present an algorithm for detecting, grading and classifying severe
(i.e. clinically relevant) stenoses along automatically extracted centerlines of the coro-
naries. The contribution of our work is three-fold. First, we introduce a novel centerline
verification step (Section 3.1). Second, a novel regression approach replaces the lu-
men segmentation that is needed for grade estimation (Section 3.2). Finally, in contrast
to previous work, we propose a complete end-to-end and fully automated system that
works on all types of plaques.

2 Related Work

Vessel Tracing. Manual tracing of coronary centerlines in 3D cardiac CT volumes is
a highly tedious task. Many algorithms for automatic tracing of centerlines have been
proposed, the most important of which are reviewed in [8]. Owing to the importance of
the problem, the MICCAI association also organized a competition for automatic and
semi-automatic coronary artery tracking [10]. In our work, the centerlines were traced
using the state-of-the-art method of [6]. The method uses multi-scale medialness filters
in a graph-based algorithm to extract centerlines by computing minimum-cost paths.

Lumen Segmentation. Estimating the cross-sectional area (or the radius) of the vessel
lumen along the centerline is a key feature to detecting and grading coronary stenoses.
But methods relying on exact segmentation of the lumen are slow owing to high com-
putational complexity of the segmentation algorithms. A comprehensive review of all
major lumen segmentation algorithms is provided in [8]. Given a centerline, we pro-
pose a novel, automatic regression-based method to directly estimate the vessel radius,
which is significantly faster than a segmentation-based approach.

Stenosis Detection. In the past, a variety of algorithms have been proposed for detec-
tion of coronary plaques in CCTA. However, most of this work focuses on the detec-
tion of calcified plaques only, e.g., see [14,11]. Fewer methods have been proposed for
fully automatic detection of non-calcified plaques, which are usually harder to detect
and grade with high confidence. For example, the methods proposed in [13] and [15]
need substantial user input in order to localize and grade coronary stenoses. A learning
based method was proposed in [14] which could detect both calcified and non-calcified
plaques. However, this approach does not consider stenosis grade and thus also reports
non-severe lesions which are clinically irrelevant. To the best of our knowledge, the
only system that currently analyzes CCTA for coronary artery disease in a fully auto-
mated way by reporting location, type and severity of coronary lesions is Rcadia’s COR
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Fig. 1. (a) Overview of the four-step approach for stenosis detection, grading and classifica-
tion. (b) Example vessel tree showing the three major coronary arteries: left anterior descending
(LAD), left circumflex (LCX) and right coronary artery (RCA).

Analyzer. Being a commercial product, however, not much detail is known about the
approach. Recent studies evaluating the system were published in [3] and [7].

3 Methods

Given a CCTA image volume, the proposed system can automatically detect and clas-
sify coronary stenoses using the general four-step approach sketched in Fig. 1 a. In the
first step, centerlines of the three major coronary arteries, i.e. left anterior descending
(LAD), left circumflex (LCX) and right coronary artery (RCA) (Fig. 1 b), along with
their branches, are automatically extracted using the method of [6]. The left main (LM)
coronary artery is processed as the common part of LAD and LCX. Using a learning-
based classification approach, the second step verifies the accuracy of the extracted
centerlines and removes parts of the vessel tree belonging to non-coronary regions.
This ensures that the subsequent stenosis detection is only performed along the actual
vessel, thus producing more stable results. The third step employs a learning-based
regression approach to locally estimate the cross-sectional area of the vessel lumen
(which may be narrowed by coronary plaques), along the extracted centerlines. In the
fourth step, candidate stenoses are extracted for each individual segment of the vessel
tree as max-min-max triples of a baseline-corrected and smoothed radius curve along
with a grade estimate. Each candidate stenosis is either discarded (e.g. grade < 50%)
or accepted and classified as calcified, non-calcified or mixed stenosis. This decision
is based on image features as well as features of the candidate stenosis such as length,
cross-sectional area/radius and distance to the distal end of the vessel.

3.1 Centerline Verification

To avoid the risk of missing a potentially diseased coronary vessel, any automatic cen-
terline extraction algorithm must be highly sensitive, especially in low-contrast vessel
regions, which is true for the employed algorithm [6], for example. Thus, the method
should be able to trace centerlines of the vessels occluded by non-calcified plaques, that
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often exhibit the same contrast as the vessel wall. Inevitably, such algorithms are prone
to various types of errors in tracing and centerlines may get wrongly traced into other
arteries or into non-coronary regions like veins, heart chambers, etc. Figure 2 (left)
shows Curved Planar Reformation (CPR) views of some more noticeable examples for
erroneous tracing results of the employed algorithm. Table 1 summarizes the errors in
tracings for 229 volumes with 1472 traced centerlines in the distal vessel regions.

Table 1. Summary of errors in tracing coronary centerlines in the distal vessel regions. A total of
229 volumes were processed and 1472 centerlines were traced.

Error in tracing ≥ 5mm ≥ 10mm ≥ 15mm
# vessels affected 259 (17.6%) 226 (15.4%) 210 (14.3%)
# volumes affected 131 (57.2%) 116 (50.66%) 107 (46.7%)

Clearly, erroneously traced centerlines are susceptible to many false alarms while de-
tecting lesions. Therefore, we propose to use a learning based algorithm for automatic
detection of non-coronary regions along the extracted centerlines. Similar to [11], a
cylindrical sampling pattern for feature extraction, with its axis aligned to the coro-
nary centerline, is employed. We then extract altogether 171 rotation invariant features
along the entire length of the cylinder at varying radii. These features are used to train
a random forests (RF) classifier [4] (100 trees, 14 randomly selected features, stratified
sampling of 8000 examples with replacement). Given an unseen volume, the RF clas-
sifier outputs a probability that a given point on the centerline belongs to a non-vessel
region. After removing outliers using a median filter of width 11, points with scores
higher than a fixed threshold are excluded from further analysis. In our experiments
this threshold was determined as 0.7 to yield a specificity of at least 98%, so that at
most 2% of the points are erroneously discarded (see Fig. 2, right).

3.2 Lumen Estimation

Instead of segmenting the lumen and computing the lumen cross-sectional area along
the vessel centerlines we propose using a non-linear regression approach to directly
estimate the cross-sectional area from local image features.

Alternatively for estimating the cross-sectional area we trained for and estimated
the radius r of an equivalent circle with the same area. Thus, a function for the radius
r(x|p) is estimated that depends on the feature vector x and a set of parameters p that are
learned from a training set T = {(xi, ri)}N

i=1. The training set is constructed from semi-
manual lumen segmentations of coronary arteries by computing cross-sections and the
corresponding radii ri at altogether N centerline points. At the same points, rotation-
invariant features xi are extracted according to [11]. A regression function is learned by
minimizing the squared loss L(p) =

∑N
i=1 (r(xi|p) − ri)

2 on the training set T with
respect to the parameters p. For this purpose an ensemble of randomized regression
trees, i.e. a random regression forest was employed [4]. Formally, each regression tree
models the dependent variable (the lumen radius) as a piecewise constant function,
which results in the following model for the ensemble:
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r(x|p) =
1
T

T∑
t=1

Mt∑
m=1

rt
m I(x ∈ Rt

m) (1)

where I(·) denotes the set indicator function. Thus, for each tree t, the feature domain is
partitioned into M t regions Rt

1, Rt
2, . . . , Rt

M , and in each region the radius is modeled
by a constant rt

m [4]. During training of each tree, the sample is successively partitioned
by thresholding one of the feature values. The optimal split (feature and threshold) is
greedily determined as the one which reduces the squared loss function most. In the
leaves (a region Rt

M ), the radius rt
m is estimated as the average radius of all remaining

examples. While it is possible to stop splitting when the variance within a node and/or
the number of examples drop below certain values, we use fully grown trees in our
experiments, i.e. they were grown until only one example remained in every leave.
For obtaining good generalization performance, it is essential that every tree slightly
differs. This is achieved by training each tree on a resampled training sample (at most
4000 examples drawn with replacement) and by randomly selecting a fraction of the
features (one third, i.e. 57 of 171) to be considered for each split.

Given the feature vector of an unseen example, each regression tree is evaluated by
following its splits from the root to a leaf with an associated radius estimate rt

m. The
random forest averages the estimates of its trees (Eqn. (1)). We used T = 50 regression
trees in our experiments.

3.3 Stenosis Detection and Classification

Candidate stenosis regions are identified and graded using the estimated lumen radii.
The vessel tree is decomposed into disjoint segments so that every segment either starts
at an ostium or a vessel bifurcation. Each segment is then analyzed separately.

First, a baseline curve is computed using binomial filtering (Fig. 3, green). It is sub-
tracted from the original radius curve to obtain a de-trended residual curve which is
again slightly smoothed (Fig. 3, red). The positions of the local optima are extracted;
clearly, local minima and maxima alternate. Every triple (max-min-max) is then re-
garded as a stenosis candidate for which a grade is estimated by

g = 1 −
(

2rmin

rleft + rright

)2

, (2)

where rmin is the minimum radius within, rleft the radius at the left (towards the
ostium) and rright the radius at the right end of the stenosis candidate (Fig. 3, ma-
genta). At the ostia and bifurcations, the grade is estimated with the alternative formula
g = 1 − (rmin/rright)

2 to account for the non-pathologic radius broadening there.
Then it is decided for each stenosis candidate whether it should be discarded or

not. In addition to low grade candidates (< 50%), also short (< 0.9 mm) and narrow
(rright < 1.0 mm) ones are discarded. Candidates close to the distal end of the vessel
(< 7.5 mm) are also discarded since the data quality usually gets too low there.

Finally, using probability scores obtained from two classifiers for the detection of
calcified and non-calcified plaques similar to [11] (Fig. 3, cyan/orange), each accepted



30 B.M. Kelm et al.

stenosis candidate is classified into one of three types, “calcified”, “non-calcified” and
“mixed”‘ (calcified as well as non-calcified parts).

4 Experimental Results

Training of the system was performed using a total of 229 CCTA volumes that were
acquired on several cardiac CT scanners with varying protocols and reconstruction al-
gorithms. The slice distance for these scans varied between 0.3-0.5mm with x-y pixel
spacing being between 0.3-0.4mm. Each scan typically consisted of 200-300 slices. For
training and evaluation, the data was manually annotated. For automatic vessel trac-
ing, errors were annotated. Coronary plaques were labeled with their type (calcified,
non-calcified, mixed) as well as a rough grade (mild, moderate, severe, occluded).

Figure 2 shows cross-validation results for the centerline verification step. Invalid
centerline points are reliably recognized for several types of tracing errors (Fig. 2, Left).
The receiver-operating-characteristic (ROC) curve (Fig. 2, Right) shows that high speci-
ficities as well as sensitivities are attainable. The inferior performance on the RCA re-
sults from the difficulty to distinguish the (invalid) coronary sinus vein from a (valid)
artery. For the centerline verification step a high specificity (> 0.98) is desirable in
order to ensure that no valid parts of the vessel tree are discarded.

Numeric results for the overall system are provided in Table 2. The “by-lesion” sen-
sitivity quantifies how many of the severe non-calcified stenoses are detected while the
“by-vessel” sensitivity quantifies how many of the vessels with severe non-calcified
stenoses are identified. Only the “by-vessel” measure allows to compute the specificity
and negative predictive value (NPV). For an application as a second reader, sensitivity
and NPV are of utmost importance and preferred over specificity, i.e. false positives are
acceptable while false negatives are not. With an overall sensitivity of 97.62%, a NPV
of 99.77% and a specificity of 67.14% the proposed system performs competitive with

Fig. 2. Left: CPR views of wrong centerline tracings obtained using the algorithm of [6]. The first
two are partially incorrect and traced into a heart chamber and a vein respectively. The third is
entirely wrong and traced into a heart chamber. Points detected outside the coronary are marked
with orange ‘+’ sign. Right: ROC curves (sensitivity vs. specificity) obtained with 10-fold cross
validation using 229 volumes on per vessel point basis.
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Table 2. Detection performance on non-calcified plaques (10-fold cross-validation). The system
is tuned towards high sensitivity and NPV to cope with its application as a second reader.

LAD LCX RCA Overall

by-lesion
sensitivity 100.0% 90.0% 95.24% 94.55%
false positives per volume 0.81 1.03 1.13 2.97

by-vessel
sensitivity 100.00% 93.75% 100.00% 97.62%
specificity 75.23% 63.16% 62.86% 67.14%
negative predictive value 100.00% 99.17% 100.00% 99.77%

Rcadia’s system [3,7]. But, while the Rcadia system requires about 10min of process-
ing time per case, on average, our system only needs 1.8 s (up to 3.9 s) after centerline
tracking which completes within a minute.

This advantage can mainly be attributed to excellent performance of the lumen re-
gression step, which provides an accurate estimate of the lumen cross-sectional area
much faster than a segmentation method. To this end, we also compared our results to a
segmentation approach, a learning-based version of the graph cuts approach presented
in [9]. While comparable performance was achieved, the overall processing time of 21 s
(up to 42 s) after centerline extraction was clearly higher with segmentation approach.

A test of the lumen regression (without retraining) on the eight (training) data sets
provided by [10] yielded a bias of 0.18 mm (median 0.19 mm) and a standard deviation
of 0.27 mm (median absolute deviation 0.14 mm). Apart from the bias, which can be at-
tributed to systematic annotation differences, these results agree with the 10-fold cross-
validation results on our data which yielded a bias of 0.01 mm (median 0.002 mm) and
a standard deviation of 0.28 mm (median absolute deviation 0.08 mm).

Fig. 3 shows two examples of patients that have neither been used in training nor the
development of the proposed system. In both cases, the system can locate and classify
all severe stenotic lesions correctly. Note that the right example shows a second, more
distal stenosis for which a grade of about 40% is estimated (cf. graph below the image).
It is thus deemed non-severe and therefore not reported.

Fig. 3. Two examples of patients from unseen data. The presented system detects severe stenoses
caused by both calcified plaques (left) and non-calcified plaques (right). The graph at the bottom
shows the lumen estimate (blue), baseline (green), residual (red), grade estimate (magenta), calci-
fication score (cyan) and the score for non-calcified (soft) plaques (orange) along the vessel center
line. While the system is highly sensitive it only exhibits a moderate number of false alarms. For
the two examples shown above, other severe stenoses were neither present nor detected.
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5 Conclusion

An automatic method for the detection and classification of stenotic lesions in coronary
computed tomography angiography is proposed. The centerline verification step helps
the system cope with tracing errors and vessels with low data quality. Lumen cross-
sectional area is accurately estimated using a regression approach which is considerably
faster than a full segmentation method. A competitive performance is achieved with
significantly reduced computational burden as compared to state-of-the-art methods.
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Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 602–611. Springer, Heidelberg
(2008)

7. Halpern, E.J., Halpern, D.J.: Diagnosis of coronary stenosis with CT angiography compari-
son of automated computer diagnosis with expert readings. Acad. Radiol. 18, 324–333 (2011)

8. Lesage,D.,Angelini,E.D.,Bloch, I., Funka-Lea,G.:Areviewof3Dvessel lumensegmentation
techniques: Models, features and extraction schemes. Med. Image Anal. 13(6), 819–845 (2009)

9. Li, K., Wu, X., Chen, D.Z., Sonka, M.: Optimal surface segmentation in volumetric images–a
graph-theoretic approach. IEEE Trans. Pattern Anal. Mach. Intell. 28(1), 119–134 (2006)

10. Metz, C., Schaap, M., van Walsum, T., van der Giessen, A., Weustink, A., Mollet, N., Krestin,
G., Niessen, W.: 3D segmentation in the clinic: A grand challenge II – coronary artery track-
ing. In: MICCAI Workshop on 3D Segmentation in the Clinic: A Grand Challenge (2008)

11. Mittal, S., Zheng, Y., Georgescu, B., Vega-Higuera, F., Zhou, S., Meer, P., Comaniciu, D.:
Fast automatic detection of calcified coronary lesions in 3D cardiac CT images. In: Proc.
MICCAI Workshop on Machine Learning in Medical Imaging (2010)

12. Pugliese, F., Hunink, M.G.M., Gruszczynska, K., Alberghina, F., Malag, R., van Pelt, N.,
Mollet, N.R., Cademartiri, F., Weustink, A.C., Meijboom, W.B., Witteman, C.L.M., de
Feyter, P.J., Krestin, G.P.: Learning Curve for Coronary CT Angiography: What Constitutes
Sufficient Training? Radiol. 251(2), 359–368 (2009)

13. Rinck, D., Krüger, S., Reimann, A., Scheuering, M.: Shape-based segmentation and visu-
alization techniques for evaluation of atherosclerotic plaques in coronary artery disease. In:
Proc. SPIE Int. Soc. Opt. Eng., vol. 6141, pp. 61410G–9 (2006)

14. Teßmann, M., Vega-Higuera, F., Fritz, D.: Learning-based detection of stenotic lesions in
coronary CT data. In: Proc. of Vision, Modeling, and Visualization, pp. 189–198 (2008)

15. Wesarg, S., Khan, M.F., Firle, E.: Localizing calcifications in cardiac CT data sets using a
new vessel segmentation approach. J. of Dig. Imag. 19(3), 249–257 (2006)



Aggregated Distance Metric Learning (ADM)

for Image Classification in Presence of Limited
Training Data

Gaoyu Xiao and Anant Madabhushi�

Department of Biomedical Engineering, Rutgers University, USA
{gyxiao,anantm}@rci.rutgers.edu

Abstract. The focus of image classification through supervised dis-
tance metric learning is to find an appropriate measure of similarity
between images. Although this approach is effective in the presence of
large amounts of training data, classification accuracy will deteriorate
when the number of training samples is small, which, unfortunately, is
often the situation in several medical applications. We present a novel
image classification method called aggregated distance metric (ADM)
learning for situations where the training image data are limited. Our
approach is novel in that it combines the merits of boosted distance met-
ric learning (BDM, a recently published learning scheme) and bagging
theory. This approach involves selecting several sub-sets of the original
training data to form a number of new training sets and then performing
BDM on each of these training sub-sets. The distance metrics learned
from each of the training sets are then combined for image classification.
We present a theoretical proof of the superiority of classification by ADM
over BDM. Using both clinical (X-ray) and non-clinical (toy car) images
in our experiments (with altogether 10 sets of different parameters) and
image classification accuracy as the measure, our method is shown to be
more accurate than BDM and the traditional bagging strategy.

1 Introduction

Image classification is important in many medical applications, for instance, to
distinguish images representing different pathologies in the context of content-
based image retrieval (CBIR). Another example is to identify common anatom-
ical landmarks for the purpose of image data fusion and image registration. In
general, medical image classification can be explored in two fronts: (1) extract-
ing a representative set of features and (2) finding an appropriate similarity
measure between images. The latter, named distance metric learning, is not as
extensively explored as the former, it therefore has great potential to further im-
prove the image classification accuracy [1]. Most distance metric learning (DML)
methods can be classified as either unsupervised or supervised. The supervised
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approaches, which require training images with user-defined labels or pair-wise
constraints, are more frequently found in medical applications [2].

Boosting framework [3], which uses a set of weak learners to create a strong
learner, has been adopted in DML. Recently, a boosted distance metric learning
method (BDM) using pair-wise constraints was proposed [1]. This method, when
combined with the nearest neighbor search, has been proven to be efficient and
accurate in classifying medical images of multiple classes when size of the training
data is large enough [1].

However, well annotated training data are almost always difficult to obtain in
medical imaging problems. In particular, in supervised multi-class image clas-
sification, there may be only limited number of training images for each image
class (e.g. a brain atlas can contain a large number of anatomical landmarks
derived from a much smaller number of subjects), hence the sample size for each
class may not be statistically reasonable [4] [5]. One way to improve the perfor-
mance of image classification in the presence of limited training images may be
via boostrap aggregating (bagging) [6], wherein bootstrapped training sets are
constructed and classification is then performed on each set. The final classifi-
cation is achieved through a plurality vote. However, when the performance of
each individual classifier is constrained by the size of the training data, further
improvement will be desirable.

In this work, we present a novel method called aggregated distance metric
learning (ADM) to classify a test image, specifically in the context of (a) large
number of classes, and (b) limited training images for each class. Inspired by
the idea of BDM [1] and bagging [6], instead of using the whole training image
set Ω of k classes Ci, (i ∈ {1, · · · , k}) to derive a single distance metric d, our
method first selects M sub-sets Ωm (m ∈ {1, · · · ,M}) from Ω, then performs
BDM on each Ωm to obtain a unique distance metric dm. In order to determine
which class C′ a test image t belongs to, the distance between t and each Ci

is computed using every distance metric dm(t, Ci). Next, all dm are aggregated
M

Σ
m=1

dm (x,Ci) and the class C′ with the smallest aggregated distance is identified
as the class label. It can be seen that ADM is a meta-algorithm based on BDM.
Moreover, it differs from bagging in that bagging conducts a plurality vote on
all classification results of each predictor, while ADM computes the aggregated
distances from all dm to get the classification result.

To our knowledge, there is no previous work trying to combine the merits of
DML and bagging in the context of image classification. In this work, we present
a rigorous theoretical analysis to show why ADM yields better classification com-
pared to BDM. In addition, our method is more accurate than the traditional
bagging approach, as the continuous aggregated distance value is more robust
against the errors caused by small training set sizes. We demonstrate the superi-
ority of ADM over other state of the art methods in experiments involving both
clinical (X-ray) and non-clinical (toy car) image data. We also demonstrate the
potential applicability of ADM in the context of CBIR applications.
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2 Previous Related Work

2.1 Boosted Distance Metric Learning

Yang et al proposed BDM for image retrieval and classification [1], where the
distance function between data points x1 and x2 was defined as:

d(x1, x2) =
T

Σ
i=1

αi (fi (x1) − fi (x2))
2
, (1)

where fi (x) is a binary classification function, and αi are the combination
weights, and T is the number of iterations. For the specific task of image classi-
fication, x1 and x2 may present images or extracted features. With the pair-wise
constraints, the appropriate classification function fi (x) and the combination
weights αi can be learned by using the bound optimization theory [1].

During image classification, all training images are used to learn distance
metric d, which is then used to compute the distance between a test image t and
each training image. Based on these distance values, the class that is closest to
t is considered as the class that the test image should belong to.

2.2 Bootstrap Aggregating (Bagging)

In [6] Breiman showed that classification accuracy can be improved by bootstrap
sampling of the original data set to generate multiple versions of a classifier,
and then using the results from the individual classifiers to obtain a consensus
prediction. A theoretical proof was provided in [6] to explain why the bagging
classifier, on average, performs better compared to the individual classifiers.

3 Classification by Aggregated Distance Metric Learning
(ADM)

3.1 Theoretical Intuition

Inspired by the work of BDM [1] and bagging [6], ADM integrates the best of
both approaches. It first constructs a number of training image sub-sets, then
obtains the aggregated distance from these sub-sets for image classification.

3.2 Constructing Training Image Sub-sets

We construct M sub-sets of training images from the original training data set
Ω. Suppose there are altogether k different classes of training images C1,· · · , Ck,
and each class Ci, (i ∈ {1, · · · , k}) consists of n training images Ci = {(xij , yi)},
(i ∈ {1, · · · , k}; j ∈ {1, · · · , n}), where xij is a training image and yi is the
corresponding class label. Since in this work we are interested in the scenario
where the number of training images for each class, n, is small, we assume k > n.
At each iteration, we randomly choose n classes of training images to form a
training image sub-set Ωm so that we have a total of M =

(
k
n

)
training image

sub-sets Ωm, (m ∈ {1, · · · ,M}), where Ωm consists of all the training images in
the n classes that have been chosen.



36 G. Xiao and A. Madabhushi

3.3 ADM for Image Classification

BDM is performed on each sub-set Ωm to obtain corresponding distance metric
dm(x1, x2) between two images x1 and x2, (m ∈ {1, · · · ,

(
k
n

)
}). Given a test image

t, the aggregated distance between t and a class Ci = {(xij , yi)}, (i ∈ {1, · · · , k};
j ∈ {1, · · · , n}) using dm is defined as:

dm(t, Ci) =
1
n

n

Σ
j=1

dm (t, xij) . (2)

Finally, by summing up all dm, (m ∈ {1, · · · ,M}), M =
(

k
n

)
, we get the

aggregated distance between image t and class Ci as

D(t, Ci) =
M

Σ
m=1

dm (t, Ci) , (3)

so that the class C′ with the smallest aggregated distance is chosen as the class
which t should belong to. Mathematically, this is formulated as:

C′ = argmin
i

[D(t, Ci)]. (4)

Next, we will prove that classification by ADM is better than BDM.

3.4 Proof of Superiority of Classification by ADM over BDM

We give a mathematical proof to show that classification by ADM is more ac-
curate compared to BDM.

Preliminaries. We denote the probability that a test image t is classified into
class C using the m-th distance learning process as ψm(t, C), m ∈ {1, · · · ,M}
(M =

(
k
n

)
if the training image sub-set are constructed according to Section

3.2). We also denote the probability that t is classified into class C using all the
distance learning processes (ensemble classifier) as Ψ(t, C).

Theorem. Given that the correct classification of t is class Cr , then Ψ(t, Cr) ≥
ψm(t, Cr).

Proof. Given that a wrong classification of t is class Cw, then statistically, it
is reasonable to assume

E(dm(t, Cw)) > E(dm(t, Cr)), (5)

where E() is the expectation operation. We introduce an auxiliary variable

gt
m = dm(t, Cw) − dm(t, Cr). (6)

Let E(gt
m) = μ and var(gt

m) = σ2. According to Eq. 5, we have μ > 0.
The probability that t is closer to Cr when measured by the aggregated dis-

tance is

P (D(t, Cw) > D(t, Cr)) = P (
M

Σ
m=1

gt
m > 0). (7)
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According to central limit theorem, the distribution of
M

Σ
m=1

gt
m approaches a

normal distribution N(Mμ, σ2) as M becomes larger (since E(gt
m) = μ and

var(gt
m) = σ2), so that

E(
M

Σ
m=1

gt
m) = Mμ; E(gt

m) = μ. (8)

Since given two distributions with the same variance, the one with a larger
expectation has a larger probability of being positive, we have

P (
M

Σ
m=1

gt
m > 0) ≥ P (gt

m > 0). (9)

Expanding Eq. 9 using Eq. 6, we have

P (
M

Σ
m=1

dm(t, Ci) >
M

Σ
m=1

dm(t, Cr)) ≥ (10)

P (dm(t, Ci) > dm(t, Cr)), where i ∈ {1, · · · , r − 1, r + 1, · · · , k}

Since probability values are non-negative, from Eq. 10 we have

k

Π
i�=r,i=1

(P (
M

Σ
m=1

dm(t, Ci) >
M

Σ
m=1

dm(t, Cr))) ≥ (11)

k

Π
i�=r,i=1

(P (dm(t, Ci) > dm(t, Cr))).

According to the definitions of ψm(t, Cr) and Ψ(t, Cr), we have

ψm(t, Cr) =
k

Π
i�=r,i=1

P (dm(t, Ci) − dm(t, Cr) > 0), (12)

and

Ψ(t, Cr) =
k

Π
i�=r,i=1

P (
M

Σ
m=1

dm(t, Ci) −
M

Σ
m=1

dm(t, Cr) > 0), (13)

by combining Eqs 11, 12 and 13, we have

Ψ(t, Cr) ≥ ψm(t, Cr).� (14)

4 Experimental Results and Discussion

We compared image classification accuracy of ADM, BDM and bagging. For the
bagging approach, BDM classification was done for each sub-set before a plurality
vote. Both clinical and non-clinical images were used. We directly used image
pixel intensities in the metric learning, so that the results obtained in this way
would not depend on any specific image feature. We also performed preliminary
experiments on the potential application of ADM in image retrieval. In order to
do so, following the notation in Eq 3, we define the aggregated distance between t

and xij as D(t, xij) =
M

Σ
m=1

dm (t, xij) and employ this measure for image retrieval.
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Table 1. Comparison of classification accuracy of clinical images using different meth-
ods (ADM, BDM and bagging). The highest accuracy values are shown bolded.

Number of Number of training Number of Classification accuracy
classes (k) image per class (n) test images ADM BDM Bagging

6 3 68 0.50 0.31 0.38

10 3 106 0.39 0.12 0.22

8 4 80 0.43 0.27 0.38

14 4 128 0.39 0.11 0.25

10 5 86 0.43 0.30 0.36

10 6 76 0.69 0.66 0.68

4.1 Experiments Using Clinical Images

The clinical images used are the X-ray images from ImageCLEFmed2009 data
set1, which consists of 12677 images that have already been categorized into 193
classes by experts. We randomly selected images of k classes, and for each class, n
images were randomly chosen as the training images while the remaining images
were used as the test images. The classification of these test images were already
known, which could be used as the ground truth to calculate the classification
accuracy. We varied the values of k and n to change the training data size.

Experiments on image classification: For each set of k and n, image clas-
sification experiments were done using ADM, BDM, and bagging, respectively.
Table 1 shows the result. For all the different values of k and n, our method
achieved the highest classification accuracy. Note that although these accuracy
values are lower than those reported in [1], a significantly smaller number of
training images was employed in this study.

Preliminary experiments on image retrieval: ADM and BDM were also
compared in the context of image retrieval. We randomly selected test image
as the query image to retrieve images in the training data. Figure 1 shows a
few examples of the retrieval when k = 6 and n = 3, where only the 3 closest
matches found by ADM and BDM are shown. Our method gave a better result
as the retrieved images contains fewer irrelevant results.

4.2 Experiments Using Non-clinical Images

The non-clinical images used are the toy car images2, which consists of 255
images of 14 classes. Like experiments using clinical images, the values of k and
n are varied to change the size of training data.

Experiments on image classification: ADM was compared with BDM and
bagging for each set of k and n in the same manner as for the clinical images.
All color images were turned into grayscale before the experiments. Table 2
1 http://ganymed.imib.rwth-aachen.de/irma/datasets en.php
2 http://lear.inrialpes.fr/people/nowak/dwl/toycarlear.tar.gz
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Query Query

ADM ADM

BDM BDM

Fig. 1. Examples of clinical image retrieval result. Green and red bounding boxes in-
dicate relevant and irrelevant retrieval result, respectively. Retrieved images are sorted
according to their similarity to the query.

Table 2. Classification accuracy of non-clinical images using different methods. The
highest accuracy values are shown bolded.

Number of Number of training Number of Classification accuracy
classes (k) image per class (n) test images ADM BDM Bagging

6 3 94 0.86 0.78 0.79

10 3 160 0.64 0.51 0.46

14 4 200 0.61 0.46 0.41

10 6 130 0.69 0.66 0.67

shows the comparison result. For all the different values of k and n, our method
returned fewer irrelevant images.

Preliminary experiments on image retrieval: We also compared ADM
and BDM in the context of image retrieval. Query image was randomly chosen
to retrieve the training images. Figure 2 shows a few examples of the retrieval
when k = 6 and n = 3, where only the 3 closest matches found by ADM and
BDM are shown. Our method again gave a better result.

Query

BDM BDM

Query

ADM ADM

Fig. 2. Two examples of non-clinical image retrieval result. Green and red bounding
boxes indicate relevant and irrelevant retrieval result, respectively. Retrieved images
are sorted according to their similarity to the query.
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4.3 Discussion

We found that our method performs better than bagging when the training data
for each class are limited. We suspect the reason is that the plurality vote, which
is employed by bagging, sometimes results in two or more classes tied in a vote.
In such cases, bagging selects a class randomly. However, when evaluated by the
summation of numeric distances, as in our method, it is less likely to result in a tie.

In Section 3.2, at each iteration, we randomly choose n whole classes of images
to construct the sub-sets. We would like to point out that theoretically, there
should be no restriction on how the sub-sets are constructed. The reason behind
our choice is that all the training images of a certain class can be utilized. Since
the number of training images for each class is already small, further reducing
this number may run the risk of decreasing the statistical representativeness of
the data even more [4]. Also, in this way, we manage to place a reasonable upper
limit on the total number of sub-sets.

5 Concluding Remarks

Accurate image classification is important in many medical applications. Super-
vised distance metric learning has shown great potential in image classification
tasks. However, when faced with limited training data, especially when the num-
ber of training images for each class is small, the classification accuracy may be
severely affected. We presented a novel method called aggregated distance metric
learning (ADM) to classify a test image with limited number of training images.
Our method combines the best of distance metric learning and bagging. Our
method was found to be more accurate compared to both BDM and the bag-
ging approach. We also presented a rigorous theoretical analysis to demonstrate
that ADM is better at image classification compared to BDM. Experimental
results using both clinical and non-clinical image data showed the efficacy of our
method. Future work will involve further testing of our method on additional
data sets and performing more extensive quantitative evaluation.
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Abstract. Classification is one of the core problems in computer-aided
cancer diagnosis (CAD) via medical image interpretation. High detection
sensitivity with reasonably low false positive (FP) rate is essential for any
CAD system to be accepted as a valuable or even indispensable tool in
radiologists’ workflow. In this paper, we propose a novel classification
framework based on sparse representation. It first builds an overcom-
plete dictionary of atoms for each class via K-SVD learning, then clas-
sification is formulated as sparse coding which can be solved efficiently.
This representation naturally generalizes for both binary and multiwise
classification problems, and can be used as a standalone classifier or in-
tegrated with an existing decision system. Our method is extensively
validated in CAD systems for both colorectal polyp and lung nodule de-
tection, using hospital scale, multi-site clinical datasets. The results show
that we achieve superior classification performance than existing state-
of-the-arts, using support vector machine (SVM) and its variants [1, 2],
boosting [3], logistic regression [4], relevance vector machine (RVM) [5,6],
or k-nearest neighbor (KNN) [7].

1 Introduction

Colon cancer and lung cancer are the two leading causes of cancer deaths in west-
ern population. However, these two cancers are highly preventable or “curable” if
detected early. Image interpretation based cancer detection via 3D computer to-
mography has emerged as a common clinical practice, and many computer-aided
detection tools for enhancing radiologists’ diagnostic performance and effective-
ness are developed in the last decade [1–4,6–8]. The key for radiologists to accept
the clinical usage of a CAD system is highest possible detection sensitivity with
reasonably low false positive (FP) rate per case.

CAD system generally contains two stages: Image Processing as extracting
(sub)volumes of interest (VOI) by heuristic volume parsing, and informative fea-
ture attributes describing the underlying (cancerous) anatomic structures; Clas-
sification as deciding the class assignment (cancer, or non-cancer) for selected
VOIs by analyzing features. VOI selection is also called candidate generation, or
CG to rapidly identify possibly anomalous regions with high sensitivity, but low
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specificity, e.g. more than 100 candidates per scan with one to two true positives.
Then dozens or hundreds of heterogeneous image features can be computed per
VOI, in domains of volumetric shape, intensity, gradient, texture and even con-
text [1, 3, 4, 7, 8]. Lastly, the essential goal for classification is achieving the best
balance between high sensitivities and low false positive rates, given VOIs and
associated features.

In this paper, we propose a new sparsity conducted classification framework,
namely dictionary learning as training and sparse coding as testing, for CAD
problems. Sparse signal representation has proved to be a very powerful tool for
robustly acquiring, representing, and compressing high-dimensional signals that
can be accurately constructed from a compact, fixed set of basis. The sparse
representation (related to but different from subspace models of principal com-
ponent analysis, independent component analysis, non-negative matrix decom-
position) is effective in pattern recognition problems, and with link to biological
evidence in human cortex system [9]. To the best of our knowledge, the present
paper is the first reported work of exploiting sparse representation for CAD
classification.

Different from the conventional parametric supervised classifiers of SVM,
RVM, KNN, logistic regression and so on, a nonparametric vocabulary as set
of exemplary atoms (learned as optimal rank-1 data matrix approximations) is
constructed by maximizing its reconstruction power (or minimizing reconstruc-
tion error), within each positive or negative class, given the original training
dataset. Then the testing or classification of a new data sample is accomplished
by solving for the best approximation per vocabulary/class, under various spar-
sity constraints. The proposed classification method is evaluated on two large
scale clinical datasets collected from multiple clinical sites across continents, for
two tasks of colon polyp and lung nodule detections. Our datasets are represen-
tative, but very challenging with large within-class variations for polyp, nodule
class and other anatomical structures in colon and lung volumes. The results val-
idate that this new classification framework can significantly improve the accu-
racy of our baseline computer-aided detection system, using the same set of input
image features, and compare favorably with other state-of-the-arts [1–4,6–8].

2 A Dictionary Approach to Classification

In this section, we present the new sparsity based classification framework for
both binary or multiwise classes. The framework is comprised of two steps: dic-
tionary learning and sparse coding. Unless otherwise noted, all vectors in this
paper are column vectors. Also, ‖ · ‖2 represents the regular Euclidean norm,
and ‖ · ‖0 counts the number of nonzero components of a vector. (·; ·) denotes a
vector or matrix by stacking the arguments vertically.

2.1 Sparse Dictionary Learning

Problem Formulation: Suppose that there are N data samples {yi ∈ R
n : i =

1, · · · , N} of dimension n, and the collection of these N samples forms an n-by-N
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data matrix Y = (y1, · · · , yN ) with each column as one sample vector. Our goal
is to construct a representative dictionary for Y , in the form of an n-by-K matrix
D = (d1, · · · , dK), that consists of K (usually K << N) key features {di ∈ R

n :
i = 1, · · · ,K} extracted from Y . In the dictionary context, di is also called
an atom that represents one prototype feature in the category. This dictionary
D needs to be trained from Y , and should be capable to sparsely represent
all the samples that are in the same category as those in Y . Here by sparse
representation we mean that each yi can be written as a linear combination
of very few atoms in D. In other words, we want to find a dictionary D and
corresponding coefficient matrix X = (x1, · · · , xN ) ∈ R

K×N such that yi = Dxi

and ‖xi‖0 << K for all i = 1, · · · , N .
The problem can be readily formulated as the following minimizations:

min
D,X

N∑
i=1

‖xi‖0, subject to ‖yi −Dxi‖2 ≤ ε, i = 1, · · · , N, (1)

where ε > 0 is the prescribed error tolerance of representation error. The solution
(D,X) of (1) yields a dictionary D which extracts the main features {dk : k =
1, · · · ,K} from samples in Y , and a coefficient matrix X with each column
xi representing the correlations between yi and the dictionary atoms in D, by
minD,X ‖xi‖0.

Solving D,X: Since the objective function in (1) is highly nonconvex and nons-
mooth, the solution is in general nontrivial. However, there are several algorithms
that can be used to well approximate the solutions of (1), and numerous numeri-
cal tests demonstrated that these algorithms are very effective in practice. In this
paper, we use the recently developed K-SVD algorithm [10], which has proved
to be very robust to solve (1), by iterating exact K times of Singular Value
Decomposition (SVD).

Starting from an initial dictionary, K-SVD algorithm approaches the solution
of (1) by alternating the following two steps: the minimization with respect to
X with D fixed, and the update of atoms in D using the current X .

The first step is called the “sparse coding” and can be formulated as

min
xi

‖xi‖0, subject to ‖yi −Dxi‖2 ≤ ε, i = 1, · · · , N, (2)

Although (2) is in general an NP-hard problem, the solution can usually be well
approximated by many pursuit algorithms. In this work, we used the default
sparse coding solver in K-SVD algorithm called the orthogonal matching pursuit
(OMP) [11].

The second step is called the “dictionary update” which modifies the atoms
in D one by one to better represent the data Y . To update dk, the K-SVD
algorithm first finds the index set Ik = {i : xki �= 0}, which is just the set of
indices of yi’s who used dk in representation in the sparse coding step. Then it
applies the singular value decomposition (SVD) of the error matrix

Ek = Yk −DkXk (3)
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where Dk is D with dk replaced by 0. In (3), Yk and Xk collect the columns with
indices in Ik from Y and X , respectively. Finally, K-SVD substitutes dk in D by
the principal singular vector from the SVD of Ek and modifies the coefficients
accordingly. This optimization is sequentially executed for each k = 1, · · · ,K
while keeping all other columns dj (j �= k) fixed. Refer [10] for more details.

Output: The output of K-SVD consists of a trained dictionary D that contains
atoms as features extracted from Y , and a coefficients X that records the sparse
correlation or dependency of each sample yi to these atoms. This learned dic-
tionary D will be employed as a special form of classifier for CAD classification
task. The dictionary D is build from training data Y in a data driven manner,
and is capable to sparsely represent the very majority of data samples that are
similar to those in Y .

2.2 Classification Using Learned Dictionaries

Our sparsity based classification framework, including the dictionary learning
and classifier building, is essentially generative. It is able to handle both binary
and multiwise classification problems.

Suppose that the training samples are given in the form of L (L ≥ 2) cate-
gories, {Y (l) ∈ R

n×Nl : l = 1, · · · , L}, where Y (l) = (y(l)
1 , · · · , y(l)

Nl
) consists of Nl

training samples labeled by l. To design a robust classifier, we apply the K-SVD
algorithm to (1) with Y = Y (l), and obtain the respective dictionary D(l) for
each l = 1, · · · , L. Now D(l) consists of the main exemplary atoms or features
of the l-th category, and all samples belonging to this category can be sparsely
represented by D(l). Furthermore, we can construct the global dictionary D by
concatenating all D(l) as follows

D = (D(1), D(2), · · · , D(L)) ∈ R
n×N (4)

where N =
∑

l Nl. This global dictionary D is used as the classifier in our tests.
In order to determine the label of a new coming sample y, we solve the mini-

mization problem

min
x

‖x‖0, subject to ‖y −Dx‖2 ≤ ε (5)

with the global dictionary D in (4) using OMP [11]. Then we can examine the
coefficient vector x = (x(1); · · · ;x(L)) solved from (5), and classify y to the l-th
category if the nonzero components of x are clustered in the l-th segment of x,
i.e. x(l). That is, a label l is assigned to y if the solution x = (x(1); · · · ;x(L)) of
(5) satisfies

‖x(l)‖0 = max{‖x(m)‖0 : m = 1, · · · , L}. (6)

An ambiguous situation may happen if x(l′) contains the largest component of
x, but has less nonzero elements when compared to x(l). In this case, the label
assigned to y is l instead of l′ according to the criterion (6). However, it is
more intuitive and reasonable to assign y by the label l′, as the key feature of
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y occurs with higher weights in the l′-th category or D(l′). A remedy of this is
to substitutes the �0 norm in (6) by the �1-norm which can retain the sparsity
property and take the magnitudes of the coefficients into account.

An alternative criterion for classification is to solve the per-category objective

min
z(l)

‖z(l)‖0, subject to ‖y −D(l)z(l)‖2 ≤ ε (7)

for l = 1, · · · , L respectively, and obtain the coefficients z(l) ∈ R
Nl for all l =

1, · · · , L. Then y is classified to the l-th category if y appears to be “more”
sparse with respect to D(l), namely,

‖z(l)‖0 = min{‖z(m)‖0 : m = 1, · · · , L}. (8)

This means that D(l) is more capable to extract the key features, or components
of y than other dictionaries, indicating that y should be in the category l.

It is worth noting that the difference between (5) and (7) leads to distinct
criterion (6) and (8). The criterion (6) implies that y is more similar to the
contents in D(l) so it prefers D(l) when exposed to all D = {D(l)} simultaneously.
On the other hand, (8) suggests that D(l) effectively attains the main features of y
and is more capable to represent y sparsely when compared to other dictionaries,
with the same error tolerance ε.

3 Experiments

Data: Our colon CAD dataset contains 429 patients or 858 CT volumes (i.e.,
two prone/supine scans per patient), collected from multiple hospitals in the US,
Canada, Asia and Europe, and acquired using Siemens, GE and Philips scanners.
After the candidate generation process (briefly discussed in Section 1), we obtain
134116 data candidates, out of which 1116 samples are positives belonging to
391 real polyps because one polyp can have multiple instances appeared, and the
rests are negatives. Each data sample is represented using a 96 dimensional fea-
ture vector, including geometry, shape morphology, intensity and texture cues,
computed by our CAD system. Moreover, 411 positive samples are instances of
137 flat polyps and 705 positives belong to 254 non-flat, or SP (e.g., sessile,
pedunculated and mass) polyps. Therefore, the dataset can be subdivided as two
classes as negatives (-) and positives (+) or three categories, namely negatives
(-1), flat polyps (+1) and non-flat polyps (+2). The lung nodule dataset was
obtained from 1000 patients from multiple medical sites in different countries
using various scanners. This dataset contains the information of part-solid nod-
ules with a diameter range of 4-20mm. There are 49,094 samples after CG stage,
out of which 2,531 are positive nodule instances (+) and the rest as negatives
(-). Each data sample has 112 features. In the following, our experiments use
5 fold cross-validation and no data samples from the same patient are used for
both training and testing.

Standalone: For comparison, we first train a baseline classifier using multiple
instance relevance vector machine (MILRVM) [5], and its training/testing clas-
sification performances, in the form of Free-Response Operator Characteristic
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(FROC) curves, are illustrated in Fig. 1 and 2. Note that these baselines achieve
comparable results with state-of-the-arts [1–4, 6–8] on datasets of similar data
scales). Next, using the positive and negative samples in the training dataset
(i.e., L = 2), we learned dictionaries D+ ∈ R

n×K and D− ∈ R
n×K for (+/-)

classes, respectively. The dictionary size K = β × n is normally chosen with
respect to data dimension n, here β = 4. When β > 4, the classification perfor-
mances are similar. After this, both dictionaries are concatenated into a single
dictionary D ∈ R

n×(L∗K), and the classification criterion (5) is applied. In colon
dataset n = 96 and K = 384; and n = 112, K = 448 for lung. The sensitivities
are calculated on per-polyp or per-nodule level, consist with multiple instance
learning setting [5], and the false positive (FP) rates are reported on a per-
patient level (i.e., summing FPs in two volume views) in colon and per-volume
level for lung. For L = 3 of colon CAD, when an instance is classified either
as (+1) for flats or (+2) for SP, an overall “hit” or detection will be counted.
The classification results on training and testing (validation) datasets are shown
in Table 1. Though sparse classification does not provide FROC curves, it has
(2% ∼ 5%) higher detection sensitivities than our MILRVM baselines, at low
FP rates of ≤ 3 per case in both colon and lung datasets. This is highly suitable
for clinical applications.

Table 1. Standalone Sparsity Classification Results for Colon Polyp (L=3) and Lung
Nodule Detection (L=2)

Colon Polyp CAD Lung Nodule CAD

FP Rate Sensitivity Flat Sensitivity SP Sensitivity FP Rate Sensitivity

Training 2.6818 91.12% 84.97% 91.79% 2.6919 90.32%
Testing 2.6897 89.68% 79.98% 94.20% 2.6797 89.65%

Gated Fusion: To build the best overall CAD system, we exploit the three-
way gated decision tree, integrating both RVMMIL [5] and sparsity classifiers.
RVMMIL assigns each data sample a probability value ρ(+), of being positive
class. Therefore, we design the following three gates or decision rules: (1) if
ρ(+) ≥ γ1, classifying as positive; (2) if ρ(+) ≤ γ2, classifying as negative, where
γ1 > γ2; (3) if γ1 > ρ(+) > γ2, employing sparse classification (L=2, or L=3).
The thresholds γ1, γ2 are estimated by maximizing the decision tree classification
accuracy via cross validation. Conditions ρ(+) ≥ γ1, ρ(+) ≤ γ2 indicate samples
being positive or negative with high confidence; while γ1 > ρ(+) > γ2 refers
ambiguous classifying data samples by RVMMIL.

Fig. 1 (Left) shows the combined model achieves 6% ∼ 8%, or 2.4% ∼ 3.2%
sensitivity improvements for colon polyp detection, in training and testing re-
spectively, at ∼ 2.7 FPs per patient. On the other hand, at the same sensitivities,
our method can reduce the FP rates by 3 ∼ 4 per patient, with respect to training
or testing. Note that L = 3 performs better than L = 2 which shows the advan-
tage of modeling capacity for a more comprehensively generative representation,
consisting of richer dictionaries D = (D(1), D(2), · · · , D(L)). Similarly, at least
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Fig. 1. The classification results of using our proposed method and comparison with
the CAD baseline, for training and testing in the colon dataset (Left) and lung dataset
(Right). CAD baselines are plotted for comparison.

Fig. 2. Sensitivity vs. FP rate per patient (i.e., two volumes) for Flat polyp detection
(Left) in training and testing datasets; and for Sessile-Pedunculated polyp detection
(Right). CAD baselines are plotted for comparison.

2% ∼ 3% sensitivity gains are observed for lung nodule detection, corresponding
to the same FP rates, in Fig. 1 (Right). These improvements are statistically
significant for colon/lung cancer detections, from the already high-performed
baselines. Furthermore, the sensitivities for flat or sessile-pedunculated polyps
are also greatly increased (by 4% ∼ 7%), as shown in Fig. 2 (Left) and (Right).
The three-gate combined model also consistently outperforms single RVMMIL
baseline or sparsity classifier, in all scenarios.

4 Conclusion and Future Work

In this paper, we present a new sparse representation based classification method
for computer-aided diagnosis problem, by learning an overcomplete dictionary of
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exemplary atoms for each data class and adapting sparse coding criteria for effec-
tive classification. This generative formulation has the ability of modeling two or
multiple classes in the same way. It can be used either as a standalone classifier,
or integrated with other decision-making scheme(s). Our proposed method is
validated in two CAD systems of colorectal polyp and lung nodule detection, us-
ing large scale, representative clinical datasets. The results show that we achieve
superior performances than our baseline and other existing state-of-the-arts. In
future work, we plan to explore how to integrate class discriminative information
for dictionary learning [12], and other decision fusion structures of heterogeneous
classifiers.
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Abstract. This paper presents an algorithm for the automatic detection
of intravenous contrast in CT scans. This is useful e.g. for quality control,
given the unreliability of the existing DICOM contrast metadata.

The algorithm is based on a hybrid discriminative-generative proba-
bilistic model. A discriminative detector localizes enhancing regions of
interest in the scan. Then a generative classifier optimally fuses evidence
gathered from those regions into an efficient, probabilistic prediction.

The main contribution is in the generative part. It assigns optimal
weights to the detected organs based on their learned degree of en-
hancement under contrast material. The model is robust with respect
to missing organs, patients geometry, pathology and settings. Validation
is performed on a database of 400 highly variable patients CT scans.
Results indicate detection accuracy greater than 91% at ∼ 1 second per
scan.

1 Introduction

Medical images stored in the DICOM standard contain a wealth of associated
metadata. Many metadata elements are acquired automatically, e.g. the slice
thickness. Others (e.g. the anatomical region being scanned) require human input
at the time of acquisition. However, manual input is prone to error [1]. Accuracy
of DICOM metadata is important in routine clinical care, where those tags are
used to ensure that the requested imaging service has in fact been performed.
Metadata accuracy is also crucial in clinical research, e.g. in trials where the
effectiveness of a drug is monitored using imaging.

This paper presents an algorithm for the automatic detection of intravenous
contrast. Its corresponding DICOM tag (id (0018, 0010), one of the key meta-
data) requires manual input during image acquisition. However, in our experience
only ∼ 80% of CT studies present the correct value (see also [1]). Such accuracy
is operator and hospital dependent. The unreliability of this tag means that the
only way to know whether there is contrast in a scan is through visual inspection.

Our technique alleviates this problem by automatically classifying CT scans
as contrast-enhanced or not. In [2] Prince et al looked at detection of contrast
material arrival in the aorta. However, manual intervention was required to select
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regions of interest. Similarly in [3]. Such work would benefit greatly from our
technique as it removes the need for any manual input.

Effective automatic detection of contrast material does require some level of
localization of relevant regions (e.g. organs which enhance in the presence of
i.v. contrast agents). Thus, techniques for anatomy segmentation in CT could
be beneficial for such purposes. Many such algorithms have been proposed, e.g.
[4,5,6,7,8]. However, the majority tend to focus on a single area of the body, or
are specific to a certain disease and sometimes still rely on human intervention.
Also, none of these have been used for verification of DICOM metadata accuracy.
The algorithm proposed here automatically detects multiple enhancing regions
of interests and combines the gathered evidence optimally to produce accurate
contrast detection. It works on completely generic, pathology-rich CT scans.

Outline. Our algorithm is in two stages: I) first, major anatomical structures are
automatically localized; II) then, contrast detection is achieved via a generative
model of CT scans. The main novelty is in the second part which optimally fuses
evidence from detected organs for robust contrast detection.

2 The Annotated Database

We have collected a database of 400 diverse patients CT scans (see fig. 1). The
patients suffer from various pathologies and the scans have been acquired with
different scanners, at varying resolutions, viewing different body regions. The
data comes from hospitals in different continents. All studies are expert labeled
into belonging to the “contrast-enhanced” (C) or “native” (N) classes. If only
oral contrast is present (and no i.v. contrast) then the scan is labeled as N.

As detailed in section 5 the database is divided into many non-overlapping
training and test sets. Parameters are optimized on the training set and all
accuracy measurements performed on the previously unseen test set, to avoid
over-fitting.

Fig. 1. Variability in our 400-patient database. (a, c, e, f, h) Patient scans with
i.v. contrast. (b, d, g) No i.v. contrast. (a, d) Additional oral contrast. (a) Scan with
missing left lung. (c) Kidney cyst. (d) Transplanted kidney. (f) Aortic aneurism.



Automatic Detection of Contrast in CT 51

3 Stage I - Discriminative Anatomy Localization

Our algorithm for the automatic localization of anatomy in CT builds upon the
work in [9] and is summarized here for completeness. A regression forest is used
to map CT voxels directly to organs position and extent. We build upon a forest
technique because of its efficiency and robustness.

The forest is trained to localize the following 12 structures: heart, liver,
spleen, lungs, kidneys, gall bladder, pelvis, femurs. The trees are trained
on a set of volumes with known organ bounding boxes. The trees cluster voxels
together based on their appearance, their spatial context and their confidence
in predicting position and size of all anatomical structures.

During testing, all voxels are pushed into all trees. Each node applies a test
on each voxel which consequently is sent to the left or right child. When a voxel
reaches a leaf node the stored relative displacements are used to cast a vote on
position and extent of each organ. The leaves with largest prediction confidence
carry more weight in the final prediction. See [9] for further details.

Figure 2 shows some detection results. Good anatomy localization is achieved
even in the presence of pathologies such as cysts or missing lungs. Our C++
implementation produces a mean localization error of ∼ 1.5cm in approximately
1s on a single-core desktop machine. Next we describe how information coming
from all detected organs is fused together to yield accurate contrast detection.

Fig. 2. Results of discriminative anatomy localization. Automatic anatomy de-
tection in diverse patients’ CT scans. The detected organs (e.g. heart, kidney, liver,
lung) are shown in red. The faint blue line denotes ground truth. The detections are
robust to large variabilities in the scans, including pathologies. E.g. (b) Large cyst in
abdomen. (h, k) Missing left lung. (d, e, f, g) Cysts and other kidney anomalies.
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4 Stage II - Generative Contrast/No-Contrast
Classification

This section describes the main contribution of this paper, i.e. a new, part-
based generative model of CT scans and its use for contrast detection. Given a
previously unseen 3D CT image, the goal is that of estimating its class c, with
c ∈ {C, N}. Here we also assume given the position of organs of interest together
with the associated confidence (as described in section 3).

The probabilistic model. Evidence coming from detected anatomical regions
is aggregated via the graphical model shown in fig. 3. The probability of class c
is what we wish to estimate. The variable si denotes the appearance of the ith

anatomical structure. In a given image, the organ appearance si is represented
as a histogram over density values (in HU). The histogram is computed over all
voxels within the organ’s bounding box and is normalized to have unit area.

Handling visibility. In a given scan some organs may be absent (e.g. because
missing or outside the capture area). Their status is captured by the binary
visibility variable oi ∈ {0, 1}, with 0, 1 denoting absence/presence, respectively.
For the organ i we set oi = 0 if the organ detection posterior falls below 0.5, as
in [9]. From fig. 3 the joint probability of the whole model is

p(c, S, O) = p(c)
N∏
i

p(si|oi, c)p(oi) (1)

with N = 12 the total number of organs, S = {s1, · · · , sN} and O = {o1, · · · , oN}.

Model training. The data likelihood p(si|oi = 1, c) is modeled as a multivariate
Gaussian: p(si|oi = 1, c) = N (si; si

c, Λc
i ), with si the mean and Λi the covariance

matrix. Since c assumes binary values we need to learn two likelihood models
for each organ. This is done readily from annotated training studies.

Figure 4 shows such likelihoods for some selected organ classes, learned from
200 training scans. We observe that the appearance of bony structures (e.g. the
pelvis) is not affected by i.v. contrast. This is shown by the fact that p(s|c = C) ≈
p(s|c = N) (visibility variable o removed here for simplicity). Instead, for organs

Fig. 3. Our generative model. (a) Graphical representation of our probabilistic
model. (b) As in (a) but represented with plates. See text for details.
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Fig. 4. Learned likelihood models. The learned likelihoods p(si|c = C) and p(si|c =
N) for 8 organs are shown in green and red, respectively (visibility variables removed
for simplicity). The two learned models are more different from one another in those
organs that tend to enhance in the presence of i.v. contrast. Our algorithm assigns
optimal weights (e.g. higher for heart and lower for femur) for final contrast detection.

such as the heart or kidneys (enhancing) the automatically learned likelihood
models are very different in the two cases. This is not surprising, but what is
important here is that our model captures such differences quantitatively. To
obtain accurate contrast detection we wish to give more weight to those organs
which enhance more in the presence of i.v. contrast, and vice-versa. But what are
the right weights to use? Additionally, the appearance of some structures changes
considerably across different patients while others show more consistency. Thus,
uncertainty must be taken into account for the final contrast classification. Our
generative model captures all these intuitions quantitatively and provides a way
of assigning optimal weights to the different organs, automatically.

Contrast detection. The next step is to combine image observations and
learned models and come up with a single contrast/no-contrast answer. Dur-
ing testing we are given a previously unseen scan, its detected bounding boxes,
their associated appearance observations si and also the visibility observations
oi for all organs. Bayesian manipulation of (1) leads to the class posterior
p(c|S, O) = 1

Z p(c)
∏N

i p(si|oi, c)p(oi), with Z =
∑1

c=0

[
p(c)

∏N
i p(si|oi, c)p(oi)

]
.

So, the ratio of the class posteriors for the two cases is

R =
p(c = C|S, O)
p(c = N|S, O) =

p(c = C)
p(c = N)

N∏
i

p(si|oi, c = C)p(oi)
p(si|oi, c = N)p(oi)

(2)

with the priors p(c = C) and p(c = N) learned from the training set.
If a structure i is not present (oi = 0) then its appearance si is undefined

and so is the likelihood p(si|oi = 0, c). Thus we need to remove its influence
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from (2). We do so by defining p(si|oi, c) = p(si|oi = 1, c)oi which reduces to
1 for undetected structures. This when plugged into (2) has the desired effect.
Thus the posterior ratio reduces to

R =
p(c = C)
p(c = N)

N∏
i

(
p(si|oi = 1, c = C)
p(si|oi = 1, c = N)

)oi

(3)

Finally, maximum a-posteriori estimation (MAP) happens by checking the value
of R in (3). If R > 1 then the scan is declared to be contrast-enhanced, and vice-
versa. Values of R close to 1 indicate uncertain output.

In our model robustness to pathology arises from: i) having those anomalies
in the training set, and ii) aggregating evidence over multiple organs. A small
number of such organs may exhibit unusual shape or appearance, but other
healthy structures would contribute positively towards the final outcome.

5 Experiments, Results and Comparisons

This section presents evaluations and comparisons with possible alternatives.
Figure 5 shows the learned likelihood models for various organs of interest

and, for two test scans, the individual organ appearances si. Note how organ
appearance in contrast-enhanced scans is better explained by contrast-enhanced
likelihood models, and vice-versa. This holds true for enhancing organs and does
not for bony structures (whose black curve is equally close to both models).

When evaluating the posterior ratio (3) we see that each organ contributes
to the final ratio via its own factor. All N factors then get multiplied together.

Fig. 5. Testing individual organ likelihoods for two previously unseen CT im-
ages. The learned likelihood models p(si|oi = 1, c = C) and p(si|oi = 1, c = N) for four
different anatomical structures are shown in green and red, respectively. The appear-
ance descriptor si for the same organs in the input test scans are shown in black. (a)
In the case of a contrast-enhanced image the organ appearances are better predicted
by the contrasted likelihood models (black curve closer to the green models), (b) and
vice-versa in the case of native CT scans. Such likelihoods are combined with prior
probabilities in (3) to produce maximum a-posteriori classification.
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Anatomical structures such as bony ones tend to contribute posterior factors
close to 1 and thus they (correctly) do not have much effect on the final classi-
fication. On the contrary, enhancing soft tissue organs contribute in proportion
to how much they enhance in the presence of i.v. contrast. This demonstrates
automatic weighting of organs contribution for contrast detection.

Quantitative evaluation is done by repeatedly subdividing our 400-large CT
database into disjoint training and testing sets, with random selection of the
studies and varying ratio between the two sets. Our models are trained exclu-
sively on the training set and evaluated exclusively on previously unseen test
images. Figure 6a shows classification accuracy as a function of percentage of
training volumes. As expected the accuracy increases with the number of train-
ing images. However, its behavior is very flat (close to constant), thus indicating
good generalization, with a mean accuracy of ∼ 91%.

We also investigated the robustness of the generative classifier with respect
to noise in the discriminative anatomy localizer. We do so by artificially adding
varying amount of noise to the detected organs bounding boxes. Plotting accu-
racy as a function of noise (fig. 6b) shows a reasonably slow fall off for noise as
large as 20mm. This indicates good robustness with respect to inaccurate organ
localization. In both plots in fig. 6 the experiments were repeated 100 times for
each x-axis value. The estimated 2-std confidence region is shown shaded.

Visual inspection of incorrectly classified images shows that most of those are
borderline cases, where perhaps the contrast agent has not had sufficient time
to diffuse. Generally this uncertainty is indicated by a posterior ratio close to 1.

Efficiency. Run-times remain of the order of 1s for the whole discriminative +
generative testing phase, as the generative part adds a negligible load.

Fig. 6. Automatic contrast detection results (a) Results of scan classification
into contrast-enhanced or native as a function of training/test ratio. Accuracy in-
creases with the number of training data. However, the flatness of the curve indicates
good generalization. (b) Results of contrast detection for increasingly noisy organ lo-
calization. The accuracy curve falls off slowly with increasing noise, thus indicating
good noise robustness. Note that accuracy of existing manual DICOM tag is ∼ 80%.
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Parameters. The only additional parameter in our generative model is the
histogram length, which is automatically optimized during training.

Comparisons. We compared our algorithm against one of the state of the art
recognition techniques, i.e. random classification forests [10]. Recently, classifica-
tion forests have been shown to yield excellent results in diverse applications [11].
During training Haar wavelet-like features are automatically selected in differ-
ent spatial arrangements and positions. This is to allow automatic alignment
of box-like ROIs with enhancing organs and avoid a separate organ detection
step. After optimizing all parameters for best results we recorded an accuracy
of ∼ 87%, considerably lower than that of the two-step approach proposed here.

6 Conclusion

We have presented a hybrid discriminative-generative model for the efficient, au-
tomatic detection of intravenous contrast agent in CT scans. The algorithm can
automatically localize enhancing regions in the scan and weigh them optimally
in order to achieve the most accurate detection results. It is robust to missing
organs, pathologies and possible inaccuracies in the organ localization stage.

Validation on a large database of pathology-rich scans has demonstrated ac-
curacy greater than that of manually annotated DICOM contrast tags. Our
algorithm plays an important role in routine quality control of hospital data as
well as in clinical research. It may be applied to other quality control tasks such
as detection of oral contrast or identification of the specific contrast material.
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Abstract. In this study, we present a system for Alzheimer’s disease
classification on the ADNI dataset [1]. Our system is able to learn/fuse
registration-based (matching) and overlap-based similarity measures,
which are enhanced using a self-smoothing operator (SSO). From a ma-
trix of pair-wise affinities between data points, our system uses a diffusion
process to output an enhanced matrix. The diffusion propagates the affin-
ity mass along the intrinsic data space without the need to explicitly learn
the manifold. Using the enhanced metric in nearest neighborhood classi-
fication, we show significantly improved accuracy for Alzheimer’s Disease
over Diffusion Maps [2] and a popular metric learning approach [3]. State-
of-the-art results are obtained in the classification of 120 brain MRIs from
ADNI as normal, mild cognitive impairment, and Alzheimer’s.

1 Introduction

Alzheimers Disease (AD) and its preclinical stage, mild cognitive impairment
(MCI), are the most common form of dementia in elders. Magnetic resonance
imaging (MRI) can provide insight into the relation between AD and the struc-
ture of the brain: AD is known to be connected with gray matter loss [4] and
with the shape of subcortical structures (especially the hippocampus) [5]. There
have been several attempts in the literature to automatically classify a brain
MRI as AD, MCI or normal (typically represented by older control subjects,
OC). Chupin et al. [6] automatically segment the hippocampus and use its vol-
ume for the classification. Vemuri et al. [7] use support vector machines (SVM)
based on tissue densities and a number of covariates (demographics, genotype).
Klöppel et al. [8] feed a SVM directly with image data after registration (i.e.
spatial alignment). Zhang et al.[9] use a SVM with cerebrospinal fluid, positron
emission tomography and MRI data as features. Davatzikos et al. [10] use the
distribution of gray matter, white matter and cerebrospinal fluid in registered
space. Desikan et al. [11] feed the entorhinal cortex thickness, hippocampal vol-
ume and supramarginal gyrus thickness to a logistic regression analysis. These
works are summarized in Table 1.

In this paper, we approach the OC/MCI/AD classification problem from the
perspective of metric learning. Given a number of heterogeneous affinity mea-
sures between the data points, the task is to find an enhanced metric which will
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Table 1. Representative methods in the literature of AD classification. For Chupin et
al. we report the range of results in a number of two-class classification problems.

Method # Subjects Classes (prevalences) Classification rate

Chupin et al. [6] 605 OC (24%), MCI (49%), AD(27%) 60-80%
Vemuri et al. [7] 100 OC (50%), AD (50%) 89%
Klöppel et al. [8] 68 OC (50%), AD (50%) 94%
Zhang et al.[9] 103 OC(50%), AD(50%) 93%
Zhang et al.[9] 150 OC(34%), MCI(66%) 76%

Davatzikos et al. [10] 30 OC (50%), MCI (50%) 90%
Desikan et al. [11] 151 OC (62%), MCI (38%) 90%

ultimately improve the classification rate in a k-nearest neighbor (kNN) frame-
work. Popular distance metric learning methods [12,3], which are mostly su-
pervised, learn a Mahalanobis distance parametrized by a positive semi-definite
matrix. However, the performance gain is rather limited because a global linear
transform does not suffice to discriminate the data. Nonlinear versions exist, but
it is difficult to find a kernel that provides good results. Non-parametric manifold
learning techniques such as Isomap [13] do not necessarily provide a better met-
ric, which limits their use in classification. They also have the disadvantage that
explicitly estimating the manifold can be difficult and time consuming. Their
application to medical image analysis has also been limited [14].

Here we adopt an unsupervised metric learning algorithm: self-smoothing op-
erator (SSO). SSO enhances an input pair-wise affinity matrix similar to a Gram
matrix. A smoothing kernel is built from the matrix and used to iteratively
propagate the affinity mass between strongly connected neighbors, following the
structure of the manifold without having to compute it explicitly. The framework
can accommodate semi-supervise learning (i.e. taking advantage of not only la-
beled but also unlabeled examples to build a classifier [15]): even if unlabeled
examples cannot be used in the kNN classification, they can still be considered
in the prior diffusion, often bridging gaps between points with the same label.
A feature selection method is incorporated into the design of the affinity matrix
to improve the results. We apply the proposed framework to the AD classifi-
cation problem with registration-based and overlap-based similarity measures,
comparing the results with metric learning [3] and Diffusion Maps [2].

2 Materials

Brain MRI from 120 subject Brain MRI scans from 120 subjects (age 76.7±6.4
years) are used in this study. The subjects were randomly selected from the ADNI
dataset [1] under two constraints: 1) the scans are from the same cross section
(12 months after the start of the study); and 2) the three classes (OC,MCI,AD)
and the two genders are equally represented. The scans were acquired with T1-
weighted MPRAGE sequences, skull-stripped with BET [16] and fed to Brain-
Parser [17] to automatically extract 56 cortical and subcortical structures.
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3 Methods

3.1 Self-Smoothing Operator

SSO is closely related to the Diffusion Maps algorithm [2], which defines diffusion
distances between data samples to improve an input pair-wise affinity matrix. It
introduces a global diffusion distance metric over data samples. Given the tran-
sition kernel H (a row-wise-normalized version of the pair-wise affinity matrix),
the diffusion distance between data samples xi and xj at step t is defined as:

d2
t (i, j) = ||ht(i, ·) − ht(j, ·)||21/φ0

=
∑

k

1
φ0(k)

(ht(i, k) − ht(j, k))2

where ht(i, ·) is the i-th row of Ht, and φ0 is the equilibrium distribution.
Instead of using an alien notion of diffusion distances between data samples as

in Diffusion Maps, we work on the affinity matrix directly, using a self-induced
smoothing kernel. Given data samples {xi, . . . , xn} and a symmetric affinity
function ϑ(xi, xj) = ϑ(xj , xi) ∈ [0, 1], we define the n × n weight matrix W as
W (i, j) = ϑ(xi, xj). SSO diffuses the pair-wise affinities of W along the geometry
of the manifold without having to construct it explicitly:

1. Create the diffusion matrix P = D−1W , where D is a diagonal matrix with
Dii =

∑n
j=1 W (i, j).

2. Self diffusion: W (p) = WP p.

In Step 1, the smoothing kernel P that governs the diffusion process in Step 2
is induced from the input similarity matrix. W (p) is not a proper Gram matrix
(since ϑ(xi, xj) is not an inner product), so it is in general neither symmetric
nor positive semi-definite (PSD), which is not a problem in this application:
we simply take the k minimal non-diagonal values of each row as the k nearest
neighbors for classification. The only parameter in the algorithm is the step p,
which determines the scale at which the data are analyzed. The output W (p) is
an updated weight matrix that represents similarity more faithfully than W (as
experimentally shown below) and that can be used directly in classification.

3.2 Similarity/Divergence Measures

The affinities W (i, j) can be built from a similarity or divergence function, γ,
using a suitable transform. If several {γm}, m = 1, . . . ,M , are available, W

can be a linear combination: W̄ = wm

∑M
m=1 W

(p)
m (γm), with

∑M
m=1 wm = 1.

We use two types of measures in this study: overlap- and registration-based.
The first type is based on the Dice overlap of the structures of interest, giving
a rough estimate of how similar two binary masks are. First, the centroids of
the two instances of the structure to compare (s) are aligned, yielding Ys,i and
Ys,j . Then, the Dice overlap is computed as: O(Ys,i, Ys,j) = 2|Ys,i∩Ys,j |

|Ys,i|+|Ys,j| ∈ [0, 1].
One minus the overlap would be a valid affinity. However, in order to enhance
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(a) (b) (c) (d)

Fig. 1. (a) Slice of a sample volume, cropped around the hippocampus. The automatic
hippocampal segmentation is outlined in black. The deformation field provided by the
registration towards the slice in (b) is superimposed in blue. Summing the curvature
(c) and diffusion (d) within the segmentation provides the divergences γcurv and γdiff .

the differences between good and bad matches, we linearly map the interval
[Os,min, 1] to [0, 1]:

Wover,s(i, j) = 1 − O(Ys,i, Ys,j) −Os,min

1 −Os,min
=

1 −O(Ys,i, Ys,j)
1 −Os,min

A divergence function complementing the Dice coefficient should consider non-
linear deformations. Here we use a diffeomorphic registration algorithm [18] to
estimate the degree of warping that is required to deform a shape into another.
To compare brains i and j, we first register j to i. Then, for structure of interest
s, we compute the irregularity of the obtained deformation field uji(r) within
the mask Ωs,i corresponding to s in i (r is the location vector). We use the
curvature and diffusion of uji(r) as measures of irregularity:

γcurv[u(r)] =
∫

Ωs,i

∑
{x,y,z}

[�ud(r)]2dr, γdiff [u(r)] =
∫

Ωs,i

∑
{x,y,z}

‖∇d(r)‖2dr

where the index d loops along the three spatial dimensions. The deformation
field for a sample case is shown in Fig. 1a. The integrands γcurv and γdiff are
displayed in Fig. 1c and 1d. Finally, the corresponding weight matrices can be
computed using a Gaussian function as follows:

W[·](i, j) = exp
(
−
(
γ[·] [uij (r)] + γ[·] [uji (r)]

)2
/
(
var

(
γ[·]

)))
where [·] refers to curvature or diffusion, and var(γ[·]) is the variance of the
divergence γ across the dataset. The weights W[·] are explicitly symmetrized.

3.3 Feature Selection

Assuming that the global weight matrix W̄ is a linear combination of matri-
ces based on single features (divergences or similarities), the question is which
combination of weights w = {wm} to use. Specifically, we seek to maximize the
leave-one-out (LOO) classification rate Ψ(w) under the constraints: 0 ≤ w ≤ 1
and 1tw = 1. This problem is difficult to solve because Ψ is neither smooth nor
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convex, and has multiple local maxima. Instead, we further constrain the prob-
lem by assuming that only M ′ ≤ M weight matrices are used with equal weights
wm = M ′−1, ∀m. Then the problem becomes analogous to that of feature selec-
tion in machine learning. This is still a hard combinatorial problem, but good
approximate solutions can be achieved using a proper selection strategy. Here we
use “plus 2 - take away 1” [19]: from an initial empty set, features are greedily
added / removed one at the time following the pattern +,+,−,+,+,−, . . .. The
final set of features is the one that maximizes Ψ(w) throughout the process.

4 Experiments and Results

4.1 Experimental Setup

The feature selection was cross-validated (10 folds) to obtain an unbiased esti-
mate of the performance; otherwise features are selected upon the test data. For
each fold, a set of features is selected with LOO on the training data. For each
candidate set, the scale of the diffusion p is tuned individually using exhaustive
search. The selected features and p are used to classify the test data in the fold.
The number of neighbors was kept constant (k = 10) to limit the computational
load of training. Ties are broken by examining subsequent neighbors. Rather
than using all the 56 segmented structures in the selection process, only the (left
and right) caudate nucleus, hippocampus and putamen are considered (18 fea-
tures in total). These structures are well-known to be related to AD, and using
this reduced set decreases the risk of overfitting.

In testing, an augmented W is created by adding to the original a new row and
column for each test sample. We assume that all the test data are simultaneously
available, which enables semi-supervised learning: during the diffusion process,
the unlabeled test data can increase the performance of the system by making the
structure of data easier to follow (only the labeled training data are considered
during the kNN classification).

For the sake of comparison, analogous experiments were run using Diffusion
Maps and the metric learning approach from [3], which attempts to find the
positive definite matrix A that parameterizes the Mahalanobis distance best
separating the training data into the different classes. Cross validation was again
performed with 10 folds using the training data to select features (same selection
strategy) and tune parameters: the matrix A for metric learning and the step t
for Diffusion Maps (i.e. the scale of the diffusion). As for SSO, the number of
nearest neighbors was fixed throughout the experiments (k = 10).

4.2 Results

The impact of feature selection on the performance is illustrated in Fig. 2a. The
three most frequently selected features were: 1) diffusion - left hippocampus; 2)
curvature - left putamen; and 3) overlap - left caudate. It is not surprising that
the top feature is related to the hippocampus, which is known to be strongly
connected with AD [5]. The curve in Fig. 2b shows the impact of the diffusion
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Fig. 2. (a) Best LOO classification rate against number of selected features. (b) For the
feature subset chosen for each fold: dependence of the classification rate on the diffusion
step p. The point p = 0 corresponds to the classification rate with no diffusion. In both
graphs, the chosen operating points for each fold are marked with asterisks.

Fig. 3. Three-dimensional rendering of the structures of interest of an OC sample and
its nearest neighbors, before (p = 0) and after diffusion (p = 0.6). The hippocampi are
rendered in green, the putamens in red and the caudate nuclei in blue. The diffusion
bridges the gaps with other OCs, moving the AD and MCI cases farther away.

on the classification. At first, increasing the scale of the diffusion p has a positive
influence on the accuracy, which is boosted from ∼ 55% at p = 0 (no diffusion)
to ∼ 90% at p ≈ 0.6. This is illustrated with a sample subject and its nearest
neighbors before and after diffusion in Fig. 3. When p becomes too large, data
samples start to come too close to one another and the accuracy begins to
decrease. Fortunately, the location of the peak is quite stable and the method
generalizes well, as shown by the cross validation experiment below.

Tables 2a through 2c display the confusion matrices for metric learning, Dif-
fusion Maps and our approach, respectively. Metric learning performs poorly
because the structure of the data is too complex to discriminate the classes
using a global linear transform. Diffusion Maps provides decent results: 78% ac-
curacy with no mistakes between OC and AD. Our SSO-based approach makes
no OC-AD mistakes either, but preserves the structure of the input similar-
ity better than Diffusion Maps, increasing the accuracy to 89%. There is no
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noticeable drop in accuracy from the training data (Fig. 2) because cross-validation
(LOO) was already used within the feature selection process.

Even though the results reported in Table 1 were achieved on other datasets,
it is illustrative to compare them to ours. Chupin et al.’s study, the only one
considering the three-class problem, reports considerably lower accuracy than
this work. To compare our results with the methods which classify OC vs. AD, we
assume that only OC / AD are fed to the classifier and that the samples classified
as MCI are relabeled to either OC or AD. Another option would be to remove
the MCI cases from the training data, but that would have a negative impact on
the results (the diffusion would be guided by less data). Our approach provides
96.25% or 97.5% accuracy (depending on the relabeling criterion), slightly higher
than the best reported results in the literature (Klöppel et al., 94%). In order
to compare our approach with methods that discriminate OC from MCI, we
assume that only OC and MCI cases are fed to the classifier, and the cases for
which the estimated class is AD are relabeled as MCI. In that case, the accuracy
is 91.25%, comparable to Davatzikos et al. and Desikan et al. (90%).

Table 2. Confusion matrices: (a) metric learning, (b) Diffusion Maps, (c) the proposed
method. The global accuracies are 50%, 78% and 89%. GT stands for “ground truth”.

(a)

GT\Method OC MCI AD

OC 20 11 9
MCI 14 18 8
AD 2 16 22

(b)

GT\Method OC MCI AD

OC 29 11 0
MCI 5 29 6
AD 0 4 36

(c)

GT\Method OC MCI AD

OC 38 2 0
MCI 5 32 3
AD 0 3 37

5 Discussion and Future Work

A nearest neighbor classifier based on registration and overlap features and en-
hanced by a self-smoothing operator has been presented in this study. SSO prop-
agates the similarity between data samples along the manifold in which the data
lie. The updated affinity measure can be used in a nearest neighbor framework to
classify brains as AD, MCI or OC, achieving state-of-the-art results. The main
disadvantage of the method is that, when a new case is presented to the system,
computing the corresponding new row in the affinity matrix requires nonrigid
registration to all the training cases, which is very time consuming (the SSO
algorithm itself only takes a fraction of a second). Exploring its application to
other disease patterns, testing features that are faster to compute and improving
the design and combination of features remain as future work.
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Abstract. The bag-of-features method has emerged as a useful and flex-
ible tool that can capture medically relevant image characteristics. In this
paper, we study the effect of scale and rotation invariance in the bag-of-
features framework for Renal Cell Carcinoma subtype classification. We
estimated the performance of different features by linear support vector
machine over 10 iterations of 3-fold cross validation. For a very heteroge-
neous dataset labeled by an expert pathologist, we achieve a classification
accuracy of 88% with four subtypes. Our study shows that rotation in-
variance is more important than scale invariance but combining both
properties gives better classification performance.

Keywords: Bag-of-features Method, Texton-based Approach, Image
Classification, Computer Aided Diagnosis.

1 Introduction

Renal Cell Carcinoma (RCC) accounts for 90-95% of adult malignancies arising
from the kidney [1]. The American Cancer Society reported 58,240 new cases
and 13,040 deaths in 2010 [1]. RCC occurs in four major subtypes: (i) Clear Cell
(CC), (ii) Chromophobe (CH), (iii) Oncocytoma (ON), and (iv) Papillary (PA)
[2]. Clinically, each subtype is treated differently. The task of subtype classifica-
tion is performed by an expert pathologist under a microscope and suffers from
subjectivity and observer variability [3]. Computerized histopathological image
analysis aims at assisting a pathologist in the decision making process.

Recently, the bag-of-features approach has emerged as a useful tool for med-
ical image classification [4-7]. The bag-of-features framework evolved from the
bag-of-words model for text documents [8]. In the bag-of-words model, a dictio-
nary is built from all the text documents and then each document is represented
� Corresponding author.
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by the frequency of words in that document. The bag-of-features approach ap-
plies a similar methodology to image analysis. Images are divided into a collec-
tion of small patches, each of which described by a feature vector that encodes
texture/content. Feature vectors are combined into a codebook that represents
the characteristic patches in a collection of images. Typically, scale and rota-
tion invariant features or raw pixel intensities are used [4-7]. Depending on the
application, scenarios may exist where one or both could help or hurt perfor-
mance. For example, cancer grading based on nucleus size may suffer from scale
invariant features. However, there is no study exploring the impact of scale or
rotation invariance for histopathological image analysis. In this paper, we per-
form an analysis of features with combinations of scale and rotation invariance
in the bag-of-features framework. We have focused on the scale invariant feature
transform (SIFT) to perform the analysis but other features such as speeded-up
robust features (SURF) can also be used [9,10].

In histopathological image analysis, medically relevant morphologies can ap-
pear anywhere in the image and the spatial arrangement may not be important
for decision making. Therefore, we do not consider spatial information preserv-
ing methods such as spatial pyramids [11]. In this paper, we evaluate the impact
of scale and rotation invariance by studying the following types of features: (i)
scale invariant features, (ii) rotation invariant features, (iii) features with both
scale and rotation invariance, (iv) features with neither scale nor rotation in-
variance, and (v) raw pixel intensity based features. We evaluate their effect on
histopathological image classification of RCC subtypes. This paper is organized
as follows: section 2 provides backround; section 3 provides methodology; section
4 shows the results; and section 5 concludes the analysis.

2 Background

A bag-of-features represents each image as a collection of features or patches.
The relative abundance of each feature or patch distinguishes different types
of images. These features or patches can be represented as invariant to scale
and orientation. In this section, we provide the background of how this scale
and rotation invariance is achieved. To achieve scale invariance, keypoints are
selected by difference of Gaussian scale space (DoGSS) filtering [9]. The Gaussian
scale space (GSS) of an image I(x, y) is constructed by convolving that image
with a Gaussian filter G(x, y, σ) of different scales:

L(x, y, σi) = G(x, y, σi) ∗ I(x, y),

where x and y are pixel coordinates, σi is the standard deviation of the Gaussian
filter for scale i. We use previously reported values of σi = kiσ0, σ0 = 1.6, and
k =

√
2 [9]. Then DoGSS is computed by subtracting two consecutive images in

the GSS:
Di(x, y, σi) = L(x, y, σi+1) − L(x, y, σi) (1)

Keypoints are detected by finding the extremas in DoGSS by comparing each
pixel at Di with its 3 × 3 neighborhood at scales Di, Di−1 and Di+1 (i.e., 26
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comparison in total). These keypoints appear in a single scale and additional
scales can be achieved after downsampling and repeating [9]. A patch around
each keypoint is encoded using SIFT to get a feature vector that represents the
texture. To make the patch rotation invariant, the pixel coordinates x, y in the
patch are rotated to align with the maximal gradient direction θ of that patch:[

x′

y′

]
=
[

cos θ sin θ
− sin θ cos θ

] [
x
y

]
, (2)

where the pixel coordinates x, y are expressed with respect to the center of
that patch. Another approach is to select the keypoints by dense sampling and
encode the patch with raw pixel intensities to compute the features [4, 5]. After
the features have been extracted from the images, codebook construction, image
representation, and classification follows, as explained earlier (Figure 1).

3 Methods

The tissue samples are resected from renal tumors by total nephrectomy. Tissue
samples of 3-millimeter thickness are obtained and fixed overnight in 10% neu-
tral buffered formalin. Samples are then embedded in paraffin and microscopic
sections of 5 micrometer thickness are prepared by a microtome and stained
with hematoxylin and eosin. Photomicrographs of renal tumors are captured
with 200x total magnification at 1200 × 1600 pixels per image. A total of 106

a) Input images b) Keypoint detection
a) Input images b) Keypoint detection

c) Feature extractiond) Matching codebooks
d) K-means clustering c) Feature extraction

e) Image representation 
by cluster frequency

f) Classification

Image Representation and Classification

e) Codebook

Codebook Construction

Fig. 1. Bag-of-features framework: (left) first, a codebook is constructed using k-means
clustering over features extracted from training images only, (right) then, the codebook
is used to generate a vector representation of each image using frequency of each cluster
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images are captured, 32 of Chromophobe, 29 of Clear Cell, 28 of Papillary, and
17 of Oncocytoma. The images were labeled by an expert pathologist.

Figure 1 provides an overview of the bag-of-features approach. First, images
are converted to gray scale and keypoints are selected to extract features. Fea-
tures extracted from all the training images are used for constructing a codebook
using k-means clustering (left of Figure 1). Next, a feature vector is constructed
for each image by matching all the features from that image with the codebook
(right of Figure 1). This feature vector is called a bag-of-features [8]. It repre-
sents the distribution of each cluster from the codebook in that image and does
not account for their spatial relationship. A support vector machine (SVM) is
trained with feature vectors from the training images and is used to classify the
test images. Only the training set is used for learning the codebook and training
the SVM.

To perform the analysis of scale and rotation invariance of features used in the
bag-of-features framework for histopathological image classification, we adopted
the following four strategies for keypoint selection and feature extraction based
on the SIFT methodology. In the first strategy, we selected keypoints using
DoGSS (Eq. 1) and computed SIFT descriptors invariant to orientation (Eq. 2)
giving the standard SIFT features [9]. For DoGSS, we included the keypoints
detected from scales D−1 to D2 in our analysis. In each image about 6000 to 8000
keypoints were detected, 38% of total keypoints were detected at scale D−1, 37%
at scale D0, 13% at scale D1 and, 12% were detected at scale D2. In the second
strategy, we again included the keypoints from DOGSS but SIFT descriptors
are computed by choosing a fixed orientation θ = 0 in Eq. 2, resulting in only
scale invariant features. In the third strategy, we computed the rotation invariant
descriptors for a variety of fixed scales D−1 to D2. In the last strategy, we used
the keypoints from Difference of Gaussian (DoG) at scale D0 and computed
SIFT descriptors using θ = 0, giving features with fixed scale and orientation.
Furthermore, we densely sampled 7000 keypoints from each image and computed
rotation invariant features (for scales D−1 to D2), features with fixed scale D0

and orientation θ = 0, and raw pixel intensity based features. Raw pixel intensity
based features are computed over an area of 9×9 around the keypoint (i.e., fixed
scale and orientation) [4, 5]. Table 1 summarizes keypoint detection and feature
extraction for this paper.

Table 1. Summary of keypoint detection and feature extraction

Scale Inv. Rotation Inv. Keypoint Detection Features

Yes Yes DoGSS Scale & Rotation Invariance

Yes No DoGSS Scale Invariance

No Yes DoG Rotation Invariance

No Yes Dense sampling Rotation Invariance

No No DoG No Invariance

No No Dense sampling No Invariance

No No Dense sampling No Invariance (Raw Intensity)
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We used a linear SVM with soft margin parameter C = 1 for classification [12].
Since SVM is a binary classifier, we adopted the “one vs. one with max voting”
method to perform multiclass classification [12]. We performed 10 iterations of
stratified 3-fold cross validation to estimate the performance.

4 Results and Discussion

Figure 2 illustrates the different types of features extracted with and without
scale and rotation invariance. Figure 2a shows image patches with fixed scale D0

and orientation θ = 0. Because these patches have the same size (i.e., scale) and
orientation, they don’t have the ability to match similar patches with different
scale or orientation. Figure 2b shows patches with different scales but without
rotation. Figure 2c shows image patches with rotation at a fixed scale D0. Figure
2d shows image patches with both scale and rotation invariance.

Figure 3 shows the performance comparison of different types of features in
the bag-of-features framework for histopathological image classification of RCC
subtypes. The plot shows that features with both scale and rotation invariance

Fig. 2. The squares show the image patches selected for descriptor computation: (a)
fixed scale D0 and fixed orientation, (b) scale invariant, (c) fixed scale D0 and rotation
invariant, and (d) scale and rotation invariant.

Fig. 3. Performance of different features in bag-of-features framework for histopatho-
logical image classification of RCC subtypes. Error bars show standard deviation of
the means. Legend is in order with the curves in the plot at a codebook of size 45.
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give better performance (top curve). A codebook of size 100 gives a classifica-
tion accuracy of 88%. Features with rotation invariance also perform very well
but features without rotation invariance perform poorly (lower four curves). For
both dense sampling and fixed scale keypoint detection, we found that scale D0

provided better top performance across codebook sizes and only plot D0 for
scale invariant performance in Figure 3. Specifically, rotation invariant features
for dense sampling give a maximum classification accuracy of 84.1% at D−1,
84.3% at D0, 82.9% at D1, and 80% at D2. For DoG keypoint detection, rota-
tion invariant features give a maximum classification accuracy of 83.9%, 84.9%,
82.7%, and 81.2% at scales D−1, D0, D1, and D2, respectively.

Figure 4 illustrates the difference of DoGSS and dense sampling keypoint
selection strategies. The keypoints detected by DoGSS are dense in cellular re-
gions and sparse in necrotic regions, whereas dense sampling selects keypoints
that are dense in both cellular and necrotic regions. For RCC subtype classi-
fication, ignoring necrotic regions can improve classification accuracy [13]. We
observe 5-10% improvement for features without scale and rotation invariance,
partially confirming this finding. On the other hand, if the features are rotation
invariant, we do not observe this effect. We speculate that smooth areas like
necrotic regions have essentially random orientation. When the features are ro-
tation invariant, the smooth necrotic regions get assigned to only a few clusters.
However, when the features are not rotation invariant, the codebook must allo-
cate a larger fraction of clusters to represent this randomness, thereby degrading
performance. Table 2 gives the confusion matrices for each approach. It should
be noted that incorporating the rotation invariance improves classification accu-
racy of each subtype as well as the overall classification accuracy. Furthermore,
the confusion matrices for rotation invariant features are also very similar (Table
2d-e), i.e., both keypoint detection methods give similar performance for each
subtype.

(a) (b)

Fig. 4. Comparison of keypoint selection: (a) DoGSS, (b) Dense sampling

Another advantage of using scale and rotation invariant features is that the
size of the codebook required to achieve good classification accuracy is smaller
than codebooks developed by other features. To achieve classification accuracy
over 80%, a codebook constructed over scale and rotation invariant features re-
quires 12 types of patches, whereas rotation invariant features require 32 types
of patches. Codebooks with just scale invariance require 200 types of patches to
achieve 80% classification accuracy but a codebook of up to 300 patches without
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Table 2. Average confusion matrices for six types of features over 10 iterations of
3-fold cross-validation for a codebook of size 40 clusters. Each row shows the true class
labels and columns show predicted labels. Each row sums to the total number of images
in that subtype.

(a) No Inv.

CC CH ON PA

CC 19.5 8.1 0.9 0.5

CH 10.0 18.2 2.9 0.9

ON 1.8 5.9 8.5 0.8

PA 1.5 1.2 1.5 23.8

(b) No Inv. (dense)

CC CH ON PA

CC 18.3 8.6 1.6 0.5

CH 8.4 18.9 3.0 1.7

ON 3.3 2.5 9.3 1.9

PA 3.6 3.2 2.8 18.4

(c) Scale Inv.

CC CH ON PA

CC 19.5 8.4 1.1 0.0

CH 8.6 19.2 3.0 1.2

ON 2.0 4.4 9.6 1.0

PA 1.3 1.0 1.9 23.8

(d) Rot Inv.

CC CH ON PA

CC 25.0 2.9 0.7 0.4

CH 5.5 25.4 1.1 0.0

ON 1.7 2.9 11.0 1.4

PA 0.7 0.1 1.8 25.4

(e) Rot. Inv. (dense)

CC CH ON PA

CC 25.7 1.9 1.0 0.4

CH 4.3 25.6 1.7 0.4

ON 1.4 3.0 11.4 1.2

PA 1.1 0.7 2.5 23.7

(f) Scale & Rot. Inv.

CC CH ON PA

CC 25.3 3.3 0.1 0.3

CH 3.5 25.9 2.1 0.5

ON 0.8 1.8 13.8 0.6

PA 1.4 0.3 1.3 25.0

scale or rotation invariance only achieves 75%. Features based on raw pixel inten-
sities also performs poorly and a codebook of 300 patches gives a classification
accuracy of about 70%. This suggest that given a large enough codebook, rota-
tionally fixed features could eventually become equivalent to smaller rotationally
invariant ones by encoding all of the possible different orientations an object can
take. Figure 5 shows patches relevant to each RCC subtype identified by com-
bining both scale and rotation invariance. Cyan squares show the cell membrane
identified at different scales and orientations indicative of the clear cell subtype.
Green squares show a complete round nucleus common in the oncocytoma sub-
type. Blue squares show a full nucleus with a halo around it indicative of the
chromophobe subtype. Yellow squares show the streaks of finger-like structures
characteristic of the papillary subtype.

(a) (b) (c) (d)

Fig. 5. Image patches matched with codebooks constructed over scale and rotation
invariant features: (a) a cell membrane in cyan squares, (b) complete round nucleus in
green squares, (c) complete nucleus with halo in blue squares, (d) and yellow squares
showing finger-like structures

5 Conclusion

We conclude that rotation invariance is more important than scale invariance for
histopathology image classification. Rotation invariant features computed at a
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good choice of fixed scale perform nearly as well as scale and rotation invariant
features. Therefore, covering the whole scale space may not be as important
as choosing a preferred scale in histopathological image classification. Although
rotation invariance combined with scale invariance performs slightly better, other
applications may not benefit from this flexibility. For example, in the problem of
cancer grading, nucleus size is important, and thus scale invariance may not be
desirable. In the case of CT or MRI images, the pixel intensity is an important
characteristic and a raw pixel intensity based feature could perform better than
image gradient based features like SIFT. In the future, we would like to improve
the codebooks by incorporating the class labels during the codebook generation
and reduce the false positive matches by improving the distinctiveness of the
features within the same codebook.
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Abstract. Computer aided detection (CAD) systems have emerged as
noninvasive and effective tools, using 3D CT Colonography (CTC) for
early detection of colonic polyps. In this paper, we propose a robust
and automatic polyp prone-supine view matching method, to facilitate
the regular CTC workflow where radiologists need to manually match
the CAD findings in prone and supine CT scans for validation. Apart
from previous colon registration approaches based on global geometric
information [1–4], this paper presents a feature selection and metric dis-
tance learning approach to build a pairwise matching function (where
true pairs of polyp detections have smaller distances than false pairs),
learned using local polyp classification features [5–7]. Thus our process
can seamlessly handle collapsed colon segments or other severe struc-
tural artifacts which often exist in CTC, since only local features are
used, whereas other global geometry dependent methods may become
invalid for collapsed segmentation cases. Our automatic approach is ex-
tensively evaluated using a large multi-site dataset of 195 patient cases
in training and 223 cases for testing. No external examination on the cor-
rectness of colon segmentation topology [2] is needed. The results show
that we achieve significantly superior matching accuracy than previous
methods [1–4], on at least one order-of-magnitude larger CTC datasets.

1 Introduction

Colon cancer is the second leading cause of cancer death in western countries,
but it is one of the most preventable of cancers because doctors can identify
and remove its precursor known as a polyp. Besides the well established fiber-
optic colonoscopy, 3D Computed Tomography Colonography (CTC), or virtual
colonoscopy has emerged as a powerful screening tool for polyp detection and
diagnosis. The research field of computer aided detection (CAD) of colonic polyps
in CTC is highly exploited [5–7]. To enhance polyp findings in collapsed or fluid-
tagged colon segments, and better distinguish polyps from pseudo polyps (e.g.
tagged stools), the current CTC clinical practice is to obtain two scans of a
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patient in prone and supine positions, respectively. However colon can move and
deform significantly differently between the prone and supine scans, which makes
the manual registration of polyp findings or colon segments difficult, inaccurate
and time-consuming.

In this paper, we present a novel computerized technique to achieve high per-
formance polyp matching, by supervisedly optimizing a distance metric in the
feature space of polyp classification where true pairs of polyp matches statisti-
cally have smaller distance than false pairs. A polyp instance may be represented
by a variety of local appearance features for classification [5–7], including lo-
cal geometric features, and morphological, shape/intensity and context features.
Since the total union of these features may lead to redundancy, greater computa-
tional and spatial complexity, we first use feature selection method to choose the
features that are most relevant to polyp matching (e.g., the feature difference
variation is minimal between true polyp matches), but least redundant. After
selecting a subset of task-specific features, from the polyp classification feature
pool, we propose an efficient metric learning method to learn a covariance-matrix
boosted Mahalanobis distance to measure the instance differences across views.

Extensive evaluation is executed using a representative, multi-site clinical
database with 195 patient cases in training and 223 cases for testing, containing
106, 118 polyps respectively. We demonstrate superior performance results on
polyp prone-supine view matching, compared with existing work mostly based
on colon centerline/surface registration [1–4]. Note that previous polyp matching
techniques are tested and reported on datasets which are at least one order-of-
magnitude smaller than ours, as 20 [1] (with 20 polyps), 12 [2] (with 12 polyps),
and 39 [3] (with 23 training and 16 testing polyps) patients. This is partially
because the pair of completely distended prone-supine colon scans (from rectum
to cecum) is a prerequisite. Preparing topologically correct colon segmentation
cases often needs manual editing or interactions [2] that can be labor-intensive,
for large 3D volumes. Tagging residues or artifacts can largely affects the colon
surface quality which imposes problems for global surface registration method [1].

2 Materials and Methods

Our approach consists of the following two steps. We first select a subset of
features from the whole CAD classification feature pool, which is polyp matching-
informative, using Minimum Redundancy Maximum Relevance (MRMR)
algorithm [8]. Next, we learn an effective polyp matching distance metric on
selected features (i.e., Mahalanobis distance by a positive semidefinite matrix
that weights channels of features differently), in an additive, boosting based
optimization manner. Fig. 1 summarizes the process diagram.

2.1 Matching-Sensitive Feature Selection

Data & Features: We collected 195 CTC cases (or 390 volumes) with 106
polyps appearing in both views for training; and 223 cases containing 118 polyps
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Fig. 1. The flow chart of using metric learning to do polyp matching and retrieval

with double appearance for testing, from 8 hospitals in US, Europe and Asia.
Images are acquired using Siemens, GE and Philips scanners with fecal tagging
preparation. Only actionable polyps with diameters ≥ 6mm are considered. Our
CAD system builds a tree-structured probabilistic classifier using 96 (morpho-
logical, intensity, texture-based or geometrical) features F = {fi} on 61257
candidates in training dataset. Thus we can first perform a thresholding process
to rule out false positive (FP) candidates with low probability values (ρ of being
polyp). After this, we have ∼ 8 candidates per patient with true positive (TP)
detection sensitivities at 94.2% and 92.9% for training and testing perspectively.
Note that our polyp matching approach is applicable on other CAD systems [5–7]
which usually have a large variety of polyp descriptive features.

Let x1
i be a true polyp instance in one view for a patient and let {x2

j} be
the set of corresponding instances in the other view. Note that the size of {x2

j}
can be larger than one since polyps can appear as two or more instances in
each scan, especially for large polyps. This is called multiple instance problem.
Here 1 or 2 indicates prone or supine view, without loss of generality. We define
the positive (+) instance pairs of instances in two views rooted from the same
unique true polyp, and other pairs as negative (-) (e.g., TP-TP pairs according
to different polyps, TP-FP pairs, and FP-FP pairs). For each original feature f ,
a new “difference-of-feature” variable can be derived as �f = (f1

i − f2
j ), which

is expected to be zero or a constant for positive pair population (i.e., tightly
distributed in a statistical sense), or random for negatives.

Based on above motivation, we use feature selection algorithms to find a
subset of S ⊂ F which are more informative on distinguishing true or false
polyp pairs. For its numerical stability, accuracy and formulation simplicity, we
choose Minimum Redundancy Maximum Relevance (MRMR) method though
other feature selection methods are also applicable. For details, refer to [8]. As a
result, we obtain 18 features out of 96 features, describing instance-level polyp’s
shape morphology, segmented size, surface area, intensity profiles, classification
score (“polypness”) and their joint statistics.

2.2 Matching by Metric Distance Learning

In this section, we propose a new metric learning method called “MatrixBoost”
to match polyps in prone-supine views, using the 18 matching sensitive polyp
features selected by MRMR. The basic idea is that a good distance metric can
be learned to assign different weights on features, so that low distances are
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given for pairs of instances to be matched and high distances for others, in the
feature space. There are a number of ways to design distance metrics [9–11].
Metric learning can be derived from the optimal combination of weak learners
to form a strong learner, based on training data. One type of weak learner is
equivalence constrained, where equivalence constraints are provided for pairs
(xi,xj), each associated with a binary label of ”similar” or ”dissimilar” [9].
Another weak learner representation often used in information retrieval [11] is
the proximity relationship over triplet set T = {(i, j, k)}, meaning that xi is
closer to xj than to xk. Here xi is the feature vector representation for the
polyp instance i. The goal of metric learning is to learn a distance function d
such that d(xi,xj) < d(xi,xk), and

d(xi,xj) = (xi − xj)′M(xi − xj) (1)

where ′ is the vector/matrix transpose transformation and M is a positive
semidefinite (PSD) matrix that leads to the Mahalanobis distance metric [9,10].
We follow the Mahalanobis distance metric formulation, but propose to con-
struct the “covariance” matrix M by additively combining weak learners which
are low rank PSD matrices. AdaBoost [12] method is utilized to learn the linear
combination of low rank positive semidefinite (PSD) matrices, as a PSD matrix
M preserving the proximity relationships among triplet set T = {(i, j, k)}. The
input to our metric boosting algorithm for training are triplets of instances, with
inequality constraints on distances as defined above.

Build triplets. In training, we select all the instances with classifier score
greater than ρ ≥ βc to build triplets. The classifier score threshold βc is chosen
to make a practically feasible trade-off between detection sensitivity and FP rate
(sensitivity is 0.946, and FP rate per patient is 7.59, pruning obvious negatives).
The retained instances will form the triplets in the following way. For each
true positive (polyp) instance xi in the prone view of a patient, we find all
the positive instances {xj}n

j=1 corresponding to the same polyp and all other
instances (including positives corresponding to different polyps and negatives,
or false positives) {xk}m

k=1 in the supine view. Then (i, j, k) will form a triplet,
requiring d(xi,xj) < d(xi,xk). We repeat the same process on each true positive
instance in the supine view to build more triplets, in a similar way. All the triplets
form a triplet set T and we obtained 8646 triplets in total, which will be used
as inputs for our metric learning algorithm to optimize the PSD matrix M .

Learn a PSD matrix using MatrixBoost. Since a PSD matrix can be
Eigen-decomposed as a combination of lower rank matrix, e.g., M = αiUi,
where Ui = uiui

′. The distance between two instances xi and xj is d(xi,xj) =
(xi − xj)′M(xi − xj). The algorithm is to learn a strong learner H(x,y) =
(x − y)′M(x − y), which is a combination of weak learners ht(x,y) = (x −
y)′Ut(x − y), i.e. H(x,y) =

∑
t αtht(x,y), by minimizing the error rate of

triplets violating the distance inequality as below.

ε =
∑

(i,j,k)∈T
D((i, j, k))1(H(xi,xj)−H(xi,xk)), (2)
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where D is a probability distribution over T , and 1 is the Heaviside step function
(1(a) = 0 if a < 0, and 1 otherwise). Our proposed MatrixBoost algorithm
adapts the merits of the AdaBoost [12] and the decomposable nature of PSD
distance matrix. In the algorithm, the weak model is ht(x,y) = (x−y)′Ut(x−y)
where Ut = utut

′, and the final hypothesis is H(x,y) = (x − y)′M(x − y)
where M =

∑
t αtUt. Note that if M forms a metric that satisfies the triplet

conditions, so does its multiplier. It can be proven that the training error of the
final hypothesis H as defined in (2) is upper bounded by

∏T
t=1 Zt, i.e.,∑

D((i, j, k))1(H(xi,xj)−H(xi,xk))

≤
∑

D((i, j, k)) exp(H(xi,xj) −H(xi,xk)) , 1x ≤ exp(x)

=
∑

DT+1((i, j, k))
∏T

t=1
Zt =

∏T

t=1
Zt.

αt and ht will be chosen such that the error upper bound
∏T

t=1 Zt will be mini-
mized. Let ht ∈ [0, 1], Zt has the upper bound

Zt ≤ eαt
1 − r

2
+ e−αt

1 + r

2
, (3)

where
r =

∑
(i,j,k)∈T

Dt((i, j, k)) (ht(xi,xk) − ht(xi,xj)) . (4)

The right side of (3) can be minimized when αt = ln((1 + r)/(1 − r))/2 which
corresponds to Zt ≤

√
1 − r2. Obviously, Zt ≤ 1 and if r > 0, we have αt > 0.

Furthermore, the inequality implies that we can achieve smaller Zt by minimizing
its upper bound

√
1 − r2. Hence, a weak learner can be designed to maximize

|r| for a sensible model ht.
max

Ut = utut
′

||ut|| = 1

|
∑

(i,j,k)∈T Dt((i, j, k)) (ht(xi,xk) − ht(xi,xj)) |

subject to ht(x,y) = (x − y)′Ut(x − y)

(5)

Using simple matrix algebraic operations, Eq. (5) can be rewritten as

|ut
′
[∑

(i,j,k)∈T Dt((i, j, k)) ((xi − xk)(xi − xk)′ − (xi − xj)(xi − xj)′)
]
ut|

(6)

The problem of maximizing the objective (6) subject to a normalization con-
straint ||ut|| = 1 has a closed-form solution: the optimal ut is the eigenvector
corresponding to the eigenvalue λ, with the largest absolute value, of the matrix∑

(i,j,k)∈T Dt((i, j, k)) ((xi − xk)(xi − xk)′ − (xi − xj)(xi − xj)′) . (7)
Let a = max{||x − y|| | x �= y,x,y ∈ X} which is a constant for a given set of
data.

0 ≤ ht(x,y) =
(x − y)′utut

′(x − y)
a2

≤ ||x − y||2||ut||2
a2

≤ 1 (8)

In testing, if d(xi,xk) < δ and δ is a distance threshold which can be sta-
tistically calibrated as shown later, we will claim xk is a match of xi and the
confidence pi for xi to be detected as positive (assuming only true positives have



80 M. Liu et al.

Fig. 2. An illustrative example of matched polyp pair, in a collapsed colon with back-
ground topological noises (e.g., small intestine) and large deformations in transverse
and ascending colon sections

matches) is inverse to the minimum distance, i.e., pi = 1/d(xi,xk). An matched
polyp pair example is shown in Fig. 2. The resulting weights or relative impor-
tances among selected features, reflected by the learned M = αiUi, are well
balanced among several cues of above local appearance. Even if some feature are
forced to be removed, the matching performance degrades very gently.

3 Experimental Results

For each polyp xi in a given view (prone or supine), the goal of polyp retrieval
is to find its corresponding counterpart in the other view. Using d(xi,xj) in Eq.
(1) with learned M , we sort its k nearest neighbors and check whether there
is a true match within k to trigger a hit. The retrieval rate is defined as the
number of polyps retrieved divided by the total number of query polyps. In
case of multiple instances, any true instance appearing in the top k neighbors
will count the polyp as retrieved at k. The evaluation of retrieval rate versus
the number of nearest neighbors, i.e., k is demonstrated in Fig. 3, for both
training and testing datasets. Fig. 3 shows the superior performance of metric
learning methods (via fusing local polyp appearance features), compared with
the centerline geodesic distance based retrieval, similar to [3,4]. Not all polyps are
retrievable because a small portion of polyps (≤ 7%) only appeared in one view.
For centerline based schemes, > 40% polyps are non-retrievable or can not be
directly handled by [1–4], mainly due to collapsed colon segmentation in at least
one prone or supine volume of 31% training, or 36% testing cases. [13]reports that
∼ 40% volumes have collapsed colon segments in a clinical dataset. Note that, by
normalizing against the polyp retrieval upper bounds (55 ∼ 59% for geometric
and 93 ∼ 94% for metric learning) respectively, in Fig. 3, i.e., assuming all polyps
are matchable, our local features + metric distance learning approach still clearly
has more appealing performances, as 85% versus 62% in training; 80% versus
57% in testing when k = 1.

We also evaluate our MatrixBoost algorithm against other metric learning
methods (Mahalanobis [10], PSDBoost [11], ITML [14], BoostMetric [11] and
COP [9]), using the same selected feature set by MRMR. MatrixBoost dominates
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Fig. 3. Retrieval rates versus the number of nearest neighbors on the training (Left)
and testing (Right) datasets

the retrieval rate at the full range of k, with a larger margin in testing dataset.
For example, when k = 2, the testing retrieval rate of our method is 80.51%,
while the best result of all other techniques is 73.73%. High polyp match/retrieval
rates under smaller numbers of k, can greatly facilitate the workflow for radiolo-
gists to effectively and efficiently match the polyp findings in prone-supine CTC
views. Moreover, MatrixBoost permits faster convergence to the upper bounds
of polyp retrieval rate at k = 7 in both training and testing. Lastly, the polyp
retrieval performance can be presented using Precision-Recall curves that show
the balance of retrieval accuracy versus recall, in Fig. 4.

Fig. 4. The comparison of polyp retrieval Precision-Recall curves, using different met-
ric learning methods and centerline Geodesic distance approach, on training (Left) and
testing (Right) datasets. MatrixBoost method shows superior performance than others.

4 Discussion

We proposed an effective and high performance polyp prone-supine view match-
ing method, based on local polyp classification feature learning (via feature se-



82 M. Liu et al.

lection and metric learning). Our approach is evaluated on at least one order-
of-magnitude larger, multiple hospitals dataset than previous work [1–4]. It can
automatically and robustly handle highly varying colon segmentations from hun-
dreds of patient cases, without any manual editing or preprocessing overhead. In
summary, our method greatly advances the state-of-the-arts for polyp matching,
and makes it more technically feasible for clinical practice.
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Abstract. Recent introduction of probe-based confocal laser endomi-
croscopy (pCLE) allowed for the acquisition of in-vivo optical biopsies
during the endoscopic examination without removing any tissue sample.
The non-invasive nature of the optical biopsies makes the re-targeting
of previous biopsy sites in surveillance examinations difficult due to
the absence of scars or surface landmarks. In this work, we introduce
a new method for recognition of optical biopsy scenes of the diagnosis
endoscopy during serial surveillance examinations. To this end, together
with our clinical partners, we propose a new workflow involving two-run
surveillance endoscopies to reduce the ill-posedness of the task. In the
first run, the endoscope is guided from the mouth to the z-line (junction
from the oesophagus to the stomach). Our method relies on clustering
the frames of the diagnosis and the first run surveillance (S1) endoscopy
into several scenes and establishing cluster correspondences accross these
videos. During the second run surveillance (S2), the scene recognition is
performed in real-time and in-vivo based on the cluster correspondences.
Detailed experimental results demonstrate the feasibility of the proposed
approach with 89.75% recall and 80.91% precision on 3 patient datasets.

1 Introduction

Oesophageal adenocarcinoma (OAC) is one of the most rapidly increasing can-
cers in the Western world with a survival rate of less than 20%. The reason of this
low survival rate in OAC is largely due to its late diagnosis. To alleviate this prob-
lem, patients diagnosed with a precursor of OAC are required to undergo regular
surveillance endoscopies where biopsies are taken from suspicious tissue regions.
The introduction of the new probe-based confocal laser endomicroscopy (pCLE)
enabled real-time visualisation of cellular structures in-vivo. Despite their es-
tablished advantages, these optical biopsies also introduce new challenges into
the existing gastro-intestinal (GI) endoscopy workflow. Due to their non-invasive
nature, re-targeting the same biopsy locations in subsequent surveillance exami-
nation becomes very challenging. Recently, several methods have been proposed
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for addressing the re-localization problem within one intervention [2,1,11,3]. The
application of such localization methods to a new surveillance GI endoscopy re-
quires real-time recognition of the frames containing previously targeted biopsy
sites. The major challenge of performing scene recognition between the diagnosis
and surveillance endoscopies is the variation in visual appearances of the same
scene as demonstrated in Fig.1(a),(d). To address this challenge, we propose a
two-run surveillance endoscopy. In the introduced workflow, prior to the actual
surveillance endoscopy, a first-run surveillance (S1) video is acquired in the same
examination. This is a commonly performed process in bronchoscopy [9]. To the
best of our knowledge, however, this process has not been applied in GI ex-
aminations. In this work, we introduce the two run surveillance schema for GI
endoscopies, which allows us to provide an applicable solution for re-targeting
the optical biopsy sites in surveillance examinations.

The proposed method first creates scene clusters from the diagnosis and S1 en-
doscopies and then establishes correspondences between these two videos based
on expert’s supervision. As the structure of the tissue between the S1 and the
actual examination performed in the second run surveillance (S2) remains the
same, the visual recognition of a scene becomes a solvable task. Once the query
scenes, i.e. scenes of the diagnosis endoscopy which need to be recognized, are
defined, recognition is achieved based on the guided correspondences.

To facilitate the proposed workflow, an endoscopic scene clustering method
proposed in [4] is adapted. To this end, we create a manifold representation
of the endoscopic videos by taking into account the visual similarities and the
temporal relations within the video simultaneously. Scene clustering is performed
in the low dimensional space using a mixture model method presented in [7]. The
accuracy of the method is validated on 3 different patient datasets, where the
patient underwent chemotherapy between the acquisitions.

2 Methods

2.1 Proposed Workflow

In this work, we firstly propose a two-run surveillance endoscopy. In the in-
troduced schema, prior to the actual surveillance endoscopy, the endoscope is
guided from the mouth to the z-line (junction from the oesophagus to the stom-
ach) without acquiring any optical biopsies. The video of this S1 endoscopy is
clustered into different endoscopic scenes and used to acquire scene matching
between the diagnosis and surveillance endoscopy. This additional step enables
the recognition of the same location despite very large variation in the visual
appearances of the scene in different examinations as illustrated in Fig.1(a),(d).

Thus, the proposed workflow involves 3 endoscopic videos: diagnosis endoscopy
(Fig.1(a)), where the first optical biopsies have been acquired; S1 (Fig.1(d))
which is performed to provide matches between the endoscopic scene clusters;
and the S2 (Fig.1(g)) where the surveillance examination is performed and the
previous optical biopsy sites need to be recognized in real-time and in-vivo.
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Fig. 1. Proposed workflow. a) Frames from the diagnosis endoscopy. b) 1. and 2. dimen-
sions of the manifold of the diagnosis endoscopy created using vtLPP. Frames showing
similar locations are clustered together, where clusters are illustrated with different col-
ors. c) Example clusters of the diagnosis endoscopy, where rows correspond to different
clusters. Note that frames of the same scene with different endoscope viewpoint are
clustered together whereas different scenes are clustered separately. d) Corresponding
scenes of a) in the S1. Rows in a) correspond to rows in d). e) 1. and 2. dimensions of
S1 manifold and the computed clusters. f) Frames from the corresponding clusters of
c) in the S1. The rows in c) correspond to rows in f). g) Example frames from the S2.

The proposed workflow consists of the following main steps:

1. Clustering of the diagnosis endoscopy into different scenes (Fig.1(a)-(c)),
2. Acquisition of the S1 endoscopy (Fig.1(d)),
3. Clustering of the S1 endoscopy into different scenes (Fig.1(d)-(f)),
4. Selection of the query clusters in the diagnosis endoscopy and their corre-

spondences in the S1 by the endoscopic expert,
5. Nearest neighbour matching and S1 cluster assignment to each frame of the

S2 endoscopy in real-time (Fig.1(g)),
6. Notification of the expert during the S2 endoscopy if a frame is assigned to

one of the query clusters.

Given the frames of the diagnosis (Fig.1(a)) and of the S1 (Fig. 1(d)) endo-
scopies, our method first computes a low dimensional manifold representation
for each video by taking into account the visual similarities and the temporal
relations between the frames. This allows for efficient clustering of the endo-
scopic scenes. Fig.1(b) and (e) show the 1. and 2. dimensions of the manifolds
computed from the diagnosis and S1 endoscopies respectively, where the clus-
ters are illustrated by different colors. Clustering of the frames into different
scenes is performed on this manifold representation using a mixture model and
the expectation maximization method proposed in [7]. Fig.1(c) shows example
clusters from the diagnosis endoscopy where the corresponding clusters in the
S1 are illustrated in Fig.1(f). Note the severe change in the appearance of the
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scenes between the two examinations. Based on the previously defined diagnosis
endoscopy clusters and their correspondences in the S1, the proposed workflow
allows for real-time and in-vivo recognition of the query scenes during the S2.

2.2 Data Representation

Clustering of endoscopic frames using the original image representation is not
practical due to the high dimensionality of the data. In [4], the authors propose
to recover the underlying non-linear manifold structure of an endoscopic video
and to perform the clustering on this low dimensional space. In this work, we
approximate the manifold underlying an endoscopic video using the locality pre-
serving projections (LPP) method [10]. In contrast to [4], we define the relations
between the frames by taking into account their visual similarities and temporal
relations simultaneously and use a probabilistic clustering presented in [7].

LPP first defines an adjacency graph A that captures the pairwise relations
A(i, j) between the frames Ii and Ij , (i, j ∈ {1, · · · , n}, n being the number of
data points), and then estimates a mapping to embed the graph into a low di-
mensional space. In order to simultaneously capture the visual and the temporal
relations between the data points, we propose to define the adjacency graph as:

A(i, j) =

{
1 if i ∈ N sim

j or i ∈ N temp
j

0 otherwise ,
(1)

where N sim
j is the k-NN of the j-th data point based on the visual similarities

and N temp
j states the k-NN based on the temporal order of the frames within

the endoscopic video. In this work, we determine the visual similarities using
the Euclidean distance and choose k = 20 considering the observed endoscope
motion. Imposing the proposed temporal constraint assures that frames showing
the same scene from different endoscope viewpoints are closely localized on the
manifold, even in cases where visual similarities fail to capture their relations.
On the other hand, using the visual similarities includes the neighborhood of
similar but temporally distant frames, which is reflected in the closed loops on
the manifold representations (Fig.1(b),(e)).

Given the adjacency matrix A and the (vectorized) endoscopic frames I =
[I1, I2, · · · , In], we approximate the underlying manifold of the endoscopic data
using the LPP method [10]. In LPP, first a function basis w = [w1, · · · , wm] is
computed based on locally linear approximations of the Laplace-Beltrami oper-
ator applied on the dataset by solving the following eigenvalue problem:

ILI	w = λIDI	w , (2)

where D is the diagonal degree matrix with D(i, i) =
∑

j A(j, i) and L = D−A
is the graph Laplacian matrix [10]. Then the m dimensional representation ν =
[ν1(i), · · · , νm(i)]	 of a frame Ii is estimated by projecting it onto the estimated
basis ν = w	Ii. Thus, this method provides an approximation for the Laplacian
Eigenmaps (LE) method [5] while it also allows for projection of new data points
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onto the manifold. Fig.1(b),(e) illustrate a 2D representation of two endoscopic
videos. In the rest of the paper, we refer to our representation as visual and
temporal LPP (vtLPP).

2.3 Endoscopic Scene Clustering

Once the low dimensional representations of endoscopic frames are computed,
we use the finite mixture models (FMM) method proposed in [7] to compute
the clusters. Using FMM, we estimate the probability P [c(ν(i)) = Cj ] of each
point ν(i) belonging to a mixture model (cluster) Cj and assign the cluster with
the highest probability c(ν(i)) = argmaxCj P [c(ν(i)) = Cj)]. FMM [7] offers
the advantage of automatically detecting the number of clusters. Additionally,
FMM models clusters with anisotropic Gaussians, which overcomes the isotropic
distribution assumption imposed in clustering algorithms such as K-means [8]
and results in elongated clusters. Such clusters efficiently group frames showing
the same scene with different viewpoints as shown in Fig.1(b),(c),(e) and (f)).

2.4 Endoscopic Scene Recognition

After computing the clusters of the diagnosis endoscopy ΩD = {CD
1 , · · · , CD

α }
and then the ones of the S1 endoscopy ΩS1 = {CS1

1 , · · · , CS1
β }, both clusterings

are provided to the endoscopic expert. The set of Q clusters, where an auto-
matic recognition is needed, i.e. the query clusters {CD

q }Q
q=1 ∈ ΩD, as well as

their correspondences in the S1 endoscopy, {CS1
γ(q)} ∈ ΩS1 (where γ denotes the

correspondence relation) are selected by the endoscopic expert.
During the S2, first the image closest to a frame IS2

i , that is IS1
j = NN(IS2

i ),
is found by a simple NN matching using Euclidean distances. Then each frame
IS2

i is assigned the cluster of its NN cS1(IS2
i ) = cS1(IS1

j ) and, by transition,
the corresponding diagnosis endoscopy cluster cD(IS2

i ) = cD(IS1
j ). If a frame is

determined to belong to a query cluster cD(IS2
i ) ∈ {CD

q }, the expert is notified
and all frames of the corresponding diagnosis endoscopy cluster {ID

k |cD(ID
k )}

are retrieved. This proposed workflow thus allows for including the expert’s
supervision in defining the query scenes and their correspondences in the S1
without involving any training. This is an important property, since long training
processes would not be feasible for routine clinical applications.

3 Experiments and Results

Experiments were performed on 3 narrow-band imaging (NBI) patient datasets
acquired at 3 different examinations of the same patient. The patient underwent
chemotherapy between the examinations, leading to significant changes in the
appearance of the tissue as illustrated in Fig.1. Uninformative frames are labeled
using the method in [4] and the remaining informative frames (1198, 1833 and
712 frames in 1., 2. and 3. datasets, respectively) are used for the experiments.
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Fig. 2. Evaluation of scene clustering on the proposed representation as compared to
the low dimensional image space representation

3.1 Evaluation of Scene Clustering

In order to assess the quality of the clustering, we evaluate the Davis-Bouldin
(DB) index [6] which is a commonly used evaluation criteria for clustering algo-
rithms. DB-index measures the relation of the between cluster distances (sepa-
rability) and within cluster distances (compactness) and is independent of the
number of clusters. Smaller DB-indices indicate more compact and separable
clusters and are desired. We compare the DB-index of the clustering performed
in our vtLPP representation to the one in the PCA representation of the data.
Due to its numerical instability, the FMM algorithm [7] is not applicable to very
high dimensional data, such as in the original image representation. Therefore,
we apply a principal component analysis (PCA) and reduce the dimensionality
of the dataset prior to clustering. Using the FMM clustering in [7], we observed
that higher dimensional representations result in less number of clusters. There-
fore, the evaluation of the DB-index is performed by varying the dimensionality
from 2 to 20 for the two methods. Fig.2 shows that for all number of dimensions
and for all datasets, the proposed representation results in significantly smaller
DB-indices indicating more compact and better separated clusters.

3.2 Evaluation of Scene Recognition

For quantitative analysis we perform 3 experiments. In each experiment, 40
frames from the surveillance endoscopic video are selected by regularly sampling
the frames over time and are used as test frames simulating the S2 endoscopic
frames leading to a total recognition of 120 frames. Remaining parts of the
surveillance video are defined to be the S1 endoscopy. The results are compared
to k-NN matching based on Euclidean distances performed between the S2 and
diagnosis endoscopy frames directly, where k is chosen to be equal to the number
of frames retrieved by our method. We also performed the NN matching using
the normalized cross correlation and did not observe a significant improvement
in the recognition results. The true positives (tp) and false positives (fp) are
determined by expert visual inspection of the retrieved frames. The false nega-
tives (fn) of each method is defined relatively, as the number of frames that one
method is able to correctly retrieve but not the other. Recall (tp/(tp+ fn)) and
precision (tp/(tp + fp)) values are evaluated for each test frame and mean and
standard deviation achieved by both methods is presented in Fig.3. Application
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Fig. 3. Mean and standard deviation of recall and precision of the proposed method
and of the direct application of the k-NN matching to the diagnosis endoscopy

(a) (b) (c)

Fig. 4. a) Test frames used as S2 endoscopy. b) Recognized frames using our method.
c) 3 NN in the diagnosis endoscopy. The rows show corresponding frames in a), b), c).

of the k-NN matching directly between the test frames and the diagnosis en-
doscopy results in only 58.54% mean recall and 53.58% mean precision. Our
proposed method leads to a 89.75% recall and 80.91% precision in average using
the same NN matching between the test frames and the S1 endoscopic frames
and then applying the cluster correspondences. Examples of the correctly recog-
nized frames using the proposed method in comparison to the direct application
of k-NN matching between the S2 and diagnosis videos are demonstrated in
Fig.4. Due to the use of our vtLPP representation, the formed endoscopic clus-
ters contain frames showing the same location from different viewpoints and
from different parts of the video. This is also reflected in the high recall and
precision values of the proposed method.

4 Conclusions

In this work, we present an endoscopic scene recognition method based on two
run surveillance endoscopies and scene clustering. The key contributions of this
work are two-fold. Technically, we have presented a scene clustering method for
endoscopic videos by taking into account both visual similarities and temporal
relations in a low dimensional space. Clinically, we have proposed a solution to
the challenging problem of re-targeting the optical biopsy sites in surveillance
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endoscopies. The introduced workflow allows us to create a link between the
scenes of the diagnosis and surveillance examinations. This reformulation reduces
the very challenging inter-examination re-targeting into the plausible problem
of intra-examination frame recognition. The experiments on 3 different patient
datasets demonstrate the feasibility of our method to recognize the optical biopsy
scenes in surveillance endoscopies.

Acknowledgements. This research was supported by the Graduate School of
Information Science in Health (GSISH) and the TUM Graduate School. The
authors would like to thank Alessio Dore for valuable discussions.

References

1. Allain, B., Hu, M., Lovat, L., Cook, R., Ourselin, S., Hawkes, D.: Biopsy Site
Re-localisation Based on the Computation of Epipolar Lines from Two Previous
Endoscopic Images. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor,
C. (eds.) MICCAI 2009, Part I. LNCS, vol. 5761, pp. 491–498. Springer, Heidelberg
(2009)

2. Allain, B., Hu, M., Lovat, L., Cook, R., Vercauteren, T., Ourselin, S., Hawkes, D.:
A System for Biopsy Site Re-targeting with Uncertainty in Gastroenterology and
Oropharyngeal Examinations. In: Jiang, T., Navab, N., Pluim, J., Viergever, M.A.
(eds.) MICCAI 2010, Part II. LNCS, vol. 6362, pp. 514–521. Springer, Heidelberg
(2010)

3. Atasoy, S., Glocker, B., Giannarou, S., Mateus, D., Meining, A., Yang, G.Z., Navab,
N.: Probabilistic Region Matching in Narrow-Band Endoscopy for Targeted Optical
Biopsy. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.)
MICCAI 2009, Part I. LNCS, vol. 5761, pp. 499–506. Springer, Heidelberg (2009)

4. Atasoy, S., Mateus, D., Lallemand, J., Meining, A., Yang, G.Z., Navab, N.: Endo-
scopic Video Manifolds. In: Jiang, T., Navab, N., Pluim, J., Viergever, M.A. (eds.)
MICCAI 2010, Part II. LNCS, vol. 6362, pp. 437–445. Springer, Heidelberg (2010)

5. Belkin, M., Niyogi, P.: Laplacian Eigenmaps for Dimensionality Reduction and
Data Representation. Neural Comput. 15(6), 1373–1396 (2003)

6. Davies, D., Bouldin, D.: A Cluster Separation Measure. IEEE Trans. on Pattern
Anal. (2), 224–227 (1979)

7. Figueiredo, M., Jain, A.: Unsupervised learning of finite mixture models. IEEE
Trans. on Pattern Anal. 24(3), 381–396 (2002)

8. Hartigan, J., Wong, M.: A k-means clustering algorithm. Journal of the Royal
Statistical Society C 28(1), 100–108 (1979)
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Abstract. Glaucoma is an optic nerve disease resulting in loss of vi-
sion. There are two common types of glaucoma: open angle glaucoma
and angle closure glaucoma. Glaucoma type classification is important
in glaucoma diagnosis. Ophthalmologists examine the iridocorneal angle
between iris and cornea to determine the glaucoma type. However, man-
ual classification/grading of the iridocorneal angle images is subjective
and time consuming. To save workload and facilitate large-scale clini-
cal use, it is essential to determine glaucoma type automatically. In this
paper, we propose to use focal biologically inspired feature for the clas-
sification. The iris surface is located to determine the focal region. The
association between focal biologically inspired feature and angle grades
is built. The experimental results show that the proposed method can
correctly classify 85.2% images from open angle glaucoma and 84.3% im-
ages from angle closure glaucoma. The accuracy could be improved close
to 90% with more images included in the training. The results show that
the focal biologically inspired feature is effective for automatic glaucoma
type classification. It can be used to reduce workload of ophthalmologists
and diagnosis cost.

1 Introduction

Glaucoma is an optic nerve disease resulting in loss of vision. It is often associated
with increased pressure of fluid inside the eye. Two common types of glaucoma
are open angle glaucoma (OAG) and angle closure glaucoma (ACG). Ophthal-
mologists examine the iridocorneal angle between iris and cornea to determine
OAG and ACG. When the angle is open, it is OAG. Otherwise, ACG. A detailed
description of the angle structures can be found in [1]. Here we briefly explain
why the iridocorneal angle is important. The iris, cornea, and lens are bathed
in aqueous humor, which is continually produced by nearby tissues. It moves
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out of the eye via the trabecular meshwork drainage. Blocking of the trabecular
meshwork would lead to increased pressure in the eye. The trabecular meshwork
is associated with the angle, thus, the iridocorneal angle is important. Because of
different causes and specific treatments for different types of glaucoma as well as
the necessity of urgent treatment of ACG, it is important to determine the glau-
coma type early[2], which implies that it is essential to visualize the iridocorneal
angle to make a correct diagnosis of the disease.

Gonioscopy is an eye examination looking at the front part of the eye between
iris and cornea. It requires considerable clinical expertise and effort as well as a
full knowledge of the angle structures [3]. Thus, it is not performed as often as
it should be. A new option with much more convenience is the RetCam (Clarity
Medical Systems, Inc., Pleasanton, CA) camera, which is explored to capture the
image of iridocorneal angle [3] recently. Four typical iridocorneal angle images
from inferior, superior, nasal and temporal quadrants of a left eye captured by
RetCam are shown in Fig. 1. The angle which is of our interest is located at
the boundary between the iris and the cornea. When other angle structures are
visible on the cornea side of the iris surface, it is an open angle, otherwise,
closed. Shaffer’s grading system [2] is widely used in gonioscopy to evaluate the
angle status based on the visibility of the angle structures. In this paper, we
focus on the clinically important grading: the classification between ACG and
OAG. Manual grading of RetCam images is usually tedious, time consuming
and expensive. Moreover, it is often subjective similar to many other medical
applications [4] and thus reproducibility is a concern. To save workload and
facilitate large-scale clinical use, it is essential to have a precise, efficient and
cost effective system to determine glaucoma type automatically.

Automatic glaucoma type classification from iridocorneal images captured by
RetCam is a new research topic and few work has been done for it. In [5], the

Intensity (6 scale) Color (12 scale)
C1 (4 scale, 4 orientation)

Inferior Superior Nasal Temporal

Iris

Cornea

Fig. 1. Focal biologically inspired feature for glaucoma type classification: for each
training image, we extract BIF from focal region. The feature consists of 6 intensity
feature maps, 12 color feature maps, and 16 C1 units feature maps.
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edges around strongest arc are used. The limitation is that some edges within
iris are mistaken as edges from angle structures and reduce the classification
accuracy. Moreover, it relies on the accuracy of edge detection as well as the
sensitivities used to determine the edges. Based on the observation that human
can capture the ‘gist’ of an image instantly, biologically inspired feature (BIF)
[6][7][8] has been used in computer vision including scene classification, gait
recognition and etc. BIF mimics the process of cortex for visual perception.
Since the ophthalmologists classify the two types of glaucoma based on the
visual information, we introduce BIF to aid them to reduce workload. Different
from the application of scene classification where the scene varies largely from
one to another, the ‘scene’ of an angle closure image differs slightly from that
of an open one in a small region. When ophthalmologists examine the images,
they focus on the region. Thus, it is essential to extract BIF from it, i.e., focal
BIF. The proposed focal BIF as shown in Fig. 1 simulates the process.

The paper is organized as follows. In Section 1, we have given an introduction
of the background and motivation for the system. Section 2 introduces the BIF.
In Section 3, we introduce the methodology to determine the focal region and
extract focal BIF for angle grading. Section 4 shows the experimental results,
followed by the conclusions in the last section.

2 Biologically Inspired Feature

The BIF has proven to be effective in computer vision. The feature consists of
34 feature maps including 6 feature maps from intensity units, 12 feature maps
from color units, and 16 feature maps from C1 units.

Among these features, the intensity units are obtained by convolving dyadic
Gaussian pyramids with the intensity channel of a color image. The features
correspond to the neurons of mammals which are sensitive to dark centers on
bright surrounds or vice versa [9][10]. Nine spatial scales are generated with a
ratio from 1:1 (level 0) to 1:256 (level 8). The intensity feature maps are obtained
by the center-surround difference operation between center levels c = 2, 3, 4 and
surround levels s = c+ d, with d = 3, 4. Thus, six feature maps are computed at
levels of 2-5, 2-6, 3-6, 3-7, 4-7, and 4-8. Because of the scale difference, maps of
surround levels are interpolated to be the same size as the corresponding center
levels, and then they are subtracted to generate the relevant feature maps, i.e.,
I(c, s) = |I(c) − Interps−cI(s)|.

The color units are inspired by the ‘color double-opponent’ system in cortex
[9]. Neurons are excited by a color (e.g., blue) and inhibited by another color
(e.g., yellow) in the center of receptive field, so are neurons in the surround.
Herein, four color channels are used: R = r − (g + b)/2, G = g − (r + b)/2,
B = b − (r + g)/2 and Y = r + g − 2(|r − g| + b). For each color channel
(R, G, B, and Y ), dyadic Gaussian pyramids are used to generate nine spatial
scales similar to intensity unit. Two color pairs R−G and B − Y are used. The
feature maps are computed as the across scales center-surrounding differences.
Similar to the computation of intensity units, surround maps are interpolated
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to be the same size as the corresponding center maps and their difference is
computed as: RG(c, s) = |(R(c)−G(c))−Interps−c(R(s)−G(s))| and BY (c, s) =
|(B(c) − Y (c)) − Interps−c(B(s) − Y (s))|.

The C1 units are obtained by pooling over S1 units, which correspond to
simple cells in S1 layer of the visual cortex. Gabor functions are used for fea-
ture extraction due to its similarity to the receptive field profiles in simple cells
in S1 layer. The Gabor mother function is given by: F (x, y) = exp(−(x2

0 +
γ2y2

0)/(2δ2))×cos(2πx0/λ), wherein x0 = x cos θ+y sin θ, y0 = −x sin θ+y cos θ,
the range of x and y decides the scales of Gabor filters, and θ controls orien-
tations. In this paper, eight scales with a range of sizes from 7 × 7 to 21 × 21
pixels with a step of two pixels are used. Four orientations are considered: 0◦,
45◦, 90◦, and 135◦. Thus, a total of 32 feature maps are obtained in S1 units.
Pooling over two adjacent scales with an identical orientation, 16 feature maps
are obtained from C1 units.

Arbitrarily extracting the BIF from the whole image does not work well for
angle grading as the main difference between ACG and OAG lies in a small
region, not to mention the difference due to various quadrants. In order to use
BIF properly, we propose focal BIF. Focal BIF refers to biologically inspired
feature from a focal region. In this application, it is the area between iris and
cornea.

3 Methodology

A system for automatic glaucoma type classification is proposed with following
steps: quadrant determination, focal region segmentation, and grading.

3.1 Quadrant Determination

As mentioned earlier, the images can be from inferior, superior, nasal and tem-
poral quadrant of the eye. One important step for the automated diagnosis is
to determine the quadrant. In this paper, quadrant is determined based on the
location of the arc center and the location of edges. Canny edge [11] followed
by circular Hough transform [12] as in [5] are used to obtain the strongest arc.
Assuming (xi, yi), i = 1, 2, · · · , N are the coordinates of all points from the arc
inside the image, where top-left corner is defined as (1, 1) and bottom-right cor-
ner as (m,n), N is the number of points. The function to determine the quadrant
Q is given as 1:

Q =

⎧⎪⎪⎨⎪⎪⎩
Superior, if xc − xi ≥ |yc − yi|
Inferior, if xi − xc ≥ |yc − yi|
Nasal, if yc − yi > |xc − xi|
Temporal, if yi − yc > |xc − xi|

(1)

where (xi, yi) = ( 1
N

∑N
i=1 xi,

1
N

∑N
i=1 yi) is the mean of the edge coordinates,

(xc, yc) is the center of the detected arc.
1 A left eye is assumed here, swop nasal and temporal for a right eye.
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3.2 Focal Region Segmentation

The focal region refers to the area human eye focused on when one examines the
images. In this application, it is the area between iris and cornea. In order to
extract focal region and align features from various regions, we propose to locate
the iris surface as it is visible in both open angle and angle closure images.
For angle closure, the iris surface is often the strongest ascending edge (from
iris to cornea) in the focal region. However, for open angle, edges from other
angle structures can be stronger. Thus, the output of the aforementioned circular
Hough transform may find the iris surface inaccurately, as can be seen from the
line in red in Fig. 2(a).

Without losing generality, assuming the image is from inferior side of an eye
as in Fig. 2(a). Given Lj(x) = I(x, j), x = 1, 2, · · · ,M , from the jth column
of the image I. Assuming Lj crosses with the strongest arc at xj . Inspired by
the above observations on iris surface, we search for the point with strongest
ascending edge (from iris to cornea) from pixels around xj in Li and get its
coordinate xk. Among all ascending Canny edge within (xk − w, xk) as well
as xk itself, the point closest to pupil is used as candidate iris surface point
in this column. Here, w is set to be estimated maximum angle width. Finally,
curve fitting is applied based on all candidate points located in the last step.
In this paper, the iris surface is modelled as part of circle and a circular Hough
transform is applied again to find the fitted curve with circular center (xc, yc)
and radius r. After obtaining the estimation of iris surface highlighted in green,
another circular arc can be determined based same circular center (xc, yc) with
a larger radius r + δr. The parameter δr is set to be slightly larger than w. The
region in between is the focal region. As the side portions are often blurred,
central portion would be used. Locating the iris surface is a critical step to find
the focal region and then the focal BIF. Visually, the above algorithm finds the
iris surface accurately in central portion for 393 of the 396 images. However, it
is difficult to get a ground truth to compute a quantitative accuracy.

(a) Blue: Canny edge, red:
detected arc

(b) Focal region

Fig. 2. Focal Region Segmentation
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Fig. 3. Focal BIF from 4 × 10 sub-regions

A polar transform with respect to the circular center (xc, yc) as in Fig. 2(b)
is then applied to turn the focal region into rectangular. The transform helps to
align the focal region from images at different quadrants. As ophthalmologists
examine only the central portion, only the feature maps from central portion of
the focal region are used. Each feature map is divided into m×n sub-regions. The
mean value of feature map in each sub-region is computed for final representa-
tion. Fig. 3 shows an example with feature maps divided into 4×10 sub-regions.
Since each image is represented by 34 feature maps and each feature map is
decomposed into m×n sub-regions, we have a total of 34mn mean values as the
feature for each image.

3.3 Grading

In this paper, the grading problem is handled as a classification problem between
ACG and OAG. Support vector machines (SVM) are used as the optimization
tools for solving machine learning problems. The LIBSVM [13] is used in our
experiments. RBF kernel is used with two-folder cross folder validation adopted
to determine the parameters C and γ.

4 Experimental Results

A total of 99 different patient eyes as in [5] are used. For each patient eye, four
quadrants are examined by an ophthalmologist, thus a total of 99 × 4 = 396
quadrants are evaluated and labelled as ACG or OAG quadrant. Among the
gradings, 166 quadrants are with ACG and 230 quadrants are with OAG. These
manual gradings are used as ground truth.

In the SVM training, 115 images from OAG quadrants together with same
number of images from ACG quadrants are randomly selected for the training.
The rest of images are used for testing. The SVM parameters C and γ are
determined automatically through cross validation [13]. The training and testing
are repeated five times to get an average result. Table 1 shows the percentage of
corrected classified ACG and OAG by the proposed method for m = 4, n = 10
together the results by prior work [5] as well as the results when other classifiers
are used. The results show conventional neural networks such as multi-layer
perception (MLP), and k-nearest-neighbours (kNN) cannot perform as well as
SVM on this task. To show the effectiveness of BIF, we also conduct tests by
replacing the BIF with simplified features such as color histogram (CH), color
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Table 1. Performance of the proposed
method and other methods

Method Prior[5] MLP kNN Proposed

OAG 80.3% 77.4% 51.8% 85.2%
ACG 80.3% 74.3% 65.0% 84.3%

Table 2. Performance using other
features

Method CH CM IH

OAG 59.0% 65.1% 54.2%
ACG 67.5% 57.8% 56.6%

moment (CM) and intensity histogram (IH). The results summarized in Table 2
show that these features are not suitable for this task.

We also conduct tests with other m and n combinations. The classification
accuracy is computed as the average accuracy of ACG and OAG and summarized
in Fig. 4. The results show a slight performance drop with other settings. The
average accuracy increases as n increases to 10. For larger n, it drops as too
much redundant information leads to a biased classifier. A similar phenomena is
observed as m changes.

The two SVM parameters C and γ are important as well. Although C and γ
are selected automatically, it is still necessary to look at the results with other
parameters. Fig. 5 shows the performance with different C and γ combinations
from exponentially growing C and γ for the case m = 4 and n = 10.

The number of training samples is another critical factor. Fig. 6 shows the
results when different number of training images are used in the training. The
results show that the accuracy can be improved close to 90% with more images
included in the training.
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5 Conclusion

Glaucoma type classification is important in glaucoma diagnosis. Clinically, au-
tomatic glaucoma type classification helps reduce workload of ophthalmologists
and diagnosis cost. It make it possible for large-scale clinical use and benefit
patients. However, it is a challenging work due to ambiguous angle structures
in some images. In this paper, we explore focal BIF for the classification. The
association between focal BIF and glaucoma type is built through SVM learn-
ing. The results show that focal BIF is effective for the classification with 85.2%
OAG and 84.3% ACG correctly detected based on 4×10 sub-regions. With more
images included in the training, the accuracy can be improved close to 90%. A
limitation is that the ground truth used in this paper is from one ophthalmologist
only and thus can be biased. In the future, gradings from more ophthalmologists
are to be used. Future work would focus on feature representation to further
improve the accuracy, with more images from different patients.
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Abstract. This paper presents the Relevance Voxel Machine (RVoxM), a
Bayesian multivariate pattern analysis (MVPA) algorithm that is specifi-
cally designed for making predictions based on image data. In contrast to
generic MVPA algorithms that have often been used for this purpose, the
method is designed to utilize a small number of spatially clustered sets of
voxels that are particularly suited for clinical interpretation. RVoxM au-
tomatically tunes all its free parameters during the training phase, and
offers the additional advantage of producing probabilistic prediction out-
comes. Experiments on age prediction from structural brain MRI indicate
that RVoxM yields biologically meaningful models that provide excellent
predictive accuracy.

Keywords: Multivariate Pattern Analysis, MRI.

1 Introduction

Medical imaging commonly entails relating image content to a clinical or ex-
perimental condition. Traditional univariate approaches, such as voxel-based
morphometry [2], generate anatomical maps of the effects by analyzing each
location individually. MVPA methods, in contrast, offer increased specificity
and sensitivity for predicting the outcome by considering all voxels simulta-
neously [6,8,10,12,14,16,17,15]. Yet studies on image-based prediction have typ-
ically employed generic MVPA methods, such as Support or Relevance Vector
Machines (SVMs/RVMs) [5,18], which do not account for the spatial organiza-
tion of imaging data.

As demonstrated in semi-supervised learning, significant performance gains
can be obtained by explicitly utilizing the underlying structure of the data [3,4].
One approach to achieve this with images is to impose an a priori model on
the covariation of voxel measurements – a strategy that has proven powerful in
computer vision [13]. Further motivation for such image-based prediction models
is interpretability: rather than a “black box” tool, we are also interested in un-
derstanding and visualizing the key areas that drive predictions. Although it is
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possible to display the workings of generic linear MVPA methods as images [12],
the results are often scattered and hard to interpret biologically [7].

In this paper, we present the Relevance Voxel Machine (RVoxM), a novel
MVPA algorithm that is specifically designed for image-based prediction. It uses
a Bayesian approach and builds largely on existing RVM machinery to obtain
not only good prediction performance, but also sparse solutions. Unlike RVMs,
however, where sparseness is realized by discarding many of the samples, i.e.,
training subjects, our approach removes most voxels, retaining only those vox-
els that are relevant for prediction. Furthermore, our model encourages spatial
clustering of these “relevance voxels” and computes predictions as linear com-
binations of their content, yielding results that are both biologically plausible
and intuitive to interpret. Compared to related efforts that incorporate spatial
context within the SVM or penalized regression frameworks [15,7], our method
inherits all the usual advantages of RVMs over non-Bayesian methods, including
providing probabilistic outcomes and the automatic tuning of all free parameters.

We test RVoxM on the problem of estimating the age of healthy subjects
from structural brain MRI scans, and show that it achieves high accuracy using
a pattern of “relevance voxels” that easily lends itself to biological interpretation.

2 Model

We use a generative model similar to the one of RVM [18]. Let t denote a real-
valued target variable (e.g., age) that we aim to predict from image data, and xi a
voxel-level measurement (e.g., gray matter density) at the voxel indexed by i. We
define a Gaussian conditional distribution for t: p(t|x,w, β) = N (t|y(x), β−1),
with variance β−1 and a mean that is given by the linear model

y(x) =
M∑
i=1

xiwi + w0 = wTx, (1)

where w = (w0 · · ·wM )T are adjustable “weights” encoding the strength of each
voxel’s contribution to the prediction, x = (1, x1, · · · , xM )T denotes the vec-
torized image the prediction is based on, and M is the number of voxels. For
notational convenience, we include an extra “voxel” to account for the bias, w0.

We assume a zero-mean Gaussian prior distribution over w:

p(w|α, λ) = N (w|0,P−1),

where P is a (M +1)× (M + 1) precision (inverse covariance) matrix defined as

P = diag(α0, · · · , αM) + λK.

Here, α = (α0, · · · , αM )T and λ are hyperparameters, and K is a fixed, positive-
semidefinite matrix that encourages local spatial smoothness of w. In particular,
we use K = ΥTΥ, where Υ is a sparse matrix in which each row corresponds
to a pair of neighboring voxels in the image. For neighboring voxels {i, j}, the
corresponding row has zero entries everywhere expect for the ithand jth column,
which have entries −1 and 1, respectively. Re-writing the prior as
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p(w|α, λ) ∝ exp
(
− 1

2

M∑
i=0

αiw
2
i − λ

2
‖Υw‖2

)
shows that it encodes a preference for models that are both sparse and spatially
clustered : we explicitly seek models that explain t through a small collection of
image patches that easily lend themselves to neuroscientific interpretation. The
fact that there is a hyperparameter αi associated with each voxel’s weight wi is
responsible for achieving sparsity in those weights – in practice many of the αi’s
tend to very large values, forcing the corresponding weights to zero and “switch-
ing off” the contribution of many voxels. Importantly, we also explicitly take the
spatial structure of image data into account by penalizing large entries in the
vector Υw, which represent large differences between the weights of neighboring
voxels. Thus, we encode a preference for spatial clusters of “switched-on” voxels,
as these are both biologically more plausible and easier to interpret than speckles
of isolated voxels scattered throughout the image area.

3 Hyperparameter Estimation

Given training data, {xn, tn}N
n=1, where xn is the nth training image and tn its

target variable, our first goal is to determine the values of the hyperparameters α,
λ, and β. Using type-II maximum likelihood, we estimate the hyperparameters
by maximizing the marginal likelihood function obtained by integrating out w:

p(t|X,α, λ, β) =
∫
w

( N∏
n=1

p(tn|xn,w, β)
)
p(w|α, λ)dw

=
∫
w

(
β

2π

)N/2

exp(−β

2
‖t− Xw‖2)

|P|1/2

(2π)M/2
exp(−1

2
wTPw)dw

=
|Γ|−1/2

(2π)N/2
exp(−1

2
tTΓ−1t), (2)

where t = (t1, · · · , tN )T, X = [x1, · · · ,xN ]T is the N×(M +1) “design” matrix,
and we have defined the N ×N matrix Γ given by

Γ = β−1I + XP−1XT.

We take a “coordinate-ascent” approach to maximize Eq. (2). We first define:

μ = βΣXTy, Σ = (βXTX + P)−1. (3)

Fixing λ, β, and {αj} for all j �= i, differentiating the log of Eq. (2) w.r.t αi,
equating to zero and rearranging yields the following update:

αnew
i =

γi

μ2
i

αi, (4)

where γi = 1−αiΣii−λ(P−1K)ii. Similarly, fixing α and β, differentiating w.r.t
λ, and rearranging yields the following update equation for λ:
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λnew =
trace(ΔK)

μ′Kμ
λ, (5)

where Δ = P−1 − Σ. Similarly, an update for β can be derived:

βnew =
N

‖y − Xμ‖2 + trace(XΣXT)
. (6)

Optimization now proceeds by cycling through these equations. We initialize
with αi = 1, ∀i, λ = 1 and β = 0; monitor the objective function at each it-
eration and terminate when the increase over the previous iteration is below a
tolerance. Although currently we have no theoretical guarantees that the pre-
sented equations indeed increase the objective function, we have not encountered
any situation where this was not the case in our experiments.

4 The RVoxM Learning Algorithm

In practice, most (> 90%) αi’s tend to grow to infinity, effectively clamping the
corresponding weight wi’s to zero and removing those voxels from the model.
We exploit this to obtain a greedy learning algorithm for large 3-D image vol-
umes, using two computational tricks. First, each time one of the αi’s exceeds a
certain (very large) value, the corresponding voxel is pruned from the model and
computations continue based on remaining voxels only, in a manner similar to
the RVM algorithm [18]. Second, we use a multi-resolution approach commonly
employed in image processing. We construct a pyramid representation of the
training images, where each level consists of lower-resolution images computed
by subsampling the images from the previous resolution. The algorithm then
starts by learning the hyperparameters for the lowest resolution images, prop-
agates them down for the initialization of the next level, and so forth until the
final resolution level is reached; voxels that were pruned at the previous level
remain so henceforth. Although this greedy algorithm prevents voxels from re-
entering once they have been removed, our experiments suggest that it works
quite well in practice.

5 Using RVoxM to Make Predictions

Having learned the hyperparameters α∗, λ∗, and β∗ from the training data, we
can make predictions about t for a new input image x by evaluating the posterior

p(t|x,X, t,α∗, λ∗, β∗) =
∫
w

p(t|x,w, β∗)p(w|X, t,α∗, λ∗)dw.

It can be shown that this distribution is a Gaussian with mean

μTx (7)

and variance 1
β∗ + xTΣx, where μ and Σ are given by Eq. (3) in which α, λ,

and β have been set to their optimized values α∗, λ∗, and β∗.
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In the remainder, we will use the maximum a posteriori value given by Eq. (7)
to predict t, which corresponds to the linear model of Eq. (1) in which the voxels’
weights w are set to μ. In many voxels μi = 0 (because their αi was set to
infinity) – we call the remaining voxels the “relevance voxels” as these are the
only ones effectively used to predict the target variable t.

6 Experimental Results

We applied RVoxM to the problem of estimating a person’s age from a brain
MRI scan. This problem has attracted recent attention [1,9,11] since it provides
a novel perspective for studying healthy development and aging patterns, while
characterizing pathologic deviations in disease.

We used T1-weighted scans from 336 cognitively normal subjects (age range
18-93 years), available through the OASIS dataset1. We processed all scans with
SPM82, using default settings, to obtain spatially aligned gray matter maps. The
gray matter density values (tissue probabilities modulated by the Jacobian of the
non-linear warp) were used as voxel-level measurements xi in the experiment.
To assess generalization accuracy, we split the data into two arbitrary3 halves
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Fig. 1. Top Left: Average root mean
square error for the three MVPA meth-
ods. Top Right: Average difference
between subject-level prediction errors,
measured as square of real age minus
predicted age. (A) Error of RVM minus
error of RVoxM. (B) Error of RVoxM-
NoReg minus error of RVoxM. Error bars
show standard error of the mean. Bot-
tom Left: Scatter plot of age estimated
with RVoxM versus real age.

1 http://www.oasis-brains.org. 1.5T Siemens Vision scanner, 1×1×1.25mm3, MPRAGE.
2 http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
3 Simply based on the alphabetical ordering of the anonymized filenames.
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Fig. 2. Relevance voxels (in blue) for predicting age, overlaid on the average gray
matter density image across all subjects. Brighter blue indicates a higher absolute
value, and thus a higher relevance for prediction. Top row: Model from training on the
first half of the data. Bottom row: Model from training on the second half of the data.

(age and sex matched, 43.7±23.8 years, 62.5% female). We employed each group
to train the RVoxM, which was then applied to the complementary group for
testing. All reported results are averages across the two training/testing sessions.

In addition to RVoxM, we used two other methods as benchmarks. The
first method (“RVM”) is another approach for estimating age from structural
MRI [11]. It uses a principal component analysis to achieve a dimensionality-
reduced representation of the images, and subsequently applies a linear RVM
algorithm. We used the optimal implementation settings described in [11] and
a public implementation of RVM4. The second benchmark (“RVoxM-NoReg”)
was an implementation of RVoxM with no spatial regularization, i.e., with the
hyperparameter λ clamped to zero. A comparison with the latter benchmark
gives us an insight into the effect of spatial regularization on the results.

Fig. 1 (top left) illustrates the root mean square error (RMSE) for the three
algorithms. On average, RVoxM yields the best accuracy with a RMSE less than
9.5 years (paired t-test, P < 0.05); Fig. 1 (bottom left) plots the age predicted
by RVoxM for each subject versus the subject’s real age. Fig. 1 (top right) plots
the average difference between the individual-level prediction errors (square of
predicted age minus true age) obtained by RVoxM and the other two methods.
On average, RVoxM achieves a statistically significantly smaller prediction er-
ror at the individual-level. RVoxM also attains the highest correlation (r-value)

4 http://www.vectoranomaly.com/downloads/downloads.htm
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between the subjects’ real age and predicted age among all three methods: 0.92
for RVoxM vs. 0.90, and 0.91 for RVM and RVoxM-NoReg, respectively5.

Fig. 2 shows μ, RVoxM’s estimated voxel weights, for each of the two training
sessions. Recalling that the prediction on new data is simply the linear product
between μ and the test image (Eq. (7)), the value of μ at a specific voxel reflects
the contribution of that voxel to the prediction. It can be appreciated that
most voxels have a zero contribution (i.e., the model is sparse), and that the
“relevance voxels” (with a non-zero contribution) occur in clusters, providing
clear clues as to what parts of the gray matter are driving the age prediction
process. Furthermore, the relevance voxels exhibit an overall very similar pattern
across the two training sessions, providing evidence that these patterns are likely
to be associated with the underlying biology and can be interpreted. We leave
the interpretation of these relevance voxel patterns to future work.

7 Conclusion

In this paper, we proposed a novel Bayesian framework for image-based predic-
tion. The proposed method yields a model where the predicted outcome is a
linear combination of a small number of spatially clustered sets of voxels. We
developed a computationally efficient optimization algorithm, RVoxM, to learn
the properties of this model from a training data set. While RVoxM is not guar-
anteed to find the global optimum, our empirical results suggest that it finds a
good solution in practice. Experiments on age prediction from structural brain
MRI indicate that RVoxM derives excellent predictive accuracy from a small
pattern of voxels that easily lends itself to neuroscientific interpretation.

Although we have used a regression model in this paper, it is straightforward
to extend the technique to probabilistic classification by introducing a logistic
sigmoid function [18]. In future work, we thus intend to apply RVoxM to also
predict dichotomous outcomes (e.g., diagnosis), in addition to continuous ones.
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Abstract. Early and accurate detection of Left Ventricle (LV) regional
wall motion abnormalities significantly helps in the diagnosis and follow-
up of cardiovascular diseases. We present a regional myocardial abnor-
mality detection framework based on image statistics. The proposed
framework requires a minimal user interaction, only to specify initial
delineation and anatomical landmarks on the first frame. Then, approxi-
mations of regional myocardial segments in subsequent frames were sys-
tematically obtained by superimposing the initial delineation on the rest
of the frames. The proposed method exploits the Bhattacharyya coef-
ficient to measure the similarity between the image distribution within
each segment approximation and the distribution of the corresponding
user-provided segment. Linear Discriminate Analysis (LDA) is applied
to find the optimal direction along which the projected features are the
most descriptive. Then a Linear Support Vector Machine (SVM) classifier
is employed for each of the regional myocardial segments to automati-
cally detect abnormally contracting regions of the myocardium. Based
on a clinical dataset of 30 subjects, the evaluation demonstrates that the
proposed method can be used as a promising diagnostic support tool to
assist clinicians.

1 Introduction

Heart failure is a prevalent disease that can be caused by various heart con-
ditions, in particular, ischemic heart disease (IHD) [1]. The decrease of blood
supply produced by coronary artery stenosis impairs the contractile properties of
specific myocardial areas. This deviates the normal regional wall motion and con-
tractility patterns of the myocardium, especially the left ventricle (LV). Early
and accurate detection of LV regional wall motion abnormalities significantly
helps in the diagnosis and follow-up of IHD [2]. In routine clinical use, car-
diac function is estimated by visual assessment and interpretation of LV and,
therefore, it is highly subject-dependent. Alternatively, computer-aided detection

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAI 2011, Part III, LNCS 6893, pp. 107–114, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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systems have been attempted in recent years in order to automatically analyze
LV myocardial function quantitatively [3], and to classify hearts into normal
or abnormal groups [4]. In clinical practice, the regional myocardial function is
commonly scored by following American Heart Association (AHA) standards
[5], where the LV is divided into 17 segments. Existing regional heart function
analysis methods are based on information theoretic measures and unscented
Kalman filter approaches [6], differentiable manifolds [7], independent compo-
nent analysis classifier [8], pattern recognition technique based on intra-segment
correlation [9], and tensor-based classification [10]. Most of the existing methods
require extensive user interaction or computationally expensive segmentation
algorithms. This study investigates assessment of regional myocardial function
using MR statistics and starting from a minimal user input. Typically cardiac
MR data consist of 10 sequences, each comprising 20 or 25 temporal image
frames. From a simple user input, we computed image statistics that are related
to myocardium function. Given a user-provided delineation of the first frame,
approximations of regional myocardial segments in subsequent frames were sys-
tematically obtained by superimposing the initial delineation on the rest of the
frames. The proposed method exploits the Bhattacharyya coefficient [11] to mea-
sure the similarity between the image distribution within each segment approxi-
mation and the distribution of the corresponding user-provided segment. Linear
Discriminate Analysis (LDA) is applied to find the optimal direction along which
the projected features are the most descriptive. Linear Support Vector Machine
(SVM) classifier is then employed for each of the regional myocardial segments
to automatically detect abnormal functional regions of the myocardium. The
proposed method performs significantly better than other recent methods and
requires fewer computational resources. The evaluations performed on a clinical
dataset of 30 subjects show that the proposed method is a promising diagnostic
support tool.

2 Constructing Image Statistics

We consider image statistics as representative features to classify regional my-
ocardium into normal or abnormal classes. Let I be a set of cardiac MR images
of a single slice containing N frames 1. Let I be a reference image which is an
end-diastolic frame corresponding to the largest volume during cardiac cycle,
whose delineation is given as depicted in Fig. 1(a). Let Γin, Γout : [0, 1] → Ω
denote respectively the corresponding manual endo and epi-cardial boundaries
of I. We divide I into M regional segments2 following the AHA standard [5],
and using anatomical landmarks3. Fig. 1(b) shows the regional segments for
I. For (n,m) ∈ [1...N] × [1...M], let Inm denotes the regional cardiac segment
corresponding to segment m in frame n, and Γnm

out the boundary of Inm (refer

1 The number of frames N is typically equal to 20 or 25.
2 M would be 4, 6, and 6 for apical, mid-cavity and basal slices, respectively.
3 As suggested by [5] the attachment of the right ventricular wall to the LV is used to

identify and separate the septum from the LV anterior and inferior free walls.
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(a) (b)

Fig. 1. (a) Manual delineation of the reference image I for a mid-cavity slice. (b)
Regional segments of the reference image I for mid-cavity slice.

to Fig 2 (a)). The classification procedures are identical for apical, mid-cavity
and basal slices. Let us now superimpose the region defined by the epi-cardial
boundary Γnm

out to the other frames in the sequence as shown in Fig. 2(a-c), and
compute the corresponding image statistics (Fig. 2(d-f)). We define RΓ ⊂ Ω
to be the region enclosed within Γ ∈ {Γin, Γout, Γ

nm
out }, and PRΓ ,I the intensity

distribution of I within region RΓ :
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Fig. 2. (a-c): Regional myocardial segments superimposed on subsequent frames. (d-f):
the corresponding image statistics.
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PRΓ ,I(z) =

∫
RΓ

K(z − I)dx

aRΓ

, K(y) =
1√

2πσ2
exp−

y2

2σ2 , (1)

where aRΓ is the area inside region RΓ and K is the Gaussian kernel [12]. Now
let PRΓin

,I denotes the image distribution corresponding to the blood within
the cavity of the reference image I whose delineation is given by the user (refer
to the distributions depicted by the discontinuous, red curves in Fig. 2(d-f)).
Furthermore, we estimate the distribution inside Γnm

out by PRΓ nm
out

,I in all other
frames in the sequence as shown in Fig. 2(d-f) (continuous, pink curves). Now
we consider the similarity measurement, β, between image distribution PRΓin

,I

corresponding to the blood in the cavity of the reference image I and distribution
PRΓ nm

out
,I:

βn,m = B(PRΓin
,I, PRΓ nm

out
,I), B(f, g) =

∫
R+

√
fgdz (2)

B(f, g) is the Bhattacharyya coefficient measuring the overlap (similarity) be-
tween distributions f and g. The range of the Bhattacharyya coefficient is [0, 1],
with 0 indicating no overlap between the distributions and 1 indicating a perfect
match. The fixed [0, 1] range of the Bhattacharyya coefficient affords a conve-
niently practical appraisal of the similarity. We expect that measurement βn,m

is related to the amount of blood in the corresponding segment Inm, a relation-
ship that is demonstrated experimentally by the typical example in Fig. 2. Such
similarity is reasonable because the more overlap between the image distribution
within cavity and the distribution within regional segment Inm, the higher the
blood volume inside regional segment Inm. When a regional myocardial muscle
does not contract properly, the distribution of blood within RΓ nm

out
, I, does not

change and, therefore, βn,m ∀i ∈ {1, ..., 20}, can be used as a criterion to assess
the myocardial function of segment Inm. We then employ a linear SVM classi-
fier and use the estimated βn,m (there are 20 βn,m for one regional segment) as
features to classify regional myocardial segments as normal or abnormal.

3 LDA and Linear SVM Classifier for Regional
Myocardial Abnormality Detection

We applied Linear Discriminant Analysis (LDA) to reduce the dimensionality
of feature vectors, βm = {βn,m} s.t. n ∈ {1, ..., 20}, while maximizing the dis-
tance between normal and abnormal classes. This can be achieved by projecting
estimated feature vectors, βm, to a new lower-dimensional feature space of βp

m

s.t. βp
m = FLDA(βm). FLDA transforms βm to βp

m to discriminate among ab-
normal and normal classes [13]. Subsequently, a linear Support Vector Machine
(SVM) classifier is used to identify the decision boundary to classify the regional
myocardial segments into normal and abnormal categories. The vectors near the
decision boundary are called support vectors. We used linear SVM classifier to
maximize the margin between the support vectors of both classes. We trained
the linear SVM classifier by providing βp

m and the associated labels of normal
or abnormal obtained from ground truth by an expert radiologist.
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4 Experiments

Data acquisition. A set of 2D short-axis cine magnetic resonance (MR) images
of 30 subjects were acquired over the cardiac cycle on a 1.5T scanner with fast-
imaging employing a steady-state acquisition (FIESTA) image sequence. The
acquisition parameters were: TR=2.98 ms, TE=1.2 ms, flip angle=30 degree,
and slice thickness=10 mm. The data contain 90 short-axis image sequences,
each consisting of 20 functional 2D images. The results for 480 myocardial seg-
ments from apical, mid-cavity and apical were compared with ground truth
classifications by an expert radiologist4.

Applying Linear Discriminant Analysis. After estimating image features,
we applied a LDA transformation for each of regional myocardial segments indi-
vidually. Fig. 3 shows the projected features βp

m after applying LDA transfor-
mation for regional segment 3 of apical, mid-cavity and basal slices. The results
show that projected features for the apical cases are more discriminative than
basal and mid-cavity regions. This can be explained by the fact that there are
no papillary muscles in apical slices and, therefore, estimation of the distribution
corresponding to blood within cavity of apical slice is less challenging compared
to basal and mid-cavity slices.
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Fig. 3. projected features, βm
p , after applying LDA transformation for regional segment

3 of apical, mid-cavity and basal slices

Linear SVM Classifier. We used 16 linear SVM classifiers to assess the 16
regional myocardial segments (normal/abnormal). Fig. 4 shows that the decision
boundary separates the normal and abnormal classes using linear SVM. The
decision boundary for apical is more reliable than the corresponding regional
segment in the basal slice. The greater the distance between the support vectors
4 Among the 480 myocardial segments, 389 segments were marked as normal and 91

as abnormal.
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Fig. 4. Decision boundary and support vectors for regional segment 3 of apical, mid-
cavity and basal slices

of normal and abnormal classes, the more reliable the decision boundary. The
decision boundary in the case of mid-cavity slices suffers from misclassification
because of the papillary muscles that are connected to myocardial wall.

Classification performance. We used two criteria to measure the performance
of each classifier, namely the ROC , Receiver Operating Characteristics, curves
with corresponding AUCs, Area Under the ROC Curve, and the Bhattacharyya
measure [11] to assess the discriminative power of the features. Furthermore, we
assessed the performance of the proposed approach by training our algorithm
using 2/3 of the dataset and testing on the rest of the data.

ROC, AUC and Bhattacharyya measure. We show the ROC curves for
classifier elements in Fig. 5. The figures show that the proposed method based
on the Bhattacharyya coefficient is a reliable approach, for detecting regional
abnormality in cardiac MR images. Figs. 5 (a), (b) and (c) show that apical seg-
ments are better classified than basal while basal slices are better classified than
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Fig. 5. Receiver operating characteristics of classifiers. The closer the curve to the left
hand top corner, the better the classification performance.
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Table 1. The area under the curve corresponding to Fig. 5 and the Bhattacharyya
distance metric (B) of normal/abnormal distributions. The higher the values, the more
discriminative the ability of the classifier.

Bhattacharyya distance
AUC metric (B)

Apical 0.94 0.91
Mid-cavity 0.85 0.85
Basal 0.87 0.94

mid-cavity slices. The AUCs corresponding to ROC curves in Fig. 5 are reported
in Table 1. We also used the Bhattacharyya distance metric, B, to evaluate the
overlap between the distribution of features over normal and abnormal classes.
The higher the B, the more discriminative the classifier. The Bs in Table 1 are
consistent with ROC/AUC evaluations.

Table 2. The classification accuracy computed by leaving-one-third-of-the-subjects-
out. The proposed method achieved an overall classification accuracy of 91.54%.

Sensitivity (%) Specificity (%) Accuracy (%)

Apex 100.0 90.91 92.86
Mid-cavity 93.33 92.93 90.48
Base 83.0 94.45 91.3

We also evaluated the performance of the classifier by computing the accu-
racy, specificity and sensitivity over datasets. Table 2 reports the results. The
overall classification accuracy is equal to 91.5%, with a sensitivity of 92.1% and
specificity of 92.8%. The highest performance was achieved for apical slices with
average of 92.9% for accuracy, 100% for sensitivity, and 90.9% for specificity.

5 Conclusions

We presented a regional cardiac abnormality detection method based on the
statistics of the image, which were estimated based on user-provided delineation
of the first frame. Then, from this simple input, we estimated image statistics for
each regional segment, and used them as features for regional heart abnormality
classification. The LDA was applied to estimate projected features and a linear
SVM classifier was used to classify regional LV segments into normal or abnormal
classes. The experimental analysis was carried out over 90×20 segmented LV
cavities of short-axis MR images obtained from 30 subjects, and demonstrated
that the proposed method performs significantly better than other state-of-art
methods, and can lead to a promising diagnostic support tool to assists clinicians.
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Abstract. Traditional neuroimaging studies in Alzheimer’s disease (AD)
typically employ independent and pairwise analyses between multimodal
data, which treat imaging biomarkers, cognitive measures, and disease
status as isolated units. To enhance mechanistic understanding of AD, in
this paper, we conduct a new study for identifying imaging biomarkers
that are associated with both cognitive measures and AD. To achieve this
goal, we propose a new sparse joint classification and regression method.
The imaging biomarkers identified by our method are AD-sensitive and
cognition-relevant and can help reveal complex relationships among brain
structure, cognition and disease status. Using the imaging and cognition
data from Alzheimer’s Disease Neuroimaging Initiative database, the ef-
fectiveness of the proposed method is demonstrated by clearly improved
performance on predicting both cognitive scores and disease status.

1 Introduction

Neuroimaging is a powerful tool for characterizing neurodegenerative process in
the progression of Alzheimer’s disease (AD). Pattern classification methods have
been widely employed to predict disease status using neuroimaging measures
[2,3]. Since AD is a neurodegenerative disorder characterized by progressive im-
pairment of memory and other cognitive functions, regression models have been
investigated to predict clinical scores from individual magnetic resonance imag-
ing (MRI) and/or positron emission tomography (PET) scans [8,9]. For example,
in [9], stepwise regression was performed in a pairwise fashion to relate each of
MRI and FDG-PET measures of eight candidate regions to each of four Rey’s
Auditory Verbal Learning Test (RAVLT) memory scores.
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Predicting disease status and predicting memory performance, using neu-
roimaging data, are both important learning tasks. Prior research typically stud-
ied these tasks separately. One example is to first determine disease-relevant cog-
nitive scores and then identify imaging biomarkers associated with these scores
so that interesting pathways from brain structure to cognition to symptom can
potentially be discovered. However, a specific cognitive function could be related
to multiple imaging measures associated with different biological pathways (some
of them are not related to AD). As a result, the identified imaging biomarkers are
not necessarily all disease specific. To have a better understanding of the under-
lying mechanism specific to AD, an interesting topic would be to only discover
imaging biomarkers associated with both cognitive function and AD status.

To identify AD-sensitive and cognition-relevant imaging biomarkers, we pro-
pose a new joint classification and regression learning model to simultaneously
performing two heterogeneous tasks, i.e., imaging-to-disease classification and
imaging-to-cognition regression. We use magnetic resonance imaging (MRI) mea-
sures as predictors and cognitive memory scores and disease status as response
variables. For each individual regression or classification task, we employ a multi-
task learning model [1] in which tasks for predicting different memory perfor-
mances (or those for predicting AD and control dummy variables in classifi-
cation) are considered as homogeneous tasks. Different to LASSO and other
related methods that mainly find the imaging features correlated to each indi-
vidual memory score, our method selects the imaging features that tend to play
an important role on influencing multiple homogenous tasks.

Our new method utilizes the sparse regularization to perform imaging
biomarker selection and learn a sparse parameter matrix under a unified frame-
work that integrates both heterogeneous and homogenous tasks. Specifically, by
recognizing that the formation [6] and maintenance [4] of memory are synergi-
cally accomplished by a few brain areas, such as medial temporal lobe struc-
tures, medial and lateral parietal, as well as prefrontal cortical areas, we use the
�2,1-norm regularization to select features that can predict most memory scores
and classify AD versus control. Empirical comparison with the existing methods
demonstrates that the proposed method not only yields improved performance
on predicting both cognitive scores and disease status, but also discovers a small
set of AD-sensitive and cognition-relevant biomarkers in accordance with prior
findings.

2 Sparse Model for Joint Classification and Regression

When we study either regression or classification via a multi-task learning model,
given a set of input variables, (i.e., features, such as imaging biomarkers), we
are interested in learning a set of related models (e.g., associations between
image biomarkers and cognitive scores) for predicting multiple homogenous tasks
(such as predicting cognitive scores). Since these homogenous tasks are typically
interrelated, they share a common input space. As a result, it is desirable to
learn all the models jointly rather than treating each task as an independent one.
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Such multi-task learning methods can help discover robust patterns, especially
when significant patterns in a single task become outliers for other tasks, and
potentially increase the predictive power.

To identify AD-sensitive and cognition-relevant biomarkers from imaging data,
we formulate a new problem to jointly learn two heterogeneous tasks: classifi-
cation and regression. We propose a new sparse model for joint classification
and regression to perform multivariate regression for cognitive memory scores
predictions and logistic regression for disease classification tasks simultaneously.

Notation. We write matrices and vectors as bold uppercase and lowercase let-
ters respectively. Given a matrix M = [mij ], we denote its i-th row as mi and
j-th column as mj. The Frobenius norm of the matrix M is denoted as ‖M‖F,

and the �2,1-norm [5] of M is defined as ‖M‖2,1 =
∑

i

√∑
j m

2
ij =

∑
i

∥∥mi
∥∥

2
.

2.1 Objective of Sparse Joint Classification and Regression

First, logistic regression is used for disease classification. Given the training data
X = [x1, . . . ,xn] ∈ R

d×n, each data point xi is associated with a label vector
yi = [yi1, . . . , yic1 ] ∈ R

c1 . If xi belongs to the k-th class, yik = 1, otherwise

yik = 0. We write Y =
[(

y1
)T

, . . . , (yn)T
]T

∈ R
n×c1 . In traditional multi-class

logistic regression, under a projection matrix W ∈ R
d×c1, we have

p (k | xi,W) =
ew

T
k xi∑c1

l=1 e
wT

l xi
=⇒ p

(
yi | xi,W

)
=

c1∏
k=1

(
ew

T
k xi∑c1

l=1 e
wT

l xi

)yik

,

where p (k | xi,W) is the probability that xi belongs to the k-th class, and
p
(
yi | xi,W

)
is the probability that xi is associated with the given label yi.

Therefore, the multi-class logistic loss that maximizes the Log-likelihood can be
achieved by minimizing:

l1 (W) = −log
n∏

i=1

p
(
yi | xi,W

)
=

n∑
i=1

c1∑
k=1

(
yiklog

c1∑
l=1

ew
T
l xi − yikwT

k xi

)
. (1)

In AD classification, we have two classes, i.e., AD and health control (HC).
Second, we use multivariate least square regression to predict cognitive scores,

which minimizes:
l2 (P) =

∥∥XT P− Z
∥∥2

F
, (2)

where X is the data matrix, Z =
[(

z1
)T

, . . . , (zn)T
]T

∈ R
n×c2 is the label

matrix for the c2 regression tasks, and P ∈ R
d×c2 is the projection matrix.

The objective for joint classification and regression to identify AD-sensitive
and cognition-relevant imaging biomarkers can now be formulated as follows:

min J (V) = l1 (W) + l2 (P) + γ ‖V‖2,1 , (3)

where V = [W P] ∈ R
d×(c1+c2). Thanks to the �2,1-norm regularization on V [1],

the biomarkers are identified across all tasks so that they are not only correlated
to cognitive scores but also discriminative to disease status.
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2.2 An Efficient Iterative Algorithm

Due to the non-smoothness of the �2,1-norm term, J in Eq. (3) is hard to solve
in general. Thus we derive an efficient iterative algorithm as follows.

Taking the derivatives of J w.r.t. W and P, we set them to be zeros:

∂J

∂W
=

∂l1 (W)

∂W
+ 2γDW = 0,

∂J

∂P
= 2XXT P − 2XZ + 2γDP = 0, (4)

where D is a diagonal matrix whose k-th diagonal element is 1
2‖vk‖2

. Because D
depends on V, it is also an unknown variable. Following standard optimization
procedures in statistical learning, we alternately optimize V and D.

Algorithm 1. An efficient algorithm to solve Eq. (3)
Input: X = [x1, . . . , xn] ∈ R

d×n, Y = [y1, . . . , yn]T ∈ R
n×c1 , and Z = [z1, . . . , zn]T ∈ R

n×c2 .

1. Initialize W ∈ R
d×c1 , P ∈ R

d×c2 , and let V = [W P] ∈ R
d×(c1+c2) ;

while not converge do
2. Calculate the diagonal matrix D, of which the k-th element is 1

2‖vk‖2
;

3. Update w by w − B−1a, where (d × (p − 1) + u)-th element of a ∈ R
dc1×1 is

∂
[
l1(W)+γ tr

(
WT DW

)]
∂Wup

for 1 ≤ u ≤ d, 1 ≤ p ≤ c1, the (d × (p − 1) + u, d × (q − 1) + v)-th

element of B ∈ R
dc1×dc1 is

∂
[
l1(W)+γ tr

(
WT DW

)]
∂Wup∂Wvq

for 1 ≤ u, v ≤ d and 1 ≤ p, q ≤ c1.

Construct the updated W ∈ R
d×c1 by the updated vector w ∈ R

dc1 , where the (u, p)-th
element of W is the (d × (p − 1) + u)-th element of w;

4. Update P by P =
(
XXT + γD

)−1
XZ;

5. Update V by V = [W P];

end

Output: W ∈ R
d×c1 and P ∈ R

d×c2 .

First, we randomly initialize V ∈ R
d×(c1+c2), upon which we calculate D.

After obtaining D, we update the solution V = [W P] using Eq. (4). To be more
precise, P is updated by P =

(
XXT + γD

)−1
XZ. Because we cannot update W

with a closed form solution upon Eq. (4), we employ Newton’s method to obtain
updated W by solving the following problem: minW l1 (W) + γ tr

(
WT DW

)
.

Once we obtain the updated V = [W P], we can calculate D. This procedure
repeats until convergence. The detailed algorithm is summarized in Algorithm 1,
whose convergence is proved as following.

Lemma 1. For any vector v and v0, we have ‖v‖2 −
‖v‖2

2
2‖v0‖2

≤ ‖v0‖2 −
‖v0‖2

2
2‖v0‖2

.
Proof is available in [5].

Theorem 1. Algorithm 1 decreases the objective value of J in every iteration.

Proof. In each iteration, denote the updated W as W̃, the updated P as P̃, thus
the updated V is Ṽ =

[
W̃ P̃

]
. According to step 3 of Algorithm 1, we have

l1

(
W̃

)
+ γ tr

(
W̃TDW̃

)
≤ l1 (W) + γ tr

(
WTDW

)
. (5)
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According to step 4 we know that

l2

(
P̃
)

+ γ tr
(
P̃T DP̃

)
≤ l2 (P) + γ tr

(
PT DP

)
. (6)

According to the definition of D and Lemma 1, we have the following inequality:

d∑
k=1

∥∥ṽk
∥∥

2
−

d∑
k=1

∥∥ṽk
∥∥2

2

2 ‖vk‖2

≤
d∑

k=1

∥∥vk
∥∥

2
−

d∑
k=1

∥∥vk
∥∥2

2

2 ‖vk‖2

⇒ γ

d∑
k=1

∥∥ṽk
∥∥

2
− γ tr

(
ṼT DṼ

)
≤ γ

d∑
k=1

∥∥vk
∥∥

2
− γ tr

(
VT DV

)
.

(7)

Because tr
(
VT DV

)
= tr

(
WTDW

)
+tr

(
PT DP

)
, by adding Eqs. (5–7) at the

both sides, we arrive at

l1

(
W̃

)
+ l2

(
P̃
)

+ γ

d∑
k=1

∥∥ṽk
∥∥

2
≤ l1 (W) + l2 (P) + γ

d∑
k=1

∥∥vk
∥∥

2
(8)

Thus, Algorithm 1 decreases the value of J in Eq. (3) in every iteration. �

Because J in Eq. (3) is obviously lower-bounded by 0, Theorem 1 guarantees
the convergence of Algorithm 1. In addition, because J is convex, Algorithm 1
converges at the global optimum of the problem.

3 Experimental Results

We evaluate our method by applying it to the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) cohort. The goal is to select a compact set of AD-sensitive and
cognition-relevant imaging biomarkers while maintaining high predictive power.

Data preparation. We downloaded data from the ADNI database (http://
adni.loni.ucla.edu). We used baseline MRI data, from which we extracted
56 volumetric and cortical thickness values (Fig. 1) using FreeSurfer (http://
surfer.nmr.mgh.harvard.edu), as described in [7]. We included memory scores
from three different cognitive assessments including Mini-Mental State Exam
(MMSE), Rey’s Auditory Verbal Learning Test (RAVLT), and TRAILS. Details
about these assessments are available in the ADNI procedure manuals (http://
www.adni-info.org/Scientists/ProceduresManuals.aspx).

3.1 Biomarker Identification

The proposed method aims to identify imaging biomarkers that are associated
with both disease status and cognitive scores in a joint classification and regres-
sion framework. Here we first examine the identified biomarkers. Fig. 1 shows a
summarization of selected features for the three experiments (one for each type
of cognitive scores) where the regression/classification weights are color-mapped

http://adni.loni.ucla.edu
http://adni.loni.ucla.edu
http://surfer.nmr.mgh.harvard.edu
http://surfer.nmr.mgh.harvard.edu
http://www.adni-info.org/Scientists/ProceduresManuals.aspx
http://www.adni-info.org/Scientists/ProceduresManuals.aspx
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Fig. 1. Weight maps of the joint classification and regression tasks. One binary classi-
fication task for AD and HC. Three different groups of cognitive scores for regression:
(a) MMSE score, (b) RAVLT score, (c) TRAILS score. “-L” indicates the FreeSurfer
biomarkers at the left side, and “-R” indicates those at the right side.

for each feature and each task. Fig. 2 visualizes the cortical maps of selected
features for both classification and regression in different tasks.

Fig. 1 and Fig. 2 show that a small set of MRI measures are identified, in-
cluding hippocampal volume (HippVol), entorhinal cortex thickness (EntCtx),
amygdala volume (AmygVol), inferior parietal gyrus thickness (InfParietal), and
middle temporal gyrus thickness (MidTemporal). These are all well-known AD-
relevant biomarkers. Our method also shows that these markers are jointly as-
sociated with one or more memory scores. Although we know that MRI mea-
sures, cognitive scores and diagnosis are highly correlated, the complex relation-
ships among them remain to be discovered for a better understanding of AD
mechanism. This is one major focus of our work. As shown in Fig. 1, different
AD-sensitive MRI measures could be related to different cognitive tasks. The
proposed sparse method for joint classification and regression enables us to sort
out MRI-cognition relationships while focusing on AD-sensitive markers.

3.2 Improved Prediction Performance

Now we evaluate the performance of joint classification and regression for AD
detection and cognitive score prediction using MRI data. We performed standard
5-fold cross-validation, where the parameter γ of our method in Eq. (3) was fine
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Fig. 2. Cortical map of selected features for cognitive score prediction using FreeSurfer
measures in the three joint classification and regression tasks

tuned in the range of
{
10−5, . . . , 1, . . . , 105

}
by an internal 5-fold cross-validation

in the training data of each of the 5 trials. For classification, we compared the
proposed method against two baseline methods including logistic regression and
support vector machine (SVM). For SVM, we implemented three different ker-
nels including linear, polynomial and Gaussian kernels. For polynomial kernel,
we searched the best results when the polynomial order varied in the range of
{1, 2, . . . , 10}; for Gaussian kernel, we fine tuned the parameter α in the same
range as that for our method and fixed parameter C as 1. For regression, we
compared our method against two widely used methods including multivariate
regression and ridge regression. For the latter, we fine tuned its parameter in the
same range as that for our method. The results are reported in Table 1.

Table 1 shows that our method performs clearly better than both logistic re-
gression and SVM, which are consistent with our motivations in that our method
classifies participants using the information from not only MRI measures but also
the reinforcement by cognitive score regression. In addition, the cognitive score
regression performances of our method measured by root mean squared error
(RMSE) outperform both multivariate regression and ridge regression, support-
ing the usefulness of joint classification and regression from another perspective.
Ridge regression achieves close but slightly worse regression performance. How-
ever, it lacks the ability to identify relevant imaging markers. All these obser-
vations demonstrate the effectiveness of the proposed method in improving the
performances of both AD detection and cognitive score prediction.

Mild cognitive impairment (MCI) is thought to be the prodromal stage of AD.
Including MCI in this type of analyses will be an interesting future direction to
help biomarker discovery for early detection of AD. We performed an initial
analyis on three-class classification for AD, MCI and HC: the accuracy of our
method was 0.663 and the best of other tested methods was 0.615. Apparently
this is a much harder task and warrants further thorough investigation.
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Table 1. Comparison of classification and regression performance

Memory
score # subjects # AD # HC

Classification
accuracy

Regression
RMSE

Logistic
regression

Multivariate
regression

Ridge
regression

MMSE 378 175 203 0.881 0.034  ± 0.002 0.783 (linear kernel) 0.041 ± 0.003 0.039 ± 0.004
RAVLT 371 172 199 0.884 0.019 ± 0.001 0.839 (Polynomial kernel) 0.028 ± 0.002 0.024 ± 0.003
TRAILS 369 166 203 0.864 0.043 ± 0.002 0.796 (Gausssian kernel) 0.049 ± 0.003 0.046 ± 0.003

Classification accuracy

0.832

Our method RMSE (mean ± std)

SVM

4 Conclusions

We have proposed a new sparse model for joint classification and regression and
applied it to the ADNI cohort for identifying AD-sensitive and cognition-relevant
imaging biomarkers. Our methodological contributions are threefold: 1) propos-
ing a new learning model, joint classification and regression learning, to identify
disease-sensitive and task-relevant biomarkers for analyzing multimodal data; 2)
employing structural sparsity regularization to integrate heterogenous and ho-
mogenous tasks in a unified multi-task learning framework; 3) deriving a new
efficient optimization algorithm to solve our non-smooth objective function, and
coupling this with rigorous theoretical analysis on global optimum convergency.
Empirical comparison with the existing methods demonstrates that our method
not only yields improved performance on predicting both cognitive scores and
disease status using MRI data, but also discovers a small set of AD-sensitive and
cognition-relevant imaging biomarkers in accordance with prior findings.
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Abstract. This paper proposes a novel reflectional asymmetry descriptor to 
quantize the asymmetry of the cutaneous lesions for the discrimination of 
malignant melanoma from benign nevi. A pigmentation elevation model of the 
biological indexes is first constructed, and then the asymmetry descriptor is 
computed by minimizing the histogram difference of the global point signatures 
of the pigmentation model. Melanin and Erythema Indexes are used instead of 
the original intensities in colour space to characterize the pigmentation 
distribution of the cutaneous lesions. 311 dermoscopy images are used to 
validate the algorithm performance, where 88.50% sensitivity and 81.92% 
specificity have been achieved when employing an SVM classifier. 

1   Introduction 

An abnormal reproduction of biological cells within body organs and tissues usually 
forms an asymmetric shape or appearance, with a potential to become metastatic and 
aggressive spreading thorough the body. Malignant melanoma, which accounts for 
75% mortality caused by skin cancers [1], is one of these examples.  Asymmetry 
therefore has been demonstrated as one of the most important features to quantify the 
shape and structure of the lesion. Stoecker et al. [2] determined the reflectional 
asymmetry of the lesion by area differences across the principal axes computed from 
the moment of inertia. Similarly, Seidenari et al. [3] evaluated the lesion asymmetry 
by calculating the area differences with respect to 128 axes through the lesion centre. 
Stanganelli et al. [4] applied the size function to separately quantize the asymmetry of 
the lesion in terms of boundary, shape and colour to achieve a better classification 
results. 

Most of the above approaches have shown the discrimination power of asymmetry 
in melanoma identification. However, they share some similar shortcomings. Firstly, 
most of the existing asymmetry descriptors only evaluate the extrinsic shape, but 
ignore the asymmetry of the inhomogeneous pigmentation inside the lesion. 
Secondly, since asymmetry measure and symmetry axis are normally defined 
separately, the final results might not be optimized. Thirdly, clinically acquired lesion 
images may contain complex distortions due to the factors like sensor positions and 
lighting conditions. Normal extrinsic asymmetry descriptors greatly vary with them. 

This paper proposed a new intrinsic reflectional asymmetry descriptor to 
simultaneously quantize the shape and the pigmentation distributions of the cutaneous 
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lesions with robustness to various deformations. We compute the melanin index and 
erythema index from an RGB image, and then map these biology values to the Z-axis 
to build a pigmentation elevation model. The reflectional asymmetry of the lesion is 
defined by minimizing the histogram difference of the global point signatures (GPSs) 
of the pigmentation model. Compared with those shape dependent asymmetry 
detectors, the proposed asymmetry descriptor is more efficient in describing the 
abnormality of the lesion as it simultaneously integrates the shape and pigmentation 
information. Moreover, melanin and erythema indexes reveal the pathological tissue 
conditions, which proved more useful in characterizing the irregularity of the 
pigmentation of the cutaneous lesions. We have verified that the proposed GPSs-
based asymmetry descriptor is invariant to 2D rigid transformations. It is also robust 
to the non-rigid deformations, which is ideal for characterizing the intrinsic 
asymmetry of the skin lesions. 

2   Biology Pigmentation of the Skin Lesions 

Melanin and haemoglobin are two primary chromophore components determining the 
colour of human skin. Excessive ultraviolet radiation from the sun may cause 
irregular melanin growth in horizontal and vertical directions. When the aggressive 
melanocytes reach the vascular system, they become malignant and are easily 
broadcast to the whole body. Therefore the irregularity of both melanin and 
haemoglobin are internal factors for skin cancer diagnosis, though they are normally 
presented as colour values acquired by optical cameras. 

Melanin Index (MI) and Erythema Index (EI), reflecting the pigmentation and 
vascular blood status of human skin, can be approximated from Red and Green 
channels of an RGB image. Regarding the skin reflectance is in Green (~560 nm) 
(high hemoglobin absorption) and Red (~650nm) (low hemoglobin absorption) 
spectral ranges, the approximations of MI and EI can be defined [5] as, MI ൌ 100 כ logଵ଴ሺ1/Rሻ                                             (1) EI ൌ 100 כ ሺlogଵ଴ሺ1/Gሻ െ 1.44 כ logଵ଴ሺ1/Rሻሻ                         (2) 

where R and G are intensities in red and green channels respectively. Fig.1 shows the 
MI and EI mappings of a malignant melanoma (MM) and a benign nevus (BN). 

(i) MM 

(ii) BN 

 (a) Original images (b) MI (c) EI 

Fig. 1. Melanin and Erythema mappings of (a) MM, (b) BN 
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3   Asymmetry Descriptor 

3.1   Pigmentation Elevation Model 

A few pre-processing steps are applied to remove the hairs on the skin [6], flatten the 
homogeneous regions, and isolate the lesions from the surrounding normal skin [7]. 
Then MI and EI are calculated to build the pigmentation elevation model by mapping 
MI/EI to Z-axis, and the shape information of the isolated lesion as X and Y axes.  

In order to enable the shape and pigmentation giving the comparable contributions, 
the pigmentation model is scaled down in a bound box. Suppose X୪ୣୱ୧୭୬ has larger range 
than Y୪ୣୱ୧୭୬ , then they are first normalized as X୪ୣୱ୧୭୬ᇱ ൌ X୪ୣୱ୧୭୬/ሺmaxሺX୪ୣୱ୧୭୬ሻ െminሺX୪ୣୱ୧୭୬ሻሻ and Y୪ୣୱ୧୭୬ᇱ ൌ ሺr כ Y୪ୣୱ୧୭୬ሻ/ሺmaxሺY୪ୣୱ୧୭୬ሻ െ minሺY୪ୣୱ୧୭୬ሻሻ. As a result, 
the range of X୪ୣୱ୧୭୬ᇱ  is 1, and that of Y୪ୣୱ୧୭୬ᇱ  is ݎ , where ݎ ൌ Y୪ୣୱ୧୭୬/X୪ୣୱ୧୭୬ . Next 
normalize Z-axis to the range of [0 1]. Because the maximum and the minimum values 
in MI and EI vary among images, conventional normalization yields non-uniform 
results. So we calculate the range of MI and EI indexes according to (1) and (2), where 
the range of MI is [-240.82, 0] and that of EI is [-240.82, 346.78].  Then the normalized 
EI and MI images can be calculated below to ensure the effectiveness of the 
pigmentation normalization is equivalent to every single image, ܫܯ௡௢௥௠ ൌ ெூିሺିଶସ଴.଼ଶሻଶସ଴.଼ଶ ൌ ܫܯ0.0042 ൅ ௡௢௥௠ܫܧ (3)                                      1 ൌ ாூିሺିଶସ଴.଼ଶሻହ଼଻.଺ ൌ ܫܧ0.0017 ൅ 0.4098                           (4) 

Fig.2 shows the pigmentation elevation models calculated from MI and EI in Fig.1. 
The outer boundary of the model stands for the shape asymmetry of the skin lesion, 
and the pigmentation asymmetry of the lesion can be reflected by the distribution of 
the pigmentation model along the Z-direction.  

 

 
(a) model in MI (b)  model in EI (c) Model in MI (d) model in EI 

 (i) MM (ii) BN

Fig. 2. Pigmentation elevation model from lesion images in Fig.1. (i) MM, (ii) BN 

3.2   Reflectional Asymmetry in Histograms 

The proposed GPSs-based asymmetry descriptor is derived from the Laplace-Beltrami 
operator, which is defined as the divergence of the gradient on a surface function in 
Riemannian manifold M. The Laplace-Beltrami operator L can be approximated by 
the graph Laplacian matrix using the heat kernel [8], where the eigenvectors of the 
Laplacian matrix embed the points on M into lower dimensional representations. 
Since the Laplace-Beltrami operator is symmetric negative and semidefinite, it has an 
eigen-decomposition ׎ܮ୧ ൌ λ୧׎୧ ሺ0 ൌ ଴ߣ ൏ ଵߣ ൏ ڮ ൏  ୧ are eigenfunctions׎ ௜ሻ, whereߣ
and λ୧ are the corresponding eigenvalues. The GPSs can then be calculated [9] as: 
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ݏ݌݃ ൌ ൬ భඥఒభ׎ , మඥఒమ׎ , యඥఒయ׎ , … , ೔ඥఒ೔׎ , … ൰                                  (5) 

GPSs are used because they can integrate shape and colour asymmetry detections 
on the pigmentation model simultaneously. Moreover, it has been proved that GPSs 
reflect the intrinsic metric property of the object and are robust to the metric 
deformations [9] which might be introduced by the camera positions or various 
lighting conditions during the data acquisition. 

In our work, M is the pigmentation model in 3-dimensional space. The 
eigenvectors corresponding to the first few eigenvalues determine the optimal 
embeddings. Since the first eigenvector with λ଴ ൌ 0 generates a constant function and 
the eigenvectors associated with repeated eigenvalues are not stable for small non-
isometric perturbations [9], we restrict our searching for reflectional asymmetry 
detection in the first 6 eigenfunctions with non-zero and non-repeated eigenvlaues. 

GPSs uniquely determine the metric of the manifold. So M is intrinsically 
symmetric if there is an associated self-mapping T: M→M, making both ׎୧ and ׎୧ ל T 
the eigenvectors of ܮ. Suppose ݃ݏ݌௜  is the ith (1≤i≤6) component in the GPSs, and 
T={t1,t2,…,t6} is the self-mapping. For a complete symmetry object, the GPSs with 
non-repeated eigenvalues only holds two possibilities along the reflectional symmetry 
axis as ݃ݏ݌௜ ל ௜ܶ ൌ ௜ݏ݌݃  ௜  andݏ݌݃ ל ௜ܶ ൌ െ݃ݏ݌௜. Thus T can be determined by a sign 
sequence with either positive (+1) or negative (-1). Skin lesions are imperfect or non-
symmetric objects, so the complete symmetry measure |݃ݏ݌ ל ܶ| ൌ  could not |ݏ݌݃|
be fulfilled. Thus we generate a region-based reflectional asymmetry descriptor in 
histogram to quantify the asymmetry of the skin lesions in the GPS spaces. 

We first defined the gravity centre of a lesion, and then the entire lesion is 
segmented into 180 segments around the polar coordinate across the centre. For each 
segment, we built the histogram of GPS with 100 bins, thus the descriptor of each 
segment ݈ in signature ݅ can be represented as (6). ݏ݁ܦ௜,௟ሺܶሻ ൌ ଵ୒ౢ ∑ ݂൫݃ݏ݌௜,௟௡ ሺܶሻ൯ ଵ଴଴୬ୀଵכ ௜,௟௡ݏ݌ሺ݃ݒ ሺܶሻሻ     ݈ ൌ 1,2, … ,180          (6) 

where ݂ represents the frequency counts in each bin, v is the bin location of ݃ݏ݌௜,௟ሺܶሻ 
in histogram and N୪ is the number of pixels in each segment. For every ݃ݏ݌௜ሺܶሻ, the ݏ݁ܦ௜ሺܶሻ value can be plotted from 0 to π. As the principal axis must exist in these 
180 segments, we assume one segment as the principal axis at each time, and translate 
part of the ݏ݁ܦ௜ሺܶሻ to ensure 90 elements on both sides along the axis. Considering 
there are six GPSs, the asymmetric degree of a lesion can be quantified by minimizing 
the Euclidean distance between the left-right sides of the histogram, ݕݏܣሺܶሻ ൌ min ሺ ∑ ∑ ฮݏ݁ܦ௜,௟௅ ሺܶሻ െ ௜,௟ோݏ݁ܦ ሺܶሻฮଶଶ ሻଽ଴௟ୀଵ଺௜ୀଵ                    (7) 

where ݏ݁ܦ௜,௟௅  represents the left side and ݏ݁ܦ௜,௟ோ  stands for the right part of the 
histogram. Because the asymmetry descriptor is a function of the sign sequence T, the 
minimum asymmetry measure also indicates the potential optimal reflectional axis. 
Moreover, since the GPSs integrate the shape and pigmentation asymmetry detections 
simultaneously, it avoids yielding two different symmetry planes when the 
asymmetric appearance of shape and colour are analyzed separately. 

Fig.3(i) shows the first 6 GPSs with the optimal sign sequence T from the MI 
images of the lesions in Fig.1. The BN shows approximate symmetric appearance in a 
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given direction for all ݃ݏ݌ሺܶሻ, whereas it is difficult to find an appropriate symmetry 
plane fit for the six ݃ݏ݌ሺܶሻ  of the MM. The first two ሺܶሻݏ݌݃   indicate shape 
asymmetry, while higher orders of ݃ݏ݌ሺܶሻ reflect the pigmentation distribution inside 
the lesion. Fig.3(ii) plots the optimal translated histograms with the minimum 
asymmetry measure. The BN shows symmetry on left-right side of the histograms, 
while the optimal translated histograms of the MM greatly fluctuate. It results in a 
large asymmetry measure which can be used for the classification purpose. 

 
Fig. 3. Asymmetry descriptors of the MM and the BN in Fig.1. (i) The first 6 GPSs with the 
optimal sign sequence T. (ii) Translated histograms given the minimum asymmetry measures. 

3.3   Influence of Rigid Transformations and Non-rigid Deformations 

One of the important characteristics of the asymmetry descriptors for skin lesion is 
whether it is robust to the rigid transformations (translation, rotation, scale) and non-
rigid deformations. Next we will evaluate their influence to our asymmetry descriptor.  

Invariant to Rigid Transformations and Isometric Deformations. GPSs are 
calculated from graph the Laplace matrix by connecting the neighbour points on 
object surface in Riemannian space. It has been proved that GPSs are invariant to 
translation, rotation and isometric deformations [8], because these manipulations do 
not change the point distance along the surface. Since histogram neglects the spatial 
information and does not introduce extra isometric deformations, the proposed 
asymmetry descriptor is translation, rotation and isometric deformation invariant. 

For scaling, suppose a ratio γ scaled the manifold M as Mᇱ ൌ γM. Eigenvalues and 
eigenvectors of MԢ can then be calculated as λ୧ᇱ ൌ λ୧/γଶ and ׎୧ᇱ ൌ  ୧/γ. GPSs of the׎

scaled MԢ proved invariant since GPS୧ᇱ ൌ ୧ᇱ׎ ඥλ୧ᇱ⁄ ൌ ሺ׎୧/γሻ ඥλ୧/γଶ⁄ ൌ ୧׎ λ୧⁄ ൌ GPS୧.  
Considering parameter m, l and sign sequence T are scale irrelevant, only descriptor ݏ݁ܦ௜,௟ሺܶሻ  in (6) needs checking. Since GPSs are scale invariant, bin location v , 

representing the quantified value in GPS histograms, stays unchangeable to γ . ݂ 
representing the frequency counts, is a function of pixel number. As such dividing the 
pixel number N୪ in each segment as (7) can counteracts the influence of γ.  

Robustness to Non-isometric Deformations. Since skin lesions are non-rigid 
objects, they associate with non-isometric deformations most of the time. Besides the 

 

(i) 

  

(ii) 
 

 (a) MM (b) BN 
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2D shape distortions due to skin surface tension, non- isometric deformations in Z-
axis also exist because of the different intensity caused by different dermoscopes. 

Given a d-dimensional manifold M and its non-isometric deformation MԢ , the 
graph Laplace matrix can be represented as L ൌ SିଵC  and Lᇱ ൌ SᇱିଵCᇱ , where S 
represents the area surrounding by a pixel’s neighbour points, and C is a cotangent 
function [9]. ׎୧ᇱ and λ୧ᇱ of the non-isometric perturbation object will remain stable if 
non-isometric perturbation ∆C ൌ |C െ Cᇱ| and ∆S ൌ |S െ Sᇱ|  are small. Thus the 
proposed asymmetry descriptor is robust to small non-isometric deformations. 

4   Experimental Results 

The performance of the asymmetry descriptors for melanoma diagnosis is validated 
on 311 dermoscopy images [10][11] with resolution ranging from 448×336 to 
1098×826 pixels, where there are 88 MMs and 223 BNs. The asymmetry descriptor is 
a four dimensional feature vector including the minimum asymmetry measures 
obtained from MI and EI images respectively, as well as their asymmetry measures in 
the direction perpendicular to the optimal reflectional axis. ݏ݁ݎݑݐܽ݁ܨ ݕݎݐ݁݉݉ݕݏܣ ൌ ሼݕݏܣ௠௜௡ሺܫܯሻ, ,ሻܫܯ௠௜௡ାଽ଴ ̊ሺݕݏܣ ,ሻܫܧ௠௜௡ሺݕݏܣ  ሻሽܫܧ௠௜௡ାଽ଴ ̊ሺݕݏܣ
4.1   Efficiency of Biology Information 

In order to demonstrate the efficiency of the biology information, we compute the 
asymmetry descriptor in each channel of the conventional RGB images, and compare 
the diagnosis results with those from the melanin and erythema indexes.  

Fig.4 plots the distributions of the probability density functions (pdfs) of the 
proposed asymmetry descriptors obtained from MI/EI images, as well as those from 
the conventional RGB images. The asymmetry descriptors in MI/EI images give 
better separated distributions between MMs and BNs. The application of the biology 
descriptors increases the discrimination, because MI/EI reflects the pathological 
condition and the primary cause of the pigmentation inside the lesion. This makes MI 
and EI ideal descriptors for quantizing of the malignancy of the skin lesions. 

 

(a)  (b) 

Fig. 4. Distributions of probability density function (pdfs) of the asymmetry descriptors. (a) pdfs 
in MI and EI images. (b) pdfs in Red, Green and Blue channels in conventional RGB images. 
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4.2   Robustness to Non-isometric Deformations 

To demonstrate the robustness of the proposed asymmetry descriptor to the non-
isometric deformations, we calculate the asymmetry descriptors of the same lesion 
acquired by different dermoscopes. An example of Seborrheic Keratosis is shown in 
Fig.5. Although the overall shape of the lesion seems unchanged, non-uniform surface 
tension will always exist, not to mention the different lesion boundaries introduced by 
the automatic segmentation techniques. Thus 2D shape distortion between two images 
can be detected from the isolated lesions in Fig.5(ii). Moreover, compared with the 
original images, colour contrast in two MI images proves similar. Similar contrast 
with different intensity values only causes a translation along the Z-axis in the 
pigmentation model, but not greatly distorted the shape. So we assume there are small 
non-isometric deformations between the post-processed images. 

Though both shape and colour distortions are presented, the asymmetry of the first 
6 GPSs in Fig.5(ii) appear resembled. This similarity can be also observed from the 
corresponding histograms. Numerically, asymmetry degree of the lesion in (a) is 8.53, 
whereas that of the lesion in (b) is 9.27, which gives 8.87% difference. 

 

(i) 

  

(ii) 

(iii) 

 (a) (b)

Fig. 5. Asymmetry measure of the same seborrheic keratosis by different dermoscopes. (a) 
polarized dermoscopy with resolution of 598×492 (b) immersion contact dermoscopy with the 
resolution of 540×462. (i) Original images and MI images. (ii) The first 6 GPSs with the 
optimal sign sequence T. (iii) Translated histograms given the minimum asymmetry measures. 

4.3   Performance of the Asymmetry Descriptors 

In order to demonstrate the efficiency of the proposed asymmetry descriptor, we 
compute the extrinsic shape and colour asymmetry without GPSs, and compare the 
classification results with that from the intrinsic descriptors with GPSs. The 
asymmetry measures without GPSs are defined similarly as the proposed detector. 
Specifically, a lesion is first segmented into 180 areas. Then each segment is 
represented by the area proportion of the segment to the whole lesion (ܵݏ݁ܦ௟), or by 
the MI/EI histogram (ݏ݁ܦܥ௟). Finally the asymmetry measure without GPSs can be 
quantified by minimizing the histogram difference in [0 π] as (9). 
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௟ݏ݁ܦܵ ൌ ே೗ே ௟ݏ݁ܦܥ        , ൌ ଵே೗ ∑ ݂ሺܿݎݑ݋݈݋௟௡ሻ כ ሺଵ଴଴௡ୀଵݒ ݕݏܣܵ ௟௡ሻ              (8)ݎݑ݋݈݋ܿ ൌ min ቀ∑ ฮܵݏ݁ܦ௟௅ െ ௟ோฮଶଶଽ଴௟ୀଵݏ݁ܦܵ ቁ ݕݏܣܥ    , ൌ min ቀ∑ ฮݏ݁ܦܥ௟௅ െ ௟ோฮଶଶଽ଴௟ୀଵݏ݁ܦܥ ቁ     (9) 

Three different classifiers were applied to validate the classification accuracy, 
including Support Vector Machine (SVM) with radial basis function of a scalar 3, 
Artificial Neural Networks (ANN) with 1 hidden layer and 5 neurons, and Bayesian 
classifier (BC) by minimizing the Bayesian risk of the 0/1-loss function. In the 
training-testing process, 155 dermoscopy images were randomly selected for training 
and the other half of data were used for testing. For each classification algorithm, we 
automatically execute the program 30 times and record the average sensitivity, 
specificity and accuracy as the final results to complement the bias introduced by the 
inconsistence of the random selection of the training data.  

Table.1 shows the classification results of the asymmetry descriptors with and 
without GPSs from each classifier. The accuracy from the GPSs-based asymmetry 
descriptor is approximate 5% higher than that of the combination of shape and colour 
asymmetry descriptors without GPSs. The best diagnosis for the test data are 88.50% 
sensitivity, 81.92% specificity and 83.26% accuracy employing the SVM classifier. 

Table 1. Classification results of the asymmetry descriptors with and without GPSs 

 
Training (%) (with/without GPSs) Testing (%) (with/without GPSs) 
Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy 

SVM 94.53/93.02 84.07/81.44 87.03/84.72 88.50/83.63 81.92/75.81 83.26/78.02 
ANN 88.58/86.36 80.49/77.82 82.78/80.24 86.27/82.92 78.64/74.23 79.96/76.69 
BC 90.25/86.40 81.10/76.19 83.69/79.08 83.35/79.56 75.86/70.78 77.98/73.26 

5   Conclusions 

This paper proposes a novel reflectional asymmetry descriptor by minimizing the 
histogram difference of the global point signatures on the pigmentation elevation 
model of the cutaneous lesions. Melanin and Erythema indexes have been proved 
more efficient than colour intensities in characterizing the pigmentation of the lesions. 
The proposed asymmetry descriptor is invariant to 2D rigid transformations and 
robust to non-isometric deformations. Competitive classification results of 88.50% 
sensitivity and 81.92% specificity have been achieved for melanoma diagnosis.  
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Abstract. Clinical signs of paediatric pulmonary tuberculosis (TB) in-
clude stenosis and deformation of the airways. This paper presents two
methods to analyse airway shape and detect airway pathology from CT
images. Features were extracted using (1) the principal components of
the airway surface mesh and (2) branch radius and orientation features.
These methods were applied to a dataset of 61 TB and non-TB pae-
diatric patients. Nested cross-validation of the support vector classifier
found the sensitivity of detecting TB to be 86% and a specificity of 91%
for the first 10 PCA modes while radius based features had a sensitiv-
ity of 86% and a specificity of 94%. These methods show the potential
of computer assisted detection of TB and other airway pathology from
airway shape deformation.

1 Introduction

The prevalence of tuberculosis (TB) remains high in many developing countries
while the accuracy of paediatric TB detection is low, and a combination of
tests including imaging is used. Automated airway analysis has the potential
to improve the detection of airway pathology such as TB. A common sign of
primary TB in children is airway deformation caused by lymphadenopathy [1].
This can take the form of displacement and stenosis of airway branches, and
widening of the carinal angle [1]. Hila, mediastinal, subcarinal and paratracheal
lymph nodes are commonly affected and the most common sites for compression
are: the trachea, left main bronchus (LMB), right main bronchus (RMB) and
bronchus intermedius (BI) [1]. This sign is more sensitive in children because the
airways are more malleable and primary TB tends to affect the lymph nodes.
Lymphadenopathy can also indicate other pathology but is useful for detecting
TB when used in conjunction with other tests and is likely to indicate TB in
areas with a high TB prevalence.

Paediatric airways are considerably smaller than those of adult patients, which
means a lower resolution using the same voxel size, and fewer branches can be
identified. Movement artefacts are also more likely because it is not possible to
perform a breath hold scan on infants [10].
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Point distribution models (PDM) are a common method of modelling shape
variation. Anatomical landmarks or a mesh are used to represent a shape and the
variation in position of corresponding points is calculated. Principal component
analysis (PCA) can be applied to the PDM to reduce the dimensionality of the
representation, identifying the principal modes of variation. These techniques
have been applied successfully in a number of cases including facial morphology
[5]. However, very little research has focussed on airway shape modelling. A
previous study developing a shape model of the airways focussed on patient
specific models and required manual interaction [4].

An alternative and more intuitive approach is to use features that correspond
directly to clinical observations but this requires more background knowledge.
In this paper we present a complete system for analysing pathological airway
shape variation and compare two approaches for identifying TB cases: one using
features generated using the principal modes of variation of a surface mesh, and
another using features based on the branch radius and orientation. We test both
on a dataset of TB and non-TB cases. Contributions of this work include a
method to generate a shape model of normal and pathological airway variation
(the authors are not aware of any previous method to model airway pathology
and particularly to distinguish between TB and non-TB datasets) and methods
focussed on paediatric datasets. Additional contributions include a novel method
for automatically generating airway landmarks based on the airway topology and
centreline, extension of mesh-warping to suit stenosed airway shape variation and
the training of a classifier on airway shape data.

2 Method

An automated airway segmentation approach was used and the centreline and
bifurcation points extracted. Corresponding landmark points were generated and
a template mesh was warped to each airway. A shape model was then developed
using the principal modes of the corresponding vertices. Cross-section diameter
measurements were made for each branch and used to generate the second feature
set.

2.1 Dataset and Airway Extraction

The dataset used in this study consists of TB and non-TB cases. 29 chest CT
scans of paediatric patients diagnosed with definite or probable TB from a pos-
itive culture, or bronchoscopy and CT findings were acquired from Tygerberg
Hospital in South Africa (mean age 22 ± 26 months) and 32 chest CT scans of
paediatric patients with a non-TB diagnosis were acquired from Gt Ormond St
Hospital, London (mean age 38±22 months). Voxel size in the axial plane ranged
from 0.3 - 0.5 mm and slice thickness 0.7 - 1 mm. 13 cases with completely ob-
structed branches were previously manually excluded from the dataset because
these cases can be easily identified and are not of interest for building a shape
model. The age difference between the groups is within one standard deviation
and age does not influence airway proportions in children [8].
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The airways were segmented using an existing method [6] . This method uses
morphological closing and reconstruction to enhance possible airway locations
in the axial, coronal and sagittal directions. A region growing method, seeded
at the trachea, is then used to extract the airway region. The structure of the
airways is found using centreline extraction, branch point detection and branch
labelling. Palágyi et al. [9]’s skeletonisation method is used for the extraction
of the centreline because of its previous application to the airways. This is an
iterative thinning approach, where each surface voxel is analysed in terms of
orientation and connectivity and simple points are iteratively removed.

False branching can occur because of surface deformation (particularly when
pathology is present) and, therefore, branch pruning is required. We found that
false branches connected to the trachea, LMB and RMB can be longer than true
branches further down the tree, and false branches may bifurcate. Therefore,
a multilevel pruning system was developed that removed branches less than
a specified length (l) and removed larger false branches associated with the
primary branches and smaller false branches associated with later generations.
Three pruned trees (Tl1 , Tl2 , Tl3) were created with pruning l1 > l2 > l3. A final
tree was constructed from Tl1 for the trachea, Tl2 for the LMB and RMB and
from Tl3 for the remaining branches. A one voxel thick centre line was used to
identify the branching structure, shown in Figure 1: a branch point was defined
as a point with three neighbours in the 3x3x3 surrounding region.

Fig. 1. Paediatric airway segmentation and branch-point identification. The two cases
on the left show signs of TB while the others are non-TB cases.

2.2 Corresponding Surface Point Generation and Mesh Alignment

Surface point correspondence is required to derive features from a shape model
while diameter based features require only regular sampling of the branch.
Branch points are the only major anatomical landmarks and, therefore, cor-
responding points were generated by calculating the intersection between the
surface and vectors orthogonal to the smoothed centreline at equidistant po-
sitions along each branch (Figure 2). The generated points take into account
branch topology, medial line curvature and surface deformation. The analysis
was performed on the trachea, RMB and LMB (commonly deformed by lym-
phadenopathy).

As discussed earlier, two sets of features are being considered, the principal
modes of the surface deformation and branch radius/direction based features.
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Fig. 2. Surface point placement using the centreline and bifurcation points

The surface points were used to calculate the two orthogonal diameters at each
cross section along each branch. These points were generated from 60 equidistant
points on the medial line of the trachea, 50 along the LMB and 30 along the
RMB. A subset of the corresponding points (generated from 5 equidistant points
on the Trachea and LMB, and 2 on the RMB) were used to warp a mesh onto
each airway using Thin Plate Spline (TPS) warp. TPS warping is a common
method of aligning objects using a set of landmark points [5]. TPS attempts to
perform realistic deformation by minimising the bending energy [2]. The TPS
function that minimises the energy is:

fj(Pj) =
k∑

i=1

wijU(Pj − Pij) + a0 + axx + ayy + azz (1)

where f is the new position of the point and fj is a component of f, j ∈ (x, y, z),
P are the landmark points on the shape and wij are the weighting factors. wij

can be found from the corresponding landmark points.
Further matching is required so that the template mesh is aligned with each

target mesh (as shown in Figure 3). The simplest method is to project the
template mesh to the closest point on the target mesh [5] but this can lead to
unrealistic deformation while not covering small deformations. Figure 4 shows
this mesh misalignment because of narrow sections caused by stenosis and the
proposed solution.

Kaus et al [7] optimise the fit based on the distance between the meshes
while an additional force preserves the mesh structure. We add a third term
based on surface orientation. For each vertex on the template mesh (ti), a force
(Fi,tot) is calculated to direct the warp. The closest point (ri) on the object
mesh component is included to align the meshes (Eqn 2) and an internal forcing
component is included to preserve the size of the faces (change in the distance
of each of the p neighbouring vertices to a vertex ti from the initial distance v0j)
(Eqn 3). An expansion/contraction force is also added, based on the normal of
each vertex n̂i (calculated from the normal of the surrounding faces) controlled
by the distance and direction of the target mesh to Fi,1 (Eqn 4). This improves
performance for small surface indentations/protrusions associated with stenosis.
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(a) Template image (b) Case to be matched (c) TPS warp

Fig. 3. TPS warp using landmarks on the trachea, LMB and RMB

(a) Matching to the closest
point

(b) Meshing procedure using
F1, F2 and F3

Fig. 4. Mesh matching

Fi,1 = ri − ti nearest point ext. force (2)

Fi,2 =
p∑
j

v̂j(||vj || − ||v0j ||) where vj = tj − ti internal force (3)

Fi,3 = n̂i(n̂i · Fi,1) normal ext. force (4)
Fi,tot = αFi,1 + βFi,2 + γFi,3 (5)

In Equation 5, the forces are weighted with α, β and γ. This procedure is
applied iteratively until stability is reached.

2.3 Feature Extraction and Classification

Each shape is represented as a 3n dimensional vector where n is the number of
vertices in the mesh; n ≈ 1500 was used in this study. Each shape was aligned
using Generalised Procrustes analysis and PCA was applied to reduce the di-
mensionality and obtain a set of features for classification. PCA applies a lin-
ear transform that projects the PDM onto an uncorrelated space and can be
used to extract relevant features [3]. PCA modes are ordered by the variance
and, therefore, can be used to reduce the dimensionality of the feature vec-
tor. For PCA, it can be shown that the eigenvectors of the covariance matrix
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= XXT (where each column of X is a 3n vector for each airway) can be

used to project the dataset into the uncorrelated space (b) represented by the
eigenvectors bbb = ΦT (xxx− x̄̄x̄x) where the projection matrix (ΦT ) is the transpose of
the eigenvector matrix (Φ). Therefore, a measurement vector xxx = x̄̄x̄x+Φbbb can be
represented in terms of the mean and displacement along each mode [3].

Three radius based features were calculated for each branch: the maximum
ratio of the orthogonal diameters for each branch

(
max

(
d1
d2

))
, the ratio between

the branch length and average branch diameter
(

dave

l

)
and the maximum ratio

of local minima and neighbouring local maxima of the diameter as a function
of position on the branch

(
lmax1+lmax2

2lmin

)
. These features, based on advice from

our clinical partners, were used as indicators of branch circularity, thickness and
local stenosis, and were calculated for the trachea, RMB and LMB. The carinal
angle was also calculated for each airway by fitting a line to the first third of
the RMB and LMB and calculating the angle from bifurcation. All features were
normalised.

Once a set of features was found to represent each airway in the dataset, a
classifier was trained to distinguish between TB and non-TB cases. A Support
Vector Machine (SVM) was chosen as the classifier because of its suitability for
small datasets and the PRtools implementation of SVM was used. Leave-one-out
cross validation (LOOCV) and nested CV were used to evaluate the classifier.

3 Results

Parameters for the mesh warp α, β and γ were determined by comparing the
volume generated from both the template mesh and the original mesh (Vdif =
(Vtemp \ Vcase) ∪ (Vcase \ Vtemp). In order to focus on local errors instead of
differences due to mesh face sizes, a morphological closing was applied (Vopen =
Vdif ◦K where K is 6-connected kernel) in order to remove 1-voxel thick errors
but retain larger local errors. Optimum parameters are around α = 0.2 and
γ = 1, where proportion of general error (without closing) is less than 0.022 and
local error (with closing) is less than 0.002. Without the expansion force (γ = 0)
then the minimum errors are 0.05 and 0.02 respectively. Fixed parameters were
used for the whole dataset but could be chosen for each individual airway.

The SVM classifier was trained and tested on the two sets of features. Clas-
sification using PCA features were performed using the first 10 modes which
represented 90% of the shape variation. Figure 5 shows the mean and variation
from −3

√
λi to 3

√
λi along the first 4 modes. Classification was also performed

on the 10 radius and orientation based features. This classifier was optimised by
adjusting the “trade-off parameter” C (between 5 and 500) and the degree of the
polynomial kernel (between 1 and 13) while running LOOCV for each choice.
These values were chosen to cover a reasonable range of parameters but further
optimisation could be performed. LOOCV was used because the dataset was
too small to divide into a testing and training set. However, adjusting the SVM
parameters with LOOCV allows the best classifier to be selected but can lead
to a biased measure of accuracy. Therefore, to determine an unbiased sensitivity
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Table 1. Sensitivity and specificity using (1) the PCA and (2) the radius and orienta-
tion based feature set with LOOCV and Nested CV

LOOCV Nested CV
PCA Rad PCA Rad

Sensitivity 93% 93% 86% 86%
Specificity 94% 94% 91% 94%

Fig. 5. Variation along the first four PCA modes

and specificity without an independent training set, nested CV was used [11].
Nested CV includes a second LOOCV loop with parameter optimisation inside
the full LOOCV loop and results have been shown to be close to that of an
independent testing set [11]. Using LOOCV, the classifiers performed the same
and parameters of C=100 and 3 and polynomial degree of 3 and 1 were found for
the PCA and radius based classifiers, respectively (Table 1). The radius based
features performed slightly better when tested using nested CV (6 compared to
7 misclassified out of 61). The software was written in Matlab and C++ and
tested on a 2.0 GHz quad-core processor. Generation of features from a seg-
mented dataset and cross validation: ≈700s for the PCA based feature vector
and ≈1200s for the radius based feature vector.

4 Discussion

In this paper we discuss two methods to quantify and detect airway shape de-
formation due to TB. Both these methods were able accurately to distinguish
between paediatric cases with TB and without TB, and demonstrate the po-
tential of these techniques to assist in the detection of airway pathology. PCA
based features may be more generalizable and, more effective for differentiating
other types of pathology without adjusting the feature choice.
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The datasets were collected from two hospitals and it is possible that popu-
lation differences also have an effect on the classification. However, the features
extracted using PCA correspond to clinical signs of TB. Examining Figure 5,
the modes correspond to stenosis and widening of the carinal angle, which is
consistent with clinical signs of TB [1]. The other feature set was based on char-
acteristics of airway pathology.

This paper shows the potential of automated airway analysis to assist in the
identification of pathology with possible CAD applications. The model could be
developed further by training on localised pathology, or applied to other areas
such as airway deformation and narrowing caused by congenital cardiac disease.
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Abstract. Magnetically-guided capsule endoscopy (MGCE) was intro-
duced in 2010 as a procedure where a capsule in the stomach is navigated
via an external magnetic field. The quality of the examination depends on
the operator’s ability to detect aspects of interest in real time. We present
a novel two step computer-assisted diagnostic-procedure (CADP) algo-
rithm for indicating gastritis and gastrointestinal bleedings in the stom-
ach during the examination. First, we identify and exclude subregions of
bubbles which can interfere with further processing. Then we address the
challenge of lesion localization in an environment with changing contrast
and lighting conditions. After a contrast-normalized filtering, feature ex-
traction is performed. The proposed algorithm was tested on 300 images
of different patients with uniformly distributed occurrences of the target
pathologies. We correctly segmented 84.72% of bubble areas. A mean
detection rate of 86% for the target pathologies was achieved during a
5-fold leave-one-out cross-validation.

1 Introduction

Background and Purpose of This Work. Endoscopy of the upper gastrointestinal
(GI) tract with flexible endoscopes is a standard clinical procedure. The main
disadvantages of this procedure are high invasiveness and patient discomfort.
Wireless capsule endoscopy (WCE) was introduced in 2001 and is mainly used
in the duodenum. The stomach, in comparison, has large surface and volume and
can not be reliably examined with an uncontrolled capsule. Endoscopic capsules
that can be steered from the outside by means of magnets have been reported
in [7,12,11]. In this paper we use human data from the clinical study of [11]
that stems from 29 volunteers and 24 patients (Fig.1c and 1d). A single dataset
from one patient contains on average 3600 images. For the MGCE procedure,
the patient’s stomach is filled with water and the capsule is navigated from the
outside using an external magnetic field. During the examination the operator
can control the motion of the capsule so as to obtain a sufficient number of
stomach-surface images with diagnostic value. The quality of the examination

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAI 2011, Part III, LNCS 6893, pp. 141–148, 2011.
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depends on the skill of the operator and his ability to detect aspects of interest in
real time. We present a novel two-step computer-assisted diagnostic-procedure
(CADP) algorithm for detecting, during the examination, two distinct stomach
pathologies: gastritis and haematin. Gastritis is one of the main causes of stom-
ach cancer. Chronic gastritis usually appears as a reddish and blotched turgor,
while acute gastritis often appears as a small circle-shaped bleeding (Fig.2b).
Haematin on the other hand, accrues from blood coming in contact with stom-
ach acid. It is a sign of gastrointestinal bleeding and is an indicator of many
significant diseases. It appears as a uniform brownish shape close to the stomach
wall (Fig.2a). The proposed algorithm is divided into two steps: 1) a region-of-
interest (ROI) segmentation to separate medically relevant sections of the image
from parts containing bubbles; 2) a contrast-normalized filtering to identify and
localize possible lesions of pathologies. For this 2nd task we develop a feature
vector, which is used for classifying pathologies in a machine learning approach.

State of the Art. In a typical WCE examination a large number of frames is
medically irrelevant, as they either do not show pathologies or contain mainly
intestinal juices, bubbles or debris. To assist the physician in reviewing up to
ten hours of video material, software for computer-aided diagnosis (CAD) has
been developed. In [2,14,13] different descriptors for the task of blood and ulcera
detection and topographic segmentation of the GI tract are investigated. Topo-
graphic segmentation is addressed in [1] and [5] for the purpose of a more efficient
and faster review. In [4] and [15] the issue of eliminating redundant frames, as
well as those with intestinal juices, is addressed. In [6] a set of color and texture
based features for the detection of intestinal bleedings is presented. These meth-
ods are not directly applicable to MGCE. The duodenum, when compared to the
stomach, exhibits different pathologies and imaging conditions, such as texture
and distance to objects of interest. In [8] a method for the automatic detection
of gastritis aspects in MGCE was presented. In this paper we used the method
from [8] as a starting point and developed a ROI pre-segmentation for bubbles
and an improved segmentation method for different pathologies (gastritis and
haematin). Compared to the aforementioned existing CAD algorithms which are
only used for review, our method indicates the pathologies during the examina-
tion itself. The operator can, for instance, navigate to a suspicious region for
further closer inspection. Even if 100% accuracy is not achieved, our algorithm
may still point out lesions which would otherwise be missed.

2 Automatic Pathology Detection in MGCE

2.1 Region of Interest Segmentation

Endoscopic images obtained via MGCE may contain bubbles and mucus (Fig.1a).
Such a region within an image usually contains no medically relevant informa-
tion. One should, thus, segment such regions to exclude them from further pro-
cessing. In [15] and [10] two methods for automatic detection of intestinal juices
are presented that exclude entire frames containing intestinal juices and bubbles
for the review process. The location of bubbles in the stomach is relatively stable
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(a) (b) (c) (d)

Fig. 1. (a) sample image with bubbles. (b) segmented bubble area (c) lesser curvature
and body (d)mucosa close-up B.

and localized. Rejecting an entire frame with bubbles could therefore eliminate
images of whole stomach regions together with possible pathologies.

The segmentation of bubble regions is not as straightforward as it may initially
appear. The edges of most bubbles appear bright, but the translucent part is
dominated by the color of the underlying tissue (Fig. 1a). Therefore, an intensity
based approach is not effective. One has to combine geometry and color cues
in order to detect the entire bubbles region. To that end, we investigated a
large variety of robust feature descriptors initialized with different key point
detectors. We randomly chose as our training data 100 healthy and 100 diseased
images from our dataset containing different amounts and spatial distributions
of bubbles. Regions with bubbles were hand-labeled. We denote one pixel within
an image as a tuple (x, y, v), where x and y are the pixel coordinates, and v
is a pixel value. An image I (432×432 pixels) is defined as a set of pixels,
I = {(x1, y1, v1), . . . , (xN , yN , vN )} where N is the total number of pixels in the
image. We define O1 ⊆ I as the set of all pixels in a bubble area and O2 ⊆ I as
the area without bubbles. In addition O1 ∩ O2 = ∅, and O1 ∪ O2 = I.

We considered 5 descriptors (SIFT, steerable filters, GLOH, SPIN, Cross Cor-
relation), each of which can be initialized with one of 5 different key point de-
tectors (Hessian-Laplacian, Harris-Laplacian, Harris-Affine, Hessian-affine, Har-
ris)1. For each combination of descriptor type and key point detector we obtained
n descriptors (feature vectors) Dk, k = 1, ..., n, which were calculated on the cor-
responding image patches Pk ⊂ I, k = 1, ..., n around the detected key points.
We used the labeled data to train (using Adaboost) a 2-class classifier that could
distinguish between descriptors corresponding to O1 and O2. We evaluated each
descriptor / key-point-detector combination for bubble detection using a 5-fold
leave-one-out cross-validation (LOO CV).

Training phase: An image patch Pk is characterized by its center point c = (x, y)
and an ellipse centered at c which is defined by one or two radii r1,2 respectively.
For the supervised training input, a label

1 Affine covariant features [Online]. Available:
http://www.robots.ox.ac.uk/~vgg/research/affine/

http://www.robots.ox.ac.uk/~vgg/research/affine/
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l(Pk) =
{

0 if Pk ⊂ O1

1 if Pk ⊂ O2
(1)

was assigned. The remaining Pks (i.e. image patches which do not completely
belong to either of the classes) were discarded from training. For training the
feature vector Dk was extended by 10 features based on HSV and RGB his-
tograms. More specifically, the mean, variance, skew, kurtosis and entropy were
computed for the S and R channel histograms for each patch Pk. These features
enhance the classifier’s ability to distinguish structures with geometric similari-
ties to bubbles (such as a round shape) which are, however, part of the stomach
mucosa or a target pathology.

Testing: After the training was completed, the new labels l(Pk) were computed
based on the obtained classifier. We define two measures for the quality of seg-
mentation:

E(Oi) =
card

(( ⋃
{Pk|l(Pk)=1}

Pk

)
∩Oi

)
card(Oi)

(2)

with i = {1, 2 }2 E(O1) measures the proportion of the ground-truth bubble
area covered by image patches classified as l = 1, while 1 − E(O2) measures
the area without bubbles, that is wrongly covered by image patches classified as
l = 1. We found that the combination of a Hessian-affine key point detector and a
steerable filter descriptor yields the best results (see Table 1 (first row)). We refer
to the union {∪(Pk|l(Pk) = 0)} as the binary mask Ib and to bubble free area
as Ibn = I\Ib. Note that, the use of an elliptic shape for the image patches Pk

yields small areas between the image patches which are not classified as bubbles
area. To overcome this problem we introduced a circular morphologic dilation
element with a radius rs. The circle radius adapts to the size of the surrounding
image patches to ensure gap closing between large image patches and prevent
the dilation of non-bubbles areas. A neighborhood around the dilation element
is defined as a window W of 30× 30 pixels around the center of the structuring
element. The radius rs at a position x, y within Ib is computed from the average
radii of all Pk|Pk ⊆ W .

The improvement obtained with the dilation can be seen in Table 1. The
quantitative measurements were obtained by equation 2. After the segmentation
we checked if some pathologies were wrongly classified as bubbles and confirmed
that this was not the case (Visual results in Fig. 1b).

2.2 Contrast Normalization and Region Localization

For the following steps only Ibn (i.e. areas without bubbles) are considered. The
pathological lesions exhibit low intensity while the surrounding tissue has high in-
tensity values. In order to detect such lesions a LoG-edge detection, as proposed
by [8], is performed. Thereby, Ibn is convolved with a Laplacian-of-Gaussian
2 card(·) denotes the cardinality, i.e. the number of pixels in the image subset.



Automatic Region-of-Interest Segmentation and Pathology Detection 145

Table 1. Results of Bubble Segmentation

Method E(O1) 1 − E(O2)

Direct use of descriptor 81.53% 4.24%
With adaptive morphological operation 84.72% 5.74%

kernel K. The resulting image Ic is subsequently searched for prominent edges
whose magnitude is above a certain threshold. Because images suffer from vary-
ing contrast and lighting conditions, a contrast normalized variable threshold is
introduced. To that end, Ic is converted into a probability mass function f(bi)
with Nbi intervals. The contrast normalized threshold tc is then computed as
follows. We first define the index tpos of an interval bi

tpos =
1∑

i=Nbi

I

⎛⎝⎛⎝ i∑
j=Nbi

f(bj)

⎞⎠ <

(∑
f(bi)
4

)⎞⎠ (3)

where I is an indicator function which is equal to 1 if its argument is true and
zero otherwise. tc is then computed as tc = max(btpos).

A binary edge image I(tc) is then computed using the variable threshold tc.
I(tc) is 1 for Ic � tc and 0 otherwise. Given such a binary image our goal is to
merge connected pixels into areas representing possible locations of pathologies.
A morphologic closing operator with a disc-shaped structuring element of a
radius of 5 pixels is applied to I(tc). Subsequently, using 4-connectivity, pixels
are grouped into structures that we refer to as Sj with j = 1, ...,m where m is
the total number of structures per image. On average, images contain 45 Sj ’s
with a mean size of 20×14 pixels. Ultimately, we want to classify each structure
Sj into one of the three classes: the gastritis class C1, the haematin class C2 and
the negative class C3 without any abnormalities. For training purposes, all Sj

are superimposed on to the original RGB-image. Visual inspection shows that
all possible lesions of C1 and C2 are detected by the above described region
localization method. All computed Sj are therefore directly hand-labeled by an
expert so that a label L is assigned to each structure Sj

L(Sj) =

⎧⎨⎩
0 if Sj ∈ C1 (gastritis class)
1 if Sj ∈ C2 (haematin class)
2 if Sj ∈ C3 (negative class)

(4)

2.3 Feature Extraction

The following sets of features are extracted for each structure Sj (Fig. 2c).

Geometric features (GF). Geometric features describe the specific shape of
pathologies. We extract the maximal vertical and horizontal dimensions of Sj and
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Table 2. Number of features computed for each Sj

Feature
Group

Feature
Extractor

No. of
Features

Composition of
Feature Vector

GF

Aspect ratio of Sj 1 width/height
dimensions of Sj 2 width,height

bounding box fill factor 1 %
Hu moments 7 invariant moments

TF
lbp H 5 local binary pattern

on three channels of
HSV colorspace

lbp S 5
lbp V 5

HF
RGB 15 Mean, variance, skew

kurtosis and entropy of
each channel Histogram

HSV 15
CIE 15

Total no. of features 71

(a) (b) (c)

Fig. 2. Sample images of target pathologies. (a): haematin. (b): gastritis lesions. (c):
Computed structure Sj (green border). Sj with red border contains a gastritis lesion.
Segmented bubble area in turquoise.

of its minimal bounding box and their corresponding aspect ratio. Furthermore
the ratio between the area covered by Sj and the area of the minimal bounding
box is computed. We refer to this feature as fill factor. For further geometric
analysis we also extract the Hu moments [3] for each Sj .

Texture features (TF). To further investigate textures within each Sj local
binary patterns (lbp) [9] are computed for each channel of the HSV colorspace.
The resulting lbp histogram is computed for each Sj .

Histogram features (HF). Color based features aim to distinguish between
color characteristics of structures containing gastritis and structures of class
C3. Thus, we compute the mean, variance, skew, kurtosis and entropy of each
histogram-channel of the RGB, HSV and CIE colorspaces. The entire collection
of features is summarized in Table 2.
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Table 3. Results of Pathology Detection using a SVM classifier (in %). Results of
AdaBoost in parentheses.

���������Actual
Predicted Healthy Gastritis Haematin Gastritis and

Image (C1) Image (C2) Image (C3) Haematin C2/C2
Healthy Image C1 92 (95) 6(5) 2(0) 0(0)

Gastritis C2 8(11) 72(55) 6(12) 14(22)

Haematin C3 7(11) 7(12) 76(70) 10(7)

3 Experiments and Results

To evaluate the automatic detection of pathologies we used 300 images stemming
from 44 patients. The images were analyzed by a medical expert and each detected
structure Sj was manually labeled. The dataset of 300 images consisted of 100 im-
ages for each of the two target pathologies and a set of 100 healthy images. For
the supervised learning approach we compared results of the Adaboost and SVM
classifiers implemented in a 5-fold LOO CV. Most images contained more than a
single structure Sj with or without a pathology. An image was attributed to one
of the pathology classes if at least one structure Sj was classified as pathologic.
An image was counted as healthy if none of the structures Sj was classified as
pathologic. The best classification results were obtained using a SVM classifier3.
A confusion matrix was obtained for each image test-set of the 5-fold LOO CV.
The average confusion matrix of all 5 runs can be seen in Table 3. Out of 100 im-
ages with gastritis, 86% were correctly classified (Table 3). From the 100 images
containing haematin, 86% were correctly classified. However, we also detected an
average of 12% of pathological images, which exhibited both, haematin and gas-
tritis. Finally out of the 100 healthy images 92% were correctly classified.

4 Discussion and Conclusion

Our experiments have shown that our computer-assisted diagnostic-procedure
algorithm can be used for indicating gastritis and gastrointestinal bleedings in
MGCE. The presented algorithm includes a preprocessing step that discards
areas with bubbles . This step is crucial for all following image processing steps
in the presented method and may have implications for the development of future
applications on this imaging modality. Pre-segmentation performs accurately in
detecting areas with bubbles without hiding pathologies or large amounts of
non-bubble tissue areas. Based on the results from the above pre-processing
step, a method was presented that is able to automatically detect two kinds of
pathologies on MGCE images. We achieved sensitivity and specificity results well
over 80% for healthy and diseased images. The moderate sensitivity between the
two target pathologies is due to the similaritiy between gastritis and haematin
3 LIBSVM [Online]. Available: http://www.csie.ntu.edu.tw/~cjlin/libsvm/

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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aspects in terms of color and texture. Still, the algorithm performs well, especially
within the context of real-time warnings for certain gastritis aspects.
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Abstract. Purpose: To propose an innovative approach to better detect 
Alzheimer’s Disease (AD) based on a finer detection of hippocampus (HC) 
atrophy patterns. Method: In this paper, we propose a new approach to 
simultaneously perform segmentation and grading of the HC to better capture 
the patterns of pathology occurring during AD. Based on a patch-based 
framework, the novel proposed grading measure estimates the similarity of the 
patch surrounding the voxel under study with all the patches present in different 
training populations. The training library used during our experiments was 
composed by 2 populations, 50 Cognitively Normal subjects (CN) and 50 
patients with AD. Tests were completed in a leave-one-out framework. Results: 
First, the evaluation of HC segmentation accuracy yielded a Dice’s Kappa of 
0.88 for CN and 0.84 for AD. Second, the proposed HC grading enables 
detection of AD with a success rate of 89%. Finally, a comparison of several 
biomarkers was investigated using a linear discriminant analysis. Conclusion: 
Using the volume and the grade of the HC at the same time resulted in an 
efficient patient classification with a success rate of 90%.  

Keywords: hippocampus segmentation, hippocampus grading, patient 
classification, nonlocal means estimator, Alzheimer’s disease. 

1   Introduction 

The atrophy of medial temporal lobe structures, such as the hippocampus (HC) and 
entorhinal cortex, is potentially specific and may serve as early biomarkers of 

                                                           
*  Data used in the preparation of this article were obtained from the Alzheimer's Disease 

Neuroimaging Initiative (ADNI) database (www.loni.ucla.edu/ADNI). As such, the 
investigators within the ADNI contributed to the design and implementation of ADNI and/or 
provided data but did not participate in analysis or writing of this report. ADNI investigators 
include (complete listing available at www.loni.ucla.edu/ADNI/Collaboration/ADNI Author 
ship list.pdf). 
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Alzheimer’s disease (AD) [1]. In particular, the atrophy of the HC can be used as a 
marker of AD progression since changes in HC are closely related to changes in 
cognitive performance of the subject [1]. The evaluation of HC atrophy is usually 
estimated by volumetric studies on anatomical MRI, requiring a segmentation step 
that can be very time consuming when done manually. This limitation can be 
overcome by using automatic segmentation methods [2-5]. However, despite the high 
segmentation accuracy of these HC segmentation approaches, using only the HC 
volume enables a separation between AD and cognitively normal (CN) subjects with 
a success rate around 72-74% [6]. This limited capability to classify AD patients by 
using the HC volume only may be due to a simplification of the complex 
hippocampal atrophy patterns to a volume changing measurement. Recently, several 
shape analysis methods have been proposed [7-8] to capture detailed patterns of 
change in order to obtain a more accurate classification. These approaches provide a 
slightly better classification rate of around 77% [6].    

Inspired by work in image denoising [9], a new nonlocal patch-based label fusion 
method has recently been proposed to segment anatomical structures [5]. By taking 
advantage of the redundancy of information present within the subject’s image, as 
well as the redundancy across the training subjects, the patch-based nonlocal means 
scheme enables robust use of a large number of samples during estimation. In [5], this 
approach has been applied to label fusion for the segmentation of anatomical 
structures. We propose an extension of this patch-based segmentation method in order 
to evaluate the similarity (in the nonlocal means sense) of the intensity content of one 
MRI compared to several training populations. By using training populations with 
different pathological status (e.g., CN subjects and patients with AD), a nonlocal 
means estimator is used to evaluate the proximity (i.e., the grade or the degree of 
atrophy in case of AD) of each voxel of the MRI under study compared to the training 
populations. Since the grade estimation and the label fusion steps require the same 
patch comparison, simultaneous segmentation and grading of HC can be achieved in 
one pass. In the proposed approach, the nonlocal patch-based comparison is used to 
efficiently fuse the HC segmentations of MRI in a training database and at the same to 
aggregate the pathological status of the populations constituting the training database. 
Finally, the average grading value obtained over the segmented HC is proposed as a 
new biomarker to estimate the pathological status of the subject under study. The 
contributions of the paper are: i) the introduction of an innovative approach to better 
characterize the patterns of pathology (e.g., atrophy) in AD through the new concept 
of HC grading, ii) the presentation of a method to automatically and simultaneously 
perform the segmentation and the grading of HC, and iii) the demonstration that the 
proposed approach can be used as a novel biomarker to efficiently achieve patient 
classification in the context of AD. 

2   Materials and Methods 

2.1   Dataset and Preprocessing 

In this study, the ADNI database (www.loni.ucla.edu/ADNI) was used to validate the 
proposed approach. This database contains both 1.5T and 3.0T T1-w MRI scans. For 
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our experiments, we randomly selected 120 MRI scans, 60 1.5T MRI baseline scans 
of CN subjects and 60 1.5T MRI baseline scans of patients with AD. All the selected 
images were preprocessed as follows: 1) correction of inhomogeneities using N3 [10], 
2) registration to the stereotaxic space using a linear transform to the ICBM152 
template (1x1x1 mm³ voxel size) [11] and 3) cross-normalization of the MRI intensity 
using the method proposed in [12]. After preprocessing, all the MRIs are coarsely 
aligned (linear registration), tissue intensities are homogeneous within each MRI 
volume (inhomogeneity correction) and across the training database (intensity 
normalization). From the 120 processed MRI scans, 20 scans (10 CN and 10 AD) 
were randomly selected to be used as seed dataset. The left and right hippocampi of 
this seed dataset were then manually segmented by an expert at our centre. The 
manual segmentations of the seed dataset were propagated to the 100 remaining 
scans constituting our test dataset. After segmentation propagation using [5], the test 
dataset was composed of 100 MRI (50 CN subjects and 50 patients with AD) with 
their corresponding automatic segmentations. 

2.2   Method Overview 

In nonlocal means-based approaches [9], the patch P(xi) surrounding the voxel xi 
under study is compared with all the patches P(xj) of the image Ω whatever their 
spatial distance to P(xi) (it is the meaning of the term “nonlocal”). According to the 
patch similarity between P(xi) and P(xj), estimating by the Sum Squared Difference 
(SSD) measure, each patch receives a weight w(xi, xj):  
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where ||.||2 is the L2-norm computed between each intensity of the elements of the 
patches P(xi) and P(xs,j), and h is the smoothing parameter of the weighting function. 
This weighting function is designed to give a weight close to 1 when the SSD is close 
to zero and a weight close to zero with the SSD is high. Finally, all the intensities u(xj) 
of the central voxels of the patches P(xj) are aggregated through a weighted average 
using the weights w(xi, xj). In this way, the denoised intensity û(xi) of the voxel xi can 
be efficiently estimated: 
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In [5], we introduced this estimator in the context of segmentation by averaging 
labels instead of intensities. By using a training library of N subjects, whose 
segmentations of structures are known, the weighted label fusion is estimated as 
follows:      

v(xi) =
w(xi,xs, j )l(xs, j )j∈Ω

∑
s=1

N∑
w(xi, xs, j )j∈Ω

∑
s=1

N∑
 

 

where l(xs,j) is the label (i.e., 0 for background and 1 for structure) given by the expert 
to the voxel xs,j at location j in training subject s. It has been shown that the nonlocal 
means estimator v(xi) provides a robust estimation of the expected label at xi [5]. With 
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a label set of {0,1}, voxels with value v(xi)≥0.5 are considered as belonging to HC 
and the remaining voxels as background. 

In this paper, we propose to extend it to efficiently aggregate pathological status in 
order to estimate the proximity (in the nonlocal means sense) of each voxel compared 
to both populations constituting the training library. To do that, we introduce the new 
concept of patch-based grading that reflects the similarity of the patch surrounding the 
voxel under study with all the patches present in the different training populations. In 
this way, the neighborhood information is used to robustly drive the search of 
anatomical patterns that are specific to a given subset of the training library. When the 
training populations include data from subsets of patients with different stages of the 
pathology progression, this approach provides an estimation of the grade (i.e., degree 
of atrophy in case of AD) for each voxel: 
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where ps  is the pathological status of the training subject s. In our case, ps=-1 was 
used for AD status and ps=1 for CN status. A negative grading value (respectively, a 
positive grading value) g(xi) indicates that the neighborhood surrounding xi is more 
characteristic of AD than CN (respectively, of CN than AD). The absolute value 
|g(xi)| provides the confidence given to the grade estimation. When |g(xi)| is close to 
zero, the method indicates that the patch under study is similarly present in both 
populations and thus is not specific to one of the compared populations and provides 
little discriminatory information. When |g(xi)| is close to 1, the method detects a high 
proximity of the patch under study with the patches present in one of the training 
population and not in the other. Finally, for each subject, an average grading value is 
computed over all voxels in the estimated segmentation (i.e., for all xi with v(xi)≥0.5) 

by assigning the same weight to the left and right HC (i.e., 2/)( rightleft ggg +=  ). 
During all our experiments, the default parameters proposed in [5] have been used. 
The patch size was fixed to 7x7x7 voxels and the search window of similar patches 
has been limited within a restricted volume of 9x9x9 voxels for computational 
reasons (i.e., Ω is replaced by a cubic volume Vi centered on xi). Finally, the 
smoothing parameter h2 was locally set as the minimal SSD found between the patch 
under study and all the patches in the training library as proposed in [5]. 

2.3   Validation Framework 

Segmentation accuracy validation: In order to evaluate the segmentation accuracy of 
the method proposed in [5] on patients with AD, we first perform a leave-one-out 
procedure on the 20 subjects with manual segmentation composing the seed dataset. 
The N=16 closest training subjects (in the SSD sense, see [5] for details) were equally 
selected within both populations (i.e., 8 AD and 8 CN). The Dice’s kappa was then 
computed by comparing the expert-based segmentation, used as gold standard, and 
the segmentation obtained automatically. This first validation is used to support the 
fact that the segmentation propagation over the 100 subjects in our test dataset from 
the 20 subjects in our seed dataset is done in an accurate manner.  
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Grading validation: After the segmentation propagation step, a leave-one-out 
procedure is performed over the 100 subjects of the test dataset. For each subject, the 
N closest training subjects are selected equally in both populations. This is done to 
ensure that the size of the “patch pool” from AD population is coarsely similar to the 
size of the “patch pool” from CN population. To save computational time, N is 
automatically adjusted according to the obtained g . In the first iteration, N=20 (10 

CN and 10 AD). If the resulting 1.0<g (i.e., the confidence in the obtained grade is 

low), the size of the used training library is increased by 20 to N=40 (20 CN and 20 
AD). This process is repeated until 1.0>g  or N>80.  The sign of the final grading 

value is used to estimate the pathological status of the testing subjects. Finally, the 
success rate of the patient classification is provided to demonstrate the robustness of 
the proposed new biomarker.  
 

Comparison of biomarkers for patient classification with AD: The last part of our 
validation framework is the comparison of two biomarkers (HC volume and HC 
grade) and the investigation of their combination. The segmentations obtained at the 
same time as the grading were used to obtain the HC volume for each of the subjects 
in the test dataset. Through a leave-one-out procedure, each subject was classified by 
using optimal boundary separating both populations. This optimal boundary was 
obtained by performing a linear discriminant analysis over the 99 remaining subjects. 
This approach was applied to volume-based classification, grade-based classification 
and the combination of both volume and grade. The success rate (SR), the specificity 
(SPE), the sensitivity (SEN), the positive predictive value (PPV) and negative 
predictive value (NPV) are presented for each of the tested biomarkers (see [6] for 
details on these quality metrics). 

3   Results 

Table 1 shows the segmentation accuracy obtained on the seed dataset by using 
N=16 training subjects (8 CN and 8 AD). For the CN population, the median Dice’s 
Kappa was similar to the Dice’s Kappa presented in [5] on healthy young subjects 
from the ICBM database, which demonstrates the robustness of the segmentation 
method. A lower median Dice’s Kappa value was obtained for the AD population. A 
median Dice’s Kappa value superior to 0.8 indicates a high correlation between 
manual and automatic segmentations, and a median Dice’s Kappa value superior 0.88 
is similar to the highest published values in literature [3-4]. The difference between 
populations might come from two sources. First, the higher anatomy variability of 
patients with AD makes the segmentation more difficult and may require a larger 
training library. Second, the smaller HC volumes of patients with AD, due to the HC 
atrophy, can negatively bias the Dice’s Kappa index measure. Finally, these results 
indicate that a similar accuracy can be expected during the segmentation propagation 
step to the 100 subjects of the test dataset.  
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Table 1. Median Dice’s Kappa values (with the standard deviation) obtained on the seed 
dataset composed of 20 MRI (10 CN and 10 AD) with manual segmentations.   

Median Dice’s Kappa 
(standard deviation) 

Left HC Right HC Both HC 

CN population 0.891 (0.035) 0.866 (0.038) 0.883 (0.037) 

AD population 0.830 (0.042) 0.858 (0.035) 0.838 (0.038) 

Figure 1 shows the final grading values for the 100 subjects of the test dataset. In 
the perfect case, the 50 first subjects (CN) should have positive average grading 
values and the 50 last (AD) should have negative average grading values. As shown 
in the graph, the success rate of the classification was 89% (5 false positive CN and 6 
false negative AD). Figure 1 also presents the size of the used training library for each 
of the testing subjects. Most of the test subjects were classified by using only N=20 
training subjects. Around 5% of test subjects seem to require larger training library 
(i.e., N>80) since at the end of the procedure g  is still inferior to 0.1.  

 

Fig. 1. Left: the final average grading values obtained for the test dataset. Right: the used size 
of training library (i.e., N) for all the testing subjects. 

Figure 2 shows the grading maps obtained for 2 test subjects (1 CN and 1 AD). 
The corresponding average grading values and the estimated volumes are also 
provided for left and right HC. While the volume of HC is similar for these 2 subjects, 
and thus does not allow an efficient patient classification, their grading values provide 
a useful indication on their pathological status. Visually, the CN subject clearly 
appears closer to the CN population (mainly red color related to values close to 1) 
while the AD patient is visually closer to the AD population (mainly purple and black 
colors related to values close to -1). Finally, Fig. 2 also provides a visual assessment 
of the quality of the segmentation propagation on the test dataset. For a given 
subject, the segmentation and the grading maps were obtained in less than 5 minutes 
using a single core of an Intel Core 2 Quad Q6600 processor at 2.4 GHz with N=20. 
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Table 2 presents the results of the patient classification for the different biomarkers 
under consideration. These results clearly demonstrate the advantage of using the 
grading approach (89% of success rate) compared to the classical volumetric 
approach (78% of success rate). The SEN, SPE, PPV and NPV obtained by our 
grading approach were higher than the ten methods compared in [6] involving Voxel-
Based Morphometry (VBM), cortical thickness, HC volume and HC shape. The 
higher SR of our volumetric approach compared to the results presented in [6] might 
come from differences in the test dataset used here or due to a higher accuracy and 
consistency of the segmentation method used compared to [2]. It is also interesting to 
note that the optimal boundaries found by linear discriminant analysis provided 
similar results as using 0 as threshold value as in the previous experiment (see Fig 1.). 
Finally, using the volume and the average grade of the HC simultaneously provides a 
very high success rate of 90%.   

 

  
CN subject (ID 23) 

Left HC: 57.0=leftg  and Volume = 2.48 cm3 

Right HC: 47.0=rightg  and Volume = 2.18 cm3 

  
AD patient (ID 72) 

Left HC: 62.0−=leftg  and Volume = 2.31 cm3 

Right HC: 35.0−=rightg  and Volume = 2.50 cm3 

Fig. 2. Top: the obtained grading map for one CN subject (ID 23). Bottom: the obtained 
grading map for one AD patient (ID 72). The slices of both subjects have the same position in 
the stereotaxic space. Red color indicates a grading close to 1 (i.e., CN) and black color 
indicates a grading close to -1 (i.e., AD).  

Table 2. Results of the patient classification (AD vs CN) for the different biomarkers under 
investigation. These results were obtained by using linear discriminant analysis through a 
leave-one-out procedure on the test dataset.   

AD vs. CN SR SEN SPE PPV NPV 

HC volume 78% 72% 84% 82% 75% 
HC grading 89% 86% 92% 91% 87% 
HC volume and grading 90% 88% 92% 92% 88% 
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4   Conclusion 

In this paper, a new method is proposed to robustly detect the hippocampal atrophy 
patterns accruing during AD. Based on a nonlocal means estimation framework, the 
proposed novel grading measure (i.e., the atrophy degree in AD context) enables an 
accurate distinction between CN subjects and patients with AD leading to a success 
rate of 89% when used alone, and 90% when combined with HC volume. These 
results are competitive compared to the AD detection performance of VBM, cortical 
thickness, HC volume and HC shape methods extensively compared in [6]. In contrast 
to these approaches, our method has the advantage of simplicity (it can be coded in 
few hundred lines of code), low computational cost (does not required non-rigid 
registration), robustness of the process (all the subjects get final grading maps) and 
the possibility to achieve individual classifications based on a single time point 
contrary to group classification or longitudinal studies. These first results are 
promising and indicate that the new HC grading approach could be a useful biomarker 
to efficiently detect AD. Further work will investigate the possibility to discriminate 
population of patients with Mild Cognitive Impairment (MCI) compared to AD or 
CN.  
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Abstract. We propose a novel fully automatic approach to localize the
lumbar intervertebral discs in MR images with PHOG based SVM and
a probabilistic graphical model. At the local level, our method assigns
a score to each pixel in target image that indicates whether it is a disc
center or not. At the global level, we define a chain-like graphical model
that represents the lumbar intervertebral discs and we use an exact in-
ference algorithm to localize the discs. Our main contributions are the
employment of the SVM with the PHOG based descriptor which is ro-
bust against variations of the discs and a graphical model that reflects
the linear nature of the vertebral column. Our inference algorithm runs
in polynomial time and produces globally optimal results. The developed
system is validated on a real spine MRI dataset and the final localization
results are favorable compared to the results reported in the literature.

Keywords: lumbar disc detection, graphical models, exact probabilistic
inference, object detection.

1 Introduction

There are many intervertebral disc and vertebra localization methods for the ver-
tebral column in the literature [9,14,5]. Schmidt et al. [13] introduce a probabilis-
tic inference method that measures the possible locations of the intervertebral
discs. The approach uses a part-based model that describes the disc appearances
by employing a tree classifier [8]. Similar to [13], Alomari et al. [1] use a graphical
model that assumes local and global levels with latent variables. The inference on
their graphical model is based on the expectation maximization method which
is an approximate and iterative inference technique.

This paper introduces a novel method for the automatic localization and la-
beling of the lumbar discs from T1-weighted sagittal MR images. At the local
level, the method uses recent machine learning methods to locally search the disc
positions by employing Pyramidal Histogram of Oriented Gradients (PHOG) [4]
with Support Vector Machines (SVM). At the global level, the method takes ad-
vantage of the chain-like structure of the spine by assuming latent variables for
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the disc positions. A polynomial time exact inference method on the chain-like
graphical structure [3] is employed to find the final lumbar disc positions and
labeling.

Our method has two important advantages. First, our graphical model does
not directly use any image intensity information which varies greatly. Instead, we
use the PHOG based SVM detector results as the observed data in our model.
Also, many local and semi-global features can be conveniently incorporated into
the SVM without complicating the global level inference mechanism.

For the second major advantage of our system, we exploit the one dimensional
nature of the spine and form a chain like graphical model that contains only the
latent variables for the disc positions. The literature includes very efficient poly-
nomial time inference algorithms for chain-like graphical models that we employ
to find robust disc locations even for pathological cases. In addition, the chain-
like structure of our model makes it possible to include extra information for the
end discs of the lumbar region, which are the most problematic sections in terms
of localization. As a result, our model does not assume any image dependent
spatial disc positions and hence it does not require manual initialization.

The rest of this paper is organized as follows. The disc scoring with PHOG
based SVM is described in Section 2. Section 3 includes the chain-like proba-
bilistic graphical model and exact inference. The validation of the method is
presented in Section 4. Finally, we conclude in Section 5.

2 Disc Scoring with PHOG Based SVM

The lumbar discs vary in the size, location, shape, and appearance because
of pathologies and individual variations. We observe that the most invariant
property of a disc image is its edges and orientation rather than the intensity,
location, and shape which are used in the disc detection methods in the literature
[1,5]. Therefore, we use the PHOG descriptors for feature extraction which are
more robust to disc and vertebrae abnormalities.

In the PHOG descriptor extraction, a shape is represented by a histogram
of gradient orientations which are quantized into a number of bins. Each bin
shows the number of edges that have orientations within a specific angular range.
PHOG combines the local image shape [6] with the spatial pyramid kernel [7].

The gradient values are first computed and their orientations are calculated.
Then, a PHOG descriptor is calculated for each candidate region. Extracting
the PHOG descriptors in the original images (512x512) has high computational
cost. Therefore, we use the integral histogram technique [12] to speed up the
feature extraction process.

After the extraction of the PHOG descriptors, they are trained with Sequential
Minimal Optimization [10] for SVM. We use a sliding window approach for the
scoring process. The pixel in the center of the window is assigned a score that
indicates if the window contains a disc. These scores are generated by fitting a
logistic regression model to the outputs of SVM [11].

Let d = {d1, d2 . . . , d6} denote the labels for the lumbar intervertebral discs
(T12-L1, L1-L2, L2-L3, L3-L4, L4-L5, and L5-S1 which are shown in Figure 1).
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Each disc di is trained and scored separately. Therefore for a given image I, each
pixel is assigned 6 scores, one for each disc. For further processing, the pixels
that have scores less than 0.5 are eliminated.

Consider pdi(lk) as the score assigned to the pixel at location lk for the disc
di by SVM. For the disc di, the assigned scores are denoted as

pi = {pdi(l1), pdi(l2) . . . , pdi(lm)}, (1)

where 1 < i < 6 and m is the number of pixels in the image. The next section
explains how we use these scores in the inference algorithm.

3 Disc Center Localization with the Graphical Model

We propose a probabilistic graphical model for the final localization of the disc
centers. The local features of the discs are captured by the disc scoring process
with PHOG and SVM, however it is not sufficient to discriminate the discs in the
lumbar region. More contextual global information like positional and orienta-
tional differences between the discs and distance to the spinal cord are necessary
for the final localization of discs on the spine. We use a chain-like graphical model
that combines such global information with the local information gathered from
the disc scoring process.

Our graphical model is a chain consisting of 6 nodes and 5 edges where
each node represents a lumbar disc (Figure 2). Let xk ∈ �2 be a random
variable that assigns node k to its image location. The optimal configuration
x′ = {x1, x2 . . . , x6} assigns all discs d = {d1, d2 . . . , d6} to their exact locations.

Our objective is finding the optimal localizations of the disc centers with the
maximum a posteriori (MAP) estimate

x′ = arg max
x

P (x|p, α), (2)

where α represents the parameters learned from the training set and p = {p1, . . . ,
p6} are the assigned scores with Eq. 1. P (x|p, α) captures the probability of
being a disc and the relation with the neighboring discs. The Gibbs distribution
of P (x|p, α) is defined as

P (x|p,α) =
1

Z
exp

{
−
[∑

ψL(I, xk) + λ
∑

ψG(xk, xk+1, α)
]}

, (3)

where the potential function ψL(I, xk) carries local information about the discs
and the potential function ψG(xk, xk+1, α) includes more global information like
the distance and orientation. λ is a weighting parameter which is selected as 0.5.

In the local potential function ψL(I, xk), we directly use the scores pi =
{pdi(l1), pdi(l2) . . . , pdi(lm)} generated with Eq. 1 .

The global potential function ψG(xk, xk+1, α) is defined as

ψG(xk, xk+1, α) = U(xk, xk+1, α)R(xk, xk+1, α)D(xk, α), (4)



Localization of the Lumbar Discs Using Machine Learning 161

where the functions U and R capture the positional and orientational differences
between neighboring disc variables xk and xk+1, respectively, and D(xk, α) cap-
tures the Euclidean distance to the spinal cord whose position is calculated using
the method of [2].

Let yi = {y1, y2, . . . , yt} be the Euclidean distances between the disc variables
xi and xi+1 of the training set used in the scoring process where t is the number
of samples in the training set. The distance function U(xk, xk+1, α) is

U(xk, xk+1, α) =
{

|E−μ(yk)|
w

, if E ∈ [min(yk) − σ, max(yk) + σ]
∞, else,

(5)

where μ(yk) is the mean of yk measured from the training set, w = max(yk) −
min(yk), σ is a threshold, and E is the Euclidean distance between the disc
variables xk and xk+1.

The angular differences between the discs define the curve-like shape of the
lumbar region. In order to handle this information, we use the angle information
between the discs. Let ri = {r1, r2, . . . , rt} be the angles between the neighboring
disc variables xi and xi+1 measured from the training set. The orientation term
R(xk, xk+1, α) is defined as

R(xk, xk+1, α) =
{ |O−μ(rk)|

f
, if O ∈ [min(rk) − τ, max(rk) + τ ]

∞, else,
(6)

where O gives the angle differences between the disc variables xk and xk+1,
μ(rk) is the mean orientation learned from the training set, τ is a threshold, and
f = max(rk) −min(rk).

Fig. 1. An uncropped T1-weighted MRI
mid-sagittal view of the lumbar vertebrae
and intervertebral discs

T12-L1      L1-L2       L2-L3       L3-L4       L4-L5        L5-S1 

   d1            d2               d3       d4             d5                  d6

Fig. 2. Our graphical model

3.1 Exact Inference on the Chain

Given a target image I, our objective is to infer the optimal configuration x′

by maximizing the Equation 2. In our graphical model, a node is conditionally
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dependent to its neighboring nodes. Instead of using all of the pixels in the
image I, we only use the candidate disc centers for the disc localization process.
The search space for the optimal x′ is decreased by conditional dependence and
detected candidates. This allows us to find a globally optimal solution with
recursive message passing based dynamic programming [3].

The computation time of our inference method is much better than the infer-
ence method of [13] which is based on A* search algorithm. Although A* search
can produce the globally optimal solution with an appropriate heuristic, it is
potentially intractable. The alternative inference method of expectation maxi-
mization [1] is computationally cheaper, but it may not find the globally optimal
solution and has known initialization problem.

4 Experimental Results

The developed system is validated on a real MRI dataset for the lumbar spinal
column. A 3D MRI volume is 512x512x12 voxels in size. The sagittal view in-
cludes the 6 discs of the lumbar vertebrae and some discs from the thoracic
vertebrae and sacrum. In order to improve our localization results for the end-
lumbar discs, we extended our graphical model with the T11-T12 and S1-S2
discs. However, we do not report their localization results because our purpose
is localizing the lumbar discs only.

The dataset consists of MRI volumes of 40 different subjects where 4 of the
subjects are pathology-free and the remaining 36 subjects have pathologies like
disc degeneration, herniation, and scoliosis, etc. There are totally 240 lumbar
intervertebral discs in the dataset and 97 of them have pathologies.

The disc detection is performed on T1-weighted sagittal slices. We use the
mid-sagittal slice for both disc detection and disc center localization as it is
commonly used in the medical practice. We asked an expert to mark the image
region and center point of each disc for the verification and training.

4.1 Disc Scoring Results

For the disc scoring (Section 2), we perform a subset of leave-10-out cross valida-
tion. We randomly divide the dataset into 4 subsets each containing 10 subjects.
In each sub-experiment, 30 MRI slices from 3 subsets are trained and 10 slices
in the other subset are tested. We perform totally 4 sub-experiments, so each
slice in the dataset is tested once.

For the SVM training, 90 positive samples and 900 negative samples are used
for each disc. For scoring, the features are extracted from the target images. The
window size is selected between the minimum and maximum window size in the
training set for that disc.

The average SVM classification rates for the testing of 4 subsets are shown
in the Table 1. Normally, we produce scores for the windows with logistic model
fitting to SVM. If a window is assigned a probability value greater than 0.5, it
is evaluated as a detected disc and otherwise it is evaluated as not a disc. The
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disc classification is considered as correct if the expert marked disc is completely
contained within the window. The classification rate is the number of correctly
classified windows over the number of all windows. The misclassified samples are
mainly caused by the confusion between the neighboring discs. The borders of
the neighboring discs have nearly same orientations, so this causes the detection
of the neighboring disc as the target disc most of the times. Note that, the
confusion between the neighboring discs are expected because disc scoring is a
completely local process.

The detection results reported by [13] has an average classification rate of
70.16%. Our average classification rate is 97% and it shows the robustness of
using modified PHOG detector in the disc detection. Note that, the method of
[13] and our method are tested on different datasets and [13] uses image sizes of
512x1024 pixels which contain the whole spine.

4.2 Disc Localization Results

Our disc center localization method with graphical model runs on the scoring
results of the SVM. The same training and test subsets of the disc scoring process
are used for the disc localization.

In order to evaluate the disc localization performance of our system, we use
two different methods. In the first method, a disc is evaluated as correctly located
if the localized disc center is inside the disc contour. The average disc localization
accuracy of our system is 95.42%. The end discs (L4-L5 and L5-S1) have higher
error rates than other discs because their positions vary greatly and pathologies
generally exist in these discs. The system of Alomari et al. [1] uses 512x512
lumbar region images and it reports an accuracy of 90.7% which is lower than
our accuracy. Note that, the method of [1] and our method are not tested on the
same dataset.

Table 1. The average classification rates
(%) of our system with SVM

Disc detection rates(%)
T12-L1 L1-L2 L2-L3 L3-L4 L4-L5 L5-S1

S1 98.04 97.20 97.85 98.45 97.06 97.99
S2 97.44 97.08 97.73 98.17 98.08 98.88
S3 96.41 96.50 96.71 97.89 96.25 98.58
S4 97.12 97.57 97.78 98.89 97.93 98.96

Avg 97.25 97.09 97.52 98.35 97.33 98.59

Table 2. The mean Euclidean distances to
ground truth for each subset

Mean Euclidean distances (mm) for each subset
T12-L1 L1-L2 L2-L3 L3-L4 L4-L5 L5-S1

S1 2.06 2.08 3.03 3.89 3.14 4.10
S2 2.77 2.12 2.40 2.75 4.58 3.85
S3 3.28 2.78 2.60 2.67 4.11 4.07
S4 2.29 2.18 1.75 2.72 3.24 2.52

Avg 2.60 2.29 2.45 3.01 3.77 3.63

The second evaluation method for the disc center localization is the Euclidean
distance to the center labeled by an expert. The mean of the Euclidean distances
to the ground truth disc centers are shown in Table 2. The plot box of the
Euclidean distances for the lumbar vertebrae connected discs are also shown in
Figure 3. In the box plot, the centerline of the box is the median, the top and
bottom of lines of the box are 25th and 75th percentiles and the pluses are the
statistical outliers. Figure 4 shows the median of the Euclidean distances of our
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Fig. 3. The box plot shows the Euclidean
distances (in mm) to the disc centers
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Fig. 4. Median errors of our system, the
method of [13] and [1]

Fig. 5. The results of the disc localization. Red pluses are the ground truth and green
pluses are the disc centers localized by our system. The images are cropped for better
visualization.

method, the method of [1] and [13]. Our median of the Euclidean distances are
always lower than the medians of the other methods [1] and [13]. Note that, [1]
and [13] are tested on different datasets. We also show a few visual results of
the localizations from our system (Figure 5). It is obvious that our method can
localize the lumbar discs in pathological cases.

5 Conclusions

We presented a lumbar intervertebral disc localization method by employing
PHOG based SVM and exact inference on a probabilistic graphical model. Our
disc scoring method is more robust than other methods in the literature as ver-
ified by the experiments. In addition, other local information about the discs
such as T2-weighted image features can be easily incorporated into the system.
We rely on the robustness of our scoring process to eliminate some disc positions
before they enter the dynamic programming, which makes our system more ef-
ficient. Also, our dynamic programming based inference mechanism can locate
the disc centers in polynomial time without requiring manual initialization. Fi-
nally, the method can be extended to localize the whole intervertebral discs of
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the whole spine. Our future work includes handling of the missing detected discs
and providing scale independency.
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Abstract. We propose an automatic algorithm for phase labeling that
relies on the intensity changes in anatomical regions due to the contrast
agent propagation. The regions (specified by aorta, vena cava, liver, and
kidneys) are first detected by a robust learning-based discriminative al-
gorithm. The intensities inside each region are then used in multi-class
LogitBoost classifiers to independently estimate the contrast phase. Each
classifier forms a node in a decision tree which is used to obtain the final
phase label. Combining independent classification from multiple regions
in a tree has the advantage when one of the region detectors fail or
when the phase training example database is imbalanced. We show on a
dataset of 1016 volumes that the system correctly classifies native phase
in 96.2% of the cases, hepatic dominant phase (92.2%), hepatic venous
phase (96.7%), and equilibrium phase (86.4%) in 7 seconds on average.

1 Introduction

Computed Tomography (CT) remains the most common modality used in the
imaging of the liver and for the diagnosis of focal liver lesions. Multiphase
study obtained by multidetector-row CT (MDCT) during defined circulatory
phases best outlines the vasculature and improves detection and characteriza-
tion of parenchyma lesions [10]. Automatic algorithms for lesion classification,

Fig. 1. Contrast phase estimation is
important for automatic liver lesion de-
tection and segmentation. The hyper-
dense liver lesion is clear in the arterial
phase (left), but almost invisible in the
venous phase (right).

segmentation, and serial comparison re-
quire the knowledge of the contrast phase
to get the most accurate results (Fig-
ure 1). Currently, the phase information
either needs to be entered manually or ex-
tracted from Dicom tags. Unfortunately,
these entries are often incorrect or missing
(15-20% of the cases in our experience, see
Section 4), and their format varies across
hospitals and clinicians.

In this paper, we present an algorithm
for automatic contrast phase classification
based on the image intensity in local re-
gions. Since several organs and anatom-
ical structures are enhanced differently
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during a specific contrast phase, the algorithm exploits these different levels of
enhancement to automatically determine the phase label. Our approach starts
by a robust learning-based detector of anatomical structures. The local regions
surrounding the structures are then used to train a classifier identifying the
following contrast phases: native (NP), hepatic arterial dominant (HADP), hep-
atic venous (HVP), and equilibrium (EP). The phases are explained in detail in
Section 2.

The proposed algorithm uses only the image content to automatically detect
the contrast phase without relying on the Dicom tags which often do not contain
any label information. This way, the phase labeling is standardized rather than
subjective and it can be used in the automatic contrast-specific scan analysis
such as lesion detection, segmentation, and comparison in the follow-up studies
[2,6]. Since these algorithms might be inaccurate or even fail when the contrast
information is incorrect, the requirements on the phase detection accuracy are
high. Moreover, since the contrast estimation is adding computation to the
overall scan analysis, the algorithm must be efficient.

The robustness of our algorithm comes from the joint analysis of several local
image regions surrounding anatomical structures. Discriminative learning-based
anatomy detectors (PBT [9]) are trained using a large annotated database of
images. The anatomical structures that we use are the liver, aorta, vena cava
at the level of renal artery bifurcation, and kidney center (see Figure 4 for
examples). The learning algorithm solves the inherent ambiguity of the anatomy
locations (e.g. along the vessel or center of the liver) and approaches performance
of the human annotations. Multiple image regions used in the phase classification
increases robustness where the phase cannot be determined using one region
alone and when one of the anatomy detectors fail.

The proposed phase estimation technique is novel in three aspects. First, it
presents a way to effectively combine evidence from multiple image regions using
confidence of anatomical detectors. Second, the phase classification procedure is
based on a decision tree, where each node is a multi-class LogitBoost classifier.
Third, the organization of the tree allows to leverage prior knowledge such as
the effectiveness of each landmark to classify particular phase or to adjust the
tree topology based on the amount of training labels for each phase. We will
show on a database of CT scans that the technique can accurately classify the
phase in 93% of the cases.

2 Contrast Enhancement in CT

In the first breath-hold of approximately 24 seconds, the arterial dominant phase
(HADP) acquires images with arterial and arterioportal enhancement [5]. In the
second breath-hold of about 10 seconds, portal enhancement is scanned begin-
ning 60 seconds after the injection of contrast medium (hepatic venous phase,
HVP). During this phase, maximum enhancement of the liver parenchyma and
strong enhancement of renal cortex and medulla is achieved. Finally, a 3-min
delayed scan (equilibrium phase, EP) is acquired. The renal calices and pelvis



168 M. Sofka et. al

start to fill with excreted contrast after approximately 120 seconds [4]. Native
phase (NP) scan is obtained without contrast injection. Specific enhancement
of organs in each of the phases makes it possible to estimate the contrast phase
based on the organ scans. Often, only one phase is acquired (see Section 4).

In the clinical routine, contrast phase information is usually added manually
to the series description or image comments Dicom fields. Unfortunately, this
information is not structured or standardized. The new Dicom objects aimed to
capture timing and phase of enhancement [1] are not widely adopted and there
already exists a vast amount of data with unstructured tags. The acquisition
timing in the image meta data (if available) could be used to extract time delay
between multiple scans. However, the delay after the start of contrast injection
could not be obtained since the power injector for the agent is not coupled with
the scanner. Moreover, all phases are not always scanned to reduce the amount
of radiation to the patient. In our approach, we do not rely on the meta data but
rather use the image regions surrounding liver, aorta, vena cava (at the renal
vein branching), and kidneys to automatically estimate the contrast phase.

To illustrate the image intensity changes in various contrast phases, we com-
puted the following statistics. Each anatomical region was used to obtain a his-
togram of intensities and a statistical value of the histogram was plotted for all
volumes (Figure 2). We used the mean value of the histogram for aorta and vena
cava and peak value for liver and kidneys (due to intensity inhomogeneities). The
figure shows, that the regions are indicative of the contrast phase. However, it
is not possible to classify all the phases by one of the regions alone as evidenced
by overlaps in the plots.
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Fig. 2. Intensity statistics computed from 1016 volumes within the image regions de-
fined by aorta, vena cava, liver, and left kidney (right kidney plot is similar). The in-
tensities within the selected anatomical structures are indicative of the contrast phase.

3 Algorithm

Our algorithm automatically determines a probabilistic estimate of the image
contrast phase. The set of phases P that we estimate is composed of hepatic dom-
inant phase (HADP), hepatic venous phase (HVP), native phase (NP) (without
contrast injection), and equilibrium phase (EP). The algorithm uses a set of ob-
servations for contrast phase ri obtained from the neighborhoods V1, V2, ..., Vt of
the image V . Each neighborhood Vj is specified by the coordinates of a bounding
box within a d-dimensional image V , V : Rd → [0, 1]. The set of observations
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describe the intensity appearance specific for each region and phase. The goal of
the phase contrast detection algorithm is to estimate for a given volume V the
probability mass function p(ri|V ) for each contrast phase ri ∈ P.

Estimating the phase ri becomes difficult when the number of phases in the
set P is large; it is easier to distinguish between two phases than among four.
Furthermore, not all observations are useful for classification of each phase, es-
pecially when the observations are the same for two or more phases (this is a
case for kidney regions as can be seen from Figure 2). To address this problem,
we propose a multi-level algorithm, where the number of phases |Ps| at each
level s is smaller, Ps ⊂ P, and the set of observations is also smaller. In our
experiments, we found that two levels achieve reliable contrast phase estimation
(Figure 3). In this case, we can write

p(ri|V ) =
∑

k

p(ri|V, qk)p(qk|V ), (1)

where ri and qk are contrast phases estimated at level 2 and level 1, respectively.
We estimate the contrast using neighborhood image regions surrounding liver,

aorta, vena cava, and kidneys. Each oriented region j is defined by the parameters
θj = {p, r, s}, that specify the position (p), orientation (r), and size (s) of the
region. The set of observations inside the image neighborhood Vj is taken from
the region defined by j and therefore

p(qk|V ) =
∑

j

p(qk|V, j)p(j). (2)

Prior distribution p(j) of regions surrounding anatomical structures is uniform.
The term p(qk|V, j) specifies distribution of contrast phase qk for region j. Fur-
thermore, since the pose of the anatomy j is defined by parameters θj

p(qk|V, j) =
∫

p(qk,θj |V )dθj (3)

=
∫

p(θj |V )p(qk|θj, V )dθj . (4)
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Fig. 3. Multiple level algorithm (right) has advantages compared to a single level al-
gorithm (left) when the phase training data is imbalanced and effectively exploits
discriminative power of each landmark. In our case, kidneys are useful for classifying
EP phase but not the other phases (as seen in Figure 2).
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In practice, we replace the integration over the parameters by the best instance

p(qk|V, j) ≈ p(θ̂j |V )p(qk|θ̂j , V ). (5)

The set of the best instance parameters θ̂j for each anatomical region j is esti-
mated using a volumetric context surrounding the anatomy position:

θ̂j = argmax
θj

P(θj |V ), (6)

where P(θj |V ) is the probability of the parameters given the image volume. Let
us now define a random variable y ∈ {−1,+1}, where y = +1 indicates the
presence and y = −1 absence of the anatomy. We train a Probabilistic Boosting
Tree classifier (PBT) [9] with nodes composed of AdaBoost classifiers trained
to select Haar and steerable features [8] that best discriminate between positive
and negative examples of the anatomy. We can then evaluate the probability of
an anatomy being detected as P(y = +1|θj , V ). A natural choice for Eq. 6 is to
use the P(y = +1|θj , V ),

θ̂j = arg max
θj

P(y = +1|θj , V ). (7)

This way, we sucessfuly convert the above problem to a detection problem. The
derivation for p(qk|V ) applies to all levels of the algorithm.

We use a Multi-class LogitBoost (MLBoost) [3] classifier and a Haar fea-
ture selection from AdaBoost [3] to estimate the contrast phase distribution
p(qk|θ̂j , V ) in Eq. 5. The MLBoost is a generalization of a two-class AdaBoost,
interpreted using the forward additive logistic regression. The LogitBoost algo-
rithm uses quasi-Newton steps [7] for fitting an additive symmetric logistic model
by maximum-likelihood. At each iteration, the algorithm increases the classifi-
cation accuracy on the training data by adding a new function fkm(θ̂j, V ) to
the response function Fk(θ̂j , V ). The output of the training is a set of response
functions, one for each phase qk

Fk(θ̂j , V ) =
∑
m

fkm(θ̂j , V ). (8)

The posterior phase probability p(qk|θ̂j , V ) is then given by

p(qk|θ̂j , V ) =
exp(Fk(θ̂j , V ))∑
i exp(Fi(θ̂j , V ))

. (9)

The functions {fkm} are assumed piecewise constant functions of responses com-
puted using a set of weak classifiers selected incrementally during boosting [3].

4 Experiments

Our experiments evaluate the accuracy of individual region detectors and final
classification performance.
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The data set consists of 1016 CT scans with sizes ranging from 512×512×38
to 512×512×512 voxels and resolutions ranging from 0.52×0.52×0.5 to
1.27×1.27×5.0 mm resampled to a 3 mm isotropic resolution (sufficient for phase
estimation application). The images were annotated by an expert, resulting in
the landmark and phase annotation counts summarized in Table 1. The phase
label in the Dicom tags is incorrect in 6.4% and missing in 9.1% of the cases
(total of 15.5%)1. Total of 61.8%, 29.3%, and 8.9% studies have scans from one,
two, and three phases, respectively. No study contains scans from all four phases.

Table 1. Number of annotated volumes organized by each landmark and phase. The
least number of volumes was obtained during the EP phase since it is not scanned as
often as the other phases.

Native HAP PVIP HVP EP Total

Liver 81 152 128 209 17 587
Aorta 239 152 125 349 45 910

Vena Cava 174 135 104 177 42 632
Left Kidney 159 113 120 304 50 746
Right Kidney 146 158 122 314 55 795

By Phase 242 174 141 378 81 1016

In the first experiment, we assess the performance of the anatomical structure
detectors. The data set with structure annotations was separated randomly into
two disjoint sets, one for training (70% of volumes) and one for testing (30%).
Each detector was trained using the training data set of all available contrast
phases. The detectors were evaluated on the testing data set and the results
compared against the annotations. The training errors of each landmark are
shown in Table 2. The detection errors are low overall. Occasionally, a detector
can have a larger error but this still does not mean the phase classification will be
incorrect since we are using evidence from multiple anatomical regions (Eq. 5).

Table 2. Accuracy of the region detectors. The errors for vena cava are larger than
aorta due to similar intensity as the liver parenchyma in NP. The vessel position and
size errors along the vessel and angle rotations around the vessel are not considered
due to ambiguity. The errors for kidneys and liver are higher due to their larger sizes.

Aorta Vena Cava Liver Left Kidney Right Kidney
Mean St.Dev. Mean St.Dev. Mean St.Dev. Mean St.Dev. Mean St.Dev.

Center [mm] 1.33 1.22 3.31 3.91 9.24 6.99 3.78 2.24 4.23 3.72
Angle [deg] 3.08 2.00 4.72 2.88 10.85 5.93 8.04 2.39 8.11 2.36
Size [mm] 1.01 1.30 1.00 1.72 17.81 10.60 7.04 4.40 10.05 3.28

1 In our another database of 514 volumes, the phase label in the Dicom tags is incorrect
in 5.8% and missing in 14.7% of the cases (total of 20.5%). We manually removed
the language, formatting, and abbreviation ambiguities of the Dicom entries.
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Fig. 4. Detected anatomical structures (rows) used in contrast phase estimation (cols
1-4). Anatomy enhancement specific to each phase can be clearly seen. Incorrectly
classified HADP as a HVP phase for a scan in phase transition (5th col.). The lower
contrast of aorta and the beginning of liver parenchyma, renal cortex and renal medulla
enhancement are characteristic for a HVP phase (compare to 2nd and 3rd col.).

Finally, we present the results of the contrast phase estimation. We trained
Multi-class LogitBoost [3] phase classifiers using the annotated anatomical re-
gions. The final phase classification performance after 4-fold cross validation is
summarized in a confusion Table 3. The classification accuracy is high for NP,
HADP, and HVP phases, ranging between 92.2% and 96.7%. For the EP phase,
the performance is lower due to the low number of training examples. The EP
phase is most often confused with HVP phase which is caused by different parts
of kidney being enhanced during these phases (cortex and medulla in HVP and
calices and pelvis in EP). It might be possible to improve the result by seg-
menting these regions to separate them for phase classifier training. The overall
phase classification speed is 7 seconds on average. Example qualitative anatom-
ical structure detection result and phase classification are shown in Figure 4.
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Table 3. Confusion table showing per-
centages of correctly and incorrectly
identified phases when compared to the
ground truth (GT) labeling.

Detection NP HADP HVP EP

GT NP 96.2 0.8 0.00 3.0
GT HADP 2.0 92.2 5.4 0.4
GT HVP 0.5 1.1 96.7 2.2
GT EP 0.00 4.5 9.1 86.4

We also compared the two-level al-
gorithm to a single level system where
each anatomical region is used to esti-
mate all phases (Figure 3). This system
has advantage compared to estimating the
phase from all regions jointly since the re-
gion detection might fail. However, due
to imbalanced training set (Table 1) and
poor discrimination of phases in kidneys
(Figure 2), the phase was correctly clas-
sified only in 85% cases with correct EP
classification only in 29% cases.

5 Conclusion

We presented an automatic phase classification algorithm in CT volumes. Our
approach starts by a discriminative learning-based detector of anatomical struc-
tures. The regions surrounding the structures are used in Multi-class LogitBoost
classifiers to accurately characterize the contrast phase. The system robustly
classifies native phase (correct classification in 96.2% of the cases), hepatic dom-
inant phase (92.2% correct), hepatic venous phase (96.7% correct), and equilib-
rium phase (86.4% correct). The overall speed is 7 seconds on average.

In future, we plan to exploit the time relationship between phases. This will
help when there are scans from multiple phases available. We will also investigate
the possibility of using pairs of anatomical regions during classification. This will
limit the influence of intensity differences across regions for a particular phase as
the classifier would focus on relative intensity values computed within the pair
of the regions rather than on absolute intensity values in each region.
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Abstract. An alternative method of diagnosing malignant lung nod-
ules by their shape, rather than conventional growth rate, is proposed.
The 3D surfaces of the detected lung nodules are delineated by spher-
ical harmonic analysis that represents a 3D surface of the lung nodule
supported by the unit sphere with a linear combination of special ba-
sis functions, called Spherical Harmonics (SHs). The proposed 3D shape
analysis is carried out in five steps: (i) 3D lung nodule segmentation with
a deformable 3D boundary controlled by a new prior visual appearance
model; (ii) 3D Delaunay triangulation to construct a 3D mesh model of
the segmented lung nodule surface; (iii) mapping this model to the unit
sphere; (iv) computing the SHs for the surface; and (v) determining the
number of the SHs to delineate the lung nodule. We describe the lung
nodule shape complexity with a new shape index, the estimated number
of the SHs, and use it for the K-nearest classification into malignant and
benign lung nodules. Preliminary experiments on 327 lung nodules (153
malignant and 174 benign) resulted in a classification accuracy of 93.6%,
showing that the proposed method is a promising supplement to current
technologies for the early diagnosis of lung cancer.

1 Introduction

A great deal of work has been published regarding the usefulness of morphologic
features for discriminating malignant from benign pulmonary nodules on Com-
puted Tomography (CT) and to a lesser extent, chest radiographs. Several stud-
ies have shown a correlation between different nodule shape characteristics and
underlying pathology. For example, Furuya et al. [1] analyzed the margin charac-
teristics of 193 pulmonary nodules on high-resolution CT and subjectively classi-
fied them as one of several types, including round, lobulated, densely spiculated,
ragged, and halo. They found a high level of malignancy among the lobulated
(82%), spiculated (97%), ragged (93%), and halo nodules (100%), while 66% of
the round nodules proved to be benign. Automatically extracted features have
� Corresponding author:- Tel:(502)-852-5092, E-mail: aselba01@louisville.edu

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAI 2011, Part III, LNCS 6893, pp. 175–182, 2011.
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also been shown to correlate with underlying malignancy. Kawata et al. [2] quan-
tified the surface curvature and the degree of surrounding radiating pattern in
biopsy-proven benign and malignant nodules, and compared the resulting feature
maps. Their results showed good separation of the feature maps between the two
categories. Similarly, fractal analysis has been used to quantify the nodule margin
characteristics of benign and malignant nodules. Although none of these studies
directly assessed the accuracy of their methods in predicting a diagnosis, they sup-
port the notion that nodule shape can potentially be used by automated systems
to distinguish benign from malignant nodules. In summary, the existing shape-
based approaches show the following limitations: (i) most of them classify the lung
nodules based on extracted 2D features (e.g., round, lobulated, ragged, and halo,
etc.) and they did not take into account the 3D features of lung nodules; (ii) most
of them did not provide a quantitative measure that has the ability to describe the
shape complexity of detected lung nodules; and (iii) most of the existing features
(e.g., curvature, round, etc.) depend on the accuracy of the used nodule segmen-
tation algorithm which make this process difficult for clinical practitioners to use.
This work aims to address these limitations in a way that will make evaluating
small lung masses more consistent.

2 Methods

2.1 Lung Nodules Segmentation

Accurate lung nodule segmentations from 3D Low Dose Computed Tomography
(LDCT) images are a challenging problem because the intensities of the lung
nodules and their surrounding tissues (e.g., blood vessels, etc.) are not clearly
distinguishable. To overcome this problem, we use a conventional 3D parametric
deformable boundary [3] and control its evolution with a new prior probabilis-
tic visual appearance model. The prior is a 3D Markov-Gibbs Random Field
(MGRF) model of the lung nodule intensities with translation- and rotation-
invariant pairwise voxel interaction.

Let (x, y, z) be Cartesian 3D point coordinates. A parametric deformable sur-
face, B(P1, . . . ,PK), specified by K control vertices, Pk = (xk, yk, zk), evolves
in the directions that minimize its energy, E, depending on internal, ζint (B),
and external, ζext (B), forces [3]:

E = Eint + Eext ≡
∫
B

(ζint (B) + ζext (B)) dB (1)

In this paper, we introduce a new type of external energy that depends on the
learned prior appearance model. Let Q = {0, 1, . . . , Q− 1} and L = {nl, bg} be
finite sets of image intensities (gray values) and region labels, respectively. Let a
finite 3D arithmetic lattice R = [(x, y, z) : x = 0, . . . , X−1; y = 0, . . . , Y −1, z =
1, . . . , Z−1] support a 3D image g : R → Q and its region map m : R → L. The
label, mx,y,z, associates the voxel, gx,y,z, with the lung nodule or the background.
To reduce the impacts of global contrast and offset deviations of intensities due
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to different sensors, each input 3D image is normalized by mapping its signal
range [qmin, qmax] to the maximal range of [0, 255].

To consider the normalized images as samples of a prior MGRF model but ex-
clude any image alignment before the segmentation, we use a generic translation-
and rotation-invariant MGRF with only voxel-wise and central-symmetric
pairwise voxel interaction.The latter is specifiedbya setNof characteristic central-
symmetric voxel neighborhoods {nν : ν ∈ N} on R and a corresponding set
V of Gibbs potentials, one per neighborhood. A central-symmetric neighborhood
nν embraces all voxel pairs such that the (x, y, z)-coordinate offsets between any
voxel (x, y, z) and its neighbor (x′, y′, z′) belong to an indexed semi-open interval
[dν,min, dν,max); ν ∈ N ⊂ {1, 2, 3, . . .} of the inter-voxel distances: dν,min ≤√

(x− x′)2 + (y − y′)2 + (z − z′)2 < dν,max.

Learning the appearance prior. Let S = {(gt.mt) : t = 1, . . . , T} be a train-
ing set of 3D images with known region maps. Let Rt = {(x, y, z) : (x, y, z) ∈
R ∧ mt;x,y,z = nl} denote the part of R supporting lung nodule in the t-th train-
ing pair (gt,mt); t = 1, . . . , T . Let Cν,t be a family of voxel pairs in R2

t with the
co-ordinate offset (ξ, η, γ) ∈ nν in a particular neighborhood. Let Fvx,t and Fν,t

be an empirical marginal probability distribution of voxel intensities and of in-
tensity co-occurrences, respectively, in the training lung nodule from gt: Fvx,t =[
fvx,t(q) = |Rt,q|

|Rt| : q∈Q
]

and Fν,t =
[
fν,t(q, q′) = |Cν,t;q,q′ |

|Cν,t| : (q, q′) ∈ Q2
]

where
Rt,q = {(x, y, z) : (x, y, z) ∈ Rt ∧ gx,y,z = q} is a subset of voxels support-
ing the intensity q and Cν,t;q,q′ is a subset of the voxel pairs cξ,η,γ(x, y, z) =
((x, y, z), (x+ ξ, y+η, z+γ)) ∈ R2

t supporting the intensity co-occurrence (q, q′)
in the training lung nodule from gt. Let Vvx = [Vvx(q) : q ∈ Q] be a poten-
tial function of voxel intensities that describes the voxel-wise interaction. Let
Vν = [Vν(q, q′) : (q, q′) ∈ Q2] be a potential function of intensity co-occurrences
in the neighboring voxel pairs that describes the pairwise interaction in the
neighborhood nν ; ν ∈ N. The MGRF model of the t-th training pair is specified
by the joint Gibbs probability distribution on the sublattice Rt:

Pt =
1
Zt

exp
(
|Rt|

(
VT

vxFvx,t +
∑

ν∈Nρν,tVT
ν,tFν,t

))
(2)

where ρν,t = |Cν,t|/|Rt| is the average cardinality of nν with respect to Rt.
To identify the MGRF model in Eq. (2), the Gibbs potentials are approxi-

mated analytically1:

Vvx,nl(q) = log fvx,nl(q) −
1
Q

∑
κ∈Q

log fvx,nl(κ) for q ∈ Q; and (3)

Vν,nl(q, q′) = λρν (fν,nl(q, q′) − fvx,nl(q)fvx,nl(q′)) for (q, q′) ∈ Q2 (4)

where the common factor λ is also computed analytically.

1 For proof, please see: https://louisville.edu/speed/bioengineering/faculty/
bioengineering-full/dr-ayman-el-baz/supplemental-materials.

https://louisville.edu/speed/bioengineering/faculty/bioengineering-full/dr-ayman-el-baz/supplemental-materials
https://louisville.edu/speed/bioengineering/faculty/bioengineering-full/dr-ayman-el-baz/supplemental-materials
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Boundary evolution under the appearance models. To guide the bound-
ary evolution, we embed in the external energy term of Eq. (1) the learned prior
appearance model of the detected lung nodule as follows:

ζext (P = (x, y, z)) = −πp(gx,y,z|S) (5)

Here, πp(q|S) is the prior conditional probability of q, given the fixed current
intensities in the characteristic central-symmetric neighborhood of P for the
MGRF model of Eq. (2):

πP(gx,y,z|S) = exp(EP(gx,y,z|S))/
∑

q∈Q exp(EP(q|S))

where EP(q|S) is the conditional Gibbs energy of pairwise interaction for the
voxel P provided that an intensity q is assigned to the lung nodule while the
other current intensities in all its neighboring voxels over the characteristic neigh-
borhoods nν ; ν ∈ N, remains fixed:

EP(q|S) = Vvx,nl(q) +
∑

ν∈N

∑
(ξ,η,γ)∈nν

(Vν,nl(gx−ξ,y−η,z−γ , q) + Vν,nl(q, gx+ξ,y+η,z+γ))

After changing the energy EB of the 3D region RB ⊂ R inside the evolving
boundary B:

EB =
∑

∀P=(x,y,z)∈RB

EP(gx,y,z|S) (6)

stops, the evolution terminates.

2.2 Spherical Harmonics (SHs) Shape Analysis

Spectral SH analysis [4,5] considers 3D surface data as a linear combination of
specific basis functions. In our case, the surface of the segmented lung nodule is
first approximated by a triangulated 3D mesh (see Fig. 1) built with an algo-
rithm by Fang and Boas [6]. Secondly, the lung nodule surface for each subject is
mapped for the SH decomposition to the unit sphere. We propose a novel map-
ping approach, called “Attraction-Repulsion,” that calls for all the mesh nodes
to meet two conditions: (i) the unit distance of each node from the lung nodule
center, and (ii) an equal distance of each node from all of its nearest neighbors.

To detail our Attraction-Repulsion algorithm (see its summary in Algorithm 1),
let τ denote the iteration index, I be the total number of the mesh nodes (in all
the experiments below I = 4896 nodes), and Pτ,i be the Cartesian coordinates
of the surface node i at iteration τ ; i = 1, . . . , I. Let J be the number of the
neighbors for a mesh node and dτ,ij denote the Euclidean distance between the
surface nodes i and j at iteration τ , where i = 1, . . . , I and j = 1, . . . , J . Let
Δτ,ji = Pτ,j − Pτ,i denote the displacement between the nodes j and i at
iteration τ . Let CA,1, CA,2, and CR be the attraction and repulsion constants,
respectively, that control the displacement of each surface node.
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Fig. 1. Generating a 3D mesh for the
lung nodule surface from a stack of suc-
cessive segmented 2D LDCT slices

(a) (b) (c)

Fig. 2. Lung nodule mesh (a), its smoothed
version (b), and the Attraction-Repulsion
mapping to the unit sphere (c)

The starting attraction step of the proposed mapping tends to center each node,
Pi; i = 1, . . . , I, with respect to its neighbors by iteratively adjusting its location:

P′
τ,i = Pτ,i + CA,1

J∑
j=1;j �=i

Δτ,jid
2
τ,ji + CA,2

Δτ,ji

dτ,ji
(7)

where the factor CA,2 keeps the tightly packed nodes from collision and pushes
the adjusted nodes away from their neighbors if a certain neighbor is much closer
than the others.

The subsequent repulsion step inflates the whole mesh by pushing all the
nodes outwards to become evenly spaced after their final back-projection onto
the unit sphere along the rays from the center of the sphere. To ensure that
the nodes that have not been shifted will not collide with the altered node, the
location of each node, Pi; i = 1, . . . , I, is updated before the back-projection as:

P◦
τ+1,i = P′

τ,i +
CR

2I

I∑
j=1;j �=i

(
Δτ,ji

|Δτ,ji|2

)
(8)

where a repulsion constant CR controls the displacement of each surface node and
establishes a balance between the processing time and accuracy (e.g., a smaller
CR values guarantees that the node faces will not become crossed during the
iterations at the expense of the increased processing time). All the experiments
below are obtained with 0.3 ≤ CR ≤ 0.7.

The original lung nodule mapped to the unit sphere with the proposed
Attraction-Repulsion algorithm is approximated by a linear combination of SHs,
the lower-order harmonics being sufficient to represent more generic information,
while the finer details requiring the higher-order ones. The SHs are generated
by solving an isotropic heat equation for the nodule surface on the unit sphere.
Let S : M → U denote the mapping of a nodule mesh M to the unit sphere
U. Each node P = (x, y, z) ∈ M mapped to the spherical position u = S(P) is
represented by the spherical coordinates u = (sin θ cosϕ, sin θ sinϕ, cos θ) where
θ ∈ [0, π] and ϕ ∈ [0, 2π) are the polar and azimuth angles, respectively. The SH
Yαβ of degree α and order β is defined as [7]:
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Algorithm 1: Attraction-Repulsion Algorithm

Initialization
– Construct the 3D lung nodule mesh

(Fig. 2,a).
– Smooth it by the Laplacian filtering

(Fig. 2,b).
– Initialize the mapping of the smoothed mesh

to the unit sphere.
Repeat

– For i = 1 −→ I
• Attraction:

∗ Select a node to process.
∗ Update the node using Eq. (7)

• Repulsion:
∗ Update the node using Eq. (8).

– End (all nodes in the mesh are shifted and
back-projected onto the unit sphere).

While changes in the node positions occur
(Fig. 2,c).

B M

OM

1 SH

5 SHs

10 SHs

15 SHs

60 SHs

Fig. 3. Approximation of
the 3D shape for malignant
(M), benign nodules (B),
and original mesh (OM)

Yαβ =

⎧⎪⎨⎪⎩
cαβG

|β|
α cos θ sin(|β|ϕ) −α ≤ β ≤ −1

cαβ√
2
G

|β|
α cos θ β = 0

cαβG
|β|
α cos θ cos(|β|ϕ) 1 ≤ β ≤ α

(9)

where cαβ =
(

2α+1
2π

(α−|β|)!
(α+|β|)!

) 1
2

and G
|β|
α is the associated Legendre polynomial

of degree α and order β. For a fixed α, the polynomials Gβ
α are orthogonal over

the range [−1, 1]. As shown in [7], the Legendre polynomials are effective in
calculating SHs. This is the main motivation behind their use in this work.

Finally, the lung nodule is reconstructed from the SHs of Eq. (9). In the case of
the SHs expansion, the standard least-square fitting does not accurately model
the 3D shape of the lung nodule and can miss some of the shape details that
discriminate between the malignant and benign lung nodules. To circumvent this
problem, we used the iterative residual fitting by Shen et al. [8] that accurately
approximates the 3D shapes of malignant and benign lung nodules. As shown in
Fig. 3, the model accuracy does not significantly change for the benign nodule
from 15 to 60 SHs, while it continues to increase for the malignant nodule.

2.3 Quantitative Lung Nodule Shape Analysis

Our main hypothesis is that the shape of malignant nodules is more complicated
(e.g., with spiculation) when compared with the shape of benign nodules which
are simpler (smoothed shape) as in Fig. 3, so that more SHs have to be used for
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Fig. 4. Estimation of the shape index
from the total nodule approximation
error for malignant and benign nodules

Fig. 5. The ROC curves for our approach
and the surface curvature-based diagnostic
approach

accurate approximation of the shape of malignant lung nodule. Therefore, the
number of the SHs after which there are no significant changes in the approxi-
mations can be used as a new shape index that quantifies the shape complexity
of the detected lung nodules. Due to the unit sphere mapping, the original mesh
for each nodule is inherently aligned with its reconstructed mesh shape, and
the sum of the Euclidean distances between the corresponding nodes gives the
total error between both the mesh models. As shown in Fig. 4, the total error
curves for the increasing number K of the SHs can be statistically analyzed to
differentiate between the detected lung nodules.

3 Experimental Results and Conclusions

To justify the proposed methodology of analyzing the 3D shape of both ma-
lignant and benign nodules, the above proposed shape analysis framework was
pilot-tested on a database of clinical multislice chest LDCT scans of 327 lung
nodules (153 malignant and 174 benign). The CT data sets each have 0.7×0.7×
2.0 mm3 voxels, with nodule diameters ranging from 3 mm to 30 mm. Note
that these 327 nodules were diagnosed using either bronchoscopy and needle
biopsy, or two-year follow-up with CT scans2. Also, our current database does
not contain Ground Glass Nodules (GGN).

The training subset for classification (15 malignant lung nodules and 15 benign
lung nodules) were arbitrarily selected from 327 lung nodules. The accuracy of
classification based on using a K-nearest classifier for both the training and test
subjects was evaluated using the χ2-test at 95% confidence level. At the 95% con-
fidence level, 143 out of 153 malignant nodules (a 93.5% accuracy) were correctly
classified, and 163 out of 174 control subjects (a 93.7% accuracy) were correctly
classified. The overall accuracy using the proposed 3D shape-based CAD system
is 93.6% in the first detection of lung nodules. The classification based on the
2 For complete details about our nodules database, please see: https://louisville.
edu/speed/bioengineering/faculty/bioengineering-full/dr-ayman-el-baz/

supplemental-materials.

https://louisville.edu/speed/bioengineering/faculty/bioengineering-full/dr-ayman-el-baz/supplemental-materials
https://louisville.edu/speed/bioengineering/faculty/bioengineering-full/dr-ayman-el-baz/supplemental-materials
https://louisville.edu/speed/bioengineering/faculty/bioengineering-full/dr-ayman-el-baz/supplemental-materials
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traditional analysis of surface curvature-based diagnostic approach [2] correctly
classifies 77 out of 153 malignant nodules (a 50.3% accuracy), and 103 out of
174 benign nodules (a 59.2% accuracy) at a 95% confidence level. These results
highlight the advantage of the proposed approach.

Another way to measure and test the performance of the proposed diagnostic
system is to compute the Receiver Operating Characteristic (ROC). Each point
on the graph is generated by using a different cut point (classification thresh-
old). Figure 5 shows the ROC curves of the two approaches, our proposed shape
index-based diagnostic approach and the surface curvature-based diagnostic ap-
proach [2]. It is clear from the data in Fig. 5 that the area under the ROC curve
of our present approach is much larger (Az = 0.9782) than the area under the
ROC curve of the surface curvature-based diagnostic approach [2] (Az = 0.5949).
The high sensitivity and specificity of the proposed approach is due to using the
estimated number of spherical harmonics to approximate the 3D shape of a de-
tected lung nodule as a new discriminatory feature which is more separable than
using surface curvature. More experimental results that address the sensitivity
of our approach w.r.t. the accuracy of segmentation and mesh generation steps
has been posted on our web site2.

As demonstrated in this paper, the preliminary results justify the elaboration
of the proposed alternative method for diagnosing malignant lung nodules. Its
novelty lies in using the shape of a 3D nodule instead of the more conventional
surface curvature as a reliable diagnostic feature. The shape is described in terms
of a linear combination of SHs.
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Abstract. Visual inspection of diffuse lung disease (DLD) patterns on
high-resolution computed tomography (HRCT) is difficult because of
their high complexity. We proposed a bag of words based method on
the classification of these textural patters in order to improve the de-
tection and diagnosis of DLD for radiologists. Six kinds of typical pul-
monary patterns were considered in this work. They were consolidation,
ground-glass opacity, honeycombing, emphysema, nodular and normal
tissue. Because they were characterized by both CT values and shapes,
we proposed a set of statistical measure based local features calculated
from both CT values and the eigen-values of Hessian matrices. The pro-
posed method could achieve the recognition rate of 95.85%, which was
higher comparing with one global feature based method and two other
CT values based bag of words methods.

1 Introduction

Diffuse lung disease (DLD) refers to a group of lung disorders which spread out
in large areas. In the detection and diagnosis of DLD , high-resolution computed
tomography (HRCT) has played important roles in recent years [12]. Thin slice
CT is able to give detailed appearances on pulmonary patterns characterized
for specific abnormal findings which point toward a specific diagnosis and treat-
ment. In current clinical protocols, the objective identification of such patterns
has not being established, and visual inspection is carried on, according to the
experiences of radiologists. Not only subjective differences lead to inevitable mis-
judgements, but also huge amount of images makes a big burden on radiologists.
Therefore, a quantitative computer-aided diagnosis (CAD) tool is required to
give the second opinion to facilitate the detection and diagnosis of DLD.

There were researches on computer-aided analysis of DLD patterns in the
past ten years [9]. From the viewpoints of computer vision, it can be generalized
as the problem of texture analysis on a certain 2D or 3D region of interest
(ROI). Some classical textural feature analysis methods calculated on 2D ROIs

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAI 2011, Part III, LNCS 6893, pp. 183–190, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Fig. 1. Examples of six kinds of pulmonary patterns in HRCT

can be used, including the direct analysis on gray value intensities [2], features
calculated on histogram statistics, and features extraction based on filter-banks,
co-occurrence matrices or run-length parameters [1][5][13]. Features may also be
designed for the specific task on hands [4]. Different from the above-mentioned
methods which analyzed on 2D ROIs, a method based on features calculated on
3D ROIs was proposed in [10], which reported that 3D ROIs based features were
more sensitive and specific. All of these textural analysis methods made use of
global features.

As the development of computer vision techniques, there have been more and
more researches which reported that techniques based on local features could
lead to more accurate results on recognition tasks [11]. Local features are less
sensitive to the changing of illuminations and positions, so they usually could
be a more robust way to represent images of underlying objects. An efficient
approach to use local features is called bag of words (keypoints) [6]. It was firstly
proposed in the area of statistical natural language analysis [3], then introduced
into the area of computer vision in [6] for many applications.

Recently, local features have been considered on the analysis of pulmonary
patterns on HRCT. Local binary patterns (LBP) combined with k nearest neigh-
bor (k-NN) was adopted to distinguish three kinds of pulmonary patterns (nor-
mal tissues, centrilobular emphysema and paraseptal emphysema) for chronic
obstructive pulmonary disease (COPD) in [16]. A bag of words approach (orig-
inally called texton-based method) was also tried in the same problem in [15].
According to our knowledge, there are no works to apply local features on DLD
patterns analysis. Compared to [15], the main differences are listed as follows:

• our aim is to classify pulmonary patterns for DLD rather than COPD.
• more categories of pulmonary patterns.
• local features extracted from 3D ROIs instead of 2D ROIs.
• compact and efficient statistical measure based local features considering

both shapes and CT values.

Fig. 1 gives the examples of six types of typical pulmonary patterns in HRCT
for DLD. They are consolidation (CON), ground-glass opacity (GGO), honey-
combing (HCM), emphysema (EMP), nodular (NOD) and normal tissue (NRT).
The aim of our work is to find an efficient computer-aided analysis method to
distinguish them in order to improve the detection and diagnosis of DLD on
HRCT.
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Fig. 2. The framework of the bag of words approach

2 Method

2.1 Bag of Words Approach

Fig.2 describes the framework of bag of words approach, which is composed by
three main steps, local feature calculation, code-book construction and classifi-
cation. Local features can be calculated at the regularly sampling grids or at the
pre-determined key-point positions. According to literature [11], there seems to
be no evidence to show which one is better. In this work, we prefer to adopt
the way of regularly sampling grids, since it is easier and faster. Here, the ROI
size and the grid step is set to be 32×32×16 and 4×4×4 respectively, so we can
get 9 × 9 × 5 = 405 sampling points on one ROI. For each sampling point, one
local feature is calculated in a patch whose center is located on it. Therefore, 405
local features can be calculated on each ROI. The patch size is the parameter
determined by experiments.

The main idea of bag of words approach is to represent the ROIs (or images)
by a histogram whose bins are the elements of a code-book trained from local
features. Such a code-book can be seen as an intermediate layer to interpret im-
ages. Since local features are calculated from limited local regions, each of them
only reflects information of partial objects. Although local features are huge,
they are usually clustered into limited number of centers in high-dimensional
feature spaces. Just as words are basic elements of sentences, such centers of
clusters can also be considered as the basic elements which compose the under-
lying objects. This is the reason why it is called bag of words approach. The
unit of these elements is called a code-book or dictionary. Construction of such a
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dictionary can be generalized as a vector quantization problem. K-means method
is adopted to resolve this problem. The number of clusters in K-means (K) is
another parameter determined by experiments.

In the classification step, all of the local features of one ROI are assigned to
a label which indicates the nearest elements (or words) in the code-book. Given
each elements as the bins, a histogram can be calculated to refer to the statistical
information of the ROI. Since the same type of ROIs gives similar histograms,
such histograms can be treated as input vectors for the classification.

In our opinion, bag of words approach is a common framework. According to
different recognition tasks, the method of local feature extraction and classifier
should be adjusted in order to make it achieve better results. We will dwell on
these two aspects in the following two subsections.

2.2 Local Features

CT values of a squared patch was treated as local features for each 2D ROIs
in [15]. It was reported that such local features achieved good results for the
recognition of normal tissues and two kinds of emphysema patterns. We tried
this method, but the results were not satisfied. Therefore, we reconsidered about
our problem and designed a new kind of local feature extraction method suitable
for our task.

The categories of pulmonary patterns in our work are more than [15]. Some
patterns, such as NRT, CON and EMP, are mainly characterized by CT val-
ues. However, shape information should be taken into consideration in order to
distinguish the patterns, such as HCM and NOD. Since shape information can
not be shown from 2D slices, 3D ROIs are adopted in this work. An usual way
to describe shape information is to use the eigen-values of Hessian matrices cal-
culated on 3D ROIs. These eigen-values can be arranged to form three cubes
according to the arrangement of the original voxels. In order to consider the in-
formation of both CT values and shapes, local features are calculated from both
the three eigen-value cubes and the original ROI. Four kinds of statistical mea-
sures, mean, variance, skewness and kurtosis are calculated from a cube-patch
centered at the regular sampling grids. Therefore, one local features consists of
16 statistical measures. The size of cube-patch is the parameter for this local
feature extraction method and its optimal value is determined by experiments.
It should be noted that no matter how it changes, the compactness of such local
features does not change. Additionally, these statistical measures are invariant
to translation and rotation. Here, the Hessian matrix was only calculated on the
pixel level.

2.3 Classifier

SVM was adopted as the classifier in this work. We used a version called LIB-
SVM [17]. For a generalized recognition problem, a common choice of the kernel
for SVM is a Gaussian kernel. For the bag of words problem, it was reported
that some other kernels was superior to Gaussian kernel if input vectors were
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histograms [14]. We tried other three kinds of kernels. The kernel definitions are
given by Eq.1. ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

G(h,h′) = exp(−γ‖h− h′‖2)
K1(h,h′) =

∑N
i=1 min(hi, h

′
i)

K2(h,h′) =
∑N

i=1

√
hih′

i

K3(h,h′) = exp(−α
∑N

i=1
(hi−h′

i)
2

hi+h′
i

)

(1)

where h = [h1, ..., hN ]T is the N -bin histogram. G(h,h′) is the Gaussian kernel,
K1(h,h′) is the histogram intersection kernel, K2(h,h′) is the Bhattacharyya
kernel, K3(h,h′) is the χ2-kernel. γ is the parameter for the gaussian kernel
and α is the parameter for the χ2-kernel. Additionally, a soft margin parameter
C is considered for all the four kernels. These parameters will be optimized in
experiments.

3 Experiments and Results

3.1 Data

We obtained 117 scans for different subjects from Tokushima University Hospi-
tal, Tokushima, Japan. All of them were scanned from 16-row multi-slice CT
(Aquilion, Toshiba Co.), when edge-enhanced filtering was not applied. The
resolution was 512×512 with the pixel size of 0.6mm on each slice, and the
slice-thickness was 1mm. The regions of the six types of patterns were marked
by three experienced radiologists according to the following procedure. Firstly,
one radiologist was asked to review all scans. From each scan, maximum of three
slices were selected where typical patters dominantly spread. Then together with
the other two radiologists, the six kinds of patters were marked on the selected
slices separately. Finally, the common regions marked by all radiologists were
considered as where typical patterns were located. The ROIs were constructed
according to these determined regions. The centers of ROIs were randomly se-
lected from them while considering non-overlap on ROIs. At last, 3009 3D-ROIs
were determined.

3.2 Results and Discussion

There were mainly three kinds of parameters which should be adjusted by exper-
iments in our proposed method. They were the size of cube-patches, the number
of clusters in K-means, and the parameters related to SVM classifiers (including
kernel types, the soft margin parameter, and parameters for each kernel). These
parameters were determined by a 20-fold cross-validation test. First, by setting
number of clusters to be a certain number (100 was used) and the kernel type
of SVM to be the Gaussian kernel, we exhausted the possible values on the size
of cube-patches, soft margin parameter and γ of the gaussian kernel to train
classifiers. The size of cube-patches was optimized by testing on the training
data of 20-fold cross-validation tests. Second, by using the optimized cube-patch
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Fig. 3. The choices of parameters in our method

size and setting the classifier to be Gaussian kernel based SVM again, we tried
all the possible values on the number of clusters and parameters related to the
classifier to optimize the number of clusters in the same way. Finally, the param-
eters related to SVM were optimized, when the cube-patch size and the number
of clusters were set to be the optimized values.

For the size of the cube-patches, we tried the size from 2× 2× 2 to 8× 8× 8.
Fig. 3 (a) gives the results when different patch sizes were used. Considering that
more voxels could give more stable statistical measures, the size of 3× 3× 3 was
determined in this work. On the choice of the number of clusters in K-Means,
we tried the number from 25 to 200 (Fig. 3 (b)) and chose 100 as the optimized
value. According to the experimental results, shown by Fig. 3 (c), the χ2-kernel
(K3(h,h′)) gave a little better results than the other three kernels. We chose the
χ2-kernel as the optimal kernel for the SVM classifier.

We also compared our method with one global feature based method (Glo-
3D) and two bag of words methods (CTV-2D and CTV-3D) which only made
use of the CT values. In order to fairly compare them with our method, all
their parameters were optimized by the same way used for our method. A brief
introduction about them is listed as follows:

• CT Values on 2D Patches (CTV-2D). We implemented a similar version
of the method proposed in [15]. The ROI was a 2D slice whose center was the
same as the 3D-ROI used in this work. The CT values in 2D squared-patches
were arranged to be a vector as local features. According to [15], SVM with
Gaussian kernels was adopted as the classifier. The parameters are the size
of squared-patches, the number of clusters, the soft margin parameter and
the γ of Gaussian kernel.

• CT Values on 3D Patches (CTV-3D). This method was similar to
CTV-2D. The difference was that a 3D ROI was used instead of a 2D ROI.
CT values based local features and Gaussian kernel based SVM were used.
The parameters are the size of cube-patches, the number of clusters, the soft
margin parameter and the γ of Gaussian kernel.

• Global Features on 3D Patches (Glo-3D). This was not a bag of words
approach. Global features calculated directly from a 3D ROI consisted of
two kinds of common used textural features, measures on gray-level co-
occurrence matrices (GLCM) [7] and measures on gray-level run-length ma-
trices (GLRLM) [8]. The two kinds of measures were concatenated to be a
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Table 1. Recognition results in experiments

(a) Comparison of
four methods

Methods Accuracy

CTV-2D 86.71%

CTV-3D 91.12%

Glo-3D 91.96%

Ours 95.85%

(b) Confusion table of our method

Estimated Labels

True Labels CON GGO HCM EMP NOD NRT Accuracy

CON 122 1 1 0 0 0 98.39%

GGO 1 494 2 1 8 5 96.67%

HCM 0 2 520 3 1 0 98.86%

EMP 0 3 5 710 6 13 96.34%

NOD 1 9 0 11 313 26 86.94%

NRT 0 5 0 2 19 725 96.54%

feature vector for recognition. SVM with Gaussian kernels was adopted as
the classifier. The parameters are the soft margin parameter and the γ of
Gaussian kernel.

Using the parameters optimized in training, we compared the four methods by
testing on the testing data in the 20-fold cross-validation tests. Table 1(a) gives
the comparison results. It can be seen that our methods gave higher recognition
accuracy than the other three methods. It should be noted that Glo-3D gave bet-
ter results than the two bag of words based methods, CTV-2D and CTV-3D. This
is because that the only consideration of CT values in local features can not dis-
tinguish these patterns and affects the performances of bag of words approaches.
Table 1(b) gives the confusion table for each kinds of patterns for our method.

4 Conclusion

We proposed a bag of word approach to automatically classify six kinds of pul-
monary patterns on HRCT for DLD. Some patterns, such as CON, NRT and
EMP, were mainly characterized by CT values; while for other patterns, such as
NOD and HCM, both CT values and shape information should be considered in
order to classify them successfully. According to such a consideration, we pro-
posed a new kind of local features calculated from both the original CT values
and eigen-values of Hessian matrices for our bag of words approach. Experimen-
tal results showed that this method was superior to other two kinds of bag of
words approaches which only depended on CT values and one global feature
based method. We will try some other local features, or combine both local and
global features in our future research.
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Abstract. Positron emission tomography - computed tomography
(PET-CT) is now accepted as the best imaging technique to accurately
stage lung cancer. The consistent and accurate interpretation of PET-
CT images, however, is not a trivial task. We propose a discriminative,
multi-level learning and inference method to automatically detect the
pathological contexts in the thoracic PET-CT images, i.e. the primary
tumor and its spatial relationships within the lung and mediastinum,
and disease in regional lymph nodes. The detection results can also be
used as features to retrieve similar images with previous diagnosis from
an imaging database as a reference set to aid physicians in PET-CT
scan interpretation. Our evaluation with clinical data from lung cancer
patients suggests our approach is highly accurate.

1 Introduction

Lung cancer is among the most common malignancies in the Western world, and
accurate staging is critical for the selection of the most appropriate therapy, be it
surgery, chemotherapy, radiotherapy or combined therapies. The size and extent
of the primary tumor and the status of mediastinal lymph nodes are critical for
staging the thorax; automated methods to achieve this goal can shorten the time
a physician needs to read an image.

PET-CT is now accepted as the best imaging technique to accurately stage the
most common form of primary lung cancer, non-small cell lung cancer (NSCLC).
PET-CT scanners produce co-registered anatomical (CT) and functional (PET)
patient information from a single scanning session. The PET tracer18F-fluoro-
deoxy-glucose (FDG) is the most commonly used tracer for clinical PET-CT
diagnosis, and tumors typically take up more FDG than surrounding normal
structures.
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Our aim is to develop a method to automatically detect the primary tumor,
the spatial relationships of the tumor within the lung and to the mediastinum,
and the location of disease in lymph nodes. The objective is not to perform a
precise segmentation, but to provide an inference of the pathological context
and function as a robust localization system to assist the reading physician.
The detection output can also serve as input to a content-based image retrieval
(CBIR) system to retrieve similar imaging cases to help interpretation.

Related work. The majority of existing work focuses on segmentation on CT
images using various classification techniques [1,2,3]. Our method is partially
motivated by these approaches. However, they do not support concurrent detec-
tion of tumors and abnormal lymph nodes, and do not consider the complexity
caused by two pathological types within one image. Recent work by Wojak et.al.
introduced a tumor and lymph node segmentation method on PET-CT images
using energy minimization [4]. However, the work does not address the differen-
tiation between tumors and lymph nodes, and the spatial context of the tumors.

The work most similar to ours was reported by Wu et.al. [5], for detecting
lung nodules and the connectivity with vessel, fissure and lung wall, and did not
aim for perfect segmentations. However, it differs from our approach in several
aspects: (1) it works on CT subvolumes with the nodule appearing at the center,
while our method works on raw PET-CT images of the entire thorax; (2) our
method detects abnormal lymph nodes and differentiates them from the primary
tumors; and (3) we are interested in the higher-level spatial relationships, i.e.
the connectivity between tumors and the chest wall and mediastinum.

Our work has also been provoked by the idea of multi-class object detec-
tion proposed for general computer vision problems [6,7,8]. Different from these
methods, we design three levels of features to exploit the specific characteristics
of PET-CT thoracic images, and a different multi-level discriminative model for
more effective inference of the pathological context.

2 Method

2.1 Discriminative Structure Localization

At the first stage we detected four types of structures – the lung fields (L),
mediastinum (M), tumor (T) and disease in lymph nodes (N) – from the thoracic
images. We formulated the detection as a multi-level, multi-class (L, M, T or N)
object localization problem. For an image I, the classification score with labeling
Y (the label matrix of I) is defined as:

S(I,Y) =
∑

l

αyl
· fl +

∑
s

βys · fs +
∑

o

γyo · fo (1)

where fl, fs and fo are the three levels of feature vectors (local, spatial, and
object levels) of I; α, β and γ are the respective feature weights; yl, ys and yo

are the class labels at each level, representing the four classes; and l, s and o are
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the indices of the regions formed at each level in the transaxial slices. The goal
was to find the labeling Y that maximized the score S for image I.

Our approach was region-based for effective modeling of the higher-level fea-
tures, and we designed a cascaded learning approach for the classification. The
higher-level spatial and object features were important for differentiating the
four types of structures, especially for between T and N, and between T and
M, as described in more details in the following sections. We also employed a
two-phase design by exploring first the 2D features at the local and spatial levels,
then the 3D features at the object level; this was to optimize the classification
for each image slice first before considering the inter-slice relationships.

Local-level Modeling. Each image slice was first clustered into a number
of regions of various sizes and shapes using the mean-shift algorithm [9]. The
regions were generated separately for PET and CT slices, and then merged
into one set for each slice pair. Each region Rl was then represented by the
local feature fl: the mean CT density; and the mean standardized uptake values
(SUV), which was computed by normalizing the mean SUV of Rl based on an
adaptive threshold [10].

At the local level, fl could not differentiate between T and N, because both
had high CT densities and high SUV values. So, we limited yl to take three
values, L, M or T/N, to focus on differentiating the pathological tissues from
lung fields and mediastinum.

Spatial-level Modeling. Besides an inability to distinguish T and N, another
major problem with local-level modeling was that areas surround the tumor were
often misclassified as M, which could subsequently cause T to be confused as N.
To better classify the surrounding area, we observed that the spatial information
played an important part, e.g. its proximity with T and L and distance from M,
and the differences between its average CT density and SUV and those of the
other regions. Similar spatial features could also help to improve the labeling of
some misclassified regions in the mediastinum.

The spatial-level features were thus computed as the following feature vector
fs for region Rs in 11 dimensions: (Dim. 1-3) the average spatial distance from
region Rs to other regions Ri of type k (k ∈ {L,M, T/N}); (Dim. 4) the size
of Rs; (Dim. 5-7) the difference between the mean CT density of Rs and the
average CT densities of all regions of type k; (Dim. 8-10) the difference between
the mean SUV of Rs and the average SUV of all regions of type k; and (Dim.
11) the local-level labeling at Rs.

The regions Rs at this level were different from the local-level ones. We first
performed another mean-shift clustering for areas around the detected abnormal
regions, to discover finer-scale details. For regions not connected with the abnor-
mal areas, and with high confidence of being L or M (based on the classification
score), we also merged the connected regions of the same type into one region.
And similarly to yl, ys could be either L, M or T/N.

Object-level Modeling. So far, T and N were still treated as one type, and
the transaxial slices were processed separately. Based on the classification results
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of the previous level, by merging connected regions with the same label into
one region, a slice was then represented as a relatively small number of regions,
roughly corresponding to the anatomical structures, but with some discontinuous
segments. The goal was thus to differentiate tumors from abnormal lymph nodes
and smooth the labeling, and we observed that the object-level information was
the main distinctive factor. For example, T should be within L and possibly
invading into M while N should be within M; hence, the distance between T and
L regions should be small and the size of L surrounding T should be large, while
N should have similar properties relating to M.

At this level, we thus explored the intra- and inter-slice object-level features.
For each merged region Ro, a 32-dimensional feature vector fo was computed:
(Dim. 1-15) the minimum distance from Ro to the type k areas in the d direction
(above, below, left, right, and the z direction); (Dim. 16-30) the average size of
type k in the d direction relative to Ro, normalized by the dimension of Ro;
(Dim. 31) the size of Ro; and (Dim. 32) the spatial-level labeling at Ro. Unlike
yl and ys, the labeling yo should then take four possible values: L, M, T or N.

Cascaded Learning and Inference. To create the discriminative classifier,
we performed piecewise learning for the feature weights α, β and γ (Eq. (1)).
We first trained a one-versus-all multi-class support vector machine (SVM) for
the local-level model, then another multi-class SVM for the spatial level, and
lastly a third one for the object level. At each stage, the training focused on the
features of that level only, with classification results of the previous level as the
input for feature computation.

Although we could rewrite the score function into structural-SVM type [6], we
chose to do SVM-based piecewise learning mainly because: (1) a feature vector
combining all three levels generated based on the training data would not capture
the cascaded nature of higher-level features dependent on the lower levels, thus
would not achieve the optimal performance; and (2) our features were designed
to be independent between regions at the same level, so optimization for the
entire image collectively was not necessary.

A three-level inference based on mean-shift clustering with the three learned
multi-class SVMs was then performed. The final labeling was chosen as the class
type with the highest combined margin from three levels. The classification could
be done per region using SVM, without considering inter-dependencies between
regions, because the spatial relationships were derived based on the labeling of
the previous level, not within the same level.

2.2 Pathological Context Description

We described the pathological context for the detected tumor (T) and abnor-
mal lymph nodes (N) in three aspects: (1) texture features: the mean, standard
deviation, skewness and kurtosis of the Gabor filtered T and N areas for both
CT and PET; (2) shape features: the volume, eccentricity, extent and solidity
of T and N; and (3) spatial features: the distance to the chest wall and medi-
astinum for tumor, and distance to two lung fields for lymph nodes, normalized
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by the size of the tumor or lymph node itself. The distances were computed in
four directions per slice, and averaged across all slices weighted by the detection
score S. So, slices with more obvious T or N regions would contribute more to
the spatial feature.

Besides extracting the feature vectors of the detected T/N areas, we also
extended the context description with an image retrieval component, to retrieve
a set of images with similar pathological patterns for a given query image. The
retrieved images, which were stored in the database with diagnosis information,
could be used to aid image interpretation. Given the query image I and the
image J , the distance was defined as:

DI,J = ω · (|vI − vJ |/(vI + vJ)) = ω · vI,J (2)

where v was the feature vector of the image (concatenation of the texture, shape
and spatial features of T and N), and ω was the feature weights. A training set
was constructed of Q triplets: 〈I, J,K〉, where I was similar to J , and dissimilar
to K. It was thus expected to satisfy DI,K > DI,J , and the weight vector ω was
computed based on the large-margin optimization method [11]:

argminω,ξ≥0
1
2
‖ω‖2 + C

∑
q

ξq, s.t. ∀q : ω · (vI,K − vI,J) ≥ 1 − ξq (3)

The training data 〈I, J,K〉 captured the search preference, e.g. based on tumor
characteristics only, or including lymph nodes. By changing the training data,
the derived weights ω would vary and result in different retrievals.

2.3 Materials and Preprocessing

In this study, a total of 1279 transaxial PET-CT image slice pairs were selected
from 50 patients with NSCLC. The images were acquired using a Siemens TrueV
64-slice PET-CT scanner (Siemens, Hoffman Estates, IL) at the Royal Prince
Alfred Hospital, Sydney. All 50 cases contained primary lung tumors, and 23 of
them contained abnormal lymph nodes. The locations of tumors and disease in
regional lymph nodes were annotated manually, and for each patient study, the
other 49 patient studies were marked similar or dissimilar, as the ground truths.
A fully-automatic preprocessing was performed on each CT slice to remove the
patient bed and soft tissues outside of the lung and mediastinum, based on
simple thresholding, connected component analysis and filling operations. The
resulting mask was then mapped to the co-registered PET slice.

3 Results

The structure localization performance for the 50 patient studies is summarized
in Table 1a. Based on visual inspections, a volume (case-level) that was classified
accurately with its boundary matching closely to the ground truth was consid-
ered correct. The multi-level model was trained on slice pairs randomly selected
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from 10 imaging studies. To further evaluate the localization performance at the
slice level, Table 1b shows the measurements for all 1279 slices. We also compared
our method with two other approaches (Table 1c and 1d): a four-class SVM for
voxel-level classification; and a four-class SVM for region-level classification after
mean-shift clustering (identical to our local-level modeling, except training for
four classes). Both approaches were trained using the same set of data as our
local-level modeling. Our multi-level modeling showed clear advantages, espe-
cially in differentiating tumor and abnormal lymph nodes. As a component of
our model, Table 1d illustrated the benefit of region-based processing compared
to Table 1c. Some visual results are shown in Figure 1.

Table 1. The pairwise confusion matrix of the four region classes tested on 50 patient
studies. (a) Our method - image/case level results. (b) Our method - finer slice-level
results. (c) Gabor+SVM - image/case level results. (d) Gabor+Mean-shift+SVM -
image/case level results.

Ground Prediction (%)
Truth L M T N

Lung lobe 100 0 0 0
Mediastinum 0 94.3 3.8 1.9

Tumor 0 1.6 84.4 14.1
Lymph node 0 3.7 18.5 77.8

(a)

Ground Prediction (%)
Truth L M T N

Lung lobe 100 0 0 0
Mediastinum 13.3 60.2 21.7 4.8

Tumor 6.8 10.2 42.4 40.7
Lymph node 5.6 11.1 27.8 55.6

(c)

Ground Prediction (%)
Truth L M T N

Lung lobe 99.2 0.8 0 0
Mediastinum 0 97.1 2.1 0.8

Tumor 1.7 6.1 87.8 4.3
Lymph node 0 7.5 12.3 80.2

(b)

Ground Prediction (%)
Truth L M T N

Lung lobe 100 0 0 0
Mediastinum 0 83.3 5.0 11.7

Tumor 0 16.5 43.7 39.8
Lymph node 0 6.5 35.5 58.1

(d)

The sensitivity and specificity of tumor/lymph node localization relative to
the lung and mediastinum are listed in Table 2a. In testing, the distances be-
tween the tumor and the chest wall and mediastinum/hilum, and between the
abnormal lymph nodes and the left and right lung lobes, were assessed to de-
termine the sensitivity and specificity. The remaining errors were mainly caused
by misclassifications between tumors near the mediastinum and the abnormal
lymph nodes. Our method resulted in higher sensitivity and specificity in deriving
the spatial relationships, compared to using only local-level features (Table 2b),
because of the highly effective structure localization.

Finally, we evaluated the retrieval performance by using each imaging study as
the query to retrieve the most similar cases, and the average precision and recall
were computed. We compared our method with techniques based on weighted
histogram and bag-of-SIFT [12] features for global and local feature extraction;
and both approaches were trained in the same way as our method for similarity
measure. As shown in Table 3, our method achieved much higher precision and



Discriminative Pathological Context Detection in Thoracic Images 197

Table 2. The sensitivity (SE) and specificity (SP) of the tumor and lymph node
localization relative to the lung lobes and mediastinum tested on 50 cases. (a) Our
method and, (b) Gabor+Mean-shift+SVM.

Tumor Lymph node
Wall Hilum Left Right

SE (%) 100 97.2 92.9 88.9

SP (%) 98.0 84.8 89.4 91.5

(a)

Tumor Lymph node
Wall Hilum Left Right

SE (%) 83.3 82.9 93.3 87.5

SP (%) 98.0 77.8 65.0 69.2

(b)

Fig. 1. Six examples of structure localization, showing one transaxial slice pair per
case. The top row is the CT image slice (after preprocessing); the middle row is the
co-registered PET slice; and the bottom row shows the localization results, with 5
different gray scale values (black to white) indicating background, L, M, T and N.

Table 3. The precision-recall measure of the retrieval results of the top one, three or
five most similar matches on 50 cases. Our method is compared with the histogram
(HIST) and bag-of-SIFT [12] features (BoSF) based approaches.

Precision (%) Recall (%)
Ours HIST BoSF Ours HIST BoSF

Top-1 84.0 46.0 32.0 14.1 7.5 6.0

Top-3 70.7 34.7 29.3 31.4 14.1 12.7

Top-5 63.2 28.8 25.6 44.3 19.7 17.9

recall. The results showed that our method could extract the salient (patholog-
ical) features more effectively than the general techniques; and suggest that the
detected context could be used in a CBIR system.

4 Conclusions

We proposed a new method to automatically detect the primary tumor
and disease in lymph nodes, and the spatial relationships with the lung and
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mediastinum on PET-CT thoracic images. By exploring a comprehensive set of
features at the local, spatial and object levels, the discriminative classification
achieves an accurate localization of the various structures in the thorax. The
work is an initial step towards a computer aided system for PET-CT imaging
diagnosis for lung cancer staging. The extracted pathological contexts also show
high precision when used to retrieve the most similar images.
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Abstract. In this study we present an efficient image categorization sys-
tem for medical image databases utilizing a local patch representation
based on both content and location. The system discriminates between
healthy and pathological cases and indicates the subregion in the image
that is automatically found to be most relevant for the decision. We show
an application to pathology-level categorization of chest x-ray data, the
most popular examination in radiology. Experimental results are pro-
vided on chest radiographs taken from routine hospital examinations.

Keywords: Image categorization, x-ray, chest radiography, visual
words, Computer-Aided Diagnosis (CAD), region-of-interest (ROI).

1 Introduction

In the last ten years the number of images that are acquired every day in any
modern hospital has increased exponentially, due to the progress in digital med-
ical imaging techniques and patient image-screening protocols. One immediate
consequence of this trend is the enormous increase in the number of images that
must be reviewed by radiologists. This has led to a concomitant demand for
computerized tools to aid radiologists in the diagnostic process. Computerized
systems assist the radiologist in the diagnostic process by categorizing the image
content. This is done by learning from a large archive of image examples that
are annotated by experts.

Image categorization is concerned with the labeling of images into predefined
classes. The principal challenge of image categorization is the capture of the most
significant features within the images that facilitate the desired classification. A
single image can contain a large number of regions-of-interest (ROI), each of
which may be the focus of attention for the medical expert, depending on the
diagnostic task at hand. A single chest image for example, contains the lungs,
heart, rib cage, diaphragm, clavicle, shoulder blade, spine and blood vessels,
any of which may be the focus of attention. One way to enhance the image
categorization process is to focus on a ROI within the image that is relevant to
the presumed pathology. The advantage of the ROI approach is that the rest

� Currently on Sabbatical at IBM Almaden Research Center, San Jose, CA.
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of the image can be ignored leading to computational advantages and increased
accuracy in the classification.

Clinical decision support techniquesbasedonautomatic classificationalgorithms
can produce a strong need to localize the area that is most relevant to the diag-
nostic task. A diagnostic system that, in addition to a decision on the existence
of a pathology, can provide the image region that was used to make the decision
can assist radiologists to better understand the decision and evaluate its reliabil-
ity. Another advantage of an ROI based decision is that we can construct a detailed
representation of the local region. We refer to this approach as ROI based image
categorization. Of course it is not suited to every image categorization task; not
every pathology includes a significant and identifiable ROI that appears across the
data set. In such cases, a global, full-image categorization is appropriate.

The (bags of) visual words paradigm, which has recently been adapted from
the text retrieval domain to the visual analysis domain (see e.g. [1][2]), pro-
vides an efficient way to address the medical imaging categorization challenge
in large-size archives while maintaining solid classification rates [3][4]. The best
categorization methods in recent ImageCLEF competitions are all based on vari-
ants of the visual words concept [5]. In this study we utilize a variant of the visual
words framework, that combines content and location, to automatically localize
the relevant region for a given diagnostic task. Besides localizing the decision
based area, the proposed method yields improved results over a categorization
system based on the entire image.

2 The Visual Words Framework for Classification

In this section we describe a state-of-the-art medical image categorization
paradigm using the visual words framework, which is based on a large set of im-
age patches, and their respective representation via a learned dictionary. This
paradigm is the foundation for the proposed localized image classification system.
The method was ranked first in the ImageCLEF 2009 medical annotation task [6].

Given a training labeled image dataset, patches are extracted from every pixel
in the image. Each small patch shows a localized view of the image content. In
the visual dictionary learning step, a large set of images is used (ignoring their
labels). We extract patches using a regular grid, and normalize each patch by
subtracting its mean gray level, and dividing it by its standard deviation. This
step insures invariance to local changes in brightness, provides local contrast
enhancement and augments the information within a patch. Patches that have
a single intensity value are ignored in x-ray images (e.g. the brightness of the air
surrounding the organ appears uniform especially in DICOM format). We are
left with a large collection of several million vectors. To reduce both the compu-
tational complexity of the algorithm and the level of noise, we apply a Principal
Component Analysis procedure (PCA) to this initial patch collection. The first
few components of the PCA, which are the components with the largest eigen-
values, serve as a basis for the information description. In addition to the patch
content information represented, we add the patch center coordinates to the fea-
ture vector. This introduces spatial information into the image representation,
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Fig. 1. An example of a region based visual dictionary. Each visual word is placed
according to its (x, y) coordinates.

without the need to explicitly model the spatial dependency between patches.
The final step of the visual-words model is to convert vector-represented patches
into visual words and generate a representative dictionary. A visual word can
be considered to be a representative of several similar patches. The vectors are
clustered into k groups in the feature space using the k-means algorithm. The
resultant cluster centers serve as a vocabulary of k visual words. The location of
the cluster center is the average location of all the patches in the cluster. Due
to the fact that we included spatial coordinates as part of the feature space,
the visual words have a localization component in them, which is reflected as a
spatial spread of the words in the image plane. Words are denser in areas with
greater variability across images in the database. Fig. 1 shows a region based
visual dictionary. Each visual word is placed according to its (x, y) coordinates.

A given (training or testing) image can now be represented by a unique distri-
bution over the generated dictionary of words. In our implementation, patches
are extracted from every pixel in the image. For a 512 × 512 image, there are
several hundred thousand patches. The patches are projected into the selected
feature space, and translated (quantized) to indices by looking up the most sim-
ilar word in the generated dictionary. Note that as a result of including spatial
features, both the local content and spatial layout of the image are preserved
in the discrete histogram representation. Image classification of a test image is
based on the ground truth of manually categorized images that are used to train
an SVM classifier which is applied to the image histogram representation.

3 Localizing Image Categorization

When radiologists look for a specific pathology in an image, they usually focus
on a certain area. For example right pleural effusion is diagnosed using the lower
bottom and the peripheral lateral zones of the right lung, while ignoring the rest
of the chest x-ray image. In this section we describe how to automatically find
a relevant area, without prior knowledge about the organ structure or the char-
acteristics of the pathology. This step is designed to improve the classification
accuracy of the global approach. It can also provide a useful visualization of the
area used in the automatic classification.



202 U. Avni et al.

Assume we already learned a visual dictionary as described in the previous
section and we are now concentrating on a specified pathology. We are given a
training image set in which each image is manually labeled as either healthy or
pathological. The visual-words representation of an image x is a histogram vector
(x1, ..., xk) such that xi is the relative number of image patches in x that were
mapped to the i-th visual word based on content and location similarity. These k
numbers are the features extracted from the image to be used in the classification
algorithm, where each feature corresponds to a visual word. The first step toward
localization of the pathology decision is finding the relevance of each feature.
Feature relevance is often characterized in terms of mutual information between
the feature and the class label. It is reasonable to expect that for a feature
(visual word) that is located far from the pathology area, the class label and the
feature values random variables should be independent. We compute the mutual
information between the image label and each of the features in the following
way. Suppose we are given n images with binary (healthy/pathological) labels
c1, ..., cn and the feature vector of the t-th image is denoted by (xt1, ..., xtk). To
obtain a reliable estimation of the mutual information for each feature i, we first
quantize the i-th feature values across all the images x1i, ..., xni into L levels (in
our implementation we sort the n values and divide them into four groups of
equal size). Denote the quantized version of xti by yti ∈ {1, ..., L}. Denote the
joint probability of the (quantized) i-th feature and the image class by:

pi(v, c) =
1
n
|{t|yti = v, ct = c}| (1)

where c is the class label, v is the quantized bin level and |·| is the set cardinality.
The mutual information between the class label variable C and the quantized
feature Yi is [7]:

I(Yi;C) =
L∑

v=1

∑
c

pi(v, c) log
pi(v, c)
pi(v)p(c)

(2)

where pi(v) and p(c) are the marginal distributions of the i-th feature and
the class label respectively. C is a binary random variable and therefore 0 ≤
I(Yi;C)≤ 1.

Up to now we have computed the relevance of each feature (visual word)
separately. However, since each visual word has a location, we can consider the
relevance of an entire region as the relevance of all the features located in that
region. The proposed method can be viewed as a filter-based feature selection.
Unlike general feature selection problems, here the features are located in the
image plane. Hence, instead of feature selection we apply region selection. Since
the visual words have a spatial location, the relevance information can be rep-
resented in the image plane. We create a relevance map R(x, y) =

∑
i I(Yi, C)

such that i goes over all the visual words that are located at (x, y). R(x, y)
is a matrix with mutual information values at the positions of the visual-word
feature centers, and zero at other locations. In this representation, areas that
contain highly relevant features are likely to be the regions of interest for the
classification task.
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We define the relevance of the rectangular [x1, x2]× [y1, y2] sub-region in the
image plane to the pathology as

score(x1, x2, y1, y2) =
∑

x1≤x≤x2

∑
y1≤y≤y2

R(x, y) =
∑

i

I(Yi, C) (3)

such that i goes over all the visual words that are located in the rectangle
[x1, x2] × [y1, y2]. We look for a rectangular region that contains the maximum
amount of relevant features. For a given region size, we examine all the rectangles
in the image and look for the rectangle with the highest score. This search can
be efficiently done using the integral image algorithm which is part of the sem-
inal Viola-Jones object detection framework [8]. The integral image algorithm
efficiently generates the sum of values in rectangular subsets of a grid. It can be
computed in one pass over the image using the following recurrence relation:

sI(x, y) = sI(x, y − 1) + R(x, y) (4)
II(x, y) = II(x− 1, y) + sI(x, y)

The region score is thus:

score(x1, x2, y1, y2) = II(x2, y2) − II(x1, y2) − II(x2, y1) + II(x1, y1) (5)

The relevance map R(x, y) takes into account all of the training images and
therefore the ROI is little affected by noisy images. However, since the ROI
is calculated globally, this procedure finds a rough estimation of the region of
interest. The exact region might vary between images. The ROI can be refined in-
dividually for each image by examining the mutual information map in the image
space instead of the visual dictionary space. Every patch in the image is trans-
lated into a visual word. We can create a relevance map per image Rimage(x, y)
by placing in each image patch center the mutual information of the visual word
it is assigned to. In other words, Rimage(x, y) = I(Yi, C) such that i is the vi-
sual word that the image patch centered at (x, y) is assigned to. We can then
repeat the integral-image process on the map Rimage to find a smaller rectangle
with the maximal amount of relevant patches in the image relevance map. The
search is confined to the rough ROI found in the first step. A two-step process
is required because if the relevance map of the images is noisy, it may generate
erroneous ROI, especially if its relevant area is relatively small.

After finding an ROI and refining it for each image in the healthy/pathological
labeled training set, we run a second training stage, where sub images are
cropped to the region of interest of the pathology. A new dictionary is gen-
erated for each pathology, and the SVM classifiers are trained using the words
histograms from the cropped regions.

In the test phase, a new image is converted to a word histogram using the
dictionary learned in the first step, and an image relevance map is calculated.
For each pathology we crop the image using the rough global ROI that was
found in the training phase. Next we find a refined ROI by applying the integral
image algorithm to the test image relevance map Rimage. The refined ROI is then
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(a) (b) (c) (d)

Fig. 2. Frontal chest x-ray images, top row shows the ROI detection overlayed on the
original image and bottom row shows the corresponding relevance map. Global ROI
is shown in red and the refined ROI in green. The pathologies are (a) right pleural
effusion, (b) enlarged heart shadow, (c) enlarged mediastinum and (d) left pleural
effusion.

converted to a words histogram using the dictionary from the second training
step, and passed to the region based healthy/pathology classifier that was also
trained in the second training step. The reported result is the binary decision and
the image subregion that was used to obtain the decision. Fig. 2 shows examples
of relevance maps and ROI detection (both global for a pathology and image
refined) of chest x-ray images. The entire processing of a test image including
the translation to visual words and the integral image computation takes less
than a second (time was measured on a dual quad-core Intel Xeon 2.33 GHz.)

4 Experiments

Chest radiographs are the most common examination in radiology. They are
essential for the management of various diseases associated with high mortality
and morbidity and display a wide range of potential information, many of which
are subtle. According to a recent survey [9], most of research in computer-aided
detection and diagnosis in chest radiography has focused on lung nodule detec-
tion. However, lung nodules are a relatively rare finding in the lungs. The most
common findings in chest x-rays include lung infiltrates, catheters and abnor-
malities of the size or contour of the heart [9]. Distinguishing the various chest
pathologies is a difficult task even for human observers. Research is still needed
to develop an appropriate set of computational tools to support this task. We
used 443 frontal chest images in DICOM format from the Sheba medical cen-
ter hospital PACS, taken during routine examinations. X-ray interpretations,
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(a) Right pleural effusion (b) Left pleural effusion

(c) Enlarged heart (d) Abnormal mediastinum

Fig. 3. ROC curves for pathology detection in frontal chest x-rays, using the entire im-
age and automatically detected ROI; the areas under the curves (AUC) were calculated
using trapezoidal approximation

made by two radiologists, served as the reference gold standard. The radiolo-
gists examined all of the images independently; they then discussed and reached
a consensus regarding the label of every image. The pathology data include 98
images with enlarged heart shadow, 109 images with enlarged mediastinum, 46
images with right pleural effusion and 48 images with left pleural effusion. Some
patients had multiple pathologies.

The original high-resolution DICOM images were initially resized to a maxi-
mal image dimension of 1024 pixels, with aspect-ratio maintained. We followed
the method described in Section 2 to extract features, build a visual dictionary,
and represent an image as a histogram of visual words. To avoid overfitting
and to preserve the generalization ability of the classifiers, model parameters
were chosen following the experiments on the ImageCLEF database, described
in [6,10]. For each pathology we found the relevant ROI and utilized the cropped
images (both healthy and pathological) to learn a visual dictionary. The rough
ROI size was selected to be 36% of the image area; it was cropped to a smaller
rectangle if it passed the image border. The fine ROI was set to 15% of the image
area. We then detected each of the four pathologies using a binary SVM classi-
fier with a χ2 kernel, trained on words histogram built from the fine ROI. The
sensitivity and specificity were calculated using leave-one-out cross validation.
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Modifying the relative cost of false negative errors in the SVM cost minimiza-
tion problem determines the tradeoff point between sensitivity and specificity.
This technique was used to produce the receiver operating characteristic (ROC)
curves for several pathologies, shown in Fig. 3. The figure clearly indicates that
in three out of the four pathologies our localized categorization method outper-
formed the global categorization that utilizes patches from the entire image. In
the right pleural effusion case, the AUC is improved from 0.895 to 0.92; In the
left pleural effusion case, the AUC is improved from 0.91 to 0.93, and in the
abnormal mediastinum case, an improvement in the AUC is from 0.827 to 0.84.

To conclude, in this studywe showedhowvisualword information, basedonboth
content and location, can be used to automatically localize the decision region for
pathology detection. The method is based on choosing the visual words that are
most correlatedwith the diagnoses task. We have shown that the proposed method
outperforms methods that are based on the entire image, both in terms of classi-
fication performance and in enabling human interpretation of the decision. The
method proposed is general and can be applied to additional Chest x-ray patholo-
gies, currently being explored, as well as to additional medical domains.
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Abstract. Ground glass nodules (GGNs) occur less frequent in com-
puted tomography (CT) scans than solid nodules but have a much higher
chance of being malignant. Accurate detection of these nodules is there-
fore highly important. A complete system for computer-aided detection
of GGNs is presented consisting of initial segmentation steps, candidate
detection, feature extraction and a two-stage classification process. A rich
set of intensity, shape and context features is constructed to describe the
appearance of GGN candidates. We apply a two-stage classification ap-
proach using a linear discriminant classifier and a GentleBoost classifier
to efficiently classify candidate regions. The system is trained and inde-
pendently tested on 140 scans that contained one or more GGNs from
around 10,000 scans obtained in a lung cancer screening trial. The system
shows a high sensitivity of 73% at only one false positive per scan.

Keywords: ground glass nodule, computer-aided detection, chest CT.

1 Introduction

Ground glass nodules (GGNs) are relatively rare findings in chest computed
tomography (CT) examinations. These nodules have an increased attenuation
but do not, like solid nodules, completely obscure the lung parenchyma [1],
although they may have a solid component. It has been shown that GGNs have
a much higher chance of being malignant than solid nodules [1]. Early detection
of GGNs is therefore highly important. Beigelman-Aubry et al. [2] showed that
both radiologists and computer-aided detection (CAD) systems designed for solid
nodules have difficulties with detecting GGNs.

At present, no complete CAD system for GGNs has been tested on a large
database. Kim et al. [3] described a slice-based CAD system using texture and
intensity features that had a high false positive rate (FPR) and that was tested
on only 14 patients. Zhou et al. [4] developed an automatic scheme for both

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAI 2011, Part III, LNCS 6893, pp. 207–214, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



208 C. Jacobs et al.

detection and segmentation of GGNs based on vessel suppression, intensity and
texture analysis. They reported high performance but the test data set contained
only 10 GGNs. Ye et al. [5] presented a voxel-based method with rule-based
filtering that was tested on 50 CT examinations with 52 GGNs. They reported
a high sensitivity of 92.3% but also a high FPR of 12.7 per scan. Tao et al. [6]
developed a multi-level detection scheme with classification at voxel-level and
object-level. They focused on classification of small volumes of interest (VOIs)
generated by a candidate detector algorithm which was not otherwise specified.
The method was tested on a set of 1100 VOIs including 100 positive ones, from
153 healthy and 51 diseased patients. Results were provided for VOIs only, and
neither the FPR per scan nor the total number of VOIs per scan were reported.

In this work, we focus on the automated detection of GGNs from thin-slice
CT examinations. In contrast to the aforementioned works, the CAD system is
tested on a large data set. A complete detection pipeline is presented, consisting
of initial segmentation steps, candidate detection, feature extraction and classi-
fication. A comprehensive set of intensity and shape features are computed for
each candidate region. As previous studies reported [3,7,8], false positive findings
arise from partial volume effects of bronchovascular bundles, the chest wall, the
dome of the diaphragm and large vessels. Therefore, we include context features
that describe the position of the candidate region with respect to surrounding
objects such as airways and the lung boundary.

2 Data and Experimental Design

Data for this study was provided by a large multi-center lung cancer screening
trial with thin-slice, low-dose CT scans of current and former heavy smokers.
We collected all CT examinations between April 2004 and April 2009 from one
screening site, totaling around 10,000 scans from around 3,000 participants. From
this data set, all scans in which at least one GGN was reported were selected.
This resulted in 140 scans from 58 patients, including 76 unique GGNs. We
considered GGNs in follow-up examinations as separate GGNs, leading to a
total of 176 GGNs. For each GGN, a manual segmentation was provided. The
effective diameter of the GGNs varied from 3.9 to 29.7 mm (median 13.9 mm).
All CT examinations were performed with a slice thickness of 0.7 mm and the
in-plane voxel size varied between 0.52 and 0.84 mm.

The data set was randomly split into two sets on a patient level, preventing
data from the same patient being present in both sets. The training set consisted
of 67 scans with 91 GGNs from 31 patients. The test set of 73 CT examinations
with 85 GGNs from 27 patients was not touched during system development and
was only used for evaluation of the final configuration of the CAD system.

3 Methods

Prior to candidate extraction, we apply a previously developed lung and airway
segmentation algorithm [9,10] to each scan.



Computer-Aided Detection of GGNs in Thoracic CT Images 209

3.1 Initial Candidate Detection

The candidate detection procedure starts with applying a double-threshold den-
sity mask within the lung regions to obtain voxels with attenuation values de-
fined as ground glass opacity. In this study, we used a range between -750 and
-300 Hounsfield units (HU) [7,8]. At the boundaries of the lungs, vessels, and
airways, partial volume effects lead to attenuation values in the defined range.
Therefore, we apply a morphological opening operation using a spherical struc-
turing element with a diameter of 3 voxels to remove the voxels at these edges
from the density mask. After this, connected component analysis is performed to
obtain candidate regions. Evidently, this results in a large amount of candidate
regions. We eliminate all candidate regions which have a volume smaller than
34 mm3 (volume of an ideal sphere with diameter of 4 mm). Current clinical
guidelines [11] state that GGNs smaller than 5 mm do not require follow-up CT
examinations and since volume measurements on CT have a certain variability
due to partial volume effects, a safety margin of 1 mm is used in this system.

3.2 Features

We defined a rich set of features that can be subdivided into three categories:

Intensity features. The first group of intensity features consists of histogram
statistics computed on a normalized histogram with a bin size of 1 HU. Four
histograms are constructed from: voxels within the candidate mask, voxels within
the bounding box defined by the candidate mask, voxels in the neighborhood
created by dilating the candidate mask with a rectangular structuring element
of size 3x3x3 voxels and similarly, but using a rectangular structuring element
of size 5x5x5 voxels. The following histogram statistics are extracted: entropy,
mean, height of mean bin, mode, height of mode bin and quantiles at 5%, 25%,
50%, 75% and 95%. Furthermore, we calculate the mean, standard deviation,
minimum, maximum and the first 7 invariant Hu moments [12] over the intensity
values of voxels within the candidate mask. Local binary patterns (LBP) [13] and
Haar wavelets are used for texture analysis. Local binary patterns are computed
from the bounding box defined by the candidate mask in which we resample
this area to respectively a 16x16x16 and 32x32x32 volume. We apply the same
histogram statistics to the histogram output of the LBP operator and use these
as features. Using 2D Haar wavelets, all axial slices of the 32x32x32 resampled
volume are decomposed into four bands. Then, all bands of the 32 slices are
combined and histogram statistics are extracted from the horizontal, vertical
and diagonal component of the combined high-frequency part. Finally, maximum
vesselness [14] over multiple scales (1.0, 1.77, 3.16, 5.62, and 10.0 voxels) is
computed for the voxels in the candidate mask and the mean and standard
deviation of the vesselness values are used as features. The total number of
intensity features is 103.

Shape features. Shape analysis of the candidate regions is performed using the
binary mask of the candidate region. We calculate sphericity, compactness and
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volume of the candidate region. In order to calculate the sphericity, we define a
sphere S at the center of mass of the candidate region which has equal volume as
the candidate region. Then, sphericity is defined as the ratio between the volume
of the voxels of the candidate region within sphere S and the total volume of
sphere S. For compactness, we used the ratio between the surface of the candidate
region and its volume. Furthermore, the same set of 7 invariant Hu moments are
computed from the candidate mask voxels to describe its appearance. Note that
in contrast to the previous calculation of Hu moments, the voxels are in this case
not weighed by their intensity value. This results in 10 shape features.

Context features. In the third category of features, the location of the candi-
date region in respect to the lung boundary and the airway tree is computed. For
all voxels inside the candidate segmentation, the distance to the lung boundary
and distance to the closest airway is computed. Then, the mean, standard devi-
ation, minimum and maximum distance to the lung boundary and airways are
computed and used as context features. Finally, using the lung segmentation,
a bounding box is defined around the lungs. Using this bounding box, relative
position features are computed, including relative X, Y and Z position, distance
to center of mass of both lungs and distance to left bottom corner of bounding
box. This yields 13 context features.

3.3 Classification

In the classification step, candidate regions are classified into GGN or non-GGN
class using a two-stage classification approach. Note that in the second stage,
the posterior probability of the first classifier is added as an additional feature.

In pilot experiments, we extensively tested different classifiers (Linear Disc-
rimant Analysis (LDA), k-Nearest Neighbor (kNN) and GentleBoost [15]) for
the first and second phase classification. In these experiments, 10-fold cross-
validation on the training set was performed to test the performance of the
different classifiers. Note that the 10 folds were again created by splitting the
training set at a patient level. Consequently, all follow-up examinations of one
patient were in the same fold to prevent bias.

For the first phase, we ranked all features according to Fisher’s discriminant
ratio [16] and we selected the four features with the highest ranking. Using these
four features (two shape and two intensity features), LDA and kNN were tested
and LDA proved to give slightly better results. Using the results from the 10-
fold cross-validation on the training set, the posterior probability threshold for
the first phase classification was determined. The threshold was set such that
no true positives were lost in the first phase for the training set. This reduced
the number of candidates in the training set by 66%. Consequently, all features
only need to be calculated for about one third of all candidate regions, which
accelerates the CAD system considerably (∼ 40%).

For the second phase classification, we experimented with an LDA, kNN, and
GentleBoost classifier. Optimal results for the kNN-classifier were found using
k=60 and we used regression stumps as a weak classifier for the GentleBoost
classification. Since the data set consists of a relatively high amount of features
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Table 1. Performance of the CAD system for different feature groups. Sensitivity is
reported at 1

8
, 1

4
, 1

2
, 1, 2, 4, and 8 false positives per scan. The score is the average

sensitivity at these 7 operating points.

Feature set 1
8

1
4

1
2

1 2 4 8 Score

All features 0.437 0.565 0.671 0.729 0.748 0.780 0.788 0.674

Shape and intensity features 0.476 0.569 0.650 0.686 0.705 0.765 0.772 0.660

Context and intensity features 0.465 0.578 0.645 0.687 0.710 0.749 0.767 0.657

Context and shape features 0.479 0.521 0.595 0.683 0.737 0.778 0.780 0.654

Intensity features 0.497 0.575 0.630 0.668 0.700 0.723 0.731 0.647

Context features 0.402 0.472 0.569 0.627 0.706 0.720 0.724 0.603

Shape features 0.486 0.506 0.550 0.604 0.637 0.708 0.724 0.602

(127) and a smaller amount of true positives (around 100), we decided to select
the best 20 features using a Sequential Feed Forward Selection (SFFS) procedure
to prevent overfitting of the classifier. During the SFFS procedure, the partial
area under the curve (AUC) of the ROC curve was used as objective function.
The upper threshold on false positive fraction was set at the value which cor-
responds to 5 false positives per scan. As the concept of boosting is based on
sequentially applying weak classifiers on a subset of the data [15], feature selec-
tion was not used for the GentleBoost classifier. Finally, after extensive testing
of different classifiers with combined feature selection, we concluded that the
GentleBoost classifier had a slighty better performance and therefore we used
this in the final configuration of the system.

In some cases multiple candidate regions were present for a single GGN. As we
focused on detection, we counted a GGN as detected when at least one matching
candidate was classified as positive. The remaining matching candidates were
considered neutral in the evaluation and not counted as false negatives.

4 Results

The candidate detection step generated 524 ± 308 candidate regions per scan.
Candidates are considered positive when the centers of mass of the GGN seg-
mentation and the candidate region were within a distance d of each other. For
d = 10 mm, the sensitivity of the candidate detector was 92% (84/91) and 87%
(74/85) for the training and test set, respectively. For sake of readability, we
omit a detailed reporting for a distance criterion of d = 5 mm where the results
were comparable to the ones of d = 10 mm.

The first stage LDA classifier and second phase GentleBoost classifier were
trained with all candidates from the training set and tested on the test set. After
the first classification step, 32% of the candidate regions remained in the test
set at the expense of eliminating three true positives. The FROC curve of the
complete CAD system is given in Fig. 1 and sensitivities at various operating
points are given in Table 1. At only one false positive per scan, 62 out of 85
GGNs (73% sensitivity) were detected.
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Fig. 1. FROC curves with a logarithmic x-axis. Results are shown for the proposed
CAD system and systems that are only trained with one type of features.

Fig. 2. Examples of true positives, false negatives and false positives of the CAD
system. All images are axial views of 30 × 30 mm with a window level of -600/1600
HU. The top row shows the six true positives with the highest degree of suspicion in the
test set according to the CAD system. The middle row shows six false negatives that
the CAD system did not detect when set to operate at 1 false positive per scan. These
nodules were picked up by the candidate detector, but they were not deemed suspicious
enough. Finally, the bottom row shows the six false positives with the highest degree
of suspicion in the test set according to the CAD system.
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Furthermore, we investigated the effect of the three separate feature groups
by using only one or only two in the second phase classification. Results are given
in Fig. 1 and Table 1. An overall performance metric is derived from the FROC
curves by averaging the sensitivities at 1

8 , 1
4 , 1

2 , 1, 2, 4, and 8 false positives per
scan. These results indicate that the combination of all features increases the
performance considerably. In Fig. 2, we show examples of ground glass nodules
which were correctly detected and missed by the CAD system.

5 Discussion and Conclusion

The FROC curve in Fig. 1 shows that our CAD system is able to find around
50% of all GGNs without any false positives. This is a very encouraging result.
Moreover, a radiologist who retrospectively inspected the false positives of the
system operating at 1 FP/scan (see Fig. 2, bottom row) indicated that many of
these seemed to be GGNs. The reason why these findings had not been annotated
may be that the scans in which these findings occurred contained multiple areas
of ground glass opacity with a pattern resembling smoking related interstitial
lung disease. On the other hand it may be that these were real GGNs missed by
human readers. This interesting observation does require further study.

In clinical practice, a GGN CAD system will be used in combination with a
solid nodule CAD system, which also produces false positives, and therefore we
believe that the operating point at only 1 FP/scan is optimal. Moreover, the
sensitivity does not increase much after 1 FP/scan.

From the 22 missed GGNs, 11 were actually missed in the candidate extraction
step. We observed that in some cases a single GGN was detected as two separate
candidate regions that were subsequently eliminated. Possible improvements are
candidate clustering or integrating voxel classification in the candidate detection
procedure, as done in [6]. Furthermore, even though the data for this study
originated from over 10,000 scans obtained in a screening trial, the training set
still contained less than 100 GGNs. We plan to collect a larger and more diverse
training database in the future. This may help the CAD system to also recognize
uncommon manifestations of GGNs, such as the ones on the second row of Fig. 2.

In conclusion, a complete computer-aided detection scheme for detection of
ground glass nodules has been presented and tested on a large database. A
comprehensive set of intensity, shape and context features was used to describe
the appearance of a ground glass nodule. An optimized classification scheme
using two stages of classification was employed. We evaluated the performance
of the CAD system on an independent test set that was not touched during
system development and obtained a sensitivity of 73% at only one false positive
detection per scan. This is a substantially better performance than reported in
previous work [3,6,4,5]. We are convinced that this performance level is sufficient
for application of the system in clinical practice.
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Abstract. Although radiologists can employ CAD systems to charac-
terize malignancies, pulmonary fibrosis and other chronic diseases; the
design of imaging techniques to quantify infectious diseases continue
to lag behind. There exists a need to create more CAD systems ca-
pable of detecting and quantifying characteristic patterns often seen in
respiratory tract infections such as influenza, bacterial pneumonia, or
tuborculosis. One of such patterns is Tree-in-bud (TIB) which presents
thickened bronchial structures surrounding by clusters of micro-nodules.
Automatic detection of TIB patterns is a challenging task because of
their weak boundary, noisy appearance, and small lesion size. In this pa-
per, we present two novel methods for automatically detecting TIB pat-
terns: (1) a fast localization of candidate patterns using information from
local scale of the images, and (2) a Möbius invariant feature extraction
method based on learned local shape and texture properties. A compar-
ative evaluation of the proposed methods is presented with a dataset of
39 laboratory confirmed viral bronchiolitis human parainfluenza (HPIV)
CTs and 21 normal lung CTs. Experimental results demonstrate that the
proposed CAD system can achieve high detection rate with an overall
accuracy of 90.96%.

Keywords: Tree-in-Bud, Willmore Energy, Lung, Infectious Diseases,
Computer Assisted Detection.

1 Introduction

As shown by the recent pandemic of novel swine-origin H1N1 influenza, respira-
tory tract infections are a leading cause of disability and death. A common image
pattern often associated with respiratory tract infections is TIB opacification, rep-
resented by thickened bronchial structures locally surrounded by clusters of 2-3
millimeter micro-nodules. Such patterns generally represent disease of the small
airways such as infectious-inflammatory bronchiolitis as well as bronchiolar lumi-
nal impaction with mucus, pus, cells or fluid causing normally invisible peripheral
airways to become visible [1]. Fig. 1 shows TIB patterns in a chest CT.
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The precise quantification of the lung volume occupied by TIB patterns is a
challenging task limited by significant inter-observer variance with inconsistent
visual scoring methods. These limitations raise the possibility that radiologists’
assessment of respiratory tract infections could be enhanced through the use of
computer assisted detection (CAD) systems. However, there are many technical
obstacles to detecting TIB patterns because micro-nodules and abnormal pe-
ripheral airway structures have strong shape and appearance similarities to TIB
patterns and normal anatomic structures in the lungs.

Fig. 1. (Left) CT image with a signifi-
cant amount TIB patterns. (Right) La-
belled TIB patterns (blue) in zoomed win-
dow on the right lung.

In this work, we propose a new
CAD system to evaluate and quan-
tify respiratory tract infections by au-
tomatically detecting TIB patterns.
The main contributions of the paper
are two-fold: (1) A candidate selection
method that locates possible abnor-
mal patterns in the images. This pro-
cess comes from a learning perspec-
tive such that the size, shape, and
textural characteristics of TIB pat-
terns are learned a priori. The can-
didate selection process removes large
homogeneous regions from considera-
tion which results in a fast localization of candidate TIB patterns. The local
regions enclosing candidate TIB patterns are then used to extract shape and
texture features for automatic detection; (2) another novel aspect in this work is
to extract Möbius invariant local shape features. Extracted local shape features
are combined with statistical texture features to classify lung tissues. To the best
of our knowledge, this is the first study that uses automatic detection of TIB
patterns for a CAD system in infectious lung diseases. Since there is no published
work on automatic detection of TIB patterns in the literature, we compare our
proposed CAD system on the basis of different feature sets previously shown to
be successful in detecting lung diseases in general.

2 Methodology

The proposed CAD methodology is illustrated in Fig. 2. First, lungs are seg-
mented from CT volumes. Second, we use locally adaptive scale based filtering
method to detect candidate TIB patterns. Third, segmented lung is divided into
local patches in which we extract invariant shape features and statistical texture
features followed by support vector machine (SVM) classification. We extract
features from local patches of the segmented lung only if there are candidate
TIB patterns in the patches. The details of the proposed methods are presented
below.

I. Segmentation. Segmentation is often the first step in CAD systems. There
are many clinically accepted segmentation methods in clinics [2,3]. In this study,
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Fig. 2. The flowchart of the proposed CAD system for automatic TIB detection

fuzzy connectedness (FC) image segmentation algorithm is used to achieve suc-
cessful delineation [2]. In FC framework, left and right lungs are “recognized”
by automatically assigned seeds, which initiate FC segmentation.

II. Learning characteristics of TIB patterns. From Fig. 1, we can read-
ily observe that TIB patterns have intensity characteristics with high variation
towards nearby pixels, and such regions do not usually exceed a few millime-
tre(mm) in length. In other words, TIB patterns do not constitute sufficiently
large homogeneous regions. Non-smooth changes in local gradient values sup-
port this observation. As guided by these observations, we conclude that (a)
TIB patterns are localized only in the vicinity of small homogeneous regions,
and (b) their boundaries have high curvatures due to the nature of its complex
shape.

III. Candidate Pattern Selection. Our candidate detection method comes
from a learning perspective such that we assign every internal voxel of the lung a
membership value reflecting the size (i.e., scale) of the homogeneous region that
the voxel belongs to. To do this, we use a locally adaptive scale based filtering
method called ball-scale (or b-scale for short) [2]. b-scale is the simplest form of
a locally adaptive scale where the scene is partitioned into several scale levels
within which every voxel is assigned the size of the local structure it belongs.
For instance, voxels within the large homogeneous objects have highest scale
values, and the voxels nearby the boundary of objects have small scale values.
Because of this fact and the fact in II.(a), we draw the conclusion that TIB
patterns constitute only small b-scale values, hence, it is highly reasonable to
consider voxels with small b-scale values as candidate TIB patterns. Moreover,
it is indeed highly practical to discard voxels with high b-scale values from
candidate selection procedure. Fig. 2 (candidate selection) and Fig. 3(b) show
selected b-scale regions as candidate TIB patterns. A detailed description of the
b-scale algorithm is presented in [2].
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3 Feature Extraction

For a successful CAD system for infectious lung diseases, there is a need to
have representative features characterizing shape and texture of TIB patterns
efficiently. Since TIB is a complex shape pattern consisting of curvilinear struc-
tures with nodular structures nearby (i.e., a budding tree), we propose to use
local shape features (derived from geometry of the local structures) combined
with grey-level statistics (derived from a given local patch).

It has been long known that curvatures play an important role in the represen-
tation and recognition of intrinsic shapes. However, similarity of curvature values
may not necessarily be equivalent to intrinsic shape similarities, which causes
a degradation in recognition and matching performance. To overcome this dif-
ficulty, we propose to use Willmore energy functional [4] and several different
affine invariant shape features parametrically related to the Willmore energy
functional.

Willmore Energy. The Willmore energy of surfaces plays an important role in
digital geometry, elastic membranes, and image processing. It is closely related
to Canham-Helfrich model, where surface energy is defined as

S =
∫

Σ

α + β(H)2 − γKdA. (1)

This model is curvature driven, invariant under the the group of Möbius trans-
formations (in particular under rigid motions and scaling of the surface) and
shown to be very useful in energy minimization problems. Invariance of the en-
ergy under rigid motions leads to conservation of linear and angular momenta,
and invariance under scaling plays a role in setting the size of complex parts of
the intrinsic shapes (i.e., corners, wrinkles, folds). In other words, the position,
grey-level characteristics, size and orientation of the pattern of interest have
minimal effect on the extracted features as long as the suitable patch is reserved
for the analysis. In order to have simpler and more intuitive representation of
the given model, we simply set α = 0 and β = γ = 1, and the equation turns
into the Willmore energy functional,

Sw =
∫

Σ

(H2 −K)dA =
∫

Σ

|H |2dA−
∫

∂Σ

|K|ds, (2)

where H is the mean curvature vector on Σ, K the Gaussian curvature on
∂Σ, and dA, ds the induced area and length metrics on Σ, ∂Σ (representing
area and boundary, respectively). Since homogeneity region that a typical TIB
pattern appears is small in size, total curvature (or energy) of that region is high
and can be used as a discriminative feature.

In addition to Willmore energy features, we have included seven different local
shape features in the proposed CAD system. Let κ1 and κ2 indicate eigenval-
ues of the local Hessian matrix for any given local patch, the following shape
features are extracted: 1) mean curvature (H), 2) Gaussian curvature (K),
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g

Fig. 3. a. CT lung, b. selected b-scale patterns, c. mean Curvature map (H), d. Gaus-
sian Curvature (K), e. Willmore energy map, f. zoomed (e). g. Multi-phase level set
segmentation based on the proposed shape features is shown in three different slices
from the same patient’s chest CT scan.

3) shape index (SI), 4) elongation (κ1/κ2), 5) shear ((κ1 − κ2)2/4), 6) com-
pactness (1/(κ1κ2)), and 7) distortion (κ1 − κ2). Briefly, the SI is a statistical
measure used to define local shape of the localized structure within the image [5].
Elongation indicates the flatness of the shape. Compactness feature measures
the similarity between shape of interest and a perfect ellipse. Fig. 3(c) and (d)
show mean and Gaussian curvature maps from which all the other local shape
features are extracted. Fig. 3(e) and (f) show Willmore energy map extracted
from Fig. 3(a).

Based on the observation in training, TIB patterns most likely occur in the
regions inside the lung with certain ranges (i.e, blue and yellow regions). This
observation facilitates one practically useful fact in the algorithm that, in the
feature extraction process, we only extract features if and only if at least “one”
b-scale pattern exists in the local region as well as Willmore energy values of
pixels lie in the interval observed from training. Moreover, considering the Will-
more energy has a role as hard control on feature selection and computation,
it is natural to investigate their ability to segment images. We present a seg-
mentation framework in which every voxel is described by the proposed shape
features. A multi-phase level set [6] is then applied to the resulting vectorial
image and the results are shown in Fig. 3(g). First and second columns of the
Fig. 3(g) show segmented structures and the output homogeneity maps showing
segmented regions in different grey-level, respectively. Although segmentation
of small airway structures and pathological patterns is not the particular aim
of this study, the proposed shape features show promising results due to their
discriminative power.
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Texture features. Spatial statistics based on Grey-Level Co-occurrence Matrix
(GLCM) [7] are shown to be useful in discriminating patterns pertaining to lung
diseases. As texture can give a lot of insights into the classification and charac-
terization problem of poorly defined lesions, regions, and objects, we combine
our proposed shape based invariants with GLCM based features. We extract 18
GLCM features from each local patch including autocorrelation, entropy, vari-
ance, homogeneity, and extended features of those. Apart from the proposed
method, we also compare our proposed method with well known texture fea-
tures: steerable wavelets (computed over 1 scale and 6 orientations with deriva-
tive of Gaussian kernel), GLCM, combination of shape and steerable wavelets,
and considering different local patch size.

4 Experimental Results

39 laboratory confirmed CTs of HPIV infection and 21 normal lung CTs were
collected for the experiments. The in-plane resolution is affected from patients’
size and varying from 0.62mm to 0.82mm with slice thickness of 5mm. An ex-
pert radiologist carefully examined the complete scan and labeled the regions as
normal and abnormal (with TIB patterns). As many regions as possible show-
ing abnormal lung tissue were labeled (see Table 1 for details of the number
of regions used in the experiments). After the proposed CAD system is tested
via two-fold cross validations with labeled dataset, we present receiver operator
characteristic (ROC) curves of the system performances.

Table 1 summarizes the performance of the proposed CAD system as com-
pared to different feature sets. The performances are reported as the areas un-
der the ROC curves (Az). Note that shape features alone are superior to other

Table 1. Accuracy (Az) of the CAD system with given feature sets

Features Dimension Patch Size # of patches # of patches Area under

(TIB) (Normal) ROC curve: Az

Shape & GLCM 8+18=26 17x17 14144 12032 0.8991

Shape & GLCM 8+18=26 13x13 24184 20572 0.9038

Shape & GLCM 8+18=26 9x9 50456 42924 0.9096

Shape 8 17x17 14144 12032 0.7941

Shape 8 13x13 24184 20572 0.7742

Shape 8 9x9 50456 42924 0.7450

Steer. Wavelets& Shape 6x17x17+8=1742 17x17 14144 12032 0.7846

Steer. Wavelets& Shape 6x13x13+8=1022 13x13 24184 20572 0.7692

Steer. Wavelets& Shape 6x9x9+8=494 9x9 50456 42924 0.7908

Steer. Wavelets 6x17x17=1734 17x17 14144 12032 0.7571

Steer. Wavelets 6x13x13=1014 13x13 24184 20572 0.7298

Steer. Wavelets 6x9x9=486 9x9 50456 42924 0.7410

GLCM 18 17x17 14144 12032 0.7163

GLCM 18 13x13 24184 20572 0.7068

GLCM 18 9x9 50456 42924 0.6810
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Fig. 4. Comparison of CAD performances via ROC curves of different feature sets

Table 2. p-values are shown in confusion matrix

p-Confusion Shape Steer.& Steer. GLCM

Matrix Shape

Shape&

GLCM 0.0171 0.0053 0.0056 0.0191

Shape – 0.0086 0.0094 0.0185

Steer.& – – 0.0096 0.0175

Shape

Steer. – – – 0.0195

methods even though the dimension of the shape feature is only 8. The best
performance is obtained when we combined shape and GLCM features. This
is expected because spatial statistics are incorporated into the shape features
such that texture and shape features are often complementary to each other.
In what follows, we select the best window size for each feature set and plot
their ROC curves all in Fig. 4. To have a valid comparison, we repeat candidate
selection step for all the methods, hence, the CAD performances of compared
feature sets might perhaps have lower accuracies if the candidate selection part
is not applied. Superiority of the proposed features is clear in all cases. To show
whether the proposed method is significantly different than the other methods,
we compared the performances through paired t-tests, and the p-values of the
tests are summarized in Table 2. Note that statistically significant changes are
emphasized by p < .01 and p < .05.
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5 Conclusion

In this paper, we have proposed a novel CAD system for automatic TIB pattern
detection from lung CTs. The proposed system integrates 1) fast localization
of candidate TIB patterns through b-scale filtering and scale selection, and 2)
combined shape and textural features to identify TIB patterns. Our proposed
shape features illustrate the usefulness of the invariant features, Willmore energy
features in particular, to analyze TIB patterns in Chest CT. In this paper, we
have not addressed the issue of quantitative evaluation of severity of diseases by
expert observers. This is a challenging task for complex shape patterns such as
TIB opacities, and subject to further investigation.
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Abstract. This paper introduces computational tools that could enable
personalized, predictive, preemptive, and participatory (P4) Pulmonary
medicine. We demonstrate approaches to (a) stratify lungs from different
subjects based on the spatial distribution of parenchymal abnormality
and (b) visualize the stratification through glyphs that convey both the
grouping efficacy and an iconic overview of an individual’s lung wellness.
Affinity propagation based on regional parenchymal abnormalities is used
in the referenceless stratification. Abnormalities are computed using su-
pervised classification based on Earth Mover’s distance. Twenty natural
clusters were detected from 372 CT lung scans. The computed clusters
correlated with clinical consensus of 9 disease types. The quality of inter-
and intra-cluster stratification as assessed by ANOSIM R was 0.887 ±
0.18 (pval < 0.0005). The proposed tools could serve as biomarkers to ob-
jectively diagnose pathology, track progression and assess pharmacologic
response within and across patients.

Keywords: Referenceless stratification, affinity propagation, idiopathic
pulmonary fibrosis, glyphs.

1 Introduction

The disease processes in Diffuse Parenchymal Lung Disease (DPLD) are char-
acterized by distinct cellular infiltrates and extracellular matrix deposition and
are broadly classified in CT scans into five primal forms- normal, emphysema,
ground glass, honeycombing and reticular. The distribution of these patterns
through the lung lobes is indicative of a specific DPLD disease. Differentiability
of different DPLDs is central to early application of appropriate therapy so as
to positively affect patient prognosis. Existing clinical decision support tools are
suboptimal for consistent characterization and visual representation of the type
and extent of disease in a clinician and patient friendly manner.

Image based stratification of parenchymal abnormalities specific to patient
data in a referenceless manner (with no alignment to a common coordinate sys-
tem) would facilitate consistent assessment of patient lung wellness. Previously,
referenceless unbiased stratification has been proposed for cardiac images [1,2].
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No such approach exists for the lung, especially to stratify the biological behavior
of abnormalities across patient populations. We address this unmet need using
a computational tool to stratify and a visualization tool to provide an iconic
overview of the stratifications.

Lung abnormalities were determined in terms of the primal CT appearance
forms through supervised classification. During the training phase, radiologists
selected multiple volumes of interest (VOIs) to represent the training sets for each
of the primal forms. For the supervised classification, earth mover’s distance was
used as the similarity metric between the histograms of a voxel’s neighborhood
and the labeled training set. The spatial distribution of the primal forms across
the lobes was computed and mapped into glyphs. A new pairwise dissimilarity
metric, spikelets, and affinity propagation [3] were used to stratify abnormality
distribution across the lung lobes. The clusters were analyzed statistically with
Analysis of Similarity (ANOSIM). The exemplars and their respective candidates
were automatically categorized into clinical groups using the guidelines in [4].
The glyphs and the underlying classifications were verified by the radiologist
to assess correctness. Our experimental results suggest that the proposed tool
is a valuable technology to realize the potential of P4 medicine through direct
improvement of quality and consistency in clinical pulmonary practice.

2 Materials and Methods

2.1 Datasets, VOIs and Classification

CT scans from 372 patients with disease across the DPLD spectrum were used for
this study. The patients were scanned on a HRCT scanner (140 kVp, 250 mAs,
BONE kernel recon, 1.25mm slice thickness, 50% overlap with 0.625 mm3 voxels).
Three radiologists screened the scans and selected a subset of 14 datasets to pick
multiple 153 VOIs across the primal forms. 976 VOIs were selected to represent
80, 150, 187, 265, and 294 VOIs of emphysema, ground glass, honey combing,
normal and reticular forms, respectively. The lungs, airways and vessels were
extracted using readily available techniques. During supervised nearest neighbor
classification, the histogram of 153 neighborhood around each parenchymal voxel
was compared against the VOI histograms using Earth Mover’s Distance.

2.2 Regional Abnormality Distribution and Glyph Creation

The lobar regions of the individual lungs were segmented using an approach
similar to that described in [5]. The distribution of the five primal forms within
the respective lobes was computed and used to create the glyphs. Figure 1 shows
a representative glyph. The glyph is divided into six regions each representing
a lung lobe. The lobes are uniquely labeled to indicate their spatial location.
The first letter (R/L) denotes the right and left lung, the second letter (U/M/L)
denotes respectively the upper, middle and lower lobes. Although no pleural sep-
aration demarcates the lingula from the remainder of the LU lobe, this anatomic
region was defined as LM lobe by reflection from the right lung. The origin of
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Fig. 1. Glyph layout of the distribution of abnormal patterns across different lobes of
the lung

the glyph is fixed at 12-o’-clock starting with the LU lobe. The asymmetry, if
any, between the left and right lungs can be readily observed in the glyph. The
individual lobes span through angles proportional to their respective volumes.
Within each lobe, the disease distribution is represented by color-coded sectors
proportional to the percentage of disease in that lobe. The concentric circles are
drawn at 20% intervals for enhanced visualization.

To create an unbiased stratification of the abnormality distribution, affinity
propagation [3] - an unsupervised clustering technique that automatically finds
the natural number of clusters- was used. Affinity propagation uses message
passing to iteratively find clusters from pair-wise dissimilarities of n-dimensional
data. In addition to resolving the clusters, it identifies the exemplar that is most
‘central’ to each of the clusters. Pairwise dissimilarity between given lungs A
and B based on their respective lobar distribution of the five primal patterns
was computed as

D(A,B) =
∑

R=1:6

αR ∗ dR(A,B); dR(A,B) =
∑

i=1:5

spikelet(AR
i , B

R
i ) (1)

spikelet(AR
i , B

R
i ) =

{
|AR

i −BR
i |

max(AR
i ,BR

i )
for max(AR

i , BR
i ) > acuity

0 otherwise,
(2)

where, αR = 100/V olR; V olR is the mean lobar volume; AR
i is the % distribution

of ith primal pattern in the Rth lobe of lung A; and acuity is the minimum
resolvable distribution differences, which was set to 2% in our experiments.

The clusters were categorized automatically into clinical groups using the
guidelines suggested in [4]. Accordingly, based on the type and extent of ab-
normality distribution of the individual exemplar, its cluster was labeled as one
of the following 9 types: (T1) diffuse emphysema (T2) upper-lobe emphysema
(T3) emphysema with early fibrosis (T4) probable NSIP (non-specific intersti-
tial pneumonitis), (T5) confident NSIP, (T6) NSIP with concurrent emphysema,
(T7) probable UIP (usual interstitial pneumonitis), (T8) confident UIP and (T9)
UIP with concurrent emphysema. The quality of clusters was evaluated by ra-
diological review and statistical analysis (ANOSIM).
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3 Results

Figure 2 shows representative results of the supervised classification. The voxels
in panel B are color-coded using the scheme given in Figure 1. Panel C shows the
3D rendering of the lobe definitions. The classifications were visually verified by
a radiologist. The classifications and the lobe definitions of the individual lungs
were used to compute the primal pattern distribution and subsequently the in-
dividual glyphs. Figure 3 shows a mosaic of the glyphs from all 372 CT scans.
Accounting for the voxel sizes and the number of voxels classified, it is worth
noting that information collated across a 1.86 meter3 space has been captured in
the 5x5 inch mosaic space. Even at this resolution, the glyphs provide a succinct
overview of the entire database and highlight the ease with which the intra-
and inter-patient disease distribution can be pre-attentively captured. With ef-
fortless effectiveness it is easy to visualize the presence of distinct cases with
Chronic Obstructive Pulmonary Disease (COPD- emphysematous glyphs with
blue shades), NSIP- variable amounts of ground glass and reticular distributions
and UIP- extensive reticulation and honeycombing.

Fig. 2. Representative results of parenchymal tissue classification and 3D rendering of
lobar distribution

Figure 4 shows qualitative results of the referenceless stratification. Panels A
and B show the pair-wise similarities before and after stratification; the darker
shade implies low similarity between two datasets. Affinity propagation on the
original matrix (panel A) yielded 20 unique clusters. The 20 clusters correspond
to the 20 diagonal sub-blocks shown (by red boxes along the diagonal) in panel
B; the stratification qualitatively reveals the maximization and minimization,
respectively, of intra and inter (off-diagonal sub-blocks) cluster similarity. The
maximum, minimum and mean number of candidates in the clusters were 54, 8
and 19, respectively.

Quantitative efficacy of the stratification was examined using ANOSIM R to
assess the magnitude of the differences among clusters. An R value of 1 suggests
that the communities completely differ among the defined groups, a value of 0 in-
dicates no difference among groups. The pair-wise inter-cluster R values shown
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Fig. 3. Mosaic of glyphs for all 372 datasets used in this study. The glyphs provide a
succinct overview of inter- and intra-subject distribution of parenchymal abnormalities.

Figure 5A highlights the optimality of the stratification. The combined R for
the 20 clusters was 0.887 ± 0.18 (pval < 0.0005) highlighting the greater agree-
ment of the candidates within each of the clusters. Figure 5B shows the mean
intra-cluster, exemplar-global and inter-exemplar distances for six representa-
tive clusters. The tightness of intra-cluster distances quantitatively validates the
visual representations of stratification efficacy.

The 20 clusters were automatically categorized into clinical groups based on
the abnormality distribution of their respective exemplars. Figure 6 shows the
glyphs for all the exemplars, along with their clinical categories. Differentiation
of the individual emphysematous lungs into upper lobe predominance (T2) has
profound effect on disease management due to better outcomes after lung vol-
ume resection surgery. Though the clinical guidelines suggest nine categories,
the glyphs reveal the significant pathological variations within the categories.
For example, confident UIP (T8), which has poor prognosis, has five distinct
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Fig. 4. Pairwise similarity between lungs before (A) and after (B) affinity propagation
based clustering. Lighter the shade; higher the similarity.

Fig. 5. Quantitative analysis of stratification showing intra-cluster pair-wise ANOSIM
R values (A) and comparison of intra-cluster tightness with inter-exemplar and global
similarities for representative clusters (B)

variations in the regional distribution and extent of reticular and honeycombing
patterns. Lumping such distinct variations into a single category could prevent
the delivery of personalized and expeditious clinical care. The diagnostic dis-
parity in performance between physicians based in academic versus community
centers is well known. Such disparity is disturbing and could (at times, irre-
versibly) compromise patient care. The quantitative stratification proposed in
this paper shows promise to reduce this discrepancy.

Figure 7 shows representative glyphs across the spectrum of diffuse pulmonary
lung diseases. While the confident categories of UIP (T8) and NSIP (T5) are eas-
ily differentiable by manual radiological reviews, even after accommodating the
errors due to subjective aggregation, probable categories of UIP (T7) and NSIP
(T4) are often misinterpreted. The upper lobe dominance of emphysema (T2) is
usually assessed using a count of voxels beyond a certain threshold. Such quan-
tification is extremely sensitive to image slice thickness, acquisition parameters,
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Fig. 6. The glyphs for the 20 cluster exemplars along with their categorization into
clinical groups

Fig. 7. Representative glyphs for the natural clusters categorized as confident UIP
(T8), probable UIP (T7), Diffuse Emphysema (T1), confident NSIP (T5), probable
NSIP (T4) and Upper-lobe Emphysema (T2)

and the reconstruction kernel utilized. On the other hand, the quantitative strat-
ification and glyphs described here provide unambiguous categorization of the
disease state.
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4 Discussion and Conclusion

Current management of diffuse parenchymal lung disease might best be described
as a random walk through therapy space. However, recent advances in imaging
offer opportunities to develop and validate lung-specific biomarkers as potential
cross correlates to diagnosis, staging of treatment and therapy monitoring. De-
spite the enhanced contrast and spatial resolution of HRCT scans, classification
and quantification of interstitial lung disease is difficult, and even experienced
chest radiologists are challenged with differential diagnosis. Robust, expeditious
and reproducible segmentation and characterization of the lung, lobes, airways,
vessels and parenchymal tissues, accompanied by results summarized holisti-
cally and presented in a consistent manner, will advance the field of Computer
Aided Diagnosis and elevate it to a degree of maturity and universal applicability
heretofore not obtained. The stratification and visualization strategy proposed in
this paper represents a major step towards harnessing the power of information
technology and image computing to develop a computational framework that
enables a powerful and hitherto elusive capability for pulmonary imaging evalu-
ation: a trustable, verifiable, and clinically relevant comprehensive summary of
pulmonary disease, including the extent and character of disease, both within
an individual patient and across a cohort of patients.
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Abstract. We develop a texture analysis framework to assist radiolo-
gists in interpreting high–resolution computed tomography (HRCT) im-
ages of the lungs of patients affected with interstitial lung diseases (ILD).
Novel texture descriptors based on the Riesz transform are proposed to
analyze lung texture without any assumption on prevailing scales and ori-
entations. A global classification accuracy of 78.3% among five lung tissue
types is achieved using locally–oriented Riesz components. Comparative
performance analysis with features derived from optimized grey–level
co–occurrence matrices showed an absolute gain of 6.1% in classifica-
tion accuracy. The adaptability of the Riesz features is demonstrated by
reconstructing templates according to the first principal components of
the lung textures. The balanced performance achieved among the various
lung textures suggest that the proposed methods can complement human
observers in HRCT interpretation, and opens interesting perspectives for
future research.

Keywords: Texture analysis, Riesz transform, interstitial lung diseases,
high–resolution computed tomography, computer–aided diagnosis.

1 Introduction

Successful diagnostic interpretation of medical images relies on two distinct pro-
cesses. First, abnormal image patterns are identified (e.g., fibrous tissue, ar-
chitectural distortion, ...) and, second, links between the patterns and possible
diagnoses can be established [1]. Whereas the latter requires a deep understand-
ing and comprehensive experience of the involved diseases, the former is closely
related to visual perception. Interestingly, a large scale study on malpractice in
radiology showed that the majority of errors in medical image interpretation are
caused by perceptual misapprehensions [2]. Texture analysis is central to human
image understanding and plays an important role in efficient characterization
of biomedical tissue, that cannot be described in terms of shape or morphol-
ogy [3]. As a consequence, computer–aided diagnosis (CAD) based on texture
quantification in radiological images has been an active research field over the
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past 20 years with the aim of reducing omission errors of pathological tissue by
providing systematic second opinions to radiologists.

Texture analysis is the cornerstone for differentiating between pathological
and healthy lung tissue of patients affected by interstitial lung diseases (ILD)
in high–resolution computed tomography (HRCT). ILDs group more than 150
disorders of the lung tissue of varying origin and can be differentiated only by
detecting subtle texture changes of the lung parenchyma with a characteristic
distribution within the lung anatomy [4]. Interpreting HRCT images of the chest
represents a challenge even for trained radiologists and lung specialists. Several
studies have been conducted on the use of computerized lung texture classi-
fication to assist the radiologists in HRCT interpretation for ILDs or chronic
obstructive pulmonary disease (COPD) starting from 1997 [5,6,7,8]. The success
of the CAD system is intimately related to the ability of the visual features to
catch and learn the subtle texture signatures specific to each lung tissue type,
which are typically non–deterministic. Therefore, statistical approaches that are
able to capture texture properties at any location, scale and orientation (i.e.,
affine–covariant) are required to achieve high tissue classification performance
to complement human observers. Whereas more than 60 papers using texture
analysis to classify lung tissue can be found in the literature of the past 15
years [9], research contributions on novel texture descriptors are still required
as several papers [5,6,10,11] rely on texture features derived from grey–level co–
occurrence matrices (GLCM) [12], oriented filters from Gaussian derivatives [7]
or local binary patterns (LBP) [8]. The performance of these methods depends on
the arbitrary choice of scales and/or orientations as well as a necessary grey–level
reduction for GLCMs, the latter entailing the risk of loosing precious information
contained in the full bit depth of the original image. Wavelets and filtering tech-
niques have the advantage of providing continuous responses when compared to
the binary or categorical outputs of GLCMs or LBPs, which allows for a finer de-
tection and quantification of transients in medical images and were successfully
used for lung texture classification in [7,13,14]. Specific wavelet transforms yield
multiscale, multi–orientation with infinitesimal angular precision (i.e., steerable
filterbanks) and translation invariant (i.e., undecimated transforms) analysis,
which allows to characterize textures without making a priori choices on the
affine parameters [15].

In previous work [13,9] we used isotropic wavelet frames enabling texture anal-
ysis with translation and scale covariance as well as rotation invariance. The use
of isotropic analysis was based on the assumption that no prevailing orienta-
tions are contained in the lung tissue patterns of 2D axial slices in HRCT. Three
research contributions are proposed in this article. First, a novel texture char-
acterization approach based on the Riesz transform yielding translation, scale
and rotation covariance is introduced. Second, the assumption that lung tissue
patterns are locally rotation–invariant is investigated by aligning textures using
the local prevailing orientation. Third, principal component analysis (PCA) of
the Riesz features is used to obtain templates that are discriminative for lung
textures. The approaches are evaluated and compared using a dataset of 85
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ILD cases with a large variety of lung tissue types and a realistic validation
scheme based on a leave–one–patient–out (LOPO) cross–validation (CV). We
used 13808 overlapping blocks from 2037 manually drawn regions of interest in
1225 2D HRCT slices to validate the proposed methods. A quantitative perfor-
mance comparison with optimized GLCMs is carried out.

2 Material and Methods

2.1 Dataset

A database of 85 ILD cases containing HRCT image series with a slice thickness
of 1mm, inter–slice distance of 10mm and hand-drawn regions annotated in a
collaborative fashion by two radiologists with 15 and 20 years of experience at the
University Hospitals of Geneva (HUG) [16] is used to evaluate the performance
of the proposed approaches. The diagnosis of each case was confirmed either
by pathology (biopsy, bronchoalveolar washing) or by a laboratory/specific test.
Based on [4], the texture classes are defined as healthy and four pathological lung
tissue types (i.e., ground glass, fibrosis, micronodules and emphysema) that are
used to characterize the most frequent ILDs in HRCT. The distribution of the
annotated regions and patients is detailed in Table 1.

2.2 Texture Analysis with Nth–Order Riesz Transforms

The Riesz transform is a multidimensional extension of the Hilbert transform,
which maps any function f(x) to its harmonic conjugate and is a very pow-
erful tool for mathematical manipulations of periodic signals [17]. For a two–
dimensional signal f(x), the different components of the Nth–order Riesz trans-
form R are defined in the Fourier domain as

�R(n1,n2)f(ω) =
�

n1 + n2

n1!n2!
(−jω1)n1(−jω2)n2

||ω||n1+n2
f̂(ω), (1)

for all combinations of (n1, n2) with n1 +n2 = N and n1,2 ∈ N. f̂(ω) denotes the
Fourier transform of f(x), where the vector ω is composed by ω1,2 corresponding
to the frequencies in the two image axes. The multiplication by jω1,2 in the
numerator corresponds to partial derivatives of f and the division by the norm of
ω in the denominator results in only phase information being retained. Therefore,
the 1st–order R corresponds to an allpass filterbank with directional (singular)
kernels h1,2:

Rf(x) =
�R1,0

R0,1

�
=
�
h1(x) ∗ f(x)
h2(x) ∗ f(x)

�
, (2)

where
h1,2(x) =

x1,2

2π||x||3 , (3)

and x1,2 correspond to the axes of the image [15]. The Riesz transform commutes
with translation, scaling or rotation. The orientation of the Riesz components
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N = 1 N = 2

N = 3

Fig. 1. Templates corresponding to the Riesz kernels convolved with a Gaussian
smoother for N=1,2,3

is determined by the partial derivatives in Eq. (1). Whereas 2N Riesz filters
are generated by (1), only N + 1 components have distinct properties due to
commutativity of the convolution operators in (2) (e.g., ∂2/∂x∂y is equivalent
to ∂2/∂y∂x). The Riesz components yield a steerable filterbank [15] allowing
to analyze textures in any direction, which is an advantage when compared
to classical Gaussian derivatives or Gabor filters. Qualitatively, the first Riesz
component of even order corresponds to a ridge profile whereas for odd ones
we obtain an edge profile, but much richer profiles can be obtained by lin-
ear combinations of the different components. The templates of h1,2(x) con-
volved with Gaussian kernels for N=1,2,3 are depicted in Fig. 1. The Nth–order
Riesz transform can be coupled with an isotropic multiresolution decomposition
(e.g., Laplacian of Gaussian (LoG)) to obtain rotation–covariant (steerable) basis
functions [15].

The main idea of the proposed approach is to derive texture signatures from
multiscale Riesz coefficients. An example showing healthy and fibrosis tissue
represented in terms of their Riesz components with N=2 is depicted in Fig. 2 a).
In order to provide a local categorization of the lung parenchyma, lung regions
in 2D axial slices are divided into 32×32 overlapping blocks with a distance
between contiguous block centers of 16. The Riesz transform is applied to each
block, and every Riesz component n = 1, . . . , N+1 is mapped to a multiscale
representation by convolving them with four LoG filters of scales s = 1, . . . , 4
with a dyadic scale progression. In a total of (N+1)×4 subbands, the variances
σn,s of the coefficients are used as texture features along with 22 grey level
histogram (GLH) bins in [-1050;600] Hounsfield Units (HU). The percentage
of air pixels with values ≤ −1000 HU completes the feature space learned by
support vector machines (SVM) with a Gaussian kernel.

The local dominant texture orientations have an influence on the repartition of
respective responses of the Riesz components, which is not desirable for creating
robust features with well–defined clusters of instances. For example, a rotation
of π/2 will switch the responses of h1 and h2 for N=1. To ensure that the
repartitions of σn,s are comparable for two similar textures having distinct local
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a) b)

Fig. 2. Riesz representation of healthy (gray dots) versus fibrosis (black crosses) pat-
terns. a) Initial Riesz coefficients in 3D. b) The Riesz coefficients in 2D after having
locally aligned the texture based on local prevailing orientation. The component cor-
responding to ∂2/∂x∂y is zero after local rotation and is not shown in b).

prevailing orientations, the filters are oriented to have maximal response along
h1. The dominant orientation θdom of h1 at the position xp is

θdom(xp) = argmax
θ∈[0,π]

��
h

(θ)
1 ∗ g

�
∗ f

�
(xp), (4)

where h
(θ)
1 (x) is h1 rotated by θ and g(x) is a Gaussian kernel. A local ori-

entation is obtained by rotating every Riesz filter hn with θdom and is done
analytically [15]. 2nd–order Riesz coefficients of healthy and fibrosis tissue after
local orientation are shown in Fig. 2 b).

3 Results

The proposed methods are evaluated using blocks from annotated ROIs with a
LOPO CV of 85 patients. For each fold, the cost C of the SVMs and the width
σk of the Gaussian kernel are optimized with the training set where parameters
allowing best classification accuracy on the training set are found with a grid
search (C ∈ [0.1, 1000], σk ∈ [10−2, 101]) and a 5–fold CV. The classification per-
formances are compared with optimized GLCMs that are extensively used for
lung texture analysis in the literature. Texture features derived from GLCMs
are contrast, correlation, energy and homogeneity for various pixel distances
d = 1, . . . , 5 and orientations θ = 0, π/4, π/2, 3π/4, similarly to [8]. Three grey–
level reductions are compared: 8, 16 and 32 levels l. Optimized SVMs learn in the
feature space spanned by concatenated GLCM attributes from every spacing and
orientation parameters as well as GLH and air percentage. Classification accura-
cies using Riesz features of various orders (N = 1, . . . , 13) are compared before
and after local rotation in Fig. 3 a). A class–specific performance comparison
of best setups for Riesz, Riesz with local orientation, and GLCMs is shown in
Fig. 3 b). The confusion matrix of the best performing technique (N=6 with lo-
cal orientation) is detailed in Table 1. In Fig. 4, the distributions of the classes in
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Fig. 3. a) Global classification accuracies with N = 1, . . . , 13. N=6 with local orien-
tation reaches best performance with 78.3% correct predictions of 13808 instances. b)
Class–specific accuracies of the two best configurations (N=1 and N=6 with orienta-
tion) and best performance of GLCMs (l=16).

Table 1. Confusion matrix in % of the best performing setup (N=6 with local orien-
tation). The numbers of blocks and patients used for the evaluation are detailed. Note
that a patient may have several types of lung tissue disorders.

healthy emphysema ground glass fibrosis micronodules # blocks # patients

healthy 77.5 7.6 4.1 0 10.7 1975 7

emphysema 8.4 73.3 5.9 6.2 6.2 1298 6

ground glass 14.1 0.5 72.3 10 3.1 3513 32

fibrosis 0.7 2.6 8.4 84.5 3.8 3554 37

micronodules 11.6 0.7 3.5 3.7 80.5 3468 16

Fig. 4. Visualization of the feature space projected on the two dominant principal
components. The corresponding Riesz templates (scale 2) are shown on the axes.

terms of the two dominant principal components of the 6th–order Riesz features
with local orientation are shown. The coefficients from the PCA components are
used to weight each Riesz component and create learned templates represented
on axes in Fig 4.
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4 Discussions and Conclusions

We propose a novel texture classification method based on the Riesz transform
to categorize lung tissue patterns in HRCT image series from patients affected
with ILDs. Compared to the literature, the Riesz features allow to analyze lung
texture without prior assumptions on the prevailing scales and orientations and
show higher classification performance than popular GLCM texture features.
The inherent local orientations of the lung texture are studied by locally steer-
ing the Riesz components before further classification. An optimal order of N=6
with local orientation allows best classification performance with 78.3% correct
predictions. Fig. 3 a) shows that even orders of the Riesz transform are providing
best results, which suggests that ridge detectors are more appropriate than edge
detectors for lung texture characterization. Fig. 3 b) shows that all lung tissue
types except ground glass are better classified with local orientation. All lung
tissue types benefit from Riesz texture features when compared to GLCM fea-
tures. Classes with highest improvement are healthy, fibrosis and micronodules,
which are those containing most texture information. The performance com-
parisons are statistically significant for all classes (p ≤ 0.0002) but emphysema
(p = 0.073). An absolute gain of 6.1% in global classification accuracy is obtained
with Riesz and rotation adjustment (78.3%) when compared to GLCM (72.2%).
This suggests that the arbitrary choices of scale and orientation parameters are
not optimal for accurate characterization of the lung texture, although these val-
ues are the most commonly used in the literature [5,6,7,10,11,8]. Table 1 shows
that healthy and ground glass patterns are the most challenging to separate due
to high intra–class variability among patients and severity of disease . Confusion
between micronodules and healthy tissue is observed, which is a limitation of 2D
approaches as bronchovascular structures have similar appearance as micronod-
ules in the 2D axial slices. Unfortunately, the HRCT imaging protocol is very
anisotropic with a gap between slices of 10mm and does not allow for full 3D tex-
ture analysis. The Riesz features are easily extendable to three dimensions [15] to
reduce the confusions between micronodules and healthy bronchovascular struc-
tures in isotropic multidetector CT. The balanced performance achieved among
the various classes of lung tissue suggest that the proposed features are efficient
to analyze lung tissue patterns for a large variety of ILD diagnoses. The ability
of the Riesz features to adapt to lung textures is illustrated in Fig. 4 where tem-
plates according to the dominant principal components of the feature space are
shown. In future work, feature selection and learning methods will be incorpo-
rated to promote the most relevant Riesz components and reduce the influence of
noise. Thanks to the affine–covariant properties of the proposed methods, they
are expected to provide tools for analyzing textures with no prior assumptions
on translation, scale and orientation parameters in various applications.
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Abstract. Automatic localization of multiple anatomical structures in medical
images provides important semantic information with potential benefits to diverse
clinical applications. Aiming at organ-specific attenuation correction in PET/MR
imaging, we propose an efficient approach for estimating location and size of
multiple anatomical structures in MR scans. Our contribution is three-fold: (1)
we apply supervised regression techniques to the problem of anatomy detection
and localization in whole-body MR, (2) we adapt random ferns to produce multi-
dimensional regression output and compare them with random regression forests,
and (3) introduce the use of 3D LBP descriptors in multi-channel MR Dixon
sequences. The localization accuracy achieved with both fern- and forest-based
approaches is evaluated by direct comparison with state of the art atlas-based
registration, on ground-truth data from 33 patients. Our results demonstrate im-
proved anatomy localization accuracy with higher efficiency and robustness.

1 Introduction

Following the success of combined PET/CT, the possibility of combining PET with
MRI has gained increased interest, as significant advantages are expected compared
to PET/CT for many imaging tasks in neurology, oncology and cardiology [1]. How-
ever, before its introduction in the clinical practice, a technical challenge impacting the
quality of PET/MR imaging needs to be solved: the attenuation correction of 511 keV
photons according to the radiodensity of the tissues. While in PET/CT [2], radioden-
sity information provided by CT at X-ray energies can be converted into attenuation
information, MR does not provide any information on the tissue density. Therefore,
methods have been investigated to generate an attenuation correction map directly from
MR. For brain imaging, atlas-based solutions using registration were evaluated in [3,4].
For whole-body imaging, different approaches based on the classification of tissues into
4 classes (background, lungs, fat, and soft tissue) have been investigated, for instance
in [5]. While previous methods showed promising results for attenuation correction of
whole body imaging with PET/MR, they propose only a coarse tissue classification, not
accounting for organ-specific attenuation and for the attenuation introduced by bones.

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAI 2011, Part III, LNCS 6893, pp. 239–247, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



240 O. Pauly et al.

To further improve the quality of whole-body PET data reconstruction, we aim at gener-
ating organ-specific attenuation information directly from MR. Therefore, the position
of the organs which impact the attenuation of photons need to be known. This paper
presents an approach for simultaneously localizing multiple organs in multi-channel
whole-body MR. It builds upon state-of-the-art non-linear regression techniques. We
adapt random ferns for regression and compare them to random regression forests. Ex-
periments on 33 patient scans demonstrate better performance than atlas-based tech-
niques in terms of accuracy, speed, and robustness.

2 Related Work

Classical object detection algorithms are based on sliding windows and classifiers whose
role is to predict whether a voxel belongs to the object of interest or not. In [6], Vi-
ola and Jones introduced a fast detection approach based on a cascade of classifiers
trained using Adaboost. Built as a succession of classifiers taking sequentially more
and more features into account. This approach achieved impressive performance for
real-time face detection. In medical applications, there has been an increasing interest
in regression-based solutions for organ localization. Since the human body consists of
a specific arrangement of organs and tissues, it can be expected that voxels, based on
their contextual information, can predict the surrounding anatomy. For instance, if the
neighborhood of a voxel shows an appearance which is typical of heart tissue, besides
the position of the heart, this voxel can provide an estimate of position of the nearby
lungs. In [7], Zhou et al. introduced an approach based on boosting ridge regression
to detect and localize the left ventricle (LV) in cardiac ultrasound 2D images. There,
the learned function predicts the relative position, scale and orientation of the LV based
on Haar-like features computed on 2D images. Impressive results are demonstrated on
echocardiogram sequences. To detect and localize the heart chambers in 3D cardiac
CT, Zheng et al. proposed in [8] an approach called marginal space learning (MSL). To
break down the complexity of learning directly in the full 3D similarity transformation
space, the authors demonstrate that training a classifier on projections of the original
space effectively reduces the search space. Using this idea, they build a cascade of clas-
sifiers based on probabilistic boosting tree (PBT) to predict first the position, then the
position-orientation and finally the full 3D pose. In [9], the authors push this idea fur-
ther to non-rigid marginal space learning using statistical shape models. Although these
approaches have shown very good performance on CT scans, building such a cascade of
classifiers is a computationally intensive learning procedure which requires large train-
ing sets. In this paper we avoid intensive training by building a single regressor predict-
ing simultaneously the position of multiple organs. In [10], Criminisi et al. proposed a
regression approach based on random forests for the localization of organs in 3D CT
scans. The authors showed that their method achieves better performance than atlas
registration, and this, while benefiting from fast training and testing. While in [10], the
authors could rely on absolute radiodensity values provided by CT, here, we deal with
MR images which provide only relative values and suffer from field inhomogeneities.
To tackle this challenging problem, we adapt the regression forest framework by intro-
ducing 3D LBP descriptors. Additionally, we implement a random ferns approach [11]
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Fig. 1. (Left) Each voxel predicts its relative displacement to all organ bounding boxes repre-
sented here as a green box. Multi-scale textural information is extracted using LBP-like feature
representation computed over 3D cuboidal regions. (Right) 1D regression example: data samples
in red, blue lines represent the partition built over the input feature space. In each cell, simple
linear models (in green) are fitted to the points. Their combination over the full space results in a
complex non-linear predictor.

and compare it with forests. Both regression techniques are evaluated and compared to
an atlas-based registration approach.

3 Proposed Method

This section describes details of our organ detection and localization approach. First,
we cast this problem as a regression task. Second, we introduce our feature representa-
tion based on water and fat channels computed from MR Dixon sequences. Third, we
present regression forests and explain how to adapt random ferns for regression. Finally,
we show how to combine voxel predictions to localize all organs of interest in one shot.

3.1 Problem Statement

In our framework each voxel votes for the relative position of all organs of interest. The
individual votes will produce very noisy predictions. But the probabilistically weighted
combination of all votes will produce an accurate output (see Fig.1). Since the relative
displacements we want to predict are continuous values, we use a regression paradigm.
In the following, we introduce new features based on the fat and water MR Dixon
channels, and then present a new non-linear regression approach based on random ferns.
Next, we introduce the general problem of organ localization as a regression task.

Input Space: Formally, let us consider the water W and fat F channels computed from
MR Dixon sequences defined by the two intensity functions I(W ), I(F ) : Ω → R,
Ω ⊂ R

3 being the image domain. While x = [x, y, z] represents a voxel location in this
domain Ω, Ψ(I(W ), I(F ),x) = X denotes a function mapping the voxel location to a
feature space according to both intensity functions I(W ) and I(F ). The role of feature
representation X is to encode contextual information in the neighborhood of location x
computed using I(W ) and I(F ). X is the input of our regression function.



242 O. Pauly et al.

Output Space: Let us now consider a set of K organs of interest contained in bounding
boxes O = {O1, · · · , Ok, · · · , OK}. Each bounding box Ok is represented by a vector
Ok =

[
x0

k, y
0
k, z

0
k, x

1
k, y

1
k, z

1
k

]
. The relative displacement vk between voxel location

x and bounding box Ok is parametrized as:

vk =
[
x0

k − x, y0
k − y, z0

k − z, x1
k − x, y1

k − y, z1
k − z

]
(1)

We denote by V = [v1, · · · ,vk, · · · ,vK ] the vector containing relative displacements
between x and all organs of interest. V is the output of our regression function. On
Fig.1, these relative displacements between the point x and the liver bounding box are
represented by the red arrows. Here, we consider the following organs: head, left lung,
right lung, heart and liver.

Regression: We assume a training set
(
X(n),V(n)

)N

n=1
computed over a set of N pa-

tient MR volumes. We could think of modeling the posterior distribution p(V|X) link-
ing the input and output spaces. However, in such high-dimensional feature spaces,
modeling the posterior distribution directly is very difficult. To break down the com-
plexity of this problem, we can first subdivide the input feature space by building a
partition P over it. Indeed, by subdividing the feature space, we obtain cells containing
data points which are easier to model even with simple mathematical models such lin-
ear or constant functions. As illustrated by the low-dimensional toy example on Fig. 1
(right), the combination of these models over the whole partition results then in a com-
plex non-linear model. Formally, P is defined as an ensemble of T cells P = {Ct}T

t=1.
With P given, we propose to model the posterior in each cell Ct as follows:

p(V|X ∈ Ct,P) = Nt(X|μt, Σt) (2)

where Nt is a multivariate Gaussian distribution whose parameters are estimated during
the training phase. In fact, this choice permits to model the full distribution as a piece-
wise Gaussian distribution. In contrast to fitting a Gaussian mixture model, partitioning
is here performed in the input feature space and not in the output space. Moreover, in
the case of trees, this partitionning is performed hierarchically. Based on this, we can
model the probability distribution of V over the full feature space according to partition
P as:

p(V|P) =
T∑

t=1

p(V|Ct,P)p(Ct) (3)

Clearly, the quality of the posterior approximation depends on the partition P . If its
number of cells T is low, then the posterior approximation will be very rough. On the
other hand, if T is high, each cell will include few training points. In this case, the
partition P tends to overfit the training data and suffers from poor generalization. In
[12], Breiman demonstrates that replacing a single partition P with an ensemble of in-
dependent random partitions {Pz}Z

z=1 leads to an ensemble regressor achieving better
generalization. In this paper, we apply regression forests and adapt random ferns for re-
gression to construct multiple independent partitions {Pz}Z

z=1. The posterior estimates
from the different partitions of the ensemble are then combined using averaging. Fi-
nally, we can estimate in one shot the position of all organs of interest contained in
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variable V̂ using the mathematical expectation: V̂ =
∫
V

Vp(V)dV. Before going into
the details of our regression techniques in section 3.3, let us first describe the feature
representation we use in the problem of organ localization in MR Dixon sequences.

3.2 Feature Representation

As described in [13], MR Dixon imaging techniques are based on the one shot acqui-
sition of a so-called “in phase” scan where water and fat signals are in-phase and an
“opposite phase” scan where water and fat signals are 180◦ out-of-phase. Using these 2
scans from the same patient, water and fat signals can be separated to construct a water
I(W ) and a fat I(F ) channel. Since these 2 channels are perfectly registered, we propose
to take advantage from their complementary nature and design a feature representation
based on both water and fat information. While in CT intensity information is directly
related to the underlying tissue distribution, MR intensity information is not absolute
and suffers from variability between different images. For this reason, we will not rely
on intensities as in [10], but on textural information by employing Local Binary Pat-
terns (LBP) [14]: we propose to extract textural context variations at different scales
(see Fig. 1). Let us consider a 3D region Rs

x at scale s centered on voxel location x
and a set {Ns,q

x }Q
q=1 of Q 3D asymmetric cuboidal regions having different sizes, ori-

entations and offsets in the neighborhood of x. Using this, we can extract two binary
feature vectors X(W )

s and X(F )
s from the two channels where each entry is the result of

the following binary test comparing average intensities within regions Ns,q
x and Rs

x:

X(i)
s [q] =

1
|Ns,q

x |
∑

x′∈Ns,q
x

I(i)(x′) <
1

|Rs
x|

∑
x′∈Rs

x

I(i)(x′), (4)

and this, ∀q ∈ {1, · · · , Q} and i ∈ {W,F}. Repeating this operation at several scales
results in two feature vectors X(W ) and X(F ) describing the multi-scale textural context
for both channels in the neighborhood of voxel location x. Since X(W ) and X(F ) are
binary vectors, they can be further encoded to reduce their dimensionality. Finally, they
are concatenated in one feature vector: X =

[
X(W ), X(F )

]
.

3.3 Ensemble Regression Approaches

This section explains how to use forests and ferns to efficiently partition the input data.
While regression forests have been used for detecting organs in CT [10], there exists
little work on ferns-based regression. In [15], Dollar et al. use a ferns-based regressor
in a cascade fashion for pose detection of objects in 2D images. In contrast, we use a
single ensemble regressor.

Forests and ferns: Random forests [12] are constructed as an ensemble of independent
random trees. Each tree is a set of decision functions that split feature vectors at each
node towards the left or the right branch. Random ferns, later introduced by Özuysal et
al. [11], are an ensemble of constrained trees. While a tree applies a different decision
function at each node, a fern systematically applies the same decision function for each
node of the same level. Results of these random tests are finally stored as binary values.
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Ferns benefit from a more compact and simple structure for an accuracy that is similar
to those of random trees [11]. In fact, while 2(N−1) operations are needed to grow a
tree of 2N leaves, only N operations are needed to grow a fern of 2N leaves.

Let us now describe these partitioning approaches more formally. We denote by F ={
F(z)

}Z

z=1
an ensemble of trees or ferns. Each element of this ensemble induces an

independent partition P(z) =
{
C(z)
1 , · · · , C(z)

T

}
of the input feature space. Each tree or

fern F(z) is defined as a set of L nodes, each node being equipped with a linear function
fl and an associated threshold τl, l ∈ {1, · · · , L}. The output of evaluating a pair

(f (z)
l , τ

(z)
l ) on a visual feature vector X is binary, that is f

(z)
l (X, τ

(z)
l ) : X �→ {0, 1}.

While in a tree, the output value denoted by b
(z)
l decides whether X gets pushed towards

the left or the right branch, in a fern, X is evaluated at all nodes. The corresponding
outputs are then stored in binary vector b(z) = [b(z)

1 , . . . , b
(z)
l , . . . , b

(z)
L ]	. In the end,

while X is pushed through the whole tree until it reaches a leaf (which is a cell C(z)
t of

the partition P(z)), in a fern, the full vector b(z) encodes the cell index of the partition
where the vector falls.

Training/Testing: During the training of a fern, the whole training data is used at each
node. This is in contrast to trees where only a subset is considered at each node. If

we consider a training set
(
X(n),V(n)

)N

n=1
computed over a set of different patient

scans, all feature vectors are pushed through the ferns ensemble and fall into the cells
of the different partitions. Finally, the parameters of each Gaussian can be estimated for

each cell C(z)
t using the subset

{
V(n)|X(n) ∈ C(z)

t

}N

n=1
of training data that fell into

C(z)
t . In the current paper, we do not use optimization in the construction of our ferns

regressor, i.e. the linear functions and their associated thresholds are chosen randomly.
While this permits to have a very fast training procedure, it provides independency from
the training set. This can be an advantage for instance in the case of noisy data. Once
the training has been performed, all node functions and thresholds are frozen. During
the test phase, an unseen data point X is pushed through the whole ensemble until it
reaches a cell in each partition. Then, each cell contributes to the final prediction using
its stored Gaussian model as seen in section 3.1. Next, we describe how to combine the
predictions to localize all organs of interest.

3.4 Anatomy Localization

Let us consider the water I(W ) and fat I(F ) channels of an unseen patient. From

both channels, a set of feature vectors
{
X(n)

}N

n=1
is extracted from voxel locations{

x(n)
}N

n=1
. By pushing this set of feature vectors through the regression ensemble,

predictions
{
V̂(n)

}N

n=1
are computed as described in section 3.1. They correspond

to the relative displacements V̂(n) = [v̂1, · · · , v̂k, · · · , v̂K ] between each location
x(n) =

[
x(n), y(n), z(n)

]
and all organ bounding boxes O = {O1, · · · , Ok, · · · , OK}.

The bounding box of organ Ok can be finally estimated as follows:
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Ok =
N∑

n=1

wn

(
v̂(n)

k +
[
x(n),x(n)

])
(5)

where each wn weights the contribution of voxels according to the confidence of their
predictions. Note that

∑N
n=1 wn = 1. In this paper, we discard contributions having

low confidence and perform averaging on the remaining predictions.

4 Experiments and Results

In this section, we compare our approaches based on regression forests and random
ferns with the current state-of-the-art multi-atlas registration.

Data: Our dataset currently consists of scans from 33 patients who underwent a 3-Tesla
whole-body MR Dixon sequence. All patients have cancer (mostly neck, lung, liver can-
cer) and show a high variability in their anatomy partially due to their disease. For the
detection and localization of organs, we use the water and fat channels. In each scan,
we manually delineated the bounding boxes for following organs: head, left lung, right
lung, liver and heart. The size of the volumes are 192×124×443 and the pixel spacing
is 2.6 × 2.6 × 2.6 mm.

Regression approach: 100 runs of cross-validation experiments have been conducted
where each experiment consists of a training phase on 20 patients chosen randomly and
a test phase on the 13 remaining patients. For both forests and ferns, all parameters
(number of trees/ferns and tree depth/number of nodes) have been tuned by performing
grid-search within the same range for both techniques. Note that node optimization has
been performed for random forests based on information gain (cf. [10]). For prediction,
each fourth pixel is used and described using 3D LBPs computed over 26 cuboidal re-
gions chosen at 3 different scales.

Multi-atlas registration: 100 runs of cross-validation experiments have been performed.
Each experiment is defined as follows: a set of 20 patients are chosen randomly as
multi-atlas database and 1 patient is randomly chosen as test case. All 20 patients from
the database are registered to the test patient using affine registration. Then, using the
ground truth position of the bounding boxes of the test patient (which is not available
in reality), we evaluate the theoretical lower and upper bounds of the error by using
the patients in the database who provide the lowest and highest localization error. The
mean error is computed over the whole database.

Results: Results reported on Tab.1 shows that we achieve an accuracy which is better
than the “best case” atlas accuracy, while providing an increased robustness. Taking a
look at the localization error per organ, one can notice that the lowest error for our ap-
proach is achieved for the localization of the head, which is due to the fact that the head
is surrounded by a lot of air which makes it easier to localize. While the heart shows
second lowest error, lungs and liver were more difficult to localize. This is mainly due
to the high inter-patient variability of the shape of these organs. The best results were
obtained with 14 ferns/6 nodes for random ferns, and 6 trees/depth of 8 for regression
forests. On a laptop with MATLAB 64 Core Duo 2.4 GHz, the training/testing time on



246 O. Pauly et al.

Table 1. Comparative results: Compared to atlas-based method, our approaches based on ran-
dom ferns and forests achieve better accuracy and lower uncertainty

MEAN LOCALIZATION ERRORS (mm)

Organs Head Left lung Right lung Liver Heart Overall

Random ferns 9.82 ± 8.07 14.95 ± 11.35 16.12 ± 11.73 18.69 ± 13.77 15.17 ± 11.70 14.95 ± 11.33

Random forests 10.02 ± 8.15 14.78 ± 11.72 16.20 ± 12.14 18.99 ± 13.88 15.28 ± 11.89 15.06 ± 11.55

Atlas lower bound 18.00 ± 14.45 14.94 ± 11.54 15.02 ± 13.69 18.13 ± 16.26 13.31 ± 11.03 15.88 ± 13.40

Atlas upper bound 70.25 ± 34.23 60.78 ± 29.47 63.95 ± 30.13 70.59 ± 32.88 60.38 ± 28.90 65.19 ± 31.12

Atlas Mean 35.10 ± 13.17 30.41 ± 11.39 29.85 ± 12.62 31.74 ± 13.49 29.82 ± 12.23 31.38 ± 12.58

20/13 patients is 0.7/0.5 s for random ferns. Random Forests need 25/1 s. Concerning
atlas registration, each single affine registration needs 12.5 s. To conclude, our approach
provides a fast and robust solution for organ detection and localization and thus fulfills
our requirements towards organ-specific attenuation map.

5 Conclusion

Our contribution is a supervised regression approach based on random ferns and random
forests to detect and localize in one shot multiple organs in whole-body multi-channel
MR images. Experiments conducted on a dataset of 33 patients show that our approach
achieves an accuracy which is better than atlas-based methods, while providing higher
robustness (lower uncertainty) and faster training/prediction times. Furthermore, this
approach can be also useful to integrate semantic information i.e. incorporating organ
labels in further applications such as registration, image navigation or image retrieval. In
future work, we plan to investigate the online performance of the proposed approach to
enable a fast updating of our organ localization system, and then we will move towards
the construction of organ-specific attenuation correction maps.
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Abstract. This paper presents a new bronchoscope motion tracking
method that utilizes manifold modeling and sequential Monte Carlo
(SMC) sampler to boost navigated bronchoscopy. Our strategy to esti-
mate the bronchoscope motions comprises two main stages:(1) broncho-
scopic scene identification and (2) SMC sampling. We extend a spatial
local and global regressive mapping (LGRM) method to Spatial-LGRM
to learn bronchoscopic video sequences and construct their manifolds.
By these manifolds, we can classify bronchoscopic scenes to bronchial
branches where a bronchoscope is located. Next, we employ a SMC sam-
pler based on a selective image similarity measure to integrate estimates
of stage (1) to refine positions and orientations of a bronchoscope. Our
proposed method was validated on patient datasets. Experimental re-
sults demonstrate the effectiveness and robustness of our method for
bronchoscopic navigation without an additional position sensor.

1 Introduction

During bronchoscopic interventions, physicians must know the position and ori-
entations of a bronchoscope inside the airway trees, since they usually perform
transbronchial lung biopsy (TBLB) to obtain samples of suspicious tumors for
the assessment of bronchus and lung cancer. To localize and track the broncho-
scope, current state of the art in navigated bronchoscopy includes two main
approaches (or a combination of both): (1) image-based algorithms and (2)
electromagnetic tracking (EMT). Although these methods proved good perfor-
mance [1,2,3], it remains challenging to correctly localize the bronchoscope to
places where it is exactly observing. Image-based schemes cannot tackle situa-
tions where problematic bronchoscopic video images (e.g., bubbles and motion
blurring) happen. EMT-based methods often locate bronchoscopes incorrectly
under any airway deformation, and accuracy of an EMT sensor measurements
is heavily worsened by magnetic filed distortion. Furthermore, no matter what
approaches are used for bronchoscope motion tracking, they hardly adapt them-
selves to situation changes (e.g., patient coughing or dynamic errors in EMT
outputs) over time during bronchoscopic interventions.
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Beyond methods mentioned above, our primary idea of bronchoscope motion
estimation is that bronchoscopic video sequences basically consist of three cate-
gories: (1) uninformative class, (2) inter-bronchus class, and (3) intra-bronchus
class. The first class only includes problematic bronchoscopic frames (also refer
to ambiguities) due to specular- or inter-reflection, bubbles, motion blurring,
or collision with the bronchial walls. The informative category comprises inter-
and intra-bronchus classes, which correspond to bronchoscopic frames with or
without folds, and bronchoscopic images with bifurcations, respectively. A bron-
choscopic image or scene can always be classified to one of three categories.

Based on these ideas, this work first learns bronchoscopic video manifolds to
segment a bronchoscopic video into different clusters where each cluster repre-
sents one bronchial branch. We here construct bronchoscopic manifolds based on
extending a local and global regressive mapping (LGRM) method [4] to Spatial-
LGRM. By embedding an input image into these clusters, we can find an optimal
bronchial branch that corresponds to its scene where a bronchoscope is observ-
ing. Hence, we can roughly obtain the pose of the camera. We then perform SMC
sampling based on a selective image similarity measure to integrate the estimates
of Spatial-LGRM-based learning to refine the localization of the bronchoscope.

It is worthwhile to highlight several aspects of our approach as follows. First,
we propose a new framework of manifold modeling and SMC sampling to deter-
mine localizations of a bronchoscope for navigated bronchoscopy beyond image-
based methods and EMT systems. Note that our manifold learning-based method
for bronchoscopic scene identification provides an almost real-time means to
roughly estimate the position and orientation of a bronchoscope. Next, we con-
struct a new manifold modeling called Spatial-LGRM, which combines pose in-
formation to characterize the bronchoscope movements. Last, we introduce SMC
sampling to incorporate manifold-based estimates and to tackle situations where
ambiguities occur in bronchoscopic videos. Additionally, although we focused on
bronchoscope motion tracking, we believe that our framework should also be
appropriate to navigate other diagnostic endoscopes, e.g., colonoscope.

2 Bronchoscope Motion Tracking: ManiSMC

2.1 Bronchoscopic Scene Identification

(a) Preprocessing. We segment each 3D CT dataset to obtain bronchial tree
structure information B: B = {b1, · · · ,bu, · · ·bk;u = 1, 2, · · · , k}, where k is the
number of bronchial branches, and bu describes the centerline of one bronchial
branch with its start position su and end position eu; branch direction du can
be computed by du = eu − su. B is used to generate training data.

For each input RB image It at frame t, we first check whether it is an unin-
formative frame. In the HSB (HSB: Hue, Saturation, Brightness) color space, we
compute hue and brightness deviations between current RB image and a virtual
image generated by a virtual camera with an estimated pose inside the airway
trees. If hue and brightness deviations are bigger than two predefined thresh-
olds, It is considered as an uninformative frame. If It is an informative image,
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we then perform morphology-based bifurcation detection to determine whether
It is a bifurcation (intra-bronchus) image. We extract hole regions in It: if hole
regions is more than two and the distances among these regions are constrained
in a domain (here need to set minimum and maximum values for this domain),
It is an image with observed bifurcations.

(b) Training Data Generation. By bronchial centerline information B, we
generate training data by changing positions and orientations of a virtual camera
placed in a pre-built 3D anatomical airway model. Let p denotes the camera
position. Three vectors ex, ey, and ez (ex = ez ×ey) describe orientations of the
virtual camera. We update positional parameters of the virtual camera by:

p = pv
u +

r

3
ey, pv

u = su + αudu, (0, ey) = qφ(0, e0
y)q−1

φ , qφ = (cos
φ

2
, sin

φ

2
e0

z), (1)

where pv
u is the v-th chosen point on the centerline of branch bu, r is the ra-

dius of bu, and αu ∈ (0, 1) is constant coefficient. Simultaneously, we change
orientational information by updating three vectors using quaternion q:

(0, ez) = qωqθ((0, e0
z)q

−1
θ q−1

ω , (0, ey) = qϕqωqθ((0, e0
y)q−1

θ q−1
ω q−1

ϕ , (2)

qθ = (cos
θ

2
, sin

θ

2
e0

x),qω = (cos
ω

2
, sin

ω

2
e0

z),qϕ = (cos
ϕ

2
, sin

ϕ

2
e0

z), (3)

where e0
z = du/‖du‖, e0

y is a random vector that satisfies: e0
y · e0

z = 0, ω and ϕ
are rotational angles around e0

z, θ is a rotational angle around e0
x.

Generally, we generate two categories training data: (1) inter-bronchus and
(2) intra-bronchus, by adjusting coefficient αu: for inter-bronchus (fold) images
αu ∈ [0.1, 0.3], and intra-bronchus (bifurcation) images with αu ∈ [0.7, 0.9].

(c) Learning Bronchoscopic Video Manifolds. After generating training
data, we calculate low dimensional embedding spaces or eigenspaces and map-
ping functions or eigenmaps using LGRM that was proved to provide better
performance more than other manifold learning methods in [4].

Suppose n training images X = {x1, · · · ,xi, · · · ,xn}, where xi ∈ R
D, D =

w × h, w × h is the image size. Eigenspace Y = {y1, · · · ,yi, · · · ,yn} are low
dimensional embedding manifolds of X , where yi ∈ R

d, (d << D). Manifold
learning aims to map X to Y by finding eigenmap M ∈ R

D×d: xi → yi,R
D →

R
d. Note that X,Y, and M represent matrices of X ,Y, and M.
In LGRM, since each image xi is first transformed to a Hilbert space H and

assumes that there exists a linear projection between H and R
d, for any xi, its

low dimensional embedding yi satisfies:

yi = ψ (M)T ψ (xi) + N, (4)

where ψ(M)T maps M from H to R
d and N is a residual term.

Specially, finding Y and M can be formulated the following optimization
problem in terms of LGRM [4]:

min
YT Y=I

Tr
[
YT (Ll + μLg)Y

]
, (5)
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where Tr is the trace operator, I is an identity matrix, (Ll + μLg) is the Lapla-
cian matrix that is the key component in manifold learning, and μ is a con-
stant. Ll that preserves the local manifold structure is calculated by Laplacian
Eigenmaps [5]. Lg denotes a kernelized global regression regularization, which
is the main different part from other manifold learning algorithms; it can com-
puted by Lg = ξH (HKH + ξI)−1 H, where ξ is a regularization parameter, H
is the global centering matrix, and K is the kernel matrix with its component
Kij = exp(−‖xi − xj‖/σ2) between two training images xi and xj .

Performing eigen decomposition on (Ll + μLg), we can obtain eigenspace Y.
Seeking partial derivatives of Eq. 5, ψ(M) and N can be determined by [4]:

ψ (M) = ψ (X)H(Hψ (X)T XH + ξI)−1Y, N =
1

m
YT 1m − 1

m
MT ψ (X)1m, (6)

when constant m reckons on Ll and 1m ∈ R
m is a vector of one.

After obtaining eigenspace Y and eigenmap M, for any input RB image It,
its embedding yt can be easily obtained by Eqs. 4 and 6:

yt = (ψ (X)H(Hψ (X)T XH + ξI)−1Y)T ψ (xt) +
1

m
YT 1m − 1

m
MT ψ (X)1m. (7)

However, LGMR only use intensity information of training images. This means
Ll and Lg (or K) only preserve intensity information of training images. From
our experiences, intensity of inter-bronchus (fold) images are quite similar, al-
though they may generate from totally different observation positions and ori-
entations. This results in similar embedding representations of inter-bronchus
images in Y; it may collapse clusters to wrongly identify bronchoscopic scenes
and incorrectly estimate bronchoscope localizations.

To overcome such a drawback of LGRM, we extend it to Spatial-LGRM that
integrates spatial information included camera position p and orientation matrix
r(ex, ey, ez), i.e., we add p and r(ex, ey, ez) to yi w.r.t xi:

(yi) → ys
i = (yi,p

i, ei
x, ei

y, ei
z), Y → Ys, R

d → R
(d+12). (8)

Finally, we obtain eigenspace Ys and eigenmap M for RB scene clustering.

(d) Bronchoscopic Scene Clustering. After preprocessing input RB image
It, we cluster It to recognize current bronchoscopic scene by: (a) embedding
It to Ys using M in terms of Eq. 7 and obtain ys

t , (b) calculating Euclidean
distance Ci

t−1 between estimated position pt−1 of It−1 and pi ∈ ys
i ∈ Ys: Ci

t−1 =√
‖pt−1 − pi‖2, and choosing Jp nearest neighbors for ys

t by Ci
t−1: {ys

i }
Jp

i=1, (c)
computing orientation deviation Oh

t−1 between estimated rotation matrix rt−1

of It−1 and rh(eh
x, e

h
y , e

h
z ) ∈ ys

h ∈ {ys
i }

Jp

i=1: O
h
t−1 = arccos((Tr(rhrT

t−1) − 1)/2),
and selecting Jo nearest neighbors by Oh

t−1 from {ys
i }

Jp

i=1: {ys
h}

Jo

h=1, and (d)
calculating distance Eh

t between ys
t and ys

h ∈ {ys
h}

Jo

h=1: Eh
t =

√
‖ys

t − ys
h‖2.

Finally, the output of the cluster is the pose parameters (ps
∗,r

s
∗) that correspond

to the optimal embedding ys
∗ (ys

∗ ∈ {ys
h}

Jo

h=1) that is the closest to ys
t .
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2.2 SMC-Based Bronchoscope Motion Estimation

This section fuses pose parameters (ps
∗,r

s
∗) estimated from the step of broncho-

scopic scene identification to determine current RB pose using a SMC sampler.
Since this stage is quite similar to our previous work [6], we here briefly review
the processing of SMC-based bronchoscope motion estimation.

Let Qt(pt, rt) with translation pt and rotation matrix rt denotes transforma-
tion matrix from bronchoscope coordinates to CT coordinates at frame t.

We generate set of random samples Sg
t = {(Qg

t , w
g
t ) : t = 1, 2, ... , N ; g =

1, 2, ... ,M}(N and M are the number of frames and samples, and wg
t is a

sample weight) to approach the posterior distribution of bronchoscope motion
Qt. These samples are deterministically drifted and stochastically diffused by
Qg

t = AQg
t−1 + Bng

t , where matrix A is calculated from (ps
∗,rs

∗) and Bnk
i is a

noise term. Next, using Qg
t to generate virtual image IV , we compute weight

wg
t by a selective image similarity measure [1]: wg

t = MoMSE(It, IV (Qg
t )). Fi-

nally, in our case, the output parameters Q̂t with position and rotation of the
SMC sampler for determining the pose of RB frame It can be determined in
terms of wg

t : Q̂t = maxŵg
t
{(Qg

t , w
g
t )}, i.e., sample Q̂t with maximal weight ŵt

corresponds to the maximal similarity between the current bronchoscopic image
and the virtual frame generated by placing a virtual camera with the estimated
pose including translation vector and rotation matrix inside the 3D airway tree
anatomical model that was constructed by volume rendering techniques.

3 Experiments

For validation of our proposed method, we applied it to five cases of patient
datasets that include bronchoscopic video frames and their corresponding 3-D
chest CT images. The acquisition parameters of CT images are 512×512 pixels,
72-361 slices, and 1.0-2.0 mm slice thickness.

In Section 2.1(a), after pre-processing CT data, we obtain bronchial branch
structure information B and a 3D anatomical airway model. We generate training
images with 30×30 pixels in gray-scale space by adjusting the following parame-
ters in terms of Eqs. 1-3 in Section 2.1(b): for inter-bronchus images, αu is set to
0.15, 0.20, and 0.25; for intra-bronchus images, αu is set to 0.80, 0.85, and 0.90;
φ = 30◦, θ = 15◦, ω = 0◦, 15◦, 30◦, · · · , 345◦, and ϕ = 0◦, 30◦, 60◦, · · · , 330◦. For
each branch bu ∈ B, we generates 7488 inter-bronchus and 7488 intra-bronchus
frames. During learning bronchoscopic video in Section 2.1, we constructed ten-
dimensional embedding manifolds (d = 10 and D = 30× 30). Hence, the dimen-
sions of matrices X,Y, and M are 7488× 900, 7488× 10, and 900× 10. We set
μ = 10−4, ξ = 10−5, and σ = 100 in Spatial-LGRM according to [4].

Currently, for each patient case, we use six bronchial branches to create bron-
choscopic video manifolds. They are (1) TR: trachea, (2) LM: left main bronchus,
(3) RM: right main bronchus, (4) LU: left upper lobe bronchus, (5) RU: right
upper lobe bronchus, and (6) RT: right trunchus intermedius. Hence, we totally
obtain 12 clusters (inter- and intra-bronchus classes) for one patient and each
cluster includes one eigenspace and one eigenmap.
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After uninformative and bifurcation detections of input RB image It in Sec-
tion 2.1(a), we convert It to a gray-scale image (362 × 370 or 256 × 263 pixels)
and interpolate it to 30×30 pixels. During scene clustering in Section 2.1(d), the
parameters of nearest neighbors are set to: Jp = 200 and Jo = 100. Additionally,
to evaluate the successful rate of uninformative, we generate ground truth by
manually inspecting real bronchoscopic images from three observers, one bron-
choscopist and two scientists. Moreover, the tracking results of our proposed
method are also manually and visually examined by the same three experts.

4 Results and Discussion

Table 1 summarizes the processed results of our methods. Detection rates of
uninformative and intra-bronchus images are about 76.3% and 89.7%. The suc-
cessful or correct scene recognizition by only using bronchoscopic scene identifi-
cation (BSI) described in Section 2.1 is about 3839 frames (59.6 %), which was
improved to 4522 frames (70.2 %) using ManiSMC (Section 2). Fig. 1 visually
compares the processed results of methods of BSI and ManiSMC. Generally, our
experimental results demonstrate the effectiveness of ManiSMC that shows a
good performance to understand bronchoscopic videos.

However, our method still fails to correctly estimate the bronchoscope local-
izations. Several reasons must be clarified as follows. First, sometimes uninfor-
mative images are wrongly detected, which results in incorrect embedding in
manifolds; e.g., an image with bubbles can never find a correct correspondence
in eigenspaces. In the future, we will improve uninformative frame detection
by the work of Atasoy et al. [7] or the methods presented in [8,9]. Next, intra-
bronchus images are wrongly classified. If an inter-bronchus image is detected
to be an intra-bronchus one, it will never obtain a correct embedding in man-
ifold clustering. Fig. 2 (a) (top) shows a successful detection of uninformative
and bifurcation images. In some cases, it is difficult to detect whether an im-
age is bifurcation, e.g., in Fig. 2 (a) (bottom), the RB frame is collided with
a bronchial wall. Since detections of uninformative and bifurcation images are
important to BSI and ManiSMC, we must improve current detection methods to

Table 1. Quantified processed results of bronchoscope motion tracking by visual in-
spection that manually checks if a RB image is similar to a virtual one

Patient Number Moving Detection rates Successful frames
cases of frames path Uninformative Bifurcation BSI ManiSMC

1 1436 LM→LU 76.2% 89.7% 59.0% 77.0%

2 1685 TR→LM 74.6% 89.2% 51.4% 63.4%

3 1167 TR→RM→LM 70.8% 88.5% 45.8% 53.7%

4 1053 RM→RU 79.3% 90.3% 71.5% 77.5%

5 1101 TR→RM→RT 80.8% 90.8% 76.1% 82.2%

Total 6442 76.3% 89.7% 59.6% 70.2%
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Frame number 6718 6766 6840 6870 6928 7019 7096 7212 7338 7437 7491 7544

RB images

BSI

ManiSMC

Fig. 1. Visual inspection of processed results of Case 4 by our bronchoscope motion
tracking methods. Top row shows selected frame numbers and second row shows their
corresponding patient RB images. Other rows display virtual images generated from
processed results using methods of BSI and ManiSMC.

(a) (b)

Fig. 2. (a) Examples of bronchoscopic scene identification: successfully recognized (top)
and unsuccessfully identified (bottom) images. They show 9-nearest neighbors (left) of
BSI, the frame with “�” used to SMC sampling, and RB images (median) with cor-
responding virtual images (right) generated by estimates of ManiSMC. (b) Computa-
tional times of Case 1. Average processing times of methods of BSI and ManiSMC are
about 42 and 750 milliseconds per frame. Note that BSI can process one frame almost
in real time (about 25 fps).

further enhance performances of BSI and ManiSMC. Third, similar images such
as collision of bronchial walls and convolution of bronchial bifurcations in train-
ing data usually confuses clusters to determine accurate embeddings, although
correct embeddings are included in the nearest neighbors of input RB images.
Forth, we generated training data by updating the virtual camera observation
poses in terms of bronchial centerline, i.e., most training images converges the
bronchial centerline; however, a bronchoscope is usually not moving along the
centerline, which causes actual bronchoscope poses that are difficult to corre-
spond to manifolds. We need to improve the diversity of training data by adding
more different virtual camera poses. Moreover, loss of centerline information due
to airway segmentation algorithms also contributes to failures of scene identi-
fication. Finally, training data were generated from static CT slices that were
acquired without airway deformation but bronchoscopic videos include patient
breathing or coughing, this also causes unsuccessful bronchoscope tracking. Ad-
ditionally, computational times of our methods are shown in Fig. 2 (b). Interest-
ingly, BSI can almost process one frame in real time, about 25 frames per second
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(fps). ManiSMC needs 0.75 seconds per frame since it requires to compute each
sample weight during SMC-based motion estimation that is time-consuming.

5 Conclusion

This work proposed a new method that introduces LGRM-based manifold learn-
ing and SMC sampling for bronchoscope motion estimation. We constructed a
Spatial-LGRM modeling with camera pose information to learn bronchoscopic
video manifolds and use them to identify bronchoscopic video scenes where a
bronchoscope is located and observing. Such a method can almost process video
frames in real time (about 25 frames per second). By integrating a SMC sam-
pler, our method can tackle situations where ambiguities occur in bronchoscopic
videos. We may conclude that our proposed method provides a perspective means
to boost bronchoscopic navigation without an additional position sensor.
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Abstract. We propose a technique to represent a pathological pattern
as a deviation from normality along a manifold structure. Each subject
is represented by a map of local motion abnormalities, obtained from a
statistical atlas of motion built from a healthy population. The algorithm
learns a manifold from a set of patients with varying degrees of the same
pathology. The approach extends recent manifold-learning techniques by
constraining the manifold to pass by a physiologically meaningful ori-
gin representing a normal motion pattern. Individuals are compared to
the manifold population through a distance that combines a mapping to
the manifold and the path along the manifold to reach its origin. The
method is applied in the context of cardiac resynchronization therapy
(CRT), focusing on a specific motion pattern of intra-ventricular dyssyn-
chrony called septal flash (SF). We estimate the manifold from 50 CRT
candidates with SF and test it on 38 CRT candidates and 21 healthy
volunteers. Experiments highlight the need of nonlinear techniques to
learn the studied data, and the relevance of the computed distance for
comparing individuals to a specific pathological pattern.

1 Introduction

By definition, a disease is an impairment of the normal condition of an organism.
Considering different grades of the same disease as progressive deviations from
normality addresses therefore the understanding of this disease and facilitates
its diagnosis in a given patient. This approach is particularly of interest for car-
diac resynchronization therapy (CRT), where the definition of relevant criteria
for selecting candidates likely to respond to the therapy is still a topic under
active debate [5]. The advantages of considering specific groups of mechanical
dyssynchrony in the selection process were recently discussed in [11]. Each of
these groups corresponded to one pathological pattern of myocardial motion
and deformation with different grades of abnormality with respect to a healthy
cardiac function. However, the approach lacks of reproducible tools for the grad-
ing of a given pathological pattern within a population and for the quantitative
comparison of individuals to each of these specific populations. The aim of this
paper is to demonstrate the relevance of describing each pathological pattern as
a deviation from normality along a manifold structure, allowing the computation
of an appropriate distance between individuals and each pathological pattern.
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without constraint
with constraint

Origin

Studied 
subject

(a) (b)

Fig. 1. (a) Distance proposed in this paper, combining a mapping to the manifold and
the path along the manifold to reach its origin. (b) Interpolation of a 1D synthetic
dataset using inexact matching, before and after the addition of a constraint forcing
the curve to pass by the point indicated by the black arrow.

The definition of an optimal space for the comparison of different populations
was already addressed by dimensionality reduction techniques, such as principal
component analysis (PCA), Kernel-PCA [10], principal geodesic analysis (PGA)
[4], linear discriminant analysis [9] or multivariate statistics [14]. Nonetheless, the
flexibility of these techniques is limited when a new subject or a new popula-
tion is added to the existing dataset, as dimensionality reduction is applied to
the whole set of studied subjects. In addition, the dimensionality reduction could
be biased towards certain populations if they show higher variability. An alter-
native for moving beyond these limitations consists in separating the analysis for
each coherent group of subjects. Using PCA, Kernel-PCA or PGA within a given
population is of limited interest for our application, as we target the comparison
of individuals to the whole population and not just to its mean or centroid. The
comparison of an individual to its k-nearest neighbors (k-NN) does not take into
account the local topology of the dataset and assimilates all distances to Euclidean
distances [13] [7]. In contrast, manifold learning techniques intrinsically take into
account this geometry, and allow relevant comparison of individuals to the stud-
ied population through the use of a mapping distance. This mapping results from
the “pre-image problem,” used in the literature for denoising [10] [8], segmenta-
tion [3], face recognition [15] and regression [1]. A distance based on this mapping
mechanism was introduced in [6], but its use was limited to the estimation of re-
construction errors inherent to a reduction of dimensionality.

In this paper, we extend manifold-learning techniques to embed the definition
of a relevant origin within the manifold. We propose a distance for comparing
individuals to the manifold population, which combines a mapping to the mani-
fold and the path along the manifold to reach its origin (Fig. 1a). The originality
of our method resides in the use of motion abnormality maps as input, as intro-
duced in [2], which allows the gradation of the disease and the definition of a
physiologically meaningful origin within the manifold, representing a normal mo-
tion pattern. Each pathological pattern is therefore considered a deviation from
normality along a manifold structure. We present the application of the pro-
posed method to septal flash (SF), a specific motion pattern of intra-ventricular
dyssynchrony associated to a high response rate to CRT [11].
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2 Methods

The computation of a distance between individuals and a given population consid-
ered as a pathologic deviation from normality consists of two steps: the quantifica-
tion of abnormality for each subject in the dataset, and the estimation of amanifold
for this population, constrained to pass by an origin representing normality.

2.1 Atlas-Based Maps of Motion Abnormalities

The inputs for our method consist of 2D spatiotemporal maps of myocardial
motion abnormalities, obtained from a statistical atlas of motion built from
healthy volunteers [2]. Each map corresponds to one subject in the dataset, and
is used as a 2D image in which the horizontal dimension is time (systole) and
the vertical one is the position along the septum. Each pixel value corresponds
to a p-value index used to locally encode abnormality, in a logarithmic scale,
multiplied by the sign of the radial velocity. This choice was made to highlight
the inward and outward events of SF, when present (Fig.2a). The color-code
associates blue and red color to highly abnormal inward and outward motion
of the septum, respectively. According to these conventions, the origin used to
constrain the manifold (Sec. 2.2) is defined as an image having 0 value at each
pixel, representing a normal motion pattern.

2.2 Manifold-Based Distances to a Population

All the images considered in this paper belong to an ambient spaceA. Let’s denote
I = {I0, ..., IN} ⊂ A the dataset of N + 1 images used for the manifold estima-
tion. The image I0 corresponds to the manifold origin for normality. This image
is added to the original dataset {I1, ..., IN} before any computation, so that every
image Ii, i > 0 is connected to I0 through the isomap graph resulting from the
computations described below. This amounts to considering every element of I as
a deviation from the origin along a specific path on the manifold structure.

The space of manifold coordinates is denoted C ⊂ R
m, m being the dimension-

ality of the manifold, while f : A → C and g : C → A stand for the correspondence
functions between A and C. The computation of these functions is based on inter-
polation techniques adapted from [1] and explained in the following paragraphs.
We denote d : A → R the metric used to compare elements of A.

Manifold estimation. The isomap algorithm [13] is used to estimate the
manifold. First, a graph is built for the dataset I, based on the k-NN algo-
rithm, connecting all the images among themselves according to the metric d.
Then, Euclidean embedding of the manifold data provides a set of coordinates
X = {x0, ...,xN} ⊂ C.

From ambient space to manifold coordinates. The estimation of f : A → C
can be formulated as an exact matching problem on a reproducible kernel Hilbert
space V [12] of functions A → C, namely:

argmin
f∈V

(1
2
‖f‖2

V

)
under the constraint f(Ii) = xi, ∀i ∈ [0, N ] (1)
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with solution: f(I) =
∑N

i=0 Kf(I, Ii) · ai with aI := K−1
f · xI ,

where Kf is the matrix
(
Kf(Ii, Ij)

)
(i,j)∈[0,N ]2

, Kf being chosen of the exponen-
tial form Kf(I,J) := exp

(
− d(I,J)2/σ2

f

)
, (I,J) ∈ A2, σf being its bandwidth,

and aI and xI the vectors
(
ai

)
i∈[0,N ]

and
(
xi

)
i∈[0,N ]

, respectively.

Back from manifold coordinates to the ambient space. The estimation
of g : C → A is a variant of the previous computation, formulated as an inexact
matching problem on a reproducible kernel Hilbert space W [12] of functions
C → A, with a constraint to force the manifold to pass by the origin image I0:

argmin
g∈W

(1
2
‖g‖2

W +
γ

2

N∑
i=1

d
(
g(xi), Ii

))
under the constraint g(x0) = I0 (2)

with solution: g(x) =
∑N

i=0 Kg(x,xi) · bi with bI :=
(
Kg + 1

γ M
)−1 · II ,

where Kg is the matrix
(
Kg(xi,xj)

)
(i,j)∈[0,N ]2

, Kg being chosen of the exponen-

tial form Kg(x,y) := exp
(
−‖x−y‖2/σ2

g

)
, (x,y) ∈ C2, σg being its bandwidth,

M is the matrix
(
Mi,j

)
(i,j)∈[0,N ]2

, with Mi,i = 1 ∀i �= 0 and 0 otherwise, and bI

and II the vectors
(
bi

)
i∈[0,N ]

and
(
Ii

)
i∈[0,N ]

, respectively.
The addition of such a constraint is illustrated in Fig. 1b, which displays the

interpolated curve obtained from a 1D synthetic dataset using inexact matching
before and after forcing the curve to pass by one point, as described in Eq. 2.

Mapping to the manifold and induced distance. Any image I ∈ A can be
associated to an element of the manifold Î by means of the composition of the
above-defined functions, using Î = g

(
f(I)

)
. This composition allows defining a

distance between any image I ∈ A and the manifold [6], namely: dmapping(I) =
d(Î, I). This distance is complemented by a second one, which compares indi-
viduals to normality along the manifold structure: dmanifold(I) = ‖f(I) − x0‖2.
Total distance to normality is then written as

√
(dmapping)2 + (dmanifold)2.

3 Experiments and Results

Patient population and processed data. Using the method presented in
Sec. 2.2, a manifold was estimated from a population of 50 CRT candidates with
SF. This manifold is expected to represent pathologic deviations from normal-
ity, each point of the manifold being a SF pattern. A second dataset was used
for testing the distances proposed in Sec. 2.2. This population was made of 38
CRT candidates (7 having SF and 31 without SF) and 21 healthy volunteers.
All patient data was acquired before the implantation of the CRT device. The
presence of SF was assessed by two experienced cardiologists, from the visual
inspection of echocardiographic M-mode images, as described in [11].
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Fig. 2. (a) Map of septal motion abnormalities for one CRT candidate with SF. The
color-scale encodes abnormality (p-value) in a logarithmic scale, multiplied by the sign
of the radial velocity vρ to highlight SF (Sec. 2.1). (b) Two-dimensional embedding of
the manifold of SF p-value maps (output of isomap) according to its two first dimen-
sions. The blue-framed map corresponds to the image used to constrain the manifold,
representing a normal motion pattern.

A 2D spatiotemporal map of myocardial motion abnormalities obtained from
a statistical atlas of motion [2] was associated to each subject, as explained in
Sec. 2.1. The atlas was built from the set of 21 healthy volunteers. The ab-
normality maps had a size of 31 × 20 pixels, corresponding to the sampling of
the systolic period (horizontal dimension) and the septum along its medial line
(vertical dimension), respectively.

The sum of squared differences was used for the metric d : A → R. The number
of neighbors for the k-NN computations was set to k = 5, which guaranteed that
all the images from the manifold dataset were connected among themselves, as
tested experimentally. A two-dimensional embedding of the computed manifold
(output of isomap) is represented in Fig. 2b, showing the link between each
image and its k-NN. The bandwidths for the kernels Kf and Kg introduced in
Sec. 2.2 were set to the average k-NN distances over the manifold population and
its corresponding set of coordinates X , respectively. The value of γ involved in
the inexact matching problem (Eq. 2) was set to 10, representing a compromise
between the smoothness of the manifold and its closeness to the data.

Manifold accuracy. The influence of the manifold dimensionality on the recon-
struction error was estimated by computing the average and standard deviation
of dmapping over the manifold population, as shown in Fig. 3a. The curve reaches
95% of its final value when the manifold dimensionality is higher than 10, which
is the value we chose for the rest of the paper. The reconstruction error obtained
with a linear approximation of the manifold dataset (using PCA) is higher, as
visible in this figure, justifying the choice of nonlinear techniques to characterize
the population of CRT candidates with SF.
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Fig. 3. (a) Evolution of the reconstruction error against the number of dimensions used.
Comparison between PCA (dashed blue) and isomap (black). Values correspond to the
average ± standard deviation over the manifold dataset I. (b) Variations around the
average map along the two first principal directions of the manifold dataset I, obtained
using either PCA or isomap. Arrows indicate the inward and outward events of SF,
when this pattern is present on the map.

The limitations of PCA on the studied dataset, compared to isomap, are also
visible on Fig. 3b. This figure represents the variations around the average map
along the two first principal directions of the manifold dataset I, obtained using
either PCA or isomap. As indicated by the black arrows, PCA does not guarantee
that the computed maps still correspond to a SF, while this pattern is preserved
by the use of manifold-learning.

Distance to the manifold. Figure 4 represents the distance between all the
subjects involved in this study and the manifold. We separated the analysis be-
tween dmapping and dmanifold for interpretation purposes. The patients from the
manifold dataset have low dmapping , which corresponds to the reconstruction er-
ror plotted in Fig. 3a. As the manifold is built from this population, they largely
span the space associated to dmanifold. There is no SF patient from the manifold
dataset close to the origin according to dmanifold, while almost all the healthy vol-
unteers have lower values (vertical lines indicate the median and 1st/3rd quartiles
of dmanifold for the healthy subjects). This provides an estimation of the thresh-
old above which SF can be detected, as being a deterioration from normality. This
threshold may come from the accuracy of the patient selection process using M-
mode images [11], and from the minimum accuracy of the abnormality maps [2].
Among the testing subjects, patients having SF are closer to the manifold than pa-
tients without SF, according to dmapping . Higher values of dmanifold are observed
in the subjects having higher SF abnormalities on the maps. A larger bandwidth
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Fig. 4. (a) Subject ordering according to dmanifold and dmapping , used as horizontal
and vertical axis, respectively. Vertical orange lines indicate the median and 1st/3rd

quartiles of dmanifold for the healthy subjects. (b) Patient ordering according to the
amount of total abnormality and the proposed distance

√
(dmapping)2 + (dmanifold)2.

for the kernels Kf and Kg would bring the testing patients with SF closer to the
manifold, but would also increase the reconstruction error.

As the 2D maps processed in this study locally contain a measure of abnor-
mality, it is also of interest to compare the total abnormality of each map against
the distances introduced in Sec. 2.2. This comparison is shown in Fig. 4b. Total
abnormality was computed for each subject using the L2 norm of its abnormal-
ity map. Linear regression over the plotted data led to R2 coefficients of 0.91
(manifold data only, dashed red line) and 0.81 (whole data, black line). This
suggests that the dimensionality reduction inherent to the manifold estimation
preserves the concept of abnormality embedded in the processed maps.

4 Conclusion

We have proposed a method for modeling a specific pathological motion pattern
as a manifold. This manifold represents pathological motion as a deviation from
normality, being by construction the manifold origin. The method was used
to compute a distance between individuals and a given pathological pattern.
Experiments demonstrate the need of nonlinear embedding of the learning data,
and the relevance of the proposed method for grading different stages of motion
abnormality. In the context of CRT, the method can improve the selection of
responders to the therapy, allowing reproducible comparison of a new candidate
to specific patterns of mechanical dyssynchrony that condition CRT outcome.
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Abstract. Medical imaging datasets used in clinical studies or basic
research often comprise highly variable multi-subject data. Statistically-
controlled inclusion of a subject in a group study, i.e. deciding whether
its images should be considered as samples from a given population or
whether they should be rejected as outlier data, is a challenging issue.
While the informal approaches often used do not provide any statistical
assessment that a given dataset is indeed an outlier, traditional statistical
procedures are not well-suited to the noisy, high-dimensional, settings en-
countered in medical imaging, e.g. with functional brain images. In this
work, we modify the classical Minimum Covariance Determinant ap-
proach by adding a regularization term, that ensures that the estimation
is well-posed in high-dimensional settings and in the presence of many
outliers. We show on simulated and real data that outliers can be de-
tected satisfactorily, even in situations where the number of dimensions
of the data exceeds the number of observations.

Keywords: Outlier detection, Minimum Covariance Determinant, reg-
ularization, robust estimation, neuroimaging, fMRI.

1 Introduction

Between-subject variability is a prominent effect in many fields of medical imag-
ing, and particularly in brain imaging. While part of this variability can be
viewed as normal fluctuations within a population or across repeated measure-
ments, and can be considered as an effect of interest for diagnosis problems,
part of it may be a confound, related to scanner instabilities, experimental is-
sues, or acquisition artifacts. Such confounding factors can be much larger than
the effects of interest: for instance, in functional neuroimaging, the variability re-
lated to acquisition issues (motion, defective experimental setup, scanner spikes)
can mask the true effect of interest, which is the variability in brain functional
organization related to diseases, psychological or genetic factors.
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The detection of abnormal data, or outlier detection, is important in order
to ensure that the ensuing statistical analysis will be robust to such undesired
effects. This detection should be automated for the sake of reproducibility and
to be time efficient, as cohorts can now encompass up to several hundreds of
subjects. This detection is challenging because i) images, in particular brain im-
ages, are complex, high-dimensional objects with some unknown latent structure;
ii) the problem is unsupervised, in the sense that outlier detection procedures
can in general not be calibrated on training data; and iii) in many cases, it is
impossible to normalize the signal or its variability.

So far, high-dimensional analysis procedures have been confined to high SNR
data, such as anatomical images, e.g. with the use of manifold learning techniques
[1,3]. These, however, are not robust to outlier data, and are not applicable
to functional Magnetic Resonance Imaging (fMRI) since they may easily be
confounded by noise. As a first step to alleviate this issue, univariate outlier
detection methods have been proposed for fMRI, in which one particular image
feature is studied, and compared to other data [6,12]. Kherif et al. [5] point out
the need of homogeneous datasets in fMRI studies and propose a model-based
multivariate framework as a solution. However, their work is restricted to small
cohorts and does not discuss statistical control.

While the robust statistics literature generally considers that problems with
a number of dimensions comparable to the number of observations cannot be
addressed in model-based approaches, we investigate whether outlier detection
is still possible in that setting. Specifically, we modify the Minimum Covariance
Determinant method [8] so that its performance approaches the level of non-
parametric methods, such as one-class Support Vector Classification [2]. We de-
scribe the new robust estimator in the next section and show its well-posedness.
We then perform some experiments on simulated data and assess the behaviour
of the proposed method with respect to state-of-the-art techniques. Finally, we
describe the application of our approach to an fMRI dataset, where we show
that outliers can still be detected on medium-sized groups of subjects.

2 Robust Location and Covariance Estimates

We focus on a model-based approach, as it yields more interpretable results as
well as a probabilistic control of false detections: Assuming a high dimensional
Gaussian model, an observation xi ∈ R

p within a set X can be characterized
as outlier whenever it has a large Mahalanobis distance to the mean of the
data distribution, defined as d2

μ̂,Σ̂
(xi) = (xi − μ̂)T Σ̂−1(xi − μ̂), μ̂ and Σ̂ being

respectively estimates of the dataset location and covariance. Crucially, robust
estimators of location and covariance have to be used for the computation of
these distances.

MCD estimator and FastMCD algorithm. The state-of-the-art robust covariance
estimator for multidimensional Gaussian data is Rousseeuw’s Minimum Covari-
ance Determinant (MCD) estimator [8], which can be computed using the Fast-
MCD algorithm [10]. Given a dataset with n p-dimensional observations, MCD
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aims at finding h observations (referred to as the support), the scatter matrix of
which has a minimal determinant. For the scatter matrix to be well-conditioned,
h must be greater than hmin = n+p+1

2 . As p
n becomes large, hmin increases so

outliers are potentially included in the covariance estimation if there are more
than n−p−1

2 of them. When p = n− 1, the MCD estimator is equivalent to the
unbiased maximum likelihood estimator, which is not robust. Finally, if p ≥ n,
the MCD estimator is not defined. To alleviate these issues we propose to use
half of the observations in the support (h = n

2 ) and compensate the shortage of
data for covariance estimation with regularization.

Regularized MCD estimator (R-MCD). We consider ridge regularization: let
λ ∈ R

+ be the amount of regularization, (μr, Σr) the location and covariance es-
timates of a n×p dataset X that maximize the penalized negative log-likelihood:

(μr, Σr) = argmin
μ,Σ

(
log |Σ| + 1

n

n∑
i=1

(xi − μ)TΣ−1(xi − μ) + λTrΣ−1

)
, (1)

yielding Σr = XT X
n−1 + λ Idp and μr = 1

nX
T1n.

Convergence of the Fast R-MCD algorithm. Fast-MCD is an iterative algorithm
that successively culls out outliers using Mahalanobis distances defined with the
covariance of the most homogeneous fraction of the data. In our new algorithm,
Fast-R-MCD, we replace the sample covariance matrix used in MCD to define
the Mahalanobis distance by the ridge estimate. The convergence of Fast-R-
MCD stems from the following lemma, that generalizes the proof of convergence
of Fast-MCD [4]:

∀η > 0, (μr, Σr) =
{

argminμ,Σ |Σ|,
s.t. E

[
(X − μ)TΣ−1(X − μ)

]
+ λ tr Σ−1 = η

(2)

which straightforwardly implies that the determinant of Σr will decrease at each
iteration of the Fast-R-MCD algorithm.

Setting the regularization parameter λ. Starting with an initial guess for λ =
tr(Σ̂)
n p where Σ̂ is the unbiased empirical covariance matrix of the whole dataset,

we isolate an uncontaminated set of n
2 observations, as in the Fast-MCD ap-

proach. Let λ = δ
tr(Σ̂pure)

n p , where Σ̂pure is the empirical covariance matrix of
the uncontaminated dataset. We choose δ so as to maximize the ten-fold cross-
validated log-likelihood of the uncontaminated dataset.

3 Experiments

We compared the outlier detection accuracy that can be obtained from the Ma-
halanobis distances of the samples, using respectively MCD and R-MCD.
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3.1 Simulations

Data generation. In our simulations, we sample a core set of n − q (q < n
2 )

observations from a N (0p, Σ) distribution corresponding to regular observations
(also called inliers). We add q outliers from a N (μq , Σq) distribution (μq ∈
R

p, Σq ∈ S+
n (p)), thus generating a total of n observations with p features. We

use three outliers types (see Fig. 1):

Variance outliers are obtained by setting Σq = αΣ,α > 1 and μq = 0p. This
situation models signal normalization issues, where the amount of variance in
outlier observations is abnormally large.

Multi-modal outliers are obtained by setting Σq = Σ and μq �= 0Rp , which
simulates the presence of an heterogeneous population.

Multivariate outliers are obtained by setting μq = 0p, Σq = Σ+αaaT where
a = arand

||arand||2 and arand is a vector p-dimensional vector with coordinates drawn
from a Bernoulli distribution B(1

2 ). This model simulates outliers as sets of points
having potentially abnormally high values in some random directions.

In our experiments, we also investigated the influence of Σ’s condition number
κ(Σ) = ||Σ||2 · ||Σ−1||2 and contamination rate q

n .

Methods comparison. Given a simulated dataset, we estimated the location and
covariance of the data using MCD and R-MCD estimators. Both were computed
with the Fast-MCD (or Fast-R-MCD) algorithm without consistency and re-
weighting steps (see [10]), leading to what we call raw estimates. The parameter
that influences the most the relative performances of MCD- and R-MCD-based
outlier detection methods is the p

n ratio. Every other parameter being fixed,
we averaged 100 ROC curves for each value of p

n in a given range, and finally
expressed Area Under Curve (AUC) as a function of p

n .
We also compare the R-MCD sensitivity with the One-class SVM sensitivity,

holding the latter as a reference since it is not limited by any prior shape of the
separation between in- and outlying observations. We used a RBF kernel and
selected its bandwidth γ with an heuristic inspired by [11]: γ = 0.01

Δ , where Δ is
the 10th percentile of the pairwise distances histogram of the observations.

Fig. 1. Three different ways to generate multivariate outliers for Gaussian data. (a)
all directions (α = 3). (b) second cluster (μq = 3 × 1R2). (c) multivariate (α = 5).
Outliers are represented in red and inliers in black. κ(Σ) = 10. Contamination is 40%.
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3.2 Outliers Identification in Functional Neuroimaging

We used data from a large functional neuroimaging database containing several
fMRI contrast images in more than 1500 subjects. 3T scanners from multiple
manufacturers were used for acquiring the data with TR = 2200 ms, TE = 30
ms, and flip angle = 75◦. Standard preprocessing were performed on the data
using the SPM8 software. Here we focus on a control contrast that shows brain
regions implied in auditory tasks as opposed to visual tasks.

We used a probabilistic brain atlas [7] to extract an average activation in-
tensity value from 145 regions of interest in all the contrast images. We then
performed an initial outlier detection at P < 0.1 familywise corrected, including
more than 1000 subjects. With such a small p

n value, a statistically controlled
outlier detection could be done using the MCD estimate. The outliers list ob-
tained from this first outlier detection was then held as a ground truth for
further outlier detection experiments performed on reduced sample, using MCD
and R-MCD estimators. Note that for very small samples, we could not use the
MCD-based outliers detection method. The outliers lists were compared to the
ground truth and ROC curves were hence constructed. For each sample size, we
repeated the detection 10 times with 10 different, randomly selected samples.

4 Results

4.1 Simulation Results

We first give the results on a 30-dimensional dataset with a 40% contamination
rate ( q

n = 0.4), generated from the multivariate outliers model. We show the
case where κ(Σ) = 1000. The accuracy of the R-MCD-based method is much
higher than the accuracy of the MCD-based method as soon as p

n > 0.3 (Fig 2).
Using regularization, it is possible to go beyond the p = n limit, keeping an AUC
greater than 0.70.

Fig. 2. AUC for MCD- and R-MCD-based outliers detection methods. 40% multivari-
ate outliers are generated (α = 5, κ(Σ) = 1000). The R-MCD-based method keeps an
AUC of � 0.70 up to p

n
= 3.5 (not shown) while the MCD-based method breaks down.
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Outliers type. Table 1.a summarizes the AUC results for experiments with the
variance outliers model. In this case, the MCD performance drops when p

n > 0.5
while the R-MCD-based method always achieves at least a 80% accuracy. In the
multimodal case (Table 1.b), the R-MCD-based method is also more successful
at detecting outliers.

Covariance matrix condition number and contamination rate. The methods’ per-
formance depends weakly on the condition number. A small condition number
yields better results with R-MCD while a high condition number gives advantage
to the use of the MCD estimator when p

n is small. The higher the contamina-
tion rate, the more MCD estimator is likely to break. On the other hand, the
performance of a R-MCD-based detection method is stable (Table 2).

Comparison to One-class SVM. In both cases of variance and multivariate out-
liers, One-class SVM achieves a better specificity/sensitivity compromise than
R-MCD-based outlier detection method. Yet, for a p

n ratio of the order of .5, the
R-MCD performance remains comparable to that of the One-class SVM, with
an asymptotic score that remains below (0.05 difference in the AUC).

4.2 Application on a Real Dataset

We give the averaged ROC curves for detecting outliers on an auditory task
in Fig 4. The reference outlier detection was performed on 1118 subjects, each
being described by 145 features. The results shown correspond to 10 random
sets of 290 subjects. In the useful range (FP ≤ 5%), R-MCD outperforms MCD.
Even with only 100 samples ( p

n = 1.5), R-MCD can still be used to find outliers,
as Fig 4 and Fig 5 demonstrate. On this latter figure, outlying subjects 1, 2 and
3 indeed exhibit much variable activity patterns than subjects A or B, despite
the presence of a few mistakes (subject 4).

5 Discussion

In high-dimensional Gaussian datasets, our results show that Regularized MCD
can reach a significantly higher sensitivity in outlier detection than the stan-
dard MCD. We assumed that neuroimaging data are distributed according to
a multivariate Gaussian distribution. This strong hypothesis lead us to focus
on Mahalanobis-distances-based approaches since they can exploit the assumed
shape of the dataset to estimate its covariance matrix. Since R-MCD systemati-
cally deals with half of the observations, it is not subject to the known masking
and swamping effects [9]. We plan to investigate a �1 norm for covariance regu-
larization, as it may fit with standard hypotheses on brain covariance structure.

Under the Gaussian assumption we made, outlier detection with the R-MCD
estimator is the only method so far that both holds in high-dimension and al-
lows a probabilistic control of the false detection rate. Although the One-class
SVM non-parametric algorithm achieves a better sensitivity/specificity compro-
mise and is still applicable with non-Gaussian data, its lack of interpretability
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Table 1. AUC values: a: left variance outliers model (p = 30, q/n = 40%, α = 1.25),
b: right multimodal outliers model (p = 30, q/n = 20%, μq = 2 · 1p)

p/n 0.1 0.2 0.3 0.4 0.5 0.7 0.8

MCD 0.86 0.82 0.77 0.73 0.70 0.66 0.63
R-MCD 0.87 0.86 0.85 0.85 0.84 0.82 0.82

p/n 0.1 0.2 0.3 0.4 0.5 0.7 0.8

MCD 0.62 0.60 0.58 0.57 0.55 0.55 0.51
R-MCD 0.76 0.77 0.78 0.81 0.78 0.75 0.77

Table 2. Influence of the contamination rate. p = 30, multivariate outliers (α = 5).
Unlike MCD, the R-MCD performances are independent of the contamination value.

q/n 10 % 20 % 30 % 40 %
p/n 0.1 0.3 0.6 0.9 0.1 0.3 0.6 0.9 0.1 0.3 0.6 0.9 0.1 0.3 0.6 0.9

MCD 0.83 0.77 0.68 0.56 0.82 0.74 0.65 0.57 0.81 0.72 0.65 0.55 0.79 0.71 0.64 0.54
R-MCD 0.77 0.74 0.72 0.68 0.76 0.75 0.72 0.71 0.76 0.74 0.72 0.72 0.76 0.75 0.74 0.71

Fig. 3. One-class SVM comparison with 40% contamination and κ(Σ) = 100. (a) AUC
for multivariate outliers (α = 5). (b) AUC for variance outliers (α = 1.25).

Fig. 4. ROC curves showing that R-MCD outperforms MCD on real fMRI data

Fig. 5. R-MCD-based Mahalanobis distances of a small sample. The higher the Maha-
lanobis distance, the higher the probability for an observation to be tagged as outlying.
Points in red are outliers subjects according to the whole population.
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and statistical control, as well as the difficulty to tune its parameters, makes it
unsuitable in a medical context.

6 Conclusion

We introduced the R-MCD estimator, a regularized version of a robust covari-
ance estimator commonly used to detect outlying observations on the basis of
their Mahalanobis distances. We showed that the Fast-MCD algorithm is still
valid to compute this new estimator. Our application to neuroimaging, where
studies have a high exclusion rate, shows that it is possible to build automatic
procedures to detect outliers even though the number of descriptors is higher
than the number of available subjects. This property is of broad interest in med-
ical applications where heterogeneous populations have to be considered and
relies on an objective assessment of normal variability.

This work was supported by a Digiteo DIM-Lsc grant (HiDiNim project,
No2010-42D). JBP was partly funded by the IMAGEN project, which receives
research funding from the E.U. Community’s FP6, LSHM-CT-2007-037286. This
manuscript reflects only the author’s views and the Community is not liable for
any use that may be made of the information contained therein.
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Abstract. Atlas selection and combination are two critical factors
affecting the performance of atlas-based segmentation methods. In the
existing works, those tasks are completed in the original image space.
However, the intrinsic similarity between the images may not be accu-
rately reflected by the Euclidean distance in this high-dimensional space.
Thus, the selected atlases may be away from the input image and the
generated template by combining those atlases for segmentation can be
misleading. In this paper, we propose to select and combine atlases by
projecting the images onto a low-dimensional manifold. With this ap-
proach, atlases can be selected according to their intrinsic similarity to
the patient image. A novel method is also proposed to compute the
weights for more efficiently combining the selected atlases to achieve bet-
ter segmentation performance. The experimental results demonstrated
that our proposed method is robust and accurate, especially when the
number of training samples becomes large.

1 Introduction

Radiation therapy is often used in the treatment of cancers. It is important to
acquire the accurate location of the target organ during the therapy. In clini-
cal routine, this localization task is often performed by manually segmenting a
series of images of a patient. However, manual segmentation is a tedious and
time consuming procedure. In recent year, atlas-based methods, for their full
automation and high accuracy, have become widely used approaches for medical
image segmentation [1].

Generally, an atlas consists of a raw image and a corresponding label image.
The basic idea of atlas based segmentation is that if a raw image of atlas is
highly similar to the target image, the corresponding label image can be used to
segment the target image through mapping. However, in practice, it is difficult
to find a highly similar atlas. In the existing works, each atlas is first matched to
the target image, resulting in a deformed image close to the target image. Then
the “most similar” individual atlas is selected and used for segmentation [1]. It is

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAI 2011, Part III, LNCS 6893, pp. 272–279, 2011.
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also straightforward to extend the scheme to multiple atlases, where more than
one atlases can be selected and combined for segmentation [2].

It has been shown that using multiple atlases can yield more accurate results
than using a single atlas [3]. Aljabar et al. [4] investigated different atlas selec-
tion strategies and showed that selection strategy is one of the significant factors
affecting the performance. Roche et al. [5] studied three intensity-based image
similarity measurements (mean square distance, correlation coefficient, mutual
information) and showed that mutual information is the “best” option assum-
ing a statistical relationship. As for multiple atlases combination, the Weighted
Voting algorithm was the most widely used method in the previous works [2,3],
where computing the optimal weights of the corresponding atlases is the key in
the such an algorithm.

Existing works mainly addressed the problems of atlas selection and weighted
combination in the high-dimensional image space [1,2,3]. However, it was shown
that the Euclidean distance in high-dimensional space may not accurately reflect
the intrinsic similarity between the images [6]. In addition, it showed that the
geodesic distance in the high-dimensional manifold space is a better measurement
for computing the similarity between images.

However, in practice, it is difficult to compute the geodesic distance directly
in the high-dimensional space. An approach to solve this problem is to project
the high-dimensional data onto a low-dimensional manifold space and preserving
the local geometry in the same time using nonlinear dimensionality reduction
techniques [6, 7, 8]. In such a low-dimensional space, the Euclidean distance can
approximately reflect the intrinsic similarity between the images. Based on this
fact, in this paper, we propose a new method to select atlases by relying on the
intrinsic similarity between the images. In addition, we develop a novel method
to compute the weights for combining the selected images into a single template
to achieve better segmentation performance. The basic idea is to reconstruct the
input patient image using the selected images in the low-dimensional manifold
space.

The rest of this paper is organized as follows. In Section 2, we describe the
workflow of our method and present the proposed atlas selection and combination
methods. Our data and experimental results are provided in Section 3. Some
conclusions about our work are drawn in Section 4.

2 Method

In this section, we briefly show the workflow of our proposed method as shown
in Fig. 1. The upper row of the figure shows the process about the raw images
of atlas, and the lower row shows the process about the label images of atlas. In
our work, the raw image of atlas is denoted by A and the corresponding label
image is denoted by L. The image to be segmented namely the patient image is
denoted by P . The whole method includes three main steps: atlas registration,
atlas selection, and atlas combination.
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Fig. 1. The workflow of our method. The upper row shows the process for analyzing
the raw images of the atlases, and the lower row shows the processing steps of the
corresponding label images.
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Fig. 2. An example illustrating the motivation of using the manifold learning for atlas
selection in our method. In the Euclidean space the distance PA1>PA2, while in
manifold space PA1<<PA2.

2.1 Atlas Registration

The first stage is registration that each raw image of atlas Ai (i = 1, 2, ..., N) is
matched to the patient image P . The registration includes a 2D rigid registration
and a non-rigid B-spline deformable registration. It yields a set of transformation
parameters during the registration. Using the transformation parameters, each
raw image Ai and its corresponding label image Li are transformed to Âi and
L̂i, respectively, which are close to the patient image.

2.2 Manifold Learning for Atlas Selection

In terms of the theory of manifold learning, the raw images of atlas and the
patient image can form a manifold in high-dimensional space, namely image
space [6, 7, 8]. Take the “Swiss roll” structure as an example to illustrate the
motivation of using manifold learning for atlas selection, as shown in Fig. 2. The
points in the left 3D “Swiss roll” represent the images in the high-dimensional
manifold. And the points (P,A1, A2) in the manifold respectively represents a
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patient image and two atlases. It can be seen that in the Euclidean space the
distance PA1>PA2, while in manifold space PA1<<PA2. By manifold learning
techniques, the high-dimensional data can be projected onto a low-dimensional
space preserving the neighborhood information as shown in the right of graph. It
can be seen that the distances of point P to the other points can be apparently
reflected in the low-dimensional space. That is to say, the intrinsic similarity
of images is better reflected in low-dimensional space than in high-dimensional
space.

There were many classical manifold learning algorithms, such as the lin-
early projection of Principal Component Analysis (PCA) and the nonlinear
ISOMAP [6] and LLE [7] algorithms. In this work, we applied the Locality
Preserving Projections (LPP) [8] algorithm in manifold learning. For it share
the advantages of both linear and nonlinear algorithms, namely linearly pro-
jecting high-dimensional data onto a low-dimensional space and preserving local
neighborhood information as well.

In our work, we set all images to the same size of m pixels. And each raw
image of atlas is represented by a high-dimensional vector hi the size of which is
m. Then the high m-dimensional vectors hi are projected to low n-dimensional
vectors li (n << m). The projection yields a transformation matrix W. Then the
patient image P projects onto the same low-dimensional space. The projection
is defined as follows:

pl = WT × ph, (1)

where the vectors ph and pl represent the patient image in high- and low-
dimensional space, respectively.

In the low-dimensional space, K nearest vectors lk (k = 1, 2, . . . ,K) of pl are
selected by the Euclidean distance. Correspondingly, K most similar raw images
of atlas Âk to the patient image P are selected. Corresponding to Âk, the K
label images L̂k are selected from L̂i. And these selected label images will be
used for combination in the next stage.

2.3 Atlas Combination

In atlas combination stage, we employ the robust Weighted Voting algorithm
[2,3]. The algorithm is defined as follows:

L =
K∑

k=1

wkL̂k, (2)

where L is the result of combination image, and w=(w1, w2, ..., wK) is a vector
representing the weights of the selected label images L̂k. Apparently the weights
are the key in such the algorithm.

It assumes that the vectors lk are distributed in a linear low-dimensional space
[7]. Combining the selected label images into a single template can be considered
as using the vectors lk to reconstruct the vector pl. Thus, computing the optimal
weights of combination can be solved by minimizing the linear reconstruction
error [9]. The error ε is defined as follows:
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arg min
w1,...,wK

ε = ‖pl −
K∑

k=1

wklk‖2
2, (3)

with the weights constraint
∑

wk = 1. Apparently, it is a constrained least
squares problem. We use the Lagrange multiplier algorithm and introducing a
Gram matrix G to solve this problem.

G = (pl1T − L)T (pl1T − L), (4)

where 1 is a vector of ones with the same size of pl, L is a matrix that consists
of lk. Then the problem can be solved by the following solution:

w =
G−11

1TG−11
. (5)

Applying the weights w to the Weighted Voting algorithm (2), it yields a
single combination image L. Since the edge of L may not be smooth, several
basic morphological methods are used to address the problem. Finally, it yields
the template Ldst which is used for the final patient image segmentation.

3 Experiments

3.1 Data and Measurement

In our experiments, the proposed method was tested on 40 MR prostate images,
which were taken from 40 different patients. Each image has 512×512 pixels. The
binary label images, which were manually segmented by an expert, were con-
sidered as the ground truth. The Dice Similarity Coefficient (DSC) was used to
evaluate the segmentation performance of our proposed method quantitatively.
The evaluation criterion of DSC is defined as follows:

DSC(A,B) =
2|A

⋂
B|

|A| + |B| , (6)

where A is the ground truth image, B is the result of an automatically segmented
image, and |·| denotes the area of the target region. The DSC value varies between
0 and 1 and a higher value indicates a better segmentation.

3.2 Results

Note that the atlas selection and the weights computation were all performed in
a low-dimensional space in our method. In order to decrease the computation
time, we extracted the region of interest around the image center with the size
of 256×256 pixels. That was to say, all atlas images formed a 65536-dimensional
manifold space. All data were projected onto a low-dimensional space using man-
ifold learning. We evaluated the segmentation performance over dimensionality
varying from 1 to 39, where 39 is the upper bound set by the number of train-
ing images. We found that the value of 38 yielded the best performance in our
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Fig. 3. A box-and-whisker diagram showing the distributions of our results

experiments, which was then adopted. Before the projection, all images were
preprocessed by histogram equalization to reduce the influence of light. For the
relatively limited data, a leave-one-out approach was employed to validate the
performance of our method. At each time, one of the 40 images was used as the
patient image and the rest were applied as atlases.

In our experiments, the selected number of atlas was the only variable pa-
rameter. Therefore, we gave the results based on the selected number of atlas
changing from 1 to 39. In Fig. 3, it was a box-and-whisker diagram showing the
distributions of our results. At each column, it depicts five-number summaries:
the smallest observation, lower quartile, median, upper quartile, and largest ob-
servation. It can be seen that the median DSC varying between 0.88 and 0.92,
and the values were larger than 0.90 in most cases.

We compared the performance of our method and the state-of-the-art method
proposed by Klein et al. [2]. The main difference between the two methods is that
the atlas selection and the weights computation in our method are all performed
in a low-dimensional space. For a fair comparison, two methods were carried out
based on the same registration. When the atlas selected number ranged from 1
to 39, the average DSC values of 40 experiments were shown in Fig. 4. It can be
seen that the DSC values of our method were higher than Klein’s in most cases.
Especially, the problem of over-fitting apparently occurred in Klein’s method
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Fig. 5. Qualitative results of Klein’s (in top row) and our method (in bottom row).
The red contours represent the ground truth. The yellow contours are automatically
delineated by the two methods.

when the number of the samples exceeded a limitation. It has been shown that
our method is superior to Klein’s method in the case of relative large sample
(p <0.01) and is not inferior in the case of small sample.

When we set the selected number of atlas to 35, several visual segmentation
results were obtained and shown in Fig. 5. The qualitative results of Klein’s are
in top row and our method’s are in bottom row. The red contours represent the
ground truth, and the yellow contours are automatically delineated by the two
methods.
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4 Conclusion

In this paper, we proposed a novel atlas-based method for automatic medical
image segmentation. We proposed to select atlases according to the intrinsic
similarity to the patient image in the low-dimensional space. A novel method
was also proposed to compute the weights for more efficiently combining the
selected atlases to achieve better segmentation performance. By comparing with
the state-of-the-art method [2], the experimental results show our method is
robust and promising. In future work, we will test our algorithm on other datasets
and further extend our method to 3D medical images segmentation.
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Michael Häfner3, and Friedrich Wrba4

1 Dept. of Computer Sciences, Univ. of Salzburg, Austria
2 Dept. of Electrical and Computer Engineering, Univ. of California, San Diego, USA

3 Dept. of Internal Medicine, St. Elisabeth Hospital, Vienna, Austria
4 Dept. of Clinical Pathology, Vienna Medical Univ., Austria

Abstract. In this article, we propose an approach to learn the char-
acteristics of colonic mucosal surface structures, the so called pit pat-
terns, commonly observed during high-magnification colonoscopy. Since
the discrimination of the pit pattern types usually requires an experi-
enced physician, an interesting question is whether we can automatically
find a collection of images which most typically show a particular pit
pattern characteristic. This is of considerable practical interest, since it
is imperative for gastroenterological training to have a representative im-
age set for the textbook descriptions of the pit patterns. Our approach
exploits recent research on semantic image retrieval and annotation. This
facilitates to learn a semantic space for the pit pattern concepts which
eventually leads to a very natural formulation of our task.

1 Motivation

Over the past few years there has been considerable research in computer-based
systems to guide in vivo assessment of colorectal polyps, using endoscopic imag-
ing. This research is motivated by the prevalence of colorectal cancer, one of
the three most commonly diagnosed forms of cancer in the US, and its high
mortality rate. Following the concept of the adenoma-carcinoma sequence [11],
colorectal cancer predominantly develops from adenomatous polyps, although
adenomas do not inevitably become cancerous. In fact, the resection of colorec-
tal adenomas reduces the incidence of colorectal cancer. In this context, it is safe
to say that the ultimate objective of image analysis is to distinguish neoplastic
from non-neoplastic lesions, although finer grained discriminations are obviously
possible. While early approaches (e.g. [5]) to computer-assisted dignity assess-
ment were based on visual data from conventional white-light endoscopes, re-
search has shifted towards novel imaging modalities. These include narrow band
imaging (NBI, e.g. [9]), high-magnification chromo-endoscopy (HMCE e.g. [4]),
and probe-based confocal laser endomicroscopy (e.g. [1]). The emergence of these

� This work is partially funded by the Austrian Science Fund (FWF) under Project
No. L366-N15.
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novel imaging modalities has made it challenging for gastroenterologists to inter-
pret the acquired imagery. In order to prevent serious mistakes (e.g. perforation
of the colon, etc.), substantial experience with the particular imaging modal-
ity and the highlighted tissue structures is still necessary, especially in situations
where the physician’s assessment differs from that of the decision support system
(which is still an uncommon tool in clinical practice).

In this work, we tackle the problem of preparing prospective gastroenterolo-
gists for clinical practice with the novel imaging modalities. We argue that, dur-
ing gastroenterological training, it is imperative to have (i) access to a database
of labeled images from the prospective imaging modality and (ii) possibility to
browse through images depicting the textbook description of a particular struc-
ture. In the absence of a computer vision system to assemble these images, an
experienced gastroenterologist will typically have to work through a vast im-
age repository, to sort out the most relevant training examples. We propose a
computer vision solution to this problem, based on recent advances in semantic
image retrieval [8]. This is a formulation of image database search, where images
are mapped onto a semantic space of image concepts.

While, in computer vision, concepts are usually cars or buildings, the idea can
be applied to the pit pattern classes commonly used in the medical literature for
prediction of histopathological results (cf. [3]). Unlike [8], we are not interested in
the strict task of retrieval by semantic example. Instead, our work is directed to
the semantic browsing scenario. This is the scenario where gastroentrologists are
able to browse the image space efficiently by focusing on regions where particular
concepts, i.e. pit patterns, are most prominent. We propose a system that enables
this type of semantically focused browsing. Although our approach is generic, we
demonstrate its applicability in the context of HMCE and Kudo’s pit pattern
analysis scheme [6].

The technical details of pit pattern browsing are given in the following section.
Section 3 is devoted to experimental results and Sect. 4 presents our conclusions.

2 Learning the Pit Pattern Concepts

The starting point of our approach is a database of endoscopy images D =
{I1, . . . , I|D|} and a collection of concepts {w1, . . . , wC}, i.e. the pit pattern types.
We require that each database image is augmented by a binary caption vector
cy ∈ {0, 1}C, where cj

y = 1 signifies that the j-th concept is present in image Iy .
This is termed a weakly labeled set of images, since cj

y = 0 does not necessarily
mean that the j-th concept is not present. We further don’t know which image
region contains the annotated concept (i.e. no prior segmentation available). In
fact, weak labeling is carried to the extreme, since the caption vectors only con-
tain one non-zero entry for the prominent concept. This follows from the fact
that the medical labeling procedure is based on reconciliation with histopatho-
logical ground-truth. For example, if the laboratory results indicate a normal
gland and the gastroenterologist has the visual impression of a pit pattern type
I, then the image is labeled with that type. However, a pit pattern of type II
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Fig. 1. Processing pipeline for learning three exemplary pit pattern concepts
{w1, w2, w3} (e.g. I, II, III-L). First, we decompose each image into a collection of
localized features. Then, we estimate (i) the semantic-level feature representations
{PX |W (x|wi)}3

i=1 from the visual-level feature representations and (ii) the mapping
from feature space to semantic space, i.e. the semantic 2-simplex embedded in IR3.

(or any other type) can also be visible in some areas of the image. While this
labeling strategy guarantees that the annotated pit pattern is visible to some
extent, at least to the experienced gastroenterologist, many of the images do not
convey the textbook description [6] corresponding to the labeled pit pattern.

2.1 Image Representation at the Visual and Semantic Level

The first stage for learning the image concepts is similar to previous studies
(e.g. [7]), where automated dignity assessment was the primary objective. Each
image I in the database is represented by a collection of localized features I =
{x1, . . . ,xN} drawn independently from a random vector X, defined in some
feature space X ⊂ IRd. This stage is illustrated in the leftmost part of Fig. 1.
Defining a random variable Y (with realizations in {1, . . . , |D|}) such that Y = y
when features are drawn from image Iy, the probability of image I at the visual
level is

PX|Y (I|y) =
N∏

j=1

PX|Y (xj |y) . (1)

The density (i.e. the generative model) PX|Y (x|y) for image Iy is estimated by
a KV -component multivariate Gaussian mixture

PX|Y (x|y) =
KV∑
k=1

γk
yG(x; μk

y ,Σ
k
y) with

∑
k

γk
y = 1 , (2)

based on the corresponding collection of features.
In contrast to [7], where captions are neglected, and images retrieved by vi-

sual similarity (query-by-visual-example), the captions now represent a key com-
ponent of the system. Introducing a random variable W (with realizations in
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{1, . . . , C}) such that W = i when features are drawn from concept wi, induces
a new collection of probability densities {PX|W (x|wi)}C

i=1 on X . These densities
are denoted the feature representations at semantic level. Assuming conditional
independence of the features given concept membership, the concept-conditional
probability of image I at the semantic level is

PX|W (I|w) =
N∏

j=1

PX|W (xj |w) . (3)

Similar to density estimation at the visual level, we use multivariate Gaussian
mixtures with KS components to estimate PX|W (x|w), i.e.

PX|W (x|w) =
KS∑
l=1

αl
wG(x; νl

w,Φl
w) with

∑
l

αl
w = 1 . (4)

Modeling the densities at the visual and semantic level by Gaussian mixtures
has the convenient advantage that we can exploit the hierarchical mixture mod-
eling approach of [10] to estimate the mixture parameters at the semantic level
{αl

w,ν
l
w,Φ

l
w} from the mixture parameters at the visual level {λk

y ,μ
k
y ,Σ

k
y}. This

step is visualized in the middle of Fig. 1, where the mixtures associated with
several images in a class are summarized by the class’ single semantic-level mix-
ture. Note that the number of Gaussian components at semantic level (C ×KS)
is considerably smaller than the number of Gaussian components at visual level
(|D| × KV ). Figure 1 illustrates the case where KV = 3 and KS = 4. The
computational effort to estimate the semantic-level mixtures, using the method
of [10], is also considerably smaller than that required for direct estimation of
PX|W (x|w) based on the pooled features of all images annotated with concept w.

2.2 Learning the Semantic Space

The identification of images which most characteristically depict a particular
concept requires a semantic image representation with explicit control over the
concepts. In [8], the authors introduce the idea of an image as a point on a se-
mantic space. The image is first modeled as a vector Iy = (n1

y, . . . n
C
y )T of concept

counts (cf. top right part of Fig. 1), where nk
y is the number of feature vectors

in the y-th image drawn from the k-th concept. The concept count vectors are
then modeled as realizations of a multinomial random variable T . As illustrated
on the bottom right of Fig. 1, the parameter vector πy = (π1

y , . . . , π
C
y )T of the

multinomial distribution associated with the image is a point on the standard
(C − 1)-simplex, since

∑
i π

i = 1. This simplex is denoted the semantic space,
and πy the semantic multinomial (SMN) associated with image Iy.

The question is how to estimate the mapping based on a database of tuples
{(Iy, cy)}y=1,...,|D|. For that purpose, we employ a modification of the semantic
multiclass labeling approach of [2] which implements the mapping based on an
estimation of posterior concept probabilities, i.e.

πw
y = PW |X(w|Iy) =

PX|W (Iy |w)PW (w)
PX(Iy)

. (5)



284 R. Kwitt et al.

πk1
= ( π1

k1
π2
k1

π3
k1

)

πk2
= ( π1

k2
π2
k2

π3
k2

)

πk3
= ( π1

k3
π2
k3

π3
k3

)

Subregion w.r.t. π1 > 0.8

w3 w1

w2

Ik1 Ik2

Result Images

SMNs in subregion
of the full simplex

ra
n
k
b
y

1
st

d
im

en
sio

n

Fig. 2. Identifying the images, represented by SMNs, which most typically represent
the concept w1 (here pit pattern type I)

Although it is possible to directly estimate πw
y by assuming a uniform con-

cept prior PW (w) and estimating PX(Iy) by
∑

w PX|W (Iy |w)PW (w), we choose
an alternative approach to cover for numerical instabilities. The strategy is to
compute logPW |X(w|xj) for each feature vector xj separately, using (4), then
determine the concept with the largest posterior probability per feature vector
and eventually tally the occurrences of the winning concepts. This facilitates
Maximum-Likelihood (ML) parameter estimation of πy through ∀w : π̃w

y =
nw

y · 1/N. In [8], the authors further suggest regularization with a Dirichlet prior,
which leads to a maximum-a-posteriori estimate

π̂w
y =

π̃w
y + π0∑C

i=1(π̃i
y + π0)

, (6)

where π0 is a regularization parameter. The remaining question is how to identify
the desired set of images from the semantic representation in the form of points
on the semantic space. Given that we aim to identify the images most typical of
the concept wi (e.g. pit pattern III-L), we only need to navigate on the simplex. In
fact, we can easily identify a subregion of the full simplex whose SMNs represent
images where the wi-th concept is prominent with probability t, by using πi >
t, t ∈ [0, 1]. Fig. 2 illustrates this idea for π1 > 0.8. Sorting the SMNs in that
region along the i-th dimension gives a list of the most representative (i.e. top-
ranked) images for concept wi.

3 Experimental Evaluation

We evaluate our proposed approach on a weakly labeled database of 716 HMCE
images (magnified 150×) of size 256 × 256 pixel, captured by an Olympus Evis
Exera CF-Q160ZI/L endoscope. The images stem from a total of 40 patients and
the database contains only images where the histological ground truth is coher-
ent with the annotated pit pattern type. The cardinalities of the image sets per
concept are {124, 74, 124, 20, 276, 98} for pit pattern types I, II, III-L, III-S, IV
and V. A graphical and textual description of the pit pattern characteristics is
provided in Fig. 3. Apart from the gastroenterologist’s experience, these descrip-
tions represent the textbook material for dignity assessment of colorectal lesions.
The images are converted from RGB to YBR color space for further processing.
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(a) I (b) II (c) III-S (d) III-L (e) IV (f) V

Fig. 3. Schematic illustration of the six pit pattern types according to [6]. The typi-
cal characteristics are (a) normal, round pit; (b) asteroid, stellar or papillary pit; (c)
tubular or round pit (smaller than type I); (d) tubular or round pit (larger than type
I); (e) dendritic or gyrus-like pit; (f) irregular arrangements, loss of structure.

As localized features, we use DCT coefficients (extracted in zigzag scan order)
of 8 × 8 patches, obtained from a sliding window, moving by two pixel incre-
ments in both image dimensions (cf. Fig. 1). We extract the first 16 coefficients
(including the DC coefficient) from the same patch across the color channels and
arrange the coefficients in feature vectors according to a YBRYBRYBR. . . in-
terleaving pattern. The Gaussian mixtures to model PX|Y (x|y) are fitted by
the classic Expectation-Maximization (EM) algorithm. The number of mixture
components at this level is set to KV = 8 and we restrict the covariance matri-
ces to diagonal form. At the semantic level, we set KS = 64 and estimate the
parameters using the hierarchical estimation approach of [10]. Regarding SMN
estimation, we choose a regularization parameter π0 = 1/6, although experi-
ments show that the approach is not sensitive to this choice.

To demonstrate that we can actually identify images which most typically
depict the textbook pit pattern descriptions, we sort the SMNs on the semantic
simplex along the dimension corresponding to each concept and extract the K
top-ranked images. We further ensure that the extracted images do not belong
to the same patient in order to establish a realistic scenario. We refer to this
step as patient pruning of the result set. Figure 4 shows the images after pruning
the K = 10 top-ranked images per pit pattern concept. Due to the fact that the
database images are not uniformly distributed over the patients, the pruning
step has the effect that the cardinality of the final browsing result per concept is
not equal. Nevertheless, a comparison to the illustrations and descriptions in Fig.
3 reveals the correspondences we were looking for: we observe the characteristic
gyrus-like structures of pit pattern IV, the round pits of pit pattern I, or the
complete loss of structure in case of pit pattern V for instance.

Besides visual inspection of the results in Fig. 4, we conduct a more objec-
tive evaluation by exploiting the ground-truth caption vectors for each image. In
particular, we evaluate the average error rate of the system when browsing the
K top-ranked images per concept. We perform a leave-one-patient-out (LOPO)
evaluation, where we adhere to the following protocol per patient: (i) remove
the patient’s images from the database, (ii) estimate the SMNs based on the
remaining images, (iii) extract the K top-ranked images (now using the whole
database) per concept and (iv) perform the patient pruning step. The average
error rate is then calculated as the percentage of images (averaged over all LOPO
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Pit Pattern I Pit Pattern II Pit Pattern III-S Pit Pattern IV Pit Pattern VPit Pattern III-L

Non-Neoplastic: I, II
Neoplastic: III-S, III-L, IV, V

Fig. 4. Result of identifying the most representative images for each pit pattern concept
at the operating point K = 10 (with patient pruning)
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Fig. 5. Average error rate with respect to the ground-truth caption vectors, when
browsing the K top-ranked images of each pit pattern type

runs) in the final browsing result of concept wi which do not belong there ac-
cording to the corresponding ground-truth caption vectors (i.e. zero entry at the
i-th position). Figure 5 shows the average error rate in dependence of K with
and without patient pruning (for comparative reasons). At the operating point
K = 10 for instance, we obtain three images per concept on average at an error
rate of 4.9%. This corresponds to ≈ 0.88 wrong images in the final browsing
result.

4 Concluding Remarks

Motivated by the need to provide prospective gastroenterologists with a collec-
tion of images showing the most typical characteristic of a particular mucosal
structure during endoscopy, we presented a generic approach to establish a se-
mantic space on a database of weakly labeled HMCE images. To the best of
our knowledge, introducing the notion of a semantic domain to that problem
has not been done so far. On the basis of Kudo’s pit pattern analysis scheme,
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we demonstrated that browsing the semantic space in interesting regions in fact
allows to isolate the most characteristic images for each pit pattern type.
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Abstract. The objective of this work is a scalable, real-time visual
search engine for medical images. In contrast to existing systems that
retrieve images that are globally similar to a query image, we enable
the user to select a query Region Of Interest (ROI) and automatically
detect the corresponding regions within all returned images. This allows
the returned images to be ranked on the content of the ROI, rather than
the entire image. Our contribution is two-fold: (i) immediate retrieval –
the data is appropriately pre-processed so that the search engine returns
results in real-time for any query image and ROI; (ii) structured output
– returning ROIs with a choice of ranking functions. The retrieval per-
formance is assessed on a number of annotated queries for images from
the IRMA X-ray dataset and compared to a baseline.

1 Introduction

The exponential growth of digital medical images of recent years poses both chal-
lenges and opportunities. Medical centres now need efficient tools for analysing
the plethora of patient images. Myriads of archived scans represent a huge source
of data which, if exploited, can inform and improve current clinical practice.

This paper presents a new, scalable, algorithm for the immediate retrieval of
medical images and structures of interest within them: given a query image and
a specified region of interest (ROI) we return images with the corresponding
ROI (e.g. the same bone in the hand) delineated. The returned images can be
ranked on the contents of the ROI.

Why Immediate Structured Image Search? Given a patient with a con-
dition (e.g. a tumour in the spine) retrieving other generic spine X-rays may
not be as useful as returning images of patients with the same pathology, or
of exactly the same vertebra. The structured search with an ROI is where we
differ from existing content-based medical image retrieval methods which return
images that are globally similar to a query image [10]. The immediate aspect
of our work enables a flexible exploration as it is not necessary to specify in
advance what region (e.g. an organ or anomaly), to search for – every region is
searchable.
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Use cases include: conducting population studies on specific anatomical struc-
tures; tracking the evolution of anomalies efficiently; and finding similar anoma-
lies or pathologies in a particular region. The ranking function can be modified
to order the returned images according to the similarity between the query and
target ROI’s shape or image content. Alternatively, the ROI can be classified,
e.g. on whether it contains a particular anomaly such as cysts on the kidney, or
arthritis in bones, and ranked by the classification score.

Outline. Sect. 2 describes the retrieval algorithm using X-rays of hands as
the running example, with section Sect. 2.4 giving examples of ROI ranking
functions. Sect. 3 assesses the retrieval performance and compares to a baseline
using images from the publicly available IRMA dataset [3], and Sect. 4 concludes.

Related work and challenges. The problem of ROI retrieval in medical im-
ages is addressed in [8], but only in the limiting case of manually pre-segmented
ROIs. Our approach is inspired by the Video Google work of [12] for object
localisation in videos, and later developments of ROI-driven image retrieval in
computer vision for search in large scale image datasets [11]. However, the di-
rect application of these techniques to medical images is not feasible (as shown
in Sect. 3) because the feature matching and registration methods of these pre-
vious works do not account for inter-subject non-rigid transformations and the
repeating structures common to medical images (e.g. phalanx or spine bones).
Instead, we employ a registration method tuned to medical images, related to [1].
We differ in that we utilise feature point (landmark) descriptors based on the
intensity derivatives, with matching guided to robustly fit non-rigid Thin Plate
Spline (TPS) transformations.

2 Structured Image Retrieval Framework

The key to our approach is that registrations are pre-computed (off-line) so that
at run time correspondences in target images can be determined immediately
for any ROI in the query image. In the case of medical images it is possible to
compute registrations between images if they are of the same class, e.g. if they
are both images of hands. Given query image and ROI, three stages are involved:
(i) image classification, so that ROI correspondences are only considered between
images of the same class; (ii) approximate global registration for images within
that class, this is pre-computed; and (iii) refinement of the ROI in a target image
using the approximate registration as a guide. This is performed at run time.
Fig. 1 summarizes the off-line and on-line parts of the framework.

We describe in the following sections how the images are classified; how the
global registration is performed; and how the ROI in the target image is refined.
Once the ROIs have been accurately localized in each image of the target set,
there is then a choice of how these images should be ranked. We describe a
number of possibilities for ranking functions in Sect. 2.4.

In the case of a dataset where new images are added, it is important that the
method is scalable so that adding new images and using them to make a query
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1. On-line (given a user-specified query image and ROI bounding box)

– Select the target image set (repository images of the same class as the query).
– Using the pre-computed registration (Sect. 2.2), compute the ROIs correspond-

ing to the query ROI in all images of the target set.
– Refine the ROIs using local search (Sect. 2.2).
– Rank the ROIs using the similarity measure of choice (Sect. 2.4).

2. Off-line (pre-processing)

– Classify the repository images into a set of pre-defined classes (Sect. 2.1).
– Compute the registration for all pairs of images of the same class (Sect. 2.2).

Fig. 1. The off-line and on-line parts of the structured retrieval algorithm

does not cause a delay. We have achieved this by registering the query image to
only a subset of the same class images; the transformation to the rest can be
readily obtained by transform composition as described in Sect. 2.3.

2.1 Image Classification

Our aim is to divide the X-ray images into five classes: hand, spine, chest,
cranium, negative (the rest). Certain image retrieval methods take the tex-
tual image annotation into account. However, as shown in [5], the error rate of
DICOM header information is high, which makes it infeasible to rely on text
annotation for classification. Therefore, we use automated visual classification.

We employ the multiple kernel (MKL) technique of [13] and train a set of
binary SVM classifiers on multi-scale dense-SIFT and self-similarity visual fea-
tures in the “one-vs-rest” manner. The classified image is assigned to the class
whose classifier outputs the largest decision value. The MKL formulation can ex-
ploit different, complementary image representations, leading to high-accuracy
classification. The classifier is learnt from training images, and its accuracy is
evaluated on a ground truth data set as described in Sect. 3.

2.2 Efficient and Robust Image Registration

In this section we first describe the registration algorithm for a pair of images.
This algorithm is the basic workhorse that is used to compute registrations
between all images (of the same class). We postpone until Sect. 2.3 how this is
done in an efficient and scalable manner. In our case the registration method
should be robust to a number of intraclass variabilities of our dataset (e.g. child
vs adult hands) as well as additions and deletions (such as overlaid writing,
or the wrists not being included). At the same time, it should be reasonably
efficient to allow for the fast addition of a new image to the dataset. The method
adopted here is a sequence of robust estimations based on sparse feature point
matching. The process is initialized by a coarse registration based on matching
the first and second order moments of the detected feature points distribution.
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This step is feasible since the pairs of images to be registered belong to the same
class and similar patterns of detected points can be expected. Given this initial
transform T0, the algorithm then alternates between feature matching (guided
by the current transform) and Thin-Plate Spline (TPS) transform estimation
(using the current feature matches). These two stages are described next. We
use single-scale Harris feature points, and the neighbourhood of each point is
described by a SIFT descriptor [9] for matching. Fig. 2 shows examples of the
computed registrations.

Guided Feature Matching. Let Iq and It be two images to register and Tk

the current transform estimate between Iq and It. The subscripts i and j indi-
cate matching features in images Iq and It with locations xi, yj and descriptor
vectors Ψi and Ψj respectively. Feature point matching is formulated as a linear
assignment problem with unary costs Cij defined as:

Cij =

{
+∞ if Cgeom

ij > r

wdescCdesc
ij + wgeomCgeom

ij otherwise.
(1)

It depends on the descriptors distance Cdesc
ij = ‖Ψi−Ψj‖2 as well as the symmetric

transfer error Cgeom
ij = ‖Tk(xi)− yj ‖2 + ‖xi −T−1

k (yj)‖2. The hard threshold r
on Cgeom

ij allows matching only within a spatial neighbourhood of a feature. This
increases matching robustness while reducing computational complexity.

Robust Thin Plate Spline Estimation. Direct TPS computation based on
all feature point matches computed at the previous step leads to inaccuracies
due to occasional mismatches. To filter them out we employ the LO-RANSAC [2]
framework. In our implementation two transformation models of different com-
plexity are utilised for hypothesis testing. A similarity transform with a loose
threshold is used for fast initial outlier rejection, while a TPS is fitted only to
the inliers of the few promising hypotheses. The resulting TPS warp Tk+1 is the
one with the most inliers.

ROI Localisation Refinement. Given an ROI in the query image we wish
to obtain the corresponding ROI in the target, i.e. the ROI covering the same
“object”. The TPS transform T registering the query and target images provides
a rough estimate of the target ROI as a quadrilateral R0

t which is a warp of the
query rectangle Rq. However, possible inaccuracies in T may cause R0

t to be
misaligned with the actual ROI, and in turn this may hamper ROI ranking. To
alleviate this problem, the detected ROI can be fine-tuned by locally maximizing
the normalised intensity cross-correlation between the query rectangle and the
target quadrilateral. This task is formulated as a constrained non-linear least
squares problem where each vertex is restricted to a box to avoid degeneracies.
An example is shown in Fig. 4.

2.3 Scalable Registration by Transform Composition

When adding a new image to the repository, it has to be registered with all
target images (images of the same class). A näıve implementation results in the
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(a) (b) (c) (d)

Fig. 2. Robust thin plate spline matching. (a): query image with a rectangular grid
and a set of ground-truth (GT) landmarks (shown with yellow numbers); (b)-(d): target
images showing the GT points mapped via the automatically computed transform (GT
points not used) and the induced grid deformation

computational complexity linear in the number of target images, which grows
together with the repository size and quickly becomes infeasible as image regis-
tration is computationally heavy. Instead, we use a scalable technique suitable
for large datasets. A new image q is registered with only a fixed subset of E
target images (exemplars), which results in E transforms Tq,e, e = 1 . . . E. The
transformations Te,t between an exemplar e and each of the remaining target
set images t are pre-computed. Then the transformation between images q and
t can be obtained by transform composition (using different exemplars) followed
by robust aggregation as Tq,t = mediane (Tq,e ◦ Te,t). While the complexity is
still linear in the number of target images, its advantage is that only E = const
registrations should be computed, while transform composition is a cheap op-
eration. The technique is related to the multi-atlas segmentation scheme of [6].
From our experiments (not presented due to the space restrictions), the accuracy
of exemplar-based registration is similar to the pairwise case.

2.4 ROI Ranking Functions

At this stage we have obtained ROIs in a set of target images, corresponding
to the ROI in the query image. The question then remains of how to order the
images for the retrieval system, and this is application dependent. We consider
three choices of the ranking function defined as the similarity S(Iq, Rq, It, Rt)
between the query and target ROIs, Rq, Rt and images Iq, It. The retrieval
results are ranked in decreasing order of S. The similarity S can be defined
to depend on the ROI Appearance (ROIA) only. For instance, the normalised
cross-correlation (NCC) of ROI intensities can be used. The S function can
be readily extended to accommodate the ROI Shape (ROISA) as S = (1 −
w)min(Eq, Et)/ max(Eq, Et) + w NCC(Rq, Rt), where Eq and Et are elongation
coefficients (ratio of major to minor axis) of query and target ROIs, and w ∈
[0, 1] is a user tunable parameter. At the other extreme, the function S can be
tuned to capture global Image Geometry (IG) cues. If similar scale scans are
of interest, then S can be defined as: S(Iq , Rq, It, Rt) = (1 − w)min{Σ, 1/Σ}+
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Query image
and ROI

Ranking
function

Top-5 retrieved images with detected ROI

IG
(w = 0.5)

ROISA
(w = 0.5)

ROIA

Fig. 3. The effect of different ranking functions on ROI retrieval. ROIs are shown in
yellow. IG retrieves scans with similar image cropping; ROISA ranks paediatric hands
high because the query is paediatric; ROIA ranks based on ROI intensity similarity.

w NCC(Rq, Rt), where Σ > 0 is the scale of the similarity transform computed
from feature point matches, and w ∈ [0, 1] is a user tunable parameter.

Fig. 3 shows the top ranked images retrieved by these functions. This is an
example of how local ROI clues can be employed for ranking, which is not possi-
ble with global, image-level visual search. In clinical practice, ranking functions
specifically tuned for a particular application could be used, e.g. trained to rank
on the presence of a specific anomaly (e.g. nodules or cysts).

3 Results and Comparisons

The dataset. The dataset contains X-ray images of five classes: hand, spine,
chest, cranium, negative (the rest) taken from the publicly available
IRMA dataset [3]. Each class is represented by 205 images. The negative class
contains images of miscellaneous body parts not included in the other classes.
The images are stored in the PNG format without any additional textual meta-
data. Images within each class exhibit a high amount of variance, e.g. scale
changes, missing parts, new objects added (overlaid writings), anatomy config-
uration changes (phalanges apart or close to each other). Each of the classes is
randomly split into 65 testing, 70 training, and 70 validation images.

Image classification performance is measured by the ratio of correctly classi-
fied test images to the total number of test images. The overall accuracy is 98%.
The few misclassifications are caused by the overlap between the negative class
and other classes, if the negative image partially contains the same body part.

Accuracy of Structured Image Retrieval. To evaluate the accuracy of
ROI retrieval from the dataset, we annotated test hand and spine images with
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(a) (b) (c)

Fig. 4. (a): query; (b),(c): target
before and after local refinement

hand1 hand2 hand3 spine1

Fig. 5. Four annotated bones used for
the retrieval performance assessment

Table 1. Comparison of image retrieval accuracy

Method
hand1 hand2 hand3 spine1

meanAP medAP meanAP medAP meanAP medAP meanAP medAP

Proposed 0.81 0.89 0.85 0.90 0.65 0.71 0.49 0.51

Baseline 0.68 0.71 0.66 0.71 0.38 0.36 0.35 0.35

elastix 0.62 0.67 0.61 0.68 0.38 0.37 0.22 0.19

axis-aligned bounding boxes around the same bones as shown in Fig. 5. The
ROI retrieval evaluation procedure is based on that of PASCAL VOC detection
challenge [4]. A query image and ROI are selected from the test set and the
corresponding ROIs are retrieved from the rest of the test set using the pro-
posed algorithm. A detected ROI quadrangle is labelled as correct if the overlap
score between its axis-aligned bounding box and the ground truth one is above
a threshold. The retrieval performance for a query is assessed using the Average
Precision (AP) measure computed as the area under the “precision vs recall”
curve. Once the retrieval performance is estimated for each of the images as a
query, its mean (meanAP) and median (medAP) over all queries are taken as
measures. We compare the retrieval performance of the framework (ROIA rank-
ing, no ROI refinement) using different registration methods: the proposed one
(Sect. 2.2), baseline feature matching with affine transform [11], and elastix B-
splines [7]. All three methods compute pairwise registration (i.e. no exemplars).

The proposed algorithm outperforms the others on all types of queries (Ta-
ble 1). As opposed to the baseline, our framework can capture non-rigid trans-
forms; intensity-based non-rigid elastix registration is not robust enough to
cope with the diverse test set. Compared to hand images, worse performance on
the spine is caused by less consistent feature detections on cluttered images.

Complexity and Speed. The retrieval framework is efficient and scalable,
which allows for the immediate ROI retrieval (in a fraction of second) even using
our current non-optimised Matlab implementation. Image class information as
well as pairwise registrations between same-class images are pre-computed and
stored for the repository images, so they are immediately available if a query
image is from the repository. The complexity of adding a new image splits into
the following parts: (i) image classification has constant complexity (≈ 0.5s per
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image); (ii) registration with a fixed number of target set exemplars has constant
complexity (≈ 2s per exemplar); (iii) registration with the rest of the target
images is linear in the number of images, but the transform composition is very
quick compared to registration. Therefore, the most computationally complex
operations are invoked only a fixed number of times.

4 Conclusion

We have presented a new framework for the immediate retrieval of medical im-
ages and simultaneous, automatic localisation of anatomical structures of inter-
est. Robustness with respect to repeated structures is incorporated via non-rigid
image registration driven by guided robust sparse feature matching. Supervised
image-level classification also contributes to the high level of accuracy demon-
strated on a publicly available labelled database of X-ray images. The proposed
visual search framework is fairly generic and can be extended to different modal-
ities/dimensionalities with a proper choice of intra-class registration methods.
An interactive demo of the ROI retrieval framework is available on http://www.
robots.ox.ac.uk/~vgg/research/med_search/
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Abstract. Evaluating content-based retrieval (CBR) is challenging be-
cause it requires an adequate ground-truth. When the available ground-
truth is limited to textual metadata such as pathological classes, retrieval
results can only be evaluated indirectly, for example in terms of classi-
fication performance. In this study we first present a tool to generate
perceived similarity ground-truth that enables direct evaluation of en-
domicroscopic video retrieval. This tool uses a four-points Likert scale
and collects subjective pairwise similarities perceived by multiple expert
observers. We then evaluate against the generated ground-truth a previ-
ously developed dense bag-of-visual-words method for endomicroscopic
video retrieval. Confirming the results of previous indirect evaluation
based on classification, our direct evaluation shows that this method sig-
nificantly outperforms several other state-of-the-art CBR methods. In
a second step, we propose to improve the CBR method by learning an
adjusted similarity metric from the perceived similarity ground-truth.
By minimizing a margin-based cost function that differentiates similar
and dissimilar video pairs, we learn a weight vector applied to the visual
word signatures of videos. Using cross-validation, we demonstrate that
the learned similarity distance is significantly better correlated with the
perceived similarity than the original visual-word-based distance.

1 Introduction

Successfully developed in the field of computer vision, content-based retrieval
(CBR) methods also have valuable applications in the field of medical imaging. In
particular, probe-based confocal laser endomicroscopy (pCLE) is a recent imag-
ing technology that enables the endoscopist to acquire, in vivo, microscopic video
sequences of the epithelium. Because in vivo diagnostic interpretation of a pCLE
video is still challenging for many endoscopists, it could be supported by the
automated real-time extraction of visually similar videos that have already been
annotated with a textual diagnosis. We previously developed in [1] a dense bag-of-
visual-words (BoW) method for pCLE video retrieval, called “Dense-Sift”, which

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAI 2011, Part III, LNCS 6893, pp. 297–304, 2011.
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provides qualitatively relevant retrieval results. When evaluated in terms of classi-
fication, “Dense-Sift” was shown to significantly outperform several state-of-the-
art CBR methods referred to as “competitive methods” in Section 2. However,
there is a high variability in the appearance of pCLE videos, even within the same
pathological class. In order to measure the adequacy of pCLE video retrieval, we
propose to evaluate the “Dense-Sift” method directly in terms of visual similar-
ity distance. To this purpose, we develop in Section 3 an online survey tool called
“Visual Similarity Scoring” (VSS) to help pCLE experts in generating a perceived
similarity ground-truth. In Section 4, all state-of-the-art methods are evaluated
against the generated ground-truth and we show that, with statistical significance,
“Dense-Sift” proves to be the best. Leveraging the perceived similarity used for
evaluation purposes, we propose, in a second step, to improve the “Dense-Sift” re-
trieval method by learning from this ground truth an adjusted similarity metric.
Our metric learning technique, presented in Section 5, is based on a visual word
weighting scheme which we evaluate using cross-validation. The learned similarity
metric is shown to be significantly better correlated with the perceived similarity
than the original visual-word-based distance.

2 State-of-the-Art in CBR and Distance Metric Learning

Among the state-of-the-art methods in CBR, the BoW method of Zhang et al. [2],
referred to as “HH-Sift”, is particularly successful for the retrieval of texture im-
ages in computer vision. Whereas “HH-Sift” combines the sparse “Harris-Hessian”
detector with the SIFT descriptor, the competitive “Textons” method proposed
by Leung and Malik [3] is based on a dense description of local texture features.
Adjusting these approaches for pCLE retrieval, the “Dense-Sift” method of [1]
uses a dense SIFT description. Such a description is invariant to in-plane rota-
tions or translations changes that are due to the motion of the pCLE miniprobe
in contact with the epithelium, and to the possible illumination changes that are
due to the leakage of fluorescein used in pCLE. “Dense-Sift” also enables the ex-
tension from pCLE image retrieval to pCLE video retrieval by leveraging video
mosaicing results. Another CBR method shown as a competitive method in [1]
is the “Haralick” [4] method based on global statistical features. In this study, we
choose to evaluate these four CBR methods in terms of visual similarity distance,
in order to compare their retrieval performances.

Distance metric learning has been investigated by rather recent studies to
improve classification or recognition methods. Yang et al. [5] proposed a “boosted
distance metric learning” method that projects images into a Hamming space
where each dimension corresponds to the output of a weak classifier. Weinberger
et al. [6] explored convex optimizations to learn a Mahalanobis transformation
such that distances between nearby images are shrunk if the images belong to
the same class and expanded otherwise. At the level of image descriptors, Philbin
et al. [7] have a similar approach that transforms the description vectors into
a space where the clustering step more likely assigns matching descriptors to
the same visual word and non-matching descriptors to different visual words.
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Since the second approach relies on a matching ground-truth that is closer to
the pairwise similarity ground-truth that we present in the next section, our
proposed metric learning technique is inspired from the method of [7] and applies
the transformation to the visual words signatures of videos.

3 Generation of Perceived Similarity Ground-Truth

Our video database contains 118 pCLE videos of colonic polyps that were ac-
quired from 66 patients for the study of Buchner et al. [8]. The length of these
videos is ranging from 1 seconds to 4 minutes. To generate a pairwise similarity
ground-truth between these videos, we designed an online survey tool, called
VSS [9], that allows multiple human observers, who are fully blinded to the
video metadata such as the pCLE diagnosis, to qualitatively estimate the per-
ceived visual similarity degree between videos. The VSS tool proposes, for each
video couple, the following four-points Likert scale: “very dissimilar”, “rather dis-
similar”, “rather similar” and “very similar”. Because interpreting whole video
sequences requires a lot of time, the VSS supports this task by making available
the whole video content and for each video, a set of static mosaic images pro-
viding a visual summary. Indeed, Dabizzi et al. [10] recently showed that pCLE
mosaics have the potential to replace pCLE videos for a comparable diagnosis
accuracy and a significantly shorter interpretation time. We also paid attention
to how video couples should be drawn by the VSS. If the video couples had
been randomly drawn, the probability of drawing dissimilar videos would be
much higher than the probability of drawing very similar videos, which would
thus be poorly represented in ground-truth data. To solve this problem, we used
the a priori similarity distance Dprior computed by the “Dense-Sift” method to

Fig. 1. Schematic outline of the online “Visual Similarity Scoring” tool showing an
example of a scoring process, where 3 video couples (V 0, V 1), (V 0, V 2) and (V 0, V 3)
are proposed. Each video is summarized by a set of mosaic images.
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draw according to the following law: the probability of drawing a video couple
(V 1, V 2) is proportional to the inverse of the density of Dprior(V 1, V 2). Each
scoring process, as illustrated in Fig. 1, is defined by the drawing of 3 video
couples (V 0, V 1), (V 0, V 2) and (V 0, V 3), where the candidate videos V 1, V 2
and V 3 belong to patients that are different from the patient of the reference
video V 0, in order to exclude any patient-related bias. 17 observers, ranging
from middle expert to expert in pCLE diagnosis, performed as many scoring
processes as they could. The averaging time to score 3 video couples during one
scoring process was 10 minutes. Our generated ground-truth can be represented
as an oriented graph G = (V, E) where the nodes V are the videos and where
each couple of videos may be connected by zero, one or multiple edges repre-
senting the similarity scores. As less than 1% of these video couples were scored
by more than 4 distinct observers, it was not relevant to measure inter-observer
variability. In total, 3804 similarity scores were given on 1951 distinct video cou-
ples. Only 14.5% of all 13434 distinct video couples were scored. Although the
similarity graph is very sparse, we demonstrate in the following sections that it
constitutes a first valuable ground-truth, not only for retrieval evaluation but
also to learn an adjusted similarity distance.

4 Evaluation of CBR Methods against Ground-Truth

The evaluation of a CBR method against ground-truth can be qualitatively illus-
trated by the four superimposed histograms HL, L ∈ {−2,−1, +1, +2} shown in
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Fig. 2. Histograms of L-scored similarity distances computed by the CBR methods
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Fig. 2: HL is the histogram of the similarity distances which were computed by
the CBR method in the restricted domain of all L-scored video couples, where
L is one of the four Likert points from “very dissimilar” to “very similar”. We
observe that these histograms are correctly ordered with respect to the four Lik-
ert points for all methods, except for “HH-Sift” that switches H−1 and H−2.
We also notice that the histograms are better separated for “Dense-Sift” than
for the other methods. This is quantitatively confirmed by the histogram sepa-
rability measures, given by the Bhattacharyya distance, that are shown in the
supplemental material at http://hal.inria.fr/inria-00598301/fr/.

Possible indicators of the correlation between the visual-word-based similarity
distance and the ground-truth distance are Pearson π product moment, Spear-
man ρ and Kendall τ . Compared to π which measures linear dependence based on
the data values, ρ and τ are better adapted to the psychometric Likert scale be-
cause they measure monotone dependence based on the data ranks [11]. Kendall
τ is less commonly used than Spearman ρ but its interpretation in terms of
probabilities is more intuitive. To assess statistical significance for the compari-
son between the correlation coefficients that are associated to each CBR method,
we have to perform the adequate statistical test. First, ground-truth data lying
on the four-points Likert scale are characterized by a non-normal distribution,
so data ranks should be used instead of data values. Second, the rank corre-
lation coefficients measured for two methods are themselves correlated because
they both depend on the same ground-truth data. For these reasons, we per-
form Steiger’s Z-tests, as recommended by Meng et al. [12], and we apply it
to Kendall τ . The correlation results shown in Table 1 demonstrate that, with
statistical significance, “Dense-Sift” is better than all other competitive methods,
while “Textons” and “Haralick” are better than “HH-Sift”.

Standard recall curves are a common means of evaluating retrieval perfor-
mance. However, because of the sparsity of the ground-truth, it is not possible
to compute them in our case. Instead, we need “sparse recall” curves. At a fixed
number k, we define the sparse recall value of a CBR method as the percentage of
L-scored video couples, with L = +1 or +2, for which one of the two videos has

Table 1. Indicators of correlation between similarity distance computed by the CBIR
methods and ground-truth. σest is the standard deviation of the estimator, it can be
computed from the standard deviation of the n samples σsamples =

√
n − 1.σest. The

difference between methods M4 and M5 is not statistically significant (p > 0.3).

CBIR M1 M2 M3 M4 M5 M6
method M 30x3-DS-learn 30x3-DS Dense-Sift (DS) Textons Haralick HH-Sift
Pearson π 52.8 % 46.0 % 47.8 % 32.7 % 33.8 % 15.7 %

standard error σest 0.8 % 0.9 %
Spearman ρ 56.6 % 49.0 % 51.5 % 35.4 % 34.2 % 21.8 %

standard error σest 0.9 % 1.1 %
Kendall τ 52.6 % 45.2 % 47.0 % 32.1 % 30.6 % 19.4 %

standard error σest 0.9 % 1.0 %
Steiger’s Z-test on τ > M2 > M4-M5-M6 > M6 > M6

p-value p p = 0.018 p < 10−4 p < 10−4 p < 10−4

http://hal.inria.fr/inria-00598301/fr/
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been retrieved among the k nearest neighbors of the other video. Sparse recall
curves in Fig. 3 show that “Dense-Sift” extracts similar videos much faster than
the other methods in a small retrieval neighborhood, which is clinically relevant
for our pCLE application. Thus, local similarity distances are better captured
by the “Dense-Sift” method.

5 Distance Learning from Perceived Similarity

As mentioned in Section 2, we now propose a metric learning technique that
is inspired from the method of Philbin et al. [7]. Our objective is to transform
video signatures, that are histograms of visual words, into new signatures where
visual words are now weighted by a vector w that better discriminates between
similar videos and dissimilar videos. We thus consider two groups: D+ is the
set of video couples that have been scored with +2 or +1, and D− is the set
of video couples that have been scored with −2 or −1. Our constraints are the
following: the weights w should be positive in order to maintain the positiveness
of visual word frequencies, the χ2 metric used by standard BoW methods should
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Fig. 3. Sparse recall curves associated the two methods in L-scored domains

Fig. 4. Example of pCLE video query with its 3 nearest neighbors retrieved by “Dense-
Sift” before and after metric learning. Videos are represented by mosaic images.
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be the distance between video signatures and the new signatures should be L1-
normalized before χ2 distances are measured. We optimize the transformation
w by minimizing the following margin-based cost function:

f(w) = 1
Card(D+)

∑
(x,y)∈D+

L(b − χ2( w◦sx

||w◦sx||L1
,

w◦sy

||w◦sy||L1
))

+γ 1
Card(D−)

∑
(x,y)∈D− L(χ2( w◦sx

||w◦sx||L1
,

w◦sy

||w◦sy||L1
) − b) (1)

where b is the margin, sx is the visual word signature of the video x, ◦ is the
Hadamard (element-wise) product, L(z) = log(1 + e−z) is the logistic-loss func-
tion and γ is a constant that potentially penalizes either dissimilar nearby videos
or similar remote videos. The learned similarity distance is then defined by:

Dlearn(x, y) = χ2(
wopt ◦ 1sx

||wopt ◦ sx||L1
,

wopt ◦ sy

||wopt ◦ sy||L1
) (2)

To exclude the learning bias, we apply this distance learning technique using
m × q-fold cross-validation: we performed m random partitions of our database
into q video subsets. Each of these subsets is successively the testing set and
the two others the training set for both video retrieval and distance learning. To
eliminate patient-related bias, all videos from the same patient are in the same
subset. Given our sparse ground-truth, q must be not too large in order to have
enough similarity scores in each testing set and not too small to ensure enough
similarity scores in the training set.

For our experiments, we took m = 30 and q = 3. Then, by choosing γ = 5
and b = ( median (Htrain

+2,+1)+ median (Htrain
−2,−1))/2 as an intuitive value for the

margin b for each training set, we show in the following that we obtain satisfying
correlation results with respect to the ground truth.

As “Dense-Sift” proved to be the best CBR method, we propose to use its
visual word signatures as inputs of the learning process in order to improve
its visual-word-based distance. In order to compare the performances of the
learned similarity distance with those of the visual-word-based distance, “Dense-
Sift” was re-trained on each training subset and re-evaluated on corresponding
testing subsets. We call “30x3-fold-Dense-Sift” the cross-validated “Dense-Sift”
without metric learning and “30x3-fold-Dense-Sift-learn” the same one improved
by metric learning. The superimposed histograms HL for the retrieval method
before and after learning are represented in the bottom of Fig. 2. We observe that
these histograms are better separated after the metric learning process, which is
confirmed by the Bhattacharyya distances shown in the supplemental material.

Although the sparse recall curves of the retrieval method before and after
learning are very close to each other, as shown in Fig. 3, the metric learning
process globally improved the performance of the retrieval method in terms of
perceived visual similarities. Indeed, the correlation results shown in Table 1
demonstrate that, with statistical significance, the learned similarity distance is
better correlated than the original visual-word-based distance with the ground-
truth similarity distance. Besides, for some cases as the one shown in Fig. 4, we
observe that first neighbors are qualitatively more similar after metric learning.
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6 Conclusion

The main contributions of this study are the generation of a valuable ground-
truth for perceived visual similarities between endomicroscopic videos, the eval-
uation of content-based retrieval methods in terms of visual similarity and the
learning of an adjusted similarity distance. The proposed methodology could be
applied to other medical or non-medical databases. Our evaluation experiments
confirmed that the dense BoW method for endomicroscopic video retrieval has
better performances than other competitive methods, not only in terms of patho-
logical classification but also in terms of correlation with a ground-truth similar-
ity distance. Future work will focus on enlarging the ground truth database to
investigate more sophisticated metric learning techniques. Our long-term goal is
to improve endomicroscopic video retrieval and assess whether it could support
the endoscopists in establishing more accurate in vivo diagnosis.
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Abstract. In this work, a new approach for tubular structure segmentation is 
presented. This approach consists of two parts: (1) automatic model 
construction from manually segmented exemplars and (2) segmentation of 
structures in unknown images using these models. The segmentation problem is 
solved by finding an optimal path in a high-dimensional graph. The graph is 
designed with novel structures that permit the incorporation of prior 
information from the model into the optimization process and account for 
several weaknesses of traditional graph-based approaches. The generality of the 
approach is demonstrated by testing it on four challenging segmentation tasks: 
the optic pathways, the facial nerve, the chorda tympani, and the carotid artery. 
In all four cases, excellent agreement between automatic and manual 
segmentations is achieved.  

Keywords: Tubular segmentation, optimal paths, Dijkstra’s algorithm. 

1   Introduction 

Tubular structure localization has been studied extensively over the past few decades 
(see Lesage et al. [1] for an extensive review). One common segmentation approach is 
to use anatomy-specific models constructed from a training set. For instance, de 
Bruijne et al. [2] use specialized active shape models to localize abdominal aortic 
aneurysms. In the work presented herein, a new algorithm is presented that can be 
used to segment a wide variety of tubular structures. The method uses a novel 
approach to build anatomy-specific models and only requires a small number of 
sample segmentations for training. The segmentation problem is solved by finding an 
optimal path in a high-dimensional graph. The graph is designed with novel structures 
that permit the incorporation of prior information from the model into the 
optimization and account for several weaknesses of traditional graph-based 
approaches.  

One common approach for tubular structure extraction is to treat it as the problem 
of finding an optimal path in a graph, G={V,E} [3]. Typically, when used for tubular 
structure segmentation, V, the set of nodes, corresponds to the image voxels; E the set 
of edges, connects neighboring voxels; and the costs associated with the edges are 
defined by some heuristically derived function. This basic approach is widely used 
because it is computationally efficient and finds a global optimum. The algorithm also 
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has four identifiable limitations: (1) It is difficult to incorporate local and/or training-
based prior knowledge into the segmentation framework. Thus, the SOI (Structure Of 
Interest) must be enhanced prior to segmentation. This is not always possible as many 
tubular structures have intensity characteristics that vary along their length and 
borders that lack contrast. (2) The algorithm identifies a curve, rather than the 3D 
structure. Further processing must be applied to identify the full structure (an 
alternative is to add a 4th dimension corresponding to width as done in [4]). (3) The 
algorithm is biased with respect to length, i.e., because the algorithm finds the path 
composed of edges with the minimum cumulative costs, it tends to favor shorter, 
straight paths, which can result either in segmentation failure or in erroneous 
shortcutting at structure corners. (4) The method requires manual definition and 
tuning of cost functions. 

The algorithm presented in this paper uses an unconventional optimal path-based 
extraction scheme. Segmentation is performed on a unique high-dimensional graph 
that is designed to incorporate information from a novel tubular structure model. This 
approach addresses limitations of the traditional 3D formulation.  

2   Methods 

Although other features could be used, in this work intensity and shape-based features 
that are used for training and segmentation include: (1) the curve orientation, 
measured using finite differences, which provides a local prior on the curve’s shape; 
(2) intensity values along radii normal to the curve at distances of 0, 0.2, 0.9, and 1.1 
times the width of the structure at every π/4 radians; and (3) intensity derivatives on 
those radii at 0.1 and 1.0 times the structure width. The radii directions chosen when 
building the model are stored and used to compute the features on the same radii in 
target images for segmentation. 

2.1   The Tubular Structure Model and Its Training 

In our approach, a large number of features are used, but techniques will be used to 
weigh the features that are locally the most discriminant. The approach relies on 
separating the SOI into a set of segments, which will be referred to as “localities” {l}. 
Each locality will correspond to the same anatomic substructures across samples. The 
separation of the SOI into localities is done automatically as part of the training 
algorithm. A locality l of a particular training sample s can range from one to any 
number of voxels in length. Figure 1 shows a synthetic 2D example of a SOI with 2 
training samples divided into 5 localities. As shown, the localities correspond to 
similar regions across each training structure. The model training procedure is 
completed in four steps: (1) point correspondence across training centerlines is 
established, (2) the boundaries of the localities are determined, (3) model features are 
computed, and (4) weights for each feature are established.  

Point correspondence across centerlines is necessary to determine the localities that 
correspond to the same distinct regions across the sample SOIs, and it is extracted 
using a graph-based optimization. One training volume is chosen as the reference. 



 A New Approach for Tubular Structure Modeling and Segmentation 307 

The search determines one voxel along each training centerline to be associated with 
each reference centerline voxel. The cost function used in the search is optimized 
when local features between the corresponding voxels are best matched. The color-
coded voxels in the centerlines in Figure 1 represent example correspondences. In (b), 
black voxels indicate no association with a reference voxel, and multiple colors 
indicate multiple associations. The main purpose of this step is to provide a way to 
establish a correspondence between locality boundaries across training samples. Thus, 
a one-to-one correspondence between centerline points is not necessary. 

Although this could be automated, the number of localities for each SOI is chosen 
manually. However, the positions of the locality boundaries are determined 
automatically using a gradient descent technique. The cost function used favors 
smaller intra-locality and larger inter-locality variance of model features across all the 
training samples, and it includes a regularization term that favors boundaries spread 
evenly across the SOI. An example of optimal locality selection is shown in Figure 1. 
Once the localities are determined, the mean and variance of each feature for each 
locality/sample are computed.  

The next step involves determining the features that are the most discriminant in 
each locality. A desirable feature is one that has a low value inside the SOI relative to 
the background. To identify these, features are first computed across the training 
images and the resulting feature images are convolved with a Gaussian-based valley 
detecting filter with scale equal to the structure width. A high positive response 
indicates a desirable feature. A low or negative response indicates an undesirable one. 
Weights for each feature are thus set to the response of the filter if it is positive and 
set to zero otherwise. After this step the creation of the models is completed. These 
consist of a sequence of structure samples, each sectioned into localities representing 
similar anatomical regions; and statistical values and importance weightings for a set 
of features within each sample/locality. 

Fig. 1. Synthetic 2D example of a structure model. (a) and (b) are the reference and training
SOIs. RGB values of centerline points indicate correspondence across volumes. Locality
divisions are indicated by the purple lines. 

(a) (b)s=0 s=1

l=0 

l=1 

l=2 

l=3

l=4 l=0

l=1

l=3 

l=4 

l=2



308 J.H. Noble and B.M. Dawant 

2.2   Structure Segmentation 

Once the structure model is constructed, it can be used to segment new images using 
an optimal path finding algorithm. This algorithm requires three pieces of 
information: (1) the curve’s starting and ending voxels, (2) a defined graph structure, 
and (3) a defined cost function. In this work, the starting and ending voxels were 
chosen manually (this could be automated in future work using, for instance, atlas-
based methods as was done in [5,7]).  

To achieve our goal, a novel graph structure has been implemented that is unique 
in two ways: (1) Nodes are associated with specific training samples/localities. This 
allows costs to be computed using the model’s features associated with each 
sample/locality. Also, this permits reconstruction of the full 3D structure from the 
optimal path by assuming, since the features are width dependent, that the width of 
the structure at a node in the optimal path should match the width of the sample in the 
locality indicated by the node. (2) Novel graph structures are implemented such that 
the only paths that exist between the seed and end-node obey hard constraints on the 
minimum/maximum length of the structure. The length of a path in a graph can be 
constrained by creating an abstract dimension P in the graph. The seed lies at p=0 in 
P, and a set of candidate endnodes are chosen at p=[lmin, lmin+1 , … , lmax] in P. The 
graph is constructed such that all neighbors of the seed are at p=1, all of their 
neighbors are at p=2, and in general all neighbors of node vi at pi lie at pi+1. It follows 
from this formulation that vi is only reachable from the seed in pi steps, i.e., by paths 
that contain pi edges. An optimal path algorithm will find the path from the seed to the 
candidate endnode that results in the path of minimal cost, and because the graph is 
structured so that the only paths that exist between the seed and endnodes contain a 
bounded number of edges, it is guaranteed that the optimal path will have length on 
the interval [lmin , lmax]. This concept can be extended to apply length constraints on 
each individual locality. This ensures that the lengths of localities in the optimal path, 
and the length of the path itself, are within specified bounds. The bounds on the 
length of each locality are chosen as the range of the lengths of each locality in the 
training set.  

The cost function includes model-based terms but can also include other model-
independent, image-based terms, such as vesselness filters (see e.g. Frangi et. al. [6]). 
In this work, a directed vesselness filter is used, where the filter is aligned with the 
expected curve orientation given by the model. The analytical form of the 
segmentation cost function associated with edge ݁ connecting node ݒ௜ to ݒ௝ is: 

൫݁௜,௝൯ܥ ൌ ෍ ߱௦ೕ,௣ೕ௟ ݃௟ߪ௦ೕ,௣ೕ௟௅ିଵ
௟ୀ଴ ൅ ෍ ߱௦ೕ,௣ೕ௞ା௅ ቀݔ௞ െ ௦݂ೕ,௣ೕ௞ ቁ2

ቀߪ௦ೕ,௣ೕ௞ ቁଶ௄ିଵ
௞ୀ଴ . (1)

The second term is the cost associated with the K model-based features, while the first 
is associated with the L image-based features. ௦݂ೕ,௣ೕ௞  and ߪ௦ೕ,௣ೕ௞  are the mean and 

standard deviation of the kth model-based feature associated with sample ݏ௝ and 
locality ݌௝. ݔ௞ is the value of that feature evaluated in the target image. ߪ௦ೕ,௣ೕ௟  is the 

standard deviation of the lth image-based feature, and ݃௟ is the value of that feature in 
the target image. The ߱’s are the weighting values associated with each of those 



 A New Approach for Tubular Structure Modeling and Segmentation 309 

features. The standard deviations are used as normalizing factors to bring all the 
features into roughly the same scale. The standard deviations and weights for the 
image-based features are computed with the same approach used for the model-based 
features, as described in the previous section. With the graph and cost function 
defined, the algorithm can be used to segment new images. 

3   Results 

To validate the approach, the algorithm was tested on four structures: the facial nerve 
(FN), chorda tympani (CH), and carotid artery (CA) in CT, and the optic pathway 
(OP) in MR/CT. All of these structures pose a significant problem for segmentation 
algorithms because they have intensity characteristics that vary along their length and 
borders that lack contrast. The FN and CH are tiny nerves in the ear that range from 5 
to 1 voxel in width. The structures lie in pneumatized bone, and surrounding 
structures have highly variable topology. The CA is large in comparison, and is 
visible in CT in the temporal bone region. The OPs are composed of the optic nerves, 
chiasm, and tracts. This structure suffers from lack of contrast in both MR and CT. In 
this study, one OP is defined as one optic nerve connecting to the contra-lateral tract 
through the chiasm. Previous studies have shown that localizing both OPs in this 
fashion and computing the union of the two can lead to an accurate segmentation of 
the whole optic system [7]. The FN, CH, CA, and OP are divided into 6, 4, 5, and 7 
localities, which roughly corresponds to the number of visually distinct regions of the 
structures. For each SOI, a training set of 7 binary segmentations was acquired for 
training, and a leave-one-out approach was used for validation. Voxel resolution for 
the FN and CH images was 0.3x0.3x0.4 mm3 and was 1.0x1.0x1.5 mm3 for the CA 
and OP images. Quantitative error between manual and algorithmic segmentations 
was measured using symmetric surface distances as shown in mm in Figure 2. In the 
figure, mean and max surface errors are shown for each structure. The green bar, red 

Fig. 2. Quantitative segmentation results in mm shown for the (top graph) CH, FN, (bottom
graph) OP, and CA 
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bar, blue rectangle, and black I-bar indicate the median, mean, one standard deviation 
from the mean, and the range of the errors, respectively. Each dotted-line division in 
the graph indicates an error of approximately 1 voxel. As seen in the graph, mean 
errors are sub-voxel, and the mean maximum errors are under 3 voxels for all SOIs. 

Fig. 3. Renderings of the test case resulting in worst maximum errors for the (top-to-bottom) 
CH, FN, OP, and CA. Left and middle columns are 3D renderings of the manual and
algorithmic segmentations, color-encoded with error distance in mm as indicated by the color-
bars. The right column shows contours of the manual (red) and algorithmic (green)
segmentations and the automatically generated locality divisions (blue) in the images. 
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Qualitative results are shown in Figure 3 for the test case that results in the worst 
quantitative error. To generate the 2D views, a thin-plate spline transformation was 
computed that warps the medial axes of the structures to lie in a plane, and then the 
image data and contours were passed through this transformation. This was done so 
that a cross section of the entire structure could be viewed in one 2D plane. As the 
example demonstrates, the primary location of error maxima for the FN occurs at the 
endpoints of the structure. This is due to errors in endpoint selection. Error maxima 
for the CA occur at the sharp corners of the structure, where, even though the path 
length is bounded, the path still may tend to try to shortcut in these regions within the 
allowable length bounds. Error maxima for the OP occurs at the corners of the 
chiasm. In this region some shortcutting occurs, and the anatomy is more rectangular 
in shape, which makes the tubular segmentation model less accurate. The worst errors 
of about 4 voxels, as demonstrated by the quantitative results and by the examples in 
Figure 3, are rare and highly localized. On average, results appear to be qualitatively 
accurate, and excellent agreement is seen between the algorithmic and manually 
generated contours. To demonstrate the performance of the automatic locality 
extraction process used to build the model, the locality divisions of the manual 
segmentations are also shown in the figure. As seen in the figure, the locations of the 
locality divisions generally correspond to changes in local intensity or curve 
orientation. 

4   Conclusions 

In this work, a novel approach for tubular structure segmentation was presented. An 
optimal path algorithm is used to identify the SOI in a unique high-dimensional graph 
that incorporates information from a novel anatomy specific tubular structure model. 
The graph and structure model are used to overcome some limitations inherent to 
approaches typically used when applying an optimal path finding algorithm. Similarly 
to the work of Li and Yezzi [3], the graphs presented herein allow a 3D representation 
of the surface to be recovered from the optimal curve. These graphs also allow local, a 
priori, intensity and shape information from SOI exemplars to be included and 
optimized by the graph search. Finally, using a priori knowledge of the approximate 
length of the SOI, the graphs bound the allowable structure length to remove the bias 
towards straight curves inherent to traditional methods. While mild shortcutting may 
still occur, total failure is avoided. 

An approach for training the novel structure model was also presented. Using a 
procedure to find correspondence across exemplars, detect unique structure 
subsections, and extract and train discriminant features, a model of the SOI is 
constructed that contains statistical values and importance weightings for a set of 
intensity and shape features for each subsection of each training exemplar. The 
information in this model is then incorporated into the segmentation framework. 
Combining the advantages achieved by the graph structure with the weighting of the 
features from the model used in the cost function accounts for all four limitations of 
traditional graph-based approaches listed in Section 1. 

For validation, the approach was tested on four challenging anatomical structures. 
As can be seen in the images of Figure 3, there is poor image contrast at the borders 
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of these structures and changing intensity profiles along the lengths of the structures. 
There are also substantial inter-patient variations in the intensity and shape features 
for each of these structures. All of these factors make the segmentation problem very 
difficult. However, the results of the presented approach are accurate, suggesting that 
it is generally applicable for fixed topology, non-branching tubular structures. To the 
extent of our knowledge, there are only a few existing methods for the segmentation 
of the FN, CH, and OP. The segmentation results presented in this paper are 
comparable to those of the most accurate of those existing approaches, which were 
specifically designed to localize these structures [5,7]. This also indicates that the 
approach presented in this paper is effective.  

The method does require selecting one single parameter: the number of localities of 
the SOI. However, its selection is intuitive, i.e., it should roughly correspond to the 
number of visually distinct regions of the SOI. In future work, this will be chosen 
automatically. One possibility is brute force optimization, i.e., try every possible 
number of localities between 1 and N on the training set, and use the one that 
produces the most accurate results.  
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Abstract. Multiple-segmentation-and-fusion method has been widely used for 
brain extraction, tissue segmentation, and region of interest (ROI) localization. 
However, such studies are hindered in practice by their computational complex-
ity, mainly coming from the steps of template selection and template-to-subject 
nonlinear registration. In this study, we address these two issues and propose a 
novel learning-based meta-algorithm for MRI brain extraction. Specifically, we 
first use exemplars to represent the entire template library, and assign the most 
similar exemplar to the test subject. Second, a meta-algorithm combining two 
existing brain extraction algorithms (BET and BSE) is proposed to conduct 
multiple extractions directly on test subject. Effective parameter settings for the 
meta-algorithm are learned from the training data and propagated to subject 
through exemplars. We further develop a level-set based fusion method to com-
bine multiple candidate extractions together with a closed smooth surface, for 
obtaining the final result. Experimental results show that, with only a small por-
tion of subjects for training, the proposed method is able to produce more accu-
rate and robust brain extraction results, at Jaccard Index of 0.956±0.010 on total 
340 subjects under 6-fold cross validation, compared to those by the BET and 
BSE even using their best parameter combinations.  

1   Introduction 

Brain extraction, also called as skull stripping, is a fundamental step in the brain MR 
image preprocessing, aiming to remove the non-brain tissues, such as skull, scalp, and 
dura. Accurate brain extraction is crucial since it is non-reversible for the subsequent 
steps to recover the wrongly-removed brain tissues, and also the residual non-brain 
tissue (especially dura) in the brain extraction result could overestimate the local brain 
volume or cortical thickness. Accordingly, a number of automated brain extraction 
algorithms have been developed, using morphology, morphology combined with edge 
detection (BSE) [1], deformable model (BET) [2], graph cut, watershed, and other 
hybrid techniques. Each algorithm has its merits and pitfalls. For example, it is re-
ported that BET usually remains some non-brain tissue, while BSE may remove extra 
brain tissue [3]. Thus, when applied to a large cohort with varying scanning parame-
ters and diagnosis types, manual adjustment of program parameters and manual  
editing of extraction results are inevitable. 
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Multiple-segmentation-and-fusion method has been recently developed with prom-
ising results in brain extraction [4], tissue segmentation [5], and region of interest 
(ROI) localization such as hippocampus [6]. Generally, the method choose a subset of 
the most similar templates from the template library to propagate their labels to the 
test subject, and then fuse them together for a final labeling. Studies suggest that 
combining complemental results may substantially improve the robustness of final 
brain extraction. However, the applications of this method are largely hindered by the 
high computational complexity, mainly coming from the first two steps, namely tem-
plate selection and template-to-subject propagation (usually by nonlinear registration). 
For example, in MAPS method [4], it takes about 19 hours for brain extraction of a 
single subject.  

In this study, we address these issues by proposing a novel learning-based meta-
algorithm for MRI brain extraction. Specifically, first, we do not need exhaustive 
template-subject comparison to select the appropriate templates; instead, we use ex-
emplars to represent the entire template library, and thus the test subject just needs to 
be compared with exemplars. Second, without need of the template-to-subject warp-
ing, we use a meta-algorithm, i.e., combining two existing individual brain extraction 
algorithms (BET and BSE), to conduct multiple extractions directly on test data. Ef-
fective parameter settings for the meta-algorithm are learned from the training data 
and passed to subject through exemplars. We further develop a level-set based label 
fusion to combine multiple candidate extractions together with a closed smooth sur-
face, for obtaining the final result. Thus, errors in voxel-wise label fusion (e.g., by 
simple majority voting) can be greatly eliminated. Methodological details and expe-
rimental results are provided in the sections below.  

2   Materials and Method 

2.1   Subjects and MRI Acquisition 

Our data is obtained from Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
(www.adni-info.org), which is a large multi-site study acquired from multiple centers, 
and so it is ideal to test the accuracy and robustness of the proposed brain extraction 
algorithm. We use the baseline T1-weighted MRI scans of 340 subjects with age 
ranging from 55 to 90 years old, including 33 Alzheimer's disease (AD), 236 mild 
cognitive impairment (MCI), and 71 healthy controls. These MRI scans were acquired 
from 1.5T scanners made by GE, Philips, and Siemens, using the scanning parame-
ters: TR/TI/TE=2300/1000/3.5 ms, flip angle=8⁰, FOV=240×240 mm2. Two sizes of 
images were acquired: one is 160 sagittal slices with voxel resolution of 
1.25×1.25×1.2 mm3, and another is 180 sagittal slices with voxel resolution of 
0.94×0.94×1.2 mm3. 

For preprocessing, all images are resampled into isotropic 1×1×1 mm3. Bias field is 
estimated with N3 algorithm [7] to correct the intensity inhomogeneity in all MR 
images separately. 
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2.2   Overview of the Proposed Learning-Based Meta-Algorithm  

A learning-based meta-algorithm is proposed for brain extraction, with three major 
steps as illustrated in Fig. 1. A small number of subjects are selected as training data, 
and the rest are used as test data. The first step is the brain localization, where a brain 
mask is generated from the training data to roughly localize the brain region of the 
test subject. The second step is exemplar selection and parameter learning. Exemplars 
are chosen for representing the whole training data. Parameters for each individual 
algorithm (BET/BSE) are uniformly sampled and exhaustively combined, to learn the 
parameter map of brain extraction performance for each training subject. As for each 
exemplar, its parameter map can be obtained by averaging from all training subjects 
according to their contributions to that exemplar. The third step is the brain extraction 
and fusion for the test subject. In the application, each test subject is compared with 
all exemplars to find the best matching one, and then the corresponding set of parame-
ter combinations are employed to conduct multiple brain extractions on the test sub-
ject. All candidate extractions are then fused together into the final result with a level-
set based algorithm. Details are given in the following subsections. 

  

Fig. 1. A conceptual diagram illustrating the three main steps in the proposed learning-based 
meta-algorithm for brain extraction 

2.2.1   Step 1: Brain Localization  
This step is to spatially normalize the training data and generate a mask to roughly 
localize the brain for the test subject, so that the search range can be reduced and 
individual brain extraction algorithms can perform better. For example, when applied 
to the original brain image, BET often keep some non-brain tissues in front of brain 
stem, and BSE may even remain some neck regions [8]. These problems can be par-
tially solved by this step. 

Each training subject contains two images, namely a with-skull image and a brain-
extracted image, which is manually delineated and serves as the ground-truth. First, 
all the brain-extracted images of training subjects are affine aligned onto a widely 
used population template named as ICBM152 [9] for spatial normalization. The esti-
mated transformations are used to bring their with-skull images also onto the common 
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space. Then, the with-skull images and the brain-extracted images are averaged across 
all subjects separately. The average brain-extracted image (Fig. 2a) is binarized into a 
brain mask by keeping all non-zero voxels, which is further dilated for a number of 
voxels ݀ to generate a final brain mask for better brain localization (Fig. 2b). We 
conservatively set ݀ ൌ 12 in this paper to avoid removing brain tissues when norma-
lization errors exist. The average with-skull image (Fig. 2c) is used to serve as an 
intensity template for aligning the test image (which only has the with-skull image) 
onto the same space (Fig. 2d). Finally, the warped test image is masked with the gen-
erated brain mask (Fig. 2e). By doing this, the non-brain tissues with a certain dis-
tance from the brain in the test image can be completely (e.g., neck regions) or par-
tially (e.g., near the brain stem regions) removed.  

 

Fig. 2. Illustration of the average brain-extracted image from training data (a), the generated 
brain mask (b), the average with-skull image from training data (c), a test image from an AD 
subject (ID 067_S_0110) after affine alignment (d), and the test image applied with brain mask 
(e). Red arrows indicate some non-brain tissues, which pose challenges to individual brain 
extraction algorithms, are totally or partially removed by the brain mask. 

2.2.2   Step 2: Exemplar Selection and Parameter Learning 

Exemplar Selection. We propose to use a small number of exemplars to represent the 
entire data, so that prior knowledge can be carried by these exemplars and then prop-
agate to the test subject. By doing so, the traditional exhaustive template-subject 
comparisons can be substantially reduced. To do this, we mask the with-skull images 
of training data by the dilated brain mask. Then, we use the affinity propagation algo-
rithm [10] to cluster the masked training data into a number of classes, and further 
determine their respective exemplars. Briefly, each pair of training data is computed 
for their intensity similarity using mutual information, and the results on all possible 
pairs form an N by N matrix, where N is the number of training data. The diagonal 
elements of the similarity matrix have influence on the number of selected exemplars, 
which are set as the median of the input similarities to allow all training data to have 
equal probability as exemplars. In each iteration, the elements in similarity matrix 

(a) (b) (c) (d) (e)
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exchange messages of how suitable one element to be the exemplar of another one. 
When the matrix updating converges, a number of training subjects are selected as 
exemplars.  

Parameter Learning. We propagate only the parameter settings learned from the 
training data to conduct multiple extractions directly on the test subject. BET and 
BSE are employed in our meta-algorithm due to their well-recognized performance 
and speed. Each of them has a number of parameters. We uniformly sample the com-
monly-used parameters for the two algorithms, as specified in Table 1. Then, every 
combination of parameters is used to conduct brain extraction on each masked train-
ing data. The overlap rate is finally computed between automated segmentation ܣ and 
manual segmentation ܯ with Jaccard Index as ܬ ൌ ܣ| ת |ܯ ܣ| ׫ ⁄|ܯ . Thus a parame-
ter map is formed for each individual algorithm on each training data, e.g., a 15×6 
map built for BET (Fig. 3a) and a 5×4×5 map built for BSE, where each element 
represents the overlap rate with respect to the parameters used. For each exemplar, its 
parameter map (Fig. 3b) is defined as the average over all training data according to 
their contributions to that exemplar.  

Table 1. Parameters and sampling strategies used for BET and BSE in the proposed meta-
algorithm 

Methods Parameters Default Sampling 

BET 
-f (fractional intensity threshold) 0.5 0.1:0.05:0.8 
-g (vertical gradient) 0 -0.3:0.1:0.2 

BSE 
-d (diffusion constant) 25 15:5:35 
-n (diffusion iterations) 3 1:2:7 
-s (edge detection constant) 0.62 0.5:0.05:0.7 

 

Fig. 3. Illustration of BET parameter maps on a training data (a) and an exemplar (b), as well as 
the thresholded exemplar parameter map showing top M highest ranking parameter combina-
tions (c-d). X-axis and y-axis represent the two parameters (i.e., -f and -g) in BET. 
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2.2.3   Step 3: Brain Extraction and Fusion  

Brain Extraction. For the test subject, the best match exemplar is found by compar-
ing the intensity similarity of its masked with-skull image with that of all exemplars. 
Thus, the parameter map of the selected exemplar can be used to guide multiple brain 
extractions on the test subject. Top M effective parameter combinations are chosen 
from the parameter map (Fig. 3c), so that M instances of brain extractions are con-
ducted on the test subject (Fig. 3d). Note that more instances of individual brain ex-
tractions will bring higher computational cost, although the accuracy might be im-
proved. We empirically use ܯ ൌ 20 in this paper.  

Fusion. When multiple candidate extractions are available, the next question is how 
to fuse them together. Majority voting is widely used; however, it can produce iso-
lated false extractions and sometimes unsmooth boundary in the extracted brain re-
gion. To address this issue, we model the brain as a closed entity with a smooth sur-
face, and thus use a level-set method [11] to find the brain boundaries from the aver-
age label map of the multiple brain extraction results, as shown in Fig. 4. For this 
method, two parameters are important in constraining the shape of the level-set based 
surface. The first parameter is to smooth the resulting level set with kernel s, and the 
second parameter is to dilate the final brain extraction result outward for t voxels to 
reduce the risk of cutting brain tissues, as recommend in many studies [4]. It is worth 
noting that these two parameters could also be learned from the training data, by un-
iformly sampling the parameter values and picking the one with the best overlap with 
ground truth. We use ݏ ൌ 11 and ݐ ൌ 2 in this paper. Finally, by applying the esti-
mated level-set mask (Fig. 4d) onto the test subject, the brain extraction result can be 
obtained (Fig. 4e).  

 

Fig. 4. Illustration of the level-set based fusion on the AD subject shown in Fig. 2. Averaged 
candidate extractions is shown in (a), averaged mask in (b), level-set based surfaces (red) using ݏ ൌ ݐ ,0 ൌ 0 (c), or ݏ ൌ ݐ ,11 ൌ 2 (d), and final extraction result (e). 

(a) (b) (c) (d) (e)
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3   Experimental Results 

In our experiment, a 6-fold cross-validation is performed. All subjects were randomly 
partitioned into 6 folds. Each fold was used in the training process and the rest was 
left as testing set. Estimation of errors was the overall proportion of errors committed 
in all folds. Taking one case as example, 54 of 340 subjects (8 AD, 22 MCI, and 24 
controls) are selected as training data, and the rest are used as test data. With the me-
thod described above, the exemplars we obtained come from 2 AD, 3 MCI,  
and 1 control, indicating in part the ability of our exemplars for representing the data 
distribution.  

Automated extractions are compared with manual ones by calculating their overlap 
rates. The performance is further compared with that obtained by each of the four 
baseline methods, i.e., BET without/with our brain localization step (called Raw BET 
and BET, respectively), and also BSE without/with our brain localization step (called 
Raw BSE and BSE, respectively). For these four baseline methods, every combina-
tion of parameters is explored and the one with the highest average Dice ratio across 
the entire test data is chosen as the final result. Furthermore, majority voting is also 
used to replace the level-set based data fusion in the proposed pipeline, and serve as 
another control method. All results are shown in Fig. 5. It can be observed that, the 
proposed method significantly outperforms other five methods (p<0.001) by achiev-
ing the average Jaccard Index of 0.956±0.010, in comparison with 0.903±0.026 and 
0.935±0.010 by Raw BET and BET, 0.870±0.029 and 0.883±0.037 by Raw BSE and 
BSE, and 0.849±0.036 by MajorityVote. Note that, by using our method, not only the 
accuracy is largely improved, the robustness is also increased as reflected by the low-
est standard deviation. Meanwhile, our brain localization step shows its ability to 
improve the accuracy and robustness of brain extractions for both BET and BSE, 
compared with Raw BET and Raw BSE, respectively. Another observation is that the 
extraction result on abnormal brain such as AD has lower accuracy than that of con-
trol, which agrees with previous findings [3].   

 

Fig. 5. Jaccard Index for automated brain extraction by the four baseline methods, majority 
voting, and the proposed method, under 6-fold cross validation 
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  To visualize the location of extraction errors in 3 algorithms (BET with brain locali-
zation, BSE with brain localization, and the proposed method), we generate the pro-
jection maps for the false positive and negative voxels. Specifically, the 3D false 
positive (or negative) maps of all test data are first averaged, and then projected onto 
the sagittal, coronal, and axial directions, as shown in Fig. 6. BET has more false 
positive voxels, indicating the inclusion of more non-brain tissues in the brain extrac-
tion results. BSE has more false negative voxels, indicating wrongly removing more 
brain tissues. Our proposed method produces the lowest false positive and false nega-
tive, in comparison to both baseline algorithms. 

 

Fig. 6. Projection maps of false positive (left panel) and false negative (right panel) for the 
brain extractions obtained by BET, BSE, and our proposed method on all test data. Brighter 
value indicates more false positive (or negative) results in that location. 

4   Discussion and Conclusion 

We have presented a novel learning-based meta-algorithm for MRI brain extraction. It 
has three novelties. First, we introduce exemplars to represent the whole template 
library, thus largely reducing the size of templates to match during the application 
stage. Second, we alternatively propagate the learned parameter settings from tem-
plate to subject, without requiring nonlinear registration between them. Third, we 
develop a level-set based label fusion method to overcome both boundary discontinui-
ty and isolated errors in voxel-wise label fusion methods. Experimental results have 
shown that our proposed method can substantially improve the accuracy and robust-
ness of brain extraction. Also, the proposed meta-algorithm is not limited to BET and 
BSE; it can be extended for inclusion of other brain extraction algorithms. 

The proposed method has demonstrated comparable brain extraction accuracy 
(Jaccard 0.956, tested on 340 subjects) with MAPS (Jaccard 0.954, tested on 839 
subjects) [4]. More importantly, it has much shorter processing time (~10 mins) to 
perform brain extraction on a new subject than that of MAPS (~19 hours) [4]. For 
training stage, 6 hours are needed to process 54 training data on a standard PC for 
spatial normalization, parameter map learning, and exemplar selection.  
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Learning Likelihoods for Labeling (L3):

A General Multi-Classifier Segmentation
Algorithm

Neil I. Weisenfeld and Simon K. Warfield
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Boston, MA

Abstract. PURPOSE: To develop an MRI segmentation method for
brain tissues, regions, and substructures that yields improved classifica-
tion accuracy. Current brain segmentation strategies include two com-
plementary strategies. Multi-spectral classification techniques generate
excellent segmentations for tissues with clear intensity contrast, but fail
to identify structures defined largely by location, such as lobar parcella-
tions and certain subcortical structures. Conversely, multi-template label
fusion methods are excellent for structures defined largely by location,
but perform poorly when segmenting structures that cannot be accu-
rately identified through a consensus of registered templates. METH-
ODS: We propose here a novel multi-classifier fusion algorithm with the
advantages of both types of segmentation strategy. We illustrate and val-
idate this algorithm using a group of 14 expertly hand-labeled images.
RESULTS: Our method generated segmentations of cortical and sub-
cortical structures that were more similar to hand-drawn segmentations
than majority vote label fusion or a recently published intensity/label fu-
sion method. CONCLUSIONS: We have presented a novel, general seg-
mentation algorithm with the advantages of both statistical classifiers
and label fusion techniques.

1 Background

Vannier introduced multi-spectral classification for brain image segmentation in
1985 [1] and such segmentation strategies have been the standard for years (e.g.
[2,3]). Multi-spectral classification yields segmentations with true fidelity with
respect to the image data and the patient, but are unable to label structures
where the boundaries are poorly represented by changes in image contrast, such
as lobar parcellations and subcortical substructures. With advances in flexible,
non-rigid registration technology, multi-atlas approaches have recently become
popular (e.g. [4,5,6]). These are segmentation-by-registration approaches where
registration error is marginalized by fusion of a series of registered template
segmentations through some consensus generating process. These methods ulti-
mately have limited ability to resolve structure that cannot be identified through
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registration alone. Recent work [6] has attempted to address this shortcoming
by adding a grayscale image similarity term to the label fusion process. This
technique is limited by the simplifying assumption that template image inten-
sities will be similar to subject image intensities, and do not account for the
significant differences in image intensity between scanners, pulse sequences, and
disease states.

We propose a new method called Learning Likelihoods for Labeling (L3),
which unifies label fusion and statistical classification. In our approach, each
input template does not define a candidate segmentation to be fused, but instead
defines a unique classifier that is used to generate a multi-spectral classification
of the target subject. Each of the resulting classifications is then fused, yielding
an individualized segmentation true to the underlying data. Our strategy is
capable of labeling both types of structures: tissues that are well-defined by
the contrast in the images, as well as labels defined by their relative location to
other structures. We present below a self-contained learning-by-example strategy
for segmentation where the only inputs are a small number of segmented and
registered example images and the target MRI to be segmented. We demonstrate
this approach on data from a group of 14 subjects for whom gray matter, white
matter, ventricles, putamen, caudate, and thalamus have been hand-labeled by
an expert.

2 Methodology

2.1 Overview

Our algorithm utilizes a library of template labelmaps {Ln}, n = 1, . . . , N which
have been registered to our target subject. In the present work, we employ a
particular non-linear, non-rigid registration approach [7] for aligning the indi-
vidual library images to the target, but a number of excellent techniques could
have been used.

A typical label fusion approach seeks to combine these labels to generate
a consensus labelmap or estimated true segmentation T = f(L1, . . . , Ln) using
some fusion function f , such as majority voting or STAPLE [8]. This approach is
limited, however, in its use of intensity information in the images and is therefore
only able to segment features well-represented in the template images. By using
the template images to guide training of a supervised classifier, we’re able to
“learn” about patterns of intensity throughout the image. We also utilize each
template individually as a spatial prior, and in so doing retain the benefits of
a traditional label fusion strategy where anatomical variation is represented by
the distribution of input templates.

We assume that we have aligned, multi-spectral image data from the subject
we wish to segment and denote this vector image I. We assume the existence of
a supervised classification algorithm C : L × I → S which takes a labelmap for
training L, a multi-spectral dataset I and produces a segmentation S. Coupling
C with a particular template labelmap Ln yields a new classifier Cn : I → Sn

that generates a candidate segmentation Sn. We fuse these classifications to
produce the final resulting segmentation T = f(S1, . . . , Sn).
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2.2 Classification

In order to generate classifications {Sn}, we implement a Bayesian segmentation
strategy:

p(Sni = s|Ii) =
p(Ii|s)p(s)∑
s′ p(Ii|s′)p(s′)

(1)

and estimate the likelihood p(Ii|s) of a particular MR intensity value Ii, at voxel
i, given a particular tissue class s, using the density estimation strategy due to
Cover [9]. Training data for density estimation is generated by sampling each
labelmap Ln at a random coordinate i and pairing this label Lni with the target
subject’s image intensity at the same coordinate Ii. A number of such samples,
randomly distributed in space, are then employed to estimate the tissue class
likelihoods. In the experiments that follow, we used 4000 samples per tissue class
and k = 51 for the Cover algorithm.

For the prior in Eq. 1, we use a spatially varying prior derived from an indi-
vidual template Ln as in [6]. If Ds

ni is the signed distance transform of label s in
input template Ln, at voxel i, then the prior p(s)= 1

Z exp(ρDs
ni) where Z is the

appropriate normalization constant such that all probabilities sum to 1 and ρ is
a parameter which allows us to control the smoothness of the prior. The ideal
value of ρ is related to the expected registration error, and for the non-linear
registration we used in this work, we chose ρ = −1.4.

Each template labelmap Ln generates a unique segmentation Sn of the target
subject that is the product of both a unique prior and likelihood. An alternative
strategy might employ a common prior across candidate segmentations Sn, for
instance based on the prevalence of a given label across templates. We believe
that using each template individually allows us to better marginalize registration
error during the fusion process.

2.3 Weighted Fusion

The STAPLE algorithm [8] has previously been used successfully for label fusion
in contexts where it is not known how informative each template labelmap is on
a label-by-label basis. Indexing voxels by i and individual templates using n, the
voxelwise formula for fusion from STAPLE is:

p(Ti = s|Si,Θ) =
p(Ti = s)

∏
n p(Sni|Ti = s, θn)∑

s′ p(Ti = s′)
∏

n p(Sni|Ti = s′, θn)
(2)

where θn is a matrix of performance parameters indicating the probability of mis-
match between the individual segmentation Sn and the true, underlying segmen-
tation T for each possible combination of labels s′, s: θns′s ≡ p(Sn = s′|T = s),
Θ is the collection of θ1, . . . , θN , and S is the collection of S1, . . . , SN . This
equation is solved using the STAPLE algorithm [8].
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The performance parameters Θ in STAPLE depict statistics accumulated
across the region of computation. This region may be restricted to a window
around each voxel and Θ then depicts a spatially-varying measure of perfor-
mance. This measure is advantageous for label-fusion applications where true
performance may vary across the image, but may lead to undesirable local op-
tima in areas of disagreement. In [10], the authors present a maximum aposteriori
(MAP) estimate for Θ. Supplying a prior for Θ stabilizes these estimates in the
face of missing structures and avoids undesirable local optima in areas of extreme
disagreement.

In the present application, we generated a consensus from each candidate seg-
mentation by running STAPLE MAP locally in a 5×5×5 voxel window around
each voxel. The prior on θj is a Beta distribution, as described in [10], with pa-
rameters (α = 5, β = 1.5) for the diagonal elements and (α = 1.5, β = 5) for the
off-diagonal elements of each θj. We utilized a spatially varying prior in STAPLE
MAP calculated as the prevalence of each label, at each voxel coordinate, in the
registered template images Ln. Finally, a mean-field approximation to a Markov
Random Field prior was used as described in [8].

2.4 Improving the Training Data

Given the estimated true segmentation from Equation 2, it is desirable to edit
the input training templates {Ln} by removing voxels that are inconsistent with
the estimated segmentation [11]. We do this stochastically using the following
procedure: for each of our templates Ln, we examine each of the previously
sampled training points i, with label Lni, and remove the training point from
further use if p(Ti = Lni|S,Θ) < rand([0, 1]) where rand([0, 1]) is a random
number selected from a uniform distribution between zero and one. For instance,
if a particular training point is labeled as “gray matter,” and our estimated true
segmentation indicates that the probability of this label at this voxel coordinate
is 0.6, then there is a 1 − 0.6 = 0.4 chance that we will remove this point.

Once the training data is edited, we re-estimate the classifications {Sn} and
then generate a new weighted consensus using Eq 2. This process continues it-
eratively until the difference in successive estimates of the final segmentation
is small. In [11] we demonstrated that this procedure leads to improved classi-
fications by removing training points which appear inconsistent with the data
being segmented. This algorithm serves to detect registration error between the
template and the target and removes training data from the boundaries be-
tween tissue types where registration errors occur more frequently. This leads to
improved classification accuracy.

3 Validation and Experiments

An expert segmented each of 14 normal controls into gray matter, white matter,
ventricular cerebrospinal fluid (including 3rd, 4th, 5th, and lateral ventricles),
caudate, putamen, and thalamus following an established protocol. Segmenta-
tions were performed using high-resolution (1mm isotropic) T1-weighted SPGR
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images acquired at 3T on a GE Signa Imager (General Electric, Wakeusha, WI,
USA). For each template, an associated grayscale image was registered to the
target subject using an implementation of rigid and affine mutual-information
(MI) registration and then using a locally-affine MI-based registration [7]. The
resulting registration transform was then used to warp the template segmenta-
tion to the target subject. Each of the 14 datasets was segmented using the other
13 as templates in a typical “leave-one-out” fashion.

For comparison to our algorithm, we report values from segmentations ob-
tained with two methods: an implementation of the label/intensity fusion algo-
rithm in [6] and majority voting. Each of the algorithms used the same registered
templates and, for compatibility with the other methods, we restricted our tests
in these experiments to classification using the T1-weighted intensities alone,
although a potential advantage of our method is its ability to perform multi-
spectral classification.

Figure 2 shows a typical T1-weighted image (top left) followed by the result
from our algorithm (top right), a label/intensity fusion segmentation (bottom
left), and the hand drawn segmentation (bottom right) for Case 1 from our
study. The label fusion result appears to routinely oversegment cortical gray
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Fig. 1. Dice overlap comparison between automatic segmentations and hand-drawn
images for 14 subjects. Shown are our L3 method (blue), the combined intensity/label
fusion method (ilf; green), and majority voting (mv; magenta). L3 performance is
similar to other methods for subcortical structures (caudate, putamen, thalamus), but
shows superior performance overall due to large improvements in gray matter and white
matter segmentation.
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T1-weighted MRI L3

Intensity/Label Fusion Hand Drawn

Fig. 2. Comparison of our method (L3) with a particular intensity/label fusion tech-
nique (see text) and hand-drawn segmentations. The intensity/label fusion result (lower
left) oversegments gray matter and fails to represent fine sulcal detail in the image.
Our method (top right) extracts such detail and better approximates the hand-drawn
segmentation (bottom right).

Fig. 3. The impact of editing the training sets: first iteration of our method (left), final
iteration of our method (middle), groundtruth image (right). The method iteratively
improves its class-conditional density estimates in order to better capture fine intensity
differences within the input. Arrows indicate areas of change.



328 N.I. Weisenfeld and S.K. Warfield

matter and misses fine details (arrows). In our algorithm, each individual in-
put template leads to a different set of tissue-class likelihood estimates for the
target subject, leading to different classifications which are then fused. We can
then iteratively improve these likelihood estimates using the fused classifications.
Figure 3 shows a close-up of segmentations overlaid onto the T1 image. On the
left is the initial, fused classification using our method (first iteration), with ar-
rows indicating areas where fine white matter details are not well captured. The
next image shows the final result of our method, after iteratively improving the
class-conditional likelihood estimates. Our new method captures more structure
in the white matter as the likelihoods improve with each iteration. On the right
is the hand-drawn segmentation for the corresponding region.

Figure 1 shows a plot of Dice overlap [12] measures for segmentations from
our method, as well as majority voting and our implementation of the algorithm
in [6], each compared with expert hand-drawn segmentations. Performance of L3
is generally excellent and is consistently highest for gray matter, white matter,
and overall. The large variability in CSF segmentation is due to partial volume
effects and the difficulty of visualizing CSF on T1 weighted images. Total Dice
measures across labels are computed as

∑
s 2|As∩Bs|∑
s |As|+|Bs| .

4 Discussion and Conclusion

The emergence of very high quality registration technology has led to the
emergence of segmentation-by-registration strategies where grayscale images are
aligned and a known segmentation is warped to the target subject. Since the
alignment of images from two individuals inevitably contains some registra-
tion error, multi-atlas label fusion techniques have been developed in order to
marginalize registration error by employing template subjects with a distribution
of anatomy. These methods are fundamentally limited in their ability to identify
anatomy that cannot be captured through registration alone. Sabuncu[6] at-
tempts to address this issue by incorporating an image intensity similarity term
and pairs labelmap templates with intensity templates. This strategy inevitably
requires data from the same modality and is incapable of modeling patient or
disease specific intensity changes. Lötjönen[13] recognized this shortcoming and
added an intensity classification after label fusion, however doing so conflates
registration error and anatomical variability. They reported a Dice overlap im-
provement of 0.01 − 0.02 from the addition of intensity classification.

The method we introduce here is a new type of multi-template classifier fusion
that exploits the strengths of both label fusion and statistical classification. The
anatomical variation in the population is encoded in a library of input templates.
By weighting these appropriately, and using them independently, we’re able to
employ a learning strategy that identifies areas of mismatch between each tem-
plate and the target subject. This provides improved classification for diffuse,
distributed structures with strong intensity contrast, as well as for structures
which are largely isointense, but well defined by their position in the anatomy.
Segmentation of the latter is heavily influenced by the template-based prior



Learning Likelihoods for Labeling (L3) 329

probabilities, while the former are accurately identified using the learned subject-
specific likelihood functions.
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Abstract. Automated anatomical labeling of the arteries forming the
Circle of Willis is of great interest as facilitates inter-subject compar-
ison required to discover geometric risk factors for the development of
vascular pathologies. In this paper, we present a method for anatomical
labeling of vessels forming anterior part of the Circle of Willis by detect-
ing the five main vessel bifurcations. The method is first trained on a
set of pre-labeled examples, where it learns local bifurcation features as
well as global variation in the anatomy of the extracted vascular trees.
Then the labeling of the target vascular tree is formulated as maximum
a posteriori solution where the classifications of individual bifurcations
are regularized by the prior learned knowledge of the tree they span. The
method was evaluated by cross-validation on 30 subjects, which showed
the vascular trees were correctly anatomically labeled in 90% of cases.
The proposed method can naturally handle anatomical variations and is
shown to be suitable for labeling arterial segments of Circle of Willis.

1 Introduction

The Circle of Willis is a ring of cerebral vessels that connects the two halves of
the anterior circulation with the posterior one and its bifurcations are a common
site of aneurysm formation (pathological dilations of vessels) [1]. Analyzing the
statistical variation of characteristics of these vessels and bifurcations is of great
interest as it can lead to the identification of geometric risk factors for the
onset of vascular pathologies. Two important operations required for comparing
and registering the vasculature between subjects are landmark matching and
anatomical labeling. These are tedious and time consuming tasks to be performed
manually. Thus, automating them becomes crucial for processing large number
of cases.

In this work, we present a method for robust classification of bifurcations in a
vascular tree, which we applied to the task of anatomically labeling the anterior
part of the Circle of Willis. The anterior part is formed by the three main ves-
sels: internal carotid artery (ICA), middle cerebral artery (MCA) and anterior
cerebral artery (ACA). Statistically, 80% of the aneurysms occur along these
vessels [1]. In particular, we are interested in anatomical labeling of the follow-
ing five bifurcations and the vessels connecting them. The bifurcations of ICA
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Fig. 1. The arteries of the Circle of Willis and the bifurcations of interest on: (a)
internal carotid artery (ICA), (b) middle cerebral artery (MCA)

with ophthalmic artery (OA), posterior communicating artery (PcoA), anterior
choroidal artery (AchA) and the terminal ICA bifurcation, plus the principal bi-
furcation of MCA, which divides the MCA-M1 and MCA-M2 segments (Fig. 1).
To that set of bifurcations, throughout the text, we will refer to as bifurcations
of interest (BoI).

The state of the art for anatomical labeling of vasculature is, in general, sparse.
The seminal work was done by Tschirren et al. [2] for anatomical labeling of air-
way trees that relies on branchpoint matching to a prelabeled tree that represents
population average. Mori et al. in a series of works [3,4] presented a knowledge-
based framework for anatomical labeling of bronchial branches based on machine
learning and combination optimization. However, their method uses a fixed set
of topological constraints and does not seem to be robust to large anatomical
variations of the reference tree topology. Airway and bronchial trees are charac-
terized by many similar bifurcations connected by short straight branches. This
makes the methods design for them difficult to apply to the task of labeling
cerebral vessels where the vessels are in general longer and more curved and
the bifurcations more complex. Recently, Mori et al. [5] tuned their approach to
a specific task of labeling abdominal arteries but even the authors themselves
stated that the application to other organs would be challenging. Bogunović et
al. [6] showed that the ICA terminal bifurcation can be successfully classified
using support vector machine (SVM) but only a single bifurcation is detected
and no tree properties are considered.

The rest of the paper is organized as follows. In section 2, we present the
workflow of the method, starting from angiographic 3D image, and formulate the
classification of bifurcations in a maximum a posteriori framework. Evaluation
of the method on a set of 30 images is presented in section 3. Finally, section 4
discusses the advantages and limitations of the proposed method and concludes
the paper.
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2 Methods

2.1 Vascular Tree Extraction and Characterization

Segmentations of the cerebral vasculature from 3D images were performed in a
fully automated way with a geometric deformable model called Geodesic Active
Regions (GAR) [7]. From the segmented vasculature, fast topological thinning
based on collapsing fronts using [8] was applied to obtain a rough estimate
of the underlying topology of the vessel tree. Due to image acquisition noise
and inaccuracies in vessel segmentation, touching vessels effect can appear, thus
causing the extracted topology to form a connected graph containing cycles and
not a tree. However, the graph’s end-points do correspond to the root and the
terminal leafs of the vascular tree. Root was taken to be the end-point with
the maximal associated radius at the lowest axial plane which, in our images,
corresponded to the ICA entering the field of view. Then, the set of accurate
centerlines is obtained by backtracking along the minimal cost path from the
end-points toward the root using [9], which is available within the open-source
library VMTK [10]. These centerlines now form a rooted tree with the edges
directed away from the root in accordance with the blood flow (Fig. 2 (a)).

Bifurcation Feature Vector. Each bifurcation of the tree is characterized
using the method of Antiga [11], available in VMTK, which relies on objec-
tive criteria for defining the origin of a bifurcation and bifurcation vectors of
the parent branch and the two daughter branches. The two daughter branches
are differentiated by their radius: Larger daughter branch and smaller daughter
branch. We chose the following collection of features to quantify the geome-
try of a bifurcation (Fig. 2 (b)), which form a 21 dimensional, scale invariant,
bifurcation feature vector:

– Sagittal, axial and coronal-components of the normal vector of the bifurca-
tion plane (3).

– Sagittal, axial and coronal-components of the three bifurcation vectors (9).

(a)

Parent 
branch

Bigger
branch

Smaller
branch

(b) (c)

Fig. 2. Elements of the method’s workflow: (a) Centerline extraction. (b) Bifurcation
features. (c) Example of a labeling L (dotted arrows) of a target tree T t (right) based
on a reference tree T r with the bifurcations of interest (left).
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– Angles between each pair of bifurcation vectors (3).
– Ratios of mean vessel radii between each pair of bifurcation branches (3).
– Ratios of mean vessel radii between each bifurcation branch and the root

branch (ICA) of the tree (3).

Tree Features. To characterize the extracted tree, to each pair of bifurcations
we associate an inheritance relationship: ancestor -offspring or sibling. In addi-
tion, a probability is assigned that a particular bifurcation is present in the tree.
In general, one could easily also include features of the vessels connecting the
pair of bifurcations, like their mean length, curvature, torsion or tortuosity.

2.2 Bifurcation Classification

Extracted vascular tree can be considered as Attributed Relational Tree (ART)
which has attributes in a form of feature vectors associated to its vertexes and
edges. ART is defined as

Definition 1. Rooted Attributed Relational Tree is a quadruple T = (V, E, A, r),
where V is the vertex set, E is the edge set, r is root and A is the attribute set
that contains unary attribute ai attaching to each vertex vi ∈ V , and a binary
attribute ai,j attaching to each edge ek = (ni, nj) ∈ E.

The classification of bifurcations is based on the availability of a reference ART
T r, created from a representative sample of a population, having BoI as its
vertices V r = {vr

i : 1 ≤ i ≤ M} together with an entire set of sample bifurcation
feature vectors as {ar

i}, while edge features {ar
i,j} are currently not used. Such a

reference ART is normally created from a training set of trees. The target ART
T t corresponds to the extracted vascular tree, having its bifurcations as vertices
V t = {vt

j : 1 ≤ j ≤ N} and the bifurcation feature vectors as {at
j}. Then, on

the target tree we define a labeling process L : V t → V r ∪ {NI}, where the label
NI represents a bifurcation which is not of interest and is not present in the
reference ART (Fig. 2(c)).

We are interested in estimating the probability P (L|T t, T r) of L being correct,
and finding the mode of this posterior distribution. Thus, the problem can be
formulated as finding a labeling L∗ that satisfies the maximum a posteriori
(MAP) solution

P (L∗|T t, T r) > P (L|T t, T r) ∀L �= L∗, (1)
P (L|T t, T r) ∝ P (T t|L, T r)P (L|T r), (2)

where the constant denominator term in Eq. 2 has been left out for brevity.
The prior term P (L|T r) presents our knowledge-based expectations about

the topology and tree properties of the labeled target tree and regularizes the
classification based on bifurcation features. The likelihood term, assuming that
the feature vectors of each bifurcation {ai} are statistically independent from
each other, can be written as

P (T t|L, T r) =
N∏

i=1

P (at
i |L(vt

i), T
r). (3)
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Likelihood Estimation. To estimate P (at
i|L(vt

i )) i.e. a likelihood that a bi-
furcation with known label L(vt

i) has the feature vector at
i, we employed the

SVM with probability estimates available in LIBSVM open-source library [12].
A non-linear model based on radial basis function (RBF) kernel was used. For
the multi-class problem, several binary SVM were created in a one-against-one
strategy where binary SVMs, for all pairs of classes, were trained on the data and
the results for each pair accumulate to yield the final probability distribution.

MAP Estimation. Unfortunately MAP estimation is extremely computation-
ally expensive. Testing for all possible labelings L is not feasible. However, the
prior term P (L|T r) is positive only for a small subset of all combinations i.e.
only for those for which the topology corresponds to the one of the reference
tree T r. This happens when L is an isomorphism from a subgraph of T t to a
subdivision of T r.

A standard algorithm to find all isomorphic mappings between two graphs
(trees) is based on building their association graph and then finding all maximal
cliques of such undirected graph. Association graph G = (V a, Ea) is built from
T r and T t, where nodes are denoted with a pair of indices V a = {va ≡ (vr

i , v
t
j)} ≡

V r×V t, with the following rule. Edge (va
i,j , v

a
k,l) is created only if vr

i and vr
k have

the same relationship (ancestor -offspring or sibling) as do vt
j and vt

l , for i �= k
and j �= l. We have now extended the above rules by adding the label NI to V t,
hence V a = V r × (V t ∪ {NI}) with the special rule that NI is in all relationships
with any other vertex of V a including itself.

Finding maximal cliques (in our case they will always be of size N) in an undi-
rected graph is in general NP-complete problem and we used Bron-Kerbosch algo-
rithm [13], that tries to reduce the size of search space, to find the maximal cliques.

3 Results

We evaluated the proposed methodology on a dataset consisting of images from
30 subjects, acquired with 3D rotational angiography (3DRA), where contrast
injection was carried out to enhance the vessels comprising the anterior cerebral
circulation of either left or right hemisphere. Images were reconstructed with a
2563 matrix having a voxel size of 0.29 × 0.29 × 0.29 (mm).

All images were successfully segmented and had their centerlines and tree
topology extracted. The obtained trees were containing bifurcations and trifur-
cations. Since two close bifurcations are sometimes reconstructed as a trifurca-
tion, we decided to always treat trifurcations as two bifurcations sharing the
same parent branch and the larger daughter branch.

The success of bifurcation classification and hence the anatomical labeling was
evaluated using cross-validation. One observer manually labeled the five BoI on
each extracted tree. All the other bifurcations were assigned the label NI. Leave-
one-out cross-validation was then run, where iteratively K = 30 times, one case
is used for testing while K − 1 cases were selected to form the training set
from which the bifurcation vectors, reference tree topology and its probability
of appearance were learned.



Anatomical Labeling of the CoW Using MAP Classification 335

To evaluate the contribution of the regularizing prior term, we performed the
above validation for three method variants: the first variant is a natural extension
of [6] and is relying just on the SVM classification based on the bifurcation
feature vectors with no regularization. The second variant has the regularization
by topology added (SVM+TP), and can be considered as an adaptation of [5].
Finally, the third variant is the proposed one, which includes the prior term
(SVM+TP+AP), where the probability of appearance of a particular anatomical
variability coming from the missing BoI is learned from the training set. The
cross-validation results are presented in Table 1.

Table 1. Performance of the three method variants. Scores for successfully labeling
the complete vessel tree and detecting the individual bifurcations are given.

Method
Vessel tree

labeling rate
Bifurcation detection rate

OA PcoA AchA ICA MCA NI

SVM ∼[6] 0.7 1.00 1.00 1.00 0.96 0.89 0.85

SVM+TP ∼[5] 0.8 1.00 1.00 1.00 0.96 0.82 0.94

SVM+TP+AP 0.9 1.00 1.00 1.00 1.00 0.96 0.91

As seen from the first row, PcoA, AchA and OA bifurcations were well clas-
sified just based on their feature vectors. Gradually adding the regularization
terms improved the tree labeling accuracy each time by 10%. The proposed
method (SVM+TP+AP) outperformed similar state of the art methods and
had success rate of 90% for correctly labeling the complete vessel tree. The error
occurred in three cases, when MCA bifurcation was detected as a NI and vice
versa. A sample of correct anatomical labeling results is shown in Fig. 3 where
the surface area of each corresponding vessel segment is labeled.

MCA

OA

ICA

PcoA

AchA

(a)

MCA

ICA

OA

AchA

PcoA

(b)

OA

ICA

MCA
AchA

PcoA

(c)

Fig. 3. Anatomically labeled vascular trees. Denoted vessels: ICA (blue), OA (green),
PcoA (violet), AchA (orange), MCA (yellow)



336 H. Bogunović et al.

As the method is formulated in a probabilistic framework the candidate label-
ings can be ranked by their estimated probabilities. The method always selects
the most probable one (the highest ranked one). However, in the case that se-
lected labeling is visually observed to be incorrect, this enables us to select the
next most probable candidate in the ranked list. For the three cases where the
method assigned the incorrect labels, we searched for the correct labeling in the
ranked list (Table 2). We can observe that the correct labeling appears as the
second or at most the third most probable candidate.

Table 2. The three cases for which the labeling provided by the proposed method
(SVM+TP+AP) was incorrect. Position in the list of candidate labelings ranked by
their probabilities is given for the selected and the correct labeling.

position (probability)

selected correct

error case 1 1 (0.61) 2 (0.20)

error case 2 1 (0.39) 2 (0.26)

error case 3 1 (0.36) 3 (0.15)

4 Conclusion

We presented a method for anatomical labeling of the main vessels forming
anterior part of the Circle of Willis. From a set of prelabeled examples, the
method is able to learn local bifurcation features as well as global variation in
tree topology and their probabilities of occurrence. Focusing just on BoI makes
it insensitive to the number of bifurcations that are extracted in between them.
This is important as in general, total number of bifurcations and vessels largely
varies between images as it heavily depends on the contrast and image resolution
during acquisition as well as accuracy of segmentation method applied.

The current main limitation is that topologically correct candidates are ob-
tained by computing maximal cliques of association graph, which is a NP-
complete problem. For our application, this was computationally feasible as in
general trees could be pruned in a preprocessing step down to N ∼ 20 prospec-
tive candidates. In the future, we plan to search for more efficient way of finding
isomorphic mappings and also extend the anatomical labeling to the entire Circle
of Willis.
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Abstract. We present a novel generic segmentation system for the fully
automatic multi-organ segmentation from CT medical images. Thereby
we combine the advantages of learning-based approaches on point cloud-
based shape representation, such a speed, robustness, point correspon-
dences, with those of PDE-optimization-based level set approaches, such
as high accuracy and the straightforward prevention of segment overlaps.
In a benchmark on 10–100 annotated datasets for the liver, the lungs,
and the kidneys we show that the proposed system yields segmentation
accuracies of 1.17–2.89mm average surface errors. Thereby the level set
segmentation (which is initialized by the learning-based segmentations)
contributes with an 20%-40% increase in accuracy.

1 Introduction

Discriminative segmentation approaches have proven to give reliable, fully-auto-
matic, and fast detections of anatomical landmarks within volumetric images,
as well as the accurate determination of organ boundaries, such as of the inner
and outer walls of the heart, [10], or of the liver, [4]. Usually, the segmenting
surface is represented by relatively low number of explicit control points, such
as they are used in Active Shape Models.

Besides restrictions in topology, other well-known disadvantages of point
cloud-based shape representations are the dependence of the local detailedness
on the local density of control points. The latter often are non-homogeneously
distributed across the shape boundary, and thus yield varying levels of seg-
mentation accuracy. Level set-based shape representations, see [1] and the ref-
erences therein, on the other hand, provide a well-known mean to encode seg-
ment boundaries at a homogeneous resolution, with simple up- and down-sample
schemes. Moreover, in the case of multiple objects, the detection and formulation
of constraints to prevent overlaps between adjacent segment boundaries can be
achieved much simpler by a level set representation where signed distance func-
tions are employed.

In the following we will present a fully automatic segmentation system for
multiple organs on CT data, that combines the advantages of both segmentation
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approaches and their employed shape representations in an optimal manner. In
particular the point-to-point correspondences, which are estimated during the
learning-based segmentation, will be preserved in the level set segmentation.
With regards to the latter, we will present novel terms which allow to impose
region-specific geometric constraints between adjacent boundaries.

In Section 2 we first give an outline of the learning-based detection and seg-
mentation stages, all of which have been published in the mentioned citations.
After a brief description on the conversion of their output meshes to implicit
level set maps, we start to build an energy-based minimization approach for
multiple organs as a segmentation refinement stage. In the experimental Sec-
tion 3, we first show the impact of the new constraints at qualitative examples,
and finally evaluate the overall improvement of the level set refinement stage
over the detection-based results at 10–100 annotated cases for the liver, lungs
and kidneys.

2 Approach

2.1 Anatomical Landmark Detection and Learning-Based
Segmentation of Organ Boundaries

We initialize the multi-region level set segmentation from explicitly represented
boundary surfaces stemming from an existing learning-based detection frame-
work, which itself consists of several stages. In the first stage, a landmark de-
tection system estimates key organ landmarks ranging from the abdominal to
upper body region, see [5] for more details. These landmarks then serve a ini-
tializations for a hierarchical bounding box detection system based on Marginal
Space Learning [10] in connection with Probabilistic Boosting Trees [9]. The
latter yields bounding box estimates for the liver, the left and right lung, the
heart, and the kidneys. In the third stage, organ-specific boundary detectors are
employed to evolve the correct organ boundaries on a coarse scale and in subse-
quently on a fine scale, see [4]. In addition, PCA-based statistical shape model
are used to regularize the boundary shape on the coarse resolution. Thereby,
segment boundaries of each organ are represented by a triangulated mesh, i.e. a
connected point-cloud as being used in Active Shape Models.

2.2 From Meshes to Zero-Crossings of Signed Distance Maps

Although the learning-based segmentation sub-system already provides good in-
dividual organ segmentations, see Fig 2(a) for example, they usually exhibit
small overlaps between adjacent organ boundaries, or gaps where the true or-
gan boundaries coincide. Given representations of only the adjacent segments’
boundaries, those deficiencies are difficult to detect and remove. Instead we ini-
tialize signed distance functions φi : R

3 ⇒ R from each of the result meshes Ci,
for i, . . . , N organs by employing a fast mesh voxelization algorithm. The bound-
ary information then is encoded implicitly in the zero-crossings of the φi, i.e.
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Ci := {x |φi(x) = 0, |∇φ| = 1}, with |∇φ| = 1 denoting the so-called distance-
property, and φ > 0 inside the object and < 0 outside, see [1] and the references
therein. The distance functions are discretized on a regular grid, which, in the
following, is assumed to be the same for all organs. Furthermore, we employ
a narrow-banded level set scheme, which maintains the distance-property in a
small narrow-band of ±2 voxels from the zero crossing. In addition to the dis-
tance functions, we still keep the mesh points, denoted by {pi}, and are tracking
them along with the evolving zero crossing as described in [3], since they provide
point-wise correspondences to the mean shape of the PCA model employed in
the preceding learned-based boundary detection step.

2.3 Data and Smoothness Term of the Level Set Approach

Having the triangulated boundary meshes {Ci} of the detection stages transfered
to distance functions functions {φi}, detecting and removing local overlaps and
gaps between them can be realized much easier. The ultimate target of course
is to find the correct separating boundary between two neighboring organs. To
that end, in the following, we propose a level set segmentation approach which
not only refines the segmentation boundary accuracy, removes local overlaps
and gaps, but also finds the true separating boundary given that enough image
information is available.

For each organ Oi, this refining level set segmentation is realized by employing
gradient descent iteration to converge to a minimum of an associated energy
functional Ei(φi), given the initial distance maps as starting points, see [1] and
the references therein. As data-dependent energy term, we here employ

Ep(φ) = −α

∫
Ω

H(φ) log pin(I(x)|φ) +
(
1 − H(φ)

)
log pout(I(x)|φ) dx ,

with H denoting the Heaviside step function, and pin/out referring to non-
parametric probability estimates of the intensities inside and outside, respec-
tively, of the current segment φ using a Parzen density estimator with a Gaus-
sian kernel, see [2] for further details, and α being a constant weight. In order
to add robustness against noisy data, we furthermore incorporate the boundary
smoothness regularization term

Ec(φ) =
∫

Ω

γl(x) |∇H(φ)| dx, with l(x) = arg min
i=1,...,N

‖x − pi‖L2 , (1)

which employs a weight γl(x) that varies with the location on the boundary. The
latter is realized by assigning fixed weights {γi} to each of the correspondence
points {pi} on the mean shape of the PCA shape model, which then are tracked
along during the zero-crossing evolution, see [3] for more details.

2.4 Disjoint Constraint to Remove Overlaps

Let C0
A and C0

B be detected boundaries of the learning-based stage in the case of
two adjacent organs A and B, and assume that C0

A and C0
B imperfectly overlap
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each other to a certain degree, see, e.g., Fig. 1(a). By representing these two
surfaces using signed distance functions φ0

A and φ0
B , locations x̃ inside the over-

lapping region are exclusively characterized by φA(x̃) > 0 and φB(x̃) > 0, and
thus provide a much simpler overlap indicator compared to any other based on
an explicit shape representation. Subsequently, additional energy terms which
explicitly penalize overlaps usually are of the form

Eo(φA, φB) :=
∫

Ω

H
(
φA(x)

)
H
(
φB(x̃)

)
φB(x̃) dx (2)

where the first product in the integrand is unequal zero only inside the overlap
regions, see Fig. 1(b). In addition to similar terms such as proposed in [6], we
propose to also multiply with the second distance function φB which makes EO

smoother at the presence of small overlaps, and thereby decreases oscillations
during gradient descent. The corresponding energy gradient reads (cf. [7]):

∂φA/∂t = −∂Eo/∂φA = −δε(φA) Hε

(
φB(x̃)

)
φB(x̃) . (3)

Fig. 1. Imposing geometric constraints to remove overlaps (b) and gaps (c) from an
existing segmentation, while controlling the deviation from a given shape locally (d).
(Note that (b)–(d) are 1D-cuts along the black lines in (a)).

2.5 Local Proximity Constraint to Fill Gaps

With regards to removing erroneous gaps between adjacent segmentation bound-
aries, we add the following energy to the total energy functional:

Ed(φA, φB) :=
1
2

∫
Ω

βl(x)

(
φA(x) + φB(x̃) + D

)2
dx (4)

with D = 0 for the time being, and {βi} being correspondence points-bound
weights with βi = 0 at points where no boundary coincidence ought to be en-
forced, and βi > 0 at locations where boundaries of A and B ought to coincide.
As illustrated in Fig. 1(c), φA and φB cancel each other out if their zero crossings
coincide and thus the integrand becomes zero. As an extension, one can enforce
the two boundaries to not touch but stay in a predefined distance D > 0 from
each other. The gradient descend PDE of Ed w.r.t. φA reads:

∂φ/∂t = −∂Ed/∂φ = −βl(x)

(
φA(x) + φB(x̃) + D

)
(5)

which shows that of φA increases at locations where φB < D, and thus expands
its representing boundary, and descreases at locations where φB > D, i.e. shrinks
the boundary.
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(a) (b) (c)

Fig. 2. (a) Segmentation result of the machine learning system. (b) Refined segmen-
tations after applying level set segmentation to (a). (c) Visualization of the manually
set local weights {ωout

i } of the outward template constraint (red: 50, blue: 0.2). These
weights are bound to point-based shape correspondences in relation to a fixed model
shape, and thereby allow for a region-specific control over the different geometrical
constraints during the level set segmentation.

2.6 Template Constraint to Control Deviation of the Refinement

Finally, we added a third geometric term, which ensures that the level set result
is sufficiently similar to learning-based contour, that is, the refined boundary is
sought only in the vicinity of its initialization. To that end, we use the term

Esw(φ, φP ) :=
1
2

∫
Ω

ωin
l(x) H

(
φP (x) − φ(x)

)
+ ωout

l(x) H
(
φ(x) − φP (x)

)
dx . (6)

which is an extension of the approach shown in [8] in the sense that it applies
region-specific weights {ωin

i } to the shape dissimilarity measure between the
current φ and the prior shape φP (which is the initial one here), as well as
applying different weights for deviations outside or inside of CP (we refer to
CP as “template” shape in the following). See Fig. 2(c) for a local weight map.
Technically, note that the first term of the integrand is non-zero only if the
zero-crossing of φ resides inside the zero-crossing of φP , that is the current
boundary C is smaller than the prior boundary CP , see Fig. 1(d). Vice-versa,
the second term measures local expansions relative to CP , by becoming non-zero
only where φ(x) > φP (x).

The corresponding energy gradient clearly shows that the proposed energy
term has the desired effect:

∂φ/∂t = −∂Esw/∂φ = ωin
l(x) δε

(
φP (x) − φ(x)

)
− ωout

l(x) δε

(
φ(x) − φP (x)

)
, (7)

i.e. increasing φ at locations where φ < φP , and decreasing it in the opposite
case.

2.7 Interleaved Multi-energy Minimization

Finally, all of the proposed energy terms are combined into energy minimizations
for each organ Oi=1,...,N :

min
φi

Ep(φi) + Ec(φi) +
∑

j∈Ni(j)

Eo(φ, φj) +
∑

j∈Pi(j)

Ed(φ, φj) + Esw(φi, φ
0
i ) , (8)
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which are mutually coupled by the disjoint and proximity terms (Ni: indices
of organs adjacent to Oi, Pi: indices of organs with which Oi shares a mutual
proximity constraint). Consequently, minimizers {φ̃i} of these individual ener-
gies depend on each other. To that end, we found interleaved gradient descent
iterations to yield the desired segmentation improvements in practice. Specifi-
cally, we carry out a descent along the negative gradients of the N per-organ
energies in lockstep, while using the segmentation results {φt−1

i } of the previous
joint iteration to compute the coupled energy gradients ∂Ei(φi; {φt−1

i })/∂φi.
The descent for a particular energy is terminated if a given maximum number of
iterations has been reached, or if the maximum norm of its gradient falls below
a given threshold, i.e. the segmentation boundary φi changes less than a chosen
tolerance.

3 Experimental Evaluation

3.1 Parameter Selection

In a first series of experiments, we studied the effect of the proposed new energy
terms qualitatively on a few data sets. Thereby we also manually selected all
the involved weights in order achieve optimal results on a small set of test cases.
Specifically, we weighted the data term Ep with a factor of 2 for all organs and set
the lowest weight γi in the smoothness term Ec to 0.7 at locations where a high
curvature is desired (such as at the lung tips), and to a value of 1.5 where low
curvatures are to enforced. For the disjoint energy term Eo we found a weighting
of 1000 to remove any existing overlaps while not producing any oscillations. The
proximity term Ed turned out to yield the desired results when setting βi to 10
at correspondence points where it ought to be active and to zero elsewhere. For
the template energy Esw the inward and outward deviation-penalizing weights
ωin and ωout were set according to the overall quality and robustness of the
learning-based boundary result. Specifically, at locations where the latter tends
to under-segment, such as at the lower tips of the lung wings, ωout was set to the
low value of 0.2 in order to allow the level set result to deviate outwards. Vice-
versa, at locations where the learning-based stage tends to over-segment, such
as at the lower side of the liver ωin is given a low value. Finally, at locations
where the learning-based stage already yields highly accurate results, such as
adjacent to the ribs for the liver and lung boundaries, both ωin and ωout where
set to high values of 50 in order to bind the level set-based boundary close to it.
Fig. 3(c) visualizes the weights {ωout

i } for a final segmentation of the liver.

3.2 Accuracy Benchmark

In a next step, we benchmarked the overall system at manually annotated data
sets in order to study the overall accuracy improvement yielded by level set re-
finement. Test sets for the different organs listed in Table 1 were drawn randomly
from a set of 434 annotated CT cases consisting of low to high contrast scans,
and an average voxel spacing of 1.02/1.02/2.16mm (x/y/z). Cases not drawn for
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(a) (b) (c) (d)

Fig. 3. Effect of the different proposed geometric constraints. Whereas the disjoint con-
straint (a)+(b) can be used to remove overlaps between initial segmentations, the tem-
plate constraint (c) can bind the level set zero-crossing to the initial one in a location-
specific manner. With the proximity constraint (d), coincidence of shared boundaries
can be imposed locally.

testing were used to train the learning-based pipeline, which were 313 boundary
annotations for the liver and about 130 annotations for the other organs.

After the the joint gradient descent had converged w.r.t. each energy of the
level set segmentation, the final meshes were extracted from the level set maps
via Marching Cubes. As error measure we first computed the shortest Euclidean
distances between each result mesh and its corresponding annotated mesh at every
vertex of the former as well as every vertex of the latter, and then averaged all such
distances. The results in Table 1 show that the presented segmentation system
yields state-of-the-art accuracies ranging from 1.17mm average surface error for
left kidney to 2.89mm for the liver. Thereby the proposed level set segmentation
contributes with an improvement of 20% for the liver, 30% for the left lung and
left kidney, and 40% for the right lung and right kidney. Average run-times for the
full detection pipeline is 2–3 min, which includes about 1 min for the only coarsely
multi-threaded level set stage on a 2.0 GHz eight-core Xeon machine.

Table 1. Symmetric surface errors using machine learning-based segmentation and
after applying level set-based refinement

Sym. surface error (mm) Mean Std.dev. Median Worst 80% # cases

Liver, learning-based only 3.5 1.7 3 4.0 100
Liver, level set-refined 2.9 1.7 2.6 3.6 100

Left lung, learning-based only 2.1 0.5 1.9 2.5 60
Left lung, level set-refined 1.5 0.3 1.4 1.7 60

Right lung, learning-based only 2.7 0.9 2.4 3.0 60
Right lung, level set-refined 1.6 0.6 1.5 1.8 60

Right kidney, learning-based only 1.9 0.9 1.8 2.0 10
Right kidney, level set-refined 1.1 0.9 0.8 3.9 10

Left kidney, learning-based only 1.9 1.0 1.7 2.3 10
Left kidney, level set-refined 1.3 1.0 1.0 1.9 10
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4 Conclusion

In our experiments we found the proposed algorithm to combine the robustness
and speed of a machine learning approach with the high accuracy and advan-
tageous distance map representation of a level set approach. Furthermore, the
novel level set constraints allow to impose region-specific geometrical priors in
the refinement stage. Yet the involved localized weights, as well as the global
ones, need to be set manually in one or more parameter tuning sessions. One
approach to automatize this step could be to minimize a sum energies in Equ. (8)
over a set of fixed shapes gained from the learning-based stage with respect to
these parameters. Finally, our experimental results show state-of-the-art accu-
racy and robustness of the proposed algorithm for five different organs on various
unseen data sets.
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Abstract. Low-dose CT-like imaging systems offer numerous perspec-
tives in terms of clinical application, in particular for osteoarticular dis-
eases. In this paper, we address the challenging problem of 3D femur
modeling and estimation from bi-planar views. Our contributions are
threefold. First, we propose a non-uniform hierarchical decomposition of
the shape prior of increasing clinical-relevant precision which is achieved
through curvature driven unsupervised clustering acting on the geodesic
distances between vertices. Second, we introduce a graphical-model rep-
resentation of the femur which can be learned from a small number of
training examples and involves third-order and fourth-order priors, while
being similarity and mirror-symmetry invariant and providing means of
measuring regional and boundary supports in the bi-planar views. Last
but not least, we adopt an efficient dual-decomposition optimization ap-
proach for efficient inference of the 3D femur configuration from bi-planar
views. Promising results demonstrate the potential of our method.

1 Introduction

Low-dose X-ray imaging has gained significant attention during the recent years,
due to the increase of image quality and the decrease of the radiation exposure.
Even though such images do not scale to computer tomography in terms of pre-
cision and resolution, they can be a valuable diagnostic tool for a number of
diseases and in particular for osteopathies [10] like those related to spine [5],
femur [9], etc. In this paper, we are interested in 3D proximal femur reconstruc-
tion focusing on highly accurate 3D modeling, in particular, for the femoral head
part. In fact, patient specific 3D planning of the femoral head, inherits important
diagnostic interest in related surgical interventions such as total hip replacement
and intertrochanteric osteotomy [3].

Bone extraction and segmentation from bi-planar X-ray images is a challeng-
ing task due to the poor image quality, the fact that one has to compensate
� This work is supported by the European Research Council Starting Grant DIOCLES

(ERC-STG-259112) and the MEDICEN Competitive Cluster sterEOS+ grant.
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the partial support (because of the 3D-to-2D projection), etc. In such a context,
conventional stereo-vision techniques [5] that recover 3D measurements from 2D
projections do fail to provide clinically interesting results either because of the
lack of correct correspondences between the two views or due to the sparsity of
the obtained measurements. Thus, prior knowledge is usually considered, where
statistical models of proximal femur is learned from a set of training examples
[4]. Point-distribution models and in particular active shape models (ASMs)
[1] have become a main stream and were also used for femur segmentation [4].
Pre-processing such as segmentation of femur contours [8] can facilitate the 3D
femur pose estimation since the task is transformed into searching for a geo-
metric mapping between the 3D model and the corresponding 2D multi-view
silhouettes. Other methods act directly on the projection space and try to opti-
mize global and local pose by measuring a projection energy, which can depend
on key points [10], contours [9] or regional statistics [11]. However, these methods
inherit various limitations. They need registration for all training examples to a
common pose and subsequently for the testing image. Furthermore, important
training set has to be considered towards capturing the variability of the femur,
due to the global representation of shape models. Last, the inference can also
be quite problematic due to the use of gradient-driven methods or the need of
pre-segmentation, which is very challenging because of low signal-to-noise ratio.

In this paper, we propose a novel approach for femur estimation. Our contri-
butions are threefold. First, we propose a non-uniform hierarchical decomposi-
tion of the shape prior of increasing clinical-relevant precision which is achieved
through curvature driven unsupervised clustering acting on the geodesic dis-
tances between vertices. Second, we introduce a higher-order graphical-model
representation of the femur which can be learned from a small number of training
examples and involves third-order and fourth-order priors, while being similar-
ity and mirror-symmetry invariant and providing means of measuring regional
and boundary supports in the bi-planar views. Last but not least, we adopt an
efficient dual-decomposition optimization approach for efficient inference of the
3D femur configuration from bi-planar views, leading to promising results.

The reminder of the paper is organized as follows: we present our hierarchical
shape representation with the corresponding prior in Sec. 2, and a decomposed
observation model in Sec. 3. They are combined within a probabilistic formula-
tion which is then transformed into a higher-order MRF towards femur estima-
tion in Sec. 4. Experimental results compose Sec. 5, while discussion and future
work conclude the paper in Sec. 6.

2 Hierarchical Multi-resolution Probabilistic Modeling

In the literature, a surface is usually modeled as a mesh with uniform resolution.
However, some anatomical regions (e.g., femoral head) are of higher clinical
relevance than adjacent parts. Hence, we propose to construct a hierarchical
multi-resolution representation (Fig. 1(a)) of the femur with different clinical-
relevant precisions, so that computational effort can be focused on the parts that
are meant to be reconstructed with high fidelity.
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(a) (b)

Fig. 1. (a) Multi-resolution surface Model. (b) EOS System.

First, mesh sub-sampling from one level Vm to a coarser one Vm+1 ⊂
Vm is performed iteratively, starting from a given high-resolution mesh M0 =
(V0, E0,F0) (V denotes vertex set, E edge set and F face set), to create a non-
increasing sequence of vertex subsets V0 ⊃ · · · ⊃ VM , where each subset stands
for a level of detail in the multi-resolution hierarchy. We propose to formulate
such a sub-sampling problem as a clustering (Eq. 1) based on geodesic distances
and curvatures, aiming to obtain a subset Vm+1 of points uniformly distributed
on the surface while preserving preferentially regions of high curvature:

Vm+1 = argmin
V⊂Vm

[ ∑
v∈Vm

min
v̂∈V

d(v, v̂) + α
∑
v̂∈V

exp(− curv(v̂))

]
(1)

where d(v, v̂) is the geodesic distance between v and v̂ on M0, α is a positive
weight and curv(v̂) is the curvature at v̂ on M0. The higher curv(v̂) is, the easier
v̂ will be promoted as cluster center. Hence, this formulation tends to promote
more cluster centers in the regions of high curvature. It can be efficiently solved
through linear programming techniques proposed in [7] and the obtained Vm+1

corresponds to the cluster centers and each v ∈ Vm is associated to the closest
center. One main particularity of this approach is that, as opposed to classical
approaches (e.g., K-means), the number of clusters is controlled by the penalty
exp(− curv(v̂)) which is related to flatness of the surface.

Second, level of detail selection is performed to select vertices from the
sets (Vm)m=0,...,M so that different regions are represented at given resolutions.
We organize the vertices in a tree structure, since any vertex in Vm is associated
to one and only one vertex in Vm+1 in the hierarchical structure derived from
the previous step. Then starting from the coarsest resolution, one can select the
regions to be refined and iterate this process until reaching the required accuracy
for every part. Through this step we obtain a set of vertices VMR.

Last, connectivity computation is performed on VMR in order to achieve
the triangulated multi-resolution mesh. To this end, we compute the Delaunay
triangulation of VMR associated to the geodesic distance. By viewing the Delau-
nay triangulation as the dual of the Voronoi diagram of VMR, it boils down to
determining which pairs of Voronoi cells have a common boundary. In this way,
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we obtain a set of edges EMR. Then the corresponding faces FMR are computed
to achieve the mesh, by searching for minimal cycles in the edge list.

The proposed approach provides an economic way to model the surface ac-
cording to the clinical relevance and a significantly better approximation of the
original mesh compared with the classic edge collapse techniques. Furthermore,
the vertices of the obtained mesh are among those of the original mesh, which
facilitates largely the model prior learning. Finally, let (V , E ,F) denote the ver-
tex set VMR, the edge set EMR and the face set FMR of the obtained mesh. Then
the surface is parametrized by the 3D positions u = (ui)i∈V of all the vertices.

Probabilistic Shape Modeling: The training data to learn statistical model
consist of the 3D positions of the vertices on the training surfaces. No assumption
on registration between surfaces is being made, we only assume that correspon-
dences have been determined for the vertices among the training samples.

We adopt the pose-invariant prior in [12] and extend it in a more general
formulation. Such a prior does not require the estimation of global pose in the
training and testing stages, which eliminates the bias caused by such estima-
tions. Furthermore, this prior is mirror-symmetry-invariant, leading to one more
advantage in our problem: a common statistical model can be used for both the
left and right femurs. For a clique c (c ⊆ V and |c| ≥ 3) of vertices, we enu-
merate all the pairs Pc = {(i, j)|i, j ∈ c and i < j} of points and compute the
relative distance d̂ij = dij/

∑
(i,j)∈Pc

dij for a pair of points (i, j) ∈ Pc, where
dij = ‖ui − uj‖ denotes the Euclidean distance between points i and j. Since
for clique c, any relative distance d̂ij is a linear combination of the others (i.e.,∑

(i,j)∈Pc
d̂ij = 1), we put all the relative distances except one (denoted as p̄)

in a vector d̂c = (d̂ij)(i,j)∈Pc\{p̄}. We model the distribution ψc(d̂c) of d̂c using
Gaussian Mixture Models (GMMs) which are learned from the training data.

In order to enforce the smoothness of the surface, for each quadruplet q of
vertices corresponding to a pair of adjacent facets, we introduce a smoothness
potential function encoding constraints on the change of the normal directions:

ψq(uq) = exp {−(1− <
→
n

(1)

q (uq),
→
n

(2)

q (uq) >)/β} (2)

where uq denotes the 3D positions of the four vertices contained in q, < ·, · >

denotes the scalar product, β is a positive constant, and
→
n

(1)

q ,
→
n

(2)

q denote the
unit normal vectors of the two facets.

Finally, let T = {c|c ⊆ V and |c| = 3} denotes the set of triplets1, and
Q ⊂ {q|q ⊆ V and |q| = 4} denote the set of quadruplets corresponding to all
pairs of adjacent facets, then the prior probability of the 3D model is defined as:

p(u) ∝
∏
c∈T

ψc(d̂c(uc)) ·
∏
q∈Q

ψq(uq) (3)

1 We use 3-order cliques for the corresponding prior term, i.e., |c| = 3. However, other
higher-order cliques c (|c| ≥ 3) can also be used.
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3 Observation Model

Let I = (Ik)k∈K (where K = {1, . . . , K}, K = 2 for the case of bi-planar views)
denote K observed images captured from different viewpoints with the corre-
sponding projection matrices Π = (Πk)k∈K. By exploiting the conditional inde-
pendency, the image likelihood p(I|u, Π) is decomposed into:

p(I|u, Π) =
∏
k∈K

p(Ik|u, Πk) (4)

We introduce a decomposed formulation for the likelihood p(Ik|u, Πk) of the
observed image k, which can be easily encoded in a higher-order MRF towards
efficient inference. p(Ik|u, Πk) is modeled as a Gibbs distribution, combining
both the region-based and boundary-based data supports:

p(Ik|u, Πk) ∝ exp{−λER
k (Ik,u, Πk) + (1 − λ)EB

k (Ik,u, Πk)
Tk

} (5)

where Tk is temperature, and 0 < λ < 1 is a balancing weight coefficient.

Regional Term. ER
k encodes the statistical intensity properties of the two

classes (femur and non-femur) and guides the projections of the surface to match
the silhouettes of the femur in the observed images. We define this term as a
sum of likelihoods on the projections of the front-facing facets:

ER
k (Ik,u, Πk) =

∑
f∈F

δf (uf , Πk) ·
∫∫

Ω(uf ,Πk)

log
pbg(I(x, y))
pfg(I(x, y))

dxdy (6)

where f denotes a triangular facet, uf denotes the 3D coordinates of the three
vertices of f , the indicator function δf (uf , Πk) is equal to 1 if the facet f is
front-facing w.r.t. the camera and 0 otherwise, Ωf (uf , Πk) is the 2D region cor-
responding to the projection of f , pfg and pbg denote the distributions (modeled
using GMMs) of the intensity for the regions of the femur and the background.

Boundary Term. EB
k encodes discontinuities along the boundaries. Recall that

Q denotes the set of quadruplets of vertices for the adjacent facets sharing an
edge e ∈ E . For each quadruplet q ∈ Q, we define a function δq(uq, Πk) which is
equal to 1 (i.e., the projection of e is a piece of boundary) when the facet closer
to the camera is front-facing and the other one is back-facing, and 0 otherwise.
We define the boundary term as a sum of the discontinuity measurement for all
these quadruplets:

EB
k (Ik,u, Πk) =

∑
q∈Q

δq(uq, Πk) ·
∫

Γ (uq,Πk)

< ∇Ik(x, y),
−−−−→
n(x, y) > ds (7)

where Γ (uq, Πk) denotes the projection of the edge shared by the two adja-
cent facets,

−−−−→
n(x, y) denotes the outward-pointing unit normal of Γ (uq, Πk),

∇Ik(x, y) = (∂Ik(x,y)
∂x , ∂Ik(x,y)

∂y ) denotes the gradient of the intensity at (x, y).
Note that other boundary discontinuity measurements can also be used as the
integrand in Eq. 7.
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4 Probabilistic 3D Surface Estimation Framework

The 3D model prior p(u) (Sec. 2) and the image likelihood p(I|u, Π) (Sec. 3) can
be combined through a Bayesian framework, where the 3D surface estimation is
formulated as a maximization of the posterior probability of u:

uopt = argmax
u∈U

p(u|I, Π) (8)

And the posterior probability p(u|I, Π) is:

p(u|I, Π) =
p(u, I, Π)

p(I, Π)
∝ p(u, I, Π) = p(I|u, Π)p(u)p(Π) ∝ p(I|u, Π)p(u) (9)

Higher-order MRF Formulation: The probabilistic framework above can be
easily reformulated within a higher-order MRF so that we can employ efficient
MRF inference algorithms to achieve femur reconstruction. To this end, we use
a node to model a vertex i (i ∈ V) with its latent 3D position Ui, a third-order
clique c (c ∈ T ) to model a triplet of vertices, and a fourth-order clique q (q ∈ Q)
to model the quadruplets of vertices corresponding to the adjacent facets. The
3D model is estimated through minimizing the MRF energy E(u):

uopt = argmin
u∈U

E(u) (10)

where E(u) = − log p(u|I, Π) + constant, and can be factorized into:

E(u) =
∑
f∈F

HR
f (uf ) +

∑
q∈Q

(HB
q (uq) + HP

q (uq)) +
∑
c∈T

HP
c (uc) (11)

Regional-term potentials HR
f (uf ) (f ∈ F) encode the regional data term

ER
k (Ik,u, Πk) (Eq. 6). Boundary-term potentials HB

q (uq) (q ∈ Q) encode the
boundary term EB

k (Ik,u, Πk) (Eq. 7). Model Prior Potentials HP
c (uc) (c ∈ T )

and HP
q (uq) (q ∈ Q) encode the prior on the relative positions of points and the

prior on the smoothness, respectively (Eq. 3). Through the negative logarithmic
operation, we can obtain their definitions as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

HR
f (uf ) =

∑
k∈K λk

1 · δf (uf , Πk) ·
∫∫

Ω(uf ,Πk) log pbg(I(x,y))
pfg(I(x,y))dxdy

HB
q (uq) =

∑
k∈K λk

2 · δq(uq, Πk) ·
∫

Γ (uq,Πk) < ∇Ik(x, y),
−−−−→
n(x, y) > ds

HP
c (uc) = − logψc(d̂c(uc))

HP
q (uq) = λ3 · (1− <

→
n

(1)

q (uq),
→
n

(2)

q (uq) >)

(12)

where λk
1 , λk

2 and λ3 are positive constant weights2 for the corresponding terms.

Dual-Decomposition MRF Inference. [6] was adopted to optimize the pro-
posed higher-order MRF. Like [12], we decompose the original graph into a set
of factor trees which can be solved within polynomial time using max-product
belief propagation. Their solutions are combined using projected subgradient
method [6] to achieve the solution of the original problem.
2 We use a single constant λ1 for λk

1 (∀k), and a single constant λ2 for λk
2 (∀k).
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5 Experimental Validation

We use the low-dose EOS imaging system (BiospaceMedTM) which is an al-
ternative system that captures simultaneously bi-planar X-ray images, coronal
and sagittal in an upright position (Fig. 1(b)). The training set consists of 20
CT patient volumes of the hip. Manual segmentations of them are provided to
extract femoral surfaces, which are used to learn the model prior. With the ob-
tained prior, we perform the femur reconstruction using the proposed method.
The search of the model parameters is done using the coarse-to-fine scheme and
the sparse sampling strategy as in [2].

The proposed method has been validated using both dry femurs and real
clinical data. The in vitro testing data consist of 14 pairs of EOS images, for
which the ground truth surfaces are provided by the gold standard CT method.
The bones are of real size for adults. Quantitative evaluation was conducted
by comparing the estimated surfaces to the ground truths, with respect to the
DICE coefficient and the distances from the 3D vertices of the estimated femur
to the ground truth surface (called point-to-surface error). Fig. 2(a) shows four
samples from the set of results, with point-to-surface error on femoral head.
Fig. 2(b) presents the statistics of the DICE coefficients, the mean and standard
deviation of the point-to-surface errors for the whole in vitro validation set.
Four in vivo examples were also tested, where both left and right femurs were
constructed from the EOS images. The qualitative results in Fig. 2(c-d) show
that the projections of the reconstructed surfaces fit well the femurs in the
observed images despite complex scene and low image quality.

(a) (c)
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Fig. 2. Experimental Results. (a) Four 3D surface reconstruction results with point-
to-surface errors on femoral head. (b) Boxplots on the DICE, the mean and STD of
the point-to-surface errors (mm). On each box, the central mark in red is the median,
the edges of the box are the 25th and 75th percentiles, the whiskers extend to the most
extreme data points. (c) and (d) Results on in vivo data, where projected boundaries
of the estimated femurs in the bi-planar views are shown for each example.
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6 Conclusion

In this paper, we have proposed a novel approach to 3D femur estimation from bi-
planar X-ray views. The main innovations consist in the multi-resolution shape
representation, the ability to model pose/mirror-symmetry invariant prior and
the image likelihood through local interactions, and the higher-order MRF for-
mulation of the surface estimation which is solved by dual-decomposition opti-
mization. Promising results demonstrate the potential of the method.

Future work consists of introducing a joint model that couples femur with
the hipbone socket which could enhance the diagnostic potential of the method,
and combining distinctive (visual) anatomical landmarks with the existing for-
mulation towards increasing precision and the overall performance. Last, the
application of the method to other clinical settings also bears great promises.
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Abstract. Delineating brain tumor boundaries from magnetic
resonance images is an essential task for the analysis of brain cancer. We
propose a fully automatic method for brain tissue segmentation, which
combines Support Vector Machine classification using multispectral in-
tensities and textures with subsequent hierarchical regularization based
on Conditional Random Fields. The CRF regularization introduces spa-
tial constraints to the powerful SVM classification, which assumes vox-
els to be independent from their neighbors. The approach first separates
healthy and tumor tissue before both regions are subclassified into cere-
brospinal fluid, white matter, gray matter and necrotic, active, edema
region respectively in a novel hierarchical way. The hierarchical approach
adds robustness and speed by allowing to apply different levels of regu-
larization at different stages. The method is fast and tailored to standard
clinical acquisition protocols. It was assessed on 10 multispectral patient
datasets with results outperforming previous methods in terms of seg-
mentation detail and computation times.

Keywords: MRI, Segmentation, Brain Tumor, Glioma, SVM, CRF.

1 Introduction

Segmentation of healthy and pathologic brain tissues from magnetic resonance
images (MRI), including their subregions, is important in cancer treatment plan-
ning as well as for cancer research. In current clinical practice, the analysis of
brain tumor images is mostly done manually. Apart from being time-consuming,
this has the additional drawback of significant intra- and interrater variability,
which was reported to be around 20%±15% and 28%±12% respectively accord-
ing to Mazzara et al. [8].

Nowadays, in clinical practice, usually four different MRI modalities are used
to delineate the tumor and its subregions from MRI images of the head. These
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modalities include T1-weighted images (T1), T1-weighted images with contrast
enhancement (T1c), T2-weighted images (T2) and T2−flair-weighted images (T2f).
The tumor area is usually divided into necrotic, active and edema subregion.
Each of the modalities reveal different subregions. In general, the radiologist
considers all these MRI modalities simultaneously when segmenting brain tumor
images. Standard clinical acquisition protocols for brain tumor imaging provide
high intra-slice resolution, but poor inter-slice spacing. This poses an additional
challenge for automatic analysis. In order to cope with all these challenges, we
developed a new method, which is clinically-oriented and does not only make
use of sophisticated image-processing methods, but also takes the type of data
into account, which is usually available for large-scale clinical studies and patient
treatment planning.

In this study, we focus on the case of gliomas, which is the most aggressive type
of brain tumors. We treat the problem at hand as a classification task that maps
each voxel to its corresponding label based on a multidimensional feature vector.
Machine learning techniques have proven to yield good results in many cases.
For example Verma et al. [11] use SVMs to classify brain tumors from a large
number of different MRI modalities. However, these methods assume that the
data is independent and identically distributed (iid), which is clearly not the case
for image voxels. Most voxel labels strongly depend on their neighbors. These
spatial relationships can be effectively considered using Conditional Random
Field (CRF) methods. We suggest to use the CRF method to regularize the result
produced by the classifier retrospectively, in a way inspired by the approach of
Lee et al. [6]. The classifier is first trained under the assumption that the data
is iid and the result is regularized subsequently using a CRF approach. This
makes the whole process very efficient while maintaining improved accuracy by
considering neighbor relationships.

In order to exploit the full potential of the classification method, we propose
not only to segment the brain into healthy and tumor regions as it is usually done,
but also subdivide the healthy region into cerebrospinal fluid (CSF), gray matter
(GM) and white matter (WM) and subdivide the tumor area into necrotic part,
active part and edema part. We suggest to employ a novel hierarchical approach
for this task in order to increase robustness and speed. The hierarchical approach
allows us to apply a strong regularization after segmenting the brain into tumor
and healthy regions. Each of the two initially identified regions is then classified
into its respective subregions before a weaker regularization is applied to the
labeled image of the healthy and tumor subregions.

2 Methods

2.1 Feature Extraction

Features are extracted from the multispectral imaging data. The most prominent
features for distinguishing pathologic and healthy tissues, as well as all their
subregions, are the image intensities in the different modalities. Additionally, we
use the first order texture features (mean, variance, skewness, kurtosis, energy,
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entropy) according to [10]. First-order textures can be computed fast and easily
from small patches around each voxel in all four modalities. This yields a 28-
dimensional feature vector x, which consists of the voxel-wise concatenation of
the multimodal intensities I and multimodal textures T at each voxel i as shown
in equation (1).

x(i) = [IT1(i), IT1c (i), IT2(i), IT2f
(i),TT1 (i),TT1c(i),TT2(i),TT2f

(i)] (1)

2.2 Classification

Classification is done using a soft-margin SVM classifier [9]. SVMs are discrimi-
native classifiers, originating from machine learning. They require a training step
to find a separating hyperplane for the data in the feature space. SVMs solve
the optimization problem

min
w,b,ξ

1
2
wT w + C

l∑
i=1

ξi (2)

subject to yi(wT φ(xi) + b) ≥ 1 − ξi, with ξi ≥ 0 (3)

where (xi, yi) are the instance-label pairs of the dataset and w is the normal
vector of the separating hyperplane. C is a penalty parameter for the error term
and b is the offset of the hyperplane. The appealing property of SVMs is that
they offer the possibility to use a kernel function K(xi,xj) = φ(xi)T φ(xj) for
transforming the data into a higher-dimensional feature space, where the data
can be linearly separated efficiently with a maximum margin. Slack variables ξi

are used for soft-margin classification. Parameter selection for the SVM classi-
fier with a radial basis function (RBF) kernel is done using grid-based cross-
validation on the training data. In order to extend the inherently binary SVM
classifier to a multiclass problem, we use a one-against-one voting strategy. Our
SVM classification is based on the LibSVM implementation described in [2].

2.3 Regularization

Regularization is done in two different stages using a CRF method. Conditional
Random Fields are an extension of Markov Random Fields (MRF). Both offer the
possibility to formulate the regularization as an energy minimization problem.
To this end we use a second-order CRF with two energy terms.

E =
∑

i

V (yi) +
∑
ij

w(yi, yj ,xi,xj)Dpq(yi, yj) (4)

The first term in equation (4) denotes the data energy, which is only depen-
dent on the data at the current point, whereas the second term constitutes the
smoothness energy, which takes the neighborhood information into account. For
the case at hand, V is the unary potential function, w describes the neighborhood
relationships and Dpq is a label distance function for the pairwise potentials. The
unary potentials can be calculated directly from the voxel-wise output produced
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by the SVM classifier. The smoothness energy is computed depending on the
neighboring voxels.

We compute the unary potentials V (yi) from the label output yi of the SVM
classifier. In equation (5), c1 is a constant which allows us to adjust the weights of
unary and pairwise potentials. ỹi is the newly assigned label after regularization
and δ is the Kronecker δ function.

V (yi) = c1 · (1 − δ(ỹi, yi)) (5)

For computing the pairwise potentials, we suggest a new formulation, which is
an extension of the approach given by Boykov et al. [1]. In equation (6), c2(i, j)
is a weighting function, which allows us to apply different weights for different
neighbors. The term (1 − δ(yi, yj)) is the most important, penalizing different
labels y of adjacent voxels. The last term in equation (6) imposes strong smooth-
ness constraints in regions of similar intensities x and relaxes regularization in
regions of high intensity contrast. The intensity term is adapted for multimodal
images and x̄ is a generalized multimodal mean intensity. The label distance
function Dpq in equation (4) is used to penalize adjacencies of necrotic or active
tumor regions with healthy tissues more strongly because these adjacencies are
less likely to occur.

w(yi, yj ,xi,xj) = c2(i, j) · (1 − δ(yi, yj)) · exp
(
||xi − xj ||

2 · x̄

)
(6)

As mentioned before, the regularization is carried out in a hierarchical way.
After the first coarse classification into tumor and healthy tissues, a strong 3D
regularization is employed using a von Neumann neighborhood (6-neighboring
voxels in 3D). However, in our approach costs wij in z-direction are weighted
with a smaller constant c2(i, j) because the z-spacing of slices is much larger
than the in-slice-spacing. If the same weight would be applied to all neighbors,
the label map would be oversmoothed in z-direction.

In a second stage, regularization is applied on the image, which has been
subclassified into the different tumor and healthy subregions. In this case very
fine structures, especially for CSF, are present. These fine structures do not allow
to use a 3D regularization. Due to the large z-spacing, the fine structures would
be oversmoothed. Therefore, we use only a 2D neighborhood for the second
stage, but with a Moore neighborhood structure now (8 neighbors in 2D), which
renders smoother results.

Optimizing CRFs is a challenging and computationally intensive task, espe-
cially when many voxels and multiple labels are involved. We employ a recent
optimization algorithm proposed by Komodakis et al. [5], which is based on lin-
ear programming via graph-cuts and primal-dual decomposition. The algorithm
is able to efficiently derive almost optimal solutions for a wide class of NP-hard
CRF problems. The most important reason for us to use this optimization ap-
proach is its great computational efficiency, which renders it much faster than
conventional graph-cuts optimization techniques.
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2.4 Application to Brain Tumor Image Analysis

Initially, the images undergo a preprocessing pipeline. In a first step, the four
modalities are registered with the help of a a rigid registration and mutual infor-
mation metric. Next, only the brain region is extracted from the images using a
fully-automatic, customized skull-stripping algorithm1. Subsequently, noise is re-
moved with an edge-preserving smoothing filter and the bias field is corrected. In
order to allow for interpatient classification, the image histograms are matched
across all patients for each MRI modality separately. The preprocessing is com-
pletely integrated with the SVM classification and CRF regularization compo-
nents using the Insight Toolkit for Segmentation and Registration (ITK) [4].

3 Results

3.1 Image Data

We evaluated our algorithm on images of 10 patients from the ContraCancrum
brain tumor database [7]. Each patient dataset consists of a T1, T1c, T2 and T2f

image. The images were resampled to an in-slice resolution of 1mm (210x210 to
260x260 voxels), the inter-slice spacing was between 3mm and 6mm depending
on the dataset (19 to 25 slices). Figure 1 shows an axial slice of one patient with
the four MRI modalities we used.

Fig. 1. Axial slice of one patient. The four MRI modalities under study are shown,
from left to right: the T1, T1c, T2 and T2f image.

3.2 Evaluation

For quantitative evaluation of the results we use the Dice similarity coefficient.
The ground truth was defined by a manual segmentation. However, the manual
segmentation was only available for the tumor tissues, not for the healthy tis-
sues. Therefore only the accuracy of the tumor segmentation could be evaluated
quantitatively. The accuracy of the segmentation of healthy tissues could only
be rated qualitatively by visual inspection.

We subdivided our results into intra- and interpatient case. For the intrap-
atient case, the classifier was trained on small subregions of the relevant areas
1 available from:

http://www.istb.unibe.ch/content/surgical technologies/
medical image analysis/software/
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in the same patient, while in the interpatient case we performed leave-one-out
cross-validation. Additionally, in both cases, we compared our proposed hierar-
chical, regularized approach with a non-hierarchical classification, that does not
comprise the proposed two-step CRF-regularization.

Figure 2 presents the segmentation result in case of interpatient training us-
ing leave-one-out cross-validation for the same slice as shown in figure 1. The
gross tumor volume (GTV), comprising all tumor tissues, is well delineated,
although the segmentation appears noisy if no regularization is applied. Classi-
fying the tumor subregions appears to be more challenging, but our proposed
approach performs still better than the method without hierarchy and regu-
larization. From a visual inspection, the segmentation of healthy tissues (CSF,

Fig. 2. Results for one axial slice of the interpatient leave-one-out case. First row: coarse
classification into tumor and healthy tissues, second row: fine classification into necrotic,
active, edema part and CSF, GM, WM respectively. From left to right: manual seg-
mentation, hierarchical SVM-classification with CRF-regularization, non-hierarchical
SVM-classification without regularization.

Table 1. Dice similarity coefficient (mean and standard deviation) for the ten datasets
under study. Gross tumor volume (GTV) comprises the complete tumor region, includ-
ing active, necrotic and edema part. Results are shown for the intra- and interpatient
(leave-one-out cross-validation) case, with and without regularization.

GTV Necrotic Active Edema

Intrapatient Regularized 0.84 ± 0.03 0.61 ± 0.24 0.71 ± 0.09 0.73 ± 0.04
Intrapatient Unregularized 0.76 ± 0.10 0.45 ± 0.31 0.59 ± 0.16 0.72 ± 0.07
Interpatient Regularized 0.77 ± 0.09 0.45 ± 0.23 0.64 ± 0.13 0.60 ± 0.16
Interpatient Unregularized 0.67 ± 0.13 0.30 ± 0.24 0.46 ± 0.12 0.63 ± 0.16
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GM, WM) appears to be reasonable in all cases, but again the result has many
outliers if no regularization is applied.

The quantitative results using Dice similarity coefficient are summarized in
table 1. With hierarchical regularization, the mean Dice similarity coefficient over
all 10 patients is 0.84 for the intrapatient case and 0.77 for the interpatient leave-
one-out case when the GTV is considered. Dice coefficients for the individual
tumor subregions are lower. However, the results show once again that the Dice
coefficient is clearly worse when no hierarchical regularization is applied.

Computation time for the segmentation algorithm (excluding preprocessing) is
between 20 and 120 seconds on a single CPU running at 2.33 GHz. Computation
time mainly depends on the size of the image dataset and on the complexity of
the SVM optimization.

4 Discussion and Conclusion

We presented a clinically-oriented method to segment 3D MRI images of brain
tumor patients into healthy and tumor areas, including their individual subre-
gions. For this, we propose to apply a hierarchical SVM-based classification and
combine it with a CRF-based regularization in two stages.

Dice similarity coefficients for the GTV are in a similar range as the results
presented in [3] and [12], but different data was used. In contrast to those ap-
proaches, our method additionally returns all the tumor and healthy subregions
while being faster in computation time. The accuracy of our automatic method
lies in a similar range as the values reported for inter-observer variability of
manual segmentations in [8]. However, the automatic method has advantages in
longitudinal studies because the results are not biased subjectively. Due to the
additional difficulty in subdividing the tumor region, Dice similarity coefficients
for the individual tumor subregions are lower than for the gross tumor volume.

We show that the combination of SVM and CRF methods offers two comple-
mentary strengths. The results mentioned in table 1 suggest that our approach
including hierarchical regularization improves the overlap with the ground truth
significantly. This regularization seems to be even more important when training
is applied on different patients. With the hierarchical regularization, the Dice co-
efficients are only slightly worse in interpatient training compared to intrapatient
training. This is an important finding because the possibility to perform training
on a disjoint subset of patients is crucial for efficient segmentation procedures
in clinical practice. A visual inspection of the images in figure 2 shows that the
segmentation results for healthy tissues as well as for tumor tissues appear much
noisier when no CRF regularization is applied and inconsistencies of adjacent
slices can be observed.

In contrast to other methods, our proposed segmentation approach yields the
tumor and healthy region, as well as all their subregions. It adds powerful spatial
regularization to iid classification and runs fast on clinically relevant data.
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Abstract. Ultrasound examination of the human brain through the
temporal bone window, also called transcranial ultrasound (TC-US), is
a completely non-invasive and cost-efficient technique, which has estab-
lished itself for differential diagnosis of Parkinson’s Disease (PD) in the
past decade. The method requires spatial analysis of ultrasound hyper-
echogenicities produced by pathological changes within the Substantia
Nigra (SN), which belongs to the basal ganglia within the midbrain. Re-
lated work on computer aided PD diagnosis shows the urgent need for
an accurate and robust segmentation of the midbrain from 3D TC-US,
which is an extremely difficult task due to poor image quality of TC-US.
In contrast to 2D segmentations within earlier approaches, we develop
the first method for semi-automatic midbrain segmentation from 3D TC-
US and demonstrate its potential benefit on a database of 11 diagnosed
Parkinson patients and 11 healthy controls.

1 Introduction and Medical Motivation

The midbrain, also called mesencephalon, is an approximately 2x2x1cm sized
region of the brain, which forms the upper part of the brainstem. It contains
several conglomerates of nerve cells, so called nuclei, which are involved in visual,
auditory, and motoric functions of the human brain. It is well known that a
degeneration of the Substantia nigra (SN), cf. Fig. 1, which is located in the
midbrain, is the cause of Parkinson’s Disease (PD) [16]. This degeneration, which
is accompanied by an increased concentration of ferrite deposits, depletes other
parts of the brain from the neurotransmitter dopamine, thereby causing the
cardinal motor symptoms of Parkinon’s disease, i.e. slowed movement, tremor,
and muscular rigidity. These ferrite deposits can be visualized by transcranial
B-mode ultrasound (TC-US) in form of hyperechogenic areas within the SN [1].

Several studies using this completely non-invasive method [1,16,2] found that
it is possible to distinguish PD patients and PD types with sensitivities and
specificities of above 90%, based on the size of the hyperechogenic area within
the SN. There is also the indication that SN deterioration is visible in US be-
fore onset of motor symptoms, which is of high medical relevance, because an
early diagnosis of PD may lead to better treatment and deceleration of disease
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progression. Consequently, the hope of medical researchers is to be able to use
TC-US as a screening method for PD in future, especially since the degeneration
of SN cells cannot be visualized by Magnetic Resonance Imaging (MRI) [12].

Though bearing a lot of potential, PD diagnosis based on trancranial US is
not easy and suffers from a few issues. Due to the scanning at low frequencies (2-
4 MHz), transcranial US is unfortunately poor in resolution and characterized
by high levels of noise and large speckle patterns (see Fig. 1). Also, the US
acquisition through the temporal bone window, a layer of bone thin enough to
be penetrated by low-frequency US (typically 2-4MHz), introduces additional
phase aberrations and interferences [9] and higher absorption than in regular
tissue, causing low contrast. Moreover, a high amount of experience is necessary
to find an optimal scanplane in 2D and to interpret TC-US images correctly
[15]. Thus, PD diagnosis based on TC-US suffers from high intra- and inter-rater
variability. We strongly believe that this procedure can be improved significantly
by the usage of 3D-US, making the selection of a cross-section superfluous, as
well as an automated processing of the volumetric data, making the segmentation
results reproducible.

The crucial part of any computer aided diagnosis system is an accurate seg-
mentation of the whole midbrain. In fact, it is advisable to segment the midbrain
first and the SN afterwards, because SN echogenicities appear to be almost iden-
tical to speckle and intensity patterns outside the midbrain area (cf. US images
in Fig. 1). This was also proven by related work on computer aided PD diagnosis,
where either a manual [10,4] or an automatic [6] midbrain segmentation is used.

As a consequence, any method which provides a robust and reliable midbrain
segmentation from transcranial US greatly facilitates the subsequent steps of
SN segmentation and classification. Please note that the only related approach
proving an automated midbrain segmentation is the one of [6]. This method is,
however, restricted to 2D and based on a complex and computationally intensive
finite-element model. We argue that no further attempts at computer-assisted
segmentation of transcranial B-Mode US have been performed yet, because a
careful choice of prior knowledge, data term and optimization method is neces-
sary (see Results section). Indeed, even recent reviews, e.g. [8], show that the
application of shape models to 3D-US segmentation has not been addressed ex-
tensively, so far. To the best of our knowledge, this is the first work on volumetric
midbrain segmentation from transcranial 3D-US.

Fig. 1. From left to right: Midbrain and basal ganglia such as substantia nigra, along
with typical 2D TC-US images (middle), and a slice through one of our 3D volumes
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2 Materials and Methods

In the following, we will show that it is possible to construct a method which is
able to provide a reliable segmentation of the midbrain in the area around the
SN. The proposed approach is based on three components: Firstly, the generation
of a statistical shape model. Secondly, the combination of this shape model with
an active surface framework. Thirdly, the active polyhedron framework of [14] to
implement the discrete surface evolution. Before we describe these three steps,
we briefly describe the acquired data and the necessary pre-processing.

Data Acquisition and Pre-processing. For our study, we collected data
from 23 subjects, 11 previously diagnosed PD patients and 11 healthy controls
(mean age 60.7 yrs., 60% female, 40% male). One subject was excluded due to
insufficient bone window (4.3% exclusion rate). A medical expert scanned the 22
subjects with a medical ultrasound machine1 at 3 MHz. Scans were performed
bi-laterally, i.e. through the left and right temporal bone window, taking care
that the entire midbrain area was contained in the scanned area. Bi-lateral 2D
US planes were reconstructed into a 3D Freehand US volume using a backward-
warping compounding technique [17] at an isotropic resolution of 0.45mm. Af-
terwards, the medical expert segmented all 22 volumes in a blinded, anonymized
fashion into 3 regions, midbrain, SN left and SN right. Segmentation was per-
formed only for those slices in which the SN was clearly visible and considered
relevant for a diagnostic decision. Manual midbrain segmentations were then
transformed into 3D meshes using the MATLAB iso2mesh toolbox [7] and de-
fault parameters (i.e. head surface element size bound of 2, keep ratio of 0.05).

Statistical Shape Model Creation. For SSM creation, we utilize the com-
prehensive SPHARM-MAT toolbox of [13]. The toolbox was slightly modified
to take a set of training meshes as input and generate the SSM model in one
function. The only modified parameter was the SPHARM degree for expansion
and it was set to 15 for all meshes, otherwise default parameters as downloaded
with the toolbox were used. A 5-fold cross-validation was performed, i.e. the 22
meshes were split into five groups and five SSM models were generated from four
groups (training set) to perform segmentation and evaluation on the fifth group
(test set). The output of the SPHARM toolbox trained on M +1 training shapes
is a SSM with M modes of variation Si, i = 1 . . .M :

Sα = Sμ +
M∑
i=1

αiSi, (1)

where Sμ denotes the mean shape and α1, . . . , αM ∈ R. The shape model Sα can
be considered as a parametrized family of shapes, where a specific configuration
is completely determined by the shape vector α = (α1, . . . , αM )T .

1 Siemens Accuson Antares, PX4-1 transducer.
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Evolving the Shape Model. In order to evolve the shape model towards the
desired configuration, we iteratively minimize an active surface energy of the
form

E(S) =
∫

intS
fi dx +

∫
extS

fe dx, (2)

where S denotes the surface, intS the region inside S, and extS the region
outside S. As our shape model provides enough regularity itself we employ no
additional regularizer, such as the surface area. Due to the highly inhomogeneous
nature of US images, foreground and background regions cannot be described
by global statistics. Thus, we use a a localized version of the Chan-Vese model
[3] proposed by [11]⎧⎨⎩fi = (I − ci(x))2, where ci(x) =

∫
intS Bε(x)I(x) dx∫

intS Bε(x) dx
,

fe = (I − ce(x))2, where ce(x) =
∫

extS Bε(x)I(x) dx∫
extS Bε(x) dx

,
(3)

where Bε(x) denotes a ball of radius ε centered at x. In oder to derive the evolu-
tion equation for the shape model, i.e. the gradient descent for the shape vector
α, we plug the shape model (1) into (2) and compute the partial derivatives with
respect to αj :

∂

∂αj
E(Sα) =

∂E

∂S
∂S
∂αj

=
∫
S
(fi − fe)N · Sj ds, (4)

where N denotes the surface normal. Put together, these partial derivatives yield
the gradient of E with respect to the shape vector α, which we denote by ∇αE. In
order to implement a gradient descent for α, we have to discretize the expression
in (4).

Active Polyhedron Framework. We decided to use an explicit surface rep-
resentation based on a triangular mesh as it is given by the active polyhedron
method described in [14]. However, as the created shape model provides enough
regularity we do not use the regularization described in [14] and evolve the model
directly according to ∇αE. For the evaluation of the cost function, we need to
determine which voxels are inside or outside a given mesh. This is trivial from
an algorithmic perspective, however, it is the computational bottleneck of the
optimization process as this task is performed for each iteration. We addressed
this issue by integrating a simple but efficient GPU accelerated voxelization al-
gorithm introduced by Crane et al. [5] into our framework. Once all voxels inside
and outside the shape are determined, we can compute the local mean values
ci and ce, which eventually allows us to approximate the expression in (4) as
follows: ∫

S
(fi − fe)N · Si ds ≈

N∑
k=1

[fi − fe]k [N ]k · [Sj ]k , (5)

where k denotes the vertex number and [·]k denotes the evaluation at vertex k.
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3 Experiments and Results

We performed the automated segmentation for all 22 subjects, given five folds
of SSM models. The only user interaction necessary was the rigid placement of
the mean shape Sμ into the midbrain region. For all 22 experiments we kept the
same parameter settings: the gradient descent step size was τ = 0.05, the radius
for the localization sphere Bε(x) in (3) was set to 15 voxels (=̂ 6.75mm), and
the maximum iteration number was set to 100.

In order to demonstrate that the localization of the data term (cf. (3)) is nec-
essary, we performed another series of experiments with a standard Chan-Vese
model [3]. Further, we investigated whether preprocessing the image data with
a few anisotropic diffusion steps yields better results, but we could not observe
a significant improvement. In all quantitative evaluations, only slices with man-
ual ground truth were considered, since those were the only slices in which the
SN was clearly visible and manually segmentable by the medical expert, i.e. we
restrict our evaluation to those slices with medical relevance to the diagnostic
problem.

Regarding the midbrain segmentation, we calculated the DICE coefficient of
overlap between ground truth segmentations and the segmentations obtained
by our method. We can observe in Fig. 2 that using the localized data term
improves the segmentation results significantly. Despite the poor image quality,
the median of the DICE overlap of midbrain voxels across 22 subjects is 0.83,
which means that in 50% of all cases the DICE coefficient is at least 0.83. In
contrast to this, when the un-localized data term is used, we only achieve a
median DICE of only 0.55, again supporting the assumption that global fore-
and background statistics are not valid in the modality of ultrasound.

In order to evaluate the quality of the segmentation with respect to the diag-
nostic problem, we calculated the True Positive Rate (TPR) for SN segmenta-
tions, i.e. how many SN voxels were retained within the mesh after segmentation.
We found that a median of 89% of SN voxels is retained by the midbrain ROI.
We also post-processed all obtained segmentations with a dilation by one voxel
(=̂ 0.45mm), because we observed that the expert segmentation was system-
atically similar in shape to our segmentation, but segmented slightly further
outwards, i.e. more into the hyper-echogenic regions surrounding the midbrain.
In contrast, our segmentation converges slightly before these hyper-echogenic
regions are reached. As we perform a ROI segmentation, a dilation of one voxel
does not contradict the overall purpose. However, one should note that we only
use dilation as one possible selection for a ROI, while our proposed method does
not rely on dilation. This post-processing raises the median to 95%, i.e. half of
our segmentations are able to retain more than 95% of voxels with diagnostic
relevance, and five volumes achieve a perfect preservation of SN voxels after
segmentation. Moreover, a dilation also improves the automatic midbrain seg-
mentation, yielding a median DICE value of 0.86, which again shows that our
segmentation is very similar in shape to the expert opinion.

In addition to the quantitative evaluation presented in Fig. 2, we want to com-
pare one of the poorly segmented cases (case 11) to two other cases with
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Fig. 2. DICE coefficients for overlap of our automatic segmentation with the midbrain
(left) and True Positive Rate (TPR) with the substantia nigra (right). Subject indices
are ordered by TPR SN Dilated, the percentage of voxels with diagnostic value retained.

subject 21

subject 13

subject 11

Fig. 3. Exemplary Segmentation Results: Rows: data from three subjects. Columns:
sample slice through volume with midbrain visible (left), segmentation result with-
out data term localization (middle left), segmentation result with localization (middle
right), mesh surface distance map between result and ground truth (colorbar in mm).
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excellent (case 21) and medium (case 13) segmentation results (cf. Fig. 2), which
serve as good examples for the performance of the algorithm on the remaining data
sets. The upper, middle and bottom row in Fig. 3 show cases 21, 13, and 11, respec-
tively. The last column of the figure shows mesh surface distance maps between
the ground truth segmentation and the final automatic segmentation with local-
ized data term, showing that the automatically segmented shape corresponds well
with the ground truth. The reason for the relatively poor performance in case 11
can be explained by the comparatively bad image quality and the rather unusual
shape of the midbrain, making also the manual segmentation very difficult - even
for a medical expert. The same holds true for cases 16 and 22.

4 Discussion and Conclusion

We have presented a robust and largely automated method for segmentation of
the midbrain in 3D TC-US, which is, to the best of our knowledge, the first
approach for volumetric segmentation of the midbrain from TC-US. The per-
formed experiments clearly demonstrate that the segmentation performance is
consistently high across 19 out of 22 subjects, although the quality of US vol-
umes differs highly due to different thicknesses of the temporal bone windows,
which proves the robustness of our method. As the image quality also depends
on the used US settings and hardware, the localized region-based data term
provides the advantage that is does not depend on these factors, in contrast to
an Active Appearance Model for instance. Thus, the presented method can be
readily applied to any form of 3D B-mode volume generation, such as wobbler
probes or 2D matrix arrays.

In terms of usability, the proposed semi-automatic segmentation method re-
duces the overall segmentation time from approximately 20 minutes per patient
for manual segmentation to around 1.5 minutes. As an accurate, robust, and
user-friendly midbrain segmentation from 3D TC-US is of high importance for
a subsequent segmentation and classification of the SN, we strongly believe that
an important step has been made towards a computer aided diagnosis of Parkin-
son’s disease, possibly improving the chance for early detection of the disease
and early onset of therapy for affected patients in future.

Acknowledgments. This work was partly sponsored by EU grant FP7-ICT-
2009-6-270460 ACTIVE.

References

1. Becker, G., Seufert, J., Bogdahn, U., Reichmann, H., Reiners, K.: Degeneration
of substantia nigra in chronic parkinson’s disease visualized by transcranial color-
coded real-time sonography. Neurology 45(1), 182–184 (1995)

2. Berg, D., Godau, J., Walter, U.: Transcranial sonography in movement disorders.
Lancet Neurology 7, 1044–1055 (2008)

3. Chan, T., Vese, L.: Active contours without edges. IEEE Transactions on Image
Processing 10(2), 266–277 (2001)



Midbrain Segmentation in Transcranial 3D Ultrasound for PD 369

4. Chen, L., Seidel, G., Mertins, A.: Multiple feature extraction for early parkinson
risk assessment based on transcranial sonography image. In: 2010 17th IEEE In-
ternational Conference on Image Processing (ICIP), pp. 2277–2280 (2010)

5. Crane, K., Llamas, I., Tariq, S.: Real-time simulation and rendering of 3d fluids.
In: Nguyen, H. (ed.) GPU Gems 3, ch. 30. Addison Wesley Professional, Reading
(2007)

6. Engel, K., Toennies, K.D.: Segmentation of the midbrain in transcranial sonogra-
phies using a two-component deformable model. Annals of the BMVA (4), 1–12
(2009)

7. Fang, Q., Boas, D.: Tetrahedral mesh generation from volumetric binary and
grayscale images. In: IEEE International Symposium on Biomedical Imaging: From
Nano to Macro, ISBI 2009, pp.1142–1145 (2009)

8. Heimann, T., Meinzer, H.P.: Statistical shape models for 3d medical image seg-
mentation: A review. Medical Image Analysis 13(4), 543–563 (2009)

9. Ivancevich, N., Dahl, J., Trahey, G., Smith, S.: Phase-aberration correction with a
3-d ultrasound scanner: feasibility study. IEEE Transactions on Ultrasonics, Fer-
roelectrics and Frequency Control 53(8), 1432–1439 (2006)

10. Kier, C., Cyrus, C., Seidel, G., Hofmann, U.G., Aach, T.: Segmenting the substan-
tia nigra in ultrasound images for early diagnosis of parkinson’s disease. Interna-
tional Journal of Computer Assisted Radiology and Surgery 2(S1), 83–85 (2007)

11. Lankton, S., Tannenbaum, A.: Localizing region-based active contours. IEEE
Transactions on Image Processing 17(11), 2029–2039 (2008)

12. Michaeli, S., Oz, G., Sorce, D., Garwood, M., Ugurbil, K., Majestic, S.: Assessment
of brain iron and neuronal integrity in patients with Parkinson’s disease using novel
MRI contrasts. Movement Disorders: Official Journal of the Movement Disorder
Society 22(3), 334–340 (2007)

13. Shen, L., Farid, H., McPeek, M.A.: Modeling three-dimensional morphological
structures using spherical harmonics. Evolution: International Journal of Organic
Evolution 63(4), 1003–1016 (2009)

14. Slabaugh, G., Unal, G.: Active polyhedron: surface evolution theory applied to
deformable meshes. In: IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, CVPR 2005, vol. 2, pp. 84–91 (2005)

15. Vlaar, A., de Nijs, T., van Kroonenburgh, M., Mess, W., Winogrodzka, A., Tromp,
S., Weber, W.: The predictive value of transcranial duplex sonography for the
clinical diagnosis in undiagnosed parkinsonian syndromes: comparison with spect
scans. BMC Neurology 8(1), 42 (2008)

16. Walter, U., Dressler, D., Probst, T., Wolters, A., Abu-Mugheisib, M., Wittstock,
M., Benecke, R.: Transcranial brain sonography findings in discriminating between
parkinsonism and idiopathic parkinson disease. Archives of Neurology 64(11),
1635–1640 (2007)

17. Wein, W., Pache, F., Röper, B., Navab, N.: Backward-warping ultrasound recon-
struction for improving diagnostic value and registration. In: Larsen, R., Nielsen,
M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 750–757. Springer,
Heidelberg (2006)



Order Preserving and Shape Prior Constrained

Intra-retinal Layer Segmentation in Optical
Coherence Tomography

Fabian Rathke1, Stefan Schmidt2, and Christoph Schnörr1,2
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Abstract. We present a probabilistic approach to the segmentation of
OCT scans of retinal tissue. By combining discrete exact inference and a
global shape prior, accurate segmentations are computed that preserve
the physiological order of intra-retinal layers. A major part of the compu-
tations can be performed in parallel. The evaluation reveals robustness
against speckle noise, shadowing caused by blood vessels, and other scan
artifacts.

1 Introduction

Over the last years Optical Coherence Tomography (OCT) has become a key
technique for non-invasive diagnostic retina imaging. By measuring the backscat-
tering of light, OCT enables to produce high-resolution 2-D and 3-D scans of
retinal tissues. Quantitative measurement of the intra-retinal layers plays a cen-
tral role for the early diagnosis of diseases like glaucoma or age-related macular
degeneration. Since manual segmentation is tedious and time-consuming, there
is a high demand for automated algorithms – see Fig. 1.

Related Work. The literature on segmentation is vast. Closely related work in-
cludes heuristics to perform 1-D edge detection and to connect candidate points
across image columns into consecutive boundaries, e.g. [1]. Another series of
papers reformulate the segmentation problem as a graph cut problem, see [2]
and references therein. By construction of the graph, the ordering of layers as
well as the smoothness of boundaries are enforced. Edge weights are defined in
terms of simple pixel-wise intensity and gradient based features. The approach
takes several hours per 3-D volume. Recently, active contour approaches [3] were
applied to OCT-segmentation. A functional is minimized that enforces circular
boundaries (shape prior) and constant intensity within layers as well as smooth
boundaries. Albeit being very fast (1s per 2-D scan), this approach requires the
user to manually select the parameters.

Contribution. We present a novel probabilistic approach to the OCT segmen-
tation problem. A global shape prior and a local appearance model are combined
in a discrete graphical model which is solved for each image column separately,
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thus allowing for order preserving, exact and fast parallel inference. Few up-
dates of the model parameters by iterative conditioning suffice to incorporate
the global shape prior, trained offline using ground truth data. Evaluations using
independent test data yield accurate segmentations and show robustness against
strong speckle noise, shadowing caused by blood vessels and other scan artifacts.

Organization. In the next section, we present an OCT image model comprising
a local appearance model and a global shape prior. We describe in Sect. 3 the
coupling of both models. Sect. 4 introduces the dataset we used for evaluation
and reports empirical results. We conclude in Sect. 5.

Fig. 1. An OCT B-Scan with the segmentation output of our approach: The right
half shows labels l1, . . . , l10 in different colors, the left half depicts the corresponding
boundaries b1, . . . , b9. The full names for layers l2, . . . , l9 are: nerve fiber layer (NFL),
ganglion cell layer and inner plexiform layer (GCL + IPL), inner nuclear layer (INL),
outer plexiform layer (OPL), outer nuclear layer and inner segment (ONL + IS), con-
necting cilia (CC), outer segment (OS), retinal pigment epithelium (RPE).

2 An OCT Image Model

We model

– in Sect. 2.1 the local appearance in a given N × M image I of boundaries
b1, . . . , b9, and corresponding layers l2, . . . , l9 located in between, and layers
l1, l10 located above b1 and below b9, respectively (all shown in Fig. 1);

– in Sect. 2.2 a global joint shape prior for all boundaries b1, . . . , b9.

2.1 Local Appearance Model

We model the appearance of pixel values Iij in terms of Gaussian Markov Ran-
dom Fields (GMRFs) [4] for the corresponding patches s(i, j) of size 3 × 15
around pixel (i, j).

For each class k ∈ {l1, . . . , l10, b1, . . . , b9}, we draw 1000 sample patches from
labeled training images and convert them into vectors sk

i , i = 1, . . . , 1000, of
size 1 × 45. Using these empirical data, we estimate for each k a class-specific
density N (s; μk, Θ−1

k ) with mean parameter μk and sparse precision matrix Θk,
by applying a lasso penalty [5] as a regularizer.
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We assign class variables mij to all pixels (i, j). Given an image I, we define
the class-conditional likelihood of Iij – with slight abuse of notation – to be the
likelihood of the corresponding patch

p(Iij |mij = k) := N (s(i, j)|μk, Θ−1
k ), k ∈ {l1, . . . , l10, b1, . . . , b9}. (1)

2.2 Global Shape Model

As model of the typical shape variation of layers due to both biological vari-
ability as well as to the image formation process1, we adopt a joint Gaus-
sian distribution of the continuous height values of all boundaries {b1, . . . , b9}
for all image columns j, that we denote by the 9M -dimensional vector b =
(bn

j )n=1,...,9; j=1,...,M . Hence,

p(b) = N (b; μ, Σ) . (2)

We regularize the estimation of this high-dimensional model by Probabilistic
Principal Component Analysis (PPCA) [6] with a preset number kb of eigen-
modes, which yields the representation Σ = WWT + σ2I with a low-rank ma-
trix W . Given the spectral decomposition of the empirical covariance matrix
estimate Σ̃ = UΛUT , with eigenvalues Λ = diag(λ1, . . . , λ9M ) arranged in de-
creasing order, the maximum likelihood estimates of the shape prior parameters
σ2, W are given by σ2 = (9M − kb)−1

∑9M
i=kb+1 λi and W = Ub(Λb − σ2I)1/2,

where Ub and Λb denote the submatrices of U and Λ corresponding to the kb

largest eigenvalues.

3 Model Fusion and Inference

We fuse our models of appearance and shape

– in Sect. 3.1 to obtain a discrete graphical model, for which globally optimal
inference (determining positions of layer boundaries) can be efficiently done
in parallel for all image columns, taking the order of layers and marginal
shape prior knowledge into account;

– by incorporating the full global shape prior knowledge across image columns
in two alternative ways, as described in Sect. 3.2.

In a preprocessing step, we compute local class variable distributions based on
the local appearance model (1),

p(mij |Iij) =
p(Iij |mij)p(mij)∑

mij
p(Iij |mij)p(mij)

=
p(Iij , mij)

p(Iij)
, (3)

using a uniform prior p(mij).
1 For circular scans, a wave-like distortion pattern is observed due to the conic scanning

geometry and the spherical shape of the retina, which we capture statistically rather
than modelling it explicitly.
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Fig. 2. The factor graph corresponding to the undirected graphical model in (4)

3.1 Order Preserving Inference and Marginal Shape Priors

For each image column j ∈ {1, . . . , M}, we separately set up graphical models
of the form

p(bj |Ij) =
1
Z

ψ1(b1
j)

9∏
n=2

ψn(bn
j , bn−1

j ), (4)

in order to infer row positions of layer boundaries bn
j ∈ {1, . . . , N}, for all n =

1, . . . , 9, conditioned on given column intensities Ij := (I1j , . . . , INj)T . Here, we
adopt common Markovian conditional independency assumptions, leading to the
factorization (4) that is graphically depicted in Fig. 2. As a consequence, we can
infer in parallel for all columns, and very efficiently, layer boundary positions bn

j .
The factors in (4) are given by

ψ1(b1
j = i) = p(mij = b1|Iij) p(b1

j = i) (5a)

ψn(bn
j = i, bn−1

j = l) = p(mij = bn|Iij) p(bn
j = i|bn−1

j = l), (5b)

and computed using (3) and by marginalizing out all columns but j using the
global shape prior (2). Notice that the latter is a trivial operation for GMRFs
[4] enabling the factorization (4) and, in turn, efficient inference.

Reading out the continuous shape prior at discrete row positions, and ignoring
probability mass assigned to shape configurations that violate the natural order
of layers, seems somewhat crude. Yet, this performs surprisingly well as we will
demonstrate below and, after all, is computationally very efficient.

The output of the parallel inference process are expected layer positions

b̂n
j = E[bn

j ], n = 1, . . . , 9, j = 1, . . . , M, (6)

computed using the distributions (4) and the sum-product algorithm for
marginalization.

3.2 Iterative Conditioning and Global Shape Prior

An obvious shortcoming of the parallel approach (6) is that the global shape
prior (2) is only exploited by marginal distributions of bj , separately for all
columns j, in (5).

In order to overcome this drawback, we investigated two different approaches.

1. The first one simply projects b̂ given by (6) onto the latent PPCA subspace
underlying the global shape prior (2) – see [6] for details – to obtain our final
estimate b̂proj.
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2. Alternatively, the second approach iteratively updates the observation prob-
abilities p(mij |Iij) in (5) using the evidence (6). Specifically, using the global
shape prior (2), we compute marginals for all columns j by conditioning on
(6) for all other columns −j, and update the observation probabilities by
adding weighted pseudo-observations

p(mij = bn|Iij) ← p(mij = bn|Iij) +
pbest − ppred

pbest
δi,b̃n

j
, (7)

n = 1, . . . , 9, i = 1, . . . , N

where δi,b̃n
j

is the Kronecker delta, and ppred and pbest are conditional margi-

nals evaluated for the prediction b̂n
j and the (in terms of the shape model)

best boundary b̃n
j = argmaxi∈{1,...,N} p(bn

j = i|b̂−j) respectively.
Subsequently, we again infer (6) based on the terms (5) updated by (7),

and iterate this process until b̂ converges. Experiments show that this hap-
pens after few steps, and thus does not compromise computational efficiency.

4 Evaluation and Discussion

This section reports the performance of the approaches described in Sect. 2 and
3. To this end, we evaluated the following models:

1. Uniform Prior : p(bn
j = i|bn−1

j = l) = const., ∀ i > l, used in order to inspect
how performance degrades without shape prior information.

2. Shape Prior (SP): The graphical model described in Sect. 3.1.
3. SP + Projection: Post-processing b̂ by projection onto the PPCA subspace,

described in Sect. 3.2, alternative 1.
4. SP + Iteration: Post-processing b̂ by iterative conditioning, described in

Sect. 3.2, alternative 2.

Data Aquisition. Our dataset comprises 80 circular B-scans from 80 healthy
persons with given ground truth labeling. The dataset was acquired by using a
Heidelberg Engineering Spectralis HRA+OCT device. Each scan has a diameter
of 3.4mm and consists of M = 768 A-scans of depth resolution 3.87μm/pixel
(N = 496 pixels).

Evaluation. For each boundary we compute the unsigned, signed and squared
distances between the estimate b̂n and the manual segmentation b̃n

j (ground
truth),

En
unsgn =

M∑
j=1

b̂n
j − b̃n

j , En
sgn =

M∑
j=1

|b̂n
j − b̃n

j |, En
sq =

M∑
j=1

(b̂n
j − b̃n

j )2, (8)

where M indicates the number of image columns (A-scans). The errors of the
whole segmentation are computed as

E∗ = (9M)−1
9∑

n=1

En
∗ , ∗ ∈ {unsgn, sgn, sq}. (9)
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A 10-fold nested cross-validation over the lasso parameter (Sec. 2.1) was per-
formed: First, the dataset was split into 10 subsets. For each subset (the hold-out
set), the optimal parameter was determined by an inner 5-fold cross-validation
on the remaining 9 subsets. Given this parameter, a model was trained using
all 9 subsets and performance was evaluated on the hold-out set. Fig. 3 reports
results in terms of Eunsgn, Esgn and Esq with error bars indicating standard de-
viation. Fig. 4 shows characteristic segmentation results for all four approaches
in comparison.

Segmentation with the uniform prior performs worst, indicating the necessity
of using a shape prior. Adding prior statistical information about the relative
distances of layer boundaries (model 2. listed above) within each column boosts
performance significantly. For many columns this approach finds the true bound-
ary positions. Nevertheless, for columns with specific appearance, e.g. caused by
blood vessels, segmentation may fail (see Fig. 4b). This reveals the lack of com-
munication across image columns. Adding either PPCA projection (model 3.)
or iterative conditioning (model 4.) as a post-processing step can resolve such
issues (Fig. 4c and d).

As an illustration, Fig. 5 depicts the addition of pseudo-observations (7) for
boundaries 6 and 9 in column j for the first round of iterative conditioning.
Depending on the distance between b̃n

j (marked as green points) and b̂n
j , strong

(boundary 6) or weak (boundary 9) pseudo-observations are added. As a conse-
quence, estimates b̂n

j that rely on weak observations and/or differ significantly
from b̃n

j are corrected by the shape prior. While the iterative approach is working
well for the lower boundaries b6 - b9, it may happen that estimates for b2 - b5 are
too smooth, as shown for b2 in Fig. 4d, where the shape prior somewhat tends
to overrule the appearance model.

Uniform Prior Shape Prior SP + Projection SP + Iteration
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Fig. 3. Error means and standard deviation for all approaches 1., . . . , 4., evaluated for
all 80 scans by means of a 10-fold nested cross-validation. The standard deviations of
the squared error for the uniform prior and the shape prior model are 128.34 and 8.75
respectively.
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(a) Uniform Prior (b) Shape Prior (c) SP + Projection (d) SP + Iteration

Fig. 4. Close-up view of segmentation results for the approaches 1., . . . , 4.. Left panel:
no shape prior. Adding the shape prior significantly improves segmentation perfor-
mance, especially for boundaries b2−b5, but still may fail locally (2nd panel from left).
Iteratively enforcing the full shape prior leads to good results (3rd and 4th panel).

(a) Shape Prior p(m
ij

= b
6
|I

ij
) p(m

ij
= b

9
|I

ij
)

(b) SP + Iteration 1 p(m
ij

= b
6
|I

ij
) p(m

ij
= b

9
|I

ij
)

Fig. 5. The left panels show segmentations before (a) and after (b) the first step of
iterative conditioning. Green points indicate b̃n

j for n = 6, 9 (see Sect. 3.2). The middle
and right panels show the corresponding observation probabilities of both boundaries
for the red marked segment of column j. Green bars indicate the magnitude of pseudo-
observations added in (7), being stronger if the estimate b̂n

j differs significantly from b̃n
j .

Our current implementation in Matlab requires ∼ 15 seconds per 2D-scan on
an Intel Core 2 Quad Q9550 with 2.83 Ghz.

5 Conclusion and Further Work

This work presented a novel probabilistic model for the segmentation of circular
OCT scans. It combines a local appearance model and a global shape model using
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a graphical model that enables very efficient computational inference. Compar-
ison of different model variants has shown that utilizing the full shape prior
performs best. The approach works without user interaction, is robust against
appearance artifacts, and returns accurate segmentation results.

Our future work will investigate computationally tractable extensions that
enable horizontal coupling of image columns not only by the appearance model
but also by the shape prior. Furthermore, we will apply our approach to other
types of OCT scans, e.g. 3D volumes or scans from the fovea region. The exten-
sion to 3D is straightforward: The shape prior as well as the texture model can
be trained on 3D patches/boundaries, while the graphical model in Sec. 3 can
be augmented to include columns (A-scans) of all slices in the volume. Finally,
we will focus on discriminating non-/pathological scans and the development of
statistical tools for assessing such images locally.
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Abstract. Babies born prematurely are at increased risk of adverse neu-
rodevelopmental outcomes. Recent advances suggest that measurement
of brain volumes can help in defining biomarkers for neurodevelopmental
outcome. These techniques rely on an accurate segmentation of the MRI
data. However, due to lack of contrast, partial volume (PV) effect, the
existence of both hypo- and hyper-intensities and significant natural and
pathological anatomical variability, the segmentation of neonatal brain
MRI is challenging. We propose a pipeline for image segmentation that
uses a novel multi-model Maximum a posteriori Expectation Maximisa-
tion (MAP-EM) segmentation algorithm with a prior over both inten-
sities and the tissue proportions, a B0 inhomogeneity correction, and a
spatial homogeneity term through the use of a Markov Random Field.
This robust and adaptive technique enables the segmentation of images
with high anatomical disparity from a normal population. Furthermore,
the proposed method implicitly models Partial Volume, mitigating the
problem of neonatal white/grey matter intensity inversion. Experiments
performed on a clinical cohort show expected statistically significant cor-
relations with gestational age at birth and birthweight. Furthermore, the
proposed method obtains statistically significant improvements in Dice
scores when compared to the a Maximum Likelihood EM algorithm.

1 Introduction

Preterm birth (below 32 weeks gestation) is associated with significant cog-
nitive and neuromotor impairments, the frequency and severity of which in-
crease with decreasing gestational age [1]. Much research has been focused on
the development of biomarkers of neurological injury in an attempt to identify
babies at increased risk of adverse neurodevelopmental outcomes. Recently an
approach combining magnetic resonance imaging and volumetric analysis has
demonstrated a correlation with neurodevelopmental outcome at 2 years [2].
Fundamental to performing volumetric and morphometric studies is the ability
to classify different brain tissues.

In contrast with adults, neonatal brain MRI is complex to segment due
to lack of contrast, partial volume (PV) effect, the existence of hypo- and
hyper-intensities and substantial natural and pathological anatomical variability.
Dynamic natural developmental variability arises due to the receding germinal

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAI 2011, Part III, LNCS 6893, pp. 378–386, 2011.
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matrix and proceeding mylination from posterior to anterior. Cortical complex-
ity also increases as the cerebral grey matter surface becomes more convoluted.
Signal intensities of grey and white matter (GM/WM) on neonatal T1 and T2
MRI are characteristically reversed and contrast between the two tissue types is
progressively lost during the first few months of life as a result of the mylina-
tion process resulting in low contrast-to-noise (CNR) and signal-to-noise ratio
(SNR) images. Recent developments in neonatal brain segmentation have used
template atlases [3] to mitigate the low SNR and CNR of the images. These
methods rely on the registration of templates in order to propagate knowledge
of a particular population to a patient specific space. This is problematic in
pathological cases, as their anatomy may be markedly different from the one de-
rived from a normal population atlas (see figure 1). Zhuang et al. [4] proposed a
simpler intensity based classification method based on K-means and augmented
by a population atlas and Yu et al. [5] proposed a Parzan windows based Hidden
Markov Random Field algorithm, optimised by an Expectation-Maximisation al-
gorithm, again augmented by a population atlas. Both these methods will have
problems in severely diseased patients as the propagation of the templates by
image registration may not be able to cope with the variability. Furthermore, the
contrast inversion causes a layer of PV corrupted voxels on the CSF/GM bound-
ary to have similar intensities to pure WM. Xue et al.[6] tries to ameliorate this
problem through morphological operations without implicitly modelling PV.

a)                              b)                                 c)                               d)                       e)

Fig. 1. Red arrows pointing to the problematic areas. Pathological areas that differ
from the normal population in patients with a) and b) ventriculomegaly, c) and d)
excessive sub-arachnoid CSF. e) Movement artefacts and hyper-intensities.

In this paper, we propose a new segmentation pipeline incorporating a novel
Maximum a Posteriori Expectation-Maximization (MAP-EM) based probabilis-
tic segmentation technique that includes intensity non-uniformity (INU) correc-
tion, spatial dependence via a Markov Random Field (MRF) and PV containing
voxels. The pipeline also iteratively relaxes normal population priors, thus en-
abling their adaptation to pathological cases. The segmentation results are then
used to iteratively update the registration from the template space to the sub-
ject, improving the prior alignment, the segmentation and the skull-stripping.

2 Methods

2.1 MAP Expectation-Maximization Segmentation

Assuming either single modality or corregistered multimodal datasets, let i ∈
{1, 2, · · · , n} index the n voxels of an image domain, with its intensities forming
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a feature vector yi ∈ Rm. For K tissue types, let zi denote the tissue type of
voxel i. Thus, zi = ek for some k, 1 ≤ k ≤ K where ek is a unit vector with
the kth component equal to one and all the other components equal to zero.
Let each tissue type be described as having multivariate normally distributed
intensities with mean vector μk ∈ Rm and respective covariance matrix Λk ∈
Rm×m grouped in θk = {μk, Λk}, corrupted by a multiplicative bias field. In
this, work, the bias field is modelled as a linear combination c′φ of J smoothly
varying basis functions φ(x) = {φ(x)1, ..., φ(x)J}, where x denotes the spatial
position and c = {c1, ..., cm}′ with cm as a vector of coefficients for channel m.
For mathematical convenience and similarly to [7] and [8], we assume that the
intensity of the voxels that belong to class k are normally distributed after log
transformation. This log transformation of the data makes the multiplicative
bias field additive, ameliorating problems with numerical stability and enabling
the existence of a linear least square solution for the coefficient optimisation.

Let Φy = {θ1,θ2,...,θK ,C} represent the overall model parameters. Assuming
an a prior distribution over these parameters, the problem can be formalised as
a Maximum a Posteriori (MAP) estimation of Φy by

Φ̂y = arg max
Φ

f(y | Φy)g(Φy) (1)

with f(y | Φy) =
∏

i

∏
k f(yi | zi = ek, Φy)f(zi = ek | pNiΦz) and g(Φy) as a

semi-conjugate gaussian prior over the mean. These priors are used to constrain
the space of solutions of the mean, increasing the algorithm’s robustness in
complex segmentation cases. Here, the parameter μk, defined as

g(μk) =
(
(2π)

m
2 | Λ∗

k |
1
2

)−1

e−
1
2 (μk−μ∗

k)′(Λ∗
k)−1(μk−μ∗

k) (2)

with | Λ∗
k | as the determinant of Λ∗

k and μ∗
k and Λ∗

k as priors over the parameter
μk. The need for this prior over the means will become apparent in Section 2.2.

Here, f(y | Φy) can be seen as a mixture of multivariate normal distributions,
thus f(yi | zi = ek, Φy) = GΛk

(yi − μk − c′φ(xi)), where GΛk
(x) denotes a

multivariate zero-mean normal distribution with standard deviation Λk, defined
as GΛk

(x) = ((2π)m
2 | Λk | 12 )−1e− 1

2 x′(Λk)−1x . Thus, the Maximum a Posteriori
(MAP) parameters for Φy can be found by maximisation of Eq.1 giving the
following update equations for the model parameters:

μ
(t+1)
k =

(
μ∗

kΛ∗−1

k + (
∑n

i=1 pikȳik) Λ
(t)−1

k

)(
Λ∗−1

k + (
∑n

i=1 pik)Λ
(t)−1

k

)−1

Λ
(t+1)
k =

∑n
i=1 pik

(
ȳik − μ

(t+1)
k

)′ (
ȳik − μ

(t+1)
k

)
(
∑n

i=1 pik)−1

where ȳik = yi − (c(t))′φ(xi) and

p
(t+1)
ik = f(yi | zi = ek, Φ

(t)
y )f (zi = ek)

(∑K
j=1 f(yi | zi = ej , Φ

(t)
y )f (zi = ej)

)−1
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is the responsibility at the index i and class k and t denotes the iteration number.
The estimation of c(t+1) under a multimodel scheme is provided in [9].

Spatial Regularisation: Due to the low signal and contrast to noise ratio of
the images under analysis, the assumption of statistical independence between
neighbouring voxels makes the segmentation prone to noise and image artefacts.
A spatial smoothness term by means of a Markov Random Field (MRF) is thus
included. This MRF is a non-binary extension of a multiclass Potts model, and
assumes that the probability that voxel i belongs to tissue k depends on its
first-order neighbours Ni.

Using the mean field approximation as described in [10] and [9], all previous
equations still hold by setting f(zi = ej) = f(zi = ek | pNiΦz , πik) in Eq.2.1,
where

f(zi = ek | pNi , Φz, πik) =
(
πik e−UMRF(ek|pNi

,Φz)
) (∑K

j=1 πij e−UMRF(ej |pNi
,Φz)

)−1

Here, UMRF(zi | pNi , Φz) is an energy function dependent on the parameters
Φz = {Gkj , β}, where β is the overall MRF strength. Under anisotropic voxel
size, the interaction between neighbours is dependant on a connection strength
factor s, introduced as s = {sx, sy, sz} = { 1

dx
, 1

dy
, 1

dz
}, where d is the real-world

distance between the centre of neighbouring voxels in each direction. Under this
framework,

UMRF(ek | pNi , Φz) = β
∑K

j=1 Gkj

(∑
l∈Nx

i
sx plj +

∑
l ∈Ny

i
sy plj +

∑
l∈Nz

i
sz plj

)

Relaxation of the Anatomical Priors: Due to anatomical variability and
similarly to [11], we assume that the proportions πik are not known a priori.
Instead, we consider πik as a sample drawn from a distribution derived from the
statistical atlas, i.e., we consider them as a posterior of a Dirichlet distribution.
Here, πik is updated at each iteration by

πik = (1 − α)ωik + α(GσDer ∗ pik) (3)

with GσDer as a gaussian kernel with standard deviation σDer and ∗ as the
convolution operation, weighted by α. This updating scheme iteratively spatially
relaxes πik, enabling the segmentation of pathological cases. The amount of re-
laxation is dependent on the parameter α controlling the mixing proportions, and
σDer controlling the amount of regularisation over the posterior. For α = 0, only
the anatomical priors are used. These anatomical priors ω that incorporate proba-
bilistic information derived from a digital brain atlas are added to the model in or-
der to condition the posterior probabilities and indirectly also condition the model
parameters. These atlases are brought into correspondence using an affine regis-
tration [12] followed by a free-form non-rigid registration algorithm [13].

Assuming skull stripped images, we model the problem with K = 6 classes,
each one with a corresponding digital atlas prior probability for white matter



382 M.J. Cardoso et al.

(WM), cortical grey matter (cGM), deep grey matter (dGM), cerebrospinal fluid
(CSF), pons (Pon) and cerebellum (Cer) respectively at every voxel position. The
anatomical priors provided by [14] are used here. The time point in the 4D atlas
is chosen depending on the gestational age of the neonate under analysis.

2.2 Segmentation Pipeline

The proposed pipeline can be described as a sequence of registrations and seg-
mentations, that acts to improve the atlas alignment, the propagation of the
brain mask and consequently the final segmentation. First, the population tem-
plate is registered to the patient space and both the mask and the anatomical
priors are propagated using the same deformation field. Due to the low signal to
noise ratio and architectural variability of the images (shown in Figure 1) the
registration is not able to capture the correct deformation field on the first pass.
However, at this stage, the registration is able to align the more anatomically
consistent structures (skull, scalp) despite performing quite badly in situations
with excessive sub-arachnoid CSF or with marked ventricular expansion.

After the first registration step, the image is segmented with the above described
MAP-EM segmentation algorithm with very broad parameters for the prior relax-
ation.At this stage,weuseσDer = 6andα = 0.5, enabling a great adaptationof the
priors. Because the prior relaxation is an iterative process, in patients with marked
anatomical disparity the tissue classes might not converge to the desired solution
at this stage. For example, in Fig.2(left), the WM class converges to a gaussian
with large standard deviation including both CSF and WM and the INU correction
tries to compensate the intensity difference. In order to ameliorate this problem,
the images are intensity normalised using a robust max-min (assuming 2 % out-
liers) after masking. The expected distribution of the parameter μ for each class
was then obtained by manually sampling several 3x3x3 voxel cubic patches over a
set of intensity normalised images. From this sampling process, the mean and stan-
dard deviation of the mean intensity over each patch was calculated and assigned to
the prior μ∗

k and Λ∗
k. On multimodal images, the process is done separately for each

modality as Λ∗
k is assumed to be diagonal. The inclusion of this extra term adds

some a priori knowledge about the class specific distribution of the parameter μ

Fig. 2. Patients with either marked ventricular expansion (left) or excessive sub-
arachnoid CSF (right) and their corresponding cortical GM and CSF segmentations,
with and without the prior over the mean intensities.
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increasing the robustness of it’s estimation. After the segmentation, the registra-
tion is updated by matching the brain prior (sum of all the brain structures
excluding CSF) with the current brain segmentation. This allows a much less
noisy and simplified registration process. Both the brain mask and the anatom-
ical priors are re-propagated using the new deformation field. The images are
segmented again using the new priors and mask, and the values of σDer and α
are reduced to 2 and 0.3 respectively, resulting in a more prior driven and less
adaptive segmentation.

Explicit PV modelling: At this stage, the segmentation is generally good
and the priors are now correctly aligned. However, there is still a layer of WM
classified voxels on the GM/CSF, Cerebellum/CSF and Pons/CSF interfaces
(see Fig.3). It is common to assume that if two tissues mix in a voxel, all mixing
proportions are equally likely. The PV probability can be seen as a number
of mixed Gaussians in between the two pure classes, corresponding to all the
possible tissue proportions within a voxel [15]. Ruan et al.[16] showed that, for
brain imaging and for the signal-to-noise ratio levels of current MRI systems,
the density of all these PV gaussian classes can be approximated by a single
gaussian with a small risk (α < 1 for D’Agostino-Pearson normality test). Under
this assumption, and similarly to [17], we use the previously estimated values of
pik, μk and σk to initialise the mixed classes.

Under the assumption of Gaussian distributed classes on log-transformed
data, the initial PV class Gaussian parameters can be approximated by a mixel
distribution [18], with mean equal to the arithmetic weighted average of its com-
posing class parameters weighted by the determinant of the covariance matrix of
each class. Thus, μ∗

j/k =| Λj | μj+ | Λk | μk. Due to the multiplicative nature of
the probabilities, the mixed class prior is generated as the normalised geometric
mean of its composing tissue distributions pij and pij .

ω∗i(j/k) =
√

pij pik (4)

and
ω∗i(WM) = ωi(WM)

(
1 −√

ωi(GM)ωi(CSF)

)
(5)

This transformation will reduce the a priori probability for PV containing voxels
to belong to WM. The priors are then normalised in order to sum to one at each
voxel position. Even though these new priors cannot be considered as priors
in a strict sense as they are derived from patient specific data, they behave as
such in the model. After these patient specific PV priors are created, the image is
segmented again using the above described MAP-EM algorithm with the 3 extra
PV containing classes (GM/CSF, Cerebellum/CSF and Pons/CSF interfaces),
resulting in a much reduced amount of PV containing voxels classified as WM.
Please refer to Fig. 3 for a visual assessment of the segmentation steps and their
improvements.
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T1 image First stage MAP-EM Seccond stage MAP-EM PV-MAP-EM

Fig. 3. From left to right: Segmentation pipeline showing the original image, the first
segmentation step, the second segmentation step with the improved prior alignment
and finally the PV corrected segmentation result .

3 Validation

Data: The data were acquired on a 1.5T Siemens’s Avanto using TR = 17ms,
TE = 6ms and flip angle of 21o. In total 43 T1-weighted volumes are analysed
with resolution 0.39× 0.39× 1mm. The mean gestational age is 27.1± 2.7 weeks
(range 23.1− 32.3), mean birthweight 970± 373g (range 540− 2470g) and mean
age at scan 40.4 ± 1.74 (range 35.7 − 44.3). The male to female ratio is 37/36.

Clinical correlation: For each segmentation we analyse correlations with GA
at birth and birthweight. We additionally correlate the grey/white matter ratio.
The correlation coefficient required to achieve a p-value ≤ 0.01 for this sample
size (43) is r = 0.36. With the exception of the CSF volume, each of the seg-
mented components correlates significantly (r > 0.5) with both gestational age
at birth and birthweight. The absence of correlation with CSF is expected due
to significant natural and pathological variation in ventricle size. There are no
correlations with gender.

Quantitative and qualitative analysis: In order to assess the quality of the
segmentation, the proposed segmentation was compared to manually segmented
ventricles. Two subsets were chosen from the full database: one containing 15
neonates with normal anatomy and another containing 4 patients with notice-
able anatomical differences (2 cases with ventriculomegaly and 2 with excessive
sub-arachnoid CSF). For each dataset, a Dice score was calculated between the
proposed method and the manual segmentation. The proposed algorithm was
also compared to the Maximum Likelihood Expectation Maximisation (ML-EM)
algorithm [9]. On the subset containing the 15 normal subjects, the the proposed
method obtains a dice score of 0.908 ± 0.034 when compared to 0.725 ± 0.217
for the ML-EM, representing a statistically significant improvement (p < 0.01)
in the accuracy of the segmentation. On the second subset, the dice scores for
the proposed method are 0.92, 0.86, 0.93 and 0.94, and respectively 0.22, 0.15,
0.35, and 0.55 for the ML-EM method, showing a marked improvement in the
accuracy of the segmentation in pathological cases.
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4 Conclusions

We have presented a segmentation algorithm tailored specifically for neonatal T1
segmentation, using a MAP-EM algorithm with a new prior relaxation strategy
combined with a semi-conjugate prior over the intensities and an implicit PV
model in order to mitigate the problematic misclassified layer of PV voxels.
Statistically significant correlations are shown between structural volumes and
both weight at birth and gestational age. Furthermore, experiments performed
on a clinical cohort also show significant improvements in segmentation accuracy,
mainly in pathological cases, when compared to a ML-EM algorithm.
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Abstract. In this paper, we propose a novel approach to solve the renal cortex 
segmentation problem, which has rarely been studied. In this study, the renal 
cortex segmentation problem is handled as a multiple-surfaces extraction prob-
lem, which is solved using the optimal surface search method. We propose a 
novel graph construction scheme in the optimal surface search to better ac-
commodate multiple surfaces. Different surface sub-graphs are constructed ac-
cording to their properties, and inter-surface relationships are also modeled in the 
graph. The proposed method was tested on 17 clinical CT datasets. The true 
positive volume fraction (TPVF) and false positive volume fraction (FPVF) are 
74.10% and 0.08%, respectively. The experimental results demonstrate the ef-
fectiveness of the proposed method. 

1   Introduction 

Image segmentation is a fundamental and challenging issue in the area of medical 
image analysis and computer-aided diagnosis. The kidney volume and renal cortex 
thickness are important clinical indications for renal function and are valuable for 
nephrologists. As shown in Fig. 1, the kidney consists of the renal cortex, renal medulla 
and renal pelvis. The renal cortex forms a continuous smooth outer zone with a number 
of projections (renal columns). Several kidney segmentation methods have been pro-
posed in the literature [1-3]. They focused on mostly the whole kidney and seldom 
referred to the specific structures such as the renal column and renal cortex. Since the 
renal cortex thickness information plays an important role in renal function assessment, 
the segmentation of the renal cortex is desirable. 

Special characteristics of the kidney’s anatomical structure, such as (1) semi-closed 
structure around the renal pelvis, (2) weak boundaries between adjacent organs (e.g. 
liver, spine and muscles), and (3) the intensity proximity of the renal cortex and renal 
column (see Fig. 1), make renal cortex segmentation a challenging problem. Tradi-
tional methods such as region growing and threshold will most likely fail. Model-based 
methods incorporating anatomical constraints are necessary to separate the renal cortex 
and renal column. Furthermore, in order to overcome the weak boundaries, 
graph-based methods can be employed to search for a global optimal solution. In this 
paper, we propose an extended optimal surface search method [4] to segment the renal 
                                                           
* Corresponding author. 
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cortex by simultaneously extracting its outer and inner surfaces. The graph construction 
[5] was utilized to build a single graph for the entire image. However, it could not fully 
accommodate multiple surfaces, so we propose a new graph construction scheme that 
models multiple sub-graphs to address this problem.  

 

Fig. 1. CT image of the kidney. (a) Coronal view. (b) Sagittal view. 

2   Methods 

The framework of the proposed approach is illustrated in Fig. 2. The general strategy is 
to solve the renal cortex segmentation problem through multiple-surfaces extraction. 
The segmentation has two major stages. The first stage provides the approximate 
segmentation of the whole kidney, and the second stage simultaneously extracts the 
two surfaces. 

SS
M

SS
M

Initial 
Segmentation

Multiple Surface 
Graph Search

 

Fig. 2. The proposed renal cortex segmentation framework 

2.1   Initial Segmentation 

The initial segmentation is based on the statistical shape model method [6-7] and con-
sists of the following three main steps: nonlinear diffusion filtering, kidney shape 
model creation and kidney initial localization. 
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1) Nonlinear diffusion filtering 
As a preprocessing step, a nonlinear diffusion filter [8] is applied to smooth the image 
and reduce noise. The diffusion filter is defined by the following equation: 

2

0

( , , , )
[ (| | ) ]

( , , ,0) ( , , )

u x y z t
div g u u

t
u x y z u x y z

∂⎧ = ∇ ∇⎪ ∂⎨
⎪ =⎩

 
(1)

t is a scale parameter, and the diffusivity function 10( ) = 1 exp( 3.6150 (s/ ) )g s λ− −  if 

0s > , and ( ) 1g s = otherwise. λ is the contrast parameter. 

2) Kidney shape model creation 
The kidney shape model is built from manually segmented kidneys in a training set. 
First, a triangulated surface mesh is reconstructed from the manually labeled images 
using marching cubes [9]. Then, a minimum description length (MDL) [10] approach is 
used to determine the point correspondence for all training shapes. Subsequently, all 
training shapes are aligned with affine transformations. Finally, the average kidney 

shape can be obtained with i i nΦ = Φ∑ , where iΦ  is a training surface, and n  is the 

number of the training set. 

3) Kidney initial localization 
After generating the average kidney shape, we can approximately locate this average 
shape using the software package Amira [11]. We use the built-in transformation editor 
to roughly register the average shape to the original volume. 

2.2   Multiple-Surface Graph Search 

Based on the kidney initialization results, we employ an optimal surface search algo-
rithm [4]. This algorithm can be considered as an optimization process aiming at 
finding the set of surfaces with the minimum cost. The three major components are 
graph construction, cost function design and optimal surface recovering.  

1) Graph construction 
A key innovation of our method is its novel graph construction scheme, enabling con-
struction of different sub-graphs according to different surface properties and in-
ter-surface relationships. The graph construction process is illustrated in Fig. 3. Two 
sub-graphs 0 1( , )G G  are constructed for outer and inner surfaces respectively in a 

narrowband around the surface meshes. For each vertex jv  on the mesh, a column of 

equidistant points is sampled along the normal direction of the vertex. The sampled 
points is denoted as ( ), 0,1; 0, , 1; 0, ,k

i j iS v i j M k N= = − =… …  constituting the nodes 

for the sub-graphs, where i is the index of the two sub-graphs 0 1( , )G G , j is the index of 

the vertex on the surface, and k is the index of the sampled points along the columns. 
We adopt different strategies to form the columns in sub-graphs 0G  and 1G , which are 

written in equ. 2:  
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0 0 0 0

1 1 1

( ) ( ( 1) / 2) ( 0, , 1)
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where the normal direction jn
JJG

 points outward, and ( )0 1,Δ Δ  are the smoothness con-

straints for the two sub-graphs. The outer surface is searched both inward and outward, 
but the inner surface is searched only inward. This scheme is illustrated in Fig. 3(b)(c) 
so that 0G  spans both inside and outside of the pre-segmented surface and 1G  spans 

only inside the surface. This is based on the prior knowledge that the renal cortex inner 
surface should be inside of the initial exterior surface.  

1
'

0
'

0
0 0( )S v

0
0 1( )S v

0
0 2( )S v

1 1
1 1( )NS v �

1 1
0 2( )NS v �

1 1
1 2( )NS v �

 

Fig. 3. Graph construction. (a) Triangulated surface mesh with vertex normal. (b) Graph con-
struction with three columns in the orange ellipse in (a). The whole graph is composed of two 
sub-graphs 0G  and 1G . The blue edges denote the intra-column arcs, while the green edges and 

red edges denote the inter-column arcs of the two sub-graph, and the brown edges between two 
columns projected from the same vertex denote the inter-surface arcs. (c) Detail of the in-
ter-surfaces arcs. 

There are three types of arcs in the graph shown in Fig. 3(b)(c):  
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where ( ), ,i j k  are the indices defined above. The intra-column arc aE  denoted by the 

blue edges connect two adjacent points on the same column； the inter-column arcs 

0
rE  denoted by green edges connect two points on two adjacent columns of the outer 

surface sub-graph 0G , while the arcs 1
rE  are denoted by red edges in the inner surface 

sub-graph 1G ; and the inter-surface arcs sE  denoted by the brown edges connect two 

points on different sub-graphs. In our graph construction, different smoothness con-
straints ( )0 1,Δ Δ  are designed for the inter-column arcs in the two sub-graphs. Sepa-

ration constraints ( ),l uδ δ  are exerted on the inter-surface arcs to separate the two 

surfaces.  

2) Cost function design 
All of the intra-column, inter-column and inter-surface arcs are viewed as n-links in the 
s-t graph [12] and assigned infinity values initially. Each node has a weight ( )k

i jW v  in 

the weighted directed graph, where (i,j,k) are the indices defined in the previous sec-
tion. The node weight ( )k

i jW v  is defined below: 
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where the cost ( )k
i jC v  is defined with cost functions reflecting some properties of the 

relevant surfaces. 0 ( )k
jC v  and 1( )k

jC v  represent the two cost functions for sub-graph 
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the 3-D “sheet filter” sheetF  [13] is defined as follows: 
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where γ  and α  are parameters. 
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If , nodes are connected to the sink terminal  by a directed edge with 

weight , otherwise nodes will be connected to the source terminal  by a di-

rected edge of weight . These arcs are t-links. 

3) Optimal surface recovering 
After the above two steps, a s-t graph  has been derived from the weighted directed 
graph . Then we can apply the traditional graph cut algorithm [12] to recover the op-
timal surfaces. After that, the outer and inner surface meshes are scanned and converted 
to volumes with the same dimension and spacing as the original CT datasets. Finally, the 
segmentation of the renal cortex is obtained by subtracting the two volumes. 

3   Experiments and Results 

The proposed method was tested on 17 clinical CT datasets using Leave-one-Out cross 
validation. The CT images consist of 512 512 32× ×  voxels. These data sets were 
manually segmented by labeling the kidney tissue to create kidney template images. 
Our method was implemented on a 32-bit desktop PC (2.33 GHz Core 2 and 2 GB 
RAM) based on the medical imaging toolkit [14] (MITK http://www.mitk.net/). 

The parameters used in our algorithm are listed in Table 1. The sampling distance 
varies inversely with the density of local triangulated mesh. Results of the segmented 
renal cortex as well as the extracted outer and inner surface are shown in Fig. 4. Manual 
segmentation was used as reference and compared with the automatic segmentation 
result according to five metrics: true positive volume fraction (TPVF), false positive 
volume fraction (FPVF), signed relative volume difference (SVD), average symmetric 
surface distance (DAvg), and average symmetric RMS surface distance (DRMS). These 
metrics are summarized in Table 2. TPVF is relatively low compared to (1-FPVF), 
which is due mostly to the cortex segmentation error around the renal pelvis (blue 
arrow in Fig. 5(b)). Fig. 5(a) shows one example of the surface distance map between 
an automatic segmentation and a reference segmentation. 

Table 1. Parameter values 

Stage Parameter values 
Initial seg-

mentation 
λ=10,step size 0.1, iter 30; 

n=17, model radius 0.3, samples number 41, landmarks 2562 

Multiple 
surfaces graph 

search 

Outer surface: N0=41, Δ0=1, sampling distance 0.2-4.0mm ; 
Inner surface : N1=21, Δ1=1, sampling distance 0.1mm ; 

M=2562, [δl,δu]=[3,8]sampling distance unit 
0.5, 0.25α γ= =  

Table 2. Metrics results (Mean±SD) 

TPVF(%) FPVF(%) SVD (%) DAvg (mm) DRMS (mm) 
74.10±3.18 0.08±1.25 -3.46±3.33 0.69±0.20 1.36±0.29 
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(d)

(a) (b)

(e)

(c)

(f)  

Fig. 4. Surface segmentation results. (a) Original image. (b) Enhanced image using nonlinear 
diffusion filtering. (c) Red region indicates the renal cortex segmentation result, while the ref-
erence segmentation is in green. (d) Outer surface mesh. (e) Inner surface mesh. (f) Combined 
segmented outer surface (translucent surface) and inner surface (wire frame). 

 

Fig. 5. (a) 3D surface distance map between the outer surface segmentation result and the kidney 
template image (ground truth). (b) Segmentation error around the renal pelvis (blue arrow). The 
cortex segmentation is in red, while the reference segmentation is in green. 

4   Conclusions and Future Work 

A novel approach has been presented to solve the renal cortex segmentation problem. 
We segment the renal outer and inner surfaces simultaneously by using the optimal 
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multi-surface search method to generate the renal cortex. The experimental results 
demonstrate the effectiveness of the proposed method. Our key innovation is the novel 
graph construction scheme. Different surface sub-graphs are constructed according to 
the surface properties and inter-surface relationships. This graph construction scheme 
can be applied in other multiple-surfaces segmentation problems, such as the myocar-
dium and cerebral cortex segmentation. 

In our future work, we will focus on improving the performance of inner surface 
segmentation. More investigations will be conducted about the separation constraints 
and cost functions, especially the relationship between the two cost functions. 
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Abstract. Coronary artery bifurcations are regions where the
atherosclerotic plaque appears more frequently and where the percu-
taneous treatment is more challenging. To analyze these important vas-
cular regions, in this paper is proposed a method for the extraction of
realistic 3D models of coronary bifurcations combining information from
pre operative computer tomography angiography (CTA) to obtain the 3D
structure of the vessels and pre and post operative conventional coronary
angiography (CCA) to extract a more accurate estimation of the lumen
radius before and after stenting. The method proposed is semiautomatic,
starting from a set of user defined landmarks, and has been successfully
applied to data from five patients that underwent endovascular treat-
ment in a coronary bifurcation. The results obtained are satisfactory by
visual inspection and in comparison with manual measurements.

1 Introduction and Background

Coronary artery bifurcations are places where atherosclerotic plaque formation
occurs more frequently, and are challenging vascular regions for percutaneous
treatment. Among the treatment techniques described for bifurcations, the one
more appropriate for an individual case is still cause of controversy among en-
dovascular interventionists. If a realistic 3D geometry of the bifurcation before
and after treatment is available, a detailed analysis of the vascular morphology
and its changes could respond to questions such as the level of success of the
treatment employed or, in a large population study, what are the techniques
more suitable for specific morphologies and locations. Also, computational fluid
dynamics studies could be carried out using these geometries, and the study of
the changes in hemodynamic parameters, could reveal regions of high risk of
re-stenosis.

Several approaches have been proposed to obtain accurate segmentations of
coronary arteries. Some important ones are minimum cost path techniques like
the one presented in [1] that used a 4D representation of curves to obtain tubular
structures from CT and MR data. Another similar approach was proposed in [2]
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to extract the vessel centerlines and then the vessel surface using fast marching.
However, these and many other approaches are based on information about
only one image modality, usually computer tomography angiography (CTA),
and conventional coronary angiography (CCA) is not commonly used. In this
paper we propose to combine these two modalities, taking advantage of each
one to overcome the limitations of the other. Therefore, realistic 3D bifurcation
geometries can be obtained using routine acquisition imaging modalities, with a
semiautomatic method that provides the pre and post operative models of the
vessels. This is, as far as we know, the first time that these two modalities are
combined for reconstruction of coronary artery bifurcations.

2 Method

The method proposed here consists of three steps. First, the 3D structure of the
bifurcation is obtained from CTA pre operative data using a ridge extraction
method followed by a fast marching (FM) approach. After that, CCA images
obtained before and after endovascular treatment are processed to obtain the
vessel radii along the vessel centerlines, and finally, the models are constructed
mapping the vessel radii to the 3D structure.

2.1 3D Centerline Extraction

The first stage of the method uses the CTA image to extract the information of
the vessel centerlines forming the bifurcation. In this step, the user specifies the
center of the bifurcation in the CTA image, that will be denoted as b3D, and a
minimum of three points on the vessels forming the bifurcation, denoted as p3D

1

for the proximal segment of the main artery, p3D
2 , for the distal part of the main

artery and p3D
3 for the secondary artery. Then, a ridge extraction is performed

over the image using p3D
1 , p3D

2 , and p3D
3 as seeds, to get the centerlines [3]. To

obtain better results, the vessel enhancing filtering by [4] is applied to the CTA
image prior to the ridge extraction.

The centerlines obtained from the ridge extraction process do not always form
a connected set. Two segments are considered disconnected if they are separated
by a distance greater than the step size used in the ridge extraction, (here the
step size used is 0.3 mm, lower than the minimum spatial resolution of the CTA,
0.445 mm). These disconnections are due to several reasons, such as the relatively
low spatial and temporal resolution of the CTA image, the noise, and especially
due to lesions affecting the bifurcation. For this reason, a reconnection strategy
is employed similarly to [2]. The method consists in finding for each disconnected
segment, the closest point in any of the other segments, y, using a distance map
u(x). Then, a minimum cost path is computed from y to the initial segment
using u(x). To compute u(x) a FM algorithm is employed, solving the Eikonal
equation:

|∇u(x)|F (x) = 1 , (1)
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and using the disconnected segment points as seeds. The FM computation is
stopped when any of the other segment points, y, is reached. Here, the speed
function F (x) has to be carefully selected. A constant speed function will provide
an Euclidean distance map, that will connect the vessel centerlines by straight
lines, thus, providing non realistic results (see green points in Fig. 1). In order
to follow a more realistic trajectory of the vessels, we use a speed function that
depends exponentially (as in [5]) on the local vessel structure as follows:

F (x) = e(α·V (x)/M) , (2)

where V (x) is the multiscale vesselness of the CTA, computed as in [6], and M is
the maximum value in V (x). Ten scales are used to compute V (x), from 0.2 up
to 4 mm. F (x) is designed to drive the FM process faster along vessels and the
parameter α controls its strength. Low α values give a speed closer to constant
everywhere, and high values increment the speed at high vesselness regions. Here
we use α = 2 that provides good results in our experiments. The reconnection
process is repeated for each segment until there is only one connected segment.
The behavior of this reconnection strategy is shown in the phantom shown in
Fig. 1, where three disconnected segments are connected following the vessel
structures.

In Fig. 2 the centerline points obtained from the ridge extraction (red points)
and reconnection step (green points) are shown for a left coronary artery tree.
To take into account the calcified tissues of the plaque, that if present, are visible
in the CTA, two different centerlines are computed for the pre and post opera-
tive models. For the post operative centerline, the ridge extraction is computed
using the original CTA image. However, for the pre operative centerline, the
calcifications are first subtracted from the CTA image using a threshold of 721
Hounsfield units [7], and then, the centerlines are computed again. Therefore, the
pre operative centerlines deviate with respect to the previous ones at calcified
lesions as shown in Fig. 2.

Fig. 1. Slice of a digital phantom with centerline points overlaid (left), same slice
with u(x) computed from one segment (middle), and 3D view of the phantom (right).
Initial points are in blue, reconnected points in red, and in green connected points
using F (x) = 1.
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Fig. 2. Left: Initial centerline points (red) obtained from coronary CTA, connected
centerline points using FM (green) and end points and bifurcation points (blue). Mid-
dle: slice of the distance field u(x) from one segment. Right top: centerlines of the
post operative model (red), and pre operative centerline (green) avoiding the calcified
plaque pointed by arrows. Right bottom: corresponding CCA image.

2.2 Processing of the 2D Angiographic Images

In the following step, the vessel radii on the CCA images are calculated. In
particular, two images are selected from pre and post operative views, using
an angle where the area of the projection of the bifurcation is maximum. This
projection corresponds approximately to the CCA image chosen by the clinician
for an optimum visualization of the bifurcation, minimizing foreshortening and
vessel overlap. Notice that, only vessel radii and lengths from the bifurcation
center are used from CCA, and therefore there is no need to have a perfect
projection matching between the CTA and the CCA. This is especially important
because the vessel geometry extracted from CTA can vary with respect to the
geometry extracted from CCA when the guide wire is inserted, that could change
the vessels curvature (see Fig. 3). Therefore, our method does not need perfect

Fig. 3. CCA images. Top row: pre operative, bottom row: post operative. Overlay
images are from left to right: segmentation, distances from the vessel boundary, and
centerline colored with the lengths to b2D.
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correspondence between CTA and CCA, being robust with respect to geometry
changes and with respect to the cardiac phase used in both modalities, although
it is chosen to be approximately the same. One alternative method could be
to perform an elastic 2D registration between CCA and CTA projections to
find radii correspondences, but the lack of information about the projection
geometry of the CCA acquisition would increase considerably the complexity of
the problem as well as the computational cost.

For each of the two projection images selected, the bifurcation center b2D is
also manually selected, corresponding to the point b3D. Also, three points on
the branches are marked (p2D

1 , p2D
2 and p2D

3 ), that will be used to assign corre-
spondences between the 2D and 3D centerlines and to stop the 2D segmentation
process, but that do not have to correspond to p3D

i . The lumen in the CCA im-
ages are first segmented, then the vessel centerlines are computed, and finally the
vessel radii are computed as the distances from the segmented boundary at the
centerline points. For the segmentation, a level set approach is employed starting
from b2D and is stopped when it reaches the user defined points p2D

i . Two pre
and post operative CCA images are shown in Fig. 3 with the segmentation, the
distances from the segmented boundaries and the centerlines overlaid.

2.3 Radius Mapping

In the next step the radii values are mapped from 2D to 3D, to construct the
bifurcation models. Here, circular cross-section can be assumed for the arteries
without losing too much accuracy in the majority of cases, because this assump-
tion only fails in 20% to 30% of the lesions [8].

The radius mapping is implemented using the centerline lengths. Let Γi(s)
and γi(s) be the parameterized centerline curves of each vessel in 3D and 2D
respectively, where Γi(0) = b3D, Γi(1) = p3D

i and γi(0) = b2D. Then, we
choose γi(1) as the 2D point such as corresponding curves have the same length,
L(Γi(1)) = L(γi(1)), where the length function L(γ(s)) is given by

L(γ(s)) =
∫ s

0

|γ̇(t)|γ(t)dt . (3)

Then, a radius value is assigned to each point of Γi, using the radii values
computed previously in the CCA images. The mapping is performed using dis-
tances from the bifurcation center, such that if Ri(d) and ri(d), are the radii in
3D and 2D at distance d from b3D and b2D respectively, at the ith branch, then,
the radius mapping can be expressed as Ri(L(Γi(s))) = ri(L(γi(s))), ∀s ∈ [0, 1].

In general, there is no exact correspondence between the points Γi(s) and
γi(s) due to foreshortening. However, we can assume that in a small region near
b3D, the vessel centerlines lay near a plane [9], and thus, the foreshortening effect
is minimum on this plane and the radius mapping can be applied. Finally, the
obtained surfaces are smoothed to avoid sharp transitions at vessel junctions.
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3 Results

We have selected 5 patients for this study, affected by occlusion in a coronary
bifurcation and eligible for percutaneous intervention. All the patients had a pre
operative CTA scan, which was acquired in a 64 multi-slice scanner from GE
Medical Systems, with an image resolution of 0.445 × 0.445 × 0.625 mm, and
at least two sequences of pre and post operative CCAs as described above.

In order to show our results, we have selected for each case, the CTA oblique
slice that approximates best to the plane formed locally by the bifurcation ves-
sels, that also fits best with the CCAs used, and will be denoted as bifurcation
plane. This plane is shown in Fig. 5 (left) for one case, that corresponds to
the tangent plane of the epicardium. Fig. 4 illustrates the bifurcation region on
each CCA (top row), the CTA bifurcation plane with the models and a manual
segmentation outlines overlaid (middle row), and the pre and post operative bi-
furcation models for the five patients (bottom row). The differences between the
two models and the matching with the real images are clearly seen. In the first
and fifth cases, the secondary branch is bigger in the pre operative model (green
color inside), which is in accordance with the diameters observed in the CCAs,
and could be due to partial occlusion of the secondary branch after stenting.

Fig. 4. Detail of the CCAs used (top row), corresponding bifurcation plane from the
CTA with manual segmentation (red), pre (yellow) and post operative (green) outlines
overlaid (middle row), and 3D bifurcation models (bottom row); in yellow and green
the pre and post operative models respectively.
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Fig. 5. Bifurcation plane in one case (left), and relative errors obtained in the diameters
measures for the pre operative data (middle) and for the post operative data (right)

4 Comparison with Manual Measurements

To evaluate our results, two comparisons have been carried out. First, manual
segmentation is performed in the bifurcation plane extracted from the CTA, and
is compared with the pre operative model at the same plane, computing the dice
similarity index between the two regions, whose boundaries are shown in Fig. 4
(middle row). The values obtained are shown in table 1, where a good agreement
is found (0.7675 in average).

A second comparison has been done measuring the three vessels diameters in
the CTA, the CCAs and in our models using an annotation tool. The diameter at
the stenosis is also measured in all the pre operative data. Then, considering the
diameters from the CCA as the ground truth, the relative errors of our method
and from CTA are computed for the pre operative data, see Fig. 5 (middle).
These errors are lower in our models than in CTA, showing the importance of
including the radius information from CCA. The errors obtained between our
post operative models and the post operative CCAs are also plotted in Fig. 5
(right), where the values obtained are slightly smaller than before.

Table 1. Dice similarity index computed between manual delineations in the bifurca-
tion plane and a slice of the same plane of the pre operative models for the 5 patients.

patient 1 patient 2 patient 3 patient 4 patient 5 average

DS : 0.8171 0.7217 0.8244 0.8197 0.6545 0.7675

5 Conclusions

We have proposed a method for realistic modeling of coronary bifurcations com-
bining information from two modalities: CTA and CCA. We have shown the
advantages of using both modalities together: from CTA, the 3D vessel trajecto-
ries and the visible atherosclerotic plaque are used, and from CCA we obtain a
more accurate estimation of the lumen radius, before and after stenting. The re-
sults presented from five patients are successful, and the models obtained match
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well with both the CTA and the CCA data as shown above. Numerical compar-
ison with manual segmentation shows a good accuracy. Also, from comparisons
of the diameters we have also shown that this method can improve the accuracy
with respect to CTA used alone. Therefore, using images acquired during normal
clinical practice, it is possible to obtain accurate models from specific regions
of the coronary artery tree, before and after percutaneous intervention. These
accurate models can be extremely useful to assess geometrically the outcome of
endovascular interventions and they can be obtained very efficiently.

Two assumptions have been used: circular cross section of the vessels, that is
not true only in 20% to 30% of the lesions, and planar correspondence between
the CCAs and the bifurcation vessels in a small region around its center. From
the results obtained, it is shown qualitatively and quantitatively, that both ap-
proximations are valid with the data sets used here, and therefore this method
shows to be a good technique to obtain realistic results. However, a wider study
with a larger population, analyzing user input variability, cardiac phase selection
and acquisition plane selection, is still needed to fully validate this method.
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Abstract. Cardiac computed tomography (CT) is the primary non-
invasive imaging modality to diagnose coronary artery disease. Though
various methods have been proposed for coronary artery segmentation,
most rely on at least one user click to provide a seed point for ini-
tialization. Automatic detection of the coronary ostia (where coronaries
originate from the aorta), including both the native coronary ostia and
graft ostia of the bypass coronaries, can make the whole coronary exam
workflow fully automatic, therefore increasing a physician’s throughput.
Anatomical structures (native coronary ostia) and pathological struc-
tures (graft ostia) often require significantly different detection methods.
The native coronary ostia are well constrained by the surrounding struc-
tures, therefore are detected as a global object. Detecting the graft ostia
is far more difficult due to the large variation in graft position. A new
searching strategy is proposed to efficiently guide the focus of analysis
and, at the same time, reduce the false positive detections. Since the by-
pass coronaries are grafted on the ascending aorta surface, the ascending
aorta is first segmented to constrain the search. The quantitative prior
distribution of the graft ostia on the aorta surface is learned from a train-
ing set to significantly reduce the searching space further. Efficient local
image features are extracted around each candidate point on the aorta
surface to train a detector. The proposed method is computationally ef-
ficient, taking about 0.40 seconds to detect both native and graft ostia
in a volume with around 512 × 512 × 200 voxels.

1 Introduction

Cardiovascular disease (CVD) is the first leading cause of death in the United
States and coronary stenosis (narrowing of the vessel) is the most common
CVD [1]. If the stenosis is too severe and medical therapy does not help, an artery
or vein from elsewhere in the patient’s body is often harvested and grafted to the
coronary arteries to bypass the stenosis (see Fig. 1). Cardiac computed tomog-
raphy (CT) is the primary non-invasive imaging modality to diagnose coronary
stenosis thanks to its superior image resolution. To facilitate the diagnosis, it
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Fig. 1. 3D coronary volumetric visualization for two datasets, showing the right coro-
nary ostia (red arrows), graft ostia of bypass coronaries (green arrows), left internal
thoracic artery bypass (white arrow), and surgical clips (blue arrows). The left coronary
ostium is not visible due to occlusion of the right ventricle.

is very important to develop a robust system that can efficiently extract the
coronary artery centerline, followed by vessel lumen segmentation, to provide
quantification of the coronary stenosis (i.e., measuring the percentage of the lu-
men area blocked by plaques). Though various methods have been proposed for
coronary artery segmentation, most rely on at least one user click to provide a
seed point to initialize the centerline extraction [2]. Coronary segmentation is
a time consuming task. It is desirable to perform it automatically in a prepro-
cessing step, therefore, when a physician starts the exam, the segmentation is
readily available. Automatic detection of the coronary ostia opens the potential
to make the whole workflow fully automatic, therefore increasing a physician’s
throughput.

Almost all previous methods on native coronary ostium detection start with
an explicit segmentation of the aorta first. The coronary artery is detected as
a tubular structure attached to the aorta and the position of the attachment
is taken as a detected ostium. Many methods require at least one user click
inside the aorta to initialize the aorta segmentation, even though one click is not
sufficient to guarantee good detection of the ostia [3]. Recently a few automatic
coronary ostium detection methods have been proposed. Wang and Smedby [4]
used a Hough transform based 2D circle detection algorithm to detect and trace
the ascending aorta. The largest connected components on each side of the aortic
root were picked as the left and right coronary arteries. The method proposed
by Tek et al. [5] also performed automatic aorta segmentation. They then tried
to trace coronary centerlines from the aorta surface in order to detect coronary
ostia. Since the computationally expensive centerline tracing algorithm needed to
be run on the whole aorta surface, their approach was slow. Some native coronary
ostium detection methods can be extended to detect graft ostia. However, the
performance is either not reported [5,4] or poor [3].

As a prerequisite for all the following coronary analysis procedures, coronary
ostium detection have to be fast and robust. In this paper, we propose an efficient
method to automatically detect both native coronary ostia and graft ostia of by-
pass coronaries. Anatomical structures (native coronary ostia) and pathological
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structures (graft ostia) often require significantly different detection methods.
Since the native coronary ostia are well constrained by the neighboring global
structures, we can detect them directly without explicit segmentation of the
aorta as done in the previous work [3,4,5]. As a pathological structure, a graft
ostium has far less constraint in its exact position (see Fig. 1). The number of
bypass coronaries also varies quite a lot, from one up to four. To address these
challenges, a different searching strategy is proposed to efficiently guide the focus
of analysis and, at the same time, reduce the false positive detections. We first
segment the ascending aorta and constrain the graft ostium detection onto the
aorta surface where a bypass coronary is anastomosed.1 The quantitative prior
distribution of the graft ostia on the aorta surface is learned from a training set
to significantly reduce the searching space further. Efficient local image features
are extracted around each candidate point on the aorta surface to train a de-
tector. The proposed approach is computationally efficient, taking about 0.40
seconds to detect both native and graft ostia.

2 Native Coronary Ostium Detection

As an anatomical structure, the native coronary ostium has strong constraints
that facilitate the automatic detection. For example, a patient contains two
(and only two) native coronary ostia and the left/right ostium is located on
the left/right cusp of the aortic root, respectively. For chronic total occlusion
patients, the artery originated from a coronary ostium may be completely ob-
structed thus not visible in a cardiac CT volume. However, the correct position
of the native ostium can still be inferred from the surrounding tissues. In this
paper, we propose an efficient (taking a fraction of a second) and robust method
to detect native coronary ostia as a global object. Different to the previous meth-
ods [3,5,4], no explicit aorta segmentation is necessary. There are two coronary
ostia. Though it is possible to detect each independently, the detection results
may be inconsistent in geometry. It also wastes computation power by ignoring
the strong geometric constraint between the ostia. We propose to detect them as
a global object (a bounding box) comprised with both coronary ostia. From the
position, orientation, and scale of this global object, we can infer the position
of individual ostium. As shown in Fig. 2, the bounding box is defined as a cube
with one side aligned with the direction connecting the left and right coronary
ostia, and the second side aligned with the aortic root centerline. The coronary
ostia are located at the center of two opposite faces of the cube. The marginal
space learning (MSL) method [6] is used to detect the bounding box. MSL is
an efficient and robust method to detect a 3D anatomical structure in medical
images based on discriminative machine learning techniques. Due to the space
limit, we would like to refer readers to [6] for more details of MSL.

1 We do not need to detect the the left/right internal thoracic artery (LITA/RITA)
ostium of the in-situ LITA/RITA graft since the standard cardiac CT protocol does
not cover the ostium on the subclavian artery (as shown in Fig. 1).
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Fig. 2. Native coronary ostium detection. First column shows the detected bound-
ing box of the coronary ostia. The right columns show the detection results on three
datasets (red dot for the left ostium and blue for the right).

3 Graft Ostium Detection for Bypass Coronaries

3.1 Learning Prior Distribution of Graft Ostia

The bypass coronary arteries are attached on the ascending aorta. We can reduce
the detection errors by constraining the searching of graft ostia onto the aorta
surface, which is segmented automatically using the method proposed in [7].
Though distribution of the graft ostia on the aorta surface is widely spread, a
bypass coronary is always grafted on the anterior surface of the ascending aorta
(as shown in Fig. 3) since if it is grafted in a posterior position, a physician
needs to wind the bypass coronary around the aorta to bring it to the heart
surface, which introduces unnecessary risks associated with the pressure caused
by motion of the aorta and heart chambers. However, such observation is vague
domain knowledge and a quantitative prior distribution of the graft ostia is
desired to optimally use this domain knowledge.

To learn the prior distribution probability of graft ostia, we need to establish
the point correspondence of the aorta surface meshes across different volumes.
The length of the aorta captured in a volume varies significantly, presenting
a big challenge to volume registration and surface mesh registration methods.
Furthermore, the aorta has a simple tubular structure with a smooth surface.
It is difficult to identify a fiducial point to establish the correspondence. In this
paper, we introduce a consistent resampling method to establish the mesh cor-
respondence by exploiting the convenience of the tubular shape of the aorta.
First, we uniformly resample the aorta centerline under a certain resolution (1
mm in our case), starting from the aortic root and extending to the aortic arch.
In this way, we establish the correspondence of the aorta centerline after re-
sampling, even though its length varies. At each resampled centerline point, we
calculate the 2D intersection of the aorta mesh and the plane perpendicular
to the centerline. The 2D intersection contour is close to an ellipse, which is
then uniformly resampled to 96 points with a clock-wise ordering. To establish a
consistent ordering of these 96 points, the point with the smallest x-coordinate
position is selected as the first point. The number of sampling points (96 in this
case) is selected such that the distance between neighboring resampled points
is close to 1 mm. Thus, we establish the point correspondence of the 2D mesh
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Fig. 3. Constrained searching range of the graft ostia of bypass coronaries on the aorta
surface. Left: The graft ostia are constrained to the anterior part of the ascending
aorta. Right: The distribution of graft ostia on the 3D aorta surface mesh. Note: The
aorta mesh is shown in red, while the green dots show the constrained searching region
for the graft ostia.

intersection. After triangulating the resampled points into a surface mesh (as
shown in Fig. 3), we establish good correspondence for the aorta mesh points
across different volumes, therefore we can align all meshes into a common coor-
dinate system.

Given a training set of M volumes with annotated graft ostia, we use the
Parzen window based method to estimate the prior distribution density. Here,
the Gaussian kernel is used

P0(x) =
1

M

M∑
i=1

[
Ni∑
j=1

1

2πσ
exp

(
−||x − xj

i ||2
2σ2

)]
, (1)

where Ni is the number of graft ostia in training volume i, xj
i is the position of jth

graft ostium in volume i, and σ is the standard deviation of the Gaussian kernel.
Throughout our experiments, we set σ = 1 mm and the Gaussian distribution
is truncated after 3σ.

After learning prior distribution of graft ostia from a training set, only mesh
points with P0(x) > 0 (green dots in Fig. 3) are considered in the following graft
ostium detection. Those points with P0(x) = 0 can be excluded. Depending on
the portion of the aorta captured in a CT volume, the excluded region varies. In
our datasets, on average 80% of the aorta surface can be safely excluded. The
prior probability P0(x) at each mesh point can be further used to weight the
detection score during graft ostium detection, as discussed in the next section.

3.2 Graft Ostium Detection

We train a classifier that can tell us whether a mesh point is a graft ostium or not.
Since the aorta mesh is so densely resampled, it often contains more than 10,000
points. After excluding all points with P0(x) = 0 using the prior distribution,
we still need to classify a relatively large number of samples (∼2,000 points).
Therefore, the image features used for classification need to be efficient. In this
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paper, we use the steerable features as proposed in [6]. As suggested by [6], we
use a regular sampling pattern with 5 × 5 × 5 sampling points. The sampling
pattern is aligned with the aorta surface normal at the mesh point under testing.
At each sampling point, we extract 24 local image features as specified in [6]. In
total, we get 5 × 5 × 5 × 24 = 3000 features. The extracted features are used to
train a boosting classifier [8], which outputs a classification score in the range of
[0, 1]. The higher the score is, the more likely the candidate is a graft ostium.

We want to integrate the prior distribution of a graft ostium with the classifi-
cation score to further improve the detection accuracy. Suppose E = 1 represents
the event that a graft ostium presents and F (x) is the feature vector extracted
at mesh point x. We approximate the posterior probability P (E = 1|x, F (x)) of
observing a graft ostium at position x as

P (E = 1|x, F (x)) ∝ P (E = 1|x)P (E = 1|F (x)), (2)

where P (E = 1|x) is the prior probability of observing a graft ostium at x
and P (E = 1|F (x)) is the conditional probability given feature vector F (x).
Here, P (E = 1|F (x)) is replaced by the classification score, which is a good
approximate as shown in [8]. In practice, we normalize P (E = 1|x) with its
maximum value

P (E = 1|x, F (x)) =
P (E = 1|x)

max
x

{P (E = 1|x)}P (E = 1|F (x)). (3)

After classification, all points with an estimated posterior probability larger than
0.5 are kept. We then perform clustering analysis on the aorta surface. The cluster
center is output as a detected graft ostium. Additional validation (e.g., coronary
centerline tracing from detected ostium) can further reduce the false positives.

4 Experiments

To evaluate the accuracy of the native coronary ostium detection, we collected
and annotated 1360 datasets. A four-fold cross-validation is performed for eval-
uation. The Euclidean distance from the detected left coronary ostium to the
corresponding ground truth has a mean of 1.66 mm (standard deviation of 1.15
mm) and a median of 1.45 mm. The corresponding errors of the right coronary
ostium are 1.73 mm for the mean (standard deviation of 1.71 mm) and 1.31
mm for the median. The maximum detection error of the left and right coronary
ostia is 9.05 mm. Only about 0.8% of datasets have a detection error larger than
5 mm (which is approximately the diameter of the coronary arteries around the
ostia) and are treated as failures. Fig. 2 shows some examples of the detected
native coronary ostia. We also compare with the method proposed by Tek et
al. [5]. Their success rate on these datasets is about 90%, which is significantly
lower than ours.

Among the 1360 datasets, 224 have bypass coronaries with a total of 367 graft
ostia. Again, a four-fold cross-validation is performed for evaluation. It is not
trivial to evaluate the detection accuracy of the graft ostia since, as pathological
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structures, the number of graft ostia varies. We may have multiple detections
around a true graft ostium, or multiple true graft ostia may be merged into one
detection. We use the Hungarian algorithm to establish the one-to-one corre-
spondence between the detection graft ostia and the ground truth [9]. A true
ostium is claimed to be detected correctly, if its distance to the matched de-
tection has a distance less than a threshold. Otherwise, it is mis-detected. If a
detection has a distance larger than a threshold to the matched ground truth,
it is claimed to be a false positive. Similar to native coronary ostium detection
evaluation, we set the threshold to 5 mm since it is the approximate diameter
of a coronary around its ostium.

Using the prior distribution on the anterior ascending aorta, we detect 351
graft ostia (95.6% detection rate) with only about 0.17 false positives per vol-
ume (row Constrained Search on Aorta of Table 1). The false positives are mainly
caused by surgical clips left on the aorta surface (see Fig. 1). The mean distance
of the correct detections to the ground truth is 1.61 mm. A few detection exam-
ples are shown in Fig. 4. For comparison, if we perform detection on the whole
ascending aorta without using the prior distribution learned from the training
set, we get 3.74 false positives/volume at the same detection rate (row Search
on Whole Aorta of Table 1). We also tried to detect graft ostia using the method
presented in Section 2, which is effective to detect the anatomical native coro-
nary ostia. As shown by the row Search in Whole Volume of Table 1, the result
is poor with a lower detection rate (81.4%) and a significant higher false positive
rate (10.25 dections/volume).

Our approach compares favorably to the state-of-the-art. For example, Hen-
nemuth et al. [3] reported a detection rate of 57% for native coronary ostia and
27% for graft ostia on 61 datasets. The success rate of Wang and Smedby’s
method [4] for coronary ostia detection is only about 80% on 16 datasets.

Fig. 4. Detection results for graft ostia of bypass coronaries on three datasets. The red
contour shows the segmented ascending aorta and the green dots show the detected
graft ostia. Note: The last dataset has three bypass coronaries.

Table 1. Comparison of graft ostium detection accuracy on 224 datasets with a total
of 367 true graft ostia

# Detections Detection Rate False Positives/Volume
Search in Whole Volume 307 81.4% 10.25
Search on Whole Aorta 352 95.9% 3.74

Constrained Search on Aorta 351 95.6% 0.17
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On average, the proposed method takes only 0.40 seconds to process one
volume on a computer with 2.33 GHz quad-core processors and 3 GB memory.
It spends 0.09 s for image preprocessing, 0.10 s to detect the native coronary
ostia, 0.09 s to segment the ascending aorta, and 0.12 s to detect graft coronary
ostia on the aorta surface. Our approach is significantly faster than the previous
methods, e.g., 6 s reported by [5] and 88.8 s reported by [4].

5 Conclusion

In this paper, we proposed an efficient method to automatically detect both
native coronary ostia and graft ostia of bypass coronaries, using totally different
treatments of the anatomical structures (native coronaries) and pathological
structures (bypass coronaries). It is an important step forward to make the whole
coronary analysis workflow fully automatic, which can increase the throughput
of a physician and reduce the inter-user variability.
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Abstract. In this paper we present a methodology for the automatic de-
tection of media-adventitia border (MAb) in Intravascular Ultrasound.
A robust computation of the MAb is achieved through a holistic ap-
proach where the position of the MAb with respect to other tissues of
the vessel is used. A learned quality measure assures that the resulting
MAb is optimal with respect to all other tissues. The mean distance error
computed through a set of 140 images is 0.2164 (±0.1326) mm.

1 Introduction

Coronary arteries are mainly formed by three layers: intima, media and adven-
titia. Furthermore, two characteristic membranes can be defined, the Internal
Elastic Lamina (IEL) and the External Elastic Lamina (EEL), separating the
media from the adventitia layer. In healthy arteries, the shape of the vessel, de-
lineated by the EEL, is approximatively circular, while in unhealthy cases it can
become irregular, depending on the plaque amount and positioning. The clinical
condition of the artery is commonly characterized by parameters like the Plaque
plus media Cross Sectional Area (CSA), the Maximum plaque plus media thick-
ness and the Plaque Burden. All of these measurements require the delineation
of the media-adventitia border (MAb).

Intravascular Ultrasound (IVUS) is a catheter-based imaging technique com-
monly used during percutaneous interventions. It allows to visualize the internal
morphology of the vessel, representing a suitable tool for the detection of the
MAb. The media layer in IVUS appears as a dark ring surrounding the vessel
(Fig.1(a)). The thickness of the ring depends on vessel condition, varying from
thick region (800 μm) in healthy cases to subtle line (300 μm) in unhealthy cases,
due to the presence of plaque, that pushes the media layer towards the adventi-
tia. Furthermore, the vessel border continuity is often hindered by the guide-wire
artifact and by the shadow produced by calcifications. The weak appearance of
the media makes the detection of the MAb by IVUS a difficult task.

Several approaches for the automatic MAb detection have been presented
so far. In [1], a shape space, together with both calcification and bifurcation
detection are used to determine the final border; in [2], anisotropic filtering
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Fig. 1. Example of IVUS image in short-axis view (a); the manually labeled regions
are depicted in both cartesian (b) and polar (c) view. In (d) the ground truth labels
obtained by processing the borders in (c) are depicted.

operators and classification techniques are combined; in [3], an active contour
model is used to regularize the information extracted from the contrast along
the edges of the IVUS image; in [4], a Radial Basis Function is applied to the
response of a low-pass filtering on the IVUS image; in [5], a snake using gradient
vector flow regularizes the map of edges computed by the Canny operator; in
[6], a Fast-Marching method based on gray level distributions, assumed as a
mixture of Rayleigh pdfs is presented; in [7], the morphological characteristics
of the IVUS image are used to initialize an active contour model; finally, in [8],
deformable models are used, with energy function minimized by a neural network
through a simulated annealing scheme.

In this paper we present a robust technique for the automatic detection of the
MAb. The methodology is based on two assumptions: (1) only few regions in the
image can be recognized, even by an expert physician, as belonging to the media;
(2) the MAb can be robustly determined by exploiting the spatial distribution of
the information on the morphology of the vessel. For these reasons, the proposed
methodology is based on two steps. First, regions belonging to media layer are
detected by means of a classification technique. Then, the MAb is detected by
considering the relative position of the curve with respect to the surrounding
tissues. To the best of our knowledge, this is the first method for the detection
of MAb in IVUS based on the relationship between tissues. In particular, not
only the local small neighborhood is considered, but all the tissues in the image.
As a consequence, the detection of the MAb is the result of the contribution of
several informations. This represents the holistic nature of the approach.

2 Method

Reflecting the two aforementioned assumptions, the proposed technique consists
of two parts. First, the classification of the main morphological regions of the
vessel in the IVUS image is performed by means of a multi-class Discriminative
Random Fields (DRF) [9]. The usefulness of this step is two-fold. First, by
defining the media as one of the classes, an initial approximation of the MAb is
obtained (see Fig. 2(b)). Furthermore, the classification of the main regions of
the vessel is a necessary information to guide the definition of the MAb where the
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Fig. 2. Example of the main steps for the MAb detection in polar view (a-i). Each
color in (b) represents a class; different colors in (d-e) represent independent isolated
media regions. In (l) the detected border (continuous line) and the manual annotation
(dotted line) are depicted in the short-axis view.

media appearance is weak or affected by artifacts. The regions labeled as media
are often affected by two intrinsic errors: (1) due to the presence of artifacts, the
media points are not continuous; (2) media regions can be detected inside the
plaque region. Since the adventitia layer is mainly composed by fibrotic tissue,
the DRF model learns that the media layer is placed between plaque and fibrosis.
For this reason the luminal interface of fibrotic plaque may be labeled as media.

In cases where the MAb position is ambiguous, several guessings can be made.
Among them, only one represents the solution to the problem, the optimal curve.
Our hypothesis is that the optimal MAb is the one that exhibits the correct
relative position with respect to all other tissues. In the second part of the
method the points labeled as media are used as initial information with the aim
of fitting a continuous and smooth curve. The continuity requirement is first
fullfilled by interpolating the discontinuous media regions. Then, the Fourier
Series is applied in order to obtain a smooth curve. The relationship between
the curve and the tissues is expressed by a quality measure modeled on training
examples: the optimal curve is the one producing the highest quality value. The
proposed methodology is now explained in details.

2.1 Multi-class Tissue Classification

Tissues definition. A set of IVUS frames is manually labelled and used to train
a multi-class classifier to discriminate the following classes: blood, plaque, media,
adventitia, guide-wire, shadowing and external tissue (see Fig. 1 for details). The
regions corresponding to these classes are derived by the expert manual annota-
tions of lumen border, External Elastic Lamina border (EEL), guide-wire artifact
and shadowing effect (due to calcifications). The regions are defined as follows
(see Fig. 1(b)): blood (L) is the area inside the lumen border; adventitia (F )
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is the external area limited by the EEL; plaque (P ) is the region comprised
between lumen and adventitia; guide-wire (G)/shadow (S) area enclosed in
the guide/shadow border; media (M) is defined as a strip of constant thickness
τ internal to the EEL border. In order to assure a sufficient amount of reliable
media examples during the training process, the value of τ has been set as half
the thickness of typical unhealthy media layers (around 150-200 μm). Finally,
the class external tissue (B) consists of the set of points labeled as adventitia
belonging to a cluster identified by low gray-level value and farther radial posi-
tion. This procedure can be performed in a similar way in the polar view (see
Fig.1(c-d)).

Features. Both textural features and spectral features are extracted from IVUS
data, since it has been demonstrated that the combination of both types of in-
formation provides an accurate tissue description [10]. To this aim, the raw radio
frequency data (RF) of each frame is used to form the IVUS image, as detailed
in [10]. As in [11], ten textual features are then extracted. Furthermore, the Fast
Fourier Transform is applied to the RF data frame, resulting into 32 spectral
features, as suggested in [12]. For each position of the image a feature vector
x ∈ R

42 is obtained.

Classification. Given the presence of noise and artifacts, the tissues labeling
in IVUS is a difficult task. In order to achieve a robust tissue classification, we
propose to model the IVUS data as a Discriminative Random Fields (DRF) [9].
In this way the inference process can take into account local information about
adjacent tissues. For the design of multi-class DRF, we adopt the recently pro-
posed ECOC-DRF technique [13]. ECOC-DRF is a methodology for the design
of both node and edge potential functions for DRF based on the Error-Correcting
Output Codes (ECOC) framework [14]. As illustrated in [13], given the number
of classes K for the node potential, the distance function for the edge potential
is defined over a set of K2 classes. In order to reduce the number of dichotomies
for the edge potential, while maintaining the properties of the distance function
in the ECOC space, we adopt the Sublineal coding technique using binary matrix
and Gray coding technique, as suggested in [15]. By computing inference over
the ECOC-DRF model, the Maximum A-Posteriori probability (MAP) over the
seven classes is obtained, and used as input for the MAb detection (Fig. 2(b)).

2.2 Media-Adventitia Border Detection

In order to robustly detect the media layer we propose to exploit the information
related to the context of the image; we want to take profit of the strong a-priori
knowledge about the relative position of the tissues. To this aim, we designed a
problem specific quality measure Φ, that takes into account the relative position
of the curve with respect to surrounding tissues. The procedure to detect the
MAb consists in (1) modeling a set of possible curves and (2) computing a
quality measure for each curve. The MAb corresponds to the curve with the
highest quality measure.

Firstly, each one of the M isolated regions labeled as media in the MAP
(Fig. 2(c)) is considered as an independent element of a set (Fig. 2(d)). Among
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them, only a certain subset delineates the correct vessel border: a region selection
process is then required. For this purpose, a number of D (with D ≤ M) regions
are considered. Since we are interested in detecting the EEL, for each region, only
the points belonging to the farther radial position are used (Fig. 2(e)). Then, the
k-permutations of D (without repetitions) are computed, where k = 1, . . . , D,
resulting in γ = D +

∑D
k=2

D!
2(D−k)! combinations. Each combination consists in

a set of regions delineating a profile that can be incomplete (Fig. 2(f)). Since the
MAb is a continuous smooth curve, the detected border must fulfill continuity
and smoothing constrains. In order to accomplish both requirements, the profile
is first approximated by means of a piece-wise linear function (Fig. 2(g)). To
assure a smooth curve, by exploiting the periodicity of the function, the Fourier
series expansion is computed, and only the first H ∈ N+ harmonics are used. A
set of γ smooth and continuous borders b ∈ B is obtained (Fig. 2(h)).

For each curve b ∈ B in polar coordinates, the normalized amounts of the
tissues T positioned above (Ta) and below (Tb) with respect to the curve are
computed. Furthermore, let us define t(b)+ and t(b)− respectively the vector
of correctly and wrongly placed tissues, with respect to the curve b. In order
to define which are the significative tissues in the MAb detection problem, the
following assumptions are done: (1) media points, already used in the border ap-
proximation, may be erroneously present in the plaque region; (2) the guide-wire
artifact is observable in both region above and below the curve (see Fig. 1(d)).
Hence, the classes media and guide-wire do not represent significative markers
for curve positioning. For this reason, with reference to the notation in section
2.1, we define t(b)+ = [La, Pa, Sb, Bb, Fb] and t(b)− = [Lb, Pb, Sa, Ba, Fa].
With these assumptions, a quality measure for the curve b is defined as follows:

Φ(b) =
m∑

i=1

w+
i ti(b)+ +

n∑
j=1

−w−
j tj(b)− = wT · t(b) (1)

where w = [w+
1 , . . . , w+

m, w−
1 , . . . , w−

n ] is a vector that weights the importance of
different contributions to the quality measure. The solution is b̃ = argmax(Φ(b)).

The estimation of the vector w is a critical point; its role is two-fold: (i) to
assign the proper contribution to each tissue, but also (ii) to take into account
of wrong contributions due to errors in the labels. For this purpose, based on
training examples, we compute wopt = argmax

∑
v wT ·tv(bGT ), where tv(bGT )

is the vector of tissues of the vth example in a validation dataset and bGT is the
ground truth border provided by experts. Given that the optimization problem
is a maximization problem of an unbounded function, it is reasonable to con-
strain the values of the weights as ||w||22 = 1, assuring non trivial solutions. The
problem is solved by means of Lagrange multipliers.

3 Validation

Experimental Settings. A set of 18 in-vivo pullbacks have been acquired using
a Galaxy II IVUS equipment (Boston Scientific) with a catheter Atlantis SR Pro
40 MHz (Boston Scientific). RF data have been sampled with a 12 bit sampling
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Table 1. State-of-the-art methods vs holistic approach (HoliMAb). Details on the
number of patients and images used in the validation are provided for all the methods,
as well as the ultrasound frequency (MHz) of the used technology. MDE = mean
distance error; MADE = maximum distance error; MAE = mean area error; IOV =
inter observer variability.

[6] [1] [7] [2] HoliMAb IOV
Equipment Jomed Volcano Clearview Clearviews Galaxy II - -
# Patients 9 18 9 11 18 - -
# Images 540 647 50 5400 140 - -
MHz 20 20 40 40 40 - -
MDE (mm) 0.12 (0.07) 0.09 (0.16) – 0.2265 (0.0688) 0.2164 (0.1326) 0.1226 (0.1654)
MADE (mm) – 0.98 (1.78) 0.07 (0.78) 0.5715 (0.2296) 0.5162 (0.3209) 0.3717 (0.3117)

MAE (mm2) -0.2 (2.1) 0.75 (1.60) 0.17 (4.58) 8.6032 (3.3436) 0.5635 (0.4830) 0.3489 (0.4405)

card at a sampling rate of 200MHz. The most representatives and not consecutive
challenging frames for each pullback have been selected and manually segmented
by three experts, resulting in 140 frames.

Due to computational complexity in performing inference in a graphical model,
we construct the lattice by reducing each feature map by a factor 1

W 2
n
. We as-

sign the median value of each feature contained into non-overlapping blocks of
Wn × Wn pixels of the image to each node of the graph. Thus, the parameter
Wn represents a trade-off between computational cost and quality of the MAb
estimation. As in [13] the edge feature function is set to x̃ = |xi − xj |. ECOC-
DRF has been trained according to the Leave-One-Patient-Out (LOPO) scheme
[10]: at each fold, one of the patients has been used for testing, and the rest is
used for training. For the training process, the manual annotations of the expert
exhibiting the minimal mean inter-observer variability are used. The used coding
technique is OneVsOne for the node potential and Sublineal coding for the edge
potential, requiring 21 and 12 dichotomies, respectively. The margin classifier for
the ECOC-DRF has been set as suggested in [13]. The used decoding technique
is the Attenuated Euclidean Distance for the node potential and the Euclidean
Distance for the edge potential; the parameters (αN , αE) are set as described in
[13]. The inference is performed by means of Belief Propagation (BP) [16].

Results Three error measures have been computed: (1) Mean Distance Error
(MDE), computed by averaging the absolute difference between automatic bor-
der and manual annotation per A-line; (2) MAximum Distance Error (MADE),
computed by averaging the error on the maximum distance for each frame; (3)
Mean Area Error (MAE), computed by averaging the absolute area differences.
Parameters tuning, according to the LOPO scheme, provided D = 8 and H = 2.
In order to determine D, the media regions have been ranked according to their
length. As expected, the number of Fourier harmonics is small. Since the number
of harmonics is inversely proportional to the regularization degree, this result
confirms: (i) the hypothesis of assuming a continuous smooth curve and (ii) the
shape of the vessel is often ellipsoidal. Figure 3 shows some graphical examples
of border detection. Table 1 shows the performance of the proposed method
when compared with other state of the art approaches and with the Inter Ob-
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Fig. 3. Examples of automatic MAb detection (above) and corresponding classifica-
tion maps (below). Continuous line represents the automatic segmentation; dotted line
represents the manual annotation; labels names are assigned as in section 2.1.

server Variability. The performance of the HoliMAb method is obtained using
Wn = 3: this value experimentally demonstrates to be a reasonable trade-off
between quality and computational cost.

4 Discussion

The comparison in Table 1 refers to the results provided in the cited paper: the
database used in each case is different. In order to perform a fair comparison it is
worth to note that some of the methods work on a 20 MHz US signal, while others
work on 40 MHz. The difference between the two signals is remarkable, since
the 20 MHz US exhibits higher tissue penetration power, while losing in local
resolution. This fact increases the discrimination of tissues while losing details
(but also artifacts) in IVUS data. The differences between the two technologies
is evident since the errors obtained with 20 MHz techniques are smaller than
IOV. To corroborate this assertion, it is worth to note that in [1] the authors
claim that their approach does not work on a 40MHz technology.

The standard deviation of all the considered error measures in HoliMAb is
comparable with the inter-observer variability. This fact demonstrates the ro-
bustness of the proposed method that, exploiting the contextual information of
the tissues positions, limits the range of error in the detection of the curve. The
MDE value is comparable with the approach proposed in [2] that, given the ex-
perimental setup, can be considered as an exhaustive clinical study. The value of
the MDE error can be controlled by two parameters: (1) the Wn value introduces
a systematic error due to the change of scale; (2) the number of harmonics H
controls the degree of regularization of the curve. The error introduced by the
two parameters also represents a limitation of the method. In few cases where
a calcification or a dense fibrosis surrounds almost completely the vessel, the
method could perform sub-optimally. Finally, it is worth to note that by ranking
the obtained values of Φ, several MAb can be proposed to physicians. Alterna-
tive solutions can be selected in case the first one is not satisfactory, avoiding
the manual delineation of a better MAb.
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5 Conclusions and Future Work

A novel methodology for the media-adventitia border detection based on context-
analysis has been presented. The algorithm consists in a constant number of
steps, tunable through the parameters (Wn, D), that provide a trade-off between
the detection quality and the execution time: for this reason, it can potentially
run in real time. The method achieved results comparable with state-of-the-
art and with inter-observer variability. The whole formulation of the media-
adventitia border detection is based on RF data analysis: the method is then
totally independent on the IVUS equipment technology and brand. Nevertheless,
given the scarce accessibility to such data, the analysis of the usefulness of RF-
based features through features selection is a straightforward step in our research.
Furthermore, the applicability of the methodology to 20MHz IVUS data as well
as exploiting spatial information in the vessel morphology by using consecutive
frames is part of our future lines. It is worth to note that, though applied to the
specific MAb detection problem, the functional in Eq. 1 is of general applicability
for the segmentation of each tissue in medical imaging and, more in general, of
any object in images where a frontier can be defined.

References

1. Unal, G., Bucher, S., Carlier, S., Slabaugh, G., Fang, T., Tanaka, K.: Shape-driven
segmentation of the arterial wall in intravascular ultrasound images. TITB 12(3),
335–347 (2008)

2. Gil, D., Hernandez, A., Rodriguez, O., Mauri, J., Radeva, P.: Statistical strategy
for anisotropic adventitia modelling in ivus. TMI 25, 768–778 (2006)

3. Zhu, H., Liang, Y., Friedman, M.H.: Ivus image segmentation based on contrast.
In: SPIE, vol. 4684, pp. 1727–1733 (2002)

4. Papadogiorgaki, M., Mezaris, V., Chatzizisis, Y.S., Giannoglou, G.D.,
Kompatsiaris, I.: Automated ivus contour detection using intensity features
and radial basis function approximation. In: CBMS (2007)

5. Sanz-Requena, R., Moratal, D., Garca-Snchez, D.R., Bod, V., Rieta, J.J., Sanchis,
J.M.: Automatic segmentation and 3d reconstruction of intravascular ultrasound
images for a fast preliminar evaluation of vessel pathologies. CMIG 31(2), 71–80
(2007)

6. Cardinal, M.H.R., Meunier, J., Soulez, G., Maurice, R.L., Therasse, E., Cloutier,
G.: Intravascular ultrasound image segmentation: a three-dimensional fast-
marching method based on gray level distributions. TMI 25(5), 590–601 (2006)

7. Giannogloua, G.D., Chatzizisisa, Y.S., Koutkiasb, V., Kompatsiarisc, I., Papado-
giorgakic, M., Mezarisc, V., Parissic, E., Diamantopoulosd, P., Strintzisc, M.G.,
Maglaverasb, N., Parcharidisa, G.E., Louridasa, G.E.: A novel active contour model
for fully automated segmentation of intravascular ultrasound images: In vivo vali-
dation in human coronay arteries. CBM 37, 1292–1302 (2007)

8. Plissiti, M.E., Fotiadis, D.I., Michalis, L.K., Bozios, G.E.: An automated method
for lumen and media-adventitia border detection in a sequence of ivus frames.
TITB 8(2), 131–141 (2004)

9. Kumar, S., Hebert, M.: Discriminative random fields. IJCV 68(2), 179–201 (2006)
10. Ciompi, F., Pujol, O., Gatta, C., Rodriguez-Leor, O., Mauri-Ferre, J., Radeva, P.:

Fusing in-vitro and in-vivo intravascular ultrasound data for plaque characteriza-
tion. IJCI 26, 763–779 (2010)



A Holistic Approach for the Detection of Media-Adventitia Border in IVUS 419

11. Ciompi, F., Pujol, O., Fernandez-Nofrerias, E., Mauri, J., Radeva, P.: Ecoc
random fields for lumen segmentation in radial artery ivus sequences. In: Yang,
G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS,
vol. 5762, pp. 869–876. Springer, Heidelberg (2009)

12. Sathyaranayana, S., Carlier, S., Wenguang, L., Thomas, L.: Characterization of
atherosclerotic plaque by spectral similarity of radiofrequency intravascular ultra-
sound signals. EuroIntervention 5, 133–139 (2009)

13. Ciompi, F., Pujol, O., Radeva, P.: A meta-learning approach to conditional random
fields using error-correcting output codes. In: IEEE International Conference on
Pattern Recognition (ICPR), pp. 710–713 (2010)

14. Dietterich, T.G., Bakiri, G.: Solving multiclass learning problems via error-
correcting output codes. JAIR 2, 263–286 (1995)

15. Bautista, M.A., Baro, X., Pujol, O., Radeva, P., Vitria, J., Escalera, S.: Compact
evolutive design of error-correcting output codes. In: ECML (2010)

16. Yedidia, J.S., Freeman, W.T., Weiss, Y.: Understanding belief propagation and its
generalizations. (TR-2001-22), pp. 239–269 (2002)



Orientation Histograms as Shape Priors for Left

Ventricle Segmentation Using Graph Cuts

Dwarikanath Mahapatra and Ying Sun

Department of Electrical and Computer Engineering,
National University of Singapore, 4 Engineering Drive 3, Singapore 117576

dmahapatra@gmail.com, elesuny@nus.edu.sg

Abstract. Poor contrast in magnetic resonance images makes cardiac
left ventricle (LV) segmentation a very challenging task. We propose a
novel graph cut framework using shape priors for segmentation of the LV
from dynamic cardiac perfusion images. The shape prior information is
obtained from a single image clearly showing the LV. The shape penalty
is assigned based on the orientation angles between a pixel and all edge
points of the prior shape. We observe that the orientation angles have
distinctly different distributions for points inside and outside the LV. To
account for shape change due to deformations, pixels near the boundary
of the prior shape are allowed to change their labels by appropriate for-
mulation of the penalty and smoothness terms. Experimental results on
real patient datasets show our method’s superior performance compared
to two similar methods.

1 Introduction

Segmentation of the left ventricle (LV) from dynamic contrast enhanced (DCE)
magnetic resonance (MR) images of the heart is important for the analysis of
cardiac functions. As an effective non-invasive imaging protocol, MRI has ac-
quired great importance. Except for images with contrast enhancement, most
images from the cardiac sequence show poor contrast between LV blood pool
and myocardium wall. This, in addition to low spatial image resolution, makes
segmentation of the LV a very challenging task when using only low level in-
formation (e.g. intensity, gradient,etc). This highlights the need for prior shape
information in LV segmentation. In this paper we propose a graph cut based
method to segment the LV blood pool and myocardium from DCE-MR image
sequences using orientation histograms for prior shape information.

Previous works on segmentation using shape priors include, among others,
active contours [1] and graph cuts [2,3]. Graph cuts have the advantage of being
fast, give globally optimal results and are not sensitive to initialization [4], while
active contours are sensitive to initialization and can get trapped in local min-
ima. Shape information in graphs is based on interaction between graph nodes
(or image pixels). Inter-pixel interaction is generally limited to the immediate
neighborhood although graph cuts can handle more complex neighborhoods [4].
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Therefore prior shape models assume great significance. We restrict further dis-
cussion to methods using prior shape information in graph cuts. The first works
to use prior shape information in graph cuts were [2,3]. In [2] the zero level set
function of a shape template of natural and medical images was used with the
smoothness term to favor a segmentation close to the prior shape. Slabaugh et
al. in [3] used an elliptical shape prior, under the assumption that many objects
can be modeled as ellipses. However they employ many iterations where a pre-
initialized binary mask is updated to get the final segmentation. Vu et al. [5]
use a discrete version of shape distance functions to segment multiple objects,
which can be cumbersome. A flux-maximization approach was used in [6], while
in [7] the smoothness cost was modified to include star shape priors.

Other methods have focused on segmenting the LV using statistical shape infor-
mation. Mitchell et al. in [8] use a multistage active appearance model to segment
LV and right ventricle (RV). Besbes et al. [9] used a control point representation
of the LV prior and other images were deformed to match the shape prior. Shape
knowledge has also been combined with dynamic information to account for car-
diac shape variability [10,11]. Ali et al. in [12] construct a shape prior with some
degree of variability and use it to segment DCE-MR kidney images.

We propose a method that has the capability to handle different shapes and
uses a single image to get the shape prior. The novelties of our work are two-fold.
First, we determine the shape penalty based on the distribution of orientation
angles between a pixel and edge points on the prior shape. The angle distribution
makes the metric robust and invariant to the number of points on a shape.
Second, our method uses a single image from each dataset to get prior shape
information. In Section 2 we describe our method in greater detail. Section 3
presents results of our experiments on real datasets, and we list our conclusions
in Section 4.

2 Theory

We use a second order Markov random field (MRF) energy function. MRFs are
suitable for discrete labeling problems, and graph cuts can find their globally
optimal solution for binary labels [4]. The energy function is given as

E(L) =
∑
s∈P

D(Ls) + λ
∑

(s,t)∈N

V (Ls, Lt), (1)

where P denotes the set of pixels, Ls denotes label of pixel s ∈ P and N is the
set of neighboring pixel pairs. Ls denote the segmentation class of a pixel (0 for
background and 1 for object). The labels of the entire set of pixels are denoted
by L. D(Ls), is a unary data penalty function derived from observed data and
measures how well label Ls fits pixel s. V is a pairwise interaction potential
that imposes smoothness and measures the cost of assigning labels Ls and Lt

to neighboring pixels s and t. λ = 0.01 is a weight that determines the relative
contribution of the two terms. Note that both D and V consist of two terms,
each incorporating intensity and shape information.
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Overview of method: Our method has the following steps: 1) choose a refer-
ence image for each dataset and identify a small region inside and outside the LV.
These regions give the reference intensity histograms of object and background.
2) Segment the image using only intensity information. This gives an overseg-
mented LV which is used to update the intensity distributions of object and
background. The initial segmentation need not be optimal; and 3) incorporate
shape information in D and V to get the final segmentation

Intensity Information: Patches are identified on the LV and background and
their intensity distributions are modeled as Gaussians by estimating the mean
and variance for each label. The intensity penalty (DI) is the negative log like-
lihood given by

DI(L) = − logPr(Is|Ls), (2)

where Is is the intensity at pixel s, Pr is the likelihood, andLs=object/background
is the label. The intensity smoothness term VI assigns a low penalty at edge points
based on the intensity of neighboring pixel pairs, and favours a piecewise constant
segmentation result. It is defined as

VI(Ls, Lt) =

{
e−

(Is−It)2

2σ2 · 1
‖s−t‖ , Ls �= Lt,

0 Ls = Lt

(3)

σ determines the intensity difference up to which a region is considered as piece-
wise smooth. It is equal to the average intensity difference in a neighborhood
w.r.t pixel s. ‖s − t‖ is the Euclidean distance between s and t.

Shape Information: A prior shape is used to incorporate shape knowledge into
D(Ls). In our method the shape penalty is determined at each pixel using only a
single image from each dataset. Figure 1 (g) shows an illustration of the reference
shape as a continuous circle and different points (A-F ) inside and outside the
shape. We shall explain the significance of the dotted line later. Figure 1 (h)
shows the reference image from a typical dataset with the LV endocardium
outlined in yellow and the epicardium outlined in green. First we explain how
the shape prior is used to segment the LV blood pool. Later we extend our
explanation to the segmentation of both blood pool and myocardium. Say for
point A (Fig. 1 (g)), we calculate the orientation angles of the line joining it to
every point on the outline of the reference shape and plot the distribution of
these angles. We notice that points inside and outside the reference shape have
different distribution characteristics. The atan2 function is used which returns
angle values in the range [−180, 180].

All points outside the shape (i.e., points A−B and D−F ) have the orientation
angles distributed over two or three quadrants of the angle space. The line joining
A to the closest point in the reference shape is the zero degree axis. For example,
in the case of points outside the shape, the orientation angles are distributed over
quadrants I, IV , or II, III (see Figs. 1 (a)-(b), (d)-(f)) while for point C (which
is inside the shape) the orientations are distributed over quadrants I, II, III, IV
(Fig. 1 (c)). For histograms the horizontal axis shows the angle range from −180◦
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to +180◦. For some points which are very close to the LV endocardium boundary
but outside it, the distribution may be spread over three quadrants (I, II, IV or
I, III, IV ) but never all the four quadrants. This discriminating feature acts as
a basis for assigning penalty values to the pixel, i.e., if the angle distribution is
spread over two or three quadrants then it is likely to belong to the background
and therefore

DS(Ls = 0) = 0,
DS(Ls = 1) = k1.

(4)

DS is the shape penalty; k1 > 1 is a constant of high value so pixel s does not
take that label. If the distribution of angles is spread over four quadrants then
the shape penalty is defined as

DS(Ls = 0) = k1,
DS(Ls = 1) = 0.

(5)

The above formulations makes the segmented shape very similar to the reference
shape. Since the heart is made of muscular tissue there is bound to be elastic
deformations in them with a resulting change in shape. In order to segment
the deformed LV we relax the constraints on pixels near the prior’s boundary.
Referring back to Fig. 1 we observe that pixel A is nearer to the reference shape
than point B. We set a threshold normal distance of dth pixels from the shape
within which the LV may deform and allow for a change in labels of pixels within
this dth distance. Pixels which fall within this area are equally likely to take a
particular label, and therefore have the same penalty. Therefore,

DS(Ls = 0/1) = k2, ds ≤ dth, (6)

Here 0 < k2 < k1, indicates that both labels are equally likely. ds refers to the
distance of pixel s from the shape. To determine dth we adopt the following steps.
After rigid alignment we choose 4 datasets (240 images) with large deformations
(expecting it to cover a large range of shape deformations) and manually seg-
ment the endocardium region in all frames. For each dataset we compute the
mean shape and distance of each shape from the mean. It is observed that the
maximum distance of any individual shape from the average shape is 5 mm and
the average distance is 3.5 mm. Therefore we set dth = 5mm. Note that for any
point lying on the edge of the prior shape ds = 0. For most such edge points the
distribution of orientation angles may not be spread over four quadrants. But,
since ds = 0, the penalty is assigned according to Eqn. (5).

Another contribution of our work is the formulation of the smoothness penalty
based on the prior shape. Although the extent of interaction is usually limited to
the immediate neighborhood, an arbitrary neighborhood can also be used [4]. For
any pixel within dth distance, it has some finite interaction with the closest pixel
on the prior shape. This interaction is more important than the data penalty
value to determine which pixels near the prior’s boundary may change labels
(due to deformations) as pixels within dth distance of the contour have equal
penalty for both labels. If such a pixel is very similar to the prior-shape’s edge
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pixels (based on some feature), it is likely to have the same segmentation label.
Thus we define VS as

VS(Ls, Lt) =
{

1 − h, Ls �= Lt,
0 Ls = Lt.

(7)

where 0 < h ≤ 1 is the difference of orientation angle histograms given by the
χ2 metric. The total energy function is thus defined as

E(L) =
∑
s∈P

[w1DI(Ls) + DS(Ls)] + λ
∑

(s,t)∈N

[VI(Ls, Lt) + VS(Ls, Lt)], (8)

w1 = 0.6 decides the relative contribution of intensity information to the penalty
and was set empirically.

Orientation histograms tend to overcome the shortest path problem inherent
to graph cuts [7]. Therefore they are used in calculating VS . To save further
computation time the penalty values are calculated based on these orientation
histograms without extra distance transform calculations. A single point in a
bin is considered for spread in a quadrant. VS uses pixels within dth distance of
the prior while VI uses only neighboring pixels.

Extension to Multiple Classes: Segmentation of the image into LV blood
pool, myocardium and background requires 3 labels. Those points which lie
outside the continuous circle in Fig. 1 (g) but inside the dotted circle correspond
to the myocardium. All points outside the dotted circle (points G and H) are on

−200 −150 −100 −50 0 50 100 150 200
0

1

2

3

4

5

6

7

8

9

(a)
−200 −150 −100 −50 0 50 100 150 200

0

2

4

6

8

10

12

14

16

18

(b)
−200 −150 −100 −50 0 50 100 150 200

0

1

2

3

4

5

6

(c)
−200 −150 −100 −50 0 50 100 150 200

0

2

4

6

8

10

12

14

(d)

−200 −150 −100 −50 0 50 100 150 200
0

2

4

6

8

10

12

14

16

18

(e)
−200 −150 −100 −50 0 50 100 150 200

0

2

4

6

8

10

12

14

(f) (g) (h)

Fig. 1. Illustration of shape prior segmentation using orientation information. Orienta-
tion histograms for (a) point A; (b) point B; (c) point C; (d) point D; (e) point E; (f)
point F ; (g) synthetic image showing the different points outside and inside the shape;
(h) reference cardiac image with LV endocardium highlighted in yellow and epicardium
in green;
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the background. Depending upon the location of a pixel, different penalty values
for each label is assigned. The value of dth is the same as before.

3 Experiments and Results

Cardiac images were acquired on Siemens Sonata MR scanners following bolus
injection of Gd-DTPA contrast agent. The pixel spacing ranges from (1.5×1.5)−
(2.8 × 2.8)mm2. The acquired datasets were all in 2D and a total of 7 datasets
were used to test our method. Each dataset had 60 frames with a total of 420
images. The images were rigidly registered to the prior shape before segmen-
tation. We have 3 segmentation labels for LV blood pool, LV myocardium and
background. The LV blood pool and myocardium were manually segmented in
all frames by experts. Automatic segmentations were obtained using four meth-
ods: graph cuts with intensity information alone (GC); our method using shape
priors with graph cuts (GCSP ); the methods in [2,6]. The automatic segmenta-
tions were compared with manual segmentation using Dice Metric (DM) [13].
In all our experiments k1 = 10, k2 = 1.2 and w1 = 0.6.

The method in [2] was implemented using the zero level set of the shape
template in the smoothness cost for prior shape knowledge. For implementing
[6] we calculate the appearance and location prior as described in their work,
while for the shape prior we use the flux maximization and template based star
shape constraint only. We weight the different components of the energy function
to get the best segmentation results.

Figure 2 shows frames from different stages of contrast enhancement in a
typical cardiac perfusion sequence alongwith the segmentation results from dif-
ferent methods. The outline of segmented masks are shown in different colours,
and the manual segmentation is shown in red. These images exhibit poor con-
trast between the LV and the surrounding myocardium such that relying on
intensity information alone leads to over-segmentation of the LV. The regions
of inaccurate segmentation by each method is highlighted by yellow arrows. A
visual inspection of the results indicates improved segmentation accuracy when
using shape priors. Further, it also indicates that our method is more robust
to shape changes. The formulation of our penalty and smoothness terms allows
near-boundary pixels the flexibility to change their labels. If the reference shape
is close to the average shape of the sequence, the accuracy does not change much.
However if it has large deformation compared to other frames, lower DM values
are obtained.

Table 1 shows the quantitative segmentation performance for all four meth-
ods. Use of shape priors significantly improves the segmentation accuracy. In-
tensity information alone is not sufficient for LV segmentation in MR images.
Our method shows highest DM values and lowest contour distances, indicating
that orientation histograms can very effectively account for shape changes due
to deformations. Use of shape prior information in both penalty and smoothness
term improves our method’s accuracy over others. The average time taken for
segmentation by different methods is 13 s (GC), 29 s (GCSP ), 17 s [2] and 32 s
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(a) (b) (c) (d)

Fig. 2. Segmentation results using different methods. The manual segmentation is
shown in red in all images and the results for automatic segmentation is shown in
different colors. Results for (a) GCSP ; (b) GC; (c) [2]; and (d) [6]. Areas of inaccurate
segmentation are shown by yellow arrows.

Table 1. Comparative performance of segmentation accuracy using four methods and
two metrics (DM and contour distance). The values show the average measures over
all datasets. GC-graph cut with intensity only; GCSP is our method using graph cuts
and shape priors; methods in [2], [6]. Values indicate the mean and standard deviation.

Dice Metric (%) Mean Absolute Distance (mm)

GC GCSP [2] [6] GC GCSP [2] [6]

Epicardium 87.1±1.2 95.1±0.6 92.8±1.3 93.1±0.9 3.2±0. 0.7±0.3 1.4±0.4 1.2±0.2

Endocardium 88.2±0.9 94.7±1.1 93.1±0.5 92.4±1.0 2.8±0.5 0.8±0.4 1.2±0.3 1.3±0.4

Overall LV 87.7±1.1 95.0±0.9 92.9±0.8 92.±0.9 3.0±0.6 0.7±0.3 1.3±0.3 1.3±0.3

for [6]. The time is for images of dimension 75− 82 × 83 − 87 using MATLAB
7.5 on a PC with Pentium 4, 3 GHz dual core processor. We did not optimize
the code to take advantage of the multi core processor.

Influence of parameters k1, k2, w1. w1 decides the relative contribution of
intensity to the total penalty. If w1 > 0.9 then DI ’s contribution is high compared
to DS and the final labels are influenced solely by DI . On the other hand if
w1 < 0.3 DS dominates and DI has no influence on the final labels. w1 = 0.6 is
empirically chosen to give the best results for a wide range of datasets. k1 should
have value sufficiently higher than zero to impose hard constraints for labeling.
k2 should be low enough to not dominate over VS , and also be greater than zero
to ensure unambiguous solutions. If k2 > 1.5 the contribution of VS towards the
final labels decreases.

4 Conclusion

In this paper we have proposed a novel shape prior segmentation method using
graph cuts for segmenting the LV from a sequence of dynamic cardiac perfusion
images. Manual intervention is limited to identifying the LV in a reference image
to get the prior shape. The shape penalty is calculated using the distribution
of orientation angles from every pixel to the edge points of the prior shape.
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Penalty and smoothness terms are formulated such that pixels near the boundary
of the shape prior can change their labels to account for shape change due to
deformations. When combined with the intensity distributions of the object and
background, our method results in accurate segmentation of the LV for low
contrast perfusion MR images. Experimental results on real patient datasets
show the advantages of using shape priors, and the superior performance of our
method over two related methods. In future work we aim to extend the method
for more segmentation classes and other imaging modalities.
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Abstract. Automatic segmentation of myocardium in Late Gadolinium
Enhanced (LGE) Cardiac MR (CMR) images is often difficult due to the
intensity heterogeneity resulting from accumulation of contrast agent in
infarcted areas. In this paper, we propose an automatic segmentation
framework that fully utilizes shared information between corresponding
cine and LGE images of a same patient. Given myocardial contours in
cine CMR images, the proposed framework achieves accurate segmenta-
tion of LGE CMR images in a coarse-to-fine manner. Affine registration
is first performed between the corresponding cine and LGE image pair,
followed by nonrigid registration, and finally local deformation of my-
ocardial contours driven by forces derived from local features of the LGE
image. Experimental results on real patient data with expert outlined
ground truth show that the proposed framework can generate accurate
and reliable results for myocardial segmentation of LGE CMR images.

1 Introduction

Viability assessment of the myocardium after the experience of a myocardial
infarction is essential for diagnosis and therapy planning. In particular, the
detection, localization and quantification of infarcted myocardial tissue, also
called infarct/infarction/scar, are important for determining whether and which
part(s) of a heart that has undergone a myocardial infarction may benefit from
re-vascularization therapy. In a typical CMR examination, a contrast agent is
injected and a cine sequence is acquired approximately at the same time; 15 to 20
minutes later, an LGE scan is performed, and by then scars exhibit brighter (en-
hanced) intensities than healthy myocardium. This is because scars accumulate
more contrast agent and experience delayed wash-in and wash-out of contrast
agent. Typical LGE images with enhanced scars can be seen in Fig. 4.

Delineation of myocardial contours is the first step in locating and quanti-
fying infarctions in LGE images. Because manual delineation is not only time-
consuming but also subject to intra- and inter-observer variability, it is highly
desirable to automate the contour delineation process. However, automatic seg-
mentation of myocardial contours is a difficult task, due mainly to the intensity
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inhomogeneity of the myocardium resulting from the accumulation of contrast
agent in infarcted areas. To the best of our knowledge, there has been little re-
search aimed at fully automatic myocardial segmentation in LGE images, and
there is no commercially or publicly available automatic segmentation tool for
clinical use. Most of the existing approaches utilize pre-delineated myocardial
contours in the corresponding cine MRI as a priori knowledge [1,3]. Such an ap-
proach is reasonable because the patient is asked to stay still during the entire
acquisition process and there are many methods available for automatic segmen-
tation of cine MRI [5]. Nevertheless, major difficulties in this approach include:
(i) misalignment and nonrigid deformation between cine and LGE data due to
respiratory motion and/or imperfectness of electrocardiography gating (which
will be worse in cases of arrhythmia); and (ii) differences in resolution, field of
view, and global intensity of cine and LGE data.

In this paper, we propose a multi-level framework for automatic myocardial
segmentation of LGE CMR images in a coarse-to-fine manner. Our work is dif-
ferent from the aforementioned ones [1,3] in three respects: (i) we fully utilize
shared information between corresponding cine and LGE images by registering
the cine image to the LGE image in an affine-to-nonrigid manner, including
both shape and intensity information; (ii) instead of using conventional simi-
larity metrics such as mutual information and cross-correlation, experimentally
we choose pattern intensity [9] which leads to accurate nonrigid registration of
corresponding cine and LGE images; and (iii) at the finest level of segmentation,
we propose to detect endocardial edges by adaptively selecting one of the two
cases: normal endocardium and sub-endocardial scars, as well as, incorporate a
new effective thickness constraint into the evolution scheme based on the simplex
mesh [2] geometry. The rest of the paper is organized as follows. Section 2 de-
scribes the proposed automatic segmentation framework. Section 3 presents the
experimental results on real patient data, followed by the conclusion in Section 4.

2 Method

Our automatic segmentation framework comprises three major steps from coarse
to fine levels: (i) estimate an affine transformation by maximizing normalized
cross-correlation (NCC) for rough alignment of corresponding cine and LGE im-
ages; (ii) nonrigidly register the affine-transformed cine image to the LGE image
using B-spline based free-form deformation (FFD) [7] with pattern intensity [9]
as the similarity metric; and (iii) further deform the myocardial contours ob-
tained from the previous step based on local features of the LGE image using
the simplex mesh geometry [2]. Figure 1 shows the segmentation results obtained
at the different stages of our framework.

2.1 Pre-processing and Affine Transformation

In this work, we only consider short-axis slices. A cine sequence comprises multi-
ple slices at different phases, covering a complete cardiac cycle. Unlike cine data,
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Fig. 1. The segmentation results obtained at the different stages of our framework: (a)
the a priori segmentation in the cine image; (b) direct overlay of the a priori onto the
LGE image without any processing; (c) after affine transformation; (d) after b-spline
based FFD; (e) after local deformation of contours. Note that from (d) to (e) a small
defect in the a priori is corrected (as highlighted by the arrow).

a set of LGE data comprises slices at only one phase, which is often located be-
tween end-systole and end-diastole. Therefore, given a target LGE image, the
first task is to select a corresponding cine image. We select the cine image with
the same spatial location and the closest phase to the LGE image according to
their respective DICOM header information, and delineate myocardial contours
in the selected cine image as a priori segmentation. Then we normalize each
pair of corresponding cine and LGE images to: (i) the same physical resolution;
(ii) similar histogram distributions (specifically, we specify the histogram of the
LGE image to resemble that of the cine image); and (iii) the same size.

The coarse level segmentation is achieved by registering the cine image to the
target LGE image through a constrained affine transformation. For the 2D case
the affine transformation matrix in homogeneous coordinates can be expressed as

A =

⎡⎣a11 a12 a13

a21 a22 a23

0 0 1

⎤⎦ . (1)

Based on the assumption that there should not be any significant rotation or
shearing effects, and the scaling and translation effects should also be small, we
constrain the estimated affine transformation so that:

|a11 − 1|, |a22 − 1| < εscale and |a13|, |a23| < εtranslate, (2)

where εscale and εtranslate are corresponding thresholds and set to 0.1 and 10 for
our data. Here we use NCC as the similarity measure because it is invariant to
both shift and scale intensity distortions [4] and hence can overcome system-
atic intensity variations between corresponding cine and LGE images. For a fast
implementation, we adopt the enhanced cross-correlation (ECC) algorithm pro-
posed in [4], which optimizes an efficient approximation of NCC and leads to a
closed-form solution in each iteration.

2.2 B-Spline Based Nonrigid Registration

Since the deformation of a heart cannot be completely described by an affine
transformation, we apply B-spline based nonrigid registration [7] following the
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affine transformation. For a 2D image, B-spline based FFD is controlled by a
mesh of control points Φ = {φi,j}. Let sx × sy denote the uniform spacing of the
mesh grid, then the FFD can be written as:

T (x, y, Φ) =
3∑

l=0

3∑
m=0

Bl(u)Bm(v)φi+l,j+m , (3)

where i = �x/sx�−1, j = �y/sy�−1, u = x/sx −�x/sx�, v = y/sy −�y/sy�, and
Bl is the lth basis function of B-splines. The transformation field T completely
determines deformation of the whole image. Because B-splines are locally con-
trolled, they are relatively more efficient compared to other kinds of splines such
as thin-plate splines, even for a large number of control points.

Different from most registration methods which use conventional similarity
measures such as normalized mutual information (NMI), experimentally we se-
lect pattern intensity [9] as the similarity measure for the nonrigid registration.
Given two images I1 and I2, pattern intensity operates on the difference image
Idiff = I1 − I2. If I1 and I2 are two images of the same object and well regis-
tered, structures from this object should vanish and there should be a minimum
number of structures or patterns in Idiff . A suitable similarity measure should,
therefore, characterize the structuredness of Idiff . Pattern intensity considers a
pixel of Idiff to belong to a structure if it has a significantly different value from
its neighboring pixels. Using a constant radius r to define the neighborhood of
the pixel being examined, pattern intensity is defined as:

Pr,σ(I1, I2) =Pr,σ(Idiff)

=
1

NIdiff

∑
x,y

1
Nr

∑
(x−v)2+(y−w)2≤r2

σ2

σ2 + [Idiff(x, y) − Idiff(v, w)]2
,

(4)

where NIdiff and Nr denote the number of pixels in Idiff and the neighborhood
respectively. A constant σ is introduced to suppress the impact of noise.

Pattern intensity has the following desirable properties: (i) small deviations
in intensity would still produce measurements remaining near to the maximum
value due to the introduction of σ; (ii) large differences of intensity values have
the same effect regardless of their magnitude due to the asymptotic nature,
making the measure robust to a few large differences in pixel intensity; and (iii)
its regional nature is able to reduce the effect of differences with scales larger
than r. These properties make it robust to the presence of enhanced infarctions
of relatively small area in LGE images. Indeed, we have experimented with
popular similarity metrics including squared intensity difference, NMI, and NCC,
and found that pattern intensity gives best results for most LGE images in our
database (see Fig. 2 for a demonstration). This is consistent with the findings
from a comparative study of six similarity measures for intensity-based 2D-3D
vertebra image registration [6], which state that pattern intensity outperformed
the others and was able to achieve accurate registration even when soft-tissue
structures and interventional instruments were present as differences between
the images.
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Fig. 2. A comparison of the effects of different similarity metrics on b-spline based
cine and LGE images registration: (a) the LGE image; (b) squared intensity difference;
(c) NCC; (d) NMI; (e) pattern intensity. The bright arrows in (b)-(d) highlight the
locations where pattern intensity based registration outperforms others.

In our implementation, we use the optimization scheme described in [7]. The
cost functional to be minimized consists of two terms, one for similarity and the
other for smoothness. The similarity cost is defined as:

Csimilar[I1, T (I2, Φ)] = 1 − Pr,σ[I1, T (I2, Φ)], (5)

and the smoothness cost Csmooth is defined as the 2-D bending energy of a thin-
plate of metal to regularize T [7]. The final cost functional is a weighted sum of
Csimilar and Csmooth with a weighting factor λ which controls the trade-off between
accurate match of the two images and smoothness of the transformation:

C(Φ) = Csimilar[I1, T (I2, Φ)] + λCsmooth(T ). (6)

We have experimentally determined the values for grid spacing sx, sy and weight-
ing factor λ. We found that setting sx, sy = 8 and λ = 0.2 would produce rela-
tively reasonable yet smooth segmentation for most LGE images in our database.

2.3 Local Deformation of Myocardial Contours

After the first two steps, we can already obtain reasonable segmentation results
which are quite close to true myocardial boundaries. However, some minor flaws
still exist, e.g. a fraction of the infarct is excluded from the myocardial contours
(Fig. 1(d)). Thus we further locally deform the existing myocardial contours to
ensure that scars are enclosed by the final contours, and improve segmentation
accuracy. Different from the previous two steps in which segmentation is achieved
by registration of corresponding cine and LGE images, in this step we directly
deform the contours based on local features of the LGE image alone.

We use the simplex mesh [2] geometry and a Newtonian mechanical model
to represent and deform the contours. We represent both endo- and epicardial
contours with 80 mesh vertices. At each vertex we define three different forces
which move it jointly, namely, smoothness Fsmooth, edge attraction Fedge and
myocardium thickness Fthick. Fsmooth imposes uniformity of vertex distribution
and continuity of simplex angles [2]. Fedge draws vertices towards detected my-
ocardial edge points along radial directions of the left ventricle (LV). We detect
the edge points by searching pixels along the radial directions in a limited range
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(Fig. 3 (a)) and picking those with maximum intensity changes with respect to
their neighbors on the search line. Specially, while searching for endocardial edge
points, we consider two cases: edges of sub-endocardial scars (Fig. 3 (b)) and
normal endocardium (Fig. 3 (c)). The former case is made much easier to detect
nowadays thanks to the improvements in MRI acquisition techniques (which im-
prove the contrast between the blood pool and sub-endocardial scars), and given
a higher priority over the latter considering the prevalence of sub-endocardial
scars in infarction patients. In addition, the search range is confined to a narrow
band of 4 pixels, due to the closeness of the contours obtained in the previous
step to real myocardial boarders, and to avoid an unstable large extent of defor-
mation. Letting p̂e denote the detected edge point for any vertex p, Fedge can
be expressed as:

Fedge = ωp(p̂e − p), (7)

where ωp is a weight linearly and directly proportional to the local intensity
change at p̂e and normalized to the interval [0, 1]. Finally, Fthick establishes a
connection between nearest endo- and epicardial vertices along the radial direc-
tions (Fig. 3(d)), and aims to overcome the problem that arises when the edge
search fails (e.g. when there is poor contrast between scars and the blood pool).
Letting p0

endo denote any vertex on the endocardial contour before deformation,
and p0

epi its nearest neighbor on the epicardial contour, we introduce Fthick as:

Fepi,thick = pt
endo + (p0

epi − p0
endo) − pt

epi,

Fendo,thick = pt
epi − (p0

epi − p0
endo) − pt

endo,
(8)

where pt
∗ is the vertex after tth iteration.

(a) (b) (c) (d)

Search range

Search line

LV center

Fig. 3. An illustration of Fedge and Fthick: (a) the search for myocardial edges along
radial directions of the LV; (b) an edge of sub-endocardial infarction highlighted with
the red square; (c) an edge of normal endocardium highlighted with the red square; (d)
connections established between endo- and epicardial contours as thickness constraint.

Letting pt denote the position of any vertex at time t, the deformation scheme
can be written as

pt+1 = pt + (1 − γ)(pt − pt−1) + αFsmooth + βFedge + θFthick, (9)

where γ is a damping factor. In each iteration, we first fix the endocardial con-
tour and update the epicardial contour, and then update the endocardial contour
with the epicardial contour fixed. Various weights in (9) are experimentally de-
termined as: γ = 0.7, α = 0.35, β = 0.15, θ = 0.1.
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3 Experimental Results

We have tested the proposed automatic segmentation framework on 59 short-
axis LGE CMR images (with corresponding pre-segmented cine CMR images
as a priori knowledge) from 10 patients that are clinically diagnosed as having
experienced myocardial infarction. The images were acquired with a Siemens
Symphony MRI scanner. Based on visual examination, we find that segmenta-
tion results produced by our framework are consistently correct and accurate
for nearly all of the LGE images. Figure 4 shows some example results, together
with manual segmentation by an expert. We have also conducted a quantita-
tive evaluation of our framework by calculating distance errors and the Dice
coefficient between the automatic results and the expert’s manual segmentation.
The average and maximum errors between the automatic and manual contours
are: 0.97 ± 0.45 and 2.60 ± 1.15 pixels for the endocardium, 0.89 ± 0.40 and
2.38 ± 0.98 pixels for the epicardium, and 0.93 ± 0.42 and 2.49 ± 1.06 pixels for
both. This level of error is quite close to intra- and inter-observer variability. As
to the area similarity, the Dice coefficient is 93.59± 3.80% for the endocardium,
95.63± 2.62% for the epicardium, and 82.49± 9.27% for the myocardium. Since
the ultimate goal of automatic myocardial segmentation in LGE CMR images
is to serve subsequent automatic quantification of scars, we have further imple-
mented the automatic scar segmentation algorithm proposed in [8] to compare
scars within the automatic and manual contours. The volumetric Dice coefficient
between segmented scars within respective contours is 79.78 ± 9.72%, which is
comparable to those reported in [8].

Fig. 4. Some example segmentation results of our automatic framework (top row), as
compared with those by an expert (bottom row)

4 Conclusion

In this paper we present an automatic segmentation framework for LGE CMR
data that fully utilizes shared information between corresponding cine and LGE
images. Given myocardial contours in cine CMR images, our framework first
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generates intermediate segmentation results by registering the cine image to
the target LGE image in an affine-to-nonrigid manner, and then obtains final
segmentation results by locally deforming the myocardial contours with forces
derived from local features of the LGE image alone. For the nonrigid registration,
different from most other registration methods, we experimentally chose pattern
intensity as the similarity metric; it works robustly for most of the LGE images
whereas popular similarity metrics such as NMI often cannot compare. For the
local deformation of the myocardial contours, we use the simplex mesh geometry
to represent the contours and displace each vertex according to the combination
of three different forces: smoothness, edge attraction, and thickness. Our experi-
mental results on real patient data, along with the quantitative evaluation, show
that the proposed automatic segmentation framework can successfully segment
short-axis LGE images with good accuracy and reliability.
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Abstract. In this paper, we propose a Minimum Average-cost Path
(MACP) model for segmenting 3D coronary arteries by minimizing the
average edge cost along path in discrete 4D graph constructed by image
voxels and associated radii. Prim’s Minimum Spanning Tree method is
used for efficient optimization of the MACP model. The centerline and
the radii of the cross sections of the coronary artery are extracted si-
multaneously during the optimization. The method does not need any
image preprocessing steps and has been intensively validated as an ef-
fective approach with the Rotterdam Coronary Artery Algorithm Eval-
uation Framework [1]. The computational cost of the proposed method
is particularly low (7.467 seconds per segment, 18.5mm/s on average),
which makes real time segmentation of coronary artery possible. Short-
cut problem, which is a classic issue of the minimal path techniques, can
also be overcome by the proposed method.

1 Introduction

In recent years, coronary artery segmentation has become an important research
issue since it can help diagnosis and treatment of coronary diseases, which is one
of the major causes of death around the world. As described in [4], a variety of
methods have been proposed for vessel segmentation with the aim of extracting
centerlines in 3D space by using classical minimal path algorithms. Some excep-
tions can be found in [5,7,11] and they share the same idea of incorporating the
cross sectional radius as an additional dimension together with the coordinates
of the voxels. Thus when the tracking procedure ends, the radii of the vessel is
also obtained. The resultant paths are better centered by using these methods.

Similar to [5,7,11], our approach represents the coronary artery centerline
with its radii as a 4D tree branch with 3D coordinates of the centerline point
and one addition dimension for associated radii. Given the start point, the end
point and a point inside the distal part of an artery, our method can trace the
centerline with associated radii efficiently without taking the risk of tracing a
shortcut path, which is a classical issue of minimal path techniques. Two kinds
of shortcut problem are shown in Fig. 1. In extreme case, as shown in Fig. 1(a),
the path may be traced outside the vessels (dashed line), while in other shortcut
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cases (Fig. 1(b)), the path (dashed line) obtained by minimal path techniques
may stay in the vessels but are less satisfactory than the real centerline path
(solid line). The model proposed in this paper, namely Minimum Average-cost
Path (MACP), concentrates on low average edge cost by minimizing the newly
designed average cost of all edges on the path in the form of probability.

(a) Shortcut Problem 1 (b) Shortcut Problem 2

Fig. 1. Shortcut Problems of Minimal Path Approaches

To the best of our knowledge, there is only one work [9] on real time 3D CT
coronary artery segmentation, but it achieves relatively low accuracy. The MACP
model proposed in our paper introduces a new energy term for fast propagation
and the proposed method tends to consider much less candidate voxels than
minimal path methods. These properties of MACP make it possible to trace the
coronary artery with a very low computational cost.

There are four favorable properties of the proposed method. First, according
to the experimental results listed in the Rotterdam Coronary Artery Algorithm
Evaluation Framework [1], our method is computationally more efficient than
all other methods for segmenting 3D CT images of coronary artery. The second
merit is that the classical issue of minimal path techniques, shortcut problem,
can be overcome by the proposed method. Third, the proposed method does
not need any preprocessing steps such as enhancement, and has been validated
intensively in the experiments.

2 Minimum Average-Cost Path Model

Similar to [5,7,11], the cross sections of coronary arteries are assumed to be cir-
cular as an approximation which is reasonable for thin vessels such as coronaries.
The 4D graph node Xt = (pt, rt)(Fig. 2), in the assumption includes the voxel
position pt = (xt, yt, zt) and the radii rt of the cross section. We let dt be the
direction from the previous node position pt−1 = (xt−1, yt−1, zt−1) to the node
position pt = (xt, yt, zt) being considered. The cross section is defined to be
perpendicular to dt. Lesage et. al. proposed a Bayesian minimal path method

Xt

Ptdt

rt
dt+1

Xt -1 Xt+1

Fig. 2. Geometric Model
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for coronary artery segmentation in [5]. The recursive update of the a posterior
probability of a model realization is given by the Bayes’ rule:

P (X[0:t]|Y[0:t]) ∝ P (X[0:t−1]|Y[0:t−1])P (Xt|Xt−1)
Pv(Yt)

Pbg(Yt)
, (1)

where Yt is the observation of Xt, Pv(Yt) and Pbg(Yt) are the probabilities of
the response as a path node and background node respectively. P (X[0:t]|Y[0:t])
denotes the joint distribution of sequence of nodes on the path given the ob-
servations associated with the nodes. Maximizing Equation (1) is equivalent to
minimizing its negative logarithm:

C(X[0:t]) = C(X[0:t−1]) − log(P (Xt|Xt−1)) − log(Pv(Yt)) + log(Pbg(Yt)) + M, (2)

where C(X[0:t]) = − log P (X[0:t] | Y[0:t]), Xt = (pt, rt) and M is a constant
ensuring that C(X[0:t]) is positive.

As described in Section 1, the minimal path method in [5] may trace a shortcut
path. The shortcut problem is caused by the assumption that the path can
be obtained by maximizing P (X[0:t]|Y[0:t]), which is equivalent to minimizing
C(X[0:t]). This may lead to the problem of shortcut since the value of C(X[0:t])
may still become smaller if fewer points are included into the path.

In order to ensure a low average cost path, the value of P (Xt|Yt, X[0:t−1])
should be large for each Xt in the route. We can assume P (Xt|Yt, X[0:t−1]) =
P (Xt|Yt, Xt−1) by regarding the 4D path as first order Markov chain. Maximiz-
ing P (Xt|Yt, X[0:t−1]) is equal to minimizing − logP (Xt|Yt, Xt−1). As such, we
define a new notation ACP in our model:

ACP(v) = −
∑t

j=1 log{P (Xj | Yj , Xj−1)}
t

= −
∑t

j=1{log{P (X[0:j] | Y[0:j])} − log{P (X[0:j−1] | Y[0:j−1])}}
t

.

v here denotes the whole path from the start point X0 to the end point Xt.
Considering a single path v, our model aims at minimizing ACP(v). Suppose
C(X[0:j]) = − log(P (X[0:j] | Y[0:j]) = C(X[0:j−1]) + Edge(j),

ACP(v) =

∑t
j=1{C(X[0:j]) − C(X[0:j−1])}

t
=

∑t
j=1 Edge(j)

t
=

C(X[0:t]) − C(X0)

t
.

According to Equation (2), we can obtain

Edge(j) = − log(P (Xj | Xj−1)) − log(Pv(Yj)) + log(Pbg(Yj)) + M.

In these steps above, we translate our intuition to the model MACP.

3 Bayesian Minimum Spanning Tree Implementation

3.1 A Novel Energy Term for Fast Propagation

In this section, an energy term E(v) is defined for fast propagation and opti-
mization of the MACP model. v here denotes the whole path from the start



MACP for Real Time 3D Coronary Artery Segmentation 439

point S to the end point E.

E(v) = L(v)/N + ACP(v),

where N is the total number of nodes on the path except S, and

L(v) = −2 × Dis(S, E)

=
N∑

i=1

{((Dis(pi−1, S) − Dis(pi, S)) + (Dis(pi, E) − Dis(pi−1, E))},

in which p0 = S and pN = E, and Dis(·, ·) denotes the distance between two
points. Assume

LES(i) = LS(i) + LE(i) = Dis(pi−1, S) − Dis(pi, S) + Dis(pi, E) − Dis(pi−1, E),

we can obtain,
E(v) =

∑N

i=1
LES(i) + Edge(i)/N. (3)

Since L(v) is a negative constant, minimizing L(v)/N is equal to minimizing
N . By minimizing E(v), ACP is minimized with the constrain of reducing the
total number of points on the path. In each propagation phase, we choose the
point with the minimum average edge cost from the start point to it according
to Equation (4). vj here denotes the path from the start point to the point being
considered and the number of points on the path is j:

E(vj) =
∑j

i=1
{LES(i) + Edge(i)}/j. (4)

3.2 Implementation Detail

We modify the Prim’s algorithm to fit the proposed model. The overall algorithm
is described in Algorithm 1.

In the experiments, one artery is traced in two parts given the start point Sp,
the end point Ep and a point inside the distal part of the artery, Ap. First, we
set S = Ap, E = Sp. With Algorithm 1, the path from Ap to Sp is obtained.
Then we set S = Ap, E = Ep to obtain the path from Ep to Ap. After that, the
whole artery can be obtained by simply connecting the two parts together. The
reason for not just tracing back from Ep to Sp is that the shape of the distal
parts, especially the thin ones, are irregular. After step 13 in Algorithm 1, a tree
is obtained. And then a low average cost path can be obtained by tracing back
from E to S.

The proposed method tends to consider much less candidate voxels than the
minimal path methods. For example, in Fig. 3, the path from node A to node T is
the real path. Different with minimal path methods, the proposed method tends
to dismiss the nodes such as Fi(i = 1, ...n) since the average cost from A to Fi is
large, and does not have to bother the paths to useless nodes Di(i = 1, ...n) and
Ei(i = 1, ...n). For minimal path method, the number of the useless nodes kept in
the memory will increase exponentially while propagating towards the end point
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Algorithm 1. Tracking Algorithm for MACP
1: INPUT:

S – Start node position for tracking, E – End node position for tracking
2: INITIALIZATION:

Find the best radii rs for S, Put Xs = (S, rs) into tree T , set Cp = S.
3: while Cp �= E do
4: for each neighboring node position Nj of Cp and Nj is not in T do
5: for each different radii rj related to node position Nj do
6: if E(vj) is smaller than the largest E(vi) of record Xi = (Ni, ri) in QUEUE

then
7: Replace the record Xi = (Ni, ri) in QUEUE with Xj = (Nj , rj)
8: end if
9: Update best candidate node outside QUEUE

10: end for
11: end for
12: Let Xp = (Np, rp) = arg minXp∈QUEUE E(vp), Cp=Np, put Xp = (Np, rp) into

T , replace Xp = (Np, rp) with best candidate node outside QUEUE.
13: end while
14: Trace back from E to S in T to obtain the whole node path P .
15: OUTPUT: P

T . So the proposed method can trace the vessel with a lower computational cost
than minimal path methods and realize the real time segmentation.

During the propagation, the energy term E(vj) in Algorithm 1 is calculated
by Equation (4). The prior term P (Xt | Xt−1) in constrained radius variations
is described in [5]. Observations Yt are the responses of a multi-scale oriented
medialness feature and details can be found in [6].
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Fig. 3. Efficiency of MACP Model

4 Experiment and Validation

The centerlines of 24 testing datasets (96 vessels) were submitted to the Rotter-
dam Coronary Artery Algorithm Evaluation Framework [1] and the evaluation
results are reported in Table 1. The overlap percentage between the experiment
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Table 1. Results from the Rotterdam Framework

% / mm score
Measure min. max. avg. min. max. avg.

OV 60.8% 100.0% 93.4% 34.3 100.0 66.6
OT 60.7% 100.0% 93.6% 30.4 100.0 67.7
AI 0.24 mm 0.70 mm 0.41 mm 17.5 54.2 28.3

results and the ground truth is denoted as OV, which is the most important
measure in the framework. OT gives an indication of how well the method is
able to track the clinically relevant vessel section with a diameter of 1.5 mm
or larger. AI denotes the accuracy of centerline extraction, provided that the
evaluated centerline is inside the vessel. The score is defined between 0 and 100,
with 50 for a result of the order of the inter-observer variability. We note that,
Sp, Ep and Ap are provided by the Evaluation Framework.

The relatively good performance of our method was confirmed with 93.4%
overlap percentage (OV) on average, and the score for overlap percentage is
66.6, which means the proposed method exceeds inter-observer overlap with its
score 50. The radii of the typical coronaries range from 0.5mm to 4.0mm, and the
spacing of the images is about 0.3mm to 0.4mm in each direction, so the average
result achieved (0.41mm) for measure AI is fine. To improve the AI measure,
we can perform interpolation to the image and obtain more node positions.
However, it will be slow to trace the path in the interpolated image. Thus it is
a trade-off between AI and computational efficiency. OF denotes how much a
coronary artery has been extracted before making an error, but it is meaningless
for the proposed method and we omit it here. In the proposed method, the
tracking starts from point Ap back to point Sp and from point Ap to Ep, so the
measure OF actually cannot denote how much of a vessel has been extracted
before making the first error.

To evaluate the computation time of the proposed method, we recorded the
tracking time of the training datasets (32 vessels) with different Q values, Q is
the size of QUEUE in Algorithm 1. As we can see in Table 2, the computation
time increases monotonously with Q. For Q = 20, with which we obtain the
93.4% on OV, the average computation time is 7.467 seconds. According to [8],
the reference standard centerlines are about 138mm on average, so the speed of
tracing is 18.5mm/s. The processor used in the experiment is dual core AMD
Opteron 2216 (2.4GHz) and the physical memory is 8GB. For running the pro-
gram, the maximum memory used is 3GB even though the raw image and the
gradient vector field for the whole image are restored in the memory.

Table 2. Computation Time (in seconds) of MACP

Size min. max. avg.

Q=10 1.943 11.242 5.804
Q=20 2.015 16.137 7.467
Q=30 2.058 18.945 7.953

Average 2.005 15.441 7.075
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Given centerlines and related radii, surfaces can be obtained. In Fig. 4(a),
surface was rendered from reference centerlines and radii from [1]. Surface for
the proposed method is shown in Fig. 4(b). Since the centerlines obtained by the
proposed method are based on voxels, the number of voxels on the centerlines
obtained is much less than the reference. Also, radius rt associated with pt ranges
from rt−1 − 0.6mm to rt−1 + 0.6mm with a fixed step of 0.3mm. These all may
make it difficult to have a smooth rendering surface. However, the rendering
surface for our method is satisfactory.

(a) Surface for Ground Truth (b) Surface for Our Method

Fig. 4. Rendering Surface Results

Table 3 presents the experimental results of 15 state-of-the-art approaches in
the Rotterdam evaluation framework [1]. As we can see in Table 3, the com-
putational efficiency (7.467 seconds per segment, 29.868 seconds per dataset) of
our method is better than all approaches. The only one approach [9], with its
computation time comparable with the proposed method, however achieves a
lower overlap performance OV(84.7%).

There are only four [5,3,10,2] out of fifteen approaches having better overlap-
ping performance than the proposed method (93.4%). However, the proposed
method is much faster than all of them. Meanwhile, these methods have other
problems. In Friman’s MHT method [3], more human intervene is required to
see whether the tracking is finished. In [10], vessel enhancement is performed

Table 3. Experimental Results From [1]

Measure OV Computation Time

MHT(Friman et al., 2008) [3] 98.5% 6 minutes
BayesianMaxPaths (Lesage, 2008) [5] 97.5% 4 minutes

VirtualContrast2b(Wang et al., 2008) [10] 96.7% 2 minutes
Tracer (Szymczak, 2008) [2] 95.1% 30 minutes

GVFTubenLinkage (Bauer and Bischof, 2008) 92.7% 10 minutes
TwoPointMinCost(Metz et al., 2008) 91.9% 12 minutes
AxialSymmetry(Dikici et al., 2008) 90.8% 5 minutes

3DInteractiveTrack(Zhang et al., 2008) 89.6% 3-6 minutes
KnowledgeBasedMinPath (Krissian et al., 2008) 88.0% 7 hours

AutoCoronaryTree (Tek et al., 2008) [9] 84.7% <30 senconds
DepthFirstModelFit (Zambal et al., 2008) 84.7% 4-8 minutes

CocomoBeach (Kitslaar et al., 2008) 78.8% 70 seconds
ElasticModel(Hernndez Hoyos et al.) 77.0% 2-6 minites

VirtualContrast(Zhang et al.) 75.6% 2 minites
CoronaryTreeMorphoRec (Castro et al., 2008) 67.0% 30 minutes
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before tracking. Actually, it is impossible for the methods like [10] to run in real
time if enhancement process is required since it is a time consuming process.
The computational cost of [2] is much higher than the proposed method, how-
ever, the superiority of OV of the method is not so obvious (95.1% vs 93.4%).
In contrast with the proposed method, [3,10,2] do not estimate the vessel radii
and this leads to difficulty in rendering the vessel surfaces as we can have in
Fig. 4(b). Although the overlap performance (OV) of methods [5,3] is high, the
use of minimal path methods may lead to shortcut problem in some cases as
shown in Fig. 1.

5 Conclusion

In this paper, we have proposed a MACP model for 3D coronary artery seg-
mentation and presented the use of Prim’s Minimum Spanning Tree method for
efficient optimization of the MACP model. The centerline and the radii of the
cross sections of the coronary artery are extracted simultaneously during the op-
timization on the discrete 4D graph. The method has been validated intensively
with Rotterdam Coronary Artery Algorithm Evaluation Framework [1] and the
tracking quality is good, and it does not need any image preprocessing steps.
The computational cost is particularly low, and this makes real time segmenta-
tion of coronary artery possible. Shortcut problem, which is a classic issue of the
minimal path techniques, can be overcome by the proposed method.
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Abstract. The most frequent drug-resistant epilepsy is temporal lobe epilepsy 
(TLE) related to hippocampal atrophy. In addition, TLE is associated with 
atypical hippocampal morphologies. Automatic hippocampal segmentations 
have generally provided unsatisfactory results in this condition. We propose a 
novel segmentation method (SurfMulti) to statistically estimate locoregional 
texture and shape using a surface-based approach that guarantees shape-
inherent point-wise correspondences. To account for inter-subject variability, 
including shape variants, we used a multi-template library derived from a large 
database of controls and patients. SurfMulti outperformed state-of-the-art 
volume-based single- and multi-template approaches, with performances 
comparable to controls (Dice index: 86.1 vs. 87.5%). Furthermore, the 
sensitivity of SurfMulti to detect atrophy was similar to that of manual 
volumetry. Given that the presence of hippocampal atrophy in TLE predicts a 
favorable seizure outcome after surgery, the proposed automated algorithm 
assures to be a robust surrogate tool in the presurgical evaluation for the time-
demanding manual procedure. 

Keywords: multi-template, segmentation, surface-based texture, SPHARM-
PDM, template library, hippocampus, MRI, epilepsy. 

1   Introduction 

The most frequent form of drug-resistant epilepsy is temporal lobe epilepsy (TLE) 
related to hippocampal sclerosis, which generally appears as atrophy on MRI. 
Detecting hippocampal atrophy is clinically relevant as it allows lateralizing the side 
of seizure focus and defining the surgical target. The removal of this pathology is the 
only effective treatment, offering seizure freedom in 80% of cases [1].  

Manual labeling is considered the gold standard to measure hippocampal volume, 
as it is accurate, reproducible, and sensitive. High time requirement, rater-bias, and 
the demand to study large cohorts of healthy and diseased populations, however, have 
motivated the automation of hippocampal volumetry. 
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2.1   Template Library Construction 

2.1.1  Surface Extraction from Manual Labels 
Labels of the hippocampus obtained from manual segmentation were converted into 
surface meshes using the spherical harmonics parameterization and point distribution 
models (SPHARM-PDM), an area-preserving, distortion-minimizing spherical 
mapping that ensures shape-inherent point-wise correspondence through an 
icosahedron subdivision of the spherical harmonic parameterization [9].  

2.1.2   Regional Texture Models 
Each surface was mapped to its corresponding image to estimate regional textures. 
For each hippocampal vertex, a spherical neighborhood with various radii (3mm, 
5mm, 7mm) was defined. The “inner region” (IR) and “outer region” (OR) of these 
local neighborhoods were determined with respect to the surface boundary. The 
following texture features were then computed at each vertex vi. 

i. Normalized intensity (NI) to capture regional tissue homogeneity. Let μIR, i / μOR, i 

be the mean of intensities within IR or OR at vi and SDIR, i / SDOR, j be the 
standard deviation. We defined NIIR, i = μIR, i / SDIR, i and NIOR, i = μOR, j / SDOR, i. 

ii. Relative intensity (RI) to assess the contrast between IR and OR voxels. RI was 
defined as RI i = 2ⅹ(μOR, i - μIR i) / (μOR, i + μIR, i). 

iii. Gabor energy (GE) to capture image texture through a multi-channel filtering 
strategy [10]. Mimicking human visual perception, this feature portrays the 
complexity, directionality and repetition of the intensity distribution. Let x,y,z be 
the spatial coordinates and Rθ a 3x3 rotation matrix whose 3D Euler angle θ 
defines the orientation of the normal to the parallel stripes of a Gabor function. 
The Gabor filter [10] was defined by: 

 
(1)

γ is the aspect constant, φ is the phase offset and the ratio σ/λ describes the 
bandwidth, namely the filter size b according to: 

 (2)

At voxel I(x,y,z), the Gabor energy was given by GE θ, λ, σ, γ, φ (x,y,z) = || gθ, λ, σ, γ, φ 
(x,y,z) * I(x,y,z) ||, where * is the convolution operator. In this work, we calculated the 
Gabor energy of the immediate surroundings only along the surface normal θ.  We 
fixed φ as 0 (no offset) and γ as 1 (same amount of information horizontally and 
vertically). Multiscale texture analysis was performed by varying the bandwidth b = 
{0.5, 1, 2}.  

iv.  Intensity gradient (IG): to capture edge information. Gradients along x, y, z 
direction were computed and interpolated on the vertices. 
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2.1.3   Regional Shape Models 
The following features constrained the deformable model evolution within the range 
of the anatomical variability in the template. 

i. Distance between adjacent vertices: to prevent irregular vertex topology.  
ii. Gaussian curvature: to constrain local convexity/concavity.  
iii. Local orientation: manual tracing in regions where anatomical boundaries are not 

visible often rely on arbitrary oblique lines as geometric landmarks (e.g., the 
inferomedial border separating CA1 from the subiculum) [11]. To model this 
feature, we projected the surface normals to the xy, yz and zx planes and 
computed their angles with respect to their orthogonal axis x, y and z-axis. 

 
For each subject, texture and shape features were normalized across vertices using a 
z-transform and combined at each vertex vi into a vector .  

2.2   Automatic Segmentation of the Hippocampus 

2.2.1   Automatic Selection of an Optimal Shape and Feature Template 
Let Sj = [v1, v2 … vi …, vL] be a SPHARM-PDM surface of the template library, 
which is initially mapped on its own MR image. Let  be the true features, i.e. the 
set of features computed at vi. Given a test image, we mapped the templates S1, S2 … 
Sj … SN, to the test image and computed a set of estimated features . For each 
mapping, we computed a similarity measure as: 

 (3)

Equation (3) represents a normalized similarity between the j-th true features and 
estimated features. Thus, it enables the selection of the closest template surface. Two 
approaches were investigated: 

a) Traditional approach: Given a test image, we selected the n most similar 
templates (surfaces and their corresponding features) [4-5]. We then computed 
the average surface from these ‘n’ surfaces (Sopt 1, Sopt 2, … , Sopt n) to generate an 
initial shape for the later segmentation process. Best results were obtained 
experimentally with n=10 templates.  

b) Advanced adaptive approach: Recently, Coupe et al. [12] proposed a weighted 
averaging of the volume labels in the selected subset according to their similarity 
measure. Here, we adapted this technique by optimally weighting surfaces and 
vertex-wise features separately. Let wS and wF be nⅹ1 weight vectors for optimal 
surfaces and features, respectively. We defined the new average surface as: 
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(4)

Similarly, we defined the weighted mean and SD of features at vertex vi by: 

 (5)

We then redefined the similarity function based on the n-top ranked subset as: 

 (6)

 is the estimated feature-set computed on the surface  mapped on the test image. 

Finally, both weights were determined by maximizing the similarity between the 
current template-subset and the test image.  

(7)

We initially set all the components of w as 1/n. We then iteratively perturbed every wj 
by ±δ·1/n and updated it if the similarity function (7) increased. The step-size 
parameter δ was initialized to 1 and decreased at each iteration by 0.1. 

2.2.2   Automatic Segmentation: Evolution and Objective Function 
The final segmentation was obtained as follows. We first linearly mapped the 
template computed in the previous section to the test image. Then, we locally 
deformed the surface at each vertex along the surface normal based on a multi-level 
b-spline interpolation. Analogous to Eq. (6), the cost function was defined at iteration 
k as: 

 
(8)

 is a deformed surface at iteration k and is its estimated feature vector. We 

maximized Ok using the gradient descendent approach.  

3   Experiments and Results 

3.1   Experiments  

Our training-set included 40 healthy controls (18 males; mean age 33±12 yrs) and 144 
TLE patients (61 males; mean age 36±11 yrs). TLE diagnosis and lateralization of the 
seizure focus into left TLE (LTLE; n=73) and right TLE (RTLE; n=71) were 
determined by a comprehensive evaluation including video-EEG recordings and MRI 
evaluation. Our ethics committee approved the study. MR images were acquired on a 
1.5T scanner, with 1mm-isotropic voxels. All images underwent automated correction 
for intensity non-uniformity, intensity standardization, and were linearly registered 
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into a stereotaxic space [13]. The hippocampus was manually segmented by an expert 
in all subjects. Using z-score normalization based on the distribution of healthy 
controls, we identified 91 (63%) patients with hippocampal atrophy (i.e. z<-2) 
ipsilateral to the seizure focus. 

3.1.1   Evaluation of Template Selection Approaches 
We evaluated the proposed surface-based multi-template methods (SurfMulti) 
through a leave-one out strategy. For each test data, we selected optimal subsets and 
built the initial shapes and feature models using both the traditional approach and the 
adaptive approach. The segmentations resulting from each initialization were 
compared using Dice index and paired t-test. 

3.1.2   Comparison with Volume-Based Single- and Multi-template Approaches 
We obtained hippocampal segmentation using FreeSurfer, a volume-based single- 
template approach [6], and a multi-template approach [4-5] (that we named 
VolMulti). For VolMulti, we used ANIMAL as the nonlinear registration method [13] 
and chose the optimal subset of 11 as suggested by [4]. 

We evaluated the performance of each automated segmentation algorithm against 
the manual label using the Dice index. We compared Dice indices between automated 
methods in controls and each patient group (i.e. hippocampi ipsilateral / contralateral 
to the seizure focus) using Student's t-tests. 

In a separate analysis, we assessed the sensitivity of each algorithm to detect 
atrophy in TLE relative to controls by computing Cohen's d = (mean volume controls 
– mean volume TLE ) / pooled SD, indicating the effect size of a ‘between group’ 
difference. We computed the significance of the observed effect using t-tests. 

Significances of all statistical tests were adjusted for multiple comparisons using 
Bonferroni-correction. 

3.2   Results 

The adaptive template selection approach outperformed the traditional strategy (all 
groups: p<0.02, Table 1). We therefore took as reference the adaptive approach. 

In all groups, performance of SurfMulti was superior to the two volume-based 
approaches (vs. FreeSurfer: p<10e-15; vs. VolMulti: p<0.0004). Moreover, our 
algorithm performed equally well in TLE patients and controls (p>0.1), whereas 
volume-based approaches segmented poorly hippocampi in patients (FreeSurfer: 
p<10e-6, VolMulti: p=0.02).  

Group-wise comparisons identified hippocampal atrophy ipsilateral to the seizure 
focus in TLE patients irrespective of the method, i.e. manual or automated (p<0.05, 
Table 2). However, the effect t size of atrophy detected using SurfMulti was closest to 
manual labeling (Cohen's d: Manual=1.71, t=7.6; SurfMulti=1.60, t=7.0; 
VolMulti=1.38, t=6.1; FreeSurfer=0.91, t=3.9).  

For each test data, we computed vertex-wise displacements between the SPHARM-
PDM surfaces of ground truth and SurfMulti segmentations. Fig. 2-A illustrates the 
mean and SD of the normal displacement across subjects (n=184). This surface-based 
analysis showed that SurfMulti yielded results with sub-voxel error (absolute mean 
error<0.51mm; mean SD=0.9mm). 
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seizure outcome after surgery, the proposed technique assures to be a robust surrogate 
tool for the time-demanding manual procedure in the presurgical evaluation. 

To segment brain structures, multi-template algorithms use either mutual 
information [4] or entropy [5] as a measure of intensity similarity between the target 
and template. In these methods, if intensity distributions of the two images are 
different, segmentation may fail. Our features, on the contrary, capture intrinsic image 
characteristics by computing higher order semantic features from a given image, i.e. 
image homogeneity, contrast, gradient and texture. Moreover, features are weighted 
according to both mean and SD of the optimal subset.  

Although the volume-based multi-atlas method performed globally better than the 
single-template approach, its agreement with manual segmentation was significantly 
lower in patients than controls. On the other hand, our method outperformed both 
state-of-the-art algorithms in both controls and patients and sensitivity in detecting 
atrophy. This likely results from the integration of: i) surface-based shape-inherent 
point-wise correspondences guaranteed by SPHARM-PDM; ii) vertex-wise sampling 
scheme with respect to the surface boundary, allowing for a better characterization of 
locoregional texture and shape of structures neighboring the hippocampus; and iii) 
multi-template library derived from a large cohort of healthy controls and patients, 
that accounts for inter-subject variability, in particular shape variants.  
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Abstract. Optical Coherence Tomography (OCT) is a noninvasive im-
aging technique which is used here for in vivo biocompatibility studies of
percutaneous implants. A prerequisite for a morphometric analysis of the
OCT images is the correction of optical distortions caused by the index
of refraction in the tissue. We propose a fully automatic approach for
3D segmentation of percutaneous implants using Markov random fields.
Refraction correction is done by using the subcutaneous implant base
as a prior for model based estimation of the refractive index using a
generalized Hough transform. Experiments show the competitiveness of
our algorithm towards manual segmentations done by experts.

1 Introduction

Optical Coherence Tomography is a non invasive imaging modality used for
taking optical biopsies of layered tissue structures such as the epidermis [11] and
the retina [4,14]. Apart from clinical use, OCT also has applications in animal
studies with the advantage of repetitive biopsies at one animal at different time
points instead of lethal biopsies at different animals for each time point. The
particular objective of this study is the morphometric analysis of the skin in the
vicinity of a percutaneous implant situated in the lateral abdominal region of a
hairless mouse to draw conclusions on its biocompatibility (see Fig. 1(a)).

As the optical properties of the tissue introduce distortions into the OCT im-
ages [13], segmentation based image undistortion is an important step towards
fully automatic image analysis tasks. In recent works, several methods like graph
based global optimization, active contours and random fields are proposed for
layer segmentation. In practice, graph based approaches, as used in [5] for fully
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Fig. 1. (a) Location and photo of a percutaneous implant, (b) OCT dense 3D scan
volume rendering (percutaneous pin is not visible), (c) single OCT B-scan (cropped at
half) showing the distorted baseline, and (d) corresponding undistorted result

automatic 3D retinal multilayer segmentation, lead to huge graph sets, limiting
the number of voxels. Active contour models (e.g. snakes) [9,14] provide robust
results, however require manual initialization. In [8], a fully automatic 2D feature
segmentation is presented using conditional random fields and efficient optimiza-
tion algorithms for inference. Segmentation of a single 2D OCT scan (B-scan)
can be susceptible to local shading effects and image perturbations and extend-
ing the scanning scheme to the third dimension can significantly improve the
segmentation quality [3,5,6]. Thus our algorithm is based on 3D segmentation.

This paper proposes an approach for fully automatic segmentation of 3D
Fourier-domain OCT and refractive undistortion. The determination of the re-
fractive index is facilitated by the geometry of the implant which consists of
a percutaneous pin (3 mm diameter and 5 mm length) anchored beneath the
dermis by a flat disc shaped base which is visible in OCT (see Fig. 1(a)–(d)).

Two main technical contributions are proposed. First, estimation of the
skin surface in the 3D space from several OCT B-scans is done using a Markov
random field (MRF) approach with an efficient combination of global and local
optimization algorithms. A spoke pattern scanning scheme is used for 3D data
acquisition and is further compared with a dense 3D scanning scheme (see Fig.
2(a)). Our second contribution addresses the segmentation of the implant base.
The distorted implant base is segmented using a refractive distortion model and
the previously segmented skin surface for parameter estimation in order to match
the distorted implant base best to the a priori known shape of the undistorted
base contour. The parameters of the implant base are estimated with a fast
generalized 3D Hough transform approach, optimizing the refractive index, as
well as the 3D position and orientation of the implant base. The segmented
model is finally used for refractive image undistortion (see Fig. 1(c)–(d)).

In Section 2, the 3D segmentation of the pin position, the skin surface and
the implant base is described (Fig. 2(b)), which is used for refractive image
undistortion (Fig. 2(c)). In Section 3, the used undistortion model is verified
and a comparison of the spoke pattern and dense 3D scanning scheme is shown,
followed by a quantitative analysis of several mouse datasets segmented and
undistorted using our method. Finally, in Section 4, a short conclusion is given.
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Fig. 2. (a) Schematic of the percutaneous implant (pin and base) and OCT scanning
schemes (dense 3D and spoke pattern), (b) two orthogonal OCT B-scans with segmen-
tation (mesh overlay) of pin position (yellow), skin surface (blue) and deformed base
(red), (c) undistorted B-scans with mesh overlay

2 Methods

The OCT data is acquired in a sequence of B-scans (Ik)k=1,...,K (see Fig. 2(a))
with image width W and height H . To reduce noise and small scanning arti-
facts, while preserving edges, we apply a median filter to each B-scan as a first
preprocessing step. In a second step, we apply a pixel intensity normalization
to each image, leading to a zero-mean intensity distribution with unit variance,
in order to retrieve uniform edge responses from the later applied edge filter.
We use a Sobel filter in combination with a presmoothing Gaussian kernel with
σgauss = 1.5 to get first order derivative images Ik

x and Ik
y in x- and y-direction

of Ik.
For 3D segmentation, the two-dimensional B-scans are embedded in a global

3D coordinate system. A mapping of a 3D point position P = (X, Y, Z) into im-
age coordinates p = (x, y), i.e. (X, Y, Z) �→ (k, x, y) as shown in Fig. 3(a) is done,
resulting in a sparse volume representation V (X, Y, Z) = Ik(x, y) for the image
intensities. The volumes of the image derivatives Vx, and Vy are analogously
defined, using Ik

x and Ik
y instead of Ik.

The proposed implant segmentation method is divided into three consecu-
tive steps (see Fig. 2(b)–2(c)): The pin segmentation (yellow cylinder), the skin
surface segmentation (blue mesh), and the base segmentation (red mesh).

2.1 Pin Segmentation

In the image area where the implant pin is located, there is no tissue, and hence
no contour information. Therefore, this area can be ignored for following segmen-
tation steps. The pin is of cylindrical form and the diameter d is known a priori.
The diameter is allowed to have a variance vk of ±10 pel. For each image Ik, the
x-position of the left and right pin boundary xk

1 and xk
2 = xk

1 +d+vk is computed
using a generalized Hough transform [1] approach over Ik

acc(x) =
∑

y |Ik
x (x, y)|
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Fig. 3. (a) Modeling of skin surface f over grid points xi, xi′ with respect to global
coordinate system (X, Y, Z) using spoke pattern scanning scheme, (b) top view of accu-
mulated image intensities Iacc and segmented pin boundary for each B-scan individually
(red), and with fitted cylinder (yellow)

with maxxk
1 ,vk

[
Ik
acc(x

k
1) + Ik

acc(x
k
1 + d + vk)

]
. The pin estimation in a single B-

scan is susceptible to noise and vanishing of boundary contours (see Fig. 3(b),
red line). Therefore, the boundaries are smoothed by assuming a cylindrical form
and radius r of the pin: At first, the center position C = (CX , CY ) of the pin in
the XY -plane is calculated as the arithmetic mean of all boundary positions Bk

1

and Bk
2 corresponding to xk

1 and xk
2 , i.e. C = 1

2K

∑
k(Bk

1 +Bk
2). Then, the radius

r is computed as the median of all radians r = median(|CB1
1|, . . . , |CBK

1 |). The
yellow line in Fig. 3(b) shows a typical result of the pin segmentation step.

2.2 Skin Modeling and Segmentation

A correct estimation of the skin surface is crucial for a correct modeling of
the implant base. The skin surface, denoted as f(X, Y ) = Z, is assumed to be
smooth and to behave like a membrane, thus having no discontinuities, except the
pinhole. Several approaches can be used to model the surface: Markov Random
Fields (MRF), Conditional Random Fields or Discriminative Random Fields
[10]. Due to the smoothness property, we decided to use an adapted MRF for
segmentation of the skin surface. Following the notations in [10], the posterior
probability of the skin surface f given the volumetric pixel intensities V can be
written as P (f | V ) ∝ P (f, V ) = p(V | f)P (f) using the Maximum A-Posteriori
framework (MAP), where P (f) is the smoothness prior and p(V | f) denotes
the likelihood function of f for V fixed.

To represent probabilistic relationships of the MRF, a common graphical no-
tation is used. The neighborhood relationships of a MRF can be described given
a graph G = (V, E) with a set of nodes V representing the instances of the
random field and a set of edges E representing the conditional dependencies
between the instances. The prior probability is then modeled as follows:

P (f) = exp
[
−
∑

i∈V U(fi)
]

with U(fi) =
∑

{i,i′}∈E(fi − fi′)2/2σ2
s , (1)
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where σs is a constant weighting factor. Figure 3(a) shows the relation of the
skin surface fi = f(xi) in the observation point xi to its neighboring point x′

i.
A 4-neighborhood system is used.

The likelihood of the true skin surface at position xi = (xi, yi) going through
the volumetric point (Xi, Yi, Zi), with Zi = f(xi) is given as

p(V |fi) ∝ Vy(Xi, Yi, f(xi)) + c , (2)

with a shifting constant c, forcing strict positive probabilities. Determining the
optimal solution of the given MRF problem is transferred to finding the global
maximum of P (f | V ). The given MRF model consists of K ·W edges and K ·W ·H
observation points, thus searching for the global maximum of the joint proba-
bility turns out to be a complex task. In order to solve this task in a reasonable
amount of time and memory usage, we decided to use an iterative local opti-
mization algorithm. The Iterated Conditional Modes (ICM) approach with the
coding method of Besag [2] is used because of its ability for fast convergence. The
ICM algorithm searches for a local maximum of the joint probability P (f | V )
by iteratively maximizing each local probability P (fi | V ) independently:

fn+1
i = arg min

z
[− log p(V | fn

i = z) +
∑

{i,i′}∈E(z − fn
i′ )

2/2σ2
s ] , (3)

where f0 is an initial guess of the surface. ICM is a local minimization method
and the estimation result highly depends on the initial surface guess f0. There-
fore, the initial guess f0 is retrieved by independently estimating an optimal path
for each B-scan using a Markov model, i.e., the same model as for the MRF, but
with a 2- instead of a 4-neighborhood system. Finally, the Viterbi algorithm is
used for global optimization [12]. Additionally, an annealing procedure inspired
by annealing labeling ICM of [10] is used, i.e. allowing the membrane for n = 0
to be more relaxed by setting σ0

s to a higher value σstart and decreasing it for
each L’s iteration by σn+L

s = max{σend, σn
s · σdecr}.

2.3 Baseline Modeling and Detection with a Hough Transformation

To achieve an appropriate segmentation of the implant base in presence of scan-
ning artifacts, noise, and local vanishing edge structures, a robust and model
based segmentation approach was developed using a generalized Hough trans-
form [1]. The applied refractive image undistortion model uses the fact that the
axial position of reflections captured with the OCT system matches to the op-
tical path length zopt of light passing through the observed tissue, rather than
the geometric path length zgeo. Inspired by [11], the relation between zopt and
zgeo can be approximately formulated as zopt = nzgeo, as shown in Fig. 1(c)–
(d), assuming a homogeneous layer with refractive index n. The model used for
conversion of optical path length to geometric path length of each axial scan
(A-scan, see Fig. 2(a)) is z = gu + (gl − gu)/n, where gu is the known upper
position (the skin surface, estimated in Section 2.2), gl the lower position (base
layer), and z denotes the geometric position of the base layer (see Fig. 1(c)).
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Given gu and the constraint of maximal edge intensity support of Iy over gl, the
maximization term for the generalized Hough transform is stated as follows:

max
Z,n,θX ,θY

∑
x,kIy,k (x, gu(x, k) − [gu(x, k) − ZθX ,θY (x, k)] · n) . (4)

The implant base is modeled as a plane with geometric position Z. Since the pin
is not located perfectly horizontal, a rotation of the plane in X- and Y -direction
is applied to Z, denoted by ZθX,θY . As the parameter space is of dimension 4,
small discretization step sizes lead to high computation time, i.e. doubling the
precision increases the computation time by a factor of 24. Since the minimization
problem has only one global optimum, which can be distinguished very well from
small local extrema, a resolution pyramid approach [7] is applied.

3 Experiments

In this section, a ground truth experiment for verification of the proposed undis-
tortion model, as well as a comparison of the used spoke pattern and dense 3D
scanning scheme is performed. We further show results of a quantitative study on
several mouse datasets1. The B-scans have a dimension of 800 px×600 px with a
lateral distance of the A-Scans of 7.5 �m/px and an axial scale of 4.7 �m/px.
Following parameters work best for our datasets: An 11 × 11 median filter,
σstart = 70, σend = 10, σdec = 0.9, and L = 5.

Model Verification: A plane plastic slide is prepared with two glue drops
of slightly different size (Vitralit� 4731) with known refractive index of n =
1.474. An example image and its segmentation results are shown in Fig. 4. The
estimated refractive index of the two glue drops are nest = 1.494 and nest = 1.507
respectively. It is assumed that the ground carrier plate is not perfectly planar
as expected by the estimation model, causing the deviation from groundtruth.

Scanning Scheme: The spoke pattern scanning scheme is compared with the
dense 3D scanning scheme using real mouse recordings. To this end, we use the
skin surface reconstructions of scans captured using the spoke pattern with 72
B-scans and the dense 3D scanning scheme, respectively. Figure 5(a) shows re-
constructions for a typical skin surface (acquired post mortem). The segmented
surface using the spoke pattern is projected onto the dense 3D grid. Small sur-
face differences show the ability of capturing important surface features using
the spoke pattern (see Fig. 5(b)). The root mean square deviation (RMSD) is
calculated as 1.546 pel. Furthermore, several other surfaces were reconstructed
(see Fig. 5(c)). The results show, that using the spoke pattern still leads to good
results and preserves many skin details. Moreover, scanning is faster and approx-
imately 91 % of computation time and disk space is saved due to the decreased

1 All animal experimental procedures have been approved by the local governmental
animal care committee (Approval No. 33-42502-04-08/1498).
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(a) (b) (c)

Fig. 4. Glue drop (Vitralit� 4731) with n = 1.474, (a) comparison of original (top)
with segmented and undistorted (bottom) OCT B-scan (images cropped), (b) closeup
photo of a glue drop, (c) corresponding rendered surface reconstruction

(a) (b) (c)

Fig. 5. (a) Comparison of spoke pattern scanning scheme (top) and dense 3D scanning
scheme (bottom), (b) comparison heightmap of absolute surface differences in pel, (c)
example skin segmentation results of mouse datasets using spoke pattern

number of B-scans. With 937.5 KiB per image, 666.5 MiB are saved. Skin sur-
faces of spoke pattern scans are reconstructed using an unoptimized MATLAB
implementation in 5.78 min, compared to 68.14 min using dense 3D scans.

Quantitative Study: We further carried out a quantitative analysis on a set
of 60 OCT mouse scans of 23 mice at various points of time (including post
mortem scans) using the spoke pattern scanning scheme. Manual segmentations
of the skin and base were done from experts for 8 OCT images (each 9th slice)
per scan, having 3 individual manual segmentations per slice. The experts were
instructed to trace only visible parts of the contours. As a metric, we use the
RMSD of a surface S1 towards the mean of a set of surfaces S2, . . . , Sm. For each
B-scan, the RMSD of the automatic skin segmentation towards the mean of all
manual skin segmentations is calculated. The average and standard deviation (in
pel) over all B-scans is 3.98 ± 3.29. For comparison, the RMSD of each manual
skin segmentation towards the mean of all other manual skin segmentations is
found as 3.62 ± 1.03. For automatic vs. manual base segmentations, we get:
12.90 ± 18.27 and 3.55 ± 4.51. After outlier removal (B-scans with RMSD >=
10 pel), the RMSD of our fully automated approach is 3.63±1.33 (2.3 % outlier)
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and 5.27 ± 2.40 (39.0 % outlier), which is close to the RMSD of the manual
segmentation performed by experts with 3.62±1.00 (0.1 % outlier) and 3.21±1.37
(1.4 % outlier). Outliers are mostly due to motion artifacts in scans captured in
vivo. Future work will concentrate on reducing the outliers.

4 Conclusion

In this paper we propose a fully automatic approach for 3D segmentation of per-
cutaneous implants using Markov random fields with application to refractive
image undistortion. The refraction correction is done by using the subcutaneous
implant baseline as a prior for model based estimation of the refractive index
using a generalized Hough transform. Several experiments on the undistortion
model including a quantitative evaluation show the competitiveness of our algo-
rithm compared to manual segmentation by experts.
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Abstract. With automated image analysis tools entering rapidly the
clinical practice, the demands regarding reliability, accuracy, and speed
are strongly increasing. Systematic testing approaches to determine op-
timal parameter settings and to select algorithm design variants become
essential in this context. We present an approach to optimize organ local-
ization in a complex segmentation chain consisting of organ localization,
parametric organ model adaptation, and deformable adaptation. In par-
ticular, we consider the Generalized Hough Transformation (GHT) and
3D heart segmentation in Computed Tomography Angiography (CTA)
images. We rate the performance of our GHT variant by the initializa-
tion error and by computation time. Systematic parameter testing on a
compute cluster allows to identify a parametrization with a good trade-
off between reliability and speed. This is achieved with coarse image
sampling, a coarse Hough space resolution and a filtering step that we
introduced to remove unspecific edges. Finally we show that optimiza-
tion of the GHT parametrization results in a segmentation chain with
reduced failure rates.

Keywords: GHT, heart localization, heart segmentation, CTA.

1 Introduction

It is well known that the performance of image processing and analysis algo-
rithms in terms of reliability, accuracy, and speed can strongly depend on param-
eter settings and design variants. Systematic approaches to determine optimal
parameter settings and algorithm design variants are one approach to address
this challenge. In general, the algorithm performance can be optimized by sys-
tematically testing parameter value combinations on image databases and select-
ing those values that minimize a metric of the processing result as used during
validation. Hautvast et al. [1], for instance, performed full factorial experiments
and analyzed the results using the technique of analysis of variances (ANOVA)
to optimize parameter settings of their cardiac MR contour segmentation.

Complex image processing algorithms such as fully automatic heart segmen-
tation [2,3] depend on many design decisions and parameter settings, making
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straightforward optimization difficult. On the one hand, due to processing time
demands, an extensive optimization of an algorithm is often not feasible, even
when large computing recourses are available. Tools from experimental design
[4] can help to efficiently identify relevant parameter combinations and find op-
timal parameter values with limited effort. On the other hand, the influence of
a single parameter or design variant may have a negligible influence on a metric
characterizing the overall processing result. Therefore, approaches for the opti-
mization of individual parts of a complex processing chain are important. An
example is Simulated Search [5] allowing to select optimal boundary detection
functions per triangle in model-based segmentation.

We present an approach to optimize the initial organ localization step in a
complex segmentation chain consisting of organ localization, parametric organ
model adaptation, and deformable adaptation. In particular we consider the Gen-
eralized Hough Transformation (GHT) [6] for 3D localization and model-based
heart segmentation in CTA images. We show that reliability and computational
speed of our GHT variant can be optimized by systematic parameter testing
using a metric for the initialization error resulting in an improved overall seg-
mentation chain.

In the following section, the segmentation chain is outlined, our GHT variant
is described and parameter optimization is introduced. Section 3 describes the
experiments and section 4 presents our conclusions.

2 Methods

2.1 Segmentation Chain

Automatic heart segmentation can be done in four steps. First, the heart is
localized with a GHT and the heart model is placed in the image. Second, pose
and scaling of the heart model are adjusted by parametric adaptation. Third, the
relative sizes of the heart chambers are adjusted using a parametric adaptation
with a piece-wise affine transformation. Finally, accurate adaptation is performed
using shape constrained deformable models.

Fig. 1 shows how adaptation of the heart model to the image improves in the
individual steps. All steps are important, because each step relies on a sufficiently
accurate initialization provided by the previous step [2,5]. Initial heart localiza-
tion is very crucial as the entire segmentation chain fails, if heart localization
fails or is too inaccurate.

2.2 GHT Algorithm

The GHT [6] is a robust and powerful method for detecting a pre-defined shape
undergoing geometric transformations in an image. During learning, a descrip-
tion of the target shape is encoded into a reference table also known as R-table.
The entries of the R-table are vectors pointing from shape boundary points to
a reference point. These vectors are binned by the orientation of the boundary
point. For detecting the position of the shape in a new image, edges are de-
termined. For each detected edge element, the gradient orientation is measured
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(a) (b) (c) (d)

Fig. 1. Heart mesh after GHT-based localization (a), parametric adaptation with a
similarity (b) and piecewise-affine (c) transformation and after deformable adaptation
(d) overlaid onto a CTA image.

yielding an index for an R-table entry, and the positions pointed by all vectors
under this entry are incremented in an accumulator array. This process is called
voting and the accumulator array is also referred to as Hough space. The fi-
nal shape location is given by the highest peak in the accumulator array. Next
to translations, further degrees of freedom such as rotation and scaling can be
handled by increasing the dimension of the Hough space.

Our GHT implementation can be considered as a 3D variant of the Shape
Variant Hough Transform proposed by Brejl and Sonka [7], while we focus in
this application on the determination of translations and scaling levels. In or-
der to take variations in heart shape and orientation into account, images and
corresponding reference meshes of Ntrain individuals were used for training. The
center of gravity of the individual meshes is used to establish a common reference
point. Fig. 2 shows the heart model and a flow chart of our GHT algorithm which
offers multiple options and parameter settings as described in the following.

For our GHT algorithm, training starts by estimating the image gradient
orientation at the triangle centers of the Ntrain heart meshes, which can be done
with a 3 × 3 × 3 Sobel operator or a Canny filter. While Brejl and Sonka [7]
used a border appearance model to control the voting process, we use multiple
independent filters to identify specific edges. Triangles with weak gradients may
be filtered out by defining a threshold tweak edge for the gradient magnitude that
removes the fraction fweak edge of triangles with the smallest gradient magnitude
from R-table construction. In addition, the average gray-value is determined in
a 3×3×3 neighborhood around a triangle center and a desired gray-value range
[gedge,min, gedge,max] for an edge can be defined. Edges with an average gray-
value outside this range are also excluded from R-table construction. Gradient
computation as well as gray-value analysis can be done in combination with
image sub-sampling.

The normalized image gradient is used to assign the triangle centers of the
Ntrain heart meshes to bins of the R-table. For the definition of the bins we use a
simple tiling of a spherical surface with rectilinear cells. Here, the size of the cells
is specified by means of the angular resolution φ. In order to obtain cells with
a similar size, we adapt the value of φ over the sphere. Furthermore, a merging
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(a) (b)

Fig. 2. Heart model (a) and flow chart of our GHT algorithm (b)

step can be applied to reduce the number of R-table entries. For that purpose,
an Euclidean grid with edge length dmerge is generated and triangle centers of
the Ntrain heart meshes in a cell of the grid that belong to the same R-table bin
are replaced by a single R-table entry and a weight wR,i defining the frequency
of the entry. In a subsequent pruning step, R-table entries can be removed if
their weight wR,i is smaller than a threshold wR,Threshold.

For localization, the same pre-processing is applied that has been used for
training, i.e. the gradient computation can either be done with a Sobel oper-
ator or the Canny filter. Weak edges with a gradient magnitude smaller than
the threshold tweak edge as well as edges with an average gray-value outside the
interval [gedge,min, gedge,max] can be filtered out. Gradient computation and gray-
value analysis can be done in combination with sub-sampling. With regard to
the voting and the model point weights, in recent years several extensions of the
GHT have been proposed (see e.g. [8] and [9]). For simplicity, we consider two
basic variants only, voting may use the weights wR,i or all R-table entries may
be attributed the same weight.

2.3 GHT Optimization

Optimization of the GHT parameters and the analysis of design variants require
the definition of a suitable metric. In our application the result of the GHT is
used to position a (transformed) heart model. In order to quantify how well the
this model is positioned in the image, we use the mean constrained point-to-
surface distance [2]:

εGHT =
1
M

M∑
i=1

εΠ(r)(cGHT
i , cref

i ) + εΠ(r)(c
ref
i , cGHT

i )
2

,

with M as the number of triangles and εΠ(r)(cGHT
i , cref

i ) as the smallest Eu-
clidean distance between the triangle center of the GHT initialized mesh and
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a corresponding surface patch in the reference mesh. Here, the surface patch is
restricted to triangles within a small geodesic radius (r = 10.00 mm) around
cref
i . If the initialization error εGHT is small, the GHT-based model placement

is already close to the desired result. Otherwise, the following adaptation steps
may fail, and a segmentation failure may be obtained.

To carry out GHT parameter optimization and to analyze design variants,
different GHTs were trained and evaluated. In order to access the generaliza-
tion capabilities of the different variants, and to avoid a biased analysis, 10-fold
cross validation was employed. Next to the initialization error εGHT, we recorded
the computation time for GHT-based heart localization. Systematic testing of
parameter value combinations was done by grid search.

3 Experiments

3.1 Tested Parameter Values

For testing different GHT parameterizations, we used a database with Ntrain =
89 cardiac CTA images with corresponding ground truth annotations in terms
of reference meshes. For the generation of the 3D ground truth annotations,
automatic segmentations were inspected and refined by a domain expert.

Edge detection was done with the Sobel or the Canny filter. To remove non-
specific edges, the threshold tweak edge was determined to discard the fweak edge =
5% weakest edges. In addition, removal of dark edges was tested, i.e. gedgemin

was determined in a way that 90% or 95% of the triangles have a larger average
gray-value. For image sampling, sub-sampling with 2.0, 3.0, 4.0, and 5.0 mm
was considered. An angular resolution of φ = 4.0, 6.0, and 8.0 deg was used for
the R-table. Merging was offered using an Euclidean edge length matched with
image sub-sampling. For pruning, the thresholds wR,Threshold = 0.05 × NTrain

and 0.10×NTrain were tested. During localization, three scaling levels (0.8, 1.0,
and 1.2) were used. The resolution of the Hough space was matched to the
sub-sampling rate for edge detection and gray-value analysis. Voting was tested
using the weights wR,i resulting from merging, and identical weights for all R-
table entries. In total, this results in 1680 different parametrizations, resp. design
variants for the GHT. For a comprehensive evaluation of all combinations, cross
validation experiments were carried out using a Windows based compute cluster
(5× Dell R710 with 2× Intel(R) Xeon(R) CPU Six Core, X5680 @3.3 GHz, 12
MB cache, 12 GB RAM; Windows HPC Server 2008).

3.2 Parameter Dependence of the GHT

The evaluation of the different parameterizations revealed a broad range of vari-
ations with regard to computation time as well as localization accuracy. Fig. 3
shows a subset of the results as a scatter plot, where each dot refers to the aver-
age outcome in the 89 CTA images evaluated via 10-fold cross validation for one
parametrization. While a large number of different parameterizations resulted in
a reasonable localization accuracy, especially the variation in computation time
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Fig. 3. Overview of the GHT-based localization results. The diagrams show the out-
come for different parameterizations in terms of (median) computation time and (aver-
age) initialization error εGHT. Three specific configurations have been highlighted (see
also section 3.3).

is huge. The scatter plot also shows that there are parameterizations with a good
localization accuracy that are very fast at the same time.

Looking in more details at the parameterizations, the results show that a good
localization of the heart can be achieved already with coarse image sampling and
a coarse resolution of the accumulator (both 5 mm). This is of advantage from a
computational perspective as well as for the memory consumption. Merging and
pruning did allow to reduce the R-table size and increases the localization speed,
while the localization accuracy is only slightly decreased. Voting with identical
weights typically outperformed voting with the weights wR,i from merging.

Even though the GHT turned out to be quite robust with respect to the
employed edge detection techniques, the best results (in terms of accuracy and
speed) were achieved by means of a combination of a Canny filter and gray-
value based acceptance intervals. Both techniques remove unspecific edges which
resulted in an increased speed and localization accuracy. However, the analysis
showed also that an appropriate combination of these techniques is essential.
A very restrictive edge detection strategy resulted often in a poor localization
accuracy since too many edges were removed from the voting process. This shows
that systematic testing is crucial to identify good parameter value combinations.

3.3 Influence of the GHT on Heart Segmentation

Finally, the influence of different GHT parameterizations on the heart segmen-
tation was investigated. This experiment was carried out with 242 CTA datasets
that were independent from the data sets used in section 3.1 and 3.2. These
datasets represent a broad spectrum of diseases and image quality, and have
been acquired with scanners from different vendors at multiple sites. For the
evaluation, reference segmentations were obtained by means of a parametric
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model adaptation followed by a deformable adaptation. In order to achieve an
accurate localization, that is independent from the GHT approach, a manual ini-
tialization of the heart was performed by a domain expert using three landmarks
(apex, center of mitral valve, center of aortic valve).

Three different parameterizations of the GHT were used in these experiments.
They are indicated by A (accurate / slow), B (accurate / fast) and C (inaccurate
/ fast) in the scatter plot of Fig. 3. These GHT parameterizations were used to
initialize the segmentation chain and the resulting segmentation was compared
with the reference segmentation. A segmentation was classified as success if the
constrained point-to-surface error was < 2 mm and as a failure otherwise. Table
1 summarizes the results. Fig. 4 shows examples of successful segmentations.

Table 1. Influence of the GHT parametrization on the segmentation chain. The ini-
tialization error and the median time for localization refer to Fig. 3. Segmentations
with a constrained point-to-surface error > 2 mm were classified as failure.

GHT parameterization Initial. Error Median Time CT failures

(A) accurate / slow 4.38 mm 10.3 sec 4 / 242 (1.7%)
(B) accurate / fast 4.46 mm 0.4 sec 6 / 242 (2.5%)
(C) inaccurate / fast 13.50 mm 0.1 sec 90 / 242 (38.0%)

According to Table 1, an improper GHT parametrization can lead to a very
poor performance of the entire segmentation chain. With a suitable GHT parametriza-
tion, the heart can be detected in a fraction of a second and a failure rate of
2 − 3% of the entire segmentation chain can be achieved. When accepting a
computation time in the order of 10 s for heart localization, the failure rate can
be slightly reduced.

(a) (b)

Fig. 4. Example segmentations for two CTA images
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4 Conclusions

We presented an approach to optimize the initial organ localization step in a
complex segmentation chain consisting of organ localization, parametric organ
model adaptation, and deformable model adaptation. In particular, we consid-
ered the Generalized Hough Transformation (GHT) for heart localization and
heart segmentation in CTA. The GHT performance was measured in terms of
the initialization error and computation time. By systematic parameter testing
on a computing cluster we identified a GHT parametrization allowing fast and
reliable heart localization. A good performance was achieved with coarse image
sampling (5 mm), a coarse Hough space resolution (5 mm) and filtering to re-
move unspecific edges. Finally, we showed that a failure rate for automatic heart
segmentation in CTA images of only 2 − 3% can be achieved with a suitable
GHT parametrization.
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Abstract. In this paper, we propose an automatic method to directly
extract 3D dynamic left ventricle (LV) model from sparse 2D rotational
angiocardiogram (each cardiac phase contains only five projections). The
extracted dynamic model provides quantitative cardiac function for anal-
ysis. The overlay of the model onto 2D real-time fluoroscopic images
provides valuable visual guidance during cardiac intervention. Though
containing severe cardiac motion artifacts, an ungated CT reconstruc-
tion is used in our approach to extract a rough static LV model. The
initialized LV model is projected onto each 2D projection image. The sil-
houette of the projected mesh is deformed to match the boundary of LV
blood pool. The deformation vectors of the silhouette are back-projected
to 3D space and used as anchor points for thin plate spline (TPS) in-
terpolation of other mesh points. The proposed method is validated on
12 synthesized datasets. The extracted 3D LV meshes match the ground
truth quite well with a mean point-to-mesh error of 0.51± 0.11mm. The
preliminary experiments on two real datasets (included a patient and a
pig) show promising results too.

1 Introduction

The real time angiocardiogram on a C-arm system is the workhorse imaging
modality for many cardiac interventions. Nowadays it is becoming desirable
to create a dynamic 3D left ventricle (LV) model automatically, which could
be served to 1) quantitatively evaluate cardiac function, such as LV volume,
LV ejection fraction (EF) and regional wall motion during the intervention, 2)
provide visual guidance during intervention by overlaying this model onto 2D
fluoroscopy, and 3) reduce motion artifacts for 3D image reconstruction [1]. A
direct approach is to segment the LV from cine CT volumes, which are de-
rived by electrocardiogram (ECG) gated reconstruction [2]. However, the X-ray
source/detector needs to sweep 5-6 times to capture enough 2D projection data
for each cardiac phase. The patient is required to hold breath during the whole
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procedure of 30 s (which is difficult to a very sick patient) to remove the respi-
ratory motion. Furthermore, longer acquisition time incurs more radiation dose,
which is a big concern nowadays.

Alternatively, one can generate a dynamic mesh directly from 2D projections.
There are some previous studies using biplane and multi-view systems to recover
thorax and lung [3,4] and the LV surface [5,6,7]. In Lotjonen et al.’s work, a prior
model, which is a representative of average anatomy, is projected onto each 2D
angle. The virtual projection is matched with input image using free form defor-
mation [3,4]. Veistera et al. used triangulated mesh of the LV segmented from
an MR image as prior model and projected the mesh onto each 2D projection.
Manually annotated contour is used to deform the mesh. Moriyama et al. [6]
proposed an iterative framework to recover LV mesh from multi views by fitting
a 4D surface model based on B-splines. However, the geometry is limited to a
star shape due to the spherical coordinates used.

In this paper, we propose a fully automatic method to fit a dynamic 3D LV
model using projection images generated by a single rotation of C-arm. The pro-
posed method has several advantages: 1) Since the prior LV model is segmented
from an ungated volume reconstructed from the 2D projections, the 3D to 2D
mapping is straightforward. 2) The detection of LV blood pool boundary is effi-
cient. The searching is confined to the profiles of silhouette points of projected
mesh, without filtering the entire image. 3) Thin plate spline (TPS) interpola-
tion is used to compute the deformation of the whole mesh. The inclusion of
smoothing factor in TPS allows correction of outliers in estimated deformation
vectors.

2 Method

The main steps of our approach are illustrated in Fig. 1 with the intermediate
results shown in Fig. 2. Firstly a 3D CT volume is reconstructed using all 2D
projections. Though with significant cardiac motion artifacts, the image quality
is good enough for automatic extraction of a rough 3D LV endocardium mesh
model using the approach proposed in [8] (Fig. 2a). We then project this static
mesh onto each 2D image (Fig. 2b). The silhouette is extracted from the pro-
jected mesh and adjusted along the normal direction to the optimal position

Fig. 1. Flowchart of the extraction of 3D dynamic left ventricle meshes
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(a) (b) (c)

(d) (e) (f) (g)

Fig. 2. Intermediate results of the proposed method. (a) Ungated 3D reconstruction
volume overlaid with a static left ventricle (LV) mesh. (b) Projected static mesh (green)
and its silhouette (red). (c) Deforming the silhouette to fit the LV blood pool boundary
(blue). (d) Converting 2D deformation to 3D. (e) Warping the whole mesh using the
silhouettes as anchor points. (f) Re-projection of deformed mesh. (g) Comparison of
the mesh silhouette (red), segmented (blue) and annotated (yellow) LV blood pool.

using a learning based boundary detector (Fig. 2c). The 2D deformation vector
is then back-projected to 3D (Fig. 2d). The patient image we are working on
has 133 projections, which is acquired in 5 s. For a typical heart rate of 70 bpm,
each cardiac phase has only five projections. Thus the mesh deformation is de-
termined by points from five silhouettes, which is used as anchor points for TPS
interpolation (Fig. 2e). In this way a sequence of 3D meshes are generated. The
estimated dynamic mesh can further be re-projected to corresponding 2D angio-
graphic images for further refinement again. The iterative procedure converges
in a few iterations.

2.1 Mesh Silhouette Extraction

On a 2D projection image, the LV blood pool filled with contrast agent is the
most salient image boundary. The LV mesh is deformed to make its silhouette
match the blood pool boundary. An efficient approach is proposed to extract the
silhouette of a projected mesh based on the the connectivity of mesh edges. It
should be noted that the silhouette is not only composed with full length of orig-
inal mesh edges. Two edges not coplanar in 3D may intersect in a 2D projection
and only part of each is on the silhouette (Fig. 3). The general procedure is as
follows. 1) Select candidate mesh edges for the silhouette; 2) Split the candidate
edges at the intersection points; and 3) Edge following to extract silhouette.
The efficiency of our approach comes from two facts: 1) The first step is accom-
plished by topological analysis of the projected mesh. For a triangulated mesh
(e.g., our heart model), an edge cannot be on the silhouette if it is shared by two
triangles on the opposite sides of this edge. Thus most edges are excluded for
further investigation in this step. 2) The second step determines whether an in-
tersection point exists or not for every remaining edge pairs. The computation of
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Fig. 3. Mesh silhouette extraction. Left: Splitting candidate silhouette edges (red)
at the intersection (point C). Right: Edge following, which consistently follows the
right-most edge.

intersection is time consuming. It is sped up by performing a quick condition
check based on bounding box, which uses light operations to reject majority of
the non-intersecting edge pairs. Thus the time consuming intersection computa-
tion is applied to only a few edge pairs.

Finally, an edge following procedure is taken to extract the silhouette from
the split edges (Fig. 3). It is initialized with the right-most point of the projected
mesh, which is guaranteed to be on the silhouette. Initialized with the upward
search direction, it iteratively follows the right-most edge until coming back to
the starting point. The whole path composes the extracted mesh silhouette.

2.2 Blood Pool Segmentation

During the training stage, the manually annotated LV blood pool boundary
is given as input. For each boundary point, the steerable features [8] of pixels
along the normal direction of this point are taken to extracted for a probabilistic
boosting tree (PBT) classifier, which is a combination of the decision tree and
AdaBoost classifier.

Let’s assume the silhouette is composed of N points. During the segmentation
stage, for each silhouette point n, a profile with predefined length K along the
normal direction is extracted. A probability value is computed for each pixel on
the profile based on PBT. Thus an N ×K 2D array A(n, kn) can be computed,
where n denotes the silhouette point index and kn represents the pixel index
along profile n. It is desirable to deform the silhouette contour to pixels with
maximized summation of probability value, under some smoothness constraint
that the difference of displacements between neighboring points is restricted to
be smaller than λ. Mathematically the optimization problem has the form as:

max

N∑
n=1

A(n, kn), under the constraint

{
|k1 − kN | < λ

|kn+1 − kn| < λ,
(1)

It can be solved with an optimal graph search algorithm [9], where a 1D loop
surface can be detected in a 2D graph.
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2.3 Back-Projection of Deformation Vectors

To estimate the 3D motion, we assume that each mesh point is moving along its
surface normal. It is a reasonable assumption since the LV motion is dominated
by the contraction and dilation of the chamber. For each silhouette point M, we
project its 3D normal vector n onto 2D to compute the 2D normal vector nP

nP =
(P(M+ + n+) − PM+)−

‖(P(M+ + n+) − PM+)−‖ , (2)

where P is a 4 × 3 projection matrix for 3D to 2D mapping. Superscript + de-
notes representation of original vectors using the homogeneous coordinate by
adding “1” as another dimension of perspective plane, while superscript − rep-
resents using the original vector (For 2D, (x, y, s) is converted as (x/s, y/s)).
The distance of 3D displacement (t) can be calculated by solving the following
equation,

P(M+ + (nt)+) = M′+
P , (3)

where M′+
P is the 2D homogeneous coordinate of blood pool boundary, which is

also the projection of the mesh point’s new location M′. By expanding Eqn. (3),
we get

P11(Mx + nxt) + P12(My + nyt) + P13(Mz + nzt) + P14Mw

(P31(Mx + nxt) + P32(My + nyt) + P33(Mz + nzt) + P34Mw
= M ′

Px, (4)

where Pij the element at the ith row and jth column of projection matrix P.
(Mx, My, Mz, Mw) is the coordinate of M+, and M ′

Px is the x coordinate of
the 2D blood pool boundary point.

2.4 TPS Interpolation

The 3D positions of non-silhouette mesh points need to be interpolated. The
thin plate spline (TPS) [10] is a popular coordinate interpolation approach by
minimizing a physical energy function,

E =
k∑

i=1

‖f(xi) − yi‖2 + λ

∫∫
R2

[
(
∂2z

∂x2
)2 + 2(

∂2z

∂x∂y
)2 + (

∂2z

∂y2
)2
]

dxdy, (5)

where the first term is the interpolation error of the anchor points and the second
term is the bending energy of the transformation of a “thin plate.” The param-
eter λ is tuned appropriately to control the balance between exact mapping of
anchor points and rigidness of deformation.

3 Experiments

We first validate the proposed method on synthesized datasets using the 3D LV
meshes extracted from 12 4D CT scans, on which we know both the 2D and 3D
ground truth. The whole system is also tested on two real datasets, including a
patient and a pig.
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3.1 Validation on Synthesized Data

In this experiment, we validate the basic assumptions (e.g., the 3D motion di-
rection along the surface normal and TPS interpolation) used in the proposed
method without considering the blood pool segmentation error. The dynamic LV
mesh sequence extracted from 12 4D CT scans are used as ground truth. The
imaging geometry of one real patient data is used, which has 133 projections.
Originally the 4D CT has 10 phases. The dynamic meshes are resampled to 26
phases to mimic the five cardiac cycles during image acquisition. The averaged
mesh of the dynamic sequence is computed as the prior model. The proposed
method is applied to estimate the dynamic sequence, which is compared to the
real sequence to measure the accuracy.

LV volumes and point-to-mesh error are used to measure the difference be-
tween computed meshes and ground truth. Fig. 4 shows the convergence of LV
volume error on 12 sequences through five iterations of the algorithm, where the
error is reduced quickly in the first two iterations. The initial volume error is
about 30 ml. We achieve a mean volume error of 3.27 ± 0.71 ml and relative
volume error of 4.0 ± 4.4%. As shown by the volume curve in Fig. 4, the esti-
mated LV volume matches the ground truth quite well. The estimated ejection
fraction (EF) of 43.7% is close to the true value of 45.8%. For the point-to-mesh
error, the initial mean error is 2.19±0.56 mm, and the final error is significantly
reduced to 0.51±0.11 mm, which is smaller than the mesh resolution (the mean
mesh edge length is 4.29 mm).

Fig. 4. Validation on synthesized data. Left: LV volume error (ml) of 12 mesh se-
quences plotted against the number of iterations; Right: The estimated LV volume
curve and ejection fraction (EF) against the ground truth for one sequence.

3.2 Validation on Real Data

The proposed method is also validated on two real datasets, including a patient
and a pig. For the patient dataset, about five cardiac cycles were captured in the
image sequence with 133 projection images. The frame rate of the pig dataset
was set much higher, resulting in 395 2D projection images, spanning 13 car-
diac cycles. The ECG signal is recorded to assign a cardiac phase to each 2D
projection. Since we do not have ground truth of the 3D mesh, we measure the
distance of the mesh silhouette to the annotated blood pool boundary. The error
of the automatically segmented blood pool (using the approach presented in Sec-
tion 2.2) is also validated, with the mean error of 2.35± 1.32 mm on the patient
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data. The error of the re-projected mesh silhouette is slightly higher, 2.84±1.44
mm. The 2D angiographic images are very noisy and the LV could be occluded
by other highly contrasted structures, e.g., the aorta and the diaphragm. To
study the inter-observer variability, two clinicians were asked to annotate the
blood pool independently. The mean error between the two manual annotations
is 1.60 ± 0.87mm. Fig. 5 shows the extracted LV mesh and the projected sil-
houette on two frames. Our approach is also tested on a pig dataset, where
the image contrast is much lower and there are strong confounding boundaries
nearby such as the LV epicardium. The mesh silhouette error after four iterations
is 5.60 ± 2.05mm.

Using the estimated 3D cardiac motion, we perform motion-compensated re-
construction [11]. As shown in Fig. 6 on the patient dataset, the trabeculations
of the LV is clearly visible after motion compensated.

Fig. 5. Estimated 3D mesh (green mesh) and the re-projected mesh silhouette (red
contour) on two angiographic images. For comparison, the automatically segmented
blood pool boundary (blue) and manual annotation (yellow) are also shown.

Fig. 6. Reconstructed CT volumes using the estimated 3D motion for the patient
dataset. Left: Ungated reconstruction. Middle and Right: Motion-compensated re-
construction for the end-diastolic and end-systolic phases, respectively.

4 Conclusion

We proposed a novel method to automatically extract the 3D dynamic LV model
from 2D rotational angiographic images captured in a single rotation of a C-
arm system. The estimated dynamic model can be used to extracted several
important measurements (e.g., volume and EF) of the LV function and it can also
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be overlaid onto 2D fluoroscopic images to provide visual guidance during cardiac
interventions. The experiment on synthesized data validated the appropriateness
of the proposed method. The feasibility study on two real datasets (a patient
and a pig) showed promising results and we plan to test on more real datasets
in the future. Our approach can be extended to extract other organs with cyclic
motion (e.g., other heart chambers and the aorta).
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Abstract. Conventional cardiac MRI acquisition involves a multi-step
approach, requiring a few double-oblique localizers in order to locate the
heart and prescribe long- and short-axis views of the heart. This approach
is operator-dependent and time-consuming. We propose a new approach
to automating and accelerating the acquisition process to improve the
clinical workflow. We capture a highly accelerated static 3D full-chest
volume through parallel imaging within one breath-hold. The left ven-
tricle is localized and segmented, including left ventricle outflow tract.
A number of cardiac landmarks are then detected to anchor the cardiac
chambers and calculate standard 2-, 3-, and 4-chamber long-axis views
along with a short-axis stack. Learning-based algorithms are applied to
anatomy segmentation and anchor detection. The proposed algorithm is
evaluated on 173 localizer acquisitions. The entire view planning is fully
automatic and takes less than 10 seconds in our experiments.

1 Introduction

Accurate morphological and functional measurements of the heart are essential
in clinical applications for diagnosis, prognostic, and therapeutic decisions. Mag-
netic resonance imaging (MRI) allows morphological characterization of heart
structures with precision. For the past decade, there has been a great deal of
efforts focused on automatic cardiac segmentation [5,1,2], however, less atten-
tion has been paid to automatic and fast planning for cardiac MRI acquisi-
tion [7,8,4,6], which still remains challenging in clinical practice.

During conventional cardiac MRI acquisition, anchoring the heart is typi-
cally performed using a multi-step approach involving the acquisition of double-
oblique slices in order to localize the long and short-axis of the heart. Based on
those localizers the standard heart views (e.g, 2-chamber, 3-chamber, 4-chamber
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and short-axis views from base to apex) are planned. This approach is operator-
dependent and time consuming. For example, a typical protocol starts with cap-
turing coronal localizers, followed by multi-slice localizer at different orientations
in order to align the left ventricle (LV) with the isocenter of the scanner; then
one vertical long-axis localizer is planned on transversal slice and one horizontal
long-axis localizer is planned on vertical long-axis view, from which a few short-
axis views are planned; based on the short-axis views, 2-, 3-, and 4-chamber
views are planned; and finally the short axis stack is planned on the 4-chamber
view. It requires detailed knowledge of the heart for operators to plan the views
at every step during this long process, while the patient is in the scanner.

As parallel MR imaging techniques rapidly advance, single breath-hold acqui-
sitions with full chest coverage become feasible. Instead of acquiring a series of
2D localizer slices with operator interventions, a direct approach to prescribing
the clinically relevant slices in a fully automated fashion from a single acquisi-
tion would be highly beneficial. However, this is a challenging task in order to be
clinically viable because it requires a robust approach to differentiating the heart
from other complex anatomical structures in a full-chest volume, accounting for
large variations across populations, and with quick response time.

Lelieveldt et al. [7,8] proposed fuzzy implicit surface templates to model tho-
racic anatomies and automatically estimate the LV orientation for view planning.
The method was evaluated on 20 volumes and planning was for short-axis stack
only. Danilouchkine et al. [4] quantitatively evaluated the difference of clinical
meansurements derived from acquisitions between manual and automatic plan-
ning on 10 healthy volunteers, concluding that automated CMR planning meth-
ods could provide accurate measurements of LV dimensions in normal subjects.
In addition to the short-axis stack, long-axis images also provides clinical values,
such as through-plane motion analysis [2]. Jackson et al. [6] proposed a semi-
automatic approach for planning short-axis stack, and two long-axis views, i.e.,
HLA (4-chamber view) and VLA (2-chamber view). User interaction is needed
for chamber segmentations, which were based on an EM algorithm. The approach
was evaluated on 12 volunteers.

We propose a fully automatic algorithm to prescribe short-axis stack and
standard long-axis view, including 2-, 3-, and 4-chamber views, from a single 3D
MR volume for cardiac MRI acquisition. Our approach to improving the clinical
workflow is based on machine learning based methods to localize and delineate
cardiac anatomies in a 3D volume, and detect a set of cardiac landmarks to
anchor chambers in order to prescribe the views. The proposed approach is
evaluated on 173 localizer volumes from 100 subjects.

2 Methodology

2.1 Overall Workflow

Our view planning workflow for cardiac MRI acquisition as shown in Fig. 1 con-
tains the following steps: 1) 3D static volume acquisition; 2) LV localization (pose
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Fig. 1. System workflow, Numbers indicate the steps illustrated in Sec. 2.1.

estimation) and delineation (boundary extraction); 3) short axis stack prescrip-
tion; 4) 3-chamber view calculation; 5) landmark detection in mid-ventricular
slice(s); 6) 4-chamber and 2-chamber view calculations.

For LV delineation and landmark detection, we adapted the basic approaches
presented in [12] and [9] due to computational efficiency and accuracy. For com-
pleteness, we briefly describe the methods in our application context.

A mesh representation of the anatomical shape is created using a database of
3D volumes that are manually delineated. For left ventricle, this anatomically
accurate model is composed of LV endocardium, LV epicardium, and LVOT.
The LV model is a triangular mesh as shown Fig. 2. It is used to fit to a given
3D cardiac volume to delineate corresponding anatomical structures. Including
LVOT into our workflow helps anchor the 3-chamber view.

Fig. 2. Triangular mesh model for left ventricle and LV outflow tract (LVOT)
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2.2 LV Localization and Delineation

The LV pose (i.e., positions, orientations, and scales) in a 3D volume is first
estimated at the LV localization stage. At the subsequent delineation stage,
local deformations of the model with the estimated pose are applied in order to
fit the model to LV boundaries.

Learning-based object detection approaches have been demonstrated success-
ful in many applications [11]. Learning-based methods trained on expert anno-
tations are appropriate to handle complex appearance and heterogeneous char-
acteristics of anatomical features in medical images, as the complex prior knowl-
edge is implicitly encoded.

In order to estimate the LV pose, we need to solve for the nine-parameter
space, including three translations, three orientations, and three scales. We de-
sign a series of detectors that estimate parameters at a number of sequential
stages in the order of complexity, i.e., translation, orientation, and scale. Mul-
tiple hypotheses are maintained between stages, which quickly removes false
hypotheses at the earlier stages while propagating the right hypothesis to the
final stage. Only one hypothesis is selected as the final detection result.

A large database is collected with LV annotated. For each detector, a set of
positive and negative samples are extracted from the annotated database with
positive samples as the true targets (close to the ground truth) and negative
samples as others (far away from the ground truth). The detection task is a
binary classification. Our detectors to estimate the LV pose and extract LV
boundaries are constructed using probabilistic boosting trees (PBT) [10], which
select a set of discriminative features that are used to distinguish the positive
samples from negatives from a large pool of features. The classifier is a tree-based
structure with which the posterior probabilities of the presence of the object of
interest are calculated from given data. The nodes in the tree are constructed by
a nonlinear combination of simple classifiers using boosting techniques. For the
detector at the translation stage, we choose 3D Haar wavelet-like features, which
are calculated efficiently using integral image-based techniques. For the detectors
at the orientation and scale search stages, steerable features [12] are applied,
whose computation does not require volume rotation and re-scaling, which are
computationally expensive, especially when the hypothesis search space is large.
The boundary detectors also use steerable features.

With the model pose estimated, we align the mean shape (average model
of all annotations) with data to get an initial estimate of the object shape.
To capture the true anatomical morphology of the LV shape, we deform the
mean LV model by searching the boundary for each vertex of the model. The
boundary hypotheses are taken along the normal directions at each vertex of the
mean model. Detection is achieved using a boundary detector trained by PBT
with steerable features. The detected boundaries are constrained by projecting
the detected model onto a shape subspace obtained by the annotated dataset,
which was constructed using principal component analysis [3]. As a result, the
mesh model is fitted to given volumetric data in alignment with the LV.
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2.3 View Planning

With the left ventricle delineated, a few cardiac anchors are computed. In our
mesh model, the LV base and apex have corresponding vertices. The LV base
center is calculated as the centroid of the vertices on the LV base. The LV long
axis is calculated by connecting the LV base center and the apex, which is also
used to plan the short-axis stack. The method of fitting a line across centers
of all short axis MPRs as shown in [7] and [6] is also applicable. The entire
short axis stack can then be planned from base to apex. To plan the 2- and
4- chamber views, we reconstruct a mid-ventricular short axis slice (MPR) from
the short axis stack, and apply the landmark detection algorithm proposed in [9]
to localize the anterior and inferior RV insertion points. The 2-chamber view is
calculated to be in parallel to the line connecting the two RV insertion points
and cross the LV blood pool center that lies on the short-axis MPR used for
landmark detection, which is obtained through the detected LV mesh. The 4-
chamber view is computed to cross the LV blood pool center and the RV lateral
point (the green landmark in Fig. 1). Fig. 1 presents an example of all planned
views.

3 Experiments

A 3D full-chest MR scan was obtained through parallel imaging within a single
breath-hold. A single volume was acquired at mid-diastole using an ECG gated
segmented acquisition with T2-prepared SSFP readout with chemical shift fat
suppression. Typical protocol parameters are: 400x400x220 mm3 FOV prescribed
as a coronal slab with matrix of 256x202x44, corresponding to 1.6x2x5 mm3

resolution, interpolated to 2.5 mm slices. Images are acquired on 1.5T Siemens
MAGNETOM Avanto/Espree with a 32 channel coil enabling parallel imaging
with acceleration rate 6=3x2 (PE in LR direction x PAR in AP direction) and
3/4 partial Fourier in PAR dimension. Breath-hold duration is typically less
than 20s with all PE lines acquired in a single shot per heartbeat. 88 volumes
from 77 patients were acquired under this protocol, which we called the baseline
protocol. In addition, a few experimental localizer protocols were applied to
investigate the image variations by modifying acquisition parameters such as the
number of breathholds, the number of slices per heart beat, real-time acquisition,
etc., resulting in additional 85 volumes from a combination of 23 volunteers
and patients. In total, 173 localizer volumes from 100 subjects were collected.
Examples acquired with different protocols are provided in Fig. 3.

For each volume, the left ventricle was manually delineated using triangular
mesh representations as ground truth, including endocardium, epicardium, and
LVOT boundaries. The standard 2-, 3-, 4-chamber views were also manually
identified by visually navigating the volume in 3D, with each view recorded by a
combination of a plane normal vector and an anchor on the plane. The LV long
axis groundtruth is calculated as a vector from the LV apex pointing toward LV
base center (the centroid of mesh points in the mitral plane), which was used as
the normal direction of the short-axis stack.



484 X. Lu et al.

Fig. 3. Examples of volumes captured with different protocols in our database. (a)-(b)
Acquisitions using the baseline protocol protocol. (d)-(e) Acquisitions with the variants
of the baseline protocol.

A 4-fold cross-validation scheme was applied for evaluation. The entire 173
volumes were randomly partitioned into four quarters. No volumes from the
same subject were partitioned into different quarters. For each fold evaluation,
three quarters were combined for training and the remaining one quarter was
used as unseen data for testing. This procedure was repeated four times so that
each volume has been used once for testing. To evaluate the LV delineation
results, for each fitted mesh, the distance from each vertex to the groundtruth
mesh (manual annotation) was computed (so called point-to-mesh distance).
The average of distances from all vertices of the fitted mesh was used as the
measurement. The mean, standard deviation, and median values of this distance
measurement are 4.96mm, 10.35mm, and 2.51mm, respectively, which indicate
a good delineation and anchoring for the subsequent view calculation. Large
standard deviations are due to detection outliers.

Fully automated view planning examples are provided in Fig. 4. For short-axis
stack planning evaluation: the LV long axis (i.e., the normal of the prescribed
short-axis stack) is used to evaluate short-axis stack axis direction estimation
accuracy, which is calculated as the angle between the estimated LV long axis
and the annotated ground truth; to evaluate the coverage of the prescribed
short-axis stack, the groundtruth LV base and LV apex are projected onto the
estimated LV long axis, then the distances from the projected groundtruth to
the automatically estimated base and apex positions are computed. For long-
axis view planning evaluation: each estimated view is represented by its normal
vector and an anchor on the plane; the angle difference is calculated between
the normal vector and the ground truth normal direction; the anchor position
difference from the groundtruth is computed as the point-to-plane distance from
the anchor on the detected view to the annotated groundtruth view plane; the
anchor on the detected view is the LV blood pool center on the prescribed mid-
ventricle slice (see Sec. 2.3) for landmark detection. Performance is summarized
in Table 1. Large errors are mostly due to image artifact and poor image quality
such as the examples shown in Figs. 3(c) and (d).

On average, it took about 5 seconds to localize and delineate the LV from
a single full-chest volume (e.g, 256×256×112), and about half a second to de-
tect landmarks from a mid-ventriclar slice. The entire LV anchoring and view
planning process took about 7 seconds on an Intel core-duo 2.66GHz CPU.
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Fig. 4. Automatic view planning examples. (a) Original 3D volume. (b) LV delineation
results. The prescribed 2-, 3-, and 4-chamber views are provided in (c)-(e), respectively.

Table 1. Automatic view planning evaluation by a 4-fold cross validation. Axis and
angle differences are measured in degrees and position difference is measured in mm.

Short-axis stack 2-chamber view 3-chamber view 4-chamber view
Axis Base Apex Angle Position Angle Position Angle Position

Mean 8.6 13.3 11.7 18.9 6.6 12.3 4.6 17.6 5.7

Std 9.7 16.7 20.6 21.0 8.8 11.0 7.7 19.2 8.5

Median 5.5 7.4 6.1 10.7 4.0 8.9 2.6 9.8 3.7

4 Conclusions

We have presented a fully automatic and fast approach to view planning for
cardiac MRI aquisition. Even in the presence of large image variations due to a
mixture of experimental protocols, the proposed approach shows its capability
to handle a majority of cases with reasonable image quality. With this approach,
time for LV acquisition planning can be significantly reduced. Our future focus
is to further improve view planning accuracies to overcome poor image quality
and large image variation challenges.
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Abstract. As a minimally invasive surgery to treat left atrial (LA) fib-
rillation, catheter based ablation uses high radio-frequency energy to
eliminate potential sources of the abnormal electrical events, especially
around the ostia of pulmonary veins (PV). Due to large structural vari-
ations of the PV drainage pattern, a personalized LA model is helpful
to translate a generic ablation strategy to a specific patient’s anatomy.
Overlaying the LA model onto 2D fluoroscopic images provides valu-
able visual guidance during surgery. A holistic shape model is not ac-
curate enough to represent the whole shape population of the LA. In
this paper, we propose a part based LA model (including the cham-
ber, appendage, and four major PVs) and each part is a much simpler
anatomical structure compared to the holistic one. Our approach works
on un-gated C-arm CT, where thin boundaries between the LA blood
pool and surrounding tissues are often blurred due to the cardiac mo-
tion artifacts (which presents a big challenge compared to the highly
contrasted gated CT/MRI). To avoid segmentation leakage, the shape
prior is exploited in a model based approach to segment the LA parts.
However, independent detection of each part is not optimal and its ro-
bustness needs further improvement (especially for the appendage and
PVs). We propose to enforce a statistical shape constraint during the es-
timation of pose parameters (position, orientation, and size) of different
parts. Our approach is computationally efficient, taking about 1.5 s to
process a volume with 256×256×250 voxels. Experiments on 469 C-arm
CT datasets demonstrate its robustness.

1 Introduction

About 15% of all strokes (which is the third leading cause of death in the USA)
are caused by atrial fibrillation (AF) [1]. As a widely used minimally invasive
surgery to treat AF, the catheter based ablation procedure uses high radio-
frequency energy to eliminate the sources of ectopic foci, especially around the
ostia of the appendage and the pulmonary veins (PV). Automatic segmentation
of the left atrium (LA) is important for the pre-operative assessment to identify
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the potential sources of the abnormal electrical events [2,3]. However, there are
large variations in the PV drainage patterns [4] and the most common variations
(about 20-30% of the whole population) are extra right PVs and left common
PV (where the two left PVs merge into one before joining the chamber). A
personalized LA model can help to translate a generic ablation strategy to the
specific patient’s anatomy, thus making the ablation strategy more effective for
this patient. It can also be overlaid onto 2D real-time fluoroscopic images to
provide visual guidance during surgery (Fig. 1).

The previous LA segmentation methods can be roughly categorized as non-
model based or model based approaches. The non-model based approaches [2,3]
do not assume any prior knowledge of the LA shape and the whole segmentation
procedure is purely data driven. For example, John and Rahn [2] proposed to
use region growing to extract the highly contrasted blood pool in computed
tomography (CT) or magnetic resonance imaging (MRI) data, followed by a
split-and-merge procedure to identify the LA. The advantage of these methods
is that they can handle structural variations of the PVs. However, such methods
cannot provide the underlying anatomical information (e.g., which part of the
segmentation is the left inferior PV). In practice, non-model based approaches
work well on CT and MRI datasets, but they are not robust on challenging C-
arm CT. The model based approaches exploit a prior shape of the LA (either in
the form of an atlas [5,6] or a mean shape mesh [7]) to guide the segmentation.
For example, Manzke et al. [7] built a mean shape of the combined structure of
the LA chamber and PVs from a training set. With a prior shape constraint,
they could avoid the leakage around weak or missing boundaries, which plagues
the non-model based approaches. However, using one mean shape, it is difficult
to handle the structural variations, e.g., the left common PV. Furthermore, they
did not segment the LA appendage. The PV variations were addressed in [6]
using multiple atlases, at the cost of extra computation time.

In this paper, we propose a fully automatic LA segmentation system on C-
arm CT. Compared to conventional CT or MRI, the advantage of C-arm CT
is that overlay of the 3D patient-specific LA model onto a 2D fluoroscopic
image is straightforward and accurate since both the 3D and 2D images are
captured on the same device within a short time interval. Normally, a non-
electrocardiography-gated acquisition is performed to reconstruct a C-arm CT
volume, therefore, it contains severe cardiac motion artifacts. For a C-arm with
a small X-ray detector panel, part of the body may be missing in some 2D X-
ray projections due to the limited field-of-view, resulting in significant artifacts
around the margin of a reconstructed volume. In addition, there may be severe
streak artifacts caused by various catheters inserted in the heart. These chal-
lenges are addressed using a model based approach, which also takes advantage
of a machine learning based object pose detector and boundary detector [8].

Instead of using one mean model [7], the PV structural variations are ad-
dressed using a part based model, where the whole LA is split into the chamber,
appendage, and four major PVs. Each part is a much simpler anatomical struc-
ture compared to the holistic one, therefore can be detected and segmented using
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Fig. 1. Part based left atrium (LA) mesh model. Left: Meshes for the separate LA
parts. Middle: Final consolidated mesh model. Right: Overlay of the model onto
fluoroscopic images to provide visual guidance during surgery. Note: Cyan for the LA
chamber, dark red for the appendage, green for the left inferior pulmonary vein (PV),
magenta for the left superior PV, orange for the right inferior PV, and blue for the
right superior PV.

a model based approach. In order to increase robustness, we detect the most re-
liable structure (the LA chamber) and use it to constrain the detection of other
parts (the appendage and PVs). Experiments show that it is better to treat the
LA chamber and appendage as a single object to improve the detection robust-
ness of the appendage. Due to the large variations, the relative position of the
PVs to the LA chamber varies quite a lot. A statistical shape model is used to
enforce a proper constraint during the estimation of the PV pose parameters (po-
sition, orientation, and size). The proposed method is computationally efficient,
taking about 1.5 s to process a volume with 256 × 256 × 250 voxels. Extensive
experiments on 469 un-gated C-arm CT datasets demonstrate the robustness of
the proposed method.

2 Multi-part Left Atrium Modeling and Segmentation

2.1 Part Based Left Atrium Model

As shown in the left column of Fig. 1, our part based LA model includes the LA
chamber body, appendage, and four major PVs. The shape of the appendage is
close to a tilted cone and the PVs have a tubular structure. For AF ablation,
physicians only care about a proximal PV trunk, therefore, we only detect a
trunk of 20 mm in length, originating from its ostium. Each LA part is a much
simpler anatomical structure compared to the holistic one, therefore can be de-
tected and segmented using a model based approach. We use marginal space
learning (MSL) [8] to detect and segment each part. MSL is an efficient method
to estimate the position, orientation, and size of the object in a 3D volume. After
automatic object pose estimation, a mean shape is aligned with the pose as an
initial mesh. A machine learning based boundary detector [8] is used to guide
the boundary evolution. For each LA part, we have an MSL based pose detector
and a learning based boundary detector. Interested readers are referred to [8] for
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Fig. 2. Pulmonary vein (PV) segmentation results on two datasets. Left: A patient
with separate left inferior (green) and superior (magenta) PVs. Right: A patient with
the left common PV.

more details of MSL. After detecting/segmenting all parts, we merge them into a
consolidated mesh (the middle column of Fig. 1), using the technique presented
in Section 2.3.

2.2 Constrained Detection of LA Parts

Compared to the holistic approach [7], the part based approach can handle large
structural variations. The MSL based detection/segmentation works well for the
LA chamber. However, independent detection of other parts is not robust, either
due to the low contrast (appendage) or the small object size (PVs). In C-arm CT,
the appendage is particularly difficult to detect since the appendage is a pouch
without outlet and the blood flow is slow inside the appendage, preventing the
complete filling of contrast agent. In many datasets, the appendage is only barely
visible. The MSL detector may pick the neighboring left superior PV, which often
touches the appendage and has higher contrast. However, the relative position
of the appendage to the chamber is quite consistent. The best performance is
achieved by treating the appendage and chamber as a consolidated object. One
MSL based pose detector is trained to detect the combined object.

Through comparison experiments, we found neither a holistic approach nor
independent detection worked for the PVs. In this paper, we propose to en-
force a statistical shape constraint [9] in PV detection. The point distribution
model (PDM) is often used to enforce the statistical shape constraint among
a set of landmarks. The shape variation is decomposed into orthogonal defor-
mation modes through principal component analysis (PCA). A deformed shape
is projected into a low dimensional deformation subspace to enforce a statis-
tical shape constraint. For each PV, an MSL detector can estimate nine pose
parameters, i.e., three position parameter (Tx, Ty, Tz), three orientation Euler
angles (Ox, Oy, Oz), and three anisotropic scaling parameters (Sx, Sy, Sz). Dif-
ferent to the conventional PDM, we also want to enforce the constraint among
the estimated orientation and size of PVs. One solution is to stack all PV pose
parameters into a big vector to perform PCA. However, the position and orien-
tation parameters are measured in different units. If not weighted properly, the
extracted deformation modes may be dominated by one category of transforma-
tion. Furthermore, the Euler angles are periodic (with a period of 2π), which
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prevents the application of PCA. Boisvert et al. [10] proposed to build a shape
model on a Riemannian manifold on which we have an intrinsic measurement of
the orientation distance. However, they still need to heuristically assign a proper
weight to the distance in translation w.r.t. the distance in orientation.

In this work, we use a new presentation of the pose parameters to avoid the
above problems. The object pose can be fully represented by the object center
T together with three scaled orthogonal axes. Alternative to the Euler angles,
the object orientation can be represented as a rotation matrix R = (Rx, Ry, Rz)
and each column of R defines an axis. The object pose parameters can be fully
represented by a four-point set (T , Vx, Vy , Vz), where

Vx = T + SxRx, Vy = T + SyRy, Vz = T + SzRz. (1)

The pose of each PV is represented as four points. Besides the constraint among
the PVs, we also add the already detected LA chamber center and appendage
center to stabilize the detection. In total, we get a set of 18 points.

In our experiments, after detecting the position, orientation, size of the PVs,
we project their poses into a subspace with eight dimensions (which explains
about 75% of the total variation) to enforce a statistical shape constraint. After
enforcing a statistical shape constraint, the PV center is given by point T̂ . We
can recover the orientation (R̂) and scale (Ŝ) by simple inversion of Eq. (1).
However, the estimate R̂ is generally not a true rotation matrix (R̂T R̂ �= I). We
want to find the nearest rotation matrix Ro to minimize the sum of squares of
elements in the difference matrix Ro − R̂, which is equivalent to

Ro = arg min
R

Trace((R − R̂)T (R − R̂)), (2)

subject to RT
o Ro = I. Here, Trace(.) is sum of the diagonal elements. The optimal

solution [11] is given by
Ro = R̂(R̂T R̂)−1/2. (3)

2.3 Mesh Consolidation

After constrained detection and segmentation, we get six separate meshes (the
LA chamber, appendage, and four PVs), as shown in Fig. 1. There may be gaps
and/or intersections among different meshes. The physicians prefer a consol-
idated mesh with different anatomical structures labeled with different colors.
We first project the proximal rim of a PV or appendage along the centerline onto
the LA chamber to eliminate the gaps among different mesh parts (Fig. 3b). Now,
the part meshes are fully connected. However, the mesh intersections may still
be present since a piece of the PV mesh may lie inside the chamber. It is compli-
cated to work directly on the meshes. Instead, we convert the meshes to a volume
mask (Fig. 3c), and generate a new mesh (Fig. 3d) from the volume mask using
the marching cubes algorithm [12]. Since PV/appendage meshes are connected
to the LA chamber in a pure geometric operation, the region around the ostia
is not segmented accurately. After converting the meshes to a volume mask, we
perform constrained region growing a few layers to improve the segmentation
accuracy around the ostia of appendage and PVs.
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(a) (b) (c) (d)

Fig. 3. Generating a consolidated left atrium (LA) mesh from separate parts. (a) Sep-
arate meshes of the pulmonary veins (PV) and LA chamber. (b) After connecting the
PV meshes to the LA chamber. The added mesh pieces are shown in red. (c) Volume
mask generated from the meshes. (d) Consolidated mesh.

Table 1. Left atrium segmentation errors (based on four-fold cross validation) on
C-arm CT datasets with 253 large volumes and 216 small volumes. The symmetric
surface-to-surface errors, measured in millimeters (mm), are reported.

Large Volumes Small Volumes
Holistic Independent Proposed Holistic Independent Proposed

Mean Median Mean Median Mean Median Mean Median Mean Median Mean Median

LA Chamber 1.82 1.69 1.76 1.60 1.69 1.49 2.01 1.77 1.87 1.70 1.81 1.62
Appendage 3.28 2.65 3.49 2.49 2.89 2.18 3.41 2.67 3.77 3.01 2.93 2.49
Left Inf. PV 3.08 2.49 2.01 1.59 1.88 1.54 4.12 2.89 2.35 1.66 2.01 1.76
Left Sup. PV 2.77 2.21 1.82 1.42 1.83 1.39 3.48 2.44 2.56 1.54 1.88 1.49
Right Inf. PV 3.77 2.81 2.15 1.44 1.89 1.43 3.93 3.09 2.34 1.66 2.10 1.74
Right Sup. PV 2.68 2.29 1.74 1.35 1.61 1.40 3.08 2.50 1.72 1.35 1.62 1.31

Whole Mesh 2.00 1.86 1.71 1.58 1.63 1.51 2.17 1.98 1.79 1.63 1.71 1.55

3 Experiments

We collected 469 C-arm CT datasets, scanned by Siemens Axiom Artis zee C-
arm systems at 17 clinical sites from Europe and the USA. Among them, 253
datasets were scanned with large X-ray detector panels (30 × 40 cm2) with an
isotropic volume resolution of 0.30 mm3. The other 216 datasets were scanned
with small X-ray detectors (20×20 cm2) with a volume resolution of 0.18 mm3.
Due to the limited field-of-view of a small X-ray detector, the reconstructed
volumes may contain significant artifacts, especially around the volume margin.
Due to the heterogeneity of the datasets, we train two separate systems for the
large and small volumes, respectively.

A four-fold cross validation is performed to evaluate our algorithm and the
segmentation accuracy is measured using the symmetric surface-to-surface dis-
tance. Table 1 shows segmentation errors of the consolidated mesh using various
approaches. For a mesh part, we measure the distance to the corresponding part
in the ground truth, therefore both the segmentation and mesh part labeling
errors are penalized. At the bottom row of Table 1, we also list the whole mesh
segmentation error without considering the mesh part labeling. If we treat the
whole LA mesh as a holistic object, the segmentation errors are large, especially
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Fig. 4. The left atrium segmentation results on a large volume (top row) and a small
volume (bottom row) with different colors for different mesh parts. Three different
views are shown for each volume.

for the PVs due to the structural variations. Independent detection of the parts
can significantly improve the PV segmentation accuracy. However, the LA ap-
pendage segmentation is deteriorated. Using the proposed method, we improve
the segmentation for all LA parts. Compared to the independent detection, on
average, we achieve about 10% reduction in mean error for PVs (up to 26.6%
reduction for the left superior PV on small volumes). Inferior PVs have larger
errors than superior PVs since they are more likely to be cut by the volume
borders.

We cannot directly compare our segmentation accuracy with those reported
in the literature due to the difference in imaging modalities, datasets, and LA
models. There is no quantitative evaluation available in [2,3]. To the best of our
knowledge, there is only one previous work [7] on the LA segmentation on C-arm
CT, which was validated on large volumes only and did not segment the more
challenging LA appendage. After excluding the LA appendage, we achieve an
overall segmentation error of 1.50 mm for large volumes and 1.63 mm for small
volumes. In [7], a mean segmentation error of 1.3 mm is reported on 33 datasets
(which is significantly smaller than ours). Their segmentation is initialized with
a holistic mean shape. It is not clear if patients with the left common PV are
included in their limited datasets, since a holistic approach has difficulty to
handle such structural variations. We also notice that the mesh triangles near
the distal bounds of the truncated PVs (9.4% of all triangles) are excluded from
the error measurement, however, we include all mesh triangles in evaluation.

The proposed method is computationally efficient, taking about 1.5 s (on
a computer with quad-core 2.33 GHz CPUs and 3 GB memory) to process a
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volume with 256 × 256 × 250 voxels. It compares favorably with the previous
methods, e.g., 5 s in [5], 5-45 s in [2], 30 s in [7], and more than two hours in [6].

4 Conclusion

We proposed a part based model for the automatic segmentation of the LA (in-
cluding chamber, appendage, and four major PVs) in C-arm CT volumes, which
can handle structural variations elegantly. Extensive experiments on 469 un-
gated C-arm CT datasets demonstrated the robustness and efficiency of the pro-
posed method. As an extension, we are currently working on the automatic seg-
mentation of the extra right PVs if they are present. Our system is re-trainable,
therefore can be extended to different medical imaging modalities, e.g., MRI and
conventional CT.

References

1. Lloyd-Jones, D., Adams, R., Carnethon, M., et al.: Heart disease and stroke statis-
tics – 2009 update. Circulation 119(3), 21–181 (2009)

2. John, M., Rahn, N.: Automatic left atrium segmentation by cutting the blood pool
at narrowings. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750,
pp. 798–805. Springer, Heidelberg (2005)

3. Karim, R., Mohiaddin, R., Rueckert, D.: Left atrium segmentation for atrial fibril-
lation ablation. In: Proc. of SPIE Medical Imaging (2008)

4. Marom, E.M., Herndon, J.E., Kim, Y.K., McAdams, H.P.: Variations in pulmonary
venous drainage to the left atrium: Implications for radiofrequency ablation. Ra-
diology 230, 824–829 (2004)

5. Karim, R., Juli, C., Lawes, L.M., Kanangaratnam, P., Davies, D.W., Peters,
N.S., Rueckert, D.: Automatic segmentation of left atrial geometry from contrast-
enhanced magnetic resonance images using a probabilistic atlas. In: Camara, O.,
Pop, M., Rhode, K., Sermesant, M., Smith, N., Young, A. (eds.) STACOM 2010.
LNCS, vol. 6364, pp. 134–143. Springer, Heidelberg (2010)

6. Depa, M., Sabuncu, M.R., Holmvang, G., Nezafat, R., Schmidt, E.J., Golland, P.:
Robust atlas-based segmentation of highly variable anatomy: Left atrium segmen-
tation. In: Camara, O., Pop, M., Rhode, K., Sermesant, M., Smith, N., Young, A.
(eds.) STACOM 2010. LNCS, vol. 6364, pp. 85–94. Springer, Heidelberg (2010)

7. Manzke, R., Meyer, C., Ecabert, O., Peters, J., Noordhoek, N.J., Thiagalingam,
A., Reddy, V.Y., Chan, R.C., Weese, J.: Automatic segmentation of rotational X-
ray images for anatomic intra-procedural surface generation in atrial fibrillation
ablation procedures. IEEE Trans. Medical Imaging 29(2), 260–272 (2010)

8. Zheng, Y., Barbu, A., Georgescu, B., Scheuering, M., Comaniciu, D.: Four-chamber
heart modeling and automatic segmentation for 3D cardiac CT volumes us-
ing marginal space learning and steerable features. IEEE Trans. Medical Imag-
ing 27(11), 1668–1681 (2008)

9. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models—their
training and application. Computer Vision and Image Understanding 61(1), 38–59
(1995)



Multi-part Left Atrium Modeling and Segmentation in C-Arm CT Volumes 495

10. Boisvert, J., Pennec, X., Labelle, H., Cheriet, F., Ayache, N.: Principal spine
shape deformation modes using Riemannian geometry and articulated models.
In: Perales, F.J., Fisher, R.B. (eds.) AMDO 2006. LNCS, vol. 4069, pp. 346–355.
Springer, Heidelberg (2006)

11. Horn, B.K.P.: Closed form solution of absolute orientation using unit quaternions.
Journal of the Optical Society A 4(4), 629–642 (1987)

12. Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3D surface con-
struction algorithm. Computer Graphics 21(4), 163–169 (1987)



Accurate and Robust Fully-Automatic QCA:
Method and Numerical Validation

Antonio Hernández-Vela1,2, Carlo Gatta1,2, Sergio Escalera1,2,
Laura Igual1,2, Victoria Martin-Yuste3, and Petia Radeva1,2

1 Dept. MAIA, Universitat de Barcelona, Gran Via 585, 08007 Barcelona, Spain
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Abstract. The Quantitative Coronary Angiography (QCA) is a methodology
used to evaluate the arterial diseases and, in particular, the degree of stenosis. In
this paper we propose AQCA, a fully automatic method for vessel segmentation
based on graph cut theory. Vesselness, geodesic paths and a new multi-scale ed-
geness map are used to compute a globally optimal artery segmentation. We eval-
uate the method performance in a rigorous numerical way on two datasets. The
method can detect an artery with precision 92.9± 5% and sensitivity 94.2± 6%.
The average absolute distance error between detected and ground truth centerline
is 1.13 ± 0.11 pixels (about 0.27 ± 0.025mm) and the absolute relative error in
the vessel caliber estimation is 2.93% with almost no bias. Moreover, the method
can discriminate between arteries and catheter with an accuracy of 96.4%.

Keywords: Vessel segmentation, centerline extraction, QCA, GraphCut.

1 Introduction

The enhancement and segmentation of tubular structures and/or vessel-like structures is
a prolific topic in the medical imaging research; many methods, exploiting photometric
and structural properties of tubular structures have been proposed (see e.g. a complete
review of recent methodologies for CTA segmentation in [11,1]). Nonetheless, in the
case of vessel segmentation in angiography sequences, the problem is still very hard;
highly reliable, fully automatic methods are not established yet [5]. Finally, accurate
segmentation is still a hot topic and far from being solved, as demonstrated by the
excellent scale selection method proposed in [10]. An extensive overview of different
methods for vessel extraction is provided in [7]. Recently, an interesting approach to
vessel segmentation has been proposed in [12], which fuses local features with local di-
rectional information; unfortunately, authors do not provide a quantitative evaluation of
their method. Nonetheless, most works are based on local image analysis to extract ves-
sels or employ an a-priori model to help vessel extraction. In contrast, graph cut (GC)
technique is an optimal segmentation tool that combines local and contextual image
information analysis by modeling relations between neighboring pixels. The GC algo-
rithm [2,8] has been used in many computer vision problems and, in particular, it can

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAI 2011, Part III, LNCS 6893, pp. 496–503, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Accurate and Robust Fully-Automatic QCA: Method and Numerical Validation 497

be applied to binary-segmentation of images, obtaining a solution which corresponds
to the global minimum of an energy function. The goodness of the solution depends on
the suitability of the energy terms and their reliable computation.

In this paper, we use GC theory to obtain a globally optimal segmentation of the
coronary tree in angiography images. Differently than other methods, we are interested
in accurate detection of both the centerline and the vessel borders. To this aim, we pro-
pose a novel energy function tailored to the artery segmentation problem. The energy
takes into account (1) the vessel local appearance, using any vesselness measure, (2)
the local connectivity to other vessel regions, using geodesic paths and, (3) a measure
of edgeness based on a novel multi-scale version of the adaptive Canny detector [4].
Moreover, we propose a machine learning based approach to automatically detect the
catheter; providing a methodology that is far more general than the one in [12]. Finally,
we propose two datasets, which allow the quantitative evaluation of the method in terms
of ability to detect the artery (Precision and Sensitivity), errors in the centerline detec-
tion and caliber estimation, and ability to discriminate between arteries and catheters1.
To the best of our knowledge, there is no such dataset available in the literature. In next
section, we provide a brief introduction to GC, then detail our contributions.

2 Method

2.1 Graph Cut

Let us define X = (x1, ...,xi, ...,x|P|) the set of pixels for a given angiography gray-
scale image I; P = (1, ..., i, ..., |P|) the set of indexes of I; N the set of un-
ordered pairs {i, j} of neighboring pixels of P under a 4-(8-) neighborhood system,
and L = (L1, ..., Li, ..., L|P|) a binary vector whose components Li specify assign-
ments to pixels i ∈ P . Each Li can be either “vess” or “back” indicating if it belongs to
vessel or background, respectively. GC formulation [2] defines the cost function E(L),
which describes soft constraints imposed on boundary and region properties of L as
E(L) = U(L) + λB(L). The unary term is denoted with U(L) =

∑
i∈P Ui(Li), the

boundary term with B(L) =
∑

{i,j}∈N B{i,j} Ω(Li = Lj), where the characteristic
function Ω(Li = Lj) is 0 if Li �= Lj and 1, otherwise. The unary term U(L) is de-
fined assuming that individual penalties for assigning pixel i to “vess” and “back”, (i.e.
Ui(“vess”) and Ui(“back”)) are given by vessel and background models. The term
B(L) comprises the boundary properties of segmentation L. Any B{i,j} ≥ 0 should
be interpreted as a penalty for a discontinuity between i and j. Finally, the coefficient
λ ∈ R

+, λ ≥ 0 specifies the relative importance of the boundary term against the unary
term. GC algorithm imposes hard constrains on the segmentation result by means of
the definition of seed points where labels are predefined and can not be modified. The
subsets V ⊂ P ,B ⊂ P ,V ∩B = ∅ denote the subsets of vessel and background seeds,
respectively.

Boykov et al. [2] show how to efficiently compute the global minimum of E(L)
among all segmentations L satisfying the hard constraints ∀i ∈ V , Li = “vess”, ∀i ∈
B, Li = “back”, using a minimum cut algorithm on a certain graph defined by nodes

1 The datasets and the evaluation methodology will be provided under request.
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(a) (b)

(c) (d) (e)

Fig. 1. AQCA approach: (a) Input image, (b) Unary potential: Vesselness, (c) Vessel-Background
seeds (in white and black), (d) Boundary potential: Multi-scale edgeness map, (e) Final segmen-
tation, centerline estimation, and catheter detection (in green, white, and red).

and edges being image pixels and pixel relations, respectively. We use the algorithm
presented in [3] for computing the minimum cut.

2.2 Vessel Segmentation Algorithm

In this section, we describe in detail the seed initialization and the definition of unary
and boundary potentials.

Seed initialization. In order to achieve a fully automatic methodology, we exploit the
inherent structure of vessels to define vessel seeds based on valleys, and background
seeds based on low probabilities of the vesselness image [6]. In particular, vessel seeds
V correspond to those pixels corresponding to the highest responses on a multilocal
valley detector with structure tensor, namely St, as described in [9], V = {i|St,i > Θv},
where St,i is the valley response at pixel i, and Θv is a sensitivity valley threshold. The
background seeds B are the pixels corresponding to low probabilities in the vesselness
image V , B = {i|Vi ≤ Θb}, where Θb is a sensitivity vesselness threshold and the
vesselness measure at pixel i, Vi, is computed as in [6]. Fig. 1(c) shows the selection of
V and B seeds for the input image in Fig. 1(a).

Unary term. We define the vessel and background models using the vesselness map
V . However, some vessel regions (especially those corresponding to bifurcations), can
contain low vessel probability. To avoid this problem, we introduce the computation
of geodesic paths among vessels seeds. We initialize the unary potentials at each pixel
i as Ui(“vess”) = −ln(p(Li = “vess”)), Ui(“back”) = −ln(p(Li = “back”)).
The probability of a pixel to be marked as “vess” is computed using the vesselness-
geodesic measure V G, p(Li = “vess”) = V G(xi) and the opposite probability as
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p(Li = “back”) = 1− p(Li = “vess”). In particular, the map V G is computed for
pixel i as the maximum between the vesselness value and the inverse of the geodesic
distance,

V Gi = max

(
Vo,i,

1
Di+μ(D)

max( 1
Di+μ(D) )

)
,

where D and μ(D) correspond to the geodesic distance map and its mean, respectively.
D is computed as explained in the following subsection.

Geodesic map. Given an arbitrary parameterized discrete path Γ = {i, ..., j} defined
by |Γ | = R pixels, we define the geodesic distance D of Γ as,

D(Γ ) = m(||∇I(Γ )||2)
(

R−1∑
i=1

||∇Ii||2
R

)
, (1)

where the quantity ||∇Ii|| is a finite difference approximation of the image gradient
between points (xi,xi+1), and the function m(z) represents the maximum variance of
the R-dimensional vector z, m(z) = maxi,j |zi − zj |, i, j ∈ Γ . The measure de-
fined in Eq.(1) is normalized by the length of the path, allowing any path length to
be considered. However, it is penalized by the maximum variance of image gradients
within the path. The selected geodesic path is given by, Γ ∗

{i,j} = argminΓ∈C{i,j}D(Γ ),
and its distance measure is d(i, j) = minΓ∈C{i,j} D(Γ ), being C{i,j} the set of all
possible paths between points i and j using short-path algorithm. We proceed as fol-
lows: after computing the partial path Γ ∗

{i,j}, in order to select the next path point
j∗ ∈ Gj , where Gj is the set of 8-neighbor of j, we use the following criterion,
j∗ = argmin�∈Gj

(d(i, j) + σ{j,�}D(Γ{j,�})), where σ{j,�} is the variance between j
and �. Once the next point has been selected, we continue the path only if d(i, j∗) < Θd,
where Θd = 0.05 is an XRay-dependent empirically set threshold. Since different
geodesic maps can be found for different initialization pixels j, the geodesic map, for
each pixel i, is computed as Di = minj∈Γ D(Γ{i,j}). These pixels are the centroids
of a k-means clustering over the vessel seeds. An example of the V G map is shown in
Fig. 1(b).

Boundary term. We propose an image-dependent multi-scale edgeness measure. First,
we run the canny edge detector algorithm on the observed image at different threshold
levels. Then, we compute the edge probability at each pixel by the linear average of
the edge thresholds and for different scales as follows, J∗

i = minj
1
n

∑n
k=1 Jp,γk,σj ,

where Jp,γk,σj is the binary edge map using the threshold γk ∈ [0.02, 0.03, ..., 0.3]
and scale σj ∈ [0.5, 1, ..., 5] for pixel i. If pixel i is labeled as an edge pixel for most
of the threshold levels at a significant scale, it has a high probability of being an edge
pixel. The final boundary potential over the multi-scale edgeness map is computed as
B{i,j} = J∗

i . An example is shown in Fig. 1(d).

2.3 Postprocessing

We perform a post-filtering step consisting in keeping only the biggest connected com-
ponent in the final segmentation. The main aim of this step is to get rid of possible false
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positive (FP) regions that could be introduced by the seed initialization. An example of
the final segmentation is shown in green in Fig. 1(e).

The centerline (CR) is extracted as follows: given the binary segmentation L(xi),
we compute its distance map M(xi). Then, a non-maxima suppression is applied to
find local maxima and a classic ridge transversal method is applied to connect the local
maxima. The ridge transversal stops when it finds another centerline or it exits the
segmented area. Fig. 1(e) shows an example of an extracted centerline in white.

Vessel caliber is estimated by applying a local Laplacian of Gaussian (LoG) filtering
at CRs locations at different scales. The scale space computed using σ2LoG(x, y; σ)
has a minimum at σ = w/2, where w is the width of the ridge.

Catheter detection. By merely its appearance, the catheter is not easily distinguish-
able from arteries. This causes that the proposed segmentation method tends to seg-
ment the catheter as an artery. In order to detect the catheter, from each point of the
centerline path we extract: (1) its position x, (2) its curvature K(x), (3) its angular
direction α(x), and (4) its caliber C(x). A classification is performed in a point wise
way using a Bayesian classifier. Being c = {“cat”, “vess”} the catheter or artery class,
we modeled (1) p(x|c) using a Kernel Density Estimator with σKDE = 15pixels, (2)
p(log(ε + K(x))|c) using a Gaussian Mixture Model2 (10 Gaussians), (3-4) p(α(x)|c)
and p(C(x|c)) as two discrete histograms. In Fig. 1(e) an example of catheter detection
is shown in red.

The time complexity of the algorithm most expensive part is O(|P| + |N |
|P| log |P|).

3 Validation

Material. We defined two datasets: DS1 and DS2. DS1 is formed by 20 images ac-
quired with a single plane Philips INTEGRIS Allura Flat Detector, of RCAs, where
three experts have blindly annotated the centerlines. The experts had to annotate the
centerlines with different labels: “vess”: the arteries that potentially can present a clin-
ical interest (with a caliber of, at least, 1mm); “don’t care”: all other arteries in the
image, and “cat”: the catheter guide. DS2 is formed by 31 images from 27 patients,
acquired with a SIEMENS Artis zee, of 10 RCAs, 10 LADs, and 11 Cxs. Two experts
blindly segmented a total of 41 lesions (12 LADs, 13 Cxs and 16 RCAs) assisted by a
semi-automatic method (QCA-CMS Version 6.0, MEVIS). The experts were asked to
manually correct unsatisfactory segmentations.

Methods. We compare our proposed method (AQCA) against a classic ridge transversal
centerline extraction method (RT), and the state of the art GC method. Furthermore, we
also compare the obtained results with the inter-observer (IO) variability of the experts
ground truth (GT). In the case of AQCA and GC, parameters Θv, Θb, and λ are tuned
via cross-validation over DS1. Given N patients, the tuning is performed using a Leave
One Patient Out (LOPO) methodology by maximizing 0.5P + 0.5S in order to provide
a balance between precision (P ) and sensitivity (S).

2 The curvature distribution was far from being Gaussian, so we applied the logarithm to “Gaus-
sianize” it.
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Fig. 2. Centerline evaluation results for DS1

Validation protocol. For the evaluation of centerline detection, we compute P , S, lo-
calization error (EL) on DS1. Additionally we evaluate the caliber estimation on DS2,
measuring the mean signed relative error and mean absolute relative error. Finally, the
catheter detection is evaluated in terms of P , S, and accuracy.

Centerline evaluation: To evaluate the CR detection, we computed P , S, and EL con-
sidering Θc, which defines the maximal distance between the GT and the detected CR.
To compute the S, we check for every CR point in the GT if there exists a detected CR
point in a distance smaller than Θc; if this happens, this point is considered as a True
Positive (TP). Similarly, P is computed by checking the detected points instead than
the ones in the GT. Θc has been set to 5 pixels to allow large EL errors.

Caliber evaluation: Vessel caliber evaluation was performed over DS2. We approxi-
mated two cubic splines to the borders annotated by the experts. Using these splines,
we determined the CR and extracted the caliber for each point [10]. For each point
in the GT CR, we localized the nearest point in the detected CR and evaluated the
caliber estimation error using the Euclidean distance. We computed the signed error
ΔDc = Dc − D∗

c , where D∗
c is the ground truth caliber, in millimeters. Finally, we

defined the average absolute and signed relative errors |ΔDc|
D∗

c
and ΔDc

D∗
c

, respectively.

4 Results

Figure 2 shows S, P , and EL for the IO variability, the RT, GC, and AQCA for the
dataset DS13. The RT method has the lowest S and a very low P , while the EL is very
low; this confirms that the vesselness measure is well suited to accurately detect the CR,
but it has the disadvantage to produce many FPs as confirmed by the low P . A basic
GC approach increases both S and P while EL is increased due to inaccurate border
detection using a gray-level based boundary term. Our proposed method shows the
highest S and P , and a EL that is very close to RT, while actually detecting more vessel
pixels than both RT and GC (higher S, less false negatives). It is also interesting to note
that the proposed method has a lower P than the IO variability but higher S: this means
that the proposed method still produces some FPs but tends to detect clinically relevant
arteries in a way that is the “average” of the observers. Figure 3 shows scatter plots of
the caliber estimation on dataset DS2 for the IO variability, the basic GC, and AQCA,
respectively. The gray dashed curve shows the density of points w.r.t. the caliber. It can

3 Theresults forbothdatasetsareavailableatwww.cvc.uab.es/˜ahernandez/AQCA.zip.

www.cvc.uab.es/~ahernandez/AQCA.zip


502 A. Hernández-Vela et al.

1 2 3 4 5 6 7 8 
0 

1 

2 

3 

4 

5 

6 

7 

8 

D
(IO2)
c [mm]

D
(I

O
1
)

c
[m

m
]

 

 

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

Dc* [mm]

D
(G

C
)

c
[m

m
]

 

 

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

Dc* [mm]

D
(A

Q
C

A
)

c
[m

m
]

 

 

(a) (b) (c)
Fig. 3. GT and estimated calibers in scatter plots for (a) IO variability, (b) GC, and (c) AQCA
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be noticed that the two experts show a very high correlation. This is due to the fact that
the segmentation has been performed thanks to a computer assisted method: if there is
a bias in the measurement, it is equal for both experts. The basic GC method performs
badly, as confirmed by the large average relative error of 6.04%, while the proposed
method performs much better having an average relative error of 2.93%. It has to be
noted that, while GC present a bias of −1.6%, our method presents almost no bias
(−0.035%). Moreover, for the calibers which are more frequent in X-Ray angiography,
our proposed method has a very high correlation with the ground truth data. Figure
4 shows an example of AQCA result: the estimated caliber from proximal to distal
positions accurately follows the GT. At proximal position the method correctly detects
two clinically irrelevant caliber variations (I1 and I2). Then, at the bifurcation B1, our
method estimates the bifurcation “caliber” that is obviously not relevant, and can be
easily detected as an outlier. Just after the bifurcation, the proposed method accurately
measures the vessel caliber at the stenosis S1 and S2. Finally, we collected ground truth
data (56406 samples) from DS1 and evaluated the catheter detection methodology on a
leave-one-patient-out methodology, obtaining an average S of 70.9%, P of 90.1% and
accuracy of 96.4%.

5 Conclusion

We presented AQCA, a novel segmentation method for X-Ray angiography images
that takes into account vessel appearance, artery tree continuity, and borders appear-
ance within the graph-cut theory. The algorithm has been tested on two new data sets.
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Despite it has been tuned on DS1, it provided excellent results on DS2, showing the
inherent robustness of the approach. While being applied on accurate QCA, the method
could be profitably used as preprocessing for non-rigid multimodal registration algo-
rithms. Moreover, it can be easily adapted to detect tubular structures in other kind of
images. Future lines of research encompass the use of an high order potential to deal
with irregularity at bifurcations and crossings; a supervised method to optimize the seed
selection; an intelligent procedure to semantically tag the artery in order to obtain an
automated QCA report for all relevant branches.
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Abstract. Mitral valve (MV) is often involved in cardiac diseases, with
various pathological patterns that require a systemic view of the entire
MV apparatus. Due to its complex shape and dynamics, patient-specific
modeling of the MV constitutes a particular challenge. We propose a
novel approach for personalized modeling of the dynamic MV and its
subvalvular apparatus that ensures temporal consistency over the car-
diac sequence and provides realistic deformations. The idea is to de-
tect the anatomical MV components under constraints derived from the
biomechanical properties of the leaflets. This is achieved by a robust two-
step alternate algorithm that combines discriminative learning and leaflet
biomechanics. Extensive evaluation on 200 transesophageal echochardio-
graphic sequences showed an average Hausdorff error of 5.1mm at a speed
of 9sec, which constitutes an improvement of up to 11.5% compared to
purely data driven approaches. Clinical evaluation on 42 subjects showed,
that the proposed fully-automatic approach could provide discriminant
biomarkers to detect and quantify remodeling of annulus and leaflets in
functional mitral regurgitation.

1 Introduction

Dysfunctional mitral valves (MV) are found in a large variety of cardiovascular
diseases. Mitral valve prolapse for instance, where the leaflets billow into the
left atrium due to dysfunctional chordae, is a common cause of regurgitation. A
pathological left ventricular (LV) function, like in ischemic or idiopathic dilated
cardiomyopathy, can also yield severe mitral valve insufficiency [1] due to an
enlarged mitral annulus or abnormal positioning of the papillary muscles. Be-
cause the correct functioning of the MV relies on the tight synchronization of the
LV, papillaries and leaflets dynamics, its evaluation requires a systemic view of
the entire MV apparatus for accurate diagnosis, treatment planning and patient
management. Echocardiography is the state-of-the-art modality for MV assess-
ment. However, the complex appearance of the MV, the fast dynamics, the large
morphological and functional variations among patients, and the varying image
quality (low signal-to-noise ratio, signal dropout, time varying appearance) make
the automatic modeling of the MV apparatus very challenging.

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAI 2011, Part III, LNCS 6893, pp. 504–511, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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So far, existent valve models are generated manually or, at best, interac-
tively [2]. The process is elaborate, tedious, and prone to inter-user variability.
A detailed 4D model of the aorta and the MV, but without papillaries, was
recently proposed [3]. In this work, the valves are estimated from the images us-
ing machine learning and statistical shape models. While these approaches have
proven to be robust in many applications [4], their performance may decrease
in the presence of image artifacts and in severe pathological morphologies. Fur-
thermore, temporal consistency and physiologically realistic deformations are not
guaranteed. In contrast, deformable models integrating prior knowledge about
the cardiac deformation have been proposed to estimate the cardiac motion from
images [5,6], with promising results. However, their application for valve dynam-
ics is challenged by the very rapid valve motion. Furthermore, these methods are
sensitive to initialization and local minima as their data terms rely on local image
features.

Motivated by the above-mentioned limitations, we aim in this paper to es-
timate a personalized model of the mitral valve that is temporally and phys-
iologically consistent. To that end, we propose a novel discriminative learning
technique that is constrained by a biomechanical model of the MV leaflets. The
model is automatically initialized in the images and local minima are avoided
through incremental search and discriminative learning. The biomechanical con-
straint is ensured by solving a dynamic system between time frames. Besides,
our model includes the MV annulus, anterior and posterior leaflets, and the
subvalvular apparatus represented by landmarks at the papillary tips. To the
best of our knowledge this is the first time that machine learning methods are
integrated with biomechanical constraints. Extensive evaluation on 200 trans-
esophageal echochardiographic (TEE) sequences show an average Hausdorff er-
ror of 5.1mm at a speed of 9sec per volume, which constitutes an improvement
of up to 11.5% compared to state-of-the-art approaches [3,7], which are purely
data driven. A clinical evaluation on 42 subjects is carried out, showing that
our method can provide reliable discriminant biomarkers to detect and quantify
remodeling of MV shape and dynamics.

2 Methods

2.1 General Overview of the Algorithm

Our goal is to estimate a physiologically realistic 4D model of the MV and
its subvalvular apparatus from 3D+t cardiac images. The idea is to constrain a
machine learning approach such that the estimated point distribution model S ∈
Ω, Ω being the space of physiological surface shapes, satisfies MV biomechanics.
Although the proposed approach is applied on the entire 4D time series, in the
following we describe the algorithm between two frames It1 and It2 , at time t1
and t2 only, for the sake of clarity. The constrained problem is written as:



506 I. Voigt et al.

St1n+1t1

Biomechanical 
Model (Eq. 3-4)

S’t1
Model Refinement 

(Eq. 1)

Data-Driven Step Physically-Driven StepIt1

St1nSt1111n

It2

St2n+1

Biomechanical 
Model (Eq. 3-4)

S’t2
Model Refinement 

(Eq. 2)

Data-Driven Step Physically-Driven Step

St2nSt2

Data-Driven Step Physically-Driven StepIt1

ψ(St2
n)

External
Force 
(Eq. 5)

φ(St1
n)

External
Force 
(Eq. 5)

(Eq. 1)

It2 Data-Driven Step Physically-Driven Step(Eq. 5)

S’Model Refinement

Mitral 
Annulus 

(MA)
Anterior 

Leaflet (AL)

Posterior 
Leaflet (PL)

Posterior 
Papillary 

Head

Anterior 
Papillary 

Head

Fig. 1. Left panel: Proposed framework for physically-constrained MV estimation. See
text for details. Right panel: Mitral valve apparatus model in systole.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
St1 = argmax

Ŝ∈Ω
p(Ŝ|It1 )

St2 = argmax
Ŝ∈Ω

p(Ŝ|It2 )

St2 = φ(St1) and St1 = ψ(St2)

(1)

(2)

(3)

where p is a discriminative probabilistic model and φ and ψ are the physiological
deformations calculated by solving a dynamic system. To achieve computational
efficiency, we solve this high-dimensional constrained and coupled problem with a
two-step optimization procedure, as illustrated in Fig. 1. At a given iteration n of
the algorithm loop, let Sn

t1 and Sn
t2 be the current physically constrained models

in It1 and It2 respectively. In the first “data-driven” step, we refine Sn
t1 using

discriminative machine learning on It1 to obtained a new estimate S′
t1 (Eq. 1). In

the second “physically-driven” step, we deform Sn
t2 according to a biomechanical

model ψ with external force calculated from S′
t1 to obtain an updated physically-

constrained Sn+1
t1 (Eq. 3) Thus, the updated model in image It1 is a deformed

realization of Sn
t2 from image It2 subject to data-driven information related to

It1 . Sn+1
t2 is computed in parallel following the same procedure. These two-steps,

further detailed below, are iterated until convergence.

2.2 Data-Driven Step: Estimation of Mitral Valve Apparatus Model

Anatomical Model Parameters. The anatomical model S of the MV and its
subvalvular component comprises: the mitral annulus (MA), the anterior and
posterior leaflets and the anterior and posterior papillary heads (Fig. 1 right).
More precisely, S is a point distribution model consisting of 986 points and 1792
triangles with consistent parameterization derived from anatomical landmarks
(three trigones, three commissures, two leaflet tips and two papillary heads) [3].

Learning-Based Spatial Estimation. The parameters of the anatomical model
S are estimated from the images using a hierarchical discriminative learning
algorithm as in [3] (Eq. 1 and Eq. 2). The conditional probability p(S|I) is
incrementally modeled within the Marginal Space Learning (MSL) framework,
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which consists in training and detecting on marginal spaces using the Prob-
abilistic Boosting Tree (PBT) with Haar and steerable features [7]. Different
detectors are employed for the mitral annulus and free-edges contours and the
leaflet surfaces to improve detection accuracy.

2.3 Physically-Driven Step: Biomechanical Constraint

We now constrain the estimations in It1 and It2 according to a biomechanical
model of the MV leaflets. Let Sn

t1 and Sn
t2 be the current physically-constrained

model and S′
t1 and S′

t2 the new estimates computed as described in the previous
sections. The updated constrained model Sn+1

t1 related to It1 is obtained by
deforming Sn

t2 towards S′
t1 . This deformation, ψ in Eq. 3, is achieved by solving

the dynamic system
MÜ + CU̇ + KU = Fext (4)

U is the displacement vector of the vertices of Sn
t2 , U̇ their velocity and Ü their

acceleration. M is a diagonal mass matrix (leaflet mass density ρ = 1.04 g/mL),
C is a Rayleigh damping matrix, C = 0.1(M + K), and K is the stiffness matrix
of the internal elastic forces. We approximate the tissue properties of the leaflets
by a linear isotropic material to optimize computational efficiency for fast esti-
mation. The leaflet thickness is set to 2mm, the average thickness observed in
our datasets. Near-incompressibility is achieved with a Poisson ratio ν of 0.488
and a Young modulus E of 6.2 MPa is used [8].

Fext is the external force that drives Sn
t2 towards the new estimate S′

t1 . We
want the result to be as close as possible to S′

t1 but that preserves the tangential
motion generated by the internal forces. We therefore move the vertices vn

t2 of
Sn

t2 along their normal direction n, towards their corresponding vertex v′
t1 in

S′
t1 . Furthermore, we weight that force according to the uncertainty in the data

term p(v′
t1 |It1) such that positions with low confidences have little influence on

the leaflet deformation, while high confidences result in high influence. Thus,
Fext is written as:

Fext(vn
t2) = −κ p(v′

t1 |It1)(v
′
t1 − vn

t2) · n (5)

κ is a weight parameter, which in our experiments we empirically set to 0.1.
The vertices vn

t2 , and thus the force Fext, are updated at every time step of the
resolution of the dynamic system in Eq. 4, which is solved using co-rotational
triangular finite element methods (FEM) to cope with large deformations and
rotations [9]. An implicit Euler solver is employed to update mesh positions. The
deformation ends when the average relative displacement of the surface vertices
is lower than the image resolution (typically 1 mm).

Intuitively, the final deformed model ψ(Sn
t2) = Sn+1

t1 matches the estimated
model S′

t1 . However, here, the new model Sn+1
t1 takes into account the internal

forces and is robust to outliers with low confidence from the data term. It is also
physically consistent with Sn

t2 . We apply the same procedure, symmetrically,
to estimate Sn+1

t2 , and iterate. The algorithm is extended to 4D sequences by
propagating the models over the cardiac sequence using a cyclic constraint and
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Table 1. Estimation accuracy in terms of maximum (Hausdorff) and average (point-
to-mesh) distances in mm to the ground truth for the biomechanically constrained and
unconstrained, purely data driven approaches. Notable improvements are highlighted
in bold faced font for corresponding metrics for both constrained and unconstrained
estimation results.

Max error (Hausdorff) Average error (Point-to-mesh)

constrained unconstrained constrained unconstrained

Anatomy mean std 90% mean std 90% mean std 90% mean std 90%

Annulus 4.41 1.60 5.98 4.57 1.79 6.81 1.88 0.57 2.54 1.81 0.58 2.46

Free Edge 5.32 1.85 7.53 5.73 2.69 8.50 2.44 0.70 3.32 2.39 0.85 3.26

Leaflets 5.57 1.68 7.51 5.70 2.49 8.36 3.11 1.02 4.14 3.02 1.11 4.36

iterating until convergence. The algorithm ends when the norm of the maximum
update displacement in all the frames is below the image resolution. In practice,
the proposed algorithm converged fairly fast. This may be explained by the fact
that each surface is deformed using the other estimated model. As the model
comes closer to the maximum PBT, an equilibrium is found.

3 Experimental Results

The evaluation of the proposed method splits into two subparts: i) the quantita-
tive evaluation of the model estimation performance and ii) a clinical evaluation
in terms of a predictive biomarker for diagnosis and therapy planning.

Estimation performance. Our method has been evaluated using a comprehen-
sive set of 200 4D TEE studies from 120 patients, which were acquired using
different capture ranges and image resolutions. Each study was associated with
ground-truth models, which were manually fitted to the image data. The per-
formance results were obtained using three-fold cross validation experiments for
both biomechanically constrained and unconstrained estimation schemes. The
method performs with a speed of 9 seconds per volume on a standard desktop
machine (Intel Core Duo 2.66 GHz, 2 GB RAM). The biomechanical deforma-
tions required 5 to 25 steps to converge. The overall algorithm converged in 5
to 7 iterations and no convergence problems could be observed. The average
point-to-mesh distance and Hausdorff distance are reported in Table 1.

While the average point-to-mesh accuracy is comparable for both methods –
considering the 1mm image resolution –, the Haussdorf distances underlines the
specific strength of the biomechanical constraint by providing improved robust-
ness over the purely data driven approach esp. in cases with challenging image
quality and constitutes an improvement of up to 11.5%, while at the same time
preserving a reasonable estimation speed of 9 seconds per volume. Particularly
the leaflets and free edges of the valve, which are governed by rapid motion and
signal dropout - esp. in diastole - benefit from the constrained estimation scheme
as indicated by a reduced mean, standard deviation and 90-percentile. Fig. 2 il-
lustrates a specific case for which the unconstrained estimation algorithm fails
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Unconstrained Estimation

Constrained Estimation

Fig. 2. Exemplary estimation results on three patients. While the unconstrained esti-
mation alone is subject to image noise and signal dropout, the biomechanical constraint
is compensating for such outliers and provides realistic shapes and smooth surfaces.

to delineate the mitral valve due to image noise, while the biomechanical con-
straint compensates for such outliers and provides realistic shapes and smooth
surfaces. As the proposed algorithm utilizes a biomechanical model of the valves,
temporal consistency and physiological variation in anatomical dimensions re-
spects the near-incompressibility of the tissue. The relative temporal variation
in surface area and leaflet length is consistently lower using the biomechanical
constraint and quantifies to 10% vs. 14% for the constrained vs. unconstrained
estimation.

Clinical Evaluation. The contributions of mitral annular (MA) and leaflet (ML)
remodeling to functional mitral regurgitation (FMR) is a key factor in the con-
sideration of mitral valve annuloplasty. Selection of the synthetic ring size and
type is based on the quantification of MA and ML remodeling. We thus tested
the feasibility of the proposed MV modeling approach to quantify MA and ML
remodeling in FMR [10].

The mitral valve was estimated from 15 healthy subjects and 27 patients with
moderate or severe FMR. Among the patients, 12 presented with normal an-
nulus size (Group 1) and 15 with a dilated annulus (Group 2). From the 4D
anatomical model of the MV, we calculated different metrics reported in Table
2. The dynamic change of the antero-posterior (AP) annular diameter, computed
as the difference diameter between early systole and early diastole, significantly
discriminated the normals from FMR Group 1 (Fig. 3). In particular, it indi-
cates a reduced accentuation of the saddle shape with consequent reduction in
leaflet coaptation. In addition to a dilated, akinetic annulus, the anterior surface
length was markedly increased in FMR Group 2, which charaterizes significant
ML remodeling. The choice of ring size and type can be made based on these
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Table 2. Model-based measurements for quantification of functional mitral regurgita-
tion (FMR) and surgical planning: Mean and standard deviation in respective groups
reported in mm.

Dimension healthy FMR Group 1 FMR Group 2

Annular AP diameter 29.2 ± 3 33.1 ± 1 34.4 ± 4

Anterior leaflet height 20.9 ± 3 23.9 ± 4 26.9 ± 5

Annular circumference 112.1 ± 9 114.4 ± 5 129.0 ± 12

Dynamic AP diameter change

Early diastole 30.6 ± 4 33.3 ± 2 33.9 ± 4

Early systole 26.1 ± 3 32.9 ± 3 32.5 ± 4

Normal FMR Group 1 FMR Group 2

Early Diastole

DAP 18% DAP 1% DAP 2%

Early Systole

Fig. 3. Dynamic AP (DAP) Diameter (blue dashed line) varies by 18% over the car-
diac cycle in healthy subjects in contrast to FMR cases (DAP = 1-2%). Anterior leaflet
height (green solid line) was normal in group 1 but not in group 2, indicating predom-
inant annular remodeling in that population [10]. Reproduced with permission of the
authors.

automated measurements. We can thus conclude that automated 3-D quanti-
tative surgical anatomy in FMR 1) shows that an akinetic annulus is an early
basis for MR, followed by annular dilatation and anterior leaflet lengthening,
and 2) that these mechanistic insights and the quantitative characterization of
the pathological anatomy can aid surgical decision-making.

4 Conclusion

We proposed a novel approach for physiologically and temporally compliant es-
timation of the mitral valve by combining discriminative learning methods with
biomechanical constraints. The data-driven step ensures efficiency and robust-
ness while the physically-driven step guarantees physiological consistency. Our
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method is fully automatic, robust to initialization and image artifacts. Further-
more, our mitral valve model comprises the mitral annulus, anterior and posterior
leaflets and for the first time, the subvalvular apparatus. Quantitative evalua-
tion on 200 datasets demonstrated that our constrained method outperforms
purely data driven approaches by 11.5% in terms of model estimation (average
Hausdorff error of 5.1mm). Clinical evaluation demonstrated that the proposed
approach could provide reliable biomarkers for mitral annulus and leaflets re-
modeling in functional mitral regurgitations. Future work will further investi-
gate effects of the different degrees of freedom such as anistropic and non-linear
material properties.
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Abstract. We present the first system for measurement of proximal
isovelocity surface area (PISA) on a 3D ultrasound acquisition using
modified ultrasound hardware, volumetric image segmentation and a
simple efficient workflow. Accurate measurement of the PISA in 3D flow
through a valve is an emerging method for quantitatively assessing car-
diac valve regurgitation and function. Current state of the art protocols
for assessing regurgitant flow require laborious and time consuming user
interaction with the data, where a precise execution is crucial for an ac-
curate diagnosis. We propose a new improved 3D PISA workflow that is
initialized interactively with two points, followed by fully automatic seg-
mentation of the valve annulus and isovelocity surface area computation.
Our system is first validated against several in vitro phantoms to verify
the calculations of surface area, orifice area and regurgitant flow. Finally,
we use our system to compare orifice area calculations obtained from in
vivo patient imaging measurements to an independent measurement and
then use our system to successfully classify patients into mild-moderate
regurgitation and moderate-severe regurgitation categories.

1 Introduction

Valvular heart diseases are a major cause of death in developed countries, which
are estimated to affect 2.5% of the population and are the underlying cause of over
43700 deaths and 93000 hospital discharges in 2006 in the US. Pooled data from
multiple studies suggest that the prevalence increases with age from 0.7% in par-
ticipants 18–44 years of age to 13.3% in participants ≥ 75 years of age. The cause
of these diseases can be congenital or acquired and, depending on the severity,
treatment might involve medication, surgical valve repair or replacement. Timely
diagnosis and accurate assessment of regurgitation severity is important for ap-
propriate clinical decision making and optimal patient outcome [3].

Doppler ultrasound is routinely used to non-invasively evaluate intracardiac
blood flow and detect regurgitant lesions for all cardiac valves. Several indexes
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have been developed to assess severity of regurgitation using color Doppler,
Pulsed Wave (PW) and Continuous Wave (CW) Doppler. However, the use
of color Doppler is limited to a semi-quantitative assessment of regurgitant jets
directly or indirectly and is often dependent on user expertise. One direct, but
laborious, method for quantifying regurgitation is the measurement of vena con-
tracta (VC), which is the narrowest cross-sectional area of the jet. Although
VC measurement is a close approximation of the regurgitant orifice, this mea-
sure has limited accuracy due to dependence on system resolution, gain setting,
acquisition view and user expertise [1].

The proximal isovelocity surface area (PISA) is a promising method for quan-
tifying valve regurgitation. The PISA measurement is derived from the fluid dy-
namics principle that blood velocity increases as it approaches the valve orifice,
forming concentric hemispheric shells of increasing velocity and decreasing sur-
face area. Using appropriate settings of color Doppler imaging, these hemispheres
can be visualized. Clinically, this estimation requires geometric assumptions and
multiple steps. The effective regurgitant orifice area (EROA) or instantaneous
flow rate (mL/s) can be computed from PISA via

EROA =
PISA × Aliasing Velocity

Peak Velocity
. (1)

The EROA is an important quantity to determine the best course of patient
treatment [12]. Additionally, a PISA measurement makes it possible to directly
calculate the regurgitation volume via

Regurgitation volume =
∫

PISA × Aliasing Velocity dt. (2)

In 2D ultrasound acquisitions, the EROA is computed with a hemispheric geo-
metric assumptions. Recently, 3D volume color Doppler acquisitions have made
it possible to utilize more appropriate geometric assumptions [7,11] and provide
better accuracy. However, these studies required a prolonged workflow involving
multiple steps and computations, creating a barrier for clinical acceptance. Ad-
ditionally, the volumetric color flow quantification accuracy in these studies is
still dependent on system parameters such as acquisition (e.g., gated, stitched),
angle, temporal and spatial resolution, system settings and workflow [5]. The
clinical acceptance of the PISA technique will require real-time volume color
Doppler capability on the acquisition system, an enhanced workflow, accurate
quantification and elimination of geometric approximation. Fig. 1 illustrates the
PISA and VC calculations from a color Doppler acquisition.

In this work, we use the capabilities of a state of the art real-time 3D cardiac
ultrasound system in conjunction with 3D image segmentation techniques in
order to improve the accuracy of the PISA measurement and simplify the work-
flow. Section 2 first explains our volumetric image acquisition hardware, and
the segmentation algorithm used to extract the mitral annulus and the PISA
surface. Validation on a range of in vitro and in vivo acquisitions are presented
in Section 3, followed by a discussion in Section 4.
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Fig. 1. Left: (A) Illustration of different cardiac mitral regurgitation (MR) and prox-
imal isovelocity surface area (PISA) methods, (B) PISA surface generated from 3D
manual measurement, (C) Manual measurement of vena contracta (VC). Right: An
example PISA surface obtained from our system (different dataset).

2 Methods

Our system for accurate PISA quantification required hardware capability to
acquire full volume color Doppler data along with software improvements. The
hardware allows for sufficiently high volume rate acquisition and the software
improvements were necessary to achieve an accurate and robust quantification.
Our system was interactive, asking the user to place a point at the valve annulus
and at the coaptation point (in the apical 4 or 2 chamber view).

2.1 Echocardiography Imaging and Visualization

We used a 2D matrix phased array ultrasound system (the ACUSON SC2000TM,
4Z1c transducer, which is now commercially available) for dual B-mode and color
Doppler volume imaging. High volume rate acquisition is critical for an accu-
rate quantification of the PISA surface volume, because low acquisition rates
cause velocity discrepancies between multiple acquisition planes. These discrep-
ancies create an inaccurate velocity surface estimation. The volume acquisition
at higher rates is achieved by decoupling the transmit foci in the azimuthal and
elevational directions. In azimuth, a plane-wave was used and in elevation, a
virtual point source was used. For adequate spatial sampling of the volume in
receive mode, we used a large number of parallel receive lines (40 or 64) for
every transmit line. By combining a weakly focused transmit with many parallel
receive lines, a high frame rate was achieved without a loss of spatial resolution.
For example, a volume rate of ≈30/s is possible with fields of view of 70 × 70◦

in B-mode and 30 × 30◦ in color Doppler. Such volume rates are both compa-
rable to conventional 2D color Doppler frame rates, and adequate for accurate
PISA estimation. The exact imaging resolution depends on depth, but it was
≈1mm for the Doppler acquisition and sub-mm for the B-mode acquisition. The
imaging results in Fig. 1 were acquired using our system.
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2.2 Localization of the Valve Annulus

The extent of the valve annulus must be known in order to both quantify the flow
through the valve and to provide a reference location from which to calculate
the PISA surface. Our method can be used to localize the valve annulus for any
target valve which has been specified by a single point inside the valve annulus
(which we call the valve point).

Segmentation of the valve annulus is a challenging problem, since the valve
is essentially a hole joining two chambers, creating poorly-defined boundaries.
Additionally, the shape of the annulus and the surrounding anatomy varies de-
pending on the target valve, patient and cardiac phase. We selected the random
walker algorithm [4] for this segmentation task since it is known to behave well
with poorly defined (or absent) boundaries and it makes no explicit assump-
tions on the annulus shape (which helps make the segmentation robust to large
variability). Our system performs an interactive segmentation of the annulus, in
contrast to [9] which employs an automatic, but more complex system.

Our strategy for utilizing the random walker algorithm for annulus segmen-
tation is to automatically identify some voxels inside/outside the annulus which
can be used to constrain the segmentation algorithm. In order to set seeds for
the random walker algorithm, we adopt a simple model of the annulus (assuming
an open valve) as a hypoechoic connection between two hypoechoic chambers.
In order to determine the appropriate inputs to the random walker, we first de-
termine the model orientation and then establish appropriate seeds. To improve
the speed of the calculations, the annulus segmentation was limited to a 5cm 3D
ROI surrounding the valve point. For purposes of the model, we define a voxel
to be hypoechoic if it falls below the median intensity in the ROI.

The orientation vector of the annulus model is determined by calculating the
largest principal component of the hypoechoic voxels. Given the valve point
and the orientation, we may identify annulus voxels (foreground seeds) for the
random walker inside the annulus plane. The annulus plane is determined to be
the hypoechoic part of the orthogonal plane connected to the valve point. In
order to restrict the annulus segmentation, background seeds are placed parallel
to the annulus plane on both sides at a distance of 2.5cm (this value is used only
to approximately set seeds and therefore does not need to be precise). With these
input seeds, the random walker segmentation algorithm is employed to produce
the annulus segmentation on the B-mode image. This approach to valve annulus
segmentation may be applied to any of the cardiac valves (given a valve point),
although PISA measurements are typically used to assess regurgitation at the
mitral valve and left ventricular outflow tract (LVOT).

2.3 PISA Measurement

Once the location of the jet and valve coaptation point is located by the user,
the PISA calculation may be performed. The identification of PISA in the 3D
space allows for the computation of regurgitant flow during the cardiac phase of
interest using (2). Our system expects that the desired isovelocity value and the
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direction of interest (relative to the annulus or valve coaptation line) is specified
by the user and that the target isovelocity surface is contained entirely within the
acquisition. Our strategy for PISA measurement is to generate a segmentation
of the isovelocity region in the color Doppler data from which a surface can be
segmented and a surface area may be calculated. Since the PISA is calculated
above the coaptation point (relative to the valve annulus), the flows below the
coaptation point (in the direction of the annulus) are ignored.

The isovelocity region above the coaptation point (i.e., in the direction away
from the annulus) can be challenging to segment as a result of flow aliasing
or confounding flow through a second valve (e.g., measuring PISA at the mitral
valve may be confounded by the nearby flow through the LVOT). To account for
these two challenges, we again use the random walker but this time we employ a
novel directed graph which is designed to prevent cojoinment with a secondary
flow. Specifically, for a target isovelocity value of γ, we establish the directed
graph weight between two voxels vi and vj as wij = 1 if fi, fj > γ and fi < fj ,
or if fi, fj ≤ γ, where fi represents the magnitude of the flow velocity at voxel vi.
Otherwise, wij = ε. Optimization of the random walker with a directed graph
is detailed in [10]. The coaptation point is treated as a foreground seed and the
volume borders are treated as background seeds in the PISA segmentation.

The voxel-based segmentation result is smoothed using a 3D Gaussian kernel,
and an isosurface mesh is successively computed using the Marching Cubes al-
gorithm. The intersection with the mitral annulus segmentation is then removed
from the mesh, yielding the hemispherical isosurface. Finally, all mesh vertex
locations are transformed from acoustic to Cartesian space for computing the
actual 3D PISA surface area measurement.

3 Experiments and Results

Our validation was designed to address the following issues: 1) Accuracy of
the surface area computation, 2) Accuracy of the EROA calculation for various
orifice shapes, relative to ground truth and relative to standard EROA approx-
imation methods, 3) Accuracy of the regurgitant volume estimation, relative to
ground truth and standard approximation methods, 4) Accuracy of EROA cal-
culation on clinical patients, 5) The ability of our system to distinguish patients
with mild-moderate regurgitation from patients with moderate-severe regurgi-
tation. The first three issues were evaluated using a precise in vitro phantom
(shown in Fig. 2) which could be controlled to produce calibrated flows and
regurgitations through synthetic orifices of different shapes. The last two issues
were probed using a retrospective study on a clinical patient population.

PISA segmentation and surface area computation was evaluated with a cali-
brated phantom. A hollow sphere with known surface area was imaged with the
full volume 3D ultrasound system in the clinical configuration (shown in Fig. 2).
The purpose of this experiment was to test the resolution limit and geometric
consistency of the acquisition as a function of depth and beam overlap. Com-
pared to the reference surface area of 49.09cm2, the mean surface area computed
by our system was 49.87cm2 over five trials of acquisition/segmentation.
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(a) In vitro validation setup (b) Sphere validation

Fig. 2. Surface area validation. (a) Calibrated in vitro phantom. (b) Validation of our
PISA quantification system for measuring the surface area of a sphere with known
diameter.

To probe the accuracy of the EROA measurement, we created an in vitro
phantom (described in [6]) with several orifice shapes in which the flow could be
controlled to lie within a physiologically relevant severity of regurgitation (12–
57mL/beat). The flow loop was constructed to create physiologically relevant
pressure differential and flow across the orifice of a regurgitant valve [6]. Data
acquisition was performed using a standard clinical 3D full volume ultrasound
scanner. Our method for measuring PISA was used to estimate the physiological
flow convergence orifice and multiple frames were integrated to compute the flow
for the entire cycle. A flow meter was placed in line to measure the true flow in the
closed loop to measure regurgitation volume in the regurgitation flow loop. The
values of effective regurgitant orifice area (EROA) and regurgitant volume were
computed from the PISA measurements for 60 trials. The EROA measurement
was compared with the true anatomic orifice area and the regurgitant volume was
compared with the flow meter values for 32 trials. Additionally, we compared the
same EROA measurements to the common clinical practice of hemispheric PISA
estimation. Our system for PISA quantification consistently produced better
EROA estimates than the reference method, as shown in Fig. 3. Note that the
reference line in Fig. 3 refers to the value of the true orifice area. However,
the physiologic orifice measured by the EROA is known to be 80–90% smaller
than the true orifice area [2]. We also computed the regurgitant volume from
our system and compared this volume by the in line flow meter measurement
used as the ground truth for regurgitant volume in our system (shown in Fig.
3). The conventional hemispheric method severely underestimated the EROA in
all orifices and flow conditions including the circular orifice cases as shown in
Fig. 3. Our method for measuring PISA performed better for all orifice shapes
and flow conditions. The computation of regurgitant flow volumes also reflect
a severe underestimation by the conventional PISA method when compared
with the true regurgitant volume measured by a flow meter. In contrast, our
PISA quantification system performed better in all cases irrespective of orifice
geometry or flow condition as can be observed in Fig. 3. The in vitro work
demonstrates the improvement in estimation of regurgitation using our method
for measuring PISA in a controlled experimental setting.
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(a) 3D EROA (b) 3D Pisa

Fig. 3. Results of experimental validation using an in vitro phantom to measure EROA
and regurgitation volume. Bottom/green: Conventional spherical estimate. Top/red:
System estimate. The spherical method severely underestimated the EROA in all ori-
fices and flow conditions including the circular orifice (similar observations were made
in [8]). Our method for measuring PISA performed better for all orifice shapes and
flow conditions. The line in Fig. 3 refers to the value of the true orifice area, although
the physiologic orifice measured by the EROA is known to be 80–90% smaller than the
true orifice area [2].

In order to determine the accuracy of our system on patient data, we compared
the EROA measurements obtained by our system with the measurement of vena
contracta. Vena contracta measurements were performed manually by a clinical
expert by tracing the flow convergence in a carefully positioned and aligned
plane. The expert vena contracta measurements were compared with the EROA
measurements obtained from our system. For a patient sample size of 33, we
observed a statistically significant correlation (R=0.61, p=0.002) between the
EROA measurement and vena contracta measurements.

As a final test of our system on a clinical patient sample, we retrospectively
examined a group of 35 patients which were segregated according to the clinical
diagnosis of mitral regurgitation being mild-moderate or moderate-severe. Using
our system, we measured EROA values from all patients in both groups. We
determined that the mean EROA value for the mild-moderate regurgitation
patient group was 0.24±0.07cm2 and the mean EROA value for the patient group
with moderate-severe regurgitation was 0.43 ± 0.13cm2. These measurements
were statistically distinguishable (p < 0.001), which indicated that our system
can be used to distinguish these two patient populations.

4 Discussion

We have presented a system and workflow for fast acquisition and quantification
of PISA, leading to accurate calculations of EROA and regurgitation volume.
Our system utilizes 3D B-mode and Doppler flow volumetric echocardiography
sequence data. To our knowledge, this is the first time that the complex 3D PISA
diagnostic evaluation workflow was addressed by an efficient computational sys-
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tem. Extensive in vitro experiments establish that our system accurately mea-
sures surface area, EROA and regurgitant flow, especially as compared to the
calculations obtained from the conventional spherical approximation. Further
in vivo experiments with a patient population demonstrate that our system
effectively measures EROA when cross-validated with a manual vena contracta
measurement and that our system makes it possible to accurately distinguish pa-
tients with mild-moderate regurgitant flow from patients with moderate-severe
regurgitant flow. In future work, the interactive specification of the valve and
coaptation points may be replaced by an automatic localization.
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Abstract. Segmenting the mitral valve during closure and throughout
a cardiac cycle from four dimensional ultrasound (4DUS) is important
for creation and validation of mechanical models and for improved visu-
alization and understanding of mitral valve behavior. Current methods
of segmenting the valve from 4DUS either require extensive user inter-
action and initialization, do not maintain the valve geometry across a
cardiac cycle, or are incapable of producing a detailed coaptation line
and surface. We present a method of segmenting the mitral valve annu-
lus and leaflets from 4DUS such that a detailed, patient-specific annulus
and leaflets are tracked throughout mitral valve closure, resulting in a
detailed coaptation region. The method requires only the selection of
two frames from a sequence indicating the start and end of valve closure
and a single point near a closed valve. The annulus and leaflets are first
found through direct segmentation in the appropriate frames and then
by tracking the known geometry to the remaining frames. We compared
the automatically segmented meshes to expert manual tracings for both
a normal and diseased mitral valve, and found an average difference of
0.59 ± 0.49mm, which is on the order of the spatial resolution of the
ultrasound volumes (0.5–1.0mm/voxel).

1 Introduction

The mitral valve is a thin leaflet structure responsible for maintaining uni-
directional blood flow from the left atrium to the left ventricle. Mitral valve
disease, however, is one of the most prevalent among valve diseases [1], often
necessitating surgical intervention. Despite this, gathering detailed information
about valve dynamics on a patient-specific basis is rarely performed due to lim-
ited methods to extract valve geometry.

To better understand the mitral valve, several studies have attempted to sim-
ulate valve closure with either generic or patient-specific knowledge of the valve
geometry [2,3]. Those that have used patient-specific geometry have generally
done so by generating models from three-dimensional ultrasound (3DUS) [3].
The advantages of generating models from ultrasound are that ultrasound is an
imaging modality that is non-ionizing and inexpensive, and is commonly used
clinically to image the valve for diagnostic and interventional purposes.
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The challenge with model generation from 3DUS is that a limited number of
methods exist that are able to accurately and robustly segment a patient-specific
3D valve and its components with minimal input and interaction required by the
user. A volumetric segmentation of the leaflets using an intensity-based level set
method was shown in [4], but the segmentation method was not able to isolate the
valve from the surrounding tissue and could not separate anterior from posterior
leaflets upon coaptation. The work by Burlina et al., 2009 uses a level set method
and thin tissue detector to define the valve geometry and surroundings, but
requires extensive user interaction and relies on the assumption of a planar
annulus [3]. Furthermore, the segmentation is performed in only a single frame
showing an open valve. The closed configuration of the valve is estimated by
modeling the mechanics of the valve, but the accuracy of this approach is not
validated. The work by Ionasec et al., 2010 described a sophisticated system
that fits a mitral and aortic model to the respective valve using machine learning
techniques and a large database of manually delineated points [5]. In the context
of mitral valve segmentation, however, the mitral valve model lacked fine leaflet
detail due to the model being fit to only a few locations. Additionally, the model
appeared to only roughly estimate the coaptation line and did not appear to be
able to generate an estimate of coaptation length, which is a measure commonly
used by clinicians to assess valve competency.

To address these issues, we present a 4D mitral valve segmentation method
that can generate a detailed 4D patient-specific annulus and leaflet geometry.
As most modeling efforts and clinical interest revolves around the closing of
the valve, the method is designed to capture the valve geometry during this
phase of the cardiac cycle. However, the method could easily be altered to find
the leaflet geometry throughout an entire 4D ultrasound (4DUS) sequence. The
method requires only the selection of two frames from an ultrasound sequence
– one before the valve starts to close and another after the valve closes – and
the selection of a point near the center of the closed valve. The method then
automatically finds the annulus and leaflets during valve closure. By taking into
account valve behavior and handling leaflet collisions, a detailed coaptation line
and surface are generated. It is important to make the distinction that we are
not simulating the mechanics of the valve, but rather are presenting a method
to delineate the valve as seen in a 4DUS sequence. The extracted geometry
is intended for inputs to mechanical models or surgical simulators, improved
visualization, diagnostics, or for inverse modeling purposes.

2 Methods and Materials

2.1 Constructing Geometric Priors

The mitral valve segmentation method operates by first constructing a geometric
prior of the valve which is then propagated to all other frames of interest. The
valve geometry is constructed by first finding the annulus, which is then used
to enforce constraints about where to find the leaflets. To find the annulus, the
user-selected frame showing a closed mitral valve and the selected valve center
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Fig. 1. Summary of 4DUS segmentation of the mitral valve. A user manually specifies
the frames at the start and end of valve closure, and also a point near the center of
the closed mitral valve. The annulus is found through segmentation and then tracking,
starting from the closed valve and proceeding to the open. The leaflets are then found
through segmentation and then tracking, starting from the open valve and proceeding
to the closed.

point are used in a direct annulus segmentation method [6]. The segmented
annulus is then tracked to the remaining frames of interest using a variation of
the Lucas & Kanade optical flow algorithm [7], similar to that shown in [8]. The
annulus in the frame selected by the user as showing the mitral valve in the
open configuration before the valve begins to close is then used in a direct leaflet
segmentation method to generate a detailed patient-specific triangular mesh at
the leaflets [9]. The following sections describe how the mesh is evolved during
valve closure such that the geometry mirrors that of the valve in the 4DUS
images.

2.2 Evolving the Leaflet Mesh

The mitral valve mesh is evolved frame to frame by treating the mesh as an active
surface [10], where the nodes of the mesh at the annulus are fixed according to
the annulus segmentation and tracking results, and the rest of the mesh is free
to evolve. The active surface is encouraged to track the top (atrial) surface of the
leaflets as seen in the 3DUS images, regulated using internal edge and bending
forces, and designed to handle collisions between leaflets. The active surface is
then evolved according to the force equation

Fvalve = wimageFimage + wedgeFedge + wbendFbend + wcollisionFcollision (1)

where wimage, wedge, wbend, and wcollision are scalar weights. The nodes, x, of the
mesh (except for annulus nodes) are then evolved such that xk+1 = xk+dtFvalve,
where dt is a time step. The annulus nodes, xannulus, are evolved according to the
displacement, Dannulus, and correspondence determined from tracking the annu-
lus from frame to frame. Displacing the annulus nodes is carried out over kannulus

time steps, such that xk+1
annulus = xk

annulus + δannulus

(
1

kannulus

)
Dannulus, where

δannulus = 1 when k < kannulus and zero otherwise.
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Image Force. The image force drives the mesh so that it tracks the top surface
of the leaflets as seen in the 3DUS volumes. The top surface is tracked as this
is the surface that defines leaflet coaptation. One component of the image force
is derived from the image gradient of a Gaussian convolved thin tissue detector
image [6], ∇Gσ (TTD). This component drives the valve mesh toward the center
of the leaflets and helps ensure that leaflets are driven to roughly the desired
location even in the presence of large displacements. We encourage the mesh
to find the atrial surface of the leaflets using the gradient of the target frame’s
ultrasound intensity, Itarget, along the node normal, N. Having already defined
the normal at each node to point toward the atrial side of the leaflets, the atrial
surface of the leaflets should be at a location where ∂Itarget

∂N is at a minimum
(Figure 2). The image force is then specified as

Fimage = ∇Gσ (TTD) · N− δimage
∂2Itarget

∂N2
(2)

where δimage = 1 when a node is at a location where ∂Itarget

∂N < 0 and zero
otherwise. This is to prevent a node that is below the leaflet from being pushed
even further below the leaflets.

N

Left Atrium

Left Ventricle

Leaflet
Mesh

N
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Along Normal
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Leaflet
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**

Fig. 2. Simplified depiction of the image gradient along the node normal. (Left) Ultra-
sound volume shown with the position of a mesh and the direction of a node normal.
(Right) A simplified graph showing the gradient of ultrasound intensity along the nor-
mal. To capture the atrial side of the leaflets, nodes are forced in a direction so as to
minimize the value of the gradient.

Edge Force and Artificial Strain. We maintain the geometric prior as de-
termined from the initial leaflet segmentation by regulating the edge lengths of
the mesh. We do this by imparting the edge force

Fedge =
E∑

e=1

δedge (Le − Le,o) (3)

where δedge = δc when Le −Le,o < 0 (i.e. edge is in compression) and δedge = δt

when Le − Le,o > 0 (i.e. edge is in tension). The original edge lengths are
represented by Le,o and the number of edges attached to each node by E. For
our design, we make δc < δt as a way of penalizing longer edges over shorter.
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A key issue in creating segmented models of the mitral valve is identifying the
regions where the leaflets overlap when closed, as this determines the propensity
for the valve to leak. This is challenging because it is impossible to discern sep-
arate leaflets in this coaptation region once the valve is closed. This necessitates
tracking the leaflets as the valve closes, and approximating the stretch that en-
sues as the leaflets are pressurized. Studies on the mechanical properties of the
valve have shown that leaflets stretch by roughly 35% in the radial direction and
20% in the circumferential direction [11] due to the pressure gradient across the
valve, and because the leaflet is constrained at the annulus and by chords. As ac-
curate chordal structure is extremely difficult to obtain from 3DUS, leaflet strain
is applied artificially throughout the closure of the valve. Having determined the
radial and circumferential components of each edge when the leaflet mesh is first
segmented, the reference edge lengths, Le,o are adjusted accordingly throughout
the valve. Making δc < δt makes this artificial strain not a hard constraint but
a soft constraint, and making δt large ensures that the leaflets do not stretch
much more than the applied artificial strain. In our design, the applied strain
rate is such that the leaflets are fully strained by halfway through leaflet closure
to ensure that leaflets have the opportunity to coapt.

Bending Force. Due to the noise in 3DUS images, the image force has the
potential to displace the leaflet mesh in ways uncharacteristic of an actual valve
and in ways which cannot be corrected by the edge force. We therefore impart
a bending force which tends to straighten the leaflets to further regularize the
surface geometry.

Fbend = arccos (Ni · Nj) (4)

The bending force is computed at each edge which is shared by two triangu-
lar faces whose respective normals are Ni and Nj. The force is then imparted
appropriately to the edge nodes and the nodes opposite the edge from each face.

Collision Force. To resolve collisions between leaflets and ultimately allow
for the formation of a detailed coaptation surface, a collision force is computed
between edges that are close to colliding, where potentially colliding edges are
determined from a grid-based culling operation. If the distance between two
edges is dc, the force between the edges is fc = exp (dc). The collision force at
each node is then found as

Fcollision =
E∑

e=1

fc,e (5)

where E again represents the number of edges attached to a node.

Tether Force. As previously mentioned, segmenting the chordal structure of
the mitral valve from 3DUS is extremely difficult. The chords act to constrain
the free edge of the leaflets. Without chords, the free edge of the leaflets has
the potential to flail uncontrollably. The same is true for the leaflet mesh in
the presence of the image force. We therefore found it necessary to impart a
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comparatively small tethering force to the free edge of the leaflets. This is done
by redirecting the image force at the free edge by adding a component to the
normal that points toward the left ventricle. If the magnitude of the image force
is fimage,o, which is directed along node normal N, then the new image force at
the free edge is

Fimage =
(

fimage,o

2

)
N + Avalve

|N + Avalve|
(6)

where Avalve is a vector pointing along the axis of the valve toward the left
ventricle which is determined when the leaflet mesh is first segmented.

3 Results

We assessed the accuracy of the presented 4D mitral valve segmentation method
using retrospective ECG-gated data acquired using a transesophageal approach
(iE33 Echocardiography System with a transthoracic X7-2t probe, Philips
Healthcare, Andover, MA, USA). Frames at the start and end of mitral valve
closure and a point near the center of the closed mitral valve were manually se-
lected. The valve weights (wimage = 0.05, wbend = 0.15, wedge = 0.02, wcollision =
2, δt = 5, δc = 1, dt = 1) were tuned on a single data set to ensure stability and
adequate tracking, and the method validated on two other data sets.

The results of the segmentation for the two data sets – one showing a normal
mitral valve and another showing a stenotic mitral valve – at selected times dur-
ing valve closure can be seen in Figure 3. To validate the segmentation method,
the atrial side of the leaflets for the two data sets were manually traced by an
expert in cut planes taken every 10o about the valve axis. This was done in
every frame during valve closure, amounting to over 50 frames and over 1000
cut planes between the two data sets. The average differences between the man-
ual tracings and automatically segmented meshes for the first data set (normal
mitral valve), second data set (diseased mitral valve), and across both data sets
were 0.84+/-0.65 mm (RMS = 1.06mm), 0.48+/-0.34 mm (RMS = 0.59mm),
and 0.59+/-0.49 mm (RMS = 0.77 mm), respectively. These differences were
on the order of the spatial resolution of the ultrasound volumes, which were
0.5–1.0mm/voxel. This analysis makes the presented algorithm one of the most
thoroughly validated 4D mitral leaflet segmentation methods.

In showing the mesh location relative to the ultrasound images in Figure 3, it
can be seen that the segmentation accurately finds the valve location throughout
valve closure. Additionally, the 3D mesh shows that a detailed coaptation surface
is delineated. The same parameters were used for both studies, with the exception
that the artificial strains for the stenotic mitral valve were made to be half those
of the normal (i.e. instead of using 35% strain in the radial direction and 20% in
the circumferential, we used 17% and 10%, respectively), which is an estimate
for the mechanical properties of stenotic leaflet tissue.
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Fig. 3. Results of the mitral valve segmentation method during valve closure for a (1st

Column) normal and (2nd Column) stenotic mitral valve. The comparison of the mesh
location in the image planes (red and blue points) relative to the leaflets as seen in the
images show the effectiveness of the 4D segmentation method for ultrasound.

4 Discussion

The presented mitral valve segmentation method is capable of finding the lo-
cation of the mitral valve throughout valve closure, and could be modified to
segment an entire cardiac cycle. The benefit of the presented method is that,
with minimal user input, the method can segment the mitral valve in each frame
during valve closure and is able to generate a detailed coaptation region. This is
the first method capable of segmenting such patient-specific detail from a 4DUS
sequence. The method benefits from assuming that a geometric prior can be
very simply altered and displaced to track the desired anatomy throughout a
give sequence. Were we not to assume a geometric prior and rather just segment
the leaflets as seen in each separate image, the approach would be similar to
that in [5], where a detailed coaptation region was not found.

As emphasized, the presented method is not performing mechanical modeling
of the mitral valve. However, the method could be used in several aspects of
modeling. The construction of the geometric priors could be used as a modeling
input. Material properties could be determined by finding the strain values in
the radial and circumferential directions that results in the best segmentation.
Lastly, the 4D segmentations can be used to validate their predictions. As such,
coupling segmentation and mechanical modeling could prove beneficial.
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The constructed geometric priors in this study did not include the mitral
valve chords. These structures are too small to be accurately segmented from
three-dimensional ultrasound. For this reason, several assumptions, such as ar-
tificial strain and tethering forces, had to be made in the segmentation method
to account for this lack of information. Future efforts will include specializing
ultrasound data acquisition for the collection of the desired chords.
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Abstract. We describe a new method for vascular image analysis that
incorporates a generic physiological principle to estimate vessel connec-
tivity, which is a key issue in reconstructing complete vascular trees from
image data. We follow Murray’s hypothesis of the minimum work princi-
ple to formulate the problem as an optimization problem. This principle
reflects a global property of any vascular network, in contrast to various
local geometric properties adopted as constraints previously. We demon-
strate the effectiveness of our method using a set of microCT mouse
coronary images. It is shown that the performance of our method has a
statistically significant improvement over the widely adopted minimum
spanning tree methods that rely on local geometric constraints.

1 Introduction

In modern vascular modeling research, a key issue is the lack of highly auto-
mated and reliable methods for vessel connectivity. Vascular research has been
greatly facilitated by the advances of 3D imaging technologies such as MicroCT,
but quantifying the images remains challenging, and constitutes a bottleneck
in vascular research [1]. Although vascular image analysis has been extensively
researched in the past decade [2], most previous research focuses on vessel en-
hancement, detection, and the segmentation and quantification of a few vessel
segments or small vascular sub-trees, while vessel connectivity is seldom dis-
cussed. As a result, there are few methods capable of reconstructing complete
vascular networks [3,4,5,6]. These methods are usually limited by the need for:
(I.) the manual setting of numerous thresholds [3,4,5,6], (II.) the truncation of
small vessels [5], (III.) manual correction [3,4]. The connectivity problem is a
result of the imperfection of vessel detection. Like any feature detection results,
there are missing parts and also outliers. The handling of the missing vessels
(gaps) is found to be critical for connectivity. The failure of vessel detection is
due to imaging artifacts/noise, missing contrast agents (e.g. by air bubbles), and
morphology beyond detection models.

Previous work in vessel connectivity [2] largely depends on local image or
vascular context. Many methods (e.g. [4,6]) connect vessels based on a set of in-
tuitive rules using local vessel orientation and distances. A set of thresholds are
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often employed to decide connectivity. Minimum spanning tree (MST) methods
offer a more principled approach. Various distance metrics (thus cost functions),
e.g. Euclidean distance [7], Mahalanobis distance [8], and a mixture of Euclidean
distance and vessel orientation difference [3] has been developed for this ap-
proach. Although their cost functions are global, they have optimal substructure
and still establish the connections based on local context. Some methods use “gap
filling” techniques which more systematically explore the local image context.
They adjust the distance between nodes [3,8], or estimate missing nodes by ten-
sor voting and adaptive thresholding, etc. However, the use of local context fails
as the gaps get larger. Furthermore, intuitively defined thresholds and distance
metrics also have difficulty coping with spatially varying gap geometries.

Our method: In this paper, we leverage physiologically-based global proper-
ties of vasculature trees to guide the estimation of vessel connectivity. There has
been little work in vascular image analysis that attempts to explore the wealth
of knowledge accumulated in physiology research, such as (I.) the morphometric
statistics of vasculature experimentally measured; (II.) measured fractal proper-
ties of the vascular trees; (III.) the minimum work principle [9]; (IV.) The scaling
laws among perfusion, mass, and vascular morphology; (V.) The flow and pres-
sure within the vascular system. In this paper, we start with the minimum work
principle (MWP), Murray’s hypothesis, as introduced in Section 2.2, which is
conceptually simple and also comparatively easy for mathematical formulation.
A few previous methods on vessel image segmentation were also inspired by this
principle [10,11], but the resulting formulations were ad-hoc and the results were
not quantitatively evaluated. We present a formal derivation by strictly follow-
ing this principle and quantitative validation on its utility for determining vessel
connectivity.

2 Method

2.1 The Vessel Connectivity Problem

We consider the problem as: given vessel centerline points V , and the vessel
radii R at corresponding locations of V , find the connections E among V so that
the vascular tree T = (V , E ,R) is reconstructed. In many cases, the vascular
tree root vr is also given. In this paper, we assume that the vascular network
under consideration has a tree structure. We intend to design a cost function F(·)
which measures the truthfulness of the morphology and topology of a vascular
tree. The connectivity problem can then be written as

Ê = argmin
E

F(E ,V ,R, vr). (1)

In an image analysis scenario, the vessel points actually detected, V∗ (with cor-
responding radii R∗), always contain a set of outlier points Vo = V∗\V (false
positive, with radii Ro) and at the same time miss a set of points Vm = V\V∗

(false negative, with radii Rm), due to various reasons including image noise,
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artifacts, unrealistic modeling assumed in detection, etc. The vessel radius esti-
mation will not be accurate either, but for simplicity, this is not discussed in this
paper. Therefore the real vessel connectivity problem is a Steiner tree problem

(Ê , V̂m, V̂o) = arg min
(E,Vm,Vo)

F(E ,V∗\Vo ∪ Vm,R∗\Ro ∪Rm, vr). (2)

The topology of vasculature is often more important than the accurate locations
of connection. In this paper, we focus on recovering the vascular topology without
estimating Vm, and also leave the estimation of Vo to future work.

2.2 Murray’s Hypothesis

Nature pursues optimality in all her workings. Murray [9] was among the first to
quantify this hypothesis for vascular systems. He proposed the Minimum Work
Principle (MWP): the sum of the work overcoming flow resistance for perfusion
and the metabolic consumption of the blood is naturally minimized. He defined
the work [9] as

P = Pf + Pb = p · f + b · vol (3)
= (f2 · l · 8η)/(πr4) + b · lπr2, (4)

where Pf denotes power dissipation caused by flow friction, and Pb represents
the consumption of metabolism. Eqn. (3) applies to the whole vasculature, where
p and f are pressure and flow at the entrance of vasculature, vol. is the volume
of vessel, and b is the metabolic cost of blood in ergs/sec./cm3. Eqn. (4) cal-
culates the work for one specific vessel segment, following Poisseuille’s equation,
where r is the vessel diameter, η is blood viscosity, and l is the length of the
vessel segment. Using (4), it is straightforward to derive the optimal relationship
between f and r for a vessel segment with fixed length l:

∂P/∂r = 0 ⇒ f = r3 π

4

√
b/η. (5)

The above model has been justified in a number of ways [9]. The relation between
branching angle and radii derived from this hypothesis, has been found to closely
conform to the morphologies of various biological vascular systems including
plants. Although the model does not conform to anastomoses in vasculature
regions such as the Circle of Willis in cerebral vasculature, it is applicable to
most of the vascular system.

2.3 Problem Formulation

If we assume Murray’s P (3,4) measures the quality of an estimated vasculature,
i.e. it can serve as the F(·) in Eqn.(1), our vessel connectivity problem becomes

E = argmin
E

N∑
k=1

[(f2(ek, E) · l(ek) · 8η)/(πr4(ek))︸ ︷︷ ︸
Pf

k

+ b · l(ek)πr2(ek)︸ ︷︷ ︸
Pb

k

], (6)
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where Pk = Pf
k + Pb

k is the total work consumption for one vessel segment
(Eqn.4), ek ∈ E , ek = (vi, vj), vi, vj ∈ V , represents a vessel segment, starting at
vi and terminating at vj , with N = |E| as the total number of segments, f(·)
measures the flow through a vessel segment, l(·) calculates the segment length,
and r(·) denotes the segment radius, which corresponds to the radius r ∈ R
associated with the second point vj ∈ ek or the mean of both points.

Formulation (MST+) assuming optimal f ∼ r: If the optimal relation
between f and r (5) is assumed, it’s straightforward to simplify (6) and yield an
r2(ek) weighted MST (we label it as MST+) formulation as:

E = argmin
E

N∑
k=1

l(ek)r(ek)2. (7)

This indicates that published MST variants [3,7,8] can also be derived from
MWP with certain simplifying assumptions (e.g. r = 1), which was not previ-
ously demonstrated.

Formulation with flow conservation constraint: Eqn. (7) does not impose
the flow conservation between parent and their daughter branches. In the origi-
nal form (6) this constraint is embedded in the calculation of f(ek, E) which is
unfortunately computationally intractable. In this paper, we impose this con-
straint by converting the resistive tree into a parallel network. As illustrated in
Fig. 1, resistor R0 in a tree network is split into R1

0 and R2
0, which are determined

by their flow, I1 and I2 respectively:

R1
0 = I0/I1 · R0, R2

0 = I0/I2 · R0, where I0 = I1 + I2. (8)

We apply this simple conversion repetitively starting from the branch ends of
the vascular tree, ve

m, m = 1, 2 . . .M , all the way to its root, vr, which makes
the vascular structure in between fully parallel. Then the total work dissipated
on flow friction is simply the sum of the work through each path,

Pf =
M∑

m=1

f2
m

∑
ek∈P(ve

m,vr ,E)

f(ek, E)
fm

· l(ek) · 8η

πr4(ek)
, (9)

where fm is the flow at branch end ve
m, and P(ve

m, vr, E) denotes the flow path
from ve

m to vascular root vr. This formulation explicitly involves the connectivity
of the vasculature by introducing P(ve

m, vr, E). Assuming the optimal f ∼ r (5),
the cost function using (9) is simplified to be

E = argmin
E

M∑
m=1

r(em)3

2

∑
ek∈P(ve

m,vr ,E)

l(ek)
r(ek)︸ ︷︷ ︸

SPT

+
N∑

k=1

l(ek)r(ek)2︸ ︷︷ ︸
MST

, (10)

which is a mixture of the shortest path like tree (SPT) and MST.
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Fig. 1. Converting a tree-structure
resistive circuit to a parallel one
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Fig. 2. Left: The simplest tree with a gap
(v1, v2). Right: two possible solutions.

It is not difficult to show that the formulation with flow constraint (10) has
advantages over the former MST formulation (7) on bridging the gaps between
detected vessel segments. The simplest tree in Fig. 2 is used for illustration,
with a root node vr and two branches ending at ve

1 and ve
2. The detected vessel

points along both branches are assumed to be continuous except for the gap
between v1 and v2, where points are totally missing. Consider the effect of this
gap on connecting v2 to v1, as desired, or to some point v3 along branch (vr , ve

1)
by mistake. We assume that the radii r(ve

1) = r(ve
2) = 1 for simplicity which

results in (7) becoming a pure MST formulation. In this case, the optimal angle
between the branches α ≈ 75◦ and often smaller in real data [9]. The MST
cost function (7) becomes

∑N
k=1 l(ek) and the proposed formulation (Eqn. 10)

equals
∑M

m=1
1
2

∑
ek∈P(ve

m,vr ,E) l(ek)+
∑N

k=1 l(ek). In order to establish the right
connection, connecting (v1, v2) must have a lower cost than connecting (v3, v2).
Using MST (7), we need

l(v1, v2) < min
v3

l(v3, v2), (11)

whereas using formulation (10), it is not difficult to derive the constraint:

l(v1, v2) < min
v3

[l(vr, v3)/3 + l(v3, v2)] . (12)

This means the upper bound of the allowed gap l(v1, v2) is always greater when
using the second cost function.

2.4 Optimization

The optimization for the proposed formulation (10), despite its simple form,
turns out to be non-trivial. In this paper, we approximate it by assuming that
radius rm is given and remains the same for all branch ends {ve

m}, which is the
size of an image voxel rvox. Note that not all points of radius rvox belong to
{ve

m}. {ve
m} is still a result of the optimization. Then the first term in (10) is

further approximated by a pure cost of shortest path tree (i.e. making every
node a branching end) multiplied by an coefficient λ ∈ ( M

|V| , 1). The cost is then
approximated by
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Fig. 3. A visual comparison of reconstructed trees: (a) The original image; (b) Manually
validated vascular tree; (c) The image contaminated by gaps; (d) The tree constructed
by MST; and (e) The tree constructed using our cost function (10). The warmer colors
indicate deeper branching levels of vessel segments.
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Table 1. Significance

Gap Pλ=0.1 Pλ=0.3 Pλ=0.5

6% 0.154 0.100 0.102
8% 0.064 0.061 0.062
10% 0.029* 0.028* 0.029*
12% 0.003* 0.003* 0.002*
14% 0.004* 0.003* 0.003*
16% 0.026* 0.021* 0.023*
18% 0.000* 0.000* 0.000*
20% 0.065* 0.031* 0.031*

Fig. 4. A quantitative comparison of reconstructed trees (Section 3). Each subfig-
ure presents the error obtained from one vascular tree. MST: minimizing MST cost
function; MST+: minimizing (7); The others: minimizing the proposed function
(10)(approximated by (13) with different λ). P values from t tests comparing the pro-
posed function (10) with MST are in Tab. 1. * marks significant results.

P∗ = λ · r3
vox

2

N∑
j=1

∑
ei∈P(vj ,vr,E)

l(ei)
r(ei)

+
N∑

k=1

l(ek)r2(ek). (13)

Note that as a tree, N = |E| is also the number of all vertices besides vr. This
expression is equivalent to the so-called cable-trench problem [12]. Although it
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is still a difficult problem (NP-complete), we found that it can be effectively
approximated by Prim’s algorithm with distance between vertices defined in
(13). As a greedy algorithm, when implemented in Matlab it can establish the
connection for 10,000 vessel points within 10 seconds on a state-of-the-art PC.
Although (10) can be better approximated by more sophisticated algorithms,
this formulation is shown to be adequate in the results described below.

3 Experimental Results

We evaluate the algorithm performance by examining how well the connectivity
of a set of real mouse coronary arterial trees can be recovered. These trees were
manually validated and gaps at known locations with known sizes were inserted.

Vascular trees: Five healthy C57Bl/6 mouse coronary arterial trees were ex-
tracted from their ex-vivo microCT images with manual image processing by
an expert. The image size is 512 × 512 × 742 with voxel resolution of 16μm.
The data were first manually edited within the Volume Viewer of the GE Ad-
vantage Workstation to remove venous and other outlier structures. They were
then down-sampled (to resolution of 32μm) to reduce the computational de-
mand of validation. The resulting images were skeletonized by image thinning
with manual adjustment of the threshold.

Evaluation: We created gaps by masking out part of V using 500 spherical
balls from any original phantom tree T = (V , E ,R, vr). The simulated gaps are
similar to those common ones in real images (e.g. caused by air bubbles or weak
vessel detection). The ball diameters ranged from 2% to 20% of the width of the
bounding box of the whole vasculature. The resulting gaps had maximum lengths
around 0.06−0.6 mm in physical space, or 2−20 voxel widths in the image space.
For each ball size, 100 random configurations of the ball locations are used for
evaluation. The ground truth connectivity E− for the remaining vessel points and
associated radii (V−,R−, vr) can be obtained from E . (V−,R−, vr) were input
into different algorithms to find Ê−. Directly comparing E− and Ê− to counting
the number of wrong connections is inadequate to reflect the significance of error
in terms of the function of a vascular tree. We consider the path lengths from tree
root vr to each vessel point as better error measures, because they are associated
with the tree function, and will also be altered by erroneous connections. We
define the error as E = 1

|V−|
∑

vi∈V− |l(P(vi, v
r, Ê−)) − l(P(vi, v

r, E−))|, where
P(·) finds the shortest path between two nodes within a tree, and l(·) measures
its length. For each ball size, E is further averaged over random configurations
of ball locations.

Results: The experimental results are plotted in Fig. 4. The error E generally
increases when the maximum gap length increases. It is observed that when the
maximum gap length is greater than 8% of the vasculature width, the errors re-
sulting from minimizing our proposed cost function (10) are significantly lower
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than those from minimizing the pure MST cost function, with λ in a compara-
tively wide range, (0.1, 0.5). It is also observed that MST+ formulation (7) leads
to a similar level of error to the pure MST. This is not surprising as discussed
earlier in Section 2.3. In Fig.3 we also plot a sample result of both MST and our
algorithm for a visual comparison. To create large gaps but keep the majority
of the vasculature, only 100 balls of random diameters from 2 to 20 voxel width
were used. It is obvious that at the places where significant gaps exist, our cost
function recovers far more better connectivity than MST.

4 Conclusions and Future Work

We hypothesized that global vascular properties would provide better guidance
for vessel connectivity than those local ones. In this paper, we follow Murray’s
hypothesis of the MWP [9] to formulate the vessel connectivity as an optimiza-
tion problem. A cost function (10) that naturally imposes flow conservation is
derived, and a greedy algorithm is also proposed for optimization. We evaluate
the performance of our algorithm quantitatively using real vascular image data
and demonstrate that it can achieve significant improvements in comparison
with the results of MST, whose variants were widely adopted [3,7,8].

Others have attempted to apply similar principles. Bruyninckx et al . [10]
employed Murray’s law for extracting vascular trees from images. As briefly
mentioned in Section 2.2, Murray’s law is derived from the MWP, describing
a local vascular property. For the global constraints they minimized the total
vascular volume, which is half of MWP (the second term in (3)). Previously we
also tried to employ the MWP to connect vessels [11]. The major difference is
that a pseudo vascular resistance was used to formulate the cost function, instead
of deriving it directly from the MWP. The algorithms developed in [10,11] are
far more computationally demanding than the greedy one proposed in this paper
and there were no quantitative evaluations conducted for vessel connectivity.

We conceptually validated the idea of using Murray’s hypothesis for vessel con-
nectivity. Future work will include refining the optimization process and develop-
ing other formulations of the vessel connectivity problem using MWP, including
using perfusion volume constraint for outlier detection (estimation of Vo), and
the extraction of multiple vascular trees (e.g. arterial and venous trees).
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Abstract. Automatic segmentation of spinal nerve bundles that orig-
inate within the dural sac and exit the spinal canal is important for
diagnosis and surgical planning. The variability in intensity, contrast,
shape and direction of nerves seen in high resolution myelographic MR
images makes segmentation a challenging task. In this paper, we present
an automatic tracking method for nerve segmentation based on particle
filters. We develop a novel approach to particle representation and dy-
namics, based on Bézier splines. Moreover, we introduce a robust image
likelihood model that enables delineation of nerve bundles and ganglia
from the surrounding anatomical structures. We demonstrate accurate
and fast nerve tracking and compare it to expert manual segmentation.

Keywords: nerve bundles, tracking, segmentation, particle filter.

1 Introduction

Mapping and localization of nerve pathways is essential for diagnosis of spinal
pathologies, treatment planning, and image-guided interventions. Recent devel-
opments in high-resolution MRI have enabled visualization of the nerve bun-
dles within the dura, as they pass through the foramen, and exit the vertebral
canal [16]. The bundles exhibit good contrast with fluids and bone, but are of-
ten of similar intensity to that of marrow and muscle. Manual segmentation of
nerves and ganglia is quite challenging and time-consuming. In this paper, we
develop and demonstrate a method for automatic segmentation of these nerves
and ganglia in high-resolution MRI that requires minimal input from an expert.

Nerve bundles and ganglia can be observed in high-resolution (0.3-0.6 mm
voxels) MRI, as illustrated in Fig. 1. They start inside the spinal canal as dark
grey bundles. The intensity contrast changes along the nerve; the neighboring
tissues include cerebral spinal fluid, bone and other nerves. The bundles approx-
imate cylinders, but change shape in the presence of a pathology such as disc
herniation. As the bundles turn and exit through the foramen, they grow thicker,
less regular and have lower contrast with their surroundings (e.g., fat, muscle
or bone) as the nerve ganglia form. Automated nerve segmentation promises
to significantly improve image-based diagnosis and therapy by providing fast
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Fig. 1. Three slices from an example herniated disk MRI. All arrows point to the same
nerve bundle. Blue arrows show examples of poor contrast between the nerve and
surrounding tissue; orange arrows indicate the thickening of the nerve into a ganglion.

tracing of the nerve bundles. In fact, the amount of time and effort currently
required for manual tracing of the nerves precludes the practical construction
of nerve maps, which could benefit surgery and minimally invasive interventions
by reducing procedure duration and complications and improving outcomes of
treatment of several degenerative conditions and spinal trauma.

Prior work in segmentation of tubular structures, such as blood vessels, is
clearly relevant to this task. Region-growing approaches, such as classical region-
growing [5], competitive region-growing [20] and wave propagation [6], have been
used successfully for vessel segmentation. Unfortunately, these methods suffer
from leakage, where segmentation “leaks” into nearby structures, in areas with
lack of contrast [11]. Active contours that evolve an initial boundary to segment
the tubular targets offer a model-based approach [13,14]. Variational and level-
set formulations have been successfully used for vascular segmentation [7,13].
However, these methods need good initializations and suffer from many local
minima [11]. Moreover, false positive rate (or severe leakage) is certain to limit
the usefulness of such methods in our application.

An alternative approach is to first extract the centerline, and to fill out the
segmentation as a subsequent step. The target is modeled as a tubular structure –
most often via circular cross-sections of inscribed cylinders or spheres – with a
centerline in 3D [1,9]. In practice, these methods require a fair amount of user
interaction to often re-seed tubes or branches [11]. Correction and re-centering
during centerline propagation are affected substantially by neighboring tissues
of similar intensities. Some methods require two end-points and employ variants
of minimal path extraction [4,10], which often suffer from shortcut paths [12].
The high degree of required user input and the high false-positive rate in low
contrast structures make these approaches inappropriate for our specific task. A
recent study has demonstrated the feasability of using DTI and fiber tracking of
lumbar nerves [2] to estimate differences of diffusion parameters between healthy
and herniated discs. Our method can be readily extended to include diffusion
information by incorporating directional information in the likelihood function.

In this paper, we present a tracking approach based on particle filtering, also
known as sequential Monte-Carlo tracking. Tracking has also been demonstrated
previously for segmentation of tubular structures [8,11,15]. Most vessel tracking
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methods model the state as a cross-sectional ellipse [3,8] or as a cylindroid [19].
In tracking nerve bundles, the regions of low contrast require the state to cap-
ture substantially longer segments of the track than what is represented by a
cross-section. In addition, nerves tend to change direction, often sharply, which
necessitates a use of more complex descriptors than cylinders. Enabling multiple
hypotheses, flexible dynamics and diverse likelihood models, particle filtering is
an ideal approach for our task.

To address the challenges of nerve tracking, we define a rich particle repre-
sentation that captures the geometric behaviour of the nerve bundles. We use
a Bézier spline [18] centerline with a quadratic radius function to characterize
a nerve bundle. We devise a dynamics model for particle updates that enforces
continuity and smoothness. Furthermore, we define an image likelihood model
that compares gradient fields and intensities of predicted patches with image
observations to evaluate the posterior distribution of the particles’ importance.
Once tracking is completed, we remove spurious segmentations by measuring the
quality of the entire tract. We demonstrate successful segmentations of nerves
and evaluate them relative to expert manual segmentations. To the best of our
knowledge, this is the first automatic segmentation of nerve bundles and ganglia.

2 Methods

Particle Filters. We start by providing a brief review of particle filters [17]. We
let ht be the particle, or state, representation at step t of the tracking algorithm,
and assume the states respect a first order Markov chain, i.e.,

p(ht|h1:t−1) = p(ht|ht−1), (1)

where h1:t−1 denotes the state history for step t. We let zt be the image-based
observation at step t, and further assume that given the state, the observations
at different time points are independent:

p(z1:t|h1:t) = p(zt|ht) · p(z1:t−1|h1:t−1). (2)

A step of the tracking algorithm estimates the posterior distribution p(ht|z1:t),
represented non-parametrically via a set of K weigthed samples {h(k)

t , w
(k)
t }K

k=1.
It can be readily shown that

p(ht|z1:t) ∝ p(zt|ht) · p(ht|z1:t−1), (3)

i.e., the particle distribution depends on a likelihood function p(zt|ht) and a
prior term p(ht|z1:t−1) [17].

A particle filter maintains the posterior distribution (3) by generating a set
of samples {h(k)

t , w
(k)
t }K

k=1 at step t from the set {h(k)
t−1, w

(k)
t−1}K

k=1 generated at
step t−1. Specifically, a sample 〈ht−1, wt−1〉 is drawn from the set {h(k)

t−1, w
(k)
t−1}

according to the weights {w(k)
t−1}, and is propagated to become 〈h(k)

t , w
(k)
t 〉. The

state vector h(k)
t is sampled from p(ht|ht−1), and its weight w

(k)
t is computed
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by rescaling wt−1 with likelihood p(zt|h(k)
t ). The weights are normalized at each

step to sum to 1. It can be shown that the resulting sample set {h(k)
t , w

(k)
t }K

k=1

is an accurate representation of the state distribution p(ht|z1:t).
In the remainder of this section, we define our particle model ht for the nerve

bundle, our dynamics model p(ht|ht−1), and our likelihood measure p(zt|ht).
Together, these elements fully define the tracking algorithm.

p
0

p
1

p
2

p
3r( )

Fig. 2. Nerve segment (particle)
is defined as a Bézier curve cen-
terline with four control points
and a radius function r(·)

Particle Representation for Nerve Tracks.
We model each particle as a tubular structure
around a centerline curve in 3D. We design the
centerline as a Bézier curve and form the tubu-
lar structure by introducing a radius function,
as illustrated in Fig. 2. A nth degree Bézier
curve [18] is defined by n + 1 control points.
The first and last control points define the end-
points of the curve. The interior control points
can be thought of as “pulling” the curve towards them. We choose to work with
cubic curves, i.e.,

c(τ) = (1 − τ)3p0 + 3(1 − τ)2τp1 + 3(1 − τ)τ2p2 + τ3p3, (4)

where τ ∈ [0, 1] is the parameterization variable.
We allow the radius function r(·) to vary quadratically along the segment,

and also define it via a Bézier curve:

r(τ) = (1 − τ)2r0 + 2(1 − τ)τr1 + τ2r2, (5)

for some control points r0, r1, and r2. In addition, we maintain the mean image
intensity μ inside the segment. The state vector

h = (p0,p1,p2,p3, r0, r1, r2, μ) (6)

fully describes the corresponding segment. This construction can handle tubular
structures with variable directionality, thickness and contrast, such as nerve
bundles and ganglia.

Dynamics model. We now describe the construction of the state vector ht

from the state vector ht−1 generated in a previous step of the algorithm. This
step corresponds to sampling the probability p(ht|ht−1).

We set the first centerline control point of ht to the last control point of
ht−1: p0,t = p3,t−1, which ensures continuity of the track. We place p1,t along
the line (p2,t−1p3,t−1). This maintains smoothness during the transition from
the previous to the current particle, since for Bézier curves, the tangent of a
curve at an endpoint p0 is along the vector (p0,p1), and similarly the tangent
at point p3 is along the vector (p2,p3). The distance � between p0,t and p1,t is
drawn uniformly from [0, L] where L is a parameter of the algorithm. Formally,

p1,t = p0,t + �n̂,



Segmentation of Nerve Bundles and Ganglia in Spine MRI 541

where n̂ is the unit vector in the direction of (p2,t−1,p3,t−1).
We draw the direction of (p1,t,p2,t) from a von Mises-Fisher distribution on

the unit sphere, centered on the direction of the initial tangent (p0,t,p1,t) with
concentration 1/σ2

α (we call this new direction n̂01 + Δn̂12). We then sample
the distance � of p2,t from p1,t uniformly from [0, L]. Formally,

p2,t = p1,t + �2(n̂01 + Δn̂12).

Using the same procedure we generate p3,t based on p2,t and vector (p1,t,p2,t).
We set r0,t = r2,t−1 to maintain continuity of the radius function. We sample

a distance d ∈ (0, 1), and we set r1,t to the y-coordinate of a control point
which is d away from r0,t along the line (r1,t−1, r2,t−1) . We choose r2,t from a
Gaussian distribution with mean r1,t and variance σ2

r . The intensity parameter μt

is propagated via a Gaussian distribution with variance σ2
μ.

This construction depends on four parameters: L controls the length of the
particle, σ2

α determines the variation in the particle curvature, σ2
r describes the

range of the radius, and σ2
μ captures the intensity variation.

Likelihood Measure. Now we focus on the likelihood p(zt|ht). The contrast
between the nerve bundle and surrounding tissue may change along the track,
rendering ribbon measures [8,15] inappropriate. However, it still creates image
gradients normal to the centerline. Therefore, to measure alignment of an ob-
served image patch I with a hypothesis ht, we simulate an image patch with
a white nerve segment described by the particle ht on a black background. We
compare the directions of its gradients gh with those of the observed patch gI .
We avoid using the gradient magnitude, since false hypotheses with partial but
very strong contrasts are abundant. We express the distance d2

∇ between the
normalized particle gradient ĝh and the normalized observed gradient ĝI via
their cross product:

d2
∇(ht, I) =

1
|V (ht)|

∑
v∈V (ht)

(ĝh
v × ĝI

v)
2 =

1
|V (ht)|

∑
v∈V (ht)

sin2(ĝh
v , ĝI

v), (7)

where V (ht) is the set of voxels in the simulated patch that belong to the pre-
dicted nerve segment and v is an image voxel.

To capture relatively constant nerve intensity, we include a term that measures
the distance between the mean intensities in the observation and the particle
prediction:

d2
μ(ht, I) =

⎡⎣μt −
1

|V (ht)|
∑

v∈V (ht)

Iv

⎤⎦2

. (8)

We form the likelihood model by combining equations (7) and (8):

p(zt|ht) =
1
Z

exp{−(d2
∇ + λd2

μ)}, (9)
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where λ trades off between the two measures and Z is the partition function. In
practice, Z does not need to be explicitly computed as the weights (likelihoods)
of all samples are normalized at the end of each iteration.

Partial volume effects play a significant role in this computation. Most nerve
bundle voxels also contain volume from surrounding anatomy. Modeling large
segments of the nerve tracts, as opposed to cross-sections, improves the robust-
ness of the method by increasing the number of voxels that contribute to the
distance computations in (7) and (8).

Implementation Details. We initialize each nerve bundle with two nearby
clicks that specify p2,0 and p3,0 for a single particle of weight w = 1 at time t = 0.
We set parameters as follows: length L = 5, curvature σα = 0.4, radius σr = 1,
intensity σμ = 2. The curvature variation only needs to be increased if sharp
transitions are expected. In our experience, the length, radius and intensity pa-
rameters rarely need to be varied for similar contrast and resolution MR images.
We also consider the intensity distance equally important to the gradient field,
setting the tradeoff parameter λ in the likelihood model to 1.

We run the particle filter until all bundles reach the end of the volume. In
each iteration, we sample 5, 000 particles and keep the ten top-weighed particles
to form the sample set {h(k)

t , w
(k)
t }10

k=1. To identify the most appropriate of the
surviving tracts, we simulate each tract V (h1:t) in the volume, and compute the
likelihood (9) for the whole tract. We retain the top three tracts. Note that due
to the multi-hypothesis nature of particle filters, branching nerves are naturally
handled. Typical runtime ranges from 10 to 30 CPU-minutes per nerve.

3 Results

We demonstrate our method on MRI scans of the spine in ten nerve bundles
from five subjects (3D Wide-band Steady State Free Precession, in-plane resolu-
tion of 0.44-0.6mm, slice thickness of 1.2-1.8mm, TR=6.4-6.9ms, TE=2.1-2.4ms,
Θ=25, ±32 KHz bandwidth, FOV=14 cm) [16]. These include four nerves in
two pathologies where the nerves have been displaced by disc herniations. Fig. 3
illustrates an example automatic segmentation. We obtain both expert and au-
tomatic segmentations of nerve bundles and ganglia that were deemed traceable,
and evaluate tracing accuracy for all bundles. Fig. 3 shows cumulative distribu-
tions of the distances between segmentations in terms of centerlines and surfaces.

The mean distance between automatically extracted centerlines and their
manual counterparts is within 1 voxel (0.2± 0.1 and 1.0± 0.3 for automatic-to-
manual and manual-to-automatic, respectively); 90% of automatically extracted
centerlines are within 0.9 ± 0.3 voxels of the expert centerline, and 90% of ex-
pert centerlines are within 2.2± 0.5 voxels of the algorithm centerline. Visually,
we find very good centerline alignment (≤ 1 voxel) inside the vertebral canal.
The greater disagreement is present in the ganglia, where the algorithm tends to
under-segment and may be off-center, thereby shifting the centerline by a couple
of voxels.
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Fig. 3. Left: Example segmentation results – the rightmost nerve shows results with-
out post-processing pruning, while the left segmentation was processed after comple-
tion of tracking. as described at the end of Section 2. Right: Cumulative distribution
functions of distances (in voxels) between the automatically extracted and manual
segmentations: centerline distances on top and surfaces on the bottom. Blue plots indi-
cate differences from algorithm to expert segmentation voxels, red plots correspond to
expert-to-algorithm distances. Error bars indicate standard deviations. Dotted vertical
lines indicate mean (lower) and 90th percentiles distances (higher).

We find that since the edges of nerve bundles and ganglia are subject to
the partial volume effects and are often near other anatomical structures, the
algorithm slightly over-estimates the extent of the nerves in some regions of
the image. As mentioned above, inside the thick ganglia the algorithm under-
segments due to the ganglia’s more irregular shape. The mean distance from
the automatically extracted surface to the expert surface is 1.1 ± 0.4 voxels
and the 90th percentile is at 2.3 ± 0.6 voxels. Visual inspection reveals that
the expert segmentation can be irregular and include small deformations or
protrusions, especially in pathologies. Since the algorithm attempts to maintain
the estimation within the ganglia, the correct outer surface voxels in areas of
small irregularities will be more distant from the algorithm prediction. This
occurs in cases where the nerve bundle is thicker, generally leading up to and
including the ganglia, which can reach 15 voxels in diameter. This results in
a mean distance between surfaces of 2.6 ± 0.8 voxels, with the 90th percentile
within 5.9 ± 1.9 voxels. We therefore conclude that the proposed segmentation
may slightly over-segment (usually by no more than two voxels) in thin areas
and under-segment in thick areas, but will give a very good estimation of the
nerve core and location.

We also evaluated the algorithm on the nerves following the ganglia, where
they split up into several thinner peripheral nerves. Here, the algorithm often
loses some nerves due to loss of contrast and the small radii of the nerves.
When the algorithm continues to track, we observe a fully estimated path (the
segmentation follows the nerve), but with over-segmentation as the filter is driven
by stronger edges from the neighboring anatomical structures.
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4 Conclusion

We demonstrate tracking of nerve bundles in high-resolution spine MRI. The
tracking method is based on particle filtering and requires minimal input from
the user. We model nerve segments via Bézier curves and describe a dynam-
ics model for propagating the segments. A new distance measure that utilizes
gradient fields and nerve intensities is used to score nerve segments and whole
bundles. We demonstrate the method’s capacity to handle nerves and ganglia in
presence of both high and low contrast. Precisely estimating edges from the cur-
rent segmentation and segmentation of much thinner peripheral nerves of lower
contrast remain challenging problems for future work.
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Abstract. We present a multichannel extension of Markov random
fields (MRFs) for incorporating multiple feature streams in the MRF
model. We prove that for making inference queries, any multichannel
MRF can be reduced to a single channel MRF provided features in dif-
ferent channels are conditionally independent given the hidden variable.
Using this result we incorporate kinetic feature maps derived from breast
DCE MRI into the observation model of MRF for tumor segmentation.
Our algorithm achieves an ROC AUC of 0.97 for tumor segmentation.
We present a comparison against the commonly used approach of fuzzy
C-means (FCM) and the more recent method of running FCM on en-
hancement variance features (FCM-VES). These previous methods give
a lower AUC of 0.86 and 0.60 respectively, indicating the superiority of
our algorithm. Finally, we investigate the effect of superior segmentation
on predicting breast cancer recurrence using kinetic DCE MRI features
from the segmented tumor regions. A linear prediction model shows sig-
nificant prediction improvement when segmenting the tumor using the
proposed method, yielding a correlation coefficient r = 0.78 (p < 0.05)
to validated cancer recurrence probabilities, compared to 0.63 and 0.45
when using FCM and FCM-VES respectively.

Keywords: Breast DCE MRI, breast tumor segmentation, tumor char-
acterization, breast cancer recurrence prediction.

1 Introduction

Crucial to the performance of a feature extraction and image classification sys-
tem is the availability of a reliable segmentation approach for the object of
interest (e.g. tumor). In most medical imaging scenarios the automation of this
step is particularly important because of the large amount of images to be ana-
lyzed. This makes the manual segmentation approach tedious and prohibitively
expensive. As a result, a lot of research has been done in the medical imaging
community for improving the quality of automated segmentation. Specifically,
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there is an abundance of methods in the literature that are geared towards seg-
menting specific anatomical structures (e.g. parts of the brain). Notable among
them are the variants of active contours [1] and active shape models. There are
two drawbacks associated with this class of methods. First, they require manual
initialization that should be very close to the actual structure to be segmented.
Second, they aim at segmenting particular anatomical structures that have well
defined control points in their shape, which is often not the case for arbitrarily
shaped lesions.

Among the workdone on breast tumor segmentation the most popular approach
is fuzzy c-means (FCM) clustering employed by many researchers due to its sim-
plicity (e.g. [2]). More recently Lee et al. [3] presented a method that runs FCM on
the variance map of enhancement kinetics (FCM-VES). These methods do not take
into account the overlap of the feature values of the tumor and non-tumor pixels.
As a result they have to settle with a manually set threshold on FCM membership
probabilities, leading to poor generalization. In order to address these issues we
propose to incorporate a component of learning for breast tumor segmentation.
We present a multichannel extension of Markov Random Fields (MRFs) to make
maximal usage of multiple feature streams derived from the imaging data, here
specifically related to kinetic analysis of DCE breast MR images.

In this paper we explore how inference methods like loopy belief propagation
[6] may be extended for a multichannel MRF. Zhang et al’s work [4] comes clos-
est in concept to our current work. In [4] the authors address the problem of
brain image segmentation by making use of conditional independence in MRFs
and present an expectation maximization framework to solve the MRF. How-
ever, our approach differs fundamentally from [4] in that we exploit conditional
independence for solving an MRF via loopy belief propagation [6] that reduces
a multichannel MRF to a single channel MRF for inference queries. Moreover,
unlike [4], we model our MRF using the superpixel representation that avoids
the complexity of dealing with raw pixels. Key contributions of this paper are :

• We prove that for making inference queries, any multi channel MRF can be
reduced to a single channel MRF provided the features in different channels
are conditionally independent given the hidden variable. (Section 3)

• To elaborate on this premise, we introduce multiple feature channels derived
from the kinetic analysis (pixel wise feature maps of enhancement and wash-
in-slope) of breast dynamic contrast enhanced (DCE) magnetic resonance
(MR) images in the observation model of MRF. (Section 4)

• We show that the segmentation algorithm based on our proposed method
yields an AUC of 0.97 under the ROC curve for breast tumor segmenta-
tion compared to 0.86 and 0.60 for commonly used previously proposed ap-
proaches, [2], [3]. (Section 5)

• Finally we demonstrate that superior segmentation leads to improved breast
tumor characterization. We show that the segmentation methods of this
paper lead to improvement in predicting validated breast cancer recurrence
scores from DCE breast MR images. (Section 6)

We begin with a brief review of single channel Markov random fields.
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2 Single Channel MRF

To elaborate on the MRF concept, Figure 1(a) shows how an image can be mod-
eled as a Markov random field. Each node represents the class of a pixel, and
neighboring pixels are connected via edges. In the context of segmentation the
goal is to infer the class label for each pixel (e.g. foreground vs. background).
Throughout the paper we choose the super pixel representation [5] as its compu-
tational complexity is much less than the pixel representation. Each node emits
an observation which can be any feature e.g. pixel value. The joint probability
of super pixel class and feature value over the entire image is given in Eq. 1:

P (X ,Y) ∝
∏

i

φi(xi)
∏

i,j∈E

ψij(xi, xj) . (1)

φi(xi = c) = P (yi|GMMc) . (2)

ψij(xi, xj) = e−βI(xi 
=xj) . (3)

In Equation 1, φ represents the node-potential and ψ represents the edge po-
tential, and E models the adjacency of nodes including only those nodes that
have edges between them. φi(xi) captures the correlation between the feature
and the class label, indicating the likelihood of xi coming from class c based on
the feature value of yi and the feature distribution of class c. Node potentials
can be learned from the training data. In Equation 2, GMMc is a Gaussian
mixture model learned for class c. In Equation 3, ψ biases neighboring nodes to
have the same class label via the parameter β. Approximate MAP (maximum
a posteriori) solution to the MRF can be inferred by loopy belief propagation
(Loopy BP) [6] which maximizes the joint probability P (X ,Y). Loopy BP is a
dynamic message passing algorithm used for doing inference in MRF. δi→j(Xj)
is defined to be an incoming message into node j from its neighboring node i.
To start the process of message passing through the nodes, we need to initialize
the node messages (typically to unity) and then the messages can be updated in
the next iteration as follows:

δi→j(Xj) =
1

Zi→j

∑
i

φi(xi).ψij(xi, xj)
∏

k∈N (i)−j

δk→i(xi) . (4)

where Zi→j is a normalization constant, and N (i) is a set containing the neigh-
bors of node i. Equation 4 is repeatedly invoked till the messages converge (the
update in each message is less than ε e.g. 10−6). Once the messages have con-
verged the final inference is done by using Equation 5 below:

P̂(Xi) =
1
Zi

φi(xi)
∏

k∈N (i)

δk→i(Xi) . (5)

The inference engine will output for each node a vector of size C × 1 (C = 2 for
two classes), representing the belief of this node coming from each class. Optimal
class label is simply the class with the highest belief.
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Fig. 1. (a) A single channel MRF: each node represents a super pixel emitting an
observation (see Section 2) (b) A multichannel model with two observations . The
variables inscribed in the triangle represent the joint distribution of the MRF model. By
invoking Theorem 1 we can factorize that joint distribution into two parts represented
by the ellipses. (see Section 3)

3 Multichannel MRF

Building on the single channel MRF presented in the last section we now dis-
cuss how to incorporate multiple observations in the MRF model. To elaborate
on the concept, Figure 1(b) illustrates a multichannel MRF that includes two
observations (similar notion could be extended to more than two observations).
The joint probability of the super pixel class and the two observations over the
entire image is given below:

P (X ,Y,W) ∝
∏

i

φi(Multichannel)(xi, yi, wi)
∏

i,j∈E

ψij(xi, xj) . (6)

φi(Multichannel)(xi = c, yi, wi) = P (yi, wi|GMMc) . (7)

where φi(Multichannel) is the multichannel node potential for the two observations.
Our main premise here is that the machinery presented in the previous section
can be extended for solving the above multichannel MRF. To this end, we present
the following theorem.

Theorem 1: Any multichannel MRF can be reduced to a single channel MRF
for making inference queries if the features in different channels are conditionally
independent given the hidden (inferred) variable.

Proof: We prove the above theorem for a two channel MRF, while the same
notion can be extended to more than two channels without loss of generality. If
the features in different channels are conditionally independent given the hidden
variable we can factorize the right hand side of Equation 7 as follows:

P (yi, wi|GMMc) = P (yi|GMMc)P (wi|GMMc) if Y ⊥ W |X . (8)

Equivalently Equation 8 can be written as:
φi(Multichannel)(xi = c, yi, wi) = φ

(y)
i (xi = c, yi).φ

(w)
i (xi = c, wi) . (9)
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where φ
(y)
i and φ

(w)
i are the individual node potentials for the features y and

w respectively. We can now substitute these individual node potentials in the
message update and inference equations as follows:

δi→j(Xj) =
1

Zi→j

∑
i

φ
(y)
i (xi = c, yi).φ

(w)
i (xi = c, wi).ψij(xi, xj)

∏
k∈N (i)−j

δk→i(xi) .

P̂(Xi) =
1
Zi

φ
(y)
i (xi = c, yi).φ

(w)
i (xi = c, wi)

∏
k∈N (i)

δk→i(Xi) . (10)

The individual node potentials in the above equations (the underlined portion)
can be pre-computed and be combined as a single potential. As a consequence,
the inference engine would now be running queries on a multichannel MRF
without incurring any additional cost, effectively reducing it to a single channel
MRF, proving the claim of Theorem 1 
�
In the next section we elaborate on the extraction of pixel-wise feature maps to
build a kinetic observation model for our multichannel MRF.

4 Kinetic Observation Model

Typically, for DCE MR images we have a pre-contrast image (captured prior to
the injection of a contrast agent) and a number of post contrast images, captured
at different time points after the injection of the contrast agent. A usual way to
quantify the enhancement pattern [3] is to compute percentage enhancements
relative to the pre-contrast image. If we compute the relative enhancement on a
pixel by pixel basis we can achieve pixel wise maps of the contrast enhancement.
For a particular pixel, the enhancement plotted as a function of time is termed
as the kinetic curve. In the literature (e.g.[3]) a number of basic features can be
computed from this kinetic curve. For example, peak enhancement (PE), time to
peak (TTP), wash-in-slope (WIS), wash-out-slope (WOS). Figure 2(a) illustrates

Fig. 2. (a) Illustration of basic kinetic features for a single pixel. (b) Pixel wise maps.
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these features for a single pixel. However, we can derive a rich kinetic feature set
by computing the pixel-wise map for each feature as depicted in Figure 2(b). We
aim to investigate the utility of these feature maps if included as an observation
model in our multichannel MRF for the purpose of breast tumor segmentation.

5 Segmentation Experiments

Dataset: All experiments presented in this paper were conducted on DCE breast
MR images of 60 women diagnosed with breast cancer. These women had es-
trogen receptor positive (ER+), node negative tumors, which were analyzed
with the Oncotype DX prognostic gene expression assay. Oncotype DX is a
validated reverse-transcriptase-polymerase-chain-reaction (RT-PCR) assay (de-
veloped by Genomic Health Inc.) that measures the expression of 21 genes in
RNA from formalin-fixed paraffin-embedded (FFPE) tumor tissue samples from
the primary breast cancer [7]. The final outcome of the Oncotype DX assay
is a continuous recurrence score that predicts the likelihood of breast cancer
recurrence in 10 years after the treatment. To learn feature statistics for distin-
guishing the breast tumor and non-tumor area of an image, a fellowship-trained
board-certified breast imaging radiologist delineated the lesion boundaries.

Feature selection: To select the features that meet the conditions of Theorem
1 we need to assess the conditional independence of features for which we use
the mutual information as a criterion. In the multichannel MRF of Figure 1(b),
we are interested in assessing the independence of Y and W given X . Their
conditional mutual information is given by:

I(Y ; W |X) =
∑

x,y,w

p(x, y, w) log
p(y, w|x)

p(y|x)p(w|x)
. (11)

We computed I(Y ; W |X) by sequentially setting (Y, W ) to all possible pairs of
the feature maps (post contrast enhancement, peak enhancement, wash-in-slope,
wash-out-slope), and retaining the pairs for which I(Y ; W |X) ≤ thresh (0.02).
The feature pair with the minimum I(Y ; W |X) was then selected. The above
process resulted in the selection of the following two feature maps for our MRF:
first post-contrast relative enhancement and the wash-in-slope.

To enable maximal usage of the training data we used a leave-one-out cross
validation strategy. To reduce the complexity of the multichannel MRF, we first
over-segmented the DCE MR images using the super pixels approach based
on normalized graph cuts [5]. In order to define the MRF neighborhood for
superpixels we scan the rows and columns of the superpixelized image and look
for transitions. This enables to build the adjacency matrix for superpixels that
captures the neighborhood. In Figure 3, we show representative segmentation
results of our algorithm (row 5). For comparison, we also show segmentation
results for FCM as used in [2] (row 3), and results based on running FCM
on enhancement variance FCM-VES [3], (row 4). A quantitative comparison in
terms of ROC’s for the three segmentation strategies is given in Figure 4(a). Our
proposed method yields an AUC of 0.97 under the ROC curve as compared to
0.86 and 0.60 for [2] and [3] respectively.
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Fig. 3. Qualitative comparison of segmentation results. Results of multichannel MRF
approach (Row 5) are qualitatively more similar to the ground truth (Row 2) as com-
pared to traditional approaches (Row 3,4).
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Fig. 4. (a) ROC comparison for breast tumor segmentation. (b) Comparison of Onco-
type DX score prediction.

6 Oncotype Score Prediction Experiments

In this section we investigate if better quality segmentation leads to a better
tumor characterization. To this end, we aim to predict the Oncotype DX recur-
rence scores from DCE breast MR images based on previously validated kinetic
features [2] extracted within the tumor region segmented as the outcome of our
segmentation algorithm. Briefly, in order to extract features from the segmented
tumor we cluster the pixels on the basis of their time to peak. In the DCE MR im-
ages used in this study there were three post contrast time points. We thus parti-
tion the pixels into three groups based on the similarity of their kinetic behavior.
Using this partition we first compute the percentage of pixels in each group (this
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gives us three features). Within each group we then compute statistics (up to
second order) for each of the following maps: peak enhancement, wash-in-slope,
wash-out-slope [2],[3]. For every feature map there are three groups and two fea-
tures per group (mean and variance). In all we build a vector of 21 simple kinetic
features. Using these features we learn a linear regression model to predict the
continuous Oncotype DX scores. To maximize the utility of the training data we
employed a leave-one-out cross validation strategy. The results of the prediction
models based on each of the segmentation strategies (multichannel MRF, FCM,
FCM-VES) are presented in Figure 4(b). We obtain a correlation coefficient of
r = 0.78 to the Oncotype DX cancer recurrence scores using our segmentation
method as compared to correlations of 0.63 and 0.45 for the other segmentation
methods, indicating that our proposed improved segmentation can also result to
superior tumor characterization.

7 Concluding Remarks

In this paper we have presented a framework for incorporating multiple feature
streams in Markov random fields. We have shown how a multichannel MRF can
be reduced effectively to a single channel MRF from the perspective of inference
queries. Using this framework we incorporate a kinetic observation model derived
from DCE breast MR images into the MRF and demonstrate superior segmen-
tation results as compared to previous methods. Moreover, we also demonstrate
that our improved segmentation leads to better tumor characterization. With
this framework in place, future research will also investigate the introduction of
multi-modality image sequences in the observation model of MRF.
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Abstract. Though graph cut based segmentation is a widely-used technique, it 
is known that segmentation of a thin, elongated structure is challenging due to 
the “shrinking problem”.  On the other hand, many segmentation targets in 
medical image analysis have such thin structures.  Therefore, the conventional 
graph cut method is not suitable to be applied to them.  In this study, we devel-
oped a graph cut segmentation method with novel Riemannian metrics.  The 
Riemannian metrics are determined from the given “initial contour,” so that any 
level-set surface of the distance transformation of the contour has the same sur-
face area in the Riemannian space.  This will ensure that any shape similar to 
the initial contour will not be affected by the shrinking problem.  The method 
was evaluated with clinical CT datasets and showed a fair result in segmenting 
vertebral bones.  

Keywords: Graph cut, Segmentation, Riemannian geometry, Spine. 

1   Introduction  

Graph cuts are one of the most widely used techniques for segmentation tasks in im-
age analysis.  The biggest advantage of the algorithm is that it can solve a segmenta-
tion problem as a global optimization problem without iterative calculation, and it 
guarantees a globally optimal solution [1].  The typical cost function minimized by 
the algorithm consists of 2 terms; a spatial coherency term and a data term, which are 
defined as follows: 

( ) ( ) ( )∑∑
∈∈

+=
Pp

pp
Nqp

qpqp fDffVfE
,

, .  (1)

where Dp is the data energy, Vp,q is the smoothness energy, N is the set of neighbor-
hood pairs, fp is the label assigned to the pixel p, and P are all pixels in the image [2].  
Here, the 1st term (spatial coherency term) can be considered as a term which evalu-
ates the length (in 2-D) or area (in 3-D) of the boundary, which is modulated with the 
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contrast in the image.  Therefore, minimizing the energy using this term causes a bias 
towards shorter boundaries.  This behavior is known as “shrinking bias” [3].  It causes 
severe problems especially when the target object has a long, thin spine-like process.  
Unfortunately, elongated structures are very common in anatomical objects.  This fact 
significantly aggravates the segmentation of e.g. vertebrae in CT images and causes 
significant segmentation errors [4].  Though a number of methods have been reported 
to address the problem, such as [3] and [5], to the best of our knowledge, no simple 
way to avoid it has been presented. 

In 2003, Boykov and Kolmogorov reported a method to construct a graph where 
cut metric approximates any given Riemannian metric, and utilized it for image seg-
mentation [6].  The metrics were defined and calculated from the gradient information 
of the image to be segmented. 

In this paper, we propose a novel method to avoid the shrinking problem by per-
forming graph cuts in a Riemannian space.  The Riemannian metrics are not calcu-
lated using image information but using a predefined shape template, or, “initial con-
tour.”  Although the position and pose information of the target object is needed in 
advance, no other prior information like any “seed region” is required. 

The basic idea is to compose a 3-D Riemannian space in which any surfaces paral-
lel to the initial contour (an isosurface) has the same surface area.  By performing 
graph cut segmentation in this 3-D Riemannian space, the inside and outside of the 
object can be considered and handled in the same way, so that the spatial coherency 
term serves as an evaluator of how the segmentation result differs from its closest 
isosurface.  Therefore, a “shrinking problem” in the usual sense cannot occur. 

2   Methods 

The basic notion of this segmentation method is to perform graph cut-based segmen-
tation in a Riemannian space which satisfies the following conditions: 

1) It can be defined everywhere in the input image (excluding the points where 
the distance transformation of the initial contour, dist(x), is not differentiable). 

2) Any isosurface (level set surface) of dist(x) — i.e. the set of points x with 
dist(x) = const — has the same surface area. 

The “initial contour” approximates the object to be segmented (e.g. the mean shape of 
the target object).  It is assumed that the given grayscale image and the initial contour 
is registered rigidly in advance.  Then, the metrics of the Riemannian space are de-
termined and calculated from the initial contour, so that any isosurface becomes paral-
lel to each other and has the same surface area.  Although such a Riemannian space 
has some singular points with indefinite metrics, our method can be performed in a 
stable manner even with them. 

2.1   Calculation of the Riemannian Metrics 

In order to apply the graph cut algorithm in Riemannian space, the Riemannian met-
rics at every grid point must be determined in advance.  In this study, the metrics were 
calculated from the distance map of the initial contour dist(x).   
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The metric tensor G at any point on the initial contour is defined to be isometric, 
thus, equal to an identity matrix.  At any other point, the metrics are defined so that 
the sum of the area of any iso-surface (any level set of the distance map dist(x) = d ) 
will be identical.  More detail on the calculation of the metrics will be given in Sec-
tions 2.1.1 and 2.1.2. 

2.1.1   Metrics Calculation from Curvatures of the Distance Function 
Fig. 1 illustrates the basic idea of the metrics calculation (in a 2-D space for explana-
tory usage.)  Suppose that the metrics at the point xd is to be calculated.  Let the (out-
side-positive) signed distance of xd from the initial contour be d. 

( ) ddist d =x  (2)

So, there must be a point x0, on the initial contour, whose distance from xd equals d. 
Let the initial surface (a curve for this 2-D example) be S0, and the isosurface in-

cluding xd be Sd.   

( ){ }0|0 == xx distS
, 

( ){ }ddistSd == xx |  (3)

   

Fig. 1. Determination of the metrics.  (left) The line segment l0 and ld are determined from the 
curvature radii, κ0

-1 and κd
-1, of the distance map. (right) Corresponding rectified presentation of 

the Riemannian space, in which the lengths of the two line segments are identical. 

Let the curvature of the curve S0 at x0 be κ0, and that of Sd at xd be κd (see also  
Fig. 1). Here, the curvatures are defined to be negative when the curve is convex.  
Under the assumption that both curvatures are negative (or both positive), there must 
be a point xsingular where the curvature becomes infinite.  Note that both curves S0 and 
Sd can be locally approximated as arcs whose center point is xsingular, as shown in Fig. 
1.  Therefore, the curvature radii (the inverses of the curvatures) at x0 and xd equal 
their distances from xsingular.  Thus, the curvatures satisfy the following equation: 

11
0

−− −=+− dd κκ  (4)

Suppose that there are 2 minimal line segments, l0 and ld, which are parallel to the 
isosurfaces.  Let further the Euclidean lengths of the two segments be l0

E and ld
E and 
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the proportion of them be identical to the proportion of the curvature radii κ0
-1 and  

κd
-1. Using Formula (4), the proportion is calculated as: 

dl

l

d

d
E

E
d

⋅+
== −

−

κκ
κ

1

1
1

0

1

0

 (5)

In order to achieve the equalization of all iso-surface areas, the lengths of l0 and ld in a 
sense of Riemannian geometry, l0

R and ld
R, must be identical (Fig. 1, right).  Accord-

ing to the Riemannian geometry theory, the length of a minimal line segment l can be 
approximated as: 

Gvv tllength ≅)(  (6)

where the length and direction of the vector v are those of the minimal line l, and a 
symmetric matrix G is the Riemannian metric tensor at that point.  Furthermore, we 
have defined the metrics on the initial contour as Euclidean metrics, so that the met-
rics tensor on the initial contour, G0, is the identity matrix I.  Thus, the length l0

R is 
equal to its Euclidean equivalent l0

E.  On the other hand, given the metric tensor Gd at 
the point xd, the length ld

R is calculated as: 

wGw d
tE

d
R

d ll ⋅≅  (7)

where w is a unit vector with the same direction as ld. 
Consequently, the metric tensor Gd must satisfy the formula below: 

( )21 ddd
t ⋅+= κwGw  (8)

To satisfy (8), we defined the tensor Gd as follows: 

( )( ) t
dd d RRG ⋅⋅+⋅= 1,1diag 2κ

 
( ) ( )

( )x
x

nnwnwnwR
dist

dist

∇
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(9)

Here, R is an orthogonal matrix whose column vectors w and n are unit vectors per-
pendicular and parallel to the gradient vector of the distance map, respectively. 

2.1.2   Metrics Calculation for 3-D Volumes 
In order to extend the metric calculation to a 3-D space, the metrics must be calcu-
lated from two principal curvatures of the given isosurface, instead of only one curva-

ture in 2-D.  When the 1st and 2nd curvatures are given as 1κ  and 2κ , and the corre-

sponding principal directions are given as unit vectors w1 and w2, the metric tensor 
can be defined as: 

( ) ( )( ) t
d dd RRG ⋅⋅+⋅+⋅= 1,1,1diag 2

2
2

1 κκ
 

(10)



558 S. Hanaoka et al. 

( ) ( )
( )x
x

nnwwR
dist

dist

∇
∇== ,21

 
Using these metrics, the areas of all isosurfaces become equal. (The proof is omitted 
due to space limiting.) 

2.2   Modification of the Edge Weights 

In order to perform graph cut in the Riemannian space, both the data term and the 
spatial coherency term must be adequately modified.  The former can be defined by 
the graph’s edge weights between each image grid point and the s- (source) or t- 
(sink) node.  The latter is defined by the edge weights between 2 adjacent grid points. 

The theoretical framework to perform graph cut with Riemannian metrics was 
firstly presented by Boykov et al [6] based on integral geometry.  However, their 
original approach is for finding the minimal surface in a Riemannian space, without 
considering any apparent equivalent of the data term (aside from hard constraints for 
seed regions).  Therefore, we chose another, much simpler solution to modify the 
terms under the assumptions that: 

1) The weights of edges between adjacent image grid points have to be propor-
tional to the intersectional area of their border (in the Riemannian space). 

2) The weights of edges to the s/t node have to be proportional to the volume of 
the space occupied by the grid point (again in the Riemannian space). 

The first assumption is derived from the fact that these weights compose the spatial 
coherency term, which minimizes the surface area.  The second assumption is deter-
mined in order to apply the same s/t weight to any unit volume. 

In determining the weights, there is a difficulty due to singularity of the distance 
map. Our definition of metrics depends completely upon differentiability of the dis-
tance map.  However, it is not differentiable at any point which has multiple nearest 
points on the initial contour.  In our model, any singular point can be considered hav-
ing infinite metrics, so that it has infinite volume (i.e., an infinite s/t-edge weight).  
Moreover, the finite difference approximation for the differentials is problematic near 
the singular points. 

To avoid this problem, we restrict the area of interest to a band-like re-
gion ( ) maxddist <x .  The constant dmax is determined as the maximal expected dislo-

cation between the initial contour and the true contour to be segmented.  The restric-
tion is performed as follows: 

1) Grid points close to any singular point, or singular-including points, are de-
tected. 

2) All singular-including grid points are removed from the graph, as well as any 
grid points with ( ) maxddist ≥x .   

3) Grid points adjacent to singular (= adjacent to any singular-including point) 
have to be treated specifically: these grid points are considered to have finite 
‘depth’ dmax towards the singular point (Fig. 2). 
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At each grid points, the data term is multiplied by the volume occupied by the point in 
the Riemannian space.  Given the grid size is δ, and the metric tensor at the grid cen-
ter point is G, the volume occupied by the grid point can be approximated as 

Gdet3 ⋅= δV . (11)

If the grid point is adjacent to singular, the occupied volume is considered as the 
volume within the proximal border of the grid and the border defined by the pre-
defined depth dmax.  It is simply approximated by multiplying the volume V by 

( )( )xdistd −max . 

The non-s/t edge weights are modified by multiplying the cross-sectional area A.  A 
is approximated as follows: 

( ) ( ) ( )2212211
2 uGuuGuuGu ⋅⋅−⋅⋅⋅⋅⋅⋅= tttA δ  (12)

where u1 and u2 are unit vectors perpendicular to the line segment connecting the two 
grid points and perpendicular to each other.  

 

Fig. 2. Schematic views of image grids, (left) in a rectified presentation of the Riemannian 
space, and (right) in the original image space.  The two painted boxes represent the areas occu-
pied by two grid points.  The left grid point is referred to as adjacent to singular. 

2.3   Evaluation 

The method was evaluated on 220 human vertebral bones in 10 datasets of clinical 
computed tomography (CT) images.  The 1st and 2nd cervical vertebrae were ex-
cluded because of their unique shapes.  The vertebral bones were divided into 4 
groups: cervical, upper thoracic, lower thoracic and lumbar ones.  In each group, the 
mean shape was calculated and used as initial contour.  Before the proposed method 
was applied, each vertebra was cropped and rigidly registered in the same manner as 
described in [4].  Though 209 vertebrae were correctly identified and cropped by this 
full automatic process, 11 were failed and manually corrected in this study.  There-
fore, the following experiments were performed using these 220 pose-compensated, 
cropped volume images of vertebrae. The voxel size of 1×1×1 mm and dmax=24 mm 
were used in this study. 
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The data term used in this study (before modified with metrics) is a binary function 
whose value is -1 and 1 within and out of the initial contour, respectively.  The spatial 
coherency term is a modified version of frequently used term introduced by Boykov 
et al. in [7].  In the modification only inward-positive image gradients are considered 
and outward-positive ones are regarded as 0 to detect outline of the bones. 

The similarity index, Hausdorff distance and mean distance compared to the man-
ual segmentation results were calculated for each vertebra.  Each result was compared 
to that of a non-Riemannian version of our graph cut segmentation method.  It was 
initialized with the same parameters and data terms as the Riemannian graph cut ver-
sion without any Riemannian metric modification. 

3   Experimental Results and Discussions 

The results of vertebral bone segmentation are shown in Table 1.  An example result 
is shown in Fig. 3. The results of the proposed method turned out to be superior to the 
conventional graph cut approach in all criteria and in all 4 vertebral groups.  The 
overall mean distance error (±s. d.) of the proposed method and the conventional 
method was 1.28 ±0.65 mm and 3.76 ±2.67 mm, respectively. 

The result was comparable to another method reported in our previous work [4] 
based on shape-intensity combined statistical models, in which the overall mean dis-
tance was 1.28 ±1.52 mm.  It was also comparable to the study reported by Klinder et 
al. [8], in which the overall mean distance was 1.12 ±1.04 mm.  On the other hand, 
the proposed method was less precise in thoracic vertebrae, mainly due to incorrect 
segmentation of the region adjacent to the ribs.  For thoracic vertebrae, another study 
by Ma et al. [9] reported a better result with 0.95 ±0.91 mm of the mean distance. 

One of limitations of the proposed method is that the initial contour must be given 
in advance.  Therefore, it is possible that the method is less effective for targets with 
larger shape variation.  On the contrary, it might be especially effective for objects 
with less variable but more complex shapes (e.g., with many thin or protruding parts), 
because most of known segmentation methods are not good at segmenting such com-
plex objects reliably. 

Table 1. The segmentation results. (mean ± s.d.) 

Similarity index Cervical Upper th. Lower th. Lumbar 
with proposed metrics 0.77±0.03 0.79±0.06 0.86±0.03 0.87±0.04 
with Euclidean metrics 0.45±0.21 0.48±0.27 0.68±0.23 0.82±0.05 

 

Hausdorff dist. (mm) Cervical Upper th. Lower th. Lumbar 
with proposed metrics 9.03±2.15 17.10±7.71 11.13±5.61 11.80±4.26 
with Euclidean metrics 17.62±4.16 22.08±6.84 18.05±7.34 16.93±5.07 

 

Mean dist. (mm) Cervical Upper th. Lower th. Lumbar 
with proposed metrics 1.11±0.24 1.75±0.90 1.11±0.51 1.11±0.40 
with Euclidean metrics 4.16±2.00 4.90±3.1 3.53±2.89 2.14±1.01 
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Fig. 3. An example of segmentation result for a cervical vertebra.  (From left) The original 
grayscale image, rigidly-registered initial contour and two graph cut results with Euclidean and 
proposed metrics, respectively. 

4   Conclusion 

An approach of graph cut segmentation based on a newly introduced Riemannian 
metrics was presented.  The experimental result suggested its advantage in segment-
ing thin, spine-like structures in which conventional graph cut methods are affected 
by the “shrinking problem.”  Despite the simplicity of the approach, it achieves in 
some situations even comparable segmentation quality as more complex model-based 
methods.  In future work, we aim at integrating the Riemannian graph cut and model-
based approaches in order to develop a more powerful and accurate segmentation 
scheme. 
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Abstract. The relative fibroglandular tissue content in the breast, commonly re-
ferred to as breast density, has been shown to be the most significant risk factor 
for breast cancer after age. Currently, the most common approaches to quantify 
density are based on either semi-automated methods or visual assessment, both 
of which are highly subjective. This work presents a novel multi-class fuzzy c-
means (FCM) algorithm for fully-automated identification and quantification of 
breast density, optimized for the imaging characteristics of digital mammogra-
phy. The proposed algorithm involves adaptive FCM clustering based on an  
optimal number of clusters derived by the tissue properties of the specific 
mammogram, followed by generation of a final segmentation through cluster 
agglomeration using linear discriminant analysis. When evaluated on 80 bila-
teral screening digital mammograms, a strong correlation was observed be-
tween algorithm-estimated PD% and radiological ground-truth of r=0.83 
(p<0.001) and an average Jaccard spatial similarity coefficient of 0.62. These 
results show promise for the clinical application of the algorithm in quantifying 
breast density in a repeatable manner. 

Keywords: breast cancer, mammography, imaging biomarker, percent breast 
density, breast cancer risk estimation. 

1   Introduction 

Beginning with the pioneering work of Wolfe [1], multiple studies have established 
that the relative amount of fibroglandular tissue seen within the breast, often referred 
to as breast density, is an image-derived biomarker that has been shown to be an in-
dependent risk factor for breast cancer, in fact the most significant after age [2]. Cur-
rently, the most commonly used methods to assess breast density rely either on visual 
assessment by radiologists in distinct categories [3] or through interactive, semi-
automated image thresholding [4]. Both approaches are highly subjective with known 
limitations. Categorical methods, such as with the 4-class Breast Imaging Reporting 
and Data Systems (BIRADS) [3] system illustrated in figure 1, are associated  
with only moderate overall agreement, with poor concordance with respect  
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         I)         II)   III)       IV) 

Fig. 1. Sample Digital Mammograms of BIRADS Categories I-IV in Increasing Order of Den-
sity. I) <25% fibroglandular content; II) fibroglandular content between 26-50%; III) fibroglan-
dular content between 51-75%; IV): fibroglandular content >75%. 

to moderately dense breasts versus completely fatty or completely dense breasts [5]. 
Interactive image-thresholding methods, which require user interaction, are known to 
introduce reader-variability into density assessment [6].  

To address these limitations, automated methods have been proposed for extracting 
breast density information from digitized film mammography images. For example, 
Petroudi et al. have proposed a density classification scheme based on texture models 
[7] and Tagliafico et al have investigated adaptive thresholding techniques to identify 
the fibroglandular tissue regions of a mammogram [8]. However, the translation of 
these techniques into clinical practice has been limited due to the impracticality of 
incorporating mammographic film digitization into the clinical workflow solely for 
the purposes of estimating breast density.  

As film mammography is rapidly being replaced by digital mammography, the op-
portunity arises to develop sophisticated fully-automated algorithms by quantifying 
breast density directly from the digital images. Digital mammograms capture richer 
gray-level intensity profiles compared to digitized film images, in which the digitiza-
tion process also leads to different signal to noise ratio characteristics due to the inhe-
rent granularity of the film [9]. Here we propose a novel adaptive multi-cluster fuzzy 
c-means (FCM) segmentation algorithm for quantifying breast percent density (PD 
%) from digital mammography images.  Our algorithm involves a series of steps; i) 
breast region and pectoral muscle segmentation; ii) adaptive histogram-based deter-
mination of  the optimal number clusters for FCM segmentation; and  iii) dense tissue 
cluster merging through a linear discriminant analysis (LDA) agglomeration classifi-
er. The innovation of our algorithm lays in the adaptive nature of the FCM clustering 
segmentation, which determines the optimal number of clusters based on the breast 
tissue properties of the specific image, and the agglomeration classifier which com-
bines imaging and patient characteristics to achieve optimal segmentation through 
cluster merging. We validate our algorithm by comparing to radiologist-provided 
ground truth of dense tissue on a set of 80 cases with bilateral digital screening  
mammograms (a total of 160 images) covering the full spectrum of breast densities 
seen in clinical practice. We compare our algorithm to the standard two-class FCM 
approach previously used for BIRADS density classification in digitized film  
mammograms [10]. 
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2   Methods 

As a pre-processing step in the proposed algorithm a mask of the breast region is 
generated, here denoted as MB, using a previously validated algorithm [11], based on 
a combination of automated thresholding to identify the breast tissue versus air fol-
lowed by identification of the pectoral muscle by the straight-line Hough transform 
(Figures 2a-b). To account for variable gray-level intensities between different mam-
mographic images, the gray level values of the breast region are then normalized 
using z-score to a (µ, σ) of (0, 1). 

2.1   Adaptive Fuzzy C-Means Clustering of Breast Fibroglandular Tissue 

Once the breast area is identified, we perform an adaptive k-class fuzzy c-means clus-
tering of the breast region gray-level intensities, where k is optimized for the given 
image based on the morphology of the normalized histogram of the corresponding 
image intensity-values. To determine the appropriate k, the grey-level histogram is 
convolved using a Gaussian kernel of an empirically determined window-size and 
standard deviation in order to both smooth out quantization noise while simultaneous-
ly enhancing concentrations of intensity values. The first and second derivatives of 
the smoothed histogram are then calculated, and the number of modes (defined as 
zero-crossings in the first derivative with negative second derivatives) are used to 
define k,  ݇ ൌ |ሼܪᇱሺ݃௡ሻ ൌ 0 ׷ ݃௡ א ;஻ܯ ᇱᇱሺ݃௡ሻܪ ൏ 0ሽ|  (1)

where H(gn) is the histogram of the normalized gray-levels values, gn, for those pixels 
found in the breast mask, MB. Once the appropriate number of clusters, k, is deter-
mined for a given image of the breast, we then perform k-class FCM clustering [12] 
on the gray-level values present in the breast region. FCM iteratively optimizes a 
weighted sum of square error function, which ultimately yields cluster centroids and a 
cluster-membership matrix for every intensity value in the breast mask. Once this is 
accomplished, every pixel is assigned to the cluster for which that pixel’s intensity 
value has the highest membership score. An example histogram for a k=7 case and the 
resultant FCM clustering can be seen in Figures 2b and 2c. 

2.2   Cluster Agglomeration and Percent Density Calculation 

To agglomerate the k-cluster output into a two-class segmentation of the dense versus 
fatty tissue, an LDA classifier is trained to determine the cluster cutoff for dense tis-
sue. All clusters described by centroids of equal or higher intensity than the LDA 
cutoff are then combined (i.e., agglomerated) into a single segmented dense tissue 
region, MD.  

Predictor variables of the LDA-classifier included image histogram statistics, 
which are often used to classify images into BIRADs categories [10]; image acquisi-
tion parameters and patient characteristics, which have been shown to correlate to 
PD% [13]; and parameters of the output of the FCM clustering. In order to reduce 
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           a)                            b)                                        c)                      d) 

Fig. 2. Segmentation algorithm stages for a k=7 mammogram. a) Segmented breast region;     
b) Normalized breast-pixel intensity histogram with FCM cluster centroids (vertical lines);      
c) Pixel cluster-membership represented by shading; d) Final dense tissue segmentation. 

the dimensionality of the input predictor variables, stepwise feature selection is per-
formed, where terms are systematically added to the LDA-model classifier based on 
the relative explanatory power of the terms as described by Draper et al. [14]. The 
final feature set included: the third central moment and 5th percentile of the histogram, 
kurtosis, mean and standard deviation of the un-normalized histogram, age, breast 
thickness, mammogram paddle compression-force, KVP, exposure, and parameters of 
a sigmoid-curve fit to horizontal and vertical extents of the resulting dense-tissue 
segmentation as a function increasing the cut-off cluster choice. An example of the 
agglomeration result can be seen in Figure 2d. From this final density mask, we calcu-
late mammographic percent density, PD%, by computing ܲܦ% ൌ |ெವ||ெಳ| · 100%   (2)

2.3   Dataset and Algorithm Evaluation 

To validate our proposed algorithm, we identified 80 cases with bilateral MLO-view 
post-processed digital mammography images (PremiumView TM, GE Healthcare), 
which yielded a total of 160 images for analysis. All images were acquired using a 
standard screening protocol on a Senograph DS (GE Healthcare) full-field digital 
mammography (FFDM) system, with an isotropic 100µm resolution. For each image, 
a trained breast imaging radiologist provided a breast PD% estimation and dense 
tissue segmentation using a validated user-interactive image-thresholding tool for 
breast PD% estimation (Cumulus, Ver. 4.0, Univ. Toronto) [15]. 

For our experiments, the agglomeration LDA-classifier, including the feature se-
lection stage, is trained using a leave-one-woman-out (2 mammograms) schema on 
the output of the unsurpervised FCM clustering to select the optimal cutoff point for 
dichotomizing the image into fatty and dense segmentations, in this case the lowest 
intensity cluster that is still a “dense” cluster, in order to maximize the agreement 
between computer-estimated and radiologist-defined PD%. To evaluate the accuracy 
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Fig. 3. Scatter-plots of Algorithm-Estimated vs. Radiologist-Provided  PD% (Left) and Dense-
tissue Segmentation Area (Right). Regression-equations, R2, Pearson Correlations, the linear 
regression line (black) and the identity-lines (dashed-gray) are provided for reference. 

of our algorithm in estimating breast PD%, we compute the Pearson product-moment 
correlation coefficient [16], r, between the algorithm-estimated PD% and the  radiolo-
gist-provided PD%, considered here as ground-truth for our experiments. Spatial 
agreement between the algorithm-segmented and radiologist-segmented dense tissue 
regions is evaluated using the Jaccard index, J, [17] defined as ܬ ൌ ோವ ځ ெವோವ ڂ ெವ        (3)

where RD and MD are the fibroglandular tissue segmentations generated by the radiol-
ogist and algorithm respectively. Finally, we also compare our algorithm with the 
standard two-class FCM segmentation that has been previously used for dense tissue 
segmentation in digitized film mammograms [10]. 

3   Results 

For our experiments, image intensity histograms were constructed with a fine  
bin-width of 0.01 on the z-score normalized intensity histogram. With regards to 
cluster-count optimization, it was found that distribution of frequencies of k was ap-
proximately Gaussian, centered at k=6. We applied a bounding constraint on k to be 
between 2 (as there will always be an adipose and a fibroglandular tissue cluster) and 
9 (for speed and memory considerations). Computation of k was not found to be par-
ticularly sensitive to changes in histogram construction or small peaks. 

Feature selection during LDA-training was found to select the exact same feature 
set for all 80 iterations of the leave-one-woman-out training, indicating that the fea-
tures used were robust to case variation and provide orthogonal information. When 
comparing radiologist-derived PD% to algorithm-estimated PD%, we were able to 
obtain a Pearson correlation of r=0.83. Correlation between estimated and true breast 
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Fig. 4. Comparison between 2-class (top) and adaptive k=6-class (bottom) FCM segmentation 
of a BIRADS-IV category breast. Left) Breast Mask; Center) Gray-level Histogram with 
marked FCM-centroids; Right) Final segmentation 

area calculations was found to be r=0.99, while the correlation between estimated and 
true absolute dense-tissue area was found to be r=0.75. Scatter-plots of the estimated 
vs. true PD% and dense area are provided in figure 3. Good spatial agreement be-
tween true and algorithm-derived dense area also found, with a corresponding distri-
bution of Jaccard indices of J=0.62±0.22 for the 160 density segmentations. The 2-
class FCM, previously used for segmenting dense tissue in film mammorgraphy, 
showed a low correlation of r=0.05 (p>0.1) between 2-class FCM estimated PD% and 
ground truth as well as lesser spatial agreement of J=0.57±0.24.  

4   Discussion 

The proposed fully-automated algorithm was successful in identifying the fibroglan-
dular tissue of the breast in digital mammographic images. Strong agreement with 
radiologist-provided ground truth was obtained, both in terms of the quantitative PD% 
estimate and the spatial agreement of the segmented dense tissue. Furthermore, the 
spatial agreement between automated-algorithm segmentations and radiologic 
ground-truth (J=0.62±0.22) was found to be similar to the human-observer inter-
reader variability of 0.65±0.18 previously reported by Bakic et al. [15]. These find-
ings indicate that the proposed algorithm can provide clinically relevant information 
from digital mammography for the assessment of breast density. 

One surprising result was the relatively poor performance of the two-class fuzzy-c-
means paradigm, previously used for density assessment in digitized film mammo-
grams, in identifying the dense tissue region. Although BIRADS classification and 
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not PD% quantification has often been the primary focus [10], this finding is in ap-
parent contrast to findings by Torrent et al. who reported good visual agreement be-
tween FCM and expert markings [18]. Further investigation showed that one possible 
explanation for the poor performance of the 2-class FCM algorithm  is the fact that 
majority gray-level intensity profiles of breast tissue as extracted from digital mam-
mograms tend to be multi-modal, such as in the BIRADS-IV case illustrated in Figure 
4. Given that appropriate selection of the number of clusters, k, is critical for proper 
clustering, the intensity profile of digital mammograms are complex enough that 
multi-class techniques, such as the one described in this work, may be required to 
appropriately analyze digital mammography images. 

As breast tissue seen mammographically is a 2D superimposition of different tissue 
types with different image properties, future studies should seek to expand density-
based risk-stratification analysis beyond the dichotomous, fatty vs. dense tissue para-
digm. Furthermore, as mammography is essentially limited by the effect of projec-
tion/tissue superimposition, volumetric analysis of fibroglandular tissue through 
emerging tomographic breast imaging modalities, such as breast tomosynthesis and 
magnetic resonance imaging, has been suggested as necessary to advance breast-
cancer risk modeling [19] and the approach described in this work could become the 
foundation for fully-automated density quantification from three-dimensional images.  

5   Conclusion 

We have proposed and demonstrated the efficacy of a novel fully automated algo-
rithm for fibroglandular tissue segmentation in digital mammography. We were able 
to obtain strong correlation between the output of the computerized algorithm and 
radiologist-provided ground truth. These results show promise for the potential clini-
cal relevance and applicability of our method to quantify breast density in a repeatable 
and objective manner. This fully-automated method could accelerate the clinical 
translation of density-based cancer risk stratification and pave the way for new perso-
nalized screening and prevention strategies. 
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Abstract. Segmentation of prostate is highly important in the external beam 
radiotherapy of prostate cancer. However, it is challenging to localize prostate 
in the CT images due to low image contrast, prostate motion, and both intensity 
and shape changes of bladder and rectum around the prostate. In this paper, an 
online learning and patient-specific classification method based on location-
adaptive image context is proposed to precisely segment prostate in the CT 
image. Specifically, two sets of position-adaptive classifiers are respectively 
placed along the two coordinate directions, and further trained with the previous 
segmented treatment images to jointly perform the prostate segmentation. In 
particular, each location-adaptive classifier is recursively trained with different 
image context collected at different scales and orientations for better 
identification of each prostate region. The proposed learning-based prostate 
segmentation method has been extensively evaluated on a large set of patients, 
achieving very promising results. 

Keywords: Radiotherapy, Prostate segmentation, Classification, Image context. 

1   Introduction 

Prostate cancer is one of the most common cancers in males and is a leading cause of 
male cancer death in US [1]. The external beam radiation treatment can provide a 
non-invasive and effective therapy for prostate cancer. It is usually planned on a 
planning CT image, namely planning image, on which the prostate and nearby critical 
structures are manually contoured. Then, the treatment is delivered in daily fractions 
during a period of eight to nine weeks. At each treatment day, a new CT image, 
namely treatment image, is acquired to guide the dose delivery, with goal of 
maximizing the dose delivered to the prostate and minimizing the dose delivered to 
healthy tissue such as bladder and rectum. Therefore, the success of image-guided 
radiotherapy (IGRT) highly depends on the accurate localization of prostate.  

However, the prostate segmentation from CT images is challenging mainly due to 
three factors. First, prostate has low intensity contrast in the CT images. Second, the 
prostate motion/deformation (mainly caused by both water in the bladder and air in 
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the rectum) is complex and unpredictable, even after rigid alignment of treatment 
images to the planning image based on the bone structures. Third, the uncertain 
presence of rectum gas makes the appearance of treatment images inconsistent, as 
demonstrated in Fig.1. 

So far, several categories of methods have been proposed for prostate segmentation 
from CT images. The first category of segmentation methods is the deformable-model 
based segmentation [2-4]. The second category of segmentation methods is the 
statistical-atlas based segmentation with registration techniques [5, 6]. Also, other 
methods have been proposed based on different optimization strategies [7, 8], or 
working on different imaging modalities, e.g., MR and US [9]. In this paper, we focus 
on developing a learning-based method to segment prostate from CT images.  

  

                                                   (a)                                            (b) 

Fig. 1. (a) Slices showing the prostate and surrounding organs (i.e., bladder, rectum). The black 
parts are the air in the rectum, and the red curves are the boundaries of prostate manually 
delineated by a radiologist. (b) 3D-display showing large motion/deformation of prostate in the 
two treatment images of the same patient, even after bone-based rigid alignment. Here, white 
and grey represent the two prostates after bone-based registration. 

   

                                                        (a)                   (b)              

Fig. 2. Illustration of location-adaptive classifiers placed along the two coordinate directions 
around prostate region. Each red straight line represents the place where we will place a 
location-adaptive classifier. The red curves represent the boundaries of prostate in (a) axial and 
(b) sagittal slices. 

It is well known that the context and high-level information plays an important role 
in object recognition and scene understanding, especially for medical image analysis 
[10, 11]. Recently, a supervised machine learning method with context information 
has been proposed in [12]. In this work, the discriminative probability maps created 
by the learned classifier are used as context information recursively. Motivated by 
[12], we propose a patient-specific classification method for segmentation of prostate 
using context and appearance features under the online-learning framework. In 
particular, we improve the segmentation of prostate by learning both context and 
appearance information from the previous treatment images, thus achieving accurate 
segmentation for new treatment images of the same patient.  
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Moreover, we further propose a location-adaptive classification method to improve 
the classification accuracy of prostate. This is motivated by the fact that a single 
learned global classifier and its model parameters (trained globally through the entire 
volume) may not properly reflect the features of the local regions. Some similar ideas 
of employing distributed local classifiers have been used for medical image 
segmentation [13]. Specifically, we will train two sets of location-adaptive classifiers 
along the two coordinate directions for a 3D region of interest (ROI) around prostate, 
as shown in Fig. 2 (a) and (b). Each location-adaptive classifier is trained only for 
some 2D slices within in the ROI. The classification results with the two sets of 
location-adaptive classifiers are fused into a final 3D classification result and further 
segmented by a level-set based method.  

2   Method 

Our approach consists of an online training stage and a classification stage in the 
course of radiotherapy for the patient. In the training stage, two sets of location-
adaptive classifiers are initially trained by the patient’s first 3 daily scans with manual 
segmentations, which can be further online-updated by the latest acquired scans (e.g., 
4 scans) of the same patient during the radiotherapy. With more and more subsequent 
treatment images are acquired and segmented, our classifiers can be updated with the 
automatic segmentation results of the latest-acquired treatment images (e.g., 4 
images), along with the first 3 daily scans with manual segmentations. In this way, 
our trained classifiers can track the up-to-date patient-specific image context and 
appearance to improve the classification of prostate in the next daily treatment image. 
Note that our approach can work fully automatically after the initialization. 

Specifically, to allow our classifiers to learn the image context and appearance in 
the training images, besides normalizing their intensities, the patient’s pose in these 
images need to be aligned. We can use the pelvic bones extracted (with simple 
thresholding) from the training images to rigidly align all the training images onto the 
planning image space. For saving the time for both the training and testing stages, we 
further extract a ROI around the prostate, i.e., shown in Fig. 2. Then, to train each 
location-adaptive classifier, we just collect image features from the corresponding 
slices that this classifier is responsible for, and then use a machine learning technique 
[12] to build this classifier, along with their respective segmentation labels. Finally, 
these trained classifiers can be used to provide a probability segmentation map for 
prostate in the new treatment image, which can be further transformed into a binary 
segmentation by a level-set based technique. Note that both the treatment images and 
their respective segmentation results by our method can be used to update the training 
dataset for online refinement of our classifiers.  

In the segmentation stage, each new treatment image is first aligned onto the 
planning image space. Then, the ROI used in the training stage will be used to extract 
the target region in the current aligned treatment image, which will then be 
classified/labeled by the two sets of our trained location-adaptive classifiers. The two 
prostate probability maps produced by the two sets of classifiers can be fused into a 
single probability map and further transformed into a binary segmentation by a level-
set based technique [14]. Finally, the binary prostate segmentation result, along with 
its corresponding intensity image, can be used to update the classifiers. 
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2.1   Auto-context Classification Formulation 

In this section, we briefly present the formulation of auto-context classification and 
notations. More details can be referred to [12]. We view an image as a function ܺ 
from the spatial domain Ù ؿ Թଶ to an intensity value in Թ. For each image ܺ, its 
corresponding ground-truth segmentation/label image ܻ is also available (i.e., manual 
prostate segmentation), with value of each pixel belonging to ሼ0,1ሽ. There are ܯ images used for training. And the ݆-th pixel of image ௜ܺ  ሺ݅ ൌ 1 ڮ  ሻ is representedܯ
by ݔ௜௝ , where ݆ א ሼ1 ڮ ܰሽ and ܰ is the number of pixels in image ௜ܺ. Then, the 
training set can be represented by ܵ ൌ ൛൫ݔ௜௝, ,௜௝൯ݕ ݅ ൌ 1 ڮ ,ܯ ݆ ൌ 1 ڮ ܰൟ, where ݕ௜௝ is 
the corresponding label in the label image ௜ܻ. 

We aim to learn a classifier to find an optimal classification result through 
Maximum a Posteriori (MAP) given a new image ܺ, i.e. ܻכ ൌ  . ሺܻ|ܺሻ൯݌൫ݔܽ݉݃ݎܽ
Here, the marginal distribution is employed to solve ݌ሺܻ|ܺሻ. To better approximate 
the marginal distribution, an auto-context model is proposed, in which the 
classification map produced by a traditional classifier, such as SVM or AdaBoost, is 
integrated into the training data set recursively to input context information. The 
iterative algorithm updates ݌ሺ௧ାଵሻ൫ݕ௝|ܤ௝ሺܺሻ,  ,௝|ܺ൯ asymptoticallyݕ൫݌ ௧൯ to approachܥ
where ܥ௧ is the context features at the ݐ-th iteration and ܤ௝ሺܺሻ denotes all pixels in an 
image patch centered at the ݆-th pixel.  

2.2   Location-Adaptive Classifier 

The identification of prostate, bone, air, and other tissue regions is important for 
training the location-adaptive classifiers. To achieve this, we use the segmentation 
labels of training images to locate the prostate, and identify (i.e., with simple 
thresholding) bone, air and other tissue regions on the training images. After that, we 
randomly sample pixels from each of the above regions as training instances. Then, 
the image appearance features of these training instances are computed and denoted 
as ܣ௞௟ ሺ݇ ൌ 1 ڮ ,ܭ ݈ ൌ 1 ڮ  is the number of slices used for training a ܭ ሻ, whereܮ
specific location-adaptive classifier, and ܮ is the number of training instances. 
Context features are computed from the classification map by using a pattern that 
includes a large number of locations, i.e., shown in Fig. 3(b). These context features 
are denoted by ܥ௞௟௧ ሺ݇ ൌ 1 ڮ ,ܭ ݈ ൌ 1 ڮ ,ܮ ݐ ൌ 0 ڮ ܶሻ. Finally, we can iteratively train 
our location-adaptive classifier. At the end of the training procedure, we get a 
sequence of classifiers ܮ௧ ሺݐ ൌ 0 ڮ ܶሻ for a specific location-adaptive classifier.  

2.3   Feature Extraction 

Two types of features are employed in our learning-based segmentation algorithm. 
The first one is the appearance feature, calculated from the original image. The 
second one is the context feature, computed from the classification map. The 
appearance features include a set of rectangular Haar features as used in [15]. Haar 
features are widely used in object recognition, which can be computed at different 
scales and with high speed by using integral images. We extract Haar features from 
different scales to facilitate our prostate classification. Fig. 3(a) shows some 2D Haar-
like features used in our algorithm. Other appearance features adopted are the 
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histogram of oriented gradient (HOG) features[16]. The patch size for computing the 
above appearance features is 21×21. Finally, the coordinate of each pixel is also 
included as feature for learning the movement information of prostate in the pelvic.  

Context features are updated recursively based on the classification maps which are 
produced iteratively. For each pixel of interest, a number of rays in equal-degree 
intervals are extended out from the current pixel and we sparsely sample the context 
locations on these rays, as shown in Fig. 3(b). For each context location, their 
classification probabilities and the mean probability within 3×3 windows are included 
as context features. We consider that the context information is also from the intensity 
variation in these selected context locations. Thus, the absolute intensity variation 
between the context location and current pixel of interest is also included as context 
features in our algorithm. Then, the classifiers can learn location information from the 
air or bone regions (which often have large intensity variation from the current pixel 
of interest) through our context features. These context features implicitly represent 
the shape and configuration information of the prostate.  

        

                                                           (a)                                                        (b) 

Fig. 3. (a) Examples of some 2D Haar-like features. (b) Context sample pattern 

3   Experiments 

Our data consists of 11 patients, each with more than 9 daily CT scans, with total 
image count of 161. Each image has resolution of 1×1×3 mm3. The first 3 images of 
each patient are used to initialize the patient-specific learning process. The expert 
manual segmentation results are also available for each image. Since the classifiers 
are designed to learn the patient-specific information, all training and testing 
experiments are done on the images from the same patient. Hereafter, we index all 
images starting from number 1, i.e., the planning image will be image 1 and the first 
treatment image will be image 2, and so on. Three quantitative measures are used to 
evaluate the performance of our algorithm by comparing the automated segmentation 
results with the manual segmentations, and they are: Dice similarity coefficient 
(DICE), average surface distance (ASD), and centroid distance (CD). 
 
Fusion of results along different coordinate directions. To validate the effectiveness 
of the fusion on the two results obtained from two classifier sets along two coordinate 
directions, we carried out a visual comparison between the results obtained from 
classifiers along each direction and the results obtained by the fusion. The fusion result 
was obtained by averaging the two classification results; then, a level-set based 
technique was used to extract smooth prostate boundary surface from the fused result. 
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Fig. 4 shows a sample fusion result. From Fig. 4, it can be observed that the fusion 
result is better than the results obtained along two directions separately. 
 
Evaluation of performance on different number of training images. Here, we 
tested the performance of our proposed method under different number of training 
images. As examples, we selected 3 patients (patient ID 3, 5 and 10) with larger inter-
treatment segmentation performance, e.g., these three patients have large variations of 
Dice measures compared to other patients (see Fig. 6(a)). Next, we selected one 
particular image from each of these three selected patients, i.e., image 11 of patient 3, 
image 12 of patient 5, and image 14 of patient 10. Then, we tested on each of these 3 
images by using our location-adaptive classifiers trained by the latest 2 to 6 treatment 
images of the same patient. The Dice measures are shown in Fig. 6(c). It can be 
observed that the Dice measures become steady when the number of training images 
is 4 or larger. Therefore, the number of the training images is set to 3~7 for the 
tradeoff between training time and segmentation accuracy in all our experiments. 

 

                  (a)                        (b)                        (c)                        (d)                        (e)       

Fig. 4. Demonstration on the fusion of classification results along two coordinate directions. (a) 
Original image; (b) Classification result along z coordinate; (c) Classification result along y 
coordinate; (d) Fusion of (b) and (c); (e) Ground truth (red) and our estimated result (blue). 

 

 

Fig. 5. Segmentation results on selected slices of image 11 of patient 5 (Dice 0.906). The red 
contours show the manually delineated boundaries of prostate by a radiation oncologist, while 
the blue contours show the results of the proposed method.  

Evaluation of online learning mechanism. Since our method is learning-based, the 
number of training data cannot be too small. Thus, we use the first 3 images with 
manual segmentation and the latest 4 images with automatic segmentations to train our 
classifiers. In this way, our location-adaptive classifiers can learn the up-to-date 
information and reserve the information from manual segmentations of radiologist as 
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well. Fig. 5 shows an example on segmentation results for a patient image. The results 
on all images of all 11 patients are shown in Fig. 6(a) for Dice measures and Fig. 6(b) 
for ASD measures. Also, the centroid differences in lateral (x), anterior-posterior (y), 
and superior-inferior (z) directions are shown in Fig. 7. Three existing state-of-the-art 
prostate segmentation algorithms [3], [5] and [2] are compared with our method. Our 
mean Dice measure and mean ASD on all patients are 0.908 and 1.40 mm, respectively, 
which are better than the mean Dice measure of 0.893 and the mean ASD of 2.08 mm 
reported in [3]. Our mean centroid differences are 0.18 mm, -0.02 mm and 0.57 mm 
along x, y and z directions, which are comparable to the best result of -0.26 mm, 0.35 
mm, and 0.22 mm reported in [5], while our mean Dice measure 0.908 is significantly 
higher than theirs 0.82. Our median probability of detection and false alarm are 0.90 and 
0.10, respectively, which are much better than 0.84 and 0.13 reported in [2]. 

 

                     (a)                                          (b)                                         (c)                    

Fig. 6. (a) Dice measure of results and (b) average surface distance (ASD). (c) Change of the 
performance of our proposed method w.r.t. the different number of images used for training. 
Here, “PA3_IM11” means the image 11 of patient 3. 

 

                           (a)                                            (b)                                            (c)            

Fig. 7. (a), (b) and (c) are the centroid differences in lateral (x), anterior-posterior (y), and 
superior-inferior (z) directions, respectively. The symbols in the figure are the same as Fig. 6.   

4   Conclusion   

We have proposed a patient-specific online-learning classification method based on 
image context information, for segmenting prostate in the CT scans during 
radiotherapy. Our method uses only the training samples from the previous treatment 
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images of the same patient to specifically learn the patient-specific information for 
enhancing the prostate segmentation result, which is different from the conventional 
deformable-model or image-registration based methods that generally use the 
population information to guide the segmentation. Our trained classifiers can be 
updated online by the latest-acquired treatment images, thus better adapting to the 
prostate change of the current patient during the treatment. Experimental results show 
that our proposed method can produce prostate segmentations more accurately from 
clinical CT images, than the other state-of-the-art segmentation algorithms.  
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Abstract. The segmentation of thrombus and vessel in microscopic im-
age sequences is of high interest for identifying genes linked to cardio-
vascular diseases. This task is however challenging because of the low
contrast and the highly dynamic conditions observed in time-lapse DIC
in-vivo microscopic scenes. In this work, we introduce a probabilistic
framework for the joint segmentation of thrombus and vessel regions.
Modeling the scene with dynamic textures, we derive two likelihood
functions to account for both spatial and temporal discrepancies of the
motion patterns. A tubular shape prior is moreover introduced to con-
strain the aortic region. Extensive experiments on microscopic sequences
quantitatively show the good performance of our approach.

1 Introduction

Thrombosis refers to the aggregation of blood cells occurring after a blood ves-
sel injury. The analysis of thrombus formation in mutant zebrafish larvae is
becoming crucial to identify genes related to cardiovascular diseases [11]. The
following experiment is conducted: the specimen is put under a microscope, the
wall of its caudal aorta is artificially injured to initiate thrombosis, and images
are recorded using a microscope/camera system. Measures such as time to at-
tachment of the first blood cell, thrombus surface area, and time to occlusion
of the aorta, are manually computed to characterize the thrombus formation.
Since such experiments are repeated many times to conduct statistical studies,
the characterization needs to be automated. This can be achieved by developing
algorithms for the segmentation of the thrombus and of the aortic regions.

Segmenting in vivo microscopic images is challenging. As illustrated by previ-
ous works on microscopic image segmentation [6,9,13], common intensity-based
or gradient-based methods can hardly be applied because of the low image qual-
ity and the cluttered environment of in vivo scenes. This is particularly true in
our application (cf. Fig. 1a). The low contrast between the thrombus and the
aorta challenges the computation of intensity-related features. The number of
blood cell or streamline-related clutters in the aorta hampers the derivation of

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAI 2011, Part III, LNCS 6893, pp. 579–586, 2011.
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Ω1Ω2

Ω3

(a) (b) (c)

Fig. 1. (a) Microscopic image sequence and Ground-truth segmentation; (b) Residual
energy from DT modeling [4]; (c) Intensity-based segmentation of (b)

gradient-related cues. As such, motion seems to be a better discriminative cue.
To account for the non-homogeneity of biological objects which hampers the use
of first-order intensity-related features, a motion-related flux tensor derived from
optical-flow computation has been introduced in [12]. In our case, however, the
chaotic movement of the blood cells in the uncoagulated aorta contradicts the
brightness constancy assumption made for optical-flow derivation. As such, and
similarly to [3], we favor the Dynamic Texture (DT) approach of Doretto et al.
[7] that provides reliable motion-related cues in similarly complex scenarios [4,8]
(Fig. 1b-c).

Our previous work [3] has two main limitations. First, it is restricted to the
segmentation of the thrombus region. Second, it is disrupted by the slow circula-
tion of blood cells in the collateral vessels and by the local non-rigid movements
in the background. In this paper, we propose an approach which overcomes
these limitations. We derive likelihood and prior energies from the following ob-
servations. (1) The thrombus, the uncoagulated aorta, and the background are
characterized by distinct motion patterns. We model the spatial homogeneity of
the motion patterns in each region with a motion-segmentation likelihood en-
ergy. (2) The thrombus is the only region which does not exist at the initial state
of the sequence, i.e. before the attachment of the first blood cell. We introduce
a second likelihood energy, the event-detection energy, which characterizes the
variations of the motion patterns between the initial and the current states. (3)
The spatial extents of the regions are constrained: the aorta resembles a tubular
shape and the thrombus is included in the aorta. By modeling these constraints
as a shape prior energy, we counter-balance the collateral vessels and further
increase the accuracy of the segmentations.

The key contributions of this paper are the introduction of the event-detection
likelihood energy, the definition of the shape prior energy, and the quantitative
validation of our method on in vivo microscopic sequences against manually
delineated ground truth segmentations. Experiments show the improvements in
accuracy induced by the two newly developed energies.

2 Method

Let us consider a video sequence S = {Ip, 0 ≤ p < T }. For each time p, our
objective is to partition the image domain Ω into the thrombus (Ω1), the un-
coagulated aorta (Ω2), and the background region (Ω3) (Fig.1a). The reunion



Joint Thrombus and Vessel Segmentation 581

of the thrombus and of the uncoagulated aortic regions forms the aortic region,
Ω12 = Ω1 ∪ Ω2. To assess the temporal information necessary to define the two
likelihood energies, we consider the sub-sequence of τ frames centered at time
p, Sp = {It, p − τ/2 ≤ t ≤ p + τ/2}, and also the initial sub-sequence S0. Find-
ing the optimal partition ω∗ of the image domain at time p given Sp and S0 is
formulated as an energy minimization problem

ω∗ = argmin
ω

[
E(Sp,S0|ω) + E(ω)

]
. (1)

The likelihood energy E(Sp,S0|ω) regroups both the motion-segmentation and
the event-detection energies. The prior energy E(ω) constrains the partition.

2.1 Dynamic Texture Likelihoods

The definition of motion-based segmentation likelihoods can be decomposed in a
series of successive steps. We have to select a motion model, to identify for each
pixel the model parameters corresponding to the observed motion pattern, and
to define a metric on the model parameter subspace. This permits the relative
comparison of the motion patterns observed in the scene and the introduction
of likelihood functions accounting for their homogeneity in space and in time.

Dynamic Texture Model. Let us consider the sub-sequence Sp and the square
spatial patch of m pixels centered at the pixel x. The intensities y(t) ∈ R

m ob-
served in the patch at a time t are related to a set of hidden variables z(t) ∈ R

n by
the linear dynamic system y(t) = Cz(t)+w(t) and z(t+1) = Az(t)+v(t) [7]. The
first equation describes the simplification of the intensities in a set of n << m
spatial features. The second equation accounts for the evolution of these features
over time. A ∈ R

n×n and C ∈ R
m×n are the state-transition and the observa-

tion matrices. The two normal random processes v(t) ∝ N (0, Q), Q ∈ R
n×n, and

w(t) ∝ N (0, R), R ∈ R
m×m, account for noise in the hidden and in the observed

states respectively. Stacking the system for the τ temporal states (t = 1...τ)
of Sp yields the matrix equations Yτ

1 = CZτ
1 + W and Zτ

2 = AZτ−1
1 + V where

Zq
p = [z(p), ..., z(q)] and Yq

p = [y(p), ...,y(q)]. Neglecting the noise processes, an
approximate set of parameters Dx = {A, C} is found by constraining C to be
orthogonal [7]. Given the singular value decomposition Yτ

1 = UΣVT , the observa-
tion matrix, the hidden variables, and the state-transition matrix read as Ĉ = U,
Ẑτ
1 = ΣVT , and Â = Ẑτ

2

(
Ẑτ−1
1

)†
respectively. (.)† denotes the pseudoinverse.

Distance. We calculate at each pixel x ∈ Ω the DT models D0
x and Dp

x for
the initial sub-sequence S0 and for the current sub-sequence Sp. In [3], each DT
model is represented by the ratio between the norm of the prediction matrix∥∥AZτ−1

1

∥∥
2

and the norm of the residual matrix
∥∥Zτ

2 − AZτ−1
1

∥∥
2
. In this case, the

distance between the DT models is defined as the Euclidean distance between
the ratios. However, and as illustrated in Fig.1b, this simplified representation
hampers the distinction between the thrombus and collateral vessels, and be-
tween the aorta and the nearly static background. We instead maintain the
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Fig. 2. Proposed framework for joint thrombus-vessel segmentation

complete parametrization of the DT models with their respective matrices A
and C. The orthogonality constraint on the matrix C yields the non-linearity of
the DT model manifold. A non-linear similarity measure on this manifold thus
becomes necessary. Similarly to [8], we choose to employ the Martin distance
[10] because of its good precision and of its simple computation.

Motion Segmentation Energy. Analyzing the spatial variations of the DT
models at the sub-sequence Sp is justified by the discrepancy of the motion pat-
terns between the different regions: the thrombus is slowly moving synchronously
with the heart beat, the background is nearly static, and the uncoagulated aorta
is characterized by the fast and chaotic circulation of blood cells.

Let us assume that the DT models {Dx,x ∈ Ωk} in each region Ωk follow a
normal distribution N (μΩk

, σΩk
) with respect to the Martin distance d. Extend-

ing the probabilistic approach of intensity-based segmentation [5] to dynamic
texture segmentation, the motion segmentation likelihood energy is defined by

Ems(Sp,S0|ω) =
3∑

k=1

∑
x∈Ωk

d2(Dx, μΩk
)

2σ2
Ωk

. (2)

Because of the non-Euclidean structure of the DT model space, the mean model
μΩk

and the standard deviation σΩk
cannot be easily computed. The squared

Martin distance d2(Dx, μΩk
) is thus approximated by its expected value. Given a

set of DT model samples {Dy,y ∈ Ωs
k} computed from a set of randomly selected

pixel samples Ωs
k, the expected value and the standard deviation read as

d̂2(Dx, μΩk
) =

1
|Ωs

k|
∑

y∈Ωs
k

wk,yd2 (Dx,Dy), σ̂2
Ωk

=
1

|Ωk|
∑

x∈Ωk

d̂2(Dx, μΩk
). (3)

Estimating the standard deviation of the DT model distribution allows us to
normalize the likelihood energy. The tractability of Eq. (3) is ensured by choosing
|Ωs

k| << |Ωk|. To prevent abrupt change of the likelihood energy if a peripheral
sample exits the region, the samples in the center of the region are favored by
setting wk,y equal to the Euclidean distance of y to the boundaries of Ωk.
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Event Detection Energy. In addition to its distinct motion pattern, the
thrombus is characterized by its growth in a previously uncoagulated aorta. We
model this observation by analyzing the variations of the local motion patterns
between the initial sub-sequence S0 and the current sub-sequence Sp.

Let us first consider a pixel x belonging to the thrombus region in Sp. This
pixel belongs to the uncoagulated aortic region in S0. Its motion pattern is
modified. The distance between the DT model D0

x observed in S0 and the DT
model Dp

x observed in Sp is thus significant. Please note that the recording
is started before the laser injury to ensure that the thrombus has not formed
in the initial subsequence S0. Let us then consider a pixel x belonging to the
uncoagulated aorta or to the background region in Sp. Following the observation
that the aorta boundaries remain nearly constant, the pixel x belongs to the same
region in S0. Its motion pattern is unchanged and the distance between D0

x and
Dp

x tends to zero. We define the event-detection map Δ0,p
x in each pixel x as the

Martin distance between the DT models D0
x and Dp

x. This map is characterized
by high values for the thrombus region and by low values for the uncoagulated
aorta and the background region.

Assuming a normal distribution N (Δ0,p
Ωk

, σ0,p
Ωk

) of the Δ0,p
x in the kth region,

we encourage the homogeneity of the partition with respect to the temporal
changes of the DT models by introducing the event-detection energy

Eed(Sp,S0|ω) =
3∑

k=1

∑
x∈Ωk

(
Δ0,p

x − Δ0,p
Ωk

)2

2(σ0,p
Ωk

)2
, with Δ0,p

x = d
(
D0

x ,Dp
x

)
. (4)

The likelihood energies defined by Eq.(2) and Eq.(4) characterize the spatial
and temporal changes of the DT models. However, and as shown in Fig.3c,
these energies and the subsequent segmentation results are disrupted by the
slow circulation of blood cells in the collateral vessels and by the local non-rigid
movements of the background regions. A prior energy thus becomes necessary.

2.2 Tubular Shape Prior Energy

The collateral vessels and the non-rigid movements in the background deform
the aorta segmentation towards a non-tubular structure (Fig.3c). We constrain
the shape of the aortic region Ω12 by introducing a tubular shape prior energy
Esp(ω) into our segmentation framework (Fig.2c). At each iteration i of the
energy minimization scheme, we fit a rectangle Ri−1

12 to the contour (Ci−1
12 ) of

the aortic region, taken at the previous iteration. We then define

Esp(ω) =
2∑

k=1

∑
x∈Ωk

[
1 − exp

(
−

d2
Ri−1

12
(x)

2σ2

)]
. (5)

dRi−1
12

(.) denotes the distance transform of the binary image derived from Ri−1
12 .

σ ∈ R sets the range of feasible deformations. The centerline of Ri−1
12 is ap-

proximated by the principal axis of Ci−1
12 , and its radius by the median distance
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(a)  (c) (d)(b) 

Fig. 3. (a) Ground truth and initialization; (b) Final results with our complete frame-
work; (c)-(d) Results without the shape prior and the event-detection energies. The
green contour corresponds to the thrombus, the red to the aorta.

between the boundaries of Ci−1
12 and the estimated centerline. Esp(ω) increases

with d2
Ri−1

12
(x). It thus prevents the pixels which are far away from the fitted

rectangle from belonging to the thrombus (Ω1) or to the aortic (Ω2) regions.

2.3 Level-Set Energy Minimization

The three regions {Ω1, Ω2, Ω3} are represented by two level-set functions Φ1 and
Φ2. We employ the multiphase formulation [14]. We define the thrombus region
(Ω1) by the pixels inside the two contours (Φ1 < 0, Φ2 < 0), the uncoagulated
aortic region (Ω2) by the pixels outside the first contour and inside the second
contour (Φ1 > 0, Φ2 < 0), and the background region (Ω3) by the pixels outside
the two contours (Φ1 > 0, Φ2 > 0). The complete aortic region (Ω12) is directly
represented by Φ2 and can thus be easily constrained. As suggested in [1], a
topological energy Etop is employed to constrain the number of regions in the
partition (Fig.2d). This energy penalizes the surface area of the remaining region.
The weighted sum of the likelihood and prior energies forms the posterior energy

E(ω|Sp,S0) = αEms(Sp,S0|ω) + βEed(Sp,S0|ω) + γEsp(ω) + δEtop(ω), (6)

which is minimized by alternating the update of the energies with a Laplacian-
regularized gradient descent on Φ1 and Φ2 [2].

3 Results

Twenty sub-sequences taken from four microscopic video sequences and covering
a wide range of biological variations (size of the thrombus, collateral vessels,
etc...) were used for testing purpose. The aortic wall is artificially injured by a
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Fig. 4. Mean Dice-coefficient over the 20 sub-sequences, function of τ , α, β, γ

nitrogen-pulse ablating laser. The images are recorded with a Leica DFC420-
C camera through a Leica DMRXA Differential Interference Contrast (DIC) -
microscope equipped with a 40× water-immersed objective. The ground-truth
segmentations are manually delineated by a trained biologist. The same set of
empirically chosen parameters (α = 1, β = 0.25, γ = 0.25, δ = 1) is used over
the entire dataset. The dimensions of the DT models, n = 15 and m = 25,
are taken from [4]. Using |Ωs

k| = 10 samples per region and τ = 75 images of
200×150 pixels per sub-sequences, the computation time on a standard computer
(2.00GHz, 8.00GB RAM) is of 15.5±0.25s for DT model learning, of 72.4±2.05s
for Martin distance computation, and of 14.5 ± 5.5s for level-set evolution.

The qualitative performance of our method is illustrated in Fig.3. We display
typical segmentation results obtained for τ = 75 if all the introduced energies
are employed (b), if the tubular shape constraint is dismissed (c), and finally if
the event-detection likelihood is discarded (d).

The accuracy of our algorithm is quantitatively evaluated for increasing values
of τ with an overlap measure, the Dice-coefficient, for both the aortic (DCa) and
the thrombus (DCt) regions (cf. Fig.4). While a minimal window size is necessary
to adequately capture the motion patterns, choosing the smallest possible τ pre-
vents the temporal smoothing of the segmentation results. To this regards, τ = 75
is a good compromise value. Our approach yields mean DC values of DCa ≥ 0.90
and DCt ≥ 0.78. These respectively fall down to DCa = 0.47 (−48%) and
DCt = 0.57(−27%) if the DT residual energy (Fig. 1) is employed instead of the
proposed energies. This shows the better performance of our method in compar-
ison to our benchmark approach [3]. We quantitatively illustrate the importance
of incorporating the event-detection and the shape prior energies in addition to
the motion-segmentation energy. Discarding the event-detection energy (β = 0)
decreases the mean DCt to 0.75 (−4%), and canceling the shape prior probabil-
ity (γ = 0) yields a mean DCa of 0.80 (−10%). We moreover observe in Fig.4a
that the longer the subsequence is, the more likely the perturbations in the
background become. This makes the shape prior energy increasingly necessary
for τ ≥ 75. The motion segmentation energy remains essential to obtain accu-
rate segmentation results. If not accounted (α = 0), the mean DCa decreases to
0.41 (−63%) and the mean DCt to 0.57 (−27%).
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4 Conclusion

In this work, we propose an innovative solution to the complex problem of joint
thrombus and aortic vessel segmentation in low contrast, cluttered, and highly
dynamic microscopic video sequences. By characterizing the spatial and tempo-
ral discrepancy of the motion patterns with two dynamic texture-based likeli-
hood energies, and by constraining the aortic region with a shape constraint, we
model the major facets of our biomedical imaging setting. Though applied to
microscopy, we believe that the capacity of the proposed algorithm to analyze
complex dynamic scenes could be beneficial to other medical imaging modalities.
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Abstract. Kidney segmentation is a key step in developing any non-
invasive computer-aided diagnosis (CAD) system for early detection of
acute renal rejection. This paper describes a new 3-D segmentation ap-
proach for the kidney from computed tomography (CT) images. The
kidney borders are segmented from the surrounding abdominal tissues
with a geometric deformable model guided by a special stochastic speed
relationship. The latter accounts for a shape prior and appearance fea-
tures in terms of voxel-wise image intensities and their pair-wise spatial
interactions integrated into a two-level joint Markov-Gibbs random field
(MGRF) model of the kidney and its background. The segmentation ap-
proach was evaluated on 21 CT data sets with available manual expert
segmentation. The performance evaluation based on the receiver operat-
ing characteristic (ROC) and Dice similarity coefficient (DSC) between
manually drawn and automatically segmented contours confirm the ro-
bustness and accuracy of the proposed segmentation approach.

1 Introduction

Kidney segmentation from abdominal CT images is an essential step for many
high-level processing tasks, such as localization of pathology, radiotherapy plan-
ning, and computer-integrated surgery. However, due to image noise, acquisition
artifacts, gray level inhomogeneities, and similar visual appearances of adjacent
structures, accurate segmentation of the kidney still remains a challenge [1].
In recent years, many automated and semi-automated approaches have been
developed to address these challenges. In particular, Pohle and Toennies [2]
developed an automatic region-growing algorithm for segmenting anatomical
structures. Their approach estimated the homogeneity criterion from the char-
acteristics of the images to be segmented. However, due to gray level similarities
� Corresponding author:- Tel.: (502)-852-5092, E-mail: aselba01@louisville.edu
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between the kidney and the abdominal tissues, as well as sensitivity to initial seed
point locations, region growing-based approaches are not effective for CT kidney
segmentation.

Wang et al. [3] proposed a constrained optimization deformable contour
method in which the degree of contour interior homogeneity is computed as
an extra constraint within the level set energy minimization framework. How-
ever, deformable models fail in the case of noise, spurious edges, poor image
resolution, diffused boundaries, or occluded shapes if they do not include a pri-
ori knowledge to constrain the contour deformation within an admissible range.
Tsagaan et al. [4] proposed an automatic deformable model-based approach to
segment the kidney from CT images. Their method is based on a non-uniform
rational B-spline surface representation and statistical shape information of the
kidney, which is then incorporated into the objective function as an additional
energy term. Their results, evaluated on 33 CT images, seem reasonable in some
cases, but differ markedly from the manually segmented results in others.

Recently, Huang et al. [5] proposed a multiphase level set approach with
multi-dynamic shape models to segment the kidneys on abdominal CT images.
Spiegel et al. [6] proposed a kidney segmentation framework based on the ac-
tive shape model (ASM) that was combined with a curvature-based non-rigid
registration approach to solve the point correspondence problem of the train-
ing data. In general, knowledge-based approaches are computationally intensive,
and their accuracy depends on the size of the training data. Freiman et al. [7]
proposed a model-based kidney segmentation approach from CT images based
on maximum a posteriori-Markov random field (MAP-MRF) estimation of the
current image. The MAP-MRF estimation is obtained by using the graph min-
cut technique. Campadelli et al. [8] proposed an automatic, gray-level based
segmentation framework based on a multiplanar fast marching method. Their
segmentation performance was evaluated based only on visual assessment.

To overcome the aforementioned limitations, we introduce a 3-D extension of
our previous 2-D stochastic guiding force presented in [9] to guide the evolution
of a 3-D geometric deformable model to extract the kidney region from CT
images. The proposed 3-D stochastic guiding force accounts for a 3-D shape
prior, 1st-order intensity model, and a 3-D 2nd-order spatial interaction model
between the kidney voxels and its background.

2 The Proposed Level Set-Based Segmentation Approach

In recent years, level set-based deformable models have been applied to med-
ical image segmentation with considerable success because of the flexibility of
the evolving boundary and the lack of need for parameterizations. The object-
background boundary at each moment t is represented by a zero level φt(x, y, z) =
0 of an implicit level set function, namely a distance map φt(x, y, z) of the signed
minimum Euclidean distances from every voxel to the boundary (negative for
interior and positive for exterior voxels). The distance map is evolved iteratively
with the evolution being guided by a speed function Vn(x, y, z) [10]:
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φn+1(x, y, z) = φn(x, y, z) − τVn(x, y, z)|∇φn(x, y, z)| (1)

where n indicates the time instant t = nτ (taken with a step τ > 0), and
∇φn = [∂φn

∂x , ∂φn

∂y , ∂φn

∂z ] is the gradient of φn(x, y, z). Conventional speed func-
tions accounting for image intensities, object edges, gradient vector flow, etc.,
are unsuccessful on very noisy images with low object-background intensity gra-
dients. The results are improved by involving shape priors (e.g., [5,6,11]). To
obtain more accurate results, our stochastic speed function accounts for both
the shape prior and appearance features associated with image intensities and
their spatial interactions integrated into a 3-D two-level joint MGRF model.

Shape-Appearance Guided Evolution: Let Q = {0, 1, . . . , Q− 1} and L =
{0, 1} denote a finite set of integer gray values and a binary set of object (“1”) and
background (“0”) labels, respectively. Let R denote a 3-D arithmetic (x, y, z)-
lattice that supports a given grayscale CT data g : R → Q to be segmented and
its goal binary “object - background” region map m : R → L. The image g, being
co-aligned to a shape prior, and its map m are described with a joint probability
model P (g,m) = P (g|m)P (m) combining a 2nd-order MGRF P (m) of region
labels with the shape prior and a conditionally independent random field P (g|m)
of image intensities given the map. The map model P (m) = Ps(m)Ph(m) has
two parts: (i) a shape prior probability Ps(m) and (ii) a 2nd order MGRF model
Ph(m) of a spatially homogeneous region map m for the image g.

Conditional Intensity Model: To build an initial map m, we need to estimate
the marginal intensities distribution for the object (i.e., kidney) and background.
The empirical gray level distribution, P (g) =

∏
(x,y,z)∈R pmix(gx,y,z), is sepa-

rated into object and background components , (p(q|λ) : q ∈ Q); λ ∈ L, by
close approximation with a linear combination of discrete Gaussians (LCDG)1,
a modified version of our previous linear combination of continuous Gaussians
probabilistic model [12]. This approximation adapts the segmentation to chang-
ing appearance, such as non-linear intensity variations caused by patient weight
and data acquisition system (scanner type and scanning parameters). The LCDG
separates each factor of the empirical gray level distribution more accurately than
conventional mixtures of only positive Gaussians, thus yielding a better initial
region map formed by voxel-wise classification of the CT images gray values.

Spatial Voxel Interaction Model: To smooth the evolution of the level set
and get more accurate segmentation, spatially homogeneous interactions be-
tween the region labels are modeled with a generic MGRF of a region map
that accounts only for 3-D voxelwise interactions between each region label and
its characteristic neighborhood. For simplicity, we restrict the interaction struc-
ture to the nearest voxel 26-neighbors (Fig. 1). By symmetry considerations, we
assume that the potentials are independent of the relative orientation of each
voxel pair and depend only on whether the labels are equal or not. Under these

1 For complete details, please see: https://louisville.edu/speed/bioengineering/
faculty/bioengineering-full/dr-ayman-el-baz/supplemental-materials

https://louisville.edu/speed/bioengineering/faculty/bioengineering-full/dr-ayman-el-baz/supplemental-materials
https://louisville.edu/speed/bioengineering/faculty/bioengineering-full/dr-ayman-el-baz/supplemental-materials


590 F. Khalifa et al.

Fig. 1. Pairwise voxel inter-
action for the 26 neighbors in
a 3-D MGRF image model

(a) (b) (c)

Fig. 2. 3D kidney shape model projected onto 2D
axial (a), coronal (b), and sagittal (c) planes for
visualization

restrictions, it is a 3-D extension of the conventional auto-binomial, or Potts
model, differing only in that the potentials are estimated analytically.

The 26-neighborhood has three types of symmetric pairwise interactions spec-
ified by the absolute distance a between two voxels in the same and adjacent
CT slices (a = 1,

√
2, and

√
3, respectively): (i) the closest pairs with the inter-

voxel coordinate offsets N1 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}; (ii) the farther diago-
nal pairs with the offsets N√

2 = {(0, 1,±1), (1, 0,±1), (1,±1, 0)}; and (iii) the
farthest diagonal pairs with the offsets N√

3 = {(1,±1,±1)}. The potentials
of each type are bi-valued because only the coincidence of the labels is taken
into account: Va = {va,eq; va,ne} where va,eq = γ if l = l′ and va,ne = −γ
if l �= l′; a ∈ A = {1,

√
2,
√

3}. Let N = {Na, a ∈ A} and fa,eq(m) de-
note the relative frequency of the equal label pairs in the equivalent voxel pairs
{((x, y, z), (x+ξ, y+η, z+ζ)): (x, y, z) ∈ R; (x+ξ, y+η, z+ζ) ∈ R; (ξ, η, ζ) ∈ N},
then the MGRF model is:

Ph(m) ∝ exp
∑

(x,y,z)∈R

∑
(ξ,η,ζ)∈N

Va(mx,y,z, mx+ξ,y+η,z+ζ) (2)

The initial region map results in the approximate analytical maximum likeli-
hood estimates of the potentials2: va,eq = −va,ne ≈ 2feq(m) − 1; that allow for
computing the voxel-wise probabilities ph:x,y,z(mx,y,z = λ) of the labels; λ ∈ L,
at each step of the boundary evolution.

Probabilistic Shape Prior: To enhance the segmentation accuracy, the ex-
pected shape of the goal object is constrained with a probabilistic shape prior
(Fig. 2). A training database collected from different subjects are co-aligned
by rigid, namely affine, 3-D transformations maximizing their mutual informa-
tion(MI) [13]. The shape prior is a spatially-variant independent random field
of region labels Ps(m) =

∏
(x,y,z)∈R ps:x,y,z(mx,y,z) for the co-aligned, manually

segmented training CT images. The factors are the empirical voxel-wise object

2 For complete proof, please see: https://louisville.edu/speed/bioengineering/
faculty/bioengineering-full/dr-ayman-el-baz/supplemental-materials

https://louisville.edu/speed/bioengineering/faculty/bioengineering-full/dr-ayman-el-baz/supplemental-materials
https://louisville.edu/speed/bioengineering/faculty/bioengineering-full/dr-ayman-el-baz/supplemental-materials
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ps:x,y,z(1), and background ps:x,y,z(0) = 1 − ps:x,y,z(1) probabilities. Each CT
data to be segmented is initially co-aligned to the training database.

Stochastic Speed Function: All of the above models contribute to the voxel-
wise guidance of the evolving level set. Let κ be the mean contour curvature.
Let ϑ(x, y, z) specify the evolution magnitude and direction:

ϑ(x, y, z) =
{
−P1:x,y,z if P1:x,y,z > P0:x,y,z

P0:x,y,z otherwise (3)

where P1:x,y,z = Ω1:x,y,z

Ω1:x,y,z+Ω0:x,y,z
and P0:x,y,z = 1 − P1:x,y,z. Here, Ω1:x,y,z =

p(q|1)ph:x,y,z(1)ps:x,y,z(1); Ω0:x,y,z = p(q|0) (1 − ph:x,y,z(1)) (1 − ps:x,y,z(1)), and
ph:x,y,z(1) is the probability of the object label in the Potts model Ph(m). The
stochastic speed function in Eq. (1) is defined as in [9]: V (x, y, z) = κϑ(x, y, z).
The steps of our segmentation approach are summarized in Algorithm 1.

Algorithm 1. Key Steps for Level Set Segmentation

1. Construct the probabilistic shape prior from the training data sets.
2. Approximate the empirical gray level distribution by using the LCDG with two

dominant Gaussian modes.
3. Form an initial region map m using the estimated LCDG models.
4. Find the Gibbs potentials for the MGRF model from the initial map.
5. Find the stochastic speed function defined in Eq. (3).
6. Evolve the level set using the determined speed function.

3 Experimental Results

The proposed approach has been tested on in-vivo 3-D CT kidney data sets (7
for training and 14 for testing and performance evaluation). The images were
acquired by a GE light speed plus scanner (General Electric, Milwuakee, USA)
using the following parameters: 120 KV, 250 mA, slice thickness of 0.9 mm,
and FOV of 360 mm. To minimize the effect of inter-observer variations, each
CT data is segmented by three independent experts and the “ground truth”
is considered as the common segmented part of their segmentations. The CT
images have marginal intensity distributions that are mixtures of two dominant
modes: one mode for the kidney object and another mode for the background.
Basic density estimation steps using the LCDG models are illustrated in Fig. 3
and Fig. 5 demonstrates the results of kidney segmentation.

The performance of our segmentation approach is evaluated based on the
voxel-based overlap measured by using the Dice similarity coefficient (DSC) [14]
and the average perpendicular distance (APD) between the automatic segmen-
tation (C) and the ground truth (G). To measure the distances, one has to
accurately co-locate the point-to-point correspondences between the borders. In
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(a) (b)

(e) (f)

Fig. 3. LCDG-based modeling of the marginal probability
distribution: (a) typical CT image, (b) its gray level den-
sity estimation (the final estimated density (brown) for the
empirical density (green)), (c) sign-alternate LCDG com-
ponents, and (d) final estimated LCDG for each class

Fig. 4. 2-D illustration
of the correspondences
found by the solution
of the Laplace equation
between the ground
truth G (manual ex-
pert segmentation) and
automatic segmenta-
tion C obtained by the
proposed segmentation
approach

this paper, the correspondences, or matches between the borders’ points (see
e.g., Fig. 4), are found by solving the Laplace equation:

∇2ψ =
∂2ψ

∂2x2
+

∂2ψ

∂2y2
+

∂2ψ

∂2z2
= 0 (4)

for a scalar potential field ψ. Table 1 represents the DSC and APD statistics
obtained for all test data sets.

To highlight the advantages of our approach, we compared it to the shape-
based approach proposed in [11] based on the average volumetric error Er =
1
G (FP + FN), where FP and FN are the false positive and false negative seg-
mentation errors, respectively. Table 2 compares the segmentation results over
all the test data sets for our approach and the shape-based approach proposed
in [11] with respect to the radiologist’s segmentation. Differences between the av-
erage volumetric errors for our approach and the shape-based approach [11] are
statistically significant by the unpaired t-test (the two-tailed P -value is ≤ 10−4).
The final 3-D kidney segmentations for two of the test data sets and their asso-
ciated FP and FN errors are shown in Fig. 6.

Another major metric to test the performance of our segmentation approach
is to compute the receiver operating characteristic (ROC). Each point on the
graph is generated by using a different cut point (i.e., classification threshold).
Figure 7 shows the ROC curves of our three feature approach, intensity-based
only (I), the intensity and spatial interactions-based (I + S), and the intensity
and shape-based (I +P ) level set segmentation. The figure clearly demonstrates
that the area under the ROC curve is greatest for our approach (Az = 0.9423).
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Table 1. Segmentation
accuracies over all test
data sets. Note that
APD values are in mm.

DSC APD

Min. 0.950 0.00
Max. 0.993 3.12
Mean 0.970 1.25
Std. 0.019 0.68

Table 2. Comparative
segmentation accuracy
over all test data sets.

Algorithm

Er, % Our [11]

Min. 1.26 6.76
Max. 7.72 20.08
Mean 3.71 13.95
Std. 2.18 5.96

A

C

S
(a) (b) (c) (d)

Fig. 5. 3-D kidney segmentation projected onto 2-D axial
(A), coronal (C), and sagittal (S) planes for visualization:
(a) 2-D CT images, (b) our segmentation (red) compared
with the ground truth (blue), (c) the segmentation with the
algorithm in [11], and (d) the associated FP (green) and FN
(yellow) errors of our segmentation w.r.t. the ground truth

Fig. 6. 3-D visualization
for the segmented kidneys
using the proposed seg-
mentation approach for
two of the test data sets
and their associated FP
(pink) and FN (yellow)
errors

Fig. 7. The ROC curves for different level set-based
segmentation guided by: the intensity information only
(I ; red), the combined intensity and spatial interac-
tions features (I + S; black), the combined intensity
and shape features (I + P ; blue), and the integrated
three features (our; green). Note that Az stands for
the area under the curve.

4 Conclusions

This paper has presented a novel and automated 3-D approach for the segmenta-
tion of the kidney from abdominal CT images. Incorporation of the CT images’
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features, namely the 3-D probabilistic shape, the 1st-order intensity, and the 2nd-
order spatial interaction into the speed function notably improves the level set
evolution and increases the segmentation accuracy and robustness based on both
ROC curves and Dice similarity coefficient metrics. Experimental results showed
that the proposed segmentation approach outperformed other methods for kid-
ney segmentation. We plan to ultimately include this segmentation method in
a kidney-dedicated CAD system designed for the early detection of acute renal
rejection and treatment planning.
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Abstract. This paper presents a novel segmentation algorithm which
automatically learns the combination of weak segmenters and builds a
strong one based on the assumption that the locally weighted combina-
tion varies w.r.t. both the weak segmenters and the training images. We
learn the weighted combination during the training stage using a dis-
criminative spatial regularization which depends on training set labels.
A closed form solution to the cost function is derived for this approach.
In the testing stage, a sparse regularization scheme is imposed to avoid
overfitting. To the best of our knowledge, such a segmentation tech-
nique has never been reported in literature and we empirically show that
it significantly improves on the performances of the weak segmenters.
After showcasing the performance of the algorithm in the context of
atlas-based segmentation, we present comparisons to the existing weak
segmenter combination strategies on a hippocampal data set.

1 Introduction

Brain MR image analysis and its associated application in the diagnosis and
treatment of brain-based diseases has attracted immense attention in the past
two decades. The segmentation of brain neuroanatomy is one of the key steps in
medical image analysis. For example, researchers are interested in the study of
hippocampal structures due to the critical role they play in many neuro-disorders
including dementia, epilepsy and schizophrenia. In order to avoid the tedium in-
volved in manual segmentation, a technique that is able to automatically segment
the hippocampi from 3D brain MR scans is of great clinical interest.

Several techniques have been proposed in the literature to segment the hip-
pocampus. One direct approach in [1] seeks to build an atlas from the training
images with manual labels and deform it to the test image using a deformable
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registration. However, it has limitations in accuracy for segmenting small struc-
tures like the hippocampus with low contrast intensity boundaries. Alternatively,
there exists a class of methods that achieve more robustness and full automation
by extracting features from the image at each voxel and resorting to machine
learning techniques to label the voxel. In [2], Golland et al. use the support vec-
tor machine (SVM) to classify the features chosen by PCA from a large feature
set. In [3], Morra et al. adopt Adaboost to select the features and resort to the
SVM for classification. Both frameworks obtain relatively good approximation
to the boundary of the hippocampus and the feature selection method simplifies
the experts’ effort in choosing informative features from a large feature set. How-
ever, one still needs to develop a very large feature pool containing potentially
useful features,an non-trivial task in general.

Recently, it was shown that combining multiple atlas based segmentations im-
proves the segmentation accuracy [4,5]. As one of the most popular combination
strategies, majority voting was shown to improve the accuracy and robustness
of weak hypotheses. In [4], Artaechevarria et al. propose an image segmentation
algorithm that combines multiple atlas-based segmenters based on weighted vot-
ing with the weights estimated from the local similarity between each atlas and
the test image. Due to this specific design, the weak segmenters for this algo-
rithm are limited to atlas-based segmentation. Besides, in order for the voting
based technique to work well, a sufficiently large number of atlases are needed
and a robust registration algorithm is required so as to have a relatively accurate
segmentation for each atlas. A different combination strategy called SuperDyn
was proposed by Khan et al. [5], wherein supervised learning was used for com-
puting the weighted combination. Subsequently, dynamic information based on
registration accuracy between the atlas and the test image was employed for the
weight selection. SuperDyn independently estimates the weights for each weak
segmenter at each voxel. However, this is clearly inadequate since it has been
known for long that strong spatial dependencies exist in most real images [6].
Moreover, the aforementioned dynamic selection also restricts this technique to
atlas-based weak segmenters.

In this paper, we propose a novel segmentation algorithm dubbed SegMix
which is different from all of the aforementioned frameworks. Spatial smooth-
ness and boundary discontinuities in the anatomical structures are explicitly
incorporated into a discriminative regularizer in the training stage, resulting in
a general technique capable of utilizing a vast variety of weak segmenters. Seg-
Mix assumes that the combination weights depend not only on the weak learners
but also on the training data. This is analogous to a medical consultation carried
out by a group of doctors on a number of patients. It is well-justified to assume
that each patient’s personal condition has a different effect on the experts’ final
decision. We carefully treat the problem of overfitting (which can occur from
having too many weights) by utilizing the previously mentioned spatial weight
regularization and via a novel non-parametric testing sieve. This makes SegMix
substantially and thematically different from the other combination strategies,
e.g. SuperDyn and Voting, which basically assume that the weights only vary
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w.r.t. the weak segmenters. Due to this novel aspect of our framework, combining
a very small number of weak segmenters can lead to dramatically significant im-
provements which is validated in our experiments. Furthermore, a novel scheme
is imposed in the testing phase, wherein a strong segmenter is constructed by
approximating the test image with a sparse combination of the training data
and only choosing the learned weights corresponding to those sparsely selected
training images. Intuitively speaking, in the training stage, we use a cooperation
mechanism on the weak segmenters so as to achieve the best segmentation for
each training image, while in the testing phase, we use a competition mecha-
nism to select only the relevant images from the training set for a particular
test image. The result is an algorithm driven by “co-opetition” which uses the
previously learned cooperation skills of the competitively selected training data
to let the weak segmenters collaborate and obtain a strong segmentation. Note
that as more expert driven manual delineations become available, they can be
used as weak segmenters in our framework.

2 Methodology

2.1 The Segmentation Mixture Setup

In this section, we present the methodology of our algorithm. We begin with
illustrating the basic framework of the technique in Fig.1. In the training stage,

Fig. 1. Framework of the proposed algorithm

the optimal locally weighted
combination of the weak seg-
mentations are estimated to
best approximate the ground
truth label for each training
image. As shown in the fig-
ure, the weight matrix Wnt is
associated with the nth train-
ing image and tth weak seg-
menter. Since we compute lo-
cal weights, the spatial in-
teractions among voxels are
modeled closely following the
Discriminative Random Field

(DRF) [6]. In the testing stage, we compute the sparse combination of the train-
ing images to approximate the test image and only the learned weights associated
with those selected training images are used to construct the strong segmenter
for that particular test image. The figure shows an example of picking I2 and
IN as the sparse representation of the test image and only the weights associ-
ated with them, W21, . . . W2T and WN1, . . . WNT , are used to construct the final
strong segmenter for test image Y .

Before getting into the details of the algorithm, we first introduce two key
terms that will be used in the rest of this paper.
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Signed Distance Functions (SDF) are used to represent the shape of the
structure in the segmentation. Each weak segmentation output is represented by
a SDF and the locally weighted combination of them corresponds to a strong
segmenter. Several techniques exist in literature for linear combination of SDFs.
In [7], Pohl et al. embed SDFs into the linear space of LogOdds, where addition
and scalar multiplication are in closed form, while in [8] an SDF is mapped to
the square-root density space via a Schröinger wave function, where a variety of
Riemannian operations are easily computed. However, we will resort to a simpler
idea pointed out by Leventon et al. in [9]. They claim that using the signed
distance transform shape representation is tolerant to slight misalignment and
hence a rough alignment of the data during pre-processing will avoid solving for
the general correspondence problem in SDF combination.

A Neighborhood Graph G is computed for each training data to store the
spatial interactions and dependencies between voxels. Given a training sample,
let L(x) be the signed distance transform of the label image and M be the number
of voxels. The M × M -dimensional neighborhood graph matrix G is computed
from the following DRF formulation: G(i, j) = exp(−||(L(xi)−L(xj))||22), where
j ∈ N (i). In 3D, the neighborhood region of the ith voxel N (i) is computed
through 6, 18 or 26-connectivity. This neighborhood graph will be used to gate
the distance between the weights corresponding to the ith and jth voxels.

2.2 Training Stage: Discriminative Spatial Weight Regularization

Our segmentation algorithm takes as input a set of weak segmentation results
and combines them via a regression model. Assume there are T weak segmenters
and the outputs of them are binary images bt(x), t = 1, 2, . . . , T distinguishing
the structures from the background. For a given training image I(x), Φt(x) is
the signed distance transform computed from the tth weak segmentation output
bt(x) and L(x) is the signed distance transform of the ground truth label image,
representing the true segmentation of I(x). The algorithm assumes that L(x) is
the locally weighted combination of Φt(x).

Since the parameters to be optimized depend on both the voxel locations
and the weak segmenters, we solve this minimization problem voxel-wise by re-
arranging each Φt(x) into a column vector and stacking them together column
by column in the M×T matrix Φ̄, where M is the number of voxels in the image.
Let the column vector l be the re-arrangement of L(x) and denote column vector
φi as taken from the ith row of Φ̄, li as the ith entry of l and column vector wi

as the weights associated with φi.
It is well-justified to assume that the weights wi and wj are expected to be

similar if the jth voxel is in the neighborhood of the ith voxel. We therefore adopt
a regularization term based on the pre-computed matrix G, which captures the
similarity of the labels within the neighborhood. We eventually formalize our
cost function in the following:

w∗ = arg min
w

M∑
i=1

||wi · φi − li||22 + λ
M∑

i,j=1

G(i, j)||wi − wj ||22.
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A closed form solution can be derived for this objective function. We start by
expanding the cost function and get

E({wi}) =
M∑
i=1

wt
iφiφ

t
iwi +

M∑
i=1

l2i − 2
M∑
i=1

liw
t
iφi

+ λ
M∑

i,j=1

G(i, j)(wt
iwi + wt

jwj − 2wt
iwj).

With the following notations: (1) Hi = φiφ
t
i, (2) W t = [wt

1, . . .w
t
M ], (3)

Bk = Hk + 2λ(
∑

i=k,j 
=1

G(i, j) +
∑

i
=1,j=k

G(i, j))IT×T , (4) pt = [l1φt
1, . . . lMφt

M ]

and after some algebra, the cost function is re-arranged into a matrix form:

E = W t

⎛⎜⎜⎝
B1 −2λG(1, 2)IT×T . . . −2λG(1, N)IT×T

−2λG(2, 1)IT×T B2 . . . −2λG(2, N)IT×T

. . . . . . . . . . . .
−2λG(N, 1)IT×T −2λG(N, 2)IT×T . . . BN

⎞⎟⎟⎠W

− 2ptW +
N∑

n=1

l2n.

We take the derivative of E w.r.t. W and set the result to 0 in order to solve
for the weights. We then have ∂E

∂W = (Dt + D)W − 2pt = 0, with D being the
matrix in the equation above that contains Bk as diagonal. The problem is finally
reduced to solving the following linear system (Dt +D)W = 2pt. Note that since
Dt + D is a sparse matrix, we finally solve a sparse least-squares problem which
can be efficiently performed.

2.3 Testing Stage: Sparse Linear Combination

Assume there are N training images and for each image, we solve for the local
weights W to combine the weak segmenters. We denote by Wnt, the weight
matrix for the nth training image and the tth weak segmenter, which is basically
a single matrix involving the re-arrangement of W that we solved for in the
training stage. To avoid overfitting, in the testing stage, not all the training
results are used. This is similar to the situation when a new patient comes in
for medical consultation, we expect that a good strategy for the experts involves
searching for useful relevant case studies from the old patients in order to arrive
at a consensus diagnosis. Therefore, only a subset of the trained parameters
are helpful in testing. Several techniques can be used to achieve this goal, for
instance the K-Nearest Neighbor (kNN) and the Sparse Representation methods.
The kNN based search for the most similar cases to represent the testing data
will potentially fail when all the training images differ from the test sample.
Besides, one has to resort to a relatively complicated data structure for fast kNN
implementation when the feature dimension is high. Recently, sparsity has been
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investigated for feature selection [10]. Following this philosophy, we compute the
optimal sparse combination of the training images to approximate the test data.

Formally, let A be a matrix with N columns where the ith column contains
the ith training image and let Y be the given test image. To obtain a sparse
combination of training set images, we use an L1 norm regularizer. The problem
is formalized as follows: γ∗ = arg minγ ||Aγ−Y ||22 +α||γ||1, which can be solved
using existing techniques, such as LASSO. The final strong segmenter is then
given by S(x) =

∑N
n=1

∑T
t=1 γnWnt(x)Φt(x).

3 Experiments

In this section, we empirically validate our SegMix algorithm and compare it
with the widely used voting based methods. Our algorithm significantly im-
proves the weak segmentation results given a small number of low-accuracy weak
segmenters.

Hippocampus Data Set: This experiment is performed on a hippocampal data
set containing 60 brain MRI (T1) images, with the right hippocampi manually
segmented by an expert neurologist. We divide the data set into 2 groups. The
first group contains 20 images used in building the multiple atlases. 10-fold cross
validation is applied to the remaining 40 images. The original brain images are
first corrected for intensity inhomogeneity and normalized, then registered to the
same coordinate system using a similarity transformation. Since the hippocampi
are within a certain region of the brain, we therefore define a bounding box that
approximately encloses each hippocampus and only take these ROIs as the input
to our segmentation algorithm. The size of ROI is 56 × 39× 30. We extract the
ROI for each test image by first deforming the brain MRI scan to a labeled brain
template and finding the ROI based on the template information.

Weak Segmenters: Note that any segmentation method is applicable as a weak
segmenter within our framework. However, in order to demonstrate the robust-
ness and performance of our algorithm and compare it to the existing multi-
atlas segmentation methods, we use atlas-based segmentation [1] as the weak
segmenter. We first cluster the 20 images into a set of groups based on the
hippocampal shape information from the labels. The signed distance transform
representation of each shape is mapped to the square-root density space via a
Schrödinger wave function [8]. Hence, each shape corresponds to a single point
on the high dimensional sphere and the similarity between the shapes is com-
puted intrinsically using the geodesic distance on the unit sphere. Armed with
this intrinsic similarity measure, any clustering method may be used here. We
employ affinity propagation [11] since it does not require the number of clusters
to be specified. We get 5 clusters and the atlases/centers for each group are used
for the weak segmentations.

Performance Measure: The evaluation metrics for measuring the performance
of the algorithm used in this paper include the similarity index (known as Dice
coefficient) SIM= 2V(A∩B)

V(A)+V(B) , which computes the overlap of two volumes and
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the difference index DIF= 2|V(A)−V(B)|
V(A)+V(B) , which measures the size difference of the

two volumes. Here V(·) computes the volume. A good segmentation has larger
overlap with the ground truth hence higher similarity index, but lower difference
index.

Experiment Setting: The free parameters involved in our SegMix algorithm
include λ and α for the regularization in the training and testing stages respec-
tively. We (empirically) discovered that the algorithm is not very sensitive to
the particular choice of λ and α, so we set λ = 0.5 and α = 0.5 throughout
the comparison experiments. An 18-connected neighborhood is used for com-
puting the graph G. The nonrigid registration algorithm used for atlas-based
segmentation is Demons, where we use all the default parameter settings, i.e.
all the registrations are performed with the same parameters. Due to the use of
standard defaults, atlas-based segmentation leads to low-accuracy for each weak
segmenter. However, the experimental results indicate that SegMix significantly
improves on those weak segmentations.

Experimental Results: To validate our proposed algorithm, the experiments
are performed on the 3D hippocampal MRI images using (1) SegMix, (2) Global
Weighted Voting (GWV) and (3) Local Weighted Voting (LWV)[4] with 5 weak
segmenters. In the following table, we list the average performance evaluation
for the 10-fold cross validation of the 40 images.

Table 1. The average SIM and DIF indices for SegMix, GWV and LWV

weak SIM final SIM Increased weak DIF final DIF Decreased

SegMix 0.68 ± 0.04 0.80 ± 0.03 17.65% 0.42 ± 0.10 0.09 ± 0.06 78.57%

GWV 0.68 ± 0.04 0.73 ± 0.04 7.35% 0.42 ± 0.10 0.37 ± 0.11 11.90%

LWV 0.68 ± 0.04 0.74 ± 0.04 8.82% 0.42 ± 0.10 0.39 ± 0.10 7.14%

Since better segmentation corresponds to larger SIM but smaller DIF, we
show the increased SIM value and decreased DIF value w.r.t. the weak segmen-
tations. Due to the low accuracy and limited number of the weak segmenters,
the performance of the voting-based methods are poor as expected. We also
present the SIM and the DIF values for both the weak segmentations and the
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Fig. 2. The figure shows the SIM and DIF for each image
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final strong segmentation and show the improvements of our techniques w.r.t.
the weak segmenters for each test image in Fig.2.

4 Conclusion

In this paper, we introduced a novel weak segmentation combination strategy
based on the assumption that the locally weighted combination varies w.r.t. both
the weak segmenters and the training images. We learned the weighted combi-
nation during the training stage using a discriminative spatial regularization
which depends on training set labels. In the testing stage, a sparse regulariza-
tion scheme was imposed to avoid overfitting. The experimental results indicated
that our algorithm not only outperforms the voting based methods but also sig-
nificantly improves the performances of the weak segmenters.
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Abstract. We propose a novel method for applying active learning strategies to
interactive 3D image segmentation. Active learning has been recently introduced
to the field of image segmentation. However, so far discussions have focused on
2D images only. Here, we frame interactive 3D image segmentation as a classifi-
cation problem and incorporate active learning in order to alleviate the user from
choosing where to provide interactive input. Specifically, we evaluate a given seg-
mentation by constructing an “uncertainty field” over the image domain based on
boundary, regional, smoothness and entropy terms. We then calculate and high-
light the plane of maximal uncertainty in a batch query step. The user can proceed
to guide the labeling of the data on the query plane, hence actively providing ad-
ditional training data where the classifier has the least confidence. We validate
our method against random plane selection showing an average DSC improve-
ment of 10% in the first five plane suggestions (batch queries). Furthermore, our
user study shows that our method saves the user 64% of their time, on average.

1 Introduction

3D image segmentation is one of, if not the most, important and ubiquitous tasks in
medical image analysis. Fully-manual slice by slice segmentation of images is widely
recognized as infeasible, being too tedious, time consuming, expensive, and suffering
from high inter- and intra-operator variability. Furthermore, manual operators have very
limited ability to integrate the information available in 3D data given that almost all
displays and data entry mechanisms are 2D. On the other side of the spectrum, fully-
automated segmentation techniques have generally struggled to achieve the accuracy
and robustness levels needed for clinical practice. Consequently, highly automated in-
teractive image segmentation approaches [8] have recently become the approach of
choice in most real life medical applications, and thus are garnering the focus of the
medical image analysis community.

Many interaction mechanisms have been previously pursued such as interactive con-
tour delineation [7] or region seeding [3]. Interactive segmentation is often an iterative
process. A user provides input that guides computations which return output back to
the user so that they may provide additional input. Ideally, the interaction process can
occur in real-time so that users receive immediate feedback on their actions. In the case
where user interaction takes the form of specifying which voxels belong to the object
or region of interest (ROI) and which do not, the interactive segmentation process can
be nicely formulated within a supervised machine learning framework. The user input

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAI 2011, Part III, LNCS 6893, pp. 603–610, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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can thus be seen as labeled training data, which the interactive segmentation algorithm,
or classifier, uses to label the remaining data (i.e. to segment the ROI).

Active learning (AL) [11] refers to supervised machine learning where, instead of
the user, a component of the algorithm called the ‘query strategy’ is responsible for
choosing the training data to be labeled. The query strategy, having intimate knowledge
of the inner workings of the specific classification algorithm deployed, is in an excellent
position to determine candidate high-quality training data voxels. By labeling voxels
according to AL queries, interactive segmentation algorithms can produce improved
segmentations using less, more efficient user input.

Image segmentation has had a number of treatments in the literature that relate to
AL. Ma et al. [6] explored image segmentation under an AL framework where they
used a support vector machine as the segmentation method and uncertainty sampling as
the query strategy. Pavlopoulou et al. [9] discussed the translation of interactive contour
delineation to an AL formulation. They used the term “active learning” in reference
to the algorithm’s support for interactive correction of the contour should it deviate
from the ground truth, but this definition differs from that of formal AL. Li et al. [5]
explored the segmentation of hyperspectral images by employing AL to query the user
for more seedpoints when confidence is lacking. Queries were made in the form of a set
of 2D image pixels labeled with low confidence, but it is unclear how to present these
queries in a user-friendly fashion. In [12], we presented a new approach to optimize user
interaction using a ‘Spotlight’ feature that was recently implemented into the software
package TurtleSeg1. That work however was not formulated in an AL framework.

None of the previous methods treated AL in the context of 3D segmentation, which
is the focus of our work in this paper. We solve two challenges: 1. The 3D image must
be presented to the user on a 2D display in a way that best reveals the object. Once con-
structed (using some method), a candidate segmentation should be properly overlaid in
context. 2. The user must assess the entire 3D segmentation in order to improve it by
providing additional input. The simple inspection of the entire image and its segmenta-
tion, which is straightforward in 2D, becomes a much more complicated issue in 3D. In
order to deal with the first challenge, we adopt the multi-planar reconstruction (MPR)
technique where orthogonal or oblique slices of the 3D image are presented to the user.
MPR is preferred as it is the most common 3D image display technique in clinical prac-
tice. To address the second challenge, we employ an AL uncertainty sampling query
strategy, which is designed to highlight to the user the regions in 3D where additional
training data will likely improve the segmentation. To the best of our knowledge, we
are the first to formulate 3D interactive image segmentation in an AL framework.

2 Methods

For clarity of exposition, we start by defining our notation. Let Ω ⊂ R
3 represent the

spatial image domain, y : Ω → {0, 1} represent the classifier labeling, I : Ω → R

represent the image intensity function, and U : Ω → R represent the classification
uncertainty field. We formulate our 3D image segmentation as a data classification
problem. Our feature vector consists of pixel locations x ∈ Ω and intensity I(x),

1 http://www.turtleseg.org

http://www.turtleseg.org
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but since the intensity depends on the position, we hereafter refer to the feature vector
as x for simplicity. The solution to the classification problem is to determine a label
y(x) ∈ {0, 1} for each x ∈ Ω. We adopt a supervised learning approach for interac-
tive segmentation. The user provides a set of training data, T , in which each element
has the form (X, Y ) ∈ T , where X ∈ Ω, Y ∈ {0, 1} and each X is unique, that
is ∀(Xa, Ya), (Xb, Yb) ∈ T, Xa = Xb =⇒ a = b. The training data is used to
train a classifier and obtain an image of labels i.e. a segmentation, y. The classifier can
be any probabilistic or energy minimizing 3D image segmentation algorithm, although
probabilistic algorithms (for example [3]) are preferred since they naturally encode un-
certainty in the results. Learning occurs as the training data is augmented, improving
the ability of the classifier to label unlabeled image pixels.

Since the initial set of training data is typically not sufficient for the classifier to
produce accurate labelings, we assess the uncertainty, U , of the classification results.
Should the uncertainty remain above a preset threshold or the user deems the segmen-
tation to be of insufficient quality, an AL batch query is calculated from U in order
to present to the user regions of maximal uncertainty. Specifically, we find the plane
that passes through the most uncertain regions of the classification. The user’s resulting
input augments the current training data, and the learned classifier is re-executed.

2.1 Uncertainty Field of Automatic Segmentation

The uncertainty value at a point x in the image, U(x), reflects the lack of confidence
of the classifier in its classification y(x) at point x. We propose a novel composite
uncertainty field U , comprising a weighted sum of four sub fields.

U(x, y) = λEUE(x, p1(x)) + λBUB(x, y) + λRUR(x, y) + λSUS(x, y), (1)

where UE is an entropy energy that depends on the probability p1 : Ω → [0, 1] of
point x being labeled 1. UB is a boundary energy, UR is a regional energy, and US is a
smoothness energy. Note that we are not interested in finding a classification y(x) that
minimizes the sum in (1) over the image domain, but rather how the value of U at one
position in the image compares to the value of U at another. For example, a classifier
which minimizes the boundary term UB given a set of constraints might still give a
solution with high UB in regions where there are no hard edges to follow. When using
a probabilistic segmentation algorithm as a classifier, a natural choice for assessing
uncertainty is the entropy of the segmentation results, giving the entropy energy as

UE(x, p1(x)) = −p1(x)log2 p1(x) − (1 − p1(x))log2(1 − p1(x)). (2)

For the boundary energy, we adopt from [1] a function of the image intensity gradient,

UB(x, y) = δ(Ds(x, y))
1

1 + |∇I(x)|α , (3)

where Ds(x, y) gives the distance from x to the classification boundary that divides
points where y(x) = 0 and y(x) = 1. δ is the delta function which allows us to consider
the gradient only for points on the segmentation boundary. In this paper, we set α = 2.
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This term will have values near 0 along a segmentation surface that follows a strong
edge in the image data, and values near 1 in homogeneous areas. See Section 3.1 for
details on how δ(Ds(x, y)) is implemented. We define the regional energy term as in [2]
to measure how well each voxel inside and outside the proposed segmentation conforms
to a respective intensity distribution. We derive the intensity distributions for foreground
and background voxels by calculating the maximum likelihood Gaussian distribution
parameters on the training data. For Gaussian foreground and background intensity
distributions given respectively as p(I(x)|Y = 1) = N (μ1, σ1) and p(I(x)|Y = 0) =
N (μ0, σ0), we can write the regional energy using Baye’s theorem as

UR(x, y) = p(Y = y(x)|I(x)) =
p(I(x)|Y =y(x))

p(I(x)|Y =0) + p(I(x)|Y =1)
(4)

where we assume p(Y =0) = p(Y =1) = 0.5. Finally, since smooth surfaces have less
area, we define a smoothness energy term based on the surface area of the segmentation
around a point x. With Nx representing a local 3D neighborhood around x, we have

US(x, y) =
∫∫∫

Nx

δ(Ds(z, y)) dV. (5)

2.2 Batch Query Active Learning Based on Planar Slices

Given an existing classification, heuristically the user should provide labels in the most
uncertain regions in order to best improve the classification. Point by point labeling is
too slow, so we instead use MPR to present the user with a plane of uncertain points
so that they can be labeled simultaneously. Querying the user for multiple labels at the
same time, as we do here, is known as a batch query [11]. Therefore, we seek the plane
with maximal uncertainty, which we define as argmaxP(UP) where UP is given as

UP =
∫∫
P

U(x) dA =
∫
∞

∫
∞

U(fP(u, v))
∣∣∣∣∂fP

∂u
× ∂fP

∂v

∣∣∣∣ dudv. (6)

Here, fP is a function mapping R
2 to P , and

∣∣∣∂fP
∂u × ∂fP

∂v

∣∣∣ is introduced with the change

of variables. We evaluate (6) by calculating the uncertainty at sample points on P . Since
in general the uncertainty field may be an arbitrary scalar image, (6) may have many
local maxima with respect to P . We therefore run multiple iterations of gradient descent
with randomized initial parameters (Section 3.1) in order to determine an approximate
solution to argmaxP UP .

To that end, we first parameterize P by its normal nP , and a point on P , pP . Let
fP(u, v) = pP + ua + vb, where a and b are orthonormal vectors perpendicular to

nP , then
∣∣∣∂fP

∂u × ∂fP
∂v

∣∣∣ = 1. Making use of the chain rule, we calculate ∇nPUP as

∇nPUP =
∫
∞

∫
∞

(uJT
a,nP + vJT

b,nP )∇xU(fP(u, v)) dudv, (7)
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where ∇xU(fP(u, v)) is the gradient of the uncertainty field with respect to the spatial
coordinates x. We use the notation Jt,s to represent the Jacobian of t with respect to s.
Using the chain rule again, ∇pPUP is easily shown to be

∇pPUP =
∫
∞

∫
∞

∇xU(fP(u, v)) dudv (8)

since JfP ,pP = I . The maximal plane is presented to the user who will then classify
it. This 2D segmentation is easy to do and well-studied in computer vision. There are
many methods to choose from: [7,10,3] and others. All these can directly or indirectly
provide a labeling of the plane.

3 Results

We experimentally verify our automatic plane suggestion approach by comparing it to
randomly chosen, as well as user-chosen, slice planes. Since our approach is general
enough to be applicable to a number of classifiers, we first describe our specific imple-
mentation in Section 3.1 before presenting qualitative and quantitative results in Section
3.2 and Section 3.3 respectively.

3.1 Implementation Details

We use the Random Walker (RW) [3] algorithm as our classifier (i.e. assigns a class
label to each pixel), since it is capable of producing a probabilistic segmentation, it ac-
cepts as input a set of pre-labeled feature vectors, and it naturally applies to 3D images.
To allow RW to run in a feasible amount of time on 3D images, we use techniques
presented in [4] to develop a GPU RW implementation using NVIDIA’s CUDA API.
In order to keep the classifier consistent for our tests, we set the RW algorithm’s only
parameter to β = 10, a value that was found to produce good segmentations. The
Ds(x, y) distance values seen in (3) and (5) are implemented using distance maps. The

δ(x) functions are approximated by e−
x2
2σ , with σ = 1, giving a differentiable “soft

delta” function. In our experimental software, users provide training data along slices
using 2D Livewire, which are rasterized to seedpoints in the 3D image and then passed
to RW as input. At any time after a segmentation has been computed the user can click
a button to have a batch query slice presented to them. For the following studies, we set
λE = 0.80, λB = 0.05, λR = 0.15 and λS = 0, which we found empirically to give
good results and were justified because UE exactly captures entropy while others less
so. The plane that maximizes (6) is found by initializing a plane 36 times to a random
orientation and ensuring the plane always passes through the the existing segmentation.
For each plane initialization, gradient descent is iterated 250 times, and the optimal
plane over the 36 runs is returned as the query plane.

3.2 Qualitative Results

We evaluate our method qualitatively by observing that it makes intelligent decisions
for each slice suggestion. We validate by segmenting two different medical images in
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1. Example snapshots during the AL interactive segmentation process. The first row shows
the radius bone in a CT image. (a) A slice of the image, and a single initial contour in orange. (b)
The results of the initial segmentation surface, the next AL suggested plane, and its user-provided
classification (blue). (c) A slice through the uncertainty field. (d) The final 3D segmentation after
3 more active queries were labeled. The second row shows the segmentation of the iliac bones in
a pelvis CT image. (e) A slice through the intensity image as well as the initial contours. (f) The
first AL query slice. (g) The 3rd AL query slice. (h) The final segmentation after 12 slices have
been classified.

Figure 1, demonstrating the active learning queries. In the first row, the radius bone in a
wrist CT image is segmented. Figure 1(b) shows the first active query slice, along with
its segmentation (blue). Note that the slice passes through a large portion of the radius
bone that was, in error, not previously included in the initial segmentation. Looking at
the uncertainty field through the same slice in figure 1(c), we see that high uncertainty is
detected in the radius bone region not included in the initial segmentation. In the second
row, the iliac bones of a pelvis CT image are segmented. We see in figure 1(f) that the
query slice is targeting a large portion of the iliac bones that are contained in the initial
segmentation. Figure 1(g) shows the third AL query slice beginning to focus on the left
iliac bone, in order to better finalize that region of the segmentation.

3.3 Quantitative Validation

We test our method on eight different datasets: radius bone in a CT, femur bone in an
MRI, liver in a CT, two images of a vastus lateralus muscle in an MRI, putamen in
an MRI, tibia bone in an MRI, and vastus intermedius muscle in an MRI. Image sizes
ranged from 1503 to 1903 pixels where suggestions took around 20 to 33 seconds, re-
spectively. We report accuracy increase after each training data augmentation step. We
first compare our proposed active query planes with random plane selection. Random
plane selection involves randomly choosing a plane orientation and offset, constrained
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Fig. 2. A comparison of our AL technique to random plane selection. Each graph shows the DSC
value of a segmentation versus the number of slices classified. The green curves show the results
of using AL for plane selection, while the red curves show the result of randomly choosing planes.
Sample slices of each segmented 3D volume are shown to clarify the image example context.

(a) (b)

Fig. 3. Results of the user study on the “Radius in CT” image. (a) An errorbar plot is given
showing our AL approach improving the segmentation faster than user decisions. (b) The average
difference in DSC percentage versus time.

to pass through the existing segmentation. Since both methods are non-deterministic,
we re-segment each dataset three times and average the results. The accuracy is shown
in terms of the Dice Similarity Coefficient (DSC) between the produced segmentation
and the ground truth segmentation. For all results, in order to maintain consistency,
we automatically derive the user segmentations over slice planes by extracting them
from the ground truth segmentation. Figure 2 shows the comparison results between
AL queries and random plane selection. Notice that the AL queries lead to higher DSC
maxima, the DSC increases faster per user-segmented slice, and the average DSC in-
creases by 10% on the first five plane suggestions (batch queries). Often, the first active
query suggestion results in a better segmentation than multiple random slice planes.

Next we present the results of a 4 person user-study comparing our method of plane
selection to human intuition on “Radius in CT” dataset chosen from above. Figure 3
gives a plot for the dataset showing DSC increase versus user interaction time where
errorbars show the variance of the different users’ output. Results clearly demonstrate
how our AL approach significantly reduces the time needed to achieve any DSC value.
Specifically, a total average reduction of 64% in user interaction time was achieved.
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4 Conclusions

In this paper we formulate interactive 3D image segmentation in an AL framework. Our
contributions include being the first to formulate interactive 3D image segmentation as
a formal AL process. In doing so, we alleviate the user from choosing where to provide
interactive input. In order to facilitate the batch queries, we automate assessment of
uncertainty in the classification as well as the search through the uncertainty for the best
query plane. Finally, we show our method to significantly reduce the required user input
in interactive 3D image segmentation tasks through a user study. Future work includes
incorporating this technique into other interactive segmentation algorithms and learning
the energy functional weights automatically via training data.
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Abstract. In this paper, we propose a method to segment multiple ro-
dent brain structures simultaneously. This method combines deformable
models and hierarchical shape priors within one framework. The defor-
mation module employs both gradient and appearance information to
generate image forces to deform the shape. The shape prior module uses
Principal Component Analysis to hierarchically model the multiple struc-
tures at both global and local levels. At the global level, the statistics of
relative positions among different structures are modeled. At the local
level, the shape statistics within each structure is learned from train-
ing samples. Our segmentation method adaptively employs both priors
to constrain the intermediate deformation result. This prior constraint
improves the robustness of the model and benefits the segmentation ac-
curacy. Another merit of our prior module is that the size of the training
data can be small, because the shape prior module models each structure
individually and combines them using global statistics. This scheme can
preserve shape details better than directly applying PCA on all struc-
tures. We use this method to segment rodent brain structures, such as
the cerebellum, the left and right striatum, and the left and right hip-
pocampus. The experiments show that our method works effectively and
this hierarchical prior improves the segmentation performance.

1 Introduction

Magnetic resonance imaging (MRI) at a spatial resolution of at least 100um
in one dimension is frequently referred to as MR microscopy (MRM) and is
currently available with the use of high magnetic field images. This technical
achievement has permitted the detailed anatomical study of the rodent brain,
which is much smaller than the human brain and requires a small voxel size in
order to be imaged. Rodents are often used as models of human disease not only
because they frequently exhibit key features of abnormal neurological conditions
but also because they are a convenient starting point for novel studies. The
analysis of rodent brain image faces similar challenges to human imaging, with
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individual variation in size, morphology, and topology of the brain structures
complicating the neuroanatomical studies. Such analysis is frequently performed
by segmenting the regions of interest (ROI) in rodent brain images. The challenge
of this segmentation task is threefold. 1) The image information is sometimes
incomplete or misleading. For example, there is no obvious boundary in part of
the striatum, and the cerebellum contains interleaving texture (Fig. 1), 2) It is
important to discover and/or preserve some complex local shape details, such as
the paraflocculi (i.e., two protruding features of the cerebellum), 3) Given limited
number of training samples, it is desirable to segment all interested structures
simultaneously by effectively learning a shape atlas for multiple structures.

Fig. 1. The MR image of a rat brain used in experi-
ments. The image information is misleading because
1) part of the boundary between striatum (top) and
other structures is blurred; 2) the cerebellum (bot-
tom) has complex textures and large gradient values
inside.

In recent decades, many
deformable model based seg-
mentation methods have been
proposed to solve these chal-
lenges and achieved tremen-
dous success [6,2,7,11]. The
traditional Snakes [6] solely
rely on the image gradient
information, so they may be
trapped by noise and spu-
rious edges. Region analysis
strategies [13] have been in-
corporated in Snake-like mod-
els to improve their robust-
ness to noise. Metamorphs [5]
was proposed to be able to in-
tegrate shape and appearance
in a unified space. The model
has not only boundary shape
but also interior appearance,
making it more robust to am-
biguous boundaries and complex internal textures. Its 3D version, Active Vol-
ume Model (AVM) [10], is proposed to perform volume segmentation. The AVM
model’s shape is represented by a simplex mesh and its volumetric interior car-
ries the various visual appearance feature statistics. However, the only shape
prior used in AVM is the smoothness constraint. Thus it may not be able to
preserve or discover small shape details. Another group of deformable models
also considering region information is level set based methods [7,8]. These ap-
proaches have been widely used in tubular structure and 3D cortex segmentation
tasks since they are topologically free and can be easily used in any dimension.
Statistical modeling approaches such as Active Shape Model (ASM) [2] are also
widely used. These methods constrain the intermediate shape by using the shape
pattern from existing data. Thus they are able to recover or preserve local shape
details. However, these methods may need a large amount of 3D training data,
whose creation and maintenance can be difficult and time consuming in practice.
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Combining AVM and ASM is able to handle both complex texture and shape de-
tails without a large set of 3D training data [12]. However, this approach still can
not handle multiple structures simultaneously because, with multiple structures
together, there is a larger variability and thus it usually requires more training
samples in order to capture such variability.

In this paper, we propose a unified algorithm to alleviate these three challenges
mentioned above. It includes a robust deformation model which uses both gradi-
ent and appearance information, and a shape prior model which can learn shape
statistics from a small number of training data by employing a hierarchical mod-
eling scheme. Note that the idea of hierarchical shape prior has been investigated
much in the literature [3,4,1]. Our contribution is to combine such idea with a
robust deformable model to effectively segment multiple structures of rodent
brains. First, the shape statistics of each structure is obtained using topology-
aware shape registration and Principal Component Analysis (PCA). The relative
positions among structures are also obtained as high level statistics. This hierar-
chical prior module is able to effectively build shape statistics in two levels even
with limited number of training data. Second, the deformation module is used
to drive the 3D mesh based on the image information. Its intermediate result is
refined and constrained by adaptively using the hierarchical shape priors. Our
deformation module is relatively robust to image noise. However, in the presence
of bad initialization or heterogeneous texture, the shape prior constraint can still
prevent the model from getting stuck or leaking out of the target in the presence
of bad initialization or heterogenous texture. We use this algorithm to segment
complex structures in rodent brains, such as the cerebellum, the hippocampus
and the striatum. Extensive experiments have been designed to evaluate this
method.

2 Methodology

Shape Atlas for Multiple Structures: All brain scans are aligned to the
same reference brain. Alignment is performed with rigid transformations (ro-
tations and translations), thus after alignment the volume and shape of brain
structures do not change. The brain structures are manually segmented by clin-
ical experts. We focus on the cerebellum, the left and right striatum, and the
left and right hippocampus. After extracting triangular meshes from the binary
image, we use sophisticated geometry processing methods to improve the mesh
quality, such as the mesh decimation, isotropic remeshing and detail-preserved
smoothing. A topology-aware shape registration method based on Adaptive Fo-
cus Deformable Model (AFDM) [9] is then used to register a reference mesh to
the others. Thus all processed meshes share the same topology and have one-to-
one correspondence among vertices.

Once the training shapes are available, the generalized Procrustes analysis [2]
is applied to align them together. PCA is then used to capture the shape statis-
tics, such as the mean shape and its major variances. The shape statistics are
captured in a hierarchical scheme. First, we apply PCA on each structure sepa-
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rately. Given limited training samples, this approach can learn the shape details
better than using all structures. Fig. 2 shows the largest mode of the variations

Fig. 2. The largest mode (−3σ to 3σ) of the rat
brain variations, which represents the changing of
the structure size. Middle is the mean shape.

for rodent brain structures.
Second, PCA is also used
to learn the relative posi-
tions among structures, and
their locations with respect
to the mass centroid. This
prior is built at the high level.
Both statistics are used as
prior information to guide the
segmentation process. Since
the hierarchical scheme builds
priors in two levels, it is able
to effectively model the multi-
ple structures effectively even
given a small number of train-
ing samples.

Deformation Module: Given a test 3D image, it is aligned to the reference
brain. Then the mean mass centroid of all structures is used as the estimated
center. The mean shape of each structure is placed according to the relative
positions learned at the high level statistics. However, this initialization may
not be close to the boundary of the testing data because of the variance. Thus
deformable models are still needed for accurate segmentation. In order to find
the boundary robustly, the initialized models are driven by both gradient and
region information derived from the image. Region information alleviates the
problems caused by unclear boundaries and complex textures. The overall energy
function is: E = Eint + Eext = Eint + (Eg + kR · ER), where Eint is the internal
(smoothness) energy, Eext is the external (image) energy, Eg is the gradient
term, ER is the region term, kR is a constant to balance the contributions of
the two external energy terms. The balance between the internal and external
energies is naturally controlled by the smoothness factor in the stiffness matrix
by using Finite Element Method (FEM) as the deformation scheme [10].

The traditional gradient data terms usually include the gradient map, edge
distance map, or a combination of both, while the region data term encodes con-
straints for the model-interior appearance statistics. Considering a module using
intensity statistics, the object region is predicted according to the current model-
interior intensity distribution. Having both foreground object and background
probabilities, we obtain a binary map that represents the predicted object region
by applying the Bayesian Decision rule. Connected component analysis is then
applied to the binary map to retrieve the connected component that overlaps
the current model. This connected region is considered as the current ROI. Let
us denote the signed distance transform of the current model’s surface shape as
ΦΛ, and the signed distance transform of the ROI boundary shape as ΦR, the
region-based external energy term is defined using voxels within a narrow band
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around the model surface as: ER =
∫

Λ
ΦΛ(v)ΦR(v)dΛ. The multiplicative term

provides two-way balloon forces that deform the model toward the predicted
ROI boundary. This allows flexible model initializations either overlapping the
object or inside the object. Using these external energy terms as image forces,
the FEM model is driven to find object boundaries.

Hierarchical Shape Priors and Model Evolution: The above model may
still not be able to avoid the local minimum or preserve a specific shape, es-
pecially when the texture of the image is complex. Thus a shape prior energy
is added to our method to constrain and refine the shape and position of all n
structures during deformation: Eprior =

∑n
i=1 Ei

local + kg · Eglobal, where Ei
local

is the shape constraint applied on the ith structure, and Eglobal is a constraint
on the relative positions among different structures and distances with respect
to the mass centroid.

In terms of the implementation, the energy optimization is achieved by using
an expectation-maximization (EM) type of framework. Given intermediate seg-
mentation results of all structures, in the “E” step, the locations of structures are
adjusted as per the global statistics to prevent overlap or intersection. In the “M”
step, each individual shape is constrained by aligning to the mean shape, and
then mapping into PCA space to update the pose and shape parameters. Thus it
guarantees that the shape deforms only into patterns consistent with the train-
ing data, which can refine the shape and prevent over-segmentation. This whole
hierarchical framework is employed adaptively by defining kg = 1−e−|∇Λ|, where
|∇Λ| is the magnitude of deformation change in surface shape. In the beginning,
the shape deforms a lot so kg is relatively large. It means that we trust more on
the high level information, and put larger weights on the global statistics. After
several iterations, the local statistics should be more important since the brain
structure is nearby the boundary. At this time the shape deforms less so kg is
smaller. The whole segmentation framework, including training and testing, is
summarized as follows:

1. Manually segment a small number of training data. Use PCA to capture
shape statistics and location statistics of relative positions.

2. Given a testing data, it is aligned to the reference image. Then multiple
models are placed using mean relative positions with respect to the mean
mass centroid. Initialize these models, i.e., stiffness matrix and step size for
FEM and the gradient magnitude or edge map.

3. Compute ΦΛ based on the current model; predict object ROI R by applying
the Bayesian Decision rule to binarizing the estimated object probability
map, and compute ΦR. Calculate the external force vector.

4. Deform the model using FEM and external forces derived from gradient and
region terms. Smoothness constraint is implicitly incorporated by FEM.

5. Update the value of kg = 1 − e−|∇Λ|. Adjust the structure positions to
prevent intersections using global prior.

6. Refine each intermediate result by local prior constraint (transform it to the
mean shape, then update the pose and shape parameters).

7. Repeat steps 3-6 until convergence.
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Fig. 3. Comparison of segmentation results starting from the same initialization. The
first row: traditional shape prior constraint (smoothness). The second row: using hier-
archical shape prior. From left to right: the cerebellum, the left and right striatum, the
left and right hippocampus, and all five structures.

Alternating the deformation module and the shape constraint module is more
robust to noise and can handle more complex textures than purely using a defor-
mation module. Due to the constraint from the shape prior, our model converges
fast and robustly towards the true boundary given the mean shape of the multi-
ple objects as initialization. One more benefit of our multiple structure model is
that the size of the training data can be small, because the shape prior is built
hierarchically. The prior for each structure is obtained individually, which can
better discover the shape statistics than using one prior for all structures.

3 Experiments

Experimental Settings: The heads of adult male Sprague-Dawley rats were
scanned on a 21.1T Bruker Biospin Avance scanner. The protocol consisted of a
3D T2-weighted scan with echo-time (TE) 7.5ms, repetition time (TR) 150ms,
27.7 kHz bandwidth, field of view (FOV) of 3.4 × 3.2 × 3.0mm, and voxel size
0.08mm, isotropic. 3D annotation is manually performed on 58 volume data by
an expert neurologist. 8 are used as training data since we only need a small
number of samples for hierarchical statistics. The rest 50 are used as testing.
The proposed method was implemented in C++ and Python 2.6 and tested on
a 2.40 GHz Intel Core2 Quad computer with 8G RAM.

Visual comparisons: Fig. 3 shows the visual comparisons of segmentation re-
sults starting from the same initialization. In the first row, we segment each
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structure individually. The shape prior is the smoothness constraint. In the sec-
ond row, the hierarchical shape prior energy is incorporated to segment all struc-
tures simultaneously. When segmenting the cerebellum, the shape prior helps to
preserve the shape of paraflocculi and to avoid the local minima caused by com-
plex textures inside. Without using our priors, the model is attracted by large
gradient values inside and the paraflocculi are smoothed out. In the striatum
and hippocampus cases, there is no obvious boundary between these structures
and the brain. Thus the model can easily over-segment the ROI. Our priors al-
leviate this problem. Another benefit of the hierarchical prior is that the spatial
constraint is incorporated. The distance between two structures has to follow
the location statistics. Thus structures cannot intersect with each other.

Quantitative comparisons: Tab. 1 compares different priors. Note that all
deformation modules are the same and based on both gradient and region in-
formation. We compared the methods of combing the robust deformation model

Table 1. Quantitative comparisons of different prior
schemes. We reported the mean and standard devia-
tion of voxel distances between segmented surfaces and
ground truth surfaces, and relative errors of volume mag-
nitude in proportions

Structures Prior types Voxel distance Volume error
Smoothness 4.35 ± 2.17 0.22 ± 0.12

Cerebellum Independent 1.74 ± 1.18 0.05 ± 0.02
Hierarchical 1.70± 1.13 0.04± 0.02
Smoothness 3.79 ± 2.05 0.51 ± 0.19

Striatum Independent 2.93 ± 1.81 0.19 ± 0.06
Hierarchical 1.37± 1.09 0.07± 0.03
Smoothness 3.82 ± 2.14 0.53 ± 0.18

Hippocampus Independent 2.69 ± 1.83 0.17 ± 0.05
Hierarchical 1.22± 1.05 0.06± 0.02

with a traditional smooth-
ness shape prior [10],
an independent shape
prior [12] for each struc-
ture and hierarchical
shape priors (i.e., the
proposed method). The
same parameters are used
in all deformation mod-
ules. We reported the
mean value and stan-
dard deviation of voxel
distances between seg-
mented surfaces and
ground truth surfaces.
Generally, the shape prior
constraint improves the
segmentation accuracy. In
the cerebellum case, the
spatial constraint in hier-
archical priors only slightly improves the result, while it is much more important
in the striatum and hippocampus cases. The reason is that the striatum and hip-
pocampus are adjacent to each other. Spatial constraints can prevent the inter-
section of different structures, which implicitly alleviates the over-segmentation
problem caused by the low contrast and ambiguous boundaries. The volume
magnitude information is very important in rodent brain analysis. Thus we also
reported the relative error of volume magnitude compared to the ground truth.
Using the hierarchical shape prior achieves the best result, especially for the
striatum and the hippocampus. This spatial constraint not only improves the
segmentation accuracy for multiple structures, but also decreases the number of
iterations and computation time to converge.
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4 Conclusions

In this paper, we proposed a deformable segmentation method to segment multi-
ple rodent brain structures simultaneously. The model is driven by external forces
derived from both image gradient and appearance information. To improve the
robustness, a hierarchical shape prior module is also employed for model initial-
ization and shape refinement. We use this method to segment complex structures
in rodent brains, which shows that our method works effectively.
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Abstract. Nosocomial infections are the undesirable result of a treat-
ment in a hospital, or a health care service unit, not related to the
patient’s original condition. Despite the evolution of medicine, fundamen-
tal problems with hand hygiene remain existent, leading to the spread
of nosocomial infections. Our group has been working on a generic so-
lution to provide a method and apparatus to teach and verify proper
hand disinfection. The general idea is to mark the skin surfaces that
were sufficiently treated with alcoholic hand rub. Digital image process-
ing is employed to determine the location of these areas and overlay it
on the segmented hand, visualizing the results in an intuitive form. A
non-disruptive ultraviolet marker is mixed to a commercially available
hand rub, therefore leaving the original hand washing workflow intact.
Digital images are taken in an enclosed device we developed for this
purpose. First, robust hand contour segmentation is performed, then a
histogram-based formulation of the fuzzy c-means algorithm is employed
for the classification of clean versus dirty regions, minimizing the pro-
cessing time of the images. The method and device have been tested
in 3 hospitals in Hungary, Romania and Singapore, on surgeons, resi-
dents, medical students and nurses. A health care professional verified
the results of the segmentation, since no gold standard is available for
the recorded human cases. We were able to identify the hand boundaries
correctly in 99.2% of the cases. The device can give objective feedback
to medical students and staff to develop and maintain proper hand dis-
infection practice.
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supported by CNCSIS-UEFISCSU, project no. PD 667, contract no. 28/05.08.2010.

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAI 2011, Part III, LNCS 6893, pp. 619–626, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



620 T. Haidegger et al.

1 Introduction

Ignaz Semmelweis realized first the importance of hand hygiene in the medical
environment in 1847, and imposed strict regulations in his hospital, immediately
resulting in better patient survival rates. While medical technology has tremen-
dously improved along the years, it has failed to eliminate the persistent problem
of incomplete hand hygiene, leading to the spread of nosocomial infections. Infec-
tions are considered nosocomial—also referred to as Hospital-Acquired Infections
(HAI)—if they appear 48 hours or more after hospital admission or within 30
days after discharge. HAI occurrence has been reported in 7.1% on average in
the Western world [1]. Sadly, HAI is responsible for 15,000 deaths in Europe
and over 90,000 world wide every year [2]. In addition, it causes $2B extra cost
annually in the UK [3], $4.5–5.7B direct [4] and $17–40B additional costs in the
USA, as it may triple average hospitalization time [3,5].

The pathogens are most often transferred via the hands of the medical staff,
therefore compliance with the operative hand hygiene protocols and standards
is absolutely necessary [6,7,8]. Fig. 1(a) shows the most frequently missed parts
of the hands based on a multi-center study conducted by the US Center of
Disease Control and Prevention (CDC) [9]. Reports suggest that accurate hand
disinfection could reduce HAI by up to 30%, saving hundreds of lives each month
and reducing hospitalization costs significantly [10,11].

In this paper, a novel approach to hand disinfection education and quality
control is discussed. The employed workflow is very intuitive: disinfection is per-
formed with a liquid, alcohol-based hand rub mixed with UV reflective powder,
which appears brighter under adequate UV-C lighting (on surfaces having suffi-
ciently treated with the soap). Pictures of the hands are taken in a UV lighted
case (users should spread their fingers to provide good visual access), after which
a regular notebook performs the evaluation. It provides graphical results (high-
lighting clean versus dirty areas), and indicates an overall quantitative score. We
can obtain objective, measurable and scalable data on hand disinfection qual-
ity, that is most useful to train medical students to acquire good hand washing
practice.

2 Methods

2.1 Image Recording

A compact, mobile device was built for comparable recording and objective
assessment of hand disinfection quality, shown in Fig. 1(b). This consists of
removable plastic plates, making it light and transportable. Dimensions are 35×
30 × 30 cm (w/l/h) providing dual hand imaging option. There are 21 lines
with 10 UV LEDs in each row, fixed on the top plate. LEDs provide equal
illumination on the hand surface. The current is minimized to 30 mA, therefore
any USB port is sufficient for power supply, not constraining the mobility of the
device. In the center of the cover, a digital camera (Canon PowerShot SX100) is
placed, controlled through the connected laptop. The whole structure is covered
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Fig. 1. (a) Results of a study by CDC, showing the most frequently missed parts of
the hands after surgical hand disinfection, based on a US survey [9]; (b) Hardware
setup for objective hand disinfection control

with removable drapes, reducing the disturbance of external light. The compact
device was designed to be wall-mountable for upcoming prolonged (repetitive)
clinical trials. In order to keep the interior of the box clean, we use disposable
matte black paper covers.

2.2 Initial Considerations for Image Processing

The aim of the system is to provide an objective and repeatable measurement
of hand washing through image segmentation and classification by determining
the ratio of the clean (bright) surface compared to the whole skin surface. To be
able to compute this, the Region of Interest (ROI) is first selected, separating
the hand from the background. Next, the pixels within the ROI are fed to a
semi-supervised classification process, to distinguish clean areas from dirty ones.
Finally, the ratio of the clean areas over the whole hand is calculated.

For medical applicability, it is important to find a good compromise between
processing speed and image resolution. Accordingly, captured images are resized
to 400× 300 pixels. Although the camera captures three intensity channels (red,
green and blue), we restricted the procedure to use the green channel, since the
red channel’s intensity is very low in the reduced-light environment, therefore it
rarely contains less information. On the other hand, during the initial trials, it
was noticed that the blue channel is often saturated.

2.3 ROI Selection

The first step of the procedure mostly consists of image processing operations
that can be easily fed to parallel execution:

1. A median filter of 5×5 mask is applied to get rid of isolated pixels containing
high-frequency imaging artifacts.
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2. The complex morphological operation is applied to the filtered image:

Ig = [(If ⊕ b) − (If � b)] × f(If � b) , (1)

where b is a 3 × 3 square shaped structuring element, If stands for the
filtered image, Ig represents the computed gradient image, and f(·) is an
amplification function. The role of f(·) is to amplify the edges that are
situated in the proximity of dark pixels in the filtered image, and suppress
other edges, which are supposed to be inside the area of the hand. f(·) is
an exponentially decreasing function that crosses the unit value in a context
dependent threshold intensity level.

3. In gradient image Ig, the background typically contains visible texture, while
the inner area of the hand is uniformly dark. A region growing method is
applied to identify the pixels belonging to the hand. In order to select seed
points, a uniform 11×11 averaging mask is applied to the image Ig . Minimum
intensity pixels of the smoothed image can be used as seed points.

4. Finally, the pixels belonging to the amplified contour of the hand are sepa-
rated, in accordance with their original intensities.

The intermediary and final results of ROI selection are shown in Fig. 2(a)–
(f). After the ROI is established, the relative histogram of the inner pixels is
computed, using the intensities of the filtered image, If . This histogram (see pl

values in Section 2.4) will be the input data of the semi-supervised classification.

2.4 Semi-supervised Classification

To minimize the processing time of the images, a quick, histogram-based for-
mulation [12] of the fuzzy c-means algorithm (FCM) [13] is employed for the
separation of pixels belonging to clean and dirty regions of the hand. The main
reason for this approach is its ability to classify intensity levels instead of pixels,
resulting in high execution speed. Supervision is introduced into the objective
function of FCM by the second additive term, and its strength is controlled by
the supervision rate σ that acts like a trade-off parameter between the unsuper-
vised and supervised terms. The proposed objective function is:

JssFCM = (1 − σ)
c∑

i=1

q∑
l=1

plu
m
il (l − vi)2 + σ

c∑
i=1

q∑
l=1

p̃il(l − vi)2 , (2)

where c represents the number of clusters, q is the number of intensity levels in
the input image, vi is the prototype intensity of cluster with index i, uil is the
fuzzy membership function representing the probability of gray shade l to be
assigned to cluster represented by vi and m > 1 is the fuzzy exponent as defined
in [13]. Further on, pl is the percentage of pixels situated in the ROI having
their intensity equal to l and similarly, p̃il, l = 1 . . . q describe the intensity
distribution of the labeled data belonging to cluster index i. These previously
labeled pixels were extracted from several expert-evaluated reference images,
and they are assigned to clusters using hard (bivalent) partition.
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The objective function JssFCM is optimized under the probabilistic constraint∑c
i=1 uil = 1, ∀l = 1 . . . q. The optimum is reached by alternately optimizing

along uil with vi fixed and along vi with uil fixed, until the cluster prototypes
converge. The update formulas of fuzzy memberships and cluster prototypes—
obtained using zero gradient conditions and Lagrange multipliers—are:

uil =
(l − vi)−2/(m−1)∑c
j=1(l − vj)−2/(m−1)

, ∀i = 1 . . . c,∀l = 1 . . . q , (3)

and

vi =
∑q

l=1[(1 − σ)plu
m
il + σp̃il] × l∑q

l=1(1 − σ)plum
il + σp̃il

, ∀i = 1 . . . c . (4)

Clustering is executed with the class count initially set to c = 3. Besides
the clean and dirty areas, an intermediate (so-called partially washed) area is
also identified. However, depending on the final intensity values of the cluster
prototypes, this middle cluster may be merged into the dirty or clean class, due
to excessive proximity. In the next phase of the development, we intend to involve
patient-specific data (skin color, vessels, birthmarks, etc.) to facilitate the final
decision on the intermediate class.

2.5 Interpretation of Classification

At this stage, pixels are clustered regardless of their position within the ROI.
Next, we apply certain context-dependent criteria to improve the prediction
accuracy. A regularization filter is used to remove isolated pixels of any class,
surrounded by another class. This also helps to remove small spots that originate
from uneven skin color. Furthermore, a weighting factor is assigned to each pixel
within the ROI (with lower weight to pixels situated along the edges), to mini-
mize the influence of shadows on the final estimation. The weighted summation
of correctly disinfected areas of the hand is achieved through:

1. A distance transform is employed to separate the pixels within the ROI
into edge pixels and inner pixels. Edge pixels are situated within a close
neighborhood of the non-hand regions. We denote by n the number of edge
pixels, while the number of inner pixels to be referred to as N .

2. We differentiate and count clean and dirty pixels within the set of edge pixels
(nc and nd will denote the count of clean and dirty edge pixels, respectively)
and inner pixels (Nc and Nd, analogously).

3. The non-weighted estimation of the clean area is given as:

π = 100 × Nc + nc

Nc + nc + Nd + nd
. (5)

4. The weighted (edge-compensated) percentage of the disinfected area is:

πw = 100 × Nc + α nc

(Nc + Nd) + α (nc + nd)
. (6)

5. In order to suppress shading artifacts, an α = 0.2 weighting factor is recom-
mended. This value was established empirically.
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Fig. 2. (a)-(f) Intermediary stages of hand segmentation: (a) original image, (b) green
channel image, (c) gradient of the green channel image, (d) initial detected contour, (e)
adjusted contour, (f) extracted ROI (images (b)–(f) are shown in inverse colors); (g)
Relative histogram of labeled data involved in the semi-supervised clustering algorithm

Fig. 3. Qualitative evaluation results for visual inspection: (a)–(e) hands with total
or partial disinfection. In each column: upper row shows original color image, middle
row indicates the extracted ROI, bottom row exhibits the segmented image.

3 Results and Discussion

To test the efficiency of the system, a trilateral study was conducted. Medical
workers including surgeons, nurses, students and supporting staff from different
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Table 1. Quantitative results regarding the clean areas of the hands from Fig. 3

Hand (a) (b) (c) (d) (e)

Before compensation (π) 98.72% 71.37% 72.12% 24.62% 8.73%

After compensation (πw) 99.47% 73.90% 75.90% 25.73% 8.41%

hospitals volunteered to take part in the trials. Institutes were selected from
Budapest (Hungary), Tı̂rgu-Mureş (Romania) and Singapore.

In an initial phase, approximately 200 images were recorded from dozens of
different subjects, intentionally having varying disinfected area ranging from 0%
to 100%, forming a generalized teaching set.

Detected boundaries underwent a double investigation: first a visual inspec-
tion was applied, followed by an automatic evaluation of the pixel intensities in
the immediate neighborhood of the detected boundary. This latter criterion ap-
proved the boundary when the great majority (e.g. 90%) of inner neighbor pixels
had higher intensity (in the green channel of the original image) than the great
majority of outer neighbor pixels. In 99.2% of the tested cases, the boundary of
the hand was correctly identified. The intermediary and final result of a success-
ful case are presented in Fig. 2(a)–(f). The labeled data for supervised clustering
was manually selected by experts from a learning data set that consisted of 64
different images. The relative histogram of labeled pixels belonging to the three
classes is shown in Fig. 2(g). The three classes have significant overlapping parts.

The algorithm was tested on several images with different supervision rates
(σ) ranging between 0.005 and 0.03, and the optimal value of σ was derives to
be 0.015. Fig. 3 exhibits the result of five successful segmentations; identified
clean areas are drawn in lighter gray, while dirty parts appear in darker gray.
Table 1 gives the results of the quantitative evaluation of the same five images.
As a guideline for future applications, we consider a hand appropriately disin-
fected, when it resembles the case shown in Fig. 3(a), having the final estimated
percentage greater than 98%.

During the test of the system, one of the challenges experienced was to account
for the skin differences. Using calibrated image recording conditions (like foxed
exposure time, ISO value of the camera) and including labeled data into the
clustering algorithm resolved this problem with a remarkable accuracy.

The proposed image processing algorithm was implemented in C++ program-
ming language, using Intel’s OpenCV computer vision libraries. Image processing
tasks rarely handle individual pixels, most operations apply to the whole image
(possibly restricted by a ROI), thus facilitating parallel execution. This enables
us to provide the final evaluation results of an image in less than 1.5 seconds.

4 Conclusions

Since insufficient sterility continues to cause serious problems in health care
around the globe, we exerted significant efforts to support the prevention of
Hospital-Acquired Infections. We have built a mobile device that can perform the
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objective evaluation of the hand’s disinfection ratio. The equipment is intended
to help surgeons and hospital staff to reduce HAI rates, through teaching better
hand hygiene practice. We use a UV reflective powder mixed to the regular
alcoholic hand rub, and then clean areas of the hand are identified from digital
images taken under UV lighting. The main contribution was the creation of an
automated device and adjoint procedure that efficiently and accurately segments
the digital image of the hand, and then classifies the treated areas using a semi-
supervised fuzzy c-means clustering algorithm. The performance of the system
was evaluated on a large set of images, leading to an overall accuracy of 98.5%,
as verified by a human professional. It has been shown in trilateral clinical trials
that the system is qualified for prevailing the omitted parts of the hand after
hand washing. Meanwhile, it does not significantly disrupt the regular medical
workflow, and is also capable of tracking disobedience to hand hygiene protocol,
such as wearing jewelry or artificial nails.
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Abstract. The ability to learn from user behavior during image segmentation to 
replicate the innate human ability to adapt shape delineation to contextually 
specific local information is an important area of study in image understanding. 
Current approaches to image segmentation usually incorporate specific designs, 
either relying on generic image features or specific prior knowledge, which 
usually prevent their application in different contextual settings. In this paper, a 
general segmentation framework based on reinforcement learning is proposed. 
It demonstrates how user-specific behavior can be assimilated in-situ for effec-
tive model adaptation and learning. It incorporates a two-layer reinforcement 
learning algorithm that constructs the model from accumulated experience dur-
ing user interaction. As the algorithm learns ‘pervasively’ whilst the user per-
forms manual segmentation, no additional steps are required for the training 
process, allowing the method to adapt and improve its accuracy as experience is 
acquired. Detailed validation of the method on in-vivo magnetic resonance 
(MR) data demonstrates the practical value of the technique in significantly re-
ducing the level of user interaction required, whilst maintaining the overall 
segmentation accuracy.  

1   Introduction 

Automated image segmentation for medical imaging is inherently challenging due to 
the complexity of anatomical structures and inevitable artefacts introduced during 
data acquisition. Current approaches can be divided into two main categories: meth-
ods relying on generic image features and those combining prior knowledge, whether 
being geometrical or statistical, with specific image content being examined. Active 
contours and level-set methods [1, 2] are typical approaches focusing on the current 
image content, whereas Statistical Shape Models (SSM) [3] instantiate the overall 
behavior of a group of shapes on a specific data set. Techniques such as SSM are 
heavily dependent on a comprehensive training set with residual issues of over-fitting 
and poor generalisation to pathological data in clinical application [4-6]. Thus far, 
limited attention is paid to the learning of user behavior during manual segmentation. 
It has long been recognised that experienced observers have innate abilities in adapt-
ing shape delineation to local information that is contextually specific. Fig. 1 illus-
trates three typical examples of image segmentation showing (a) the endocardial  
border of the left ventricle (LV), where users do not always rely on gradient features 
for myocardial mass measurement when papillary muscles are excluded; (b) the 
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avoidance of the partial volume effect of MR; and (c) bridging across both subtle and 
strong anatomical boundaries during the segmentation of the inner and outer contours 
of the levator ani, the tripartite muscle sheet of the pelvic floor. 

 

Fig. 1. Segmentation examples illustrating how user delineation or modification of the ana-
tomical contours (shown in red) can be learnt through reinforcement learning and then used to 
perform context-specific segmentation: (a) the endocardial border of the left ventricle when the 
papillary muscles are excluded; (b) the boundary of the rectum showing how to adapt to the 
partial volume effect in MR; (c) the inner and outer contours of the pelvic floor when both 
subtle and strong appearance features are present. It is worth noting that the algorithm learns to 
extrapolate the shape when there are no clear image appearance features to rely upon. Under the 
proposed reinforcement learning framework, the predicted boundary points get either reward or 
punishment through user acceptance (implicit) or correction (explicit), thus making the segmen-
tation model context specific and generalizable to unseen geometrical variations.   

The purpose of this paper is to propose a reinforcement learning framework for 
context aware segmentation and to demonstrate how user-specific behavior can be 
assimilated in-situ for effective model adaptation and learning. Central to the pro-
posed technique is a two-layer reinforcement learning algorithm that builds the model 
from accumulated experience during user interaction. One advantage of the frame-
work is that the learning process circumvents the need for extensive off-line training, 
and thus is readily generalizable to unseen pathological patient cases in a context or 
subject specific manner. As the algorithm learns ‘pervasively’ when the user performs 
manual segmentation, no additional steps are required for the training process. Fur-
thermore, the method is able to adapt and improve its accuracy as experience is ac-
quired, a process that is akin to the training of human observers. The example results 
in Fig. 1 demonstrate the potential of the technique. In this paper, we use left ven-
tricular segmentation from MR images to illustrate the overall structure of the rein-
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forcement learning framework and assess the extent to which the level of user interac-
tion can be reduced, thus leading to an efficient semi-automatic segmentation ap-
proach.  

2   Methods 

2.1   Two-Layer Reinforcement Learning 

Reinforcement learning [7] is a process where the learning agent interacts with the 
environment and tries to maximize its expected long-term reward. It is particularly 
suited to problems where explicit knowledge for solutions is difficult to obtain. By 
interacting with the user, the learning agent is not informed explicitly how to combine 
different strategies to attain the correct contour point. Instead, with the example given 
by the user, the agent only knows the level of its own performance. In general, there 
are three key elements of reinforcement learning, namely: state, action and reward. A 
state is a situation of the environment. An action is some behavior of the learning 
agent that interacts with the environment. A reward is the feedback that the agent 
receives from the environment during interaction, and in the case of image segmenta-
tion, the quality of localizing anatomical structures. The expected long-term reward of 
a given state or state-action pair is referred to as a value.  

Q-learning [8] is a widely used reinforcement learning algorithm, where a table is 
maintained for recording values of all the possible states or state-action pairs. For 
image segmentation, however, due to the diversity of both geometrical and appear-
ance information present within the image, inevitably there tend to be many states and 
actions for the learning agent; therefore the standard Q-learning approach in this case 
can be problematic. One way to solve this problem is to use value function approxi-
mation. To perform the approximation, parameters with much lower dimensionality 
than the actual state-action space are used to describe the value function. With these 
parameters, the agent does not attempt to find the best action for a given state directly 
as in Q-learning. Instead, it estimates the parameters that maximize the value func-
tion, which correspond to the best action. The estimation can be performed by mini-
mizing the mean square error over the observed examples. For the minimization 
process, a policy gradient approach can be used. This adjusts the parameter vector 
during trials along the direction where the estimation error is minimized for the given 
example:   

( ) ( ) ( )1t t t t t t tV a V a V aπ
θθ θ γ+

⎡ ⎤= + − ∇⎣ ⎦  (1)

where θ is the parameter vector, t is the step index, ( )tV aπ  is the true value of the 
action ta , ( )t tV a is the estimate value at step t , and γ is a constant coefficient.  

For a typical segmentation task, the three elements of the reinforcement learning 
framework can be defined as follows: a state is the appearance (e.g. the intensities 
along a given search direction); an action for a state is to localize a point on the ana-
tomical border; and the reward is defined as an evaluation function. The parameters 
for segmentation are the weightings of different candidate strategies used to localize 
contour points. 
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For the purpose of left-ventricular segmentation, candidate strategies include an 
Akima spline [9] as the basic geometrical representation of the anatomy due to its 
resilience to outliers. For simplicity, we have adopted a radial search strategy 
commonly used for LV segmentation. By combining both appearance and geometry 
information, the cost function to localize a contour point on a given search direction 
can be defined as:  

( ) ( ) ( ) ( )

1

, , 1
n

i Ai G
i

f x w I w f x I f xα α α
=

⎛ ⎞⎟⎜ ⎟= + −⎜ ⎟⎜ ⎟⎜⎝ ⎠
∑  (2)

where x is the pixel position on the radial, I is the intensity vector, ( )Aif x  is the 

ith strategy within the appearance strategy category, iw is weighting for ( )Aif x , or 

referred to as the ith in-category weighting, α is the weighting for the appearance 
strategy category, or referred to as cross-category weighting, ( )Gf x is the cost func-

tion for the geometry strategy, the weighting vector ( )1 2, ,...,
T

nw w w w= and 

1
1

n

i
wi=

=∑ .  

The candidate contour point is defined by minimizing Eq. (2). This is denoted by 

minx and is a function of weightings. Given an arbitrary set of weightings, minx may 
not be optimum in terms of segmentation accuracy. The distance to the user exam-
ple’s position on the same radial can be used for evaluating minx : 

( ) ( )1 min 1, , , ... , , , , ... ,A An G A An G Tg w I f f f x w I f f f xα α= − −  (3)

where Tx is the example position. Therefore the learning task is, for every example, 
to optimize Eq. (3) with respect to the weightings. After learning, the optimal weight-
ings are obtained for explicitly learnt samples, typically via user interaction.   

In this paper, learning is separated into two layers, i.e., in-category weighting (i.e.,
w ) learning for appearance strategies, and cross-category weighting (i.e.,α ) learning 
for appearance and geometry categories. This corresponds to a two-stage process, i.e., 
firstly to use appearance to localize the clear contour areas, and if it fails, then to 
combine geometry to interpolate the shape. Hence the evaluation function represented 
by Eq. (3) can be sub-divided into the following equations: 

( ) ( )1 min 1, ,... , ,...in A An A An Tg w I f f x w I f f x′= − −  (4)

( ) ( )1 min 1, , ,... , , , ,... ,cross A An G A An G Tg w I f f f x w I f f f xα α=− −  (5)

Eq. (4) is the evaluation of the localized point using appearance strategies only ( minx ′ ), 
whereas Eq. (5) is the evaluation of using both appearance and geometry strategies. 

In the context of in-category weighting learning, the parameters for function ap-
proximation are the weightings for different appearance-based strategies. Meanwhile, 
because every learning episode for point localization on a radial has only one step, the 
immediate reward is the same as the expected long-term reward. Thus by replacing 
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θ  with w , ( )tV aπ  with ing  from Eq. (4) and ( )t tV a  with 0 (since the learning 
agent expects its current action has zero error), Eq. (1) becomes  

( )( ) ( ) ( )1t t in w in ttt
w w g w g wγ+ = + ∇  (6) 

In practice, the parameter update is realized as follows: when an example contour 
point is given by the observer, the algorithm regards it as the ground truth position on 
the contour; it then calculates the local gradient of the in-category weightings of ap-
pearance strategies and updates the weightings using Eq. (6), trying to minimize the 
difference between its localization and the user example. 

For cross-category weighting learning, the weighting update equation is similar to 
(6) using policy gradient:  

( )( ) ( ) ( )1t t cross cross tt t
g gαα α γ α α+ = + ∇  (7)

However, the learning flow for the cross-category weighting is significantly different 
due to two reasons. Firstly, unlike Aif  in Eq. (4) which are independent from each 
other, Gf in Eq. (5) depends on the appearance strategies, i.e., Aif and w . This de-
pendency is due to the design that the geometry strategy does not always rely on the 
user to provide control points. Instead, according to the learning agent’s current 
knowledge, radials on which the appearance strategy category has a weighting large 
enough (i.e., α above a pre-defined threshold) use only the appearance category to 
localize the contour points, and these points becomes control points for the spline. 
Secondly, as the user examples directly provide positions as control points, Gf de-
pends on the positions of the user examples (by contrast all Aif  are independent 
from the user input). Therefore, to perform policy gradient in such a dependent situa-
tion, an iterative flow is used: after the weightings on a new example radial are 
learned, they are used together with the example’s position to update weightings of 
every previous example radial in the same image; then the updated weightings of 
previous example radials are used to update the weightings of the latest example. The 
iterative procedure continues until the weightings on example radials remain un-
changed.  

With the two-layer reinforcement learning, optimal weightings are learnt for radi-
als in the appearance feature space where examples are available from the user. For 
segmenting an image, weightings on all radials need to be estimated based on the 
learned knowledge. The estimation is realized through Kriging [10], which interpo-
lates the value of a random field.  

2.2   Validation and Data Collection 

The MR LV data used for validation were from a database of 56 subjects acquired 
from a 1.5T MR scanner (Siemens Sonata 1.5T, Erlangen, Germany) and a trueFISP 
sequence (in-plane pixel resolution = 1.1 - 2 mm, slice thickness = 7 mm). For deriv-
ing the ground truth data, manual delineation was performed by two expert clinicians 
using CMRtools (Cardiovascular Imaging Solutions Ltd., London, UK).  
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3   Results 

While Fig. 1 shows some examples of applying the proposed method to different 
structures, detailed validation is carried out on 3D LV endocardial borders of the end-
diastolic frame and the end-systolic frames for the 56 subjects. For segmenting each 
slice, the user is required to provide three anchor points to initialize the algorithm: the 
centre of the LV blood pool and the RV/LV junctions on the endocardial border. The 
RV/LV junctions and the points for corrections provided by the user are both used as 
training examples. The candidate strategies used in the appearance category include 
the maximal derivative along the radial, a 1D intensity profile and a 1D gradient pro-
file, as they are popularly used in detecting endocardial borders. The strategies as well 
as the parameterization used are intended as an example for the reinforcement learn-
ing framework. For different applications, the reader may use other specific features, 
searching and parameterization techniques by switching to the corresponding state-
action space while maintaining the general reinforcement learning framework.  

Table 1. The accuracy (in mm) and the user input required by the proposed method and manual 
segmentation using CMRtools for segmenting the end-diastolic (ED) and the end-systolic (ES) 
frames (The step size is 0.2 for gradient calculation, and the threshold of is set to 0.9) 

 Proposed Method Manual Segmentation Improvement 
Frame & 
Location 

Error Avg. No. of 
User Points 

Inter-Observer Va-
riability of Accuracy 

Avg. No. of 
User Points 

User Interac-
tion Reduction 

ED-Base 0.81±0.25 3.1 1.15±0.27 7.0 55.7% 
ED-Mid 0.86±0.24 3.5 1.00±0.33 6.9 49.3% 
ED-Apex 0.70±.23 3.1 1.52±0.73 6.6 53.0% 
ED-All 0.81±0.14 19.6 1.18±0.34 40.9 52.1% 
ES-Base 0.67±0.22 2.7 1.23±0.47 5.4 50.0% 
ES-Mid 0.74±0.25 3.1 1.08±0.59 5.9 47.5% 
ES-Apex 0.53±0.20 2.7 1.49±0.63 5.1 47.1% 
ES-All 0.67±0.17 17.5 1.27±0.45 33.1 47.1% 

 

Fig. 2. Detailed segmentation results for the end-diastolic (a) and the end-systolic frame (b) 

The segmentation result is compared with the manual segmentation for both accu-
racy and the number of user input points required, as summarized in Table 1. It is 
evident that for both the end-diastolic and the end-systolic frames, the amount of user 
interaction is significantly reduced whilst maintaining the overall accuracy as shown 
in Fig. 2. The paired t-test shows that the improvement is significant for both frames 

1γ = α
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with 0.0001p . It is worth noting that the result of the proposed method has an 
error much smaller than the inter-observer variability. The reason is that in cardiac 
MR, segmentation is not just dependent on geometrical features or appearance infor-
mation (e.g. dealing with papillary muscle), but also other prior knowledge, which 
leads to higher inter-observer variability. The ability through reinforcement learning 
to acquire this specific knowledge minimizes the error involved, and thus gives im-
proved consistency. More error metrics are summarized in Table 2.  

Table 2. The Jaccard index and the maximal radial difference of the proposed method 

 End-Diastole End-Systole 
Location Jaccard Index Max. Radial Diff. Jaccard Index Max. Radial Diff. 

Basal 0.933±0.022 2.55 mm 0.915±0.031 2.41 mm 
Middle 0.928±0.019 2.60 mm 0.906±0.036 2.49 mm 
Apical 0.926±0.025 2.04 mm 0.889±0.048 2.00 mm 
All 0.929±0.012 2.60 mm 0.905±0.030 2.49 mm 

 

Fig. 3. (a) Learning curve; (b) Learned cross-category weightings for radials in a slice 

 

Fig. 4. Three instances of the end-diastolic (top) and end-systolic (bottom) frames showing 
surface localization errors. High accuracy is achieved with the proposed algorithm. 
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Further analysis is carried out to evaluate the reinforcement learning process. A 
fixed data set of 20 3D cardiac MR images at the end-systolic frame is used for test-
ing the learning behavior, while the rest of the data are used to interact with the user 
as in the experiment above. By using the proposed method, the model is updated 
whenever a new user example is given. The updated model is then used to segment all 
the testing images without correction. The results are shown in Fig. 3 (a). It is clear 
that with an increasing number of examples, the model is able to perform the segmen-
tation more accurately. Fig. 3 (b) shows the cross-type weightings derived from the 
model for all the points around the endocardial border for a mid-ventricular slice at 
end-systole. As expected, it can be seen that at the LV wall region, the segmentation 
relies more on the geometry strategy, while at the septal region it relies more on the 
appearance strategies. Fig. 4 illustrates three examples of the diastolic and systolic 
volumes of the LV, highlighting regional errors involved in the segmentation results.  

4   Conclusion 

In this paper, we have presented a general semi-automatic scheme that learns from the 
user behavior to perform medical image segmentation. The algorithm determines the 
weightings of different segmentation strategies adaptively, which otherwise need to 
be either empirically defined or obtained from off-line training, and thus cause over-
fitting or poor generalization. The adaptation is achieved by a two-layer reinforce-
ment learning algorithm that learns from the user examples. Detailed validation on 
MR LV segmentation demonstrates the potential clinical value of the algorithm. 
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Abstract. Skull-stripping refers to the separation of brain tissue from non-brain 
tissue, such as the scalp, skull, and dura. In large-scale studies involving a 
significant number of subjects, a fully automatic method is highly desirable, 
since manual skull-stripping requires tremendous human effort and can be 
inconsistent even after sufficient training. We propose in this paper a robust and 
effective method that is capable of skull-stripping a large number of images 
accurately with minimal dependence on the parameter setting. The key of our 
method involves an initial skull-stripping by co-registration of an atlas, 
followed by a refinement phase with a surface deformation scheme that is 
guided by prior information obtained from a set of real brain images. Evaluation 
based on a total of 831 images, consisting of normal controls (NC) and patients 
with mild cognitive impairment (MCI) or Alzheimer’s Disease (AD), from the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database indicates that 
our method performs favorably at a consistent overall overlap rate of 
approximately 98% when compared with expert results. The software package 
will be made available to the public to facilitate neuroimaging studies.  

1   Introduction 

Automated skull-stripping is an indispensible tool for large-scale multi-site studies, 
such as the Alzheimer’s Disease Neuroimaging Initiative (ADNI) [1], where 
thousands of MRI scans need to be processed. An accurate and highly automated 
algorithm is hence highly desirable, preferably avoiding any form of human 
intervention that can possibly cause bias and inter-expert differences. The inaccuracy 
of skull-stripping may result in error in cortical thickness estimation, volumetric 
analysis, brain atrophy estimation, and registration between structural and functional 
images (fMRI and PET). For instance, the unremoved dura can result in an 
overestimation of cortical thickness [2], whereas the unintended removal of brain 
tissue may lead to underestimation of cortical atrophy. These errors cannot be 
recovered in subsequent processing stages. The existing skull-stripping methods can 
generally be divided into three categories: 1) morphology-based methods, 2) surface-
based methods, and 3) meta methods. 
                                                           
∗ Corresponding author. 
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Morphology-based methods extract the brain through a series of thresholding and 
morphological operations [3, 4]. In [4] for example, a heuristic approach utilizing 
thresholding, morphological opening, and connected component analysis is devised to 
deal with specific problems encountered in skull-stripping. Another popular method is 
the Brain Surface Extractor (BSE) [5], which removes non-brain tissue using a 
combination of anisotropic diffusion filtering, edge detection, and mathematical 
morphology. Also, a 3D watershed transform, modified by combining pre-flooding to 
avoid over-segmentation, is proposed in [6]. A graph cuts based method is introduced in 
[7], utilizing intensity thresholding followed by removal of narrow connection using a 
graph theoretic image segmentation technique. While some published approaches are 
effective, morphology-based methods generally involve some degree of user interaction, 
and are also sensitive to the scanning parameters and intensity inhomogeneity. 

Surface-based methods rely mainly on the image gradient information to locate 
the brain surface, which is modeled by an active contour. In [8], a tessellated 
ellipsoidal template is deformed to the inner surface of the skull, and is then 
iteratively deformed using forces derived from image gradients and a curvature 
constraint. Brain Extraction Tool (BET) [9] uses a deformable model that evolves a 
surface to fit the brain boundary by application of a set of locally adaptive forces. 
These forces account for surface smoothness and voxel intensity changes in the 
surface vicinity. Hybrid Watershed Algorithm (HWA) [10] combines watershed 
algorithm developed in [6] with a deformable-surface model, using surface curvature 
and statistics of the distance of the surface to the center of gravity (COG) to detect 
and correct inaccuracies in brain extraction. The above-described methods are 
generally more robust and less sensitive to image artifacts, and require less human 
interaction. However, these methods require that the initial active contour should be 
close enough to the targeted surface to avoid local minima; and failure to meet this 
requirement can cause unpredictable results. 

Meta methods combine various skull-stripping methods for achieving the best 
outcome [11, 12]. However, they rely heavily on the component methods and do not 
solve the fundamental problems pertaining to these methods.  

Due to the presence of imaging artifacts, anatomical variability, and varying 
contrast properties, most of these techniques, however, do not give satisfactory results 
over a wide range of scan types and neuroanatomies without some form of manual 
intervention. In this paper, we focus on a surface-based method, since it gives us the 
flexibility of incorporating both surface geometry and atlas-based prior information 
into the skull-stripping process. For a good initial extraction of the brain, we utilize 
FLIRT [13] and Demons-based registration [14] to warp an atlas, and hence its brain 
mask, to the targeted image for initial skull-stripping. We then employ a probability 
map, incorporating prior information gathered from a population of real brain images 
with manual extractions, to guide surface evolution for refinement of the skull-
stripping result. This allows us to guide the skull-stripping process using realistic 
shape and topological constraints to weight the forces in driving surface deformation, 
thus giving us more accurate and consistent results over a large number of images. 

2   Method 

The skull-stripping method consists of the following steps: 1) Initialization by 
warping an atlas to the target image, where the brain mask for the atlas is used for 
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2.2.2   Surface Deformation 

Following the work of Smith [9], the implementation1 of the evolution equation is 
accomplished with a parametric active contour. The brain boundary is modeled by a 
surface tessellated using connected triangles. The surface deformation is driven by 
three main forces: 1) force from the smoothness constraint, 2) force from the intensity 
gradient in the surface vicinity, and 3) force from the brain probability map.  

The force pertaining to the smoothness constraint consists of two parts:  

                                             ۴ଵ ൌ ܿଵܝ୲ ൅ ܿଶܝ୬,                                                      (1) 

where ܝ୲ and ܝ୬ are the tangential and normal components of ܝ .ܝ is the difference 
vector between the positions of the current vertex and its mean neighboring vertices, 
i.e., 

ܝ                          ൌ ଵெ ∑ ௠ெ௠ୀଵܠ െ ,଴ܠ ୬ܝ ൌ ሺܝ · ,ܖሻܖ ୲ܝ ൌ ܝ െ   ୬,                        (2)ܝ

where ܖ is the surface outward normal at current vertex ܠ଴, ܯ is the number of 
neighboring vertices, and ܠ௠ is the ݉-th neighboring vertex. The sole role of the 
tangent force ܝ୲ is to keep all vertices in the surface equally spaced, i.e., moving them 
only within the surface. The normal force ܝ୬ is a curvature-reducing force to ensure 
smoothness of the surface during the evolution process. Usually ܿଵ is set as 0.5. To 
ensure that the surface is sufficiently smooth and meanwhile avoids underestimation 
of curvature at parts of the surface, ܿଶ is a nonlinear function adaptive to local surface 
geometry. For this purpose, we need first to determine the local radius of curvature ݎ :ݎ ൌ ሺ݀ଶሻ/ሺ2|ܝ୬|ሻ, where ݀ is the mean distance from vertex to neighboring vertices 
over the whole surface. Weight ܿଶ is then defined using a sigmoid function: 

                                    ܿଶ ൌ 0.5ሺ1 ൅ tanhሺ݈ଶ כ ሺ1 ⁄ݎ െ ݈ଵሻሻሻ                                      (3) 

with ݈ଵ ൌ 0.5ሺ1 ெூேݎ ൅ 1 ⁄⁄ெ஺௑ݎ ሻ and ݈ଶ ൌ 6/ሺ1 ெூேݎ െ 1 ⁄⁄ெ஺௑ݎ ሻ. Here, the values 
for ݎெூே and ݎெ஺௑ are empirically optimized for typical geometries in the human brain 
and are set as 3.33 mm and 10 mm, respectively. High local mean surface curvature 
is hence penalized to achieve surface smoothing. 

The second force is derived from the image intensity information: 

                                                      ۴ଶ ൌ ଶሺூಾ಺ಿିீభሻூಾಲ೉ିீమ  (4)                                                  ,ܖ

where ܫெூே and ܫெ஺௑ are the minimum and maximum of local intensities quantified 
along the normal direction pointing inward from the current vertex: ܫெூே ൌ max൫ܩଶ, min൫ܩ௠, ,ሺ0ሻܫ ,ሺ1ሻܫ … , ሺܫ ଵܵሻ൯൯ ெ஺௑ܫ ; ൌ min൫ܩ௠, max൫ܩ௦, ,ሺ0ሻܫ ,ሺ1ሻܫ … ,  .ሺܵଶሻ൯൯ܫ

The search range pertaining to the minimum and maximum intensities are ଵܵ and ܵଶ, 
respectively. Typically, ଵܵ is set as 20 mm and ܵଶ ൌ ଵܵ/2. Here the image intensity 
minimum ܩଶ, the median intensity ܩ௠, and the threshold ܩ௦ that separates brain and 
non-brain matter are approximately estimated according to the cumulative intensity 

                                                           
1 The proposed method is a modification of the original BET algorithm. 



 Robust Deformable-Surface-Based Skull-Stripping for Large-Scale Studies 639 

histogram of the brain image. They’re used to avoid voxels that are too dark or too 
bright. ܩଵ in Equation (4) is a locally estimated intensity threshold which is used to 
distinguish between brain and non-brain: 

ଵܩ                                          ൌ ሺܫெ஺௑ െ ଶሻܩ כ ݂ ൅  ଶ.                                               (5)ܩ

Parameter ݂ is called the fractional intensity threshold and falls between the range of 
0 and 1. 

The third force is derived from the brain probability map obtained in Section 2.2.1: 

                                                 ۴ଷ ൌ ሺ݌ െ 0.5ሻ(6)                                                       ,ܖ 

where ݌ א ሾ0,1ሿ is the probability value from the map. At a point where the surface is 
close to the brain boundary, ݌ ൎ 0.5, and ۴ଷ is small; when ݌ ൐ 0.5, the point is 
likely within the brain, and an outward force is exerted; when ݌ ൏ 0.5, a inward force 
is exerted. This restricts the searching of the brain boundary in this range and drives it 
to find the true boundary. ۴ଷ is directly added to ۴ଶ with a certain weight ܿସ, which we 
set as 1 here. Both of them act in the direction of ܖ. Thus, for each vertex ݅ at iteration ݐ, the update equation is: 

௜௧ାଵܠ                                            ൌ ௜௧ܠ ൅ ሾ۴ଵ ൅ ܿଷሺ۴ଶ ൅ ܿସ۴ଷሻሿ,                                  (7) 

where ܿଷ ൌ 0.05 כ ݀.  
3   Experimental Results 

3.1   Dataset 

The proposed algorithm was evaluated based on the ADNI dataset. Subjects were 
recruited from over 50 sites across the U.S. and Canada. MRI scans were acquired 
using GE, Philips, and Siemens scanners. The baseline T1-weighted MRI scans of 
831 subjects (230 NC, 403 MCI, 198 AD; ages range: 55~90 years) were used in this 
work. We randomly selected images of 25 subjects from each group for generating 
the respective probability maps; the rest of the images were used as testing data for 
evaluation of all considered methods. For consistency, all images were resampled to 
be of dimensions 256×256×256 and resolution 1×1×1 mm3. Nonparametric 
nonuniform intensity normalization (N3) [16] was performed for correcting the 
intensity inhomogeneity. 

3.2   Qualitative Evaluation 

The following 5 methods were evaluated: 1) BET, 2) BET-B: BET with bias field 
correction and neck cleanup (option “-B”), 3) BSE, 4) HWA, and 5) the proposed 
method. Let ܲ and ܳ represent the extracted brain image and the manually skull-
stripped image, respectively. We measured their similarity using the Dice ratio: ܦሺܲ, ܳሻ ൌ 2|ܲ ת ܳ| ሺ|ܲ| ൅ |ܳ|ሻ⁄ . For each method compared, except our method, we 
determined for each image the result that gave the best Dice ratio by grid search over 
a range of parameter values, compared with manual skull-stripping results by an 
expert. The following is the range of values considered for the parameters (in 
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MATLAB notation): BET, fractional intensity threshold = [0.1:0.05:0.8]; BET-B, 
fractional intensity threshold = [0.1:0.05:0.8], option “-B” turned on; BSE, diffusion 
constant = [5:5:60], edge detection constant = [0.3:0.05:0.8], diffusion iterations = 
[3:1:5]; HWA, the default parameters with or without “-less”, “-more”, “-atlas”, “-less 
-atlas” or “-more -atlas” were used. For the proposed method, a fractional intensity 
threshold value of 0.6 was used for all images. Typical results given by these 5 
methods are shown in Fig. 2. For the image of Fig. 2, the best parameters selected are 
listed below: BET, fractional intensity threshold = 0.75; BET-B, fractional intensity 
threshold = 0.4, option “-B” turned on; BSE, diffusion constant = 5, edge detection 
constant = 0.7, diffusion iterations = 3; HWA, the default parameters were used; the 
proposed method, fractional intensity threshold = 0.6. The arrows in Fig. 2 highlight 
several problematic areas. BET typically over skull-strips the anterior frontal cortex, 
anterior temporal cortex, posterior occipital cortex, and the cerebellar areas. BSE 
typically leaves some dura unremoved in these regions. HWA retains most of the 
brain tissue, but leaves some dura intact. The proposed method successfully 
overcomes all these problems.  

 

Fig. 2. Typical skull-stripping results of existing methods, compared with the proposed method 

3.3   Quantitative Evaluation 

Similar to the qualitative evaluation, we compared the proposed method with BET, 
BET-B, BSE and HWA. And for each method compared, except our method, the 
optimal parameters for each image were selected as described in Section 3.2. For the 
proposed method, a fractional intensity threshold value of 0.6 was used for all images 
as described in Section 3.2. As can be appreciated from Fig. 3, the proposed method 
yields consistently the best results when compared with all other methods, despite the 
fact that one single set of parameters was used for all images, whereas optimized 
parameters were used for other methods. Fig. 4 shows that the performance of the 
proposed method is insensitive to different fractional intensity threshold values. Of 
note, on a 2.8 GHz machine, the proposed method took approximately 2 minutes for 
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registration using FLIRT and Demons, and an extra 1 minute for skull-stripping an 
image. Other methods typically took 60-70 seconds, except for BET when used with 
option “-B”, which typically took 20-30 minutes. 

 

                     (NC)                                     (MCI)                                    (AD)                                       

Fig. 3. Distributions of Dice ratios for different methods and different subject groups 

 

   
(NC) 

   
(MCI) 

   
(AD) 

Fig. 4. Distributions of Dice ratios over different fractional intensity threshold values for the 
proposed method (left) and BET-B (right). The proposed method is robust to parameter 
variation.  

4   Conclusion 

We have proposed in this paper a robust and effective skull-stripping method that is 
capable of skull-stripping a large number of images automatically without human 
intervention. Our method combines an atlas-based approach, for coarse skull-
stripping, with a deformable-surface-based approach, for more localized refinement. 
Experimental results indicate that our method yields highly consistent results using 
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only a set of fixed parameters. The software package will be released to the public for 
facilitating neuroimaging studies.  
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Abstract. Label fusion is a key step in multi-atlas based segmentation, which 
combines labels from multiple atlases to make the final decision. However, 
most of the current label fusion methods consider each voxel equally and 
independently during label fusion. In our point of view, however, different 
voxels act different roles in the way that some voxels might have much higher 
confidence in label determination than others, i.e., because of their better 
alignment across all registered atlases. In light of this, we propose a sequential 
label fusion framework for multi-atlas based image segmentation by 
hierarchically using the voxels with high confidence to guide the labeling 
procedure of other challenging voxels (whose registration results among 
deformed atlases are not good enough) to afford more accurate label fusion. 
Specifically, we first measure the corresponding labeling confidence for each 
voxel based on the k-nearest-neighbor rule, and then perform label fusion 
sequentially according to the estimated labeling confidence on each voxel. In 
particular, for each label fusion process, we use not only the propagated labels 
from atlases, but also the estimated labels from the neighboring voxels with 
higher labeling confidence. We demonstrate the advantage of our method by 
deploying it to the two popular label fusion algorithms, i.e., majority voting and 
local weighted voting. Experimental results show that our sequential label 
fusion method can consistently improve the performance of both algorithms in 
terms of segmentation/labeling accuracy. 

1   Introduction 

In computational anatomy, the accurate image segmentation and labeling is a critical 
step for many clinical studies, such as pathology detection and brain parcellation. 
Although a lot of automatic image segmentation methods have been investigated, it is 
still a hot topic in medical image analysis.  

Recently, multi-atlas based segmentation methods have shown great success in 
segmenting brain into anatomical structures [1-7]. A typical multi-atlas based 
segmentation procedure contains two major steps: 1) image registration step to 
register each atlas image to the target image and warp the corresponding label image 
by following the same estimated deformation field; and 2) label fusion step to 
combine the multiple propagated labels from different atlases to obtain the final labels 
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of the target image by some heuristics. The current methods usually complete this 
procedure by independently performing the two steps, without considering the 
relationship between them.  

A number of label fusion strategies have been proposed for multi-atlas based 
segmentation in the literature. Among them, majority voting (MV) is probably the 
simplest one and has been widely used in medical image segmentation. In MV, the 
candidate segmentations from each atlas are equally weighted and the label with 
largest agreement from all atlases is assigned as the final label. A natural extension of 
MV is to improve from simple averaging to adaptive weighted averaging. In [4], 
various weighting strategies are categorized into two groups, i.e., global weighted 
voting and local weighted voting, and it has been shown that the local weighted 
method outperforms the global solution when segmenting high-contrast brain 
structures. On the other hand, instead of using all atlases, using a selected subset of 
atlases usually results in improved performance [5]. The recent trend is to use the 
more advanced learning based methods to further improve performances of label 
fusion. In [6], a probabilistic label fusion method is proposed to explicitly model the 
relationship between the atlas and the target image. To avoid the possible registration 
error, a non-local label fusion method based on the patch-based strategy is proposed 
in [7], which is widely used in the machine learning and computer vision community.   

One common limitation of existing methods is that the label fusion procedure treats 
each voxel independently and equally. Although it simplifies the labeling procedure, 
the coherent spatial correlations between neighboring voxels are ignored, which are 
actually very useful to achieve the accurate and robust segmentation. Moreover, due 
to the huge anatomical variations in the population, the registration accuracy varies 
not only across different subjects but also at different locations of the same subject. 
As a result, some voxels may have more reliable estimation on labels because of the 
more accurate alignment. In light of this, we should first perform label fusion on 
voxels with higher labeling confidence, and then use the estimated (usually more 
reliable) labels to guide the label fusion of the neighboring voxels with lower labeling 
confidence, in a sequential way.  

Based on this observation, in this paper, we present a novel sequential label fusion 
framework for multi-atlas based segmentation. First, a novel criterion on labeling 
confidence is defined which considers not only the similarity but also the matching 
consistency of the two underlying local patches. Base on the labeling confidence on 
each voxel, the label procedure is sequentially performed from the voxels with high 
confidence to the voxels with low confidences. Thus, our method contains two 
subsequent steps, i.e., 1) labeling confidence estimation, and 2) sequential label fusion. 
Specifically, we first estimate the labeling confidence for each voxel based on the k-
nearest neighbor (k-NN) rule [8], and then perform label fusion sequentially according 
to the measured confidence. When labeling each voxel, we use not only the propagated 
labels from the atlases, but also the already estimated labels from the neighboring voxels 
with higher labeling confidence. To the best of our knowledge, the proposed idea on 
sequential label fusion is new in the multi-atlas based segmentation. Our framework is 
general and can be integrated with any other label fusion methods. As confirmed in the 
experiment on NIREP dataset [9], our method is able to significantly improve the 
labeling accuracy, in comparison with the two popular label fusion algorithms: majority 
voting (MV) and local weighted voting (LWV).  
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2   Methods 

In this section, we will present the sequential label fusion framework which consists 
of two steps: 1) labeling confidence estimation, and 2) sequential label fusion. We 
will first introduce how to estimate the registration confidence through k-NN 
searching in Section 2.1, and then detail the flow chart of the sequential label fusion 
framework in Section 2.2.  

2.1   Labeling Confidence Estimation  

Here, we use T to denote the target image to be labeled, and assume that all atlases 
and their associated label images have been already registered with the target image 
T, represented as {(Ai, Li)| i=1,…,M}. Thus, the target image T and all atlases are 
considered in the same domain Ω, and the procedure of label fusion on each voxel p 
in target image T is performed among a stack of {Ai(p), Li(p)} for each voxel p 
(p∈Ω).  

To measure the importance of each voxel in label fusion, we propose a novel 
criterion, called labeling confidence, which is based on local image appearance and 
matching consistency. Given voxel p in T, the calculation of its labeling confidence 
with respect to atlas Ai is performed in two steps:  

 
(1) Forward Matching: We first compute the 
patch difference between fixed voxel p in T and 
moving voxel o in the forward search 
neighborhood (dented as Nf (p) and displayed as 
the red circle in Fig. 1) in atlas Ai, and then 
perform a k-NN search to find voxel p’s k nearest 
neighbors i

sq  (displayed as blue squares in the 

atlases, Fig.1). We denote 
( ) { | 1,..., }i

i sQ p q s k= = as the set of those k 

neighbors. 
 
(2) Backward Matching: For each voxel i

sq  in Qi 

(p), we perform another backward matching as 
follows. We first compute the patch difference 
between fixed voxel o and the moving voxels p' 
in the backward search neighborhood (dented as 

( )i
b sN q  and displayed as the blue circles in Fig. 

1) in the T, and then perform a k-NN search to 
find voxel i

sq ’s k nearest neighbors ( )i
su t  

(displayed as green triangles in T in Fig.1). Similarly, we denote 
( ) { ( ) | 1,..., }i i

s sP p u t t k= =  as the set of those k neighbors.  

 
 

Fig. 1. Illustration on forward 
and backward matching for 
labeling confidence estimation 
with k=1 
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Then, the labeling confidence of the voxel p w.r.t. atlas Ai is computed as:   

( )( ) ( )21 1
1 22 2

1 1

1
( ) exp ( ) , exp ( ) ( )

k k
i i

i s s
s t

C p p D p q p p u t
k

δ δ− −

= =

= − − −∑∑ , (1)

with 

( )1
( )

( ) min ,
i
s i

i
s

q Q p
p D p qδ ε

∈
= + , and 

2

2 2( ) ( )
( ) min ( )

i i
s s

i
s

u t P p
p p u tδ ε

∈
= − +  

used for normalization, where ε is a small constant. In Eq. 1, the first term after the 
sum symbols is the normalized patch difference (based on local image appearance) 
under the distance function D, while the last term measures the matching consistency. 
Here, the intuition is that for good registration the distance between p and ( )i

su t , 

weighted by the local appearance similarity, are required to be as small as possible 
after forward and backward matching. In this way, both image appearance and the 
consistency are embedding in the measurement of labeling confidence.   

The confidence degree estimated in Eq. 1 for each atlas Ai will be used as a 
weighting map for weighted voting in the following section. Moreover, we can 
average the confidence degree Ci(p) from individual atlas Ai to measure overall 
confidence degree at each target image voxel p, i.e., ( )

1
(1/ ) ( )

M

ii
C p M C p

=
= ∑ , which 

will be used to guide the sequential label fusion in next subsection. After that, we call 
C(p) as labeling confidence.  

2.2   Sequential Label Fusion  

The estimated registration confidence map C={C(p)|p∈Ω} reflects the registration 
confidences of different voxels in the target image T. Thus, based on the confidence 
map, we present a sequential label fusion framework, as shown in Fig. 2. For 
simplicity, we focus on the binary segmentation of anatomical structures, with label 
‘1’ indicating the structure of interest and ‘0’ for the others. We first generate the 
initial voxels set V for the target image T according to the union of all Lis. Then, we 
start from the voxel p in V with the highest labeling confidence of C(p) and compute 
its soft label (i.e., segmentation probability) by 

2

1 2( )

1 1
( ) ( | ,..., ) ( ) exp( )

3
M p NH p

p

L p l p L L L p p p
Z r′∈

⎡ ⎤′ ′= + − −⎢ ⎥
⎣ ⎦

∑ . (2)

Here, l(p|L1,…,LM) denotes the propagated soft label from atlases for voxel p which 
can be obtained by using any label fusion algorithms, NH(P) is the set of the 
neighboring voxels in the neighborhood N(p) which satisfies C(p' )>C(p), and Zp is a 
normalizing term to make L(p)∊[0,1]. It is obvious that the procedure of label fusion 
on the voxel of lower confidence will be guided by the neighboring voxels which 
have higher confidence and are thus able to correctly identify their labels with low 
risk (see the second term in the square bracket in Eq. 2). This process is iterated until 
all voxels in the volume have their labels determined. Finally, the final label of voxel 
p is computed as: sign(L(p)-0.5).  
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Fig. 2. Flow chart of the proposed sequential label fusion framework 

3   Experiments 

In this section, we evaluate the performance of the proposed sequential label fusion 
method. We integrate our sequential label fusion framework with the two most widely 
used algorithms, i.e., majority voting (MV) and local weighted voting (LWV). In 
LWV, the weights are based on the mean square distance on the local regions 
( r r r× × ) between target image and atlas [4]. We denote the new MV and LWV 
algorithms equipped with our sequential label fusion as SC-MV and SC-LWV, 
respectively. In order to show the advantage of sequential labeling strategy, we also 
compare with two other variants which only use the confidence maps Ci (i=1,…,M) as 
weights but still treat each voxel independently. We denote these two methods as C-
MV and C-LWV, respectively. In the following experiment, we perform all these six 
algorithms on the NIREP database [9].  

The NIREP database [9] consists of 16 T1-weighted MR image (8 normal males 
and 8 females) with 32 manually delineated regions of interest (ROIs). For each of the 
ROIs, a Leave-One-Out (LOO) cross-validation is performed to test the segmentation 
performance, and the averaged Dice overlap measures are reported. Specifically, at 
each LOO fold, all other 15 subjects are used as the atlases and aligned onto the 
remaining image (used as target image) for guiding the segmentation. In our method, 
the sizes of forward and backward search neighborhood Nf and Nb are set to 5, and a 
local patch of size 3 is used to compute the Euclidean distance D(p, q) between voxels 
p and q. k is set to 3, which means 3 candidates with the smallest patch difference are 
selected in k-NN search. For other method (MV and LWV), we use their optimal 
parameters.  

Fig. 3 plots the confidence map and five intermediate segmentation results of SC-
LWV. In Fig. 3, we show the overall labeling confidence map, along with the 
segmentation results at the five stages that top 20%, 40%, 60%, 80% and all pixels 
(from column (b)~(f)) are labeled with the guidance of the confidence map C (column 
(a)). In this way, Fig. 3 validates that high-confidence pixels should guide the labeling 
procedure on low-confidence pixels, in order to increase the label accuracy, as 
proposed in our method. 

Compute label of p 
using Eq. 2; 
Remove p from V 

End  

Generate the initial 
voxels set V; 
Compute the labeling 
confidence C(p) 

Atlases  

Target image 

|V|>0? Find voxel p in V 
with highest C(p) 

Y 

N 
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   0 1    top 20%       top 40%       top 60%     top 80%    final result 

       
         (a)            (b)            (c)            (d)            (e)            (f)     

Fig. 3. Plots of the confidence map (a) and five intermediate segmentation results (b-f) using 
SC-LWV on Left insula gyrus segmentation 
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Fig. 4. Segmentation results on different brain structures measured by Dice overlap with six 
different label fusion algorithms 
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Fig. 4 shows the segmentation results on different brain structures (ROIs) using the 
six multi-atlas label fusion based segmentation algorithms. Here, the performance is 
measured with the Dice overlap, i.e., ( , ) 2| | /(| | | |)a b a b a bDice S S S S S S= ∩ + , where ∩  

indicates the overlapping voxels between the two segmentations, and |Sa| indicates the 
number of voxels of the corresponding segmentation. 

As we can see from Fig. 4, SC-MV and SC-LWV consistently improve the 
performance of MV and LWV, respectively, on all ROIs. For example, on ‘L occipital 
lobe’ ROI, SC-MV improves the overlap ratio from 0.650 (by MV) to 0.697, and SC-
LWV improves the overlap ration from 0.669 (by LWM) to 0.713. Fig. 4 also 
indicates that, in most cases, C-MV and C-LWV outperform MV and LWV 
respectively, but they are inferior to both SC-MV and SC-LWV in all cases. This 
demonstrates the importance of using the confidence-guided sequential labeling for 
ROI segmentation. Moreover, Fig. 4 shows that the LWV-based methods (LWV, C-
LWV and SC-LWV) usually outperform the corresponding MV-based methods (MV, 
C-MV and SC-MV), which is consistent with previous studies [2, 4].   

Finally, to have a summary on the segmentation accuracy on all 32 ROIs, we give 
the box plot for the results of the six algorithms, as shown in Fig. 5. It is observable 
that SC-MV and SC-LWV significantly improve the performance of the segmentation 
results by MV and LWV, respectively, while C-MV and C-LWV only slightly 
improve over the baseline methods (MV and LWV). Specifically, the averaged Dice 
overlap of MV, C-MV, SC-MV, LWV, C-LWV and SC-LWV are 0.730, 0.736, 
0.758, 0.746, 0.751 and 0.772, respectively. Furthermore, the significant tests using 
paired t-test show that results of the proposed SC-MV and SC-LWV are significantly 
better than those of MV and LWV, respectively, at the 95% significance level. It 
validates the efficacy of the proposed sequential label fusion method. 
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Fig. 5. Averaged Dice overlap using six different label fusion algorithms 

4   Conclusion 

We have presented a new label fusion method for multi-atlas based segmentation. In 
contrast to most existing label fusion methods which equally treat each voxel during 
label propagation, the proposed method considers the dependency among neighboring 
voxels for sequential labeling the voxels with confidence from high to low. To 
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achieve the sequential labeling, we define the labeling confidence which embeds not 
only the patch similarity but also the matching consistency to resolve the anatomy 
uncertainty in label fusion. Our method can be easily integrated with the current label 
fusion methods to significantly improve the label accuracy. Further work includes 
investigation of different estimations of label confidence, the effect of the sizes of 
local patch and neighborhood in label fusion, and more comparison with existing 
label fusion methods, e.g., STAPLE [10]. 
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Abstract. Patients with chronic obstructive pulmonary disease (COPD) often
exhibit skeletal muscle weakness in lower limbs. Analysis of the shapes and sizes
of these muscles can lead to more effective therapy. Unfortunately, segmenting
these muscles from one another is a challenging task due to a lack of image
information in many areas. We present a fully automatic segmentation method
that overcomes the inherent difficulties of this problem to accurately segment the
different muscles. Our method enforces a multi-region shape prior on the seg-
mentation to ensure feasibility and provides an energy minimizing probabilistic
segmentation that indicates areas of uncertainty. Our experiments on 3D MRI
datasets yield an average Dice similarity coefficient of 0.92 ± 0.03 with the
ground truth.

1 Introduction

In patients with chronic obstructive pulmonary disease (COPD), skeletal muscle weak-
ness is common [9, 1]. Lower limb muscles are often the most affected due to lack of
use [1]. The skeletal muscle weakness related to COPD may be associated with the loss
of muscle mass [1]. Reduced muscle mass is among several factors that lead to reduced
force production, also including changes in the muscle contractile apparatus and neuro-
muscular activation. The relative effects of these factors are unknown [9]. Thus, size and
shape measurements are required to study the contribution of muscle mass reduction to
force loss. Recently [11], a non-uniform distribution of atrophy and size changes was
found across knee extensors and flexors in patients with COPD, which may be reflec-
tive of localized factors such as denervation, limited recruitment, or atrophy of specific
muscle fibers, rather than systemic factors contributing to muscle atrophy.

Magnetic resonance imaging (MRI) can be used to distinguish muscle from the sur-
rounding regions, and can generate multiple image slices from which volume and shape
properties of individual muscle can be estimated [6]. Information regarding the specific
muscles or muscle regions that are most atrophied together with functional assessment
will enable therapeutic interventions to be targeted to the affected regions [11,14] rather
than the prescription of a generalized approach that may prove ineffectual.

An important precursor to any volume measurement or shape analysis is segmenta-
tion. Manual segmentation in 3D medical images is extremely time consuming, tedious,

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAI 2011, Part III, LNCS 6893, pp. 651–658, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Fig. 1. Regions in the thigh, and the intensity profiles of the thigh MRIs. We see the background
and cortical bone are dark, the muscle is medium, and the fat and bone marrow are light.

and suffers from inter- and intra-operator variability. Highly automated segmentation is
important for studies involving a large cohort of subjects to reduce manual labour and
variability, and to improve the efficiency in analyzing large groups of data.

Segmentation of thigh muscles is a challenging task, especially segmenting all 11
knee extensor and flexor muscles. As seen in Fig. 1, all these muscles have almost
identical voxel intensities and weak inter-muscular image gradients. Similar muscle
segmentation problems have been tackled previously using innovative techniques [15,
8, 7], but to the best of our knowledge there exists no work creating a fully automatic
method for segmenting all 11 muscles from an MRI.

In this paper we present a segmentation method tailored to this specific problem.
Given the difficulty of the problem, mainly due to the lack of image information in many
regions, we generate a probabilistic segmentation in order to express confidence, or lack
thereof, in these regions. In order to overcome the limited image information available,
we will enforce a principal component analysis (PCA) based shape prior, constructed
from training data, similar to [3]. Before PCA is performed on the probabilistic training
segmentations, an anatomy-driven spatial alignment is performed and the isometric log-
ratio (ILR) transform [2, 5] is applied to the training segmentations, thus moving them
to a vector space to facilitate algebraic manipulation intrinsic to the probability simplex.
A convex energy-minimization formulation is adopted that guarantees globally optimal
solution insensitive to initialization.

2 Method

2.1 The ILR Transform

A probabilistic segmentation can be represented as a function q : Ω → SR, where Ω is
the image domain and S

R is the simplex of all valid R = 12 length probability vectors
(11 muscles and background). If we define a function φ : SR → R

R−1, bijectively
mapping probability vectors to a vector of real numbers, then we can also represent
probabilistic segmentations by another function η = φ ◦ q : Ω → R

R−1. Using this
representation, the space of segmentations, referred to as ILR space, is closed under
linear combinations. This allows us to perform PCA on training segmentations without
the need for constraints to ensure our results have valid probabilities, summing to unity.

We define φ as the ILR transform [2, 5]. In [5], the Aitchison inner product 〈p, q〉a
and Aitchison distance metric da(p, q) are defined for p, q ∈ S

R. With the Aitchison
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inner product, a basis for SR can be defined, denoted, BE = {e1, . . . , eR−1}. There are
many choices for BE and some can be found in [5]; the exact choice of BE does not
affect our method. Given BE , the ILR transform of p ∈ SR is defined as:

φ(p) = [〈p, e1〉a, . . . , 〈p, eR−1〉a] ∈ R
R−1 , (1)

i.e. the projection of p onto the basis BE . While there are several possible functions that
map SR to a Euclidean space [13], we choose the ILR transform due to the fact that it
is bijective (thus easily invertible) and an isometry. That is, for p, q ∈ SR, da(p, q) =
d(φ(p), φ(q)), where d(·, ·) is the standard Euclidean distance. Finally, we discretize Ω
to n voxels and represent segmentations η as a vectors of n(R − 1) reals. We perform
PCA on segmentations in this form to create our shape space.

2.2 The Shape Space

A strong shape prior that considers all of the muscles simultaneously is appropriate for
this problem as the shape and relative locations of the muscles are highly correlated
from one image to another. Furthermore, as the muscles are adjacent to each other
along much of their boundaries, the shapes of different muscles in the same image
are correlated. We construct such a shape prior by identifying a subspace of possible
segmentations that corresponds to feasible thigh muscle segmentations and force our
segmentation to lie in this space. To do this, we perform PCA on vectors {η̂1, . . . , η̂N}
in R

n(R−1), corresponding to training probabilistic ground truth (GT) segmentations.
We define η0 as the mean of the training GTs, Γ as the (n(R − 1)) × k matrix

whose columns correspond to the PCA eigenmodes of greatest variance, and Λ as the
k × k diagonal matrix whose diagonal elements are the eigenvalues (variances) of the
eigenmodes of Γ . We parameterize segmentations in our shape space by γ ∈ R

k, so a
segmentation is represented as

η(γ) = η0 + Γ . (2)

η(γ) is linear in γ, so any energy functions that are convex in η will be convex in γ.

2.3 Image Alignment

In order to construct the shape space in Section 2.2, the thigh images must first be
roughly aligned. To do this, we take advantage of some specific anatomical and image

Bone in a Slice Bone Indicator

Fig. 2. A slice of a thigh image with the location of the bone highlighted (left, red arrow) and the
locations of interfaces between medium and dark regions, indicating the boundary of the femur
(right)
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features. To bring the images into rough alignment, for each image we note that the im-
ages exhibit 3 distinctive intensity classes, referred to as “dark”, “medium”, and “light”.
From Fig. 1 we see that background and cortical femur bone are dark, the muscles are
medium, and the bone marrow and fat are light. We use these strong intensity priors to
separate the muscles from the background and then crop the images accordingly.

To further align the images, we note the femur bone running through the middle
of the thigh muscles follows a roughly straight vector through each image. As seen
in Fig. 2, the bone is characterized by an interface between dark and medium inten-
sity voxels, and such an interface occurs infrequently elsewhere in the image. For a
given image, we estimate the vector along which the bone travels by finding its center,
B(z) = (xB(z), yB(z)), in as many slices (z) as possible. We then fit a linear function
f(z) = (axz + bx, ayz + by) to estimate the coordinate of the centre of the bone in
each slice. Using f(z), we translate each slice in each image so that the femur follows
the same vector in each image. Finally, we rescale the images isotropically so that their
foregrounds are roughly the same size. This method is simple and quick, and we found
it to provide an adequate, anatomy-driven alignment for construction of the shape space.
A more complex alignment would unnecessarily shift work from our efficient convex
segmentation method to an expensive non-convex registration scheme.

2.4 Energy Construction

With the images aligned and a shape space constructed, we will use image information
to construct a strictly convex energy function over the shape space. The energy will be
constructed such that viable segmentations yield lower energy values, and since it is
strictly convex, the minimization of our energy will require no initialization.

As seen in Fig. 1, the different muscle regions have almost identical intensity distri-
butions and textures, but the non-muscle region (fat and bone) has significantly different
intensities. Thus, we create a probabilistic segmentation qBG, where voxels with light
or dark intensities are assigned to the non-muscle region with probability 1 and voxels
with medium intensities are assigned probability 1

11 for each of the 11 muscle regions.
We then define an energy term:

EBG(γ) = d(ηBG, η(γ))2 . (3)

EBG(γ) is convex in η, and thus convex in γ, and encourages η to give high probability
to the non-muscle region in appropriate places.

Slice Intensities Thresholded
Intensities

Curvature: c Curvature: c̄ Boundary: h

Fig. 3. Extracted image information. From left to right, we see for a thigh slice: the intensity
values; the approximation of the muscle regions extracted by intensity thresholding; the curvature
values c and c̄; and the boundary estimate h.
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While the muscle regions are largely homogeneous in intensity, weak intensity gra-
dients appear along the inter-muscular region boundaries (Fig. 3). The boundaries be-
tween muscle regions are characterized by a thin sheet of somewhat higher intensity fat
voxels with lower intensity muscle voxels on either side, and therefore boundary voxels
exhibit large curvature in the intensity in the direction perpendicular to the boundary.
Thus we construct the Hessian of the intensity at each voxel x and find its eigenval-
ues, from largest to smallest magnitude, c1(x), c2(x), and c3(x), and the corresponding
normalized eigenvectors v1(x), v2(x), and v3(x). c1(x) and v1(x) correspond to the
maximum curvature and its direction. For voxels on these sheet boundaries, we expect
c1(x) � c2(x), c3(x) [4]. Thus, we take c(x) =

√
c1(x)2/(c1(x)2 + c2(x)2 + c3(x)2)

as a muscle boundary indicator at x (Fig. 3).
Once we have found c, we further filter out noise. To do this, we note that v1(x) for

x on an intermuscular sheet of fat will be similar to v1(y) for a voxel y neighboring
x within the sheet, and that the span of v2(x) and v3(x) will approximate the plane of
the boundary. Thus we apply a specialized bilateral filter to c(x), smoothing c(x) with
nearby voxels on the boundary, weighted by the dot product between the their directions
of maximal curvature. Specifically, if y(α, β) = x + αv2(x) + βv3(x) then

c̄(x) =
2∑

α=−2

2∑
β=−2

|〈v1(x), v1(y(α, β))〉|√
1 + α2 + β2

c(y(α, β)) . (4)

The boundary between the dark background and light subcutaneous fat does not help in
the segmentation, so it is identified (based on intensity) and removed from c̄ (Fig. 3).

We construct c̄ for each training image and find cmin and cmax such that the set
H = {x | cmin ≤ c̄(x) ≤ cmax} has the maximal Dice similarity coefficient (DSC)
with the true set of boundary voxels (derived from the training GTs). Given a novel
image, we construct c̄, threshold to find H , and define h : Ω → {0, 1} as the indicator
function for H (Fig. 3). We use the boundary based energy term

EBDY (γ) =
R−1∑
r=1

∑
x∈Ω

(1 − h(x))|∇xη|2 . (5)

EBDY allows the segmentation to have large gradient only on voxels deemed likely to
be part of a boundary, otherwise the gradient is penalized. Note once again that EBDY

is convex in η and thus in γ. Also note that ∇xη measures the rate of change between
the probabilities of neighboring voxels measured via the Aitchison distance.

Our final energy term enforces a Mahalanobis type penalty on γ, allowing compo-
nents corresponding to eigenmodes of greater variance to vary more:

EShape(γ) = γT Λ−1γ . (6)

Our energy is a linear combination of the convex energy terms (3), (5), and (6):

E(γ) = λ1EBG(γ) + λ2EBDY (γ) + λ3EShape(γ) . (7)

Once our energy is constructed, we segment a novel image by finding γmin =
argminγ E(γ), and taking qseg = φ−1(η0 + Γγmin) as our final probabilistic seg-
mentation.
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Fig. 4. (Color Figure) The resulting segmentation of our method overlaid on several image slices.
Note the matching of the segmentation to the image boundaries.

3 Results

We report results on 3D MRI data from 40 subjects including 20 healthy subjects (11
women, age: 64.4 ± 8.1 years) and 20 moderate to severe COPD patients (11 women,
age: 68± 10 years). A 1.5T MRI scanner acquired 5 mm-thick axial T1-weighted mag-
netic resonance (echo time, 8 ms; repetition time, 650 ms) with a 40 cm2 field of view
and a 512 × 384 pixel matrix (in-plane resolution, 0.78 × 1.78 mm). The MRI scan
yielded a total of approximately 100 slices for each participant. To create the GT’s, these
images were manually segmented and each pixel was given a probability approaching
1 for the region it was assigned to.

We cropped the images down to a 175 × 175 × 85 volume enclosing the thigh,
and aligned the images using the method described in Section 2.3. We test our method
using leave-one-out validation (removing one of the volumes and training a shape space
using the remaining 39 volumes). Following [12], we increase the dimensions of the
shape space by deforming each of the 39 training GT segmentations 3 times, giving
156 segmentations on which to train a shape space. Adding such deformed volumes to
the training data will increase the expressibility of the shape space. We perform PCA
on the training segmentations, finding the k = 100 eigenmodes of greatest variance.

We measured the success of our algorithm using the DSC between the segmentation
we generate, thresholded to non-probabilistic, and the corresponding GT. In Fig. 4, we

Fig. 5. (Color Figure) A comparison between several of the GT segmentations (left side of each
pair) and the segmentations generated by our method (right side of each pair). The left two pairs
are from COPD patients and the right two pairs are from non-COPD patients. DSC scores for
each pair are 0.94, 0.91, 0.95, and 0.93.
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300 Seeds
DSC = 0.68

500 Seeds
DSC = 0.88

700 Seeds
DSC = 0.87

1000 Seeds
DSC = 0.93

Our Method
DSC = 0.95

RW DSC vs.
Number of Seeds

Fig. 6. The areas of mis-segmentation by the RW algorithm with varying numbers of randomly
selected seeds (left) and our algorithm (center), along with a graph showing how the average DSC
of RW changes with the number of seeds used (right)

see a segmentation generated by our method overlaid against slices of the image. We
note our energy successfully matches the segmentation to boundaries in the image. We
see examples of our segmentations compared to the GTs in Fig. 5, with DSC scores
reported. We achieved an average DSC values of 0.92 ± 0.03 across all images.

To demonstrate the difficulty of the problem and the necessity of our shape prior, we
segmented the thigh volumes using the popular random walker (RW) [10] algorithm,
which also produces multi-region probabilistic segmentations and achieves the global
minimum of its energy, but does not include a shape prior. RW requires seed voxels from
each region to perform a segmentation, so we used the GT segmentations to provide
between 200 and 1000 seeds, randomly sampled throughout the volume. In Fig. 6, we
see the areas where the GT disagreed with our method and the various RW versions.
RW only begins performing comparably to our method when the number of seed voxels
exceeds 1000. In Fig. 6, we also see how the RW accuracy increases with the number
of seeds provided. Note that without the GTs to provide automatic seeds, all seeds
would have to be manually input, which would be very time consuming for a user. Also
note that when 700 seeds were provided, the resulting DSC in Fig. 6 was worse than
when only 500 seeds were provided, showing how the semi-automatic RW algorithm
is dependent on seeding quality as well as quantity. In contrast, our method is strictly
convex and fully automatic, not depending on user input.

4 Conclusion

The results of this work will be critical in clinical research aiming to determine factors
affecting muscle structure and function in chronic conditions such as COPD. The meth-
ods proposed in this work will assist in more accurate measurement of muscle periph-
ery and other size measures. Moreover it will provide researchers and clinicians with
a time-efficient way to diagnose muscle anomalies associated with chronic conditions.
For future work, we will explore projecting training GTs onto the shape space so that
analysis of their eigenmode weights can be performed. These weights could both pro-
vide information about the adverse effects of COPD on the thigh muscle structure and
help identify the disease in novel images. Our future work will also include exploring
more advanced alignment techniques and comparing to other segmentation methods.
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Abstract. Skull stripping is the first step in many neuroimaging analy-
ses and its success is critical to all subsequent processing. Methods exist
to skull strip brain images without gross deformities, such as those af-
fected by Alzheimer’s and Huntington’s disease. However, there are no
techniques for extracting brains affected by diseases that significantly
disturb normal anatomy. Glioblastoma multiforme (GBM) is such a dis-
ease, as afflicted individuals develop large tumors that often require sur-
gical resection. In this paper, we extend the ROBEX skull stripping
method to extract brains from GBM images. The proposed method uses
a shape model trained on healthy brains to be relatively insensitive to le-
sions inside the brain. The brain boundary is then searched for potential
resection cavities using adaptive thresholding and the Random Walker
algorithm corrects for leakage into the ventricles. The results show signif-
icant improvement over three popular skull stripping algorithms (BET,
BSE and HWA) in a dataset of 48 GBM cases.

1 Introduction

Automatic whole-brain extraction (known as skull stripping) from magnetic res-
onance images (MRI) is the first element of most neuroimaging pipelines. There-
fore, its robustness is critical for the overall performance of the system. Many
methods have been proposed to solve the problem and a good level of segmenta-
tion accuracy (overlap over 90% [1]) can usually be achieved with some param-
eter tuning. However, these methods are designed for MRI scans of brains that
are either healthy or suffering from a disease that does not considerably alter
the structure of the brain, such as Alzheimer’s disease, Huntington’s or multiple
sclerosis. The segmentation accuracy drops substantially for scans of brains with
tumors, contrast agents and/or resection cavities, which is typically the case in
patients with glioblastoma multiforme (GBM).

The delineation of brains and resection cavities in volumes from patients with
GBM is important in understanding the progression of the disease. Gross changes
in morphology due to these processes have considerable effects on a patient’s
quality of life and ultimate outcome. Skull stripping ensures that non-brain vox-
els do not erroneously contribute to any subsequent quantitative analysis, and
also improves registration accuracy to a template or related studies.

Most current methods require a voxel intensity distribution close to that of a
normal brain. For example, the widely-used Brain Surface Extractor (BSE) [2]
uses diffusion filtering, edge detection and a chain of morphological operations
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to segment the brain. This approach falters in images containing cancer-related
findings which have strong borders that mislead the edge detection. Another
approach is the Hybrid Watershed Algorithm (HWA) [3], part of the Freesurfer
package, which combines a watershed algorithm, deformable surface and proba-
bilistic atlas. This method has trouble with GBM images because the watershed
algorithm assumes white matter connectivity and the atlas assumes a healthy
brain shape. The Brain Extraction Tool (BET) [4] uses a deformable model
grown based on voxel intensity. Cancer-related deformities hinder the evolution
of the mesh and false positive regions appear around the eyes and brain stem.
This problem may be ameliorated using a two-pass scheme (BET*) where the
preliminary mask is used to align the brain to an atlas for a second pass by BET.

To the best of our knowledge, no existing technique robustly extracts the
brain from MR images of individuals afflicted with GBM. The contribution of
this paper is a method of segmenting brains with tumors, contrast agents and
resection cavities to characterize GBM patients in support of research and clinical
care. We address this problem by extending a robust skull stripping algorithm
(ROBEX) [5] that extracts the brain using a strong prior on normal anatomy. We
augment this method using convexity analysis, constrained distance transform
and the Random Walker algorithm [6] to accurately find the brain boundary in
the presence of tumors and surgical resection cavities. The proposed technique
outperforms BSE, BET and HWA on a set of 48 volumes of subjects with GBM.

2 Materials: The Labeled MRI Dataset

In this work, 113 heterogeneous T1-weighted MRI volumes from individuals
afflicted by GBM were collected. Under the supervision of a neuroradiologist, the
brain boundary (including the cerebellum) was manually delineated by the third
author in 48 of these cases. Of the 48 cases, 27 contained contrast enhancement,
23 contained resection cavities and 28 contained active tumor. The remaining
65 scans were only used for tuning parameters by visiual inspection. The scans
were acquired with several acquisition protocols with diverse voxel sizes. In-plane
resolution (axial in all cases) ranges from 0.86 to 0.94mm. The slice separation
was 3mm in 40 cases and 6mm in the other eight labelled cases.

Figure 1a shows a slice from a scan in our dataset that illustrates the difficulty
of the extraction problem. At a glance, the resection cavity and left ventricle ap-
pear to be joined when the two are actually separated by the intact ventricular
lining. Automatically delineating this resection-ventricle border is critical to un-
derstanding the subsequent morphological evolution after surgical resection.

3 Methods

The steps of the proposed method are illustrated in Figure 1. First, an ini-
tial brain boundary is obtained using ROBEX (Fig. 1b). Then, resection cavity
candidates are found using adaptive thresholding (Fig. 1c). Each candidate is
classified as either “cavity/undersegmentation” or “cavity and ventricle” using
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Fig. 1. Outline of the proposed algorithm. a) Axial slice of a T1 MRI with a
resection cavity. b) Output from ROBEX, which leaves the cavity in the segmentation.
c) Output from adaptive thresholding. d) Constrained distance transform within cav-
ity/ventricle (in mm) and resulting seeds for Random Walker (positive in blue, negative
in red). e) Probability map from Random Walker within the cavity/ventricle (marked
in red). f) Final output, obtained by thresholding e).

convexity analysis. In the former case, the whole candidate region is removed
from the brain mask. In the latter, a constrained distance transform (Fig. 1d)
is used to seed Random Walker (Fig. 1e) which separates the region into cavity
and ventricle (Fig. 1f). These steps are now discussed in detail.

3.1 Robust Brain Extraction

For the sake of completeness, a short description of ROBEX is included here.
Designed to work with T1-weighted MRI, ROBEX applies signal intensity stan-
dardization and bias field correction to the input scan and then feeds it to a
random forest classifier [7]. The random forest is trained to identify voxels on
the brain surface. When applied, it generates a volume in which intensity repre-
sents the log-likelihood that a voxel is located on the boundary. Then, a shape
model [8] of brain is fit to the output, maximizing the sum of the log-likelihood
over the fit surface. This output is refined by allowing a small free deformation
outside the model, which is optimized using the max-flow min-cut algorithm [9].
A sample output from ROBEX is displayed in Figure 1b.

ROBEX is very robust against tumors in the brain because it focuses on find-
ing the brain boundary. However, contrast agents used in brain cancer imaging
can bias the intensity standardization step as it is based on min/max normal-
ization. We solve this problem by cropping the rightmost 5% of the histogram
when computing the maximum. This value is high enough to remove all hyper-
intense tumor enhancement and residual skull, but low enough to retain some of
the white matter. With regard to resection cavities, ROBEX will close the mask
around them in most cases (unless they are very shallow) due to the fact that
it is heavily based on of model of healthy brain. A solution to this problem is
described in the following sections.

3.2 Adaptive Thresholding

Resection cavities correspond to low-intensity voxels in T1-weighted MRI be-
cause they are filled with cerebrospinal fluid (CSF). A simple thresholding
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operator typically suffices to separate most of the CSF voxels from the rest of the
brain matter, which is the principle behind some skull stripping methods [10,11].
However, algorithms of this type may fail in the presence of tumors and contrast
agents that can adversely influence the global threshold. Instead, we use an
adaptive scheme in which τ , the threshold value, is space-dependent:

τ(x, y, z) =
σ2

glob

σ2
loc(x, y, z) + σ2

glob

τglob +
σ2

loc(x, y, z)
σ2

loc(x, y, z) + σ2
glob

τloc(x, y, z)

where σ2
loc is the local image intensity variance computed in a sphere of radius

rloc around each pixel, σ2
glob is the global variance across the scan within the

preliminary brain mask, and τglob and τloc are a global and a local thresholds. The
global threshold is the average of the median intensity in the preliminary brain
mask and the minimum after cropping the leftmost 5% of the histogram. The
local threshold is the mean intensity in the sphere around each pixel. Compared
to using τglob alone, incorporating a local threshold produces a more accurate
boundary, especially around resection cavities. After thresholding, the mask is
smoothed by morphological closing with a spherical element (radius 5 mm),
filling holes and removing islands. Sample output is displayed in Figure 1c.

3.3 Detecting Cavities

The next step in the pipeline is detecting resection cavities left in the segmenta-
tion by ROBEX. For each connected component of the negated mask, a shape
convexity index c ∈ (0, 1] is computed as the ratio between its volume and that
of its convex hull. The components for which c > cmin are assumed to corre-
spond to resection cavities, and the output mask is set to zero in that region. If
c < cmin, leakage into the ventricles is suspected, and the candidate is fed to the
next step of the pipeline. It is fairly easy to find a value of cmin that separates
the two classes because the convexity drops considerably in the ventricles.

3.4 Separating Resection Cavities from Ventricles

Although a resection cavity and the ventricles are not connected in reality, it is
often difficult to discern the border between the two due to the lack of contrast
(both contain CSF), noise and limitations in resolution. Given a set of pre-labeled
voxels (seeds), Random Walker can make this delineation by determining the
probability of randomly reaching a seed from each unlabeled voxel.

Random Walker was conceived as a semi-automated segmentation method
with manually placed seeds, but this work uses automatic seeding. A natural
choice for the negative seed is the intersection of the cavity/ventricle candidate
and the boundary of the mask of ROBEX, which is the most likely region to be
part of the cavity. For the positive seed, we selected all points located more than
dmin away from the negative seeds using a constrained distance transform [12].
The seed regions are overlaid in Figure 1d, the probability of resection cavity in
the candidate region is shown in Figure 1e and the final segmentation (obtained
by thresholding that probability at 0.5) is displayed in Figure 1f.
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Fig. 2. Box plots and p-values for the different methods. On each box, the
central mark is the median, the edges of the box are the 25th and 75th percentiles
and the whiskers extend to the most extreme data points not considered outliers i.e.
within three standard deviations from the mean. The outliers are plotted individually.
The p-values correspond to paired one tailed t-tests between our method and all of the
others. ROB refers to ROBEX and ROB* to the extension proposed here.

4 Experiments and Results

4.1 Experimental Setup

As described in section 2, the 65 unlabeled scans were first used in pilot experi-
ments to design the algorithm and tune parameters by visual inspection of the
output. rloc = 4mm, cmin = 0.7 and dmin = 60mm were found to be good val-
ues. The 48 scans for which ground truth was available were skull-stripped using
BET v2.1 (one and two passes), BSE v09, HWA from FreeSurfer 5.0.0, ROBEX
and the proposed extension. Default parameter values were used for BET, BSE
and HWA. Three different metrics were used to measure the performance of
the different methods: 1) the Dice overlap index DICE(X, Y ) = 2|X∩Y |

|X|+|Y | ; 2)
the mean symmetric surface-to-surface distance; and 3) the 95% percentile of
the symmetric surface-to-surface distance, a robust alternative to the Haussdorf
(i.e., maximal) distance. Measure (3) is an effective complement to (1) and (2)
as it captures fine boundary detail as opposed to gross overlap.
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Fig. 3. Axial slices from sample outputs for the different extraction methods.
(a) Subject with resection cavity. (b-c) Subjects with resection cavities that interface
with vectricles. (d) Subject with an unresected tumor (note the hyperintense region
around the tumor due to contrast). ROBEX* represents the extension of ROBEX.

4.2 Results

Fig. 2 displays the box plots for each evaluation metric for all methods as well as
the p-values corresponding to one tailed t-tests comparing the proposed method
to the other approaches. When all test scans are considered (Fig. 2a-c), our
method significantly outperforms the selected comparative methods in terms
of the three metrics (p ∈ [9.2e − 18, 2.3e − 5]). Moreover, the robustness of
our method is apparent from the box plots. For example, the minimum DICE
overlap across the dataset is 67.3% for BSE, 81.6% for BET, 82.1% for two-pass
BET, 46.7% for HWA, 85.2% for ROBEX and 90.1% for the proposed algorithm.
When the scans with (Fig. 2d-f) and without contrast (Fig. 2g-i) are considered
separately, we observe that the improvement with respect to the other methods
is larger when contrast agents are present. However, in cases with no contrast,
the difference is still significant at p = 0.05 for all the methods and metrics
except for the 95% percentile of the distance of 2-pass BET.
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Fig. 3 displays the output of the different methods for a few examples. BSE
can reasonably handle resection cavities in some cases (Fig. 3a), but often fails
to completely extract the brain boundary (Fig. 3b). BET consistently delineates
the brain surface (Fig. 3b), but has difficulty identifying resection cavities as
the deformable surface can: 1) grow beyond the cavity (Fig. 3a) or; 2) have in-
sufficient flexibility to surround it (Fig. 3c). In addition, its known limitation
of undersegmentation around the eyes is apparent (Fig. 3c-d). Two-pass BET
improves the results from BET and has the second-highest performance after
our method. HWA does not adapt well to the dataset as its watershed algo-
rithm relies heavily on white matter intensity estimation, which is disturbed
by tumors, contrast enhancement and resection cavities. Finally, the proposed
method succeeds at separating resection cavities from brain while not removing
unresected tumors. In addition, it often produces a good approximation of the
cavity-ventricle interface (Fig. 3b-c), which the other methods seldom do.

5 Discussion and Conclusion

A skull stripping method that can handle scans from subjects with an aggres-
sive cancer (GBM) has been presented in this paper. Experimental evaluation
on 48 subjects shows that our method outperforms three other widely-used
brain extraction algorithms: BET, BSE and HWA. While we acknowledge that
these techniques were not designed for this specific problem, to the best of our
knowledge they represent the best alternative options. Since the proposed post-
processing requires a brain-like initialization, it is applicable only to ROBEX.

The proposed method is specific to T1-weighted MRI. When several channels
are acquired (e.g. T1, T2, proton density, pre- and post-contrast), skull stripping
is typically performed on the T1 volume and the resulting mask is propagated
to the other channels. In fact, most brain extraction methods in the literature
(BET being a notable exception) are designed to work with T1 data. However, it
would certainly be possible to take advantage of multiple modalities to improve
the stripping results. This direction remains to be explored.

An interesting by-product of the proposed algorithm is the segmentation of
resection cavities (see Fig. 1e). Finding non-ventricular CSF is a common pro-
cessing step after skull stripping in neuro image analysis pipelines, but existing
methods do not handle the case where CSF might be in resection cavities ad-
jacent to the ventricles. It would be interesting to evaluate to what extent the
segmentation given by our method is reliable, since it may be useful to quan-
tify the evolution of the resection. Exploring this direction and evaluating the
algorithm on more cases also remain as future work.

Finally, it is important do discuss the algorithms’ computational complexity.
BET and BSE run in a few seconds, whereas ROBEX and HWA require one or
two minutes on a modern machine. The proposed post-processing only requires
a few seconds, which is almost negligible next to the execution time of ROBEX.

Acknowledgements. This work was funded by NSF grant 0844566 and NIH
grants R01-LM009961 and T15-LM007356.
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Abstract. Simple algorithms for segmenting healthy lung parenchyma
in CT are unable to deal with high density tissue common in pulmonary
diseases. To overcome this problem, we propose a multi-stage learning-
based approach that combines anatomical information to predict an ini-
tialization of a statistical shape model of the lungs. The initialization
first detects the carina of the trachea, and uses this to detect a set of
automatically selected stable landmarks on regions near the lung (e.g.,
ribs, spine). These landmarks are used to align the shape model, which is
then refined through boundary detection to obtain fine-grained segmen-
tation. Robustness is obtained through hierarchical use of discriminative
classifiers that are trained on a range of manually annotated data of dis-
eased and healthy lungs. We demonstrate fast detection (35s per volume
on average) and segmentation of 2 mm accuracy on challenging data.

1 Introduction

Lung segmentation in thoracic CT images is an important prerequisite for detec-
tion and study of the progression and treatment of pulmonary diseases. Due to
their high air content, healthy lung has lower attenuation than the surrounding
tissue, allowing easy detection through standard thresholding and region-growing
methods (e.g., [2]). However, pulmonary diseases (e.g., pulmonary fibrosis) lead
to higher density tissue, and cause a changed appearance (e.g., different texture),
making it hard to segment robustly (Figure 1).

Fig. 1. Pulmonary diseases lead to
higher density tissue which complicates
standard segmentation algorithms

In this paper, we present an effec-
tive learning-based segmentation tech-
nique that addresses the changes in lung
appearance due to pulmonary diseases.
The first step of the algorithm is the ro-
bust detection of the carina of the tra-
chea with a discriminative classifier. The
carina location is used to predict approx-
imate poses (translation, orientation, and
size) of the left and right lung. The pre-
diction is based on a prior model obtained
from a large expert-annotated database of

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAI 2011, Part III, LNCS 6893, pp. 667–674, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Carina of 
Trachea

Right lung 
pose

Left lung 
pose

Stable landmarks Boundary refinement

Stable landmarks Boundary refinement

Fig. 2. System diagram: Carina detection allows the prediction of lung poses, which
give initial locations for stable landmarks on the lung surface. That surface is then
refined with a boundary detector.

lung scans. Placing a mean lung shape into the bounding box implied by each
pose gives initial locations of a set of stable landmarks, which are selected auto-
matically during training using the uncertainty of their locations. The locations
of the landmarks are then locally refined with robust detectors. The final refine-
ment is performed by a boundary detector which accurately estimates the lung
surface. The overall system diagram is shown in Figure 2.

By focusing on stable landmarks and progressing from a coarse set to to a fine
set, we rely on the local regions which are most consistent, even in the presence
of abnormalities. Stable landmarks are typically selected near vertebrae, ribs,
and other distinctive anatomical structures (Fig. 4). In detection, the stability
of the landmarks is further guaranteed by using a discriminative classifier (PBT
[10]) which includes a powerful feature selection operating on a feature pool
computed from all training volumes. Features susceptible to abnormal diseased
areas are therefore not selected for landmark detection.

Existing approaches to increase robustness of lung segmentation focus on spe-
cific pathologies [11,4], rely on interaction [3], adapt the simple thresholding to
regions that often complicate lung segmentation [1], or augment texture cues for
interstitial lung disease [12]. Such methods are not capable of handling the mod-
erate to extreme pathologies that exhibit higher density tissue. More elaborate
methods use anatomical information [6], shape priors [9], or statistical methods
to detect patterns in the diseased tissue [7]. Shape models alone with simple
image cues [9] are not enough to provide robustness to change in tissue density,
and the anatomical constraints, priors or machine learning techniques need to
be combined. To date, few methods combine either shape constraints or anatom-
ical information with learning [7] for lung segmentation, but do so with simple
classifiers (e.g., k-nearest neighbor) and use limited features.

In this work, we combine a statistical model of shape variation with statistical
pattern recognition that uses anatomical information for robust lung segmenta-
tion. A wide gamut of gradient and intensity features capable of discriminating
diseased lung tissue and implicitly capable of encoding anatomical relationships
is selected by a powerful discriminative classifier, the probabilistic boosting tree
(PBT) [10]. The classifiers and shape model are trained on a database of normal
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and diseased tissues. Through fast coarse detection and refinement based on a hi-
erarchical detection network (HDN) [8], a segmentation is obtained in 35 seconds.
We demonstrate our implementation on a number of challenging pathological tho-
racic CT images. The average error on unseen data is 1.98 mm for the right and
1.92 mm for the left lung.

2 Learning

The algorithm starts by detecting the carina of the trachea. Its location is then
used in a Hierarchical Detection Network (HDN)[8] to predict pose parameters
of left and right lung and subsequently initialize the set of stable landmarks.
The landmark locations are then refined and used to provide a rough boundary
estimate. This estimate is improved during boundary detection which results in
the final accurate lung segmentation.

2.1 Hierarchical Detection Network

The hierarchical detection network estimates unknown object states (e.g., object
poses) as a sequential decision process. The formulation is similar to Markov
chain approaches to object tracking, but instead of a temporal motion model
with temporal observations, there is a spatial dependence (or prior relationship)
between objects. The unknown parameters of each object are denoted as θt (e.g.,
the 9 parameters of a similarity transform), and the complete state for t + 1
objects is denoted θ0:t. Estimation of each object utilizes an observation region
of the input volume, Vt ⊆ V , where V : R

d �→ R is d dimensional input. The
posterior density of the complete state, f(θ0:t|V0:t), is approximated through a
sequence of recursive prediction and update steps.

The prediction approximates the detection up to object t using the transition
probability, f(θt|θ0:t−1), and the posterior up to object t − 1:

f(θ0:t|V0:t−1) = f(θt|θ0:t−1)f(θ0:t−1|V0:t−1) (1)

The update then fuses the results with the new observation region, Vt:

f(θ0:t|V0:t) =
f(Vt|θt)f(θ0:t|V0:t−1)

f(Vt|V0:t−1)
(2)

The likelihood, f(Vt|θt), is empirically modeled by training a discriminative
model. Concretely, letting y ∈ {−1, 1} be a random variable denoting the occur-
rence of an object at pose θt, the likelihood is defined as:

f(Vt|θt) = f(y = +1|Vt, θt) (3)

Where the posterior, f(y = +1|Vt, θt), is the output of a discriminative classifier
(e.g., the probabilistic boosting tree [10]).

The transition prior approximates the sequential dependence of object t as a
Gaussian distribution from one of the previous objects (Figure 2):

f(θt|θ0:t−1) = f(θt|θj), ∃j ∈ {0, t− 1} (4)
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2.2 Pose Detection

In the case of pose detection in 3D, the state of each object is compactly rep-
resented with 9 parameters including the position p ∈ R

3, orientation as Euler
angles r, and scale, s, of the object: θt = {pt, rt, st}. For efficiency these three
sets of parameters are treated as a chain of dependent estimates [5]:

f(θt|Vt) = f(pt|Vt)f(rt|pt, Vt)f(st|pt, rt, Vt) (5)

Splitting up the pose estimation in this way reduces the dimensionality of each
sub-problem allowing fewer particles to be used during estimation.

2.3 Selection of Stable Landmarks

The set of stable landmarks is selected during training as follows. First, the
annotation meshes are aligned to a common coordinate frame (see the next sec-
tion). The correspondences formed during alignment identify each mesh vertex
across all meshes (and volumes). The mesh vertices are used as landmark can-
didates. Denoting their location as {gi}. One position detector per landmark
candidate is trained using all annotations. The detectors are then used to obtain
detection results for each landmark, denoted as {di}. The uncertainty of each
detector is modeled by the covariance matrix, Ci, of the final detected candidate
location: Ci =

∑
i eie�i , where ei = di − gi. The stable landmarks are selected

one by one according to the score criterion si = trace(Ci) (higher s indicates
higher uncertainty). During this selection, we apply spatial filtering (with radius
r = 20mm) using the score si. This way, we obtain a set of stable landmarks
with low uncertainty that are widely distributed along the lung surface.

2.4 Shape Initialization

After the poses of left and right lung have been detected, the boundary of the
lung is detected to find an initial segmentation. This initial segmentation is a
deformation of a triangulated mesh model. The model, M = (P , T ) consists of a
set of points, P = {xi ∈ R

3}N
i=1, and a set of triangle indices, T = {�j ∈ Z3}M

j=1.
The high dimensional search space is restricted by a prior learned linear model

of shape variation. The prior shape model, S = ({x̂}N
i=1, {Uj}M

j=1), consists of
a mean shape and a set of linear basis shapes, Uj = {uij}N

i=1, that are learned
through procrustes analysis and PCA on training data. A synthesized shape in
the span of the shape-space can be specified by a few PCA coefficients, {λj},
and a pose, (p, r, s):

g(xi; {λj},p, r, s) = p + M(s, r)
∑

j

(x̂i + uijλj) (6)

where M(s, r) is a 3 × 3 scale and rotation matrix.
Estimation of the first three coefficients is done in the HDN framework, where

θt = {λ1, λ2, λ3}. Particles from the pose estimation process are augmented
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with three PCA coefficients sampled uniformly over the range of coefficients
observed in the training data. Similar to Eq. 3, the observation model, f(θt|Vt),
is empirically modeled with a discriminative classifier that uses steerable features
evaluated on surface points of the synthesized mesh [5].

2.5 Freeform Refinement

The first three PCA coefficients give a coarse approximation to the boundary.
In order for the shape model to be expressive enough for all real instances, a
large number of basis functions may be needed (e.g., the order of 100s). Instead
of estimating all of the λ coefficients directly as above, the freeform refinement
takes an iterative surface deformation approach [5].

Starting with the initialized shape from above, the freeform refinement seeks
to find the most probable mesh, M, in the space of the linear shape model:

max f(M|Vt) s.t. M ∈ span(S) (7)

Where f(M|Vt) is approximated by integrating over the surface:

f(M|Vt) =
1
N

∑
xi

f(xi|Vt). (8)

Here the per-point posterior is directly approximated by a discriminative model.
Letting yi = {−1, +1} be a random variable denoting the presence of a surface
at point xi along normal ni:

f(xi|Vt) = f(yi = 1|xi,ni, Vt) (9)

Instead of performing a coupled high dimensional optimization for all points
simultaneously, local search within a predefined range {−τ, τ} is performed for
each vertex to find the best displacement along the normal, xi ← xi + dini:

di = arg max−τ≤d≤τf(xi + dni|Vt) (10)

The resulting shape is projected onto the shape-space and surface normals are
updated. This interleaved displace and regularization process is iterated several
times. In latter iterations, τ is reduced, and the shape is allowed to vary from
the span(S). In these iterations, instead of regularizing by projecting into the
shape space, a simple mesh smoothing is used to regularize the displaced mesh.

Table 1. Results of symmetrical point-to-mesh comparisons of detected results and
annotations for both lungs, with and without stable landmark detection

Lung Landmark Mean (std.) Med. Min Max 80%

right no 2.35 ± 0.86 2.16 1.40 6.43 2.57
right yes 1.98 ± 0.62 1.82 1.37 4.87 2.18

left no 2.31 ± 2.42 1.96 1.28 21.11 2.22
left yes 1.92 ± 0.73 1.80 1.19 6.54 2.15
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3 Experiments
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Fig. 3. Sorted mean errors of the 614
landmarks computed from all training
volumes

Our experiments start by analyzing the
error of detectors during training. We
then show the set of top automatically
selected landmarks. Finally, we provide
qualitative and quantitative evaluation of
lung segmentation.

Our dataset consists of 260 expert-
annotated diagnostic CT scans of varying
contrast. The slice thickness varies from
0.5 to 5.0. The dataset is randomly sepa-
rated into two disjoint sets, one for train-
ing (192 volumes) and one for testing (68
volumes).

The first result in Figure 3 shows the sorted errors of all candidate landmarks
(Section 2.3). These are the detection results obtained from landmark detectors

transverse coronal sagittal transverse coronal sagittal

1 7

2 8

3 9

4 10

5 11

6 12

Fig. 4. Twelve strongest landmarks selected out of 614 with focus on spatial coverage.
Notice that they are selected near distinctive anatomical structures such as ribs (3, 4,
5, 12), vertebrae (1, 2) and top (5) and bottom of the lung (9, 10, 11).
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Fig. 5. Comparison of some results without stable landmarks (left column of every set)
and with stable landmark detection (right column of every set)

trained using candidates formed from mesh vertices. The seemingly larger errors
are caused by incorrect correspondences after mesh alignment. However, these
landmarks are stable to provide accurate initialization for the mesh boundary
refinement. We used 20 mm radius in landmark spatial filtering which resulted
in 143 landmarks for the right lung and 133 landmarks for the left lung. To
illustrate the effectiveness of the filtering, we set the radius to 70 mm to produce
a set of 12 stable landmarks (Fig. 4). Notice that they are distributed across
distinct locations inside the lung. Typically, landmarks near ribs and vertebrae
are stable but not always. For example, landmark neighborhoods along some
parts of the ribs or even across different ribs might not be distinctive enough.

Our final set of results analyzes performance of the lung segmentation. The
algorithm was run as described in Section 2 and Figure 2. In the first experiment,
the set of stable landmarks was used to initialize the boundary refinement. In
the second experiment, the initialization was done by a mean mesh transformed
according to the estimated pose. The errors summarized in Table 1 show that
the initialization provided by stable landmarks helps to achieve significantly
better accuracy (p < 0.05) of the final segmentations. The maximum error also
decreased considerably and in the case of left lung one large failure was cor-
rected. Several qualitative segmentation results involving pathologies are shown
in Figure 5.

4 Conclusion

We proposed a robust learning-based technique for accurate lung segmentation
in challenging CT volumes involving abnormalities. The technique first reliably
detects the carina of the trachea as an anchor point for pose estimation of left and
right lung. The poses are used to initialize a set of stable anatomical landmarks
distributed on the lung surface. The stable landmarks are selected automatically
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from a candidate set formed from vertices of mesh annotations by employing
measures of uncertainty and spatial distribution. The initial landmark positions
are refined and subsequently used to provide a rough estimate for the shape
model and final lung boundary refinement.

We have shown the automatic landmark selection procedure determines a
set of stable landmarks. These landmarks lead to improved initialization of the
boundary refinement and ultimately higher accuracy of the final segmentations.
Our future work focuses on further improvements especially near the lung sharp
boundaries which are difficult to capture with a mesh representation.
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Prakosa, Adityo I-500
Preiswerk, Frank II-623
Prêteux, Françoise I-524
Prince, Jerry L. I-556, II-615
Prummer, Simone I-161
Pujol, Oriol III-411
Punithakumar, Kumaradevan III-107
Punwani, Shonit I-508

Qian, Zhen I-468

Radeva, Petia III-411, III-496
Raghunath, Sushravya III-223
Rajagopalan, Srinivasan III-223
Rajagopalan, Vidya II-476
Ramachandran, Bharat I-211
Rambaldelli, Gianluca II-426
Rangarajan, Anand III-595
Rasiwasia, Nikhil III-280
Rathi, Yogesh II-58
Rathke, Fabian III-370
Ratnarajah, Nagulan II-25
Raval, Amish I-283
Raykar, Vikas III-75
Raza, S. Hussain III-66
Régis, Jean II-310
Reiber, Johan H.C. II-516
Reichl, Tobias I-17

Reid, W. Darlene III-651
Reyes, Mauricio II-409, II-631, III-354
Richa, Rogerio I-1
Riddell, Cyril I-97
Riff, Olivier II-226
Riffaud, Laurent I-331
Riga, Celia I-49
Rijkhorst, Erik-Jan I-605
Risacher, Shannon L. II-376, III-115
Risholm, Petter I-548
Risser, Laurent I-476
Ritacco, Lucas E. II-409
Rittscher, Jens II-343
Rivaz, Hassan I-371
Rivens, Ian I-605
Robb, Richard A. III-223
Robert, Adeline I-137
Roberts, David W. I-412
Roberts, Mike I-621
Roberts, Timothy P.L. II-234
Robertson, Nicola J. III-378
Rohkohl, Christopher III-471
Rohlfing, Torsten II-191
Rohling, Robert I-65
Rohr, Karl I-589, I-645
Rosen, Mark III-546
Rosenhahn, Bodo III-454
Ross, Ian III-107
Roth, Holger I-508
Roth, Tobias II-393
Rougon, Nicolas I-524
Rousseau, François II-209, II-476
Rueckert, Daniel II-566

Saalbach, Axel III-463
Sabuncu, Mert R. III-99
Sadikot, Abbas F. I-259
Sakuma, Ichiro I-113
Salcudean, Septimiu E. I-291, I-307
Salganicoff, Marcos III-41, III-75
Salomir, R. I-597
Salomir, Rares II-623
Saloux, Eric I-500
Sammet, S. II-174
San Roman, Luis I-355
Sánchez, Clara I. III-207
Sara Mahdavi, S. I-291
Saur, Stefan C. III-207
Saykin, Andrew J. II-376, III-115
Schaap, Michiel II-434



Author Index 683

Scheffler, Klaus II-623
Scherrer, Benoit II-124
Schmidt, Ehud III-537
Schmidt, Michaela III-479
Schmidt, Stefan III-370
Schnabel, Julia A. I-476, II-541, II-647
Schneider, Matthias I-404
Schneider, Robert J. III-520
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