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Preface

The 14th International Conference on Medical Image Computing and Com-
puter Assisted Intervention, MICCAI 2011, was held in Toronto, Canada during
September, 18-22, 2011. The venue was the Westin Harbour Castle Hotel and
Conference Centre on the waterfront of Lake Ontario in Downtown Toronto, the
world’s most ethnically diverse city.

MICCALI is the foremost international scientific event in the field of medical
image computing and computer-assisted intervention. The annual conference
has a high scientific standard by virtue of the threshold for acceptance, and
accordingly MICCALI has built up a track record of attracting leading scientists,
engineers and clinicians from a wide range of technical and biomedical disciplines.
The year 2011 saw a record 819 paper submissions.

The Program Committee (PC) of MICCAI 2011 comprised 53 members. Each
of the 819 papers was assigned to two PC members (a primary and a secondary)
according to their expertise and the subject matter of the paper. The primary
member knew the identity of the authors, but the secondary one did not. Each
PC member had about 17 papers as primary and a further 17 as secondary mem-
ber. The primary PC member assigned at least three external reviewers to each
paper, according to their expertise and the subject matter of the paper. The ex-
ternal reviewers provided double-blind reviews of the papers, and authors were
given the opportunity to rebut the anonymous reviews. In cases where reviewer
opinions differed significantly and/or the rebuttal made it necessary, the pri-
mary member initiated a discussion among the reviewers. The primary member
summarized the outcome of the discussion in a short report for the secondary.
Finally, the secondary member considered all input (the reviews, rebuttal, dis-
cussion, primary’s report, and, almost importantly, the paper itself) and made
a recommendation for acceptance or rejection. The secondary PC member did
not know the identity of the authors.

A two-day PC meeting was held with 33 of the PC members present. Each
paper received fair consideration in a three-phase decision process.

— First stage: Initial acceptance of papers ranked very high by both the re-
viewers and the secondary PC member. Initial rejection of papers ranked
very low by both the reviewers and the secondary PC member.

— Second stage: groups of five to seven PC members ranked the remaining
papers and again selected the best papers and rejected the lowest ranking
papers.

— Third stage: a different set of groups selected the best papers from the re-
maining undecided papers and rejected the rest.

The PC finally accepted 251 papers, giving a 30% acceptance rate.
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We are greatly indebted to the reviewers and to the members of the PC for
their extraordinary efforts assessing and evaluating the submissions within a very
short time frame.

In 2011, attendees saw two changes in the way the program was organized.
All accepted papers were presented as posters, and a subset of these were also
invited for oral presentation, which were organized in clinical themes rather
than by methodology as in earlier years. Poster sessions were organized in their
traditional technical themes as in the past.

In addition to the main 3-day conference, the annual MICCAI event hosted
an increased number of satellite tutorials and workshops, organized on the day
before and the day after the main conference. This year’s call for submission for
tutorials and workshops led to a record 21 workshops and 8 tutorials accepted by
a committee headed by Randy Ellis (Queen’s University) and Purang Abolmae-
sumi (University of British Columbia). The tutorials provided a comprehensive
overview of many areas in both the MIC and CAI domains, offering a unique ed-
ucational forum for graduate students and postdoctoral fellows. The workshops
presented an opportunity to present research, often in an early stage, to peer
groups in a relaxed environment that allowed valuable discussion and feedback.
The workshop subjects highlighted topics that were not all fully covered in the
main conference, and thus added to the diversity of the MICCAI program.

In reviewing the proposals for these events, emphasis was given to workshop
submissions that provided a comprehensive and interactive forum to address an
open problem in MICCAI. We also promoted tutorials that related to an existing
sub-discipline of MICCAI with known materials, approaches and open problems
to help train new professionals in the field. Among the accepted workshops, sev-
eral focused on emerging trends in the field of multi-modal statistical atlases,
advanced computational and biomechanical models, and high-performance com-
puting. MICCAI 2011 also hosted eight tutorials that spanned a wide spectrum
of topics in basic and advanced software development for medical image analy-
sis, algorithms for image segmentation, registration and visualization, as well as
those highlighting new techniques in image-guided interventions. We would like
to thank the Workshop and Tutorial Committee for their hard work in putting
together such a comprehensive and unique program.

Two of the highlights of the conference were the keynote lectures by two Cana-
dian scientists. Dafydd (Dave) Williams, physician, astronaut, medical robotics
researcher, and recently, Hospital CEO, opened the conference with a presenta-
tion that looked at lessons that the health care system and medical researchers
could learn from the challenges of space travel. The second keynote was given
by Mark Henkleman, Director of the Mouse Imaging Centre, Toronto Centre for
Phenogenomics, who spoke about high-throughput small-animal imaging tech-
niques and quantitative statistical analysis methods for mapping phenotypic
changes associated with genetic disease models in mice.

MICCATI 2011 would not have been feasible without the efforts of many people
behind the scenes. We are particularly indebted to the local Organizing Commit-
tee in London and Toronto consisting of Janette Wallace, Johanne Guillemette,
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Jackie Williams, Jade Orkin-Fenster, Debbie Lilley, Shuo Li, Perry Radau, and
Raphael Ronen. In addition, we are deeply grateful to the Robarts Research In-
stitute, the University of Western Ontario, Sunnybrook Research Institute, and
Queen’s University for their support in ensuring the success of this meeting, and
to the staff at Springer for their continued high standards aimed at maintaining
the MICCALI proceedings as the flagship of the LNCS series.

We thank the MICCAI Society Board for trusting us with the mandate to
organize this conference, and to the Board and staff members for valuable and
continuous advice and support through all phases of the project.

A special word of thanks goes to our sponsors, who generously provided
financial support for the conference as a whole as well as for specific activities.
This greatly assisted with the overall organization of the meeting, enabled us to
continue offering best paper awards in various categories, and provided travel
stipends to a significant number of student participants.

It was our great pleasure to welcome the attendees to Toronto for this year’s
MICCALI conference along with its satellite tutorials and workshops. Next year,
the 15" International Conference on Medical Image Computing and Computer-
Assisted Intervention will be held in Nice, France, October 1-5, 2012. We look
forward to seeing you all there.

September 2011 Gabor Fichtinger
Anne Martel
Terry Peters
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Sliding Window and Regression Based Cup Detection in
Digital Fundus Images for Glaucoma Diagnosis*

Yanwu Xu', Dong Xu'!, Stephen Lin?, Jiang Liu®, Jun Cheng?, Carol Y. Cheung?,
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Abstract. We propose a machine learning framework based on sliding windows
for glaucoma diagnosis. In digital fundus photographs, our method automatically
localizes the optic cup, which is the primary structural image cue for clinically
identifying glaucoma. This localization uses a bundle of sliding windows of dif-
ferent sizes to obtain cup candidates in each disc image, then extracts from each
sliding window a new histogram based feature that is learned using a group spar-
sity constraint. An e-SVR (support vector regression) model based on non-linear
radial basis function (RBF) kernels is used to rank each candidate, and final de-
cisions are made with a non-maximal suppression (NMS) method. Tested on the
large ORIGA™"*9"* clinical dataset, the proposed method achieves a 73.2% over-
lap ratio with manually-labeled ground-truth and a 0.091 absolute cup-to-disc
ratio (CDR) error, a simple yet widely used diagnostic measure. The high ac-
curacy of this framework on images from low-cost and widespread digital fun-
dus cameras indicates much promise for developing practical automated/assisted
glaucoma diagnosis systems.

1 Introduction

Glaucoma affects about 60 million people [1]] and is responsible for approximately 5.2
million cases of blindness (15% of world total) [2]. It unfortunately cannot be cured be-
cause the damage to the optic nerve cannot be reversed. Early detection is thus essential
for people to seek early treatment and prevent the deterioration of vision [3]]. In recent
years, much effort has been put into automated/assisted glaucoma diagnosis systems
based on computer vision. The design of a glaucoma analysis system depends on the
image cues and image modality used.

Among the structural image cues studied for glaucoma diagnosis, those based on the
optic disc and cup are of particular importance. The optic disc is located where the gan-
glion nerve fibers congregate at the retina. The depression inside the optic disc where
the fibers leave the retina via the optic nerve head (ONH) is known as the optic cup. The
boundaries of the cup and disc structures need to be identified as it facilitates evaluation

* This work is funded by Singapore A*STAR SERC Grant (082 101 0018).

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAI 2011, Part III, LNCS 6893, pp. l 2011.
(© Springer-Verlag Berlin Heidelberg 2011
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of glaucoma cues such as cup and disc asymmetry and large cup-to-disc ratio (CDR),
defined as the ratio of the vertical cup diameter to the vertical disc diameter [4]]. The
CDR value can be determined by planimetry from color fundus images after the optic
disc and cup are outlined manually. Since it is very time consuming and labor intensive
to manually annotate the cup and disc for each image, computer vision methods have
been proposed to automatically segment the disc and cup in fundus images.

In previous work, researchers have mainly focused on automated segmentation of
the optic disc [5], using various techniques such as intensity gradient analysis, Hough
transforms, template matching, pixel feature classification, vessel geometry analysis,
deformable models and level sets [6]][7]. In this paper, we focus only on the challenging
cup detection problem [8]][9], using a large clinical dataset called ORIGA~19"t [[10]
in which the ground-truth of discs and cups is marked by a team of graders from a
hospital. Unlike previous segmentation based algorithms, which classify each pixel as
cup or non-cup, our technique identifies a cup as a whole, based on sliding windows
and machine learning.

2 Sliding Window Based Cup Detection

In this work, we start with a disc image for cup detection, which may be obtained using
methods such as [6]]. Different from previous image processing based techniques, a
general sliding window based learning framework is proposed for cup localization.

2.1 Sliding Windows

From the suggestion of doctors and graders, in this paper we represent the localized
disc by a non-rotated, arbitrary-sized ellipse denoted by its central point (U, V), cor-
responding description function (@ 2) + (y ) = 1, and rectangular bounding box
delimited by (1,1) and (2U — 1, 2V - 1). Wlth the disc image, we search for the
candidate cup by sampling non—rotated ellipses at various aspect ratios represented as
(u,v,r,s)n, x4, Where (u,v,r,s) is the description matrix of all the cup candidates

and V., is the number of cups For the it cup candidate denoted as (u;,v;, 75, S;), its
description function is “~ g’) + = ”7) =1and |r;| + |w| <|U|, |si] + |vi] < |V
Cup candidates are generated by samphng values of (p¥, p?, pl, pi). In this work, we
empirically set (u;, v;, s, 8;) = (U-pt, V-p?, U-pi, V- pi), where p} € [0.75,1.25],

v €[0.75,1.25], pf € [0.2,1] and p? € [0.2, 1] with a sampling interval of 0.06. In the
detection phase, with this setting, for the input discs with different sizes, N,, = 6691
cup candidates from each disc image can be obtained with the same sampling values of
(ot o7 p]) I

2.2 Feature Representation

Features play an important role in computer vision applications. In this paper, we in-
troduce a new region based color feature for cup detection. Similar to segmentation
based approaches, it takes advantage of color differences between cup and disc regions
in fundus images. However, it additionally accounts for the elliptical shape of a cup and
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the blood vessels that run through it, which often mislead segmentation algorithms. We
extract features using the following steps:

1. For a given disc image, the green, blue, hue and saturation channels are computed
from the color image. Since the red (RGB model) and value (HSV model) channels
differ little between the disc and cup, they are not used in this work. We linearly
scale hue and saturation values into [0,255] for consistency with the green and blue
color channels. For each color channel, its values are histogrammed by quantization
with different bin numbers % = {B,,|Y_;} such that each bin has an equal (or as
equal as possible due to quantization) number of pixels, giving equalized channels.
In the experiments, we use Z = {3,4,---,9,10,12,16,-- - ,28,32}.

2. For each color channel and each number of bins B,, € %, we form three types of
features: 1) L1 normalized histogram of the candidate cup region; 2) L1 normal-
ized histogram of the candidate non-cup region within the disc; 3) for each of the
B,, bins, the proportion of cup pixels with respect to all the pixels within the disc.
Determining the optimal bin numbers in each color channel is non-trivial, so we
used multiple bin numbers to generate redundant features and then employ a group
sparsity based approach to select the most effective and discriminant features. Fi-
nally, each feature is represented as a B; dimensional vector, and we refer to each
type of feature for a given color channel and bin number as a group.

3. For a candidate cup in a specific disc, referred to as a “cup-disc” candidate, its
original feature f; is obtained by concatenating 3 types of features over 4 color
channels and multiple bin numbers. In our experimental setting, this leads to a
feature dimension of |f;| = ny:l 3x4x B, =12 22[21 B,, = 2208.

As illustrated in Fig.[T] after the green channel image is histogrammed into three bins,
the first bin (illustrated as black pixels) occupies most of the vessel region, the second
bin (grey color) mainly occupies the non-cup region, while the third bin (white color)
occupies most of the cup region. Also, it can be observed that the equalized channels
are more clear and they facilitate distinguishing different components, since they are
relatively insensitive to illumination condition (e.g., see the hue channel). For the cup
detection task, it is unclear which color channels to use and how many bins is optimal
for a given channel, so we apply statistical learning methods to select features from
this large redundant feature representation and use only the selected features for cup
localization.

2.3 Feature Selection Based on Group Sparsity Constraint

Identifying and using only the effective elements of the original feature can bring higher
precision and speed. For a cup candidate in the training set with an original feature f;
consisting of g feature groups, we denote its regression value (i.e., the score obtained
from its overlap ratio with the clinical ground-truth) as z; € [0, 1]. We adopt the linear
regression model w’f; + p to obtain the estimated value, where w is the weighting
vector and y is the bias. We minimize the following objective function:

l g
min 3l =T — P+ sl M)
=1 Jj=1
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Fig. 1. Grouped feature extraction for cup localization. (a) (b) (c) and (d) represent green, blue,
hue and saturation color channels, respectively.

where w; is the corresponding weight of the j* feature group, [ is the number of train-
ing samples and ) is used to control the sparsity of w. In Eq. (), the first term represents
the regression error and the second term is a L; »-norm based regularizer to enforce
group sparsity. Considering the features are intrinsically organized in groups, we use an
L1 2-norm based regularizer to select features from only a sparse set of groups. In the
experiments, we use the group-lasso method in [[I1] to solve Eq. ().

After w is obtained, it can be used as a feature selection mask to generate the final
features, i.e., the j*" group of features is selected when ||w;||2 > 0. We represent the
feature extracted from the i*” cup-disc training sample after feature selection as x;.
The lower dimension of the final feature x; leads to faster feature extraction and cup
detection in the testing phase when compared with using the original 2208-D feature.

2.4 Non-linear Regression Model

After feature selection, we introduce a kernelized e-SVR to further improve accuracy:

wlo(x;)+b—2 <e+&,

!
1
migng* 2WTW + CZ (& +¢&) st zi—wlio(x) —b<e+&, (2
o = §n &2 0i=1,-- 1

where x; is a training sample after feature selection, &; and & are slack variables for
e-insensitive loss, C'is a regularization parameter, w’ ¢(x; )+ b is the non-linear regres-
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sion function with w as the weight vector in the feature space, b as the bias term, and
@(+) is the non-linear function mapping x; from the original space to a higher dimen-
sional space. LibSVM toolbox [[12] is used to solve this problem in our implementation.

In the testing phase, the feature x; is extracted directly from the i'" cup candi-
date (: = 1,2,---,N,) in the test disc image based on the feature selection mask
w. Then the regression values of all the cup candidates are calculated, denoted as
v =1, %, YN, ). We sort v in descending order and obtain the final detec-

tion result using the non-maximal suppression (NMS) of the next section.

2.5 Detection Result Fusion with NMS

Various NMS methods have been proposed to reduce redundancy in sliding window
based detection. Let us denote the cup candidates as ¥ = {D;, Dy, --- , Dy, }, where
D, is represented as (u;, v;, T, ;). Note that the cup candidates are sorted according to
the regression value ;. A detection result can simply be computed as the mean of the
top 7' candidates with the highest regression values, Dt : (ur, v, rr, ST).

Since the top T candidates D;|7_; may not all be of high accuracy, we perform the
following steps to handle outliers, similar to majority voting:

1. Initialize a zero matrix O(ay7—1)x (2v—1) Of the same size as the disc image.

2. For each cup candidate D;|%_,, add a vote for each pixel that lies within D;.

3. Locate the minimal rectangular bounding box By s : (Ei, Er, Et, Ep) containing
the pixels with no fewer than p-T votes, where E;, E;., F; and E} represent the left,
right, top and bottom bounds, respectively, and p is a threshold empirically fixed to
0.75 in this work.

4. The final detected cup is represented by the ellipse: (®rf%, FtiFo Fr=Fitt
By=Eyt1)

3 Experiments

In this section, we describe the evaluation criteria and experimental setting, then ana-
lyze the two main steps in our framework, i.e., the group sparsity based feature selec-
tion and candidate cup ranking by using RBF based e-SVR, through comparisons of
three cup detection methods. The first method (referred to as feature selection+e-SVR)
uses the group sparsity based feature selection method to obtain a low-dimensional
feature and then performs RBF based e-SVR to rank the cup candidates. The second
method (referred to as feature selection+simple ranking) uses w” f; to directly rank the
cup candidates after obtaining w from feature selection. In the third method (referred
to as e-SVR), we directly perform RBF based e-SVR ranking using the original fea-
ture f; without conducting the feature selection process. We also compare our feature
selection+e-SVR approach with level-set based segmentation methods [6][9].

3.1 Cup Detection Evaluation Criteria

Three evaluation criteria are commonly used for cup detection/segmentation, namely
non-overlap ratio (), relative absolute area difference (m3) [L3] and absolute cup-to-
disc ratio (CDR) error (4), defined as:
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! area(Eg)
where Ey; denotes a detected cup region, E,; denotes the ground-truth ellipse, dg; is
the vertical diameter of the detected cup, dg; is the vertical diameter of the ground-truth
cup, R = 2V — 1 is the vertical diameter of the disc, and 0 < dg, dg: < R.

3.2 Experimental Setup

Training samples. The ORIGA™!"9" dataset is divided into two sets S 4 and S, which
consist of 150 images and 175 images, respectively. In the training phase, 500 sam-
ples including one ground-truth cup and 499 randomly generated cup candidates are
obtained for each of the 150 disc images from set S4. In total, we have 75,000 cup
candidates in the training set. The method for generating training cup candidates in the
training phase is designed so that the windows of the training cup candidates and those
examined in the testing phase have different description parameters (u, v, r, s). We then
use both image sets for testing our algorithm.

Parameter setting for feature selection. For each cup-disc candidate, its original feature
f; is extracted, and the regression value corresponding to the overlap ratio (1 — m1) of
the cup candidate region and the ground-truth ellipse is also calculated using Eq. ().
Only the ground-truth cup region will have a full score of 1. We solve the problem in
Eq. (@) using the group-lasso tool [11]] to obtain w by empirically setting the parameter
A = 0.01. According to the obtained values of ||w;]|2, 993 of 2208 feature dimensions
are selected. Using only 44.97% of the original features leads to significant acceleration
in detection speed.

Parameter setting for RBF based e-SVR. The well-known Lib-SVM toolbox [12] is
used to train the e-SVR model. We perform cross-validation to determine the opti-

mal parameters by setting the parameters as C' € {1073,1072,--- | 10%,10%}, € €
{1073,1072,10"},p € {107,102}, and g = 2*- )}, withk € {~7,-5,---,5,7},

where p is the convergence threshold in the training phase and 2 is the mean of all the
Euclidean distances between any two training samples. The samples x;|!_; are ob-
tained by applying the feature selection mask w onto the original features f,»\,lizl. To
avoid overlap between the training and testing samples in the cross-validation process,
8000 randomly selected samples and the ground-truth cups from the first 100 images
are used for training, while another 6000 randomly selected samples and the ground-
truth cups from the remaining 50 images are used for testing. After conducting cross-
validation, the optimal parameters were determined to be C' = 10, p = 1073, k = —3
and ¢ = 0.001. With these parameters, all of the 75,000 samples are used to train an
€-SVR model for the testing phase.

3.3 Comparison of Three Methods in Our Framework

We compared the three methods to show the effectiveness of each step of our frame-
work. The same cross-validation method is used to determine the optimal parameters of
the e-SVR method for a fair comparison. The results are listed in Table[Il From it, we
have the following observations:
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Table 1. Comparison of three methods in our framework and level-set based methods

Method Set S 4 Set Sp Sa&Sp
Evaluation criteria mi1  me ) mi1 Mo ) mi1  me )

Feature Selection+e-SVR ~ 0.254 0.252 0.081 0.289 0.409 0.106 0.268 0.315 0.091
Feature Sel.+Simple ranking 0.301 0.398 0.115 0.344 0.643 0.143 0.324 0.530 0.130
e-SVR 0.269 0.314 0.101 0.320 0.484 0.128 0.290 0.382 0.112
Level-set [6] 0.458 0.625 0.137 0.552 1.189 0.214 0.495 0.847 0.162
Level-set+Hist-analysis [9] 0.458 0.519 0.119 0.491 0.859 0.159 0.476 0.702 0.140
Relative error reduction to [|9] 44.5% 51.5% 31.9% 41.1% 52.4% 33.3% 43.7% 55.1% 35.0%

1. Comparing feature selection+e-SVR to feature selection+simple ranking shows that
the RBF kernel based e-SVR is better than simple ranking using the selected fea-
tures from our feature selection method. This demonstrates better generalization
ability of e-SVR, which is consistent with previous work on image classification.

2. Comparing feature selection+e-SVR to e-SVR shows that group sparsity based fea-
ture selection also improves performance by selecting and using the most effective
and discriminant features. Moreover, it accelerates the detection procedure by about
60%. We also observe that the performance improvement from feature selection+e-
SVR over e-SVR is not as large as that from feature selection+e-SVR over feature
selection+simple ranking, possibly because e-SVR also tunes the weight of each
feature dimension and thus acts as a kind of feature selection.

3.4 Comparison with Level-Set Based Segmentation [6]],[9]

One of the few methods for both cup and disc segmentation is the level-set method of
[6]], which first identifies the pixels that belong to the cup region, then uses a convex
hull method to generate an ellipse. In [9]], histogram based analysis of the color pixel
intensity together with multiple method fusion are also employed to further improve cu
detection accuracy. Table 1 compares our method to these two level-set approaches{f.
Compared with the more advanced approach [9], our method is shown to significantly
improve cup localization accuracy in both sets S4 and Sp, and m; and CDR error (i.e.,
6) are reduced by 43.7% and 35.0%, respectively. We note that all methods obtain better
performance on set S 4, possibly because of the data distribution itself. Moreover, it is
worth mentioning that the relative CDR error reduction in set Sp is more significant
when compared with that in set S 4.

3.5 Detection Speed and Limitations

The experiments were carried on an eight-core 2.67G H z PC with 16GB RAM using
the Matlab Parallel Computing Toolbox. In our approach, the extraction of the origi-
nal feature takes about 6 minutes per image, while feature selection reduces the time

! We did not compare with the Haar+Adaboost method for general object detection, because the
cup detection task was formulated as a regression problem, not a binary classification problem,
and the Haar feature is not suitable for objects with varying aspect ratios.
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cost by about 60%. The RBF based e-SVR takes about 1 minute per image. The NMS
takes about 0.2 minutes per image on average. The main time cost is for feature extrac-
tion, and the proposed sparsity based feature selection greatly accelerates the detection
speed. In addition, from our observations the proposed method does not handle large
cups as effectively, because NMS suppresses the rim of the cup.

4 Conclusion

We proposed a sliding window based learning framework with a newly developed fea-
ture for cup detection in glaucoma diagnosis. Tested on a large clinical dataset with three
evaluation criteria, it achieves a 26.8% non-overlap ratio (m;) with manually-labeled
ground-truth, a 31.5% relative absolute area difference (m3) and a 0.091 absolute CDR
error (9). In future work, we plan to elevate performance using new features or by in-
troducing domain-specific knowledge on this problem.
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Abstract. Detecting vascular lesions is an important task in the diag-
nosis and follow-up of the coronary heart disease. While most existing
solutions tackle calcified and non-calcified plaques separately, we present
a new algorithm capable of detecting both types of lesions in CT images.
It builds up on a semi-supervised classification framework, in which the
training set is made of both unlabeled data and a small amount of data
labeled as normal. Our method takes advantage of the arrival of newly
acquired data to re-train the classifier and improve its performance. We
present results on synthetic data and on datasets from 15 patients. With
a small amount of labeled training data our method achieved a 89.8%
true positive rate, which is comparable to state-of-the-art supervised
methods, and the performance can improve after additional iterations.

1 Introduction

As the evaluation of coronary lesions is challenging and tedious, and acquiring
moderate expertise in coronary CT angiography (CTA) may take more than
one year [I], a variety of methods has been proposed to perform this detection
automatically. Most of the algorithms have been directed towards abnormality
modeling, i.e. identifying the particularities of lesions. As the latter are hetero-
geneous by nature, and obtaining a model that copes with all possible abnormal-
ities is difficult, most approaches have tackled the segmentation of one type of
lesion: calcified plaques [2] or soft plaques [3]. However, these methods often rely
on different image acquisition techniques for each task (e.g. non-enhanced CT
for calcium quantification, contrast-enhanced CT for lumen segmentation and
Dual-Source CT for soft plaque locating), which makes it difficult to combine
them, in order to simultaneously tackle the automated detection of both types
of plaques. Recently, a novel family of methods has made use of machine learn-
ing techniques to simultaneously detect the different forms of lesions [4]. Since
such methods use supervised classification schemes, the set of examples used
for training has to be highly reliable. Unfortunately, it is very expensive to col-
lect labeled data that are accurate, as well as representative of all types of lesions.

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAI 2011, Part III, LNCS 6893, pp. 9 2011.
© Springer-Verlag Berlin Heidelberg 2011
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A first attempt to use an unsupervised scheme has been proposed in [5]. However,
it failed to distinguish bifurcations from actual lesions.

To overcome these shortcomings, here we propose to use a semi-supervised
classification scheme that focuses in the healthy vessel sections. It permits both
calcified and non-calcified lesions to be identified as the complement of the
healthy sections. To do so, we introduced a classification algorithm belonging
to a family named Learning from only Positive and Unlabeled data (LPU). Only
a relatively small amount of healthy sections must be provided at the learning
stage of this algorithm. Its use to identify vascular lesions is novel to the best of
our knowledge. We also proposed a strategy that exploits new data that daily
arrive in a clinical environment, in order to refine the learning and thus improve
the classification performance. Our software has been made publicly availabldl.

2 Method

In the context of lesion identification, classification methods try to differentiate
between two main classes: the healthy and the diseased one. However, while the
appearance of healthy vascular sections does not vary much, the appearance of
the diseased ones may show a large variability. In other words, the healthy class
is likely to form a dense cluster in the feature space, while the diseased class
is represented by sparse points rather than by a cluster. Moreover, we consider
that obtaining reliable labels of only healthy vessel sections is an easier task than
obtaining representative examples of all types of diseased vessels. Based on these
two statements, we addressed the vascular lesion identification through an LPU
framework using support vector machines (SVM) [6]. Such an algorithm can be
applied to the problems where the training input data is made up of labeled
samples (the healthy class) and a large amount of unlabeled samples coming
from the mixture (healthy and diseased samples).

2.1 Learning from Only Positive and Unlabeled Samples

Let Q@ = (¢1,--,9%), ¢ € X be a collection of samples generated according to
a probability distribution P, and X = (z1,...,2,),2; € X a set generated ac-
cording to a probability distribution P,. The goal is to identify the elements
of X that are similar to the elements of Q. It is assumed that elements in @
belong to a particular class (our healthy class), and that elements belonging to
X are actually formed by two different distributions. Some are generated by P,
(healthy samples) and the rest (the diseased samples) by another process P,iper-
Therefore, P, is a mixture distribution:

P, = 0P, + (1 —3) Pother where 0 < 3 < 1. (1)

Porter et al. [6] have defined a relative content density function p that can be used
as a similarity measure to quantify the relative concentration of P, with respect

!http://www.creatis.insa-1lyon.fr/software/public/DLDalgorithms/
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Table 1. The LPU algorithm

Input : Q set- Samples of healthy vessel cross-sections
Input : X set- Samples of unlabeled vessel cross-sections
1 : Assign y=1 labels to Q
2 : Assign y=-1 labels to X
3 : Assign the y=1 class weight of a SVM to 203
4 : Assign the y=-1 class weight of a SVM to 1-2(0
5 : Train the SVM

Select f that minimizes R(f)
6 : Classify samples in X using the trained model M
Output :Classified X samples

to P, and which is given by the Radon-Nikodym derivative p = dP,/dP,. Given
a threshold p, the set {z € X : p(x) > p} contains samples that are more likely
to be generated by P, than by Puiper-

The latter problem can be solved as a density level detection problem, where
a function f is constructed so that it approximates the set {p > p} by means of
the set {f > 0}. Steinwart et al. [7] have proposed a risk function R that can
be estimated from sample data, and serves as a criterion to assess the quality of
the approximation of {p > p} by {f > 0}:

RO~ Yol 21U 1 s L1 ?

where p = 21[3, I(-) =1 if the argument is true and 0 otherwise.

The main advantage of defining such a risk function R is that it allows us
to use a SVM in order to choose a function f that minimizes R [7]. For this
purpose, a surrogate problem is constructed by automatically assigning labels
y to the available data. The required steps to build the surrogate problem and
solve the LPU algorithm are outlined in Table [l

Let us note however, that the LPU formulation is theoretically valid in the
infinite sample limit, i.e. | X| = oo. Additionally, the problem we tackle is highly
unbalanced, i.e the cardinality of one class is much larger than that of the other
one (in our case, this corresponds to a true p value close to 1). With unbalanced
classes most learning methods tend to favor a response that assigns all samples
to one class, which can worsen when combined with finite sample effects. Since
infinite samples cannot be achieved, it is at least desired that | X| > |Q].

2.2 LPU in a Clinical Environment

In the LPU formulation unlabeled data makes part of the training set. This
key difference w.r.t. supervised classification approaches is an advantage in two
aspects. First, the training set can be easily augmented since no labels are re-
quired for the X set. Second, it is desirable and feasible to increase the training
set without great risk of overfitting.
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Fig. 1. LPU in a clinical environment. Positive samples are those identified as healthy
(either by the algorithm or an expert), negative ones are those classified as diseased,
and unlabeled ones are samples that belong to the X set before classification.

Based on this key feature, we proposed to progressively increase the two sets
that make up the training data set: the addition of samples to ) aimed at nor-
mality description improvement, whereas the increase of X kept the relation
|X] > |Q| and reduced the finite sample effect. Consequently, we suggested to
periodically re-train the model M after new data incorporation, instead of keep-
ing it static. Our proposal suits the clinical data workflow where new unlabeled
data arrive daily. Moreover, no additional labeling is required to exploit the ar-
riving data. The algorithm (Fig. [[]) starts with an initial pair of sets, unlabeled
data X; and (manually) labeled data Q1, then it iterates as follows:

1. Training: A pair of sets Q; and X is used to train a model M;.

2. Classification: The model M; is used to label the data from X;. A clinician
validates the labels corresponding to actual lesions (subset denoted X,).

3. Set increase: This step is performed for both @ and X sets.
(a) Among the samples that the clinician did not consider as lesions (subset

denoted X;") a sub-subset X  is randomly removed from the set X; and

combined with the set Q); to build up the increased set Q;+1 = Q; UX;F.

(b) At the arrival of newly acquired data, this is combined with the subset
X\ Xj' to make up the increased set X, .

4. Loop: The algorithm jumps to the step [l in order to obtain a new refined

model M; 1 by using the increased sets ;41 and X;11 for training. For this
purpose, the labels previously assigned to X; are considered as unavailable.

2.3 Features

To select the features that fit our problem we followed some of the guidelines
in [§]. We used a combination of metrics that are able to capture both the circular
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shape with radially decreasing intensity profiles of healthy vessel cross-sections,
and the divergence from such typical patterns. However, we used a different
selection strategy based on the empirical risk R minimization. Four metrics cal-
culated in cross-sections orthogonal to the vessel centerline (Concentric rings [5],
Core, Hessian eigenvalues and Flux [9]) were kept.

3 Experiments and Results

The LPU algorithm was solved using the LIBSVM software [10] with a Gaussian
radial basis function (RBF) kernel. The SVM regularization term A and the o
parameter of the RBF kernel were optimized through a grid search. Different
8 € [0.1,0.2,...0.80,0.81,0.82, ..,0.98,0.99] values were tested. The selection of
the optimal § value was included in the optimization process. For every {\, o, 5}
combination, the empirical risk R associated with f, was calculated according
to Equation [l The learned decision function f, minimizing the empirical risk,
was applied on the X set to evaluate the performance of the method.

We first evaluated our method on synthetic images with known ground truth.
We then applied it to 3D cardiac CT data sets, where lesions had been annotated
by an expert for the purpose of evaluation only. In our experiments, lesion detec-

tion was evaluated using three measures: true positive rate TPR = PJE, N true
negative rate TNR = T]\?;J_VFP and balanced error rate BER = 1 — TPR{TEN,

Here T'P denotes the number of correctly classified diseased cross-sections, TN
the number of correctly classified healthy cross-sections, while FP and F'N re-
spectively are the numbers of falsely classified healthy and diseased cross-section.
We preferred the use of BER instead of the commonly used accuracy, since the
latter is not very meaningful in highly unbalanced problems as the one we tackle.

3.1 Synthetic Data

We first evaluated the performance of our method on 70 artificially generated
volumes containing a variety of cases typically encountered in vascular analysis.
Phantoms were created using the typical Hounsfield Unit values that are found in
CT images for blood, background and plaque components, as well as the typical
image dimensions and voxel size. Gaussian noise was also added, resulting in a
contrast-to-noise-ratio value of 10.

To demonstrate the effectiveness of the iterative increase of the training set,
we simulated five iterations. The cardinality (|@|,|X|) at each iteration was as
follows: (500, 15000), (1000, 19000), (1200, 22000), (1300, 22000), (1600, 23000).
A sixth case aimed at illustrating the situation, where the condition | X| > |Q)|
is broken, with (|@Q|,]|X]) = (1600, 2000).

The LPU algorithm had a good performance in terms of TPR, which is de-
sirable for disease detection (Fig.[2). As more samples were included in the sets,
the TNR improved. Since the TPR remained unchanged, the total error (BER)
decreased. The 6-th case confirmed the expected poor performance of LPU when
the condition |X| > |@Q| is broken.
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Fig. 2. Evolution of TNR, TPR and BER as a consequence of the modification of @
and X datasets. Left, 5 iterations in synthetic data, and a 6-th case, where | X| > |Q)|
does not hold. Right, 13 iterations using patient data. Final TNR, TPR and BER values
were 86.7%, 83.8% and 14.2%, respectively.

3.2 Patient Data

Fifteen cardiac CT datasets, with centerlines available in a total of 53 arteries,
were obtained from two different sources: Hopital Louis Pradel (Bron, France)
and Rotterdam Coronary Artery Algorithm Evaluation Framework [I1], the lat-
ter containing data acquired at the Erasmus Medical Center (Rotterdam, The
Netherlands). Cross-sections orthogonal to the centerlines were calculated, from
which the required features were extracted. Additionally, each cross-section was
labeled as normal or abnormal by an observer. These annotations were used
to evaluate the performance of the classifier and a small percentage of anno-
tated normal cross-sections were used to build up the initial set Q1. At the first
iteration, we used normal data from a healthy subject (|Q1]| = 426) and unla-
beled cross-sections (] X;| = 1148) from two patients. Due to a limited amount
of annotated data available for evaluation, only one patient was added at every
new iteration. This allows us to demonstrate the behavior of our method in real
data, although in clinical practice several patients may arrive daily. At the final
iteration, the cardinalities of the sets were: |Q13| = 886, |X13| = 12180.

The evolution of the TNR, TPR and BER as a function of the iterations is
presented in Figure[2l Similarly to the synthetic data, the error decreased as new
samples were added to @ and X. LPU showed a tendency to overestimate the
lesions, possibly because the number of labeled samples |Q| = 886 used for train-
ing was not yet sufficiently representative of all normal configurations. However,
despite a small number of training data, the TNR increased from 0.53 to 0.86 as
new samples were added, i.e. the false alarm rate (1-TNR) decreased from 0.47
to 0.14. From the tendency of TPR, TNR and BER (Fig. [2), we believe that le-
sion overestimation can be reduced by using LPU with an increased training set.
Figure B shows examples of classified cross-sections in several coronary arteries.

The same definition of TP has been used in [5], so a direct comparison of
the results can be done. In that work, a TPR=0.860 and TNR=0.812 have been
reported. From this information we have computed the BER=0.164. While, our
new proposal gives a lower TPR=0.838, it has a higher TNR=0.867 that can be
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Fig. 3. Lesion detection results. Color-coded labels on a stretched curved planar
reformatted view of different coronary arteries.

explained by the fact that our novel method does not misclassify bifurcations,
contrary to the one in [5]. Our lower BER=0.142 confirms that our overall perfor-
mance is better. Another related work [4] lacks a clear definition of the evaluation
measurement unit, making direct comparison uneasy. Their evaluation has been
performed in terms of detected lesions, i.e. a lesion is correctly detected (TP) if
at least one cross-section within the extent of the lesion is detected as diseased.
The available information permitted us to compute their TPR=0.890. Using the
latter definition of TP, our approach gave a slightly better TPR=0.898.

4 Conclusions

We proposed a new semi-supervised algorithm to detect coronary artery lesions
in CTA images. The method can achieve a high detection rate (TPR) even when
a small amount of labeled training data is available. Its false alert rate (1-TNR)
can be substantially reduced by increasing the training set, as new data arrive
and new normal samples are validated. The improvement is guaranteed since
adding new samples reduces the finite sample problem. However, recovery is
not guaranteed if the user erroneously validates misclassified samples. The com-
putational time increases with the size of the sets Q and X. After a number
of iterations, the classification error may not significantly decrease despite the
inclusion of additional samples. Therefore, the optimal trade-off between com-
putational time and capacity of improvement is to be carefully evaluated. Let
us note that the LPU formalism uses only one type of labels (here 'normal’) to
train the classifier. It is not straightforward to use the diseased samples correctly
labeled in previous iterations, in order to train the model in the next iterations.
Future work should attempt to overcome this limitation.
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Abstract. This paper presents a general discriminative dimensional-
ity reduction framework for multi-modal image-based classification in
medical imaging datasets. The major goal is to use all modalities si-
multaneously to transform very high dimensional image to a lower di-
mensional representation in a discriminative way. In addition to being
discriminative, the proposed approach has the advantage of being clini-
cally interpretable. We propose a framework based on regularized tensor
decomposition. We show that different variants of tensor factorization
imply various hypothesis about data. Inspired by the idea of multi-view
dimensionality reduction in machine learning community, two different
kinds of tensor decomposition and their implications are presented. We
have validated our method on a multi-modal longitudinal brain imaging
study. We compared this method with a publically available classifica-
tion software based on SVM that has shown state-of-the-art classification
rate in number of publications.

Keywords: Tensor factorization, Multi-view Learning, Multi-Modality,
Optimization, Basis Learning, Classification.

1 Introduction

Recently, various structural (e.g. MRI, DTI, etc.) and functional (e.g. PET,
resting state fMRI, etc.) imaging modalities have been utilized to develop new
biomarkers for diagnosis. Multiple image modalities can provide a rich multi-
parametric signature that can be used to design more sensitive biomarkers [12],
[10], [14]. For example, while structural MR images provide sensitive measure-
ments for detection of atrophy in brain regions |g§], FDG-PET]] can quantify
reduction of glucose metabolism in parietal lobes, the posterior cingulate, and
other brain regions [5]; combination of both modalities can be very instrumental
in early diagnosis of Alzheimer’s disease [1].

An immediate solution to exploit multiple modalities is to concatenate all im-
age modalities into a long vector, but learning a classifier that generalizes well
in such a high dimensional space is even harder than in the uni-modality case

! fluorodeoxyglucose positron emission tomography.
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because multi-modality datasets tend to be small. Therefore, dimensionality re-
duction plays an even more important role here. Most existing studies extract
features from a few predefined areas [12]. Zhang et al. [14] suggested extracting
features from a few pre-defined regions of interest (ROIs) and combining them
into one kernel that then input to a kernel-SVM classifier. However, predefined
regions might not be optimal for diagnosis on the individual level, i.e. classifi-
cation of subjects into normal and abnormal groups. Ideally, whole image (e.g.
brain scan) should be viewed as a large dimensional observation and relevant
regions to the target variable of interest (class labels, here) should be derived
from such high dimensional observation. High-dimensional pattern classification
methods have been proposed for morphological analysis [6], [9] which aim to
capture multivariate nonlinear relationships in the data. A critical step under-
lying the success of such methods is effective feature extraction and selection,
i.e. dimensionality reduction. Batmanghelich et al. |2] used a constrained ma-
trix factorization framework for dimensionality reduction while simultaneously
being discriminative and representative; however, that method only works for
uni-modality cases. In this paper, we propose a method inspired by the multi-
view setting in the machine learning community [11], |[1]. In the multi-view set-
ting, there are views (sometimes in a rather abstract sense) of the data which
co-occur, and there is a target variable of interest (class labels, here). The goal
is to implicitly learn the target via the relationship between different views |[11]].
Our approach extends [2] to tensor factorization framework to handle the multi-
modality case, but our formulation and optimization method is substantially
different.

One could concatenate all image modalities of a subject into long columns of
a matrix and simply apply [2] or a similar method. However, the advantage of
extending a regularized matrix factorization to a tensor factorization framework
is that because of the structure of a tensor, various factorizations can be pro-
posed, each of which imply different hypotheses about the data. In this paper,
we introduce two factorizations and explain their connotations. We derive the
factorization by solving a large scale optimization problem.

2 General Framework

The novel method proposed in this paper is based on an extension of a previ-
ously presented framework for uni-modality [3], which we briefly present here
for perspective. Similar to [2], the proposed method reduces the dimensionality
in a discriminative way while preserving the semantics of images; hence it is
clinically interpretable and produces good classification accuracy. We use regu-
larized matrix factorization formalism for dimensionality reduction. Regularized
matrix factorization decomposes a matrix into two or more matrices such that
the decomposition describes the matrix as accurately as possible. Such a decom-
position could be subjected to some constraints or priors. Let us assume columns
of X = [x1 -+ X, - - - Xn]| represent observations (i.e. sample images that are vec-
torized), and B € RP*K and C € RE*N decompose the matrix such that
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X ~ BC. K is the number of basis vectors, D is the number of voxels in images
and N is the number of samples. The columns of matrix B (called by,) can then be
viewed as basis vectors and the n** column of C (called c,,) contains correspond-
ing loading coefficients or weights of the basis vectors for the nt" observation.
The columns by € B and ¢, € C are subjected to some constraints which define
the feasible sets B and C. We use variable y,, € {—1(abnormal), 1(healthy)} to
denote labels of the subjects.

An optimal basis vector (by) operates as a region selector; therefore its entries
(bjx) must be either on (i.e. 1) or off (i.e. 0) (i.e. bjr € {0,1}). Since optimizing
integer values is computationally expensive, particularly for the large dimension-
ality characteristic of medical images, we relax this constraint to 0 < b, <1
which can be encoded mathematically by a combination of £,, norm and non-
negativity (b > 0). Assuming that only certain structures of an anatomy are
affected (e.g. atrophy of hippocampus in Alzheimer’s disease), we can impose
sparsity on the basis vectors which also make them more interpretable. The spar-
sity constraint can be enforced by an inequality constraint over the ¢; norm of
the basis vectors. These two properties constitute the feasible set for the basis
vectors (B) as follows:

B:={beRP:b>0,|bllw<1|bli <A}

where the ratio of A\3/D encodes the ratio of sparsity of the basis vectors.

For the feasible set of coefficients (C), we only assume non-negativity (i.e.
C := {c : ¢ > 0}) because our images are non-negative but this is relaxable
based on the properties of a problem.

In order to find optimal B and C matrices, we define the following constrained
optimization problem:

N

i MD(X;BC) + A E(yn; f(xn; B,
B duin - MD(X;BC) + 2; (yn: [ (e B, w)) + [ w]l2

subject to: f(xn;B,w) = (BTx,, w)
b, e B, c,eC (1)

The cost function of the optimization problem consists of two terms: 1) The
generative term (D(-;-)) encourages the decomposition, BC, to be close to the
data matrix (X); both labeled and unlabeled data contribute to this term. 2)
The discriminative term (¢(yn; f(xn, B, w))) is a loss function that encourages a
classifier f(-) to produce class labels that are consistent with available labels (y).
The classifier parametrized by w projects each image (x,) on the basis vectors
to produce new features (v, = BTx,) and produce a label. We use a linear
classifier, hence f(x,,B,w) = (BTx,,w). In this paper, we set D(X;BC) =
|X — BC]||%, where )1 is a constant. For the loss function, we choose a hinge
squared loss function: £(y, %) = (max{0,1 — y3})?, a common choice in Support
Vector Machine (SVM) literature [3].

There are three blocks in the optimization problem in Eq.(d): w,B, and C
which is only jointly convex. In other words, if any two pairs of blocks, are fixed,
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the problem is convex with respect to the remaining block. The optimization
scheme starts from a random initialization of blocks, fixes two blocks, optimizes
with respect to the remaining one, and repeats this process for each block. The
whole process is repeated till convergence. Optimization with respect to C and w
is not challenging but, due to the large-scale dimensionality of a medical image,
optimization with respect to B requires a specialized method (see |3] for details).

3 Extension to Multi-Modality

Unlike the uni-modality case, in which each voxel stores a scalar value, in the
multi-modality case, each voxel of an image is associated with an array of val-
ues. In Section 2] we stored the training data into a matrix (X); while in multi-
modality case, we need to structure the data into a tensor (X). In fact, in the
general framework (Section[2]), the matrix f can be viewed as an order-2 tenso
in which the first index (rows) enumerates voxels and the second index (columns)
enumerates subjects. We simply extend this matrix to an order-3 tensor in which
the third index (faces) enumerates modalities. One can simply concatenate all
image modalities of a subject into long columns of a matrix and simply apply [2]
or a similar method. However, the advantage of extending a regularized matrix
factorization to a tensor factorization framework is that various factorizations
can be proposed each of which implies different hypotheses about the data be-
cause of the structure of a tensor. In this paper, we introduce two factorizations
and explain their connotations (pictorially represented in FiglI]).

Our method can be viewed as multi-view learning [11]. In the multi-view set-
ting, the goal is to implicitly learn about the target via the relationship between
different views |11]. Depending on how to define targets, we can have differ-
ent variations of the method. For example, if multiple modalities are different
frequencies in spectroscopy imaging, different features extracted from diffusion
tensor image (DTI), or time series in fMRI. One assumption could be that there
is one hidden variable (here basis vectors: B) that is shared across image modali-
ties and class labels. Therefore, both class labels (y) and data (X) are the targets;
we will refer to the method as multi-View(X,y).

Unlike multi-View(X,y), an alternative assumption could be that there is
no hidden variable shared across modalities, hence every modality has its own
basis vectors (IB(”)), but projection on these basis vectors collaborate to predict
class labels. For example, different modalities may measure quantities on non-
overlapping regions of a brain (e.g. white matter and gray matter) each quanti-
fying complementary features about the class labels. We refer to this variation as
multi-View(y). This assumption is still different than applying the uni-modality
method separately because B(")’s need to collaborate on the discriminative term.

2 The order of a tensor is the number of indices necessary to refer unambiguously to
an individual component of a tensor.
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Fig. 1. The difference between the two proposed factorizations: multi-View(y) ver-
sus multi-View(X,y). There are V modalities stored in the data temsor (X); for
multi-View(y), we need to have V sets of basis vectors (B(l),...,IBW)) and correspond-
ing coefficients ((C(l),,.‘,(C(V)), while for multi-View(X,y), there is one set of basis
vectors (B) shared across modalities.

The definitions of the generative term (D(-;-)) and the classifier function
(f()) in Eq.(d) for tensor are changed accordingly to multi-View(X,y) and
multi-View(y) (depending on the assumptions on data):

multi-View(X,y): multi-View(y):
D(X;B,C) =3,_, X" — BC| D(X;B,C) = 3,_, X —B°C"|I%
F(Xni W, B) = 30, (W', BTX)) F (X W,B) = 3202, (W', (BY)TX2)

where X and C are tensors of order-3 holding respectively all images and coeffi-
cients of the basis vectors. X and CV are order-2 tensors (i.e. matrix) holding
images and coefficients of v** modality respectively. X,, is a order-2 tensor hold-
ing all modalities of the n'® subject and X! is a order-1 tensor (i.e. vector)
holding only v** modality of the n” subject. V is the number of modalities
(views), (-,-) and || - || r indicate inner product and Frobenius norm respectively.
W is a matrix holding parameters of the classifier function and w* is its v**
column corresponding to the v*" modality. Notice that in multi-View(y), the
generative term is separable for each modality but basis matrices (B’s) are cou-
pled together through the loss function (£(,-)) in Eq.([l); therefore, it is different
than applying the uni-modality algorithm (Section [) separately and concate-
nating extracted features later for a classifier.

4 Experiments

We acquired a subset of images from a longitudinal brain imaging study for
validation of our method. The objective of this choice was to investigate the
longitudinal progression of changes in brain structure (MRI) and brain function
([*50]-water PET-CBF) in relation to cognitive change in cognitively normal
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older adults. We used slopes of CVLTH score over the follow-up period as a
measure of cognitive function to subdivide the entire cohort into two groups:
top 20% (25 subjects) showing the highest cognitive stability (CN: cognitively
normal), and bottom 20% (25 subjects) showing the most pronounced cognitive
decline (CD: cognitively declining).

All T1-MR images used in this study were pre-processed according to [6] and
registered to a template. Two volumetric tissue density maps [13] were formed
for white matter (WM), gray matter (GM) regions. These maps quantify an
expansion (or contraction) to the tissue applied by the transformation to warp
the image to the template space.

Samples are divided into five folds and 4/5 of samples are used for training
basis vectors (an example of which is shown in Figll); projections on these basis
vectors are used as features and are fed to a SVM classifier.

Fig.2. Two examples of the basis vectors shown in different cuts. Left:
Multi-View(X,y), Right: Multi-View(y) (7" = 100; number of basis vectors is 60).

In uni-parametric dataset, the algorithm is relatively stable as long as \’s are
chosen within reasonable ranges (see [3]). We set the parameters to the most
frequently chosen parameters used for a uni-modality case on a totally differ-
ent dataset. Numbers reported in Table [l are produced using such parameters.
Nevertheless, we performed sensitivity analysis with respect to ratio of A;/Ag
and number of basis vectors, K (see Fig3]). For notational brevity, we used ~v*
for ratio of A\;/A2 we used for Tabldll Different curves in Figl3] denote differ-
ent ratios of A\j/A2. As Multi-View(y) is relatively stable with respect to K
and different ratios, performance of Multi-View(X,y) improves as K increases.
Although parameters that are more inclined toward the unsupervised setting
(e.9. M /A2 = 10~*) underperform settings that are excessively discriminative
(e.9. AM1/A2 = 0.001~v*), are more stable. Weak regularization imposed on the
excessively discriminative settings can explain this observation.

Table [ reports the average classification rates on the left-out folds for dif-
ferent scenarios and methods. We used a publically available software, called
COMPARE 6], for comparison. The COMPARE method has been applied to many
problems and has been claimed to perform very well. Its variants, i.e. COMPARE
and m-COMPARE, are similar to Multi-View(y) and Multi-View(X,y) respec-
tively. For comparison, we have included Single-View results for each scenario
in which basis vectors are extracted independently and features are concatenated

3 California Verbal Learning Test [4].
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Fig. 3. Sensitivity Analysis: accuracy rates with respect to different number of basis
vectors (K) for various ratios of A\1/A2. Left:Multi-View(y). Right: Multi-View(X,y)

and fed to the same procedure to find the best parameters for a classifier as the
multi-view methods. Since results shown in the table are column-wise compa-
rable, the highest values in the column are magnified with a bold font in each
column. In general, Multi-View(X,y) or its counterpart m~COMPARE perform bet-
ter. In all columns, at least one of the multi-view methods outperforms the single
view equivalent and the best performance is achieved by Multi-View(X,y).

Table 1. Comparison of classification accuracy rates for different scenarios and dif-
ferent methods on “cognitively normal” (NC) versus “cognitively declining” (CD)
subjects. Results are reported in the format: accuracy (sensitivity,specificity); with
~* = 100; total number of basis vectors in each experiment is 60.

NC vs. CD
(WM,PET) (WM,GM) (GM,PET) (GM, WM, PET)
Multi-View(X,y) 0.82 (0.84,0.8) 0.76 (0.72,0.8) 0.84 (0.88,0.8) 0.94 (0.88,1.0)

Multi-View(y)  0.86 (0.84,0.88) 0.84 (0.8,0.88) 0.78 (0.8,0.76) 0.84 (0.84,0.84)
m-COMPARE 0.88 (0.8,0.96) 0.86 (0.88,0.84) 0.8 (0.8,0.8) 0.86 (0.84,0.88)
COMPARE 0.78 (0.68,0.88) 0.82 (0.76,0.88) 0.82 (0.84,0.8) 0.82 (0.76,0.88)
Single-View 0.84 (0.8,0.88) 0.84 (0.8,0.88) 0.82 (0.84,0.8) 0.8 (0.76,0.84)

5 Conclusion

We proposed a framework that exploits all modalities in a dataset simultane-
ously to reduce dimensionality in a discriminative yet interpretable way. Inspired
by multi-view learning, two variants of constrained tensor factorization are sug-
gested each of which implies different hypothesis about the data. We showed
that the algorithm is relatively robust with respect to choice of parameters and
achieves good classification results. Computational expense of the algorithm is
moderate and as future work, we plan to apply it to case for which number of
modalities is large (e.g. HARDI data or time series).
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Abstract. Recently conducted clinical studies prove the utility of Coronary
Computed Tomography Angiography (CCTA) as a viable alternative to invasive
angiography for the detection of Coronary Artery Disease (CAD). This has lead
to the development of several algorithms for automatic detection and grading of
coronary stenoses. However, most of these methods focus on detecting calcified
plaques only. A few methods that can also detect and grade non-calcified plaques
require substantial user involvement. In this paper, we propose a fast and fully
automatic system that is capable of detecting, grading and classifying coronary
stenoses in CCTA caused by all types of plaques. We propose a four-step ap-
proach including a learning-based centerline verification step and a lumen cross-
section estimation step using random regression forests. We show state-of-the-art
performance of our method in experiments conducted on a set of 229 CCTA vol-
umes. With an average processing time of 1.8 seconds per case after centerline
extraction, our method is significantly faster than competing approaches.

1 Introduction

According to the American Heart Association, Coronary Artery Disease (CAD) is a
leading cause of death in the western world. Every year, about six million patients in
the United States emergency departments are examined for acute chest pain [5]. The
current diagnostic standard is conventional invasive angiography which involves a very
high amount of risk and cost. New generations of cardiac Computed Tomography (CT)
scanners enable the acquisition of Coronary CT Angiography (CCTA) images with un-
precedented quality [2]. In the review article [1]], Achenbach has summarized the results
of many clinical studies, comparing contrast-enhanced CCTA with conventional inva-
sive angiography. These results prove CCTA a viable alternative with very high negative
predictive value. However, reading CCTA images requires substantial experience and
only well-trained physicians are able to interpret CCTA reliably [12]. An automated
system that can rule out clinically-relevant stenoses (grade> 50%) in the coronary ar-
teries could be used as a second reader in the absence of an expert physician in the
emergency department.

* The author has been with Siemens Corporate Research for this work.
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Detection and grading of coronary stenoses in CCTA is very challenging due to vary-
ing image quality. In an endeavor to reduce the radiation dose during CT scans, often
images with relatively low signal-to-noise ratio are acquired [2]. Motion artifacts are
frequently encountered despite the routine use of beta blockade to reduce the heart rate.
Gated or modulated acquisition protocols may result in stair-case reconstruction arti-
facts which further complicate the analysis. Finally, coronary arteries follow long and
treacherous paths, extending over only a few voxels in diameter in the distal parts. Even
experts sometimes struggle to give a correct diagnosis due to these challenges [12].

In this work, we present an algorithm for detecting, grading and classifying severe
(i.e. clinically relevant) stenoses along automatically extracted centerlines of the coro-
naries. The contribution of our work is three-fold. First, we introduce a novel centerline
verification step (Section 3.J). Second, a novel regression approach replaces the lu-
men segmentation that is needed for grade estimation (Section[3.2)). Finally, in contrast
to previous work, we propose a complete end-to-end and fully automated system that
works on all types of plaques.

2 Related Work

Vessel Tracing. Manual tracing of coronary centerlines in 3D cardiac CT volumes is
a highly tedious task. Many algorithms for automatic tracing of centerlines have been
proposed, the most important of which are reviewed in [8]. Owing to the importance of
the problem, the MICCALI association also organized a competition for automatic and
semi-automatic coronary artery tracking [10]]. In our work, the centerlines were traced
using the state-of-the-art method of [6]]. The method uses multi-scale medialness filters
in a graph-based algorithm to extract centerlines by computing minimum-cost paths.

Lumen Segmentation. Estimating the cross-sectional area (or the radius) of the vessel
lumen along the centerline is a key feature to detecting and grading coronary stenoses.
But methods relying on exact segmentation of the lumen are slow owing to high com-
putational complexity of the segmentation algorithms. A comprehensive review of all
major lumen segmentation algorithms is provided in [8]. Given a centerline, we pro-
pose a novel, automatic regression-based method to directly estimate the vessel radius,
which is significantly faster than a segmentation-based approach.

Stenosis Detection. In the past, a variety of algorithms have been proposed for detec-
tion of coronary plaques in CCTA. However, most of this work focuses on the detec-
tion of calcified plaques only, e.g., see [14411]]. Fewer methods have been proposed for
fully automatic detection of non-calcified plaques, which are usually harder to detect
and grade with high confidence. For example, the methods proposed in [13] and [15]
need substantial user input in order to localize and grade coronary stenoses. A learning
based method was proposed in [[14] which could detect both calcified and non-calcified
plaques. However, this approach does not consider stenosis grade and thus also reports
non-severe lesions which are clinically irrelevant. To the best of our knowledge, the
only system that currently analyzes CCTA for coronary artery disease in a fully auto-
mated way by reporting location, type and severity of coronary lesions is Rcadia’s COR
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Fig. 1. (a) Overview of the four-step approach for stenosis detection, grading and classifica-
tion. (b) Example vessel tree showing the three major coronary arteries: left anterior descending
(LAD), left circumflex (LCX) and right coronary artery (RCA).

Analyzer. Being a commercial product, however, not much detail is known about the
approach. Recent studies evaluating the system were published in [3]] and [[7]].

3 Methods

Given a CCTA image volume, the proposed system can automatically detect and clas-
sify coronary stenoses using the general four-step approach sketched in Fig. [T a. In the
first step, centerlines of the three major coronary arteries, i.e. left anterior descending
(LAD), left circumflex (LCX) and right coronary artery (RCA) (Fig.[Ilb), along with
their branches, are automatically extracted using the method of [6]. The left main (LM)
coronary artery is processed as the common part of LAD and LCX. Using a learning-
based classification approach, the second step verifies the accuracy of the extracted
centerlines and removes parts of the vessel tree belonging to non-coronary regions.
This ensures that the subsequent stenosis detection is only performed along the actual
vessel, thus producing more stable results. The third step employs a learning-based
regression approach to locally estimate the cross-sectional area of the vessel lumen
(which may be narrowed by coronary plaques), along the extracted centerlines. In the
fourth step, candidate stenoses are extracted for each individual segment of the vessel
tree as max-min-max triples of a baseline-corrected and smoothed radius curve along
with a grade estimate. Each candidate stenosis is either discarded (e.g. grade < 50%)
or accepted and classified as calcified, non-calcified or mixed stenosis. This decision
is based on image features as well as features of the candidate stenosis such as length,
cross-sectional area/radius and distance to the distal end of the vessel.

3.1 Centerline Verification

To avoid the risk of missing a potentially diseased coronary vessel, any automatic cen-
terline extraction algorithm must be highly sensitive, especially in low-contrast vessel
regions, which is true for the employed algorithm [6], for example. Thus, the method
should be able to trace centerlines of the vessels occluded by non-calcified plaques, that
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often exhibit the same contrast as the vessel wall. Inevitably, such algorithms are prone
to various types of errors in tracing and centerlines may get wrongly traced into other
arteries or into non-coronary regions like veins, heart chambers, etc. Figure 2] (left)
shows Curved Planar Reformation (CPR) views of some more noticeable examples for
erroneous tracing results of the employed algorithm. Table [[l summarizes the errors in
tracings for 229 volumes with 1472 traced centerlines in the distal vessel regions.

Table 1. Summary of errors in tracing coronary centerlines in the distal vessel regions. A total of
229 volumes were processed and 1472 centerlines were traced.

Error in tracing > 5mm > 10mm > 15mm
# vessels affected 259 (17.6%) 226 (15.4%) 210 (14.3%)
# volumes affected 131 (57.2%) 116 (50.66%) 107 (46.7%)

Clearly, erroneously traced centerlines are susceptible to many false alarms while de-
tecting lesions. Therefore, we propose to use a learning based algorithm for automatic
detection of non-coronary regions along the extracted centerlines. Similar to [L1], a
cylindrical sampling pattern for feature extraction, with its axis aligned to the coro-
nary centerline, is employed. We then extract altogether 171 rotation invariant features
along the entire length of the cylinder at varying radii. These features are used to train
arandom forests (RF) classifier [4] (100 trees, 14 randomly selected features, stratified
sampling of 8000 examples with replacement). Given an unseen volume, the RF clas-
sifier outputs a probability that a given point on the centerline belongs to a non-vessel
region. After removing outliers using a median filter of width 11, points with scores
higher than a fixed threshold are excluded from further analysis. In our experiments
this threshold was determined as 0.7 to yield a specificity of at least 98%, so that at
most 2% of the points are erroneously discarded (see Fig.[2] right).

3.2 Lumen Estimation

Instead of segmenting the lumen and computing the lumen cross-sectional area along
the vessel centerlines we propose using a non-linear regression approach to directly
estimate the cross-sectional area from local image features.

Alternatively for estimating the cross-sectional area we trained for and estimated
the radius r of an equivalent circle with the same area. Thus, a function for the radius
r(x|p) is estimated that depends on the feature vector x and a set of parameters p that are
learned from a training set T = {(x;, ;) }}_,. The training set is constructed from semi-
manual lumen segmentations of coronary arteries by computing cross-sections and the
corresponding radii r; at altogether IV centerline points. At the same points, rotation-
invariant features x; are extracted according to [[11]]. A regression function is learned by
minimizing the squared loss L(p) = Zf\il (r(x;|p) — r:)* on the training set T' with
respect to the parameters p. For this purpose an ensemble of randomized regression
trees, i.e. a random regression forest was employed [4]. Formally, each regression tree
models the dependent variable (the lumen radius) as a piecewise constant function,
which results in the following model for the ensemble:
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where I(-) denotes the set indicator function. Thus, for each tree ¢, the feature domain is
partitioned into M* regions R}, RY, ..., RY,, and in each region the radius is modeled
by a constant !, [4]. During training of each tree, the sample is successively partitioned
by thresholding one of the feature values. The optimal split (feature and threshold) is
greedily determined as the one which reduces the squared loss function most. In the
leaves (a region R ), the radius rf, is estimated as the average radius of all remaining
examples. While it is possible to stop splitting when the variance within a node and/or
the number of examples drop below certain values, we use fully grown trees in our
experiments, i.e. they were grown until only one example remained in every leave.
For obtaining good generalization performance, it is essential that every tree slightly
differs. This is achieved by training each tree on a resampled training sample (at most
4000 examples drawn with replacement) and by randomly selecting a fraction of the
features (one third, i.e. 57 of 171) to be considered for each split.

Given the feature vector of an unseen example, each regression tree is evaluated by
following its splits from the root to a leaf with an associated radius estimate 7, . The
random forest averages the estimates of its trees (Eqn. (I)). We used T' = 50 regression
trees in our experiments.

3.3 Stenosis Detection and Classification

Candidate stenosis regions are identified and graded using the estimated lumen radii.
The vessel tree is decomposed into disjoint segments so that every segment either starts
at an ostium or a vessel bifurcation. Each segment is then analyzed separately.

First, a baseline curve is computed using binomial filtering (Fig.[3l green). It is sub-
tracted from the original radius curve to obtain a de-trended residual curve which is
again slightly smoothed (Fig. Bl red). The positions of the local optima are extracted;
clearly, local minima and maxima alternate. Every triple (max-min-max) is then re-
garded as a stenosis candidate for which a grade is estimated by

Qrmin 2
Tleft + Tright

where 7,4, is the minimum radius within, 7;.f; the radius at the left (towards the
ostium) and 7,;45; the radius at the right end of the stenosis candidate (Fig. Bl ma-
genta). At the ostia and bifurcations, the grade is estimated with the alternative formula
g=1— (rmin/ rm-ght)z to account for the non-pathologic radius broadening there.
Then it is decided for each stenosis candidate whether it should be discarded or
not. In addition to low grade candidates (< 50%), also short (< 0.9 mm) and narrow
(rright < 1.0mm) ones are discarded. Candidates close to the distal end of the vessel
(< 7.5 mm) are also discarded since the data quality usually gets too low there.
Finally, using probability scores obtained from two classifiers for the detection of
calcified and non-calcified plaques similar to [11]] (Fig. Bl cyan/orange), each accepted



30 B.M. Kelm et al.

stenosis candidate is classified into one of three types, “calcified”, “non-calcified” and
“mixed”* (calcified as well as non-calcified parts).

4 Experimental Results

Training of the system was performed using a total of 229 CCTA volumes that were
acquired on several cardiac CT scanners with varying protocols and reconstruction al-
gorithms. The slice distance for these scans varied between 0.3-0.5mm with x-y pixel
spacing being between 0.3-0.4mm. Each scan typically consisted of 200-300 slices. For
training and evaluation, the data was manually annotated. For automatic vessel trac-
ing, errors were annotated. Coronary plaques were labeled with their type (calcified,
non-calcified, mixed) as well as a rough grade (mild, moderate, severe, occluded).

Figure [2| shows cross-validation results for the centerline verification step. Invalid
centerline points are reliably recognized for several types of tracing errors (Fig. 2l Left).
The receiver-operating-characteristic (ROC) curve (Fig.2l Right) shows that high speci-
ficities as well as sensitivities are attainable. The inferior performance on the RCA re-
sults from the difficulty to distinguish the (invalid) coronary sinus vein from a (valid)
artery. For the centerline verification step a high specificity (> 0.98) is desirable in
order to ensure that no valid parts of the vessel tree are discarded.

Numeric results for the overall system are provided in Table[2l The “by-lesion” sen-
sitivity quantifies how many of the severe non-calcified stenoses are detected while the
“by-vessel” sensitivity quantifies how many of the vessels with severe non-calcified
stenoses are identified. Only the “by-vessel” measure allows to compute the specificity
and negative predictive value (NPV). For an application as a second reader, sensitivity
and NPV are of utmost importance and preferred over specificity, i.e. false positives are
acceptable while false negatives are not. With an overall sensitivity of 97.62%, a NPV
of 99.77% and a specificity of 67.14% the proposed system performs competitive with

Bz 03 04 085 06 0F 08 08
Sensithity

Fig. 2. Left: CPR views of wrong centerline tracings obtained using the algorithm of [6]. The first
two are partially incorrect and traced into a heart chamber and a vein respectively. The third is
entirely wrong and traced into a heart chamber. Points detected outside the coronary are marked
with orange ‘+’ sign. Right: ROC curves (sensitivity vs. specificity) obtained with 10-fold cross
validation using 229 volumes on per vessel point basis.
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Table 2. Detection performance on non-calcified plaques (10-fold cross-validation). The system
is tuned towards high sensitivity and NPV to cope with its application as a second reader.

LAD LCX RCA Overall

by-lesion sensitivity 100.0%  90.0%  95.24%  94.55%
false positives per volume 0.81 1.03 1.13 2.97
sensitivity 100.00% 93.75% 100.00%  97.62%

by-vessel  specificity 7523%  63.16%  62.86% 67.14%

negative predictive value 100.00%  99.17%  100.00%  99.77%

Rcadia’s system [3I[7]]. But, while the Rcadia system requires about 10min of process-
ing time per case, on average, our system only needs 1.8 s (up to 3.9 s) after centerline
tracking which completes within a minute.

This advantage can mainly be attributed to excellent performance of the lumen re-
gression step, which provides an accurate estimate of the lumen cross-sectional area
much faster than a segmentation method. To this end, we also compared our results to a
segmentation approach, a learning-based version of the graph cuts approach presented
in [9]. While comparable performance was achieved, the overall processing time of 21 s
(up to 42 s) after centerline extraction was clearly higher with segmentation approach.

A test of the lumen regression (without retraining) on the eight (training) data sets
provided by [10] yielded a bias of 0.18 mm (median 0.19 mm) and a standard deviation
of 0.27 mm (median absolute deviation .14 mm). Apart from the bias, which can be at-
tributed to systematic annotation differences, these results agree with the 10-fold cross-
validation results on our data which yielded a bias of 0.01 mm (median 0.002 mm) and
a standard deviation of 0.28 mm (median absolute deviation 0.08 mm).

Fig.[Blshows two examples of patients that have neither been used in training nor the
development of the proposed system. In both cases, the system can locate and classify
all severe stenotic lesions correctly. Note that the right example shows a second, more
distal stenosis for which a grade of about 40% is estimated (cf. graph below the image).
It is thus deemed non-severe and therefore not reported.

Fig. 3. Two examples of patients from unseen data. The presented system detects severe stenoses
caused by both calcified plaques (left) and non-calcified plaques (right). The graph at the bottom
shows the lumen estimate (blue), baseline (green), residual (red), grade estimate (magenta), calci-
fication score (cyan) and the score for non-calcified (soft) plaques (orange) along the vessel center
line. While the system is highly sensitive it only exhibits a moderate number of false alarms. For
the two examples shown above, other severe stenoses were neither present nor detected.



32

5

B.M. Kelm et al.

Conclusion

An automatic method for the detection and classification of stenotic lesions in coronary
computed tomography angiography is proposed. The centerline verification step helps
the system cope with tracing errors and vessels with low data quality. Lumen cross-
sectional area is accurately estimated using a regression approach which is considerably
faster than a full segmentation method. A competitive performance is achieved with
significantly reduced computational burden as compared to state-of-the-art methods.
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Abstract. The focus of image classification through supervised dis-
tance metric learning is to find an appropriate measure of similarity
between images. Although this approach is effective in the presence of
large amounts of training data, classification accuracy will deteriorate
when the number of training samples is small, which, unfortunately, is
often the situation in several medical applications. We present a novel
image classification method called aggregated distance metric (ADM)
learning for situations where the training image data are limited. Our
approach is novel in that it combines the merits of boosted distance met-
ric learning (BDM, a recently published learning scheme) and bagging
theory. This approach involves selecting several sub-sets of the original
training data to form a number of new training sets and then performing
BDM on each of these training sub-sets. The distance metrics learned
from each of the training sets are then combined for image classification.
We present a theoretical proof of the superiority of classification by ADM
over BDM. Using both clinical (X-ray) and non-clinical (toy car) images
in our experiments (with altogether 10 sets of different parameters) and
image classification accuracy as the measure, our method is shown to be
more accurate than BDM and the traditional bagging strategy.

1 Introduction

Image classification is important in many medical applications, for instance, to
distinguish images representing different pathologies in the context of content-
based image retrieval (CBIR). Another example is to identify common anatom-
ical landmarks for the purpose of image data fusion and image registration. In
general, medical image classification can be explored in two fronts: (1) extract-
ing a representative set of features and (2) finding an appropriate similarity
measure between images. The latter, named distance metric learning, is not as
extensively explored as the former, it therefore has great potential to further im-
prove the image classification accuracy [I]. Most distance metric learning (DML)
methods can be classified as either unsupervised or supervised. The supervised

* Thanks to funding agencies: National Cancer Institute (R01CA136535-01,
RO1CA140772 01, R0O3CA143991-01), and The Cancer Institute of New Jersey.
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approaches, which require training images with user-defined labels or pair-wise
constraints, are more frequently found in medical applications [2].

Boosting framework [3], which uses a set of weak learners to create a strong
learner, has been adopted in DML. Recently, a boosted distance metric learning
method (BDM) using pair-wise constraints was proposed [I]. This method, when
combined with the nearest neighbor search, has been proven to be efficient and
accurate in classifying medical images of multiple classes when size of the training
data is large enough [IJ.

However, well annotated training data are almost always difficult to obtain in
medical imaging problems. In particular, in supervised multi-class image clas-
sification, there may be only limited number of training images for each image
class (e.g. a brain atlas can contain a large number of anatomical landmarks
derived from a much smaller number of subjects), hence the sample size for each
class may not be statistically reasonable [4] [5]. One way to improve the perfor-
mance of image classification in the presence of limited training images may be
via boostrap aggregating (bagging) [6], wherein bootstrapped training sets are
constructed and classification is then performed on each set. The final classifi-
cation is achieved through a plurality vote. However, when the performance of
each individual classifier is constrained by the size of the training data, further
improvement will be desirable.

In this work, we present a novel method called aggregated distance metric
learning (ADM) to classify a test image, specifically in the context of (a) large
number of classes, and (b) limited training images for each class. Inspired by
the idea of BDM [I] and bagging [0], instead of using the whole training image
set 2 of k classes C;, (i € {1,---,k}) to derive a single distance metric d, our
method first selects M sub-sets $2,,, (m € {1,---,M}) from (2, then performs
BDM on each (2, to obtain a unique distance metric d,,. In order to determine
which class C’ a test image ¢ belongs to, the distance between t and each C;
is computed using every distance metric d, (¢, C;). Next, all d,, are aggregated

% dp, (z, C;) and the class C’ with the smallest aggregated distance is identified

m=1

as the class label. It can be seen that ADM is a meta-algorithm based on BDM.
Moreover, it differs from bagging in that bagging conducts a plurality vote on
all classification results of each predictor, while ADM computes the aggregated
distances from all d,,, to get the classification result.

To our knowledge, there is no previous work trying to combine the merits of
DML and bagging in the context of image classification. In this work, we present
a rigorous theoretical analysis to show why ADM yields better classification com-
pared to BDM. In addition, our method is more accurate than the traditional
bagging approach, as the continuous aggregated distance value is more robust
against the errors caused by small training set sizes. We demonstrate the superi-
ority of ADM over other state of the art methods in experiments involving both
clinical (X-ray) and non-clinical (toy car) image data. We also demonstrate the
potential applicability of ADM in the context of CBIR applications.
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2 Previous Related Work

2.1 Boosted Distance Metric Learning

Yang et al proposed BDM for image retrieval and classification [I], where the
distance function between data points x; and zo was defined as:

A1, 22) = oy (i () — fi(22)° )

where f; (z) is a binary classification function, and «; are the combination
weights, and T is the number of iterations. For the specific task of image classi-
fication, x; and x5 may present images or extracted features. With the pair-wise
constraints, the appropriate classification function f; () and the combination
weights «; can be learned by using the bound optimization theory [IJ.

During image classification, all training images are used to learn distance
metric d, which is then used to compute the distance between a test image ¢t and
each training image. Based on these distance values, the class that is closest to
t is considered as the class that the test image should belong to.

2.2 Bootstrap Aggregating (Bagging)

In [6] Breiman showed that classification accuracy can be improved by bootstrap
sampling of the original data set to generate multiple versions of a classifier,
and then using the results from the individual classifiers to obtain a consensus
prediction. A theoretical proof was provided in [6] to explain why the bagging
classifier, on average, performs better compared to the individual classifiers.

3 Classification by Aggregated Distance Metric Learning
(ADM)
3.1 Theoretical Intuition

Inspired by the work of BDM [I] and bagging [6], ADM integrates the best of
both approaches. It first constructs a number of training image sub-sets, then
obtains the aggregated distance from these sub-sets for image classification.
3.2 Constructing Training Image Sub-sets

We construct M sub-sets of training images from the original training data set

2. Suppose there are altogether k different classes of training images C1,- - - , Cy,
and each class Cj, (¢ € {1,--- ,k}) consists of n training images C; = {(z4;, )},
(t e {1,---,k}; j € {1,---,n}), where x;; is a training image and y; is the

corresponding class label. Since in this work we are interested in the scenario
where the number of training images for each class, n, is small, we assume k > n.
At each iteration, we randomly choose n classes of training images to form a
training image sub-set (2,, so that we have a total of M = (fb) training image
sub-sets 2,,,(m € {1,---, M}), where (2,, consists of all the training images in
the n classes that have been chosen.
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3.3 ADM for Image Classification

BDM is performed on each sub-set {2,,, to obtain corresponding distance metric
dm (21, x2) between two images x1 and a9, (m € {1,---, (Z)}) Given a test image
t, the aggregated distance between ¢ and a class C; = {(x;;,v:)}, (0 € {1,--- ,k};
j€{l,---,n}) using d,, is defined as:

1 n
dm(t7 Cl) = njgldm (t7 xl]) . (2)

Finally, by summing up all d,,, (m € {1,--- ,M}), M = (ﬁ), we get the
aggregated distance between image ¢ and class C; as

M
D(t7 CZ) = §1d77l (t7 CZ) I (3)

so that the class C’ with the smallest aggregated distance is chosen as the class
which t should belong to. Mathematically, this is formulated as:

C' = argmin[D(t, C;)]. (4)
Next, we will prove that classification by ADM is better than BDM.

3.4 Proof of Superiority of Classification by ADM over BDM

We give a mathematical proof to show that classification by ADM is more ac-
curate compared to BDM.

Preliminaries. We denote the probability that a test image ¢ is classified into
class C using the m-th distance learning process as ¥, (t,C), m € {1,--- , M}
(M = (fl) if the training image sub-set are constructed according to Section
3.2). We also denote the probability that ¢ is classified into class C using all the
distance learning processes (ensemble classifier) as ¥(t, C).

Theorem. Given that the correct classification of ¢ is class C,., then ¥ (¢, C;.) >
w’ﬂl (t7 CT') .

Proof. Given that a wrong classification of ¢ is class C,, then statistically, it
is reasonable to assume

E(d’ﬂl (t7 CLU)) > E(d’ﬂl (t7 C’f'))7 (5)
where E() is the expectation operation. We introduce an auxiliary variable
gfn = d7rz(t7 Cw) - d7rz(t7 Cr) (6)

Let E(g!,) = p and var(gt,) = o%. According to Eq. [l we have u > 0.
The probability that ¢ is closer to €, when measured by the aggregated dis-
tance is

P(D(t,Cu) > D(1,C;)) = P( 3 g, > 0). 7)
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M
According to central limit theorem, the distribution of 21gfn approaches a
m=

normal distribution N(My,o0?) as M becomes larger (since E(gl) = p and
var(gt,) = 0?), so that

M
E( 3 g,,) = My B(gy,) = p. (8)

Since given two distributions with the same variance, the one with a larger
expectation has a larger probability of being positive, we have

M
P( % g, >0) > P(g,, >0). 9)
m=
Expanding Eq. [@ using Eq. B, we have

M M
P( % dn(t,Ci) > % dn(t,C;)) > (10)
P(dm(t,C;) > dn(t,Cr)), where i € {1,--- ,r —1,r+1,--- ,k}

Since probability values are non-negative, from Eq. [I0 we have

k M M
LI (P(2 dn(t.C) > 2 dn(t.C)) 2 (1)
k
I (P(dn(1.C) > don(8,C))).

According to the definitions of ¥,,(t, C,) and ¥(t,C,), we have

k
Ui (t, Cr) = 4¢H_1P(dm(t, Cz) — dn(t, Cr) > 0), (12)
and
k M M
W(ta Cr) = .¢H71P( gldm(taci) - gldm(tacr) > 0)7 (13)

by combining Eqs [l [[2] and [I3] we have
U(t,Cr) > hm(t, Cy).0 (14)

4 Experimental Results and Discussion

We compared image classification accuracy of ADM, BDM and bagging. For the
bagging approach, BDM classification was done for each sub-set before a plurality
vote. Both clinical and non-clinical images were used. We directly used image
pixel intensities in the metric learning, so that the results obtained in this way
would not depend on any specific image feature. We also performed preliminary
experiments on the potential application of ADM in image retrieval. In order to
do so, following the notation in Eq[3 we define the aggregated distance between ¢

M
and x;; as D(t, z;;) = 21dm (t,x;;) and employ this measure for image retrieval.
m=
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Table 1. Comparison of classification accuracy of clinical images using different meth-
ods (ADM, BDM and bagging). The highest accuracy values are shown bolded.

Number of Number of training Number of Classification accuracy
classes (k) image per class (n) test images ADM BDM  Bagging

6 3 68 0.50 0.31 0.38
10 3 106 0.39 0.12 0.22
8 4 80 0.43 0.27 0.38
14 4 128 0.39 0.11 0.25
10 5 86 0.43 0.30 0.36
10 6 76 0.69 0.66 0.68

4.1 Experiments Using Clinical Images

The clinical images used are the X-ray images from ImageCLEFmed2009 data
se, which consists of 12677 images that have already been categorized into 193
classes by experts. We randomly selected images of k classes, and for each class, n
images were randomly chosen as the training images while the remaining images
were used as the test images. The classification of these test images were already
known, which could be used as the ground truth to calculate the classification
accuracy. We varied the values of k£ and n to change the training data size.

Experiments on image classification: For each set of £ and n, image clas-
sification experiments were done using ADM, BDM, and bagging, respectively.
Table [ shows the result. For all the different values of ¥ and n, our method
achieved the highest classification accuracy. Note that although these accuracy
values are lower than those reported in [1], a significantly smaller number of
training images was employed in this study.

Preliminary experiments on image retrieval: ADM and BDM were also
compared in the context of image retrieval. We randomly selected test image
as the query image to retrieve images in the training data. Figure [I] shows a
few examples of the retrieval when k& = 6 and n = 3, where only the 3 closest
matches found by ADM and BDM are shown. Our method gave a better result
as the retrieved images contains fewer irrelevant results.

4.2 Experiments Using Non-clinical Images

The non-clinical images used are the toy car imageﬂ, which consists of 255
images of 14 classes. Like experiments using clinical images, the values of k and
n are varied to change the size of training data.

Experiments on image classification: ADM was compared with BDM and
bagging for each set of £ and n in the same manner as for the clinical images.
All color images were turned into grayscale before the experiments. Table

! http://ganymed.imib.rwth-aachen.de/irma/datasets en.php
2 http://lear.inrialpes.fr/people/nowak /dwl/toycarlear.tar.gz
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Fig. 1. Examples of clinical image retrieval result. Green and red bounding boxes in-
dicate relevant and irrelevant retrieval result, respectively. Retrieved images are sorted
according to their similarity to the query.

Table 2. Classification accuracy of non-clinical images using different methods. The
highest accuracy values are shown bolded.

Number of Number of training Number of Classification accuracy
classes (k) image per class (n) test images ADM BDM  Bagging

6 3 94 0.86 0.78 0.79
10 3 160 0.64 0.51 0.46
14 4 200 0.61 0.46 0.41
10 6 130 0.69 0.66 0.67

shows the comparison result. For all the different values of k£ and n, our method
returned fewer irrelevant images.

Preliminary experiments on image retrieval: We also compared ADM
and BDM in the context of image retrieval. Query image was randomly chosen
to retrieve the training images. Figure [2] shows a few examples of the retrieval
when £ = 6 and n = 3, where only the 3 closest matches found by ADM and
BDM are shown. Our method again gave a better result.

Fig. 2. Two examples of non-clinical image retrieval result. Green and red bounding
boxes indicate relevant and irrelevant retrieval result, respectively. Retrieved images
are sorted according to their similarity to the query.
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4.3 Discussion

We found that our method performs better than bagging when the training data
for each class are limited. We suspect the reason is that the plurality vote, which
is employed by bagging, sometimes results in two or more classes tied in a vote.
In such cases, bagging selects a class randomly. However, when evaluated by the
summation of numeric distances, as in our method, it is less likely to result in a tie.

In Section 3.2, at each iteration, we randomly choose n whole classes of images
to construct the sub-sets. We would like to point out that theoretically, there
should be no restriction on how the sub-sets are constructed. The reason behind
our choice is that all the training images of a certain class can be utilized. Since
the number of training images for each class is already small, further reducing
this number may run the risk of decreasing the statistical representativeness of
the data even more [4]. Also, in this way, we manage to place a reasonable upper
limit on the total number of sub-sets.

5 Concluding Remarks

Accurate image classification is important in many medical applications. Super-
vised distance metric learning has shown great potential in image classification
tasks. However, when faced with limited training data, especially when the num-
ber of training images for each class is small, the classification accuracy may be
severely affected. We presented a novel method called aggregated distance metric
learning (ADM) to classify a test image with limited number of training images.
Our method combines the best of distance metric learning and bagging. Our
method was found to be more accurate compared to both BDM and the bag-
ging approach. We also presented a rigorous theoretical analysis to demonstrate
that ADM is better at image classification compared to BDM. Experimental
results using both clinical and non-clinical image data showed the efficacy of our
method. Future work will involve further testing of our method on additional
data sets and performing more extensive quantitative evaluation.
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Abstract. Classification is one of the core problems in computer-aided
cancer diagnosis (CAD) via medical image interpretation. High detection
sensitivity with reasonably low false positive (FP) rate is essential for any
CAD system to be accepted as a valuable or even indispensable tool in
radiologists’ workflow. In this paper, we propose a novel classification
framework based on sparse representation. It first builds an overcom-
plete dictionary of atoms for each class via K-SVD learning, then clas-
sification is formulated as sparse coding which can be solved efficiently.
This representation naturally generalizes for both binary and multiwise
classification problems, and can be used as a standalone classifier or in-
tegrated with an existing decision system. Our method is extensively
validated in CAD systems for both colorectal polyp and lung nodule de-
tection, using hospital scale, multi-site clinical datasets. The results show
that we achieve superior classification performance than existing state-
of-the-arts, using support vector machine (SVM) and its variants [1}2],
boosting [3], logistic regression [4], relevance vector machine (RVM) [56],
or k-nearest neighbor (KNN) [7].

1 Introduction

Colon cancer and lung cancer are the two leading causes of cancer deaths in west-
ern population. However, these two cancers are highly preventable or “curable” if
detected early. Image interpretation based cancer detection via 3D computer to-
mography has emerged as a common clinical practice, and many computer-aided
detection tools for enhancing radiologists’ diagnostic performance and effective-
ness are developed in the last decade [TH4l6H8]. The key for radiologists to accept
the clinical usage of a CAD system is highest possible detection sensitivity with
reasonably low false positive (FP) rate per case.

CAD system generally contains two stages: Image Processing as extracting
(sub)volumes of interest (VOI) by heuristic volume parsing, and informative fea-
ture attributes describing the underlying (cancerous) anatomic structures; Clas-
sification as deciding the class assignment (cancer, or non-cancer) for selected
VOIs by analyzing features. VOI selection is also called candidate generation, or
CG to rapidly identify possibly anomalous regions with high sensitivity, but low

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAT 2011, Part ITI, LNCS 6893, pp. 41[48] 2011.
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specificity, e.g. more than 100 candidates per scan with one to two true positives.
Then dozens or hundreds of heterogeneous image features can be computed per
VOI, in domains of volumetric shape, intensity, gradient, texture and even con-
text [ILBLALTR]. Lastly, the essential goal for classification is achieving the best
balance between high sensitivities and low false positive rates, given VOIs and
associated features.

In this paper, we propose a new sparsity conducted classification framework,
namely dictionary learning as training and sparse coding as testing, for CAD
problems. Sparse signal representation has proved to be a very powerful tool for
robustly acquiring, representing, and compressing high-dimensional signals that
can be accurately constructed from a compact, fixed set of basis. The sparse
representation (related to but different from subspace models of principal com-
ponent analysis, independent component analysis, non-negative matrix decom-
position) is effective in pattern recognition problems, and with link to biological
evidence in human cortex system [9]. To the best of our knowledge, the present
paper is the first reported work of exploiting sparse representation for CAD
classification.

Different from the conventional parametric supervised classifiers of SVM,
RVM, KNN, logistic regression and so on, a monparametric vocabulary as set
of exemplary atoms (learned as optimal rank-1 data matrix approximations) is
constructed by maximizing its reconstruction power (or minimizing reconstruc-
tion error), within each positive or negative class, given the original training
dataset. Then the testing or classification of a new data sample is accomplished
by solving for the best approximation per vocabulary/class, under various spar-
sity constraints. The proposed classification method is evaluated on two large
scale clinical datasets collected from multiple clinical sites across continents, for
two tasks of colon polyp and lung nodule detections. Our datasets are represen-
tative, but very challenging with large within-class variations for polyp, nodule
class and other anatomical structures in colon and lung volumes. The results val-
idate that this new classification framework can significantly improve the accu-
racy of our baseline computer-aided detection system, using the same set of input
image features, and compare favorably with other state-of-the-arts [IH4L6HS].

2 A Dictionary Approach to Classification

In this section, we present the new sparsity based classification framework for
both binary or multiwise classes. The framework is comprised of two steps: dic-
tionary learning and sparse coding. Unless otherwise noted, all vectors in this
paper are column vectors. Also, || - ||2 represents the regular Euclidean norm,
and || - [Jo counts the number of nonzero components of a vector. (+;-) denotes a
vector or matrix by stacking the arguments vertically.

2.1 Sparse Dictionary Learning

Problem Formulation: Suppose that there are N data samples {y; € R" : i =
1,---, N} of dimension n, and the collection of these N samples forms an n-by-N
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data matrix Y = (y1,- - ,yn) with each column as one sample vector. Our goal
is to construct a representative dictionary for Y, in the form of an n-by-K matrix
D = (dy,- - ,dk), that consists of K (usually K << N) key features {d; € R" :
i =1,--- K} extracted from Y. In the dictionary context, d; is also called
an atom that represents one prototype feature in the category. This dictionary
D needs to be trained from Y, and should be capable to sparsely represent
all the samples that are in the same category as those in Y. Here by sparse
representation we mean that each y; can be written as a linear combination
of very few atoms in D. In other words, we want to find a dictionary D and
corresponding coefficient matrix X = (z1,--- ,2x) € REXN such that y; = Dz;
and ||z;]jo << K foralli=1,--- N.
The problem can be readily formulated as the following minimizations:

N
%n)lgz; |@]lo, subject to ||ly; — Daslla <€, i=1,---,N, (1)
1=

where € > 0 is the prescribed error tolerance of representation error. The solution
(D, X) of (@) yields a dictionary D which extracts the main features {dj : k =
1,---,K} from samples in Y, and a coefficient matrix X with each column
x; representing the correlations between y; and the dictionary atoms in D, by
minD,X ||$2||0

Solving D, X: Since the objective function in () is highly nonconvex and nons-
mooth, the solution is in general nontrivial. However, there are several algorithms
that can be used to well approximate the solutions of ({I), and numerous numeri-
cal tests demonstrated that these algorithms are very effective in practice. In this
paper, we use the recently developed K-SVD algorithm [10], which has proved
to be very robust to solve (), by iterating exact K times of Singular Value
Decomposition (SVD).

Starting from an initial dictionary, K-SVD algorithm approaches the solution
of () by alternating the following two steps: the minimization with respect to
X with D fixed, and the update of atoms in D using the current X.

The first step is called the “sparse coding” and can be formulated as

min ||xl||07 SUbjeCt to ||yl - Dml”Q < € i = 17 U 7N7 (2)
z;

Although (@) is in general an NP-hard problem, the solution can usually be well
approximated by many pursuit algorithms. In this work, we used the default
sparse coding solver in K-SVD algorithm called the orthogonal matching pursuit
(OMP) [11].

The second step is called the “dictionary update” which modifies the atoms
in D one by one to better represent the data Y. To update dj, the K-SVD
algorithm first finds the index set Iy, = {i : xx; # 0}, which is just the set of
indices of y;’s who used dj in representation in the sparse coding step. Then it
applies the singular value decomposition (SVD) of the error matrix

Ey, =Y, — DX (3)
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where Dy, is D with dj, replaced by 0. In ([B]), Y and X}, collect the columns with
indices in Iy from Y and X, respectively. Finally, K-SVD substitutes dj in D by
the principal singular vector from the SVD of E} and modifies the coefficients
accordingly. This optimization is sequentially executed for each ¥k = 1,--- | K
while keeping all other columns d; (j # k) fixed. Refer [10] for more details.

Output: The output of K-SVD consists of a trained dictionary D that contains
atoms as features extracted from Y, and a coefficients X that records the sparse
correlation or dependency of each sample y; to these atoms. This learned dic-
tionary D will be employed as a special form of classifier for CAD classification
task. The dictionary D is build from training data Y in a data driven manner,
and is capable to sparsely represent the very majority of data samples that are
similar to those in Y.

2.2 Classification Using Learned Dictionaries

Our sparsity based classification framework, including the dictionary learning
and classifier building, is essentially generative. It is able to handle both binary
and multiwise classification problems.

Suppose that the training samples are given in the form of L (L > 2) cate-
gories, {Y(O ¢ RNt [ =1,... | L}, where YV = (y%l)7 e 7y§\l[3) consists of N,
training samples labeled by [. To design a robust classifier, we apply the K-SVD
algorithm to () with ¥ = Y and obtain the respective dictionary D@ for
each [ = 1,---,L. Now D® consists of the main exemplary atoms or features
of the I-th category, and all samples belonging to this category can be sparsely
represented by D). Furthermore, we can construct the global dictionary D by
concatenating all D®) as follows

D= (DWW, D? ... DE)y RN (4)

where N =}, N;. This global dictionary D is used as the classifier in our tests.
In order to determine the label of a new coming sample y, we solve the mini-
mization problem

min || z]|o, subject to ||y — Dzl]2 <€ (5)
x

with the global dictionary D in (@l) using OMP [II]. Then we can examine the
coefficient vector 2 = (z(); .. ; (1)) solved from (@), and classify y to the I-th
category if the nonzero components of x are clustered in the I-th segment of x,
i.e. z). That is, a label [ is assigned to y if the solution z = (m(l); e ;x(L)) of
[B) satisfies

JeDlo = max{ oo : m = 1,- -+, L}. (6)

An ambiguous situation may happen if (") contains the largest component of
z, but has less nonzero elements when compared to (. In this case, the label
assigned to y is [ instead of I’ according to the criterion (@). However, it is
more intuitive and reasonable to assign y by the label I’, as the key feature of
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y occurs with higher weights in the I’-th category or D). A remedy of this is
to substitutes the ¢y norm in (@) by the ¢;-norm which can retain the sparsity
property and take the magnitudes of the coefficients into account.

An alternative criterion for classification is to solve the per-category objective

m(lgl 1200, subject to [y — DWWy < (7)

for | = 1,---, L respectively, and obtain the coefficients z() € RM for all | =
1,---, L. Then y is classified to the [-th category if y appears to be “more”
sparse with respect to DY), namely,

1200 = min{[|z™lg :m =1,---, L}. (8)

This means that D® is more capable to extract the key features, or components
of y than other dictionaries, indicating that y should be in the category I.

It is worth noting that the difference between (@) and () leads to distinct
criterion (@) and (). The criterion (6] implies that y is more similar to the
contents in D so it prefers D® when exposed to all D = {D(l)} simultaneously.
On the other hand, (8) suggests that DU effectively attains the main features of y
and is more capable to represent y sparsely when compared to other dictionaries,
with the same error tolerance e.

3 Experiments

Data: Our colon CAD dataset contains 429 patients or 858 CT volumes (i.e.,
two prone/supine scans per patient), collected from multiple hospitals in the US,
Canada, Asia and Europe, and acquired using Siemens, GE and Philips scanners.
After the candidate generation process (briefly discussed in Section[I]), we obtain
134116 data candidates, out of which 1116 samples are positives belonging to
391 real polyps because one polyp can have multiple instances appeared, and the
rests are negatives. Each data sample is represented using a 96 dimensional fea-
ture vector, including geometry, shape morphology, intensity and texture cues,
computed by our CAD system. Moreover, 411 positive samples are instances of
137 flat polyps and 705 positives belong to 254 non-flat, or SP (e.g., sessile,
pedunculated and mass) polyps. Therefore, the dataset can be subdivided as two
classes as negatives (-) and positives (4) or three categories, namely negatives
(-1), flat polyps (+1) and non-flat polyps (+2). The lung nodule dataset was
obtained from 1000 patients from multiple medical sites in different countries
using various scanners. This dataset contains the information of part-solid nod-
ules with a diameter range of 4-20mm. There are 49,094 samples after CG stage,
out of which 2,531 are positive nodule instances (4) and the rest as negatives
(-). Each data sample has 112 features. In the following, our experiments use
5 fold cross-validation and no data samples from the same patient are used for
both training and testing.

Standalone: For comparison, we first train a baseline classifier using multiple
instance relevance vector machine (MILRVM) [5], and its training/testing clas-
sification performances, in the form of Free-Response Operator Characteristic
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(FROCQ) curves, are illustrated in Fig. [[land 2l Note that these baselines achieve
comparable results with state-of-the-arts [TH4L[6HR] on datasets of similar data
scales). Next, using the positive and negative samples in the training dataset
(i.e., L = 2), we learned dictionaries D, € R™X and D_ € R"*X for (+/-)
classes, respectively. The dictionary size K = 3 X n is normally chosen with
respect to data dimension n, here 3 = 4. When g > 4, the classification perfor-
mances are similar. After this, both dictionaries are concatenated into a single
dictionary D € R™*(L*K) "and the classification criterion (F]) is applied. In colon
dataset n = 96 and K = 384; and n = 112, K = 448 for lung. The sensitivities
are calculated on per-polyp or per-nodule level, consist with multiple instance
learning setting [5], and the false positive (FP) rates are reported on a per-
patient level (i.e., summing FPs in two volume views) in colon and per-volume
level for lung. For L = 3 of colon CAD, when an instance is classified either

s (+1) for flats or (+2) for SP, an overall “hit” or detection will be counted.
The classification results on training and testing (validation) datasets are shown
in Table [l Though sparse classification does not provide FROC curves, it has
(2% ~ 5%) higher detection sensitivities than our MILRVM baselines, at low
FP rates of < 3 per case in both colon and lung datasets. This is highly suitable
for clinical applications.

Table 1. Standalone Sparsity Classification Results for Colon Polyp (L=3) and Lung
Nodule Detection (L=2)

Colon Polyp CAD Lung Nodule CAD

FP Rate Sensitivity Flat Sensitivity SP Sensitivity FP Rate Sensitivity
Training 2.6818  91.12% 84.97% 91.79% 2.6919  90.32%
Testing 2.6897  89.68% 79.98% 94.20% 2.6797  89.65%

Gated Fusion: To build the best overall CAD system, we exploit the three-
way gated decision tree, integrating both RVMMIL [5] and sparsity classifiers.
RVMMIL assigns each data sample a probability value p(+), of being positive
class. Therefore, we design the following three gates or decision rules: (1) if
p(+) > 71, classifying as positive; (2) if p(+) < 72, classifying as negative, where
v1 > y2; (3) if 1 > p(+) > 2, employing sparse classification (L=2, or L=3).
The thresholds 1, 72 are estimated by maximizing the decision tree classification
accuracy via cross validation. Conditions p(+) > 71, p(4+) < 72 indicate samples
being positive or negative with high confidence; while v1 > p(+) > 72 refers
ambiguous classifying data samples by RVMMIL.

Fig. [ (Left) shows the combined model achieves 6% ~ 8%, or 2.4% ~ 3.2%
sensitivity improvements for colon polyp detection, in training and testing re-
spectively, at ~ 2.7 FPs per patient. On the other hand, at the same sensitivities,
our method can reduce the FP rates by 3 ~ 4 per patient, with respect to training
or testing. Note that L = 3 performs better than L = 2 which shows the advan-
tage of modeling capacity for a more comprehensively generative representation,
consisting of richer dictionaries D = (D(l),D(2), e ,D(L)). Similarly, at least
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Fig. 1. The classification results of using our proposed method and comparison with
the CAD baseline, for training and testing in the colon dataset (Left) and lung dataset
(Right). CAD baselines are plotted for comparison.
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Fig. 2. Sensitivity vs. FP rate per patient (i.e., two volumes) for Flat polyp detection
(Left) in training and testing datasets; and for Sessile-Pedunculated polyp detection
(Right). CAD baselines are plotted for comparison.

2% ~ 3% sensitivity gains are observed for lung nodule detection, corresponding
to the same FP rates, in Fig. [l (Right). These improvements are statistically
significant for colon/lung cancer detections, from the already high-performed
baselines. Furthermore, the sensitivities for flat or sessile-pedunculated polyps
are also greatly increased (by 4% ~ 7%), as shown in Fig. 2 (Left) and (Right).
The three-gate combined model also consistently outperforms single RVMMIL
baseline or sparsity classifier, in all scenarios.

4 Conclusion and Future Work

In this paper, we present a new sparse representation based classification method
for computer-aided diagnosis problem, by learning an overcomplete dictionary of
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exemplary atoms for each data class and adapting sparse coding criteria for effec-
tive classification. This generative formulation has the ability of modeling two or
multiple classes in the same way. It can be used either as a standalone classifier,
or integrated with other decision-making scheme(s). Our proposed method is
validated in two CAD systems of colorectal polyp and lung nodule detection, us-
ing large scale, representative clinical datasets. The results show that we achieve
superior performances than our baseline and other existing state-of-the-arts. In
future work, we plan to explore how to integrate class discriminative information
for dictionary learning [I2], and other decision fusion structures of heterogeneous
classifiers.
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Abstract. This paper presents an algorithm for the automatic detection
of intravenous contrast in CT scans. This is useful e.g. for quality control,
given the unreliability of the existing DICOM contrast metadata.

The algorithm is based on a hybrid discriminative-generative proba-
bilistic model. A discriminative detector localizes enhancing regions of
interest in the scan. Then a generative classifier optimally fuses evidence
gathered from those regions into an efficient, probabilistic prediction.

The main contribution is in the generative part. It assigns optimal
weights to the detected organs based on their learned degree of en-
hancement under contrast material. The model is robust with respect
to missing organs, patients geometry, pathology and settings. Validation
is performed on a database of 400 highly variable patients CT scans.
Results indicate detection accuracy greater than 91% at ~ 1 second per
scan.

1 Introduction

Medical images stored in the DICOM standard contain a wealth of associated
metadata. Many metadata elements are acquired automatically, e.g. the slice
thickness. Others (e.g. the anatomical region being scanned) require human input
at the time of acquisition. However, manual input is prone to error [I]. Accuracy
of DICOM metadata is important in routine clinical care, where those tags are
used to ensure that the requested imaging service has in fact been performed.
Metadata accuracy is also crucial in clinical research, e.g. in trials where the
effectiveness of a drug is monitored using imaging.

This paper presents an algorithm for the automatic detection of intravenous
contrast. Its corresponding DICOM tag (id (0018,0010), one of the key meta-
data) requires manual input during image acquisition. However, in our experience
only ~ 80% of CT studies present the correct value (see also [I]). Such accuracy
is operator and hospital dependent. The unreliability of this tag means that the
only way to know whether there is contrast in a scan is through visual inspection.

Our technique alleviates this problem by automatically classifying CT scans
as contrast-enhanced or not. In [2] Prince et al looked at detection of contrast
material arrival in the aorta. However, manual intervention was required to select
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regions of interest. Similarly in [3]. Such work would benefit greatly from our
technique as it removes the need for any manual input.

Effective automatic detection of contrast material does require some level of
localization of relevant regions (e.g. organs which enhance in the presence of
i.v. contrast agents). Thus, techniques for anatomy segmentation in CT could
be beneficial for such purposes. Many such algorithms have been proposed, e.g.
[A567/8]. However, the majority tend to focus on a single area of the body, or
are specific to a certain disease and sometimes still rely on human intervention.
Also, none of these have been used for verification of DICOM metadata accuracy.
The algorithm proposed here automatically detects multiple enhancing regions
of interests and combines the gathered evidence optimally to produce accurate
contrast detection. It works on completely generic, pathology-rich CT scans.

Outline. Our algorithm is in two stages: I) first, major anatomical structures are
automatically localized; IT) then, contrast detection is achieved via a generative
model of CT scans. The main novelty is in the second part which optimally fuses
evidence from detected organs for robust contrast detection.

2 The Annotated Database

We have collected a database of 400 diverse patients CT scans (see fig. [). The
patients suffer from various pathologies and the scans have been acquired with
different scanners, at varying resolutions, viewing different body regions. The
data comes from hospitals in different continents. All studies are expert labeled
into belonging to the “contrast-enhanced” (C) or “native” (N) classes. If only
oral contrast is present (and no i.v. contrast) then the scan is labeled as N.

As detailed in section [ the database is divided into many non-overlapping
training and test sets. Parameters are optimized on the training set and all
accuracy measurements performed on the previously unseen test set, to avoid
over-fitting.

Fig. 1. Variability in our 400-patient database. (a, c, e, f, h) Patient scans with
i.v. contrast. (b, d, g) No i.v. contrast. (a, d) Additional oral contrast. (a) Scan with
missing left lung. (c) Kidney cyst. (d) Transplanted kidney. (f) Aortic aneurism.
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3 Stage I - Discriminative Anatomy Localization

Our algorithm for the automatic localization of anatomy in CT builds upon the
work in [9] and is summarized here for completeness. A regression forest is used
to map CT voxels directly to organs position and extent. We build upon a forest
technique because of its efficiency and robustness.

The forest is trained to localize the following 12 structures: heart, liver,
spleen, lungs, kidneys, gall bladder, pelvis, femurs. The trees are trained
on a set of volumes with known organ bounding boxes. The trees cluster voxels
together based on their appearance, their spatial context and their confidence
in predicting position and size of all anatomical structures.

During testing, all voxels are pushed into all trees. Each node applies a test
on each voxel which consequently is sent to the left or right child. When a voxel
reaches a leaf node the stored relative displacements are used to cast a vote on
position and extent of each organ. The leaves with largest prediction confidence
carry more weight in the final prediction. See [9] for further details.

Figure 2l shows some detection results. Good anatomy localization is achieved
even in the presence of pathologies such as cysts or missing lungs. Our C++
implementation produces a mean localization error of ~ 1.5¢m in approximately
1s on a single-core desktop machine. Next we describe how information coming
from all detected organs is fused together to yield accurate contrast detection.

Fig. 2. Results of discriminative anatomy localization. Automatic anatomy de-
tection in diverse patients’ CT scans. The detected organs (e.g. heart, kidney, liver,
lung) are shown in red. The faint blue line denotes ground truth. The detections are
robust to large variabilities in the scans, including pathologies. E.g. (b) Large cyst in
abdomen. (h, k) Missing left lung. (d, e, f, g) Cysts and other kidney anomalies.
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4 Stage Il - Generative Contrast/No-Contrast
Classification

This section describes the main contribution of this paper, i.e. a new, part-
based generative model of CT scans and its use for contrast detection. Given a
previously unseen 3D CT image, the goal is that of estimating its class ¢, with
¢ € {C,N}. Here we also assume given the position of organs of interest together
with the associated confidence (as described in section ).

The probabilistic model. Evidence coming from detected anatomical regions
is aggregated via the graphical model shown in fig. Bl The probability of class ¢
is what we wish to estimate. The variable s; denotes the appearance of the it"
anatomical structure. In a given image, the organ appearance s; is represented
as a histogram over density values (in HU). The histogram is computed over all
voxels within the organ’s bounding box and is normalized to have unit area.

Handling visibility. In a given scan some organs may be absent (e.g. because
missing or outside the capture area). Their status is captured by the binary
visibility variable o; € {0, 1}, with 0,1 denoting absence/presence, respectively.
For the organ i we set o; = 0 if the organ detection posterior falls below 0.5, as
in [9]. From fig. Bl the joint probability of the whole model is

N

p(c,8,0) = p(e) [  wlsilos, o)p(o:) (1)

with N = 12 the total number of organs, S = {s1,---,sy} and 0 = {01, -, 0N }.

Model training. The data likelihood p(s;|o; = 1, ¢) is modeled as a multivariate
Gaussian: p(s;|o; = 1,¢) = N(s;;8;% A5), with s; the mean and A; the covariance
matrix. Since ¢ assumes binary values we need to learn two likelihood models
for each organ. This is done readily from annotated training studies.

Figure @] shows such likelihoods for some selected organ classes, learned from
200 training scans. We observe that the appearance of bony structures (e.g. the
pelvis) is not affected by i.v. contrast. This is shown by the fact that p(s|c = C) =
p(s|c = N) (visibility variable o removed here for simplicity). Instead, for organs

O
» L&

Fig.3. Our generative model. (a) Graphical representation of our probabilistic
model. (b) As in (a) but represented with plates. See text for details.
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Fig.4. Learned likelihood models. The learned likelihoods p(s;|c = C) and p(s;|c =
N) for 8 organs are shown in green and red, respectively (visibility variables removed
for simplicity). The two learned models are more different from one another in those
organs that tend to enhance in the presence of i.v. contrast. Our algorithm assigns
optimal weights (e.g. higher for heart and lower for femur) for final contrast detection.

such as the heart or kidneys (enhancing) the automatically learned likelihood
models are very different in the two cases. This is not surprising, but what is
important here is that our model captures such differences quantitatively. To
obtain accurate contrast detection we wish to give more weight to those organs
which enhance more in the presence of i.v. contrast, and vice-versa. But what are
the right weights to use? Additionally, the appearance of some structures changes
considerably across different patients while others show more consistency. Thus,
uncertainty must be taken into account for the final contrast classification. Our
generative model captures all these intuitions quantitatively and provides a way
of assigning optimal weights to the different organs, automatically.

Contrast detection. The next step is to combine image observations and
learned models and come up with a single contrast/no-contrast answer. Dur-
ing testing we are given a previously unseen scan, its detected bounding boxes,
their associated appearance observations s; and also the visibility observations
o; for all organs. Bayesian manipulation of () leads to the class posterior

N . N
p(els,0) = & p(o) TT, p(silos, c)p(on), with Z = 1 [p(e) T plsiloi, e)p(os)]-
So, the ratio of the class posteriors for the two cases is

_ ple=0[s,0) _ ple=C) {7 plsiloi,c = C)p(0;)
~ple=1i5.0) ~ ple=m Ll pisilorc = 10pon) ?

with the priors p(¢ = C) and p(c = N) learned from the training set.
If a structure ¢ is not present (o; = 0) then its appearance s; is undefined
and so is the likelihood p(s;|lo; = 0,c¢). Thus we need to remove its influence
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from ([2). We do so by defining p(s;|o;,¢) = p(silo; = 1,¢)° which reduces to
1 for undetected structures. This when plugged into () has the desired effect.
Thus the posterior ratio reduces to

R="C=O] (p(sioi = 1,c=c>>°f @)

p(siloi =1,c=N)

Finally, maximum a-posteriori estimation (MAP) happens by checking the value
of Rin (@)). If R > 1 then the scan is declared to be contrast-enhanced, and vice-
versa. Values of R close to 1 indicate uncertain output.

In our model robustness to pathology arises from: i) having those anomalies
in the training set, and ii) aggregating evidence over multiple organs. A small
number of such organs may exhibit unusual shape or appearance, but other
healthy structures would contribute positively towards the final outcome.

5 Experiments, Results and Comparisons

This section presents evaluations and comparisons with possible alternatives.
Figure Bl shows the learned likelihood models for various organs of interest
and, for two test scans, the individual organ appearances s;. Note how organ
appearance in contrast-enhanced scans is better explained by contrast-enhanced
likelihood models, and vice-versa. This holds true for enhancing organs and does
not for bony structures (whose black curve is equally close to both models).
When evaluating the posterior ratio (Bl) we see that each organ contributes
to the final ratio via its own factor. All NV factors then get multiplied together.

heart liver spleen femur (right)
Llf U am om .
= e
= n
- 237 & om oo ot
g % & = . L
wlwa | oo ase i
w 3 = - am oo
El2F & - [}
|- ] B, e T
a L o = . = L' -t R e
™ I
z om
- - us ur
= z b s
~ -é' [ £ om - [
ifeeel = - ase
g T % B s bor om o
A S E £ - ot
= - "
Gl& 3 =
RO R T ow o wom m e S5 m 6 TR R R W w6 e o o e
b densities (HLI) densities (FHLU) densities (HLU) densities {HU)

Fig.5. Testing individual organ likelihoods for two previously unseen CT im-
ages. The learned likelihood models p(s;|o; = 1,¢ = C) and p(s;|o; = 1,¢ = N) for four
different anatomical structures are shown in green and red, respectively. The appear-
ance descriptor s; for the same organs in the input test scans are shown in black. (a)
In the case of a contrast-enhanced image the organ appearances are better predicted
by the contrasted likelihood models (black curve closer to the green models), (b) and
vice-versa in the case of native CT scans. Such likelihoods are combined with prior
probabilities in (@) to produce maximum a-posteriori classification.
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Anatomical structures such as bony ones tend to contribute posterior factors
close to 1 and thus they (correctly) do not have much effect on the final classi-
fication. On the contrary, enhancing soft tissue organs contribute in proportion
to how much they enhance in the presence of i.v. contrast. This demonstrates
automatic weighting of organs contribution for contrast detection.

Quantitative evaluation is done by repeatedly subdividing our 400-large CT
database into disjoint training and testing sets, with random selection of the
studies and varying ratio between the two sets. Our models are trained exclu-
sively on the training set and evaluated exclusively on previously unseen test
images. Figure Bh shows classification accuracy as a function of percentage of
training volumes. As expected the accuracy increases with the number of train-
ing images. However, its behavior is very flat (close to constant), thus indicating
good generalization, with a mean accuracy of ~ 91%.

We also investigated the robustness of the generative classifier with respect
to noise in the discriminative anatomy localizer. We do so by artificially adding
varying amount of noise to the detected organs bounding boxes. Plotting accu-
racy as a function of noise (fig. Bb) shows a reasonably slow fall off for noise as
large as 20mm. This indicates good robustness with respect to inaccurate organ
localization. In both plots in fig. [l the experiments were repeated 100 times for
each x-axis value. The estimated 2-std confidence region is shown shaded.

Visual inspection of incorrectly classified images shows that most of those are
borderline cases, where perhaps the contrast agent has not had sufficient time
to diffuse. Generally this uncertainty is indicated by a posterior ratio close to 1.

Efficiency. Run-times remain of the order of 1s for the whole discriminative +
generative testing phase, as the generative part adds a negligible load.
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Fig.6. Automatic contrast detection results (a) Results of scan classification
into contrast-enhanced or native as a function of training/test ratio. Accuracy in-
creases with the number of training data. However, the flatness of the curve indicates
good generalization. (b) Results of contrast detection for increasingly noisy organ lo-
calization. The accuracy curve falls off slowly with increasing noise, thus indicating
good noise robustness. Note that accuracy of existing manual DICOM tag is ~ 80%.
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Parameters. The only additional parameter in our generative model is the
histogram length, which is automatically optimized during training.

Comparisons. We compared our algorithm against one of the state of the art
recognition techniques, i.e. random classification forests [10]. Recently, classifica-
tion forests have been shown to yield excellent results in diverse applications [I1].
During training Haar wavelet-like features are automatically selected in differ-
ent spatial arrangements and positions. This is to allow automatic alignment
of box-like ROIs with enhancing organs and avoid a separate organ detection
step. After optimizing all parameters for best results we recorded an accuracy
of ~ 87%, considerably lower than that of the two-step approach proposed here.

6 Conclusion

We have presented a hybrid discriminative-generative model for the efficient, au-
tomatic detection of intravenous contrast agent in CT scans. The algorithm can
automatically localize enhancing regions in the scan and weigh them optimally
in order to achieve the most accurate detection results. It is robust to missing
organs, pathologies and possible inaccuracies in the organ localization stage.
Validation on a large database of pathology-rich scans has demonstrated ac-
curacy greater than that of manually annotated DICOM contrast tags. Our
algorithm plays an important role in routine quality control of hospital data as
well as in clinical research. It may be applied to other quality control tasks such
as detection of oral contrast or identification of the specific contrast material.
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Abstract. In this study, we present a system for Alzheimer’s disease
classification on the ADNI dataset [I]. Our system is able to learn/fuse
registration-based (matching) and overlap-based similarity measures,
which are enhanced using a self-smoothing operator (SSO). From a ma-
trix of pair-wise affinities between data points, our system uses a diffusion
process to output an enhanced matrix. The diffusion propagates the affin-
ity mass along the intrinsic data space without the need to explicitly learn
the manifold. Using the enhanced metric in nearest neighborhood classi-
fication, we show significantly improved accuracy for Alzheimer’s Disease
over Diffusion Maps [2] and a popular metric learning approach [3]. State-
of-the-art results are obtained in the classification of 120 brain MRIs from
ADNTI as normal, mild cognitive impairment, and Alzheimer’s.

1 Introduction

Alzheimers Disease (AD) and its preclinical stage, mild cognitive impairment
(MCI), are the most common form of dementia in elders. Magnetic resonance
imaging (MRI) can provide insight into the relation between AD and the struc-
ture of the brain: AD is known to be connected with gray matter loss [4] and
with the shape of subcortical structures (especially the hippocampus) [5]. There
have been several attempts in the literature to automatically classify a brain
MRI as AD, MCI or normal (typically represented by older control subjects,
OC). Chupin et al. [0] automatically segment the hippocampus and use its vol-
ume for the classification. Vemuri et al. [7] use support vector machines (SVM)
based on tissue densities and a number of covariates (demographics, genotype).
Kloppel et al. [§] feed a SVM directly with image data after registration (i.e.
spatial alignment). Zhang et al.[9] use a SVM with cerebrospinal fluid, positron
emission tomography and MRI data as features. Davatzikos et al. [I0] use the
distribution of gray matter, white matter and cerebrospinal fluid in registered
space. Desikan et al. [11] feed the entorhinal cortex thickness, hippocampal vol-
ume and supramarginal gyrus thickness to a logistic regression analysis. These
works are summarized in Table [

In this paper, we approach the OC/MCI/AD classification problem from the
perspective of metric learning. Given a number of heterogeneous affinity mea-
sures between the data points, the task is to find an enhanced metric which will
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Table 1. Representative methods in the literature of AD classification. For Chupin et
al. we report the range of results in a number of two-class classification problems.

Method # Subjects Classes (prevalences) Classification rate
Chupin et al. [0] 605 0OC (24%), MCI (49%), AD(27%) 60-80%
Vemuri et al. [7] 100 OC (50%), AD (50%) 89%
Kloppel et al. [§] 68 OC (50%), AD (50%) 94%
Zhang et al.|9)] 103 0C(50%), AD(50%) 93%
Zhang et al.[9] 150 0C(34%), MCI(66%) 76%

Davatzikos et al. [10] 30 0OC (50%), MCI (50%) 90%
Desikan et al. [11] 151 0OC (62%), MCI (38%) 90%

ultimately improve the classification rate in a k-nearest neighbor (kNN) frame-
work. Popular distance metric learning methods [12J3], which are mostly su-
pervised, learn a Mahalanobis distance parametrized by a positive semi-definite
matrix. However, the performance gain is rather limited because a global linear
transform does not suffice to discriminate the data. Nonlinear versions exist, but
it is difficult to find a kernel that provides good results. Non-parametric manifold
learning techniques such as Isomap [13] do not necessarily provide a better met-
ric, which limits their use in classification. They also have the disadvantage that
explicitly estimating the manifold can be difficult and time consuming. Their
application to medical image analysis has also been limited [14].

Here we adopt an unsupervised metric learning algorithm: self-smoothing op-
erator (SSO). SSO enhances an input pair-wise affinity matrix similar to a Gram
matrix. A smoothing kernel is built from the matrix and used to iteratively
propagate the affinity mass between strongly connected neighbors, following the
structure of the manifold without having to compute it explicitly. The framework
can accommodate semi-supervise learning (i.e. taking advantage of not only la-
beled but also unlabeled examples to build a classifier [I5]): even if unlabeled
examples cannot be used in the kNN classification, they can still be considered
in the prior diffusion, often bridging gaps between points with the same label.
A feature selection method is incorporated into the design of the affinity matrix
to improve the results. We apply the proposed framework to the AD classifi-
cation problem with registration-based and overlap-based similarity measures,
comparing the results with metric learning [3] and Diffusion Maps [2].

2 Materials

Brain MRI from 120 subject Brain MRI scans from 120 subjects (age 76.74+6.4
years) are used in this study. The subjects were randomly selected from the ADNI
dataset [I] under two constraints: 1) the scans are from the same cross section
(12 months after the start of the study); and 2) the three classes (OC,MCI,AD)
and the two genders are equally represented. The scans were acquired with 77-
weighted MPRAGE sequences, skull-stripped with BET [16] and fed to Brain-
Parser [17] to automatically extract 56 cortical and subcortical structures.
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3 Methods

3.1 Self-Smoothing Operator

SSO is closely related to the Diffusion Maps algorithm [2], which defines diffusion
distances between data samples to improve an input pair-wise affinity matrix. It
introduces a global diffusion distance metric over data samples. Given the tran-
sition kernel H (a row-wise-normalized version of the pair-wise affinity matrix),
the diffusion distance between data samples z; and x; at step t is defined as:

. ‘ . 1 , .
d?(laj) = Hht(zv ) - ht(]a ')H%/qﬁo = zk: ¢O(k') (ht(lak) - ht(]ak))2

where hy(i,-) is the i-th row of H!, and ¢y is the equilibrium distribution.

Instead of using an alien notion of diffusion distances between data samples as
in Diffusion Maps, we work on the affinity matrix directly, using a self-induced
smoothing kernel. Given data samples {x;,...,2z,} and a symmetric affinity
function ¥(x;, z;) = ¥z, ;) € [0,1], we define the n x n weight matrix W as
W (i,j) = 9(z;, ;). SSO diffuses the pair-wise affinities of W along the geometry
of the manifold without having to construct it explicitly:

1. Create the diffusion matrix P = D~'W, where D is a diagonal matrix with
Dy =320 W(i, ).
2. Self diffusion: W® = W pr.

In Step 1, the smoothing kernel P that governs the diffusion process in Step 2
is induced from the input similarity matrix. W) is not a proper Gram matrix
(since ¥(x;,x;) is not an inner product), so it is in general neither symmetric
nor positive semi-definite (PSD), which is not a problem in this application:
we simply take the & minimal non-diagonal values of each row as the k nearest
neighbors for classification. The only parameter in the algorithm is the step p,
which determines the scale at which the data are analyzed. The output W®) is
an updated weight matrix that represents similarity more faithfully than W (as
experimentally shown below) and that can be used directly in classification.

3.2 Similarity /Divergence Measures

The affinities W (i, j) can be built from a similarity or divergence function, =,
using a suitable transform. If several {v,,}, m = 1,..., M, are available, W
can be a linear combination: W = wy, Z%Zl W) (Ym), with Z%:l Wy, = 1.
We use two types of measures in this study: overlap- and registration-based.
The first type is based on the Dice overlap of the structures of interest, giving
a rough estimate of how similar two binary masks are. First, the centroids of
the two instances of the structure to compare (s) are aligned, yielding Y;; and

2|Ys,:NYs, ;|
i : . ) |Ys,i|+|Ys,Jj| € [0,1].
One minus the overlap would be a valid affinity. However, in order to enhance

Ys ;. Then, the Dice overlap is computed as: O(Y;;,Ys ;) =
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(d)

Fig. 1. @ Slice of a sample volume, cropped around the hippocampus. The automatic
hippocampal segmentation is outlined in black. The deformation field provided by the
registration towards the slice in @ is superimposed in blue. Summing the curvature
and diffusion @Within the segmentation provides the divergences Yeurv and yais .

the differences between good and bad matches, we linearly map the interval
[Os,mina 1] to [Oa 1]

Y;i’Y;' — Us,min 1-— Y;;Z,Y;
Wover,s(i,j) =1- O( ’ ’j) 0 ’ — O( ) ’J)
1- Os,min 1-— Os,min

A divergence function complementing the Dice coefficient should consider non-
linear deformations. Here we use a diffeomorphic registration algorithm [Ig] to
estimate the degree of warping that is required to deform a shape into another.
To compare brains 7 and j, we first register j to ¢. Then, for structure of interest
s, we compute the irregularity of the obtained deformation field w;;(r) within
the mask (2, ; corresponding to s in i (r is the location vector). We use the
curvature and diffusion of u;;(7) as measures of irregularity:

S = [ 37 (Bt sgstu) = [ 30 IVam|Par

25 s
{2} i {m,y,z}

where the index d loops along the three spatial dimensions. The deformation
field for a sample case is shown in Fig. [h. The integrands veyro and yairs are
displayed in Fig. Ik and [Id. Finally, the corresponding weight matrices can be
computed using a Gaussian function as follows:

Wi, (i, 5) = exp (* (v [ (7)) 4 g [ (#)])?/ (var (W[‘])))

where [] refers to curvature or diffusion, and var(yyj) is the variance of the
divergence v across the dataset. The weights W are explicitly symmetrized.

3.3 Feature Selection

Assuming that the global weight matrix W is a linear combination of matri-
ces based on single features (divergences or similarities), the question is which
combination of weights w = {w,,} to use. Specifically, we seek to maximize the
leave-one-out (LOO) classification rate ¥(w) under the constraints: 0 < w <1
and 1'w = 1. This problem is difficult to solve because ¥ is neither smooth nor
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convex, and has multiple local maxima. Instead, we further constrain the prob-
lem by assuming that only M’ < M weight matrices are used with equal weights
Wy, = M'~1,Vm. Then the problem becomes analogous to that of feature selec-
tion in machine learning. This is still a hard combinatorial problem, but good
approximate solutions can be achieved using a proper selection strategy. Here we
use “plus 2 - take away 1”7 [19]: from an initial empty set, features are greedily
added / removed one at the time following the pattern +,+, —, +, 4, —,.... The
final set of features is the one that maximizes ¥(w) throughout the process.

4 Experiments and Results
4.1 Experimental Setup

The feature selection was cross-validated (10 folds) to obtain an unbiased esti-
mate of the performance; otherwise features are selected upon the test data. For
each fold, a set of features is selected with LOO on the training data. For each
candidate set, the scale of the diffusion p is tuned individually using exhaustive
search. The selected features and p are used to classify the test data in the fold.
The number of neighbors was kept constant (k = 10) to limit the computational
load of training. Ties are broken by examining subsequent neighbors. Rather
than using all the 56 segmented structures in the selection process, only the (left
and right) caudate nucleus, hippocampus and putamen are considered (18 fea-
tures in total). These structures are well-known to be related to AD, and using
this reduced set decreases the risk of overfitting.

In testing, an augmented W is created by adding to the original a new row and
column for each test sample. We assume that all the test data are simultaneously
available, which enables semi-supervised learning: during the diffusion process,
the unlabeled test data can increase the performance of the system by making the
structure of data easier to follow (only the labeled training data are considered
during the kNN classification).

For the sake of comparison, analogous experiments were run using Diffusion
Maps and the metric learning approach from [3], which attempts to find the
positive definite matrix A that parameterizes the Mahalanobis distance best
separating the training data into the different classes. Cross validation was again
performed with 10 folds using the training data to select features (same selection
strategy) and tune parameters: the matrix A for metric learning and the step ¢
for Diffusion Maps (i.e. the scale of the diffusion). As for SSO, the number of
nearest neighbors was fixed throughout the experiments (k = 10).

4.2 Results

The impact of feature selection on the performance is illustrated in Fig. Bh. The
three most frequently selected features were: 1) diffusion - left hippocampus; 2)
curvature - left putamen; and 3) overlap - left caudate. It is not surprising that
the top feature is related to the hippocampus, which is known to be strongly
connected with AD [5]. The curve in Fig. Bb shows the impact of the diffusion
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Fig. 2. @Bes‘c LOO classification rate against number of selected features. For the
feature subset chosen for each fold: dependence of the classification rate on the diffusion
step p. The point p = 0 corresponds to the classification rate with no diffusion. In both
graphs, the chosen operating points for each fold are marked with asterisks.
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Fig. 3. Three-dimensional rendering of the structures of interest of an OC sample and
its nearest neighbors, before (p = 0) and after diffusion (p = 0.6). The hippocampi are
rendered in green, the putamens in red and the caudate nuclei in blue. The diffusion
bridges the gaps with other OCs, moving the AD and MCI cases farther away.

on the classification. At first, increasing the scale of the diffusion p has a positive
influence on the accuracy, which is boosted from ~ 55% at p = 0 (no diffusion)
to ~ 90% at p =~ 0.6. This is illustrated with a sample subject and its nearest
neighbors before and after diffusion in Fig. Bl When p becomes too large, data
samples start to come too close to one another and the accuracy begins to
decrease. Fortunately, the location of the peak is quite stable and the method
generalizes well, as shown by the cross validation experiment below.

Tables Bb through Pk display the confusion matrices for metric learning, Dif-
fusion Maps and our approach, respectively. Metric learning performs poorly
because the structure of the data is too complex to discriminate the classes
using a global linear transform. Diffusion Maps provides decent results: 78% ac-
curacy with no mistakes between OC and AD. Our SSO-based approach makes
no OC-AD mistakes either, but preserves the structure of the input similar-
ity better than Diffusion Maps, increasing the accuracy to 89%. There is no
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noticeable drop in accuracy from the training data (Fig.[2l) because cross-validation
(LOO) was already used within the feature selection process.

Even though the results reported in Table [Tl were achieved on other datasets,
it is illustrative to compare them to ours. Chupin et al.’s study, the only one
considering the three-class problem, reports considerably lower accuracy than
this work. To compare our results with the methods which classify OC vs. AD, we
assume that only OC / AD are fed to the classifier and that the samples classified
as MCI are relabeled to either OC or AD. Another option would be to remove
the MCI cases from the training data, but that would have a negative impact on
the results (the diffusion would be guided by less data). Our approach provides
96.25% or 97.5% accuracy (depending on the relabeling criterion), slightly higher
than the best reported results in the literature (Kloppel et al., 94%). In order
to compare our approach with methods that discriminate OC from MCI, we
assume that only OC and MCI cases are fed to the classifier, and the cases for
which the estimated class is AD are relabeled as MCI. In that case, the accuracy
is 91.25%, comparable to Davatzikos et al. and Desikan et al. (90%).

Table 2. Confusion matrices: @metric learning, @Diffusion Maps, the proposed
method. The global accuracies are 50%, 78% and 89%. GT stands for “ground truth”.

(a) (b) ()
GT\Method OC MCI AD ~ GT\Method OC MCI AD ~ GT\Method OC MCI AD

ocC 20 11 9 oC 29 11 0 ocC 38 2 0
MCI 14 18 8 MCI 5 29 6 MCI 5 32 3
AD 2 16 22 AD 0 4 36 AD 0o 3 37

5 Discussion and Future Work

A nearest neighbor classifier based on registration and overlap features and en-
hanced by a self-smoothing operator has been presented in this study. SSO prop-
agates the similarity between data samples along the manifold in which the data
lie. The updated affinity measure can be used in a nearest neighbor framework to
classify brains as AD, MCI or OC, achieving state-of-the-art results. The main
disadvantage of the method is that, when a new case is presented to the system,
computing the corresponding new row in the affinity matrix requires nonrigid
registration to all the training cases, which is very time consuming (the SSO
algorithm itself only takes a fraction of a second). Exploring its application to
other disease patterns, testing features that are faster to compute and improving
the design and combination of features remain as future work.

Acknowledgments. This work was funded by NSF career award IIS-0844566
and ONR grant N000140910099.
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Abstract. The bag-of-features method has emerged as a useful and flex-
ible tool that can capture medically relevant image characteristics. In this
paper, we study the effect of scale and rotation invariance in the bag-of-
features framework for Renal Cell Carcinoma subtype classification. We
estimated the performance of different features by linear support vector
machine over 10 iterations of 3-fold cross validation. For a very heteroge-
neous dataset labeled by an expert pathologist, we achieve a classification
accuracy of 88% with four subtypes. Our study shows that rotation in-
variance is more important than scale invariance but combining both
properties gives better classification performance.

Keywords: Bag-of-features Method, Texton-based Approach, Image
Classification, Computer Aided Diagnosis.

1 Introduction

Renal Cell Carcinoma (RCC) accounts for 90-95% of adult malignancies arising
from the kidney [1]. The American Cancer Society reported 58,240 new cases
and 13,040 deaths in 2010 [1]. RCC occurs in four major subtypes: (i) Clear Cell
(CC), (ii) Chromophobe (CH), (iii) Oncocytoma (ON), and (iv) Papillary (PA)
[2]. Clinically, each subtype is treated differently. The task of subtype classifica-
tion is performed by an expert pathologist under a microscope and suffers from
subjectivity and observer variability [3]. Computerized histopathological image
analysis aims at assisting a pathologist in the decision making process.
Recently, the bag-of-features approach has emerged as a useful tool for med-
ical image classification [4-7]. The bag-of-features framework evolved from the
bag-of-words model for text documents [8]. In the bag-of-words model, a dictio-
nary is built from all the text documents and then each document is represented
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by the frequency of words in that document. The bag-of-features approach ap-
plies a similar methodology to image analysis. Images are divided into a collec-
tion of small patches, each of which described by a feature vector that encodes
texture/content. Feature vectors are combined into a codebook that represents
the characteristic patches in a collection of images. Typically, scale and rota-
tion invariant features or raw pixel intensities are used [4-7]. Depending on the
application, scenarios may exist where one or both could help or hurt perfor-
mance. For example, cancer grading based on nucleus size may suffer from scale
invariant features. However, there is no study exploring the impact of scale or
rotation invariance for histopathological image analysis. In this paper, we per-
form an analysis of features with combinations of scale and rotation invariance
in the bag-of-features framework. We have focused on the scale invariant feature
transform (SIFT) to perform the analysis but other features such as speeded-up
robust features (SURF) can also be used [9,10].

In histopathological image analysis, medically relevant morphologies can ap-
pear anywhere in the image and the spatial arrangement may not be important
for decision making. Therefore, we do not consider spatial information preserv-
ing methods such as spatial pyramids [11]. In this paper, we evaluate the impact
of scale and rotation invariance by studying the following types of features: (i)
scale invariant features, (ii) rotation invariant features, (iii) features with both
scale and rotation invariance, (iv) features with neither scale nor rotation in-
variance, and (v) raw pixel intensity based features. We evaluate their effect on
histopathological image classification of RCC subtypes. This paper is organized
as follows: section 2 provides backround; section 3 provides methodology; section
4 shows the results; and section 5 concludes the analysis.

2 Background

A bag-of-features represents each image as a collection of features or patches.
The relative abundance of each feature or patch distinguishes different types
of images. These features or patches can be represented as invariant to scale
and orientation. In this section, we provide the background of how this scale
and rotation invariance is achieved. To achieve scale invariance, keypoints are
selected by difference of Gaussian scale space (DoGSS) filtering [9]. The Gaussian
scale space (GSS) of an image I(x,y) is constructed by convolving that image
with a Gaussian filter G(z,y, o) of different scales:

L(xayvgi) = G($,y,0'¢) * I(xay)a

where x and y are pixel coordinates, o; is the standard deviation of the Gaussian
filter for scale . We use previously reported values of o; = k'oqg, 09 = 1.6, and
k = /2 [9]. Then DoGSS is computed by subtracting two consecutive images in
the GSS:

Di(m7y70-’i) :L(x7y70-i+1)_L(x7y70-i) (1)

Keypoints are detected by finding the extremas in DoGSS by comparing each
pixel at D, with its 3 x 3 neighborhood at scales D;, D;_1 and D;;1 (i.e., 26
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comparison in total). These keypoints appear in a single scale and additional
scales can be achieved after downsampling and repeating [9]. A patch around
each keypoint is encoded using SIFT to get a feature vector that represents the
texture. To make the patch rotation invariant, the pixel coordinates z,y in the
patch are rotated to align with the maximal gradient direction 6 of that patch:

2| | cos@sing| |z @)
y | | —sinfcosh| |y|’
where the pixel coordinates x,y are expressed with respect to the center of
that patch. Another approach is to select the keypoints by dense sampling and
encode the patch with raw pixel intensities to compute the features [4, 5]. After

the features have been extracted from the images, codebook construction, image
representation, and classification follows, as explained earlier (Figure 1).

3 Methods

The tissue samples are resected from renal tumors by total nephrectomy. Tissue
samples of 3-millimeter thickness are obtained and fixed overnight in 10% neu-
tral buffered formalin. Samples are then embedded in paraffin and microscopic
sections of 5 micrometer thickness are prepared by a microtome and stained
with hematoxylin and eosin. Photomicrographs of renal tumors are captured
with 200x total magnification at 1200 x 1600 pixels per image. A total of 106

a) Input images b) Keypoint detection
a) Input images b) Keypoint detection
Y
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d) Matching codebooks c) Feature extraction
d) K-means clustering c) Feature extraction H
e) Image representation f) Classification
e) Codebook by cluster frequency
Codebook Construction Image Representation and Classification

Fig. 1. Bag-of-features framework: (left) first, a codebook is constructed using k-means
clustering over features extracted from training images only, (right) then, the codebook
is used to generate a vector representation of each image using frequency of each cluster



An Analysis of Scale and Rotation Invariance 69

images are captured, 32 of Chromophobe, 29 of Clear Cell, 28 of Papillary, and
17 of Oncocytoma. The images were labeled by an expert pathologist.

Figure 1 provides an overview of the bag-of-features approach. First, images
are converted to gray scale and keypoints are selected to extract features. Fea-
tures extracted from all the training images are used for constructing a codebook
using k-means clustering (left of Figure 1). Next, a feature vector is constructed
for each image by matching all the features from that image with the codebook
(right of Figure 1). This feature vector is called a bag-of-features [8]. It repre-
sents the distribution of each cluster from the codebook in that image and does
not account for their spatial relationship. A support vector machine (SVM) is
trained with feature vectors from the training images and is used to classify the
test images. Only the training set is used for learning the codebook and training
the SVM.

To perform the analysis of scale and rotation invariance of features used in the
bag-of-features framework for histopathological image classification, we adopted
the following four strategies for keypoint selection and feature extraction based
on the SIFT methodology. In the first strategy, we selected keypoints using
DoGSS (Eq. 1) and computed SIFT descriptors invariant to orientation (Eq. 2)
giving the standard SIFT features [9]. For DoGSS, we included the keypoints
detected from scales D_; to D5 in our analysis. In each image about 6000 to 8000
keypoints were detected, 38% of total keypoints were detected at scale D_1, 37%
at scale Dg, 13% at scale D and, 12% were detected at scale Ds. In the second
strategy, we again included the keypoints from DOGSS but SIFT descriptors
are computed by choosing a fixed orientation § = 0 in Eq. 2, resulting in only
scale invariant features. In the third strategy, we computed the rotation invariant
descriptors for a variety of fixed scales D_; to Ds. In the last strategy, we used
the keypoints from Difference of Gaussian (DoG) at scale Dy and computed
SIFT descriptors using # = 0, giving features with fixed scale and orientation.
Furthermore, we densely sampled 7000 keypoints from each image and computed
rotation invariant features (for scales D_; to Ds), features with fixed scale Dy
and orientation § = 0, and raw pixel intensity based features. Raw pixel intensity
based features are computed over an area of 9 x 9 around the keypoint (i.e., fixed
scale and orientation) [4, 5]. Table 1 summarizes keypoint detection and feature
extraction for this paper.

Table 1. Summary of keypoint detection and feature extraction

Scale Inv. Rotation Inv. Keypoint Detection Features

Yes Yes DoGSS Scale & Rotation Invariance
Yes No DoGSS Scale Invariance

No Yes DoG Rotation Invariance

No Yes Dense sampling Rotation Invariance

No No DoG No Invariance

No No Dense sampling No Invariance

No No Dense sampling No Invariance (Raw Intensity)



70 S.H. Raza et al.

We used a linear SVM with soft margin parameter C' = 1 for classification [12].
Since SVM is a binary classifier, we adopted the “one vs. one with max voting”
method to perform multiclass classification [12]. We performed 10 iterations of
stratified 3-fold cross validation to estimate the performance.

4 Results and Discussion

Figure [2 illustrates the different types of features extracted with and without
scale and rotation invariance. Figure 2a shows image patches with fixed scale Dy
and orientation § = 0. Because these patches have the same size (i.e., scale) and
orientation, they don’t have the ability to match similar patches with different
scale or orientation. Figure 2b shows patches with different scales but without
rotation. Figure 2c shows image patches with rotation at a fixed scale Dy. Figure
2d shows image patches with both scale and rotation invariance.

Figure 3 shows the performance comparison of different types of features in
the bag-of-features framework for histopathological image classification of RCC
subtypes. The plot shows that features with both scale and rotation invariance

Fig. 2. The squares show the image patches selected for descriptor computation: (a)
fixed scale Dy and fixed orientation, (b) scale invariant, (c) fixed scale Dy and rotation
invariant, and (d) scale and rotation invariant.
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Fig. 3. Performance of different features in bag-of-features framework for histopatho-
logical image classification of RCC subtypes. Error bars show standard deviation of
the means. Legend is in order with the curves in the plot at a codebook of size 45.
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give better performance (top curve). A codebook of size 100 gives a classifica-
tion accuracy of 88%. Features with rotation invariance also perform very well
but features without rotation invariance perform poorly (lower four curves). For
both dense sampling and fixed scale keypoint detection, we found that scale Dy
provided better top performance across codebook sizes and only plot Dy for
scale invariant performance in Figure 3. Specifically, rotation invariant features
for dense sampling give a maximum classification accuracy of 84.1% at D_1,
84.3% at Dy, 82.9% at D1, and 80% at Ds. For DoG keypoint detection, rota-
tion invariant features give a maximum classification accuracy of 83.9%, 84.9%,
82.7%, and 81.2% at scales D_1, Dg, D1, and Dy, respectively.

Figure 4 illustrates the difference of DoGSS and dense sampling keypoint
selection strategies. The keypoints detected by DoGSS are dense in cellular re-
gions and sparse in necrotic regions, whereas dense sampling selects keypoints
that are dense in both cellular and necrotic regions. For RCC subtype classi-
fication, ignoring necrotic regions can improve classification accuracy [13]. We
observe 5-10% improvement for features without scale and rotation invariance,
partially confirming this finding. On the other hand, if the features are rotation
invariant, we do not observe this effect. We speculate that smooth areas like
necrotic regions have essentially random orientation. When the features are ro-
tation invariant, the smooth necrotic regions get assigned to only a few clusters.
However, when the features are not rotation invariant, the codebook must allo-
cate a larger fraction of clusters to represent this randomness, thereby degrading
performance. Table 2 gives the confusion matrices for each approach. It should
be noted that incorporating the rotation invariance improves classification accu-
racy of each subtype as well as the overall classification accuracy. Furthermore,
the confusion matrices for rotation invariant features are also very similar (Table
2d-e), i.e., both keypoint detection methods give similar performance for each
subtype.

@ (b)

Fig. 4. Comparison of keypoint selection: (a) DoGSS, (b) Dense sampling

Another advantage of using scale and rotation invariant features is that the
size of the codebook required to achieve good classification accuracy is smaller
than codebooks developed by other features. To achieve classification accuracy
over 80%, a codebook constructed over scale and rotation invariant features re-
quires 12 types of patches, whereas rotation invariant features require 32 types
of patches. Codebooks with just scale invariance require 200 types of patches to
achieve 80% classification accuracy but a codebook of up to 300 patches without
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Table 2. Average confusion matrices for six types of features over 10 iterations of
3-fold cross-validation for a codebook of size 40 clusters. Each row shows the true class
labels and columns show predicted labels. Each row sums to the total number of images
in that subtype.

(a) No Inv.

CC CHON PA
CC19.5 81 09 0.5
CH 10.0 182 2.9 0.9
ON 1.8 59 85 0.8
PA 15 1.2 1.523.8

(d) Rot Inv.

CC CH ON PA
CC25.0 29 0.7 04
CH 55254 1.1 0.0
ON 1.7 29110 14
PA 0.7 0.1 18254

(b) No Inv. (dense)

CC CHON PA
CC 18.3 86 1.6 0.5
CH 84189 3.0 1.7
ON 33 2593 19
PA 3.6 3.2 2.8184

(e) Rot. Inv. (dense)

CC CH ON PA
CC 257 19 1.0 04
CH 43256 1.7 04
ON 14 30114 1.2
PA 1.1 0.7 25237

(c) Scale Inv.

CC CH ON PA
CC19.5 84 1.1 0.0
CH 8619.2 3.0 1.2
ON 20 44 96 1.0
PA 1.3 1.0 1.923.8

(f) Scale & Rot. Inv.

CC CH ON PA
CC 253 33 0.1 0.3
CH 35259 21 05
ON 0.8 1.813.8 0.6
PA 14 0.3 1.325.0

scale or rotation invariance only achieves 75%. Features based on raw pixel inten-
sities also performs poorly and a codebook of 300 patches gives a classification
accuracy of about 70%. This suggest that given a large enough codebook, rota-
tionally fixed features could eventually become equivalent to smaller rotationally
invariant ones by encoding all of the possible different orientations an object can
take. Figure 5 shows patches relevant to each RCC subtype identified by com-
bining both scale and rotation invariance. Cyan squares show the cell membrane
identified at different scales and orientations indicative of the clear cell subtype.
Green squares show a complete round nucleus common in the oncocytoma sub-
type. Blue squares show a full nucleus with a halo around it indicative of the
chromophobe subtype. Yellow squares show the streaks of finger-like structures
characteristic of the papillary subtype.

&7 e O | N
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Fig. 5. Image patches matched with codebooks constructed over scale and rotation
invariant features: (a) a cell membrane in cyan squares, (b) complete round nucleus in
green squares, (¢) complete nucleus with halo in blue squares, (d) and yellow squares
showing finger-like structures

5 Conclusion

We conclude that rotation invariance is more important than scale invariance for
histopathology image classification. Rotation invariant features computed at a
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good choice of fixed scale perform nearly as well as scale and rotation invariant
features. Therefore, covering the whole scale space may not be as important
as choosing a preferred scale in histopathological image classification. Although
rotation invariance combined with scale invariance performs slightly better, other
applications may not benefit from this flexibility. For example, in the problem of
cancer grading, nucleus size is important, and thus scale invariance may not be
desirable. In the case of CT or MRI images, the pixel intensity is an important
characteristic and a raw pixel intensity based feature could perform better than
image gradient based features like SIFT. In the future, we would like to improve
the codebooks by incorporating the class labels during the codebook generation
and reduce the false positive matches by improving the distinctiveness of the
features within the same codebook.
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Abstract. Computer aided detection (CAD) systems have emerged as
noninvasive and effective tools, using 3D CT Colonography (CTC) for
early detection of colonic polyps. In this paper, we propose a robust
and automatic polyp prone-supine view matching method, to facilitate
the regular CTC workflow where radiologists need to manually match
the CAD findings in prone and supine CT scans for validation. Apart
from previous colon registration approaches based on global geometric
information [IH4], this paper presents a feature selection and metric dis-
tance learning approach to build a pairwise matching function (where
true pairs of polyp detections have smaller distances than false pairs),
learned using local polyp classification features [BHT]. Thus our process
can seamlessly handle collapsed colon segments or other severe struc-
tural artifacts which often exist in CTC, since only local features are
used, whereas other global geometry dependent methods may become
invalid for collapsed segmentation cases. Our automatic approach is ex-
tensively evaluated using a large multi-site dataset of 195 patient cases
in training and 223 cases for testing. No external examination on the cor-
rectness of colon segmentation topology [2] is needed. The results show
that we achieve significantly superior matching accuracy than previous
methods [IH4], on at least one order-of-magnitude larger CTC datasets.

1 Introduction

Colon cancer is the second leading cause of cancer death in western countries,
but it is one of the most preventable of cancers because doctors can identify
and remove its precursor known as a polyp. Besides the well established fiber-
optic colonoscopy, 3D Computed Tomography Colonography (CTC), or virtual
colonoscopy has emerged as a powerful screening tool for polyp detection and
diagnosis. The research field of computer aided detection (CAD) of colonic polyps
in CTC is highly exploited [5H7]. To enhance polyp findings in collapsed or fluid-
tagged colon segments, and better distinguish polyps from pseudo polyps (e.g.
tagged stools), the current CTC clinical practice is to obtain two scans of a
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© Springer-Verlag Berlin Heidelberg 2011
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patient in prone and supine positions, respectively. However colon can move and
deform significantly differently between the prone and supine scans, which makes
the manual registration of polyp findings or colon segments difficult, inaccurate
and time-consuming.

In this paper, we present a novel computerized technique to achieve high per-
formance polyp matching, by supervisedly optimizing a distance metric in the
feature space of polyp classification where true pairs of polyp matches statisti-
cally have smaller distance than false pairs. A polyp instance may be represented
by a variety of local appearance features for classification [5H7], including lo-
cal geometric features, and morphological, shape/intensity and context features.
Since the total union of these features may lead to redundancy, greater computa-
tional and spatial complexity, we first use feature selection method to choose the
features that are most relevant to polyp matching (e.g., the feature difference
variation is minimal between true polyp matches), but least redundant. After
selecting a subset of task-specific features, from the polyp classification feature
pool, we propose an efficient metric learning method to learn a covariance-matriz
boosted Mahalanobis distance to measure the instance differences across views.

Extensive evaluation is executed using a representative, multi-site clinical
database with 195 patient cases in training and 223 cases for testing, containing
106, 118 polyps respectively. We demonstrate superior performance results on
polyp prone-supine view matching, compared with existing work mostly based
on colon centerline/surface registration [IH4]. Note that previous polyp matching
techniques are tested and reported on datasets which are at least one order-of-
magnitude smaller than ours, as 20 [I] (with 20 polyps), 12 [2] (with 12 polyps),
and 39 [3] (with 23 training and 16 testing polyps) patients. This is partially
because the pair of completely distended prone-supine colon scans (from rectum
to cecum) is a prerequisite. Preparing topologically correct colon segmentation
cases often needs manual editing or interactions [2] that can be labor-intensive,
for large 3D volumes. Tagging residues or artifacts can largely affects the colon
surface quality which imposes problems for global surface registration method [IJ.

2 Materials and Methods

Our approach consists of the following two steps. We first select a subset of
features from the whole CAD classification feature pool, which is polyp matching-
informative, using Minimum Redundancy Maximum Relevance (MRMR)
algorithm [§]. Next, we learn an effective polyp matching distance metric on
selected features (i.e., Mahalanobis distance by a positive semidefinite matrix
that weights channels of features differently), in an additive, boosting based
optimization manner. Fig. [I] summarizes the process diagram.

2.1 Matching-Sensitive Feature Selection

Data & Features: We collected 195 CTC cases (or 390 volumes) with 106
polyps appearing in both views for training; and 223 cases containing 118 polyps
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maximum relevancy

Fig. 1. The flow chart of using metric learning to do polyp matching and retrieval

with double appearance for testing, from 8 hospitals in US, Europe and Asia.
Images are acquired using Siemens, GE and Philips scanners with fecal tagging
preparation. Only actionable polyps with diameters > 6mm are considered. Our
CAD system builds a tree-structured probabilistic classifier using 96 (morpho-
logical, intensity, texture-based or geometrical) features F = {f;} on 61257
candidates in training dataset. Thus we can first perform a thresholding process
to rule out false positive (FP) candidates with low probability values (p of being
polyp). After this, we have ~ 8 candidates per patient with true positive (TP)
detection sensitivities at 94.2% and 92.9% for training and testing perspectively.
Note that our polyp matching approach is applicable on other CAD systems [5H7]
which usually have a large variety of polyp descriptive features.

Let x! be a true polyp instance in one view for a patient and let {:c?} be
the set of corresponding instances in the other view. Note that the size of {w?}
can be larger than one since polyps can appear as two or more instances in
each scan, especially for large polyps. This is called multiple instance problem.
Here 1 or 2 indicates prone or supine view, without loss of generality. We define
the positive (4) instance pairs of instances in two views rooted from the same
unique true polyp, and other pairs as negative (-) (e.g., TP-TP pairs according
to different polyps, TP-FP pairs, and FP-FP pairs). For each original feature f,
a new “difference-of-feature” variable can be derived as Af = (f} — fj2), which
is expected to be zero or a constant for positive pair population (i.e., tightly
distributed in a statistical sense), or random for negatives.

Based on above motivation, we use feature selection algorithms to find a
subset of S C F which are more informative on distinguishing true or false
polyp pairs. For its numerical stability, accuracy and formulation simplicity, we
choose Minimum Redundancy Maximum Relevance (MRMR) method though
other feature selection methods are also applicable. For details, refer to [§]. As a
result, we obtain 18 features out of 96 features, describing instance-level polyp’s
shape morphology, segmented size, surface area, intensity profiles, classification
score (“polypness”) and their joint statistics.

2.2 Matching by Metric Distance Learning

In this section, we propose a new metric learning method called “MatrixBoost”
to match polyps in prone-supine views, using the 18 matching sensitive polyp
features selected by MRMR. The basic idea is that a good distance metric can
be learned to assign different weights on features, so that low distances are
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given for pairs of instances to be matched and high distances for others, in the
feature space. There are a number of ways to design distance metrics [9HIT].
Metric learning can be derived from the optimal combination of weak learners
to form a strong learner, based on training data. One type of weak learner is
equivalence constrained, where equivalence constraints are provided for pairs
(z;,x5), each associated with a binary label of ”similar” or ”dissimilar” [9].
Another weak learner representation often used in information retrieval [I1] is
the proximity relationship over triplet set 7 = {(4,j, k)}, meaning that x; is
closer to x; than to xg. Here x; is the feature vector representation for the
polyp instance i. The goal of metric learning is to learn a distance function d
such that d(x;, ;) < d(x;, k), and

d(zi, z5) = (x; — z5) M(z; — ;) (1)

where ' is the vector/matrix transpose transformation and M is a positive
semidefinite (PSD) matrix that leads to the Mahalanobis distance metric [9,10].
We follow the Mahalanobis distance metric formulation, but propose to con-
struct the “covariance” matrix M by additively combining weak learners which
are low rank PSD matrices. AdaBoost [12] method is utilized to learn the linear
combination of low rank positive semidefinite (PSD) matrices, as a PSD matrix
M preserving the proximity relationships among triplet set 7 = {(4, j, k)}. The
input to our metric boosting algorithm for training are triplets of instances, with
inequality constraints on distances as defined above.

Build triplets. In training, we select all the instances with classifier score
greater than p > (. to build triplets. The classifier score threshold . is chosen
to make a practically feasible trade-off between detection sensitivity and FP rate
(sensitivity is 0.946, and FP rate per patient is 7.59, pruning obvious negatives).
The retained instances will form the triplets in the following way. For each
true positive (polyp) instance x; in the prone view of a patient, we find all
the positive instances {x; };Lzl corresponding to the same polyp and all other
instances (including positives corresponding to different polyps and negatives,
or false positives) {zx}}"; in the supine view. Then (4, j, k) will form a triplet,
requiring d(z;, ;) < d(x;, ). We repeat the same process on each true positive
instance in the supine view to build more triplets, in a similar way. All the triplets
form a triplet set 7 and we obtained 8646 triplets in total, which will be used
as inputs for our metric learning algorithm to optimize the PSD matrix M.

Learn a PSD matrix using MatrixBoost. Since a PSD matrix can be
Eigen-decomposed as a combination of lower rank matrix, e.g., M = «o;U;,
where U; = u;u;’. The distance between two instances x; and x; is d(x;, ;) =
(z; — ;) M(2x; — ;). The algorithm is to learn a strong learner H(x,y) =
(x — y)'M(x — y), which is a combination of weak learners h:(x,y) = (xr —
y)U(x — y), ie. H(x,y) = >, ovhi(x,y), by minimizing the error rate of
triplets violating the distance inequality as below.

e= Y D((i, 4, k)L (H(ws,w5)—Hwswn)» (2)
(i,4,k)eT
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where D is a probability distribution over 7', and 1 is the Heaviside step function
(L) = 0if @ < 0, and 1 otherwise). Our proposed MatrixBoost algorithm
adapts the merits of the AdaBoost [I2] and the decomposable nature of PSD
distance matrix. In the algorithm, the weak model is hi(z,y) = (x—vy)' Us(z—y)
where Uy = wguy’, and the final hypothesis is H(x,y) = (x — y)M(x — y)
where M = Zt a;U;s. Note that if M forms a metric that satisfies the triplet
conditions, so does its multiplier. It can be proven that the training error of the
final hypothesis H as defined in (2] is upper bounded by Hthl Zy, i.e.,

ZD((Zajv k))l(H(wi,wj)—H(wi,wk))
S ZD((Z,], k)) eXp(H(xiij) - H(whwk)) 5 1£ S eXp(m)

= ZDT+1((i’j7 k)) Hj:l Zt - Hj:l Zt.

ay and h; will be chosen such that the error upper bound H?=1 Z; will be mini-
mized. Let h; € [0, 1], Z; has the upper bound

1- 1
Zrsen e T (3)

where
r= Y Dy(i,j k) (he(ai, w) — he(@i, 25)) (4)
(i,9,k)eT
The right side of @) can be minimized when oy = In((1 + r)/(1 — r))/2 which
corresponds to Z; < V1—r2, Obviously, Z; < 1 and if » > 0, we have a; > 0.
Furthermore, the inequality implies that we can achieve smaller Z; by minimizing
its upper bound v/1 — r2. Hence, a weak learner can be designed to maximize
|r| for a sensible model h;.
max | E(z‘,j,k)eT Dt((i7j7 k)) (ht(wivwk) - ht(wiij)) |
U; = uguy’
el = 1 ©)
subject to hi(x,y) = (x — y)' Us(x — y)

Using simple matrix algebraic operations, Eq. (Bl can be rewritten as

[we' |22 et De((is 4, k) (@3 — @x) (25 — @r)’ — (@8 — 25) (@ — wj)’)] Uy
(6)

The problem of maximizing the objective (Gl subject to a normalization con-
straint ||ug|| = 1 has a closed-form solution: the optimal u¢ is the eigenvector

corresponding to the eigenvalue A\, with the largest absolute value, of the matrix
2 gmer Di((d,5,k) (s — xp) (@i — @) — (2 — x5)(xs —25)') . (7)
Let a = max{||lx —y|| | ¢ # y,z,y € X} which is a constant for a given set of
data. , ) ) )
(@ =y urue' (x —y) _ [l — y|*|lue]

Oght(w7y): (12

<

02 <1 (8)

In testing, if d(x;, xk) < 0 and § is a distance threshold which can be sta-
tistically calibrated as shown later, we will claim xj is a match of x; and the
confidence p; for x; to be detected as positive (assuming only true positives have
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Fig. 2. An illustrative example of matched polyp pair, in a collapsed colon with back-
ground topological noises (e.g., small intestine) and large deformations in transverse
and ascending colon sections

matches) is inverse to the minimum distance, i.e., p; = 1/d(x;, x). An matched
polyp pair example is shown in Fig. 2l The resulting weights or relative impor-
tances among selected features, reflected by the learned M = «;U;, are well
balanced among several cues of above local appearance. Even if some feature are
forced to be removed, the matching performance degrades very gently.

3 Experimental Results

For each polyp «; in a given view (prone or supine), the goal of polyp retrieval
is to find its corresponding counterpart in the other view. Using d(x;, ;) in Eq.
(@) with learned M, we sort its k nearest neighbors and check whether there
is a true match within k to trigger a hit. The retrieval rate is defined as the
number of polyps retrieved divided by the total number of query polyps. In
case of multiple instances, any true instance appearing in the top k neighbors
will count the polyp as retrieved at k. The evaluation of retrieval rate versus
the number of nearest neighbors, i.e., k is demonstrated in Fig. Bl for both
training and testing datasets. Fig. Bl shows the superior performance of metric
learning methods (via fusing local polyp appearance features), compared with
the centerline geodesic distance based retrieval, similar to [3[4]. Not all polyps are
retrievable because a small portion of polyps (< 7%) only appeared in one view.
For centerline based schemes, > 40% polyps are non-retrievable or can not be
directly handled by [1H4], mainly due to collapsed colon segmentation in at least
one prone or supine volume of 31% training, or 36% testing cases. [I3]reports that
~ 40% volumes have collapsed colon segments in a clinical dataset. Note that, by
normalizing against the polyp retrieval upper bounds (55 ~ 59% for geometric
and 93 ~ 94% for metric learning) respectively, in Fig.[3] i.e., assuming all polyps
are matchable, our local features + metric distance learning approach still clearly
has more appealing performances, as 85% versus 62% in training; 80% versus
57% in testing when k = 1.

We also evaluate our MatrixBoost algorithm against other metric learning
methods (Mahalanobis [10], PSDBoost [11], ITML [14], BoostMetric [11] and
COP [9]), using the same selected feature set by MRMR. MatrixBoost dominates
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Fig. 3. Retrieval rates versus the number of nearest neighbors on the training (Left)
and testing (Right) datasets

the retrieval rate at the full range of k, with a larger margin in testing dataset.
For example, when k = 2, the testing retrieval rate of our method is 80.51%,
while the best result of all other techniques is 73.73%. High polyp match/retrieval
rates under smaller numbers of k, can greatly facilitate the workflow for radiolo-
gists to effectively and efficiently match the polyp findings in prone-supine CTC
views. Moreover, MatrixBoost permits faster convergence to the upper bounds
of polyp retrieval rate at k = 7 in both training and testing. Lastly, the polyp
retrieval performance can be presented using Precision-Recall curves that show
the balance of retrieval accuracy versus recall, in Fig. @

Training Dataset Testing dataset
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=3 i e PSDBoost
N —cop ot ™~ 4l
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Fig. 4. The comparison of polyp retrieval Precision-Recall curves, using different met-
ric learning methods and centerline Geodesic distance approach, on training (Left) and
testing (Right) datasets. MatrixBoost method shows superior performance than others.

4 Discussion

We proposed an effective and high performance polyp prone-supine view match-
ing method, based on local polyp classification feature learning (via feature se-
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lection and metric learning). Our approach is evaluated on at least one order-
of-magnitude larger, multiple hospitals dataset than previous work [IH4]. It can
automatically and robustly handle highly varying colon segmentations from hun-
dreds of patient cases, without any manual editing or preprocessing overhead. In
summary, our method greatly advances the state-of-the-arts for polyp matching,
and makes it more technically feasible for clinical practice.
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Abstract. Recent introduction of probe-based confocal laser endomi-
croscopy (pCLE) allowed for the acquisition of in-vivo optical biopsies
during the endoscopic examination without removing any tissue sample.
The non-invasive nature of the optical biopsies makes the re-targeting
of previous biopsy sites in surveillance examinations difficult due to
the absence of scars or surface landmarks. In this work, we introduce
a new method for recognition of optical biopsy scenes of the diagnosis
endoscopy during serial surveillance examinations. To this end, together
with our clinical partners, we propose a new workflow involving two-run
surveillance endoscopies to reduce the ill-posedness of the task. In the
first run, the endoscope is guided from the mouth to the z-line (junction
from the oesophagus to the stomach). Our method relies on clustering
the frames of the diagnosis and the first run surveillance (S1) endoscopy
into several scenes and establishing cluster correspondences accross these
videos. During the second run surveillance (§2), the scene recognition is
performed in real-time and in-vivo based on the cluster correspondences.
Detailed experimental results demonstrate the feasibility of the proposed
approach with 89.75% recall and 80.91% precision on 3 patient datasets.

1 Introduction

Oesophageal adenocarcinoma (OAC) is one of the most rapidly increasing can-
cers in the Western world with a survival rate of less than 20%. The reason of this
low survival rate in OAC is largely due to its late diagnosis. To alleviate this prob-
lem, patients diagnosed with a precursor of OAC are required to undergo regular
surveillance endoscopies where biopsies are taken from suspicious tissue regions.
The introduction of the new probe-based confocal laser endomicroscopy (pCLE)
enabled real-time visualisation of cellular structures in-vivo. Despite their es-
tablished advantages, these optical biopsies also introduce new challenges into
the existing gastro-intestinal (GI) endoscopy workflow. Due to their non-invasive
nature, re-targeting the same biopsy locations in subsequent surveillance exami-
nation becomes very challenging. Recently, several methods have been proposed
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for addressing the re-localization problem within one intervention [2[TITTI3]. The
application of such localization methods to a new surveillance GI endoscopy re-
quires real-time recognition of the frames containing previously targeted biopsy
sites. The major challenge of performing scene recognition between the diagnosis
and surveillance endoscopies is the variation in visual appearances of the same
scene as demonstrated in Figll(a),(d). To address this challenge, we propose a
two-run surveillance endoscopy. In the introduced workflow, prior to the actual
surveillance endoscopy, a first-run surveillance (S1) video is acquired in the same
examination. This is a commonly performed process in bronchoscopy [9]. To the
best of our knowledge, however, this process has not been applied in GI ex-
aminations. In this work, we introduce the two run surveillance schema for GI
endoscopies, which allows us to provide an applicable solution for re-targeting
the optical biopsy sites in surveillance examinations.

The proposed method first creates scene clusters from the diagnosis and S1 en-
doscopies and then establishes correspondences between these two videos based
on expert’s supervision. As the structure of the tissue between the S1 and the
actual examination performed in the second run surveillance (S2) remains the
same, the visual recognition of a scene becomes a solvable task. Once the query
scenes, i.e. scenes of the diagnosis endoscopy which need to be recognized, are
defined, recognition is achieved based on the guided correspondences.

To facilitate the proposed workflow, an endoscopic scene clustering method
proposed in [4] is adapted. To this end, we create a manifold representation
of the endoscopic videos by taking into account the visual similarities and the
temporal relations within the video simultaneously. Scene clustering is performed
in the low dimensional space using a mixture model method presented in [7]. The
accuracy of the method is validated on 3 different patient datasets, where the
patient underwent chemotherapy between the acquisitions.

2 Methods

2.1 Proposed Workflow

In this work, we firstly propose a two-run surveillance endoscopy. In the in-
troduced schema, prior to the actual surveillance endoscopy, the endoscope is
guided from the mouth to the z-line (junction from the oesophagus to the stom-
ach) without acquiring any optical biopsies. The video of this S1 endoscopy is
clustered into different endoscopic scenes and used to acquire scene matching
between the diagnosis and surveillance endoscopy. This additional step enables
the recognition of the same location despite very large variation in the visual
appearances of the scene in different examinations as illustrated in Figlll(a),(d).
Thus, the proposed workflow involves 3 endoscopic videos: diagnosis endoscopy
(Figl(a)), where the first optical biopsies have been acquired; S1 (Figli(d))
which is performed to provide matches between the endoscopic scene clusters;
and the §2 (Figll(g)) where the surveillance examination is performed and the
previous optical biopsy sites need to be recognized in real-time and in-vivo.
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Fig. 1. Proposed workflow. a) Frames from the diagnosis endoscopy. b) 1. and 2. dimen-
sions of the manifold of the diagnosis endoscopy created using vtLPP. Frames showing
similar locations are clustered together, where clusters are illustrated with different col-
ors. ¢) Example clusters of the diagnosis endoscopy, where rows correspond to different
clusters. Note that frames of the same scene with different endoscope viewpoint are
clustered together whereas different scenes are clustered separately. d) Corresponding
scenes of a) in the S1. Rows in a) correspond to rows in d). €) 1. and 2. dimensions of
S1 manifold and the computed clusters. f) Frames from the corresponding clusters of
¢) in the S1. The rows in c) correspond to rows in f). g) Example frames from the S2.

The proposed workflow consists of the following main steps:

Clustering of the diagnosis endoscopy into different scenes (Figllla)-(c)),

Acquisition of the S1 endoscopy (Figli(d)),

Clustering of the S1 endoscopy into different scenes (FiglIl(d)-(f)),

Selection of the query clusters in the diagnosis endoscopy and their corre-

spondences in the S1 by the endoscopic expert,

5. Nearest neighbour matching and S1 cluster assignment to each frame of the
82 endoscopy in real-time (Figlllg)),

6. Notification of the expert during the S2 endoscopy if a frame is assigned to

one of the query clusters.

W=

Given the frames of the diagnosis (Figlli(a)) and of the S1 (Fig. dl(d)) endo-
scopies, our method first computes a low dimensional manifold representation
for each video by taking into account the visual similarities and the temporal
relations between the frames. This allows for efficient clustering of the endo-
scopic scenes. Figlllb) and (e) show the 1. and 2. dimensions of the manifolds
computed from the diagnosis and S1 endoscopies respectively, where the clus-
ters are illustrated by different colors. Clustering of the frames into different
scenes is performed on this manifold representation using a mixture model and
the expectation maximization method proposed in [7]. Figlllc) shows example
clusters from the diagnosis endoscopy where the corresponding clusters in the
81 are illustrated in FiglI(f). Note the severe change in the appearance of the
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scenes between the two examinations. Based on the previously defined diagnosis
endoscopy clusters and their correspondences in the §1, the proposed workflow
allows for real-time and in-vivo recognition of the query scenes during the S2.

2.2 Data Representation

Clustering of endoscopic frames using the original image representation is not
practical due to the high dimensionality of the data. In [4], the authors propose
to recover the underlying non-linear manifold structure of an endoscopic video
and to perform the clustering on this low dimensional space. In this work, we
approximate the manifold underlying an endoscopic video using the locality pre-
serving projections (LPP) method [I0]. In contrast to [4], we define the relations
between the frames by taking into account their visual similarities and temporal
relations simultaneously and use a probabilistic clustering presented in [7].
LPP first defines an adjacency graph A that captures the pairwise relations
A(i, ) between the frames Z; and Z;, (4,5 € {1,--- ,n}, n being the number of
data points), and then estimates a mapping to embed the graph into a low di-
mensional space. In order to simultaneously capture the visual and the temporal
relations between the data points, we propose to define the adjacency graph as:
. . i . m
A(i,j):{l if i € N7 orZGJ\/jte P (1)

0 otherwise |,

where J\/‘jSim is the k-NN of the j-th data point based on the visual similarities
and /\/;emp states the k-NN based on the temporal order of the frames within
the endoscopic video. In this work, we determine the visual similarities using
the Euclidean distance and choose & = 20 considering the observed endoscope
motion. Imposing the proposed temporal constraint assures that frames showing
the same scene from different endoscope viewpoints are closely localized on the
manifold, even in cases where visual similarities fail to capture their relations.
On the other hand, using the visual similarities includes the neighborhood of
similar but temporally distant frames, which is reflected in the closed loops on
the manifold representations (FiglIl(b),(e)).

Given the adjacency matrix A and the (vectorized) endoscopic frames Z =
[Z1,Z5,- -+ ,Z,], we approximate the underlying manifold of the endoscopic data
using the LPP method [10]. In LPP, first a function basis w = [wq, -, w,,] is
computed based on locally linear approximations of the Laplace-Beltrami oper-
ator applied on the dataset by solving the following eigenvalue problem:

ILT"w=MIDI w (2)

where D is the diagonal degree matrix with D(i,i) = 3_; A(j,é) and L=D— A
is the graph Laplacian matrix [I0]. Then the m dimensional representation v =
[1(3), - ,vm(i)]T of a frame Z; is estimated by projecting it onto the estimated
basis ¥ = w'Z;. Thus, this method provides an approximation for the Laplacian
Eigenmaps (LE) method [5] while it also allows for projection of new data points
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onto the manifold. Fig[ll(b),(e) illustrate a 2D representation of two endoscopic
videos. In the rest of the paper, we refer to our representation as visual and
temporal LPP (vtLPP).

2.3 Endoscopic Scene Clustering

Once the low dimensional representations of endoscopic frames are computed,
we use the finite mixture models (FMM) method proposed in [7] to compute
the clusters. Using FMM, we estimate the probability Plc(v(i)) = C;] of each
point v(7) belonging to a mixture model (cluster) C; and assign the cluster with
the highest probability c(v(i)) = argmaxc; Plc(v(i)) = Cj)]. FMM [7] offers
the advantage of automatically detecting the number of clusters. Additionally,
FMM models clusters with anisotropic Gaussians, which overcomes the isotropic
distribution assumption imposed in clustering algorithms such as K-means [§]
and results in elongated clusters. Such clusters efficiently group frames showing
the same scene with different viewpoints as shown in Fig[l(b),(c),(e) and (f)).

2.4 Endoscopic Scene Recognition

After computing the clusters of the diagnosis endoscopy 27 = {CP,-.- ,CP}
and then the ones of the S1 endoscopy 2° = {C{1, - 7C’gl}, both clusterings
are provided to the endoscopic expert. The set of @) clusters, where an auto-
matic recognition is needed, i.e. the query clusters {CqD}qQ:1 € 0P, as well as
their correspondences in the S1 endoscopy, {Cf(lq)} € 251 (where v denotes the
correspondence relation) are selected by the endoscopic expert.

During the 52, first the image closest to a frame ng, that is Ifl = NN(IL»SQ)7
is found by a simple NN matching using Euclidean distances. Then each frame
Z$? is assigned the cluster of its NN ¢1(Z82) = ¢S1(Z£') and, by transition,
the corresponding diagnosis endoscopy cluster ¢”(Z5?) = ¢P(Z8). If a frame is
determined to belong to a query cluster ¢ (Z52) € {C’qD }, the expert is notified
and all frames of the corresponding diagnosis endoscopy cluster {Z7|cP(ZP)}
are retrieved. This proposed workflow thus allows for including the expert’s
supervision in defining the query scenes and their correspondences in the S1
without involving any training. This is an important property, since long training
processes would not be feasible for routine clinical applications.

3 Experiments and Results

Experiments were performed on 3 narrow-band imaging (NBI) patient datasets
acquired at 3 different examinations of the same patient. The patient underwent
chemotherapy between the examinations, leading to significant changes in the
appearance of the tissue as illustrated in Fig[Il Uninformative frames are labeled
using the method in [4] and the remaining informative frames (1198, 1833 and
712 frames in 1., 2. and 3. datasets, respectively) are used for the experiments.
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Fig. 2. Evaluation of scene clustering on the proposed representation as compared to
the low dimensional image space representation

3.1 Evaluation of Scene Clustering

In order to assess the quality of the clustering, we evaluate the Davis-Bouldin
(DB) index [6] which is a commonly used evaluation criteria for clustering algo-
rithms. DB-index measures the relation of the between cluster distances (sepa-
rability) and within cluster distances (compactness) and is independent of the
number of clusters. Smaller DB-indices indicate more compact and separable
clusters and are desired. We compare the DB-index of the clustering performed
in our vtLPP representation to the one in the PCA representation of the data.
Due to its numerical instability, the FMM algorithm [7] is not applicable to very
high dimensional data, such as in the original image representation. Therefore,
we apply a principal component analysis (PCA) and reduce the dimensionality
of the dataset prior to clustering. Using the FMM clustering in [7], we observed
that higher dimensional representations result in less number of clusters. There-
fore, the evaluation of the DB-index is performed by varying the dimensionality
from 2 to 20 for the two methods. Figl2shows that for all number of dimensions
and for all datasets, the proposed representation results in significantly smaller
DB-indices indicating more compact and better separated clusters.

3.2 Evaluation of Scene Recognition

For quantitative analysis we perform 3 experiments. In each experiment, 40
frames from the surveillance endoscopic video are selected by regularly sampling
the frames over time and are used as test frames simulating the $2 endoscopic
frames leading to a total recognition of 120 frames. Remaining parts of the
surveillance video are defined to be the S1 endoscopy. The results are compared
to k-NN matching based on Euclidean distances performed between the S2 and
diagnosis endoscopy frames directly, where k is chosen to be equal to the number
of frames retrieved by our method. We also performed the NN matching using
the normalized cross correlation and did not observe a significant improvement
in the recognition results. The true positives (tp) and false positives (fp) are
determined by expert visual inspection of the retrieved frames. The false nega-
tives (fn) of each method is defined relatively, as the number of frames that one
method is able to correctly retrieve but not the other. Recall (tp/(tp+ fn)) and
precision (¢tp/(tp + fp)) values are evaluated for each test frame and mean and
standard deviation achieved by both methods is presented in Fig[3l Application
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Fig. 3. Mean and standard deviation of recall and precision of the proposed method
and of the direct application of the k-NN matching to the diagnosis endoscopy
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5 I r FTE v
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Fig. 4. a) Test frames used as S2 endoscopy. b) Recognized frames using our method.
¢) 3 NN in the diagnosis endoscopy. The rows show corresponding frames in a), b), c).

of the k-NN matching directly between the test frames and the diagnosis en-
doscopy results in only 58.54% mean recall and 53.58% mean precision. Our
proposed method leads to a 89.75% recall and 80.91% precision in average using
the same NN matching between the test frames and the S1 endoscopic frames
and then applying the cluster correspondences. Examples of the correctly recog-
nized frames using the proposed method in comparison to the direct application
of k-NN matching between the S2 and diagnosis videos are demonstrated in
Figll Due to the use of our vtLPP representation, the formed endoscopic clus-
ters contain frames showing the same location from different viewpoints and
from different parts of the video. This is also reflected in the high recall and
precision values of the proposed method.

4 Conclusions

In this work, we present an endoscopic scene recognition method based on two
run surveillance endoscopies and scene clustering. The key contributions of this
work are two-fold. Technically, we have presented a scene clustering method for
endoscopic videos by taking into account both visual similarities and temporal
relations in a low dimensional space. Clinically, we have proposed a solution to
the challenging problem of re-targeting the optical biopsy sites in surveillance
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endoscopies. The introduced workflow allows us to create a link between the
scenes of the diagnosis and surveillance examinations. This reformulation reduces
the very challenging inter-examination re-targeting into the plausible problem
of intra-examination frame recognition. The experiments on 3 different patient
datasets demonstrate the feasibility of our method to recognize the optical biopsy
scenes in surveillance endoscopies.
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Abstract. Glaucoma is an optic nerve disease resulting in loss of vi-
sion. There are two common types of glaucoma: open angle glaucoma
and angle closure glaucoma. Glaucoma type classification is important
in glaucoma diagnosis. Ophthalmologists examine the iridocorneal angle
between iris and cornea to determine the glaucoma type. However, man-
ual classification/grading of the iridocorneal angle images is subjective
and time consuming. To save workload and facilitate large-scale clini-
cal use, it is essential to determine glaucoma type automatically. In this
paper, we propose to use focal biologically inspired feature for the clas-
sification. The iris surface is located to determine the focal region. The
association between focal biologically inspired feature and angle grades
is built. The experimental results show that the proposed method can
correctly classify 85.2% images from open angle glaucoma and 84.3% im-
ages from angle closure glaucoma. The accuracy could be improved close
to 90% with more images included in the training. The results show that
the focal biologically inspired feature is effective for automatic glaucoma
type classification. It can be used to reduce workload of ophthalmologists
and diagnosis cost.

1 Introduction

Glaucoma is an optic nerve disease resulting in loss of vision. It is often associated
with increased pressure of fluid inside the eye. Two common types of glaucoma
are open angle glaucoma (OAG) and angle closure glaucoma (ACG). Ophthal-
mologists examine the iridocorneal angle between iris and cornea to determine
OAG and ACG. When the angle is open, it is OAG. Otherwise, ACG. A detailed
description of the angle structures can be found in [I]. Here we briefly explain
why the iridocorneal angle is important. The iris, cornea, and lens are bathed
in aqueous humor, which is continually produced by nearby tissues. It moves
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out of the eye via the trabecular meshwork drainage. Blocking of the trabecular
meshwork would lead to increased pressure in the eye. The trabecular meshwork
is associated with the angle, thus, the iridocorneal angle is important. Because of
different causes and specific treatments for different types of glaucoma as well as
the necessity of urgent treatment of ACG, it is important to determine the glau-
coma type early[2], which implies that it is essential to visualize the iridocorneal
angle to make a correct diagnosis of the disease.

Gonioscopy is an eye examination looking at the front part of the eye between
iris and cornea. It requires considerable clinical expertise and effort as well as a
full knowledge of the angle structures [3]. Thus, it is not performed as often as
it should be. A new option with much more convenience is the RetCam (Clarity
Medical Systems, Inc., Pleasanton, CA) camera, which is explored to capture the
image of iridocorneal angle [3] recently. Four typical iridocorneal angle images
from inferior, superior, nasal and temporal quadrants of a left eye captured by
RetCam are shown in Fig. [[l The angle which is of our interest is located at
the boundary between the iris and the cornea. When other angle structures are
visible on the cornea side of the iris surface, it is an open angle, otherwise,
closed. Shaffer’s grading system [2] is widely used in gonioscopy to evaluate the
angle status based on the visibility of the angle structures. In this paper, we
focus on the clinically important grading: the classification between ACG and
OAG. Manual grading of RetCam images is usually tedious, time consuming
and expensive. Moreover, it is often subjective similar to many other medical
applications [4] and thus reproducibility is a concern. To save workload and
facilitate large-scale clinical use, it is essential to have a precise, efficient and
cost effective system to determine glaucoma type automatically.

Automatic glaucoma type classification from iridocorneal images captured by
RetCam is a new research topic and few work has been done for it. In [5], the

Bl

Inferior Superior Nasal Temporal

/
Intensity (6 scale) Color (12 scale) [, l
‘/)Z C1 (4 scale, 4 orientation)

Fig. 1. Focal biologically inspired feature for glaucoma type classification: for each
training image, we extract BIF from focal region. The feature consists of 6 intensity
feature maps, 12 color feature maps, and 16 C'1 units feature maps.
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edges around strongest arc are used. The limitation is that some edges within
iris are mistaken as edges from angle structures and reduce the classification
accuracy. Moreover, it relies on the accuracy of edge detection as well as the
sensitivities used to determine the edges. Based on the observation that human
can capture the ‘gist’ of an image instantly, biologically inspired feature (BIF)
[6][7][8] has been used in computer vision including scene classification, gait
recognition and etc. BIF mimics the process of cortex for visual perception.
Since the ophthalmologists classify the two types of glaucoma based on the
visual information, we introduce BIF to aid them to reduce workload. Different
from the application of scene classification where the scene varies largely from
one to another, the ‘scene’ of an angle closure image differs slightly from that
of an open one in a small region. When ophthalmologists examine the images,
they focus on the region. Thus, it is essential to extract BIF from it, i.e., focal
BIF. The proposed focal BIF as shown in Fig. [] simulates the process.

The paper is organized as follows. In Section [Tl we have given an introduction
of the background and motivation for the system. Section [2 introduces the BIF.
In Section Bl we introduce the methodology to determine the focal region and
extract focal BIF for angle grading. Section ] shows the experimental results,
followed by the conclusions in the last section.

2 Biologically Inspired Feature

The BIF has proven to be effective in computer vision. The feature consists of
34 feature maps including 6 feature maps from intensity units, 12 feature maps
from color units, and 16 feature maps from C1 units.

Among these features, the intensity units are obtained by convolving dyadic
Gaussian pyramids with the intensity channel of a color image. The features
correspond to the neurons of mammals which are sensitive to dark centers on
bright surrounds or vice versa [9][10]. Nine spatial scales are generated with a
ratio from 1:1 (level 0) to 1:256 (level 8). The intensity feature maps are obtained
by the center-surround difference operation between center levels ¢ = 2, 3,4 and
surround levels s = ¢+ d, with d = 3, 4. Thus, six feature maps are computed at
levels of 2-5, 2-6, 3-6, 3-7, 4-7, and 4-8. Because of the scale difference, maps of
surround levels are interpolated to be the same size as the corresponding center
levels, and then they are subtracted to generate the relevant feature maps, i.e.,
I(e,s) = |I(c) — Interps—cI(s)].

The color units are inspired by the ‘color double-opponent’ system in cortex
[9). Neurons are excited by a color (e.g., blue) and inhibited by another color
(e.g., yellow) in the center of receptive field, so are neurons in the surround.
Herein, four color channels are used: R = r — (¢ + b)/2, G = g — (r + b)/2,
B=b—-—(r+g)/2and Y = r+ g — 2(|r — g| +b). For each color channel
(R, G, B, and Y), dyadic Gaussian pyramids are used to generate nine spatial
scales similar to intensity unit. Two color pairs R — G and B —Y are used. The
feature maps are computed as the across scales center-surrounding differences.
Similar to the computation of intensity units, surround maps are interpolated
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to be the same size as the corresponding center maps and their difference is
computed as: RG(c, s) = |(R(¢)—G(c))—Interps—.(R(s)—G(s))| and BY (¢, s) =
|(B(c) =Y (c)) — Interps—.(B(s) — Y (s))|.

The C1 units are obtained by pooling over S1 units, which correspond to
simple cells in S1 layer of the visual cortex. Gabor functions are used for fea-
ture extraction due to its similarity to the receptive field profiles in simple cells
in S1 layer. The Gabor mother function is given by: F(x,y) = exp(—(22 +
v?92)/(262)) x cos(2mxo/N), wherein xg = x cos @ +ysin b, yo = —x sinf+y cos b,
the range of x and y decides the scales of Gabor filters, and 6 controls orien-
tations. In this paper, eight scales with a range of sizes from 7 x 7 to 21 x 21
pixels with a step of two pixels are used. Four orientations are considered: 0°,
45°, 90°, and 135°. Thus, a total of 32 feature maps are obtained in S1 units.
Pooling over two adjacent scales with an identical orientation, 16 feature maps
are obtained from C'1 units.

Arbitrarily extracting the BIF from the whole image does not work well for
angle grading as the main difference between ACG and OAG lies in a small
region, not to mention the difference due to various quadrants. In order to use
BIF properly, we propose focal BIF. Focal BIF refers to biologically inspired
feature from a focal region. In this application, it is the area between iris and
cornea.

3 Methodology

A system for automatic glaucoma type classification is proposed with following
steps: quadrant determination, focal region segmentation, and grading.

3.1 Quadrant Determination

As mentioned earlier, the images can be from inferior, superior, nasal and tem-
poral quadrant of the eye. One important step for the automated diagnosis is
to determine the quadrant. In this paper, quadrant is determined based on the
location of the arc center and the location of edges. Canny edge [11] followed
by circular Hough transform [I2] as in [5] are used to obtain the strongest arc.
Assuming (x;,y;),4 = 1,2,---, N are the coordinates of all points from the arc
inside the image, where top-left corner is defined as (1,1) and bottom-right cor-
ner as (m,n), N is the number of points. The function to determine the quadrant
Q is given as [1:

Superior, if z.— x; > |y — y;l
Inferior, if x; — ¢ > |ye — v
Nasal, if yo—y; > |xe — i
Temporal, if vy, —y. > |$c - Iz‘

(1)

where (z;,y;) = (5 Zfil Tis Zfil y;) is the mean of the edge coordinates,
(2, ye) is the center of the detected arc.

LA left eye is assumed here, swop nasal and temporal for a right eye.
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3.2 Focal Region Segmentation

The focal region refers to the area human eye focused on when one examines the
images. In this application, it is the area between iris and cornea. In order to
extract focal region and align features from various regions, we propose to locate
the iris surface as it is visible in both open angle and angle closure images.
For angle closure, the iris surface is often the strongest ascending edge (from
iris to cornea) in the focal region. However, for open angle, edges from other
angle structures can be stronger. Thus, the output of the aforementioned circular
Hough transform may find the iris surface inaccurately, as can be seen from the
line in red in Fig.

Without losing generality, assuming the image is from inferior side of an eye
as in Fig. Given L;(z) = I(z,j), = = 1,2,---, M, from the j** column
of the image I. Assuming L; crosses with the strongest arc at x;. Inspired by
the above observations on iris surface, we search for the point with strongest
ascending edge (from iris to cornea) from pixels around z; in L; and get its
coordinate . Among all ascending Canny edge within (zx — w,x)) as well
as xj itself, the point closest to pupil is used as candidate iris surface point
in this column. Here, w is set to be estimated maximum angle width. Finally,
curve fitting is applied based on all candidate points located in the last step.
In this paper, the iris surface is modelled as part of circle and a circular Hough
transform is applied again to find the fitted curve with circular center (x.,y.)
and radius r. After obtaining the estimation of iris surface highlighted in green,
another circular arc can be determined based same circular center (x.,y.) with
a larger radius r + dr. The parameter dr is set to be slightly larger than w. The
region in between is the focal region. As the side portions are often blurred,
central portion would be used. Locating the iris surface is a critical step to find
the focal region and then the focal BIF. Visually, the above algorithm finds the
iris surface accurately in central portion for 393 of the 396 images. However, it
is difficult to get a ground truth to compute a quantitative accuracy.

L:j" calumn

Iris Surface

(a) Blue: Canny edge, red: (b) Focal region
detected arc

Fig. 2. Focal Region Segmentation
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) - -t?l'ﬂ

Fig. 3. Focal BIF from 4 x 10 sub-regions

A polar transform with respect to the circular center (z.,y.) as in Fig.
is then applied to turn the focal region into rectangular. The transform helps to
align the focal region from images at different quadrants. As ophthalmologists
examine only the central portion, only the feature maps from central portion of
the focal region are used. Each feature map is divided into m xn sub-regions. The
mean value of feature map in each sub-region is computed for final representa-
tion. Fig. B shows an example with feature maps divided into 4 x 10 sub-regions.
Since each image is represented by 34 feature maps and each feature map is
decomposed into m X n sub-regions, we have a total of 34mn mean values as the
feature for each image.

3.3 Grading

In this paper, the grading problem is handled as a classification problem between
ACG and OAG. Support vector machines (SVM) are used as the optimization
tools for solving machine learning problems. The LIBSVM [I3] is used in our
experiments. RBF kernel is used with two-folder cross folder validation adopted
to determine the parameters C' and 7.

4 Experimental Results

A total of 99 different patient eyes as in [5] are used. For each patient eye, four
quadrants are examined by an ophthalmologist, thus a total of 99 x 4 = 396
quadrants are evaluated and labelled as ACG or OAG quadrant. Among the
gradings, 166 quadrants are with ACG and 230 quadrants are with OAG. These
manual gradings are used as ground truth.

In the SVM training, 115 images from OAG quadrants together with same
number of images from ACG quadrants are randomly selected for the training.
The rest of images are used for testing. The SVM parameters C' and ~y are
determined automatically through cross validation [I3]. The training and testing
are repeated five times to get an average result. Table [[l shows the percentage of
corrected classified ACG and OAG by the proposed method for m = 4,n = 10
together the results by prior work [5] as well as the results when other classifiers
are used. The results show conventional neural networks such as multi-layer
perception (MLP), and k-nearest-neighbours (kNN) cannot perform as well as
SVM on this task. To show the effectiveness of BIF, we also conduct tests by
replacing the BIF with simplified features such as color histogram (CH), color
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Table 1. Performance of the proposed Table 2. Performance using other
method and other methods features
Method Prior[5] MLP kNN Proposed Method CH CM IH
OAG 80.3% 77.4% 51.8% 85.2% OAG 59.0% 65.1% 54.2%
ACG 80.3% 74.3% 65.0% 84.3% ACG 67.5% 57.8% 56.6%

moment (CM) and intensity histogram (IH). The results summarized in Table
show that these features are not suitable for this task.

We also conduct tests with other m and n combinations. The classification
accuracy is computed as the average accuracy of ACG and OAG and summarized
in Fig. @ The results show a slight performance drop with other settings. The
average accuracy increases as n increases to 10. For larger n, it drops as too
much redundant information leads to a biased classifier. A similar phenomena is
observed as m changes.

The two SVM parameters C' and « are important as well. Although C' and ~
are selected automatically, it is still necessary to look at the results with other
parameters. Fig. [l shows the performance with different C' and v combinations
from exponentially growing C' and ~ for the case m = 4 and n = 10.

The number of training samples is another critical factor. Fig. [0l shows the
results when different number of training images are used in the training. The
results show that the accuracy can be improved close to 90% with more images
included in the training.

85
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Fig. 6. Performance with different number of training images
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5 Conclusion

Glaucoma type classification is important in glaucoma diagnosis. Clinically, au-
tomatic glaucoma type classification helps reduce workload of ophthalmologists
and diagnosis cost. It make it possible for large-scale clinical use and benefit
patients. However, it is a challenging work due to ambiguous angle structures
in some images. In this paper, we explore focal BIF for the classification. The
association between focal BIF and glaucoma type is built through SVM learn-
ing. The results show that focal BIF is effective for the classification with 85.2%
OAG and 84.3% ACG correctly detected based on 4 x 10 sub-regions. With more
images included in the training, the accuracy can be improved close to 90%. A
limitation is that the ground truth used in this paper is from one ophthalmologist
only and thus can be biased. In the future, gradings from more ophthalmologists
are to be used. Future work would focus on feature representation to further
improve the accuracy, with more images from different patients.
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Abstract. This paper presents the Relevance Voxel Machine (RVoxM), a
Bayesian multivariate pattern analysis (MVPA) algorithm that is specifi-
cally designed for making predictions based on image data. In contrast to
generic MVPA algorithms that have often been used for this purpose, the
method is designed to utilize a small number of spatially clustered sets of
voxels that are particularly suited for clinical interpretation. RVoxM au-
tomatically tunes all its free parameters during the training phase, and
offers the additional advantage of producing probabilistic prediction out-
comes. Experiments on age prediction from structural brain MRI indicate
that RVoxM yields biologically meaningful models that provide excellent
predictive accuracy.

Keywords: Multivariate Pattern Analysis, MRI.

1 Introduction

Medical imaging commonly entails relating image content to a clinical or ex-
perimental condition. Traditional univariate approaches, such as voxel-based
morphometry [2], generate anatomical maps of the effects by analyzing each
location individually. MVPA methods, in contrast, offer increased specificity
and sensitivity for predicting the outcome by considering all voxels simulta-
neously [BIBITOT2TATOIT7IIE]. Yet studies on image-based prediction have typ-
ically employed generic MVPA methods, such as Support or Relevance Vector
Machines (SVMs/RVMs) [BII8], which do not account for the spatial organiza-
tion of imaging data.

As demonstrated in semi-supervised learning, significant performance gains
can be obtained by explicitly utilizing the underlying structure of the data [3lf4].
One approach to achieve this with images is to impose an a priori model on
the covariation of voxel measurements — a strategy that has proven powerful in
computer vision [I3]. Further motivation for such image-based prediction models
is interpretability: rather than a “black box” tool, we are also interested in un-
derstanding and visualizing the key areas that drive predictions. Although it is

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAI 2011, Part ITI, LNCS 6893, pp. 99 2011.
© Springer-Verlag Berlin Heidelberg 2011
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possible to display the workings of generic linear MVPA methods as images [12],
the results are often scattered and hard to interpret biologically [7].

In this paper, we present the Relevance Voxel Machine (RVoxM), a novel
MVPA algorithm that is specifically designed for image-based prediction. It uses
a Bayesian approach and builds largely on existing RVM machinery to obtain
not only good prediction performance, but also sparse solutions. Unlike RVMs,
however, where sparseness is realized by discarding many of the samples, i.e.,
training subjects, our approach removes most wvozels, retaining only those vox-
els that are relevant for prediction. Furthermore, our model encourages spatial
clustering of these “relevance voxels” and computes predictions as linear com-
binations of their content, yielding results that are both biologically plausible
and intuitive to interpret. Compared to related efforts that incorporate spatial
context within the SVM or penalized regression frameworks [I5[7], our method
inherits all the usual advantages of RVMs over non-Bayesian methods, including
providing probabilistic outcomes and the automatic tuning of all free parameters.

We test RVoxM on the problem of estimating the age of healthy subjects
from structural brain MRI scans, and show that it achieves high accuracy using
a pattern of “relevance voxels” that easily lends itself to biological interpretation.

2 Model

We use a generative model similar to the one of RVM [I8]. Let ¢ denote a real-
valued target variable (e.g., age) that we aim to predict from image data, and z; a
voxel-level measurement (e.g., gray matter density) at the voxel indexed by i. We
define a Gaussian conditional distribution for t: p(t|x, w,3) = N (t|y(x),571),
with variance 8! and a mean that is given by the linear model

M
y(x) = Zmlwz 4wy = W, (1)
i=1
where w = (wq - --wyr) " are adjustable “weights” encoding the strength of each
voxel’s contribution to the prediction, x = (1,2y,---,2a)T denotes the vec-
torized image the prediction is based on, and M is the number of voxels. For
notational convenience, we include an extra “voxel” to account for the bias, wq.
We assume a zero-mean Gaussian prior distribution over w:

p(w|a, \) = N(w|0,P71),
where P is a (M +1) x (M + 1) precision (inverse covariance) matrix defined as
P = diag(ao, -+ ,anm) + AK.

Here, a = (v, - -+ ,apr)T and X\ are hyperparameters, and K is a fixed, positive-
semidefinite matrix that encourages local spatial smoothness of w. In particular,
we use K = YTY, where Y is a sparse matrix in which each row corresponds
to a pair of neighboring voxels in the image. For neighboring voxels {3, j}, the
corresponding row has zero entries everywhere expect for the i*"and j*" column,
which have entries —1 and 1, respectively. Re-writing the prior as
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1 & A
2 2
p(wle, \) o exp (= o Dot = HIXw] )

shows that it encodes a preference for models that are both sparse and spatially
clustered: we explicitly seek models that explain ¢ through a small collection of
image patches that easily lend themselves to neuroscientific interpretation. The
fact that there is a hyperparameter «; associated with each voxel’s weight w; is
responsible for achieving sparsity in those weights — in practice many of the «;’s
tend to very large values, forcing the corresponding weights to zero and “switch-
ing off” the contribution of many voxels. Importantly, we also explicitly take the
spatial structure of image data into account by penalizing large entries in the
vector Yw, which represent large differences between the weights of neighboring
voxels. Thus, we encode a preference for spatial clusters of “switched-on” voxels,
as these are both biologically more plausible and easier to interpret than speckles
of isolated voxels scattered throughout the image area.

3 Hyperparameter Estimation

Given training data, {x,,t,}_;, where x,, is the n'® training image and t,, its
target variable, our first goal is to determine the values of the hyperparameters c,
A, and (. Using type-II maximum likelihood, we estimate the hyperparameters
by maximizing the marginal likelihood function obtained by integrating out w:

N
X ar8) = [ ((TLottalxoow.) )otovla aw
n=1

w

N P 2y [P'2 Lt
:/w (27r exp(—2||t—Xw|| )(27T)M/2 exp(—2w Pw)dw

|F|—1/2

= (am)r2 exp(—;tTl—‘_lt), (2)

where t = (t1,--+ ,tn)T, X = [x1, -+ ,xn]T is the N x (M +1) “design” matrix,
and we have defined the N x N matrix I" given by

r=p3'1+XpP'x".
We take a “coordinate-ascent” approach to maximize Eq. (2). We first define:
p=pEX"y, > =pBX"X+P) L (3)
Fixing A, 8, and {«;} for all j # 4, differentiating the log of Eq. (@) w.r.t a,,

equating to zero and rearranging yields the following update:

new i
a; = /J12 Qi (4)
where vy; = 1 —;2;; — A\(P71K);;. Similarly, fixing a and 3, differentiating w.r.t
A, and rearranging yields the following update equation for A:
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rew e I 5)

where A = P~! — ¥. Similarly, an update for 3 can be derived:

grew = N (©)

ly — Xp|2 + trace(XEXT)
Optimization now proceeds by cycling through these equations. We initialize
with a; = 1,Vi, A = 1 and § = 0; monitor the objective function at each it-
eration and terminate when the increase over the previous iteration is below a
tolerance. Although currently we have no theoretical guarantees that the pre-
sented equations indeed increase the objective function, we have not encountered
any situation where this was not the case in our experiments.

4 The RVoxM Learning Algorithm

In practice, most (> 90%) «;’s tend to grow to infinity, effectively clamping the
corresponding weight w;’s to zero and removing those voxels from the model.
We exploit this to obtain a greedy learning algorithm for large 3-D image vol-
umes, using two computational tricks. First, each time one of the a;’s exceeds a
certain (very large) value, the corresponding voxel is pruned from the model and
computations continue based on remaining voxels only, in a manner similar to
the RVM algorithm [I§]. Second, we use a multi-resolution approach commonly
employed in image processing. We construct a pyramid representation of the
training images, where each level consists of lower-resolution images computed
by subsampling the images from the previous resolution. The algorithm then
starts by learning the hyperparameters for the lowest resolution images, prop-
agates them down for the initialization of the next level, and so forth until the
final resolution level is reached; voxels that were pruned at the previous level
remain so henceforth. Although this greedy algorithm prevents voxels from re-
entering once they have been removed, our experiments suggest that it works
quite well in practice.

5 Using RVoxM to Make Predictions

Having learned the hyperparameters a*®, A\*, and 8* from the training data, we
can make predictions about ¢ for a new input image x by evaluating the posterior

p(t|x,X,t7a*,)\*7B*):/p(t\x,w,ﬁ*)p(w|X,t,a*7)\*)dw.

w

It can be shown that this distribution is a Gaussian with mean

prx (7)

and variance 51* + xT¥x, where p and X are given by Eq. @) in which a;, A,
and 3 have been set to their optimized values a*, \*, and §*.
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In the remainder, we will use the maximum a posteriori value given by Eq. ()
to predict ¢, which corresponds to the linear model of Eq. () in which the voxels’
weights w are set to . In many voxels p; = 0 (because their «; was set to
infinity) — we call the remaining voxels the “relevance voxels” as these are the
only ones effectively used to predict the target variable t.

6 Experimental Results

We applied RVoxM to the problem of estimating a person’s age from a brain
MRI scan. This problem has attracted recent attention [IJITI] since it provides
a novel perspective for studying healthy development and aging patterns, while
characterizing pathologic deviations in disease.

We used T1-weighted scans from 336 cognitively normal subjects (age range
18-93 years), available through the OASIS datase {4. We processed all scans with
SPM8&1, using default settings, to obtain spatially aligned gray matter maps. The
gray matter density values (tissue probabilities modulated by the Jacobian of the
non-linear warp) were used as voxel-level measurements x; in the experiment.
To assess generalization accuracy, we split the data into two arbitraryﬁ halves
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! http://www.oasis-brains.org. 1.5T Siemens Vision scanner, Ixix1.25mm?, MPRAGE.
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3 Simply based on the alphabetical ordering of the anonymized filenames.
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Fig. 2. Relevance voxels (in blue) for predicting age, overlaid on the average gray
matter density image across all subjects. Brighter blue indicates a higher absolute
value, and thus a higher relevance for prediction. Top row: Model from training on the
first half of the data. Bottom row: Model from training on the second half of the data.

(age and sex matched, 43.7423.8 years, 62.5% female). We employed each group
to train the RVoxM, which was then applied to the complementary group for
testing. All reported results are averages across the two training/testing sessions.

In addition to RVoxM, we used two other methods as benchmarks. The
first method (“RVM”) is another approach for estimating age from structural
MRI [11]. It uses a principal component analysis to achieve a dimensionality-
reduced representation of the images, and subsequently applies a linear RVM
algorithm. We used the optimal implementation settings described in [I1] and
a public implementation of RVMH. The second benchmark (“RVoxM-NoReg”)
was an implementation of RVoxM with no spatial regularization, i.e., with the
hyperparameter A clamped to zero. A comparison with the latter benchmark
gives us an insight into the effect of spatial regularization on the results.

Fig. [l (top left) illustrates the root mean square error (RMSE) for the three
algorithms. On average, RVoxM yields the best accuracy with a RMSE less than
9.5 years (paired t-test, P < 0.05); Fig. [l (bottom left) plots the age predicted
by RVoxM for each subject versus the subject’s real age. Fig. [l (top right) plots
the average difference between the individual-level prediction errors (square of
predicted age minus true age) obtained by RVoxM and the other two methods.
On average, RVoxM achieves a statistically significantly smaller prediction er-
ror at the individual-level. RVoxM also attains the highest correlation (r-value)

4 http://www.vectoranomaly.com/downloads/downloads.htm
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between the subjects’ real age and predicted age among all three methods: 0.92
for RVoxM vs. 0.90, and 0.91 for RVM and RVoxM-NoReg, respectivelyﬁ.

Fig. @ shows p, RVoxM’s estimated voxel weights, for each of the two training
sessions. Recalling that the prediction on new data is simply the linear product
between p and the test image (Eq. (), the value of p at a specific voxel reflects
the contribution of that voxel to the prediction. It can be appreciated that
most voxels have a zero contribution (i.e., the model is sparse), and that the
“relevance voxels” (with a non-zero contribution) occur in clusters, providing
clear clues as to what parts of the gray matter are driving the age prediction
process. Furthermore, the relevance voxels exhibit an overall very similar pattern
across the two training sessions, providing evidence that these patterns are likely
to be associated with the underlying biology and can be interpreted. We leave
the interpretation of these relevance voxel patterns to future work.

7 Conclusion

In this paper, we proposed a novel Bayesian framework for image-based predic-
tion. The proposed method yields a model where the predicted outcome is a
linear combination of a small number of spatially clustered sets of voxels. We
developed a computationally efficient optimization algorithm, RVoxM, to learn
the properties of this model from a training data set. While RVoxM is not guar-
anteed to find the global optimum, our empirical results suggest that it finds a
good solution in practice. Experiments on age prediction from structural brain
MRI indicate that RVoxM derives excellent predictive accuracy from a small
pattern of voxels that easily lends itself to neuroscientific interpretation.
Although we have used a regression model in this paper, it is straightforward
to extend the technique to probabilistic classification by introducing a logistic
sigmoid function [I§]. In future work, we thus intend to apply RVoxM to also
predict dichotomous outcomes (e.g., diagnosis), in addition to continuous ones.
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Abstract. Early and accurate detection of Left Ventricle (LV) regional
wall motion abnormalities significantly helps in the diagnosis and follow-
up of cardiovascular diseases. We present a regional myocardial abnor-
mality detection framework based on image statistics. The proposed
framework requires a minimal user interaction, only to specify initial
delineation and anatomical landmarks on the first frame. Then, approxi-
mations of regional myocardial segments in subsequent frames were sys-
tematically obtained by superimposing the initial delineation on the rest
of the frames. The proposed method exploits the Bhattacharyya coef-
ficient to measure the similarity between the image distribution within
each segment approximation and the distribution of the corresponding
user-provided segment. Linear Discriminate Analysis (LDA) is applied
to find the optimal direction along which the projected features are the
most descriptive. Then a Linear Support Vector Machine (SVM) classifier
is employed for each of the regional myocardial segments to automati-
cally detect abnormally contracting regions of the myocardium. Based
on a clinical dataset of 30 subjects, the evaluation demonstrates that the
proposed method can be used as a promising diagnostic support tool to
assist clinicians.

1 Introduction

Heart failure is a prevalent disease that can be caused by various heart con-
ditions, in particular, ischemic heart disease (IHD) [I]. The decrease of blood
supply produced by coronary artery stenosis impairs the contractile properties of
specific myocardial areas. This deviates the normal regional wall motion and con-
tractility patterns of the myocardium, especially the left ventricle (LV). Early
and accurate detection of LV regional wall motion abnormalities significantly
helps in the diagnosis and follow-up of IHD [2]. In routine clinical use, car-
diac function is estimated by visual assessment and interpretation of LV and,
therefore, it is highly subject-dependent. Alternatively, computer-aided detection
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systems have been attempted in recent years in order to automatically analyze
LV myocardial function quantitatively [3], and to classify hearts into normal
or abnormal groups [4]. In clinical practice, the regional myocardial function is
commonly scored by following American Heart Association (AHA) standards
[5], where the LV is divided into 17 segments. Existing regional heart function
analysis methods are based on information theoretic measures and unscented
Kalman filter approaches [6], differentiable manifolds [7], independent compo-
nent analysis classifier [§], pattern recognition technique based on intra-segment
correlation [9], and tensor-based classification [10]. Most of the existing methods
require extensive user interaction or computationally expensive segmentation
algorithms. This study investigates assessment of regional myocardial function
using MR statistics and starting from a minimal user input. Typically cardiac
MR data consist of 10 sequences, each comprising 20 or 25 temporal image
frames. From a simple user input, we computed image statistics that are related
to myocardium function. Given a user-provided delineation of the first frame,
approximations of regional myocardial segments in subsequent frames were sys-
tematically obtained by superimposing the initial delineation on the rest of the
frames. The proposed method exploits the Bhattacharyya coefficient [11] to mea-
sure the similarity between the image distribution within each segment approxi-
mation and the distribution of the corresponding user-provided segment. Linear
Discriminate Analysis (LDA) is applied to find the optimal direction along which
the projected features are the most descriptive. Linear Support Vector Machine
(SVM) classifier is then employed for each of the regional myocardial segments
to automatically detect abnormal functional regions of the myocardium. The
proposed method performs significantly better than other recent methods and
requires fewer computational resources. The evaluations performed on a clinical
dataset of 30 subjects show that the proposed method is a promising diagnostic
support tool.

2 Constructing Image Statistics

We consider image statistics as representative features to classify regional my-
ocardium into normal or abnormal classes. Let Z be a set of cardiac MR images
of a single slice containing N frames [. Let I be a reference image which is an
end-diastolic frame corresponding to the largest volume during cardiac cycle,
whose delineation is given as depicted in Fig. [[(a). Let Iy, Iout ¢ [0,1] — 2
denote respectively the corresponding manual endo and epi-cardial boundaries
of I. We divide I into M regional segmentd?] following the AHA standard [5],
and using anatomical landmarkd3. Fig. M(b) shows the regional segments for
I. For (n,m) € [1..N] x [1...M], let I,,, denotes the regional cardiac segment

corresponding to segment m in frame n, and I7"? the boundary of I, (refer

! The number of frames N is typically equal to 20 or 25.

2 M would be 4, 6, and 6 for apical, mid-cavity and basal slices, respectively.

3 As suggested by [5] the attachment of the right ventricular wall to the LV is used to
identify and separate the septum from the LV anterior and inferior free walls.
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Fig.1. (a) Manual delineation of the reference image I for a mid-cavity slice. (b)
Regional segments of the reference image I for mid-cavity slice.

to Fig 2 (a)). The classification procedures are identical for apical, mid-cavity
and basal slices. Let us now superimpose the region defined by the epi-cardial
boundary I to the other frames in the sequence as shown in Fig. Bl(a-c), and
compute the corresponding image statistics (Fig. (d-f)). We define Rp C 2
to be the region enclosed within I € {Iy, Tout, iy}, and Pr,. 1 the intensity

distribution of I within region R :
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Fig. 2. (a-c): Regional myocardial segments superimposed on subsequent frames. (d-f):
the corresponding image statistics.
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f K(Z — I)dm 1 y2
P z) = BT K(y) = exp 202 1
RF,I( ) ar, ) (y) \/27T02 P ) ( )
where ar,. is the area inside region Ry and K is the Gaussian kernel [12]. Now
let Pr,, 1 denotes the image distribution corresponding to the blood within
the cav1ty of the reference image I whose delineation is given by the user (refer
to the distributions depicted by the discontinuous, red curves in Fig. 2d-f)).

Furthermore, we estimate the distribution inside I, by PR, 1 in all other
out

frames in the sequence as shown in Fig. l(d-f) (continuous, pink curves). Now
we consider the similarity measurement, (3, between image distribution Pr,, 1
corresponding to the blood in the cavity of the reference image I and distribution
Prepy

g =B(Pry,

in?

I,PRF;LJ?,I)a B(f,g9) = /R+ V/ fgdz (2)

B(f, g) is the Bhattacharyya coefficient measuring the overlap (similarity) be-
tween distributions f and g. The range of the Bhattacharyya coefficient is [0, 1],
with 0 indicating no overlap between the distributions and 1 indicating a perfect
match. The fixed [0, 1] range of the Bhattacharyya coefficient affords a conve-
niently practical appraisal of the similarity. We expect that measurement 5™
is related to the amount of blood in the corresponding segment I,,,,, a relation-
ship that is demonstrated experimentally by the typical example in Fig. 2l Such
similarity is reasonable because the more overlap between the image distribution
within cavity and the distribution within regional segment I,,,,, the higher the
blood volume inside regional segment I,,,. When a regional myocardial muscle
does not contract properly, the distribution of blood within Rp»m, I, does not
change and, therefore, 3™ Vi € {1,...,20}, can be used as a criterion to assess
the myocardial function of segment I,,,. We then employ a linear SVM classi-
fier and use the estimated ™™ (there are 20 ™™ for one regional segment) as
features to classify regional myocardial segments as normal or abnormal.

3 LDA and Linear SVM Classifier for Regional
Myocardial Abnormality Detection

We applied Linear Discriminant Analysis (LDA) to reduce the dimensionality
of feature vectors, 3™ = {6™™} s.t. n € {1,...,20}, while maximizing the dis-
tance between normal and abnormal classes. This can be achieved by projecting
estimated feature vectors, 8™, to a new lower-dimensional feature space of 3,
s.t. 6" = Frpa(B™). FrLpa transforms 8™ to 3, to discriminate among ab-
normal and normal classes [13]. Subsequently, a linear Support Vector Machine
(SVM) classifier is used to identify the decision boundary to classify the regional
myocardial segments into normal and abnormal categories. The vectors near the
decision boundary are called support vectors. We used linear SVM classifier to
maximize the margin between the support vectors of both classes. We trained
the linear SVM classifier by providing 3,” and the associated labels of normal
or abnormal obtained from ground truth by an expert radiologist.
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4 Experiments

Data acquisition. A set of 2D short-axis cine magnetic resonance (MR) images
of 30 subjects were acquired over the cardiac cycle on a 1.5T scanner with fast-
imaging employing a steady-state acquisition (FIESTA) image sequence. The
acquisition parameters were: TR=2.98 ms, TE=1.2 ms, flip angle=30 degree,
and slice thickness=10 mm. The data contain 90 short-axis image sequences,
each consisting of 20 functional 2D images. The results for 480 myocardial seg-
ments from apical, mid-cavity and apical were compared with ground truth
classifications by an expert radiologisiﬂ.

Applying Linear Discriminant Analysis. After estimating image features,
we applied a LDA transformation for each of regional myocardial segments indi-
vidually. Fig. Bl shows the projected features 8,™ after applying LDA transfor-
mation for regional segment 3 of apical, mid-cavity and basal slices. The results
show that projected features for the apical cases are more discriminative than
basal and mid-cavity regions. This can be explained by the fact that there are
no papillary muscles in apical slices and, therefore, estimation of the distribution
corresponding to blood within cavity of apical slice is less challenging compared
to basal and mid-cavity slices.

Apical Segment:3 Mid-cavity Segment:3 Basal Segment:3
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Fig. 3. projected features, §,", after applying LDA transformation for regional segment
3 of apical, mid-cavity and basal slices

Linear SVM Classifier. We used 16 linear SVM classifiers to assess the 16
regional myocardial segments (normal/abnormal). Fig. [ shows that the decision
boundary separates the normal and abnormal classes using linear SVM. The
decision boundary for apical is more reliable than the corresponding regional
segment in the basal slice. The greater the distance between the support vectors

4 Among the 480 myocardial segments, 389 segments were marked as normal and 91
as abnormal.
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Fig. 4. Decision boundary and support vectors for regional segment 3 of apical, mid-
cavity and basal slices

of normal and abnormal classes, the more reliable the decision boundary. The
decision boundary in the case of mid-cavity slices suffers from misclassification
because of the papillary muscles that are connected to myocardial wall.

Classification performance. We used two criteria to measure the performance
of each classifier, namely the ROC , Receiver Operating Characteristics, curves
with corresponding AUCs, Area Under the ROC Curve, and the Bhattacharyya
measure [II] to assess the discriminative power of the features. Furthermore, we
assessed the performance of the proposed approach by training our algorithm
using 2/3 of the dataset and testing on the rest of the data.

ROC, AUC and Bhattacharyya measure. We show the ROC curves for
classifier elements in Fig. Bl The figures show that the proposed method based
on the Bhattacharyya coefficient is a reliable approach, for detecting regional
abnormality in cardiac MR images. Figs. [l (a), (b) and (c) show that apical seg-
ments are better classified than basal while basal slices are better classified than
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Fig. 5. Receiver operating characteristics of classifiers. The closer the curve to the left
hand top corner, the better the classification performance.
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Table 1. The area under the curve corresponding to Fig. bl and the Bhattacharyya
distance metric (B) of normal/abnormal distributions. The higher the values, the more
discriminative the ability of the classifier.

Bhattacharyya distance

AUC metric (B)
Apical 0.94 0.91
Mid-cavity 0.85 0.85
Basal 0.87 0.94

mid-cavity slices. The AUCs corresponding to ROC curves in Fig. B are reported
in Table [l We also used the Bhattacharyya distance metric, B, to evaluate the
overlap between the distribution of features over normal and abnormal classes.
The higher the B, the more discriminative the classifier. The Bs in Table [l are
consistent with ROC/AUC evaluations.

Table 2. The classification accuracy computed by leaving-one-third-of-the-subjects-
out. The proposed method achieved an overall classification accuracy of 91.54%.

Sensitivity (%) Specificity (%) Accuracy (%)
Apex 100.0 90.91 92.86
Mid-cavity 93.33 92.93 90.48
Base 83.0 94.45 91.3

We also evaluated the performance of the classifier by computing the accu-
racy, specificity and sensitivity over datasets. Table 2] reports the results. The
overall classification accuracy is equal to 91.5%, with a sensitivity of 92.1% and
specificity of 92.8%. The highest performance was achieved for apical slices with
average of 92.9% for accuracy, 100% for sensitivity, and 90.9% for specificity.

5 Conclusions

We presented a regional cardiac abnormality detection method based on the
statistics of the image, which were estimated based on user-provided delineation
of the first frame. Then, from this simple input, we estimated image statistics for
each regional segment, and used them as features for regional heart abnormality
classification. The LDA was applied to estimate projected features and a linear
SVM classifier was used to classify regional LV segments into normal or abnormal
classes. The experimental analysis was carried out over 90x20 segmented LV
cavities of short-axis MR images obtained from 30 subjects, and demonstrated
that the proposed method performs significantly better than other state-of-art
methods, and can lead to a promising diagnostic support tool to assists clinicians.
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Abstract. Traditional neuroimaging studies in Alzheimer’s disease (AD)
typically employ independent and pairwise analyses between multimodal
data, which treat imaging biomarkers, cognitive measures, and disease
status as isolated units. To enhance mechanistic understanding of AD, in
this paper, we conduct a new study for identifying imaging biomarkers
that are associated with both cognitive measures and AD. To achieve this
goal, we propose a new sparse joint classification and regression method.
The imaging biomarkers identified by our method are AD-sensitive and
cognition-relevant and can help reveal complex relationships among brain
structure, cognition and disease status. Using the imaging and cognition
data from Alzheimer’s Disease Neuroimaging Initiative database, the ef-
fectiveness of the proposed method is demonstrated by clearly improved
performance on predicting both cognitive scores and disease status.

1 Introduction

Neuroimaging is a powerful tool for characterizing neurodegenerative process in
the progression of Alzheimer’s disease (AD). Pattern classification methods have
been widely employed to predict disease status using neuroimaging measures
[213]. Since AD is a neurodegenerative disorder characterized by progressive im-
pairment of memory and other cognitive functions, regression models have been
investigated to predict clinical scores from individual magnetic resonance imag-
ing (MRI) and/or positron emission tomography (PET) scans [89]. For example,
in [9], stepwise regression was performed in a pairwise fashion to relate each of
MRI and FDG-PET measures of eight candidate regions to each of four Rey’s
Auditory Verbal Learning Test (RAVLT) memory scores.

* Data collection and sharing for this project was funded by the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) (U01 AG024904, adni.loni.ucla.edu). HW and FN
contributed equally to this work. HW and HH were supported by NSF-CNS 0923494,
NSF-IIS 1041637, NSF-CNS 1035913. SR, AS and LS were supported in part by
NIBIB R03 EB008674, NIA 1RC 2AG036535, CTSI-IUSM/CTR (RR025761), NIA
P30 AG10133, and NTA R0O1 AG19771.
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Predicting disease status and predicting memory performance, using neu-
roimaging data, are both important learning tasks. Prior research typically stud-
ied these tasks separately. One example is to first determine disease-relevant cog-
nitive scores and then identify imaging biomarkers associated with these scores
so that interesting pathways from brain structure to cognition to symptom can
potentially be discovered. However, a specific cognitive function could be related
to multiple imaging measures associated with different biological pathways (some
of them are not related to AD). As a result, the identified imaging biomarkers are
not necessarily all disease specific. To have a better understanding of the under-
lying mechanism specific to AD, an interesting topic would be to only discover
imaging biomarkers associated with both cognitive function and AD status.

To identify AD-sensitive and cognition-relevant imaging biomarkers, we pro-
pose a new joint classification and regression learning model to simultaneously
performing two heterogeneous tasks, i.e., imaging-to-disease classification and
imaging-to-cognition regression. We use magnetic resonance imaging (MRI) mea-
sures as predictors and cognitive memory scores and disease status as response
variables. For each individual regression or classification task, we employ a multi-
task learning model [I] in which tasks for predicting different memory perfor-
mances (or those for predicting AD and control dummy variables in classifi-
cation) are considered as homogeneous tasks. Different to LASSO and other
related methods that mainly find the imaging features correlated to each indi-
vidual memory score, our method selects the imaging features that tend to play
an important role on influencing multiple homogenous tasks.

Our new method utilizes the sparse regularization to perform imaging
biomarker selection and learn a sparse parameter matrix under a unified frame-
work that integrates both heterogeneous and homogenous tasks. Specifically, by
recognizing that the formation [6] and maintenance [4] of memory are synergi-
cally accomplished by a few brain areas, such as medial temporal lobe struc-
tures, medial and lateral parietal, as well as prefrontal cortical areas, we use the
{3,1-norm regularization to select features that can predict most memory scores
and classify AD versus control. Empirical comparison with the existing methods
demonstrates that the proposed method not only yields improved performance
on predicting both cognitive scores and disease status, but also discovers a small
set of AD-sensitive and cognition-relevant biomarkers in accordance with prior
findings.

2 Sparse Model for Joint Classification and Regression

When we study either regression or classification via a multi-task learning model,
given a set of input variables, (i.e., features, such as imaging biomarkers), we
are interested in learning a set of related models (e.g., associations between
image biomarkers and cognitive scores) for predicting multiple homogenous tasks
(such as predicting cognitive scores). Since these homogenous tasks are typically
interrelated, they share a common input space. As a result, it is desirable to
learn all the models jointly rather than treating each task as an independent one.
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Such multi-task learning methods can help discover robust patterns, especially
when significant patterns in a single task become outliers for other tasks, and
potentially increase the predictive power.

To identify AD-sensitive and cognition-relevant biomarkers from imaging data,
we formulate a new problem to jointly learn two heterogeneous tasks: classifi-
cation and regression. We propose a new sparse model for joint classification
and regression to perform multivariate regression for cognitive memory scores
predictions and logistic regression for disease classification tasks simultaneously.

Notation. We write matrices and vectors as bold uppercase and lowercase let-
ters respectively. Given a matrix M = [m;;], we denote its i-th row as m’ and
j-th column as m;. The Frobenius norm of the matrix M is denoted as | M|/,

and the /2 1-norm [5] of M is defined as [[M][, ; = >, \/Z] mZ =3, ||m’],.

2.1 Objective of Sparse Joint Classification and Regression

First, logistic regression is used for disease classification. Given the training data
X = [x1,...,X,] € R each data point x; is associated with a label vector
V' = [Yity .-y Yie,) € R If x; belongs to the k-th class, y;; = 1, otherwise

T
yir = 0. We write Y = [(yl)T e (y”)T] € R™*“ | In traditional multi-class

logistic regression, under a projection matrix W € R¥*¢1 we have

Ty, c1 T Yik
eWr Xi ; eWr Xi
pklx, W)= . = p =W =]][ e o] -
=167 i1 \ 2= €M
where p (k| x;, W) is the probability that x; belongs to the k-th class, and
P (yi | X,‘,W) is the probability that x; is associated with the given label y*.
Therefore, the multi-class logistic loss that maximizes the Log-likelihood can be
achieved by minimizing:

n n Cc1 C1

) T

L (W) = *IOgHP (y’ | XivW) = Z Z (yikk)gz e — yikngi> - (1)

i=1 i=1 k=1 1=1

In AD classification, we have two classes, i.e., AD and health control (HC).
Second, we use multivariate least square regression to predict cognitive scores,

which minimizes:

lo(P) = |[X"P 2z} 2)

T
where X is the data matrix, Z = {(zl)T,...,(z")T] € R™*¢2 ig the label

matrix for the ¢ regression tasks, and P € R%*¢2 is the projection matrix.
The objective for joint classification and regression to identify AD-sensitive
and cognition-relevant imaging biomarkers can now be formulated as follows:

min J (V) =5 (W) + 12 (P) +7 [V, 3)
where V = [W P] € R?¥*(¢1+¢2) Thanks to the 5 ;-norm regularization on V [I],

the biomarkers are identified across all tasks so that they are not only correlated
to cognitive scores but also discriminative to disease status.



118 H. Wang et al.

2.2 An Efficient Iterative Algorithm

Due to the non-smoothness of the ¢5 1-norm term, J in Eq. (B]) is hard to solve
in general. Thus we derive an efficient iterative algorithm as follows.
Taking the derivatives of J w.r.t. W and P, we set them to be zeros:

0J _ 0l (W) aJ

—_— P T —_— =
ow = ow  T2DPW =0 0 =2XX"P-2XZ+20DP=0, (4

where D is a diagonal matrix whose k-th diagonal element is 2\|vlk|\ . Because D
2

depends on V| it is also an unknown variable. Following standard optimization
procedures in statistical learning, we alternately optimize V and D.

Algorithm 1. An efficient algorithm to solve Eq. ([B)

Input: X = [x1,...,X,] € R¥*" Y = yi,.-- ,yn]T € R"* 1l and Z = [z, ... ,Z,L]T c R™X¢2,
1. Initialize W € R?*1 P € R4X°2 and let V = [W P] € R¢X(c1+e2)
while not converge do

2. Calculate the diagonal matrix D, of which the k-th element is 2Hv1k Iy ;

3. Update w by w — B~ 1a, where (d X (p — 1) 4+ u)-th element of a € REe1XT g
B[ll(W)Jr'ytr(WTDW)]

OWup forl1<u<d,1<p<eci,the (dxX(p—1)+u,dx (¢g—1)+v)-th

. ) a[ly (W)+~ tr(WT DW
element of B € R¥¢1Xd¢1 jg [ ! BWZp;(VVvq )] forl1 <u,v<dand1<p,qg<ci.

Construct the updated W € R*X°1 by the updated vector w € R%°1 | where the (u, p)-th
element of W is the (d X (p — 1) + u)-th element of w;

-1
4. Update P by P = (XXT + WD) XZ;

5. Update V by V = [W PJ;
end
Output: W € R¥X°L and P € R?*°2,

First, we randomly initialize V € R**(¢1t¢2) ypon which we calculate D.
After obtaining D, we update the solution V = [W P] using Eq. ). To be more
precise, P is updated by P = (XXT + ’yD) ~! XZ. Because we cannot update W
with a closed form solution upon Eq. ), we employ Newton’s method to obtain
updated W by solving the following problem: minw 3 (W) 4~ tr (WTDW).

Once we obtain the updated V. = [W P], we can calculate D. This procedure
repeats until convergence. The detailed algorithm is summarized in Algorithm/[I],
whose convergence is proved as following.

[[voll3
2llvoll, *

N[5

Lemma 1. For any vector v and vy, we have ||v]], — 2llvol
2

Proof is available in [5]].

< |lvoll, =

Theorem 1. Algorithm [l decreases the objective value of J in every iteration.

Proof. In each iteration, denote the updated W as VNV, the updated P as 157 thus
the updated V is V= [W f’] According to step 3 of Algorithm [, we have

I (W) Fytr (WTDW) <1y (W) +vtr (W' DW). (5)
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According to step 4 we know that
I (13) Foytr (f’TDf)) <1, (P)+~tr (PTDP). (6)
According to the definition of D and Lemma 1, we have the following inequality:

[+, Iv¥1;

ZH k||2 ZQ”ka Z” kH2 22||Vk||2

= ’yz ||\7ng —ytr (\NITD\N/') < ’yz ||ka2 —ytr (VTDV) .
k=1 k=1

Because tr (VIDV) = tr (W/'DW) +tr (PTDP), by adding Egs. ([EHD) at the
both sides, we arrive at

(W )—I—b()—l—’yZHka<ll )+ 1y (P —I—’VZHVICH2 8)

Thus, Algorithm [l decreases the value of J in Eq. @) in every iteration. (]

Because J in Eq. ([B) is obviously lower-bounded by 0, Theorem 1 guarantees
the convergence of Algorithm [Il In addition, because J is convex, Algorithm [I]
converges at the global optimum of the problem.

3 Experimental Results

We evaluate our method by applying it to the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) cohort. The goal is to select a compact set of AD-sensitive and
cognition-relevant imaging biomarkers while maintaining high predictive power.

Data preparation. We downloaded data from the ADNI database (http://
adni.loni.ucla.edu). We used baseline MRI data, from which we extracted
56 volumetric and cortical thickness values (Fig. [I) using FreeSurfer (http://
surfer.nmr.mgh.harvard.edu), as described in [7]. We included memory scores
from three different cognitive assessments including Mini-Mental State Exam
(MMSE), Rey’s Auditory Verbal Learning Test (RAVLT), and TRAILS. Details
about these assessments are available in the ADNI procedure manuals (http://
www.adni-info.org/Scientists/ProceduresManuals.aspx).

3.1 Biomarker Identification

The proposed method aims to identify imaging biomarkers that are associated
with both disease status and cognitive scores in a joint classification and regres-
sion framework. Here we first examine the identified biomarkers. Fig. [l shows a
summarization of selected features for the three experiments (one for each type
of cognitive scores) where the regression/classification weights are color-mapped
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Fig. 1. Weight maps of the joint classification and regression tasks. One binary classi-
fication task for AD and HC. Three different groups of cognitive scores for regression:
(a) MMSE score, (b) RAVLT score, (¢) TRAILS score. “-L” indicates the FreeSurfer
biomarkers at the left side, and “-R” indicates those at the right side.

for each feature and each task. Fig. Bl visualizes the cortical maps of selected
features for both classification and regression in different tasks.

Fig. [l and Fig. 2 show that a small set of MRI measures are identified, in-
cluding hippocampal volume (HippVol), entorhinal cortex thickness (EntCtx),
amygdala volume (AmygVol), inferior parietal gyrus thickness (InfParietal), and
middle temporal gyrus thickness (MidTemporal). These are all well-known AD-
relevant biomarkers. Our method also shows that these markers are jointly as-
sociated with one or more memory scores. Although we know that MRI mea-
sures, cognitive scores and diagnosis are highly correlated, the complex relation-
ships among them remain to be discovered for a better understanding of AD
mechanism. This is one major focus of our work. As shown in Fig. [l different
AD-sensitive MRI measures could be related to different cognitive tasks. The
proposed sparse method for joint classification and regression enables us to sort
out MRI-cognition relationships while focusing on AD-sensitive markers.

3.2 Improved Prediction Performance

Now we evaluate the performance of joint classification and regression for AD
detection and cognitive score prediction using MRI data. We performed standard
5-fold cross-validation, where the parameter v of our method in Eq. ([B]) was fine
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Fig. 2. Cortical map of selected features for cognitive score prediction using FreeSurfer
measures in the three joint classification and regression tasks

tuned in the range of {10_5, R N 105} by an internal 5-fold cross-validation
in the training data of each of the 5 trials. For classification, we compared the
proposed method against two baseline methods including logistic regression and
support vector machine (SVM). For SVM, we implemented three different ker-
nels including linear, polynomial and Gaussian kernels. For polynomial kernel,
we searched the best results when the polynomial order varied in the range of
{1,2,...,10}; for Gaussian kernel, we fine tuned the parameter « in the same
range as that for our method and fixed parameter C' as 1. For regression, we
compared our method against two widely used methods including multivariate
regression and ridge regression. For the latter, we fine tuned its parameter in the
same range as that for our method. The results are reported in Table[dl

Table [[l shows that our method performs clearly better than both logistic re-
gression and SVM, which are consistent with our motivations in that our method
classifies participants using the information from not only MRI measures but also
the reinforcement by cognitive score regression. In addition, the cognitive score
regression performances of our method measured by root mean squared error
(RMSE) outperform both multivariate regression and ridge regression, support-
ing the usefulness of joint classification and regression from another perspective.
Ridge regression achieves close but slightly worse regression performance. How-
ever, it lacks the ability to identify relevant imaging markers. All these obser-
vations demonstrate the effectiveness of the proposed method in improving the
performances of both AD detection and cognitive score prediction.

Mild cognitive impairment (MCI) is thought to be the prodromal stage of AD.
Including MCI in this type of analyses will be an interesting future direction to
help biomarker discovery for early detection of AD. We performed an initial
analyis on three-class classification for AD, MCI and HC: the accuracy of our
method was 0.663 and the best of other tested methods was 0.615. Apparently
this is a much harder task and warrants further thorough investigation.
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Table 1. Comparison of classification and regression performance

Our method Classification accuracy RMSE (mean # std)
Memory Classification| Regression Logistic Multivariate Ridge
score | # subjects [# AD|# HC| accuracy RMSE regression SVM regression regression
MMSE 378 175 | 203 0.881 0.034 +0.002 0.783 (linear kernel) 0.041 +0.003|0.039 + 0.004
RAVLT 371 172 | 199 0.884 0.019 + 0.001 0.832 | 0.839 (Polynomial kernel) ] 0.028 +0.002| 0.024 + 0.003
TRAILS 369 166 | 203 0.864 0.043 +0.002 0.796 (Gausssian kernel) 0.049 +0.003 | 0.046 + 0.003

4 Conclusions

We have proposed a new sparse model for joint classification and regression and
applied it to the ADNI cohort for identifying AD-sensitive and cognition-relevant
imaging biomarkers. Our methodological contributions are threefold: 1) propos-
ing a new learning model, joint classification and regression learning, to identify
disease-sensitive and task-relevant biomarkers for analyzing multimodal data; 2)
employing structural sparsity regularization to integrate heterogenous and ho-
mogenous tasks in a unified multi-task learning framework; 3) deriving a new
efficient optimization algorithm to solve our non-smooth objective function, and
coupling this with rigorous theoretical analysis on global optimum convergency.
Empirical comparison with the existing methods demonstrates that our method
not only yields improved performance on predicting both cognitive scores and
disease status using MRI data, but also discovers a small set of AD-sensitive and
cognition-relevant imaging biomarkers in accordance with prior findings.
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Abstract. This paper proposes a novel reflectional asymmetry descriptor to
quantize the asymmetry of the cutaneous lesions for the discrimination of
malignant melanoma from benign nevi. A pigmentation elevation model of the
biological indexes is first constructed, and then the asymmetry descriptor is
computed by minimizing the histogram difference of the global point signatures
of the pigmentation model. Melanin and Erythema Indexes are used instead of
the original intensities in colour space to characterize the pigmentation
distribution of the cutaneous lesions. 311 dermoscopy images are used to
validate the algorithm performance, where 88.50% sensitivity and 81.92%
specificity have been achieved when employing an SVM classifier.

1 Introduction

An abnormal reproduction of biological cells within body organs and tissues usually
forms an asymmetric shape or appearance, with a potential to become metastatic and
aggressive spreading thorough the body. Malignant melanoma, which accounts for
75% mortality caused by skin cancers [1], is one of these examples. Asymmetry
therefore has been demonstrated as one of the most important features to quantify the
shape and structure of the lesion. Stoecker et al. [2] determined the reflectional
asymmetry of the lesion by area differences across the principal axes computed from
the moment of inertia. Similarly, Seidenari et al. [3] evaluated the lesion asymmetry
by calculating the area differences with respect to 128 axes through the lesion centre.
Stanganelli et al. [4] applied the size function to separately quantize the asymmetry of
the lesion in terms of boundary, shape and colour to achieve a better classification
results.

Most of the above approaches have shown the discrimination power of asymmetry
in melanoma identification. However, they share some similar shortcomings. Firstly,
most of the existing asymmetry descriptors only evaluate the extrinsic shape, but
ignore the asymmetry of the inhomogeneous pigmentation inside the lesion.
Secondly, since asymmetry measure and symmetry axis are normally defined
separately, the final results might not be optimized. Thirdly, clinically acquired lesion
images may contain complex distortions due to the factors like sensor positions and
lighting conditions. Normal extrinsic asymmetry descriptors greatly vary with them.

This paper proposed a new intrinsic reflectional asymmetry descriptor to
simultaneously quantize the shape and the pigmentation distributions of the cutaneous

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAI 2011, Part III, LNCS 6893, pp. 124 2011.
© Springer-Verlag Berlin Heidelberg 2011
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lesions with robustness to various deformations. We compute the melanin index and
erythema index from an RGB image, and then map these biology values to the Z-axis
to build a pigmentation elevation model. The reflectional asymmetry of the lesion is
defined by minimizing the histogram difference of the global point signatures (GPSs)
of the pigmentation model. Compared with those shape dependent asymmetry
detectors, the proposed asymmetry descriptor is more efficient in describing the
abnormality of the lesion as it simultaneously integrates the shape and pigmentation
information. Moreover, melanin and erythema indexes reveal the pathological tissue
conditions, which proved more useful in characterizing the irregularity of the
pigmentation of the cutaneous lesions. We have verified that the proposed GPSs-
based asymmetry descriptor is invariant to 2D rigid transformations. It is also robust
to the non-rigid deformations, which is ideal for characterizing the intrinsic
asymmetry of the skin lesions.

2 Biology Pigmentation of the Skin Lesions

Melanin and haemoglobin are two primary chromophore components determining the
colour of human skin. Excessive ultraviolet radiation from the sun may cause
irregular melanin growth in horizontal and vertical directions. When the aggressive
melanocytes reach the vascular system, they become malignant and are easily
broadcast to the whole body. Therefore the irregularity of both melanin and
haemoglobin are internal factors for skin cancer diagnosis, though they are normally
presented as colour values acquired by optical cameras.

Melanin Index (MI) and Erythema Index (EI), reflecting the pigmentation and
vascular blood status of human skin, can be approximated from Red and Green
channels of an RGB image. Regarding the skin reflectance is in Green (~560 nm)
(high hemoglobin absorption) and Red (~650nm) (low hemoglobin absorption)
spectral ranges, the approximations of MI and EI can be defined [5] as,

MI = 100 * log,,(1/R) (1)
El = 100 * (logo(1/G) — 1.44 *log,((1/R)) 2)

where R and G are intensities in red and green channels respectively. Fig.1 shows the
MI and EI mappings of a malignant melanoma (MM) and a benign nevus (BN).

(i) MM

(ii) BN

(a) Original images (b) MI

Fig. 1. Melanin and Erythema mappings of (a) MM, (b) BN
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3 Asymmetry Descriptor

3.1 Pigmentation Elevation Model

A few pre-processing steps are applied to remove the hairs on the skin [6], flatten the
homogeneous regions, and isolate the lesions from the surrounding normal skin [7].
Then MI and EI are calculated to build the pigmentation elevation model by mapping
MI/EI to Z-axis, and the shape information of the isolated lesion as X and Y axes.

In order to enable the shape and pigmentation giving the comparable contributions,
the pigmentation model is scaled down in a bound box. Suppose Xjesion has larger range
than Yiesion, then they are first normalized as Xjesion = Xiesion/(Max(Xiesion) —
min(Xlesion)) and Yllesion = (I‘ * Ylesion)/(maX(Ylesion) - min(Ylesion))- As a result,
the range of X|agion i8S 1, and that of Ysgo, is 7, Where 7 = Yiesion/Xlesion- NEXt
normalize Z-axis to the range of [0 1]. Because the maximum and the minimum values
in MI and EI vary among images, conventional normalization yields non-uniform
results. So we calculate the range of MI and EI indexes according to (1) and (2), where
the range of MI is [-240.82, 0] and that of EI is [-240.82, 346.78]. Then the normalized
EI and MI images can be calculated below to ensure the effectiveness of the
pigmentation normalization is equivalent to every single image,

_ MI—(-240.82) _

ML, orm = ~aosz 0.0042MI + 1 3)
Elyorm = 2222 — 0,0017E1 + 0.4098 )

Fig.2 shows the pigmentation elevation models calculated from MI and EI in Fig.1.
The outer boundary of the model stands for the shape asymmetry of the skin lesion,
and the pigmentation asymmetry of the lesion can be reflected by the distribution of
the pigmentation model along the Z-direction.

(c) Model in MI (d) model in EI
(i MM (i) BN

(a) mol 1 MI

Fig. 2. Pigmentation elevation model from lesion images in Fig.1. (i) MM, (ii) BN

3.2 Reflectional Asymmetry in Histograms

The proposed GPSs-based asymmetry descriptor is derived from the Laplace-Beltrami
operator, which is defined as the divergence of the gradient on a surface function in
Riemannian manifold M. The Laplace-Beltrami operator L can be approximated by
the graph Laplacian matrix using the heat kernel [8], where the eigenvectors of the
Laplacian matrix embed the points on M into lower dimensional representations.
Since the Laplace-Beltrami operator is symmetric negative and semidefinite, it has an
eigen-decomposition L@; = A;0; (0 = 1, < A; < -+ < 4;), where @; are eigenfunctions
and A; are the corresponding eigenvalues. The GPSs can then be calculated [9] as:
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GPSs are used because they can integrate shape and colour asymmetry detections
on the pigmentation model simultaneously. Moreover, it has been proved that GPSs
reflect the intrinsic metric property of the object and are robust to the metric
deformations [9] which might be introduced by the camera positions or various
lighting conditions during the data acquisition.

In our work, M is the pigmentation model in 3-dimensional space. The
eigenvectors corresponding to the first few eigenvalues determine the optimal
embeddings. Since the first eigenvector with A, = 0 generates a constant function and
the eigenvectors associated with repeated eigenvalues are not stable for small non-
isometric perturbations [9], we restrict our searching for reflectional asymmetry
detection in the first 6 eigenfunctions with non-zero and non-repeated eigenvlaues.

GPSs uniquely determine the metric of the manifold. So M is intrinsically
symmetric if there is an associated self-mapping T: M—M, making both @; and @; o T
the eigenvectors of L. Suppose gps; is the i™ (1<i<6) component in the GPSs, and
T={t},ts,...,t¢} is the self-mapping. For a complete symmetry object, the GPSs with
non-repeated eigenvalues only holds two possibilities along the reflectional symmetry
axis as gps; o T; = gps; and gps; o T; = —gps;. Thus T can be determined by a sign
sequence with either positive (+1) or negative (-1). Skin lesions are imperfect or non-
symmetric objects, so the complete symmetry measure |gps o T| = |gps| could not
be fulfilled. Thus we generate a region-based reflectional asymmetry descriptor in
histogram to quantify the asymmetry of the skin lesions in the GPS spaces.

We first defined the gravity centre of a lesion, and then the entire lesion is
segmented into 180 segments around the polar coordinate across the centre. For each
segment, we built the histogram of GPS with 100 bins, thus the descriptor of each
segment [ in signature i can be represented as (6).

1
Desiy(T) = - Xada f (gpsl(D)) *v(gpsi(T)) 1=12,..,180 (©6)

where f represents the frequency counts in each bin, v is the bin location of gps; ;(T)
in histogram and N; is the number of pixels in each segment. For every gps;(T), the
Des;(T) value can be plotted from O to m. As the principal axis must exist in these
180 segments, we assume one segment as the principal axis at each time, and translate
part of the Des;(T) to ensure 90 elements on both sides along the axis. Considering
there are six GPSs, the asymmetric degree of a lesion can be quantified by minimizing
the Euclidean distance between the left-right sides of the histogram,

Asy(T) = min (TE, 532, ||Dest (T) — DesE(T)|2) )

where DesiL‘l represents the left side and Desfl stands for the right part of the
histogram. Because the asymmetry descriptor is a function of the sign sequence T, the
minimum asymmetry measure also indicates the potential optimal reflectional axis.
Moreover, since the GPSs integrate the shape and pigmentation asymmetry detections
simultaneously, it avoids yielding two different symmetry planes when the
asymmetric appearance of shape and colour are analyzed separately.

Fig.3(i) shows the first 6 GPSs with the optimal sign sequence T from the MI
images of the lesions in Fig.1. The BN shows approximate symmetric appearance in a
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given direction for all gps(T), whereas it is difficult to find an appropriate symmetry
plane fit for the six gps(T) of the MM. The first two gps(T) indicate shape
asymmetry, while higher orders of gps(T) reflect the pigmentation distribution inside
the lesion. Fig.3(ii) plots the optimal translated histograms with the minimum
asymmetry measure. The BN shows symmetry on left-right side of the histograms,
while the optimal translated histograms of the MM greatly fluctuate. It results in a
large asymmetry measure which can be used for the classification purpose.

S HELHT Ve 404
o ek e A L e e

(a) MM (b) BN

Fig. 3. Asymmetry descriptors of the MM and the BN in Fig.1. (i) The first 6 GPSs with the
optimal sign sequence T. (ii) Translated histograms given the minimum asymmetry measures.

3.3 Influence of Rigid Transformations and Non-rigid Deformations

One of the important characteristics of the asymmetry descriptors for skin lesion is
whether it is robust to the rigid transformations (translation, rotation, scale) and non-
rigid deformations. Next we will evaluate their influence to our asymmetry descriptor.

Invariant to Rigid Transformations and Isometric Deformations. GPSs are
calculated from graph the Laplace matrix by connecting the neighbour points on
object surface in Riemannian space. It has been proved that GPSs are invariant to
translation, rotation and isometric deformations [8], because these manipulations do
not change the point distance along the surface. Since histogram neglects the spatial
information and does not introduce extra isometric deformations, the proposed
asymmetry descriptor is translation, rotation and isometric deformation invariant.

For scaling, suppose a ratio y scaled the manifold M as M’ = yM. Eigenvalues and
eigenvectors of M can then be calculated as A{ = A;/y? and @] = @;/y. GPSs of the
scaled M’ proved invariant since GPS;" = @{/\/T{ = (@;/v)/VAi/Y? = 0i/A = GPS;.

Considering parameter m, 1 and sign sequence T are scale irrelevant, only descriptor
Des; (T) in (6) needs checking. Since GPSs are scale invariant, bin location v,
representing the quantified value in GPS histograms, stays unchangeable to y. f
representing the frequency counts, is a function of pixel number. As such dividing the
pixel number N; in each segment as (7) can counteracts the influence of y.

Robustness to Non-isometric Deformations. Since skin lesions are non-rigid
objects, they associate with non-isometric deformations most of the time. Besides the
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2D shape distortions due to skin surface tension, non- isometric deformations in Z-
axis also exist because of the different intensity caused by different dermoscopes.
Given a d-dimensional manifold M and its non-isometric deformation M’, the
graph Laplace matrix can be represented as L = S™1C and L' = S’~1C’, where S
represents the area surrounding by a pixel’s neighbour points, and C is a cotangent
function [9]. @; and A; of the non-isometric perturbation object will remain stable if
non-isometric perturbation AC = |C — C’| and AS = |S —S’| are small. Thus the
proposed asymmetry descriptor is robust to small non-isometric deformations.

4 Experimental Results

The performance of the asymmetry descriptors for melanoma diagnosis is validated
on 311 dermoscopy images [10][11] with resolution ranging from 448x336 to
1098x826 pixels, where there are 88 MMs and 223 BNs. The asymmetry descriptor is
a four dimensional feature vector including the minimum asymmetry measures
obtained from MI and EI images respectively, as well as their asymmetry measures in
the direction perpendicular to the optimal reflectional axis.

Asymmetry Features = {ASYmin(MID), ASYmintoor(MI), ASYmin(ED), ASYmintoo-(E1)}

4.1 Efficiency of Biology Information

In order to demonstrate the efficiency of the biology information, we compute the
asymmetry descriptor in each channel of the conventional RGB images, and compare
the diagnosis results with those from the melanin and erythema indexes.

Fig.4 plots the distributions of the probability density functions (pdfs) of the
proposed asymmetry descriptors obtained from MI/EI images, as well as those from
the conventional RGB images. The asymmetry descriptors in MI/EI images give
better separated distributions between MMs and BNs. The application of the biology
descriptors increases the discrimination, because MI/EI reflects the pathological
condition and the primary cause of the pigmentation inside the lesion. This makes MI
and EI ideal descriptors for quantizing of the malignancy of the skin lesions.

distributions of probabiligy density functions of Ml and El images distributions of probability density fucntions in R G B channels
malignant melanomas in El (u:21.99. std'4 32) malignant melanomas in R (u:20.75. std:5.14)
benign nevi in El (u:9.97, std:5.24) 0.12 benign nevi in R (u:12.24, std:5.92)
----- malignant melanomas in Miu:22 51 std-3 96) e malignant melanomas in G (u-21.09, std:5.09)
b viin M1 (011 26, std- 4 75) benign nevi in G (u12.33. std 5 68)
ening nevi in MI u11.26. std” 4 75) L malignant melanomas in B (u:21.32, std-5.18)
0.1 ) bening nevi in G (u12.67, std'5.96)

o
o
&

probability density functions
probability density functions

0 5 10 15 20 25 30 35 40 % % 10 I 20 25 30
asymmetry measure asymmetry measures
(@) (b)

Fig. 4. Distributions of probability density function (pdfs) of the asymmetry descriptors. (a) pdfs
in MI and EI images. (b) pdfs in Red, Green and Blue channels in conventional RGB images.
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4.2 Robustness to Non-isometric Deformations

To demonstrate the robustness of the proposed asymmetry descriptor to the non-
isometric deformations, we calculate the asymmetry descriptors of the same lesion
acquired by different dermoscopes. An example of Seborrheic Keratosis is shown in
Fig.5. Although the overall shape of the lesion seems unchanged, non-uniform surface
tension will always exist, not to mention the different lesion boundaries introduced by
the automatic segmentation techniques. Thus 2D shape distortion between two images
can be detected from the isolated lesions in Fig.5(ii). Moreover, compared with the
original images, colour contrast in two MI images proves similar. Similar contrast
with different intensity values only causes a translation along the Z-axis in the
pigmentation model, but not greatly distorted the shape. So we assume there are small
non-isometric deformations between the post-processed images.

Though both shape and colour distortions are presented, the asymmetry of the first
6 GPSs in Fig.5(ii) appear resembled. This similarity can be also observed from the
corresponding histograms. Numerically, asymmetry degree of the lesion in (a) is 8.53,
whereas that of the lesion in (b) is 9.27, which gives 8.87% difference.

®

MYTTYLEYE
“AMdaue AMNMWe

(b)

ﬁzx

Fig. 5. Asymmetry measure of the same seborrheic keratosis by different dermoscopes. (a)
polarized dermoscopy with resolution of 598x492 (b) immersion contact dermoscopy with the
resolution of 540x462. (i) Original images and MI images. (ii) The first 6 GPSs with the
optimal sign sequence T. (iii) Translated histograms given the minimum asymmetry measures.

4.3 Performance of the Asymmetry Descriptors

In order to demonstrate the efficiency of the proposed asymmetry descriptor, we
compute the extrinsic shape and colour asymmetry without GPSs, and compare the
classification results with that from the intrinsic descriptors with GPSs. The
asymmetry measures without GPSs are defined similarly as the proposed detector.
Specifically, a lesion is first segmented into 180 areas. Then each segment is
represented by the area proportion of the segment to the whole lesion (SDes;), or by
the MI/EI histogram (CDes;). Finally the asymmetry measure without GPSs can be
quantified by minimizing the histogram difference in [0 «t] as (9).
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SDes; = %, CDes, = le}lozol f (colour™) = v( colour") ®)
l

SAsy = min( 2, |IsDest — SDes,R”z), CAsy = min ( 2, ||CDest — CDeis”z) )

Three different classifiers were applied to validate the classification accuracy,
including Support Vector Machine (SVM) with radial basis function of a scalar 3,
Artificial Neural Networks (ANN) with 1 hidden layer and 5 neurons, and Bayesian
classifier (BC) by minimizing the Bayesian risk of the 0/1-loss function. In the
training-testing process, 155 dermoscopy images were randomly selected for training
and the other half of data were used for testing. For each classification algorithm, we
automatically execute the program 30 times and record the average sensitivity,
specificity and accuracy as the final results to complement the bias introduced by the
inconsistence of the random selection of the training data.

Table.l shows the classification results of the asymmetry descriptors with and
without GPSs from each classifier. The accuracy from the GPSs-based asymmetry
descriptor is approximate 5% higher than that of the combination of shape and colour
asymmetry descriptors without GPSs. The best diagnosis for the test data are 88.50%
sensitivity, 81.92% specificity and 83.26% accuracy employing the SVM classifier.

Table 1. Classification results of the asymmetry descriptors with and without GPSs

[Training (%) (with/without GPSs) [Testing (%) (with/without GPSs)

Sensitivity  |Specificity  |Accuracy  |Sensitivity  [Specificity |Accuracy
SVM  [94.53/93.02 [84.07/81.44 [87.03/84.72 [88.50/83.63 [81.92/75.81 [83.26/78.02
ANN  [88.58/86.36  [80.49/77.82 [82.78/80.24 [86.27/82.92 [78.64/74.23  [19.96/76.69
BC 90.25/86.40 [81.10/76.19 [83.69/79.08 |83.35/79.56 [715.86/70.78  [77.98/73.26

5 Conclusions

This paper proposes a novel reflectional asymmetry descriptor by minimizing the
histogram difference of the global point signatures on the pigmentation elevation
model of the cutaneous lesions. Melanin and Erythema indexes have been proved
more efficient than colour intensities in characterizing the pigmentation of the lesions.
The proposed asymmetry descriptor is invariant to 2D rigid transformations and
robust to non-isometric deformations. Competitive classification results of 88.50%
sensitivity and 81.92% specificity have been achieved for melanoma diagnosis.
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Abstract. Clinical signs of paediatric pulmonary tuberculosis (TB) in-
clude stenosis and deformation of the airways. This paper presents two
methods to analyse airway shape and detect airway pathology from CT
images. Features were extracted using (1) the principal components of
the airway surface mesh and (2) branch radius and orientation features.
These methods were applied to a dataset of 61 TB and non-TB pae-
diatric patients. Nested cross-validation of the support vector classifier
found the sensitivity of detecting TB to be 86% and a specificity of 91%
for the first 10 PCA modes while radius based features had a sensitiv-
ity of 86% and a specificity of 94%. These methods show the potential
of computer assisted detection of TB and other airway pathology from
airway shape deformation.

1 Introduction

The prevalence of tuberculosis (TB) remains high in many developing countries
while the accuracy of paediatric TB detection is low, and a combination of
tests including imaging is used. Automated airway analysis has the potential
to improve the detection of airway pathology such as TB. A common sign of
primary TB in children is airway deformation caused by lymphadenopathy [I].
This can take the form of displacement and stenosis of airway branches, and
widening of the carinal angle [I]. Hila, mediastinal, subcarinal and paratracheal
lymph nodes are commonly affected and the most common sites for compression
are: the trachea, left main bronchus (LMB), right main bronchus (RMB) and
bronchus intermedius (BI) [I]. This sign is more sensitive in children because the
airways are more malleable and primary TB tends to affect the lymph nodes.
Lymphadenopathy can also indicate other pathology but is useful for detecting
TB when used in conjunction with other tests and is likely to indicate TB in
areas with a high TB prevalence.

Paediatric airways are considerably smaller than those of adult patients, which
means a lower resolution using the same voxel size, and fewer branches can be
identified. Movement artefacts are also more likely because it is not possible to
perform a breath hold scan on infants [10].

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAT 2011, Part ITI, LNCS 6893, pp. 133 2011.
© Springer-Verlag Berlin Heidelberg 2011
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Point distribution models (PDM) are a common method of modelling shape
variation. Anatomical landmarks or a mesh are used to represent a shape and the
variation in position of corresponding points is calculated. Principal component
analysis (PCA) can be applied to the PDM to reduce the dimensionality of the
representation, identifying the principal modes of variation. These techniques
have been applied successfully in a number of cases including facial morphology
[B]. However, very little research has focussed on airway shape modelling. A
previous study developing a shape model of the airways focussed on patient
specific models and required manual interaction [4].

An alternative and more intuitive approach is to use features that correspond
directly to clinical observations but this requires more background knowledge.
In this paper we present a complete system for analysing pathological airway
shape variation and compare two approaches for identifying TB cases: one using
features generated using the principal modes of variation of a surface mesh, and
another using features based on the branch radius and orientation. We test both
on a dataset of TB and non-TB cases. Contributions of this work include a
method to generate a shape model of normal and pathological airway variation
(the authors are not aware of any previous method to model airway pathology
and particularly to distinguish between TB and non-TB datasets) and methods
focussed on paediatric datasets. Additional contributions include a novel method
for automatically generating airway landmarks based on the airway topology and
centreline, extension of mesh-warping to suit stenosed airway shape variation and
the training of a classifier on airway shape data.

2 Method

An automated airway segmentation approach was used and the centreline and
bifurcation points extracted. Corresponding landmark points were generated and
a template mesh was warped to each airway. A shape model was then developed
using the principal modes of the corresponding vertices. Cross-section diameter
measurements were made for each branch and used to generate the second feature
set.

2.1 Dataset and Airway Extraction

The dataset used in this study consists of TB and non-TB cases. 29 chest CT
scans of paediatric patients diagnosed with definite or probable TB from a pos-
itive culture, or bronchoscopy and CT findings were acquired from Tygerberg
Hospital in South Africa (mean age 22 £ 26 months) and 32 chest CT scans of
paediatric patients with a non-TB diagnosis were acquired from Gt Ormond St
Hospital, London (mean age 38+22 months). Voxel size in the axial plane ranged
from 0.3 - 0.5 mm and slice thickness 0.7 - 1 mm. 13 cases with completely ob-
structed branches were previously manually excluded from the dataset because
these cases can be easily identified and are not of interest for building a shape
model. The age difference between the groups is within one standard deviation
and age does not influence airway proportions in children [§].
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The airways were segmented using an existing method [6] . This method uses
morphological closing and reconstruction to enhance possible airway locations
in the axial, coronal and sagittal directions. A region growing method, seeded
at the trachea, is then used to extract the airway region. The structure of the
airways is found using centreline extraction, branch point detection and branch
labelling. Paldgyi et al. [9]’s skeletonisation method is used for the extraction
of the centreline because of its previous application to the airways. This is an
iterative thinning approach, where each surface voxel is analysed in terms of
orientation and connectivity and simple points are iteratively removed.

False branching can occur because of surface deformation (particularly when
pathology is present) and, therefore, branch pruning is required. We found that
false branches connected to the trachea, LMB and RMB can be longer than true
branches further down the tree, and false branches may bifurcate. Therefore,
a multilevel pruning system was developed that removed branches less than
a specified length (I) and removed larger false branches associated with the
primary branches and smaller false branches associated with later generations.
Three pruned trees (1,, 11,, T1,) were created with pruning iy > lo > l3. A final
tree was constructed from 7j, for the trachea, 7}, for the LMB and RMB and
from Tj, for the remaining branches. A one voxel thick centre line was used to
identify the branching structure, shown in Figure[I} a branch point was defined
as a point with three neighbours in the 3x3x3 surrounding region.

AN

Fig. 1. Paediatric airway segmentation and branch-point identification. The two cases
on the left show signs of TB while the others are non-TB cases.

2.2 Corresponding Surface Point Generation and Mesh Alignment

Surface point correspondence is required to derive features from a shape model
while diameter based features require only regular sampling of the branch.
Branch points are the only major anatomical landmarks and, therefore, cor-
responding points were generated by calculating the intersection between the
surface and vectors orthogonal to the smoothed centreline at equidistant po-
sitions along each branch (Figure Bl). The generated points take into account
branch topology, medial line curvature and surface deformation. The analysis
was performed on the trachea, RMB and LMB (commonly deformed by lym-
phadenopathy).

As discussed earlier, two sets of features are being considered, the principal
modes of the surface deformation and branch radius/direction based features.
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Fig. 2. Surface point placement using the centreline and bifurcation points

The surface points were used to calculate the two orthogonal diameters at each
cross section along each branch. These points were generated from 60 equidistant
points on the medial line of the trachea, 50 along the LMB and 30 along the
RMB. A subset of the corresponding points (generated from 5 equidistant points
on the Trachea and LMB, and 2 on the RMB) were used to warp a mesh onto
each airway using Thin Plate Spline (TPS) warp. TPS warping is a common
method of aligning objects using a set of landmark points [5]. TPS attempts to
perform realistic deformation by minimising the bending energy [2]. The TPS
function that minimises the energy is:

k
£1(P) = > wiU(P) — Py) + ag + apo + ayy + az2 (1)
=1

where f is the new position of the point and f; is a component of f, j € (z,y, 2),
P are the landmark points on the shape and w;; are the weighting factors. w;;
can be found from the corresponding landmark points.

Further matching is required so that the template mesh is aligned with each
target mesh (as shown in Figure [3). The simplest method is to project the
template mesh to the closest point on the target mesh [5] but this can lead to
unrealistic deformation while not covering small deformations. Figure @l shows
this mesh misalignment because of narrow sections caused by stenosis and the
proposed solution.

Kaus et al [7] optimise the fit based on the distance between the meshes
while an additional force preserves the mesh structure. We add a third term
based on surface orientation. For each vertex on the template mesh (¢;), a force
(Fitot) is calculated to direct the warp. The closest point (r;) on the object
mesh component is included to align the meshes (Eqn ) and an internal forcing
component is included to preserve the size of the faces (change in the distance
of each of the p neighbouring vertices to a vertex t; from the initial distance vo;)
(EqnB). An expansion/contraction force is also added, based on the normal of
each vertex 7i; (calculated from the normal of the surrounding faces) controlled
by the distance and direction of the target mesh to F; 1 (Equ[). This improves
performance for small surface indentations/protrusions associated with stenosis.
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B

a) Template image ) Case to be matched (c) TPS warp

Fig. 3. TPS warp using landmarks on the trachea, LMB and RMB

NN

(a) Matching to the closest (b) Meshing procedure using
point Fi, F> and F3

Fig. 4. Mesh matching

Fip=mri—1t; nearest point ext. force (2)
P

Fia= Zv}(HvJH — ||vojl]) wherev; =t; —¢; internal force (3)

Fiz=n;(n; - Fi1) normal ext. force (4)

Fitor = aFy1 + BF; 2 +vF;3 (5)

In Equation Bl the forces are weighted with «, 8 and . This procedure is
applied iteratively until stability is reached.

2.3 Feature Extraction and Classification

Each shape is represented as a 3n dimensional vector where n is the number of
vertices in the mesh; n ~ 1500 was used in this study. Each shape was aligned
using Generalised Procrustes analysis and PCA was applied to reduce the di-
mensionality and obtain a set of features for classification. PCA applies a lin-
ear transform that projects the PDM onto an uncorrelated space and can be
used to extract relevant features [3]. PCA modes are ordered by the variance
and, therefore, can be used to reduce the dimensionality of the feature vec-
tor. For PCA, it can be shown that the eigenvectors of the covariance matrix
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> = XX7T (where each column of X is a 3n vector for each airway) can be
used to project the dataset into the uncorrelated space (b) represented by the
eigenvectors b = @ (z — Z) where the projection matrix (1) is the transpose of
the eigenvector matrix (®). Therefore, a measurement vector £ = Z + ®b can be
represented in terms of the mean and displacement along each mode [3].

Three radius based features were calculated for each branch: the maximum

ratio of the orthogonal diameters for each branch (max (;g)), the ratio between

the branch length and average branch diameter (d"l“e) and the maximum ratio
of local minima and neighbouring local maxima of the diameter as a function
of position on the branch (lma‘/g};#;m“ ) These features, based on advice from
our clinical partners, were used as indicators of branch circularity, thickness and
local stenosis, and were calculated for the trachea, RMB and LMB. The carinal
angle was also calculated for each airway by fitting a line to the first third of
the RMB and LMB and calculating the angle from bifurcation. All features were
normalised.

Once a set of features was found to represent each airway in the dataset, a
classifier was trained to distinguish between TB and non-TB cases. A Support
Vector Machine (SVM) was chosen as the classifier because of its suitability for
small datasets and the PRtools implementation of SVM was used. Leave-one-out
cross validation (LOOCYV) and nested CV were used to evaluate the classifier.

3 Results

Parameters for the mesh warp a, 0 and v were determined by comparing the
volume generated from both the template mesh and the original mesh (Vg5 =
(Viemp \ Vease) U (Vease \ Viemp)- In order to focus on local errors instead of
differences due to mesh face sizes, a morphological closing was applied (Vopen =
Vaif o K where K is 6-connected kernel) in order to remove 1-voxel thick errors
but retain larger local errors. Optimum parameters are around o = 0.2 and
~ = 1, where proportion of general error (without closing) is less than 0.022 and
local error (with closing) is less than 0.002. Without the expansion force (y = 0)
then the minimum errors are 0.05 and 0.02 respectively. Fixed parameters were
used for the whole dataset but could be chosen for each individual airway.

The SVM classifier was trained and tested on the two sets of features. Clas-
sification using PCA features were performed using the first 10 modes which
represented 90% of the shape variation. Figure [} shows the mean and variation
from —3+/\; to 3v/)\; along the first 4 modes. Classification was also performed
on the 10 radius and orientation based features. This classifier was optimised by
adjusting the “trade-off parameter” C' (between 5 and 500) and the degree of the
polynomial kernel (between 1 and 13) while running LOOCV for each choice.
These values were chosen to cover a reasonable range of parameters but further
optimisation could be performed. LOOCV was used because the dataset was
too small to divide into a testing and training set. However, adjusting the SVM
parameters with LOOCYV allows the best classifier to be selected but can lead
to a biased measure of accuracy. Therefore, to determine an unbiased sensitivity
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Table 1. Sensitivity and specificity using (1) the PCA and (2) the radius and orienta-
tion based feature set with LOOCV and Nested CV

LOOCV Nested CV

PCA Rad PCA Rad
Sensitivity 93% 93% 86% 86%
Specificity 94% 94% 91% 94%

Mode 1 Mode 3
Mode 2 Mode 4

AL AL

mean  —3vA; 3vA;,  mean —3V\

Fig. 5. Variation along the first four PCA modes

and specificity without an independent training set, nested CV was used [11].
Nested CV includes a second LOOCV loop with parameter optimisation inside
the full LOOCYV loop and results have been shown to be close to that of an
independent testing set [II]. Using LOOCYV, the classifiers performed the same
and parameters of C=100 and 3 and polynomial degree of 3 and 1 were found for
the PCA and radius based classifiers, respectively (Table [I]). The radius based
features performed slightly better when tested using nested CV (6 compared to
7 misclassified out of 61). The software was written in Matlab and C++ and
tested on a 2.0 GHz quad-core processor. Generation of features from a seg-
mented dataset and cross validation: ~700s for the PCA based feature vector
and ~1200s for the radius based feature vector.

4 Discussion

In this paper we discuss two methods to quantify and detect airway shape de-
formation due to TB. Both these methods were able accurately to distinguish
between paediatric cases with TB and without TB, and demonstrate the po-
tential of these techniques to assist in the detection of airway pathology. PCA
based features may be more generalizable and, more effective for differentiating
other types of pathology without adjusting the feature choice.



140 B. Irving et al.

The datasets were collected from two hospitals and it is possible that popu-
lation differences also have an effect on the classification. However, the features
extracted using PCA correspond to clinical signs of TB. Examining Figure B
the modes correspond to stenosis and widening of the carinal angle, which is
consistent with clinical signs of TB [I]. The other feature set was based on char-
acteristics of airway pathology.

This paper shows the potential of automated airway analysis to assist in the
identification of pathology with possible CAD applications. The model could be
developed further by training on localised pathology, or applied to other areas
such as airway deformation and narrowing caused by congenital cardiac disease.
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Abstract. Magnetically-guided capsule endoscopy (MGCE) was intro-
duced in 2010 as a procedure where a capsule in the stomach is navigated
via an external magnetic field. The quality of the examination depends on
the operator’s ability to detect aspects of interest in real time. We present
a novel two step computer-assisted diagnostic-procedure (CADP) algo-
rithm for indicating gastritis and gastrointestinal bleedings in the stom-
ach during the examination. First, we identify and exclude subregions of
bubbles which can interfere with further processing. Then we address the
challenge of lesion localization in an environment with changing contrast
and lighting conditions. After a contrast-normalized filtering, feature ex-
traction is performed. The proposed algorithm was tested on 300 images
of different patients with uniformly distributed occurrences of the target
pathologies. We correctly segmented 84.72% of bubble areas. A mean
detection rate of 86% for the target pathologies was achieved during a
5-fold leave-one-out cross-validation.

1 Introduction

Background and Purpose of This Work. Endoscopy of the upper gastrointestinal
(GI) tract with flexible endoscopes is a standard clinical procedure. The main
disadvantages of this procedure are high invasiveness and patient discomfort.
Wireless capsule endoscopy (WCE) was introduced in 2001 and is mainly used
in the duodenum. The stomach, in comparison, has large surface and volume and
can not be reliably examined with an uncontrolled capsule. Endoscopic capsules
that can be steered from the outside by means of magnets have been reported
in [JI2/T1]. In this paper we use human data from the clinical study of [11]
that stems from 29 volunteers and 24 patients (FiglId and [Id). A single dataset
from one patient contains on average 3600 images. For the MGCE procedure,
the patient’s stomach is filled with water and the capsule is navigated from the
outside using an external magnetic field. During the examination the operator
can control the motion of the capsule so as to obtain a sufficient number of
stomach-surface images with diagnostic value. The quality of the examination

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAT 2011, Part ITT, LNCS 6893, pp. 141 2011.
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depends on the skill of the operator and his ability to detect aspects of interest in
real time. We present a novel two-step computer-assisted diagnostic-procedure
(CADP) algorithm for detecting, during the examination, two distinct stomach
pathologies: gastritis and haematin. Gastritis is one of the main causes of stom-
ach cancer. Chronic gastritis usually appears as a reddish and blotched turgor,
while acute gastritis often appears as a small circle-shaped bleeding (Fig2h).
Haematin on the other hand, accrues from blood coming in contact with stom-
ach acid. It is a sign of gastrointestinal bleeding and is an indicator of many
significant diseases. It appears as a uniform brownish shape close to the stomach
wall (FiglZal). The proposed algorithm is divided into two steps: 1) a region-of-
interest (ROI) segmentation to separate medically relevant sections of the image
from parts containing bubbles; 2) a contrast-normalized filtering to identify and
localize possible lesions of pathologies. For this 2nd task we develop a feature
vector, which is used for classifying pathologies in a machine learning approach.

State of the Art. In a typical WCE examination a large number of frames is
medically irrelevant, as they either do not show pathologies or contain mainly
intestinal juices, bubbles or debris. To assist the physician in reviewing up to
ten hours of video material, software for computer-aided diagnosis (CAD) has
been developed. In [2IT4JT3] different descriptors for the task of blood and ulcera
detection and topographic segmentation of the GI tract are investigated. Topo-
graphic segmentation is addressed in [I] and [5] for the purpose of a more efficient
and faster review. In [4] and [15] the issue of eliminating redundant frames, as
well as those with intestinal juices, is addressed. In [6] a set of color and texture
based features for the detection of intestinal bleedings is presented. These meth-
ods are not directly applicable to MGCE. The duodenum, when compared to the
stomach, exhibits different pathologies and imaging conditions, such as texture
and distance to objects of interest. In [§] a method for the automatic detection
of gastritis aspects in MGCE was presented. In this paper we used the method
from [8] as a starting point and developed a ROI pre-segmentation for bubbles
and an improved segmentation method for different pathologies (gastritis and
haematin). Compared to the aforementioned existing CAD algorithms which are
only used for review, our method indicates the pathologies during the examina-
tion itself. The operator can, for instance, navigate to a suspicious region for
further closer inspection. Even if 100% accuracy is not achieved, our algorithm
may still point out lesions which would otherwise be missed.

2 Automatic Pathology Detection in MGCE

2.1 Region of Interest Segmentation

Endoscopic images obtained via MGCE may contain bubbles and mucus (FiglIal).
Such a region within an image usually contains no medically relevant informa-
tion. One should, thus, segment such regions to exclude them from further pro-
cessing. In [I5] and [I0] two methods for automatic detection of intestinal juices
are presented that exclude entire frames containing intestinal juices and bubbles
for the review process. The location of bubbles in the stomach is relatively stable
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(b) (c)

Fig. 1. (a) sample image with bubbles. (b) segmented bubble area (c) lesser curvature
and body (d)mucosa close-up B.

and localized. Rejecting an entire frame with bubbles could therefore eliminate
images of whole stomach regions together with possible pathologies.

The segmentation of bubble regions is not as straightforward as it may initially
appear. The edges of most bubbles appear bright, but the translucent part is
dominated by the color of the underlying tissue (Fig.[Ial). Therefore, an intensity
based approach is not effective. One has to combine geometry and color cues
in order to detect the entire bubbles region. To that end, we investigated a
large variety of robust feature descriptors initialized with different key point
detectors. We randomly chose as our training data 100 healthy and 100 diseased
images from our dataset containing different amounts and spatial distributions
of bubbles. Regions with bubbles were hand-labeled. We denote one pixel within
an image as a tuple (z,y,v), where x and y are the pixel coordinates, and v
is a pixel value. An image 7 (432x432 pixels) is defined as a set of pixels,
7 ={(z1,y1,v1),...,(xN,yn,vNn)} where N is the total number of pixels in the
image. We define O; C 7 as the set of all pixels in a bubble area and Oy C 7 as
the area without bubbles. In addition O1 N Oy =0, and O U Oy = T.

We considered 5 descriptors (SIFT, steerable filters, GLOH, SPIN, Cross Cor-
relation), each of which can be initialized with one of 5 different key point de-
tectors (Hessian-Laplacian, Harris-Laplacian, Harris-Affine, Hessian-affine, Har-
risﬂ. For each combination of descriptor type and key point detector we obtained
n descriptors (feature vectors) Dy, k = 1, ..., n, which were calculated on the cor-
responding image patches P, C Z,k = 1,...,n around the detected key points.
We used the labeled data to train (using Adaboost) a 2-class classifier that could
distinguish between descriptors corresponding to O; and Oa. We evaluated each
descriptor / key-point-detector combination for bubble detection using a 5-fold
leave-one-out cross-validation (LOO CV).

Training phase: An image patch Py is characterized by its center point ¢ = (z,y)
and an ellipse centered at ¢ which is defined by one or two radii r 2 respectively.
For the supervised training input, a label

! Affine covariant features [Online]. Available:
http://www.robots.ox.ac.uk/~vgg/research/affine/
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N 0if P, C Oy
H(Pr) = {1 if P, C Oy (1)

was assigned. The remaining Pys (i.e. image patches which do not completely
belong to either of the classes) were discarded from training. For training the
feature vector Dy was extended by 10 features based on HSV and RGB his-
tograms. More specifically, the mean, variance, skew, kurtosis and entropy were
computed for the S and R channel histograms for each patch Py. These features
enhance the classifier’s ability to distinguish structures with geometric similari-
ties to bubbles (such as a round shape) which are, however, part of the stomach
mucosa or a target pathology.

Testing: After the training was completed, the new labels {(P};) were computed
based on the obtained classifier. We define two measures for the quality of seg-
mentation:

CaT‘d(( U Pk> ﬂoi>
{ Py |1(P)=1}
Bo)= @)

with i = {1,2 ¥ E(O,) measures the proportion of the ground-truth bubble
area covered by image patches classified as | = 1, while 1 — E(O2) measures
the area without bubbles, that is wrongly covered by image patches classified as
I = 1. We found that the combination of a Hessian-affine key point detector and a
steerable filter descriptor yields the best results (see Table[dl (first row)). We refer
to the union {U(Py|l(Px) = 0)} as the binary mask 7, and to bubble free area
as Ty, = I\Zp. Note that, the use of an elliptic shape for the image patches Py
yields small areas between the image patches which are not classified as bubbles
area. To overcome this problem we introduced a circular morphologic dilation
element with a radius r5. The circle radius adapts to the size of the surrounding
image patches to ensure gap closing between large image patches and prevent
the dilation of non-bubbles areas. A neighborhood around the dilation element
is defined as a window W of 30 x 30 pixels around the center of the structuring
element. The radius 75 at a position x,y within Z; is computed from the average
radii of all Pg|P, CW.

The improvement obtained with the dilation can be seen in Table Il The
quantitative measurements were obtained by equation 2. After the segmentation
we checked if some pathologies were wrongly classified as bubbles and confirmed
that this was not the case (Visual results in Fig. [IL).

2.2 Contrast Normalization and Region Localization

For the following steps only Zy, (i.e. areas without bubbles) are considered. The
pathological lesions exhibit low intensity while the surrounding tissue has high in-
tensity values. In order to detect such lesions a LoG-edge detection, as proposed
by [8], is performed. Thereby, Zp, is convolved with a Laplacian-of-Gaussian

2 card(-) denotes the cardinality, i.e. the number of pixels in the image subset.
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Table 1. Results of Bubble Segmentation

Method E(01) 1-E(02)

Direct use of descriptor 81.53% 4.24%
With adaptive morphological operation 84.72% 5.74%

kernel . The resulting image Z,. is subsequently searched for prominent edges
whose magnitude is above a certain threshold. Because images suffer from vary-
ing contrast and lighting conditions, a contrast normalized variable threshold is
introduced. To that end, Z. is converted into a probability mass function f(b;)
with Ny, intervals. The contrast normalized threshold t. is then computed as
follows. We first define the index 5,5 of an interval b;

1

o= 21| 2 s ) < (2 0

i=Np, 3=Nu,

i

where [ is an indicator function which is equal to 1 if its argument is true and
zero otherwise. t. is then computed as t. = max(by,,, ).

A binary edge image Z(t.) is then computed using the variable threshold ..
Z(te) is 1 for Z, > t. and 0 otherwise. Given such a binary image our goal is to
merge connected pixels into areas representing possible locations of pathologies.
A morphologic closing operator with a disc-shaped structuring element of a
radius of 5 pixels is applied to Z(t.). Subsequently, using 4-connectivity, pixels
are grouped into structures that we refer to as S; with j = 1,...,m where m is
the total number of structures per image. On average, images contain 45 S;’s
with a mean size of 20x 14 pixels. Ultimately, we want to classify each structure
S; into one of the three classes: the gastritis class C1, the haematin class C2 and
the negative class C3 without any abnormalities. For training purposes, all S;
are superimposed on to the original RGB-image. Visual inspection shows that
all possible lesions of C1 and C2 are detected by the above described region
localization method. All computed S; are therefore directly hand-labeled by an
expert so that a label L is assigned to each structure S;

0if S; €Cl (gastritis class)
L(S;) = ¢ 1if S; € C2 (haematin class) (4)
2if S; € C3 (negative class)

2.3 Feature Extraction

The following sets of features are extracted for each structure S; (Fig. 2d).

Geometric features (GF). Geometric features describe the specific shape of
pathologies. We extract the maximal vertical and horizontal dimensions of S; and
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Table 2. Number of features computed for each Sj

Feature Feature No. of Composition of
Group Extractor Features Feature Vector
Aspect ratio of S 1 width /height
GF dimensions of S; 2 width,height
bounding box fill factor 1 %
Hu moments 7 invariant moments
Ibp H 5 local binary pattern
TF Ibp S 5 on three channels of
Ibp V 5 HSV colorspace
RGB 15 Mean, variance, skew
HF HSV 15 kurtosis and entropy of
CIE 15 each channel Histogram
Total no. of features 71

(c)

Fig. 2. Sample images of target pathologies. (a): haematin. (b): gastritis lesions. (c):
Computed structure S; (green border). S; with red border contains a gastritis lesion.
Segmented bubble area in turquoise.

of its minimal bounding box and their corresponding aspect ratio. Furthermore
the ratio between the area covered by S; and the area of the minimal bounding
box is computed. We refer to this feature as fill factor. For further geometric
analysis we also extract the Hu moments [3] for each S;.

Texture features (TF). To further investigate textures within each S; local
binary patterns (Ibp) [9] are computed for each channel of the HSV colorspace.
The resulting 1bp histogram is computed for each S;.

Histogram features (HF). Color based features aim to distinguish between
color characteristics of structures containing gastritis and structures of class
C3. Thus, we compute the mean, variance, skew, kurtosis and entropy of each
histogram-channel of the RGB, HSV and CIE colorspaces. The entire collection
of features is summarized in Table
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Table 3. Results of Pathology Detection using a SVM classifier (in %). Results of
AdaBoost in parentheses.

Predicted Healthy  Gastritis Haematin  Gastritis and

Actual Image (C1) Image (C2) Image (C3) Haematin C2/C2
Healthy Image C1 92 (95) 6(5) 2(0) 0(0)
Gastritis C2 8(11) 72(55) 6(12) 14(22)
Haematin C3 7(11) 7(12) 76(70) 10(7)

3 Experiments and Results

To evaluate the automatic detection of pathologies we used 300 images stemming
from 44 patients. The images were analyzed by a medical expert and each detected
structure S; was manually labeled. The dataset of 300 images consisted of 100 im-
ages for each of the two target pathologies and a set of 100 healthy images. For
the supervised learning approach we compared results of the Adaboost and SVM
classifiers implemented in a 5-fold LOO CV. Most images contained more than a
single structure S; with or without a pathology. An image was attributed to one
of the pathology classes if at least one structure S; was classified as pathologic.
An image was counted as healthy if none of the structures S; was classified as
pathologic. The best classification results were obtained using a SVM classifiefd.
A confusion matrix was obtained for each image test-set of the 5-fold LOO CV.
The average confusion matrix of all 5 runs can be seen in Table[3l Out of 100 im-
ages with gastritis, 86% were correctly classified (Table[3). From the 100 images
containing haematin, 86% were correctly classified. However, we also detected an
average of 12% of pathological images, which exhibited both, haematin and gas-
tritis. Finally out of the 100 healthy images 92% were correctly classified.

4 Discussion and Conclusion

Our experiments have shown that our computer-assisted diagnostic-procedure
algorithm can be used for indicating gastritis and gastrointestinal bleedings in
MGCE. The presented algorithm includes a preprocessing step that discards
areas with bubbles . This step is crucial for all following image processing steps
in the presented method and may have implications for the development of future
applications on this imaging modality. Pre-segmentation performs accurately in
detecting areas with bubbles without hiding pathologies or large amounts of
non-bubble tissue areas. Based on the results from the above pre-processing
step, a method was presented that is able to automatically detect two kinds of
pathologies on MGCE images. We achieved sensitivity and specificity results well
over 80% for healthy and diseased images. The moderate sensitivity between the
two target pathologies is due to the similaritiy between gastritis and haematin

3 LIBSVM [Online]. Available: http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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aspects in terms of color and texture. Still, the algorithm performs well, especially
within the context of real-time warnings for certain gastritis aspects.
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Abstract. Purpose: To propose an innovative approach to better detect
Alzheimer’s Disease (AD) based on a finer detection of hippocampus (HC)
atrophy patterns. Method: In this paper, we propose a new approach to
simultaneously perform segmentation and grading of the HC to better capture
the patterns of pathology occurring during AD. Based on a patch-based
framework, the novel proposed grading measure estimates the similarity of the
patch surrounding the voxel under study with all the patches present in different
training populations. The training library used during our experiments was
composed by 2 populations, 50 Cognitively Normal subjects (CN) and 50
patients with AD. Tests were completed in a leave-one-out framework. Results:
First, the evaluation of HC segmentation accuracy yielded a Dice’s Kappa of
0.88 for CN and 0.84 for AD. Second, the proposed HC grading enables
detection of AD with a success rate of 89%. Finally, a comparison of several
biomarkers was investigated using a linear discriminant analysis. Conclusion:
Using the volume and the grade of the HC at the same time resulted in an
efficient patient classification with a success rate of 90%.

Keywords: hippocampus segmentation, hippocampus grading, patient
classification, nonlocal means estimator, Alzheimer’s disease.
1 Introduction

The atrophy of medial temporal lobe structures, such as the hippocampus (HC) and
entorhinal cortex, is potentially specific and may serve as early biomarkers of

Data used in the preparation of this article were obtained from the Alzheimer's Disease
Neuroimaging Initiative (ADNI) database (www.loni.ucla.edu/ADNI). As such, the
investigators within the ADNI contributed to the design and implementation of ADNI and/or
provided data but did not participate in analysis or writing of this report. ADNI investigators
include (complete listing available at www.loni.ucla.edu/ADNI/Collaboration/ADNI Author
ship list.pdf).
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Alzheimer’s disease (AD) [1]. In particular, the atrophy of the HC can be used as a
marker of AD progression since changes in HC are closely related to changes in
cognitive performance of the subject [1]. The evaluation of HC atrophy is usually
estimated by volumetric studies on anatomical MRI, requiring a segmentation step
that can be very time consuming when done manually. This limitation can be
overcome by using automatic segmentation methods [2-5]. However, despite the high
segmentation accuracy of these HC segmentation approaches, using only the HC
volume enables a separation between AD and cognitively normal (CN) subjects with
a success rate around 72-74% [6]. This limited capability to classify AD patients by
using the HC volume only may be due to a simplification of the complex
hippocampal atrophy patterns to a volume changing measurement. Recently, several
shape analysis methods have been proposed [7-8] to capture detailed patterns of
change in order to obtain a more accurate classification. These approaches provide a
slightly better classification rate of around 77% [6].

Inspired by work in image denoising [9], a new nonlocal patch-based label fusion
method has recently been proposed to segment anatomical structures [5]. By taking
advantage of the redundancy of information present within the subject’s image, as
well as the redundancy across the training subjects, the patch-based nonlocal means
scheme enables robust use of a large number of samples during estimation. In [5], this
approach has been applied to label fusion for the segmentation of anatomical
structures. We propose an extension of this patch-based segmentation method in order
to evaluate the similarity (in the nonlocal means sense) of the intensity content of one
MRI compared to several training populations. By using training populations with
different pathological status (e.g., CN subjects and patients with AD), a nonlocal
means estimator is used to evaluate the proximity (i.e., the grade or the degree of
atrophy in case of AD) of each voxel of the MRI under study compared to the training
populations. Since the grade estimation and the label fusion steps require the same
patch comparison, simultaneous segmentation and grading of HC can be achieved in
one pass. In the proposed approach, the nonlocal patch-based comparison is used to
efficiently fuse the HC segmentations of MRI in a training database and at the same to
aggregate the pathological status of the populations constituting the training database.
Finally, the average grading value obtained over the segmented HC is proposed as a
new biomarker to estimate the pathological status of the subject under study. The
contributions of the paper are: i) the introduction of an innovative approach to better
characterize the patterns of pathology (e.g., atrophy) in AD through the new concept
of HC grading, ii) the presentation of a method to automatically and simultaneously
perform the segmentation and the grading of HC, and iii) the demonstration that the
proposed approach can be used as a novel biomarker to efficiently achieve patient
classification in the context of AD.

2 Materials and Methods

2.1 Dataset and Preprocessing

In this study, the ADNI database (www.loni.ucla.edu/ADNI) was used to validate the
proposed approach. This database contains both 1.5T and 3.0T T1-w MRI scans. For
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our experiments, we randomly selected 120 MRI scans, 60 1.5T MRI baseline scans
of CN subjects and 60 1.5T MRI baseline scans of patients with AD. All the selected
images were preprocessed as follows: 1) correction of inhomogeneities using N3 [10],
2) registration to the stereotaxic space using a linear transform to the ICBM152
template (1x1x1 mm3 voxel size) [11] and 3) cross-normalization of the MRI intensity
using the method proposed in [12]. After preprocessing, all the MRIs are coarsely
aligned (linear registration), tissue intensities are homogeneous within each MRI
volume (inhomogeneity correction) and across the training database (intensity
normalization). From the 120 processed MRI scans, 20 scans (10 CN and 10 AD)
were randomly selected to be used as seed dataset. The left and right hippocampi of
this seed dataset were then manually segmented by an expert at our centre. The
manual segmentations of the seed dataset were propagated to the 100 remaining
scans constituting our test dataset. After segmentation propagation using [5], the test
dataset was composed of 100 MRI (50 CN subjects and 50 patients with AD) with
their corresponding automatic segmentations.

2.2 Method Overview

In nonlocal means-based approaches [9], the patch P(x;) surrounding the voxel x;
under study is compared with all the patches P(x;) of the image Q whatever their
spatial distance to P(x;) (it is the meaning of the term “nonlocal”). According to the
patch similarity between P(x;) and P(x;), estimating by the Sum Squared Difference
(SSD) measure, each patch receives a weight w(x;, x;):

Jreareos |
w(x,x;)=e "
where ILIl, is the L2-norm computed between each intensity of the elements of the
patches P(x;) and P(x,;), and & is the smoothing parameter of the weighting function.
This weighting function is designed to give a weight close to 1 when the SSD is close
to zero and a weight close to zero with the SSD is high. Finally, all the intensities u(x;)
of the central voxels of the patches P(x;) are aggregated through a weighted average
using the weights w(x; x;). In this way, the denoised intensity i(x;) of the voxel x; can
be efficiently estimated:

Z/_ng(xi,xj)u(x/.)
Z/sgw(xi’xi)

In [5], we introduced this estimator in the context of segmentation by averaging
labels instead of intensities. By using a training library of N subjects, whose
segmentations of structures are known, the weighted label fusion is estimated as
follows:
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where I(x,;)is the label (i.e., 0 for background and 1 for structure) given by the expert
to the voxel x,; at location j in training subject s. It has been shown that the nonlocal
means estimator v(x;) provides a robust estimation of the expected label at x; [5]. With
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a label set of {0,1}, voxels with value v(x;)>0.5 are considered as belonging to HC
and the remaining voxels as background.

In this paper, we propose to extend it to efficiently aggregate pathological status in
order to estimate the proximity (in the nonlocal means sense) of each voxel compared
to both populations constituting the training library. To do that, we introduce the new
concept of patch-based grading that reflects the similarity of the patch surrounding the
voxel under study with all the patches present in the different training populations. In
this way, the neighborhood information is used to robustly drive the search of
anatomical patterns that are specific to a given subset of the training library. When the
training populations include data from subsets of patients with different stages of the
pathology progression, this approach provides an estimation of the grade (i.e., degree
of atrophy in case of AD) for each voxel:

N
23:1 z,‘esz W(xf’ X, J )-17'\.
N
Zx:l Z,‘esz w(xf’ xw.)

where p; is the pathological status of the training subject s. In our case, p,=-1 was
used for AD status and p,;=1 for CN status. A negative grading value (respectively, a
positive grading value) g(x;) indicates that the neighborhood surrounding x; is more
characteristic of AD than CN (respectively, of CN than AD). The absolute value
lg(x;)| provides the confidence given to the grade estimation. When Ig(x;)| is close to
zero, the method indicates that the patch under study is similarly present in both
populations and thus is not specific to one of the compared populations and provides
little discriminatory information. When Ig(x;)! is close to 1, the method detects a high
proximity of the patch under study with the patches present in one of the training
population and not in the other. Finally, for each subject, an average grading value is
computed over all voxels in the estimated segmentation (i.e., for all x; with v(x;)>0.5)

g(x)=

by assigning the same weight to the left and right HC (i.e., & =&+ &rign)/2 ).
During all our experiments, the default parameters proposed in [5] have been used.
The patch size was fixed to 7x7x7 voxels and the search window of similar patches
has been limited within a restricted volume of 9x9x9 voxels for computational
reasons (i.e., Q is replaced by a cubic volume V; centered on x;). Finally, the
smoothing parameter 4> was locally set as the minimal SSD found between the patch
under study and all the patches in the training library as proposed in [5].

2.3 Validation Framework

Segmentation accuracy validation: In order to evaluate the segmentation accuracy of
the method proposed in [5] on patients with AD, we first perform a leave-one-out
procedure on the 20 subjects with manual segmentation composing the seed dataset.
The N=16 closest training subjects (in the SSD sense, see [5] for details) were equally
selected within both populations (i.e., 8§ AD and 8 CN). The Dice’s kappa was then
computed by comparing the expert-based segmentation, used as gold standard, and
the segmentation obtained automatically. This first validation is used to support the
fact that the segmentation propagation over the 100 subjects in our test dataset from
the 20 subjects in our seed dataset is done in an accurate manner.
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Grading validation: After the segmentation propagation step, a leave-one-out
procedure is performed over the 100 subjects of the test dataset. For each subject, the
N closest training subjects are selected equally in both populations. This is done to
ensure that the size of the “patch pool” from AD population is coarsely similar to the
size of the “patch pool” from CN population. To save computational time, N is
automatically adjusted according to the obtained g . In the first iteration, N=20 (10

CN and 10 AD). If the resulting \g\ <0.1(.e., the confidence in the obtained grade is

low), the size of the used training library is increased by 20 to N=40 (20 CN and 20
AD). This process is repeated until‘g‘ >(0.1 or N>80. The sign of the final grading

value is used to estimate the pathological status of the testing subjects. Finally, the
success rate of the patient classification is provided to demonstrate the robustness of
the proposed new biomarker.

Comparison of biomarkers for patient classification with AD: The last part of our
validation framework is the comparison of two biomarkers (HC volume and HC
grade) and the investigation of their combination. The segmentations obtained at the
same time as the grading were used to obtain the HC volume for each of the subjects
in the test dataset. Through a leave-one-out procedure, each subject was classified by
using optimal boundary separating both populations. This optimal boundary was
obtained by performing a linear discriminant analysis over the 99 remaining subjects.
This approach was applied to volume-based classification, grade-based classification
and the combination of both volume and grade. The success rate (SR), the specificity
(SPE), the sensitivity (SEN), the positive predictive value (PPV) and negative
predictive value (NPV) are presented for each of the tested biomarkers (see [6] for
details on these quality metrics).

3 Results

Table 1 shows the segmentation accuracy obtained on the seed dataset by using
N=16 training subjects (8 CN and 8 AD). For the CN population, the median Dice’s
Kappa was similar to the Dice’s Kappa presented in [5] on healthy young subjects
from the ICBM database, which demonstrates the robustness of the segmentation
method. A lower median Dice’s Kappa value was obtained for the AD population. A
median Dice’s Kappa value superior to 0.8 indicates a high correlation between
manual and automatic segmentations, and a median Dice’s Kappa value superior 0.88
is similar to the highest published values in literature [3-4]. The difference between
populations might come from two sources. First, the higher anatomy variability of
patients with AD makes the segmentation more difficult and may require a larger
training library. Second, the smaller HC volumes of patients with AD, due to the HC
atrophy, can negatively bias the Dice’s Kappa index measure. Finally, these results
indicate that a similar accuracy can be expected during the segmentation propagation
step to the 100 subjects of the test dataset.
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Table 1. Median Dice’s Kappa values (with the standard deviation) obtained on the seed
dataset composed of 20 MRI (10 CN and 10 AD) with manual segmentations.

Median Dice’s Kappa Left HC Right HC Both HC
(standard deviation)
CN population 0.891 (0.035) 0.866 (0.038) 0.883 (0.037)
AD population 0.830 (0.042) 0.858 (0.035) 0.838 (0.038)

Figure 1 shows the final grading values for the 100 subjects of the test dataset. In
the perfect case, the 50 first subjects (CN) should have positive average grading
values and the 50 last (AD) should have negative average grading values. As shown
in the graph, the success rate of the classification was 89% (5 false positive CN and 6
false negative AD). Figure 1 also presents the size of the used training library for each
of the testing subjects. Most of the test subjects were classified by using only N=20
training subjects. Around 5% of test subjects seem to require larger training library
(i.e., N>80) since at the end of the procedure ‘g‘ is still inferior to 0.1.

Final grading values (success rate: 89%) Size of the used training library

[mmcn|
T

Average grading value

ke

a0 &0

40 .50 60
Subject ID Subject ID

Fig. 1. Left: the final average grading values obtained for the test dataset. Right: the used size
of training library (i.e., N) for all the testing subjects.

Figure 2 shows the grading maps obtained for 2 test subjects (1 CN and 1 AD).
The corresponding average grading values and the estimated volumes are also
provided for left and right HC. While the volume of HC is similar for these 2 subjects,
and thus does not allow an efficient patient classification, their grading values provide
a useful indication on their pathological status. Visually, the CN subject clearly
appears closer to the CN population (mainly red color related to values close to 1)
while the AD patient is visually closer to the AD population (mainly purple and black
colors related to values close to -1). Finally, Fig. 2 also provides a visual assessment
of the quality of the segmentation propagation on the test dataset. For a given
subject, the segmentation and the grading maps were obtained in less than 5 minutes
using a single core of an Intel Core 2 Quad Q6600 processor at 2.4 GHz with N=20.
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Table 2 presents the results of the patient classification for the different biomarkers
under consideration. These results clearly demonstrate the advantage of using the
grading approach (89% of success rate) compared to the classical volumetric
approach (78% of success rate). The SEN, SPE, PPV and NPV obtained by our
grading approach were higher than the ten methods compared in [6] involving Voxel-
Based Morphometry (VBM), cortical thickness, HC volume and HC shape. The
higher SR of our volumetric approach compared to the results presented in [6] might
come from differences in the test dataset used here or due to a higher accuracy and
consistency of the segmentation method used compared to [2]. It is also interesting to
note that the optimal boundaries found by linear discriminant analysis provided
similar results as using O as threshold value as in the previous experiment (see Fig 1.).
Finally, using the volume and the average grade of the HC simultaneously provides a
very high success rate of 90%.

CN subject (ID 23)
Left HC: 8y =0.57 and Volume =2.48 cm’

3

Right HC: 8 =047 and Volume =2.18 cm

AD patient (ID 72)
Left HC: Ty =062 and Volume = 2.31 cm®

. . _ 3
Right HC: Ton =—0.35 and Volume = 2.50 cm

Fig. 2. Top: the obtained grading map for one CN subject (ID 23). Bottom: the obtained
grading map for one AD patient (ID 72). The slices of both subjects have the same position in
the stereotaxic space. Red color indicates a grading close to 1 (i.e., CN) and black color
indicates a grading close to -1 (i.e., AD).

Table 2. Results of the patient classification (AD vs CN) for the different biomarkers under
investigation. These results were obtained by using linear discriminant analysis through a
leave-one-out procedure on the test dataset.

AD vs. CN SR SEN SPE PPV NPV
HC volume 78% 72% 84% 82% 75%
HC grading 89% 86% 92% 91% 87%
HC volume and grading 90% 88% 92% 92% 88%
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4 Conclusion

In this paper, a new method is proposed to robustly detect the hippocampal atrophy
patterns accruing during AD. Based on a nonlocal means estimation framework, the
proposed novel grading measure (i.e., the atrophy degree in AD context) enables an
accurate distinction between CN subjects and patients with AD leading to a success
rate of 89% when used alone, and 90% when combined with HC volume. These
results are competitive compared to the AD detection performance of VBM, cortical
thickness, HC volume and HC shape methods extensively compared in [6]. In contrast
to these approaches, our method has the advantage of simplicity (it can be coded in
few hundred lines of code), low computational cost (does not required non-rigid
registration), robustness of the process (all the subjects get final grading maps) and
the possibility to achieve individual classifications based on a single time point
contrary to group classification or longitudinal studies. These first results are
promising and indicate that the new HC grading approach could be a useful biomarker
to efficiently detect AD. Further work will investigate the possibility to discriminate
population of patients with Mild Cognitive Impairment (MCI) compared to AD or
CN.
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Abstract. We propose a novel fully automatic approach to localize the
lumbar intervertebral discs in MR images with PHOG based SVM and
a probabilistic graphical model. At the local level, our method assigns
a score to each pixel in target image that indicates whether it is a disc
center or not. At the global level, we define a chain-like graphical model
that represents the lumbar intervertebral discs and we use an exact in-
ference algorithm to localize the discs. Our main contributions are the
employment of the SVM with the PHOG based descriptor which is ro-
bust against variations of the discs and a graphical model that reflects
the linear nature of the vertebral column. Our inference algorithm runs
in polynomial time and produces globally optimal results. The developed
system is validated on a real spine MRI dataset and the final localization
results are favorable compared to the results reported in the literature.

Keywords: lumbar disc detection, graphical models, exact probabilistic
inference, object detection.

1 Introduction

There are many intervertebral disc and vertebra localization methods for the ver-
tebral column in the literature [OI145]. Schmidt et al. [13] introduce a probabilis-
tic inference method that measures the possible locations of the intervertebral
discs. The approach uses a part-based model that describes the disc appearances
by employing a tree classifier [8]. Similar to [I3], Alomari et al. [I] use a graphical
model that assumes local and global levels with latent variables. The inference on
their graphical model is based on the expectation maximization method which
is an approximate and iterative inference technique.

This paper introduces a novel method for the automatic localization and la-
beling of the lumbar discs from T1-weighted sagittal MR images. At the local
level, the method uses recent machine learning methods to locally search the disc
positions by employing Pyramidal Histogram of Oriented Gradients (PHOG) [4]
with Support Vector Machines (SVM). At the global level, the method takes ad-
vantage of the chain-like structure of the spine by assuming latent variables for
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© Springer-Verlag Berlin Heidelberg 2011
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the disc positions. A polynomial time exact inference method on the chain-like
graphical structure [3] is employed to find the final lumbar disc positions and
labeling.

Our method has two important advantages. First, our graphical model does
not directly use any image intensity information which varies greatly. Instead, we
use the PHOG based SVM detector results as the observed data in our model.
Also, many local and semi-global features can be conveniently incorporated into
the SVM without complicating the global level inference mechanism.

For the second major advantage of our system, we exploit the one dimensional
nature of the spine and form a chain like graphical model that contains only the
latent variables for the disc positions. The literature includes very efficient poly-
nomial time inference algorithms for chain-like graphical models that we employ
to find robust disc locations even for pathological cases. In addition, the chain-
like structure of our model makes it possible to include extra information for the
end discs of the lumbar region, which are the most problematic sections in terms
of localization. As a result, our model does not assume any image dependent
spatial disc positions and hence it does not require manual initialization.

The rest of this paper is organized as follows. The disc scoring with PHOG
based SVM is described in Section [2l Section Bl includes the chain-like proba-
bilistic graphical model and exact inference. The validation of the method is
presented in Section [ Finally, we conclude in Section Bl

2 Disc Scoring with PHOG Based SVM

The lumbar discs vary in the size, location, shape, and appearance because
of pathologies and individual variations. We observe that the most invariant
property of a disc image is its edges and orientation rather than the intensity,
location, and shape which are used in the disc detection methods in the literature
[1I5]. Therefore, we use the PHOG descriptors for feature extraction which are
more robust to disc and vertebrae abnormalities.

In the PHOG descriptor extraction, a shape is represented by a histogram
of gradient orientations which are quantized into a number of bins. Each bin
shows the number of edges that have orientations within a specific angular range.
PHOG combines the local image shape [6] with the spatial pyramid kernel [7].

The gradient values are first computed and their orientations are calculated.
Then, a PHOG descriptor is calculated for each candidate region. Extracting
the PHOG descriptors in the original images (512x512) has high computational
cost. Therefore, we use the integral histogram technique [12] to speed up the
feature extraction process.

After the extraction of the PHOG descriptors, they are trained with Sequential
Minimal Optimization [I0] for SVM. We use a sliding window approach for the
scoring process. The pixel in the center of the window is assigned a score that
indicates if the window contains a disc. These scores are generated by fitting a
logistic regression model to the outputs of SVM [IT].

Let d = {d1,ds...,ds} denote the labels for the lumbar intervertebral discs
(T12-L1, L1-L2, L2-L3, L3-L4, L4-L5, and L5-S1 which are shown in Figure[).
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Each disc d; is trained and scored separately. Therefore for a given image I, each
pixel is assigned 6 scores, one for each disc. For further processing, the pixels
that have scores less than 0.5 are eliminated.

Consider pg, (1) as the score assigned to the pixel at location Ij for the disc
d; by SVM. For the disc d;, the assigned scores are denoted as

P = {pa, (), pa,(12) -, pa, (Im)}, (1)

where 1 < i < 6 and m is the number of pixels in the image. The next section
explains how we use these scores in the inference algorithm.

3 Disc Center Localization with the Graphical Model

We propose a probabilistic graphical model for the final localization of the disc
centers. The local features of the discs are captured by the disc scoring process
with PHOG and SVM, however it is not sufficient to discriminate the discs in the
lumbar region. More contextual global information like positional and orienta-
tional differences between the discs and distance to the spinal cord are necessary
for the final localization of discs on the spine. We use a chain-like graphical model
that combines such global information with the local information gathered from
the disc scoring process.

Our graphical model is a chain consisting of 6 nodes and 5 edges where
each node represents a lumbar disc (Figure 2)). Let zx € %2 be a random
variable that assigns node k to its image location. The optimal configuration
' ={x1,22..., 26} assigns all discs d = {d1,ds ..., dgs} to their exact locations.

Our objective is finding the optimal localizations of the disc centers with the
maximum a posteriori (MAP) estimate

z’ = argmax P(x|p, a), (2)

x

where o represents the parameters learned from the training set and p = {p', ...,
pS} are the assigned scores with Eq. [l P(x|p,a) captures the probability of
being a disc and the relation with the neighboring discs. The Gibbs distribution
of P(x|p,a) is defined as

Plalp,a) = Jeap{~ [ vr(La) + XY volwn, ween,a)] ) ®)

where the potential function vy, (I, x)) carries local information about the discs
and the potential function ¥¢(zk, xk11, ) includes more global information like
the distance and orientation. A is a weighting parameter which is selected as 0.5.
In the local potential function (I, xy), we directly use the scores p* =
{pa;(l1),pa;(2) - .. ,pa, (L)} generated with Eq.[I.
The global potential function ¥ (xg, k41, ) is defined as

¢G($k, Tk+1, Oé) = U(xka Tk+1, O[)R(Ik, Tk+1, O[)D(l'k, O[), (4)
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where the functions U and R capture the positional and orientational differences
between neighboring disc variables xj and .1, respectively, and D(zy, «) cap-
tures the Euclidean distance to the spinal cord whose position is calculated using
the method of [2].

Let y* = {y1,%2, - .., ¥} be the Euclidean distances between the disc variables
x; and x;41 of the training set used in the scoring process where ¢ is the number
of samples in the training set. The distance function U(zk, xy1, @) is

U(h, Tpi1, ) = { |E_‘:U(yk)‘, if E € [min(y*) — o, maz(y*) + o] (5)
00, else,

where p(y*) is the mean of y* measured from the training set, w = max(y*) —
min(y*), o is a threshold, and E is the Euclidean distance between the disc
variables xy and z41.

The angular differences between the discs define the curve-like shape of the
lumbar region. In order to handle this information, we use the angle information
between the discs. Let 7* = {r1,ra,..., 7} be the angles between the neighboring

disc variables z; and x;11 measured from the training set. The orientation term
R(zk, Trt1, @) is defined as

|O—p(r®)| ky .
R(xp, xpq1,0) = {OO ! ,lil;)ee [min(r¥) — 1, maz(r*) + 7] ©)

where O gives the angle differences between the disc variables xj and zgy1,
w(ry) is the mean orientation learned from the training set, 7 is a threshold, and
f = maz(r*) — min(r®).

TI2-L1 L1-L2 L2-L3 L3-L4 L4-L5 L5-S1

L5-S1 St

o— di
o= vertwbra & @ & d 4 de

Fig.1. An uncropped T1-weighted MRI Fig. 2. Our graphical model
mid-sagittal view of the lumbar vertebrae
and intervertebral discs

3.1 Exact Inference on the Chain

Given a target image I, our objective is to infer the optimal configuration '
by maximizing the Equation [2l In our graphical model, a node is conditionally
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dependent to its neighboring nodes. Instead of using all of the pixels in the
image I, we only use the candidate disc centers for the disc localization process.
The search space for the optimal z’ is decreased by conditional dependence and
detected candidates. This allows us to find a globally optimal solution with
recursive message passing based dynamic programming [3].

The computation time of our inference method is much better than the infer-
ence method of [13] which is based on A* search algorithm. Although A* search
can produce the globally optimal solution with an appropriate heuristic, it is
potentially intractable. The alternative inference method of expectation maxi-
mization [I] is computationally cheaper, but it may not find the globally optimal
solution and has known initialization problem.

4 Experimental Results

The developed system is validated on a real MRI dataset for the lumbar spinal
column. A 3D MRI volume is 512x512x12 voxels in size. The sagittal view in-
cludes the 6 discs of the lumbar vertebrae and some discs from the thoracic
vertebrae and sacrum. In order to improve our localization results for the end-
lumbar discs, we extended our graphical model with the T11-T12 and S1-S2
discs. However, we do not report their localization results because our purpose
is localizing the lumbar discs only.

The dataset consists of MRI volumes of 40 different subjects where 4 of the
subjects are pathology-free and the remaining 36 subjects have pathologies like
disc degeneration, herniation, and scoliosis, etc. There are totally 240 lumbar
intervertebral discs in the dataset and 97 of them have pathologies.

The disc detection is performed on T1-weighted sagittal slices. We use the
mid-sagittal slice for both disc detection and disc center localization as it is
commonly used in the medical practice. We asked an expert to mark the image
region and center point of each disc for the verification and training.

4.1 Disc Scoring Results

For the disc scoring (Section 2]), we perform a subset of leave-10-out cross valida-
tion. We randomly divide the dataset into 4 subsets each containing 10 subjects.
In each sub-experiment, 30 MRI slices from 3 subsets are trained and 10 slices
in the other subset are tested. We perform totally 4 sub-experiments, so each
slice in the dataset is tested once.

For the SVM training, 90 positive samples and 900 negative samples are used
for each disc. For scoring, the features are extracted from the target images. The
window size is selected between the minimum and maximum window size in the
training set for that disc.

The average SVM classification rates for the testing of 4 subsets are shown
in the Table [l Normally, we produce scores for the windows with logistic model
fitting to SVM. If a window is assigned a probability value greater than 0.5, it
is evaluated as a detected disc and otherwise it is evaluated as not a disc. The
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disc classification is considered as correct if the expert marked disc is completely
contained within the window. The classification rate is the number of correctly
classified windows over the number of all windows. The misclassified samples are
mainly caused by the confusion between the neighboring discs. The borders of
the neighboring discs have nearly same orientations, so this causes the detection
of the neighboring disc as the target disc most of the times. Note that, the
confusion between the neighboring discs are expected because disc scoring is a
completely local process.

The detection results reported by [I3] has an average classification rate of
70.16%. Our average classification rate is 97% and it shows the robustness of
using modified PHOG detector in the disc detection. Note that, the method of
[13] and our method are tested on different datasets and [I3] uses image sizes of
512x1024 pixels which contain the whole spine.

4.2 Disc Localization Results

Our disc center localization method with graphical model runs on the scoring
results of the SVM. The same training and test subsets of the disc scoring process
are used for the disc localization.

In order to evaluate the disc localization performance of our system, we use
two different methods. In the first method, a disc is evaluated as correctly located
if the localized disc center is inside the disc contour. The average disc localization
accuracy of our system is 95.42%. The end discs (L4-L5 and L5-S1) have higher
error rates than other discs because their positions vary greatly and pathologies
generally exist in these discs. The system of Alomari et al. [I] uses 512x512
lumbar region images and it reports an accuracy of 90.7% which is lower than
our accuracy. Note that, the method of [I] and our method are not tested on the
same dataset.

Table 1. The average classification rates Table 2. The mean Euclidean distances to

(%) of our system with SVM ground truth for each subset
Disc detection rates(%) Mean Euclidean distances (mm) for each subset
T12-L1 L1-L2 L2-L3 L3-L4 L4-L5 L5-S1 T12-L1 L1-L2 L2-L3 L3-L4 L4-L5 L5-S1

S1 98.04 97.20 97.85 98.45 97.06 97.99 S1  2.06 208 3.03 3.89 3.14 4.10
S2  97.44 97.08 97.73 98.17 98.08 98.88 S22 2.77 212 240 2.75 4.58 3.85
S3  96.41 96.50 96.71 97.89 96.25 98.58 S3  3.28 278 2.60 267 4.11 4.07
S4  97.12 97.57 97.78 98.89 97.93 98.96 S4 229 218 1.75 272 3.24 2.52
Avg 97.25 97.09 97.52 98.35 97.33 98.59 Avg 2.60 2.29 245 3.01 3.77 3.63

The second evaluation method for the disc center localization is the Euclidean
distance to the center labeled by an expert. The mean of the Euclidean distances
to the ground truth disc centers are shown in Table @l The plot box of the
Euclidean distances for the lumbar vertebrae connected discs are also shown in
Figure Bl In the box plot, the centerline of the box is the median, the top and
bottom of lines of the box are 25th and 75th percentiles and the pluses are the
statistical outliers. Figure dl shows the median of the Euclidean distances of our
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Fig. 3. The box plot shows the Euclidean Fig.4. Median errors of our system, the
distances (in mm) to the disc centers method of [I3] and [I]

Fig. 5. The results of the disc localization. Red pluses are the ground truth and green
pluses are the disc centers localized by our system. The images are cropped for better
visualization.

method, the method of [I] and [I3]. Our median of the Euclidean distances are
always lower than the medians of the other methods [I] and [I3]. Note that, [I]
and [I3] are tested on different datasets. We also show a few visual results of
the localizations from our system (Figure [l). It is obvious that our method can
localize the lumbar discs in pathological cases.

5 Conclusions

We presented a lumbar intervertebral disc localization method by employing
PHOG based SVM and exact inference on a probabilistic graphical model. Our
disc scoring method is more robust than other methods in the literature as ver-
ified by the experiments. In addition, other local information about the discs
such as T2-weighted image features can be easily incorporated into the system.
We rely on the robustness of our scoring process to eliminate some disc positions
before they enter the dynamic programming, which makes our system more ef-
ficient. Also, our dynamic programming based inference mechanism can locate
the disc centers in polynomial time without requiring manual initialization. Fi-
nally, the method can be extended to localize the whole intervertebral discs of
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the whole spine. Our future work includes handling of the missing detected discs
and providing scale independency.
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Abstract. We propose an automatic algorithm for phase labeling that
relies on the intensity changes in anatomical regions due to the contrast
agent propagation. The regions (specified by aorta, vena cava, liver, and
kidneys) are first detected by a robust learning-based discriminative al-
gorithm. The intensities inside each region are then used in multi-class
LogitBoost classifiers to independently estimate the contrast phase. Each
classifier forms a node in a decision tree which is used to obtain the final
phase label. Combining independent classification from multiple regions
in a tree has the advantage when one of the region detectors fail or
when the phase training example database is imbalanced. We show on a
dataset of 1016 volumes that the system correctly classifies native phase
in 96.2% of the cases, hepatic dominant phase (92.2%), hepatic venous
phase (96.7%), and equilibrium phase (86.4%) in 7 seconds on average.

1 Introduction

Computed Tomography (CT) remains the most common modality used in the
imaging of the liver and for the diagnosis of focal liver lesions. Multiphase
study obtained by multidetector-row CT (MDCT) during defined circulatory
phases best outlines the vasculature and improves detection and characteriza-
tion of parenchyma lesions [10]. Automatic algorithms for lesion classification,

segmentation, and serial comparison re-
quire the knowledge of the contrast phase
to get the most accurate results (Fig-
ure [I]). Currently, the phase information
either needs to be entered manually or ex-
tracted from Dicom tags. Unfortunately,
these entries are often incorrect or missing
(15-20% of the cases in our experience, see
Section [)), and their format varies across
hospitals and clinicians.

In this paper, we present an algorithm
for automatic contrast phase classification
based on the image intensity in local re-
gions. Since several organs and anatom-
ical structures are enhanced differently

Fig.1. Contrast phase estimation is
important for automatic liver lesion de-
tection and segmentation. The hyper-
dense liver lesion is clear in the arterial
phase (left), but almost invisible in the
venous phase (right).
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during a specific contrast phase, the algorithm exploits these different levels of
enhancement to automatically determine the phase label. Our approach starts
by a robust learning-based detector of anatomical structures. The local regions
surrounding the structures are then used to train a classifier identifying the
following contrast phases: native (NP), hepatic arterial dominant (HADP), hep-
atic venous (HVP), and equilibrium (EP). The phases are explained in detail in
Section

The proposed algorithm uses only the image content to automatically detect
the contrast phase without relying on the Dicom tags which often do not contain
any label information. This way, the phase labeling is standardized rather than
subjective and it can be used in the automatic contrast-specific scan analysis
such as lesion detection, segmentation, and comparison in the follow-up studies
[2I6]. Since these algorithms might be inaccurate or even fail when the contrast
information is incorrect, the requirements on the phase detection accuracy are
high. Moreover, since the contrast estimation is adding computation to the
overall scan analysis, the algorithm must be efficient.

The robustness of our algorithm comes from the joint analysis of several local
image regions surrounding anatomical structures. Discriminative learning-based
anatomy detectors (PBT [J]) are trained using a large annotated database of
images. The anatomical structures that we use are the liver, aorta, vena cava
at the level of renal artery bifurcation, and kidney center (see Figure [ for
examples). The learning algorithm solves the inherent ambiguity of the anatomy
locations (e.g. along the vessel or center of the liver) and approaches performance
of the human annotations. Multiple image regions used in the phase classification
increases robustness where the phase cannot be determined using one region
alone and when one of the anatomy detectors fail.

The proposed phase estimation technique is novel in three aspects. First, it
presents a way to effectively combine evidence from multiple image regions using
confidence of anatomical detectors. Second, the phase classification procedure is
based on a decision tree, where each node is a multi-class LogitBoost classifier.
Third, the organization of the tree allows to leverage prior knowledge such as
the effectiveness of each landmark to classify particular phase or to adjust the
tree topology based on the amount of training labels for each phase. We will
show on a database of CT scans that the technique can accurately classify the
phase in 93% of the cases.

2 Contrast Enhancement in CT

In the first breath-hold of approximately 24 seconds, the arterial dominant phase
(HADP) acquires images with arterial and arterioportal enhancement [5]. In the
second breath-hold of about 10 seconds, portal enhancement is scanned begin-
ning 60 seconds after the injection of contrast medium (hepatic venous phase,
HVP). During this phase, maximum enhancement of the liver parenchyma and
strong enhancement of renal cortex and medulla is achieved. Finally, a 3-min
delayed scan (equilibrium phase, EP) is acquired. The renal calices and pelvis
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start to fill with excreted contrast after approximately 120 seconds [4]. Native
phase (NP) scan is obtained without contrast injection. Specific enhancement
of organs in each of the phases makes it possible to estimate the contrast phase
based on the organ scans. Often, only one phase is acquired (see Section []).

In the clinical routine, contrast phase information is usually added manually
to the series description or image comments Dicom fields. Unfortunately, this
information is not structured or standardized. The new Dicom objects aimed to
capture timing and phase of enhancement [I] are not widely adopted and there
already exists a vast amount of data with unstructured tags. The acquisition
timing in the image meta data (if available) could be used to extract time delay
between multiple scans. However, the delay after the start of contrast injection
could not be obtained since the power injector for the agent is not coupled with
the scanner. Moreover, all phases are not always scanned to reduce the amount
of radiation to the patient. In our approach, we do not rely on the meta data but
rather use the image regions surrounding liver, aorta, vena cava (at the renal
vein branching), and kidneys to automatically estimate the contrast phase.

To illustrate the image intensity changes in various contrast phases, we com-
puted the following statistics. Each anatomical region was used to obtain a his-
togram of intensities and a statistical value of the histogram was plotted for all
volumes (Figure2]). We used the mean value of the histogram for aorta and vena
cava and peak value for liver and kidneys (due to intensity inhomogeneities). The
figure shows, that the regions are indicative of the contrast phase. However, it
is not possible to classify all the phases by one of the regions alone as evidenced
by overlaps in the plots.

aorta mean value in histogram hepatic vein renal mean value in histogram liver peak value in histogram left kidney max value in histogram
0. 0.

NP NP NP NP
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Fig. 2. Intensity statistics computed from 1016 volumes within the image regions de-
fined by aorta, vena cava, liver, and left kidney (right kidney plot is similar). The in-
tensities within the selected anatomical structures are indicative of the contrast phase.

3 Algorithm

Our algorithm automatically determines a probabilistic estimate of the image
contrast phase. The set of phases IP that we estimate is composed of hepatic dom-
inant phase (HADP), hepatic venous phase (HVP), native phase (NP) (without
contrast injection), and equilibrium phase (EP). The algorithm uses a set of ob-
servations for contrast phase r; obtained from the neighborhoods Vi, Va, ..., V; of
the image V. Each neighborhood V; is specified by the coordinates of a bounding
box within a d-dimensional image V', V : R? — [0,1]. The set of observations



Automatic Contrast Phase Estimation in CT Volumes 169

describe the intensity appearance specific for each region and phase. The goal of
the phase contrast detection algorithm is to estimate for a given volume V the
probability mass function p(r;|V) for each contrast phase r; € PP.

Estimating the phase r; becomes difficult when the number of phases in the
set P is large; it is easier to distinguish between two phases than among four.
Furthermore, not all observations are useful for classification of each phase, es-
pecially when the observations are the same for two or more phases (this is a
case for kidney regions as can be seen from Figure [2). To address this problem,
we propose a multi-level algorithm, where the number of phases |P;| at each
level s is smaller, P, C P, and the set of observations is also smaller. In our
experiments, we found that two levels achieve reliable contrast phase estimation
(Figure ). In this case, we can write

p(ri|V) = me\Vq;c (qx|V), 1)

where r; and ¢ are contrast phases estimated at level 2 and level 1, respectively.

We estimate the contrast using neighborhood image regions surrounding liver,
aorta, vena cava, and kidneys. Each oriented region j is defined by the parameters
0; = {p,r,s}, that specify the position (p), orientation (r), and size (s) of the
region. The set of observations inside the image neighborhood V; is taken from
the region defined by j and therefore

p(a|V) = ZPQk|VJ 7)- (2)

Prior distribution p(j) of regions surrounding anatomical structures is uniform.
The term p(qr|V,j) specifies distribution of contrast phase gy for region j. Fur-
thermore, since the pose of the anatomy j is defined by parameters

p(aelV, §) = / p(ae, 0,]V)do, 3)
- / p(8;V)p(ax/8;. V)6, (4)

Level 1 qk Level 2 T
L Kidney NP

R Kidney NP

B L Kidney HADP

R Kidney HADP

Py L Kidney HVP

R Kidney HVP

Fig. 3. Multiple level algorithm (right) has advantages compared to a single level al-
gorithm (left) when the phase training data is imbalanced and effectively exploits
discriminative power of each landmark. In our case, kidneys are useful for classifying
EP phase but not the other phases (as seen in Figure [2]).
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In practice, we replace the integration over the parameters by the best instance
p(aklV, ) = p(6;V)p(qr|0;, V). (5)

The set of the best instance parameters 9j for each anatomical region j is esti-
mated using a volumetric context surrounding the anatomy position:

0; = argmea;XP(OﬂV), (6)
where P(6;]V) is the probability of the parameters given the image volume. Let
us now define a random variable y € {—1,+1}, where y = +1 indicates the
presence and y = —1 absence of the anatomy. We train a Probabilistic Boosting
Tree classifier (PBT) [9] with nodes composed of AdaBoost classifiers trained
to select Haar and steerable features [8] that best discriminate between positive
and negative examples of the anatomy. We can then evaluate the probability of
an anatomy being detected as P(y = 41|60, V). A natural choice for Eq. [flis to
use the P(y = +1/6,,V),

6; = arg meaXP(y =+1]6,,V). (7
J

This way, we sucessfuly convert the above problem to a detection problem. The

derivation for p(gx|V') applies to all levels of the algorithm.

We use a Multi-class LogitBoost (MLBoost) [3] classifier and a Haar fea-
ture selection from AdaBoost [3] to estimate the contrast phase distribution
p(qk|9j, V) in Eq. Bl The MLBoost is a generalization of a two-class AdaBoost,
interpreted using the forward additive logistic regression. The LogitBoost algo-
rithm uses quasi-Newton steps [7] for fitting an additive symmetric logistic model
by maximum-likelihood. At each iteration, the algorithm increases the classifi-
cation accuracy on the training data by adding a new function fkm(éj, V) to
the response function Fj (9j, V). The output of the training is a set of response
functions, one for each phase gy

9]7V kam 6J7V (8)

The posterior phase probability p(qk\éj, V) is then given by
exp(Fx(8;,V))
> exp(Fi(0;,V))

The functions { f., } are assumed piecewise constant functions of responses com-
puted using a set of weak classifiers selected incrementally during boosting [3].

p(akl0;,V) = 9)

4 Experiments

Our experiments evaluate the accuracy of individual region detectors and final
classification performance.



Automatic Contrast Phase Estimation in CT Volumes 171

The data set consists of 1016 CT scans with sizes ranging from 512x512x38
to 512x512x512 voxels and resolutions ranging from 0.52x0.52x0.5 to
1.27%x1.27x5.0 mm resampled to a 3 mm isotropic resolution (sufficient for phase
estimation application). The images were annotated by an expert, resulting in
the landmark and phase annotation counts summarized in Table [l The phase
label in the Dicom tags is incorrect in 6.4% and missing in 9.1% of the cases
(total of 15.5%). Total of 61.8%, 29.3%, and 8.9% studies have scans from one,
two, and three phases, respectively. No study contains scans from all four phases.

Table 1. Number of annotated volumes organized by each landmark and phase. The
least number of volumes was obtained during the EP phase since it is not scanned as
often as the other phases.

Native HAP PVIP HVP EP Total
Liver 81 152 128 209 17 587
Aorta 239 152 125 349 45 910
Vena Cava 174 135 104 177 42 632
Left Kidney 159 113 120 304 50 746
Right Kidney 146 158 122 314 55 795
By Phase 242 174 141 378 81 1016

In the first experiment, we assess the performance of the anatomical structure
detectors. The data set with structure annotations was separated randomly into
two disjoint sets, one for training (70% of volumes) and one for testing (30%).
Each detector was trained using the training data set of all available contrast
phases. The detectors were evaluated on the testing data set and the results
compared against the annotations. The training errors of each landmark are
shown in Table 2l The detection errors are low overall. Occasionally, a detector
can have a larger error but this still does not mean the phase classification will be
incorrect since we are using evidence from multiple anatomical regions (Eq. Bl).

Table 2. Accuracy of the region detectors. The errors for vena cava are larger than
aorta due to similar intensity as the liver parenchyma in NP. The vessel position and
size errors along the vessel and angle rotations around the vessel are not considered
due to ambiguity. The errors for kidneys and liver are higher due to their larger sizes.

Aorta Vena Cava Liver Left Kidney Right Kidney

Mean St.Dev. Mean St.Dev. Mean St.Dev. Mean St.Dev. Mean St.Dev.

Center [mm] 1.33 1.22 3.31 3.91 9.24 6.99 3.78 2.24 4.23 3.72
Angle [deg] 3.08 2.00 4.72 2.88 10.85 5.93 8.04 2.39 8.11 2.36
Size [mm} 1.01 1.30 1.00 1.72 17.81 10.60 7.04 4.40 10.05 3.28

! In our another database of 514 volumes, the phase label in the Dicom tags is incorrect
in 5.8% and missing in 14.7% of the cases (total of 20.5%). We manually removed
the language, formatting, and abbreviation ambiguities of the Dicom entries.
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NP HADP HVP EP HVP ( )

Liver

Aorta

Vena Cava

Right Kidney Left Kidney

Fig. 4. Detected anatomical structures (rows) used in contrast phase estimation (cols
1-4). Anatomy enhancement specific to each phase can be clearly seen. Incorrectly
classified HADP as a HVP phase for a scan in phase transition (5th col.). The lower
contrast of aorta and the beginning of liver parenchyma, renal cortex and renal medulla
enhancement are characteristic for a HVP phase (compare to 2nd and 3rd col.).

Finally, we present the results of the contrast phase estimation. We trained
Multi-class LogitBoost [3] phase classifiers using the annotated anatomical re-
gions. The final phase classification performance after 4-fold cross validation is
summarized in a confusion Table Bl The classification accuracy is high for NP,
HADP, and HVP phases, ranging between 92.2% and 96.7%. For the EP phase,
the performance is lower due to the low number of training examples. The EP
phase is most often confused with HVP phase which is caused by different parts
of kidney being enhanced during these phases (cortex and medulla in HVP and
calices and pelvis in EP). It might be possible to improve the result by seg-
menting these regions to separate them for phase classifier training. The overall
phase classification speed is 7 seconds on average. Example qualitative anatom-
ical structure detection result and phase classification are shown in Figure [l
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We also compared the two-level al-
gorithm to a single level system where Table 3. Confusion table showing per-
each anatomical region is used to esti- centages of correctly and incorrectly
mate all phases (Figure ). This system identified phases when cqmpared to the
has advantage compared to estimating the ground truth (GT) labeling.
phase from all regions jointly since the re-
gion detection might fail. However, due
to imbalanced training set (Table [[) and GT HADP 20 999 54 04
poor discrimination of phases in kidneys GT HVP 0'5 1' 19 6.7 2' 9
(Figure [2)), the phase was correctly clas- GT EP 0.60 4:5 9:1 86:4
sified only in 85% cases with correct EP
classification only in 29% cases.

Detection NP HADP HVP EP
GT NP 96.2 0.8 0.00 3.0

5 Conclusion

We presented an automatic phase classification algorithm in CT volumes. Our
approach starts by a discriminative learning-based detector of anatomical struc-
tures. The regions surrounding the structures are used in Multi-class LogitBoost
classifiers to accurately characterize the contrast phase. The system robustly
classifies native phase (correct classification in 96.2% of the cases), hepatic dom-
inant phase (92.2% correct), hepatic venous phase (96.7% correct), and equilib-
rium phase (86.4% correct). The overall speed is 7 seconds on average.

In future, we plan to exploit the time relationship between phases. This will
help when there are scans from multiple phases available. We will also investigate
the possibility of using pairs of anatomical regions during classification. This will
limit the influence of intensity differences across regions for a particular phase as
the classifier would focus on relative intensity values computed within the pair
of the regions rather than on absolute intensity values in each region.

References

1. Clunie, D.: Impact of new DICOM objects on handling large data sets. In: Univer-
sity of Rochester PACS 2006 Conference, San Antonio, Texas (March 2006)

2. Deng, X., Du, G.: Editorial: Liver tumor segmentation. In: 3D Segmentation in the
Clinic: A Grand Challenge I, MICCAI Workshop, New York, NY (2008)

3. Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: A statistical
view of boosting. Annals of Statistics 28(4), 337-407 (2000)

4. Graser, A., Staehler, M., Reiser, M.F., Mueller-Lisse, U.G.: Low-dose multiphasic
protocols offer the best option for cancer detection, classification, and staging.
Diagnostic Imaging (April 14, 2006)

5. Laghi, A., Sansoni, I., Celestre, M., Paolantonio, P., Passariello, R.: Computed
tomography. In: Lencioni, R., Cioni, D., Bartolozzi, C. (eds.) Focal Liver Lesions:
Detection, Characterization, Ablation. Springer, Heidelberg (2005)

6. Meyer, C., Park, H., Balter, J., Bland, P.: Method for quantifying volumetric lesion
change in interval liver CT examinations. IEEE TMI 22(6), 776-781 (2003)

7. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, Heidelberg (2000)



174

8.

9.

10.

M. Sofka et. al

Sofka, M., Zhang, J., Zhou, S., Comaniciu, D.: Multiple object detection by se-
quential Monte Carlo and hierarchical detection network. In: CVPR (2010)

Tu, Z.: Probabilistic boosting-tree: Learning discriminative models for classifica-
tion, recognition, and clustering. In: CVPR, vol. 2, pp. 1589-1596 (2005)

Valette, P.J., Pilleul, F., Crombé-Ternamian, A.: Imaging benign and metastatic
liver tumors with MDCT. In: Marchal, G., Vogl, T., Heiken, J.P. (eds.)
Multidetector-Row Computed Tomography: Scanning and Contrast Protocols.
Springer, Heidelberg (2005)



3D Shape Analysis for Early Diagnosis of
Malignant Lung Nodules

Ayman El-Baz'*, Matthew Nitzken', Ahmed Elnakib!, Fahmi Khalifa',
Georgy Gimel’farb?, Robert Falk?, and Mohamed Abou El-Ghar*

! Bioimaging Laboratory, Bioengineering Department, University of Louisville,
Louisville, KY, USA
2 Department of Computer Science, University of Auckland, Auckland, New Zealand
3 Department of Radiology, Jewish Hospital, Louisville, KY, USA
4 Urology and Nephrology Department, University of Mansoura, Mansoura, Egypt

Abstract. An alternative method of diagnosing malignant lung nod-
ules by their shape, rather than conventional growth rate, is proposed.
The 3D surfaces of the detected lung nodules are delineated by spher-
ical harmonic analysis that represents a 3D surface of the lung nodule
supported by the unit sphere with a linear combination of special ba-
sis functions, called Spherical Harmonics (SHs). The proposed 3D shape
analysis is carried out in five steps: () 3D lung nodule segmentation with
a deformable 3D boundary controlled by a new prior visual appearance
model; (i) 3D Delaunay triangulation to construct a 3D mesh model of
the segmented lung nodule surface; (74) mapping this model to the unit
sphere; (iv) computing the SHs for the surface; and (v) determining the
number of the SHs to delineate the lung nodule. We describe the lung
nodule shape complexity with a new shape index, the estimated number
of the SHs, and use it for the K-nearest classification into malignant and
benign lung nodules. Preliminary experiments on 327 lung nodules (153
malignant and 174 benign) resulted in a classification accuracy of 93.6%,
showing that the proposed method is a promising supplement to current
technologies for the early diagnosis of lung cancer.

1 Introduction

A great deal of work has been published regarding the usefulness of morphologic
features for discriminating malignant from benign pulmonary nodules on Com-
puted Tomography (CT) and to a lesser extent, chest radiographs. Several stud-
ies have shown a correlation between different nodule shape characteristics and
underlying pathology. For example, Furuya et al. [I] analyzed the margin charac-
teristics of 193 pulmonary nodules on high-resolution CT and subjectively classi-
fied them as one of several types, including round, lobulated, densely spiculated,
ragged, and halo. They found a high level of malignancy among the lobulated
(82%), spiculated (97%), ragged (93%), and halo nodules (100%), while 66% of
the round nodules proved to be benign. Automatically extracted features have

* Corresponding author:- Tel:(502)-852-5092, E-mail: aselba0l@louisville.edu

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAT 2011, Part ITI, LNCS 6893, pp. 1754182,|2011.
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also been shown to correlate with underlying malignancy. Kawata et al. [2] quan-
tified the surface curvature and the degree of surrounding radiating pattern in
biopsy-proven benign and malignant nodules, and compared the resulting feature
maps. Their results showed good separation of the feature maps between the two
categories. Similarly, fractal analysis has been used to quantify the nodule margin
characteristics of benign and malignant nodules. Although none of these studies
directly assessed the accuracy of their methods in predicting a diagnosis, they sup-
port the notion that nodule shape can potentially be used by automated systems
to distinguish benign from malignant nodules. In summary, the existing shape-
based approaches show the following limitations: (i) most of them classify the lung
nodules based on extracted 2D features (e.g., round, lobulated, ragged, and halo,
etc.) and they did not take into account the 3D features of lung nodules; (i) most
of them did not provide a quantitative measure that has the ability to describe the
shape complexity of detected lung nodules; and (44) most of the existing features
(e.g., curvature, round, etc.) depend on the accuracy of the used nodule segmen-
tation algorithm which make this process difficult for clinical practitioners to use.
This work aims to address these limitations in a way that will make evaluating
small lung masses more consistent.

2 Methods

2.1 Lung Nodules Segmentation

Accurate lung nodule segmentations from 3D Low Dose Computed Tomography
(LDCT) images are a challenging problem because the intensities of the lung
nodules and their surrounding tissues (e.g., blood vessels, etc.) are not clearly
distinguishable. To overcome this problem, we use a conventional 3D parametric
deformable boundary [3] and control its evolution with a new prior probabilis-
tic visual appearance model. The prior is a 3D Markov-Gibbs Random Field
(MGRF) model of the lung nodule intensities with translation- and rotation-
invariant pairwise voxel interaction.

Let (z,y, z) be Cartesian 3D point coordinates. A parametric deformable sur-
face, B(Py,...,Pk), specified by K control vertices, Py = (xx, yk, 2k ), evolves
in the directions that minimize its energy, E, depending on internal, (it (B),
and external, (oxt (B), forces [3]:

E = Eint + Eext = L (Cint (B) + Cext (B)) dB (1)

In this paper, we introduce a new type of external energy that depends on the
learned prior appearance model. Let Q = {0,1,...,Q — 1} and L = {nl, bg} be
finite sets of image intensities (gray values) and region labels, respectively. Let a
finite 3D arithmetic lattice R = [(z,y,2) 12 =0,..., X -1;y=0,...,Y -1,z =
1,...,Z—1] support a 3D image ¢g : R — Q and its region map m : R — L. The
label, my 4 ., associates the voxel, g; 4 ., with the lung nodule or the background.
To reduce the impacts of global contrast and offset deviations of intensities due
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to different sensors, each input 3D image is normalized by mapping its signal
range [¢min, ¢max) to the maximal range of [0, 255].

To consider the normalized images as samples of a prior MGRF model but ex-
clude any image alignment before the segmentation, we use a generic translation-
and rotation-invariant MGRF with only voxel-wise and central-symmetric
pairwise voxel interaction. The latter is specified by aset N of characteristic central-
symmetric voxel neighborhoods {n, : ¥ € N} on R and a corresponding set
V of Gibbs potentials, one per neighborhood. A central-symmetric neighborhood
n, embraces all voxel pairs such that the (z,y, z)-coordinate offsets between any
voxel (z,y, z) and its neighbor (2, y’, 2’) belong to an indexed semi-open interval
[dy,min; dvmax); ¥ € N C {1,2,3,...} of the inter-voxel distances: dy min <

Ve =202+ (y=y)?+ (2 = 2)? < dymax-

Learning the appearance prior. Let S = {(g:.m;) : t = 1,...,T} be a train-
ing set of 3D images with known region maps. Let R; = {(z,y,2) : (z,y,2) €
R A myz .. = nl} denote the part of R supporting lung nodule in the ¢-th train-
ing pair (g¢,m:);t =1,...,T. Let C,; be a family of voxel pairs in R? with the
co-ordinate offset (£, 1, ”y) € n, in a particular neighborhood. Let Fyx; and F, ;
be an empirical marginal probability distribution of voxel intensities and of in-

tensity co-occurrences, respectively, in the training lung nodule from g¢: Fyx ¢ =

t,q Cotaal .
Foxt(@) = Tl - qu} and Fo= [ fua(a,q) = "G+ (a.0) € Q2] where

Riy = {(z,y,2) : (z,9,2) € Rt A gzy,» = q} is a subset of voxels support-
ing the intensity ¢ and C, 4,4 is a subset of the voxel pairs c¢ (2,9, 2) =
((z,y,2), (x+&y+n,2z+7)) € R? supporting the intensity co-occurrence (g, q’)
in the training lung nodule from g;. Let Vyx = [Vix(q) : ¢ € Q] be a poten-
tial function of voxel intensities that describes the voxel-wise interaction. Let
V, =[V.(q,q¢) : (g,¢") € Q?] be a potential function of intensity co-occurrences
in the neighboring voxel pairs that describes the pairwise interaction in the
neighborhood n,; v € N. The MGRF model of the ¢-th training pair is specified
by the joint Gibbs probability distribution on the sublattice Ry:

1
P = Z, exp (|Rt| (V:I,—XFVX,t + ZVENpV’tVI’tFV,t)) (2)

where p,; = |C,¢|/|R¢| is the average cardinality of n, with respect to Ry.
To identify the MGRF model in Eq. (@), the Gibbs potentials are approxi-
mated analytlcallyﬂ

Vrvx,nl( ) log fvx nI Z log fvx nI for qc Q, and (3)
KEQ

VV nI(Qy ) - )\py (fu nI(Qy ) fvx nl( )fvx,nl(q/)) fOI‘ (Q7 q/) S Q2 (4)
where the common factor A is also computed analytically.

! For proof, please see: https://louisville.edu/speed/bioengineering/faculty/
bioengineering-full/dr-ayman-el-baz/supplemental-materials.
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Boundary evolution under the appearance models. To guide the bound-
ary evolution, we embed in the external energy term of Eq. (l) the learned prior
appearance model of the detected lung nodule as follows:

S) ()

Here, mp(q|S) is the prior conditional probability of g, given the fixed current
intensities in the characteristic central-symmetric neighborhood of P for the
MGRF model of Eq. [2):

Cext (P = (x,y, Z)) = _Wp(gx,y,z

T (Ge,y,2|S) = exp(Ep (92,y,[S))/ 2ogeq exP(Er(4|S))

where Ep(q|S) is the conditional Gibbs energy of pairwise interaction for the
voxel P provided that an intensity ¢ is assigned to the lung nodule while the
other current intensities in all its neighboring voxels over the characteristic neigh-
borhoods n,; v € N, remains fixed:

Ep(q|S) = Vesni(@) + 22 > (Voni(gz—g.y—nz—v: @) + Voni(d, Goteytn.z4v))

veEN (§,m,7)€Eny

After changing the energy Eg of the 3D region Rg C R inside the evolving
boundary B:

Ee= Y Ep(gay:lS) (6)

VP=(z,y,z)ERB

stops, the evolution terminates.

2.2 Spherical Harmonics (SHs) Shape Analysis

Spectral SH analysis [4/5] considers 3D surface data as a linear combination of
specific basis functions. In our case, the surface of the segmented lung nodule is
first approximated by a triangulated 3D mesh (see Fig.[) built with an algo-
rithm by Fang and Boas [0]. Secondly, the lung nodule surface for each subject is
mapped for the SH decomposition to the unit sphere. We propose a novel map-
ping approach, called “Attraction-Repulsion,” that calls for all the mesh nodes
to meet two conditions: (¢) the unit distance of each node from the lung nodule
center, and (i4) an equal distance of each node from all of its nearest neighbors.

To detail our Attraction-Repulsion algorithm (see its summary in Algorithm 1),
let 7 denote the iteration index, I be the total number of the mesh nodes (in all
the experiments below I = 4896 nodes), and P, ; be the Cartesian coordinates

of the surface node i at iteration 7; ¢ = 1,...,1. Let J be the number of the
neighbors for a mesh node and d,;; denote the Euclidean distance between the
surface nodes 7 and j at iteration 7, where ¢ = 1,..., I and j = 1,...,J. Let

A;j; = Prj — P,; denote the displacement between the nodes j and ¢ at
iteration 7. Let Ca 1, Ca 2, and Cr be the attraction and repulsion constants,
respectively, that control the displacement of each surface node.
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Fig.1. Generating a 3D mesh for the Fig. 2. Lung nodule mesh (a), its smoothed
lung nodule surface from a stack of suc- version (b), and the Attraction-Repulsion
cessive segmented 2D LDCT slices mapping to the unit sphere (c)

The starting attraction step of the proposed mapping tends to center each node,
P;;i=1,...,1, with respect to its neighbors by iteratively adjusting its location:

J
A
Pri=Pri+Can Z Amdi,ﬁ +Cap " (7)
=Lt drji

where the factor Ca 2 keeps the tightly packed nodes from collision and pushes
the adjusted nodes away from their neighbors if a certain neighbor is much closer
than the others.

The subsequent repulsion step inflates the whole mesh by pushing all the
nodes outwards to become evenly spaced after their final back-projection onto
the unit sphere along the rays from the center of the sphere. To ensure that
the nodes that have not been shifted will not collide with the altered node, the

location of each node, P;; ¢ =1,...,1, is updated before the back-projection as:
Crh A,

o L P/ ) R T,J 8

T+1,% T,% + 27 (|A7,ji|2 ( )

=T

where a repulsion constant Cg controls the displacement of each surface node and
establishes a balance between the processing time and accuracy (e.g., a smaller
CRr values guarantees that the node faces will not become crossed during the
iterations at the expense of the increased processing time). All the experiments
below are obtained with 0.3 < Cr < 0.7.

The original lung nodule mapped to the unit sphere with the proposed
Attraction-Repulsion algorithm is approximated by a linear combination of SHs,
the lower-order harmonics being sufficient to represent more generic information,
while the finer details requiring the higher-order ones. The SHs are generated
by solving an isotropic heat equation for the nodule surface on the unit sphere.
Let S : M — U denote the mapping of a nodule mesh M to the unit sphere
U. Each node P = (z,y,2) € M mapped to the spherical position u = S(P) is
represented by the spherical coordinates u = (sin 6 cos p, sin 6 sin ¢, cos §) where
0 € [0, 7] and ¢ € [0,27) are the polar and azimuth angles, respectively. The SH
Y. of degree a and order § is defined as [1]:
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B M
Algorithm 1: Attraction-Repulsion Algorithm
Initialization oM ew
— Construct the 3D lung nodule mesh e
Fig. 2la). b
(Fig. Ba) s

— Smooth it by the Laplacian filtering

ce

— Initialize the mapping of the smoothed mesh 5 SHs .

to the unit sphere.

Repeat e Q

—Fori=1—1 10 SHs ;

e Attraction:
* Select a node to process. e Q
15 SHs

x Update the node using Eq. (@)

e Repulsion:
x Update the node using Eq. (8). 60 SHs -~

— End (all nodes in the mesh are shifted and

back-projected onto the unit sphere). Fig.3. Approximation of
While changes in the node positions occur the 3D shape for malignant
(Fig. Rlc). (M), benign nodules (B),

and original mesh (OM)

CapGl cos Osin(|flp) —a < B < —1
Yos = i;gGlfl cos =0 (9)

cagGlfl cos 6 cos(|8|e) 1<p<a

1
where cop = (23;1 EZ;}SB:) * and Glfl is the associated Legendre polynomial

of degree a and order (3. For a fixed «, the polynomials GZ are orthogonal over
the range [—1,1]. As shown in [7], the Legendre polynomials are effective in
calculating SHs. This is the main motivation behind their use in this work.
Finally, the lung nodule is reconstructed from the SHs of Eq. (@). In the case of
the SHs expansion, the standard least-square fitting does not accurately model
the 3D shape of the lung nodule and can miss some of the shape details that
discriminate between the malignant and benign lung nodules. To circumvent this
problem, we used the iterative residual fitting by Shen et al. [§] that accurately
approximates the 3D shapes of malignant and benign lung nodules. As shown in
Fig. Bl the model accuracy does not significantly change for the benign nodule
from 15 to 60 SHs, while it continues to increase for the malignant nodule.

2.3 Quantitative Lung Nodule Shape Analysis

Our main hypothesis is that the shape of malignant nodules is more complicated
(e.g., with spiculation) when compared with the shape of benign nodules which
are simpler (smoothed shape) as in Fig. Bl so that more SHs have to be used for
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from the total nodule approximation and the surface curvature-based diagnostic
error for malignant and benign nodules  approach

accurate approximation of the shape of malignant lung nodule. Therefore, the
number of the SHs after which there are no significant changes in the approxi-
mations can be used as a new shape index that quantifies the shape complexity
of the detected lung nodules. Due to the unit sphere mapping, the original mesh
for each nodule is inherently aligned with its reconstructed mesh shape, and
the sum of the Euclidean distances between the corresponding nodes gives the
total error between both the mesh models. As shown in Fig. [ the total error
curves for the increasing number X of the SHs can be statistically analyzed to
differentiate between the detected lung nodules.

3 Experimental Results and Conclusions

To justify the proposed methodology of analyzing the 3D shape of both ma-
lignant and benign nodules, the above proposed shape analysis framework was
pilot-tested on a database of clinical multislice chest LDCT scans of 327 lung
nodules (153 malignant and 174 benign). The CT data sets each have 0.7 x 0.7 x
2.0 mm3 voxels, with nodule diameters ranging from 3 mm to 30 mm. Note
that these 327 nodules were diagnosed using either bronchoscopy and needle
biopsy, or two-year follow-up with CT scandq. Also, our current database does
not contain Ground Glass Nodules (GGN).

The training subset for classification (15 malignant lung nodules and 15 benign
lung nodules) were arbitrarily selected from 327 lung nodules. The accuracy of
classification based on using a K-nearest classifier for both the training and test
subjects was evaluated using the x2-test at 95% confidence level. At the 95% con-
fidence level, 143 out of 153 malignant nodules (a 93.5% accuracy) were correctly
classified, and 163 out of 174 control subjects (a 93.7% accuracy) were correctly
classified. The overall accuracy using the proposed 3D shape-based CAD system
is 93.6% in the first detection of lung nodules. The classification based on the

2 For complete details about our nodules database, please see: https://louisville.
edu/speed/bioengineering/faculty/bioengineering-full/dr-ayman-el-baz/
supplemental-materials.
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traditional analysis of surface curvature-based diagnostic approach [2] correctly
classifies 77 out of 153 malignant nodules (a 50.3% accuracy), and 103 out of
174 benign nodules (a 59.2% accuracy) at a 95% confidence level. These results
highlight the advantage of the proposed approach.

Another way to measure and test the performance of the proposed diagnostic
system is to compute the Receiver Operating Characteristic (ROC). Each point
on the graph is generated by using a different cut point (classification thresh-
old). Figure B shows the ROC curves of the two approaches, our proposed shape
index-based diagnostic approach and the surface curvature-based diagnostic ap-
proach [2]. It is clear from the data in Fig. Bl that the area under the ROC curve
of our present approach is much larger (Az = 0.9782) than the area under the
ROC curve of the surface curvature-based diagnostic approach [2] (Az = 0.5949).
The high sensitivity and specificity of the proposed approach is due to using the
estimated number of spherical harmonics to approximate the 3D shape of a de-
tected lung nodule as a new discriminatory feature which is more separable than
using surface curvature. More experimental results that address the sensitivity
of our approach w.r.t. the accuracy of segmentation and mesh generation steps
has been posted on our web site?.

As demonstrated in this paper, the preliminary results justify the elaboration
of the proposed alternative method for diagnosing malignant lung nodules. Its
novelty lies in using the shape of a 3D nodule instead of the more conventional
surface curvature as a reliable diagnostic feature. The shape is described in terms
of a linear combination of SHs.
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Abstract. Visual inspection of diffuse lung disease (DLD) patterns on
high-resolution computed tomography (HRCT) is difficult because of
their high complexity. We proposed a bag of words based method on
the classification of these textural patters in order to improve the de-
tection and diagnosis of DLD for radiologists. Six kinds of typical pul-
monary patterns were considered in this work. They were consolidation,
ground-glass opacity, honeycombing, emphysema, nodular and normal
tissue. Because they were characterized by both CT values and shapes,
we proposed a set of statistical measure based local features calculated
from both CT values and the eigen-values of Hessian matrices. The pro-
posed method could achieve the recognition rate of 95.85%, which was
higher comparing with one global feature based method and two other
CT values based bag of words methods.

1 Introduction

Diffuse lung disease (DLD) refers to a group of lung disorders which spread out
in large areas. In the detection and diagnosis of DLD , high-resolution computed
tomography (HRCT) has played important roles in recent years [12]. Thin slice
CT is able to give detailed appearances on pulmonary patterns characterized
for specific abnormal findings which point toward a specific diagnosis and treat-
ment. In current clinical protocols, the objective identification of such patterns
has not being established, and visual inspection is carried on, according to the
experiences of radiologists. Not only subjective differences lead to inevitable mis-
judgements, but also huge amount of images makes a big burden on radiologists.
Therefore, a quantitative computer-aided diagnosis (CAD) tool is required to
give the second opinion to facilitate the detection and diagnosis of DLD.

There were researches on computer-aided analysis of DLD patterns in the
past ten years [9]. From the viewpoints of computer vision, it can be generalized
as the problem of texture analysis on a certain 2D or 3D region of interest
(ROI). Some classical textural feature analysis methods calculated on 2D ROIs

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAI 2011, Part ITI, LNCS 6893, pp. 183 2011.
© Springer-Verlag Berlin Heidelberg 2011
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CON EMP NOD

Fig. 1. Examples of six kinds of pulmonary patterns in HRCT

can be used, including the direct analysis on gray value intensities [2], features
calculated on histogram statistics, and features extraction based on filter-banks,
co-occurrence matrices or run-length parameters [1][5][13]. Features may also be
designed for the specific task on hands [4]. Different from the above-mentioned
methods which analyzed on 2D ROIs, a method based on features calculated on
3D ROIs was proposed in [I0], which reported that 3D ROIs based features were
more sensitive and specific. All of these textural analysis methods made use of
global features.

As the development of computer vision techniques, there have been more and
more researches which reported that techniques based on local features could
lead to more accurate results on recognition tasks [I1]. Local features are less
sensitive to the changing of illuminations and positions, so they usually could
be a more robust way to represent images of underlying objects. An efficient
approach to use local features is called bag of words (keypoints) [6]. It was firstly
proposed in the area of statistical natural language analysis [3], then introduced
into the area of computer vision in [6] for many applications.

Recently, local features have been considered on the analysis of pulmonary
patterns on HRCT. Local binary patterns (LBP) combined with k nearest neigh-
bor (k-NN) was adopted to distinguish three kinds of pulmonary patterns (nor-
mal tissues, centrilobular emphysema and paraseptal emphysema) for chronic
obstructive pulmonary disease (COPD) in [16]. A bag of words approach (orig-
inally called texton-based method) was also tried in the same problem in [I5].
According to our knowledge, there are no works to apply local features on DLD
patterns analysis. Compared to [15], the main differences are listed as follows:

e our aim is to classify pulmonary patterns for DLD rather than COPD.

e more categories of pulmonary patterns.

e local features extracted from 3D ROIs instead of 2D ROls.

e compact and efficient statistical measure based local features considering
both shapes and CT values.

Fig. [l gives the examples of six types of typical pulmonary patterns in HRCT
for DLD. They are consolidation (CON), ground-glass opacity (GGO), honey-
combing (HCM), emphysema (EMP), nodular (NOD) and normal tissue (NRT).
The aim of our work is to find an efficient computer-aided analysis method to
distinguish them in order to improve the detection and diagnosis of DLD on
HRCT.
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Fig. 2. The framework of the bag of words approach

2 Method

2.1 Bag of Words Approach

Fig[2 describes the framework of bag of words approach, which is composed by
three main steps, local feature calculation, code-book construction and classifi-
cation. Local features can be calculated at the regularly sampling grids or at the
pre-determined key-point positions. According to literature [11], there seems to
be no evidence to show which one is better. In this work, we prefer to adopt
the way of regularly sampling grids, since it is easier and faster. Here, the ROI
size and the grid step is set to be 32x32x16 and 4x4x4 respectively, so we can
get 9 X 9 x 5 = 405 sampling points on one ROI. For each sampling point, one
local feature is calculated in a patch whose center is located on it. Therefore, 405
local features can be calculated on each ROI. The patch size is the parameter
determined by experiments.

The main idea of bag of words approach is to represent the ROIs (or images)
by a histogram whose bins are the elements of a code-book trained from local
features. Such a code-book can be seen as an intermediate layer to interpret im-
ages. Since local features are calculated from limited local regions, each of them
only reflects information of partial objects. Although local features are huge,
they are usually clustered into limited number of centers in high-dimensional
feature spaces. Just as words are basic elements of sentences, such centers of
clusters can also be considered as the basic elements which compose the under-
lying objects. This is the reason why it is called bag of words approach. The
unit of these elements is called a code-book or dictionary. Construction of such a
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dictionary can be generalized as a vector quantization problem. K-means method
is adopted to resolve this problem. The number of clusters in K-means (K) is
another parameter determined by experiments.

In the classification step, all of the local features of one ROI are assigned to
a label which indicates the nearest elements (or words) in the code-book. Given
each elements as the bins, a histogram can be calculated to refer to the statistical
information of the ROI. Since the same type of ROIs gives similar histograms,
such histograms can be treated as input vectors for the classification.

In our opinion, bag of words approach is a common framework. According to
different recognition tasks, the method of local feature extraction and classifier
should be adjusted in order to make it achieve better results. We will dwell on
these two aspects in the following two subsections.

2.2 Local Features

CT values of a squared patch was treated as local features for each 2D ROIs
n [15]. It was reported that such local features achieved good results for the
recognition of normal tissues and two kinds of emphysema patterns. We tried
this method, but the results were not satisfied. Therefore, we reconsidered about
our problem and designed a new kind of local feature extraction method suitable
for our task.

The categories of pulmonary patterns in our work are more than [I5]. Some
patterns, such as NRT, CON and EMP, are mainly characterized by CT wval-
ues. However, shape information should be taken into consideration in order to
distinguish the patterns, such as HCM and NOD. Since shape information can
not be shown from 2D slices, 3D ROIs are adopted in this work. An usual way
to describe shape information is to use the eigen-values of Hessian matrices cal-
culated on 3D ROIs. These eigen-values can be arranged to form three cubes
according to the arrangement of the original voxels. In order to consider the in-
formation of both CT values and shapes, local features are calculated from both
the three eigen-value cubes and the original ROI. Four kinds of statistical mea-
sures, mean, variance, skewness and kurtosis are calculated from a cube-patch
centered at the regular sampling grids. Therefore, one local features consists of
16 statistical measures. The size of cube-patch is the parameter for this local
feature extraction method and its optimal value is determined by experiments.
It should be noted that no matter how it changes, the compactness of such local
features does not change. Additionally, these statistical measures are invariant
to translation and rotation. Here, the Hessian matrix was only calculated on the
pixel level.

2.3 Classifier

SVM was adopted as the classifier in this work. We used a version called LIB-
SVM [17]. For a generalized recognition problem, a common choice of the kernel
for SVM is a Gaussian kernel. For the bag of words problem, it was reported
that some other kernels was superior to Gaussian kernel if input vectors were
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histograms [14]. We tried other three kinds of kernels. The kernel definitions are
given by Eqlll

G(h,h') = exp(—y[h - h'[|?)

Ki(b, ) =N min(hi, b)) .

K>(h,h') = Zf\; Vhihi .

N (h;—h})?

Ks(h,h') = exp(—a )L, (hﬁ;%) )
where h = [hy, ..., hx]7 is the N-bin histogram. G(h,h’) is the Gaussian kernel,
Ki(h,h') is the histogram intersection kernel, Ks(h,h') is the Bhattacharyya
kernel, K3(h,h’) is the y2-kernel. v is the parameter for the gaussian kernel
and « is the parameter for the y?-kernel. Additionally, a soft margin parameter
C' is considered for all the four kernels. These parameters will be optimized in
experiments.

3 Experiments and Results

3.1 Data

We obtained 117 scans for different subjects from Tokushima University Hospi-
tal, Tokushima, Japan. All of them were scanned from 16-row multi-slice CT
(Aquilion, Toshiba Co.), when edge-enhanced filtering was not applied. The
resolution was 512x512 with the pixel size of 0.6mm on each slice, and the
slice-thickness was 1mm. The regions of the six types of patterns were marked
by three experienced radiologists according to the following procedure. Firstly,
one radiologist was asked to review all scans. From each scan, maximum of three
slices were selected where typical patters dominantly spread. Then together with
the other two radiologists, the six kinds of patters were marked on the selected
slices separately. Finally, the common regions marked by all radiologists were
considered as where typical patterns were located. The ROIs were constructed
according to these determined regions. The centers of ROIs were randomly se-
lected from them while considering non-overlap on ROIs. At last, 3009 3D-ROIs
were determined.

3.2 Results and Discussion

There were mainly three kinds of parameters which should be adjusted by exper-
iments in our proposed method. They were the size of cube-patches, the number
of clusters in K-means, and the parameters related to SVM classifiers (including
kernel types, the soft margin parameter, and parameters for each kernel). These
parameters were determined by a 20-fold cross-validation test. First, by setting
number of clusters to be a certain number (100 was used) and the kernel type
of SVM to be the Gaussian kernel, we exhausted the possible values on the size
of cube-patches, soft margin parameter and v of the gaussian kernel to train
classifiers. The size of cube-patches was optimized by testing on the training
data of 20-fold cross-validation tests. Second, by using the optimized cube-patch
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Fig. 3. The choices of parameters in our method

size and setting the classifier to be Gaussian kernel based SVM again, we tried
all the possible values on the number of clusters and parameters related to the
classifier to optimize the number of clusters in the same way. Finally, the param-
eters related to SVM were optimized, when the cube-patch size and the number
of clusters were set to be the optimized values.

For the size of the cube-patches, we tried the size from 2 x 2 x 2 to 8 x 8 x 8.
Fig.[Bl (a) gives the results when different patch sizes were used. Considering that
more voxels could give more stable statistical measures, the size of 3 x 3 x 3 was
determined in this work. On the choice of the number of clusters in K-Means,
we tried the number from 25 to 200 (Fig.[Bl (b)) and chose 100 as the optimized
value. According to the experimental results, shown by Fig. Bl (c), the y?-kernel
(K3(h,h")) gave a little better results than the other three kernels. We chose the
x2-kernel as the optimal kernel for the SVM classifier.

We also compared our method with one global feature based method (Glo-
3D) and two bag of words methods (CTV-2D and CTV-3D) which only made
use of the CT values. In order to fairly compare them with our method, all
their parameters were optimized by the same way used for our method. A brief
introduction about them is listed as follows:

e CT Values on 2D Patches (CTV-2D). We implemented a similar version
of the method proposed in [15]. The ROI was a 2D slice whose center was the
same as the 3D-ROI used in this work. The CT values in 2D squared-patches
were arranged to be a vector as local features. According to [I5], SVM with
Gaussian kernels was adopted as the classifier. The parameters are the size
of squared-patches, the number of clusters, the soft margin parameter and
the v of Gaussian kernel.

e CT Values on 3D Patches (CTV-3D). This method was similar to
CTV-2D. The difference was that a 3D ROI was used instead of a 2D ROI.
CT values based local features and Gaussian kernel based SVM were used.
The parameters are the size of cube-patches, the number of clusters, the soft
margin parameter and the v of Gaussian kernel.

e Global Features on 3D Patches (Glo-3D). This was not a bag of words
approach. Global features calculated directly from a 3D ROI consisted of
two kinds of common used textural features, measures on gray-level co-
occurrence matrices (GLCM) [7] and measures on gray-level run-length ma-
trices (GLRLM) [8]. The two kinds of measures were concatenated to be a



Classification of DLD Patterns on HRCT by a Bag of Words Approach 189

Table 1. Recognition results in experiments

(a) Comparison of
four methods (b) Confusion table of our method
Estimated Labels
True Labels CON GGO HCM EMP NOD NRT Accuracy
CTV-2D 86.71% CON 122 1 1 0 0 0 98.39%
GGO 1 494 2 1 8 5  96.67%

Methods Accuracy

CTV-3D 91.12%

HCM 0 2 520 3 1 0 98.86%

Glo-3D  91.96% EMP 0 3 5 710 6 13 96.34%
NOD 1 9 0 11 313 26 86.94%

Ours  95.85% NRT 0 5 0 2 19 725 96.54%

feature vector for recognition. SVM with Gaussian kernels was adopted as
the classifier. The parameters are the soft margin parameter and the v of
Gaussian kernel.

Using the parameters optimized in training, we compared the four methods by
testing on the testing data in the 20-fold cross-validation tests. Table gives
the comparison results. It can be seen that our methods gave higher recognition
accuracy than the other three methods. It should be noted that Glo-3D gave bet-
ter results than the two bag of words based methods, CTV-2D and CTV-3D. This
is because that the only consideration of CT values in local features can not dis-
tinguish these patterns and affects the performances of bag of words approaches.
Table gives the confusion table for each kinds of patterns for our method.

4 Conclusion

We proposed a bag of word approach to automatically classify six kinds of pul-
monary patterns on HRCT for DLD. Some patterns, such as CON, NRT and
EMP, were mainly characterized by CT values; while for other patterns, such as
NOD and HCM, both CT values and shape information should be considered in
order to classify them successfully. According to such a consideration, we pro-
posed a new kind of local features calculated from both the original CT values
and eigen-values of Hessian matrices for our bag of words approach. Experimen-
tal results showed that this method was superior to other two kinds of bag of
words approaches which only depended on CT values and one global feature
based method. We will try some other local features, or combine both local and
global features in our future research.
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Abstract. Positron emission tomography - computed tomography
(PET-CT) is now accepted as the best imaging technique to accurately
stage lung cancer. The consistent and accurate interpretation of PET-
CT images, however, is not a trivial task. We propose a discriminative,
multi-level learning and inference method to automatically detect the
pathological contexts in the thoracic PET-CT images, i.e. the primary
tumor and its spatial relationships within the lung and mediastinum,
and disease in regional lymph nodes. The detection results can also be
used as features to retrieve similar images with previous diagnosis from
an imaging database as a reference set to aid physicians in PET-CT
scan interpretation. Our evaluation with clinical data from lung cancer
patients suggests our approach is highly accurate.

1 Introduction

Lung cancer is among the most common malignancies in the Western world, and
accurate staging is critical for the selection of the most appropriate therapy, be it
surgery, chemotherapy, radiotherapy or combined therapies. The size and extent
of the primary tumor and the status of mediastinal lymph nodes are critical for
staging the thorax; automated methods to achieve this goal can shorten the time
a physician needs to read an image.

PET-CT is now accepted as the best imaging technique to accurately stage the
most common form of primary lung cancer, non-small cell lung cancer (NSCLC).
PET-CT scanners produce co-registered anatomical (CT) and functional (PET)
patient information from a single scanning session. The PET tracer!'® F-fluoro-
deoxy-glucose (FDQG) is the most commonly used tracer for clinical PET-CT
diagnosis, and tumors typically take up more FDG than surrounding normal
structures.
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Our aim is to develop a method to automatically detect the primary tumor,
the spatial relationships of the tumor within the lung and to the mediastinum,
and the location of disease in lymph nodes. The objective is not to perform a
precise segmentation, but to provide an inference of the pathological context
and function as a robust localization system to assist the reading physician.
The detection output can also serve as input to a content-based image retrieval
(CBIR) system to retrieve similar imaging cases to help interpretation.

Related work. The majority of existing work focuses on segmentation on CT
images using various classification techniques [II2I3]. Our method is partially
motivated by these approaches. However, they do not support concurrent detec-
tion of tumors and abnormal lymph nodes, and do not consider the complexity
caused by two pathological types within one image. Recent work by Wojak et.al.
introduced a tumor and lymph node segmentation method on PET-CT images
using energy minimization [4]. However, the work does not address the differen-
tiation between tumors and lymph nodes, and the spatial context of the tumors.

The work most similar to ours was reported by Wu et.al. [5], for detecting
lung nodules and the connectivity with vessel, fissure and lung wall, and did not
aim for perfect segmentations. However, it differs from our approach in several
aspects: (1) it works on CT subvolumes with the nodule appearing at the center,
while our method works on raw PET-CT images of the entire thorax; (2) our
method detects abnormal lymph nodes and differentiates them from the primary
tumors; and (3) we are interested in the higher-level spatial relationships, i.e.
the connectivity between tumors and the chest wall and mediastinum.

Our work has also been provoked by the idea of multi-class object detec-
tion proposed for general computer vision problems [6/7)§]. Different from these
methods, we design three levels of features to exploit the specific characteristics
of PET-CT thoracic images, and a different multi-level discriminative model for
more effective inference of the pathological context.

2 Method

2.1 Discriminative Structure Localization

At the first stage we detected four types of structures — the lung fields (L),
mediastinum (M), tumor (T) and disease in lymph nodes (N) — from the thoracic
images. We formulated the detection as a multi-level, multi-class (L, M, T or N)
object localization problem. For an image I, the classification score with labeling
Y (the label matrix of I) is defined as:

S(LY):Zayz'fl"i'zﬁys'fs‘i'Z'Yyo'fo (1)
l s o

where f;, fs and f, are the three levels of feature vectors (local, spatial, and
object levels) of I; o, 8 and ~ are the respective feature weights; y;, ys and y,
are the class labels at each level, representing the four classes; and [, s and o are
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the indices of the regions formed at each level in the transaxial slices. The goal
was to find the labeling Y that maximized the score S for image I.

Our approach was region-based for effective modeling of the higher-level fea-
tures, and we designed a cascaded learning approach for the classification. The
higher-level spatial and object features were important for differentiating the
four types of structures, especially for between T and N, and between T and
M, as described in more details in the following sections. We also employed a
two-phase design by exploring first the 2D features at the local and spatial levels,
then the 3D features at the object level; this was to optimize the classification
for each image slice first before considering the inter-slice relationships.

Local-level Modeling. Each image slice was first clustered into a number
of regions of various sizes and shapes using the mean-shift algorithm [9]. The
regions were generated separately for PET and CT slices, and then merged
into one set for each slice pair. Each region R; was then represented by the
local feature f;: the mean CT density; and the mean standardized uptake values
(SUV), which was computed by normalizing the mean SUV of R; based on an
adaptive threshold [10].

At the local level, f; could not differentiate between T and N, because both
had high CT densities and high SUV values. So, we limited y; to take three
values, L, M or T/N, to focus on differentiating the pathological tissues from
lung fields and mediastinum.

Spatial-level Modeling. Besides an inability to distinguish T and N, another
major problem with local-level modeling was that areas surround the tumor were
often misclassified as M, which could subsequently cause T to be confused as N.
To better classify the surrounding area, we observed that the spatial information
played an important part, e.g. its proximity with T and L and distance from M,
and the differences between its average CT density and SUV and those of the
other regions. Similar spatial features could also help to improve the labeling of
some misclassified regions in the mediastinum.

The spatial-level features were thus computed as the following feature vector
fs for region Ry in 11 dimensions: (Dim. 1-3) the average spatial distance from
region R, to other regions R; of type k (k € {L,M,T/N}); (Dim. 4) the size
of Rs; (Dim. 5-7) the difference between the mean CT density of Rs and the
average CT densities of all regions of type k; (Dim. 8-10) the difference between
the mean SUV of R, and the average SUV of all regions of type k; and (Dim.
11) the local-level labeling at R;.

The regions R, at this level were different from the local-level ones. We first
performed another mean-shift clustering for areas around the detected abnormal
regions, to discover finer-scale details. For regions not connected with the abnor-
mal areas, and with high confidence of being L or M (based on the classification
score), we also merged the connected regions of the same type into one region.
And similarly to y;, ys could be either L, M or T/N.

Object-level Modeling. So far, T and N were still treated as one type, and
the transaxial slices were processed separately. Based on the classification results



194 Y. Song et al.

of the previous level, by merging connected regions with the same label into
one region, a slice was then represented as a relatively small number of regions,
roughly corresponding to the anatomical structures, but with some discontinuous
segments. The goal was thus to differentiate tumors from abnormal lymph nodes
and smooth the labeling, and we observed that the object-level information was
the main distinctive factor. For example, T should be within L and possibly
invading into M while N should be within M; hence, the distance between T and
L regions should be small and the size of L surrounding T should be large, while
N should have similar properties relating to M.

At this level, we thus explored the intra- and inter-slice object-level features.
For each merged region R,, a 32-dimensional feature vector f, was computed:
(Dim. 1-15) the minimum distance from R, to the type k areas in the d direction
(above, below, left, right, and the z direction); (Dim. 16-30) the average size of
type k in the d direction relative to R,, normalized by the dimension of R,;
(Dim. 31) the size of R,; and (Dim. 32) the spatial-level labeling at R,. Unlike
y; and ys, the labeling y, should then take four possible values: L, M, T or N.

Cascaded Learning and Inference. To create the discriminative classifier,
we performed piecewise learning for the feature weights a, 8 and v (Eq. (1)).
We first trained a one-versus-all multi-class support vector machine (SVM) for
the local-level model, then another multi-class SVM for the spatial level, and
lastly a third one for the object level. At each stage, the training focused on the
features of that level only, with classification results of the previous level as the
input for feature computation.

Although we could rewrite the score function into structural-SVM type [6], we
chose to do SVM-based piecewise learning mainly because: (1) a feature vector
combining all three levels generated based on the training data would not capture
the cascaded nature of higher-level features dependent on the lower levels, thus
would not achieve the optimal performance; and (2) our features were designed
to be independent between regions at the same level, so optimization for the
entire image collectively was not necessary.

A three-level inference based on mean-shift clustering with the three learned
multi-class SVMs was then performed. The final labeling was chosen as the class
type with the highest combined margin from three levels. The classification could
be done per region using SVM, without considering inter-dependencies between
regions, because the spatial relationships were derived based on the labeling of
the previous level, not within the same level.

2.2 Pathological Context Description

We described the pathological context for the detected tumor (T) and abnor-
mal lymph nodes (N) in three aspects: (1) texture features: the mean, standard
deviation, skewness and kurtosis of the Gabor filtered T and N areas for both
CT and PET; (2) shape features: the volume, eccentricity, extent and solidity
of T and N; and (3) spatial features: the distance to the chest wall and medi-
astinum for tumor, and distance to two lung fields for lymph nodes, normalized
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by the size of the tumor or lymph node itself. The distances were computed in
four directions per slice, and averaged across all slices weighted by the detection
score S. So, slices with more obvious T or N regions would contribute more to
the spatial feature.

Besides extracting the feature vectors of the detected T/N areas, we also
extended the context description with an image retrieval component, to retrieve
a set of images with similar pathological patterns for a given query image. The
retrieved images, which were stored in the database with diagnosis information,
could be used to aid image interpretation. Given the query image I and the
image J, the distance was defined as:

Dij=w-(lvr —vsl/(vi +vy)) =w-vr s (2)

where v was the feature vector of the image (concatenation of the texture, shape
and spatial features of T and N), and w was the feature weights. A training set
was constructed of @ triplets: (I, J, K), where I was similar to J, and dissimilar
to K. It was thus expected to satisfy Dr x > Dy , and the weight vector w was
computed based on the large-margin optimization method [I1]:

. 1
argmine,e>o |wl|? + C’qu, st.¥Vg:w-(vix —vrg)>1-&  (3)
q

The training data (I, J, K) captured the search preference, e.g. based on tumor
characteristics only, or including lymph nodes. By changing the training data,
the derived weights w would vary and result in different retrievals.

2.3 Materials and Preprocessing

In this study, a total of 1279 transaxial PET-CT image slice pairs were selected
from 50 patients with NSCLC. The images were acquired using a Siemens TrueV
64-slice PET-CT scanner (Siemens, Hoffman Estates, IL) at the Royal Prince
Alfred Hospital, Sydney. All 50 cases contained primary lung tumors, and 23 of
them contained abnormal lymph nodes. The locations of tumors and disease in
regional lymph nodes were annotated manually, and for each patient study, the
other 49 patient studies were marked similar or dissimilar, as the ground truths.
A fully-automatic preprocessing was performed on each CT slice to remove the
patient bed and soft tissues outside of the lung and mediastinum, based on
simple thresholding, connected component analysis and filling operations. The
resulting mask was then mapped to the co-registered PET slice.

3 Results

The structure localization performance for the 50 patient studies is summarized
in Table[Th. Based on visual inspections, a volume (case-level) that was classified
accurately with its boundary matching closely to the ground truth was consid-
ered correct. The multi-level model was trained on slice pairs randomly selected
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from 10 imaging studies. To further evaluate the localization performance at the
slice level, Table[Ib shows the measurements for all 1279 slices. We also compared
our method with two other approaches (Table [[k and [IH): a four-class SVM for
voxel-level classification; and a four-class SVM for region-level classification after
mean-shift clustering (identical to our local-level modeling, except training for
four classes). Both approaches were trained using the same set of data as our
local-level modeling. Our multi-level modeling showed clear advantages, espe-
cially in differentiating tumor and abnormal lymph nodes. As a component of
our model, Table[Id illustrated the benefit of region-based processing compared
to Table [Mk. Some visual results are shown in Figure [Il

Table 1. The pairwise confusion matrix of the four region classes tested on 50 patient
studies. (a) Our method - image/case level results. (b) Our method - finer slice-level
results. (¢) Gabor+SVM - image/case level results. (d) Gabor+Mean-shift+SVM -
image/case level results.

Ground Prediction (%) Ground Prediction (%)
Truth L M T N Truth L M T N
Lunglobe 100 0 0 O Lung lobe 992 0.8 0 O
Mediastinum 0 94.3 3.8 1.9 Mediastinum 0 97.1 2.1 0.8
Tumor 0 1.6 84.414.1 Tumor 1.7 6.1 87.8 4.3
Lymph node 0 3.7 18.577.8 Lymph node 0 7.5 12.3 80.2
(a) (b)
Ground Prediction (%) Ground Prediction (%)
Truth L M T N Truth L M T N
Lunglobe 100 0 0 O Lunglobe 100 0 0 O
Mediastinum 13.3 60.2 21.7 4.8 Mediastinum 0 83.3 5.0 11.7
Tumor 6.8 10.2 42.4 40.7 Tumor 0 16.543.739.8
Lymph node 5.6 11.1 27.8 55.6 Lymph node 0 6.5 35.558.1
(c) (d)

The sensitivity and specificity of tumor/lymph node localization relative to
the lung and mediastinum are listed in Table Ph. In testing, the distances be-
tween the tumor and the chest wall and mediastinum/hilum, and between the
abnormal lymph nodes and the left and right lung lobes, were assessed to de-
termine the sensitivity and specificity. The remaining errors were mainly caused
by misclassifications between tumors near the mediastinum and the abnormal
lymph nodes. Our method resulted in higher sensitivity and specificity in deriving
the spatial relationships, compared to using only local-level features (Table 2b),
because of the highly effective structure localization.

Finally, we evaluated the retrieval performance by using each imaging study as
the query to retrieve the most similar cases, and the average precision and recall
were computed. We compared our method with techniques based on weighted
histogram and bag-of-SIFT [I2] features for global and local feature extraction;
and both approaches were trained in the same way as our method for similarity
measure. As shown in Table [}l our method achieved much higher precision and
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Table 2. The sensitivity (SE) and specificity (SP) of the tumor and lymph node
localization relative to the lung lobes and mediastinum tested on 50 cases. (a) Our
method and, (b) Gabor+Mean-shift+SVM.

Tumor Lymph node Tumor Lymph node

Wall Hilum  Left Right Wall Hilum  Left Right
SE (%) 100 97.2 92.9 88.9 SE (%) 83.3 82.9 93.3 875
SP (%) 98.0 84.8 89.4 915 SP (%) 98.0 77.8 65.0 69.2

(a) (b)

“

Fig. 1. Six examples of structure localization, showing one transaxial slice pair per
case. The top row is the CT image slice (after preprocessing); the middle row is the
co-registered PET slice; and the bottom row shows the localization results, with 5
different gray scale values (black to white) indicating background, L, M, T and N.

Table 3. The precision-recall measure of the retrieval results of the top one, three or
five most similar matches on 50 cases. Our method is compared with the histogram
(HIST) and bag-of-SIFT [12] features (BoSF) based approaches.

Precision (%) Recall (%)
Ours HIST BoSF  Ours HIST BoSF
Top-1 84.0 46.0 32.0 14.1 7.5 6.0
Top-3 70.7 34.7 29.3 31.4 14.1 12.7
Top-5 63.2 28.8 25.6 44.3 19.7 17.9

recall. The results showed that our method could extract the salient (patholog-
ical) features more effectively than the general techniques; and suggest that the
detected context could be used in a CBIR system.

4 Conclusions

We proposed a new method to automatically detect the primary tumor
and disease in lymph nodes, and the spatial relationships with the lung and
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mediastinum on PET-CT thoracic images. By exploring a comprehensive set of
features at the local, spatial and object levels, the discriminative classification
achieves an accurate localization of the various structures in the thorax. The
work is an initial step towards a computer aided system for PET-CT imaging
diagnosis for lung cancer staging. The extracted pathological contexts also show
high precision when used to retrieve the most similar images.

References

1. Tao, Y., Lu, L., Dewan, M., Chen, A.Y., Corso, J., Xuan, J., Salganicoff, M.,
Krishnan, A.: Multi-level ground glass nodule detection and segmentation in CT
lung images. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.)
MICCAT 2009, Part II. LNCS, vol. 5762, pp. 715-723. Springer, Heidelberg (2009)

2. Kakar, M., Olsen, D.R.: Automatic segmentation and recognition of lungs and
lesions from CT scans of thorax. Comput. Med. Imag. Graph. 33(1), 72-82 (2009)

3. Feulner, J., Zhou, S.K., Huber, M., Hornegger, J., Comaniciu, D., Cavallaro, A.:
Lymph nodes detection in 3-D chest CT using a spatial prior probability. In: CVPR,
pp. 2926-2932 (2010)

4. Wojak, J., Angelini, E.D., Bloch, I.: Joint variational segmentation of CT-PET
data for tumoral lesions. In: ISBI, pp. 217-220 (2010)

5. Wu, D., Lu, L., Bi, J., Shinagawa, Y., Boyer, K., Krishnan, A., Salganicoff, M.:
Stratified learning of local anatomical context for lung nodules in CT images. In:
CVPR, pp. 2791-2798 (2010)

6. Desai, C., Ramanan, D., Fowlkes, C.: Discriminative models for multi-class object
layout. In: ICCV, pp. 229-236 (2009)

7. Galleguillos, C., McFee, B., Belongie, S., Lanckriet, G.: Multi-class object localiza-
tion by combining local contextual interactions. In: CVPR, pp. 113-120 (2010)

8. Shotton, J., Winn, J., Rother, C., Criminisi, A.: TextonBoost: joint appearance,
shape and context modeling for multi-class object recognition and segmentation.
In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951,
pp. 1-15. Springer, Heidelberg (2006)

9. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space anal-
ysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603-619 (2002)

10. Song, Y., Cai, W., Eberl, S., Fulham, M.J., Feng, D.: Automatic detection of
lung tumor and abnormal regional lymph nodes in PET-CT images. J. Nucl.
Med. 52(supplement. 1), 211 (2011)

11. Frome, A., Singer, Y., Sha, F., Malik, J.: Learning globally-consistent local distance
functions for shape-based image retrieval and classification. In: ICCV, pp. 1-8
(2007)

12. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. of
Comput. Vis. 60(2), 91-110 (2004)



X-ray Categorization and Spatial Localization of
Chest Pathologies

Uri Avni', Hayit Greenspan®’* and Jacob Goldberger?

! BioMedical Engineering Tel-Aviv University, Israel
2 School of Engineering, Bar-Ilan University, Israel

Abstract. In this study we present an efficient image categorization sys-
tem for medical image databases utilizing a local patch representation
based on both content and location. The system discriminates between
healthy and pathological cases and indicates the subregion in the image
that is automatically found to be most relevant for the decision. We show
an application to pathology-level categorization of chest x-ray data, the
most popular examination in radiology. Experimental results are pro-
vided on chest radiographs taken from routine hospital examinations.
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1 Introduction

In the last ten years the number of images that are acquired every day in any
modern hospital has increased exponentially, due to the progress in digital med-
ical imaging techniques and patient image-screening protocols. One immediate
consequence of this trend is the enormous increase in the number of images that
must be reviewed by radiologists. This has led to a concomitant demand for
computerized tools to aid radiologists in the diagnostic process. Computerized
systems assist the radiologist in the diagnostic process by categorizing the image
content. This is done by learning from a large archive of image examples that
are annotated by experts.

Image categorization is concerned with the labeling of images into predefined
classes. The principal challenge of image categorization is the capture of the most
significant features within the images that facilitate the desired classification. A
single image can contain a large number of regions-of-interest (ROI), each of
which may be the focus of attention for the medical expert, depending on the
diagnostic task at hand. A single chest image for example, contains the lungs,
heart, rib cage, diaphragm, clavicle, shoulder blade, spine and blood vessels,
any of which may be the focus of attention. One way to enhance the image
categorization process is to focus on a ROI within the image that is relevant to
the presumed pathology. The advantage of the ROI approach is that the rest
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of the image can be ignored leading to computational advantages and increased
accuracy in the classification.

Clinical decision support techniques based on automatic classification algorithms
can produce a strong need to localize the area that is most relevant to the diag-
nostic task. A diagnostic system that, in addition to a decision on the existence
of a pathology, can provide the image region that was used to make the decision
can assist radiologists to better understand the decision and evaluate its reliabil-
ity. Another advantage of an ROI based decision is that we can construct a detailed
representation of the local region. We refer to this approach as ROI based image
categorization. Of course it is not suited to every image categorization task; not
every pathology includes a significant and identifiable ROI that appears across the
data set. In such cases, a global, full-image categorization is appropriate.

The (bags of) visual words paradigm, which has recently been adapted from
the text retrieval domain to the visual analysis domain (see e.g. [I][2]), pro-
vides an efficient way to address the medical imaging categorization challenge
in large-size archives while maintaining solid classification rates [3][4]. The best
categorization methods in recent ImageCLEF competitions are all based on vari-
ants of the visual words concept [B]. In this study we utilize a variant of the visual
words framework, that combines content and location, to automatically localize
the relevant region for a given diagnostic task. Besides localizing the decision
based area, the proposed method yields improved results over a categorization
system based on the entire image.

2 The Visual Words Framework for Classification

In this section we describe a state-of-the-art medical image categorization
paradigm using the visual words framework, which is based on a large set of im-
age patches, and their respective representation via a learned dictionary. This
paradigm is the foundation for the proposed localized image classification system.
The method was ranked first in the ImageCLEF 2009 medical annotation task [6].

Given a training labeled image dataset, patches are extracted from every pixel
in the image. Each small patch shows a localized view of the image content. In
the visual dictionary learning step, a large set of images is used (ignoring their
labels). We extract patches using a regular grid, and normalize each patch by
subtracting its mean gray level, and dividing it by its standard deviation. This
step insures invariance to local changes in brightness, provides local contrast
enhancement and augments the information within a patch. Patches that have
a single intensity value are ignored in x-ray images (e.g. the brightness of the air
surrounding the organ appears uniform especially in DICOM format). We are
left with a large collection of several million vectors. To reduce both the compu-
tational complexity of the algorithm and the level of noise, we apply a Principal
Component Analysis procedure (PCA) to this initial patch collection. The first
few components of the PCA, which are the components with the largest eigen-
values, serve as a basis for the information description. In addition to the patch
content information represented, we add the patch center coordinates to the fea-
ture vector. This introduces spatial information into the image representation,



X-ray Categorization and Spatial Localization of Chest Pathologies 201

Fig.1. An example of a region based visual dictionary. Each visual word is placed
according to its (x,y) coordinates.

without the need to explicitly model the spatial dependency between patches.
The final step of the visual-words model is to convert vector-represented patches
into visual words and generate a representative dictionary. A visual word can
be considered to be a representative of several similar patches. The vectors are
clustered into k£ groups in the feature space using the k-means algorithm. The
resultant cluster centers serve as a vocabulary of k visual words. The location of
the cluster center is the average location of all the patches in the cluster. Due
to the fact that we included spatial coordinates as part of the feature space,
the visual words have a localization component in them, which is reflected as a
spatial spread of the words in the image plane. Words are denser in areas with
greater variability across images in the database. Fig. [[l shows a region based
visual dictionary. Each visual word is placed according to its (x,y) coordinates.

A given (training or testing) image can now be represented by a unique distri-
bution over the generated dictionary of words. In our implementation, patches
are extracted from every pixel in the image. For a 512 x 512 image, there are
several hundred thousand patches. The patches are projected into the selected
feature space, and translated (quantized) to indices by looking up the most sim-
ilar word in the generated dictionary. Note that as a result of including spatial
features, both the local content and spatial layout of the image are preserved
in the discrete histogram representation. Image classification of a test image is
based on the ground truth of manually categorized images that are used to train
an SVM classifier which is applied to the image histogram representation.

3 Localizing Image Categorization

When radiologists look for a specific pathology in an image, they usually focus
on a certain area. For example right pleural effusion is diagnosed using the lower
bottom and the peripheral lateral zones of the right lung, while ignoring the rest
of the chest x-ray image. In this section we describe how to automatically find
a relevant area, without prior knowledge about the organ structure or the char-
acteristics of the pathology. This step is designed to improve the classification
accuracy of the global approach. It can also provide a useful visualization of the
area used in the automatic classification.
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Assume we already learned a visual dictionary as described in the previous
section and we are now concentrating on a specified pathology. We are given a
training image set in which each image is manually labeled as either healthy or
pathological. The visual-words representation of an image x is a histogram vector
(1, ..., k) such that x; is the relative number of image patches in = that were
mapped to the i-th visual word based on content and location similarity. These k
numbers are the features extracted from the image to be used in the classification
algorithm, where each feature corresponds to a visual word. The first step toward
localization of the pathology decision is finding the relevance of each feature.
Feature relevance is often characterized in terms of mutual information between
the feature and the class label. It is reasonable to expect that for a feature
(visual word) that is located far from the pathology area, the class label and the
feature values random variables should be independent. We compute the mutual
information between the image label and each of the features in the following
way. Suppose we are given n images with binary (healthy/pathological) labels
€1, ..., ¢, and the feature vector of the t-th image is denoted by (241, ..., 24 ). To
obtain a reliable estimation of the mutual information for each feature 7, we first
quantize the i-th feature values across all the images 1;, ..., Zp; into L levels (in
our implementation we sort the n values and divide them into four groups of
equal size). Denote the quantized version of x4 by yi; € {1,..., L}. Denote the
joint probability of the (quantized) i-th feature and the image class by:

pil0:6) = [{tlyi = v, = (1

where c is the class label, v is the quantized bin level and |-| is the set cardinality.
The mutual information between the class label variable C' and the quantized
feature Y; is [7]:

L
Oy = , pi(v,c)

T060) =2 D p( o8 ) ?
where p;(v) and p(c) are the marginal distributions of the i-th feature and
the class label respectively. C' is a binary random variable and therefore 0 <
1(Y;0)< 1.

Up to now we have computed the relevance of each feature (visual word)
separately. However, since each visual word has a location, we can consider the
relevance of an entire region as the relevance of all the features located in that
region. The proposed method can be viewed as a filter-based feature selection.
Unlike general feature selection problems, here the features are located in the
image plane. Hence, instead of feature selection we apply region selection. Since
the visual words have a spatial location, the relevance information can be rep-
resented in the image plane. We create a relevance map R(z,y) = >, I(Y;,C)
such that ¢ goes over all the visual words that are located at (z,y). R(z,y)
is a matrix with mutual information values at the positions of the visual-word
feature centers, and zero at other locations. In this representation, areas that
contain highly relevant features are likely to be the regions of interest for the
classification task.
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We define the relevance of the rectangular [z1, 22] X [y1,y=2] sub-region in the
image plane to the pathology as

score(r1, T2, Y1, Y2) = Z Z R(z,y) = ZI(Y,»,C) (3)

1<0<x2 Y1<Y<Yy2

such that i goes over all the visual words that are located in the rectangle
[x1,x2] X [y1,y2]. We look for a rectangular region that contains the maximum
amount of relevant features. For a given region size, we examine all the rectangles
in the image and look for the rectangle with the highest score. This search can
be efficiently done using the integral image algorithm which is part of the sem-
inal Viola-Jones object detection framework [8]. The integral image algorithm
efficiently generates the sum of values in rectangular subsets of a grid. It can be
computed in one pass over the image using the following recurrence relation:

sl(z,y) = sl(z,y — 1) + R(x,y) (4)
II(.’I}, y) = II(:E - 17 y) + SI(.’I}, y)

The region score is thus:

score(x1, T2, Y1, Y2) = II(x2,y2) — [I(x1,y2) — II(x2,y1) + II(z1,91) (D)

The relevance map R(z,y) takes into account all of the training images and
therefore the ROI is little affected by noisy images. However, since the ROI
is calculated globally, this procedure finds a rough estimation of the region of
interest. The exact region might vary between images. The ROI can be refined in-
dividually for each image by examining the mutual information map in the image
space instead of the visual dictionary space. Every patch in the image is trans-
lated into a visual word. We can create a relevance map per image Rimage (2, V)
by placing in each image patch center the mutual information of the visual word
it is assigned to. In other words, Rjmage(x,y) = I(Y;, C) such that i is the vi-
sual word that the image patch centered at (z,y) is assigned to. We can then
repeat the integral-image process on the map Rjpqge to find a smaller rectangle
with the maximal amount of relevant patches in the image relevance map. The
search is confined to the rough ROI found in the first step. A two-step process
is required because if the relevance map of the images is noisy, it may generate
erroneous ROI, especially if its relevant area is relatively small.

After finding an ROT and refining it for each image in the healthy/pathological
labeled training set, we run a second training stage, where sub images are
cropped to the region of interest of the pathology. A new dictionary is gen-
erated for each pathology, and the SVM classifiers are trained using the words
histograms from the cropped regions.

In the test phase, a new image is converted to a word histogram using the
dictionary learned in the first step, and an image relevance map is calculated.
For each pathology we crop the image using the rough global ROI that was
found in the training phase. Next we find a refined ROI by applying the integral
image algorithm to the test image relevance map R;mage- The refined ROI is then
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(a) (b) (c) (d)

Fig. 2. Frontal chest x-ray images, top row shows the ROI detection overlayed on the
original image and bottom row shows the corresponding relevance map. Global ROI
is shown in red and the refined ROI in green. The pathologies are (a) right pleural
effusion, (b) enlarged heart shadow, (c) enlarged mediastinum and (d) left pleural
effusion.

converted to a words histogram using the dictionary from the second training
step, and passed to the region based healthy/pathology classifier that was also
trained in the second training step. The reported result is the binary decision and
the image subregion that was used to obtain the decision. Fig. [2 shows examples
of relevance maps and ROI detection (both global for a pathology and image
refined) of chest x-ray images. The entire processing of a test image including
the translation to visual words and the integral image computation takes less
than a second (time was measured on a dual quad-core Intel Xeon 2.33 GHz.)

4 Experiments

Chest radiographs are the most common examination in radiology. They are
essential for the management of various diseases associated with high mortality
and morbidity and display a wide range of potential information, many of which
are subtle. According to a recent survey [9], most of research in computer-aided
detection and diagnosis in chest radiography has focused on lung nodule detec-
tion. However, lung nodules are a relatively rare finding in the lungs. The most
common findings in chest x-rays include lung infiltrates, catheters and abnor-
malities of the size or contour of the heart [9]. Distinguishing the various chest
pathologies is a difficult task even for human observers. Research is still needed
to develop an appropriate set of computational tools to support this task. We
used 443 frontal chest images in DICOM format from the Sheba medical cen-
ter hospital PACS, taken during routine examinations. X-ray interpretations,
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Fig. 3. ROC curves for pathology detection in frontal chest x-rays, using the entire im-
age and automatically detected ROI; the areas under the curves (AUC) were calculated
using trapezoidal approximation

made by two radiologists, served as the reference gold standard. The radiolo-
gists examined all of the images independently; they then discussed and reached
a consensus regarding the label of every image. The pathology data include 98
images with enlarged heart shadow, 109 images with enlarged mediastinum, 46
images with right pleural effusion and 48 images with left pleural effusion. Some
patients had multiple pathologies.

The original high-resolution DICOM images were initially resized to a maxi-
mal image dimension of 1024 pixels, with aspect-ratio maintained. We followed
the method described in Section [2] to extract features, build a visual dictionary,
and represent an image as a histogram of visual words. To avoid overfitting
and to preserve the generalization ability of the classifiers, model parameters
were chosen following the experiments on the ImageCLEF database, described
in [6/10]. For each pathology we found the relevant ROI and utilized the cropped
images (both healthy and pathological) to learn a visual dictionary. The rough
ROI size was selected to be 36% of the image area; it was cropped to a smaller
rectangle if it passed the image border. The fine ROI was set to 15% of the image
area. We then detected each of the four pathologies using a binary SVM classi-
fier with a x? kernel, trained on words histogram built from the fine ROI. The
sensitivity and specificity were calculated using leave-one-out cross validation.



206 U. Avni et al.

Modifying the relative cost of false negative errors in the SVM cost minimiza-
tion problem determines the tradeoff point between sensitivity and specificity.
This technique was used to produce the receiver operating characteristic (ROC)
curves for several pathologies, shown in Fig. Bl The figure clearly indicates that
in three out of the four pathologies our localized categorization method outper-
formed the global categorization that utilizes patches from the entire image. In
the right pleural effusion case, the AUC is improved from 0.895 to 0.92; In the
left pleural effusion case, the AUC is improved from 0.91 to 0.93, and in the
abnormal mediastinum case, an improvement in the AUC is from 0.827 to 0.84.

To conclude, in this study we showed how visual word information, based on both
content and location, can be used to automatically localize the decision region for
pathology detection. The method is based on choosing the visual words that are
most correlated with the diagnoses task. We have shown that the proposed method
outperforms methods that are based on the entire image, both in terms of classi-
fication performance and in enabling human interpretation of the decision. The
method proposed is general and can be applied to additional Chest x-ray patholo-
gies, currently being explored, as well as to additional medical domains.
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Abstract. Ground glass nodules (GGNs) occur less frequent in com-
puted tomography (CT) scans than solid nodules but have a much higher
chance of being malignant. Accurate detection of these nodules is there-
fore highly important. A complete system for computer-aided detection
of GGNs is presented consisting of initial segmentation steps, candidate
detection, feature extraction and a two-stage classification process. A rich
set of intensity, shape and context features is constructed to describe the
appearance of GGN candidates. We apply a two-stage classification ap-
proach using a linear discriminant classifier and a GentleBoost classifier
to efficiently classify candidate regions. The system is trained and inde-
pendently tested on 140 scans that contained one or more GGNs from
around 10,000 scans obtained in a lung cancer screening trial. The system
shows a high sensitivity of 73% at only one false positive per scan.

Keywords: ground glass nodule, computer-aided detection, chest CT.

1 Introduction

Ground glass nodules (GGNs) are relatively rare findings in chest computed
tomography (CT) examinations. These nodules have an increased attenuation
but do not, like solid nodules, completely obscure the lung parenchyma [II,
although they may have a solid component. It has been shown that GGNs have
a much higher chance of being malignant than solid nodules [I]. Early detection
of GGNs is therefore highly important. Beigelman-Aubry et al. [2] showed that
both radiologists and computer-aided detection (CAD) systems designed for solid
nodules have difficulties with detecting GGNs.

At present, no complete CAD system for GGNs has been tested on a large
database. Kim et al. [3] described a slice-based CAD system using texture and
intensity features that had a high false positive rate (FPR) and that was tested
on only 14 patients. Zhou et al. [4] developed an automatic scheme for both
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detection and segmentation of GGNs based on vessel suppression, intensity and
texture analysis. They reported high performance but the test data set contained
only 10 GGNs. Ye et al. [5] presented a voxel-based method with rule-based
filtering that was tested on 50 CT examinations with 52 GGNs. They reported
a high sensitivity of 92.3% but also a high FPR of 12.7 per scan. Tao et al. [0]
developed a multi-level detection scheme with classification at voxel-level and
object-level. They focused on classification of small volumes of interest (VOISs)
generated by a candidate detector algorithm which was not otherwise specified.
The method was tested on a set of 1100 VOIs including 100 positive ones, from
153 healthy and 51 diseased patients. Results were provided for VOIs only, and
neither the FPR per scan nor the total number of VOIs per scan were reported.

In this work, we focus on the automated detection of GGNs from thin-slice
CT examinations. In contrast to the aforementioned works, the CAD system is
tested on a large data set. A complete detection pipeline is presented, consisting
of initial segmentation steps, candidate detection, feature extraction and classi-
fication. A comprehensive set of intensity and shape features are computed for
each candidate region. As previous studies reported [3I7J]], false positive findings
arise from partial volume effects of bronchovascular bundles, the chest wall, the
dome of the diaphragm and large vessels. Therefore, we include context features
that describe the position of the candidate region with respect to surrounding
objects such as airways and the lung boundary.

2 Data and Experimental Design

Data for this study was provided by a large multi-center lung cancer screening
trial with thin-slice, low-dose CT scans of current and former heavy smokers.
We collected all CT examinations between April 2004 and April 2009 from one
screening site, totaling around 10,000 scans from around 3,000 participants. From
this data set, all scans in which at least one GGN was reported were selected.
This resulted in 140 scans from 58 patients, including 76 unique GGNs. We
considered GGNs in follow-up examinations as separate GGNs, leading to a
total of 176 GGNs. For each GGN, a manual segmentation was provided. The
effective diameter of the GGNs varied from 3.9 to 29.7 mm (median 13.9 mm).
All CT examinations were performed with a slice thickness of 0.7 mm and the
in-plane voxel size varied between 0.52 and 0.84 mm.

The data set was randomly split into two sets on a patient level, preventing
data from the same patient being present in both sets. The training set consisted
of 67 scans with 91 GGNs from 31 patients. The test set of 73 CT examinations
with 85 GGNs from 27 patients was not touched during system development and
was only used for evaluation of the final configuration of the CAD system.

3 Methods

Prior to candidate extraction, we apply a previously developed lung and airway
segmentation algorithm [9T0] to each scan.
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3.1 Initial Candidate Detection

The candidate detection procedure starts with applying a double-threshold den-
sity mask within the lung regions to obtain voxels with attenuation values de-
fined as ground glass opacity. In this study, we used a range between -750 and
-300 Hounsfield units (HU) [7I8]. At the boundaries of the lungs, vessels, and
airways, partial volume effects lead to attenuation values in the defined range.
Therefore, we apply a morphological opening operation using a spherical struc-
turing element with a diameter of 3 voxels to remove the voxels at these edges
from the density mask. After this, connected component analysis is performed to
obtain candidate regions. Evidently, this results in a large amount of candidate
regions. We eliminate all candidate regions which have a volume smaller than
34 mm? (volume of an ideal sphere with diameter of 4 mm). Current clinical
guidelines [I1] state that GGNs smaller than 5 mm do not require follow-up CT
examinations and since volume measurements on CT have a certain variability
due to partial volume effects, a safety margin of 1 mm is used in this system.

3.2 Features

We defined a rich set of features that can be subdivided into three categories:

Intensity features. The first group of intensity features consists of histogram
statistics computed on a normalized histogram with a bin size of 1 HU. Four
histograms are constructed from: voxels within the candidate mask, voxels within
the bounding box defined by the candidate mask, voxels in the neighborhood
created by dilating the candidate mask with a rectangular structuring element
of size 3x3x3 voxels and similarly, but using a rectangular structuring element
of size 5x5x5 voxels. The following histogram statistics are extracted: entropy,
mean, height of mean bin, mode, height of mode bin and quantiles at 5%, 25%,
50%, 75% and 95%. Furthermore, we calculate the mean, standard deviation,
minimum, maximum and the first 7 invariant Hu moments [12] over the intensity
values of voxels within the candidate mask. Local binary patterns (LBP) [I3] and
Haar wavelets are used for texture analysis. Local binary patterns are computed
from the bounding box defined by the candidate mask in which we resample
this area to respectively a 16x16x16 and 32x32x32 volume. We apply the same
histogram statistics to the histogram output of the LBP operator and use these
as features. Using 2D Haar wavelets, all axial slices of the 32x32x32 resampled
volume are decomposed into four bands. Then, all bands of the 32 slices are
combined and histogram statistics are extracted from the horizontal, vertical
and diagonal component of the combined high-frequency part. Finally, maximum
vesselness [I4] over multiple scales (1.0, 1.77, 3.16, 5.62, and 10.0 voxels) is
computed for the voxels in the candidate mask and the mean and standard
deviation of the vesselness values are used as features. The total number of
intensity features is 103.

Shape features. Shape analysis of the candidate regions is performed using the
binary mask of the candidate region. We calculate sphericity, compactness and
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volume of the candidate region. In order to calculate the sphericity, we define a
sphere S at the center of mass of the candidate region which has equal volume as
the candidate region. Then, sphericity is defined as the ratio between the volume
of the voxels of the candidate region within sphere S and the total volume of
sphere S. For compactness, we used the ratio between the surface of the candidate
region and its volume. Furthermore, the same set of 7 invariant Hu moments are
computed from the candidate mask voxels to describe its appearance. Note that
in contrast to the previous calculation of Hu moments, the voxels are in this case
not weighed by their intensity value. This results in 10 shape features.

Context features. In the third category of features, the location of the candi-
date region in respect to the lung boundary and the airway tree is computed. For
all voxels inside the candidate segmentation, the distance to the lung boundary
and distance to the closest airway is computed. Then, the mean, standard devi-
ation, minimum and maximum distance to the lung boundary and airways are
computed and used as context features. Finally, using the lung segmentation,
a bounding box is defined around the lungs. Using this bounding box, relative
position features are computed, including relative X, Y and Z position, distance
to center of mass of both lungs and distance to left bottom corner of bounding
box. This yields 13 context features.

3.3 Classification

In the classification step, candidate regions are classified into GGN or non-GGN
class using a two-stage classification approach. Note that in the second stage,
the posterior probability of the first classifier is added as an additional feature.

In pilot experiments, we extensively tested different classifiers (Linear Disc-
rimant Analysis (LDA), k-Nearest Neighbor (kNN) and GentleBoost [15]) for
the first and second phase classification. In these experiments, 10-fold cross-
validation on the training set was performed to test the performance of the
different classifiers. Note that the 10 folds were again created by splitting the
training set at a patient level. Consequently, all follow-up examinations of one
patient were in the same fold to prevent bias.

For the first phase, we ranked all features according to Fisher’s discriminant
ratio [16] and we selected the four features with the highest ranking. Using these
four features (two shape and two intensity features), LDA and kNN were tested
and LDA proved to give slightly better results. Using the results from the 10-
fold cross-validation on the training set, the posterior probability threshold for
the first phase classification was determined. The threshold was set such that
no true positives were lost in the first phase for the training set. This reduced
the number of candidates in the training set by 66%. Consequently, all features
only need to be calculated for about one third of all candidate regions, which
accelerates the CAD system considerably (~ 40%).

For the second phase classification, we experimented with an LDA, kNN, and
GentleBoost classifier. Optimal results for the kNN-classifier were found using
k=60 and we used regression stumps as a weak classifier for the GentleBoost
classification. Since the data set consists of a relatively high amount of features
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Table 1. Performance of the CAD system for different feature groups. Sensitivity is

reported at é, 411, ;, 1, 2, 4, and 8 false positives per scan. The score is the average

sensitivity at these 7 operating points.

Feature set ; ‘11 ; 1 2 4 8 Score
All features 0.437 0.565 0.671 0.729 0.748 0.780 0.788 0.674

Shape and intensity features 0.476 0.569 0.650 0.686 0.705 0.765 0.772 0.660
Context and intensity features 0.465 0.578 0.645 0.687 0.710 0.749 0.767 0.657
Context and shape features  0.479 0.521 0.595 0.683 0.737 0.778 0.780 0.654

Intensity features 0.497 0.575 0.630 0.668 0.700 0.723 0.731 0.647
Context features 0.402 0.472 0.569 0.627 0.706 0.720 0.724 0.603
Shape features 0.486 0.506 0.550 0.604 0.637 0.708 0.724 0.602

(127) and a smaller amount of true positives (around 100), we decided to select
the best 20 features using a Sequential Feed Forward Selection (SFFS) procedure
to prevent overfitting of the classifier. During the SFFS procedure, the partial
area under the curve (AUC) of the ROC curve was used as objective function.
The upper threshold on false positive fraction was set at the value which cor-
responds to 5 false positives per scan. As the concept of boosting is based on
sequentially applying weak classifiers on a subset of the data [15], feature selec-
tion was not used for the GentleBoost classifier. Finally, after extensive testing
of different classifiers with combined feature selection, we concluded that the
GentleBoost classifier had a slighty better performance and therefore we used
this in the final configuration of the system.

In some cases multiple candidate regions were present for a single GGN. As we
focused on detection, we counted a GGN as detected when at least one matching
candidate was classified as positive. The remaining matching candidates were
considered neutral in the evaluation and not counted as false negatives.

4 Results

The candidate detection step generated 524 + 308 candidate regions per scan.
Candidates are considered positive when the centers of mass of the GGN seg-
mentation and the candidate region were within a distance d of each other. For
d = 10 mm, the sensitivity of the candidate detector was 92% (84/91) and 87%
(74/85) for the training and test set, respectively. For sake of readability, we
omit a detailed reporting for a distance criterion of d = 5 mm where the results
were comparable to the ones of d = 10 mm.

The first stage LDA classifier and second phase GentleBoost classifier were
trained with all candidates from the training set and tested on the test set. After
the first classification step, 32% of the candidate regions remained in the test
set at the expense of eliminating three true positives. The FROC curve of the
complete CAD system is given in Fig. [[l and sensitivities at various operating
points are given in Table [l At only one false positive per scan, 62 out of 85
GGNs (73% sensitivity) were detected.
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Fig.1. FROC curves with a logarithmic x-axis. Results are shown for the proposed
CAD system and systems that are only trained with one type of features.

Fig. 2. Examples of true positives, false negatives and false positives of the CAD
system. All images are axial views of 30 X 30 mm with a window level of -600/1600
HU. The top row shows the six true positives with the highest degree of suspicion in the
test set according to the CAD system. The middle row shows six false negatives that
the CAD system did not detect when set to operate at 1 false positive per scan. These
nodules were picked up by the candidate detector, but they were not deemed suspicious
enough. Finally, the bottom row shows the six false positives with the highest degree
of suspicion in the test set according to the CAD system.
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Furthermore, we investigated the effect of the three separate feature groups
by using only one or only two in the second phase classification. Results are given
in Fig. [l and Table[l An overall performance metric is derived from the FROC
curves by averaging the sensitivities at é, }1, ;, 1, 2, 4, and 8 false positives per
scan. These results indicate that the combination of all features increases the
performance considerably. In Fig. 2l we show examples of ground glass nodules

which were correctly detected and missed by the CAD system.

5 Discussion and Conclusion

The FROC curve in Fig. [l shows that our CAD system is able to find around
50% of all GGNs without any false positives. This is a very encouraging result.
Moreover, a radiologist who retrospectively inspected the false positives of the
system operating at 1 FP/scan (see Fig. 2] bottom row) indicated that many of
these seemed to be GGNs. The reason why these findings had not been annotated
may be that the scans in which these findings occurred contained multiple areas
of ground glass opacity with a pattern resembling smoking related interstitial
lung disease. On the other hand it may be that these were real GGNs missed by
human readers. This interesting observation does require further study.

In clinical practice, a GGN CAD system will be used in combination with a
solid nodule CAD system, which also produces false positives, and therefore we
believe that the operating point at only 1 FP/scan is optimal. Moreover, the
sensitivity does not increase much after 1 FP /scan.

From the 22 missed GGNs, 11 were actually missed in the candidate extraction
step. We observed that in some cases a single GGN was detected as two separate
candidate regions that were subsequently eliminated. Possible improvements are
candidate clustering or integrating voxel classification in the candidate detection
procedure, as done in [6]. Furthermore, even though the data for this study
originated from over 10,000 scans obtained in a screening trial, the training set
still contained less than 100 GGNs. We plan to collect a larger and more diverse
training database in the future. This may help the CAD system to also recognize
uncommon manifestations of GGNs, such as the ones on the second row of Fig.[2l

In conclusion, a complete computer-aided detection scheme for detection of
ground glass nodules has been presented and tested on a large database. A
comprehensive set of intensity, shape and context features was used to describe
the appearance of a ground glass nodule. An optimized classification scheme
using two stages of classification was employed. We evaluated the performance
of the CAD system on an independent test set that was not touched during
system development and obtained a sensitivity of 73% at only one false positive
detection per scan. This is a substantially better performance than reported in
previous work [3J6l4[5]. We are convinced that this performance level is sufficient
for application of the system in clinical practice.
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Abstract. Although radiologists can employ CAD systems to charac-
terize malignancies, pulmonary fibrosis and other chronic diseases; the
design of imaging techniques to quantify infectious diseases continue
to lag behind. There exists a need to create more CAD systems ca-
pable of detecting and quantifying characteristic patterns often seen in
respiratory tract infections such as influenza, bacterial pneumonia, or
tuborculosis. One of such patterns is Tree-in-bud (TIB) which presents
thickened bronchial structures surrounding by clusters of micro-nodules.
Automatic detection of TIB patterns is a challenging task because of
their weak boundary, noisy appearance, and small lesion size. In this pa-
per, we present two novel methods for automatically detecting TIB pat-
terns: (1) a fast localization of candidate patterns using information from
local scale of the images, and (2) a Mdbius invariant feature extraction
method based on learned local shape and texture properties. A compar-
ative evaluation of the proposed methods is presented with a dataset of
39 laboratory confirmed viral bronchiolitis human parainfluenza (HPIV)
CTs and 21 normal lung CTs. Experimental results demonstrate that the
proposed CAD system can achieve high detection rate with an overall
accuracy of 90.96%.

Keywords: Tree-in-Bud, Willmore Energy, Lung, Infectious Diseases,
Computer Assisted Detection.

1 Introduction

As shown by the recent pandemic of novel swine-origin HIN1 influenza, respira-
tory tract infections are a leading cause of disability and death. A common image
pattern often associated with respiratory tract infections is TIB opacification, rep-
resented by thickened bronchial structures locally surrounded by clusters of 2-3
millimeter micro-nodules. Such patterns generally represent disease of the small
airways such as infectious-inflammatory bronchiolitis as well as bronchiolar lumi-
nal impaction with mucus, pus, cells or fluid causing normally invisible peripheral
airways to become visible [1]. Fig. dlshows TIB patterns in a chest CT.
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The precise quantification of the lung volume occupied by TIB patterns is a
challenging task limited by significant inter-observer variance with inconsistent
visual scoring methods. These limitations raise the possibility that radiologists’
assessment of respiratory tract infections could be enhanced through the use of
computer assisted detection (CAD) systems. However, there are many technical
obstacles to detecting TIB patterns because micro-nodules and abnormal pe-
ripheral airway structures have strong shape and appearance similarities to TIB
patterns and normal anatomic structures in the lungs.

In this work, we propose a new
CAD system to evaluate and quan-
tify respiratory tract infections by au-
tomatically detecting TIB patterns.
The main contributions of the paper
are two-fold: (1) A candidate selection
method that locates possible abnor-
mal patterns in the images. This pro-
cess comes from a learning perspec-
tive such that the size, shape, and

.. Fig.1. (Left) CT image with a signifi-
textural characteristics of TIB pat- . " " g patterns. (Right) La-

terns are learned a priori. The can-  pepeq TIB patterns (blue) in zoomed win-
didate selection process removes large  dow on the right lung.

homogeneous regions from considera-

tion which results in a fast localization of candidate TIB patterns. The local
regions enclosing candidate TIB patterns are then used to extract shape and
texture features for automatic detection; (2) another novel aspect in this work is
to extract Mobius invariant local shape features. Extracted local shape features
are combined with statistical texture features to classify lung tissues. To the best
of our knowledge, this is the first study that uses automatic detection of TIB
patterns for a CAD system in infectious lung diseases. Since there is no published
work on automatic detection of TIB patterns in the literature, we compare our
proposed CAD system on the basis of different feature sets previously shown to
be successful in detecting lung diseases in general.

2 Methodology

The proposed CAD methodology is illustrated in Fig. @ First, lungs are seg-
mented from CT volumes. Second, we use locally adaptive scale based filtering
method to detect candidate TIB patterns. Third, segmented lung is divided into
local patches in which we extract invariant shape features and statistical texture
features followed by support vector machine (SVM) classification. We extract
features from local patches of the segmented lung only if there are candidate
TIB patterns in the patches. The details of the proposed methods are presented
below.

I. Segmentation. Segmentation is often the first step in CAD systems. There
are many clinically accepted segmentation methods in clinics [213]. In this study,
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Fig. 2. The flowchart of the proposed CAD system for automatic TIB detection

fuzzy connectedness (FC) image segmentation algorithm is used to achieve suc-
cessful delineation [2]. In FC framework, left and right lungs are “recognized”
by automatically assigned seeds, which initiate FC segmentation.

II. Learning characteristics of TIB patterns. From Fig. [l we can read-
ily observe that TIB patterns have intensity characteristics with high variation
towards nearby pixels, and such regions do not usually exceed a few millime-
tre(mm) in length. In other words, TIB patterns do not constitute sufficiently
large homogeneous regions. Non-smooth changes in local gradient values sup-
port this observation. As guided by these observations, we conclude that (a)
TIB patterns are localized only in the vicinity of small homogeneous regions,
and (b) their boundaries have high curvatures due to the nature of its complex
shape.

III. Candidate Pattern Selection. Our candidate detection method comes
from a learning perspective such that we assign every internal voxel of the lung a
membership value reflecting the size (i.e., scale) of the homogeneous region that
the voxel belongs to. To do this, we use a locally adaptive scale based filtering
method called ball-scale (or b-scale for short) [2]. b-scale is the simplest form of
a locally adaptive scale where the scene is partitioned into several scale levels
within which every voxel is assigned the size of the local structure it belongs.
For instance, voxels within the large homogeneous objects have highest scale
values, and the voxels nearby the boundary of objects have small scale values.
Because of this fact and the fact in II.(a), we draw the conclusion that TIB
patterns constitute only small b-scale values, hence, it is highly reasonable to
consider voxels with small b-scale values as candidate TIB patterns. Moreover,
it is indeed highly practical to discard voxels with high b-scale values from
candidate selection procedure. Fig. @ (candidate selection) and Fig. B(b) show
selected b-scale regions as candidate TIB patterns. A detailed description of the
b-scale algorithm is presented in [2].
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3 Feature Extraction

For a successful CAD system for infectious lung diseases, there is a need to
have representative features characterizing shape and texture of TIB patterns
efficiently. Since TIB is a complex shape pattern consisting of curvilinear struc-
tures with nodular structures nearby (i.e., a budding tree), we propose to use
local shape features (derived from geometry of the local structures) combined
with grey-level statistics (derived from a given local patch).

It has been long known that curvatures play an important role in the represen-
tation and recognition of intrinsic shapes. However, similarity of curvature values
may not necessarily be equivalent to intrinsic shape similarities, which causes
a degradation in recognition and matching performance. To overcome this dif-
ficulty, we propose to use Willmore energy functional [4] and several different
affine invariant shape features parametrically related to the Willmore energy
functional.

Willmore Energy. The Willmore energy of surfaces plays an important role in
digital geometry, elastic membranes, and image processing. It is closely related
to Canham-Helfrich model, where surface energy is defined as

S = / a+ B(H)? —yKdA. (1)
X

This model is curvature driven, invariant under the the group of Md&bius trans-
formations (in particular under rigid motions and scaling of the surface) and
shown to be very useful in energy minimization problems. Invariance of the en-
ergy under rigid motions leads to conservation of linear and angular momenta,
and invariance under scaling plays a role in setting the size of complex parts of
the intrinsic shapes (i.e., corners, wrinkles, folds). In other words, the position,
grey-level characteristics, size and orientation of the pattern of interest have
minimal effect on the extracted features as long as the suitable patch is reserved
for the analysis. In order to have simpler and more intuitive representation of
the given model, we simply set « = 0 and 8 = v = 1, and the equation turns
into the Willmore energy functional,

Su= [~ Kyia= [ mpaa- [ s @
X X ox

where H is the mean curvature vector on X, K the Gaussian curvature on
0X, and dA, ds the induced area and length metrics on X, X (representing
area and boundary, respectively). Since homogeneity region that a typical TIB
pattern appears is small in size, total curvature (or energy) of that region is high
and can be used as a discriminative feature.

In addition to Willmore energy features, we have included seven different local
shape features in the proposed CAD system. Let k; and ko indicate eigenval-
ues of the local Hessian matrix for any given local patch, the following shape
features are extracted: 1) mean curvature (H), 2) Gaussian curvature (K),
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g

Fig. 3. a. CT lung, b. selected b-scale patterns, c. mean Curvature map (H), d. Gaus-
sian Curvature (K'), e. Willmore energy map, f. zoomed (e). g. Multi-phase level set
segmentation based on the proposed shape features is shown in three different slices
from the same patient’s chest CT scan.

3) shape index (SI), 4) elongation (k1/k2), 5) shear ((k; — K2)?/4), 6) com-
pactness (1/(k1K2)), and 7) distortion (k1 — K2). Briefly, the ST is a statistical
measure used to define local shape of the localized structure within the image [5].
Elongation indicates the flatness of the shape. Compactness feature measures
the similarity between shape of interest and a perfect ellipse. Fig. Blc) and (d)
show mean and Gaussian curvature maps from which all the other local shape
features are extracted. Fig. Bl(e) and (f) show Willmore energy map extracted
from Fig. Bla).

Based on the observation in training, TIB patterns most likely occur in the
regions inside the lung with certain ranges (i.e, blue and yellow regions). This
observation facilitates one practically useful fact in the algorithm that, in the
feature extraction process, we only extract features if and only if at least “one”
b-scale pattern exists in the local region as well as Willmore energy values of
pizels lie in the interval observed from training. Moreover, considering the Will-
more energy has a role as hard control on feature selection and computation,
it is natural to investigate their ability to segment images. We present a seg-
mentation framework in which every voxel is described by the proposed shape
features. A multi-phase level set [6] is then applied to the resulting vectorial
image and the results are shown in Fig. B(g). First and second columns of the
Fig.Bl(g) show segmented structures and the output homogeneity maps showing
segmented regions in different grey-level, respectively. Although segmentation
of small airway structures and pathological patterns is not the particular aim
of this study, the proposed shape features show promising results due to their
discriminative power.
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Texture features. Spatial statistics based on Grey-Level Co-occurrence Matrix
(GLCM) [7] are shown to be useful in discriminating patterns pertaining to lung
diseases. As texture can give a lot of insights into the classification and charac-
terization problem of poorly defined lesions, regions, and objects, we combine
our proposed shape based invariants with GLCM based features. We extract 18
GLCM features from each local patch including autocorrelation, entropy, vari-
ance, homogeneity, and extended features of those. Apart from the proposed
method, we also compare our proposed method with well known texture fea-
tures: steerable wavelets (computed over 1 scale and 6 orientations with deriva-
tive of Gaussian kernel), GLCM, combination of shape and steerable wavelets,
and considering different local patch size.

4 Experimental Results

39 laboratory confirmed CTs of HPIV infection and 21 normal lung CTs were
collected for the experiments. The in-plane resolution is affected from patients’
size and varying from 0.62mm to 0.82mm with slice thickness of 5mm. An ex-
pert radiologist carefully examined the complete scan and labeled the regions as
normal and abnormal (with TIB patterns). As many regions as possible show-
ing abnormal lung tissue were labeled (see Table [l for details of the number
of regions used in the experiments). After the proposed CAD system is tested
via two-fold cross validations with labeled dataset, we present receiver operator
characteristic (ROC) curves of the system performances.

Table [[] summarizes the performance of the proposed CAD system as com-
pared to different feature sets. The performances are reported as the areas un-
der the ROC curves (A,). Note that shape features alone are superior to other

Table 1. Accuracy (A.) of the CAD system with given feature sets

Features Dimension Patch Size # of patches # of patches Area under
(TIB) (Normal) ROC curve: A,

Shape & GLCM 8+18=26 17x17 14144 12032 0.8991
Shape & GLCM 8+18=26 13x13 24184 20572 0.9038
Shape & GLCM 8+18=26 9x9 50456 42924 0.9096
Shape 8 17x17 14144 12032 0.7941

Shape 8 13x13 24184 20572 0.7742

Shape 8 9x9 50456 42924 0.7450

Steer. Wavelets& Shape 6x17x1748=1742 17x17 14144 12032 0.7846
Steer. Wavelets& Shape 6x13x13+48=1022 13x13 24184 20572 0.7692
Steer. Wavelets& Shape 6x9x9+8=494 9x9 50456 42924 0.7908
Steer. Wavelets 6x17x17=1734 17x17 14144 12032 0.7571
Steer. Wavelets 6x13x13=1014 13x13 24184 20572 0.7298
Steer. Wavelets 6x9x9=486 9x9 50456 42924 0.7410
GLCM 18 17x17 14144 12032 0.7163

GLCM 18 13x13 24184 20572 0.7068

GLCM 18 9x9 50456 42924 0.6810
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Fig. 4. Comparison of CAD performances via ROC curves of different feature sets

Table 2. p-values are shown in confusion matrix

p-Confusion Shape Steer.& Steer. GLCM

Matrix Shape
Shape&
GLCM 0.0171  0.0053  0.0056  0.0191
Shape - 0.0086  0.0094  0.0185
Steer.& — — 0.0096 0.0175
Shape
Steer. - - - 0.0195

methods even though the dimension of the shape feature is only 8. The best
performance is obtained when we combined shape and GLCM features. This
is expected because spatial statistics are incorporated into the shape features
such that texture and shape features are often complementary to each other.
In what follows, we select the best window size for each feature set and plot
their ROC curves all in Fig. @l To have a valid comparison, we repeat candidate
selection step for all the methods, hence, the CAD performances of compared
feature sets might perhaps have lower accuracies if the candidate selection part
is not applied. Superiority of the proposed features is clear in all cases. To show
whether the proposed method is significantly different than the other methods,
we compared the performances through paired t-tests, and the p-values of the
tests are summarized in Table 2l Note that statistically significant changes are
emphasized by p < .01 and p < .05.
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5 Conclusion

In this paper, we have proposed a novel CAD system for automatic TIB pattern
detection from lung CTs. The proposed system integrates 1) fast localization
of candidate TIB patterns through b-scale filtering and scale selection, and 2)
combined shape and textural features to identify TIB patterns. Our proposed
shape features illustrate the usefulness of the invariant features, Willmore energy
features in particular, to analyze TIB patterns in Chest CT. In this paper, we
have not addressed the issue of quantitative evaluation of severity of diseases by
expert observers. This is a challenging task for complex shape patterns such as
TIB opacities, and subject to further investigation.
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Abstract. This paper introduces computational tools that could enable
personalized, predictive, preemptive, and participatory (P4) Pulmonary
medicine. We demonstrate approaches to (a) stratify lungs from different
subjects based on the spatial distribution of parenchymal abnormality
and (b) visualize the stratification through glyphs that convey both the
grouping efficacy and an iconic overview of an individual’s lung wellness.
Affinity propagation based on regional parenchymal abnormalities is used
in the referenceless stratification. Abnormalities are computed using su-
pervised classification based on Earth Mover’s distance. Twenty natural
clusters were detected from 372 CT lung scans. The computed clusters
correlated with clinical consensus of 9 disease types. The quality of inter-
and intra-cluster stratification as assessed by ANOSIM R was 0.887 +
0.18 (pval < 0.0005). The proposed tools could serve as biomarkers to ob-
jectively diagnose pathology, track progression and assess pharmacologic
response within and across patients.

Keywords: Referenceless stratification, affinity propagation, idiopathic
pulmonary fibrosis, glyphs.

1 Introduction

The disease processes in Diffuse Parenchymal Lung Disease (DPLD) are char-
acterized by distinct cellular infiltrates and extracellular matrix deposition and
are broadly classified in CT scans into five primal forms- normal, emphysema,
ground glass, honeycombing and reticular. The distribution of these patterns
through the lung lobes is indicative of a specific DPLD disease. Differentiability
of different DPLDs is central to early application of appropriate therapy so as
to positively affect patient prognosis. Existing clinical decision support tools are
suboptimal for consistent characterization and visual representation of the type
and extent of disease in a clinician and patient friendly manner.

Image based stratification of parenchymal abnormalities specific to patient
data in a referenceless manner (with no alignment to a common coordinate sys-
tem) would facilitate consistent assessment of patient lung wellness. Previously,
referenceless unbiased stratification has been proposed for cardiac images [1)2].

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAT 2011, Part ITI, LNCS 6893, pp. 223 2011.
© Springer-Verlag Berlin Heidelberg 2011



224 S. Raghunath et al.

No such approach exists for the lung, especially to stratify the biological behavior
of abnormalities across patient populations. We address this unmet need using
a computational tool to stratify and a visualization tool to provide an iconic
overview of the stratifications.

Lung abnormalities were determined in terms of the primal CT appearance
forms through supervised classification. During the training phase, radiologists
selected multiple volumes of interest (VOIs) to represent the training sets for each
of the primal forms. For the supervised classification, earth mover’s distance was
used as the similarity metric between the histograms of a voxel’s neighborhood
and the labeled training set. The spatial distribution of the primal forms across
the lobes was computed and mapped into glyphs. A new pairwise dissimilarity
metric, spikelets, and affinity propagation [3] were used to stratify abnormality
distribution across the lung lobes. The clusters were analyzed statistically with
Analysis of Similarity (ANOSIM). The exemplars and their respective candidates
were automatically categorized into clinical groups using the guidelines in [4].
The glyphs and the underlying classifications were verified by the radiologist
to assess correctness. Our experimental results suggest that the proposed tool
is a valuable technology to realize the potential of P4 medicine through direct
improvement of quality and consistency in clinical pulmonary practice.

2 DMaterials and Methods

2.1 Datasets, VOIs and Classification

CT scans from 372 patients with disease across the DPLD spectrum were used for
this study. The patients were scanned on a HRCT scanner (140 kVp, 250 mAs,
BONE kernel recon, 1.25mm slice thickness, 50% overlap with 0.625 mm? voxels).
Three radiologists screened the scans and selected a subset of 14 datasets to pick
multiple 153 VOIs across the primal forms. 976 VOIs were selected to represent
80, 150, 187, 265, and 294 VOIs of emphysema, ground glass, honey combing,
normal and reticular forms, respectively. The lungs, airways and vessels were
extracted using readily available techniques. During supervised nearest neighbor
classification, the histogram of 153 neighborhood around each parenchymal voxel
was compared against the VOI histograms using Earth Mover’s Distance.

2.2 Regional Abnormality Distribution and Glyph Creation

The lobar regions of the individual lungs were segmented using an approach
similar to that described in [5]. The distribution of the five primal forms within
the respective lobes was computed and used to create the glyphs. Figure[Il shows
a representative glyph. The glyph is divided into six regions each representing
a lung lobe. The lobes are uniquely labeled to indicate their spatial location.
The first letter (R/L) denotes the right and left lung, the second letter (U/M/L)
denotes respectively the upper, middle and lower lobes. Although no pleural sep-
aration demarcates the lingula from the remainder of the LU lobe, this anatomic
region was defined as LM lobe by reflection from the right lung. The origin of
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Normal
Emphysema
. Groundglass

Honeycomb

. Reticular

Fig. 1. Glyph layout of the distribution of abnormal patterns across different lobes of
the lung

the glyph is fixed at 12-o’-clock starting with the LU lobe. The asymmetry, if
any, between the left and right lungs can be readily observed in the glyph. The
individual lobes span through angles proportional to their respective volumes.
Within each lobe, the disease distribution is represented by color-coded sectors
proportional to the percentage of disease in that lobe. The concentric circles are
drawn at 20% intervals for enhanced visualization.

To create an unbiased stratification of the abnormality distribution, affinity
propagation [3] - an unsupervised clustering technique that automatically finds
the natural number of clusters- was used. Affinity propagation uses message
passing to iteratively find clusters from pair-wise dissimilarities of n-dimensional
data. In addition to resolving the clusters, it identifies the exemplar that is most
‘central’ to each of the clusters. Pairwise dissimilarity between given lungs A
and B based on their respective lobar distribution of the five primal patterns
was computed as

D(A,B)= > ag*dr(A,B); dr(A,B)= Y spikelet(Al",BfY) (1)

R=1:6 1=1:5
|AT B[ R RpR ‘
spikelet(AR, BR) = { mas(ar.pr) O maz(A%, BY) > acuity (2)
0 otherwise,

where, g = 100/Volg; Volg is the mean lobar volume; AZR is the % distribution
of i*" primal pattern in the R lobe of lung A; and acuity is the minimum
resolvable distribution differences, which was set to 2% in our experiments.

The clusters were categorized automatically into clinical groups using the
guidelines suggested in [4]. Accordingly, based on the type and extent of ab-
normality distribution of the individual exemplar, its cluster was labeled as one
of the following 9 types: (T1) diffuse emphysema (T2) upper-lobe emphysema
(T3) emphysema with early fibrosis (T4) probable NSIP (non-specific intersti-
tial pneumonitis), (T5) confident NSIP, (T6) NSIP with concurrent emphysema,
(T7) probable UIP (usual interstitial pneumonitis), (T8) confident UIP and (T9)
UIP with concurrent emphysema. The quality of clusters was evaluated by ra-
diological review and statistical analysis (ANOSIM).
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3 Results

Figure 2 shows representative results of the supervised classification. The voxels
in panel B are color-coded using the scheme given in Figure[Il Panel C shows the
3D rendering of the lobe definitions. The classifications were visually verified by
a radiologist. The classifications and the lobe definitions of the individual lungs
were used to compute the primal pattern distribution and subsequently the in-
dividual glyphs. Figure [ shows a mosaic of the glyphs from all 372 CT scans.
Accounting for the voxel sizes and the number of voxels classified, it is worth
noting that information collated across a 1.86 meter® space has been captured in
the 5x5 inch mosaic space. Even at this resolution, the glyphs provide a succinct
overview of the entire database and highlight the ease with which the intra-
and inter-patient disease distribution can be pre-attentively captured. With ef-
fortless effectiveness it is easy to visualize the presence of distinct cases with
Chronic Obstructive Pulmonary Disease (COPD- emphysematous glyphs with
blue shades), NSIP- variable amounts of ground glass and reticular distributions
and UIP- extensive reticulation and honeycombing.

Fig. 2. Representative results of parenchymal tissue classification and 3D rendering of
lobar distribution

Figure [l shows qualitative results of the referenceless stratification. Panels A
and B show the pair-wise similarities before and after stratification; the darker
shade implies low similarity between two datasets. Affinity propagation on the
original matrix (panel A) yielded 20 unique clusters. The 20 clusters correspond
to the 20 diagonal sub-blocks shown (by red boxes along the diagonal) in panel
B; the stratification qualitatively reveals the maximization and minimization,
respectively, of intra and inter (off-diagonal sub-blocks) cluster similarity. The
maximum, minimum and mean number of candidates in the clusters were 54, 8
and 19, respectively.

Quantitative efficacy of the stratification was examined using ANOSIM R to
assess the magnitude of the differences among clusters. An R value of 1 suggests
that the communities completely differ among the defined groups, a value of 0 in-
dicates no difference among groups. The pair-wise inter-cluster R values shown
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Fig. 3. Mosaic of glyphs for all 372 datasets used in this study. The glyphs provide a
succinct overview of inter- and intra-subject distribution of parenchymal abnormalities.

Figure BA highlights the optimality of the stratification. The combined R for
the 20 clusters was 0.887 £ 0.18 (pval < 0.0005) highlighting the greater agree-
ment of the candidates within each of the clusters. Figure BB shows the mean
intra-cluster, exemplar-global and inter-exemplar distances for six representa-
tive clusters. The tightness of intra-cluster distances quantitatively validates the
visual representations of stratification efficacy.

The 20 clusters were automatically categorized into clinical groups based on
the abnormality distribution of their respective exemplars. Figure [6] shows the
glyphs for all the exemplars, along with their clinical categories. Differentiation
of the individual emphysematous lungs into upper lobe predominance (T2) has
profound effect on disease management due to better outcomes after lung vol-
ume resection surgery. Though the clinical guidelines suggest nine categories,
the glyphs reveal the significant pathological variations within the categories.
For example, confident UIP (T8), which has poor prognosis, has five distinct
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Fig. 4. Pairwise similarity between lungs before (A) and after (B) affinity propagation
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Fig. 5. Quantitative analysis of stratification showing intra-cluster pair-wise ANOSIM
R values (A) and comparison of intra-cluster tightness with inter-exemplar and global
similarities for representative clusters (B)

variations in the regional distribution and extent of reticular and honeycombing
patterns. Lumping such distinct variations into a single category could prevent
the delivery of personalized and expeditious clinical care. The diagnostic dis-
parity in performance between physicians based in academic versus community
centers is well known. Such disparity is disturbing and could (at times, irre-
versibly) compromise patient care. The quantitative stratification proposed in
this paper shows promise to reduce this discrepancy.

Figure[@shows representative glyphs across the spectrum of diffuse pulmonary
lung diseases. While the confident categories of UIP (T8) and NSIP (T5) are eas-
ily differentiable by manual radiological reviews, even after accommodating the
errors due to subjective aggregation, probable categories of UIP (T7) and NSIP
(T4) are often misinterpreted. The upper lobe dominance of emphysema (T2) is
usually assessed using a count of voxels beyond a certain threshold. Such quan-
tification is extremely sensitive to image slice thickness, acquisition parameters,
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Fig. 6. The glyphs for the 20 cluster exemplars along with their categorization into
clinical groups

Fig. 7. Representative glyphs for the natural clusters categorized as confident UIP
(T8), probable UIP (T7), Diffuse Emphysema (T1), confident NSIP (T5), probable
NSIP (T4) and Upper-lobe Emphysema (T2)

and the reconstruction kernel utilized. On the other hand, the quantitative strat-
ification and glyphs described here provide unambiguous categorization of the
disease state.
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4 Discussion and Conclusion

Current management of diffuse parenchymal lung disease might best be described
as a random walk through therapy space. However, recent advances in imaging
offer opportunities to develop and validate lung-specific biomarkers as potential
cross correlates to diagnosis, staging of treatment and therapy monitoring. De-
spite the enhanced contrast and spatial resolution of HRCT scans, classification
and quantification of interstitial lung disease is difficult, and even experienced
chest radiologists are challenged with differential diagnosis. Robust, expeditious
and reproducible segmentation and characterization of the lung, lobes, airways,
vessels and parenchymal tissues, accompanied by results summarized holisti-
cally and presented in a consistent manner, will advance the field of Computer
Aided Diagnosis and elevate it to a degree of maturity and universal applicability
heretofore not obtained. The stratification and visualization strategy proposed in
this paper represents a major step towards harnessing the power of information
technology and image computing to develop a computational framework that
enables a powerful and hitherto elusive capability for pulmonary imaging evalu-
ation: a trustable, verifiable, and clinically relevant comprehensive summary of
pulmonary disease, including the extent and character of disease, both within
an individual patient and across a cohort of patients.
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Abstract. We develop a texture analysis framework to assist radiolo-
gists in interpreting high-resolution computed tomography (HRCT) im-
ages of the lungs of patients affected with interstitial lung diseases (ILD).
Novel texture descriptors based on the Riesz transform are proposed to
analyze lung texture without any assumption on prevailing scales and ori-
entations. A global classification accuracy of 78.3% among five lung tissue
types is achieved using locally—oriented Riesz components. Comparative
performance analysis with features derived from optimized grey—level
co—occurrence matrices showed an absolute gain of 6.1% in classifica-
tion accuracy. The adaptability of the Riesz features is demonstrated by
reconstructing templates according to the first principal components of
the lung textures. The balanced performance achieved among the various
lung textures suggest that the proposed methods can complement human
observers in HRCT interpretation, and opens interesting perspectives for
future research.

Keywords: Texture analysis, Riesz transform, interstitial lung diseases,
high-resolution computed tomography, computer—aided diagnosis.

1 Introduction

Successful diagnostic interpretation of medical images relies on two distinct pro-
cesses. First, abnormal image patterns are identified (e.g., fibrous tissue, ar-
chitectural distortion, ...) and, second, links between the patterns and possible
diagnoses can be established [I]. Whereas the latter requires a deep understand-
ing and comprehensive experience of the involved diseases, the former is closely
related to visual perception. Interestingly, a large scale study on malpractice in
radiology showed that the majority of errors in medical image interpretation are
caused by perceptual misapprehensions [2]. Texture analysis is central to human
image understanding and plays an important role in efficient characterization
of biomedical tissue, that cannot be described in terms of shape or morphol-
ogy [3]. As a consequence, computer—aided diagnosis (CAD) based on texture
quantification in radiological images has been an active research field over the
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past 20 years with the aim of reducing omission errors of pathological tissue by
providing systematic second opinions to radiologists.

Texture analysis is the cornerstone for differentiating between pathological
and healthy lung tissue of patients affected by interstitial lung diseases (ILD)
in high-resolution computed tomography (HRCT). ILDs group more than 150
disorders of the lung tissue of varying origin and can be differentiated only by
detecting subtle texture changes of the lung parenchyma with a characteristic
distribution within the lung anatomy [4]. Interpreting HRCT images of the chest
represents a challenge even for trained radiologists and lung specialists. Several
studies have been conducted on the use of computerized lung texture classi-
fication to assist the radiologists in HRCT interpretation for ILDs or chronic
obstructive pulmonary disease (COPD) starting from 1997 [B6I7I8]. The success
of the CAD system is intimately related to the ability of the visual features to
catch and learn the subtle texture signatures specific to each lung tissue type,
which are typically non—deterministic. Therefore, statistical approaches that are
able to capture texture properties at any location, scale and orientation (i.e.,
affine—covariant) are required to achieve high tissue classification performance
to complement human observers. Whereas more than 60 papers using texture
analysis to classify lung tissue can be found in the literature of the past 15
years [9], research contributions on novel texture descriptors are still required
as several papers [BJ6IIOJIT] rely on texture features derived from grey—level co—
occurrence matrices (GLCM) [12], oriented filters from Gaussian derivatives [7]
or local binary patterns (LBP) [8]. The performance of these methods depends on
the arbitrary choice of scales and/or orientations as well as a necessary grey—level
reduction for GLCMs, the latter entailing the risk of loosing precious information
contained in the full bit depth of the original image. Wavelets and filtering tech-
niques have the advantage of providing continuous responses when compared to
the binary or categorical outputs of GLCMs or LBPs, which allows for a finer de-
tection and quantification of transients in medical images and were successfully
used for lung texture classification in [JJI3IT4]. Specific wavelet transforms yield
multiscale, multi-orientation with infinitesimal angular precision (i.e., steerable
filterbanks) and translation invariant (i.e., undecimated transforms) analysis,
which allows to characterize textures without making a priori choices on the
affine parameters [15].

In previous work [I3J9] we used isotropic wavelet frames enabling texture anal-
ysis with translation and scale covariance as well as rotation invariance. The use
of isotropic analysis was based on the assumption that no prevailing orienta-
tions are contained in the lung tissue patterns of 2D axial slices in HRCT. Three
research contributions are proposed in this article. First, a novel texture char-
acterization approach based on the Riesz transform yielding translation, scale
and rotation covariance is introduced. Second, the assumption that lung tissue
patterns are locally rotation—invariant is investigated by aligning textures using
the local prevailing orientation. Third, principal component analysis (PCA) of
the Riesz features is used to obtain templates that are discriminative for lung
textures. The approaches are evaluated and compared using a dataset of 85
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ILD cases with a large variety of lung tissue types and a realistic validation
scheme based on a leave-one—patient—out (LOPO) cross—validation (CV). We
used 13808 overlapping blocks from 2037 manually drawn regions of interest in
1225 2D HRCT slices to validate the proposed methods. A quantitative perfor-
mance comparison with optimized GLCMs is carried out.

2 Material and Methods
2.1 Dataset

A database of 85 ILD cases containing HRCT image series with a slice thickness
of 1mm, inter—slice distance of 10mm and hand-drawn regions annotated in a
collaborative fashion by two radiologists with 15 and 20 years of experience at the
University Hospitals of Geneva (HUG) [16] is used to evaluate the performance
of the proposed approaches. The diagnosis of each case was confirmed either
by pathology (biopsy, bronchoalveolar washing) or by a laboratory/specific test.
Based on [4], the texture classes are defined as healthy and four pathological lung
tissue types (i.e., ground glass, fibrosis, micronodules and emphysema) that are
used to characterize the most frequent ILDs in HRCT. The distribution of the
annotated regions and patients is detailed in Table [I1

2.2 Texture Analysis with Nth—Order Riesz Transforms

The Riesz transform is a multidimensional extension of the Hilbert transform,
which maps any function f(x) to its harmonic conjugate and is a very pow-
erful tool for mathematical manipulations of periodic signals [I7]. For a two—
dimensional signal f(x), the different components of the Nth—order Riesz trans-
form R are defined in the Fourier domain as

R () = \/m +ng (—jwi)" (—jwz)" F(w), (1)

n1!ng! HwH”lJf”?

for all combinations of (n1,n2) with nq+ne = N and ny 2 € N. f(w) denotes the
Fourier transform of f(x), where the vector w is composed by w1 2 corresponding
to the frequencies in the two image axes. The multiplication by jw; o in the
numerator corresponds to partial derivatives of f and the division by the norm of
w in the denominator results in only phase information being retained. Therefore,
the 1st—order R corresponds to an allpass filterbank with directional (singular)
kernels hq o:

_ (RN _ (ha(x) * f ()
Ri(@) = (o) = (1) 1 He)). @)
where
hia() = o2 (3)

and z1 2 correspond to the axes of the image [15]. The Riesz transform commutes
with translation, scaling or rotation. The orientation of the Riesz components
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N=1
o -

N =2

Fig.1. Templates corresponding to the Riesz kernels convolved with a Gaussian
smoother for N=1,2,3

is determined by the partial derivatives in Eq. (Il). Whereas 2V Riesz filters
are generated by (), only N + 1 components have distinct properties due to
commutativity of the convolution operators in (@) (e.g., 9?/0zdy is equivalent
to 0%/0ydx). The Riesz components yield a steerable filterbank [15] allowing
to analyze textures in any direction, which is an advantage when compared
to classical Gaussian derivatives or Gabor filters. Qualitatively, the first Riesz
component of even order corresponds to a ridge profile whereas for odd ones
we obtain an edge profile, but much richer profiles can be obtained by lin-
ear combinations of the different components. The templates of hy 2(x) con-
volved with Gaussian kernels for N=1,2,3 are depicted in Fig.[Il The Nth—order
Riesz transform can be coupled with an isotropic multiresolution decomposition
(e.g., Laplacian of Gaussian (LoG)) to obtain rotation—covariant (steerable) basis
functions [15].

The main idea of the proposed approach is to derive texture signatures from
multiscale Riesz coefficients. An example showing healthy and fibrosis tissue
represented in terms of their Riesz components with N=2 is depicted in Fig.2a).
In order to provide a local categorization of the lung parenchyma, lung regions
in 2D axial slices are divided into 32x32 overlapping blocks with a distance
between contiguous block centers of 16. The Riesz transform is applied to each
block, and every Riesz component n = 1,..., N+1 is mapped to a multiscale
representation by convolving them with four LoG filters of scales s = 1,...,4
with a dyadic scale progression. In a total of (N+1)x4 subbands, the variances
on,s of the coefficients are used as texture features along with 22 grey level
histogram (GLH) bins in [-1050;600] Hounsfield Units (HU). The percentage
of air pixels with values < —1000 HU completes the feature space learned by
support vector machines (SVM) with a Gaussian kernel.

The local dominant texture orientations have an influence on the repartition of
respective responses of the Riesz components, which is not desirable for creating
robust features with well-defined clusters of instances. For example, a rotation
of /2 will switch the responses of h; and hy for N=1. To ensure that the
repartitions of ¢, s are comparable for two similar textures having distinct local
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Fig. 2. Riesz representation of healthy (gray dots) versus fibrosis (black crosses) pat-
terns. a) Initial Riesz coefficients in 3D. b) The Riesz coefficients in 2D after having
locally aligned the texture based on local prevailing orientation. The component cor-
responding to 8%/dxdy is zero after local rotation and is not shown in b).

prevailing orientations, the filters are oriented to have maximal response along
hi. The dominant orientation 6o, of hi at the position x,, is

Odom (xp) = arg max((hge) * g) * f) (xp), (4)
0e€(0,7]

where hge)(w) is hy rotated by 6 and g(x) is a Gaussian kernel. A local ori-

entation is obtained by rotating every Riesz filter h, with 04.,, and is done

analytically [I5]. 2nd—order Riesz coefficients of healthy and fibrosis tissue after

local orientation are shown in Fig. 2 b).

3 Results

The proposed methods are evaluated using blocks from annotated ROIs with a
LOPO CV of 85 patients. For each fold, the cost C' of the SVMs and the width
o of the Gaussian kernel are optimized with the training set where parameters
allowing best classification accuracy on the training set are found with a grid
search (C' € [0.1,1000], o € [1072,10%]) and a 5—fold CV. The classification per-
formances are compared with optimized GLCMs that are extensively used for
lung texture analysis in the literature. Texture features derived from GLCMs
are contrast, correlation, energy and homogeneity for various pixel distances
d=1,...,5 and orientations § = 0,7/4, 7/2,37/4, similarly to [§]. Three grey—
level reductions are compared: 8, 16 and 32 levels [. Optimized SVMs learn in the
feature space spanned by concatenated GLCM attributes from every spacing and
orientation parameters as well as GLH and air percentage. Classification accura-
cies using Riesz features of various orders (N = 1,...,13) are compared before
and after local rotation in Fig. Bl a). A class—specific performance comparison
of best setups for Riesz, Riesz with local orientation, and GLCMs is shown in
Fig.[Bb). The confusion matrix of the best performing technique (N=6 with lo-
cal orientation) is detailed in Table[l In Fig.Hl the distributions of the classes in
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Fig. 3. a) Global classification accuracies with N = 1,...,13. N=6 with local orien-
tation reaches best performance with 78.3% correct predictions of 13808 instances. b)
Class—specific accuracies of the two best configurations (N=1 and N=6 with orienta-
tion) and best performance of GLCMs (I=16).

Table 1. Confusion matrix in % of the best performing setup (N=6 with local orien-
tation). The numbers of blocks and patients used for the evaluation are detailed. Note
that a patient may have several types of lung tissue disorders.

healthy emphysema ground glass fibrosis micronodules # blocks # patients

healthy 77.5 7.6 4.1 0 10.7 1975 7
emphysema 8.4 73.3 5.9 6.2 6.2 1298 6
ground glass 14.1 0.5 72.3 10 3.1 3513 32
fibrosis 0.7 2.6 8.4 84.5 3.8 3554 37
micronodules  11.6 0.7 3.5 3.7 80.5 3468 16

emphysema
haalthy
< groundglass

Fig. 4. Visualization of the feature space projected on the two dominant principal
components. The corresponding Riesz templates (scale 2) are shown on the axes.

terms of the two dominant principal components of the 6th—order Riesz features
with local orientation are shown. The coefficients from the PCA components are
used to weight each Riesz component and create learned templates represented
on axes in Fig[dl
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4 Discussions and Conclusions

We propose a novel texture classification method based on the Riesz transform
to categorize lung tissue patterns in HRCT image series from patients affected
with ILDs. Compared to the literature, the Riesz features allow to analyze lung
texture without prior assumptions on the prevailing scales and orientations and
show higher classification performance than popular GLCM texture features.
The inherent local orientations of the lung texture are studied by locally steer-
ing the Riesz components before further classification. An optimal order of N=6
with local orientation allows best classification performance with 78.3% correct
predictions. Fig.[3a) shows that even orders of the Riesz transform are providing
best results, which suggests that ridge detectors are more appropriate than edge
detectors for lung texture characterization. Fig. Bl b) shows that all lung tissue
types except ground glass are better classified with local orientation. All lung
tissue types benefit from Riesz texture features when compared to GLCM fea-
tures. Classes with highest improvement are healthy, fibrosis and micronodules,
which are those containing most texture information. The performance com-
parisons are statistically significant for all classes (p < 0.0002) but emphysema
(p = 0.073). An absolute gain of 6.1% in global classification accuracy is obtained
with Riesz and rotation adjustment (78.3%) when compared to GLCM (72.2%).
This suggests that the arbitrary choices of scale and orientation parameters are
not optimal for accurate characterization of the lung texture, although these val-
ues are the most commonly used in the literature [BIGI7ITO/TTIS]. Table [l shows
that healthy and ground glass patterns are the most challenging to separate due
to high intra—class variability among patients and severity of disease . Confusion
between micronodules and healthy tissue is observed, which is a limitation of 2D
approaches as bronchovascular structures have similar appearance as micronod-
ules in the 2D axial slices. Unfortunately, the HRCT imaging protocol is very
anisotropic with a gap between slices of 10mm and does not allow for full 3D tex-
ture analysis. The Riesz features are easily extendable to three dimensions [15] to
reduce the confusions between micronodules and healthy bronchovascular struc-
tures in isotropic multidetector CT. The balanced performance achieved among
the various classes of lung tissue suggest that the proposed features are efficient
to analyze lung tissue patterns for a large variety of ILD diagnoses. The ability
of the Riesz features to adapt to lung textures is illustrated in Fig. @l where tem-
plates according to the dominant principal components of the feature space are
shown. In future work, feature selection and learning methods will be incorpo-
rated to promote the most relevant Riesz components and reduce the influence of
noise. Thanks to the affine—covariant properties of the proposed methods, they
are expected to provide tools for analyzing textures with no prior assumptions
on translation, scale and orientation parameters in various applications.
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Abstract. Automatic localization of multiple anatomical structures in medical
images provides important semantic information with potential benefits to diverse
clinical applications. Aiming at organ-specific attenuation correction in PET/MR
imaging, we propose an efficient approach for estimating location and size of
multiple anatomical structures in MR scans. Our contribution is three-fold: (1)
we apply supervised regression techniques to the problem of anatomy detection
and localization in whole-body MR, (2) we adapt random ferns to produce multi-
dimensional regression output and compare them with random regression forests,
and (3) introduce the use of 3D LBP descriptors in multi-channel MR Dixon
sequences. The localization accuracy achieved with both fern- and forest-based
approaches is evaluated by direct comparison with state of the art atlas-based
registration, on ground-truth data from 33 patients. Our results demonstrate im-
proved anatomy localization accuracy with higher efficiency and robustness.

1 Introduction

Following the success of combined PET/CT, the possibility of combining PET with
MRI has gained increased interest, as significant advantages are expected compared
to PET/CT for many imaging tasks in neurology, oncology and cardiology [1]. How-
ever, before its introduction in the clinical practice, a technical challenge impacting the
quality of PET/MR imaging needs to be solved: the attenuation correction of 511 keV
photons according to the radiodensity of the tissues. While in PET/CT [2], radioden-
sity information provided by CT at X-ray energies can be converted into attenuation
information, MR does not provide any information on the tissue density. Therefore,
methods have been investigated to generate an attenuation correction map directly from
MR. For brain imaging, atlas-based solutions using registration were evaluated in [314].
For whole-body imaging, different approaches based on the classification of tissues into
4 classes (background, lungs, fat, and soft tissue) have been investigated, for instance
in [5]. While previous methods showed promising results for attenuation correction of
whole body imaging with PET/MR, they propose only a coarse tissue classification, not
accounting for organ-specific attenuation and for the attenuation introduced by bones.

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAI 2011, Part I1I, LNCS 6893, pp. 2391247] 2011.
(© Springer-Verlag Berlin Heidelberg 2011
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To further improve the quality of whole-body PET data reconstruction, we aim at gener-
ating organ-specific attenuation information directly from MR. Therefore, the position
of the organs which impact the attenuation of photons need to be known. This paper
presents an approach for simultaneously localizing multiple organs in multi-channel
whole-body MR. It builds upon state-of-the-art non-linear regression techniques. We
adapt random ferns for regression and compare them to random regression forests. Ex-
periments on 33 patient scans demonstrate better performance than atlas-based tech-
niques in terms of accuracy, speed, and robustness.

2 Related Work

Classical object detection algorithms are based on sliding windows and classifiers whose
role is to predict whether a voxel belongs to the object of interest or not. In [6]], Vi-
ola and Jones introduced a fast detection approach based on a cascade of classifiers
trained using Adaboost. Built as a succession of classifiers taking sequentially more
and more features into account. This approach achieved impressive performance for
real-time face detection. In medical applications, there has been an increasing interest
in regression-based solutions for organ localization. Since the human body consists of
a specific arrangement of organs and tissues, it can be expected that voxels, based on
their contextual information, can predict the surrounding anatomy. For instance, if the
neighborhood of a voxel shows an appearance which is typical of heart tissue, besides
the position of the heart, this voxel can provide an estimate of position of the nearby
lungs. In [7], Zhou et al. introduced an approach based on boosting ridge regression
to detect and localize the left ventricle (LV) in cardiac ultrasound 2D images. There,
the learned function predicts the relative position, scale and orientation of the LV based
on Haar-like features computed on 2D images. Impressive results are demonstrated on
echocardiogram sequences. To detect and localize the heart chambers in 3D cardiac
CT, Zheng et al. proposed in [8]] an approach called marginal space learning (MSL). To
break down the complexity of learning directly in the full 3D similarity transformation
space, the authors demonstrate that training a classifier on projections of the original
space effectively reduces the search space. Using this idea, they build a cascade of clas-
sifiers based on probabilistic boosting tree (PBT) to predict first the position, then the
position-orientation and finally the full 3D pose. In [9], the authors push this idea fur-
ther to non-rigid marginal space learning using statistical shape models. Although these
approaches have shown very good performance on CT scans, building such a cascade of
classifiers is a computationally intensive learning procedure which requires large train-
ing sets. In this paper we avoid intensive training by building a single regressor predict-
ing simultaneously the position of multiple organs. In [10], Criminisi ef al. proposed a
regression approach based on random forests for the localization of organs in 3D CT
scans. The authors showed that their method achieves better performance than atlas
registration, and this, while benefiting from fast training and testing. While in [[10], the
authors could rely on absolute radiodensity values provided by CT, here, we deal with
MR images which provide only relative values and suffer from field inhomogeneities.
To tackle this challenging problem, we adapt the regression forest framework by intro-
ducing 3D LBP descriptors. Additionally, we implement a random ferns approach [11]
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Fig. 1. (Left) Each voxel predicts its relative displacement to all organ bounding boxes repre-
sented here as a green box. Multi-scale textural information is extracted using LBP-like feature
representation computed over 3D cuboidal regions. (Right) 1D regression example: data samples
in red, blue lines represent the partition built over the input feature space. In each cell, simple
linear models (in green) are fitted to the points. Their combination over the full space results in a
complex non-linear predictor.

and compare it with forests. Both regression techniques are evaluated and compared to
an atlas-based registration approach.

3 Proposed Method

This section describes details of our organ detection and localization approach. First,
we cast this problem as a regression task. Second, we introduce our feature representa-
tion based on water and fat channels computed from MR Dixon sequences. Third, we
present regression forests and explain how to adapt random ferns for regression. Finally,
we show how to combine voxel predictions to localize all organs of interest in one shot.

3.1 Problem Statement

In our framework each voxel votes for the relative position of all organs of interest. The
individual votes will produce very noisy predictions. But the probabilistically weighted
combination of all votes will produce an accurate output (see Fig[I). Since the relative
displacements we want to predict are continuous values, we use a regression paradigm.
In the following, we introduce new features based on the fat and water MR Dixon
channels, and then present a new non-linear regression approach based on random ferns.
Next, we introduce the general problem of organ localization as a regression task.

Input Space: Formally, let us consider the water W and fat F' channels computed from
MR Dixon sequences defined by the two intensity functions I(W) 1(F) . 2 — R,
2 C R? being the image domain. While x = [x, y, 2] represents a voxel location in this
domain 2, w(IW) T(F) x) = X denotes a function mapping the voxel location to a
feature space according to both intensity functions (") and ). The role of feature
representation X is to encode contextual information in the neighborhood of location x
computed using IW) and IF). X is the input of our regression function.
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Output Space: Let us now consider a set of K organs of interest contained in bounding
boxes O = {Oy,- -, 0Oy, ,Oxk}. Each bounding box Oy, is represented by a vector
Ok = [20, y2, 2}, z}, yi, 21). The relative displacement v}, between voxel location

x and bounding box Oy, is parametrized as:
0 0 0 1 1 1
Vk:[xk-fxaykfyazk-fzaxkfxaykfyazk-fz] (l)

We denote by V = [vq, -+, Vg, -+, Vk] the vector containing relative displacements
between x and all organs of interest. V is the output of our regression function. On
Fig[ll these relative displacements between the point x and the liver bounding box are
represented by the red arrows. Here, we consider the following organs: head, left lung,
right lung, heart and liver.

Regression: We assume a training set (X(”)7 V(”))f:’=1 computed over a set of N pa-
tient MR volumes. We could think of modeling the posterior distribution p(V|X) link-
ing the input and output spaces. However, in such high-dimensional feature spaces,
modeling the posterior distribution directly is very difficult. To break down the com-
plexity of this problem, we can first subdivide the input feature space by building a
partition P over it. Indeed, by subdividing the feature space, we obtain cells containing
data points which are easier to model even with simple mathematical models such lin-
ear or constant functions. As illustrated by the low-dimensional toy example on Fig. 1]
(right), the combination of these models over the whole partition results then in a com-
plex non-linear model. Formally, P is defined as an ensemble of T cells P = {Ct}thl.
With P given, we propose to model the posterior in each cell C; as follows:

p(VIX € Ci, P) = Nu(X|p, Xt) 2

where N, is a multivariate Gaussian distribution whose parameters are estimated during
the training phase. In fact, this choice permits to model the full distribution as a piece-
wise Gaussian distribution. In contrast to fitting a Gaussian mixture model, partitioning
is here performed in the input feature space and not in the output space. Moreover, in
the case of trees, this partitionning is performed hierarchically. Based on this, we can
model the probability distribution of V over the full feature space according to partition

P as:

T
p(VIP) = p(VIC:, P)p(Cy) 3)
t=1
Clearly, the quality of the posterior approximation depends on the partition P. If its
number of cells 7" is low, then the posterior approximation will be very rough. On the
other hand, if T is high, each cell will include few training points. In this case, the
partition P tends to overfit the training data and suffers from poor generalization. In
[[12]], Breiman demonstrates that reglacing a single partition P with an ensemble of in-
dependent random partitions {P.}7_, leads to an ensemble regressor achieving better
generalization. In this paper, we apply regression forests and adapt random ferns for re-
gression to construct multiple independent partitions {PZ}ZZ=1~ The posterior estimates
from the different partitions of the ensemble are then combined using averaging. Fi-
nally, we can estimate in one shot the position of all organs of interest contained in
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variable V using the mathematical expectation: V= fv Vp(V)dV. Before going into
the details of our regression techniques in section [3.3] let us first describe the feature
representation we use in the problem of organ localization in MR Dixon sequences.

3.2 Feature Representation

As described in [13], MR Dixon imaging techniques are based on the one shot acqui-
sition of a so-called “in phase” scan where water and fat signals are in-phase and an
“opposite phase” scan where water and fat signals are 180° out-of-phase. Using these 2
scans from the same patient, water and fat signals can be separated to construct a water
IW) and a fat I(F) channel. Since these 2 channels are perfectly registered, we propose
to take advantage from their complementary nature and design a feature representation
based on both water and fat information. While in CT intensity information is directly
related to the underlying tissue distribution, MR intensity information is not absolute
and suffers from variability between different images. For this reason, we will not rely
on intensities as in [[10]], but on textural information by employing Local Binary Pat-
terns (LBP) [14]: we propose to extract textural context variations at different scales
(see Fig. [I). Let us consider a 3D region RS at scale s centered on voxel location x
and a set {Nf(’q}qQ:1 of @ 3D asymmetric cuboidal regions having different sizes, ori-
entations and offsets in the neighborhood of x. Using this, we can extract two binary
feature vectors ng) and XgF) from the two channels where each entry is the result of
the following binary test comparing average intensities within regions N3¢ and R :

i 1 i 1 i
X g = NG| Z 10 < 2| Z 10 (), @)

x' €Ny * X ERs

and this, Vg € {1,--- ,Q} and i € {W, F'}. Repeating this operation at several scales
results in two feature vectors X(") and X () describing the multi-scale textural context
for both channels in the neighborhood of voxel location x. Since X(") and X¥) are
binary vectors, they can be further encoded to reduce their dimensionality. Finally, they
are concatenated in one feature vector: X = [X(W) X ()],

3.3 Ensemble Regression Approaches

This section explains how to use forests and ferns to efficiently partition the input data.
While regression forests have been used for detecting organs in CT [10], there exists
little work on ferns-based regression. In [[15]], Dollar et al. use a ferns-based regressor
in a cascade fashion for pose detection of objects in 2D images. In contrast, we use a
single ensemble regressor.

Forests and ferns: Random forests [12]] are constructed as an ensemble of independent
random trees. Each tree is a set of decision functions that split feature vectors at each
node towards the left or the right branch. Random ferns, later introduced by Ozuysal et
al. [[11], are an ensemble of constrained trees. While a tree applies a different decision
function at each node, a fern systematically applies the same decision function for each
node of the same level. Results of these random tests are finally stored as binary values.
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Ferns benefit from a more compact and simple structure for an accuracy that is similar
to those of random trees [L1]]. In fact, while 2(N =1 operations are needed to grow a
tree of 2V leaves, only NV operations are needed to grow a fern of 2% leaves.
Let us now describe these partitioning approaches more formally. We denote by F =
z
{F(z)} an ensemble of trees or ferns. Each element of this ensemble induces an
z=1

independent partition P(*) = {Ciz), Sy C(Tz) } of the input feature space. Each tree or

fern F*) is defined as a set of L nodes, each node being equipped with a linear function
/1 and an associated threshold 7;, [ € {1,---,L}. The output of evaluating a pair

(fl(z), Tl(z)) on a visual feature vector X is binary, that is fl(z) (X, TZ(Z)) : X — {0,1}.
While in a tree, the output value denoted by bl(z) decides whether X gets pushed towards
the left or the right branch, in a fern, X is evaluated at all nodes. The corresponding
outputs are then stored in binary vector b(*) = [bgz), ey bl(z), ey bg—f)]T. In the end,

while X is pushed through the whole tree until it reaches a leaf (which is a cell Ct(z) of
the partition (*)), in a fern, the full vector b(*) encodes the cell index of the partition
where the vector falls.

Training/Testing: During the training of a fern, the whole training data is used at each
node. This is in contrast to trees where only a subset is considered at each node. If

. .. , N . .
we consider a training set (X(”)7 V(”))n=1 computed over a set of different patient
scans, all feature vectors are pushed through the ferns ensemble and fall into the cells
of the different partitions. Finally, the parameters of each Gaussian can be estimated for

N
each cell Ct(z) using the subset {V(”) X" ¢ Ct(z)} of training data that fell into
1

n=
Ct(z). In the current paper, we do not use optimization in the construction of our ferns
regressor, i.e. the linear functions and their associated thresholds are chosen randomly.
While this permits to have a very fast training procedure, it provides independency from
the training set. This can be an advantage for instance in the case of noisy data. Once
the training has been performed, all node functions and thresholds are frozen. During
the test phase, an unseen data point X is pushed through the whole ensemble until it
reaches a cell in each partition. Then, each cell contributes to the final prediction using
its stored Gaussian model as seen in section[3.1l Next, we describe how to combine the
predictions to localize all organs of interest.

3.4 Anatomy Localization

Let us consider the water 7(") and fat I/ channels of an unseen patient. From

N . .
both channels, a set of feature vectors { X () }n:1 is extracted from voxel locations

{X(”) }g:r By pushing this set of feature vectors through the regression ensemble,
. N
predictions {V(”)} are computed as described in section 3.1l They correspond

n=1
to the relative displacements V(") = [V1, - ,Vk, -+, VK] between each location
x(M = [:L'("),y(”), z(”)] and all organ bounding boxes O = {O1,--- , O, -+ , Ok }.
The bounding box of organ Oy, can be finally estimated as follows:
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Op = i W (o,ﬁ”) + [X("),x(")]) 5)

n=1

where each w,, weights the contribution of voxels according to the confidence of their
predictions. Note that Zﬁ;l wy, = 1. In this paper, we discard contributions having
low confidence and perform averaging on the remaining predictions.

4 Experiments and Results

In this section, we compare our approaches based on regression forests and random
ferns with the current state-of-the-art multi-atlas registration.

Data: Our dataset currently consists of scans from 33 patients who underwent a 3-Tesla
whole-body MR Dixon sequence. All patients have cancer (mostly neck, lung, liver can-
cer) and show a high variability in their anatomy partially due to their disease. For the
detection and localization of organs, we use the water and fat channels. In each scan,
we manually delineated the bounding boxes for following organs: head, left lung, right
lung, liver and heart. The size of the volumes are 192 x 124 x 443 and the pixel spacing
is 2.6 X 2.6 x 2.6 mm.

Regression approach: 100 runs of cross-validation experiments have been conducted
where each experiment consists of a training phase on 20 patients chosen randomly and
a test phase on the 13 remaining patients. For both forests and ferns, all parameters
(number of trees/ferns and tree depth/number of nodes) have been tuned by performing
grid-search within the same range for both techniques. Note that node optimization has
been performed for random forests based on information gain (cf. [10]). For prediction,
each fourth pixel is used and described using 3D LBPs computed over 26 cuboidal re-
gions chosen at 3 different scales.

Multi-atlas registration: 100 runs of cross-validation experiments have been performed.
Each experiment is defined as follows: a set of 20 patients are chosen randomly as
multi-atlas database and 1 patient is randomly chosen as test case. All 20 patients from
the database are registered to the test patient using affine registration. Then, using the
ground truth position of the bounding boxes of the test patient (which is not available
in reality), we evaluate the theoretical lower and upper bounds of the error by using
the patients in the database who provide the lowest and highest localization error. The
mean error is computed over the whole database.

Results: Results reported on Tab[l] shows that we achieve an accuracy which is better
than the “best case” atlas accuracy, while providing an increased robustness. Taking a
look at the localization error per organ, one can notice that the lowest error for our ap-
proach is achieved for the localization of the head, which is due to the fact that the head
is surrounded by a lot of air which makes it easier to localize. While the heart shows
second lowest error, lungs and liver were more difficult to localize. This is mainly due
to the high inter-patient variability of the shape of these organs. The best results were
obtained with 14 ferns/6 nodes for random ferns, and 6 trees/depth of 8 for regression
forests. On a laptop with MATLAB 64 Core Duo 2.4 GHz, the training/testing time on
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Table 1. Comparative results: Compared to atlas-based method, our approaches based on ran-
dom ferns and forests achieve better accuracy and lower uncertainty

MEAN LOCALIZATION ERRORS (mm)
Organs Head Left lung Right lung Liver Heart Overall

Random ferns 9.82 £8.07 14.95+11.35 16.12 £ 11.73 18.69 £ 13.77 15.17 £ 11.70 14.95 +11.33
Random forests 10.02 +8.15 14.78 4 11.72 16.20 £+ 12.14 18.99 + 13.88 15.28 +11.89 15.06 + 11.55
Atlas lower bound 18.00 & 14.45 14.94 = 11.54 15.02 £ 13.69 18.13 £ 16.26 13.31 +11.03 15.88 =13.40
Atlas upper bound 70.25 £ 34.23 60.78 £ 29.47 63.95 = 30.13 70.59 £ 32.88 60.38 £ 28.90 65.19 +31.12
Atlas Mean 35.10 £13.17 30.41 £ 11.39 29.85 + 12.62 31.74 £ 13.49 29.82 £ 12.23 31.38 +12.58

20/13 patients is 0.7/0.5 s for random ferns. Random Forests need 25/1 s. Concerning
atlas registration, each single affine registration needs 12.5 s. To conclude, our approach
provides a fast and robust solution for organ detection and localization and thus fulfills
our requirements towards organ-specific attenuation map.

5 Conclusion

Our contribution is a supervised regression approach based on random ferns and random
forests to detect and localize in one shot multiple organs in whole-body multi-channel
MR images. Experiments conducted on a dataset of 33 patients show that our approach
achieves an accuracy which is better than atlas-based methods, while providing higher
robustness (lower uncertainty) and faster training/prediction times. Furthermore, this
approach can be also useful to integrate semantic information i.e. incorporating organ
labels in further applications such as registration, image navigation or image retrieval. In
future work, we plan to investigate the online performance of the proposed approach to
enable a fast updating of our organ localization system, and then we will move towards
the construction of organ-specific attenuation correction maps.

References

1. Judenhofer, M.S., et al.: Simultaneous pet-mri: a new approach for functional and morpho-
logical imaging. Nature Medicine, 459-465 (2008)

2. Kinahan, P, Hasegawa, B., Beyer, T.: X-ray-based attenuation correction for positron emis-
sion tomography/computed tomography scanners. Semin. Nuc. Med. (2003)

3. Kops, E.R., Herzog, H.: Template-based attenuation correction of PET in hybrid MR-PET.
Journal of Nuclear Medicine (2008)

4. Hofmann, M., Steinke, F., Scheel, V., Charpiat, G., Farquhar, J., Aschoff, P., Brady, M.,
Scholkopf, B., Pichler, B.J.: MRI-Based Attenuation Correction for PET/MRI: A Novel Ap-
proach Combining Pattern Recognition and Atlas Registration. Journal of Nuclear Medicine
(2008)

5. Martinez-Moller, A., Souvatzoglou, M., Delso, G., Bundschuh, R.A., Chefd’hotel, C.,
Ziegler, S.I., Navab, N., Schwaiger, M., Nekolla, S.G.: Tissue Classification as a Potential
Approach for Attenuation Correction in Whole-Body PET/MRI: Evaluation with PET/CT
Data. Journal of Nuclear Medicine 50, 520-526 (2009)

6. Viola, P., Jones, M.J.: Robust real-time face detection. International Journal on Computer
Vision 57, 137-154 (2004)



Fast Multiple Organ Detection and Localization in Whole-Body MR Dixon Sequences 247

7.

8.

10.

11.
12.
13.
14.

15.

Zhou, S.K., Zhou, J., Comaniciu, D.: A boosting regression approach to medical anatomy
detection. In: IEEE Conference on Computer Vision and Pattern Recognition (2007)

Zheng, Y., Barbu, A., Georgescu, B., Scheuering, M., Comaniciu, D.: Four-chamber heart
modeling and automatic segmentation for 3-D cardiac CT volumes using marginal space
learning and steerable features. IEEE Transactions on Medical Imaging 27, 1668-1681
(2008)

. Zheng, Y., Bogdan, C.D.: Marginal Space Learning for Efficient Detection of 2D/3D

Anatomical Structures in Medical Images. In: Prince, J.L., Pham, D.L., Myers, K.J. (eds.)
IPMI 2009. LNCS, vol. 5636, pp. 411-422. Springer, Heidelberg (2009)

Criminisi, A., Shotton, J., Robertson, D., Konukoglu, E.: Regression Forests for Efficient
Anatomy Detection and Localization in CT Studies. In: Jiang, T., Navab, N., Pluim, J.,
Viergever, M. (eds.) MICCAI 2010 Workshop in Medical Computer Vision (2010)

Ozuysal, M., Calonder, M., Lepetit, V., Fua, P.: Fast Keypoint Recognition using Random
Ferns. IEEE Transactions on Pattern Analysis and Machine Intelligence 32, 448—461 (2010)
Breiman, L.: Random forests. Machine Learning 45, 5-32 (2001)

Ma, J.: Dixon Techniques for Water and Fat Imaging. J. Mag. Res. Im. (2008)

Ojala, T., Pietikdinen, M., Harwood, D.: A comparative study of texture measures with clas-
sification based on featured distributions. Pattern Recognition 29, 51-59 (1996)

Dollar, P., Welinder, P., Perona, P.: Cascaded pose regression. In: IEEE Conference on Com-
puter Vision and Pattern Recognition (2010)



ManiSMC: A New Method Using Manifold
Modeling and Sequential Monte Carlo Sampler
for Boosting Navigated Bronchoscopy

Xiongbiao Luo', Takayuki Kitasaka?, and Kensaku Mori®!

! Graduate School of Information Science, Nagoya University, Japan
2 Faculty of Information Science, Aichi Institute of Technology, Japan
3 Information and Communications Headquarters, Nagoya University, Japan

Abstract. This paper presents a new bronchoscope motion tracking
method that utilizes manifold modeling and sequential Monte Carlo
(SMC) sampler to boost navigated bronchoscopy. Our strategy to esti-
mate the bronchoscope motions comprises two main stages:(1) broncho-
scopic scene identification and (2) SMC sampling. We extend a spatial
local and global regressive mapping (LGRM) method to Spatial-LGRM
to learn bronchoscopic video sequences and construct their manifolds.
By these manifolds, we can classify bronchoscopic scenes to bronchial
branches where a bronchoscope is located. Next, we employ a SMC sam-
pler based on a selective image similarity measure to integrate estimates
of stage (1) to refine positions and orientations of a bronchoscope. Our
proposed method was validated on patient datasets. Experimental re-
sults demonstrate the effectiveness and robustness of our method for
bronchoscopic navigation without an additional position sensor.

1 Introduction

During bronchoscopic interventions, physicians must know the position and ori-
entations of a bronchoscope inside the airway trees, since they usually perform
transbronchial lung biopsy (TBLB) to obtain samples of suspicious tumors for
the assessment of bronchus and lung cancer. To localize and track the broncho-
scope, current state of the art in navigated bronchoscopy includes two main
approaches (or a combination of both): (1) image-based algorithms and (2)
electromagnetic tracking (EMT). Although these methods proved good perfor-
mance [TJ2/3], it remains challenging to correctly localize the bronchoscope to
places where it is exactly observing. Image-based schemes cannot tackle situa-
tions where problematic bronchoscopic video images (e.g., bubbles and motion
blurring) happen. EMT-based methods often locate bronchoscopes incorrectly
under any airway deformation, and accuracy of an EMT sensor measurements
is heavily worsened by magnetic filed distortion. Furthermore, no matter what
approaches are used for bronchoscope motion tracking, they hardly adapt them-
selves to situation changes (e.g., patient coughing or dynamic errors in EMT
outputs) over time during bronchoscopic interventions.

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAI 2011, Part ITT, LNCS 6893, pp. 248£255]2011.
© Springer-Verlag Berlin Heidelberg 2011



ManiSMC: A New Method Using Manifold Modeling 249

Beyond methods mentioned above, our primary idea of bronchoscope motion
estimation is that bronchoscopic video sequences basically consist of three cate-
gories: (1) uninformative class, (2) inter-bronchus class, and (3) intra-bronchus
class. The first class only includes problematic bronchoscopic frames (also refer
to ambiguities) due to specular- or inter-reflection, bubbles, motion blurring,
or collision with the bronchial walls. The informative category comprises inter-
and intra-bronchus classes, which correspond to bronchoscopic frames with or
without folds, and bronchoscopic images with bifurcations, respectively. A bron-
choscopic image or scene can always be classified to one of three categories.

Based on these ideas, this work first learns bronchoscopic video manifolds to
segment a bronchoscopic video into different clusters where each cluster repre-
sents one bronchial branch. We here construct bronchoscopic manifolds based on
extending a local and global regressive mapping (LGRM) method [4] to Spatial-
LGRM. By embedding an input image into these clusters, we can find an optimal
bronchial branch that corresponds to its scene where a bronchoscope is observ-
ing. Hence, we can roughly obtain the pose of the camera. We then perform SMC
sampling based on a selective image similarity measure to integrate the estimates
of Spatial-LGRM-based learning to refine the localization of the bronchoscope.

It is worthwhile to highlight several aspects of our approach as follows. First,
we propose a new framework of manifold modeling and SMC sampling to deter-
mine localizations of a bronchoscope for navigated bronchoscopy beyond image-
based methods and EMT systems. Note that our manifold learning-based method
for bronchoscopic scene identification provides an almost real-time means to
roughly estimate the position and orientation of a bronchoscope. Next, we con-
struct a new manifold modeling called Spatial-LGRM, which combines pose in-
formation to characterize the bronchoscope movements. Last, we introduce SMC
sampling to incorporate manifold-based estimates and to tackle situations where
ambiguities occur in bronchoscopic videos. Additionally, although we focused on
bronchoscope motion tracking, we believe that our framework should also be
appropriate to navigate other diagnostic endoscopes, e.g., colonoscope.

2 Bronchoscope Motion Tracking: ManiSMC

2.1 Bronchoscopic Scene Identification

(a) Preprocessing. We segment each 3D CT dataset to obtain bronchial tree
structure information B: B = {by, - ,by, - bg;u=1,2,--- ,k}, where k is the
number of bronchial branches, and b, describes the centerline of one bronchial
branch with its start position s, and end position e,; branch direction d,, can
be computed by d,, = e, — s,. B is used to generate training data.

For each input RB image I; at frame ¢, we first check whether it is an unin-
formative frame. In the HSB (HSB: Hue, Saturation, Brightness) color space, we
compute hue and brightness deviations between current RB image and a virtual
image generated by a virtual camera with an estimated pose inside the airway
trees. If hue and brightness deviations are bigger than two predefined thresh-
olds, I; is considered as an uninformative frame. If I; is an informative image,
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we then perform morphology-based bifurcation detection to determine whether
I; is a bifurcation (intra-bronchus) image. We extract hole regions in I;: if hole
regions is more than two and the distances among these regions are constrained
in a domain (here need to set minimum and maximum values for this domain),
I; is an image with observed bifurcations.

(b) Training Data Generation. By bronchial centerline information B, we
generate training data by changing positions and orientations of a virtual camera
placed in a pre-built 3D anatomical airway model. Let p denotes the camera
position. Three vectors e,, e, and e, (e; = e, x e,) describe orientations of the
virtual camera. We update positional parameters of the virtual camera by:

D=l + ey, Bl =sut oudu, (0,0,) = o0, e})a;’, o = (cossinded), (1)

where p}, is the v-th chosen point on the centerline of branch by, r is the ra-
dius of b, and «, € (0,1) is constant coefficient. Simultaneously, we change
orientational information by updating three vectors using quaternion q:

(0,e:) = quas((0,€)qy 'a’,  (0,e)) = dpauao((0,€))ay 'au'a, ', (2)
= (cose smee R (cosw sin® e 2)s (cos(p sznweo) (3)
o =108y 2 Ao =008, 8t €2 e = 27"
where €2 = d,/||d.||, €] is a randorn vector that satisfies: e - €) = 0, w and ¢

are rotatlonal angles around eV, 0 is a rotational angle around el
Generally, we generate two categorles training data: (1) inter- bronchus and
(2) intra-bronchus, by adjusting coefficient a,: for inter-bronchus (fold) images
€ [0.1,0.3], and intra-bronchus (bifurcation) images with a,, € [0.7,0.9].

(c¢) Learning Bronchoscopic Video Manifolds. After generating training
data, we calculate low dimensional embedding spaces or eigenspaces and map-
ping functions or eigenmaps using LGRM that was proved to provide better
performance more than other manifold learning methods in [4].

Suppose n training images X = {x1,---,%;,--- ,X,}, where x; € RP. D =
w X h, w X h is the image size. Eigenspace Y = {y1, - ,¥i, * ,¥n} are low
dimensional embedding manifolds of X, where y; € R% (d << D). Manifold
learning aims to map X to Y by finding eigenmap M € RP*?: x; — y; RP —
R¢. Note that X,Y, and M represent matrices of X,), and M.

In LGRM, since each image x; is first transformed to a Hilbert space H and
assumes that there exists a linear projection between H and R?, for any x;, its
low dimensional embedding y; satisfies:

yi =9 M)" ¢ (xi) + N, (4)

where ¢ (M)? maps M from H to R? and N is a residual term.
Specially, finding Y and M can be formulated the following optimization
problem in terms of LGRM [4]:

min Tr [YT (Li + pL, )Y] (5)

YTyY=I
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where Tr is the trace operator, I is an identity matrix, (L; + uLg) is the Lapla-
cian matrix that is the key component in manifold learning, and u is a con-
stant. L; that preserves the local manifold structure is calculated by Laplacian
Eigenmaps [5]. L, denotes a kernelized global regression regularization, which
is the main different part from other manifold learning algorithms; it can com-
puted by L, = (H (HKH + 51)71 H, where £ is a regularization parameter, H
is the global centering matrix, and K is the kernel matrix with its component
Kij = exp(—||x; — x;||/0?) between two training images x; and x;.

Performing eigen decomposition on (L; + pLg), we can obtain eigenspace Y.
Seeking partial derivatives of Eq.[H ¢(M) and N can be determined by [4]:

(M) = (X)HHy (X)" XH+¢I)7'Y, N= ;YTLﬂ - TlnMTw (X) 1, (6)

when constant m reckons on L; and 1,, € R™ is a vector of one.
After obtaining eigenspace Y and eigenmap M, for any input RB image I,
its embedding y; can be easily obtained by Eqs. [ and [G

v = (4 (00 HHY (00 XH + 60 7Y) 9 () + L ¥ 1~ LMY (X) L. ()

However, LGMR only use intensity information of training images. This means
L; and L, (or K) only preserve intensity information of training images. From
our experiences, intensity of inter-bronchus (fold) images are quite similar, al-
though they may generate from totally different observation positions and ori-
entations. This results in similar embedding representations of inter-bronchus
images in Y; it may collapse clusters to wrongly identify bronchoscopic scenes
and incorrectly estimate bronchoscope localizations.

To overcome such a drawback of LGRM, we extend it to Spatial-LGRM that
integrates spatial information included camera position p and orientation matrix
r(ez, ey, e;), i.e.,, we add p and r(e;, ey, e;) to y; w.r.t x;:

(vi) =y = (v,p' ehep,el), Y =Y, R R, (8)
Finally, we obtain eigenspace Y* and eigenmap M for RB scene clustering.

(d) Bronchoscopic Scene Clustering. After preprocessing input RB image
I, we cluster I; to recognize current bronchoscopic scene by: (a) embedding
I; to Y*® using M in terms of Eq. [l and obtain y3, (b) calculating Euclidean
distance C}_, between estimated position p;—1 of I;_; and p’ € yf € Y*: C}_; =
VIIPi—1 — pi[|2, and choosing J, nearest neighbors for y§ by Ci_;: {yz}l 1 (0
computing orlentatlon dev1at10n O | between estimated rotation matrix ry_q

of I,y and r"(e}, e, el) € y; € {yz}l 5 Oh = arccos((Tr(r rl ) —1)/2),
and selecting .J, nearest neighbors by O | from {y2 : {yh}h 1, and (d)

calculating distance E' between yi and yj € {y{};>, Eh = VIly: —yil2
Finally, the output of the cluster is the pose parameters (p*, %) that correspond
to the optimal embedding y: (y: € {yh}hzl) that is the closest to y3.
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2.2 SMC-Based Bronchoscope Motion Estimation

This section fuses pose parameters (p2,r?) estimated from the step of broncho-
scopic scene identification to determine current RB pose using a SMC sampler.
Since this stage is quite similar to our previous work [6], we here briefly review
the processing of SMC-based bronchoscope motion estimation.

Let Q¢(p¢,r:) with translation p; and rotation matrix r; denotes transforma-
tion matrix from bronchoscope coordinates to CT coordinates at frame t.

We generate set of random samples S = {(Qf,w{) : t = 1,2,... ,N;g =
1,2,... ,M}(N and M are the number of frames and samples, and w] is a
sample weight) to approach the posterior distribution of bronchoscope motion
Q:. These samples are deterministically drifted and stochastically diffused by

7 = AQY_, + Bn{, where matrix A is calculated from (p,r?) and BnF is a
noise term. Next, using QY to generate virtual image I/, we compute weight
w{ by a selective image similarity measure [I]: w{ = MoMSE(1;,Iy(QY)). Fi-
nally, in our case, the output parameters Q. with position and rotation of the
SMC sampler for determining the pose of RB frame I; can be determined in
terms of w?: Q, = maxye{(Qf,wf)}, i.e., sample Q. with maximal weight
corresponds to the maximal similarity between the current bronchoscopic image
and the virtual frame generated by placing a virtual camera with the estimated
pose including translation vector and rotation matrix inside the 3D airway tree
anatomical model that was constructed by volume rendering techniques.

3 Experiments

For validation of our proposed method, we applied it to five cases of patient
datasets that include bronchoscopic video frames and their corresponding 3-D
chest CT images. The acquisition parameters of CT images are 512 x 512 pixels,
72-361 slices, and 1.0-2.0 mm slice thickness.

In Section 2l(a), after pre-processing CT data, we obtain bronchial branch
structure information 5 and a 3D anatomical airway model. We generate training
images with 30 x 30 pixels in gray-scale space by adjusting the following parame-
ters in terms of Egs. [[H3lin Section ZI(b): for inter-bronchus images, «,, is set to
0.15, 0.20, and 0.25; for intra-bronchus images, a,, is set to 0.80, 0.85, and 0.90;
¢ =30° 6 =15° w=0°15°30°---,345° and ¢ = 0°,30°,60°,--- ,330°. For
each branch b, € B, we generates 7488 inter-bronchus and 7488 intra-bronchus
frames. During learning bronchoscopic video in Section [Z1] we constructed ten-
dimensional embedding manifolds (d = 10 and D = 30 x 30). Hence, the dimen-
sions of matrices X,Y, and M are 7488 x 900, 7488 x 10, and 900 x 10. We set
p=10"% ¢ =10"°, and o = 100 in Spatial-LGRM according to [4].

Currently, for each patient case, we use six bronchial branches to create bron-
choscopic video manifolds. They are (1) TR: trachea, (2) LM: left main bronchus,
(3) RM: right main bronchus, (4) LU: left upper lobe bronchus, (5) RU: right
upper lobe bronchus, and (6) RT: right trunchus intermedius. Hence, we totally
obtain 12 clusters (inter- and intra-bronchus classes) for one patient and each
cluster includes one eigenspace and one eigenmap.
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After uninformative and bifurcation detections of input RB image I; in Sec-
tion 2ZI(a), we convert I; to a gray-scale image (362 x 370 or 256 x 263 pixels)
and interpolate it to 30 x 30 pixels. During scene clustering in Section[2ZI(d), the
parameters of nearest neighbors are set to: J, = 200 and J, = 100. Additionally,
to evaluate the successful rate of uninformative, we generate ground truth by
manually inspecting real bronchoscopic images from three observers, one bron-
choscopist and two scientists. Moreover, the tracking results of our proposed
method are also manually and visually examined by the same three experts.

4 Results and Discussion

Table [ summarizes the processed results of our methods. Detection rates of
uninformative and intra-bronchus images are about 76.3% and 89.7%. The suc-
cessful or correct scene recognizition by only using bronchoscopic scene identifi-
cation (BSI) described in Section [2]is about 3839 frames (59.6 %), which was
improved to 4522 frames (70.2 %) using ManiSMC (Section 2]). Fig. [l visually
compares the processed results of methods of BSI and ManiSMC. Generally, our
experimental results demonstrate the effectiveness of ManiSMC that shows a
good performance to understand bronchoscopic videos.

However, our method still fails to correctly estimate the bronchoscope local-
izations. Several reasons must be clarified as follows. First, sometimes uninfor-
mative images are wrongly detected, which results in incorrect embedding in
manifolds; e.g., an image with bubbles can never find a correct correspondence
in eigenspaces. In the future, we will improve uninformative frame detection
by the work of Atasoy et al. [7] or the methods presented in [89]. Next, intra-
bronchus images are wrongly classified. If an inter-bronchus image is detected
to be an intra-bronchus one, it will never obtain a correct embedding in man-
ifold clustering. Fig. [2 (a) (top) shows a successful detection of uninformative
and bifurcation images. In some cases, it is difficult to detect whether an im-
age is bifurcation, e.g., in Fig. @I (a) (bottom), the RB frame is collided with
a bronchial wall. Since detections of uninformative and bifurcation images are
important to BSI and ManiSMC, we must improve current detection methods to

Table 1. Quantified processed results of bronchoscope motion tracking by visual in-
spection that manually checks if a RB image is similar to a virtual one

Patient Number Moving Detection rates Successful frames
cases of frames path Uninformative Bifurcation BSI ManiSMC
1 1436 LM—LU 76.2% 89.7%  59.0% T7.0%
2 1685 TR—LM 74.6% 89.2%  51.4%  63.4%
3 1167 TR—RM—LM 70.8% 88.5%  45.8%  53.7%
4 1053 RM—RU 79.3% 90.3%  71.5% 77.5%
5 1101 TR—RM—RT 80.8% 90.8%  76.1% 82.2%

Total 6442 76.3% 89.7% 59.6% 170.2%
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Fig. 1. Visual inspection of processed results of Case 4 by our bronchoscope motion
tracking methods. Top row shows selected frame numbers and second row shows their
corresponding patient RB images. Other rows display virtual images generated from
processed results using methods of BSI and ManiSMC.
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Fig. 2. (a) Examples of bronchoscopic scene identification: successfully recognized (top)
and unsuccessfully identified (bottom) images. They show 9-nearest neighbors (left) of
BSI, the frame with “0J” used to SMC sampling, and RB images (median) with cor-
responding virtual images (right) generated by estimates of ManiSMC. (b) Computa-
tional times of Case 1. Average processing times of methods of BSI and ManiSMC are
about 42 and 750 milliseconds per frame. Note that BSI can process one frame almost
in real time (about 25 fps).

further enhance performances of BSI and ManiSMC. Third, similar images such
as collision of bronchial walls and convolution of bronchial bifurcations in train-
ing data usually confuses clusters to determine accurate embeddings, although
correct embeddings are included in the nearest neighbors of input RB images.
Forth, we generated training data by updating the virtual camera observation
poses in terms of bronchial centerline, i.e., most training images converges the
bronchial centerline; however, a bronchoscope is usually not moving along the
centerline, which causes actual bronchoscope poses that are difficult to corre-
spond to manifolds. We need to improve the diversity of training data by adding
more different virtual camera poses. Moreover, loss of centerline information due
to airway segmentation algorithms also contributes to failures of scene identi-
fication. Finally, training data were generated from static CT slices that were
acquired without airway deformation but bronchoscopic videos include patient
breathing or coughing, this also causes unsuccessful bronchoscope tracking. Ad-
ditionally, computational times of our methods are shown in Fig.[2] (b). Interest-
ingly, BSI can almost process one frame in real time, about 25 frames per second



ManiSMC: A New Method Using Manifold Modeling 255

(fps). ManiSMC needs 0.75 seconds per frame since it requires to compute each
sample weight during SMC-based motion estimation that is time-consuming.

5 Conclusion

This work proposed a new method that introduces LGRM-based manifold learn-
ing and SMC sampling for bronchoscope motion estimation. We constructed a
Spatial-LGRM modeling with camera pose information to learn bronchoscopic
video manifolds and use them to identify bronchoscopic video scenes where a
bronchoscope is located and observing. Such a method can almost process video
frames in real time (about 25 frames per second). By integrating a SMC sam-
pler, our method can tackle situations where ambiguities occur in bronchoscopic
videos. We may conclude that our proposed method provides a perspective means
to boost bronchoscopic navigation without an additional position sensor.
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Abstract. We propose a technique to represent a pathological pattern
as a deviation from normality along a manifold structure. Each subject
is represented by a map of local motion abnormalities, obtained from a
statistical atlas of motion built from a healthy population. The algorithm
learns a manifold from a set of patients with varying degrees of the same
pathology. The approach extends recent manifold-learning techniques by
constraining the manifold to pass by a physiologically meaningful ori-
gin representing a normal motion pattern. Individuals are compared to
the manifold population through a distance that combines a mapping to
the manifold and the path along the manifold to reach its origin. The
method is applied in the context of cardiac resynchronization therapy
(CRT), focusing on a specific motion pattern of intra-ventricular dyssyn-
chrony called septal flash (SF). We estimate the manifold from 50 CRT
candidates with SF and test it on 38 CRT candidates and 21 healthy
volunteers. Experiments highlight the need of nonlinear techniques to
learn the studied data, and the relevance of the computed distance for
comparing individuals to a specific pathological pattern.

1 Introduction

By definition, a disease is an impairment of the normal condition of an organism.
Considering different grades of the same disease as progressive deviations from
normality addresses therefore the understanding of this disease and facilitates
its diagnosis in a given patient. This approach is particularly of interest for car-
diac resynchronization therapy (CRT), where the definition of relevant criteria
for selecting candidates likely to respond to the therapy is still a topic under
active debate [5]. The advantages of considering specific groups of mechanical
dyssynchrony in the selection process were recently discussed in [II]. Each of
these groups corresponded to one pathological pattern of myocardial motion
and deformation with different grades of abnormality with respect to a healthy
cardiac function. However, the approach lacks of reproducible tools for the grad-
ing of a given pathological pattern within a population and for the quantitative
comparison of individuals to each of these specific populations. The aim of this
paper is to demonstrate the relevance of describing each pathological pattern as
a deviation from normality along a manifold structure, allowing the computation
of an appropriate distance between individuals and each pathological pattern.
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© Springer-Verlag Berlin Heidelberg 2011



Distance from Normality Using Constrained Manifold 257

® Studied N — without constraint
; o } ;
subject o+ with constraint
b &
& "
3
+ \
\.r 5
4
N 2
Ny S+
+ N
E ol
+ o f
(b)

Fig. 1. (a) Distance proposed in this paper, combining a mapping to the manifold and
the path along the manifold to reach its origin. (b) Interpolation of a 1D synthetic
dataset using inexact matching, before and after the addition of a constraint forcing
the curve to pass by the point indicated by the black arrow.

The definition of an optimal space for the comparison of different populations
was already addressed by dimensionality reduction techniques, such as principal
component analysis (PCA), Kernel-PCA [10], principal geodesic analysis (PGA)
[4], linear discriminant analysis [9] or multivariate statistics [14]. Nonetheless, the
flexibility of these techniques is limited when a new subject or a new popula-
tion is added to the existing dataset, as dimensionality reduction is applied to
the whole set of studied subjects. In addition, the dimensionality reduction could
be biased towards certain populations if they show higher variability. An alter-
native for moving beyond these limitations consists in separating the analysis for
each coherent group of subjects. Using PCA, Kernel-PCA or PGA within a given
population is of limited interest for our application, as we target the comparison
of individuals to the whole population and not just to its mean or centroid. The
comparison of an individual to its k-nearest neighbors (k-NN) does not take into
account the local topology of the dataset and assimilates all distances to Euclidean
distances [13] [7]. In contrast, manifold learning techniques intrinsically take into
account this geometry, and allow relevant comparison of individuals to the stud-
ied population through the use of a mapping distance. This mapping results from
the “pre-image problem,” used in the literature for denoising [10] []], segmenta-
tion [3], face recognition [I5] and regression [I]. A distance based on this mapping
mechanism was introduced in [6], but its use was limited to the estimation of re-
construction errors inherent to a reduction of dimensionality.

In this paper, we extend manifold-learning techniques to embed the definition
of a relevant origin within the manifold. We propose a distance for comparing
individuals to the manifold population, which combines a mapping to the mani-
fold and the path along the manifold to reach its origin (Fig.[Ih). The originality
of our method resides in the use of motion abnormality maps as input, as intro-
duced in [2], which allows the gradation of the disease and the definition of a
physiologically meaningful origin within the manifold, representing a normal mo-
tion pattern. Each pathological pattern is therefore considered a deviation from
normality along a manifold structure. We present the application of the pro-
posed method to septal flash (SF), a specific motion pattern of intra-ventricular
dyssynchrony associated to a high response rate to CRT [11].
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2 Methods

The computation of a distance between individuals and a given population consid-
ered as a pathologic deviation from normality consists of two steps: the quantifica-
tion of abnormality for each subject in the dataset, and the estimation of a manifold
for this population, constrained to pass by an origin representing normality.

2.1 Atlas-Based Maps of Motion Abnormalities

The inputs for our method consist of 2D spatiotemporal maps of myocardial
motion abnormalities, obtained from a statistical atlas of motion built from
healthy volunteers [2]. Each map corresponds to one subject in the dataset, and
is used as a 2D image in which the horizontal dimension is time (systole) and
the vertical one is the position along the septum. Each pixel value corresponds
to a p-value index used to locally encode abnormality, in a logarithmic scale,
multiplied by the sign of the radial velocity. This choice was made to highlight
the inward and outward events of SF, when present (FiglZh). The color-code
associates blue and red color to highly abnormal inward and outward motion
of the septum, respectively. According to these conventions, the origin used to
constrain the manifold (Sec. [Z2]) is defined as an image having 0 value at each
pixel, representing a normal motion pattern.

2.2 Manifold-Based Distances to a Population

All the images considered in this paper belong to an ambient space A. Let’s denote
7 = {Iy,....,In} C A the dataset of N + 1 images used for the manifold estima-
tion. The image Iy corresponds to the manifold origin for normality. This image
is added to the original dataset {I4, ..., I} before any computation, so that every
image I;, ¢ > 0 is connected to Iy through the isomap graph resulting from the
computations described below. This amounts to considering every element of 7 as
a deviation from the origin along a specific path on the manifold structure.

The space of manifold coordinates is denoted C C R™, m being the dimension-
ality of the manifold, while f : A — C and g : C — A stand for the correspondence
functions between A and C. The computation of these functions is based on inter-
polation techniques adapted from [I] and explained in the following paragraphs.
We denote d : A — R the metric used to compare elements of A.

Manifold estimation. The isomap algorithm [I3] is used to estimate the
manifold. First, a graph is built for the dataset Z, based on the k-NN algo-
rithm, connecting all the images among themselves according to the metric d.
Then, Euclidean embedding of the manifold data provides a set of coordinates
X = {xq,...,xny} CC.

From ambient space to manifold coordinates. The estimation of f : A — C
can be formulated as an exact matching problem on a reproducible kernel Hilbert
space V [12] of functions A — C, namely:

1
argmin(2 ||f||‘2,) under the constraint f(I;) = x;, Vi € [0, N] (1)
fev
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with solution:  f(I) = /L) K4(LL) - a; withaz :== K; ' xz,

where Ky is the matrix (Kf(I,»7 Ij))(i HE0.N]2
tial form K ;(I,J) := exp ( - d(LJ)Q/U)%), (I,J) € A%, o being its bandwidth,
and (Xl)

K¢ being chosen of the exponen-

and a7y and x7 the vectors (ai).

i€[0,N] respectively.

1€[0,N]’
Back from manifold coordinates to the ambient space. The estimation
of g : C — Ais a variant of the previous computation, formulated as an inexact
matching problem on a reproducible kernel Hilbert space W [12] of functions
C — A, with a constraint to force the manifold to pass by the origin image Iy:

N
1
argrilvin(Q||g||$,V + g E d(g(xi),Ii)) under the constraint g(xo) =Ip (2)
9¢€ i=1

with solution: g(x) = Zi\io Kgy(x,%;) - b; with by := (K, + #M)f1 g,

where K is the matrix (Kg(xi, xj)) K4 being chosen of the exponen-

i,5)€[0,N]2?
tial form Ky(x,y) := exp (f ||xfy||(2/]37§[), (]x, y) € C%, o, being its bandwidth,
M is the matrix (Mm)(i’j)e[o’N]Q, with M; ; =1 Vi # 0 and 0 otherwise, and bz
and Iz the vectors (bi)ie[o,N] and (Ii)ie[o,NV
The addition of such a constraint is illustrated in Fig. [Ib, which displays the
interpolated curve obtained from a 1D synthetic dataset using inexact matching
before and after forcing the curve to pass by one point, as described in Eq. 2

respectively.

Mapping to the manifold and induced distance. Any image I € A can be
associated to an element of the manifold I by means of the composition of the
above-defined functions, using I= g( f (I)) This composition allows defining a
distance between any image I € A and the manifold [6], namely: dmapping(I) =
d(i,I). This distance is complemented by a second one, which compares indi-
viduals to normality along the manifold structure: dpmanifora(I) = || f(I) — xol|?.
Total distance to normality is then written as \/ (dmapping)? + (dmanifold)?-

3 Experiments and Results

Patient population and processed data. Using the method presented in
Sec.[2.2] a manifold was estimated from a population of 50 CRT candidates with
SF. This manifold is expected to represent pathologic deviations from normal-
ity, each point of the manifold being a SF pattern. A second dataset was used
for testing the distances proposed in Sec.[2Z:2l This population was made of 38
CRT candidates (7 having SF and 31 without SF) and 21 healthy volunteers.
All patient data was acquired before the implantation of the CRT device. The
presence of SF was assessed by two experienced cardiologists, from the visual
inspection of echocardiographic M-mode images, as described in [I1].
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Fig. 2. (a) Map of septal motion abnormalities for one CRT candidate with SF. The
color-scale encodes abnormality (p-value) in a logarithmic scale, multiplied by the sign
of the radial velocity v, to highlight SF (Sec.2J). (b) Two-dimensional embedding of
the manifold of SF p-value maps (output of isomap) according to its two first dimen-
sions. The blue-framed map corresponds to the image used to constrain the manifold,
representing a normal motion pattern.

A 2D spatiotemporal map of myocardial motion abnormalities obtained from
a statistical atlas of motion [2] was associated to each subject, as explained in
Sec. 211 The atlas was built from the set of 21 healthy volunteers. The ab-
normality maps had a size of 31 x 20 pixels, corresponding to the sampling of
the systolic period (horizontal dimension) and the septum along its medial line
(vertical dimension), respectively.

The sum of squared differences was used for the metric d : A — R. The number
of neighbors for the k-NN computations was set to kK = 5, which guaranteed that
all the images from the manifold dataset were connected among themselves, as
tested experimentally. A two-dimensional embedding of the computed manifold
(output of isomap) is represented in Fig. Bb, showing the link between each
image and its k-NN. The bandwidths for the kernels Ky and K, introduced in
Sec. 22 were set to the average k-NN distances over the manifold population and
its corresponding set of coordinates X, respectively. The value of v involved in
the inexact matching problem (Eq.[2]) was set to 10, representing a compromise
between the smoothness of the manifold and its closeness to the data.

Manifold accuracy. The influence of the manifold dimensionality on the recon-
struction error was estimated by computing the average and standard deviation
of diapping Over the manifold population, as shown in Fig. [Bh. The curve reaches
95% of its final value when the manifold dimensionality is higher than 10, which
is the value we chose for the rest of the paper. The reconstruction error obtained
with a linear approximation of the manifold dataset (using PCA) is higher, as
visible in this figure, justifying the choice of nonlinear techniques to characterize
the population of CRT candidates with SF.
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Fig. 3. (a) Evolution of the reconstruction error against the number of dimensions used.
Comparison between PCA (dashed blue) and isomap (black). Values correspond to the
average * standard deviation over the manifold dataset Z. (b) Variations around the
average map along the two first principal directions of the manifold dataset Z, obtained
using either PCA or isomap. Arrows indicate the inward and outward events of SF,
when this pattern is present on the map.

The limitations of PCA on the studied dataset, compared to isomap, are also
visible on Fig. Bb. This figure represents the variations around the average map
along the two first principal directions of the manifold dataset Z, obtained using
either PCA or isomap. As indicated by the black arrows, PCA does not guarantee
that the computed maps still correspond to a SF, while this pattern is preserved
by the use of manifold-learning.

Distance to the manifold. Figure M represents the distance between all the
subjects involved in this study and the manifold. We separated the analysis be-
tween dmapping and dmanifora for interpretation purposes. The patients from the
manifold dataset have low dp,qpping, Which corresponds to the reconstruction er-
ror plotted in Fig. Bh. As the manifold is built from this population, they largely
span the space associated to dyaniford- There is no SF patient from the manifold
dataset close to the origin according to dmanifoid, While almost all the healthy vol-
unteers have lower values (vertical lines indicate the median and 15¢/3"? quartiles
of dmanifora for the healthy subjects). This provides an estimation of the thresh-
old above which SF can be detected, as being a deterioration from normality. This
threshold may come from the accuracy of the patient selection process using M-
mode images [11], and from the minimum accuracy of the abnormality maps [2].
Among the testing subjects, patients having SF are closer to the manifold than pa-
tients without SF, according to dp,apping- Higher values of dpanifora are observed
in the subjects having higher SF abnormalities on the maps. A larger bandwidth
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Fig. 4. (a) Subject ordering according to dmanifoid and dmapping, used as horizontal
and vertical axis, respectively. Vertical orange lines indicate the median and 1°*/3™
quartiles of dpmanifora for the healthy subjects. (b) Patient ordering according to the
amount of total abnormality and the proposed distance \/(dr,mmm-m])2 + (dmanifold)?.

for the kernels Ky and K, would bring the testing patients with SF closer to the
manifold, but would also increase the reconstruction error.

As the 2D maps processed in this study locally contain a measure of abnor-
mality, it is also of interest to compare the total abnormality of each map against
the distances introduced in Sec. This comparison is shown in Fig. @b. Total
abnormality was computed for each subject using the L? norm of its abnormal-
ity map. Linear regression over the plotted data led to R? coefficients of 0.91
(manifold data only, dashed red line) and 0.81 (whole data, black line). This
suggests that the dimensionality reduction inherent to the manifold estimation
preserves the concept of abnormality embedded in the processed maps.

4 Conclusion

We have proposed a method for modeling a specific pathological motion pattern
as a manifold. This manifold represents pathological motion as a deviation from
normality, being by construction the manifold origin. The method was used
to compute a distance between individuals and a given pathological pattern.
Experiments demonstrate the need of nonlinear embedding of the learning data,
and the relevance of the proposed method for grading different stages of motion
abnormality. In the context of CRT, the method can improve the selection of
responders to the therapy, allowing reproducible comparison of a new candidate
to specific patterns of mechanical dyssynchrony that condition CRT outcome.
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Abstract. Medical imaging datasets used in clinical studies or basic
research often comprise highly variable multi-subject data. Statistically-
controlled inclusion of a subject in a group study, i.e. deciding whether
its images should be considered as samples from a given population or
whether they should be rejected as outlier data, is a challenging issue.
While the informal approaches often used do not provide any statistical
assessment that a given dataset is indeed an outlier, traditional statistical
procedures are not well-suited to the noisy, high-dimensional, settings en-
countered in medical imaging, e.g. with functional brain images. In this
work, we modify the classical Minimum Covariance Determinant ap-
proach by adding a regularization term, that ensures that the estimation
is well-posed in high-dimensional settings and in the presence of many
outliers. We show on simulated and real data that outliers can be de-
tected satisfactorily, even in situations where the number of dimensions
of the data exceeds the number of observations.

Keywords: Outlier detection, Minimum Covariance Determinant, reg-
ularization, robust estimation, neuroimaging, fMRI.

1 Introduction

Between-subject variability is a prominent effect in many fields of medical imag-
ing, and particularly in brain imaging. While part of this variability can be
viewed as normal fluctuations within a population or across repeated measure-
ments, and can be considered as an effect of interest for diagnosis problems,
part of it may be a confound, related to scanner instabilities, experimental is-
sues, or acquisition artifacts. Such confounding factors can be much larger than
the effects of interest: for instance, in functional neuroimaging, the variability re-
lated to acquisition issues (motion, defective experimental setup, scanner spikes)
can mask the true effect of interest, which is the variability in brain functional
organization related to diseases, psychological or genetic factors.
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The detection of abnormal data, or outlier detection, is important in order
to ensure that the ensuing statistical analysis will be robust to such undesired
effects. This detection should be automated for the sake of reproducibility and
to be time efficient, as cohorts can now encompass up to several hundreds of
subjects. This detection is challenging because i) images, in particular brain im-
ages, are complex, high-dimensional objects with some unknown latent structure;
ii) the problem is unsupervised, in the sense that outlier detection procedures
can in general not be calibrated on training data; and 44) in many cases, it is
impossible to normalize the signal or its variability.

So far, high-dimensional analysis procedures have been confined to high SNR
data, such as anatomical images, e.g. with the use of manifold learning techniques
[113]. These, however, are not robust to outlier data, and are not applicable
to functional Magnetic Resonance Imaging (fMRI) since they may easily be
confounded by noise. As a first step to alleviate this issue, univariate outlier
detection methods have been proposed for fMRI, in which one particular image
feature is studied, and compared to other data [6/12]. Kherif et al. [5] point out
the need of homogeneous datasets in fMRI studies and propose a model-based
multivariate framework as a solution. However, their work is restricted to small
cohorts and does not discuss statistical control.

While the robust statistics literature generally considers that problems with
a number of dimensions comparable to the number of observations cannot be
addressed in model-based approaches, we investigate whether outlier detection
is still possible in that setting. Specifically, we modify the Minimum Covariance
Determinant method [8] so that its performance approaches the level of non-
parametric methods, such as one-class Support Vector Classification [2]. We de-
scribe the new robust estimator in the next section and show its well-posedness.
We then perform some experiments on simulated data and assess the behaviour
of the proposed method with respect to state-of-the-art techniques. Finally, we
describe the application of our approach to an fMRI dataset, where we show
that outliers can still be detected on medium-sized groups of subjects.

2 Robust Location and Covariance Estimates

We focus on a model-based approach, as it yields more interpretable results as
well as a probabilistic contr