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Preface

The 14th International Conference on Medical Image Computing and Com-
puter Assisted Intervention, MICCAI 2011, was held in Toronto, Canada during
September, 18–22, 2011. The venue was the Westin Harbour Castle Hotel and
Conference Centre on the waterfront of Lake Ontario in Downtown Toronto, the
world’s most ethnically diverse city.

MICCAI is the foremost international scientific event in the field of medical
image computing and computer-assisted intervention. The annual conference
has a high scientific standard by virtue of the threshold for acceptance, and
accordingly MICCAI has built up a track record of attracting leading scientists,
engineers and clinicians from a wide range of technical and biomedical disciplines.
The year 2011 saw a record 819 paper submissions.

The Program Committee (PC) of MICCAI 2011 comprised 53 members. Each
of the 819 papers was assigned to two PC members (a primary and a secondary)
according to their expertise and the subject matter of the paper. The primary
member knew the identity of the authors, but the secondary one did not. Each
PC member had about 17 papers as primary and a further 17 as secondary mem-
ber. The primary PC member assigned at least three external reviewers to each
paper, according to their expertise and the subject matter of the paper. The ex-
ternal reviewers provided double-blind reviews of the papers, and authors were
given the opportunity to rebut the anonymous reviews. In cases where reviewer
opinions differed significantly and/or the rebuttal made it necessary, the pri-
mary member initiated a discussion among the reviewers. The primary member
summarized the outcome of the discussion in a short report for the secondary.
Finally, the secondary member considered all input (the reviews, rebuttal, dis-
cussion, primary’s report, and, almost importantly, the paper itself) and made
a recommendation for acceptance or rejection. The secondary PC member did
not know the identity of the authors.

A two-day PC meeting was held with 33 of the PC members present. Each
paper received fair consideration in a three-phase decision process.

– First stage: Initial acceptance of papers ranked very high by both the re-
viewers and the secondary PC member. Initial rejection of papers ranked
very low by both the reviewers and the secondary PC member.

– Second stage: groups of five to seven PC members ranked the remaining
papers and again selected the best papers and rejected the lowest ranking
papers.

– Third stage: a different set of groups selected the best papers from the re-
maining undecided papers and rejected the rest.

The PC finally accepted 251 papers, giving a 30% acceptance rate.
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We are greatly indebted to the reviewers and to the members of the PC for
their extraordinary efforts assessing and evaluating the submissions within a very
short time frame.

In 2011, attendees saw two changes in the way the program was organized.
All accepted papers were presented as posters, and a subset of these were also
invited for oral presentation, which were organized in clinical themes rather
than by methodology as in earlier years. Poster sessions were organized in their
traditional technical themes as in the past.

In addition to the main 3-day conference, the annual MICCAI event hosted
an increased number of satellite tutorials and workshops, organized on the day
before and the day after the main conference. This year’s call for submission for
tutorials and workshops led to a record 21 workshops and 8 tutorials accepted by
a committee headed by Randy Ellis (Queen’s University) and Purang Abolmae-
sumi (University of British Columbia). The tutorials provided a comprehensive
overview of many areas in both the MIC and CAI domains, offering a unique ed-
ucational forum for graduate students and postdoctoral fellows. The workshops
presented an opportunity to present research, often in an early stage, to peer
groups in a relaxed environment that allowed valuable discussion and feedback.
The workshop subjects highlighted topics that were not all fully covered in the
main conference, and thus added to the diversity of the MICCAI program.

In reviewing the proposals for these events, emphasis was given to workshop
submissions that provided a comprehensive and interactive forum to address an
open problem in MICCAI. We also promoted tutorials that related to an existing
sub-discipline of MICCAI with known materials, approaches and open problems
to help train new professionals in the field. Among the accepted workshops, sev-
eral focused on emerging trends in the field of multi-modal statistical atlases,
advanced computational and biomechanical models, and high-performance com-
puting. MICCAI 2011 also hosted eight tutorials that spanned a wide spectrum
of topics in basic and advanced software development for medical image analy-
sis, algorithms for image segmentation, registration and visualization, as well as
those highlighting new techniques in image-guided interventions. We would like
to thank the Workshop and Tutorial Committee for their hard work in putting
together such a comprehensive and unique program.

Two of the highlights of the conference were the keynote lectures by two Cana-
dian scientists. Dafydd (Dave) Williams, physician, astronaut, medical robotics
researcher, and recently, Hospital CEO, opened the conference with a presenta-
tion that looked at lessons that the health care system and medical researchers
could learn from the challenges of space travel. The second keynote was given
by Mark Henkleman, Director of the Mouse Imaging Centre, Toronto Centre for
Phenogenomics, who spoke about high-throughput small-animal imaging tech-
niques and quantitative statistical analysis methods for mapping phenotypic
changes associated with genetic disease models in mice.

MICCAI 2011 would not have been feasible without the efforts of many people
behind the scenes. We are particularly indebted to the local Organizing Commit-
tee in London and Toronto consisting of Janette Wallace, Johanne Guillemette,
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Jackie Williams, Jade Orkin-Fenster, Debbie Lilley, Shuo Li, Perry Radau, and
Raphael Ronen. In addition, we are deeply grateful to the Robarts Research In-
stitute, the University of Western Ontario, Sunnybrook Research Institute, and
Queen’s University for their support in ensuring the success of this meeting, and
to the staff at Springer for their continued high standards aimed at maintaining
the MICCAI proceedings as the flagship of the LNCS series.

We thank the MICCAI Society Board for trusting us with the mandate to
organize this conference, and to the Board and staff members for valuable and
continuous advice and support through all phases of the project.

A special word of thanks goes to our sponsors, who generously provided
financial support for the conference as a whole as well as for specific activities.
This greatly assisted with the overall organization of the meeting, enabled us to
continue offering best paper awards in various categories, and provided travel
stipends to a significant number of student participants.

It was our great pleasure to welcome the attendees to Toronto for this year’s
MICCAI conference along with its satellite tutorials and workshops. Next year,
the 15th International Conference on Medical Image Computing and Computer-
Assisted Intervention will be held in Nice, France, October 1–5, 2012. We look
forward to seeing you all there.

September 2011 Gabor Fichtinger
Anne Martel
Terry Peters
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Awards Presented at MICCAI 2010, Beijing

MICCAI Society “Enduring Impact Award” Sponsored by Philips.
The Enduring Impact Award is the highest award of the MICCAI Society. It
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Lúıs Miguel Del Rio Barquero, Tobias Roth,
Christian Kammerlander, Michael Blauth,
Rainer Schubert, and Alejandro F. Frangi

Estimation of Smooth Growth Trajectories with Controlled Acceleration
from Time Series Shape Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401

James Fishbaugh, Stanley Durrleman, and Guido Gerig

Statistical Analysis and Shape Modelling II

Minimization of Intra-Operative Shaping of Orthopaedic Fixation
Plates: A Population-Based Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409

Habib Bou-Sleiman, Lucas E. Ritacco, Lutz-Peter Nolte, and
Mauricio Reyes



XXXVIII Table of Contents – Part II

Iterative Refinement of Point Correspondences for 3D Statistical Shape
Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417

Sharmishtaa Seshamani, Gouthami Chintalapani, and Russell Taylor

A New Shape Diffusion Descriptor for Brain Classification . . . . . . . . . . . . . 426
Umberto Castellani, Pasquale Mirtuono, Vittorio Murino,
Marcella Bellani, Gianluca Rambaldelli, Michele Tansella, and
Paolo Brambilla

Comparison of Shape Regression Methods Under Landmark Position
Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434

Nora Baka, Coert Metz, Michiel Schaap, Boudewijn Lelieveldt,
Wiro Niessen, and Marleen de Bruijne

SpringLS: A Deformable Model Representation to Provide
Interoperability between Meshes and Level Sets . . . . . . . . . . . . . . . . . . . . . . 442

Blake C. Lucas, Michael Kazhdan, and Russell H. Taylor

Deformable Segmentation via Sparse Shape Representation . . . . . . . . . . . . 451
Shaoting Zhang, Yiqiang Zhan, Maneesh Dewan, Junzhou Huang,
Dimitris N. Metaxas, and Xiang Sean Zhou

Pattern Based Morphometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
Bilwaj Gaonkar, Kilian Pohl, and Christos Davatzikos

Longitudinal Cortical Thickness Estimation Using Khalimsky’s Cubic
Complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467

M. Jorge Cardoso, Matthew J. Clarkson, Marc Modat, and
Sebastien Ourselin

Spatiotemporal Morphometry of Adjacent Tissue Layers with
Application to the Study of Sulcal Formation . . . . . . . . . . . . . . . . . . . . . . . . 476

Vidya Rajagopalan, Julia Scott, Piotr A. Habas, Kio Kim,
François Rousseau, Orit A. Glenn, A. James Barkovich, and
Colin Studholme

Fast Shape-Based Nearest-Neighbor Search for Brain MRIs Using
Hierarchical Feature Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484

Peihong Zhu, Suyash P. Awate, Samuel Gerber, and Ross Whitaker

3D Active Shape Model Segmentation with Nonlinear Shape Priors . . . . . 492
Matthias Kirschner, Meike Becker, and Stefan Wesarg

Automatic Construction of Statistical Shape Models for Vertebrae . . . . . . 500
Meike Becker, Matthias Kirschner, Simon Fuhrmann, and
Stefan Wesarg

Graph Based Spatial Position Mapping of Low-Grade Gliomas . . . . . . . . . 508
Sarah Parisot, Hugues Duffau, Stéphane Chemouny, and
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Abstract. Traditionally, tool tracking involves two subtasks: (i) detect-
ing the tool in the initial image in which it appears, and (ii) predicting
and refining the configuration of the detected tool in subsequent images.
With retinal microsurgery in mind, we propose a unified tool detection
and tracking framework, removing the need for two separate systems.
The basis of our approach is to treat both detection and tracking as a
sequential entropy minimization problem, where the goal is to determine
the parameters describing a surgical tool in each frame. The resulting
framework is capable of both detecting and tracking in situations where
the tool enters and leaves the field of view regularly. We demonstrate the
benefits of this method in the context of retinal tool tracking. Through
extensive experimentation on a phantom eye, we show that this method
provides efficient and robust tool tracking and detection.

1 Introduction

Surgical tool tracking has recently established itself as part of the computer as-
sisted intervention community [1,2]. Ophthalmic microsurgery is an emerging re-
search field, and the ability to detect and track retinal tools is very important for
automatic vein cannulation, retinal modeling, precise retinal image mosaicking
and other microretinal surgery applications. Informally, the objective of visual
tracking is to provide an accurate estimate of the parameters or configuration
of a tool across time. A general solution involves two subtasks: (i) detecting the
tool in the initial image in which it appears, and (ii) predicting and refining (i.e.
tracking) the configuration of the detected tool in subsequent images [3].

Indeed, few accurate tool detection and tracking systems exists in the context
of retinal microsurgery. In [4] tracking is performed frame by frame by using color
appearance and a 3D tool model, rendering tracking relatively slow. Similarly,
[5] casts the retinal tool tracking as a linear programing problem, achieving good
accuracy but also suffering from high computational cost. Gradient-based color
tracking in retinal image sequences was also proposed in [2,6], but is highly
depend on good initialization. More generally within the context of computer
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vision, combining detection and tracking remains a difficult problem when an
object enters and leaves the field of view frequently.

We propose an algorithmic framework that combines tool detection and track-
ing in an information theoretic setting. Instead of treating detection and track-
ing as separate tasks, we cast both as a single sequential entropy minimization
problem, treating tool detection and sequential localization estimation as one.
Consequently, the system presented here consists of a single process, as opposed
to two, and hence reduces the need for careful initializations and parameter
tuning. Our solution solves detection and tracking as a density estimation prob-
lem by using an Active Testing (AT) [7,8] optimization strategy. In practice, we
demonstrate that our approach provides a feasible and automatic solution to
tool detection and tracking, without the need of accurate motion models. While
we have chosen to show this method in the context of retinal tool tracking, we
believe it is general enough for kinematic tools in a number of other surgical
settings.

The remainder of the paper is organized as follows: in Sec. 2 we first describe
tracking as a Bayesian sequential estimation problem and how our approach
embodies this structure. We then describe how the AT paradigm is used to locate
tools in Sec. 3. In Sec. 4, we perform extensive experimentation to validate our
approach. Finally, we conclude with some closing remarks in Sec. 5.

2 Tool Tracking

In what follows, we parametrize the surgical tool by (1) the location on the
boundary of the image where the tool enters, (2) the angle the tool makes with
the image boundary and (3) the length of tool (see Fig. 1(a)). Note that this
choice simply reflects known constraints for this application. More formally, the
tool configuration space is defined as Y = (y1, y2, y3) ∈ S1 where, S1 = [0, P ] ×
[−π/2, π/2]×[δ, D], where P is the length of the perimeter of the image in pixels,
δ is a minimal length the tool must protrude before being considered visible and
D is the diagonal image length. To model the tool leaving the field of view, we
allow a special token S0 indicating that the tool is not visible (i.e. Y �∈ S1).
Thus, Y ∈ S = S0 ∪ S1.

We cast the tracking problem in a Bayesian sequential estimation fashion.
That is, at time t, we consider a random variable Y t that must be inferred given
the image sequence observed up to that time instance, It = (I0, . . . , It). Using
a standard Hidden Markov Model assumption, we formulate this as a Bayesian
filtering problem [9]. That is, we specify a prior distribution on Y , denoted
P (Y 0), a tool dynamics model, P (Y t|Y t−1), and will sequentially estimate the
new tool parameters given the observed images It.

Active Testing Filtering: In order to compute the posterior distribution of Y
given the history of observations, P (Y t|It), we make use of the AT strategy. AT is
a stochastic optimization technique used for parameter estimation. When trying
to determine a set of parameters, Y = (y1, . . . , yn), this technique requires a prior
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Fig. 1. Parametrization of retinal tool: (a) Visual representation of the tool
parametrization (b) Decomposition of tool pose space

probability distribution on the parameters, which in our case will be P (Y t|It−1),
a set of questions, X , pertaining to the parameters and a parametrization of
the parameter space. The main idea is to use the available questions to make
the distribution of Y evolve such that it is peaked on the correct parameters,
(i.e. tool location and pose). AT automatically selects which questions to ask
by using an entropic loss function. Algorithmically, this consists in: (i) select a
question (i.e. an image functional) and subset of the parameter space, (ii) apply
this question to the subset selected, (iii) update the probability distribution of
the parameters, (iv) select the next question and subset pair that maximizes the
mutual information gain, (v) repeat from (ii) until the entropy of the distribution
is low. For a more thorough review of AT, see [7,8].

Given this, we propose a general Active Testing Filter (ATF) (see Alg. 1). The
user initially provides, some dynamics model, P (Y t|Y t−1) and an initial prior
P (Y 0). Then, for an image in the sequence, first compute P (Y t|It−1) (line: 3)
by using the provided dynamics model. Then treat P (Y t|It−1) as an initial prior
for the AT localizer (line: 4). This process is then repeated for all images in the
sequence

In the following section, we specify the required question set and space
parametrization.

Algorithm 1. Active Testing Filtering ( I = {I1, . . . , IT } )
1: Initialize: P (Y 0), P (Y t|Y t−1)
2: for all t = 1, . . . , T do
3: P (Y t|It−1) =

∫
P (Y t|Y t−1)P (Y t−1|It−1)dY t−1

4: P (Y t|It) = ActiveTesting(It, P (Y t|It−1))
5: end for

3 Active Testing for Tool Localization

To use the AT framework, one must provide a question set and specify a parti-
tioning of the search space. We now describe these specifications.
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Fig. 2. Question Set. Example images with each image designating the queried region.
See text for details on these queries.

Space Representation: Let Λ denote a binary decomposition of the space S1.
That is, Λ is a tree of sets, Λ = {Λi,j, i = 0, . . . , M, j = 0, . . . , 2i − 1} (see
Fig. 1(b)). The root of tree is Λ0,0 = S1. The decomposition of the tree is
performed by splitting one coordinate of Y at a time, until a desired resolution,
at which point we repeat the procedure for another coordinate (e.g. split y1,
then y2 and so on). That is, the partition forms conditional subtrees: the first
subtree decomposes the first parameter, while the second subtree decomposes
the second parameter conditioned on the first, and the last subtree partitions
the final parameter conditioned on the two first parameters. The subtrees are
color coded in Fig. 1(b). It is easy to show that any level of the tree forms a
covering on S1, i.e. , S1 = Λ0,0 =

⋃2i−1
j=0 Λi,j .

Query Set: To determine the target configuration, a set of questions or tests,
X , pertaining to the target must be provided. This consists in associating each
node Λi,j with a set of pose-indexed queries that provide information on whether
or not the target has configuration contained within the node at hand. For each
node Λi,j , we define a set of questions, Xi,j = {X1

i,j, . . . , X
K
i,j} where Xk

i,j is
some image functional; X : I �→ R. Finally, all questions are assumed to have
homogeneous responses such that,

P (Xk
i,j = x|Y = y) =

{
fk

o (x) if y ∈ Λi,j

fk
b (x) if y /∈ Λi,j

(1)

where fk
o and fk

b are two distributions of responses, corresponding to the case
where the tool configuration is in the space queried, and when it is not. Since
the response, x to the query Xk

i,j will be in R, both fk
o and fk

b will be modeled
as Gaussians. The parameters of these distributions (i.e. μ, σ2) are learned from
separate training images representative of test sequences.

We now specify the query set, X . In total, we form six queries. That is for each
node in Λ, we have Xi,j = {X1

i,j, . . . , X
6
i,j}. We let X1

i,j count the proportion of
pixels deemed tool like, by using a color model learned from data, over a region
determined by the interval of y1 in Λi,j . An example is shown in Fig. 2(a)-(b),
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Fig. 3. Active Testing Iterations. Each image pair (top and bottom row) show a query
being evaluated and the corresponding state of the AT tree at that point in time,
respectively. See text for details.

where each image shows a different Λi,j being queried by X1
i,j . X2

i,j also queries
a part of the y1 interval by applying a small template to the image boundary
centered on y1, and compute the minimum template score when varying the
template orientation (see Fig 2(c)).

In order to estimate y2, we form X3
i,j and X4

i,j . Given a fixed tool boundary
point, X3

i,j , computes the proportion of tool pixels (as in X1
i,j) which are present

in an arc defined by the pose interval of y2 in Λi,j (see Fig. 2(e)-(f) for two
examples). X4

i,j again applies a template match perpendicular to the average
angle in the interval of y2 in Λi,j (see Fig. 2(g)).

Estimating y3 is achieved by queries X5
i,j and X6

i,j . At this point, both the tool
boundary point and the angle are assumed to be fixed. Estimating if the length
of the tool is in the interval of y3 in Λi,j is done by computing the difference
in average pixel intensities at the upper bound and lower bounds of y3 in Λi,j

(see Fig. 2(d)-(h)). Finally, X6
i,j performs a template match according to the

parameters specified in Λi,j .

4 Experiments

We choose the prior of Y to be uninformative and let P (Y 0) = P ({y1 ∈
[0, P ], y2 ∈ [−π/2, π/2], y3 ∈ [0, P ]}) = 1/2, indicating equal likelihood that
tool is or is not in the image. Here, we use a simple linear dynamic model of
the form, Y t+1 = AY t + N (0, α), where A is the dynamics transition matrix.
In the experiments that follow, A is augmented to allow velocity estimates to
be compounded in the new prior. Given that we know that the tool will enter
and leave the field of view often, we expect the dynamics model to be violated
regularly. While this may induce inappropriate priors P (Y t|It−1) at each step,
the AT framework will correct for this automatically. Note that, the AT model
is trained on a separate and representative training set of 50 images, where the
tool pose has been annotated. Also, since we are only interested in tracking the
tool when it is in focus and the depth of field is particularly small on retinal
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Fig. 4. Snapshots of detection and tracking during an image sequence

microscopes, the tool scale exhibits relatively little variability. Hence, we will
assume very limited tool scale changes.

Experimental Setup: Similarly to [4,2], we recorded two video sequences of a
retinal tool interacting with a phantom retinal membrane. The sequence consists
of 400 frames of size 256 × 256. In these sequences, a retinal tool (needle) is
initially present in the field of view and moves regularly. The tool leaves and re-
enters the field of view multiple times throughout these sequences. In images that
contain the tool, the locations have been manually annotated for quantitative
analysis evaluation. All algorithms were tested on a standard 2.3GHz PC.

To illustrate the AT step in our ATF approach, Fig. 3 shows both the queries
asked and the evolution of Λ at selected iterations during this process. The top
row shows which query is being evaluated with the queried region highlighted
in each image. The bottom row shows the state of Λ at that point. The area of
each node is proportional to the mass contained in that pose subset, while the
color of each node represents which coordinate is being refined (as in Fig. 1).

Initially, only the root Λ0,0 exists and a query is evaluated on the entire pose
space. Having created children (Fig. 3(a)i-ii), the size of Λ consists of three nodes.
After a few queries, the tree has grown and refined itself past the first coordi-
nate y1, onto y2 and y3 (Fig. 3(b)(c)i-ii). Eventually the correct y2 parameter
(Fig. 3(d)i-ii) is located, leading to a valid tool detection (Fig. 3(e)i-ii).

Having detected the tool parameters, we use the dynamics model to compute
a new prior that seeds another round of the AT step. As such, no separate
mechanism is required to initialize tracking, or filter responses. Fig. 4 shows
some selected images of the tool being tracked. When the tool moves beyond
the domain of the image, tracking is abandoned, correctly detecting that no tool
is present. The object then reappears in the field of view and is automatically
reacquired. Notice that when the tool tip and tool shadow approach together,
the tool object is still correctly tracked (Fig. 4(c)(e)).

Comparison: To evaluate the performance of the ATF approach, we compared
it with two methods: Simple Detect (SD) and Simple Detection and Tracking
(SDT). Both these methods are specially tailored using a priori knowledge of
the appearance of the tool and background in the experimental image sequences.

In SD, all pixel positions are tested to detect the tip of a long shaft. The pixel
intensity threshold for separating tool and background was tuned empirically so
that no false detections occur. Once it is detected, the tool is tracked using the
tool position from the previous image for initialization.
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Fig. 5. Performance Results

In a similar spirit to [2], SDT includes a tracking loop after detection (as
performed by SD). The tool tracking loop consists of the following steps. First,
for a new image, the displacement of the tool is found by searching along a line
perpendicular to the tool. Second, the new tool angle is measured. The maximal
angle variation is set to 35 degrees for limiting the computational search cost.
Finally, the tool tip is found by searching along the tool shaft for the intersection
of the tool and the background (the intersection is determined by thresholding
the intensity level using empirically chosen values)1.

In our comparison we observe three aspects of performance. First, we compute
the error in the estimates of each parameter and the tool tip position. This error
is computed by using the annotated ground truth. Similarly, we compute statis-
tics which are typically observed in detection and localization tasks. We consider
a correct detection to be one which estimates the tool tip location to within
10 pixels of the ground truth. We then compute the true positive rate (TPR),
the false positive rate (FPR) and the precision for each approach. Finally, we
report the computational time of each algorithm. Given these performance mea-
sures, we compare the following four algorithms: the Active Testing algorithm
(AT), both comparison methods described above, SD and SDT, and the ATF
algorithm.

Fig. 5 summarizes our experimental results. For the accuracy error, we report
the means and standard errors for each tool parameter and tool tip. Notice that
in general all the methods proposed provide more or less the same detection
accuracy. Naturally, we see that detection is significantly slower than tracking
with both AT and SD running much slower than tracking methods, confirming
the advantages of tracking strategies over tracking by pure detection approaches.

From the algorithms tested, ATF appears to outperform other methods and
yet remains computationally efficient (i.e. over 90 fps). In the domain of ac-
curacy, the ATF approach estimates the tool parameters more accurately and
consistently. When compared to SDT, ATF is generally capable of determin-
ing the configuration of the tool more accurately. This improvement can be
attributed to the sequential parameter estimation that the active testing frame-
work conducts. By estimating the first parameter, then the second and so on,
each parameter is individually estimated accurately. This is in sharp contrast to
the more direct SDT approach which locates the tool tip, and then estimates
the necessary parameters.

1 See project website for additional information.
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5 Conclusion

We have proposed a novel approach to tool tracking and detection. By treating
both problems in a sequential tool parameter estimation setting, our framework
minimizes the entropy of the joint distribution over the tool parameters and the
available questions provided. A full detection and tracking algorithm has been
outlined, and we have empirically shown that the proposed method is capable
of detecting and tracking retinal tools efficiently and robustly in cases where the
tool enters and leaves the field of view frequently. As part of our future work, we
are looking at extending this framework to tracking multiple targets such that
this approach may be applicable in a larger number of settings.

Acknowledgments. Funding for this research was provided in part by NIH
Grant R01 EB 007969-01, an unrestricted grant by RPB (Wilmer Eye Institute),
internal JHU funds and a research subcontract from Equinox Corporation.
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Abstract. In this paper we introduce a novel hybrid graph-based ap-
proach for Guide-wire tracking. The image support is captured by steer-
able filters and improved through tensor voting. Then, a graphical model
is considered that represents guide-wire extraction/tracking through a
B-spline control-point model. Points with strong geometric interest (land-
marks) are automatically determined and anchored to such a represen-
tation. Tracking is then performed through discrete MRFs that optimize
the spatio-temporal positions of the control points while establishing
landmark temporal correspondences. Promising results demonstrate the
potentials of our method.

Keywords: Guide-wire, tracking, MRF, simultaneous geometric-iconic
registration, landmarks matching.

1 Introduction

Several works tried to address the tracking of the guide-wires (GW) used during
cardiac angioplasty interventions for positioning surgical devices into the artery
to be cured, because a reliable localization of these wires would be valuable for
the intervention monitoring and assistance. This task inherits unfortunately im-
portant technical and theoretical challenges. Although the tip of these wires is
usually made of a more absorbent material, the main part of these wires is often
barely detectable for conventional curvilinear operators [2]. The detection liter-
ature provides numerous alternatives, such as Hessian regularized by coherence
enhancing diffusion [1], Vesselness [6] and phase congruency [12]. Boosted detec-
tors combining Haar features or steerable filters and image statistics have been
used recently [14,7] but these better detectors are more complex or time con-
suming. The second challenge is related to the large and unforeseeable motion
of the GW, due to the combination of cardiac/respiratory motions and patient
displacement. Their accumulation cannot be easily captured using conventional
prediction mechanisms. Most of the existing tracking approaches represent GW
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with B-splines which optimal displacement is found through optimization. In
[1] Powell’s direction set method was used for tracking rigid GW tips while
[14] proposed a method carrying out a rigid alignment followed by a non-rigid
registration displacing control-points.

Other GW tracking methods can be associated with well-known contour track-
ing algorithms. The B-spline snakes have thus been exploited in [12] with an
external energy driven from X-ray phase congruency, an internal energy favor-
ing low curvature and a length prior. Methods based on dynamic programming
and graphical models were also investigated. The space of possible displacements
was for instance discretized and optimal ones were determined using dynamic
programming. The CONDENSATION algorithm [8] was applied successfully to
tracking contours represented with B-splines. Nevertheless, the space of contour
localizations was reduced to a shape space. A parametrized curve tracker based
on a Markov Random Field (MRF) framework was recently proposed in [6] and
improved in [11]. The main advantage of these approaches is that they achieve
near-optimal solution at reasonable computational complexity.

Our approach lies within this scope. First, we address the low signal-to-noise
ratio by using steerable filters designed for ridge detection [9] that are enhanced
by tensor voting [4,3]. Toward coping with important displacements, we intro-
duce a unified framework which combines an iconic B-spline tracking [6] with a
landmark matching approach [13]. We improve the iconic part by using a data
term more robust with respect to false GW detections and a prior penalizing also
wires rotations. The resulting formulation recovers both landmarks position and
the GW displacements through the use of image support and spatio-temporal
consistency. This is achieved through a two-part graph acting on the two sets
of variables which are coupled in a rigorous mathematical manner. The overall
formulation is solved using efficient linear programming.

2 Hybrid Curve Tracking

Iconic tracking methods allow to track non-rigid structures precisely but can be
sensitive to local minima (due to erroneous image support) and, depending on
the optimization schema, can fail to account for large displacements.

On the contrary, geometric methods rely on the matching of salient struc-
tures and can therefore deal with large displacements efficiently. On the other
hand, deformations are sparse and incomplete since information for the mo-
tion/displacement of the structure between landmark points is not recovered.

Tracking GW during cardiac interventions involves large displacements and
non-rigid deformations. Hence we propose a unified discrete framework like [13]
combining a variant of the iconic tracking of [6] with a geometric tracking rely-
ing on landmarks extracted along the GW. This framework also model exactly
the interaction between these two parts. Without loss of generality, let us first
consider a representation of the wire with N control-points c(i) and a set of M
landmarks p(j) extracted along the wire. These variables evolve in time towards
representing the structure of interest, or X (t) = {c(i; t),p(j; t)}.



Graph-Based Geometric-Iconic Guide-Wire Tracking 11

In terms of support, let us consider a vectorial feature image where measure-
ments of the strength g(x; t) and the orientation θ(x; t) of the GW are combined:
F(t) = {g(x; t)cos(θ(x; t)), g(x; t)sin(θ(x; t)}. Let us also consider that for the
different landmark points p(j; t), candidate correspondences have been deter-
mined at the frame t + 1 denoted with P = {pL(j; m; t + 1)}, where L is the
number of candidates per landmark and m ∈ {1 . . .L}. GW tracking is then
equivalent to finding the optimal configuration for X (t+1), given X (t), F(t+1)
and pL(j; m; t + 1).

We adopt a unified first order MRF framework combining unary and pairwise
potentials involving either the displacements li of c(i; t) or the matching lj of
p(j; t), originated from data, prior, landmarks and coupling terms:

EMRF =
∑

x∈
{

data, landmarks,
template, coupling

} μx

⎛⎝ ∑
k∈{i,j}

V x
k (lk) +

∑
k,r∈{i,j}

V x
k,r(lk, lr)

⎞⎠
2.1 Iconic Graph-Based Curve Tracking

The iconic part of our framework extends the MRF-based curve tracking method
proposed in [6]. We represent the curve with a cubic B-spline based on points
c(i; t) and we build an MRF graph containing one node per control point. We
discretize the space of admissible displacements of each c(i; t) and denote with
v(li) the admissible displacement associated with label li chosen for c(i; t). [Fig.
(2)] illustrates this procedure. Like [6], let us note with Ni(.) the basis function of
each control point, s ∈ [0, 1] the curvilinear abscissa along the spline and Ni,i+1(.)
the following influence function: Ni,i+1(s) = Ni(s)Ni+1(s)∑

k Nk(s)Nk+1(s)
. The spline curve

C(s) is given by: C(s) =
∑

i Ni(s)c(i; t). Let us denote with C(s, li, li+1) the
curve obtained when the control points c(i; t) and c(i + 1; t) are displaced by
v(li) and v(li+1) respectively (and similarly C′(s, li, li+1) its derivative), let us
denote with < ., . > the standard scalar product. In order to introduce the image
support term, we consider the following exponential function: ψ(x) = e−γx.

We adopt two sums of pairwise potentials. The first forces the curve towards
pixels likely to be part of the structure (the strength of the image support is im-
portant and the tangent of the curve is coherent with the local image orientation
[1]),with s(c(i; t)) being the curvilinear abscissa of c(i; t):

V data
i,i+1(li, li+1) =

∫ s(c(i+1;t))

s(c(i;t))

ψ

(
| < C′(s, li, li+1),F(C(s, li, li+1); t + 1) > |

||C′(s, li, li+1)||

)
ds

The second term penalizes the local changes of the curve derivatives with
respect to a template T (s) corresponding to the form of the GW in the previ-
ous frames and updated using exponential forgetting: T (s) ← memory−1

memory T (s) +
1

memoryC(s). It is more constraining than length preserving priors [12,6].

V template
i,i+1 (li, li+1) =

∫ s(c(i+1;t))

s(c(i;t))

||ε C′(s, li, li+1) − T ′(s)||2
||T ′(s)||2 ds
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However, such an approach might require too many labels to deal with large
displacements, can be sensitive to missing visual support and does not pro-
vide temporal understanding of the GW deformation. We introduced landmark
matching into our framework for tackling these concerns.

2.2 Landmarks Matching

The landmark matching part of our system adopts a fully connected pairwise
MRF, which optimal labeling indicates the candidates chosen for the matching.
In order to increase the robustness and to deal with mis-detections or erroneous
detections, we introduce a label (L+1) corresponding to absent correspondences.
We encoded a penalization of the deformation of the landmark configuration
into the pairwise potentials. More precisely, the unary potentials were given
by:

V landmarks
j (lj) =

{
K if lj = L + 1
0 otherwise

we chose the following potentials to penalize landmarks configurations changes:

V landmarks
j,k (lj , lk) =

{
0 if lj = L + 1 or lk = L + 1
min (||u(j, lj , k, lk) − u(j, k)||2, Γ ) otherwise

u(j, lj , k, lk) = pL(j; lj ; t + 1) − pL(k; lk; t + 1)

u(j, k) = p(j; t) − p(k; t)

This term aims at imposing geometric consistency between the location of land-
marks in successive frames by considering their relative positions. The graph-
matching cost increases with the Euclidean norm of the difference between the
vector u(j, k) describing the configuration in the last frame and an admissible
configuration u(j, lj , k, lk). If distances and orientations of landmarks pairs are
preserved, then the cost is low. [Fig. (2)] presents example of matchings.

2.3 Coupled Markov Random Field for Hybrid Tracking

The hybrid model that we propose combines the two previous parts. The coupling
term aims at imposing consistency between the iconic tracking and the geometric
matching. As opposed to [13] where an approximation was used, we adopt an
exact formulation that expresses consistency using singleton and pair-wise terms.

Let us denote with wj(lj) the displacement of the interest points p(j; t) corre-
sponding to its matching with the candidate pL(j; lj; t+1) and with sj ∈ [0, 1] its
curvilinear abscissa. As in the previous section, vi(li) denotes the displacement of
the control point c(i; t) with respect to the frame t, and Ni(.) the basis function
of c(i; t). The following constraint is to be satisfied:

∑
i Ni(sj)vi(li) = wj(lj)

which imposes that the landmark displacement produced by the control points
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motion is the same as the one determined from the matching. This constraint is
converted into an energy term through penalization of the Euclidean distance:

Ej({li}, lj) = ||
∑

i

Ni(sj)vi(li) − wj(lj)||2 =
∑
i�=k

Ni(sj)Nk(sj) < vi(li),vk(lk) >

− 2
∑

i

Ni(sj) < vi(li),wj(lj) > +
∑

i

Ni(sj)2||vi(li)||2 + ||wj(lj)||2

that converts the coupling constraint exactly into a sum of unary and pairwise
potentials (contrary to [13] that minimizes only an upper bound of this energy).

Such an approach does not insure that the spline tracking will be guided by
the geometric matching, since different displacements of the c(i; t) could lead
to the same displacement of p(j; t). This can be easily addressed by adding
pair-wise ”rigidity” constraints to each landmark vicinity v(j):

Erj ({li}) =
∑

k∈v(j)

||vk(lk) − vk+1(lk+1)||2

leading to the following coupling term:∑
k

V coupling
k (lk) +

∑
k,r

V coupling
k,r (lk, lr) =

∑
j

Ej({li}, lj) + δ
∑

j

Erj ({li})

3 Experimental Validation

In this section, we apply our approach to GW tracking in fluoroscopic sequences.

3.1 Steerable Filters Regularized by Tensor-Voting

We extracted the GW support with the most sensitive second order filter [9],
which response is obtained (like Hessian response) by the eigen-decomposition of
a matrix built using second order derivatives of the image. As we are interested
in detecting dark structures, we considered the opposite of the main eigenvalue
when it was negative (and a null response otherwise).

Towards improving their overall response, we used a fast variant of tensor
voting (TV) introduced in [3]. Let us denote with ĝ(x; t) and θ̂(x; t) the response
and the orientation provided by the steerable filter at location x in the frame t.
We chose the following voting field (with notations [3], and we set σTV = 4.5):

V (r, φ) =
1
16

e
− r2

2σT V
2 cos4(φ)

(
1 + cos(4φ) sin(4φ)

sin(4φ) 1 − cos(4φ)

)
Like [3], we used this field to compute the new responses g(x; t) and orientations
θ(x; t), combined into the regularized field F(x; t):

F(x; t) = (F(x; t)x,F(x; t)y) = (g(x; t)cos(θ(x; t)), g(x; t)sin(θ(x; t)))

[Fig. (1)] illustrates that the TV regularization clearly improves the results (con-
trary to the replacement of the Hessian by a steerable filter).
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Fig. 1. (i) proportion of pixels extracted by Hessian and steerable filters regularized
by TV belonging to the wire (estimated with 3 images by ranking pixels by decreasing
filter response). (ii) norm of the steerable filter response and of the TV output.

3.2 Landmarks Extraction

Working with the regularized responses more reliable, we used the main eigen-
value of this tensor (inspired from structure tensor [5]) for landmarks detection:

T (x; t) =
∑
y

e
− ||x−y||2

2σL
2

(
F(y; t)2x F(y; t)xF(y; t)y

F(y; t)xF(y; t)y F(y; t)2y

)
This tensor favors pixels where strong and parallel responses accumulate. We set
σL = 2.5. In order to take the local orientation into account when choosing the
matching candidates pL(j; m; t+1), we selected the L candidates y with the best
matching scores (where < .|. > denotes the inner product between matrices):

Mj(y) = < T (p(j; t); t)|T (y; t + 1) >

3.3 Implementation Details

First, we used a conventional multi-resolution strategy on the GW deformation
search as suggested in [14]. We provided the spline at time 0 and the border of
the field of view to our system and we forced the first control point to lie on
this border if necessary. Besides, we updated the control points for keeping them
equally distributed along the spline before processing every new frame in order
to prevent a slow degeneracy of the spline. We made landmark detection more
homogeneous along the GW by defining intervals of fixed length along the curve
and choosing at most one landmark in each of them. FastPD [10] was used for
minimizing EMRF . We adressed abrupt elongations of the GW by elongating
the tip of the curve in the direction of its tangent d before the control-points
update. We appended pixels q while: ψ(< d,F(q) >) < 0.4.

3.4 Validation

Validation was performed on 20 long fluoroscopic sequences of 200 frames of
sizes between 512 and 1000 pixels covering a broad variety of clinical situations.
The parameters were set using the first three sequences and performances were



Graph-Based Geometric-Iconic Guide-Wire Tracking 15

(a)

(b) (c)

Fig. 2. (a) spline (green) landmarks detected along the previous spline (yellow) match-
ing candidates (blue) and candidates chosen (red). (b) Mean tracking performances
(measured every 25 frames for each experiment). [6] has been applied with a vesselness
at scale 1.8 like our filters and λ = 0.7. The database for result [14] is different. (c)
comparison of MDR obtained with [6] (blue boxes) and with our method (black boxes).

estimated on the other ones. We set μdata = μtemplate = 1.0, μlandmarks =
2.10−4, μcoupling = 3.10−5, δ = 0.1, ε = 0.9, K = 45000 for the landmarks
not matched, displacements steps equal to (25.0)2−τ , τ ∈ {0, . . . 4} and we
sampled 25 displacements according to the sparse pattern [6]. We set L = 24,
γ = 6.10−3,Γ = 500 and memory = 7.

We measured missed detection rate (MDR) and false detection rate (FDR)
for a distance of 5 pixels and for every 25 frames (2.5 seconds). These rates [14]
correspond respectively to the proportion of pixels of the ground truth that lie
too far from the spline and to the proportion of the spline that lie too far from
the ground truth. [Fig. (2)] presents our results. [6] performs better than the
iconic part of our model alone due to our worse displacement sampling and a
different choice of initialization. Our complete method, however, outperforms [6]
because the landmark matching both prevents the tracker from being mislead by
local energy minima and preserves global spline configuration. We measured a
distance between the tip of our tracker and the tip of the GW equal to 12.5±11.5
pixels at the end of the sequences, what is acceptable since the GW tip is easy
to locate. Our implementation processes one frame in 2 secondes (Intel Xeon 2.8
GHz) but would dramatically benefit from an adaptation to GPU.

4 Conclusion

In this paper we have presented a unified framework for geometric-iconic para-
metrized curves tracking. This novel framework achieves promising performances



16 N. Honnorat, R. Vaillant, and N. Paragios

on an extremely challenging task: the tracking of guide-wires in fluoroscopic se-
quences during cardiac angioplasty. One might investigate a GPU implemen-
tation achieving real-time and application of the method to a clinical setting.
From a theoretical point of view, estimating uncertainties of the obtained solu-
tion might be helpful both for the quantitative interpretation of the result and
for efficient parameterization of the search space. Another promising direction is
to introduce long term memory through a dynamical system that could separate
the different motion models.
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Abstract. We present a novel approach to tracking of flexible broncho-
scopes by modeling the output as spatially continuous over time. Bron-
choscopy is a widespread clinical procedure for diagnosis and treatment
of lung diseases and navigation systems are highly needed. Tracking of
the bronchoscope can be regarded as a deformable registration problem.
In our approach we use hybrid image-based and electromagnetic track-
ing, and the bronchoscope pose relative to CT data is interpolated using
Catmull-Rom splines for position and SLERP for orientation.

We evaluate the method using ground truth poses manually selected
by experts, where mean inter-expert agreement was determined as
1.26 mm. For four dynamic phantom data sets, the accuracy of our
method is between 4.13 and 5.93 mm and shown to be equivalent to
previous methods. We significantly improve inter-frame smoothness from
2.35–3.08 mm to 1.08–1.51 mm. Our method provides a more realistic
and physically plausible solution with significantly less jitter. This quan-
titative result is confirmed by video output, which is much more con-
sistent and robust, with fewer occasions of tracking loss or unexpected
movement.

1 Introduction

Flexible bronchoscopy is a widespread clinical procedure for diagnosis and treat-
ment of lung diseases, and one of its most common applications is transbronchial
biopsy. This is commonly performed after lesions have been identified on Com-
puted Tomography (CT) images, so it will definitely be beneficial to transfer
this 3D information to the operating room. Since bronchoscopy is an inherently
monitor-based procedure, augmentation of video images with guidance or target-
ing information is straightforward and promises high clinical acceptance due to
smooth integration into the clinical workflow. The combination of flexible bron-
choscopy with electromagnetic tracking (EMT) was first reported by Solomon
et al. [1], and hybrid image-based and EM tracking was proposed by Mori et al.
[2], and was improved by Luo et al. [3,4] and Soper et al. [5]. Hybrid tracking
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complements the advantages of image-based tracking and EMT, since image-
based tracking is inaccurate for frames with little to no information due to low
contrast. EMT suffers from noise and artifacts while the sensor is moved [6], and
relative errors when anatomy is moving due to respiration or heartbeat.

While accuracy and computational speed are clearly important for real-time
applications like intraoperative navigation, smoothness of the output is no less
relevant. Less jitter of augmented reality overlays increases operator comfort
and acceptance. Smooth output may provide benefits when further processing
the output like for motion models, or temporal and spatial synchronization of
multiple video sequences in the case of repeat examinations or clinical studies.

Tracking of the bronchoscope can be seen as a deformable registration problem
as shown below, and in this work we introduce a novel solution to this problem.
The deformable registration of the images over the bronchoscope trajectory is per-
formed using Catmull-Rom splines and spherical linear interpolation (SLERP).
Smoothness between consecutive frames is ensured using interpolation. We present
a thorough and quantitative evaluation with respect to expert-provided ground
truth data, including the determination of intra- and inter-expert agreement, and
a quantitative comparison to the state of art.

2 Methods

A continuous description of bronchoscope pose at time t is given by its position
p(t) and orientation q(t). Since both the real movement of the bronchoscope and
the movement of anatomy (breathing, heartbeat, etc.) are spatially smooth over
time, movement of the bronchoscope relative to patient anatomy is smooth as
well.

Discrete control points for the trajectory are set equidistant over time with
spacing s. For interpolation of position we use Catmull-Rom splines [7], because
the resulting curve is continuously differentiable and passes directly through the
control points:

p(t) =
1
2
(
1 u u2 u3

)⎛⎜⎜⎝
0 2 0 0

−1 0 1 0
2 −5 4 −1

−1 3 −3 1

⎞⎟⎟⎠
⎛⎜⎜⎝

pi−1

pi

pi+1

pi+2

⎞⎟⎟⎠ , (1)

where pi−1 . . . pi+2 are positions of consecutive control points, i = �t/s	 is a
control point index, and u = t/s − �t/s	 is the interpolation ratio between
control points pi and pi+1.

For orientation we use quaternions, because they allow a continuous represen-
tation. Then, for interpolation between quaternions we use SLERP [8]:

q(t) = qi(q−1
i qi−1)u =

sin(1 − u)θ
sin θ

qi +
sinuθ

sin θ
qi+1, (2)

where θ is the rotation difference between qi and qi−1. Initial parameters pk and
qk for all control points are taken directly from the EMT measurements.
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For the matching between bronchoscope images and CT image, we employ
as an intermediate step virtual bronchoscopic images IV (pk, qk), where the CT
image is rendered for a camera with position pk and orientation qk. We seek to
maximize

E(p, q) = S(p, q)︸ ︷︷ ︸
similarity

−λ1 · RT (p, q)︸ ︷︷ ︸
tension

−λ2 · RB(p)︸ ︷︷ ︸
bending

, (3)

where λ1 and λ2 are weighting parameters. The similarity S(p, q) between real
and virtual images is computed via the Local Normalized Cross Correlation
(LNCC)

S(p, q) =
∑

k

LNCC(IR(tk), IV (pk, qk)), (4)

where k is an image index, IR(tk) is the real image at time tk, and IV (pk, qk)
is the virtual bronchoscopic image. The patch size for LNCC was set to 11.
The gradient of S(p, q) for movement for each single control point i can be
approximated from the frames in its support (i − 2, i + 2) via finite differences.
Frames outside its support are not influenced by movement of this control point,
so gradient computation can be decoupled for each control point. In addition,
since the total number of frames is constant, the total computational effort does
not depend on the number of control points.

According to Hooke’s law, spring force is proportional to displacement, so we
model tension, the cost of distance from the EM tracking measurements, as

RT (p, q) =
∑

k

‖pk − pk,0‖ + α · θ(qk, qk,0), (5)

where pk,0 and qk,0 are the position and orientation measured by EM tracking at
time tk, and the rotation difference θ(·) is computed as the angular component
of the difference quaternion. α is the ratio between rotational and translational
spring constants and was set to 3.10◦/mm, since this was the ratio of errors
observed with the human experts when recording ground truth data.

In addition to the inherent smoothness of the spline curve, another term pe-
nalizes large translations between control points. According to Euler-Bernoulli
beam theory, the bending moment of the trajectory is proportional to its curva-
ture, so we choose analogously

RB(p) =
∑

k

∥∥∇2
kpk

∥∥. (6)

We iteratively estimate the optimal parameters for E(p, q) by gradient descent.
The update pu, qu is given by

∇E(p, q) = ∇S(p, q) − λ1 · ∇RT (p, q) − λ2 · ∇RB(p, q) (7)

(pu, qu) ← sign(∇E(p, q)) · min(τ · ‖∇E(p, q)‖, δ), (8)
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Motor

Fig. 1. Dynamic motion phantom (left) and description of phantom operation (right)

I
T

C
S

Fig. 2. Bronchoscope with embedded EMT sensor (left) and coordinate systems in-
volved (right): bronchoscope camera (C), CT image (I), electromagnetic tracking (T),
and tracking sensor (S) coordinate frames. The transformation T TS is measured, the
transformations STC and ITT are calibrated, and the transformation ITC is optimized
for each frame

where τ is a magnitude control parameter, and δ is the maximum step width.
During optimization, only data for a neighborhood of frames needs to be avail-
able, so frames can be processed in sequence like with previous approaches.

3 Evaluation and Results

Setup: We use a 3D Guidance EMT system (Ascension, Burlington, USA) and a
BF-P260F flexible fiberoptic bronchoscope (Olympus, Tokyo, Japan). One EMT
sensor was fixed inside the bronchoscope working channel.

The dynamic phantom is a CLA 9 (CLA, Coburg, Germany), which was cho-
sen due to its closely human-mimicking surface. It was connected to a motor
(Lego, Billund, Denmark) via nylon threads (cf. Fig. 1). Four data sets consist-
ing of video sequences and EMT data recordings were acquired with different
amplitudes of simulated breathing motion between 7.48 and 23.65 mm.

A CT scan of the phantom was acquired with 0.5 mm slice thickness. The bron-
choscope and the different coordinate systems and transformations are shown in
Fig. 2. For point-based registration between CT and EMT coordinate systems,
29 external landmarks were used, average residual error was 0.92 mm. Camera
intrinsics, deformation, and hand-eye calibration were performed using estab-
lished methods [9].

Both video sequence and CT data were stored in graphics processing unit (GPU)
memory, and virtual bronchoscopic image rendering as well as similarity were
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Table 1. Accuracy comparison of approaches. In each cell, mean error and standard
deviation with respect to ground truth are given for translation as well as rotation.
Expert agreement denotes inter-expert standard deviation for each particular dataset.
The results are equivalent with regard to expert agreement.

Accuracy
Data set 1 Data set 2 Data set 3 Data set 4

n=116 n = 113 n = 110 n = 107

Solomon et al. [1]
4.90 ± 2.41 mm 5.86 ± 2.53 mm 5.71 ± 2.53 mm 7.00 ± 3.22 mm

8.99 ± 5.78◦ 9.50 ± 4.13◦ 10.60 ± 4.59◦ 13.09 ± 10.16◦

Mori et al. [2]
4.57 ± 2.57 mm 5.76 ± 2.65 mm 5.34 ± 2.95 mm 6.69 ± 3.46 mm

9.13 ± 5.86◦ 9.52 ± 4.34◦ 10.32 ± 4.86◦ 13.24 ± 10.43◦

Luo et al. [3]
4.12 ± 2.65 mm 5.11 ± 2.76 mm 4.77 ± 2.98 mm 6.68 ± 4.78 mm

9.29 ± 5.69◦ 9.10 ± 4.48◦ 10.29 ± 5.18◦ 14.33 ± 11.82◦

Luo et al. [4]
3.95 ± 2.78 mm 4.00 ± 2.65 mm 4.80 ± 3.28 mm 5.32 ± 3.58 mm

9.13 ± 5.76◦ 9.58 ± 4.17◦ 10.65 ± 4.50◦ 13.13 ± 10.13◦

Proposed Method
4.13 ± 2.30 mm 4.65 ± 2.58 mm 4.93 ± 2.41 mm 5.93 ± 2.97 mm

9.79 ± 4.99◦ 10.81 ± 5.22◦ 11.08 ± 4.67◦ 14.26 ± 9.49◦

Expert agreement
1.27 mm 1.15 mm 1.33 mm 1.27 mm

5.21◦ 3.64◦ 4.63◦ 5.23◦

computed on GPU using OpenGL. Experiments were conducted on a standard
workstation (Intel Core Duo 6600, NVidia GeForce 8800 GTS).

As an extension of the “manual registration” approach by Soper et al. [5] we
chose an evaluation based on expert-provided ground truth data, since then a
direct deduction of clinical relevance is possible, and from multiple experts the
limits of image-based methods might be learned.

Ground truth data was independently and repeatedly collected by two ex-
perts, one expert bronchoscopist (A) and one scientist (B). For each real image,
the position and orientation of the virtual bronchoscopic image were manually
adapted via mouse and keyboard, until they matched the real image as closely
as possible. Each expert was blinded to the other expert’s results, as well as to
his own results from previous sessions. Due to the time-consuming process, only
approximately every eighth frame was matched. First, pose data from multiple
sessions was averaged per expert, then pose data from both experts.

Intra-expert agreement (mean standard deviation) was 1.66 mm and 5.80◦

(A) and 1.44 mm and 3.94◦ (B). Inter-expert agreement was 1.26 mm and 4.78◦.
The ratio between intra- and inter-expert agreement indicates considerable over-
lap between the experts’ results. These margins might indicate a limit for any
approach based on registration of real and virtual bronchoscopy images.

We compare the proposed method to our own implementations of four pre-
viously published approaches, which have already been applied to similar tra-
jectories: bronchoscope tracking by EMT only [1], intensity-based registration
(IBR) with direct initialization from EMT [2], IBR with dynamic initialization
from EMT [3], and IBR with a Sequential Monte Carlo sampler based on EMT
[4]. Quantitative results for the accuracy are given in Table 1. The precision of
our evaluation method is defined by expert agreement, and within those bounds
the accuracy of the proposed method is equivalent to previous approaches.
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Table 2. Smoothness comparison of approaches. In each cell, mean inter-frame distance
and standard deviation are given for translation as well as rotation. Smoothness is
significantly improved by the proposed method.

Smoothness Data set 1 Data set 2 Data set 3 Data set 4

Solomon et al. [1]
2.86 ± 1.62 mm 3.47 ± 1.72 mm 3.01 ± 1.65 mm 3.46 ± 1.73 mm

2.11 ± 8.21◦ 3.84 ± 8.59◦ 3.81 ± 11.25◦ 3.83 ± 8.81◦

Mori et al. [2]
3.35 ± 2.09 mm 3.87 ± 2.31 mm 3.61 ± 2.18 mm 4.04 ± 2.35 mm

3.50 ± 9.68◦ 4.74 ± 8.63◦ 6.05 ± 14.51◦ 5.63 ± 10.74◦

Luo et al. [3]
2.86 ± 2.11 mm 3.43 ± 2.30 mm 3.11 ± 2.20 mm 3.54 ± 2.35 mm
3.22 ± 10.42◦ 4.54 ± 8.83◦ 5.17 ± 12.35◦ 5.36 ± 10.69◦

Luo et al. [4]
2.35 ± 1.88 mm 2.95 ± 2.09 mm 2.71 ± 2.08 mm 3.08 ± 2.28 mm

2.12 ± 8.24◦ 3.94 ± 8.92◦ 3.84 ± 11.32◦ 3.96 ± 9.35◦

Proposed Method
1.23 ± 0.76 mm 1.51 ± 1.04 mm 1.12 ± 0.69 mm 1.08 ± 0.77 mm

1.96 ± 5.82◦ 3.18 ± 6.23◦ 3.22 ± 11.71◦ 3.62 ± 9.66◦
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Fig. 3. Left: frontal view of airway structure, trajectory from proposed method (solid
blue), and ground truth positions (black dots). Right: close-up view of trajectories from
previous approach [4] (dashed red) and proposed method (solid blue), showing much
smoother output of the latter

In Table 2 quantitative results for the smoothness of the output are given in
terms of inter-frame distances. The results for previous methods agree with Soper
et al. [5], who reported mean distances of 2.37 mm and 8.46◦. The proposed
method shows significantly better smoothness. In order to also visualize the
difference, two output trajectories are shown in Fig. 3. In particular, the close-
up view shows significantly less jitter in the output of the proposed method than
of the previous approach.

Computation time is 0.98 seconds per frame, i.e. between 12.8 and 14.9 min-
utes for the 781 to 911 frames of our video sequences. For other methods a
run time between 0.75 and 2.5 seconds [2,3,5,4] per frame is reported, so our
computation speed is equivalent to previous approaches.

4 Discussion

The accuracy of our method is equivalent to previous approaches, with a signif-
icant improvement in smoothness. The actual limit to smoothness is unknown,
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but we attribute most of the remaining inter-frame distance to the real broncho-
scope motion. Due to the smoothness constraint, our method by design provides
a more realistic and physically plausible solution to the tracking problem, which
has significantly less jitter. This quantitative result is confirmed by video out-
put1, which is much more consistent and robust, with fewer occasions of tracking
loss or unexpected movement. The filtering effect removes noise from the input,
but can also lead to some loss of detail, if e.g. the direction of motion changes.

Soper et al. [5] report a slightly lower error of 3.33 mm for their method of
tracking an ultrathin bronchoscope. However, the actual clinical relevance of
ultrathin bronchoscopes is low, as those have not yet proven diagnostic advan-
tages over conventional bronchoscopes [10,11] and do not provide any steering
mechanism. Also, Soper et al. only considered comparatively simple trajectories
consisting of one smooth, one-way motion from the trachea into the peripheral
lung. In contrast, recommendations for bronchoscopic procedures commonly list
e.g. the need to visually inspect all accessible branches at the beginning of an in-
tervention [12]. A typical trajectory will therefore consist of much more irregular
motion and more changes of direction.

We expect our method to be robust against transient artifacts occurring in
real clinical images, like specular reflections or bubbles, since groups of frames
are matched and smoothness is enforced.

In the current phantom design movement is mostly within the coronal plane
and left-right. However, our method does not impose any assumptions on the
breathing motion, which, depending on the degree of patient sedation, can be
irregular and interrupted by coughing or choking.

Future work will definitely include acquisition of ground truth data from more
interventional experts. However, in clinical routine time is a precious resource
and the acquisition process is extremely time-consuming. When working ac-
curately, approximately 30-40 poses can be recorded per hour. As an alterna-
tive ground truth, landmarks could have been determined in the CT image and
videos, but then only in a fraction of the video images those landmarks are vis-
ible, and especially the performance of a method in the absence of landmarks is
relevant.

The next step will be applying the proposed method to trajectories recorded
during actual interventions in humans. Since the dynamic motion phantom se-
quences were recorded anticipating the real procedure, data acquisition can
be brought to the operating room with minimal interruption to the surgical
workflow.

5 Conclusions

We present a novel approach to hybrid imaged-based and electromagnetic track-
ing of flexible bronchoscopes by modeling the output as spatially smooth over
time. While providing equivalent accuracy at equivalent speeds, we significantly
improve smoothness. As we only impose minimal prior knowledge about the
1 http://campar.in.tum.de/files/publications/reichl2011miccai.video.avi

http://campar.in.tum.de/files/publications/reichl2011miccai.video.avi
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visual appearance of anatomy, but do not depend on e.g. airway segmentation,
tree structure, or bronchoscope properties, our method can be applied to other
endoscopic applications as well.
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Abstract. Minimally invasive surgeries (MIS) have been perpetually evolving 
due to their potential high impact on improving patient management and overall 
cost effectiveness. Currently, MIS are further strengthened by the incorporation 
of magnetic resonance imaging (MRI) for amended visualization and high 
precision. Motivated by the fact that real-time MRI is emerging as a feasible 
modality especially for guiding interventions and surgeries in the beating heart; 
in this paper we introduce a real-time path planning algorithm for intracardiac 
procedures. Our approach creates a volumetric safety zone inside a beating 
heart and updates it on-the-fly using real-time MRI during the deployment of a 
robotic device. In order to prove the concept and assess the feasibility of the 
introduced method, a realistic operational scenario of transapical aortic valve 
replacement in a beating heart is chosen as the virtual case study. 

Keywords: Real time MRI, Image Guided Surgeries, and Beating Heart. 

1   Introduction 

Contemporary improvements in the field of medical robotics, and a series of 
successful clinical applications, have led to the emergence of interventional robots by 
the clinical and technical community. The inclusion of real-time image guidance in 
robotic-assisted interventions may further elevate the field by offering improved 
information-rich visualization, as well as option of assessing the tissue before, during 
and after a procedure [1]. Considering the challenges associated with the continuous 
cardiac motion, real-time image guidance can provide a number of benefits especially 
for robot-assisted surgeries in a beating heart [2, 3]. 

Among the emerging clinical paradigms in the area of minimally invasive 
procedures in a beating heart is magnetic resonance imaging (MRI) guided prosthetic 
aortic valve implantation via transapical access; a procedure that has been 
demonstrated manually [4] and with robotic assistance [2]. For such off-pump 
procedures, an important factor is the efficacy of using images to assess the dynamic 
environment during operation. One effective method is the extraction of dynamic 
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access corridors from images [5]. MRI was selected by numerous investigators for its 
high soft-tissue contrast, absence of ionizing radiation, and inherent robustness and 
versatility [4, 5]. With the current state-of-the-art MRI, dynamic images can be 
collected at a rate of 40-50 ms/image. Practically, only a single imaging plane can be 
collected with such a high, for MRI standards, rate. Thus the question is how a 3D 
corridor inside the beating heart can be updated using a single plane.  

To address this issue, in this work, we evaluate a method that combines 
preoperative multislice dynamic MRI (i.e., cine MRI) with single-slice real-time MRI 
to update an access corridor from the apex to the aortic annulus. Cine MRI is used to 
generate a preoperative 3D corridor in the left ventricle (LV) which is updated on-the-
fly by registering it onto the intraoperative real-time MR images. The method was 
assessed for accuracy of the corridor registration and simulated for the deployment of 
a virtual robot for 12 subjects. 

2   Methodology 

In a typical transapical scenario, the robotic manipulator enters LV via a trocar 
affixed at the apex, T(t); and maneuvers toward the targeted center of aortic annulus, 
A(t) as depicted in Fig. 1. Preliminary analyses of the cine data from 12 healthy 
volunteers indicated that LV can be transversed with a cylindrical corridor and the 
deployment path from T(t) to A(t) is not a straight line. For a precise orthogonal 
approach to aortic annulus, a dynamic bending point, B (t), near the base of LV is 
needed. The characteristics of the corridor, as well as the aortic annulus diameter, 
coronary ostial anatomy and apical entrance point were determined from cine MRI, 
whereas real-time MRI was used to update the corridor and follow the operation. 

 

Fig. 1. A long axis MR image shows a typical transapical approach to a beating heart at time t 

2.1   Preoperative Planning 

For any given cardiac phase (i.e., at time frame t), the access corridor CR(t) is defined 
as the largest cylindrical volume that lies along LV from the apex toward the base of 
the heart. Then, an appropriate-sized surgical device should be able to deploy inside 
CR(t) from T(t) to A(t) without colliding or injuring the endocardium, papillary 
muscles or chordae tendinae. The cylindrical corridor was generated from cine 
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datasets (n=12) collected with a true fast imaging, steady-state precession pulse 
sequences (TrueFISP) with TR/TE = 2.3 ms/1.4 ms, flip angle = 80o, slice thickness = 
6.0 mm, and acquisition matrix = 224x256. Each dataset included 19 short axes (SA) 
and 5 long axes (LA) slices, capturing heart motion with 25 frames over a complete 
cardiac cycle. In order to determine the transient positions of the corridor and the 
deployment points (i.e., T(t), B(t), and A(t)), SA and LA images were segmented 
using a region-growing algorithm based on Insight Toolkit (ITK) filters to extract the 
apex, LV and aortic annulus. As shown in Fig. 2(a) and 2(b), to realistically model the 
corridor, papillary muscles and chordae tendinae were also considered. For every 
single heart phase t (t=1 to 25), CR(t) is constructed as follows: 

1. The SA slices with visible blood pool are  determined by checking the inside 
surface areas of LV segmentations, i.e., selecting the non-zero ones as in Fig. 2(b);  

2. LV segmentation contours of these SA slices are projected onto a virtual plane 
along their common orthogonal axis to find their intersection polygon (INPT) by 
2D polygon clipping. This projection is based on the fact that SA slices are parallel 
to each other and collected with the same field of view;  

3. The largest circle (ST) that fits into INPT is determined. Since a circle can be 
created with a center point and a radius, let`s define CT as the Center of ST and, RT 
as the Radius of ST. Then the centroid of INPT is chosen as the center of ST, shown 
in Eq. (1) where N is the number of edges of INPT: 

1
i=1 TT i iN
NC (x, y) = INP (x , y )∑

                                            
(1) 

Thus, RT can be safely defined as “the minimum distance from CT to the edges of 
INPT” as formulated in Eq. (2): 

T 1...N T T i iR = min (|| C (x, y) - INP (x , y ) ||)
                         

(2) 

4. Finally, ST is stretched from the apex to the base of the heart, through all SA slices 
to generate a circular straight access corridor as shown in Fig. 2(c). 

 

Fig. 2. Selected segmentations of LA (a), SA (b) slices from diastole and systole phases highlight 
LV blood pool and boundaries, and a sample corridor with endocardial contours (c) 

Since a unique 3D access corridor is generated for every single heart phase, CR(t) 
is a 4D dynamic entity defined for a full heart cycle consisting of 25 time frames. The 
final step of preoperative planning is to set the initial positions of deployment points 
as follows: (1) T(t) is selected manually by a cardiovascular surgeon as the tip of the 
LV (the apex) on the central LA slice (and verified computationally that it belongs to 
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a SA slice that shows only myocardium with no LV blood pool); (2) A(t) is 
determined from the segmentation contours of two LA and one SA slices that include 
the aortic valve annulus at the level of aortic valve leaflets. Note that, the initial 
selection of the exact target point is also made by the surgeon (or cardiologist); (3) 
B(t) is assigned as the intersection of the aortic annulus midline and the top face of 
the safe corridor initially (as also depicted in Fig. 1). 

2.2   Intraoperative Guidance 

In this phase, the access corridor and deployment points, generated preoperatively for 
a complete heart cycle, are updated on-the-fly. Intraoperative   guidance is based on 
continuous real-time acquisitions of a central LA slice taken from the very same 
healthy volunteers (n=12) but this time spanning 30 full heart-beats with breathing 
(TrueFISP parallel imaging with effective repetition time = 48.4 ms, TE=0.95 ms, 
alpha=65o, slice thickness=6.0 mm, acquisition matrix = 160x66). After 
comprehensive analyses of MRI data and different imaging planes, we observed that 
heart mainly translates along and rotates around its long axis without significant out-
of-plane motion with respect to the real-time LA slice under consideration. Moreover, 
breathing adds an extra vertical motility with respect to the MR table, as denoted with 
R in Fig. 3, which can also be followed on the same LA slice effectively. To the end, 
we choose this single real-time LA slice for intraoperative guidance.  

The most challenging task is to register the preoperative corridor onto the real-time 
LA slice on-the-fly during the operation. This is done via two major steps: (1) 
Determine the heart phase in which the real-time slice was collected (and thus match 
it with the corresponding corridor); (2) Adjust the position and orientation of this 
corridor to account for heart motion due to respiration, arrhythmias, etc.  

 

Fig. 3. Illustration of LA segmentations depicting the blood-pool area, R: respiratory motion; 
AJ: Apex points; CJ: Midpoints; LJ: Vertical lines, VJ: CJ  AJ LV directional vectors for non-
real-time and real-time LA slices respectively; J = 1 and 2 

First, LV is segmented in the real-time LA image using the same region-growing 
algorithm and area of the blood-pool is calculated. Then, this area is compared to each 
of the 25 preoperative LV areas of the same LA slice that is extracted with the same 
parameters, to find the closest. This comparison is done by a conservative approach, 
i.e., selecting the closest one with the minimum size to guarantee the aforementioned 
safety criterion. Once it is found, the corridor corresponding to this heart phase is 
selected as the one to be registered to the real-time LA slice. Fig. 3 shows a 
segmented cine (non real-time) LA slice and its real-time counterpart respectively. 



 MR-Based Real Time Path Planning for Cardiac Operations with Transapical Access 29 

Next, the corridor needs to be correctly positioned onto the real-time slice. To achieve 
that, a vertical line (L2) crossing the base of the heart is defined. This line is defined 
such that segmentation includes most of LV blood pool but not the aortic valve. Then, 
the intersection points of this line to the endocardial wall are determined and their 
midpoint (C2) is calculated as shown in Fig. 3. The same operation is performed for 
the corresponding preoperative image to compute L1 and C1, and thus we can compare 
C1 with C2. It should be noted that, A1 and A2 denote the apex points, while V1 and V2 
are directional vectors for the LVs. 

Then, the relative displacement between C1 and C2 is calculated and applied to the 
top-center point of the corridor, P11, to find P21 as shown in Fig.4 (a). To adjust the 
orientation, the angle between V1 and V2 is calculated and applied to the direction 
vector of the preoperative corridor V1C to find V2C. Finally, the resultant corridor is 
registered to its new position as depicted in Fig.4 (b) and it is ready for the robotic 
manipulator. The above process is highly efficient and real-time (i.e., all the 
computing takes less than 48.4 ms, which is less then effective repetition time). 

 

Fig. 4. (a) Corridor registration using vectors; and (b) the registered trajectory on LA slices 

Finally, initial deployment points are tracked during the (virtual) operation using 
an efficient 2D fast-tissue-tracking algorithm [6]. In an in vivo scenario, the target and 
the bending points can be tracked with such an algorithm whereas appropriate MRI 
methods should provide the position of the apex point, T(t) in real-time (e.g., 
miniature RF coil beacons on the trocar [7]). 

2.3   Experimental Studies 

The proposed method was tested for the registration accuracy of the corridor onto the 
real-time MRI. Specifically, the registered corridors were compared to the ground-
truths that were created by manually locating them onto their correct positions in all 
the real-time images for 30 full heart cycles (n=12). Fig. 5 shows three examples of 
corridor positioning errors. 

We also simulated the deployment of a six degrees-of-freedom (DOF) RRPRRP 
(R: Rotational joint, P: Prismatic joint) virtual robot inside the registered corridor to 
assess the possible collisions with the endocardium or the aortic walls. The proximal 
end of the robot was assumed to be attached to T(t) with a continuous actuation to 
follow the motion of the apex and Denavit-Hartenberg convention was used in inverse 
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kinematics to deploy the robot along the corridor. The inputs for robot control were 
the dynamic coordinates of deployment points as well as the initial conditions 
specified by the operator, e.g., the time frame when the robot initiates its 
maneuvering, and whether and for how long it may hold a certain position along its 
path. Motion of the virtual robot entails the following three steps: deployment of the 
first link from the apex toward B(t), extension of the second link toward A(t), and the 
holding of the position. Since the device must stay inside CR(t), turn can occur before 
or after the initial B(t) provided that the first section remains in the corridor and the 
tip heads to the center of aortic annulus. During the maneuvering process, the robot 
control supplies the values of the updated DOFs for each time instance. Robot 
deployment was visually simulated along with the surgical field using OpenGL.  

 

Fig. 5. Registered points: P21, P22 and ground-truth: PG1, PG2 for three different samples 

3   Results and Discussion 

Application of the method on all preoperative cine sets (n=12) demonstrated that a 
dynamic cylindrical corridor can be defined and tracked for safe deployment inside 
the LV of the beating heart. The average base diameter of this corridor for 12 subjects 
was 9 mm in systole and 22 mm in diastole. In regard to the code for on-the-fly 
processing of the real-time MRI, corridor selection was practically error-free as a 
reflection of the conservative approach in selecting them (i.e., the minimal size). The 
average distal error for the starting point of the corridor (P21) was 1.3 mm while it was 
2.0 mm for the ending point (P22) as formulated in Eq. (3) and listed in Table 1. 

S 21 G1ε =|| P - P || ; Gε P PΕ 22 2=|| − ||
                                      

(3) 

This difference is mainly caused by the fact that the ending point is nearer to the apex 
which is the most dynamic point of a heart, and the starting point is nearer to the 
aortic annulus which undergoes a relatively slower motion. In order to guarantee a 
safe deployment, let’s assume that the registration errors take the maximum value of 
2.4 mm for both the starting and ending points in either direction (i.e., total error of 
4.8 mm at each side), then omitting the outer parts, the diameter of the corridor drops 
to 4.2 mm in systole and 17.2 mm in diastole. Since the robot always follows the 
centerline of the corridor, any device with diameter less than 4.2 mm can be deployed 
safely within such a corridor.  
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For all the 12 subjects, the simulated deployment of the virtual robot through 
dynamically registering the corridors with real-time MRI showed no collision with the 
inner boundaries of LV. The tested diameter of the robotic link was 4 mm. As 
depicted in Fig. 5 after an initial user-defined idling period, there are two deployment 
phases. 

Table 1. The registration errors for the updated corridors on the real-time slices (n=12) 

Subject/Error (mm) End point (εE) Start point (εS) 
 Max Min Average Max Min Average 
1 1.9 1.6 1.8 1.6 1.2 1.5 
2 2.1 1.8 1.9 1.4 1.1 1.2 
3 2.4 2.2 2.3 1.5 1.1 1.2 
4 2.0 1.7 1.8 1.7 1.3 1.6 
5 2.1 1.9 2.0 1.5 1.2 1.4 
6 2.1 1.8 1.9 1.3 1.0 1.2 
7 2.2 1.8 2.0 1.4 1.1 1.3 
8 2.4 1.9 2.3 1.5 1.2 1.3 
9 2.0 1.7 1.8 1.6 1.1 1.4 
10 2.2 1.7 1.9 1.4 1.0 1.2 
11 2.2 2.0 2.1 1.2 1.0 1.1 
12 2.3 2.0 2.2 1.5 1.2 1.3 

 

Fig. 5. Deployment is simulated (the images have the same field of view): (a) and (b) spans 
Phase I. Phase II starts at (c) and ends in (d). 

The Phase I is the extension of the first link from the apical entrance toward the 
bending point, which entails the actuation of the first two rotational DOFs (i.e., R1 
and R2) to maintain the deployed part inside the corridor. Once the distal end of the 
first link reaches near B(t), the Phase II starts with the extension of the second link 
toward the targeted aortic annulus. Concurrently, the third and fourth rotational DOFs 
(i.e., R3 and R4) are also actuated to maintain the second link along the aortic annulus 
midline. After reaching the target, the robot maneuvers to hold the position: the base 
of the robot at T(t), the robot inside the corridor, and the tip of the second link at A(t).  
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It is noteworthy that the presented computational core is connected to the MR 
scanner via a local area network (LAN) for a two-way communication: (i) real-time 
data transfer from the scanner to the computational core (thereby achieving a 
refreshing rate of 20 fps) and (ii) in reverse on-the-fly adjustment of the imaging 
parameters from the control module of the core, as we have demonstrated before [8].  

4   Conclusions 

This paper introduces a novel computational methodology for planning and 
performing real-time MRI-guided interventions in a beating heart. In all our studies it 
was able to generate a dynamic cylindrical corridor and update it with real-time 
single-plane MRI. Future work includes testing it on an actuated cardiac phantom [9] 
and automatically tracking the aortic annulus centerline on LA real-time MRI. 
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Abstract. The progress of wet age-related macular degeneration can
now be controlled by intravitreal drug injection. This approach requires
repeated injections, which could be avoided by delivering the drug to the
retina. Intraocular implants are a promising solution for drug delivery
near the retina. Currently, their accurate placement is challenging, and
they can only be removed after a vitrectomy. In this paper, we introduce
an approach for minimally invasive retinal drug delivery using magnetic
intraocular inserts. We briefly discuss the electromagnetic-control system
for magnetic implants and then focus on evaluating their ability to move
in the vitreous humor. The mobility of magnetic intraocular implants is
estimated in vitro with synthesized vitreous humors, and ex vivo with
experiments on cadaver porcine eyes. Preliminary results show that with
such magnetic implants a vitrectomy can be avoided.

1 Age-Related Macular Degeneration

Age-related macular degeneration (AMD) is a degenerative disorder of the pos-
terior eye segment that is characterized by the development of lesions in the
macular area. Figure 1 illustrates how the disease progresses. The result is loss
in central-vision acuity.

AMD is the leading cause of blindness worldwide. In the United States, for
example, it accounts for more than 50% of the cases of blindness, and, given the
aging of the population, the number of affected people is expected to double [1].
Improving the efficacy of treatment methods for AMD can improve the quality
of life for a significant number of patients.

2 Existing Therapies and Challenges

Current treatments for AMD aim at delivering drugs to inhibit the formation of
new lesions and prevent further vision loss [2]. The most targeted drug delivery
� This work was supported by the NCCR Co-Me of the Swiss National Science Foun-
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Macular Area

(a) (b) (c)

Fig. 1. Retinal-fundus images showing different stages of AMD: (a) AMD at an inter-
mediate stage, (b) geographic atrophy associated with AMD, and (c) angiogenesis in
AMD. (Images from the National Eye Institute, National Institutes of Health, USA).

method is intravitreal administration [3] and has been recently introduced for
AMD stabilization. However, repeated injections are required for effective treat-
ment, since the physiology of the vitreous humor reduces the amount of drug
that finally reaches the macular area.

Biodegradable and non-biodegradable inserts that act as drug reservoirs are
a proposed solution to this problem [4]. The reservoirs can be tailored to allow
prolonged drug release, and placement of the inserts close to the retina enables
targeted drug delivery. Non-biodegradable drug reservoirs are preferable due to
their more controlled release mechanisms [5].

Non-biodegradable inserts must be surgically removed after their reservoir is
depleted. This requires a vitrectomy, a risky invasive procedure that involves dis-
secting and replacing the vitreous humor with a thin solution. This requirement
hinders the acceptance of the intraocular-implant treatment by patients.

3 Electromagnetically Steerable Intravitreal Inserts

Microrobotic devices are an emerging tool for minimally invasive surgery and lo-
calized drug delivery [6]. In this paper, the use of electromagnetically controlled
microrobots that act as intravitreal inserts with drug reservoirs is proposed (Fig.
2(a)). Mobility allows these devices to be positioned and removed in a control-
lable and minimally invasive manner, potentially avoiding a vitrectomy. The
microrobots are introduced in the posterior eye segment through the pars plana
region of the sclera and are wirelessly controlled to the macula where they release
their payload. Upon depletion of their reservoir they are controlled towards the
entry point for removal by a magnetic tool. For AMD treatment, the microrobots
can be placed in the area of the lower vessel arcade without severely affecting
sight.

The microrobots have an outer diameter of less than 500 μm and fit in a 23 G
needle. Their length, i.e. their reservoir, can be tailored based on the dosing
required. Initially, the microrobots were microassembled soft-magnetic elliptical
pieces [7], but microrobots from permanent magnetic materials are an alternative
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Biocompatibility Coating
Drug Reservoir Magnetic Shell

(a)

1 mm

(b)

Fig. 2. (a) Concept of a magnetically driven reservoir, and (b) a 2.4 mm long and
0.38 mm wide hollow SmCo microrobot (0.135 mm inner diameter), similar to pSivida’s
Illuvien R©

that is under examination (Fig. 2(b)). Researchers are also investigating the in-
tissue mobility of screw-like devices for drug delivery [8]. Scaling these devices
to the sub-mm range present fabrication challenges. Our initial experiments in-
dicate that rotating screw-like devices get tangled up in the collagen fibers of
the vitreous humor, thus, screw motion is not considered in this work.

These microrobotic devices are non-bioerrodable, and are rendered biocom-
patible using polypyrrole coatings [9]. Since the human eye, in general, has “im-
mune privileges” that limit the risk of an inflammatory reaction to foreign anti-
gens [10], severe reactions from the immune system due to the presence of coated
microdevices is not expected.

4 Five Degree-of-Freedom Electromagnetic Steering

Unrestrained wireless electromagnetic control was introduced in [11], where the
researchers described the OctoMag (Fig. 3), an electromagnetic control system
capable of controlling magnetic devices in five degrees-of-freedom (DOF) (3-DOF
position, 2-DOF pointing orientation). The workspace of the OctoMag is approx-
imately 15 mm×15 mm and covers the posterior segment of the human eye. The
system consists of eight DC-operated electromagnets arranged in a hemispher-
ical configuration. The electromagnets are equipped with soft-magnetic cores,
and, assuming that the cores are from a near-ideal material, the fields of all
the magnets superimpose linearly. The introduction of soft-magnetic cores en-
ables the generation of high field-gradients. In its current configuration, a small
animal (e.g. a rabbit) can be placed between the electromagnets for in vivo ex-
periments. Manual position control of the microdevices is preferred by surgeons
and is enabled by the OctoMag’s interface.

Currently, the OctoMag can create a maximum gradient of 1.5 T
m . Microde-

vices experience different forces when introduced to the same electromagnetic
field gradient due to their different magnetic properties. Experimental estima-
tion of the maximum applicable force indicates how they can interact with the
intraocular environment.
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Electromagnetic System

Ophthalmoscope

Eye model

(a)

Electromagnetic System

(b)

Fig. 3. (a) The OctoMag electromagnetic control system with an eye model in its
workspace, and (b) rendering of a future system for AMD treatment

Table 1. Maximum force on NdFeB, and respectively, SmCo devices for various ori-
entations

Field
Orientation

Fup

(µN)
Fdown

(µN)
Flat,x

(µN)
Flat,y

(µN)
Flat,xy

(µN)

z 287.0, 365.0 287.0, 365.0 233.9, 209.1 233.9, 209.1 287.0, 296.3

−z 287.0, 365.0 287.0, 365.0 233.9, 209.1 233.9, 209.1 287.0, 296.3

x 287.0, 261.4 287.0, 261.4 287.9, 387.3 287.0, 387.3 287.0, 331.1

xy 287.0, 361.2 287.0, 361.2 287.0, 369.9 287.0, 369.9 287.0, 364.1

For a magnetic field of ‖B‖ = 15 mT, the maximum generated forces on
NdFeB and SmCo inserts were estimated (Table 1). The maximum force applied
to soft-magnetic Ni or CoNi microrobots along every orientation is 125.7 μN [11].
The superior performance of permanent magnetic microrobots makes them more
attractive for use as intravitreal drug carriers. According to [12], 75% of the forces
in retinal surgery are between 0 and 7.5 mN. Being on the extreme lower range of
this scale, no risk of accidental retinal penetration or tears from using permanent
magnetic microrobots is expected.

5 Evaluating the Mobility of Steerable Inserts In Vitro

In [13], a protocol to create artificial vitreous humors with desired viscosity
(loss modulus, G”) and elasticity (storage modulus, G’) was introduced. These
artificial humors consist of water (H2O), agar-agar (AG), and hyaluronic acid
(HA). Water is 99% of the natural vitreous humor, and hyaluronic acid gives it
some of its mechanical properties [14]. Agar is giving elasticity to the mixture.

Eleven fluids with different properties were synthesized (Table 2). These arti-
ficial vitreous humors cover a range from a mechanical equivalent of the porcine
vitreous humor to human vitreous humor cases reported in [14]. The storage
modulus for the vitreous of these human eyes is shown in Table 3. Mechanical
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Fig. 4. Motion experiments with artificial vitreous humor. The storage and loss moduli
are from [13]. The red circles indicate successful movement attempts and the blue boxes
indicate that the insert was unable to translate. The crosses are the different fluids
examined in [13] to extract the relationship between AG, HA, storage and loss. Image
adapted from [13].

Table 2. Agar for 10 mL of water. HA amount is fixed at 2.21 mg/mL.

Fluid Case 1 2 3 4 5 6 7 8 9 10 11

AG (mg/mL) 1.098 1.27 1.42 1.56 1.68 1.80 1.91 2.014 2.11 2.21 2.30

data of the human-eye vitreous are scarce in the literature. It is known, however,
that the vitreous liquifies with age [15], and this trend can also be observed in
Table 3. These data enables us to synthesize fluids for experiments that provide
an indication of how microdevices will behave in human vitreous humor.

According to [13], we can fix the amount of HA in solution and vary only
the amount of AG to achieve desired mechanical properties. The substances are
added in water heated to boiling. The solution is maintained near boiling, stirred
rigorously until fully transparent, and left to cool overnight. Figure 4 shows the
storage and loss moduli for different synthesized vitreous humors. Circles and
squares indicate successful and failed attempts, respectively.

Experiments were conducted with 2mm-long CoNi microrobots, and 1 mm-
long NdFeB microrobots. The devices were servoed along their x-axis using the
OctoMag as this orientation results in a lower fluidic resistance. We observed that
even in the thinnest of the synthesized fluids, a fluid with similar viscoelastic
properties to the porcine vitreous, the CoNi microrobot is unable to move. The
NdFeB microrobot is able to move in a greater range of mediums, ranging from
the porcine vitreous to reported human values. These human values correspond
to ages 45 and 62 in Table 3, and are within the age group that the developed
drug delivery method is intended for.
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Table 3. Storage modulus and age for different human eyes. “L” and “R” correspond
to the left and right eye respectively. Data extracted from [14].

Patient 1 Patient 2 Patient 3 Patient 4

Age 20 30 45 62

Eye L R L R L R L R

G’ [Pa] 30 27 39 5 27 25 15 3

To summarize, it is difficult to use CoNi microdevices intraocularly without
a vitrectomy, but based on the experimental results, this is possible with Nd-
FeB microrobots. This is not surprising since higher forces can be exercised on
permanent-magnetic microrobots than on soft-magnetic ones.

6 Evaluating the Mobility of Steerable Inserts Ex Vivo

In Table 3, it can be seen that the vitreous humor of the 62 year old donor has
a storage modulus similar to that of the porcine vitreous humor. Additionally,
a study performed in [16] reports that the central vitreous humor of the human
and the pig are rheologically similar. The same study states that the anterior
and posterior regions of the porcine vitreous resemble a “thick” gel, whereas the
human vitreous has a “thinner” and in some cases “watery” consistency. We can
conclude that, with respect to the properties of the vitreous humor, porcine eyes
can be used as a “hard” model of the human eye.

Studies on the human vitreous humor are conducted with eyes from elderly
donors, whereas porcine eyes are taken from relatively young animals. This fact
is also acknowledged in [16]. From personal communication with vitreoretinal
surgeons, it was understood that successful mobility of microrobots in porcine
eyes received from slaughterhouses will be a good indicator for similar or better
mobility performance in the eyes of elderly human patients.

Thus, the goal is to evaluate the mobility of the microdevices in porcine vitre-
ous humor. In [14], it is stressed that the vitreous humor rapidly loses hyaluronic
acid upon removal from the eye globe, it collapses, and its mechanical properties
change significantly. Thus, mobility experiments need to be performed in the eye
globe. As in [12], the cadaver eye is dissected above the pars plana region, and the
anterior chamber and iris are exposed after removing the cornea. Subsequently,
the intraocular lens and iris are removed, and the vitreous humor is accessible.
Removing the optical elements facilitates visualization, and no ophthalmoscope
is required for observation.

The microrobot is inserted in the vitreous humor using a syringe equipped
with a glass pipette. Afterwards, the eye is positioned under the OctoMag for ex-
perimentation. The eye is illuminated transsclerally, and the images are captured
by a Leica M80 microscope equipped with a Grasshopper-14S5M/C camera.

Results for a NdFeB microrobot moving in the vitreous humor of two cadaver
porcine eyes are shown in Fig. 5. The mobility of the microrobots supports the
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Fig. 5. Sequences of frames showing a 1mm long NdFeB microrobot moving in the
vitreous humor of two cadaver porcine eyes

in vitro experimental results and suggests that magnetic microrobotic inserts
can be used in human eyes without necessitating a vitrectomy. This, together
with the increased mobility the electromagnetic control offers, will enable the
minimally invasive delivery of existing drugs closer to the retina.

7 Conclusions and Future Work

In this paper, the concept of performing minimally invasive localized drug de-
livery in the posterior eye segment using steerable microrobotic drug carriers
was introduced. The aim of the current technology is to assist in the treat-
ment of age-related macular degeneration, however, it can also be used for other
posterior-eye diseases. Magnetic microrobots can be considered a safe tool for
localized drug delivery. In vitro experimentation demonstrated that permanent-
magnetic microrobots are able to move in a range of fluids covering porcine
vitreous and human vitreous. Successful ex vivo experiments lead to the con-
clusion that magnetic microrobots have the potential to be wirelessly controlled
in human eyes without a vitrectomy, making drug delivery in the posterior-eye
segment more targeted and less invasive. Future work will include a statistical
analysis of repeated experiments and design optimization of the microdevices.
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Abstract. In this article, a new tool for the intraoperative measurement of 
distances within the middle ear by means of a micromanipulator is presented. 
The purpose of this work was to offer the surgeon a highly accurate tool for 
measuring the distances between two points in the 3D operational field. The 
tool can be useful in various operations; this article focuses, however, on 
measuring the distance between the stapes footplate and the long process of the 
incus of the middle ear. This distance is important for estimating the proper 
prosthesis length in stapedotomy for treating otosclerosis. We evaluated the 
system using a simplified mechanical model. Our results show that the system 
can measure distances with a maximum error of 0.04 mm. 

Keywords: Middle Ear Surgery, Telemanipulator, Stapedotomy, Measurement. 

1   Introduction 

The intraoperative measuring of anatomical structures is necessary in many surgical 
interventions, in order to evaluate preoperative situations and postoperative results. 
With a large surgical access, this can be done easily. In the small operational field of 
Middle Ear Surgery, however, this is much more difficult [1]. An example is the 
measurement of the distance between the long process of the incus and stapes 
footplate in a stapedotomy. Stapedotomy is a surgical technique for treating 
conductive hearing loss owing because of ossification of the oval window. Through 
stapedotomy, the stapes is replaced by a small prosthesis (Fig. 1 a, b). The prosthesis 
should protrude about 0.2 - 0.3 mm into the inner ear [2]. Depending on the patient’s 
anatomy, prostheses of different length (e.g., 3.25 mm – 4.7 mm) are used. 

The prosthesis length has a great impact on the hearing results. A prosthesis that is 
too long can lead to dizziness, sudden pressure gains, and conductive hearing loss. A 
prosthesis that is too short, however, can lead to a displacement of the prosthesis. 
Furthermore, the perforation in the stapes footplate can be overgrown, which 
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subsequently leads to an interception of sound conduction. Results can be conductive 
hearing loss and perilymph fistula [4, 2]. A revision surgery, in which the incorrect 
prosthesis is replaced by a suitable one, can be necessary. According to literature, 7-
28% of the stapes revision surgeries can be directly traced back to incorrect prosthesis 
length [4, 3]. Gros et al. even indicates that incorrect prosthesis length is a major 
reason for prosthesis dislocations, which are the cause of 18-82% of the revisions [4]. 

 

Fig. 1. a) Distance between incus and stapes footplate. b) Stapes replaced by prosthesis. Calliper 
with stapes model (Heinz Kurz GmbH Medizintechnik, Dusslingen, Germany). 

In clinical practice, intraoperative measurements of anatomical structures during 
middle ear surgeries are performed with special callipers (Fig. 1a, c), measuring rods, 
sizers or through estimation based on anatomical landmarks [1]. Most often, a 
prosthesis length of 4.5 mm is required. Hence, some surgeons use only this single 
prosthesis type or try to estimate the proper length. Kwok et al. assume that it is 
impossible to do an accurate estimation of the distance between the long process of 
the incus and the stapes footplate without measuring devices, owing to the angle  
of view. Furthermore, Strauss et al [1] describe the magnification and the low depth 
of field caused by the surgical microscope as difficult for estimations. In [5], optical 
coherence tomography (OCT) is used to determine the proper prosthesis length. 
Moreover, the OCT measurements are compared with those performed with a 
mechanical calliper. It is found that measuring with a calliper leads to an error of up 
to 0.4 mm. In research, the positioning of prostheses was analyzed postoperatively 
with high-resolution CT in [6]. It was found that HR-CT data is not suitable for doing 
accurate measurements in this scale. In [1], a new optical multipoint laser-
measurement system (KARL STORZ GmbH & Co. KG, Tuttlingen, Germany) for a 
flexible endoscope is introduced for ENT-surgery. The accuracy is reported to be 0.2 
to 0.5 mm. 

The distance measurement between stapes footplate and long process of the incus 
during stapedotomy involves strict requirements in terms of the accuracy and usability 
of the measuring system. Hence, this measurement was chosen representatively for 
many other measurement tasks in ENT-Surgery. The system should provide 
measurements with accuracy better than 0.1 mm within the operational field. We 
propose a telemanipulated measurement system with 3 degrees of freedom (DOF) and 
highly accurate position sensors. By touching two anatomical landmarks using 
arbitrary microinstruments like perforators or forceps, their relative distance should be 
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calculated and visualized. Measurements should be able to be taken in stand-alone 
operation of the manipulator or in combination with external devices, such as 
navigation systems or systems for image processing. 

2   Description of the Measuring System 

The measuring system used consists of a teleoperated micromanipulator with joystick 
control, three highly accurate position sensors, an independent microcontroller-based 
evaluation electronics, a visualization software, and a bridge software for protocol 
transformation (Fig. 2). 

 

Fig. 2. Block diagram of the overall measuring system 

 

Fig. 3. a) Micromanipulator System with joystick control. b) Cartesian kinematics of the 
Manipulator with 3DOF. The distance between two tcp-positions can be calculated within the CT 
model.   

Micromanipulator: A Micromanipulator System developed for middle ear surgery 
was introduced in [7] (Fig. 3). This system is based on previous experience with large 
ceiling-mounted interactive robots [8] and small autoclavable robots [9-10]. We used 
this manipulator as the basis for our measuring system. It is small-sized, lightweight, 
and capable of moving standard instruments of ENT surgery with high accuracy in a 
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small workspace. It can be already be integrated into standard operating procedures 
and allows rapid change between manual and teleoperated instrument guidance. The 
micromanipulator has three translational DOF in Cartesian configuration. An 
additional DOF is used to open and close attached forceps. The MMS-II is mounted 
on the OR table’s side rail and aligned with the operating field, using an articulated 
arm. The joystick controller is mounted on the OR table’s side rail directly in front of 
the surgeon. 

Measuring System and Sensors: Each axis of the manipulator was equipped with an 
additional position sensor. Because of their high precision, small overall size, and 
simple interface, hall-sensors of the type TRK-1T02 Tracker (New Scale 
Technologies Inc., Victor, NY, USA) were chosen. They are able to detect an 
absolute position within a terminal pair (2 mm) with 12-bit resolution. By detecting 
the crossover from one terminal pair to the next, we are able to cover an arbitrary 
measuring section. Positions can be read out via I2C serial bus. The strength and 
gradient of the magnetic input are analyzed in order to check the integrity of the data 
obtained. According to the manufacturer, the maximum absolute error is ±10 µm. 

Evaluation Electronics: A microcontroller-based evaluation electronics was built to 
readout the sensors. An Atmega 168 microcontroller (Atmel Corporation, San Jose, 
CA, USA) with 20 MHz and 8 bit is used as a central processing unit. The controller 
features an I²C interface for communicating with the position sensors. Furthermore, 
the evaluation electronics has an interface for sending the current position 
continuously (20 Hz) to external components and devices via RS232 or RS485. This 
is used to visualize the manipulator at an external navigation system. Additionally, the 
current position can be sent and saved as a measuring value. Therefore, the sensor 
readings are averaged within a time interval of 0.5 seconds to increase accuracy. The 
averaged position is sent and stored as a measuring value only when the sensor 
readings have been stable in that time interval. The communication protocol used is 
proprietary to our lab and enables communication with other robotic and image-
processing devices. This ensures modularity. The Euclidian distance between two 
measuring values is also calculated directly by the microcontroller in order to be 
displayed at the joystick control, if stand-alone operation without navigation is 
needed. 

Visualization Software: To visualize the measuring values and results, the open-
source software 3DSlicer (www.slicer.org) was used. 3DSlicer is a cross-platform 
application for visualizing and analyzing medical-image data. With the help of various 
modules, image and sensor data can be recorded, processed, and displayed. Various 
data (images, positions, transforms, etc.) can be exchanged with external devices using 
the OpenIGTLink protocol [11]. We used the data type TRANSFORM to exchange 
data with 3DSlicer. The evaluation electronics provides the position data and 
measurement values using our laboratory’s own proprietary protocol, which is not 
compatible to OpenIGTLink. Therefore, a bridge software (ConnectorApp) was 
implemented. This software transforms message data received from the proprietary 
protocol to the OpenIGTLink protocol. The ConnectorApp has the additional task of 
coordinating the different working steps (initialization, registration, and measurement). 
It further transforms positions from manipulator coordinates to 3DSlicer image 
coordinates. The calculation of the distance between two measuring values and the 
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visualization of those points and their distance are carried out by the newly developed 
“Measurements4MiddleEarSurgery” (MMES) module for 3DSlicer.  

Initialization and Measuring Process: The system usage introduced is divided into 
three steps: initialization, registration, and measurement. The initialization step sets 
up communication between 3DSlicer, ConnectorApp, and evaluation electronics. For 
that purpose, the 3DSlicer module “OpenIGTLinkIF” is used. After that, basic 
information is interchanged. This is necessary to define the way data is exchanged in 
the next steps. During the registration step, the transformation matrix between 
3DSlicer’s manipulator coordinates (manip) and image coordinates (mod) must be 
calculated. Therefore, three landmarks are set in the image dataset loaded within 
3DSlicer. This is done by means of the “Fiducials” module. Possible landmarks are 
bony structures within the middle ear, e.g. the bony canal of the facial nerve. After 
that, the three points are sent to the ConnectorApp using OpenIGTLink. The same 
landmarks are then set with the manipulator’s tooltip and sent to the ConnectorApp, 
which is then able to calculate the necessary transformation matrix. This step can be 
skipped if the visualization of points within the 3D image dataset is not required. 
Finally, the third step--the measurement--can be started. The evaluation electronics 
starts transmitting the current position every 50 ms. The ConnectorApp performs the 
coordinate transformation and routes the data via OpenIGTLink to 3DSlicer. 3DSlicer 
receives the data within the OpenIGTLinkIF module. The position of the visualized 
tool tip can now be updated. To record a measurement value, a command can be sent 
to the evaluation electronics by a simple switch or using the serial port. As described 
above, the sensor readings are averaged; their correctness is tested; and the resulting 
measurement value is sent to 3DSlicer. As soon as a second measurement value is 
received by 3DSlicer, the distance between those two is calculated and visualized. 

3   Experiments and Results 

Two Experiments were conducted to validate the measuring system. In the first 
experiment, the accuracy itself of the sensor system was determined. In the second 
experiment, the telemanipulated instrument guidance was considered in the accuracy 
measurement.  
 

Experiment 1: Accuracy of the Sensor System 
In this experiment, the accuracy of the sensor system was valuated. Therefore, the 
thickness of two precise gauge blocks was determined. The manipulator motors were 
deactivated, so that the manipulator’s precision would not affect the measurement 
results. Five measuring points were marked on a measuring table within an area of 15 
x 15 mm². The Manipulator was positioned in such a way that the axis of the inserted 
instrument (STORZ Perforator, 0.3 mm) was oriented perpendicular to the measuring 
table. The instrument tip was moved manually toward the first measuring point. A 
first measurement value was recorded at that position. After that, the instrument tip 
was moved upward. Two precision gauge blocks, with a thickness of 2 mm (± 0.01 
mm) and 5 mm (± 0.01 mm) respectively, were put onto the measuring table. Then, 
the instrument tip was set down again, and this position was stored as the second 
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measuring value. The calculated distances, shown by 3DSlicer, were stored. This 
procedure was repeated twenty times for each of the five measuring points. The mean 
and the standard deviation (SD) are shown in Table 1. 

Table 1. At five measuring points, the thickness of two gauge blocks was determined 

 Measuring Point 1 2 3 4 5 

gauge block: 
2.00 mm ± 0.01 mm 

mean/mm (n=20) 2.00 2.00 2.00 2.00 2.00 

SD/mm 0.01 0.01 0.01 0.01 0.01 

maximum error 0.03 

gauge block: 
5.00 mm ± 0.01 mm 

mean/mm (n=20) 5.00 4.99 4.99 5.01 5.00 

SD/mm  0.01 0.01 0.01 0.01 0.01 
 maximum error 0.02 

 
Experiment 2: Accuracy of the telemanipulated measuring system 
In the second experiment, the entire measuring system, including the telemanipulated 
positioning of the tool tip, was valuated. A phantom was developed to imitate the task 
of measuring the distance between incus and stapes footplate (Fig. 4). It consists of a 
rod (Ø 1 mm) fastened to a cylinder by means of two elastic bands. This imitates the 
movable incus. The cylinder has an inner diameter of 7 mm, representing the ear 
canal. In the initial position, the distance between the rod and the bottom of the 
cylinder is 4.30 mm (±10 µm). A 1.5-mm microhook was clipped onto the 
manipulator. The instrument and the phantom were connected with simple electronics 
signaling the physical contact between both, by means of an LED. This was done in 
order to eliminate operator and visual-condition influence. 

 

Fig. 4. a) Experimental setup. b) Detailed view of the middle-ear phantom. 

The Manipulator was oriented in a way that allowed the instrument axis to be 
perpendicular to the cylinder ground. The instrument was moved toward the bottom 
(stapes footplate), using the joystick control, until the LED lighted up. The measuring 
value was sent to 3DSlicer. Then, the hook was moved toward the bottom side of the 
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rod (proximal side of the incus) until the LED lighted up. This measuring value was 
sent to 3DSlicer as well. The measuring result displayed by 3DSlicer was stored. 
Because of the moveable rod, the positioning errors of the manipulator system are 
included in the measuring result, in contrast to the first experiment. The results are 
shown in Table 2. The 0.30-mm thickness of the hook itself has to be added to the 
measuring value. 

Table 2. Results for telemanipulated measuring 

reference value:  
4.30 mm ± 0.01mm 

mean/mm (n = 50) 4.01 mm (+ 0.30 mm hook) 
SD/mm 0.02 mm 

 maximum error 0.04 mm 

 
Results: The first experiment shows that the position sensors can determine the tool-
tip position with a precision (two standard deviations) of ±0.02 mm. The small 
deviation of the mean value shows that there is no systematic error. The second 
experiment shows that the manipulator is able to touch a surface so precisely that the 
high accuracy of the sensors can be used in practical applications.  

4   Conclusion 

We have developed a measuring system based on a miniature telemanipulator for 
precise determination of distances within a small workspace. The aim of our work 
was to increase measuring accuracy in middle ear surgery. This article was focused on 
one specific task representing many others: the estimation of the distance between the 
stapes footplate and the long process of the incus during a stapedotomy. An available 
micromanipulator with 3DOF was equipped with an independent, highly accurate 
position-sensor system. The open-source software 3DSlicer (www.slicer.org) was 
used for visualizing the measuring results. The measuring system can also be operated 
without visualization and navigation in a stand-alone mode. Precise measuring is 
crucial in many surgical procedures. Measurements accurate to a tenth, however − as 
required in middle-ear surgery − cannot be achieved with common methods. Our 
solution can provide measurements with a maximum error of 0.04 mm, which was 
valuated with a technical phantom. Preliminary experiments show, that the contact of 
a tooltip with the tissue’s surface can be determined very precisely (<0,05mm), when 
using a microscope. Nevertheless, this in vivo precision has to be determined in 
further experiments with a larger group of surgeons, because it could depend on 
individual skills. 
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Abstract. The tracking of tissue deformation, imaging probes and surgical 
instruments is an integral part of intra-operative surgical guidance. While the 
recent introduction of shape instantiation provides a systematic framework for 
tracking 3D anatomy in real-time, deviations to the desired imaging location 
can affect the accuracy of the predicted shape. To examine the sensitivity of the 
prescribed image planes to such errors, we introduce in this paper a new 
Instantiability Index for providing the intrinsic level of robustness while using 
such scan planes for the tracking of anatomy and interventional devices. 
Optimisation of the Index is applied to 3D anatomical reconstruction and the 
localisation of an intraoperative imaging device. Results are shown on detailed 
phantom experiments for both real-time 3D shape instantiation and imaging 
catheter tracking.  

Keywords: instantiability index, shape instantiation, tracking, localization. 

1   Introduction 

For intraoperative surgical guidance, effective tracking of tissue deformation and 
interventional devices is an integral part of the workflow. Despite increasing advances 
of intra-operative imaging techniques, particularly intra-operative MR and CT, the 
acquisition of real-time 3D sequences is often limited by practical constraints such as 
temporal resolution and potential radiation burden. For anatomical structures 
undergoing large tissue deformation, instantiating the entire dynamic 3D shape from 
limited imaging planes or sparsely sampled data becomes a pertinent research topic. 
The recent introduction of shape instantiation reduces the amount of real-time 
imaging data required to reconstruct an entire 3D shape by using models built 
preoperatively. For example, the work of Lee et al. [1] proposed the use of optimal 
scan planning for the instantiation of the organ of interest using partial least squares 
regression during surgery. The work balances the information content of an individual 
or a set of image planes against practical constraints such as available acquisition 
windows for capturing rapid shape deformation or transit of a contrast bolus. For 
intra-vascular intervention, this approach is advantageous due to a reduction in both 
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the use of contrast agents to minimise nephrotoxicity and exposure to radiation. In the 
existing work reported thus far, the issue of errors in localisation of the scan plane, 
however, has not been explicitly addressed. Despite the availability of the optimal 
scan planes, in practice, it is not always possible to accurately localise to these plans 
due to co-registration errors or patient motion. This difficulty is particularly evident 
with handheld imaging probes such as ultrasound. With the original framework of 
shape instantiation, it is assumed that the captured scan plane will conform to the 
optimal one defined. Deviation to the prescribed optimal scan plane(s) or errors 
induced due to anatomical access difficulties can lead to significant errors in shape 
instantiation. It is therefore desirable to consider not only the information content of a 
given image plane in terms of its shape instantiability, but also the underlying 
resilience to perturbations or localisation errors. This situation is illustrated 
schematically in Fig. 1 where the robustness of two different scan planes is shown via 
their shape instantiation results. 

 

Fig. 1. The use of the Instantiability Index with respect to the existing shape instantiation 
framework, here with a liver example. An examination of the instantiation index for a scan 
plane indicates how a perturbation in its position affects the instantiation: (top) a scan plane that 
is less and (bottom) one that is more robust. 

The purpose of this paper is to introduce a new shape Instantiability Index for 
accurate and more robust intra-operative 3D shape instantiation. We will demonstrate 
its practical use for both 3D anatomical reconstruction and reliable tracking of 
interventional devices. For the former, we will illustrate the underlying reasons of 
introducing the shape instantiability index and how it reflects the potential errors in 
shape instantiation caused by deviations/perturbations from the defined scan planes 
whereas for the latter, we demonstrate its novel use for the tracking of IVUS catheters 
during intravascular interventions. The tracking of IVUS catheters is known to be 
difficult without the use of additional positional sensors or repeated contrast-enhanced 
x-ray guidance and methods based on unscented particle filters [2] and image based 
 

Instantiated ShapesScan Planes Shape Instantiation

Instantiation Index
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co-registration [3] have been proposed. The method introduced in this paper represents 
an alternative approach that allows simultaneous geometrical recovery and device 
tracking.  

For detailed quantitative evaluation, the use of the Index to optimise the position of 
the scan plane for shape instantiation was demonstrated with a deformable silicone 
liver phantom. The scan plane was optimised, used to reinitialise the framework, and 
used to instantiate the liver model. The Index was also used to solve the inverse 
problem of finding the position of an IVUS catheter in situ, as demonstrated with a 
silicone arterial model. 

2   Methods 

2.1   Instantiability Index for Shape Recovery 

The basic concept of shape instantiation can be described as follows. Prior to an 
operation, a statistical shape model can be built from preoperative images and an 
optimal scan plane determined, along which the most information of the entire shape 
is derived. The model is trained (e.g., through the use of partial least squares 
regression) with this data and further image planes obtained intraoperatively are input 
to the regression which predicts the entire organ shape in real-time.  

The Instantiability Index is based on the comparison of the real-time image data to 
the contours of the preoperative model along the scan plane. An examination of the 
Index for the scan plane during perturbation gives an indication of the sensitivity of 
the plane, i.e., how prone to errors a small perturbation to the plane parameters can 
cause. A stable Index indicates a robust scan plane, with a small error in the plane 
orientation or position not affecting the shape instantiation. A sharp peak in the Index 
typically indicates a unique solution but the corresponding scan plane will be 
sensitive to error. Albeit undesirable for shape instantiation, this location can be used 
to localise the position of an in vivo imaging probe, as it suggests the local geometry 
is unique.  

With the proposed framework, contours P  are found by the intersection of the 
scan plane with the preoperative shape model, where the plane p  is defined with an 
origin o  and a normal n . Geometrically, the preoperative surface mesh consists of 
triangles defining the geometry of the organ of interest. The contours are then 
projected to 2D for comparison to the real-time imaging data. With two 3D vectors x  
and y , from the image origin o , along the respective axes of the 2D image, the 2D 
coordinates of any 3D point a  are: 

( ) ( ){ }( , ) ,u v a o x a o y= − ⋅ − ⋅ .                                    (1) 

Preprocessing of the ultrasound images was performed prior to optimisation. The 
objective function to be minimised, defined as the Instantiability Index (II), is then  

( ) ( )( )
0

,
N

i i
i

II f R T I RP T
=

= = − × +∑
                                      

(2) 
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where
i
I  is the intensity of the image at position i , R  and T  are the rotation and 

translation of the scan plane (the parameters to be optimised), and P  is the 
intersection between the scan plane and the preoperative model (with N points in the 
contour). A comparison of optimisation methods was performed with Simulated 
Annealing [4] performing most reliably. With the optimised plane, the partial least 
squares regression was reinitialised semi-automatically; the preoperative statistical 
shape model was recut and the points on the contour resampled. This updated partial 
least squares regression was used to predict the shape.  

2.2   Data Collection 

A number of calibration techniques and corresponding phantoms have been 
developed for freehand 3D ultrasound systems [5]. For this work, a three-point 
crossed-wires phantom was built for the calibration of intra-operative ultrasound 
images (coordinate system U ) to the coordinate space of a tracking device 
(coordinate system N ). Likewise, the transforms were also found which mapped the 
coordinate space of an electromagnetic tracker to that of the CT imaging space 
(coordinate system C ), calculated using PRAXIS [6]. This then results in a vector 
defining translation and a quaternion for rotation between the ultrasound image points 
to the original CT imaging space. Using the notation from Prager et al.[7], this results 

in the following calculation: 
C C N U

N U
x T T x= , where 

C

N
T  is the transformation 

from the coordinate system C  to N  and 
N

U
T  is that from U  to N . 

For detailed validation of the proposed method, ultrasound images of a silicone 
organ phantom [8] were collected; this near life-sized phantom consists of a number 
of silicone organs, including modified lungs with inserts to simulate respiration and 
hence deform the silicone liver. Translation of the liver was not achieved. The data 
were collected on an ALOKA prosound α10 system (Aloka Co. Ltd, Tokyo, Japan). A 
2D convex probe, with a custom built mount for a passive infrared marker to be 
tracked by an NDI Polaris tracker (Northern Digital, Inc, Waterloo, ON, Canada), was 
used. Calibration between the two coordinate systems is described in the next section. 
The ultrasound images were captured using a PC video capture card connected to the 
S-video output feed of the scanner. Scans were obtained at 7 different liver positions. 

To demonstrate the use of the proposed instantiability index for tracking in vivo 
imaging probes, IVUS images were acquired on a Volcano IVUS system (Volcano, 
San Diego, CA, USA) at an anonymous hospital. An Elastrat (Elastrat Sarl, Geneva, 
Switzerland) pulsatile silicone phantom of the aortic arch was imaged with IVUS and 
with a corresponding CT roll scan with a Philips Allura Xper CT scanner. A single 
fluoroscopic image was also captured to provide an initial position for the IVUS 
catheter tip; as both scans were obtained on the same scanner, no explicit registration 
was required. Ten catheter positions were collected. Analyze (AnalyzeDirect, Inc, 
Overland Park, KS, USA) was used to perform the segmentation and model building. 
For the IVUS data, the position of the tip of the catheter was initialised by obtaining 
its rough position in two dimensions from the corresponding fluoroscopic image. The 
optimisation of the instantiability index was then used to determine the final position 
of the catheter within the mesh.  
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3   Results 

3.1   Validation for Shape Instantiation 

For robust anatomical shape instantiation with data collected from the Aloka scanner, 
the scan plane was first optimised with respect to the preoperative model. With this 
optimised scan plane, partial least squares regression for the shape instantiation was 
reinitialised. The errors were calculated as the mean of the distances from the points 
on the instantiated shape to the closest points on the ground truth model, the 3D mesh 
of the liver as manually segmented from CT images. 

 

Fig. 2. (a, b, c) The Instantiation Index for the scan plane at three locations with respect to the 
silicone liver model. Optimisation for respiratory position 1 with the Aloka ultrasound image 
with (d) the initial contour and (e) the optimised contour with the first scan plane (a) as the 
optimised scan plane.  

An examination of the Instantiability Index, with translation and rotation of the 
plane, for three different scan planes is shown in Fig. 2. The graphs show that a small 
change in translation of the plane is unlikely to affect the shape instantiation but a 
change in the orientation might, highlighting the need for scan plane optimisation. 
The third scan plane is the most forgiving to any perturbations but for this phantom, is 
inaccessible with the ultrasound probe. The result of the optimisation of a contour 
with an Aloka ultrasound image of the silicone phantom is also shown in Fig. 2. Fig. 3 
demonstrates the results of the instantiation (mean error with standard deviation) 
when using the ultrasound data along the optimised scan plane versus the original 
scan plane. The errors are less when using the reinitialised shape instantiation method 
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Euclidean distance between the calculated position and the ground truth found in the 
CT scan, across all 10 positions is shown in Table 1, along with their corresponding 
Instantiability Index Measures, with a higher measure indicating a graph with a 
greater peak. The errors were found to be generally less than 4 mm, with the 
exception of Position 4, when the IVUS catheter was located in one of the smaller 
branches of the phantom. 

 

Fig. 5. The Instantiation Index (a) near a bifurcation of the artery and (b) at the descending 
aorta (where the lumen remains similar despite variations in the plane). Optimisation for 
Position 2 with the pre-processed IVUS image (d) with the initial contour overlaid, (e) the 
optimised contour, and (c) the optimised scan plane with the vascular phantom mesh. 

Table 1. The errors in mm, along with the Instantiation Index Measure, of the estimated IVUS 
transducer position for the 10 different catheter positions in the silicone vascular phantom 

 

 
With both silicone phantoms, there were many similar areas and hence many local 

minima where an optimisation method could be trapped. Simulated annealing was 
found to be the most successful optimisation technique for both datasets due to its 
ability to step out of local minima. However, it does not currently run in real-time. 
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4   Discussion and Conclusion 

In this paper, we have proposed a new index for shape instantiation. We have 
demonstrated its use for both intraoperative anatomical reconstruction and probe 
tracking. The proposed instantiation index provides a measure of the amount of 
information in the scan plane to reduce the errors in instantiation and localisation. 
Local perturbations of the scan plane can be examined and a region of stable Indices 
is suitable for shape instantiation, with the use of an optimisation method to determine 
the exact plane captured with respect to the preoperative model. This optimised plane 
is used to reinitialise the predictive model, thus making prediction of the entire shape 
more accurate intraoperatively. A scan plane with a distinctive peak in the index, with 
respect to nearby scan planes, indicates a global optimum at that plane and hence is 
suitable for localisation within the preoperative model. The paper addresses a 
practical aspect of shape instantiation that was not considered in previous work and 
through the use of a novel shape instantiation index, improves both morphological 
reconstruction and device tracking.  
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in data collection. 
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Abstract. In minimally invasive surgery or needle insertion procedures, the ul-
trasound imaging can easily and safely be used to visualize the target to reach.
However the manual stabilization of the view of this target, which undergoes the
physiological motions of the patient, can be a challenge for the surgeon. In this
paper, we propose to perform this stabilization with a robotic arm equipped with
a 2D ultrasound probe. The six degrees of freedom of the probe are controlled
by an image-based approach, where we choose as visual feedback the image in-
tensity. The accuracy of the control law is ensured by the consideration of the
periodicity of the physiological motions in a predictive controller. Tracking tasks
performed on a realistic abdominal phantom validate the proposed approach and
its robustness to deformation is assessed on a gelatin-made deformable phantom.

Keywords: visual servoing, ultrasound, motion compensation.

1 Introduction

Among the different medical imaging modalities, ultrasound (US) imaging is particu-
larly attractive for providing intra-operatively real-time images. Indeed, this modality is
safe and non-invasive for the patient and the US transducer, cheap and not cumbersome,
can be easily used in an operating room. In particular, the US modality can provide to
the surgeon a view of an organ or a tumor to reach throughout a minimally invasive
surgery or a needle insertion procedure. In such applications, image-guided robotic
systems could assist the surgeon insofar as they can follow an organ that undergoes
physiological motions and thus automatically stabilize the US image of the target.

Some previous works dealing with US image-based robotic systems have focused
on target tracking applications. In [1], the three in-plane motions of an US probe are
controlled to automatically center in the US image the cross-section of an artery while
an out-of-plane translation of the probe is manually performed. Five features extraction
methods based on image similarity measures and contour segmentations are compared
to track the artery center. In another work [2], the three translations of a XYZ stage
robot equipped with two US probes and a HIFU transducer are controlled to follow a
kidney stone while compensating for physiological motions during a lithotripsy proce-
dure. In [3], an approach based on the speckle correlation observed in successive US

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAI 2011, Part I, LNCS 6891, pp. 57–64, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



58 C. Nadeau, A. Krupa, and J. Gangloff

images is detailed. However, a region of fully developped speckle has to be segmented
and a step of learning of the speckle decorrelation curves is required. Moreover in these
different approaches, the visual error minimization is realized with a proportional con-
trol law which does not benefit from the model of the disturbance.

On the other hand, physiological motions compensation using predictive controller
in the control loop of the robotic system is a promising approach to take advantage of
the repetitiveness of these disturbances. It has been developed in previous works where
the tracking of natural or artificial landmarks is performed using an endoscopic camera.
This visual feedback gives then a measure of the organ motion which is combined with a
model of the periodic or quasi-periodic disturbance to predict and anticipate this motion.
Many contributions focus on cardiac motion compensation using endoscopic cameras.
In [4], Nakamura et al. present a tele-operated system to assist surgeons during beating
heart surgeries. The slave arm is synchronized with the heart beats thanks to the visual
feedback of a high speed camera and provides to the surgeon a stabilized image of
the heart. In the same context of beating heart surgery, a motion prediction scheme is
developed in [5] to increase the robustness of the detection and the tracking of natural
landmarks on the heart surface in a laparoscopic view. More generally, Bebek et al. [6]
describe improvements in motion canceling by taking into account biological signals
(ECG) in the predictive algorithm. Recently, a comparison between various predictive
filtering methods has been proposed in [7] to predict the motion of the mitral valve
annulus. Under the assumption of a major 1D translational motion of this annulus, the
motion compensation of one degree of freedom (dof) based on an extended Kalman
filter is validated in situation of high noise, time delay and heart rate variability.

In this paper, we propose to control the six dof of a robotic arm holding a 2D US
probe in order to follow a desired abdominal cross section while compensating for
the respiratory motion. The considered applications are for instance the assistance for
diagnoses or hepatic tumor biopsies where the liver and the tumors mainly undergo the
respiratory motion [8]. Other clinic applications, such as prostate cancer brachytherapy
have been identified in [3] that could benefit from such robotic image stabilization. To
deal with the low quality of the US images, we propose to directly use the intensity of
the image as visual feature, which has been successfully applied in camera-based visual
servoing [10]. The structure of our paper is as follows: the second section details the
principle of the intensity-based approach and the computation of the interaction matrix
that links the intensity features variation to the motion of the 2D probe. The section 3
presents the proportional and predictive control laws implemented and compared with
simulation results. The results of the tracking task performed on an abdominal and on a
deformable phantom are presented in section 4 and included in a video1.

2 US Image-Based Approach

The US images of the human body present a low quality due to the noise, called
speckle, generated by the propagation of the US waves in the soft tissues. Because
of this speckle, the processing of the US images is often more complex than with other

1 http://www.irisa.fr/lagadic/demo/demo-us-servoing-intensity/
intensity_us_servoing.html

http://www.irisa.fr/lagadic/demo/demo-us-servoing-intensity/intensity_us_servoing.html
http://www.irisa.fr/lagadic/demo/demo-us-servoing-intensity/intensity_us_servoing.html
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imaging modalities, making the extraction of natural landmarks particularly compli-
cated. We propose therefore to consider as visual features s the intensity values of the
pixels of a region of interest (ROI) of the US image:

s = {I(1,1), ..., I(u,v), ..., I(M,N)} , (1)

where M and N are respectively the width and the height of the ROI and where I(u,v)
represents the intensity of the pixel of coordinates (u,v) in the US image.

Given Rp(xp,yp,zp) the frame attached to the US probe where (xp,yp) defines the
image plane and zp corresponds to the elevation axis, the coordinates x = (x,y,z) of the
image features in this frame are such as:

(x,y,z) = (sx(u−u0),sy(v− v0),0),

with (sx,sy) the image pixel size and (u0,v0) the pixel coordinates of the image center,
and z = 0 since the considered visual features belong to the US image plane.

The computation of the interaction matrix Ls that links the variation of these image
features to the motion of the probe is based on the constancy of the US wave reflexion by
a physical 3D point. Given such a 3D point at the position x at the time t, which moves
to the new position x + dx at the time t + dt and considering that the US reflexion is
converted in an intensity value in a B-mode US image, the US reflexion conservation
yields to the following intensity conservation equation:

I(x + dx, t + dt)− I(x, t) = 0. (2)

We can expand this equation in the form of a first order Taylor series:

∂ I
∂x

dx +
∂ I
∂y

dy +
∂ I
∂ z

dz+
∂ I
∂ t

dt = 0. (3)

Then, the time variation of each pixel intensity I(u,v) can be expressed as a function of
the corresponding 3D point motion :

İ = −∇I ẋ, (4)

with ∇I = (∇Ix ∇Iy ∇Iz) the 3D image gradient, which is computed from the current
probe image and at least two out-of-plane additional images. In practice, with a con-
ventional 2D US probe mounted on a robotic arm, a small back and forth translational
motion along the elevation direction is applied to acquire these additional images.

According to the kinematics fundamental relationship, the velocity of the 3D point ẋ
is linked to the probe velocity vc through the interaction matrix Lx:

ẋ = Lx vc, Lx =

⎡⎣−1 0 0 0 −z y
0 −1 0 z 0 −x
0 0 −1 −y x 0

⎤⎦ . (5)

The interaction matrix LI of size 1×6 associated to each visual feature is then defined
as LI = −∇I Lx and the complete interaction matrix Ls, defined as ṡ = Lsvc, is built by
stacking the M×N matrices LI associated to each pixel.
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3 Control Strategy

3.1 Classical Control Law

An image-based visual servoing control scheme consists in minimizing the error be-
tween a current set of visual features s and a desired one s∗. In the case of a number p
of visual features exceeding the number m of dof of the controlled system, a combina-
tion matrix C of size m× p and full rank m is introduced to define the task function to
minimize e(t) = C(s(t)− s∗) .

In an eye-in-hand system, the instantaneous velocity applied to the imaging sensor
vc is computed from the task function and the interaction matrix Ls. More particularly,
the classical visual servoing control law described in [9] is based on an exponential
decrease of the task function (ė = −λ e,λ > 0) and presents the best behavior with

C = L̂s
+

, where L̂s
+

is the pseudo-inverse of the matrix estimate L̂s, which yields to:

vc = −λ
(

L̂s
+

L̂s

)−1(
L̂s

+
(s(t)− s∗)

)
= −λ L̂s

+
(s(t)− s∗) (6)

3.2 Predictive Controller

In the previous formulation, the controller does not take advantage of some knowledge
on the disturbance model and more particularly of its periodicity. We propose then to
implement in the control loop a predictive controller, based on the principle of the un-
constrained Generalized Predictive Controller (GPC) [11], in order to anticipate the ef-
fect of the disturbance. We consider a system with multiple inputs u and outputs y. The
former are the six velocity components applied to the probe and the latter correspond
to the image features observed in the current image s. In practice, in order to avoid an
excessive number of visual components and to ensure the controllability of the system,
we introduce the combination matrix in the system loop to consider an output vector of

dimension 6: y = Cs = L̂s
+

s. The system is described with an ARIMAX model:

A(z−1)y(k) = B(z−1)u(k−1)+
P(z−1)
Δ(z−1)

b(k), (7)

where the polynomials A and B represent the theoretical model of the robotic system,
approximated by a pure integrator. The noise is modeled by a white noise term b(k)
which is colored by the polynomial matrix P and made non stationary by the operator
Δ(z−1). In the classical GPC, this operator is taken as an integrator:

Δ(z−1) = 1− z−1.

In the case of periodic disturbances with a known fixed period, Gangloff et al [12]
proposed to consider a repetitive noise model by modifying this operator as follows:

ΔR(z−1) = 1−αz−T , 0 < α ≤ 1

where α is a forgetting factor making the noise model repetitive with a period T cor-
responding to the number of sampling periods in one period of the disturbance signal.
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To ensure that this repetitive noise model only affects the disturbance rejection and not
the response to the visual reference, the new controller called R-GPC is a combination
of two GPC (see Fig. 1). The controller GPC1 is applied to the theoretical model of the
system with no noise term which allows the robot to anticipate the future references
r = Cs∗. The second controller GPC2 includes the repetitive noise model previously
defined to cancel the disturbance effect on the output vector.

Fig. 1. Bloc diagram of the R-GPC including a control delay of one sampling period and a delay
of d sampling periods due to the measure

The cost function minimized by the R-GPC approach is therefore composed of the
cost functions of GPC1 and GPC2 as detailed in [12]:

J(u = u1 + u2,k) =
N2

∑
j=N1

‖ ŷth(k + j)− r(k + j) ‖2 +
N2

∑
j=N1

‖ ε̂(k + j) ‖2

+ λ
Nu

∑
j=1

‖ δu1(k + j−1) ‖2 + μ
Nu

∑
j=1

‖ δu2(k + j−1) ‖2
(8)

where N1,N2 are the bounds of the prediction horizon and Nu is the length of the con-
trol horizon. λ and μ weight the control energies respectively for reference tracking and
disturbance rejection. With this structure, the control signal u(t) applied to the real sys-
tem is composed of the two components u1(t) and u2(t). The former corresponds to the
input of the theoretical system model without disturbance that generates the theoretical
output yth, the latter allows the rejection of the error ε(t) due to noises and disturbance.

4 Results and Discussion

4.1 Simulation Results with a Human Liver

To validate our approach, we use a software simulator that we have developed to re-
construct and display a dense volume from a set of parallel images. In addition to this
display functionality, the simulator allows us to move the reconstructed volume wrt a
fixed Cartesian frame and to control a 2D virtual probe which generates an US image
by cubic interpolation process. For the simulation experiments, an US complete volume
of a human liver is loaded in the simulator. This volume is created from a set of 218
parallel images of resolution 308×278, the voxel size is 0.5×0.5×0.5mm3.
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In abdominal surgery, the hepatic motions are mainly induced by the respiration [8].
The cranio-caudal translation is the most important motion with an established range
of 10 to 26mm and additional translations of about 8mm in antero-posterior and lateral
directions are observed. In line with these data, a periodic translational motion is applied
to the liver volume with amplitudes of 16mm, 5.5mm and 7mm along the x, y and z axes.
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Fig. 2. Results of the tracking of a liver cross-section (a) that undergoes a periodic translational
motion (b). For the same task, the results obtained with the proportional control law (c,d) and
with the predictive one (e,f) are compared in term of visual error (c,e) and pose error (d,f).

The results of the simulation are displayed in Fig. 2. During three breathing periods
no compensation is applied, then at t = 15s, the predictive controller R-GPC is launched
and compared with the classical control law (6). From the first period the probe follows
the liver motion and the misalignment measure defined as C (s) = (s− s∗)� (s− s∗) is
significantly reduced with both approaches (see Fig. 2(c) and (e)). With the R-GPC, the
periodic disturbance is predicted and the accuracy of the tracking is improved.

4.2 Experimental Results with the Predictive Controller

The experiments have been performed with a robotic arm equipped with a convex 2-5
MHz US transducer on an abdominal phantom and a deformable one (see Fig. 3).

For the considered medical applications, we combine the visual control with a force
control insofar as the US probe relies on the patient skin. We therefore add to the visual
task a force constraint which guarantees a constant force of 1N applied to the phan-
tom. The force control is used to servo the translational motion along the y-axis of the
probe frame while the five remaining dof are controlled by the visual servoing control
scheme. The Fig. 4 shows the results of one tracking experiment realized with the pre-
dictive controller where a sinusoidal perturbation is applied to the abdominal phantom
with a period of 6s, mainly along the x and z axes in translation and around the y-axis
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Fig. 3. Experimental setup with the abdominal (left) and gelatin-made (right) phantoms
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Fig. 4. Tracking of an abdominal cross section (a) while the phantom undergoes a periodic exter-
nal motion applied at t = 6s in translation (b) and rotation (c). The low value of the visual error
(d) and the constant position (e) and orientation (f) of the probe wrt the phantom validate the task.

in rotation. The visual error is reduced from the second period, which guarantees the
stabilization of the organ cross section in the US image during the disturbance cycles.

The robustness of the control law when dealing with deformable objects is assessed
using a gelatin-made phantom filled with cereal fibers to create US speckle and olives
modeling hepatic tumors (see Fig. 5). At t = 5s, a periodic translational motion of about
2cm is applied to this phantom which is also pressed against a wall to create local
deformations. In this particular case, the relative pose of the probe wrt the phantom
can not been measured and the success of the task is visually validated by the display
of the view of the US probe and the corresponding image difference with the desired
image (see Fig. 5(b) and (c)) at t = 37s, which corresponds to the maximum error in the
misalignment measure (see Fig. 5(d)) observed during the tracking task.

The tracking results validate the intensity-based approach to deal with the stabiliza-
tion of a 2D US image by compensating periodic disturbances with a predictive con-
troller. The limitation due to the low quality of the US images is overcome by the choice



64 C. Nadeau, A. Krupa, and J. Gangloff

 0

 500

 1000

 1500

 2000

 0  20  40  60  80  100

time (s)

Misalignment measure

(a) (b) (c) (d)

Fig. 5. Tracking results with the deformable phantom of an US slice containing two tumors

of the image intensity as visual feature and the six dof of the probe are controlled thanks
to the modeling of the interaction matrix associated to these features.
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Abstract. A gaze-deviated examination of the eye with a 2D ultrasound 
transducer is a common and informative ophthalmic test; however, the complex 
task of the pose estimation of the ultrasound images relative to the eye affects 
3D interpretation. To tackle this challenge, a novel system for 3D image 
reconstruction based on gaze tracking of the contralateral eye has been 
proposed. The gaze fixates on several target points and, for each fixation, the 
pose of the examined eye is inferred from the gaze tracking. A single camera 
system has been developed for pose estimation combined with subject-specific 
parameter identification. The ultrasound images are then transformed to the 
coordinate system of the examined eye to create a 3D volume. Accuracy of the 
proposed gaze tracking system and the pose estimation of the eye have been 
validated in a set of experiments. Overall system error, including pose 
estimation and calibration, are 3.12 mm and 4.68˚. 

1   Introduction 

Ultrasound has become an indispensible diagnostic tool for many ocular and orbital 
diseases [1-3]. Many studies show the ability of ultrasound to perform a pathological 
evaluation of the eyeball in its posterior segment [4, 5]. For example, in vitreo-retinal 
surgery, preoperative planning with ultrasound can be used [5]. Recent studies have 
also shown the benefit of ocular ultrasound in emergency medicine, such as 
diagnosing retinal detachment [6, 7]. There are some pathological characteristics that 
differentiate retinal detachment from other abnormalities such as vitreous 
hemorrhages [7]. Clinical manifestation of retina and vitreous detachments varies 
depending on where the adhesion is strongest [8]. These studies suggest that 
diagnosis, guidance and treatment would all benefit from imaging the entire posterior 
segment instead of a small portion. 

Conventional ophthalmologic 2D ultrasound transducers have a small footprint and 
can image a portion of the posterior segment of the eye through the sclera. Since 
ultrasound has poor penetration of the cornea and lens, images are taken through the 
sclera when the gaze is deviated toward different positions [1]. However, the 
evaluation of pathological features using such 2D ultrasound makes the examination 
more complex and may contribute to false diagnoses [7]. In order to obtain views of 
the entire posterior segment, multiple ultrasound images must be captured for a 
variety of gaze directions. Moreover, the use of different gazes and the spherical 
geometry of the eyeball make it difficult to interpret the pose of each 2D ultrasound 
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relative to the eye's coordinate system. The complexity of such examinations comes 
from the fact that the 3D pose of the eye should be known for each image acquisition 
[2]. In practice, the examiner has to visualize the intersection of the ultrasound plane 
with a mental 3D model of the eye and guess the eye pose to estimate where the 
absolute position of the image is located in the coordinate system of the eye [2]. There 
is a need for a new solution for this problem, especially since the eyelid is closed 
during the examination, so the eye pose is difficult to discern visually. 

It has been suggested that a dedicated 3D ultrasound transducer facilitates the 
assessment of certain posterior ocular abnormalities [9].  However, even in the case of 
a specialized 3D ultrasound transducer, only a portion of the posterior surface would 
be imaged from each pose of the eye and it does not eliminate the localization 
problem associated with a gaze-deviated examination. Moreover, this challenge 
cannot be solved by tracking the ultrasound transducer relative to a fixed base because 
the eye changes its pose during the examination.  

We propose a novel system using a combination of a camera, an ultrasound 
transducer, and a subject-specific eye pose estimation method to tackle this problem. 
The pose of the examined eye is estimated from the pose estimation of the 
contralateral eye during the imaging process. Eye parameters for each subject and in 
different lightening conditions are modeled together with pose estimation in an 
attempt to achieve high localization accuracy. The method of model-based gaze 
tracking proposed in [10] is adopted and modified to replace the parameters based on 
population averages, such as cornea radius and pupil radius, with parameters specific 
to the subject. The proposed system aims to produce accurate 3D ultrasound 
reconstruction of the posterior segment of the eye from a set of 2D images acquired 
from different eye gazes. 

2   Methods and Materials  

2.1   Overview 

As mentioned, the goal is to find the transformation from the ultrasound image to the 
examined eye’s coordinate system. This transform,  , can be defined as: 

  (1)

where  ,   and   are the transformations from ultrasound image to 
camera, camera to Eye1, and Eye1 to Eye2, respectively (Fig. 1(a)). Eye2 is the 
examined eye and Eye1 is the contralateral eye.    is a fixed transformation that is 
found by a separate calibration process.   is determined for each pose of Eye1 by 
gaze tracking together with estimating subject-specific eye parameters. These 
parameters are the cornea center, , cornea radius, , pupil center, , pupil radius, , 
and cornea-center-to-pupil-center distance, . The optical axis is a vector that joins  
and , and the visual axis passes through  and hits the fovea (Fig. 2(a)). To 
find   some parameters should first be calibrated in an experiment with two open 
eyes for each individual. One is the transform from the rest pose of Eye1 to Eye2,  . The rest pose is defined as the eye pose when it is looking at a distant target  
and head is upright and static [11]. The other is the angular offset between the visual 
axis and the optical axis,  [12] (Fig. 2(a)). The visual axes of the two eyes intersect at 
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(a) (b) 

Fig. 1. System overview. (a) Each US image should be transformed into the coordinate system 
of Eye2. The pose of Eye1 is tracked in the coordinate system of the camera using glint tracking 
from four LEDs. The US to camera transform is fixed during the experiment. The transform 
from Eye1 to Eye2 is determined by a subject-specific model. (b) A subject fixates at several 
target points to create a wide range of eye movements during an examination. 

 
the fixation points. Considering this fact for each target point, and having     and 
the angular offset for both eyes, , , the Eye1 to Eye2 transformation,  , can 
be determined. The detailed calculations of these stages are described in the following 
sections. Given space limitations only the key equations are described in full. 

2.2   Calibration 

The subject is asked to look at a distant point with both eyes open. The rest position 
of both eyes is found from gaze tracking of the two eyes with a single camera placed 
farther from the face and     is measured using gaze tracking on both eyes as a 
subject is guided to a distant target. Then the subject is asked to look at several known 
target points on a board and the optical axis is found for each target (Fig. 1(b)). Then 
the method as described in [13] is used to calculate  and . 

For ultrasound to camera calibration,  , the single-wall calibration method [14] 
is used with the modification of using a checker-board pattern on the portion of the 
wall surface outside the water bath so that it can be seen by the camera. The camera's 
intrinsic parameters are calibrated with the Camera Calibration Toolbox [15], which 
uses images of a checker-board pattern.   

2.3   Combined Pose Estimation and Eye Model Parameter Identification 

The primary application of gaze tracking is in the field of human-computer interfaces. 
In the video-based gaze tracking literature, those that give the full 3D pose of the eye, 
instead of simply a gaze intersection with a monitor, are of interest here. We have 
implemented a gaze tracking system based on a single camera and multiple IR light 
sources (LEDs) [10]. In this method, the glints are used to estimate the position of 
cornea center. The circumference of the pupil in the image is refracted into the eye 
according to Snell’s law. With a known position of the cornea, it is possible to 
 

Eye1 

Eye2 
US Camera 

US image Gaze Targets 
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where  is the cornea radius. Since the angle between  and  is known from the 
pinhole model of the camera, it gives another equation: 

′

′ .  (5)

Eqs. (2) to (5) can be written for each light source and they result in 4  equations 
(  number of light sources). Since the auxiliary coordinate system has the same 
origin as the camera, the transform from the camera coordinate system to the auxiliary 
system is defined by the rotation matrix, . Another set of equations is produced by 
the constraint that the transformation of auxiliary cornea centers to the camera 
coordinate system are all the same: . (6)

In summary, by considering  light sources, the number (4 3 ) of equations 
equals or exceeds the number (5 1) of unknowns ( , ,  , , , ). 
Although two light sources are sufficient to solve for the cornea center, we used four 
sources to get more accurate results [13]. 
 

 
 

(a) (b) 

Fig. 3. (a) An example of camera image with four glints (blue) and extracted pupil perimeter 
(red) (b) Auxiliary coordinate system.  is the auxiliary cornea center.  is the glint of light 
source  in the image, and  is its 3D position. 

Pupil Parameter Estimation. Fig. 2(b) depicts the geometry of the pupil center 
estimation problem. Instead of fitting an ellipse on the image of the pupil and 
estimating the pupil center from its refracted center in the image, we directly solve for 
pupil center as well as pupil radius, , and the distance between pupil-cornea centers, 

. The direction of the vector from a point residing on the circumference of the 
pupil to the point of refraction on the surface of the cornea ( ) is known from the 
pinhole camera model, so the intersection of the ray with the cornea sphere surface 
( ) is easily determined.  is the direction of the refracted ray and it is known by 
considering Snell’s law and the cornea’s refractive index ( 1.336). The 
following gives three equations for each point on the pupil circumference, where  is 
an unknown parameter: 

. (7)
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 is the intersection of the refracted ray and pupil perimeter , so we have: 

. (8)

The constraint between the pupil perimeter and the cornea center gives: 

. (9)

By adding the constraint of the distance between cornea center and pupil center: 

. (10)

By considering Eqs. (7) to (10) for at least four points ( 4) on the pupil, the 
number (5 1) of equations equals or exceeds the number (4 5) of unknowns 
( , , , , ). Since the camera is close to the eye, the pupil perimeter points are 
easily labeled using Canny edge detection and if some portion of the pupil perimeter 
are missing in the image, a solution can still be found. In practice, at some far 
deviated gazes, the eyelid partly hides the perimeter of the pupil. 

2.4   Experiments  

The experimental setup consists of ultrasound imaging and gaze tracking components. 
The subject is positioned with a standard chin and forehead support to keep the head 
fixed related to the camera and the ultrasound transducer. The ultrasound system used 
is a Sonix MDP (Ultrasonix Medical Corporation, Richmond, BC, Canada) equipped 
with an L14-5/38 10 MHz linear 2D ultrasound transducer.  

The ultrasound transducer is positioned on the eyelid using coupling gel, as 
standard practice. The transducer can be tilted around the elevation axis to obtain 
different imaging views. Then the transducer is fixed to the suitable position with 
respect to the chin rest. The gaze tracking part includes a high definition USB camera1 
(LifeCam Cinema, Microsoft Co., USA) and four infrared LEDs to make four bright 
glints in the image of the eye. 

From Eq. 1, it is clear that the accuracy of the camera to ultrasound calibration,  , can be easily separated from the gaze tracking results. To evaluate our overall 
system accuracy, we therefore give these as three separate components of the total 
error. In this way, the errors from our eye pose estimation  and   can be 
compared to a gold standard measurement of   using eye tracking directly on the 
examined eye with the eyelid open. It also allows direct comparison of our novel 
combined modeling and tracking method with standard gaze tracking methods using 
parameters based on population averages. 
Ultrasound to camera calibration is therefore performed first. Then in an experiment 
with two eyes open, the subject pursues target points on a board. The target points are 
evenly distributed (2 cm spacing) and the plane is 25 cm away from the camera. As 
the subject fixates at each target point, the gaze tracking system tracks the optical axis 
of the eyes and  and  are calibrated. Also, the rest pose of the eyes and    
are determined using a distant gaze.  

To evaluate   estimation, first it is directly calculated from the optical axis of 
both eyes. Then, it is estimated based on the contralateral eye from the fixation point   
 

                                                           
1 The infra-red filter was removed. 
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(a) (b) 

Fig. 4. (a) An example 2D ultrasound image of the posterior segment of the eye. (b) Ultrasound 
frames transformed in the coordinate system of the eye for a set (n=15) of eye gazes. 

and the calibrated parameters. The fixation point is found from the intersection of 
Eye1's visual axis with the target plane. The unknown visual axis of Eye2 passes 
through its cornea center and the fixation point. The cornea center, the optical and the 
visual axes can be related to their rest pose with a single transform. This transform is 
found so that the visual axis passes through the target point. The difference in the eye 
orientation for   between our method and the gold standard are then calculated. 
The equations are solved with nonlinear least squares using the Levenberg-Marquardt 
method. As a feasibility study, one subject is examined and the errors are calculated 
(Table 1). Since the head is fixed, the eye center, , remains fixed. The standard 
deviation in estimation of  is also calculated as a measure of precision of the gaze 
tracking method. 

3   Results 

The residual errors (the minimized error) from the ultrasound to camera calibration 
are 0.2, 0.3, 0.5 mm, 0.2˚, 0.2˚, and 0.6˚. The accuracy of a single-wall calibration 
technique based on minimizing the residual errors is well documented [14]. Table.1 
summarizes the differences in   from the gold standard. The standard deviation 
of the error in  and  estimations are 1.28˚ and 1.58˚, respectively. RMS error in 
eye center estimation for n=30 target points with our method is 2.91 mm compared to 
3.72 mm error with model-based method using parameters based on population 
averages. Adding the errors of independent sources in Eq.1 gives an overall accuracy 
of 3.12 mm and 4.68˚. 

By positioning each ultrasound image in the coordinates system of the eye for each 
pose, a 3D image of the eye is constructed. Fig. 4 demonstrates that the angular view 
of the posterior segment of the eye has been increased. 

Table 1. The differences in   from the gold standard in deg 

Estimation errors of rotation 
parameters of  

 
(Roll) 

 
(Pitch) 

 
(Yaw) 

Mean  2.04 -0.32 -1.42 
STD 3.15 1.91 1.61 
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4   Discussion and Conclusion  
In this work a novel system has been proposed to determine the absolute pose of a 2D 
ultrasound image in the 3D coordinate system of the eye in a gaze-deviated eye 
examination. To this end, a subject-specific eye pose estimation method has been 
developed. The method is based on single camera eye gaze tracking. 

The accuracy of the overall system is mainly governed by the accuracy of the 
camera to ultrasound calibration and the accuracy of eye pose estimation from the 
contralateral eye. Experimental results show errors 3.12 mm and 4.68˚compared to 
the gold standard. The gold standard is eye gaze tracking directly on the examined 
eye, and itself has an error of approximately 1˚[10]. The main sources of error are 
related to camera quality, position of the light sources and eye modeling. 

Accurate 3D reconstruction of the eye’s posterior segment and the assessment of 
dynamic ultrasound images of the eye are the other future discussion for this research.  
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Abstract. In this paper, we present an interactive X-Ray perceptual
visualization technique (IXPV) to improve 3D perception in standard
single-view X-Ray images. Based on a priori knowledge from CT data, we
re-introduce lost depth information into the original single-view
X-Ray image without jeopardizing information of the original X-Ray.
We propose a novel approach that is suitable for correct fusion of intra-
operative X-Ray and ultrasound, co-visualization of X-Ray and surgi-
cal tools, and for improving the 3D perception of standard radiographs.
Phantom and animal cadaver datasets were used during experimentation
to demonstrate the impact of our technique. Results from a question-
naire completed by 11 clinicians and computer scientists demonstrate
the added value of introduced depth cues directly in an X-Ray image. In
conclusion, we propose IXPV as a futuristic alternative to the standard
radiographic image found in today’s clinical setting.

1 Introduction

For almost all medical imaging modalities, current state of the art visualiza-
tion systems provide advanced techniques for real-time direct volume rendering
(DVR), which is used for diagnosis, planning, and intra-operative procedures [5].
Fused visualization of co-registered, multi-modal image data of the patient and
traditional surface based rendering, e.g. tracked instruments, implant models, or
segmentation has become common practice [4,11]. Furthermore, depth percep-
tion has been an important field of research in computer graphics. Especially for
DVR many methods for enhancing depth cues have been proposed [1,2,4,11,12].
For translucent volumes (such as X-Ray) an existing method uses stereoscopy
[8]. However, little interest has been taken in transferring the advances in DVR
to introduce additional depth cues to single X-Ray images. The intensities dis-
played in an X-Ray image go back to the attenuation of a complete ray traversal
through the body and do not correspond to a specific depth along the ray.
This also makes fusion of rendered objects with X-Ray images more difficult.
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Fig. 1. (top) Classical analogy of DRR creation and
X-Ray, after the CT (cube) has been registered. The
figure also shows the effect of clipping the red por-
tion of the CT on the attenuation function. (bottom)
The major steps in IXPV rendering. α represents
the coefficient used to modulate X-Ray and US (red
arrows and +). Also shown is the error term from
Section 2.7.

Current state of the art meth-
ods use either 2D blend-
ing [10] with a user de-
fined blending factor (i.e.
common 2D/3D registration
algorithms) or depth-of-field
based 2D blending, which de-
fines the blending factor per
pixel according to the depth
of the geometry. Both meth-
ods have the same major
drawback: they do not ac-
count for the physics of X-
Ray. Thus, the resulting fused
image will provide inaccu-
rate and frequently mislead-
ing depth cues (see Fig. 3
(center), (right)) making it
hard for the user to correctly
estimate distances and posi-
tions of objects from the fused
view. The objective of our
work is to propose a novel vi-
sualization technique for im-
proving visual perception in
general and depth perception
in particular in medical X-
Ray images. Our idea termed
Interactive X-Ray Perceptual
Visualization (IXPV) allows
the user to interactively ma-
nipulate a single-view X-Ray image by varying depth. This is achieved by re-
trieving a priori knowledge of absorptive properties from CT data (pre-operative
or atlas). Through phantom and animal cadaver experimentation and user study,
we show that the IXPV technique introduces depth cues in X-Ray image visual-
ization to disambiguate the ordering of internal structures or instruments used in
everyday diagnostic and intraoperative scenarios. Possible applications for this
method range from X-Ray based medical Augmented Reality to fusion of X-Ray
and DVR renderings of volumetric data, such as PET scans.

2 Methods

The proposed method aims at transferring information from co-registered CT
data directly into X-Ray images. There exist several algorithms facing the prob-
lem of CT/X-Ray co-registration. There are marker, landmark and intensity
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based [9,10] methods. One could even think of using an Atlas CT i.e utilizing
methods as proposed in [3] or [7]. In our method, we assume that we have a
registration between CT and X-Ray using any of the aforementioned methods.
All derivations below shield one goal: calculation of the X-Ray intensities at
any depth along a certain ray by modulating the X-Ray image and not simply
copying pixel values from Digitally Reconstructed Radiograph (DRR).

2.1 Beer-Lambert Law and X-Ray Intensities at Specific Depth

For an emitted dose of X-Ray radiation I0, the Beer-Lambert law for linear
X-Ray attenuation describes the intensity I at the end of a ray:

I = I0 ∗ e−
∫

μ(x)dx (1)

where μ : [0, 1]3 → [0, 1] is the X-Ray absorption function. A CT is essentially
a discrete volume of absorption values measured in Hounsfield Units. Thus the
absorption is given by μCT = g ◦ f , where f : [0, 1]3 → [0, 1] is a function defined
by the CT and g : [0, 1] → [0, 1] is the transfer function (TF) mapping the values
from CT to the correct absorption value [9].

For a moment, assume X-Rays were cut off at some specific depth. We are
interested in the X-Ray intensity up to a specific point x0 along this ray, as if the
intensifier were placed there (compare Fig. 1 (top)). As the absorption function
is monotonic decreasing this is valid and with Eq. 1 we derive:

I = I0 ∗ e
−(

∫
x0 μ(x)dx+

∫
x0

μ(x)dx = I0 ∗ e−
∫

x0 μ(x)dx ∗ e
− ∫

x0
μ(x)dx (2)

Since luminance values are ∈ [0, 1], choose I0 = 1, for maximal radiation:

e−
∫

x0 μ(x)dx = I/e
− ∫

x0
μ(x)dx and e

− ∫
x0

μ(x)dx = I/e−
∫

x0 μ(x)dx (3)

2.2 Transfer of Information to X-Ray

Assuming exact registration (for discussion on error see section 2.7), this leads
to an approximative absorption function μCT ≈ μ ∀x ∈ [0, 1]3. Using Eq. 3:

e−
∫

x0 μ(x)dx = IX-Ray/e
− ∫

x0
μ(x)dx ≈ IX-Ray/(

ICT

e−
∫

x0 μCT(x)dx
) (4)

⇒ e−
∫ x0 μ(x)dx ≈ IX-Ray︸ ︷︷ ︸

X-Ray value

∗ e−
∫ x0 μCT(x)dx

e−
∫

μCT(x)dx︸ ︷︷ ︸
blending factor

(5)

We derive a blending factor for the original X-Ray image, which we use to
modulate intensity information of geometry or another modality for a specific
depth. The blending factor is defined as the quotient of two DRR-passes. The full
DRR (denominator) ICT has to be computed once for a given X-Ray image and
the clipped DRR (numerator) has to be updated if x0 (i.e. the object boundary)
changes and only for pixels where an object is present.
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2.3 Interactive X-Ray Perceptual Visualization (IXPV)

Given the registration between CT or atlas CT and the X-Ray images and the
method proposed in 2.2, we can interactively manipulate the depth information
across the co-registered X-Ray image. In fact, in general terms many interactive
manipulations done on particular 3D views of CT images could be duplicated
using only modulated X-Ray values. The image could be a static X-Ray view or
a running fluoroscopic sequence.

2.4 Clipping X-Ray

The estimation of variation in the X-Ray pixels are given in Eq. 5. We could
thereby manipulate X-Ray for better 3D perception, using general CT or Atlas
CT data while only using the X-Ray pixel values. In our experiments we use a
clipping plane to interactively examine the X-Ray image (see Fig. 2).

Fig. 2. Figures on top (round) show the result of IXPV of a clipping plane moving
away from the viewer parallel to the image plane. Bottom figures (square) show corre-
sponding clipped DRRs.

2.5 Fusion of Tools and X-Ray

Given a CAD model of a surgical tool and the possibility to track this tool, the
virtual instrument can be directly fused with a given X-Ray image using IXPV
and cutting the X-ray at the position where the virtual model of the tool is
located. The results of our method are shown in Fig. 3 (left).
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Fig. 3. A CAD model of a surgical drill fused with a single-view X-Ray image of a
spine phantom. Compare IXPV (left) depth-of-field (center) and 2D blending (right).

2.6 Visualization of Co-registered X-Ray and Dynamic US

The visualization of fused X-Ray and ultrasound can take advantage of the
depth cues given by IXPV. In this regard, the method implicitly takes occlusion
related effects of the ultrasound plane and the X-Ray into account. For our
experiments, a cow leg cadaver was positioned at the center of a transparent box
with 6 reflective markers affixed to it that are visible in both CT and tracked
NDI technology. Fusion between CT and ultrasound was realized using intensity
based registration [6]. Having an accurate initial pose to an AP view of X-Ray,
we fuse a B-mode ultrasound plane directly with X-Ray. Fig. 4 shows the effects
of this fusion in comparison to 2D blending.

Fig. 4. Animal cadaver cow leg (left) visual assessment. (center) When applying the
IXPV technique the tibia is displayed correctly in front of the ultrasound plane. Fusion
using 2D blending of ultrasound and X-Ray (right) produces misleading depth cues.

2.7 Radiometric Error

Even if geometric 2D/3D registration of X-Ray and CT or Atlas could be done
precisely thanks to recent advances in registration techniques, the estimation of
the X-Ray intensity images is extremely difficult. This is due to 2D/3D registra-
tion optimizing a linear projection matrix while radiometric property estimation
is a highly non linear procedure. The absorption value obtained from Eq. 5 is
∈ [IXRay,

IXRay
ICT

]. As for the difficulties of radiometric estimation: IXRay
ICT

�= 1.
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To achieve reasonable visualization, (i.e. when integrating tracked instruments
into X-ray using our method), we would like to have the object (i.e. instrument)
fully visible in front of the anatomy. When moving behind anatomy only the
X-Ray intensities should prevail. This intuition in mind we quantify the error in
Eq. 5 as:

e−
∫

x0 μ(x)dx − IXRay

ICT
∗ e−

∫
x0 μCT(x)dx (6)

Note that for x0 = 0 (in front of the volume) this leads to: 1− IXRay
ICT

. For x0 = 1
this corresponds to no error. Thus we decided to add

xmax − x

xmax − xmin
∗ (1 − IXRay

ICT
) (7)

to Eq. 5 in order to get the described visual effects, where xmax and xmin would
define the limits of our volume of interest along the ray.

2.8 Error from Registration in Depth

A common issue for 2D/3D registration algorithms is that they are least reliable
in depth. Let δx be this error in depth. For IXPV the absorption function ap-
proximation (Eq. 5) becomes μCT(x + δx) ≈ μ(x). Thus the error results in an
offset within the intensity approximation and the error is given by:

e−
∫

x0 μCT(x+δx)dx− IXRay

ICT
∗e−

∫
x0 μCT(x)dx ≈ e−

∫
x0 μCT(x+δx)dx−e−

∫
x0 μCT(x)dx

(8)

3 Results

The impact of our IXPV technique was validated through a series of phantom
and cadaver experiments. For comparison, we also implemented 2D blending and
depth-of-field techniques (see Fig. 3). The phantom study used co-registered CT
and X-Ray of a spine phantom. A questionnaire was devised which is divided into
two sections: depth perception in X-Ray and depth perception of clipping planes
to evaluate the effect of interactivity. In total, eleven participants took part
in the study (five experienced clinicians in the orthopedic and trauma surgery
department and six senior researchers having a strong background in medical
imaging). For section one (depth perception), we presented one top view com-
posing a virtual model of a drill and the X-Ray, using either: (a) 2D blending
(2D), (b) depth-of-field blending (dof) or (c) IXPV picture (compare Fig. 3).
Participants were asked to choose correctly one out of three lateral views for the
given top view. In a series of 27 questions, we randomized drill position depths
(2, 5, or 10 millimeters), as well as the techniques.
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3.1 User-Study

Participants received the following instructions for section two (X-Ray clip-
ping): to choose correctly one of three lateral views given a static AP view
and given videos of a clipping plane repeatedly moving through the object. In a
series of 8 questions, we randomized between static image and video sequences.

Fig. 5. Boxplots of the results

We accumulated statistical results of the
questionnaire based on the total number
of correct answers from all participants.
Lastly, we asked only the surgeons to
evaluate in a five-point Likert scale (i.e.
1 strongly disagree, 5 strongly agree), if
IXPV was easier, more intuitive and more
helpful for depth perception in X-Ray.
A Wilcoxon rank sum test was used to
calculate the p-values. Depth perception:
The results for the three modes are pre-
sented in Fig. 5 (right). The p-value
for IXPV vs. 2D blending turned out
to be 0.0449 (significant). For IXPV vs.
depth-of-field it is 0.0758 (not significant).
X-Ray interactive clipping: The results are shown Fig. 5 (right). The p-value is
0.0119 (significant). Likert scale: The five surgeons responded positively to the
IXPV method as suggested by a score of 3.7 ± 0.9.

4 Discussion and Conclusion

This paper presents a novel technique of interactive X-Ray perceptual visual-
ization (IXPV) which takes the physics of X-Ray into account to improve 3D
perception within a single X-Ray image and allows fusion with tracked surgical
tools or intraoperative ultrasound. Given an X-Ray image and a registered CT,
our method relies on DVR algorithms to gain a modulation of original X-Ray
intensities, to approximate those of a specific depth within the volume. Modern
DVR algorithms and optimizations described in section 2.2 enable real-time visu-
alization of IXPV even on low end graphics hardware. We evaluated our method
using a survey which was designed to test two major hypotheses. Firstly, our
method is superior to 2D blending. Although we were not able to reject the null
hypothesis for IXPV vs. depth-of-fied blending, the results suggest, that IXPV
provides more consistent depth cues than DOF. Secondly, our method enhances
depth perception of 2D X-Ray images by allowing interactive examination with
a clipping plane. Results suggest that IXPV should be further investigated and
developed as a futuristic complimentary imaging tool to traditional radiographic
images found in clinics. Future work includes the use anatomic models and/or
of statistical atlas CT instead of patient specific data as well as fusion of IXPV
with volumetric data, such as PET scans.
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Abstract. We present an augmented reality system for oral and max-
illofacial surgery in this paper. Instead of being displayed on a separated
screen, three-dimensional (3D) virtual presentations of osseous structures
and soft tissues are projected onto the patient’s body, providing surgeons
with exact knowledge of depth information of high risk tissues inside the
bone. We employ a 3D integral imaging technique which produce mo-
tion parallax in both horizontal and vertical direction over a wide viewing
area in this study. In addition, surgeons are able to check the progress of
the operation in real-time through an intuitive 3D based interface which
is content-rich, hardware accelerated. These features prevent surgeons
from penetrating into high risk areas and thus help improve the quality
of the operation. Operational tasks such as hole drilling, screw fixation
were performed using our system and showed an overall positional er-
ror of less than 1mm. Feasibility of our system was also verified with a
human volunteer experiment.

1 Introduction

Image guided systems have been supporting surgeons in a wide range of clin-
ical applications from diagnostic to postoperative evaluation [1,2]. In oral and
maxillofacial surgery, the prerequisite for a successful operation is the exact
knowledge of high risk tissues such as blood vessels and dental nerves so that
these inferior tissues can be avoided [3]. One challenging problem in current nav-
igation systems is the lack of depth information of the visualized structures due
to the limitation of conventional flat displays. In addition, as the visual informa-
tion is often separated from the surgical site, surgeons have to make a hand-eye
transformation in order to match visual information to the real scene.

In order to give the surgeons an intuitive grasp of the depth information of
a surgical scene, several approaches have been presented [4,5]. Among those,
the image overlay system using Integral Videography (IV) [6,7] is a promising
solution for the simplicity in implementation and the ability to produce motion
parallax in both horizontal and vertical directions. In such system, users can see
the 3D internal structure superimposed onto the actual anatomy through a half-
silvered mirror [8]. However, the low rendering speed and the lack of the ability to
visualize enriched information make it difficult to use such system in navigation.
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For example, one would expect to interactively change the transparency of a
surface to see the blood vessel inside, or get a real-time visual feedback about
the progress of the operation.

In this study, we present an augmented reality system for oral surgery using
IV image. We develop a GPU based rendering algorithm to accelerate the IV
images generation. Our system also offers an intuitive 3D based user interface
that allows surgeons to interact with the image in 3D environment. Feasibility
study of the system is carried out with a set of experiments including a human
volunteer experiment.

2 Materials and Methods

2.1 3D IV Display and Rendering

The basis of IV comes from the principle of Integral Photography [9]. To repro-
duce 3D image of an object in real space, a micro lens array is placed in front
of a high density LCD display. Each pixel in the portion behind a micro lens
emits a light ray in a unique direction that connects the pixel and the center
of the lens. From a specific viewpoint, one can only see the set of light rays
emitted from the pixels that lie on the straight lines connecting the viewpoint
and the lenses. Consequently, different aspects of an object can be observed from
different directions, giving the observer a sense of depth(Fig. 1(a)).

(a)

(b)

Fig. 1. (a) Principle of Integral Videography. (b) Sampling an image using Πl and Πd

In order to create an IV image, every pixel on the background display need to
be computed. There are two main IV rendering methods: volume ray-tracing and
surface based rendering. In the former, value of each pixel is depends on how
the corresponding light ray intersects with the object. This method requires
computation for every light ray but creates very accurate 3D images.The latter
uses CG surface rendering to render an array of multi-view images from a set
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of predefined viewpoints. These images are then mapped backward to the back-
ground image using pixel distribution algorithm [10]. This method has all the
advantages of surface rendering (shading, texture mapping, etc.). However, due
to the fact that the spatial arrangement and shape of the lens in general differ
from those of the pixels in an image, apparent distortions are observable. For
that reason, surface based method is often used for other purposes than surgical
navigation.

In order to render accurate IV image while maintaining the desired visual
effects, we introduce a light field [11] approach to the surface based method.
The image Si,j rendered from view Ci,j is projected onto the lens array plane Πl

and the display plane Πd with the center of projection located at Ci,j . Applying
the transformation for all i and j will result in a densely sampled light space in
which each light ray is defined as a four parameters function l(s, t, u, v) ((s, t)
from Πd and (u, v) from Πl)(Fig. 1(b)).

Value of a pixel located at P = (s, t)T in Πd is computed as follow.

I(s, t) =
∫ ∫

Πl

Θ(s, t, u, v)l(s, t, u, v) dudv, (1)

where Θ(s, t, u, v) is a weight function that defines the contribution of the light
ray to the final result such that∫ ∫

Πl

Θ(s, t, u, v) dudv = 1. (2)

The design of the weight function is beyond the scope of this paper. However,
for a well-manufactured lens array, contribution of light rays from lenses located
far away from the query pixel can be neglected. Therefore a Dirac delta function
in which the base width equals to the diameter of one lens can be a good choice.

Θ(s, t, u, v)
def
= δR(d) =

1
R
√

π
e−

d2

R2 , (3)

where d is the Euclidean distance between (s, t)T and (u, v)T , R is the radius of
a micro lens.

l(s, t, u, v) can be computed by resampling Πl and Πd, this is done through
several interpolations using the sampled points. These interpolations are in gen-
eral time consuming tasks that slow down the rendering speed significantly.
Fortunately, recent GPUs provide a very effective way to perform these inter-
polations through their naive texture accessing function. To do so, all of the
images are rendered and stored in the GPU’s texture memory. Next, a rectangle
is rendered as a proxy geometry where textures are loaded. At the final stage
of the graphics pipeline, each fragment (i.e. a potential pixel) is fed with the
pixel value from equation 1. Per fragment processing is implemented using a
GPU shading language, the C for Graphics [12]. Our algorithm does not require
external CPU memory so we can get rid of the bottlenecks in data transmission
between GPU and CPU.
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2.2 IV Augmented Reality System

A half-silvered mirror is attached to the IV display. Through the half mirror,
surgeons can see the reflected IV image superimposed onto the patient (Fig.
2(a)). We use a fly eyes type lens array with lens diameter of 1.001 mm, which
is fixed to a 6.4 inches high resolution LCD (203 dpi). In order to track the
movement of the patient, a marker frame is fixed to the lower jaw. The marker
frame is calibrated using a model of exactly the same size with the lower jaw.

(a) (b)

Fig. 2. (a) IV augmented reality system configuration. (b) IV image overlaid with
calibration object.

Although the geometry of the IV display-half mirror combination is known,
a small displacement of the lens array with respect to the display would result
in a large displacement of the IV Image. To accurately register the IV image
to the world coordinate system, we use a calibration object which consists of
six feature points. A model of the object is created inside a computer and its
IV image is then overlaid with the real object. Manual adjustment in position
and orientation is made to the object until all of the feature points are aligned
completely as shown in Fig. 2(b).

In order to support surgeons in operational tasks such as hole drilling, bone
resection and screw fixation, in addition to the osseous structures, IV images of
the instrument, surgical path, soft tissues are utilized in our system. Surgeons
can verify the progress of the operation, i.e. current position of the instrument,
status of the bone and the risk tissues visually or through text based information.
The reason why we add text based information is that it improves the surgeons’
confidence in situations where small differences (less than 1mm) are difficult to
recognize visually.

3 Experiments and Results

3.1 Image Generation Speed

The prerequisite for our system is that movement of the instrument as well as
the patient has to be updated in real-time. In addition, surgeons should have the
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Fig. 3. Drill experiment using image overlay system

ability to change the properties of the displayed objects to obtain the desired
visual effect. Therefore, we evaluated the rendering speed of each individual
object. The specifications of our computer system are as follow.

CPU: Pentium Core 2 Duo, 2.4 GHz
GPU: NVIDIA Quadro Plex model 4 (Quadro FX 5600×2)
Elemental IV image size: 1024x768 pixels

The rendering system can render IV image of a surgical instrument at 80 frames
per second (fps). For a complex anatomical model, e.g. the whole lower jaw,
rendering speed is 5 fps. Therefore, the minimum updating speed of our system
is around 5 fps. In most cases, our system shows a rendering speed of more than
10 fps, which is sufficient for surgical navigation.

3.2 Accuracy Evaluation

In order to evaluate the accuracy of our system when used in a real clinical case,
a surgeon was asked to performed operational tasks such as hole drilling using
real surgical instruments. The drilling task was performed on a phantom model
imitating a bone surface. For the sake of simplicity in error estimation, simple
models with known geometry were used rather than complex anatomical models.
The objective of the operation is to drill through the model along a predefined
path. During the operation, the surgeon was asked to keep the instrument’s
axis as close as possible to the surgical path, otherwise the operation would be
considered a failure.

The drill path was set to be not perpendicular to the model’s surface so that
the surgeon would not get a hint from the model’s surface. As shown in (Fig. 3),
the drill path was inclined at approximately 45◦ to the model’s surface.

When the instrument is aligned properly to the surgical path, color of the in-
strument is automatically changed to alert the surgeon that it is safe to proceed.
The surgeon will then start his drilling task.The operation ends when the drill
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reaches the target point on the other side of the model. By measuring the posi-
tion of the drill holes in both sides, we can compute the positional and angular
errors of the operation.

After 10 trials, positional error of the insertion point (d1) was 0.7 ± 0.4mm,
the error of the target point (d2) was 0.5±0.3mm and the angular error (α) was
3.3±1.1◦. Error of the target tends to be smaller than that of the insertion point.
The reason is that even the first approach to the model’s surface was not good,
the surgeon was still able to correct the orientation of the instrument during the
drilling task.

3.3 Feasibility Evaluation

Screw fixation using model. Another task that is often performed during
oral surgery is screw fixation. We use the anatomical model of a lower jaw in
this experiment. The prerequisite for a successful operation is that blood vessels
and nerves must not be damaged. For that reason, a nerve channel underneath
the bone surface is highlighted (Fig. 4(a)). During operation, an alert is sent
to the surgeon when the instrument matches the planned path, or when the
nerve channel is likely to be touched. Again, a surgeon was asked to perform the
screw fixation under the guidance of our system. In order to mimic as closely as
possible the clinical situation, the surgeon used the instrument set (screw and
screw driver) that was manufactured for medical use.

After the fixation was completed, we verified that the screw was fixed in the
proper place as planned in the planning stage, with no threat of damaging the
nerve (Fig. 4(b)).

(a) (b)

Fig. 4. (a) IV image of the bone with blood vessel highlighted. (b) screw fixation result.

Human volunteer experiment. A problem should come up when utilizing
our system in real clinical case is the limited work space due to the presence
of IV display and half mirror in the surgical area. Another problem should be
the response speed of the system when patient make a movement. A volunteer
experiment was carried out by the same surgeon to evaluate the influence of
those factors in real clinical applications.
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Fig. 5 (left) shows the settings of this experiment. The half mirror was placed
at about 25 cm above the surgical area, giving the surgeon a sufficient work
space. A marker frame was attached tightly to the patient’s lower jaw for a
proper position tracking. Fig. 5 (right) shows the surgical area as viewed from
the surgeon’s point of view. The IV image was superimposed with the patient
correctly, giving the surgeon a fast and accurate understanding of the surgical
area. Any movement made by the patient (movement of the head, the lower jaw,
etc.) was properly detected and IV images are updated with a short time delay.

Fig. 5. Settings of volunteer experiment (left), IV image overlaid onto surgical area
(right)

4 Discussion and Conclusion

In our experiments, IV image gave surgeons a fast and intuitive estimation of
the target structures in real space. However, as each micro lens becomes a logical
pixel, when the instrument was closed to the surgical path (the distance is smaller
than one lens), surgeons tended to rely more on textual information than visual
information because displacement smaller than one lens was difficult to recognize.
For that reason, the system proposed in this paper has better accuracy than
previously developed systems (0.7±0.4mm). This accuracy met the requirement
for use in clinical application and thus the potential of applying our system in real
clinical cases has been proven. In addition, the GPU based rendering algorithm
has enabled real-time tracking of the patient movement. Although a short time
delay can be noticed, this would not become a problem because the patient
movement is not so dynamic during operation.

Despite the installation of the IV display and the half mirror, surgeons still
have sufficient work space for the surgery. Moreover, it can be easily removed
from the surgical area when AR representation is not needed. This feature makes
our system very flexible and pose no restriction to the operation workspace.

In conclusion, we have developed an augmented reality system to support
surgeons in oral and maxillofacial surgery. Our system provides an on-site,fast
and accurate 3D virtual representation of the surgical area. A number of experi-
ments mimicking real clinical interventions and showed promising results. In the
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future, by improving some of the technical aspects, particularly the registration
method, we intend to carry out clinical trials on real patients.
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Dense Surface Reconstruction for Enhanced
Navigation in MIS
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Abstract. Recent introduction of dynamic view expansion has led to
the development of computer vision methods for minimally invasive surg-
ery to artificially expand the intra-operative field-of-view of the laparo-
scope. This provides improved awareness of the surrounding anatomical
structures and minimises the effect of disorientation during surgical nav-
igation. It permits the augmentation of live laparoscope images with in-
formation from previously captured views. Current approaches, however,
can only represent the tissue geometry as planar surfaces or sparse 3D
models, thus introducing noticeable visual artefacts in the final rendering
results. This paper proposes a high-fidelity tissue geometry mapping by
combining a sparse SLAM map with semi-dense surface reconstruction.
The method is validated on phantom data with known ground truth, as
well as in-vivo data captured during a robotic assisted MIS procedure.
The derived results have shown that the method is able to effectively in-
crease the coverage of the expanded surgical view without compromising
mapping accuracy.

1 Introduction
In Minimally Invasive Surgery (MIS), disorientation due to restricted field-of-
view of the endoscopic camera has a recognised effect on 3D visuomotor control
and navigation. Dynamic View Expansion (DVE) combines previously captured
images with the current view of the camera, thus revealing the surrounding
anatomical structure to minimise these effects. In practise, DVE can be per-
formed using image mosaicing algorithms. Such algorithms register two or more
images together based on the assumption of the 3D structure of the scene. The
most common assumption is that the tissue or organ is planar and the regis-
tration is performed by using image- or feature-based techniques. The former
generally requires a large overlap between the images, whereas feature-based
techniques [1] are based on the detection and matching of salient regions in the
images. In reality, tissue structure and organ geometry in MIS tend to not sat-
isfy the planar assumptions. To alleviate this effect, parallax motion correction
has been proposed [2] and prior knowledge of the organ geometry has been used
to model intraluminal structures such as the colon [3] and oesophagus [4] as
cylinders. However, if the assumed tissue model does not represent the tissue
geometry, significant artefacts can be introduced into the final result with ex-
panded field-of-view. In recent work based on Simultaneous Localisation and
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Mapping (SLAM), methods are proposed to build a sparse model of the tissue
structure sequentially and incrementally without relying on prior knowledge or
explicit assumption of the tissue structure [5,6]. The sparse model is meshed
and textured with images from the endoscope. This enables the model to be
projected onto the estimated camera position to create an expanded view. With
this approach, two problems have been identified due to the sparse representa-
tion of the tissue. Firstly, artefacts are introduced into the visualisation due to
the coarse model. Secondly, the expanded view is limited to the size of the mod-
elled region. Any part of the tissue that does not fall within the model cannot
be visualised with DVE. In [7], an approach for dense surface reconstruction is
used to create 3D tissue models from stereo laparoscopic images. The method
matches a sparse set of salient regions using stereo Lucas-Kanade and propagates
the disparity around each matched region. The method is used to reconstruct
deforming tissue from a static camera. Dense surface reconstruction can also be
achieved using monocular images combined with [8] or without [9] the use of a
robotic arm. However, limited work has been performed in dealing with a dense
model of the tissue from a moving stereo laparoscopic camera.

The purpose of this paper is to explore the use of sparse SLAM with dense
surface reconstruction for DVE. Under the proposed framework, the disc-homeo-
morphic 3D model is parameterised into a planar texture domain into which
video images and surface details are projected. The accuracy of the proposed
method is validated on phantom data and the potential clinical application is
demonstrated on in-vivo data.

2 Methods

Fig. 1 outlines the main steps involved in creating the expanded visualisation.
SLAM is used to estimate the position of the camera and incrementally build a
sparse map or model of the tissue. This model is extended using a “skydome”
and a dense stereo algorithm is used to reconstruct the surface of the tissue,
which is registered to the sparse model. The dense tissue model is then textured
and reprojected onto the live laparoscopic video stream to create an augmented
visualisation. It should be noted that the original live video stream is never
modified to ensure the visual fidelity of the current surgical view.

2.1 Dynamic View Expansion with Sparse Stereo SLAM

For sequential scene reconstruction, SLAM is used to estimate the position and
orientation of the stereo camera and a sparse set of features in 3D which represent
the map or tissue model. This information comprises the state of the system
which is modelled probabilistically using an Extended Kalman Filter (EKF),
enabling uncertainty and noise in the system to be modelled. SLAM detects
and matches regions of interest in the stereo images, which are triangulated to
estimate a 3D map feature. In subsequent video frames, the motion of the camera
is predicted using a constant velocity, constant acceleration motion model. The
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Fig. 1. Processing pipeline of the proposed method. Video images are processed inde-
pendently by SLAM and dense-disparity until they are registered to each other. Pro-
jection blends surface detail and video colour into texture maps used for visualisation.
This paper addresses mainly components enclosed in the dashed box.

position of each 3D map feature is estimated relative to the predicted camera
position and the map features are measured by matching the regions of interest
in the image space. The prediction and measurement are used to perform the
update step of the EKF and estimate a new state (camera position and 3D map).
A photorealistic model of the tissue is generated by meshing the sparse 3D map
using a Delaunay triangulation and texturing using the approach outlined in [6].

Using the SLAM-map alone for DVE can result in a loss of visual information
because parts of the video frame may not be covered with trackable features and
map triangles. Previously, this was avoided by introducing virtual features into
the map. For the proposed method, the SLAM-map triangulation Y is padded
with additional triangles around the boundary to produce Y ′, which is referred
to as “skydome” in this paper. The 3D position of vertices is computed by
y′i = r · (yi − c) + c, with c being the centroid of all n map vertices, yi being
a vertex on the boundary of the map and y′i the position of the new skydome
vertex. The factor r controls by how much the triangles are enlarged; suitable
values are between 2 and 4, trading coverage for texture map resolution. Fig. 2a
illustrates this aspect of the algorithm. The position of y′ in the texture domain
is derived in the same way, using 2D texture coordinates instead of 3D positions.
In Figs. 2b and c, the green area marks video content covered by the sparse map
only, while the red area marks additional video pixels covered by the skydome.
Thus, the skydome provides a larger target for video frames to be mapped on;
in fact, its exact geometry is not important because dense 3D positions mapped
on it (Sec. 2.2) override its sparse vertex positions (Fig. 3d and e).

2.2 Dense Surface Reconstruction

Using the stereo images of the observed tissue, the 3D position of each pixel
is computed by first establishing a disparity map that sets up correspondences
between pixels in the left and the right video frame. The algorithm used to
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Fig. 2. Padding the SLAM-map with additional triangles. b) and c) illustrate the
effect in the video image with green being the original sparse SLAM-map and red the
additional area covered by the skydome.

compute the disparity between the left and right frames is the one proposed
in [7]. Given a set of sparse correspondences between left and right images used
as seeds, the algorithm starts by propagating for any neighbouring pixels at
which a match in the other image can be found. The output is the disparity
map D (Fig. 3b): for every pixel in the left image it contains a coordinate into
the right image for the corresponding pixel, or an invalid coordinate if no such
correspondences can be established. The outliers and regions without stereo-
disparity correspondence are then filled by using Telea’s in-painting method [10]
followed by a box-blur. Figs. 3a-c show an example of the left and right video
frame, the unprocessed disparity with holes and outliers, followed by in-painting.
Each pixel in the disparity map is triangulated into 3D space. The reconstructed
surface is mapped from the camera space to the SLAM coordinate system by
transforming it with the SLAM-estimated camera pose. The remaining difference
is due to SLAM’s noise modelling, but mainly limited to the viewing direction.
Therefore, for every SLAM feature visible in the current frame, the offset between
its current position in 3D and the dense estimated surface is computed, subject
to outlier removal. The resulting 3D position map P in the SLAM-coordinate
system is rendered into the texture domain T already used for the video pixels [6],
i.e. every video pixel that has been observed previously has a position in 3D.

2.3 Texture Domain Update and Visualisation

Within the proposed framework, updating texture domain T consists of three
steps: reprojection, position update and colour update. There are three images
attached to it: colour from video TC , age-map TA (storing a pixel’s age, see [6])
and 3D position T3D encoded in RGBA. The contents of these images is first
reprojected from the previous frame to accommodate the possibly updated and
retriangulated SLAM-map. Colour and position are normalised by the accumu-
lated value in the alpha channel: grgba = grgba/ga, where g is a pixel’s RGBA
colour value representing either colour or position.

Following the registration described above, the 3D position image is updated
by rendering the sparse map Y ′ textured with P into T3D with additive blending,
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Fig. 3. Stereo disparity and estimated dense surface. a) shows left and right video
frame of the phantom sequence; b) shows raw stereo disparity; c) filtered and smoothed
disparity; d) shows the flat-shaded highly tesselated Y ′ with the red rectangle marking
the part that would be covered by the video frame. For comparison, the sparse SLAM
map surface Y is shown in e).

combining new and existing data (in effect dense temporal surface reconstruc-
tion). The colour and age-map are updated by taking the up-to-date detailed
surface position from T3D into account and each pixel is warped to account for
perspective distortion. This two-pass approach is necessary to avoid an unstable
feedback loop between the current and the previous frame’s positions.Without
normalisation during texture domain reprojection, newly arriving data would
have minimal effect as many more frames have already been accumulated. In-
stead, a running average is computed. In addition, video and position projection
is radially attenuated to account for spot-light illumination effects by applying
a linear fall-off function towards the edges of the video frame.

The final result for each frame is visualised by using the fade-to-grey method
of [6] but additionally rendering Y ′ with high tessellation and displacement map-
ping. The colour and position information are texture-mapped onto the triangles
and then subdivided by at least eight levels using the graphics hardware. Each
vertex is positioned in 3D space using the estimated dense surface position. The
surface is never explicitly meshed; Fig. 3d serves for illustration purposes only.
Pixels are rejected for which attenuation has caused ga < 1 accumulation to
avoid noisy edge cases.

3 Results

The method has been evaluated on a phantom sequence and an in-vivo porcine
experiment, both representing an exploration of the abdomen. The stereo cam-
eras were calibrated at the start and remain unchanged during the experiments.
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Fig. 4. a) Experimental setup with silicone organs, OptoTrak markers and stereo la-
paroscope. b) Projected markers (purple) and SLAM features (green) in the DVE.
c) Video frame coverage of SLAM-map with and without skydome. d) Projection error
of markers into image plane. e) Stereoscopic DVEs for phantom sequence at various
points in time, comparing sparse with dense surface. f) Coverage plot and DVEs for
in-vivo sequence.



Dense Surface Reconstruction for Enhanced Navigation in MIS 95

The abdominal phantom used for validation comprised a full set of silicone or-
gans painted with acrylic paint to provide realistic texture. Optical markers were
placed on the surface of the phantom (see Fig. 4a) to provide the ground truth
data represented as a sparse 3D model of the phantom. A further eight markers
were placed on a rigid body attached to the laparoscope. These were used, in con-
junction with hand-eye calibration, to determine the position of the camera. The
quality of DVE was validated by projecting the position of the markers on the
model into the expanded image plane of the camera at a given camera position.
This provided a set of ground truth points in the 2D image plane for comparison
with the reprojected dense model obtained using the proposed method. Due to
the limited accuracy of the optical tracker and noise in the calibration the vali-
dation framework was evaluated to be accurate to within 2.3% of the FoV. The
graph in Fig. 4d shows the average reprojection error for the sparse (red) and
dense (blue) approaches. The average visual angel error for the sparse is 2.2% and
for the dense 2.7% of the FoV, making the accuracy of the two results compara-
ble. The accuracy of the dense method decreases around frame 1700 due to noisy
estimation of the camera position causing inaccurate registration of the dense
map but recovers afterwards. Qualitative evaluation of the sparse and dense ap-
proaches are provided in Fig. 4e. The effect of ageing the expanded view is clearly
visible on these sequences with older regions appearing desaturated.

Quantitative evaluation is also performed with respect to coverage measured
by how much of the observed tissue is represented in the expanded view. It is
computed as the number of video frame pixels covered by a projection of the
sparse map Y ′. This correlates directly with how much information in the video is
actually used for DVE: only video pixels that map to a position in the sparse map
(with or without skydome) can be used. Fig. 4c depicts the effect of extending
sparse map coverage via the skydome with r = 2. The phantom sequence starts
with small rotational motion that only covers a relatively small area and does
not introduce new SLAM features. Only after frame 700 does the camera move
enough for new features to be introduced. The average video pixel coverage
without skydome is 37% and with skydome 70%. The in-vivo sequence [11] shows
the peritoneal wall, large intestines and stomach. The sequence is quantitatively
evaluated in Fig. 4e and the average coverage without and with skydome is
45% and 99%, respectively, for r = 3.5 (chosen due to initial SLAM feature
distribution). Easily visible in the coverage graph are the introduction of new
SLAM features and the resulting extension of the skydome: sudden spikes in
increased coverage. Fig. 4e shows the video frames with the corresponding DVE.
The current single-threaded implementation of the proposed method runs at
about 1 frame per second.

4 Conclusions

In this paper, a method has been proposed for DVE by exploiting the spatial-
temporal correspondence of intra-operative laparoscopic imaging. The novelty
of the proposed approach is in the creation of a dense tissue model from a
moving stereoscopic camera and the method is validated on both silicon phantom
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with know ground truth and in-vivo data. The proposed method has shown to
increase the coverage of the expanded view without compromising accuracy.
Another feature of the proposed system is that the method is sequential and
well suited for real-time operation. In addition the system has been designed to
make it compatible with non-static SLAM algorithms and dense non-rigid tissue
models. It is worth noting that noise modelling in SLAM takes into account
unreliable feature tracking thus increasing the robustness of the method. Further
improvements of the proposed method could include estimation of the surface’s
BRDF for perspective correct relighting.
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Abstract. In this paper, we address three-dimensional tomographic re-
construction of rotational angiography acquisitions. In clinical routine,
angular subsampling commonly occurs, due to the technical limitations
of C-arm systems or possible improper injection. Standard methods such
as filtered backprojection yield a reconstruction that is deteriorated by
sampling artifacts, which potentially hampers medical interpretation.

Recent developments of compressed sensing have demonstrated that it
is possible to significantly improve reconstruction of subsampled datasets
by generating sparse approximations through �1-penalized minimization.
Based on these results, we present an extension of the iterative filtered
backprojection that includes a sparsity constraint called soft background
subtraction.

This approach is shown to provide sampling artifact reduction when
reconstructing sparse objects, and more interestingly, when reconstruct-
ing sparse objects over a non-sparse background. The relevance of our
approach is evaluated in cone-beam geometry on real clinical data.

1 Introduction

Rotational angiography using C-arm based X-Ray systems provides tomographic
acquisitions (scan) of two-dimensional (2D) cone-beam X-Ray projection views,
which are used to reconstruct a three-dimensional (3D) model of the human
vasculature. To increase the contrast of vessels, a radio-opaque contrast medium
must be injected into the blood. Ideally, the injection should be such that all
vessels located inside the field of view are fully opacified from the beginning to
the end of the contrast scan. The contrast medium being rapidly flushed in the
blood flow, the rotation speed of the C-arm must be set as high as safely possible
to minimize contrast use, while the detector acquisition frame rate then limits the
total number of views, resulting in angular subsampling. Subsampling has little
incidence on visualization of highly contrasted structures, but the smaller vessels
are affected by streak artifacts originating from intense vessels as well as bone
structures. Furthermore, it is common in the clinical practice that opacification
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occurs later than expected, and thus later than the start of the C-arm rotation,
resulting in inconsistently opacified projection views. If the reconstruction is
performed on the subset of consistent projections, the vascular structures are
then subsampled in a way known as a limited-angle problem.

Depending on the anatomy, it might be advantageous to perform two acqui-
sitions in a single protocol, known as digital subtracted rotational angiography
(DSRA), similarly to 2D digital subtracted angiography: a first scan (mask)
is performed without contrast injection, while a second scan (contrast) is per-
formed after injection. All background structures (such as bones) are removed
by digital log-subtraction of the mask views from the contrast views so that
a vessel-only 3D reconstruction can be performed. Because the distribution of
vessels can be considered sparse, we propose to address the reconstruction of
such subsampled data by using recent compressed sensing results [2, 5]. These
results have highlighted the interest of casting the reconstruction problem as
an optimization problem constrained with a suitable sparse regularization. It
has been shown in [2] that perfect reconstruction of a piecewise constant image
is achievable through minimization of its total variation (TV). Several works,
among which [9] and references within, have focused on the reconstruction of
piecewise constant approximations of more clinically relevant type of objects,
showing streak artifact reduction, but at the expense of an overall change in the
image appearance, that may not be clinically acceptable.

In the case of naturally sparse image such as a vessel tree, the direct use of
the image �1-norm fits the compressed sensing approach without inducing an ap-
proximation, and thus is expected to provide streak reduction without changing
the nature of clinical images. Still, the resulting iterative procedure for solving
the optimization problem may depart from the standard image quality known
in the clinical practice. It is indeed a key motivation for using alternative iter-
ative schemes [10]. Nevertheless, in this work, we seek to only address subsam-
pling while deviating as little as possible to the standard filtered backprojection
(FBP) type of images. To this aim, we develop an extension of the iterative FBP
(iFBP) that includes sparsity constraints. To our knowledge, �1-regularization of
iFBP has never been proposed thus far. A new algorithm, called iFBP with soft
background subtraction (SBS), is derived and applied to subsampled subtracted
clinical scans. It is shown to provide the expected benefits of streak reduction,
in a superior way to what can be achieved applying a positivity constraint. More
interestingly, it is further shown that the proposed methodology does also ap-
ply to the more general case of sparse structures over a non sparse background,
where the positivity constraint is irrelevant.

2 Method

Let f ∈ RK be the vector containing the volume, where K is the number of
voxels. Let p ∈ RI be the vector containing the projections, where I is the total
number of measurements. Let R ∈ RI×K be the matrix describing the scan
trajectory. The reconstruction problem that we address consists in recovering f
given the data constraint p = Rf .
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2.1 Algorithm

A reconstruction method widely used in practice consists of a discretization of
the analytical inverse of the system, i.e. backprojection of the filtered projec-
tions: f = RT Dp, where RT is the transpose of R, i.e. backprojection, and D is
the ramp filter. Cone-beam dedicated FBP is referred to as the Feldkamp algo-
rithm [6]. Iterative FBP minimizes the Euclidean distance Q between p and the
projections of f filtered by D

1
2 that is expressed in the Fourier domain as the

square root of the ramp filter and is such that D
1
2 D

1
2 = D [8]:

Q(f) =
1
2
‖D 1

2 (Rf − p) ‖2
2 (1)

iFBP is a fast converging iterative reconstruction algorithm that provides ad-
vantages over FBP in handling the cone-beam geometry.

The compressed sensing theory provides a way to recover a signal from a
small number of measurements if it is sparse in some basis, that is, if most of the
signal energy is concentrated in a few coefficients only. In practice, minimization
of the �1-norm under a data constraint promotes sparsity [5] and can generate
sparse approximations of undersampled signals. To get sparse approximations
in tomography, we define the functional J as the sum of the previous quadratic
data fidelity term Q and a sparsity penalty ϕ:

J(f) = Q(f) + ϕ(f) (2)

To minimize J despite the non-differentiablity of ϕ, we use a simple implemen-
tation that consists of an explicit gradient step with step τ > 0 for minimizing
Q, which here corresponds to an iFBP iteration, followed by an implicit step for
applying constraint ϕ: {

f (n+ 1
2 ) = f (n) − τ∇Q(f (n))

f (n+1) = proxτ,ϕ

(
f (n+ 1

2 )
) (3)

The penalization is applied via its proximity operator which is defined as:

∀x ∈ R
K , proxγ,ϕ : x → argmin

y∈RK

[
γϕ(y) +

1
2
‖x − y‖2

2

]
(4)

where γ > 0 and is set equal to the gradient step τ in (3).
Note that replacing the sparsity constraint ϕ by the indicator function: ϕ(f) ={
0 if f ∈ RK

+

+∞ otherwise , where R
K
+ is the convex set of positive images, is equivalent

to taking as proximity operator the projector over RK
+ . Thereby, the scheme

presented in (2) also includes the application of the positivity constraint to the
iFBP algorithm. We refer the reader to [4] for a complete overview of proximal
splitting methods in signal processing.
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2.2 Sparsity Constraints

The proximity operator associated to the image �1-norm: ϕ(f) = λ‖f‖1 is the
soft-thresholding operator Sλτ (f) of threshold λτ , where λ ≥ 0 is the reg-
ularization parameter that controls the strength of the �1-penalization. Soft-
thresholding is not a filter, but a segmentation step, which does not modify the
image appearance above the given threshold.

This sparsity constraint can be combined with the positivity constraint in a
single proximity operator that we call soft background subtraction. It is defined

by: SBSλτ (f) =
{

f − λτ if f ≥ λτ
0 if f < λτ

. It promotes sparsity by removing at each

iteration all structures whose intensity is lower than threshold λτ . Considering
the case of a sparse image that only contains vessels, there is no strictly posi-
tive λ value that may not remove some part of the vessels, and thus biase the
reconstructed result.

Consequently, our approach includes defining a set of decreasing λ values: Λ =
{λn|n = 1, · · · , N}, such that λ1 ≥ · · · ≥ λN = 0, where N is the total number
of iterations. This strategy is compatible with processing sparse structures over
a non-sparse background since the background is reintroduced as λ is decreased.

2.3 Two-Pass Reconstruction

We propose a simple extension of SBS dedicated to the special case of late vessel
opacification in the non-subtracted case. To this purpose, we assume that opaci-
fication is a binary phenomenon and split the full scan into two subsets: the
first subset contains the projection views acquired without opacification, while
the second one contains the projection views acquired with opacification. SBS
reconstruction is performed on each subset. These two reconstructions taken in-
dependently yield limited angular reconstruction of the non-sparse background,
but once averaged can recover all background structures.

3 Experiments

We evaluated the reconstruction quality of the proposed algorithm on under-
sampled acquisitions as found in the clinical practice, where improvement over
the standard reconstruction would be welcome. Data are acquired on an Innova
3100 C-arm system (GE Healthcare, Chalfont St. Giles, UK). The system records
cone-beam projections at 30 frames/s during an approximately 200 ◦ rotation at
40 ◦/s delivering 150 views in total. iFBP algorithm was used with N = 20 it-
erations and a gradient step τ = 0.95. Direct comparison of iFBP and FBP is
difficult because iFBP corrects for cone-beam artifacts and may produce images
with slightly higher resolution. Consequently, in the absence of a ground truth,
iFBP with positivity constraint is a better reference than FBP, from which es-
tablish SBS advantages. For SBS, λn was initialized at λ1 equal to 90% of the
maximum value of the FBP reconstruction and linearly decreased to λN = 0.
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For all reconstructions, a volume of 2563 voxels was computed. Intensities are
given in positive Hounsfield Unit (HU), i.e air is 0 instead of -1000HU.

The first dataset is a DSRA exam of cerebral vessels. A subtracted scan was
computed by subtraction of the mask scan from the contrast scan. During the
acquisition of the contrast scan, the right vertebral artery (RVA) did not appear
opacified during the first half of the rotation. Figure 1 focuses on RVA subtracted
reconstruction (note that RVA is the most left vessel in the slices). RVA late
opacification resulted in a FBP reconstruction (Fig. 1a) that was deteriorated
by horizontal streaks due to the lack of opacification in the lateral views. In
addition, the RVA measured intensity (peak: 4540HU) was half that of the left
vertebral artery (LVA, peak: 9929HU) which was seen fully opacified during the
whole scan. The constrained iFBP reconstructions (Fig. 1b for positivity and
Fig. 1c for SBS) recovered the RVA from the subset of fully opacified projections
(75 views from 100 to 200◦) both in terms of shape and intensity (RVA peak:
7541HU with positivity and 9697HU with SBS).

(a)

(a)

(b)

(b)

(c)

(c)

Fig. 1. Subtracted RVA (HU range: -1000 to 6000). (a) FBP reconstruction of 150
views over 0−200 ◦. (b) iFBP reconstruction of 75 views over 100−200 ◦ with positivity
constraint. (c) iFBP reconstruction of 75 views over 100−200 ◦ with SBS.

Figure 2 displays a slice higher in the brain, which was not affected by opaci-
fication delays and thus reconstructed from the full subtracted scan. Both the
positivity constraint (Fig. 2b) and SBS (Fig. 2c) promoted sparsity of the re-
constructed structures, thus reducing streak artifacts with respect to the FBP
reconstruction of Fig. 2a. However, one sees that the subtracted volume does
not contain vessels only, but also perfused tissues (grey areas surrounding the
vessels). These areas are not sparse, which shows the importance of an unbiased
reconstruction. We computed the mean and standard deviation in a region of in-
terest of 930 voxels within these perfused tissues and found 116 ±142HU in Fig.
2b for positivity and 96 ±55HU in Fig. 2c for SBS, a twofold Signal-to-Noise-
Ratio (SNR) increase for SBS over positivity (1.8 vs. 0.8), which is confirmed
by visual analysis of the respective slices. In terms of resolution, profile curves
(not shown) drawn through vessels revealed no differences.

The second dataset is a single scan (no mask) of opacified carotid arteries.
Figure 3 compares iFBP with positivity after N = 5 and N = 20 iterations (Fig.
3a and Fig. 3b, respectively) to iFBP with SBS (Fig. 3c). Removal of the strong
horizontal streaks due to a tooth metallic implant could not be obtained after 5
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(a)

(a)

(b)

(b)

(c)

(c)

Fig. 2. Subtracted data (HU range: -100 to 500). (a) FBP reconstruction. (b) iFBP
reconstruction with positivity constraint. (c) iFBP reconstruction with SBS.

iterations. After 20 iterations, the streaks were removed both by positivity and
SBS. Computation of the mean and standard deviation in a volume of interest of
4000 voxels located in the soft tissues between the jaws and posterior to the teeth
gave 803±60HU for Fig. 3a, 787±88HU for Fig. 3b and 775±49HU for Fig. 3c.
SBS had the highest SNR (15.8 vs. 13.4 and 8.9), despite the 20 iterations. We
attribute this SNR improvement to the reduction of intensity of smaller streaks in
the soft tissues. Profile curves (not shown) through the bony structures of Fig.
3b indicated a possibly slightly higher resolution for the positivity constraint
after 20 iterations, although possibly linked to the strong noise increase. On the
other hand, peak values over the profiles were not systematically higher in Fig.
3b than in Fig. 3c.

(a)

(a)

(b)

(b)

(c)

(c)

Fig. 3. Second dataset (HU range: 550 to 1050). (a) iFBP reconstruction with positiv-
ity constraint – 5 iterations; (b) iFBP reconstruction with positivity constraint – 20
iterations; (c) iFBP reconstruction with SBS – 20 iterations.

Application of the two-pass reconstruction is shown in Fig. 4. The same slice as
in Fig. 1 was reconstructed without subtraction. Besides what we already noted
in the subtracted case (Fig. 1a), the non-subtracted FBP reconstruction (Fig. 4a)
showed that the horizontal and vertical black streaks associated to the RVA hid
the underlying tissues. Limitating FBP reconstruction to the second half of the
scan (Fig. 4b) yielded no visual improvement of the RVA while degrading both
LVA and background. On the contrary the SBS constraint (Fig. 4c) recovered
both arteries, as in the subtracted case. Finally, the two-pass reconstruction was
necessary to also recover the background as shown in Fig. 4d. However, the
averaging operation of the two-pass reconstruction affected the quantification of



Compressed Sensing Based 3D Tomographic Reconstruction 103

the RVA: RVA peak value was 11744HU for Fig. 4c and 6353HU for Fig. 4d
(similar to the RVA peak value of 6265HU for FBP). The mean and standard
deviation were computed in a volume of interest of 40000 voxels located in the
uniform tissues between the two arteries, yielding 1286 ±318HU for FBP (Fig.
4a) and 1070 ±215HU for the two-pass algorithm (Fig. 4d), a 25% SNR increase
for the two-pass algorithm over FBP due to streak reduction.

(a)

(a)

(b)

(b)

(c)

(c)

(d)

(d)

Fig. 4. Non subtracted RVA (HU range: 0 to 2400). (a) FBP reconstruction of 150
views over 0−200 ◦. (b) FBP reconstruction of 75 views over 100−200 ◦. (c) iFBP
reconstruction of 75 views over 100−200 ◦ with SBS. (d) Two-pass reconstruction.

4 Discussion and Conclusion

In this study, a new �1-regularization of the iterative filtered backprojection,
called soft background subtraction, has been introduced and applied to a selec-
tion of clinical datasets that suggests a domain of applicability: clinical cases of
limited frame rate or of limited angular coverage. It has been shown to miti-
gate or reduce streak artifacts, when reconstructing sparse volumes from sparse
data. Because we voluntarily did not model noise or other physical aspects of
the imaging device beyond the cone-beam geometry, the reconstructed images
had a similar appearance than FBP-type reconstructions.

The positivity constraint was effective at reducing streaks in subtracted im-
ages. Indeed, it is a special case of the proposed background subtraction tech-
nique, that can still be considered a sparse regularizer since negative voxels that
get set to zero are many in this context. More interestingly, the linear decrease
of the soft background subtraction threshold provided superior reconstruction
of the non-sparse background of sparse high-intensity structures, resulting in
more uniform tissue depiction when affected by streaks from either teeth, bones
or opacified vessels, at equal resolution. Linearly decreasing the regularization
strength is too simple a heuristic to exactly solve the hard-constrained com-
pressed sensing problem, and is thus surely suboptimal. Still it has an intuitive
interpretation that makes it well suited for a clinical use. Most importantly, the
generated solution is not a compromise between a fitting term and a penalty,
but targets an unbiased fit to the data. SBS provided to a certain extent the ex-
pected benefits of compressed sensing theory: reduced streaks. Such gains would
otherwise be achievable only by increasing the number of projections, which was
not possible in these clinical settings, rather than increasing the X-Ray dose of
each projection image.
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The soft background subtraction approach is applicable to any tomographic
dataset to provide localized and specific improvements regarding subsampling
while appearing just as good as FBP otherwise. The combination of iterative
FBP and simple thresholding operations entails a computation time of roughly
twice the standard FBP computation per iteration. Further studies are required
to determine whether the number of iterations can be reduced.

The two-pass algorithm recovered the shape of the degraded vessel with its
background, but not its quantification. To recover both, we need to recast the
problem as a dynamic one. Compressed sensing based tomographic reconstruc-
tion of dynamic series is an active research area [3, 7] that implies to address
higher levels of undersampling than those currently seen in the clinical practice.
We anticipate that the proposed approach will provide a key brick to such re-
constructions, as proximal splitting allows for combining iterative FBP with a
variety of non-linear filters or segmentations, that can be derived by the calculus
of variations [1].
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Abstract. Intra-cardiac 3D ultrasound imaging has enabled new minimally 
invasive procedures. Its narrow field of view, however, limits its efficacy in 
guiding beating heart procedures where geometrically complex and spatially 
extended moving anatomic structures are often involved. In this paper, we 
present a system that performs electrocardiograph gated 4D mosaicing and 
visualization of 3DUS volumes. Real-time operation is enabled by GPU 
implementation. The method is validated on phantom and porcine heart data.  

Keywords: 3D ultrasound, electromagnetic tracking, graphic processing unit, 
volume mosaicing, volume registration. 

1   Introduction 

Beating heart procedures eliminate the need for cardiopulmonary bypass and its 
associated morbidities [1], and allow the surgeon to evaluate the procedure under 
physiologic loading conditions. Real-time 3D ultrasound (3DUS) imaging is often the 
imaging modality of choice for guiding these procedures. 3DUS is non-invasive, 
inexpensive, able to see through the blood, and can provide real-time diagnostic 
information of the anatomical region of interest. 3DUS also mitigates the difficulties 
in spatial perception associated with traditional 2DUS [2].  

Intra-cardiac procedures often involve geometrically complex and spatially 
extended moving anatomic structures. Real-time visual feedback of the moving 
structures is critical to the success of these procedures. In order to realize the potential 
of 3DUS in guiding such procedures, two challenges must be addressed: high noise 
and narrow field of view. These limitations can be mitigated with a real-time 
panoramic view of the region of interest. 

Electrocardiograph (ECG) gating is commonly used in the 4D reconstruction of a 
time-series of 3DUS volumes. Efforts have been reported in the reconstruction of 
gated 4DUS by mosaicing tracked 2DUS imaging [3][4][5]. In this case, 2DUS 
frames are acquired at the same point in the motion cycle of the target and composited 
into 3D volumes first, which then are assembled into a time series for sequential 
display.  

With the arrival of real-time 3DUS machines, 3DUS volumes can be obtained 
directly and they offer improved spatial information compared to 2DUS, especially 
for geometrically complex targets with rapid motion. Brekke et al developed an 
algorithm that assembles ECG gated 3D cardiac ultrasound sub volumes into a 
symmetric pyramidal without using image registration [6]. They reported decreased 
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geometric distortions compared to the non-stitched 3D volume. One major limitation 
of such a system is that it requires acquiring sub volumes at specific azimuth and 
elevation angles, and as a result, users have limited control over probe placement and 
orientation. Kutter et al presented a multi-modal 3DUS registration and mosaicing 
approach by incorporating information from co-registered CT [7]. However, CT data 
is not always available for clinical cases, especially for the non-intervention cases. In 
addition, pre-operative CT data usually does not accurately represent the real-time 
state of a patient’s condition.  

In this paper, we present the first system that performs freehand real-time 4DUS 
reconstruction and visualization based on streaming 3DUS data and ECG gating. The 
freehand capability is important as it allows clinicians to optimize the ultrasound 
acquisition geometry. Volume registration is performed through tracking the 3DUS 
probe using an electromagnetic (EM) tracking system. This method is similar to the 
reconstruction of 2D images as previously described, with a key difference being that 
the data throughput is one or two orders of magnitudes higher in 3D imaging. We 
address this issue by leveraging the parallel computing power of graphic cards. The 
computation of the volume mosaicing and rendering are done using a parallel 
implementation. In this paper, we begin with a description of the system setup, and 
then present our 4D reconstruction process, followed by results and discussions. 

2   System Configuration 

The system consists of three major hardware components: a GPU enabled computer 
(Dell Alienware Aurora, Intel Core i7 processor at 2.67GHz, 6GB RAM, NVIDIA 
GTX260 graphics cards), a 3DUS scanner (Philips SONOS 7500 with x4 probe 
imaging at 8cm depth and 28Hz) that can stream 3DUS images to the PC, and an EM 
tracking system (trackStar 3D Guidance System, Ascension Technology). The EM 
sensor is rigidly mounted to the 3DUS probe, and through a calibration process, we 
obtain the transformation between the ultrasound volume and the EM coordinates. 

2.1   Mosaicing Process 

The software application is implemented in C/C++, using multi-threading for data 
acquisition, CUDA (driver v.3.1.3.) for parallel computing, and OpenGL for 
visualization. At run time, in addition to the main thread, there are three threads 
running in parallel on the CPU: 3DUS volume streaming, EM tracking streaming, 
ECG waveform streaming. ECG phase time stamping is used for the acquisition of 
3DUS volumes, which in turn are sent to the GPU, along with the EM tracking 
coordinates. The computations of volume registration, mosaicing and ray-casting are 
performed on the GPU. In order to perform mosaicing, we first calculate the 
transformation matrix between the input volume and the reference volume. The 
transformation matrix is determined by the EM tracker’s outputs and the calibration 
matrix between the 3DUS coordinate system and the EM tracker’s coordinate system. 
Fig. 1 illustrates the data flow between CPU and GPU. 

Since the volume registration and compositing is a highly parallelizable process, 
we developed CUDA kernels to facilitate the computation. On the GPU, the 
transformation matrix is mapped to constant memory, and both the input and 
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Fig. 6. (A) Porcine heart [8]. T
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4   Discussion 

We have developed the first real-time freehand 4D mosaicing and visualization 
system using ECG gated 3DUS streaming data. 3DUS streaming provides a much 
higher data rate than 2DUS based 3D reconstruction. This allows faster updates of the 
mosaiced image, but requires parallel computation. Although present 3DUS machines 
have a lower spatial resolution than the best 2DUS machines, 3DUS resolution is 
improving rapidly.  For example, newer machines (e.g. the Philips iE33 scanner) have 
2-3 times the spatial resolution of the machine used in this study.  

4.1   Temporal Resolution and Imaging Time 

There is a tradeoff between imaging time to build or update the mosaic and time 
resolution (i.e. the number of time bins N). Temporal resolution is particularly 
important for accurately capturing the motion of fast-moving structures such as 
cardiac valves. For example, the peak velocity of the mitral valve annulus has been 
estimated as v = 210 mm/s [9], so assuming a typical RR interval of TRR = 1 s and with 
number of bins N = 10, the spatial blur within one time bin can be as high as 
dx = v (TRR/N) = 21 mm. This shows that high temporal resolution reduces the effect 
of spatial blurring.  

On the other hand, higher temporal resolution will result in longer data acquisition 
and processing time and higher demand on computer memory size. In addition, the 
current 3DUS streaming is at approximately 30 Hz, which limits the data acquisition 
to 30 volumes per second.  

4.2   Real-Time Overlay 

One of the important features that this system offers is a “big picture” view of a large 
section of the heart, combined with a “fovea” real-time view of the smaller region 
where the procedure is performed. The mosaiced time series can be viewed as a map 
in the background, which can be extremely useful to the user for navigating to a 
specific location and for planning subsequent surgical steps. The specific location at 
which the catheter or instrument is working is then automatically overlayed on the 
mosaiced times series in real-time. Any region of the mosaic can be updated by 
simply moving the probe to view that region, and the real-time view follows the 
instrumentation. Color coding of real-time versus previously mosaiced data can 
inform the clinician of which regions represent the current versus historical images. 
This allows for simple and reliable control of the image acquisition and display 
process. 

5   Conclusion 

In this paper, we presented a system for real-time 4DUS mosaicing and visualization. 
The system integrates EM tracking systems and GPU implementation for real-time 
registration and mosaicing of high data rate 3DUS images. ECG time stamping 
provides synchronization with heart motion. Temporal resolution can be controlled by 
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the user, and real-time data is continuously overlayed on the mosaic. The system 
merges previously-acquired wide-area data with real-time focal data, facilitating 
navigation and procedure execution with a simple user interface.  
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Abstract. Follicular Unit Extraction (FUE) has become a popular hair
transplanting method for solving male-pattern baldness problem. Manu-
ally harvesting hairs one by one, however, is a tedious and time-consuming
job to doctors. We design an accurate hair harvesting robot with a novel
and efficient end-effector which consists of one digital microscope and a
punch device. The microscope is first employed to automatically localize
target hairs and then guides the punch device for harvesting after shift-
ing. The end-effector shows average bias and precision of 0.014 mm by
virtue of a rotary guidance design for the motorized shifting mechanism.

1 Introduction

At least half of the male population by age 50 in this world have a hair loss
problem. About 250,000 hair restoration procedures were estimated to be per-
formed worldwide in 2008 [1]. Hair transplanting surgery is considered as the
most efficient solution to this problem.

The follicular unit extraction (FUE) technique, proposed in [3], is considered
as one of the most advanced methods for transplanting. It uses a small sharp
punch to directly extract follicular units one by one from man’s scalp to avoid
leaving a linear scar. The linear scar is often observed in the currently most pop-
ular method, follicular unit transplanting (FUT) [2]. FUE has been proven less
invasive, faster recovery, and less noticeable scarring. The main disadvantages
are related to potentially high rates of follicle transection and the requirement
of a high degree of technical skill to doctors, which prevents the technique from
being widely accepted.

A robotic system can assist doctors to both improve the accuracy and reduce
the variability in operation results due to an individual’s technique. Little re-
search has been done in this area in last decade. Onda et. al. claimed a robotic
harvesting system in [4] but it still had to be manually held by doctors. Gilden-
berg proposed a real robotic system in [5], which used a stereotactic video system
for 3D reconstruction of target hairs. The system was further implemented in
[6] but unfortunately no detail report has been presented to demonstrate how
accurate the system is by using the stereotactic system.

In this paper, we design a new accurate harvesting robot with a novel end-
effector which consists of one digital microscope (a single camera) and a punch
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c© Springer-Verlag Berlin Heidelberg 2011



114 X. Lin et al.

device. The microscope is employed as the first step in the process to automati-
cally localize target hairs with a customized image-based visual servoing method.
The punch device is then shifted by a motor to the same position as the micro-
scope for harvesting. R-guide is applied to provide the shifting mechanism which
greatly improves the system accuracy and simplifies the mechanical design. In
this paper we focus on the system design, particularly the end-effector design.

The remainder of the paper is organized as follows. The design of the whole
system is described in Sect. 2. Section 3 gives the details of the end-effector. The
calibration method for the end-effector is provided in Sect. 4. Experiments and
results are presented in Sect. 5, followed by conclusions in Sect. 6.

2 System Design

The target of the system is to accurately extract hairs one by one from a donor
area. The harvesting process of a single hair includes the following steps. Firstly,
the system finds a suitable hair in the field of view and move the punch device
in front of it. A sharp needle is then inserted into the skin along the hair axis
and dissects the whole hair follicle from the surrounding tissues. The insertion
terminates once the follicle is extracted or a fixed depth is met. For safety reasons,
the system cannot be designed as fully automatic and the whole process must
be under doctor’s supervision.

Figure 1 shows the design of our proposed system which consists of four main
parts, a robot arm, an end-effector, a computer, and a user interface. The robot
arm (VP-6242E, DENSO, Japan) has six degrees of freedoms (DOFs) and is
able to move to any pose with the repeatability of 0.02mm within the region of
interest. The end-effector includes a punch device for harvesting and a digital
microscope for inspection and localization. The two devices switch about each
other to complete both the localization task and the harvesting task. The user
interface has three functions, monitoring the process in real time, assisting doc-
tors to choose suitable hair candidates, and receiving commands from doctors.
The computer is used for image processing, image acquisition and robot arm
controlling. The process has the following two phases:

Localization phase

1. The digital microscope is shifted by a stepping motor to the working position
shown in Fig. 2A. Doctors select which hair should be harvested by clicking
on the image captured from the microscope.

2. An image processing program is executed to obtain the hair’s orientation
and position on the 2D image.

3. The orientation and position information is fed to a customized visual servo-
ing software. The software calculate the necessary movement that the robot
arm needs to move the hair to a target pose.

4. The movement commands are sent to the robot arm for action and the image
on the screen is updated after moving.
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Fig. 1. Hair harvesting system, consisting of a robot arm, an end-effector, a user in-
terface and a computer

5. The image processing program tracks the position and orientation of the hair
in the updated image.

6. The robot arm stops once the hair is presented with the target pose in image.
Otherwise a recursive process from Step 3 to Step 5 is executed until the
hair reaches the target pose.

It should be noticed that different target poses may be available for use but
a suitable pose should have a unique presentation in the image and must have
enough information for the image-based visual servoing to process. We proposed
of using the pose which is located on the microscope optical axis and have the
same orientation as the axis. The hair should be shown as a black dot at the
center of the image (Fig. 3E) once the pose is reached. The distance between
the microscope and the target hair can be determined by the analysis of image
blurriness because the microscope with high magnification often has a very short
depth of field.

Harvesting phase

1. The punch device is shifted to the working position (Fig. 2B). The needle of
the punch device is advanced into the skin by a linear actuator.

2. The needle stops once the embedded sensor detects that the hair has already
been dissected from the surrounding tissues or a maximal distance under the
skin is reached.

3. The needle is withdrawn from the skin and the current process finishes.
Doctors determine if a new process will be started by selecting another hair
on the screen.

There is no visual servoing in the harvesting phase. The system is simply
designed in a open-loop way without active compensation for misalignment from
the shifting. The accuracy is relied on mechanical calibration which has been
proven to meet the requirements in Sect. 4.
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3 End-Effector Design

A reliable and cost-efficient mechanical design for the shifting mechanism is
critical to the system accuracy. In this paper, we use the R-guide (HCR 15A+60/
150R, THK, Japan) for high-accurate rotary guidance in a large working area.
The microscope and the punch device are installed on the R-guide through an
arc-shaped rack. A small angle less than 30 degrees is set between them to
reduce the shifting time. The motion of the R-guide is driven by a light weighted
stepping motor (CMK223AP-SG7.2, Oriental Motor, Japan) through the gear
at the rim of the rack. There are two main advantages of using a R-guide here:

1. Able to reduce system errors: The working area is designed at the center of
the R-guide. Any position error caused at the rim of the rack can be reduced
at the center. For example, there often exists a backlash between the pinion
and the gear on the rack. If the backlash is assumed to be 1.0 mm and the
radius of the rack is set to 160 mm, the angular error caused by the backlash
will be about 0.36 degrees. In an ideal situation, if the needle exactly passes
the center and a hair is just located at the center, this angular error will
cause about 0.034 mm position error at the tip of a 5.5 mm long hair (the
average hair length after shaving in transplanting surgeries). This capability
will also be proved by the repeatability tests in the experimental section.

2. Able to monitor needle insertion with microscope: It is necessary to monitor
the depth of insertion in real time for safety purposes. One solution is to
measure the needle length which is left above the skin. It can estimated from
the image captured by the microscope. The requirement is that the distance
between the working space and the microscope must be kept constant since
the microscope has a short depth of field. This can be satisfied in this design.
The insertion area above the skin can always be clearly viewed from the
microscope during the whole process. Some specific marks are needed on the
needle for image analysis.

The needle insertion is served by a linear actuator/motor (CCM05M-072-C-
D01-EN-E1, THK, Japan) which has a high resolution of 1.64 μm and a relative
high speed of 1.0 m/s. The actuator thrust can go up to 10.4N which is enough
to pierce human’s scalps. It can be automatically deactuated to provide a safe
stop function when the maximum thrust lasts more than several seconds. The
needle has an outer diameter of 0.9 mm and a 0.1 mm thick wall. It is installed
at the tip of a hollow spline shaft and controlled by the linear actuator. In order
to automatic extract the follicular unit after harvesting, a vacuum system is
connected to the other end of the shaft. A photoelectric sensor (not shown) will
be installed on the path to the vacuum flow. It stops the linear actuator from
further insertion once the hair is detected.

The microscope is attached to the rack by an adjustable bracket which can be
manually adjusted in 3 DOFs for calibration. Detail adjustment will be described
in Sect. 4. A high speed camera of 120 fps and 659 x 494 resolution (Prosilica
GC660, AVT, USA) is applied in this application. The lens is adjustable with
the magnification from 5x to 50x.
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Fig. 2. Two phases, (A) localization phase when the microscope is in the working
position, (B) harvesting phase when the punch device is in the working position

4 End-Effector Calibration

The system could provide high accuracy only if the needle insertion axis was
exactly located as same as the microscope axis when they were in the working
position. A new calibration method of the end-effector was proposed here for
this alignment. It was actually a hair implanting process, the reverse of a normal
harvesting process. The hair phantom used here was a small piece of 0.5 mm
size pencil lead. It was implanted into a flat stage in the same orientation as
the shaft axis and also on the path where the needle passed. The microscope
position was then adjusted until its axis had the same direction as the pencil
lead. The details are described as follows.

1. Implant the pencil lead into the stage with a specific pose: Some silicon gel
was put on the stage in advance. The punch device was shifted to the working
position (Fig. 3A). The pencil lead was manually inserted into the needle.
It was slowly advanced to the stage (Fig. 3B) with the needle and inserted
into the gel on the stage. The lead was left in the gel until the gel became
dry. In this way, it could be ensured that the lead had the same orientation
as the shaft and was also located on the path of the needle.

2. Adjust microscope’s orientation and position: The microscope was now
shifted to the working position. The lead might not be located at the image
center (Fig. 3D) or even outside of the field of view. The 3 DOFs bracket (Fig.
3C), with two rotations and one translation, was used for the adjustment.
The translation in the horizontal direction(green arrow) would be made up
by the rotation of the stepping motor. It should be noticed that Rotation A
and Translation C must be adjusted together since both of them would change
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Fig. 3. Calibration process. (A) the stage and two steps in the process, (B) a close-up
view of the fixing the pencil lead by silicone gel, (C) 3 DOFs adjustable bracket, (D)
before adjustment, and (E) shown as a black dot at the center after adjustment

the vertical position, while Rotation A would change the orientation as well.
After adjustment the lead should be shown at the image center (Fig. 3E).

5 Experiments and Results

All the evaluations were performed on 2D images obtained from the microscope.
Microscope pose repeatability, position errors and orientation errors were eval-
uated. A piece of paper with a number of 3.0 mm size black circles was fixed on
the adjustable stage which had been used in the calibration step (Fig. 4A). The
circle centers were clearly marked with crosses in Fig. 4D.

Pose Repeatability: An image such as Fig. 4D was captured from the micro-
scope. The repeatability was evaluated from the difference between this image
and subsequent images repeatedly taken after fixed number of shifts. In this ex-
periment one image was taken after every 5 times of shifts and 10 images were
captured in total. On each image the boundary of the circle was first manually
marked by green dots (Fig. 4E), followed by a circle fitting to automatically
detect the centroid. The repeatability error was -1.2 ± 0.5 μm in x direction
and -0.1 ± 0.3 μm in y direction in mean ± std format.

Position errors in x and y directions: A similar process was performed for the
computation of position errors. The microscope was set to the working position.
Instead of moving the microscope, the stage was translated within its plane to
drive a circle in the image to the image center (Fig. 4D). The punch device was
then shifted to the working position and make a hole on the paper. The hole
position was recorded by the microscope when shifted back. Both the boundary
of the black circle and the hole were manually marked (Fig. 4E). Circle fittings
were performed to obtain both centroids and radii. The distance between the
hole centroid and the image center were measured as the position errors. In order
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Fig. 4. Evaluation experiments, (A) setup, (B) in vitro experiment, (C) position errors
and orientation errors, (D) and (E) images before and after punching on the top plane,
(F) position errors on the top plane, (G) and (H) images before and after punching on
the bottom plane and (I) position errors on the bottom plane.

to cover the working space from the hair tip above the skin to the papillary bulb
tip under the skin, a 6.0 mm thick area was defined for the evaluation. We set the
top plane of the working space at the place 3.0 mm higher than the calibration
plane and the bottom plane 3.0 mm lower than that plane. Fig. 4D-I show the
results on the two planes. Different zoom magnification was applied on each
plane (top plane: 38x, bottom plane: 22x), which were estimated from the pixel
resolution of the 3.0 mm black circles. The resolution analysis was also used to
convert the position errors from pixel to millimeter.

The test was performed 10 times on each plane. A consistent error of -9.8
± 5.9 μm in x direction and -8.0 ± 4.9 μm in y direction on the top plane is
observed. A slight large error in y direction which is -13.7 ± 7.6 μm is found
on the bottom plane. The error in x direction on that plane is 0.8 ± 3.9 μm.
The ellipses and their centers in Fig. 4F and 4I give the average errors and the
standard deviations in x and y directions.
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Orientation error: The orientation error was determined from the average errors
(the centers of the ellipse in Fig. 4F and 4I) on the top and the bottom planes.
As illustrated in Fig. 4B, if the average error of the top plane is located at e1

and the error of the bottom plane is at e2, the angle between the line l of e1e2

and the axis A of the planes gives the orientation error. The direction of A can
be obtained by connecting two image centers, c1 and c2. The orientation error
is 0.115 degrees from this calculation.

In vitro experiments were taken on the eyelid part of a 3-month black porcine,
which had hair similar to human scalp hair. A hair was first set to the image
center (a black dot in Fig. 4C). It was observed that the whole hair could be
inserted into the hollow needle with a right angle (small figure in Fig. 4C) after
shifting. No hair was actually extracted because of the stiffness of porcine skin.

6 Conclusion and Discussion

In this paper, we proposed a new robotic system for hair harvesting process. A
novel end-effector was developed which met the high accuracy requirement in
this application. The results demonstrated that the proposed calibration method
was efficient and reliable. The system is currently targeting straight hair patients
only because of lack of information under the skin. Different imaging modalities,
for example high frequency ultrasound or optical coherence tomography, had
been tried but failed because of low image qualities. More image modalities will
be considered in the future. Mechanical, electrical and software safeties are also
needed to be investigated, e.g., force sensors for the needle insertion.
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Abstract. This paper describes the design and evaluation of a joystick-
like device that allows direct surgeon control of the computer in the
operating room. The device contains no electronic parts, is easy to use,
is unobtrusive, has no physical connection to the computer, and makes
use of an existing surgical tool. The device was tested in comparison to
a mouse and to verbal dictation.

1 Introduction

During computer assisted surgery, the surgeon typically delegates control of the
computer to an assistant and verbally instructs that assistant to perform opera-
tions on the computer. Such verbal communication is slower and can be frustrat-
ing to the surgeon if the assistant is not well trained on the computer interface.
Verbal communication is also prone to misunderstandings and errors, a problem
magnified by verbal ambiguities [1].

This paper describes the design and evaluation of an input device that permits
direct surgeon control of the computer. The device consists of a tracked surgical
probe (which already exists in the operating room) and a base into which to fit
the probe (Figure 1). The surgeon controls the computer by placing the probe
into the base and manipulating it like a joystick. The base provides force feedback
and permits intuitive clicking with the probe.

A user study was done to evaluate the joystick device in relation to two
other input methods: (1) a mouse in a sterile bag and (2) verbal dictation to
an assistant. The study considered a set of 1D, 2D, and 3D tasks common to
computer interfaces in the operating room.

2 Related Work

It has long been recognized that the computer operator is a weak link in the
surgeon-computer interface [2,3]. There have been many attempts to introduce
direct surgeon control of the computer into the operating room. Devices for this
purpose include static keyboards, foot pedals, touch screens, and sterile bags
around conventional devices, such as mice and game controllers.

New technology usually has slow acceptance in the operating room, in part
due to human factors limitations [4]. A new device can require a substantial
training period for both the surgeon and staff.

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAI 2011, Part I, LNCS 6891, pp. 121–128, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Fig. 1. The input device is activated when a tracked surgical probe is inserted into the
base. Force feedback returns the probe to center and permits clicking.

Foot pedals have wide acceptance and are used as simple switches. But they
have severe limitations as they provide no spatial interaction capabilities [5].

A sterile bag wrapped around a mouse or flight controller provides a familiar
device to the surgeon, but may be difficult to use as a large, flat area is required,
and may increase the risk of infection as the bag might break [6].

A static keyboard is an optically tracked metal plate with markings of various
keys on its surface. A keypress is recognized when the surgeon places the tip of
a tracked probe onto one of the “keys”. These devices are easily sterilized and
use tools and tracking that already exist in the operating room, but do not give
the surgeon two-dimensional control of the cursor [7].

Some commercial systems use a touch screen with a pen interface. These
systems are conceptually easy to use and require no additional equipment. They
are, however, placed at some distance from the surgical field and may present
a sterility risk from electrostatic transfer of particles from the screen to the
surgeon’s hand. Touch screens are often used by an assistant to whom the surgeon
dictates instructions.

Eye tracking as an input mechanism has been demonstrated for image sta-
bilization and depth recovery in minimally invasive robotic surgery [8]. Char-
acterization of eye movement can also be used to detect stages in a surgical
workflow [9].

A promising solution to the surgeon-computer interaction problem comes
through a gestural interface in which the surgeon’s hands are tracked with com-
puter vision techniques [3,10]. With pointing gestures, the surgeon can move
the cursor on screen in a two-dimensional manner. For clicking, the surgeon can
either “hold-to-click” by holding their finger motionless for a short period when
the cursor is over a button, or “push-to-click” by pushing their finger toward the
screen. When the system was evaluated in relation to a mouse, it was found that
the mouse could be used to click anywhere on the screen in five seconds, while
the gestural interface took 12 seconds. Limitations of the system include hand
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fatigue with prolonged use and a lack of definition of the interaction volume, as
subjects can stray outside the volume without realizing it.

3 The Joystick Device

The device consists of a base and a surgical probe. The probe is placed into the
base to activate interaction and can be removed when needed for other surgical
tasks. The base permits the probe to be moved much like a joystick, where the
azimuth and elevation angles of the probe determine the direction and speed,
respectively, of the cursor on the computer screen. A clicking motion is made by
pressing the probe further into the base. A dragging motion is made by pressing
the probe into the base, tilting the probe in the direction of motion and returning
it to neutral when the motion is finished, then releasing the downward pressure.

Force feedback is provided through a set of magnets in the base and is used to
(a) return the probe to a vertical position, (b) provide a tactile “click” when the
probe is pressed downward, and (c) return the probe to the “mouse up” position
after clicking pressure is released.

The probe, shown in Figure 1, is 30 cm long with a custom-built handle that
holds a passive dynamic reference body (Traxtal, Toronto, Canada) at the top,
angled 40 degrees from horizontal so as to be visible by the camera in most
orientations that it would be used.

The base, shown in Figure 2, is 52 mm in diameter and 80 mm high and
contains three main parts: a cylindrical tool insert, a ball, and a socket. An
exploded view is shown in Figure 3. The tool insert holds the probe and has a
magnet that interacts with magnets in the ball to provide tactile clicking. The
ball magnets also interact with magnets in the base to provide force feedback and
to return the probe to vertical. The base was manufactured with a Dimension
SST 3D printer (Stratasys Inc., Eden Prairie, USA).

The base is fixed to a non-moving surface and is registered by touching the
probe to four divots in the upper ring of the socket. The divots define the local
coordinate system of the base. If the base is moved, it can be re-registered in
ten seconds.

We used the magnets in the bottom of the socket to fix the base to a ferro-
magnetic surface, but this may not be possible in the operating room and would
require that the base be modified to incorporate a clamp. Multiple bases can
be used in the same operating room, since the computer can keep track of each
base’s location and coordinate system.

The device can be sterilized using a low-temperature hydrogen peroxide gas
plasma, as is done with the STERRAD system (Advanced Sterilization Prod-
ucts, Irvine, USA). The base can be completely disassembled for sterilization
and reassembled in the operating room prior to the operation. Assembly and
disassembly take at most a minute each.

During surgery, the location of the tip of the probe is monitored to determine
when it is inserted into the base. When this happens, the system changes the
state of the probe from a surgical pointing device to a joystick interaction device.
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Fig. 2. The base of the joystick device. The probe is inserted into the hole on top of
the small cylinder and can be tilted with two degrees of freedom. Pressing the probe
down to click causes the small cylinder to move into the ball while still permitting the
probe to be tilted.

4 Experimental Evaluation

We evaluated the performance of the joystick device in comparison to two ex-
isting surgeon/computer interface methods: a bagged mouse and dictation to an
assistant using a touchscreen. The bagged mouse was included as a “baseline”
since we expected that it would easily outperform the joystick and dictation
methods.

The experimental setup used a Visual Prompting System (VPS) screen on
which instructions were presented and a User Interface (UI) screen on which the
tasks were performed. A subject would read the task instructions on the VPS
screen and would then perform the task (or instruct the assistant to perform the
task) on the UI screen, which was two meters away.

The experiment was designed to determine the speed and accuracy of task
completion. Three types of tasks were performed: 3D rotations, 2D panning and
zooming, and 1D clicking. Three tasks in 3D consisted of rotating a femur to
a desired orientation. Three tasks in 2D involved panning X-ray images and
moving sliders. Five tasks in 1D included the selection of points on an image
and button clicks.

For each task, the subject was shown the task on the VPS screen. They were
asked to read and understand the task before signalling that they were ready to
perform it. For the mouse and joystick methods, the subject performed the task
themselves. For the dictation method, the subject verbally dictated the task to
an assistant who could not see the VPS screen. (We recruited members of our
laboratory as assistants. An assistant did not participate in more than three
evaluations and never participated in two evaluations within two days of each
other.)

The test group consisted of seven orthopaedic surgeons (ages 37 to 58) and
eleven orthopaedic surgical residents (ages 26 to 36).
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Fig. 3. Exploded view of the base showing (a) the tool insert, (b) the ball, and (c) the
socket, along with the internal magnets

Before the evaluation began, the subject was given ten minutes to practice
using the joystick. The three methods were tested in a random order. For each
method, the same tasks were performed but the order of tasks was randomized.
After the evaluation was finished, the user completed a questionnaire. The entire
evaluation lasted approximately 30 minutes.

5 Experimental Results

Completion time and accuracy were recorded for all 3D tasks. 3D accuracy was
measured as the angular difference between the achieved pose of the femur and
the desired pose. The 2D and 1D tasks were always completed successfully, so
only completion time is reported for them. We compared performance between
mouse and joystick, between mouse and dictation, and between joystick and dic-
tation. A one-sided paired t-test was used to evaluate each hypothesis involving
the mouse because we expected the performance of the mouse to be superior on
all tasks. A two-sided paired t-test was used for each hypothesis involving the
joystick and dictation because we did not know which would be better.

The aggregate results are summarized in Table 1. For the mouse-joystick and
mouse-dictation comparisons, the mouse performed significantly faster than the
other two methods in all cases. For 3D accuracy, no significant differences were
found between the mouse and the other two methods.

For the joystick-dictation comparison times, the joystick was significantly
faster for 1D tasks, while dictation was significantly faster for 2D tasks. No
significant difference in time was found for 3D tasks, although the trend was in
favor of dictation. For 3D accuracy, dictation was significantly better than the
joystick (by 1.6 degrees on average).
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Table 1. Accuracy and completion times for 1D, 2D, and 3D tasks. The average over all
tasks is shown in the “avg” column. The three rightmost columns show the differences
between the methods as “average difference ± 95 % confidence interval”. A negative
difference favors the first method listed in the column heading. P values are shown
where significant (p = .00 means p < .005).

avg Joystick-Dictation Mouse-Joystick Mouse-Dictation

avg ± CI p avg ± CI p avg ± CI p

1D time (s) 10.5 -3.0 ± 2.6 .02 -5.4 ± 2.0 .00 -8.8 ± 2.2 .00
2D time (s) 15.2 3.9 ± 2.8 .01 -11.7 ± 2.6 .00 -7.8 ± 3.0 .00
3D time (s) 47.9 11.5 ± 13.2 -27.5 ± 10.1 .00 -14.0 ± 10.0 .00
3D accuracy (deg) 9.4 1.6 ± 1.5 .04 0.6 ± 2.7 0.6 ± 2.7

After completing the 33 tasks, each subject filled out a questionnaire in which
they ranked the three methods by “ease of use” (Figure 4 (left)). The mouse was
ranked first by all but one subject, who preferred the joystick. The joystick was
ranked above dictation by ten of 17 subjects: four of the six surgeons and six of
the eleven residents. One surgeon did not complete the questionnaire.

Fig. 4. Left: Rankings of the three methods for ease of use, showing number of respon-
dents on the vertical scale. Right: Responses to the statement “The method
was easy to use” on a scale from Strongly Agree (SA) to Strongly Disagree (SD).

The questionnaire also asked subjects to rate each of the methods individually
for “ease of use” on a seven-point Likert scale (Figure 4 (right)). The mouse was
highly rated by almost all subjects. Overall, the joystick was rated slightly higher
than dictation.

A Mann-Whitney test found significance for only mouse-joystick and mouse-
dictation at p < .0001 for both ranking and ease-of-use. There was no significance
found for joystick-dictation (p = .33 for ranking; p = .81 for ease-of-use).

Following the post-study questionnaire, the experimenter asked the subject
for general comments and suggestions. Two surgeons said that they liked the
dedicated control aspect of the joystick and related first-hand surgical experi-
ences as to why they preferred to be in full control. Two residents suggested
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that the y axis of the joystick should be inverted as is done with handheld game
controllers, and two residents suggested that clicking should be done with a trig-
ger button instead of a downward pressing motion. Three subjects mentioned
that there was a tendency to overshoot with the joystick, and that they were
hesitant to speed up with the joystick in the 3D tasks because they were less
familiar with the speed properties of the joystick.

6 Discussion

As expected, the evaluation found that the mouse was faster than both the
joystick and dictation methods. The mouse, however, is not readily accepted in
the OR because of the need to wrap it in a sterile plastic bag and to find a flat
surface in the surgical area upon which to use it. While the mouse was faster, it
was not significantly more accurate in 3D tasks.

It was interesting to see, in the progression from 1D to 2D to 3D, that the
initial time advantage of the joystick was increasingly lost to dictation (although
the 3D times are not statistically significant). Perhaps, as several subjects said,
their unfamiliarity with the speed properties of the joystick caused them to
move more slowly with the more complex 2D and 3D tasks. This may be due
to subjects’ lack of familiarity with the joystick’s “velocity control” in which
cursor speed is controlled, rather than cursor position, as it is with a mouse
or touchscreen. We used speed control as it allows the cursor to be moved an
arbitrary distance using the limited range of angles of the joystick. But we now
think that the joystick performance might be improved by using position control
for certain tasks, such as rotating objects and dragging sliders.

For 3D accuracy, dictation was found to be significantly more accurate than
the joystick, by 1.6 degrees on average. For rotating a display to show a particular
orientation, 1.6 degrees is probably insignificant when the average error is 9.4
degrees.

The difference in 3D accuracy is likely because the touchscreen, which was
used in the dictation method, provided more resolution and responsiveness than
the joystick. The joystick’s responsiveness could be improved by using an active
tracker on the probe, rather than the passive tracker used in the experiments.

In the subjective “ease of use” questions, the mouse was strongly favored, as
expected. Surgeons favored the joystick slightly more than did residents, per-
haps because the surgeons were more familiar with the problems of dictation
in the operating room, and perhaps because the residents had greater gaming
experience and had difficulty with the inverted y axis of the joystick.

7 Conclusions

We have described a surgical joystick that gives the surgeon direct control the
computer and avoids the difficulties that occur with dictation to an assistant.
The device is simple, small, and uses an existing surgical tool to operate. Ex-
perimental results show that it is as easy to use as the conventional dictation
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method, although somewhat slower for 2D and 3D tasks. Improvements in the
joystick software, such as inverting the y axis and using position control for
dragging, may overcome this speed difference.
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Abstract. Interaction with computer-based medical devices in the oper-
ating room is often challenging for surgeons due to sterility requirements
and the complexity of interventional procedures. Typical solutions, such
as delegating the interaction task to an assistant, can be inefficient. We
propose a method for gesture-based interaction in the operating room
that surgeons can customize to personal requirements and interventional
workflow. Given training examples for each desired gesture, our system
learns low-dimensional manifold models that enable recognizing gestures
and tracking particular poses for fine-grained control. By capturing the
surgeon’s movements with a few wireless body-worn inertial sensors, we
avoid issues of camera-based systems, such as sensitivity to illumination
and occlusions. Using a component-based framework implementation,
our method can easily be connected to different medical devices. Our ex-
periments show that the approach is able to robustly recognize learned
gestures and to distinguish these from other movements.

1 Introduction

Computerized medical systems, such as imaging devices, play a vital role in the
operating room (OR). At the same time, surgeons often face challenges when
interacting with these systems during surgery. Due to sterility requirements,
control terminals are in many cases spatially separated from the main operating
site. A typical resulting situation is that a less skilled assistant controls the
computer using keyboard and mouse, guided by verbal communication with the
surgeon [1,2]. This indirection can be inefficient and cause misundertandings.
In addition, surgeons often prefer to have manual control over computerized
systems for immediate feedback and, thus, higher precision [1].

We propose a method that allows surgeons to interact with medical systems
by means of gestures. Based on the circumstances and the workflow of a par-
ticular interventional scenario, a surgeon can define a set of gestures that are
most suitable. After demonstrating each gesture to the proposed system, our
method learns prior gesture models from the training data (Section 2). These
models, termed gesture manifolds, efficiently capture the underlying structure
of the movements for each gesture and provide a low-dimensional search space
� Joint corresponding and first authors.

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAI 2011, Part I, LNCS 6891, pp. 129–136, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://campar.cs.tum.edu/


130 L.A. Schwarz, A. Bigdelou, and N. Navab

for gesture recognition. We model a gesture as a sequence of multiple, smoothly
varying body poses, allowing surgeons to adjust continuous parameters. While
recognizing gestures, the prior models enable us not only to determine which
gesture is performed (categorical control), but also to infer the particular pose
within one gesture (spatio-temporal control). Instead of using video cameras to
capture gestures, we rely on the data of a few wireless inertial sensors on the sur-
geon’s body. This way, our method can easily handle the challenging conditions
of operating room environments, where lighting is highly variable and personnel
and equipment cause complex occlusions. Additionally, gestures are recognized
regardless of the surgeon’s position and orientation. As each inertial sensor can
be identified uniquely, gestures can also be assigned to multiple persons, e.g. a
surgeon and an assistant, for distributing the interaction workload. By build-
ing on a component-based framework implementation, our system enables an
easy and dynamic association of learned gestures to the properties of arbitrary
intra-operative computer-based systems (Section 3).

We evaluate our gesture-based interaction approach in the scenario of control-
ling a medical image viewer. Quantitative experiments show that the proposed
method can simultaneously recognize up to 18 gestures to a high accuracy from
as little as four inertial sensors. The promising results of the usability study
encourage a practical application of our method in the operating room.

Related Work. Several authors have recently proposed gesture-based interac-
tion systems for the OR [3,2,4,5]. Graetzel et al. [2] use a stereo camera setup for
tracking a surgeon’s hand and controlling the mouse pointer on a screen. In [3],
hand gestures are recognized from two cameras for controlling a medical image
viewer. A similar functionality is presented in [4] using a time-of-flight camera.
Guerin et al. [6] use gestures for controlling a surgical robot. Vision-based ap-
proaches, such as all above methods, require that gestures are performed in a
restricted region seen by a camera. We argue that using wireless inertial sensors
for capturing a surgeon’s gestures alleviates restrictions of visual systems, e.g.
dependence on illumination and line of sight. Inertial sensors have been used for
activity [7,8] and gesture recognition [9,10], but the OR has not been addressed.
Several authors emphasize the inter-person variability of human gestures, e.g.
[7], and propose methods that adapt to person-specific variations in performing
a given set of gestures [7]. To provide most flexibility to surgeons, our system
allows defining a completely arbitrary set of gestures by only demonstrating one
example per gesture. While existing methods typically treat gestures as single
commands, such as “click the mouse”, the proposed gesture manifold model en-
ables us to automatically recognize the performed gesture and to track the move-
ments within a gesture for fine-tuning continuous parameters. Manifold learning
techniques have shown to provide compact, low-dimensional representations of
human motion data [11] and have been used for human pose tracking [12,8]. We
combine multiple, gesture-specific manifold models and subdivide the embed-
dings into phases allowing us to assign particular poses to arbitrary parameter
settings. Our method also naturally handles the problem of gesture segmentation
by means of a predictive confidence measure.
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Fig. 1. a) The proposed method recognizes multiple user-defined gestures (top) and
tracks the relative pose within a gesture by means of learned gesture manifolds (mid-
dle). The relative gesture pose, given by a value in the interval [0, 1], is used for smooth
parameter adjustment (bottom). b) Gesture phase model, colors correspond to a).

2 Gesture Recognition Method

The proposed gesture recognition method consists of a training phase, where
gesture models are learned from example sensor data for each considered ges-
ture, and a testing phase, where the models are used to recognize gestures from
previously unseen sensor data.

Learning Gesture Manifolds. In the training phase, we learn prior mod-
els of gestures from sample sensor data. Let N be the number of considered
gestures and let Sc = [sc

1, . . . , s
c
nc

], 1 ≤ c ≤ N , be a dataset of nc labeled
sensor measurements. Each vector sc

i ∈ Rds consists of four quaternion values
per sensor. To obtain a compact parameterization of feasible sensor values, we
use Laplacian Eigenmaps, a manifold learning technique [13]. In particular, we
map the training data Sc for each gesture c to a low-dimensional representa-
tion Xc = [xc

1, . . . ,x
c
nc

], such that xc
i ∈ Rdx and dx � ds. Figure 1.a) shows

exemplary two-dimensional manifold embeddings for three gestures. The crucial
property of the manifold embeddings is that the local spatial distribution of vec-
tors in the original, high-dimensional representation is preserved. In particular,
similar sensor measurements will map to close-by embedding points, even if they
occur at different times within a gesture. In the testing phase, this makes our
gesture recognition method invariant to movement speed.

We relate the space of sensor measurements and the low-dimensional manifold
embeddings using kernel regression mappings. The mappings allow projecting
new sensor values s∗ to points x̂ in embedding space (out-of-sample mapping)
and predicting sensor vectors ŝ from given embedding points x∗ (reconstruction
mapping). Following [8], we define the out-of-sample mapping for gesture c as
x̂ = fc(s∗) = 1

φc(s∗)

∑nc

i=1 kc
s(s∗, sc

i)x
c
i , where φc(s∗) =

∑nc

j=1 kc
s(s∗, sc

j). We use
a Gaussian kernel kc

s with a width determined from the variance of the training
sensor data. The mapping is a weighted average of all manifold embedding points
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xc
i ∈ Xc, with the largest weights attributed to points projected from sensor

values sc
i which are similar to s∗. By interchanging the roles of sensor values and

manifold embedding points, we obtain the reconstruction mapping ŝ = gc(x∗).

Parameterizing Gesture Manifolds. After training, any pose corresponding
to one of the learned gestures can be represented as a pair (c,x), where c identifies
one of the N manifold embeddings and x is a point in that embedding. As we
allow gestures to have a temporal extent, we also introduce a simple phase model,
shown in Figure 1.b). Each manifold embedding is subdivided into three phases
{I, E, C}. Phase I indicates the beginning and end of a gesture, phase E contains
introductory movements, such as raising a hand, and phase C is actually used for
controlling a target system. The points [xc

min,x
c
max] indicating the boundaries of

phase C, mapped to a minimal and maximal parameter setting, can be defined
by the user in the training phase, e.g. by holding the respective poses for several
seconds. The additional phase ∅ represents poses that do not belong to any of
the learned gestures. Phase T is used to terminate parameter adjustment. Our
use of the phase model is explained below.

Recognizing and Tracking Gestures. In the testing phase, we employ a par-
ticle filter [14] that continuously explores the gesture manifolds to find the ma-
nifold index ĉt and point x̂t that best explain the sensor measurements st at any
time t. Every particle pi

t = (ci
t,x

i
t), 1 ≤ i ≤ n, represents one pose hypothesis.

Initially, all n particles are randomly distributed across the manifold embeddings.
In every iteration of the particle filter, we let particles propagate through the
manifold embeddings, ensuring that only positions close to the learned embed-
ding points are sampled (see Figure 3). With a certain probability, particles are
allowed to switch between different manifold embeddings. We model this prob-
ability to be high in embedding space regions that correspond to an idle pose
separating gestures. To evaluate the fitness of a particle, we define the obser-
vation likelihood p(st|ci

t,x
i
t) ∝ N (gci

t
(xi

t); st, cov(Sci
t)) N (fci

t
(st);xi

t, cov(Xci
t)).

The first normal distribution is centered around the observation st, giving a
high weight to a particle if the sensor value predicted from its position xi

t is
close to st. In the second normal distribution, centered around xi

t, particles are
favored that are close to the projection of st into embedding space. The final
estimated gesture index ĉt is selected as the most frequent index ci

t among the
best-scoring particles. Among these particles, those with ci

t = ĉt are used to
compute the final position x̂t in embedding space.

Temporal Gesture Segmentation. Having estimated ĉt and x̂t, we determine
the corresponding phase in our gesture phase model (Figure 1.b). Phase ∅, in-
dicating an unknown (or non-gesture) movement, is activated when the predic-
tion confidence λ∅

t = − log(kĉt
s (st, gĉt(x̂t))) falls below a preset threshold. This

measure evaluates how closely the estimated state x̂t, projected to sensor space,
matches the true sensor observation st. When in phase ∅, the gesture prediction
will likely be incorrect and can be disregarded. Note that our phase model permits
transitions into phase ∅ from any other phase, allowing the user to exit gesture
recognition at any time. To identify the initial phase I, and thus the beginning of



Learning Gestures for Customizable Human-Computer Interaction in the OR 133

a gesture, we define λI
t = kĉt

s (st, s0), which evaluates the similarity between the
sensor measurements st and the idle pose s0 used for separating gestures. While
λI

t is above a preset threshold, we assume the idle pose is taken, implying the
onset of a gesture. If neither of the phases {∅, I} are active, we assume the cur-
rent phase is one of {E, C} and compute a relative pose value ât ∈ [0, 1] from the
manifold position x̂t (see Figure 1.a). To this end, we transfer the Cartesian coor-
dinate x̂t into a polar representation (rt, θt), such that the pole is at the centroid
of the embedding points xĉt

i , and keep the angular component θt. Since the an-
gular representation [θc

min, θ
c
max] of the points [xc

min,x
c
max] labeled in the training

phase is known, we can compute the desired relative pose value as

ât =
{

(θt − θĉt

min)/(θĉt
max − θĉt

min) if θĉt

min ≤ θt ≤ θĉt
max,

0 otherwise.
(1)

We define phase C to be active when ât �= 0. By changing the pose within
the boundaries of phase C, the user can fine-tune parameters. When a suitable
parameter setting has been found, the user can trigger a transition from phase
C to the termination phase T . The current parameter value is then stored and
movements are ignored for a certain amount of time.

3 Component-Based Implementation

In a complex domain such as the OR, it is important to use a proper under-
lying architecture to achieve a usable gesture-based user interface. In order to
practically control parameters of an arbitrary intra-operative device with recog-
nized gestures, we developed a specialized component-based framework. In this
model, components encapsulate features of the target systems and expose them
to the framework. Such a modular design provides extensibility and therefore
a wide range of computer-based devices can be controlled with the proposed
gesture-based user interface. Furthermore, to freely customize the behavior of
the system for a specific scenario, we implemented the framework according to
the data streaming pipeline model. With this model, users can adapt the user in-
terface response to recognized gestures by altering an underlying pipeline graph.
This graph contains a set of components as well as the data flow connections
(Figure 2). Using visual editing environments and thanks to late binding, the
graph can be defined at runtime without further programming.

As shown in Figure 2, we have created separate components for the inertial
sensors, the gesture recognition method and a medical image viewer as an ex-
emplary target device. If the gesture recognition component detects the control
phase C, a demultiplexer component forwards the relative pose value ât to a sep-
arate output signal based on the gesture index ĉt, which further can be bound
to any property of the target system. This removes the dependency on other
interaction techniques, such as mouse or voice commands, for switching between
different properties to control. Additionally, the demultiplexer component blocks
further data flow when the current phase is one of {∅, I, E, T}. This ensures that
no modification in the target system will happen when an unknown movement
is performed or when a gesture has been terminated.
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Fig. 2. Component graph for the proposed system. User movements, captured by the
inertial sensors, are forwarded through the gesture recognition component, relying on
learned manifold models, to properties (green) of the medical target system.

4 Experiments and Results

To evaluate our gesture-based interaction method for the OR, we conducted
qualitative and quantitative experiments. We used two to six Colibri Wireless
orientation sensors (Trivisio GmbH) attached to the arms of our testing per-
sons. Gestures we defined for evaluation included moving an arm horizontally or
vertically, tracing out circles, or other movements with one or both arms. Our
implementation with Matlab and C++ components runs in realtime.

User Study. Tests with 10 subjects were performed to assess the usability of the
proposed method with the medical image viewer as an exemplary target system.
We asked each person to localize a stent bifurcation within a volumetric CT
dataset using 6 personalized gestures (Figure 3). The gestures were assigned to
the main parameters of the image viewer, such as scaling, contrast, slice number,
etc. Average user answers in a questionnaire consisting of five questions are given
in Figure 4.a). Very positive feedback was given to the wearability of the sensors,
the responsiveness and the achieved precision of the system.

Gesture Recognition. The gesture recognition accuracy of our method was
evaluated systematically on a dataset of 18 different gestures, each recorded four
times. We created labeled sequences of multiple gestures in a row, each between
1000 and 5000 frames. Experiments were performed in a cross-validation manner,
each time using one of the sequences for training and one of the others for testing.
While measuring the percentage of frames with correctly recognized gestures,
we varied the number of simultaneously trained gestures and the number of
inertial sensors. As shown in Figure 4.b), best gesture recognition rates were
achieved with six inertial sensors. In this case, 95% of all frames were correctly
recognized with a set of four gestures, and 88% when the method was trained
on 18 gestures. Although the recognition rates decrease for less than six sensors,
even only two sensors (one on each arm) yield correct recognition rates above 80%
for all considered numbers of gestures. Our method thus scales well with respect
to the number of gestures to be recognized simultaneously. However, we expect
that less than 10 gestures need to be distinguishable in practical applications.
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Fig. 3. Top row : Sample images of a test subject performing one of the learned gestures.
Bottom row : Manifold embedding for the same gesture with distribution of particles,
shown in red, for each of the above images. The point x̂t is given by a dark circle.

Gesture Segmentation. It is crucial for a gesture-based interaction method
to distinguish instances of learned gestures from arbitrary other movements.
Using six inertial sensors, we varied the threshold associated with the confidence
measure λ∅

t and measured the percentage of frames with gesture movements
recognized as such (true positive rate, TPR) and the percentage of non-gesture
frames wrongly identified as gestures (false positive rate, FPR). We trained the
method on different numbers of gestures and randomly created sequences where
only one of multiple gestures was known to the method. Figure 4.c) shows the
resulting ROC curves. The best combination of high TPR and low FPR was
achieved in the setting with four gestures. In this case, above 90% of gestures
were detected with less than 10% of false positives. Although distinguishing
non-gesture movements becomes more difficult when many gestures are learned
simultaneously, detection results remain reasonable, even for 18 learned gestures.

5 Discussion and Conclusion

In this paper, we proposed a novel gesture-based interaction method for the
OR using wireless inertial sensors. During a training phase, manifold models

a) b) c)

Ease of completing task
Comparison to classical UI
Precision of control
Responsiveness of system
Wearability of sensors

4.0
3.8
4.0
4.2
4.6

Range: 

Question: Mean:

1.0 (worst) - 5.0 (best)

Fig. 4. a) Average questionnaire results after qualitative user study with 10 test sub-
jects. b) Correct gesture classification rates for various settings. c) ROC curves for
automatic differentiation of learned gestures from non-gesture movements.
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are learned for each considered gesture based on the sensor data. This allows
customizing gestures for each individual user and for different workflow phases,
considering different constraints. Our evaluation shows promising results of us-
ing this method in our experimental setup. While the automatic differentiation
between learned gestures and other movements achieves true positive rates above
90%, an additional tool, e.g. a pedal or voice command, could be used to activate
and deactivate automatic gesture-based control within critical workflow stages.
We will concentrate on these options in our future work.
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Abstract. This paper introduces a new patient-mounted CT and MRI guided 
interventional radiology robot for percutaneous needle interventions. The 5 
DOF robot uses ultrasonic motors and pneumatics to position the needle and 
then insert it progressively. The needle position and inclination can be 
registered in the images using two strategically placed fiducials visible in both 
imaging modalities. A first prototype is presented and described in terms of its 
sterilization, CT and MRI compatibility, and precision. Tests showed that 1) it 
is entirely sterilizable with hydrogen peroxide gas, 2) no image artifacts or 
deformations are noticeable in the CT and MRI images, 3) does not affect the 
SNR of MR images, and 4) its mechanical error is less than 5mm. 

Keywords: Interventional radiology, Robotics, CT, MRI, Image guided, 
Ultrasonic motors, Magnetic resonance compatibility, Sterilization. 

1   Introduction 

Percutaneous interventional radiology (IR) is a field that consists of diagnostic and 
therapeutic procedures such as image-guided biopsies, cancer treatment by 
radiofrequency ablation, cryoablation and high-intensity focused ultrasound (HIFU), 
abscess and pleural drainage, and vertebroplasty. In 2008, 11.5 million IR acts were 
realized in the US, of which 35% where non-cardiovascular. The popularity of these 
procedures has incited a growing interest in robotic-assisted techniques. 

Of the primary imaging techniques used in IR, CT and MRI are of particular 
interest due to their ability to view any part of the body in three-dimensions and with 
typically higher definition. Both modalities have their advantages. CT images have 
high resolution whereas MRI is non-irradiating, has better contrast density for soft 
tissues, and allows for thermal imaging for cryoablation for example, as well as non-
invasive real time imaging that introduces the possibility of motion tracking and 
compensation. These differences make CT and MRI imaging complementary, making 
IR interesting in both modalities. 

CT-guidance is a well established technique for percutaneous needle interventions. 
Some of the main difficulties encountered in conventional CT-guided IR are 
accessibility due to constrained tunnel dimensions, lengthy and iterative steps that 
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affect patient comfort, difficulty for the clinician to visualize the needle trajectory on 
the patient, as image planning is done in the distant control room, and important 
complications when inclining the needle in two directions. MRI-guidance, on the 
other hand, remains uncommon in clinical practice due to cost, tunnel size and 
material compatibility constraints. 

In this paper, we present a new, patient-mounted multimodal, MRI and CT 
compatible interventional radiology robot based on our previously published LPR 
robot [1]. The primary goal of the robot is to increase the scope of percutaneous 
interventions available to clinicians by 1) increasing needle insertion accuracy by 
allowing accurate location of needle position and inclination in the images combined 
with progressive needle insertion, 2) allowing more complex 3DOF approach angles 
(between the ribs or deep insertions, for example), 3) reducing the number of image 
acquisitions required (and hence decreasing radiation doses in CT), 4) improving 
intervention efficiency, and 5) offering the possibility of MR-guided interventions 
(for example for patients with certain contraindications to CT contrast agents, or for 
better visualization of equal-density tumors, etc.). 

2   State of the Art 

Most of the difficulties described in the previous paragraph could be addressed 
through robotic assistance, and indeed, a multitude of systems have been described in 
the literature. These systems can be classified into two categories: bed-mounted 
robots and patient-mounted robots. An example of the first class of robots is the 
AcuBot [2][3], a CT guided IR robot, which uses a bridge-like macro-micro 
architecture to insert a needle with 1-2mm precision. Another similarly bridge-
mounted robot is the MRI-guided Innomotion system, which uses pneumatic actuators 
coupled with optical sensors to drive the robot, while needle insertion remains 
manual, with sub-millimetric accuracy [4]. A third example is the B-RobII system 
which uses two parallel fingers to align the needle above a target, allowing the 
clinician to insert the needle manually, with a precision of 0.88mm [5]. 

Patient-mounted systems have the difference of being smaller and able to move 
with the patient. The effect of motion due to patient discomfort as well as the motion 
of the insertion point on the patient’s skin during breathing can thus be minimized to a 
certain extent. The CT-Bot is one such robot [6] that uses ultrasonic motors to power 
a parallel-structure with 5 degrees of freedom (DOF). It uses a single line-fiducial 
mounted on the base of the robot for registration with the CT images, allowing an 
accuracy of <5mm at typical needle insertion depths. The Robopsy is another example 
of such a CT-guided robot that has 3 DOF for needle orientation and insertion [7], 
while positioning at the skin insertion point is manual. Neither of these robots are 
MRI compatible.  

The systems described above show the important potential benefit that robotic-
assistance can have for improving the quality and feasibility of percutaneous IR 
procedures. The Light Puncture Robot (LPR) [1] developed in our laboratory, 
consisting of a patient-mounted needle insertion module stretched between four straps 
can be pulled individually to control the needle position. The major contribution of 
this project compared to other existing systems is its compatibility with both CT and 
MRI guided percutaneous procedures, significantly enlarging its clinical scope. 
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a maximum planar translation of 135mm and a maximum needle inclination of ±60˚ 
in one direction and ±15˚ in the other. The needle is held by two independent grippers 
the upper one being mounted on a vertical slider and providing the needle insertion 
force, as shown in Figure 2. The frame is strapped to the patient’s body to follow 
external movements. 

Needle insertion is done incrementally by sequentially activating the two needle 
grippers and the insertion slider (Figure 2). The stroke distance (adjustable between 0 
and 40mm) is regulated by a controllable stop that blocks the vertical slider’s path. 
The stop height is regulated by a screw connected to a set of reduction gears. 

Translation of the four x and z sliders is achieved through four Shinsei USR60-
E3N ultrasonic motors. Their torque (max. 1Nm) and speed (rated 100rpm) ratings 
are easily sufficient for the low friction and low reduction characteristics of the robot. 
As studies have shown that these motors are capable of affecting an MRI image when 
powered inside the tunnel [8], it was decided to house them in a separate container 
placed on the scanner or MRI bed, at the patient’s feet (see Figure 1, right). They are 
connected to the robot by 1.5m long cables and housing, ensuring that they are never 
inside the tunnel. Each motor activates a pair of rack and pinions, which in turn pull 
the cables to translate the respective robot slider. The cable housing is made of 
Teflon, to reduce cable friction, while the cables are made of low stretch 0.4mm 
diameter Spectra thread, typically used in archery. Separating the motors from the 
robot also reduces the robot’s weight on the patient’s body. 

While the insertion stop mechanism is controlled by an ultrasonic motor, the 
insertion and retraction of the insertion slider as well as the two needle grippers are 
powered by pneumatics. This was chosen in order to give sufficient power and speed 
to these vital elements of the robot. At a typical hospital air pressure of 4 bars, the 
needle insertion force is >50N, while the gripping force is 8N. The latter increases to 
13N at 5 bars, which is largely enough for typical needle insertion forces. Air pressure 
can be provided either by the hospital air supply that is usually found in or near the 
imaging rooms, by bottled medical air, or by a small electrical pump, the latter two 
being, of course, located outside the imaging room, particularly in the case of MRI. 

All the robot and motor unit materials consist of a combination of CT and MRI-
compatible delrin, epoxy resin, carbon fiber and nylon materials. Fiducials, mounted 
on both the parallel platforms and both visible in CT and MRI, allow for direct 
tracking of the needle position and inclination, instead of just the robot frame, as is 
the case in other robots. This increases accuracy and reliability. 

The robot control box, located outside the imaging room, houses the motor 
controllers and pneumatic solenoid valves. The electronic cables and air hoses pass 
through the service hatch of the scanner/MRI room. The PC used to control the robot 
is connected to the hospital network, allowing it to obtain the images coming from the 
imager. 

4   Robot Evaluation 

4.1   Sterilization 

Along with the functional aspects of the design, sterilization is a vital element to 
consider. Although not yet fully incorporated into this first prototype, a study of its 
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sterilizability has been carried out. Percutaneous IR needle interventions can be 
considered low risk procedures, as they occur in the open environment of the scanner 
and MRI rooms, and as the inherent risk of a single needle insertion is relatively 
small. The robot’s primary condition for sterilization must be that there be no risk of 
contact between a non-sterile component of the robot and the needle or the clinician. 

Since the needle is located within the confines of the robot’s frame, requiring the 
clinician to reach inside to handle the needle, and since there are many moving 
elements that would be difficult to simply cover with sterile covers or drapes, it was 
decided to sterilize the entire robot and part of the cables leading to the motor unit. 
Any potential air leaks coming from the pneumatic system were deemed irrelevant, as 
the air in the imaging room is untreated, ambient air in any case. 

Due to the numerous moving parts, with 14 cables running in and out of their 
1.5mm inner diameter cable housings, and numerous heat sensible materials, 
sterilization by hydrogen peroxide gas (such as the STERRAD® system, from 
Advanced Sterilization Products) was chosen. Three aspects for successful sterilization 
were explored. 

First, to fit into the smallest typical sterilization chamber (170 x 300 x 600mm) it is 
necessary to disconnect the robot from the motor unit. Although not yet incorporated 
into the prototype described here, a cable connector has been design. This will allow 
the entire robot and nearby cables to be placed in the sterilization chamber at once. 

Second, as the compatibility of carbon fiber with hydrogen peroxide gas was 
unkown, we decided to test this compatibility. We passed two carbon fiber samples 
through 25 normal sterilization cycles using the STERRAD® NX machine available 
to us in our partner hospital (cycle time = 38 min; temperature = 45˚C; pressure = 
1.013 bar). Visual microscopic comparison of the surfaces of these samples with non-
sterilized samples, showed no evidence of surface decomposition, microfractures, or 
delamination of the fibers. Bend to fracture tests on these sample bars also showed no 
noticeable change in fracture strength and fracture mode. As the robot frame 
undergoes minimal loads during operation, these results were deemed satisfactory. 

Third, as temperature is not an acting sterilization agent in the sterilization 
technique chosen, it is necessary that all parts of the robot be reachable by the gas. This 
is especially the case for the cables hidden inside the cable housing, which during robot 
operation will emerge within close range of the needle, as they are pulled in and out. 
To verify the successful sterilization inside the cable housing, an experiment was 
undertaken in which 4 Spectra cables were impregnated with Geobacillus 
Stearothermophilus spores (standard bacterium used for validation of sterilization 
studies, including autoclave and gas-based techniques) and inserted into 30cm lengths 
of cable housing. Three of these were passed through a single STERRAD® 
sterilization cycle, along with a batch of control spores in an open Eppendorf tube. The 
three sterilized samples, the control spores and the one non-sterilized sample, were 
then put into cultivation at 60˚C, and the optical densities (OD) were measured using a 
spectrometer for each cultivation solution at 24h and 72h. At both instances, only the 
non-sterilized sample showed any sign of bacterial proliferation (OD = 0.952, 
compared to OD < 0.014 for sterilized samples), confirming that the cables were 
successfully sterilized. As the cable housing will be disconnected from the robot during 
sterilization, this experiment was deemed appropriate and conclusive. 
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Fig. 3. Average SNR for each set of THRIVE and BTFE images taken during MRI 
compatibility tests. Motor distance was measured from the opening of the MRI tunnel. 

4.2   CT and MRI Compatibility 

To verify the CT, and in particular MRI compatibility of our prototype, we conducted 
three experiments. In the first test, we imaged the robot in a Siemens Somatom 
Sensation 16 CT scanner at a resolution of 512x512 and a slice thickness of 1mm. 
The images showed no signs of streaking or beam hardening, artifacts that could 
affect the clinical image quality. Also, compared to the previous LPR design, this 
robot stands on four legs, bringing the bulk of the robot away from the patient’s skin, 
making it easily distinguishable in the CT images. 

In the second test, we measured the signal to noise ratio (SNR) in a series of MRI 
image volumes, with the robot in place and with the motor unit at increasing 
proximity to the MRI tunnel (3m, 2m, 1m, and 0.5m). The SNR was measured in 
exactly the same manner as described in [1] and [8], using a phantom bottle in a 
Philips Achieva 3.0T MRI scanner. BTFE1 and THRIVE2 sequences, typically used 
during IR, were taken. The results of the various measurements made are shown in 
Figure 3 and are within the ranges reported in [1]. We note that all signal to noise 
ratios are comparable and acceptable. 

In the third test, using the same images as in the second test, the upper and lower 
robot fiducials were segmented using identical thresholds for all the image volumes. 
Two measurements were made and are summarized in Table 1: the average variation 
(expressed as a standard deviation) of the center of motion (COM) for each 
segmented image and the average volume of segmented pixels for all segmented 
fiducials. The variations of both measurements did not show any sort of pattern based 
on the motor distance or state. Note that in this test, the registration of the segmented 
image COM to the true physical robot COM was not considered, as our primary 
interest here was the effect of the robot and motors on image quality. 

Although the two MRI tests presented are preliminary and will have to be furthered 
on actual patients, it is important to note that 1) the motors will never be actuated 
during image acquisition, and 2) the motors will never be inside the imaging tunnel. 
The results were therefore very encouraging. 
                                                           
1 Balanced Turbo Field Echo: Slice thickness = 5mm, resolution = 256x256, slices = 15, slice 

spacing = 6.5mm, TR = 2.62ms, TE = 1.31ms, flip angle = 45˚. 
2 T1 Weighted High Resolution Isotropic Volume Exam: Slice thickness = 4mm, resolution = 

384x384, slices = 80, slice spacing = 2mm, TR = 3.03ms, TE = 1.42ms, flip angle = 10˚. 



 Interventional Radiology Robot for CT and MRI Guided Percutaneous Interventions 143 

Table 1. Average variations (expressed as standard deviation) of the segmented upper and 
lower fiducials for motor distances of 0.5m (motors OFF), 1m (OFF and ON), 2m (OFF) and 
3m (OFF and ON) from the MRI tunnel opening. Note: ON = in motion (i.e. worst case). 

 Average variation of pixel volume Average variation of COM (mm) 
Fiducial: Upper Lower Upper Lower 
BTFE 8% 7% 0.75 0.30 
THRIVE 15% 15% 1.02 0.47 

4.3   Robot Accuracy 

A preliminary test has been run on the robot to determine its needle positioning error 
before advancing to more in depth needle insertion experiments on phantoms and 
mock patient trials. The test involved moving the robot inside an MRI imager and 
comparing images taken before and after the motion. By segmenting the fiducials in 
both volumes, the distance moved by the robot can be compared to the commanded 
distance. This comparison gave us an idea of the total error, including robot motion 
and imaging errors. Segmentation of the images was done manually, using smoothing, 
thresholding and basic binary processing to isolate the fiducials and then to calculate 
their centers of mass (COM) within each image. The latter was used to calculate the 
distance moved. From a total of six repeated 50mm x and y translations, the resulting 
error was found to be 4mm (SDev = 1.1) for the upper fiducial and 5mm (SDev = 1.2) 
for the lower fiducial. 

These errors come from two sources. First, the images used in this analysis were of 
fairly low resolution (384 x 384 pixels, 100 slices, 0.9766mm pixel size, 2mm image 
spacing), significantly affecting the reported error. Second, the mechanical stretching 
of the cables during motion, result in some hysteresis between the motor movement 
and the respective slider movement 1.5m away. This effect was minimized through 
material selection (use of stiff, low friction materials), but is impossible to eradicate 
completely. To decrease this error, we are looking, on one hand, into a better way of 
equalizing the cable tension throughout the robot, and on the other to develop an 
algorithm to predict the hysteresis. 

5   Conclusion 

We are continuing development on this prototype in order to carry out phantom 
needle insertion tests in both CT and MRI machines, as well as further mock patient 
tests in the MRI machine. Specific research aspects include the development of 
automatic fiducial segmentation algorithms, their incorporation into the robot 
kinematics, and ergonomic, size and actuation redundancy improvements (in 
particular, to increase the safety of the needle insertion module and to ensure no 
unwanted motion of the linear slides during needle insertion), robot-to-patient fixation 
design, and hysteresis tests on the cables, to prepare the robot for clinical trials. 

Acknowledgments. We would like to acknowledge Nabil Zemiti for spearheading the 
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study and the departments of sterilization, security and hygiene of the Grenoble 
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Abstract. A growing number of medical datasets now contain both a spatial and
a temporal dimension. Trajectories, from tools or body features, are thus becom-
ing increasingly important for their analysis. In this paper, we are interested in
recovering the spatial and temporal differences between trajectories coming from
different datasets. In particular, we address the case of surgical gestures, where
trajectories contain both spatial transformations and speed differences in the exe-
cution. We first define the spatio-temporal registration problem between multiple
trajectories. We then propose an optimization method to jointly recover both the
rigid spatial motions and the non-linear time warpings. The optimization gener-
ates also a generic trajectory template, in which spatial and temporal differences
have been factored out. This approach can be potentially used to register and
compare gestures side-by-side for training sessions, to build gesture trajectory
models for automation by a robot, or to register the trajectories of natural or arti-
ficial markers which follow similar motions. We demonstrate its usefulness with
synthetic and real experiments. In particular, we register and analyze complex
surgical gestures performed by tele-manipulation using the da Vinci robot.

1 Introduction

Time series data is gaining importance in medicine and poses new challenges. Whereas
historically the spatial aspect of data was analyzed, for instance to build atlases, we now
need to consider both the spatial and the temporal aspects together. Trajectories are nat-
ural spatio-temporal data descriptors. Our interest in this paper focuses specifically on
tool trajectories that allow to model and analyze the performance of surgeons. Models
of surgical performance are used to develop training systems [1] and evaluation meth-
ods [2]. With the rapid advancement of minimally invasive surgery, there is a growing
need for such systems that can improve the learning curve of trainees. Surgical models
can also be used to segment gestures [3] and to recognize the surgical workflow [4], in
order to develop context aware assistance systems. More recently, expert gesture infor-
mation has been used in robotics to make surgical robots learn how to perform complex
movements like knot tying [5].

Gesture datasets generally consist of tool trajectory data recorded from different
users, possibly operating in different environments. As a result, the data contains varia-
tions. For example, rigid spatial transformations arise from different patient and system
locations. Different operator styles and environment constraints cause not only rigid
and deformable spatial deformations, but also non-linear speed differences in the exe-
cutions. A common way to recover spatial differences is to use markers. However, such
a setup may be cumbersome in some scenarios or non-available in some datasets.

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAI 2011, Part I, LNCS 6891, pp. 145–152, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



146 N. Padoy and G.D. Hager

Analyzing multiple trajectories representing the same gesture requires therefore the
recovery of both the rigid spatial transformations and the non linear time warpings. This
way, multiple instances can be both spatially and temporally superimposed, allowing the
comparison of variations solely caused by style, experience and environment specifici-
ties. Note that this recovery also provides the temporal synchronization between videos
observing the scenes. Such information is very valuable for surgeons, as it provides
an intelligent way to mine surgical databases, e.g. to extract and compare side by side
surgical performances during training seminars.

In this paper, we introduce two cost functions, one stating the spatio-temporal reg-
istration problem for a pair of trajectories, and the second stating the spatio-temporal
registration problem for multiple trajectories. We then propose optimization approaches
that combine dynamic time warping (DTW) [6] with rigid spatial registration [7]. In the
case of multiple trajectories, the registration approach assumes that they are all transfor-
mations of a generic gesture template to be computed. It iteratively computes the rigid
transformation and temporal warping between each trajectory and the template, which
is updated. The recovery of the spatial transformations permits the computation of an
accurate template that keeps the same shape as all trajectories. Also, rotation invariant
features like curvature are then not necessary to drive the temporal synchronization.

Usually, a surgical gesture spatially overlaps over time within a small 3-dimensional
volume. Therefore, methods like iterative closest point [8], which uses only spatial in-
formation, or dynamic time warping [6], which does not model spatial transformations,
are not accurate for registration. We show that the spatio-temporal registration provides
better results. Our approach share similarities with canonical time warping (CTW) [9],
which uses DTW and canonical correlation analysis to jointly synchronize and extract
common features from a pair of time-series having possibly different dimensions. Two
main differences are: 1) we address the joint registration of multiple time-series and 2)
due to the nature of our problem where time-series represent trajectories, we estimate a
rigid transformation between two time-series instead of projection matrices for each of
them. A synthetic experiment in section 3 will show how the choice of the appropriate
modeling for the transformation affects the registration.

The remainder of this paper is as follows: we present our approach in section 2 and
show synthetic and real experiments in section 3. Conclusions are given in section 4.

2 Methods

Sections 2.1 and 2.2 present two standard approaches to register two trajectories either
temporally or spatially. In section 2.3, we state the spatio-temporal registration problem
for two time-series and explain how to combine the two previous approaches to address
it. Section 2.4 extends the registration approach to multiple trajectories.

2.1 Temporal Registration

Let X and Y be two time-series of length nx and ny representing two 3-dimensional
trajectory instances of the same gesture: X ∈ R3,nx and Xt ∈ R3 is a trajectory point
for 1 ≤ t ≤ nx. In this section, we assume that one time-series can be derived from the
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other by a time-warping φ = (φx, φy, m), modulo additional small spatial variations
that are for instance due to style or environment specificities. The warping φ models
a temporal alignment between the time-series X and Y , using a common timeline of
length m: Xi is aligned with Yj if and only if there exists 1 ≤ t ≤ m such that φx

t = i
and φy = j. The warping verifies the constraints: 0 ≤ φa

t − φa
t−1 ≤ 1 (continuity),

φa
1 = 1, φa

m = na (boundaries), for a ∈ {x, y}. DTW [6] is an algorithm based on
dynamic programming that optimally computes a warping φ minimizing the cost:

Cwarping(φ) =
m∑

t=1

‖Xφx
t
− Yφy

t
‖2. (1)

An example of alignment is shown in fig. 1(d). If the trajectories are spatially very dif-
ferent, this approach fails. An alternative is to express the total cost in terms of features
invariant to certain spatial transformations. Instead, we propose to jointly integrate the
spatial registration in the process, as will be needed for template generation.

2.2 Rigid Spatial Registration

Let {Ui}1≤i≤nu and {Vj}1≤j≤nv be two 3D point sets describing a similar shape. As-
suming that p point correspondences {(Uψu(l), Vψv(l)) | 1 ≤ l ≤ p} are known, where
ψ : {1, . . . , p} −→ {1, . . . , nu} × {1, . . . , nv}, [7] optimally recovers the rigid spatial
transformation [R, T ] ∈ SO3 × R3 between the two shapes using the singular value
decomposition (SVD) to minimize the sum of squared errors:

Crigid(R, T ) =
p∑

l=1

‖RUψu(l) + T − Vψv(l)‖2. (2)

Note that the scaling factor is omitted, as the gestures we analyze interact with an envi-
ronment of constant size and we do not want an additional scaling transformation.

In the case where point correspondences are not known, the iterative closest point
(ICP) algorithm has been proposed [8] to iteratively estimate correspondences and the
spatial registration. This approach can fail however if the initial shapes are far from
the solution and the point clouds do not describe neatly the shape, as it occurs for
a trajectory that overlaps in a small spatial volume. Trajectories are not simple point
clouds but have a temporal dimension. In the next section, we will use this additional
information to improve point assignments and thereby the registration.

2.3 Spatio-Temporal Time Warping (STW)

Let X and Y be two time-series representing two 3-dimensional trajectory instances of
the same gesture, as in section 2.1. We make here the less restrictive assumption that
one time-series can be derived from the other by a rigid spatial transformation [R, T ]
and a time-warping φ = (φx, φy , m), modulo additional small variations. Our objective
is to recover jointly the spatial transformation and the time-warping, in order to isolate
and compare these variations. We propose to minimize the following registration cost

Cstw(θ) =
m∑

t=1

‖RXφx
t

+ T − Yφy
t
‖2, (3)
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Algorithm 1. Spatio-temporal time warping (STW)

input : X,Y
output: θ = {R, T, φ}
initialization: R = Id, T = 0;
repeat

Compute temporal warping φ between (RX + T ) and Y using DTW;
Compute [R, T ] using rigid registration and correspondence set
{(Xφx

t
, Yφ

y
t
) | 1 ≤ t ≤ m} between trajectories X and Y ;

until Cstw converges ;

with respect to the parameters θ = {R, T, φ}. We use a coordinate descent approach
similar to [9], in which each step monotonically decreases the cost. We iteratively com-
pute [R, T ] and φ using rigid registration and DTW. Even though convergence is only
guaranteed to a local minimum, experiments show that the good correspondences ob-
tained by temporal registration permit to recover large spatial transformations, even
with trajectories containing variations. The approach is given in Algorithm 1.

2.4 Spatio-Temporal Registration of Multiple Trajectories

Let us now assume X1, . . . , XK to be K time-series of length n1, . . . , nK , represent-
ing 3-dimensional trajectory instances of the same gesture. We make the assumption
that all instances can be derived from a gesture template Y of length ny by rigid spatial
transformations [Rk, T k] and time-warpings φk = (φk,x, φk,y , mk), modulo additional
small variations due to style or environment specificities (see e.g. fig. 3(a)). Our objec-
tive is to recover all spatial transformations and time-warpings, in order to isolate and
compare jointly these variations. We therefore introduce the following registration cost

Cmulti(ω) =
K∑

k=1

mk∑
t=1

‖RkXk
φk,x

t

+ T k − Yφk,y
t

‖2, (4)

to be optimized on the set of parameters ω = {Rk, Tk, φk, Y | 1 ≤ k ≤ K}. During the
optimization, we iteratively compute the warpings {φk}, the template Y and the trans-
formations {[Rk, T k]}. If we suppose Y to be known, for instance to be one of the Xk,
similarly to Algorithm 1 we can compute all {φk} and then all {[Rk, T k]} alternatively,
to decrease monotonously Cmulti(θ). The template needs however to be refined, as a
particular sequence may contain anomalies or not be representative of the timeline. To
compute the template Y , we use a temporal averaging technique presented in [10]. This
approach synchronizes several time series to a common timeline whose length is the
average length of all time series, using an initial template. Using this synchronization,
the time-series are then averaged. This method is presented in Algorithm 2, where the
monotonicity of the φ̃k,x guaranties the invertibility of μ. Interpolation steps are needed
in the computations of μ and Z , but omitted for better readability.

The final registration method is presented in Algorithm 3. Since the template com-
putation also modifies the temporal warpings, monotonous decrease of the cost is not
obvious. Convergence is however verified in our experiments.
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Algorithm 2. Template generation

input : {Xk}1≤k≤K , initial template Ỹ
output: new template Y and new warpings φk

for 1 ≤ k ≤ K do
Compute warpings φ̃k = (φ̃k,x, φ̃k,y , m̃) between Xk and Ỹ using DTW;

Compute μ(t) =
∑K

k=1 φ̃k,x
t , where 1 ≤ t ≤ m̃;

Define Yt =
∑K

k=1 Ỹ(φ̃k,x(μ−1(t))), where 1 ≤ t ≤ 1
K

∑K
k=1 nk;

for 1 ≤ k ≤ K do
Compute warpings φk = (φk,x, φk,y , m) between Xk and Y using DTW;

Algorithm 3. Multiple trajectories registration

input : {Xk}1≤k≤K

output: ω = {Rk, Tk, φk, Y | 1 ≤ k ≤ K}
Y is initialized as the Xk with median length;
for 1 ≤ k ≤ K do

Rk = Id, T k = 0

repeat
Update Y and {φk} using Algo. 2 with input {RkXk + T k}1≤k≤K and Y ;
for 1 ≤ k ≤ K do

compute Rk, T k using rigid registration and correspondence set
{(Xk

φ
k,x
t

, Y
φ

k,y
t

) | 1 ≤ t ≤ mk} ;

until Cmulti converges ;

3 Experiments and Results

3.1 Synthetic Experiments

Pair of trajectories
Let X and Y be trajectories describing 80% of a circle (fig. 1(a)). Y is obtained by
rotating X in the same plane by 60 degrees and translating it. A noise of 5% is added
to the data points. The trajectories are performed at different speeds, as illustrated by
the ground truth temporal warping in fig. 1(d). Y mostly describes the circle twice
as fast, but in the end at the same speed (nx = 150 and ny = 88). Fig. 1(b) shows
the results for ICP, which fails due to the noise and spatial overlap. DTW alone also
fails (fig. 1(e,f)), as it assumes a time warping at the extremities and tends to associate
temporally the points closest spatially. CTW[9] gives better results (fig. 1(g,h)), but
also fails to recover the temporal alignment since it does not model the appropriate
transformation. The affine deformation of the data is clearly visible in fig. 1(g). Finally,
the STW approach recovers the correct spatio-temporal warping (fig. 1(i,j)).
Multiple trajectories
Figure 2 illustrates the registration of multiple trajectories using the approach of section
2.4. Three noisy partial circles with different time-warpings (lengths 88,150,250) are
correctly registered, as shown in fig. 2(b). Note that the shape of the template is also a
circle, which would not be the case if the rotations were not properly recovered.
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Fig. 1. Synthetic experiment. (a) two trajectories; (b) spatial registration using ICP; (c) Ground
truth spatio-temporal registration, with trajectories in two different planes for better visualization.
Lines indicate the spatial alignment; (d) corresponding time warping; (e) registration using DTW
only; (g) registration using CTW; (i) registration using STW; (f),(h),(j) show the time warpings
corresponding to (e),(g),(i). The dotted red lines in (e),(g),(i) indicate wrong alignment, with
tolerance ±5 frames.

(a) (b) (c)

Template

t

(d)

Fig. 2. Joint registration of 3 synthetic trajectories / setups for real experiments. (a) raw trajecto-
ries; (b) registration with generated template isolated on top for better visualization; (c) registra-
tion error; (d) setups for knot-tying (top) and 4-throw suture (bottom).

3.2 Experiments on Tele-Manipulation Data

We are interested in temporally synchronizing and spatially superimposing trajectories,
to replay synchronously the videos or the registered gestures in a virtual environment.

Knot-tying analysis
We use six sequences of a knot tying task performed by the same user using a da Vinci
robot (fig. 2(d)). Trajectories describe the left tool positions. In each recording, the task
pod has a different position and orientation. In spite of the large spatial transformations
and the multiple local variations (fig. 3(a)), e.g. in directions when pulling the thread,
all trajectories can be jointly registered. Fig. 3(b) shows the qualitative result and the
resulting template. Fig. 3(c) shows the decrease of the registration error Cmulti during
the optimization. The temporal synchronization between two trajectories is shown in
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(a) (b) (c)

(d)

Fig. 3. Knot tying. (a) 6 raw trajectories; (b) registration with template isolated on the right for
better visualization; arrows show a registered feature; (c) registration error; (d) temporal synchro-
nization between two trajectories pictured by a color gradient.

(a) (b) (c)

Fig. 4. Four-throw suture. (a) 3 of 19 registered trajectories with arrows showing the registered
throws; (b) registration error; (c) rotation axis, colored per surgeon.

fig. 3(d) using a color gradient to represent time. By registering the sequences all to-
gether, the performances of surgeons can be synchronously compared (e.g. beginners vs
experts). Side by side virtual replay can also teach a trainee the correct tool orientation.

Four-throw suture analysis
We use 19 sequences of a 4-throw suture performed by 6 different surgeons using the da
Vinci tele-surgical robot (see fig. 2(d)). The trajectory data describes the cartesian posi-
tions of the master-manipulator corresponding to the right hand and directly controlling
the right instrument. Fig. 4(a) shows a subset of the registered sequences for qualita-
tive evaluation. Fig. 4(b) shows the quantitative registration error Cmulti. This dataset
illustrates another interesting application of the registration. For each surgeon, the same
suturing pod is used, but different surgeons use different pods. Even though the data
was meant to be recorded with the same setup, the videos show that between surgeons,
the pods are rarely at the same location, but rotated. Fig. 4(c) shows the computed 3D
axis of the axis/angle representations of the rotations Rk, colored per surgeon. We see
that the registration is precise enough to cluster the 3D axis per surgeons (and setups),
in spite of the fact that the long data sequences contain multiple atomic gestures and
variations.
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4 Discussion and Conclusion

Trajectories occur naturally in computer assisted surgery: they describe the movements
of tools, markers and body features. We first propose an approach to jointly register spa-
tially and temporally two trajectories differing by a rigid spatial transformation and a
temporal warping, and containing possibly additional local variations. Such an assump-
tion is valid for most complex gestures, since both the task to accomplish and the envi-
ronment constrain the operator’s freedom of movement. We then state the registration
problem for multiple trajectories and propose an optimization approach that simultane-
ously generates a representative template. Synthetic experiments show the usefulness
of combining spatial and temporal registration. Real experiments demonstrate its appli-
cability for registering complex gestures, like knot tying and multi-throw suturing, for
example for intelligent side-by-side comparison. Even though we register multiple tra-
jectories of a single object (a tool), by stacking up the data, one can extend the approach
to register multiple trajectories of multiple objects. We are interested in applying this
idea to the registration of medical images acquired over time.
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the authors and do not necessarily reflect the views of the National Science Foundation.
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Abstract. In the past decade ultrasound (US) has become the preferred
modality for a number of interventional procedures, offering excellent soft
tissue visualization. The main limitation however is limited visualization
of surgical tools. A new method is proposed for robust 3D tracking and
US image enhancement of surgical tools under US guidance. Small US
sensors are mounted on existing surgical tools. As the imager emits acous-
tic energy, the electrical signal from the sensor is analyzed to reconstruct
its 3D coordinates. These coordinates can then be used for 3D surgical
navigation, similar to current day tracking systems. A system with real-
time 3D tool tracking and image enhancement was implemented on a
commercial ultrasound scanner and 3D probe. Extensive water tank ex-
periments with a tracked 0.2mm sensor show robust performance in a
wide range of imaging conditions and tool position/orientations. The 3D
tracking accuracy was 0.36 ± 0.16mm throughout the imaging volume
of 55◦ × 27◦ × 150mm. Additionally, the tool was successfully tracked
inside a beating heart phantom. This paper proposes an image enhance-
ment and tool tracking technology with sub-mm accuracy for US-guided
interventions. The technology is non-disruptive, both in terms of exist-
ing clinical workflow and commercial considerations, showing promise for
large scale clinical impact.

Keywords: Ultrasound, Tool Tracking, Interventions, Navigation.

1 Introduction

X-ray and Ultrasound (US) are ubiquitous for guidance of interventional pro-
cedures, with the latter being used more in terms of total procedure numbers.
Estimated at over 10 million procedures per year, US-guided interventions range
from routine needle insertion for regional anesthesia [1] to biopsies [2] and per-
cutaneous ablation of cancer [3] to more advanced procedures such as structural
heart repair [4]. Its low cost, ease of use, excellent soft tissue visualization and
use of non-ionizing radiation make it a popular modality for both diagnostics
and interventions. The biggest limitation however is its lack of robust tool visu-
alization. X-ray, despite its lack of soft tissue contrast and harmful radiation, has
hence been the primary modality to fill this gap. With the advent of advanced
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513

Fig. 1. Left: azimuth and elevation slices through a 3D US image of a catheter in a
beating heart phantom. Note the difficulty in tool detection. Right: same, with tool
enhancement enabled. Blue lines indicate positions of orthogonal slices. Note that the
“unenhanced” images are automatically selected to display the catheter tip.

surgical navigation and image-fusion, research attempts have been made to im-
prove tool visualization. However, these attempts have not yet fully translated
to large-scale clinical practice. In particular, external tracking technologies have
made some progress at the expense of clinical workflow, leading to slow adoption
rates. Clinically viable and robust 3D tool visualization still remains a challenge.

The “invisible tool” phenomenon is well known in US imaging and interven-
tions (Figure 1 Left). Several approaches have been proposed to try to overcome
this problem. These include roughening the tool surface to make it more isotrop-
ically reflective [5]. This has translated clinically [6], but the solution is not yet
robust enough for difficult interventions [5]. Ultrasound beamforming protocols
have also been modified to better detect straight specular reflectors [7]. This also
has translated clinically [8]. However such a solution currently works only for a
limited category of ultrasound probes (linear or curvilinear geometry), limited
needle incidence angles with some a priori knowledge of needle orientation, and
inside sub-regions in the tissue image. Doppler imaging of a vibrating tool has
also been attempted to enhance tool visualization [9], however requiring changes
to the imaging pipeline including a drop in imaging frame rate and interference
from moving tissue. Note that all aforementioned technologies only provide im-
age enhancement of the tool but do not yield absolute position information of
the tool. External tracking technologies such as optical tracking have been in-
troduced as solutions providing absolute instrument tracking [10]. Since these
methods alter the existing clinical workflow, they have seen a limited clinical
translation, mostly in orthopedic and neurological interventions. A robust solu-
tion for US guided interventions is still needed.

A promising direction is to mount a small US “transponder” element on the
tool that, upon receiving ultrasound energy from the US beams sent from the
imaging probe, re-radiates ultrasound energy toward the probe, thus acting as a
very bright reflector. The concept was first introduced in 1984 [11]. At that time,
a passive receiver method was also introduced where upon reception, instead
of re-radiating ultrasound energy, a low-voltage electrical signal is passed to
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the system for image enhancement. This method was introduced clinically by
ATL to enhance needle guidance of breast biopsies [12]. Another embodiment
was later described by Vilkomerson [13] and used in a similar way for aiding
catheter ablation in pigs [14]. These systems provided enhanced tool visualization
but not position and orientation coordinates of the tracked tools. Furthermore
these early accounts made use of 2D US imaging technology which limited the
enhancement feature to a plane. For these reasons, they had limited clinical
utility. Building upon this technology, an offline technique was later proposed
to detect location by analyzing the ultrasound signals received at the tracked
transducer from an experimental 3D imaging probe [15]. Though promising, this
technique was not integrated with an imaging system for image enhancement
and interventional guidance. Alternately, attempts have been made to localize
intra-body ultrasound transducers by deploying a number of discrete ultrasound
elements to track the tranducer’s position via trilateration [16,17]. However,
these still require a registration of tool position to the US image, making the
method difficult to translate clinically.

Key Contributions: As far as the authors are aware, this paper is the first
to propose a system for real-time 3D tool tracking and image enhancement on
a commercial scanner. It tracks a US sensor by using the US signals impinging
on it to compute its 3D position. The key contributions are:

– A new technique to achieve 3D tool tracking with an accuracy of 0.36 mm
– Intuitive tool image enhancement with automatic 2D slice selection (Fig. 1)
– Extensive validation of a prototype integrated with a commercial scanner
– A solution with potential for clinical implementation

2 Methods

Principle of Operation: US sensor(s) are embedded at known locations on the
surgical tool. For position tracking, angular position is derived by knowing the
angular direction(s) of the US beam(s) that impinge on the receiver, while depth
information is derived from the time-of-flight from emission of the respective
beam(s). Tracking two receivers can yield orientation of the tool. For image
enhancement, (i) an image of the received signals as a function of depth and
angle; or (ii) the 3D coordinate can be overlaid on the US image. A schematic
description of the principle of operation is provided in Fig. 2a.

Tracking: A 3D US imaging probe emits ultrasound beams that regularly sam-
ple the field of view (FOV) in an array of NAZ ×NEL beams in the azimuth and
elevation directions, respectively (the geometry of US acquisition is depicted in
Fig. 2b). The temporal signals sensed by the receiver during the acquisition of
one image are formatted in a 3D NAZ ×NEL × time “data matrix”. In order to
retrieve angular position information with a better resolution than that given by
the spacing of the US beams, first a maximum intensity projection (MIP) of the
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Fig. 2. a: Schematic of principle of operation. b: Depiction of the coordinate systems.

“data matrix” over the time dimension is performed to yield a 2D (NAZ ×NEL)
MIP matrix on which a 2D Gaussian fit is applied. The Gaussian center is used
to estimate the angular coordinates of the receiver in the US coordinate system.
The depth information is obtained by finding the time at which the maximum
signal arrives at that angle and multiplying by the speed of sound. Thus with
angle and range information, the 3D sensor location is computed.

Display Enhancement: The computed position of the sensor is used to slice
through the 3D pulse-echo data received by the scanner and the 3D image of
the receiver, extracting two orthogonal 2D slices through the sensor - one at
constant azimuth and the other at constant elevation angle. These two slices are
displayed as an overlay of sensor position (in color) on the standard pulse-echo
US image (in grayscale).

Experimental Setup: The 3D imaging X7-2 probe is driven by an iE33
scanner (Philips Healthcare, Bothell, WA) in “Live 3D” mode with a FOV of
≈ 55◦(azimuth)× 27◦(elevation)× 150mm(range) at an imaging rate of 21Hz.
For this application, the iE33 is equipped with an in-house system that streams
the scanner’s radiofrequency pulse-echo data to a separate workstation at a low-
ered frame rate. The US receiver is a PVDF hydrophone with a 0.2mm aperture
equipped with a 20dB pre-amplifier (model HGL-0200, Onda Corp., Sunnyvale,
CA). Sensor acquisitions are synchronized by the iE33 scanner’s ‘beam out’ and
‘volume out’ trigger signals that mark the start of emission of each US beam
and each US volume (an ensemble of NAZ × NEL beams), respectively. Sensor
data is streamed to a workstation at the same rate of the scanner’s pulse-echo
RF data through a data acquisition card (Gage Applied Technologies, Lachine,
Canada). The receiver is suspended in a water bath by a 3D motorized stage
(model MM4006, Newport Corp., Irvine, CA) that is controlled by the central
workstation through a GPIB interface. The stage is specified accurate and re-
peatable to <5 μm and thus provides ground-truth coordinates. A manual rota-
tion component is also available in the x-z plane. Streamed data from the scanner
and sensor are processed live using Matlab to yield tracked sensor positions and
overlay volume 2D slices with a prototype frame rate of 0.26Hz.
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3 Experiments and Results

System Calibration: The first step prior to the validation experiments was to
calibrate the system. Data was acquired with the stage translating the receiver in
1 mm increments over four rectangles in x-y parallel planes at depths of 20mm,
60mm, 100mm, and 130mm. A total of 2000 data points were collected. An
unconstrained nonlinear optimization minimizing fiducial registration error cal-
ibrated the following variables: speed of sound (SOS) in water, transmit beam
angles in water, and time offset between the imaging system ‘beam out’ trig-
ger and US probe beam emission. The calibrated SOS was 1491.6 m/s. These
parameters were used for the subsequent validation experiments.

3.1 Tracking Accuracy

Tracking Accuracy Over the 3D US FOV: The first experiment evaluated
the system accuracy throughout the extent of the 3D US FOV. The system
acquired data in the same manner as the calibration step (Fig. 3), collecting a
total of 5110 data points. 10% of the points were chosen at random to calculate a
registration matrix using Procrustes analysis. The registration matrix was then
applied to the remaining 90% of the points, from which Target Registration Error
(TRE) values were calculated. The 10% random point selection and registration
was repeated 100 times to provide a total of 459,900 TRE values. The TRE values
were then grouped by slice depth and azimuth angle, with the results shown in
Fig. 4. The accuracy is 0.36 ± 0.16mm across the FOV with no significant
biases in any one direction. Furthermore, there is no significant correlation to
the azimuth angle. The 2.1% distance error at 20mm separation suggests a 1.2◦

mean rotation accuracy using two sensors separated by that distance.

Accuracy as a Function of Depth: A second experiment was performed to
evaluate the system accuracy throughout depth at the center of the US FOV.
The experimental protocol is identical to the first experiment except that the

−50

0

50
−20

0
20

0

50

100

x [mm]
y [mm]

z 
[m

m
]

21 22 23 22

Fig. 3. Left: the tracked sensor ground truth and estimated positions (red crosses and
blue stars, respectively). Right: sample overlay images (‘hot’ colormap receiver images
with grayscale pulse-echo images) at the four rectangle depths (20mm, 60mm, 100mm,
130mm). Shown are 4 automatically selected azimuth slices through 3D datasets. The
resolution degrades with increasing depth.
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Fig. 4. Error measures from the first validation experiment: Top left: accuracy vs.
depth. Top right: accuracy vs. azimuth angle. Bottom left: Percent distance error vs.
distance between two points. Bottom right. Histograms of error bias values in X, Y, Z.
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Fig. 5. Error measures from z-translation validation experiment: Accuracy vs. z-depth

stage translated the receiver in 1 mm increments along the center z-axis from
10 to 140mm for a total of 141 points per run. A total of 5110 data points were
collected, representing 36 runs through the straight line. The system accuracy
was evaluated with the same routine as the first experiment. The accuracy values
are grouped by depth and shown in Fig. 5. The accuracy remains constant at
0.37mm across all depths. Note that the average performance is same as before,
but depth dependent variation is low due to constant sensor orientation.
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Fig. 6. Left: enhanced images of the hydrophone at approximately 0◦ and 90◦ incidence.
Center: Recorded positions with circle fit. Right: TRE vs. hydrophone angle.

3.2 Sensor Orientation

A third experiment evaluated the system accuracy as a function of sensor angle.
Here the receiver was mounted on a manual rotational stage with the center
of rotation approximately 150mm from the probe surface. The receiver tip was
held at a radius of about 55mm from the center of rotation and manually rotated
from approximately −80◦ to 80◦ for a total 73 data points. The collected data
points were divided into 6 bins according to angle. Each bin of data was then
selectively omitted so that 5 bins would be used for a circle-fit, while the omitted
bin provided TRE values (distance to the circle). The accuracy is shown in Fig.
6, showing that the technique is robust to sensor orientations (<0.6mm error).

3.3 Beating Heart Phantom

The fourth and final experiment tested the ability to dynamically track a catheter
prototype consisting of a 3mm diameter by 5mm long PZT cylinder sensor
mounted on a 1.5m thin-gauge coaxial cable [16]. It was tested with an in-
house beating heart phantom, a polymer replica with heart-like motion and US
imaging appearance. Note in figure 1 the difficulty of tool detection without the
image enhancement and tool tracking enabled. The received waveform was elon-
gated at some angles likely due to the sensor’s bandwidth and spatial sensitivity
pattern. This had a deleterious effect on the overlay resolution (Fig. 1 right).
Overall, this experiment qualitatively illustrates the added value of the tracking
in a more realistic situation, with some amount of ultrasound aberration and
absorption, and the presence of motion.

4 Conclusion and Future Work

We demonstrated real time US-based tool tracking on an FDA approved com-
mercial scanner. Experiments indicate an accuracy of 0.36 ± 0.16 mm and show
robustness to varying imaging conditions. Because image enhancement occurs in
US imaging space, the tool location and US image are always perfectly registered
even in the face of image distortion. This method is non-disruptive where US
is already part of the clinical workflow and requires no additional major capital
equipment, thereby facilitating clinical adoption. However, this method requires
that interventional tools incorporate US sensors and electrical connections safely
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and unobtrusively. This is an engineering task for future work. Future work also
includes improving frame rate, pre-clinical and clinical validation and determin-
ing which US-guided procedures would benefit most from this technology.
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Abstract. The accurate and robust tracking of catheters and transduc-
ers employed during image-guided coronary intervention is critical to im-
prove the clinical workflow and procedure outcome. Image-based device
detection and tracking methods are preferred due to the straightforward
integration into existing medical equipments. In this paper, we present
a novel computational framework for image-based device detection and
tracking applied to the co-registration of angiography and intravascular
ultrasound (IVUS), two modalities commonly used in interventional car-
diology. The proposed system includes learning-based detections, model-
based tracking, and registration using the geodesic distance. The system
receives as input the selection of the coronary branch under investigation
in a reference angiography image. During the subsequent pullback of the
IVUS transducers, the system automatically tracks the position of the
medical devices, including the IVUS transducers and guiding catheter
tips, under fluoroscopy imaging. The localization of IVUS transducers
and guiding catheter tips is used to continuously associate an IVUS
imaging plane to the vessel branch under investigation. We validated
the system on a set of 65 clinical cases, with high accuracy (mean errors
less than 1.5mm) and robustness (98.46% success rate). To our knowl-
edge, this is the first reported system able to automatically establish a
robust correspondence between the angiography and IVUS images, thus
providing clinicians with a comprehensive view of the coronaries.

1 Introduction

In image guided interventions, accurate and robust localization of medical
devices can provide valuable information to improve clinical workflow and to
facilitate the operations in interventions. In this paper, we present a compu-
tational framework for medical device detection and tracking in X-ray images,
and demonstrate it with a novel application for the co-registration of 2D angiog-
raphy and intra-vascular ultrasound (IVUS) images. The framework is briefly
illustrated in Fig. 1. The X-ray angiography is the primary modality that guides
percutaneous interventions (PCI), providing the spatial structure information
of coronaries. The IVUS images can provide rich information on the vessel wall
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(a) (b) (c) (d)

Fig. 1. Device tracking for the co-registration of IVUS and angiography images. (a):
a angiogram frame. The yellow cross indicate a registered IVUS imaging plane; (b):
a fluoroscopic frame. The yellow circle represents a tracked IVUS transducer; (c)(d):
cross-sectional and axial view of IVUS images. The yellow lines in the axial views
indicate the registered IVUS image.

composition and extent of plaques, being used for tissue characterization, the
analysis of lesion, and the estimation of stent expansion. However, the lack of
the vessel orientation information makes it difficult to fully understand the spa-
tial structure of vessels. The co-registration of the two image modalities will
combine the high spatial resolution from the IVUS data with the good overview
and 2D/3D orientation obtained from angiography, facilitating the usage of IVUS
in cathlab and improving clinical outcome of cardiac interventions [1,2].

To register the two image modalities, we need to find the position of IVUS
image plane along a vessel branch during the IVUS pullback. Manual labeling, as
adapted in few preliminary systems [1,3], is straightforward. But manually find-
ing the correspondences between IVUS and angiography data needs expertise
and can be time-consuming. Furthermore, without continuous tracking, previ-
ous work inevitably assumes a constant IVUS pullback speed to estimate IVUS
imaging planes from an interpolation [3,5]. This paper presents a computational
framework for automated image-based IVUS transducer detection and tracking
in X-ray images to continuously identify the location of IVUS image plane, and
to achieve an unconstrained co-registration of angiography and IVUS images.

Accurate and robust tracking in X-ray is challenging. The devices undergo
cardiac motion and breathing motion during interventions. Even with ECG trig-
gering, the breathing motion could still be large. Considering the low signal-to-
noise ratio of fluoroscopy images and the presence of other surgical devices in the
images, conventional tracking methods based on intensity appearance or edge-
based energy would encounter difficulties. We present a framework that employs
learning-based detections and model-based probabilistic tracking to address the
aforementioned challenges. The learning-based detectors detect various devices
present in this application, i.e., IVUS transducers, the body and tips of a guid-
ing catheter in which the IVUS transducer is inserted, and the wire that is used
to pull the IVUS transducers. A probabilistic model-based tracking framework
is introduced to combine detections of different devices in a Bayesian inference
framework, to achieve robust and accurate tracking. The device tracking results
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are then used for a geodesic distance based registration to associate an IVUS
imaging plane at each time stamp during pullback with a point on the coronary
branch under investigation. The detection and tracking is automated, only re-
quiring the selection of a coronary branch in angiography as an input. It does
not assume a constant IVUS pullback speed, and can work under different pro-
jection angles. We validate the framework on a set of 65 clinical cases acquired in
hospitals. Quantitative evaluation results show that the framework has achieved
high tracking robustness and accuracy for the co-registration of IVUS and an-
giography images.

2 Workflow

As illustrated in Fig. 2, the system workflow includes two stages: the “an-
giogram” stage and the “pullback” stage. In the angiogram stage, contrast agents
are injected to visualize vessel branches. A frame at the end-diastole (ED) phase
is used to select the vessel branch under investigation where the IVUS imaging
will take place, as the input to subsequent tracking and registration. A vessel
detection method that requires minimal user interactions [7] is applied to seg-
ment the center line of a vessel branch and to extend the centerline toward the
guiding catheter. In the pullback stage, an IVUS transducer is pulled back from
the distal end of the target vessel branch toward the proximal end. During the
pullback, both the fluoroscopic images, which are trigged by ECG at the ED
cardiac phase, and IVUS images are acquired with time stamps. Due to the ex-
istence of continuous breathing motion, an additional point other than the IVUS
transducer is needed as the reference point to compensate the breathing motion.
The tip of a guiding catheter, through which the IVUS transducer is inserted and
pull, is selected as the reference point, as it is the most stable and distinguish-
able point that we can find in the fluoroscopy. In the pullback stage, our method
automatically detects and tracks the movements of IVUS transducers and guid-
ing catheter tips in fluoroscopy, and maps the tracked IVUS transducers back
to the selected vessel branch. Simultaneously the IVUS images are registered to
the vessel, by using the time synchronization between two image modalities.

Fig. 2. The co-registration system workflow
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(a) (b) (c) (d)

Fig. 3. Learning-based detection examples. (a): yellow circles represent detected IVUS
transducers; (b): blue circles represent detected guiding catheter tips. Here multiple
detection results close to each other are clustered into a single detection result; (c):
detected segments of wire; (d) detected segments of guiding catheter body.

3 Learning-Based Device Detection

Learning-based detectors are trained from a set of off-line collected data, in-
cluding both object samples (positive) and non-object samples (negative), to
learn the decision boundary that separates different classes. In this work, the
probabilistic boosting tree (PBT) and Haar features [4] are used to train the
learning-based detectors. Here, we denote the probabilistic outputs from PBT
as P (Z|x), where Z is the observed image, and x is the object state (i.e., if an
image patch belongs to the positive or negative class.) Four types of detectors are
trained. They are denoted as PIVUS trans, Pcath body, Pcath tip and Pwire, for the
IVUS transducer, the guiding catheter body, the guiding catheter tip, and the
wire body respectively. Note that the guiding catheter body and wire detectors
aim at the detection of segments, not the whole structure. Some detection results
are shown in Fig. 3. Due to image artifacts and low visibility of devices, there
exist false detections. To make the tracking robust to detection errors, a tracking
framework that integrates multiple detections is introduced in the Section 4.

4 Model-Based Device Tracking and Registration

4.1 A Bayesian Tracking Framework

Since the fluoroscopic images are acquired by ECG triggering, the device mainly
undergoes breathing motion, which can be approximated by affine motion. The
breathing motion at the t-th frame is denoted as Mt = (mx

t , my
t , m

r
t ), where mx

t ,
my

t , and mr
t are the 2D translation and rotation parameters. The motion tracking

is expressed as the inference of the motion parameters from the fluoroscopic
sequences acquired at the pullback stage. We formalize the parameter inference in
a sequential Bayesian inference framework. Assuming a commonly used Markov
property for tracking, the posterior probability P (Mt = (mx

t , my
t , mr

t )|Zt) is
given in Eqn. (1):

P (Mt|Zt) ∝ P (Mt)P (Zt|Mt), (1)
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(a) (b) (c)

Fig. 4. Model-based tracking. (a): a vessel detected in the angiogram phase; (b)(c): an
integrated model of point and curve elements is automatically initialized by the input
from the angiogram stage and continuously tracked in the pullback stage.

where Zt is an observed fluoroscopic sequence. The tracking result is the mo-
tion parameter corresponding to the maximal posterior probability, i.e. M̂t =
arg
Mt

max P (Mt|Zt). In Eqn. (1), P (Mt) is the prior probability. We model the

prior probability as P (Mt) = G(Mt; ΣM) where G(Mt; ΣM) is a Gaussian
model with a zero mean and the covariance matrix ΣM. The Gaussian prior
model is used because of its simplicity and effectiveness of imposing smooth-
ness constraints for 2D motions. Another component in Eqn. (1), the likelihood
model P (Zt|Mt) measures the likelihood of motion parameters. In our method,
the measurement of the model is a fusion of measurements of multiple devices,
with more details provided in Section 4.2.

4.2 Integrated Model and Fusion of Individual Device
Measurements

Due to the low image quality of fluoroscopy and cluttered backgrounds, indepen-
dently tracking each device is prone to detection errors. To improve the accuracy
and robustness of tracking, we combine all the devices into an “integrated IVUS
model”. We denote such a model as Γt, in which each component is represented
by a curve (e.g., a segment of guiding catheter body and a wire) or a point
(e.g., guiding catheter tip and IVUS transducer), as shown in Fig 4. By defining
the integrated model, we can re-write the likelihood in the form of curve rep-
resentations, as P (Zt|Mt) = P (Zt|Γt). Based on the integrated IVUS model,
the measurement model is a combination of measurements of individual compo-
nents. For simplicity, we assume that the measurement of individual component
is independent of each other given the curve, i.e., P (Zt|Γ k

t , Γt) = P (Zt|Γ k
t )

in which Γ k
t denotes a component in the integrated model. Therefore, we can

further decompose the measurement model P (Zt|Γ k
t ) as Eqn. (2):

P (Zt|Mt) = P (Zt|Γt) =
∑

k

P (Zt|Γ k
t )P (Γ k

t |Γt). (2)
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The component measurements P (Zt|Γ k
t ) are from the four detectors, i.e.

PIVUS trans, Pcath body, Pcath tip and Pwire. P (Γ k
t |Γt) defines the weight of in-

dividual component in the model, denoting the confidence of individual mea-
surements. Such weights are set empirically in our method.

The integrated model to be tracked is initialized from the vessel detection
at the angiogram phase. As shown in Fig. 4, the vessel detection identifies the
vessel centerline, which is used to approximate the shape of wire. The guiding
catheter body and tip is also initialized from the vessel detection. The IVUS
transducer is initialized from the detection at the first frame in fluoroscopy.
During tracking, the model is propagated from a previous frame, and updated
from the motion parameter estimation. For computational efficiency, we apply
a kernel-based multi-resolution method in the tracking [6] to achieve a speed of
1.0 frame per second in a computer with a Core 2 Duo 2.0GHz CPU.

4.3 Registration

The registration steps assume first the mapping of all tracked IVUS transducers
to their corresponding positions along a vessel branch in angiography, and then
the association of each IVUS image to the corresponding position in angiogra-
phy. The first mapping between tracked IVUS transducers and selected vessel
branch is based on the geodesic distance computed from the device tracking. The
Euclidean distance between an IVUS transducer and a guiding catheter tip is
directly computed from the tracking results, and then the geodesic distances can
be inferred from the Euclidean distances based on the vessel shape. A constraint
that the geodesic distance should change smoothly between successive frames
is imposed to resolve potential ambiguity. Based on geodesic distances, each
tracked IVUS transducer is mapped to a point on the vessel branch. After that,
the association of IVUS images and angiography image is straightforward, with
the use of the synchronized acquisition time of fluoroscopic and IVUS images.

5 Experiments

The method and system are evaluated on a set of clinical cases acquired from
three different European hospitals. The acquisition follows the workflow de-
scribed in Section 2. The evaluation set includes 65 cases. Each acquired case
includes an angiogram sequence and a fluoroscopic pullback sequence (Artis Zee,
Siemens AG, Forchheim, Germany), and corresponding IVUS images (Volcano
Corp., San Diego, CA, U.S.A). The X-ray image size is 512 by 512, and the
physical size of each pixel is between 0.2mm and 0.3mm. Each pullback takes
a few minutes, usually containing 100 to 250 fluoroscopy frames. The data set
includes a variety of clinical scenes, including low signal-to-noise ratio, different
vessel branches and projection angles, and the existence of other surgical devices.
Some examples are shown in Fig. 5.

To establish ground truth for quantitative evaluation, we manually annotate
the positions of IVUS transducers and guiding catheter tips in the set as the
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Fig. 5. Exemplar results: in each image of the first row, tracking results in the flu-
oroscopy are shown at the left, and the corresponding registration results in the an-
giogram are shown at the right; the second row shows more tracking results in fluo-
roscopy. IVUS images are not shown due to space limit.

ground truth. The tracking accuracy in fluoroscopy are quantitatively measured
by the Euclidean distances between automatic tracking results and correspond-
ing manual annotations. We further compute the geodesic distance error as the
estimation of the registration error, because the final registration is based on
the computed geodesic distance. For this purpose, we compute the geodesic dis-
tance from the manual annotations as the ground truth, and then compare this
ground truth with the geodesic distance derived from corresponding automated
tracking.

The quantitative validation of the system is performed with two experiments,
i.e., Experiment 1 and Experiment 2. In the Experiment 1, the detectors are
trained with and applied to all the cases. In the Experiment 2, the training and
testing sets are separated to test how well our method can be generalized to
unseen data. We train the detectors in 32 randomly selected cases, and validate
the framework in the remaining 32 cases that are excluded from training. Our
method is successful in 64 out of 65 cases, except for one case where the IVUS
transducer is occluded by spines most time, thus achieving a 98.46% success rate.
Some exemplar tracking results are shown in Fig. 5. Table 1 summarizes the error
statistics from the 64 cases. The mm errors are converted from pixel errors based
on the physical resolution of imaging detector, therefore quantifying normalized
errors in a 2D projection space. The tracking error of IVUS transducers is small,
with mean errors only around 0.35mm for both experiments. The error at the
guiding catheter tips is slightly larger. The median error is 0.97mm for the
Experiment 1, and 1.17mm for the Experiment 2. The overall small differences
between the two experiments demonstrate the good generalization capability of
our tracking method. The mean geodesic errors are below 1.20mm and 1.50mm
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Table 1. Quantitative evaluation of the co-registration system

Validation Experiment 1 Experiment 2

Error median mean std median mean std

IVUS transducer (in pixels) 0.90 1.18 1.89 0.94 1.22 1.17

IVUS transducer (in mm) 0.26 0.34 0.56 0.28 0.35 0.32

Guiding catheter tip (in pixels) 3.34 5.43 6.42 4.10 6.72 7.43

Guiding catheter tip (in mm) 0.97 1.57 1.82 1.17 1.92 2.09

Geodesic distance (in pixels) 2.53 4.16 7.67 3.68 5.10 6.23

Geodesic distance (in mm) 0.73 1.19 2.14 1.03 1.41 1.51

from the two validation experiments respectively. The quantitative validations
demonstrate that our method provides an accurate and robust co-registration of
the angiography and IVUS images.

6 Conclusion

To our knowledge, this is the first reported system to provide automatic and
robust tracking and registration of angiography and IVUS images. The experi-
ments demonstrate its effectiveness in fusing the two imaging modalities.

We hope that this work will establish a useful reference for further research
in this exciting field. The developed approach can be adapted to 3D when using
biplane angiography and also be used in combination with other intravascular
imaging modalities such as optical coherence tomography (OCT).
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Abstract. Single port access (SPA) surgery is a laparoscopic procedure using 
only one transumbilical-placed port. Natural orifice transluminal endoscopic 
surgery (NOTES) offers the possibility of surgery without visible scars. To 
address the access and stability problems in SPA and NOTES, we developed a 
device called rigid–flexible outer sheath. This sheath can be switched between 
flexible and rigid modes by a novel pneumatic shapelocking mechanism, and it 
has a double curvature structure that enables it to flex in four directions at the 
distal end and three directions on the rigid–flexible shaft. The insertion part of 
the prototype is 300 mm long with a 20 mm outer diameter, and the part is 
equipped with four working channels. In vivo experiments using a swine show 
that the outer sheath has high potential for solving access and stability 
problems. We expect that the outer sheath will be useful for SPA and NOTES. 

Keywords: Outer sheath, Pneumatic shapelocking mechanism, SPA, NOTES, 
MRI-compatible. 

1   Introduction 

Single port access (SPA) surgery is an advanced, minimally invasive surgical 
procedure using laparoscopic devices and instruments, and it is performed through a 
single entry point, which is typically the patient’s navel. Because the entire procedure 
is conducted through the navel, it does not leave any visible scar. Recent advances in 
minimally invasive surgery have led to the natural orifice transluminal endoscopic 
surgery (NOTES) technique. Because no abdominal incisions are required, a major 
advantage of this method is the absence of associated abdominal wall complications. 
While the closure of the internal entry point for NOTES presents a significant 
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challenge, patients largely prefer NOTES over standard laparoscopy because of the 
cosmetic benefits, except if the risk is significantly higher than that in the case of the 
laparoscopic approach [1]. 

Various endoscopic devices and instruments have been researched and developed 
to improve surgical dexterity and to reduce specific risks and difficulties associated 
with SPA. However, some problems remain unsolved. Firstly, SPA requires sufficient 
space below the abdominal wall for surgical procedures. Secondly, while SPA is 
useful when the affected area is on the anterior side of the body, it is difficult to 
approach the affected area if it is in a deep and narrow area or on the reverse side of 
organs. To overcome these complications, several research groups have developed 
flexible manipulators. Ikuta et al. developed a micromanipulator to approach 
inaccessible regions [2]. Other flexible manipulators have been developed using shape 
memory alloys [3] or a wire-driven mechanism [4]. However, flexible instruments 
cannot be easily inserted into the narrow spaces between tissues or organs and cannot 
be completely stabilized when approaching their targets. Although current endoscopes 
are highly advanced, numerous problems are encountered when they are used in 
NOTES. During NOTES, insertion of an instrument into an area of interest without 
causing injury to other tissues requires a surgical instrument with a flexible mode for 
insertion and a rigid mode for fixing the shaft in place. Many researchers have tried to 
develop systems using lockable sheaths or hybrid gaits involving locking and 
relaxing. Robert et al. applied this idea to medical applications [5]. A type of snake 
robot, called HARP [6], was also developed, and the TransPort (USGI Medical, San 
Capistrano, CA, USA) was designed for NOTES using ShapeLock technology [7]. 
However, these manipulators have some limitations. Firstly, because these 
manipulators use wire tension to lock the shape of the shaft, they often suffer from 
problems of wire breakage and thus cannot be used safely. Secondly, for locking the 
shape of the shaft, the surgeon must control at least three wires, which is a difficult 
maneuver. Thirdly, the mechanisms and structures of these manipulators are 
complicated and costly. Finally, there is no double curvature structure and MRI 
compatibility is difficult to achieve. 

To solve these problems associated with access and stability in SPA and NOTES, 
we developed a novel outer sheath. The surgeon first inserts the outer sheath through 
the narrow gap between the safety areas. When the outer sheath approaches the target, 
the surgeon locks the shape and then inserts flexible instruments easily through the 
path created by the sheath. This paper reports the structure of the distal end, the 
pneumatic shapelocking mechanism, and the structure of the wire-control operating 
part. In addition, the paper presents a prototype of the outer sheath. We evaluated the 
performance of the outer sheath through in vivo experiments using a swine. 

2   Outer Sheath Design 

2.1   Structure of Integrated Pin-Joints at Bending Distal End 

We designed a bending distal end using an integrated pin-joint structure. Frames 1, 2, 
3, and 4 are joined together and driven by four wires that are 90° apart, which 
facilitates flexibility in four directions (Fig. 1(A), (B)). 
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Fig. 1. Structure of bending distal end. (A) Image of units connected alternatively. (B) 
Mechanism of bending distal end. 

The bending distal end consists of six aligned frames that mutually rotate 90° 
around their axes (Fig. 4(C)). This architecture facilitates a broad range of bending 
motions, resulting in ease of application during endoscopic surgery. In addition, the 
bending distal end is manufactured in an integrated manner, and therefore, assembly 
is not necessary. The integrated frame structures are produced by an Objet PolyJet-
based 3D Printer (EDEN260V, Objet Geometries Ltd., Israel). 

 
 

 
 
 

 
 
 
 
 
 
 
 

 
 Flexible mode

Nylon wires covered
with fluorocarbon
tubes 

Atmospheric 
pressure 

Bellows tube 

Sealed cover Toothed links

Free

Rigid mode

Atmospheric pressure 

Interlock 

Spacer Toothed links 

Nylon wires covered 
with fluorocarbon tubeBellows tube 

 

Fig. 2. Mechanism for switching between rigid and flexible modes. When there is no vacuum, 
the links and bellows tube can take any shape. When the pump creates a vacuum, the links 
move down and mesh with the ditch of the tube, and thus, the shape of the sheath is locked. 

2.2   Mechanism of Pneumatic Shapelocking on Rigid–Flexible Shaft 

With the mechanism described below, the outer sheath can alternate between flexible 
and rigid modes. The rigid–flexible shaft design consists of flexible toothed links, a 
bellows tube, a sealed cover, and nylon wires. In the flexible mode, the internal and 
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atmospheric pressures equalize. Therefore, the sealed cover does not shrink, and the 
toothed links disengage from the bellows tube. In the rigid mode, the sealed space is 
evacuated by discharging the internal air, and the atmospheric pressure presses the 
toothed links into the bellows tube. Thus, the shape of the outer sheath is locked  
(Fig. 2). The bellows tube and toothed link mechanism can be easily locked as well as 
relaxed, providing a smooth transition between flexible and rigid modes. Furthermore, 
three nylon wires covered with non-shrinkable fluorocarbon tubes pass through the 
clearance space along the bellows tube to bend the rigid–flexible shaft of the outer 
sheath. 

2.3   Structure of Chain-Gear on Wire-Control Operating Part 

The wire-control operating part for the bending distal end has a chain-gear structure 
(Fig. 3). A surgeon can rotate the two knobs to easily control the bending angle of the 
distal end. Bending angles of ±120° in the vertical direction and ±90° in the horizontal 
direction can be achieved by Knob 1 (Fig. 3) from -60° to +60° and Knob 2 (Fig. 3) 
from -70° to +70°, respectively. To realize MRI compatibility, the materials of the 
operating part are made of plastic. 

 

Bending distal end 
Rigid-flexible shaft SeparableChain1

Wire tension 
operating part 

Gear 1

Cross-sectional view Bottom view 
Gear 2Chain 2Fixed plateGear 2 Wires Guide tube 

Rotation: ±60° 
Rotation: ±70° 30 mm 

Knob 1 
Knob 2 

Chain 2

 

Fig. 3. Wire-control operating part for the bending distal end. Four nylon wires are connected 
by the chains. The bending angle of the distal end is controlled by two sets of chain–gear 
structures. 

2.4   Prototype 

We built a prototype of the outer sheath (Fig. 4(A), (B)). The prototype has a length 
of 300 mm, maximum outer diameter of 20 mm. The length of the bending distal end 
is 75 mm. In addition, our model was equipped with one 7-mm, one 2-mm, and two 
1.35-mm working channels. The flexible instruments can be inserted from the 7-mm 
and 2-mm channels, and the two 1.35-mm channels are used for water jet and suction. 
The rigid–flexible shaft consists of three long, flexible toothed links, a bellows tube, 
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and a polyethylene cover. The toothed links are 120° apart, which allows the shaft to 
be locked in any direction. The bending distal end consists of six frames and four 
nylon wires. For each frame, the rotating angle in the vertical and horizontal direction 
is ± 40° and ±45°, respectively, because of which the bending distal end can achieve a 
curvature of ±120° and ±90° in the vertical and horizontal directions, respectively 
(Fig. 4(C)). The rigid–flexible shaft also has active bending capability because of 
three nylon wires that are 120° apart, and the maximum bending angle achieved by 
pulling the wires is 90°. The wires pass through three holes in the operation part and 
are manually controlled. The system of the prototype is shown in Fig. 4(D). The outer 
sheath is separated from the vacuum controller and the vacuum source to be cleaned 
and sterilized. All parts of the prototype are made of plastic, and this ensures excellent 
MRI compatibility. 
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Fig. 4. Prototype of the outer sheath. (A) The outer sheath can curve like a snake and hold its 
shape. (B) Image of prototype. (C) Bending distal end. (D) System configuration. 

2.5   Mechanical Characteristics of Prototype 

We first examined the bending characteristics of the distal end by pulling four wires. 
A bending angle of ±90° in the horizontal direction was achieved through a wire 
displacement of 25 mm and a wire tension of 8.49 ± 0.23 N (n = 3). A bending angle  
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of ±120° in the vertical direction was achieved through a wire displacement of 30 mm 
and a wire tension of 11.03 ± 0.26 N (n = 3). We next tested the bending 
characteristics of the rigid–flexible shaft by pulling the three wires. A maximum 
bending angle of 90° was achieved through a wire displacement of 70 mm and a wire 
tension of 12 ± 0.69 N (n = 3). Finally, we tested the maximum holding power of the 
sheath in maintaining its shape using only the pneumatic shapelocking mechanism in 
the rigid mode. The limited holding power was determined by visually observing the 
point at which deformation of the outer sheath began. The holding powers were 
measured in two conditions: the straight condition (0°) (Fig. 5(A)) and curved 
condition (90°) (Fig. 5(B)). In both cases, the load direction was the downward 
vertical direction. The maximum torque for which deformation of the shape did not 
occur was 29.55 N•cm in case (A) and 21.75 N•cm in case (B). In the flexible mode, 
the shape of the rigid–flexible shaft can be changed under a torque of 12 N•cm in the 
straight condition (0°). 

 

(A)         (B) 

Fix 
150 mm 

Fix 

150 mm 

Lock Free Lock Free 

 

Fig. 5 Measurement of holding power in the rigid mode. (A) Load in the straight condition (0°). 
(B) Load in the curved condition (90°). 

3   In Vivo Experiment 

In the in vivo experiment, we tested the efficacy of our prototype in the abdominal 
cavity of a swine (male, 48.5 kg). The surgery was performed through two access 
ports. We inserted a laparoscope into the port in the lower abdominal region to 
observe and confirm the position and shape of the outer sheath, and we inserted the 
outer sheath through the center of the abdominal region. The incision part during 
insertion of the outer sheath was protected with a LAP DISK (Hakko Medical Inc., 
Japan). The instruments inserted into the outer sheath were a 2.8-mm fiberscope 
(Sumita Optical Glass, Inc., Japan) and a 1.75-mm biopsy forceps (BF1812SF, 
Fujinon Toshiba ES Systems Co. Ltd., Japan). The outer sheath was connected to a 
vacuum pump (DTC-41, ULVAC KIKO Inc., Japan) and a vacuum controller to 
alternate between flexible and rigid modes by pushing a button. The sheath was also 
connected to a roller pump (RP-2100, Tokyo Rikakikai Co., Ltd., Japan) to jet water. 
Suction was applied through a vacuum supply port in the operating room. 

First, we inserted the outer sheath into the gap between the liver and diaphragm to 
observe the posterior side of the liver with a 2.8-mm fiberscope (Fig. 6(A)). Second, 
we inserted the outer sheath into the abovementioned gap to locate the bladder, and 
we clamped the bladder surface using a biopsy forceps (Fig. 6(B)). Third, we sprayed 
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water from the 1.35-mm channel to clean the lens of the fiberscope and the internal 
organ, and then, we drew the water out through the second 1.35-mm channel (Fig. 
6(C)). Fourth, we inserted the outer sheath into the gap among the spleen, liver, and 
stomach. These tasks were performed without the use of forceps (Fig. 6(D)). Finally, 
we tried to approach the colon from the posterior side (Fig. 6(E)). Furthermore, this 
prototype can be used in the rigid mode as a rigid instrument similar to conventional 
laparoscopic devices (Fig. 6(F)). 
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Biopsy forceps

Spleen 
In rigid mode 
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Fig. 6. Laparoscopic broad views along with fiberscope local views of the abdominal cavity of 
a swine. (A) Image of the outer sheath entering the gap between the liver and diaphragm. The 
fiberscope shows the border between the organs. (B) Image showing the clamping of liver lobes 
by biopsy forceps inserted through the outer sheath. The fiberscope shows the surface of the 
liver lobes and biopsy forceps. (C) Image showing the outer sheath during underwater 
observation. The fiberscope shows the underwater image. (D) The outer sheath entering the gap 
among the spleen, liver, and stomach. (E) The colon approached with a widely curved distal 
end. (F) The prototype can perform spatial migration like rigid instruments in rigid mode. 

4   Discussion and Conclusion 

We confirmed that the bending distal end of the outer sheath enabled switching 
between ±120° and ±90° curvatures in the vertical and horizontal directions, 
respectively. The outer sheath facilitates insertion of flexible instruments into gaps 
between organs; therefore, even a torque of 29.55 N•cm for a straight shape and 21.75 
N•cm for 90° curved shapes may be sufficient against external pressure from organs 
and internal pressure from inserted instruments through the channels. This belief was 
validated through in vivo experiments. The locking mechanism guards against 
unintentional activation created by organs pressing against the shaft. Because the 
outer sheath employs vacuum as the locking mechanism at low pressures of less than 
1 kPa, the tissues near the outer sheath are protected from damage even in the event of 
air leakage. The minimum bend radius of the rigid–flexible shaft is constrained by the 
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minimum bend radius (50 mm) of the bellows tube. This radius corresponds to a 
slightly more curved path for maneuvering around small organs. However, the radius 
is sufficient for approach between abdominal walls and tissues or for maneuvers 
around large organs such as the liver. 

In vivo evaluations showed that the outer sheath has strong potential for solving 
access problems and stability issues. The double curvature and locking capability allow 
the outer sheath to be positioned at the target field and to lock the shape of the rigid–
flexible shaft. Thus, the surgeon’s hands are free. These features, combined with the 
endoscope’s four-directional flexion, enable more complex manipulation. The outer 
sheath has a separate channel for water jet and suction. A 7-mm channel is designed 
for a 6-mm flexible endoscope. The low resolution of the 2.8-mm fiberscope was not 
adequate for observing local fields, and the 2-mm channel is not sufficiently large for 
standard devices such as endoscopic clips or more robust instruments. Therefore, a 
high-resolution scope and larger channel for robust devices are necessary for more 
complicated procedures. Because the locking principle of the outer sheath is based on 
vacuum and all parts of this device are made of plastic, the outer sheath should have 
little influence on MRI, which enables MRI-guided surgery [8]. Surgeons 
recommended that the device be used for natural orifice NOTES procedures, especially 
for transrectal and transvaginal NOTES, because the approach is suitable for short, 
gentle curves. The performance of the outer sheath with improvements in channel size 
and triangulation will be evaluated through future in vivo experiments on NOTES. 

To secure a stable approach path for SPA and NOTES, we developed a nonmetallic 
rigid–flexible outer sheath that has four working channels. This sheath can flex in 
four directions at the bending distal end and three directions on the rigid–flexible 
shaft. Through in vivo experiments using a swine, we determined that flexible 
instruments can be inserted into deep areas in the abdominal cavity and locked into 
position, enabling independent flexion at the distal end. Thus, the design of the outer 
sheath meets the requirements for SPA and NOTES. The results of our study show 
that the sheath has potential for application in SPA and NOTES. 
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Abstract. In the current clinical workflow of endovascular abdominal
aortic repairs (EVAR) a stent graft is inserted into the aneurysmatic
aorta under 2D angiographic imaging. Due to the missing depth infor-
mation in the X-ray visualization, it is highly difficult in particular for
junior physicians to place the stent graft in the preoperatively defined
position within the aorta. Therefore, advanced 3D visualization of stent
grafts is highly required. In this paper, we present a novel algorithm to
automatically match a 3D model of the stent graft to an intraoperative
2D image showing the device. By automatic preprocessing and a global-
to-local registration approach, we are able to abandon user interaction
and still meet the desired robustness. The complexity of our registration
scheme is reduced by a semi-simultaneous optimization strategy incor-
porating constraints that correspond to the geometric model of the stent
graft. Via experiments on synthetic, phantom, and real interventional
data, we are able to show that the presented method matches the stent
graft model to the 2D image data with good accuracy.

1 Introduction

Due to its minimally invasive nature, endovascular aortic repair (EVAR) has
replaced the conventional open surgery as preventive treatment procedure for
abdominal aortic aneurysms (AAA). In contrast to a complete opening of the
patient’s abdomen, a stent graft is inserted through one femoral artery into the
aneurysmatic aorta excluding the aneurysm sack from the circulation and reduc-
ing the pressure on the aortic wall. Once completely unfolded, misplacements of
the stent graft may lead to life-threatening emergency surgeries if vitally impor-
tant organs are cut-off from blood supply.
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Universität München, Germany) and Asbjorn Odegard (St. Olavs Hospital Trond-
heim, Norway) for providing image data.
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Fig. 1. Tubular
aortic stent graft

Fig. 2. Stent segment model with rt = rb (left) and rt < rb

(right)

During the intervention, the catheter and stent position is only visualized in
2D X-ray views. This makes it highly difficult for physicians to place the stent
graft in the predefined position. A virtual visualization of the unfolding stent
graft within the CTA volume would provide the physician a 3D view of the
current situation. Such solutions would decrease both the need for extensive use
of contrast agent and the radiation dose. Whereas 2D-3D registration systems
for endovascular interventions are already available [6,8], a visualization of the
stent graft in a 3D patient scan still requires a method for stent graft detection
in 2D and correct backprojection into 3D.

Existing publications on stent graft segmentation in 3D volumes [7,4] all em-
ploy intensity based thresholding. There is, to the best of our knowledge, no
shape-based approach for extraction of aortic stent grafts in 3D or 2D.

In this paper, we present a novel algorithm to match a 3D model of the stent
graft to an intraoperative 2D image showing the device.

2 Method

2.1 Stent Model

We define the stent segment model to be the curve Mi(x) = (ai(x), bi(x), ci(x))
consisting of the set of parametric equations

ai(x) = rM,i(x)cos(x) (1)
bi(x) = rM,i(x)sin(x) (2)
ci(x) = Aisin(pix + si) (3)

with amplitude Ai specifying the height of the segment, period pi equal to the
number of peaks, and phase shift si merely shifting the starting point. The radius
of the stent segment model is calculated by

rM,i(x) =
(

1 − sin(pix + 1)
2

)
rt
i +

sin(pix) + 1
2

rb
i (4)
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Fig. 3. Preprocessing scheme for an automatic computation of the feature image If
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Fig. 4. Visualization of automatic feature extraction procedure

with rt
i and rb

i representing the upper and lower radius as visualized in Fig. 2.
The entire stent graft is defined as the set of l segments M = {M1, . . . ,Ml}.

2.2 Automatic Feature Extraction

For an improved performance, we first apply a preprocessing procedure on image
I (see Fig. 4(a)) in order to extract a region of interest and highlight the wire
structure. Additional to the wires of the stent graft, the guide wire which is used
as navigation support to the physician is also visible in the interventional X-ray
images. In order for our matching algorithm to not get stuck in these outliers,
we need to eliminate these pixels.

Fig. 3 displays our preprocessing scheme. For obtaining the catheter silhouette
image C (Fig. 4(b)), we employ the Frangi filter [2] for scales 5 − 6 followed by
a median filtering for noise removal in order to capture the catheter pixels.

The stent region S (Fig. 4(c)) is extracted similarly. First, we subtract thick
curvilinear structures from thin curvilinear structures (Frangi filter for scale 2)
for only highlighting the stent wires in Iwires (Fig. 4(d)). Subsequent employment
of a median filter for noise removal and mean filter for dominant region extrac-
tion leads to the desired image region that contains the stent graft. Instead of
the Frangi filter, any filter can be used that highlights curvilinear structures of
selected sizes.
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In the end, we subtract the catheter pixels C from image Iwires and mask the
result with S. The resulting feature image If is displayed in Fig. 4(e). In order to
provide a distance measure for the following registration procedure, we calculate
distance map DIf

on feature image If .

2.3 Stent-Model-to-Image Registration

A projection is necessary to map the stent model M to the 2D image coordinate
system of I. Similar to 2D-3D image registration, the projection transformation
P = K[R|t] consists of the 6-DOF extrinsic parameters [R|t] for rotation and
translation of the 3D volume and the 4-DOF intrinsic camera parameter K of
the pinhole camera model [3]. For the following considerations, we assume the
camera matrix K to be given by the interventional angio system.

Using all transformation and model parameters together as

p = {p1, . . . ,pl}, pi = {Ri, ti, r
t
i , r

b
i , Ai} (5)

the registration problem for the entire stent model is given by

p̂ = argmin
p

l∑
i=1

∑
x∈Mi

DIf
(Tpi(x)) (6)

where Tpi(x) is a projection of point x of the 3D segment model Mi using pa-
rameters pi. This equals a simultaneous registration of all stent segment models
introducing a parameter space of dimension l×9. Considering that conventional
abdominal aortic stent grafts consist of several segments, the cost for optimiza-
tion increases rapidly. Another drawback is the presence of many local minima in
the costfunction plot corresponding to each one of all displayed stent segments.

In order to reduce the complexity in our registration procedure, we employ
a semi-simultaneous optimization framework based on the idea of Sidorov et al.
[9]. Instead of optimizing all parameters for all segments at once, we optimize
the parameters of one segment for a certain number of iterations and then move
to the next randomly chosen segment. By applying this strategy, we implicitly
make use of the tubular appearance of the stent graft.It requires however a fairly
good initial guess of the position of the stent in the image which we try to achieve
by separating the pose estimation process into a global and a local step.

Global registration. Here, we solve for the overall orientation of all segments in
order to be very close for the local calculations. The global pose of the entire stent
graft model M is defined by the global parameters pglobal = {K, Rglobal, tglobal}.
Assuming that K is given, a good initial guess for the remaining global param-
eters is achieved by computing a principal component analysis and subsequent
region operations on the stent region S.

Accordingly, let now pi = {vi, ti, r
t
i , r

b
i , Ai} define the set of remaining pa-

rameters for each single segment i, where vi = [αi, βi, γi]T represents the vec-
tor containing the three rotation angles that form rotation matrix Ri. Setting
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parameter vectors pi to initial values with no rotation and translation and pre-
defined approximated values for A and rt = rb, we obtain an estimation of the
position of each stent segment in the interventional image.

Local registration. In this step, values for each pi are optimized. Similar to
Equ. (6), we define our costfunction for each segment i (i = 1, . . . , l) as

E(pi) =
∑

x∈Mi

DIf
(Tpglobal◦pi(x)) +

ω

λ
〈φ(pi), φ(pi+1)〉 (7)

with

φ(pi) =
|ti − ti−1| − tΔ

i

|vi − vi−1| − vΔ
i

|rt
i − rb

i−1| − rΔ
i

(8)

constraining the change of translation, rotation and radius in between neigh-
boring segments naturally defined by the graft material fixing the stent wires
(Fig. 1) that is not stretchable. Therefore respective parameters depend on the
predefined distance di between the segments:

tΔ
i =

⎡⎣ di

2
di

2
Ai

2 + di

⎤⎦ vΔ
i =

⎡⎢⎣
di√
1+di
di√
1+di
si

2

⎤⎥⎦ rΔ
i = |rt

i − rb
i |

ω >> 0 represents a weighting factor for the penalization term. We optimize
Equ. 7 within a deterministic annealing scheme with temperature λ being the
distance from the current projected segment to the nearest image feature in If .
As the distance and hence the temperature decrease, the penalization term is
taken more and more into account. Using this approach our algorithm is also
able to capture highly curved stent grafts.

3 Results and Discussion

Although our method can be applied to interventional X-ray images without
knowing the corresponding matrix P, a thorough validation is only possible in
3D requiring a correct calibration of the C-arm system. A possible strategy is
to acquire projection images of the stent graft from two or more different views,
apply our proposed method to each of the images, and compare the resulting
3D models. Therefore it is crucial that either all images are taken simultane-
ously or no changes to the stent graft have been made in between the different
acquisitions. It is very difficult to find interventional images that fulfill these
requirements as bi-planar systems are not considered state-of-the-art imaging
for endovascular interventions and physicians only rarely acquire two or more
images where the stent graft is in the exact same opening stage. Another ap-
proach would be to compare the resulting 3D stent model to a segmentation of
the stent in a 3D volume. This is not possible for interventional cases, as only
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Table 1. Synthetic experiments: RMS errors for amplitude, top and bottom radii
averaged over total number of included segments and target registration errors over all
landmarks

A (mm) rt (mm) rb (mm) # landmarks mean/median/max TRE (mm)

R3 0.00 0.00 0.00 12 6.29/3.86/8.65
R4 0.00 0.00 0.00 16 6.54/4.01/7.96
R5 0.00 0.04 0.02 20 7.02/5.36/10.50
R6 0.01 0.04 0.04 24 7.39/5.81/9.91

pre- and (maybe) postoperative patient volumes are available that either contain
no stent graft at all (preoperative) or a fully opened stent graft (postoperative).
Due to these difficulties, we decided to quantitatively validate the accuracy of
our proposed algorithm on realistic synthetic and phantom data and use in-vivo
data to show the interventional impact of our method.

With this paper we intend to present a proof-of-concept for a highly novel
approach to enhance intraoperative visualization for EVAR. We would like to
emphasize that the proposed method is of linear complexity O(n) with n being
the number of pixels included in one stent segment. Depending on the image
resolution, n lies in between 100 and 500. Although all experiments were per-
formed using unoptimized MATLAB code, with an efficient implementation, it
is possible to apply the procedure within an interventional setting.

For creating the synthetic data, we digitally produced binary volumes of size
512 × 512 × 512 showing random stent graft models consisting of 3-6 segments,
namely R3,R4,R5,R6. By applying realistic deformations to each of the seg-
ments and calculating random projections of the volumes, we obtain 2D images of
the stent graft as well as the corresponding ground truth parameter selection.We
estimated the average noise level of 5 interventional fluoroscopies showing an un-
folded stent graft and added it to the projection images (mean 0.59 and variance
0.98). The registration accuracy measured in target registration error (TRE) in
varying number of distributed landamrks, is listed in Table 1. As expected, the
errors values are very small and show the overall impact of our method. The
sudden change in error values for stent models with 5 and 6 segments are due
to the fact that we only employed different top and bottom radii for R5,R6.

The phantom design is composed of the upper part of a swine’s leg in which
we inserted a halfly unfolded stent graft parallel to the bone. For guide wire
simulation, we integrated a small wire inside the stent graft. In order to prevent
deformation changes, we placed the entire phantom in a paper box and filled all
empty space with insulating foam. 10 radio-opaque markers were sticked to the
outside and inside of the box in a predefined pattern.After acquiring a 3D CT
volume, we took X-ray projection images with a mobile interventional C-arm
from 3 different angles. Details of the image sizes and transformations are given
in Table 2. In absence of an available fixed angio system, we had to calibrate the
C-arm by employing the normalized Direct Linear Transform (DLT) algorithm
[3] on the corresponding marker positions. Once P matrices were estimated, our
algorithm was applied to all 3 projection images. We compared the recovered
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Table 2. Details for phantom projection images and the Hausdorff distance of recovered
3D stent model to real stent graft extracted from CT

size (pixel) 1st angle (deg) 2nd angle (deg) Hausdorff (mm)

A 478 × 422 18.5 20.0 20.2
B 478 × 422 0.5 15.0 25.4
C 478 × 422 108.5 −4.5 15.1

(a) (b) (c) (d)

Fig. 5. Real experiment: (a)-(b) detection results (white) overlayed onto interven-
tional images acquired from two different views, (c) 3D recovery of both stent shapes
(green,red) and (d) after applying a common scale to all green segments

3D models to the real stent extracted from CT using a combination of manual
outlining and region growing. In order to allow for quantitative evaluation of our
results, we backprojected the resulting digital stent models into CT space and
created a binary volume of the exact same extent and voxel size as the phantom
CT volume. Values for the Hausdorff distance measuring the distance between
both shapes for each of the 3 datasets, are given in Table 2.

For the real experiments, our medical partners kindly provided a set of real
interventional fluoroscopy image data (acquired by Siemens AXIOM Artis dTA
angiography suite) and corresponding preoperative CTA scans. Provided that
the C-arm system is correctly calibrated, the amplitude and top and bottom
radii of two corresponding segments acquired from different views must be equal
up to a common scaling factor. As the angiography system used by our clinical
partners is not biplanar, deformation changes need to be taken care of by the
experimental setup. In the lower abdominal part of the human body, the aorta
and iliac arteries are not exposed to breathing or other organ specific motion and
the pulsatile motion originating from the blood pressure is neglectable [5]. The
deformation that is induced by the stent graft itself, however, is very significant
[1], but can be eliminated by acquiring both images in the same opening stage
of the stent graft. Visual results are given in Fig. 5. For the combined plot of
both models (Fig. 5(d)), we applied a common scale of 7.91 to each segment’s
amplitude and top and bottom radii of the stent model shown in red color. The
scale value represents the mean ratio of final values for amplitude and top and
bottom radii for each of the 8 segments and yields a root mean square error in
model point positions of 2.1 mm.
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4 Conclusion

In this paper, we presented a novel algorithm to match a 3D model of the
stent graft to an intraoperative 2D image showing the device. It uses automatic
preprocessing and a global-to-local approach to abandon any user interaction and
still meet the required robustness. Including a semi-simultaneous optimization
strategy and constraining the inter-stent-segment relations to correspond to the
material property of the stent graft, the complexity of the optimization space
could be reduced. The results of performed experiments on synthetic as well as
real interventional data show the practical potential of our proposed method.
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Abstract. This paper describes a computer system to visualize the lo-
cation and alignment of an arthroscope using augmented virtuality. A
3D computer model of the patient’s joint (from CT) is shown, along
with a model of the tracked arthroscopic probe and the projection of the
camera image onto the virtual joint. A user study, using plastic bones
instead of live patients, was made to determine the effectiveness of this
navigated display; the study showed that the navigated display improves
target localization in novice residents.

1 Introduction

Arthroscopic knee surgery is a minimally invasive procedure in which the surgeon
navigates a surgical tool using camera images displayed on a screen above the
patient. A small incision allows the arthroscope to provide a view of the surgical
site while inducing less trauma than comparable open surgery.

However, navigating within the joint is challenging because the camera image
on the overhead display has an unintuitive relationship with the arthroscope in
the surgeon’s hand, making hand/eye coordination very difficult. Surgeons must
make a mental coordinate transformation to become correctly oriented within
the patient.

This paper describes a navigation system to visualize the arthroscope and
probe in relation to a virtual model of the patient’s joint (Figure 1). The naviga-
tion system also shows the camera image projected onto the virtual joint to make
explicit the relationship between the camera image and the patient’s anatomy.

This approach is referred to as “augmented virtuality” (AV), where a virtual
view is augmented with real world camera images. In the navigation system, the
AV view is shown beside the traditional arthroscope view.

A user study on a knee simulator was done to determine whether the sys-
tem improves performance in a task of locating particular areas within a knee
joint. We hypothesized that the system would improve the performance of novice
residents, while doing little to help or hinder the performance of experienced sur-
geons.

Subjects from novice surgical residents to highly skilled surgeons performed
tasks on a knee simulator with and without the aid of the navigation system.
Correctness, task completion time, and tool path length were recorded and com-
pared to determine the effectiveness of the system.

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAI 2011, Part I, LNCS 6891, pp. 186–193, 2011.
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(a) (b) (c)

Fig. 1. (a) The standard arthroscopic image, which gives few clues to the location of the
camera and probe within the joint. (b) The system setup with optical trackers attached
to the camera, probe, femur, and tibia. (c) The navigated view showing camera, probe,
femur, and tibia. The camera image is projected onto the bones and is visible as the
darker area on the femoral condyle.

2 Related Work

In the context of arthroscopic surgery, a number of authors have presented sur-
gical navigation systems that show relative tool positions. But, to the best of
our knowledge, none augment the virtual model with live camera images.

Tonet et al. [1] described an augmented reality navigation system for knee
surgery that shows a 3D model of the patient’s anatomy along with the relative
tool positions. The field of view of the arthroscope was also dynamically high-
lighted on the 3D model, but no camera image was shown. No formal user study
was made to evaluate the system.

Monahan et al. [2] presented a navigation system for arthroscopic hip surgery
that tracks tool positions with linkage encoders and displays their relative po-
sitions in various 3D views. They performed a user study to determine if their
navigation system could help increase speed and accuracy. They found a reduc-
tion in the length of the path travelled by the tool and in completion time when
using their system.

A number of arthroscopic training systems that include virtual views have also
been proposed. Heng et al. [3] used virtual models of human anatomy to devise
a virtual reality training simulation for arthroscopic surgery. They developed a
haptics device to simulate force feedback within a “black box” to present the
user with a purely virtual environment. Along with force feedback, their system
showed simulated and external views of the arthroscope to aid in training. A
user study was not performed to validate their system as a training tool. In a
similar way, Bayona et al. [4] developed a shoulder arthroscopy training simu-
lator with force feedback. Their interface included a virtual external rendering
which showed the viewing cone of the arthroscope, but without live images. They
performed user studies to validate the device as a training tool and showed that
it was more useful for inexperienced surgeons than for experienced surgeons.
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Although augmented virtuality has not been widely used in arthroscopic pro-
cedures, a number of authors have developed AV systems for navigation in var-
ious other endoscopic procedures.

Paul et al. [5] compared AR and AV approaches using a computer system that
mixed images from a surgical microscope with 3D preoperative images. They
found that the augmented virtuality approach complemented the augmented
reality approach because it provided a better understanding of the spatial rela-
tionship between the surgical site and the 3D preoperative images.

Dey et al. [6] explored the concept of mixed reality to map intra-operative
endoscopic video to a patient’s anatomy. They fused images of a brain phan-
tom from a tracked endoscope to surfaces derived from 3D preoperative images.
Their focus was to paint the video images onto the 3D surface and impart stereo-
scopic depth cues to provide assistance in surgical planning and guidance. Liao
et al. [7] developed a system that fused endoscopic image mosaics with a 3D
ultrasound image model to provide extended visualization in intrauterine fetal
surgery. Nicolau et al. [8] presented a guidance system for laparoscopic surgery
which showed both AR and AV views.

The contributions of this paper are (a) an arthroscopic navigation system that
projects the camera view onto the joint and (b) a user study showing that the
system can improve performance of target localization in novice residents.

3 System Description

The arthroscope hardware consisted of an IM4000/IM4120 high definition cam-
era system and an HD4300 4mm 30 degree arthroscope from Conmed Linvatec.
The knee was modelled with a “Sawbones” artificial knee joint #1413 from Pa-
cific Research Laboratories. The proximal end of the femur was clamped to a
table, allowing the tibia to be moved relative to the femur, as is commonly done
in surgery.

The components of the system were tracked with a Polaris Hybrid optical
tracking system from Northern Digital. Four passive trackers from Traxtal were
attached to the arthroscope, the probe, the femur, and the tibia. For the arthro-
scope and probe, custom mounts were designed and built to hold the trackers.
For the femur and tibia, the trackers were held in place by a standard percuta-
neous clamp.

A thirty inch monitor was positioned in portrait orientation with its bottom
edge two meters above the floor, about two meters beyond the knee as seen by
the surgeon. (This is a common position for the monitor during arthroscopic
surgery.) The standard arthroscopic view was shown on the lower half of the
screen. The AV navigation display was in the upper half, showing a 3D computer
model of the joint, along with models of the arthroscope and the probe, and the
projection of the live arthroscopic image onto the joint (Figure 2a). The AV
view was rendered from the same viewpoint, relative to the virtual bones, as the
subject saw the plastic bones.

Fiducial markers were fixed to the femur and tibia and a CT scan of those
bones was made. Mesh models of the bones were made from the CT scan and the
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(a) (b) (c)

Fig. 2. (a) The monitor showing (top) the navigated view and (bottom) the standard
arthroscopic image. (b) One of the residents performing a trial. (c) The instruction
sheet given for one trial indicating the target points. There are eight target points on
the femoral condyles and intracondylar notch (top) and six target points on the tibial
plateau (bottom).

locations of the fiducials in the CT coordinate space were recorded. A paired-
point algorithm used the fiducial locations to establish the bone-to-tracker trans-
formation. The fiducials were not subsequently used as targets in the target
localization task.

In order to project the arthroscopic image onto the bone, the OpenCV Com-
puter Vision Library was used to find the intrinsic and extrinsic calibration pa-
rameters of the arthroscope camera. OpenGL was used to render a model of the
arthroscope, along with the arthroscopic image projected (using gl replace)
onto the virtual bone from the camera position.

The system was limited in that the camera head could not be rotated about
its axis, as can be done during surgery, because we did not have the necessary
equipment to track the camera head.

4 Experiment Methodology

Eight orthopaedic surgeons and fourteen orthopaedic residents with varying de-
grees of arthroscopic experience were tested. Each subject performed twelve tri-
als (Figure 2b). In each trial, the subject was asked to locate two target points
within the knee joint. The subject would locate the first target point in the
arthroscope image, then locate the second target point in the arthroscope im-
age. The sub-millimeter accuracy of the Polaris Hybrid was sufficient for this
task. In a variant of the trial, the subject would also touch the probe to each
target point.
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The trials were performed in four blocks. Each block consisted of three of
the same type of trial, but with three different pairs of points. The block order
was randomized, as was the trial order within each block. The trials in the four
blocks were:

1. Using only the arthroscope image, center each point in the camera view.
2. Using both the arthroscope image and the navigation display, center each

point in the camera view.
3. Using only the arthroscope image, center each point in the camera view,

then touch it with the probe.
4. Using both the arthroscope image and the navigation display, center each

point in the camera view, then touch it with the probe.

The same three pairs of points were used in block 1 and block 2 to allow paired
comparison of the results with and without the navigation display. A different
set of three pairs was used for both block 3 and block 4. Blocks 1 and 2 were
always separated by a different block, as were blocks 3 and 4. In the trials that
used only the arthroscope image, the navigation display was turned off.

There were eight target points on the femur and six on the tibia. The locations
of the targets were chosen according to a surgeon’s description of commonly
scoped locations on the femur and tibia. The target points were marked with a
black marker on the bone (Figure 2c).

For each trial, the subject was shown a picture of the exposed femur and tibia,
with the two target points circled and arrows indicating the order in which they
were to be found (Figure 2c). Every trial included one target from the femur
and one target from the tibia.

Each subject was shown the layout of the targets on a knee model without the
skin covering. The trials were described, and the subject was given ten minutes
using the arthroscope and probe to familiarize themselves with the locations
of the different targets inside the knee joint. For each trial, we measured the
following:

1. Time to locate the target in the camera view.
2. Distance travelled by the camera tip before locating the target.
3. Whether the correct target was found.
4. Time to position the probe on the target (blocks 3 and 4 only).
5. Distance travelled by the probe tip before being positioned on the target

(blocks 3 and 4 only).

For the first target, we measured the time and distance from the entry portal
on the skin surface until the subject declared that the target was found (even if
the wrong target was found). For the second target, we measured the additional
time and distance from the first target until the subject declared that the second
target was found.

The subject started each trial with the tools in hand and outside of the skin
surface. When the subject found a target point, he or she would verbally notify
us and we would record the time in the log file, as well as a snapshot of the
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Table 1. Experimental results. The bold p values are statistically significant. “NAV”
denotes the navigated display, while “STD” denotes the standard display.

Measurement residents < 2 years residents ≥ 2 years surgeons

N = 8 N = 6 N = 8

NAV STD p NAV STD p NAV STD p

correctness (%) 91.3 79.6 .002 90.1 86.1 .130 90.4 86.9 .265
camera time (sec) 24.3 36.6 .035 26.7 18.9 .001 18.1 17.0 .262
camera distance (cm) 14.0 18.1 .072 14.3 12.1 .038 11.6 11.8 .439
probe time (sec) 20.2 24.8 .182 34.1 23.0 .017 17.1 19.4 .260
probe distance (cm) 13.8 19.5 .041 18.6 14.5 .079 10.8 14.1 .094

arthroscopic image for later verification. The log also continuously recorded the
position of both the arthroscope tip and the probe tip, so that we could later
calculate the distances travelled. A questionnaire was administered after the
trial.

5 Results

The measured experimental results are shown in Table 1. Fifteen hypotheses were
tested: For each of the three subject groups and each of the five performance
measurements, we performed a t-test to determine whether the performance
measurement using the navigated display was superior to that measurement
using only the standard display.

For residents with less than two years of experience, there was a significant
improvement in acquiring the correct target (91.3% versus 79.6%, p = 0.002),
in the time taken to locate the target with the camera (24.3 seconds versus 36.6
seconds, p = 0.035), and in the distance travelled by the probe to touch the
target (13.8 cm versus 19.5 cm, p = 0.041).

For residents with at least two years of experience, there was a significant
worsening in the time to locate the target with the camera (26.7 seconds versus
18.9 seconds, p = 0.001), in the distance travelled by the camera to locate the
target (14.3 cm versus 12.1 cm, p = 0.038), and in the time for the probe to
touch the target (34.1 seconds versus 23.0 seconds, p = 0.017).

For surgeons, no significant differences were found between the navigated and
standard methods.

From the questionnaires, which gathered responses on a seven-point Likert
scale:

– Subjects at all three levels agreed that the navigated display gave a better
understanding of the 3D configuration of the bone, tool, and camera.

– Subjects were neutral or agreed that it was easier to find and touch the fidu-
cials using the navigated display instead of only the traditional arthroscopic
image.
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– Novice residents and surgeons were neutral that the lack of camera rotation
made the task more difficult, while experienced residents strongly agreed.

– Surgeons agreed that the experimental setup accurately simulated what they
would experience in the operating room, while residents, as a group, were
neutral.

6 Discussion

The navigated display is clearly beneficial to residents with less than two years
of arthroscopic experience. This strongly supports our hypothesis that the nav-
igated display can assist early residents.

The navigated display is clearly detrimental to residents of at least two years
of arthroscopic experience. We believe that this is because those residents have
already established a mental model of the arthroscopic environment which is
different than the 3D model that the AV navigation system provided. In fact,
one experienced resident explicitly said that his mental model clashed with that
of the navigated display.

We could not find any significant effect of the navigated display upon surgeons,
all of whom had at least five years of arthroscopic experience as surgeons. We
believe that this is because the surgeons were so highly trained that they did
not need, and hence paid little attention to, the navigated display. However, five
of the eight surgeons noted that they occasionally used the display to confirm
the location of target points that were harder to find, so there is potential for
intraoperative use by surgeons. In addition, six out of eight surgeons commented
that the system would be beneficial as a training tool for novice residents.

The experimental setup seems to be close to what would be experienced in
surgery, according to the experienced surgeons. But the lack of camera rotation
made the task more difficult than would be encountered in real surgery.

All subjects believed that the navigated display gave a better understanding
of the 3D configuration of the bone, tool, and camera. Although no group of
subjects strongly believed that the navigated display made the target points
easier to locate, we measured a substantial performance improvement among the
novice residents. In our observations and interviews of the novice and experienced
residents, we found that they used the navigated display to locate the general
area of the target, then used the traditional arthroscopic view to adjust their
final position. That suggests that the live camera view projected onto the bone
may not be necessary.

7 Conclusion

The study shows strong evidence that the AV navigated display can assist novice
residents in the difficult task of locating anatomical locations in arthroscopic
surgery.

The contrary results from experienced residents suggest that many of those
residents form a mental model of the procedure that is different from our 3D



Augmented Virtuality for Arthroscopic Knee Surgery 193

model. Further study should be done to determine this trained mental model.
Either our 3D model could be adapted to the trained model, or another study
could be performed to compare the utility of the trained model to that of our
3D model.

The most important improvement in the navigated system would be to in-
corporate camera rotation, although the surgeons of our study agreed that our
system accurately reflected what would be experienced in the operating room.
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Abstract. A novel bronchoscope tracking prototype was designed and
validated for bronchoscopic navigation. We construct a novel mouth- or
nose-piece bronchoscope model to directly measure the movement infor-
mation of a bronchoscope outside of a patient’s body. Fusing the mea-
sured movement information based on sequential Monte Carlo (SMC)
sampler, we exploit accurate and robust intra-operative alignment be-
tween the pre- and intra-operative image data for augmenting surgi-
cal bronchoscopy. We validate our new prototype on phantom datasets.
The experimental results demonstrate that our proposed prototype is a
promising approach to navigate a bronchoscope beyond EMT systems.

1 Introduction

To develop bronchoscopic navigation, accurate and stable alignment between
a pre-built 3D anatomical airway model and real-time 2D bronchoscopic video
frames remains challenging. Although EMT-based methods provide global syn-
chronization between patients and their CT coordinate systems [1,2], such tech-
niques are still constrained due to their disadvantages such as sensitivity to
localization problems caused by patient movement and inaccurate measurements
resulted from magnetic field distortion. Image-based schemes usually register the
world and CT coordinate systems by calculating the similarities between real
bronchoscopic video frames and virtual bronchoscopic images generated from
CT-derived virtual bronchoscopy [3,4]. Since image-based techniques depend on
local texture information such as bifurcations or folds, they usually provide accu-
rate local registration between patients and their CT coordinate systems. How-
ever, such approaches fail easily to track the global trajectory of a bronchoscope
due to uncertainties (e.g., bubbles) that commonly occur in bronchoscopy.

This work explores a novel bronchoscope prototype that deals with the dif-
ficulties of EMT- and image-based methods during bronchoscopic navigation.
Our main contributions are summarized as follows. First, a novel bronchoscope
tracking prototype was constructed and evaluated on a bronchial phantom. We
originally proposed a novel external tracking method on the basis of an optical
mouse (OM) sensor and demonstrated its effective and promising performance
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for bronchoscope motion estimation. Compared to our previous work [5], this
study shows the complete idea of our tracking prototype and more attractive
tracking performance by combining SMC methods. Next, currently, although
only 2D motion information of a bronchoscope can be measured by an OM sen-
sor in our proposed prototype, such an OM sensor-based bronchoscope mockup
still has several advantages in contrast to other external tracking methods, such
as EMT-based. These advantages include: (1) constructing such a bronchoscope
tracking model is very cheap and simple; (2) since we design the OM sensor and
the rotary encoder to be located outside a patient’s airway tree, such a mockup
does not occupy the space of a bronchoscope tip or its working channel but the
EMT system currently requires an EMT sensor to be attached at either the sur-
face or inside the working channel of the bronchoscope tip; this constrains the
movement of the bronchoscope in big bronchial branches; and (3) the OM sensor
and encoder measurements are unaffected by ferromagnetic metals or conduc-
tive material within the bronchoscope; they usually distort the magnetic fields
of EMT systems and cause inaccurate measurements of EMT sensors. Third,
sometimes image-based approaches unavoidably misalign patients and their CT
coordinates because of inherent global uncertainties, e.g., image artifacts. After
a failure to register real and virtual images for several frames, an image-based
algorithm usually cannot automatically recover the tracking procedure by itself
due to shortages of the global insertion depth and rotation information around
the running direction of the bronchoscope. We solve such a problem using an OM
sensor to directly measure such global motion information of the bronchoscope
and reduce opportunities to get trapped in local minima during bronchoscope
tracking. Fourth, to incorporate OM sensor output for bronchoscope tracking, we
introduce SMC sampler [6], which proved to be an effective means to combine dif-
ferent tracking sources since it can somewhat tackle situations where ambiguities
occur in bronchoscopic videos [7]. Finally, we also believe our novel bronchoscope
model can be conveniently and easily integrated into intra-bronchoscopy inside
operating rooms without any overloads since we can attach a rotary encoder on
the angle lever surface and design to fix an OM sensor on a mouth- or nose-piece
that is also indispensable for a conventional bronchoscope.

2 Novel Bronchoscope Tracking Prototype

2.1 Prototype Overview

The movements of a bronchoscope are usually comprised of three parts: (1)
moving it inside or outside airway trees along the running direction, (2) rotating
it around the running direction, and (3) bending its bendable section by its
angle lever fixed on its control head. Three parameters corresponding to three
motion components are introduced to characterize the bronchoscope movements:
the insertion depth inside the airway trees, rotational angle around the running
direction, and the bending angle of the bendable section.

Based on these movement properties of a bronchoscope, we designed our proto-
type with three key functions that are clarified as follows: (1) it directly measures
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Fig. 1. Our designed bronchoscope prototype with a sensor fixed on a mouth- or nose-
piece to measure insertion depth and rotation information along the running direction
of a bronchoscope and a rotary encoder attached at angel lever surface to determine
the bending angle of the bendable section during interventions

the insertion depth of the bronchoscope shaft, (2) it immediately records the ro-
tational angle around the viewing (running) direction of the bronchoscope cam-
era, (3) it automatically obtains the rotational information of the angle lever to
determine the bending angle of the bendable section. Note that this movement
information is acquired outside of a patient’s body, and no additional sensors
are attached at the bronchoscope shaft surface or its working channel. Fig. 1
outlines the prototype with different components relative to different functions.

2.2 Bronchoscope Motion Analysis

A. Pre-processing
Since unavoidable time-delay occurs between 2D OM sensor measurements (sam-
ple rate: 2000∼6400 fps) and bronchoscopic images (frame rate: 30 fps) during
data collection, we must synchronize the OM sensor outputs and video frames
based on their timestamps. If the timestamps represent the exact time of two
kinds of outputs, we can calibrate them through a linear interpolation.

B. Fusion of OM Sensor Measurements
After temporal calibration between the OM sensor outputs and the broncho-
scopic frames, we obtain relative insertion depth Δ and rotational angle Ψ of
the running direction of the bronchoscope between successive bronchoscopic im-
ages. To predict six DOF parameters of bronchoscope motions, we incorporate
measurements Δ and Ψ into the SMC simulation because it proved to be an
effective means to fuse different external tracking sources.
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Sequential Monte Carlo samples were deterministically drifted and stochas-
tically diffused to predict the posterior probability density of interest. We here
utilize an SMC simulation approach that originated from the work in [6].

We produce set of random samples Sk
i = {(xk

i , wk
i , ck

i ) : i = 1, 2, 3, ... , N ; k =
1, 2, 3, ..., M} (N and M are the number of frames and samples, respectively, M is
set to 500 since it met with a compromise between accuracy and computational
complexity in our case; wk

i is a sample weight; ck
i denotes the accumulative

weight of each sample) to approximate the posterior probabilistic distribution of
current bronchoscope camera motion parameters xk

i , which are defined on the
basis of transformation matrix CT T(i)

C including translation CT t(i)
C and rotation

CT R(i)
C from the bronchoscope camera coordinate system to the CT coordinate

system at time i. Then our proposed bronchoscope tracking method using SMC
simulation is performed in the following two steps:

State Transmission. The new state of each sample can be determined by
deterministic drift and stochastic diffusion by transform function F :

xk
i = F (Axk

i−1, Bnk
i ), (1)

where A denotes a deterministic inter-frame motion and depends on the OM sen-
sor measurements (or observations) of relative insertion depth Δ and rotational
angle Ψ of the running direction, B describes an uncertainty or a stochastic part
of the relative motion in Eq. 1, and nk

i is an independent stochastic variable.
During this state dynamic step, SMC simulation requires a probabilistic den-

sity function to present state transmission probability p(xk
i |xk

i−1) between con-
secutive time steps. Since we have no prior knowledge of the bronchoscope cam-
era movement, in other words, since we do not know prior probabilistic distribu-
tion p(xi) for state vector xi, we employ a random walk on the basis of normal
distribution with respective to noise nk

i : nk
i ∼ N (μ, σ2) to approach dynamic

density p(xk
i |xk

i−1) [6,8]:

p(xk
i |xk

i−1) ∝
1√
2πσ

exp(−(B−1(xk
i − Axk

i−1) − μ)2/2σ2). (2)

Note that A and Bnk
i need to be determined in Eq. 1. For A, according to relative

insertion depth Δ and rotational angle Ψ , we compute the relative motion with
the translation vector Δt̂(i)

k and the Euler rotation angles Δα̂
(i)
k as:

Δt̂(i)
k = [0, 0, Δ]T , Δα̂

(i)
k = [0, 0, Ψ ] . (3)

By transforming the rotation part from Euler angles to matrix, the deterministic
drift part A can be determined by

A =

(
ΔCT R(i)

C

(
Δα̂

(i)
k

)
Δt̂(i)

k

0T 1

)
. (4)
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Additionally, the stochastic diffusion component Bnk
i can be computed by Eq. 4

in terms of Δt̃(i)
k =

[
nk

t , nk
i t, nk

i t
]T and Δα̃

(i)
k =

[
nk

i θ, nk
i θ, nk

i θ
]
, where t and

θ are translational and rotational constants during stochastic diffusion.

Observation Density. After state evolution, we must compute sample weight
wk

i and observation density p(yi|xi) (yi is an observation variable). In this work,
wk

i is defined as the modified mean squared error (MoMSE) similarities between
real bronchoscopic frame I(i)

R and virtual image IV produced from estimate xk
i

using volume rendering techniques; it can be presented by [4]:

wk
i = MoMSE(I(i)

R , IV (xk
i )). (5)

Based on factored sampling scheme [6], observation density p(yi|xi) can be cal-
culated by

p(yi|xi = xk
i ) = wk

i (
M∑

j=1

wj
i )

−1. (6)

Finally, the pose parameters of the current bronchoscope and its combined cam-
era pose can be determined in terms of sample weight wk

i :

x̃i = max
w̃k

i

{(xk
i , wk

i )}. (7)

The final estimate corresponds to motion state x̃i with weight w̃i to maximize
the similarity between the current real and virtual frames.

3 Experimental Results

Since we currently have no patient data for our new bronchoscope tracking de-
vice, we validate the proposed tracking prototype on a phantom. We investigate
three tracking schemes: (1) Deguchi et al. [4], only image registration using sim-
ilarity measure MoMSE, (2) Schwarz et al. [1], using an EMT system, and (3)
our new method presented in Section 2. To evaluate the tracking accuracy of the
three methods, we generate two sets of ground truth data (GTD) using manual
registration to align the RB and virtual bronchoscopic (VB) viewing points by
hand. We then calculated the position and orientation errors by δ = ‖t− tG‖,
φ = arccos((trace(RRG

T ) − 1)/2), where δ and φ are Euclidean distance and
rotation error around the invariant Euler axis in accordance with estimated pose
(R | t) and reference (ground truth) pose (RG | tG) [9], where t and tG denote
translation, R and RG are rotation matrices.

Table 1 summarizes the position and orientation errors by contrasting GTDs
with the tracking results from the three approaches. The average position errors
of the three methods were 25.5 mm, 5.09 mm and 1.10 mm. Simultaneously,
the average orientation error was 3.88◦ by the proposed method, compared to
37.0◦ and 11.1◦ from the other two approaches. Fig. 2 illustrate the tracking
accuracy of the predicted results of Experiments B in contrast to the ground
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Table 1. Examples of position and orientation errors in tracking results using methods
of Deguchi et al. [4], Schwarz et al. [1], and our new method

Position error (mm) and orientation error (degrees)
GTD Deguchi et al. [4] Schwarz et al. [1] Our new method
tests Position Orientation Position Orientation Position Orientation

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

A 32.8 37.2 42.9 50.5 5.70 2.77 12.2 3.53 1.40 3.19 5.20 11.3

B 18.2 23.9 31.0 47.1 4.48 2.66 10.0 3.38 0.80 0.50 1.68 1.37

Ave. 25.5 30.6 37.0 48.8 5.09 2.72 11.1 3.50 1.10 1.85 3.88 6.20

Table 2. Comparison of registered results based on visual inspection

Phantom Number Number (%) of successfully processed frames
Experiments of frames Deguchi et al. [4] Schwarz et al. [1] Our new method

A 1556 763 (49.0%) 708 (45.5%) 1387 (89.1%)

B 1498 832 (55.5%) 1001 (66.8%) 1462 (97.6%)

C 1183 83 (7.02%) 948 (80.1%) 966 (81.7%)

D 1805 198 (11.0%) 1310 (72.6%) 1582 (87.7%)

E 1032 416 (40.3%) 538 (52.1%) 639 (61.9%)

F 1228 606 (49.5%) 689 (56.1%) 1106 (90.1%)

Total 8302 2898 (34.9%) 5194 (62.6%) 7142 (86.0%)

truth. Our new tracking prototype is more accurate and stable than the other
two. Moreover, according to visual inspection, successfully processed RB frames
were quantified in Table 2. Our method successfully processed a total of 7142
(86.0%). Fig. 3 displays the RB and VB images at the selected frames by all
three methods. Both prove the better accuracy and robustness of our model.

4 Discussion

The contributions of this work were already clarified in Section 1. Our method
provides the insertion depth as global information to calculate the image similar-
ity and hence improve its robustness at the branching cases that will be further
addressed in the future. Compared to EMT-based approaches, our method will
never be involved in any inherent calibration or registration such as camera-
sensor calibration and CT-to-physical space registration that inevitably intro-
duce many errors before tracking with the bronchoscope. Even a bronchoscope
itself contains conductive metals that distort the magnetic field and deterio-
rate EMT accuracy; our prototype remains free of such a problem. In contrast
to image-based algorithms, our proposed method directly provides global infor-
mation on the insertion depth and rotational angle of the viewing direction to
predict bronchoscope motions combined with SMC simulation without any opti-
mization procedures that get easily trapped in local minima due to the shortages
of global information and such image artifacts as bubbles or patient movements.
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Fig. 2. Orientation error (left) and position error (right) of Experiment B are plotted
from tracking results predicted by methods of Deguchi et al. [4] (cyan), Schwarz, et
al. [1] (blue), and our new method (green).

Frame number 0331 0437 0511 0633 0734 0809 0904 0982 1052 1062 1076 1108

RB images

Deguchi et al. [4]

Schwarz et al. [1]

Our new method

Fig. 3. Visual comparison of tracking results of Experiment F using different methods
during phantom validation. Top row shows selected frame numbers, and second row
shows their corresponding phantom RB images. Other rows display virtual broncho-
scopic images generated from tracking results using the methods of Deguchi et al. [4],
Schwarz et al. [1], and our new method. Our proposed method shows the best perfor-
mance.

However, in our experiments, the proposed method still misaligns some RB
and VB frames when continuously tracking bronchoscope motions during navi-
gated bronchoscopy. One main reason behind these misalignments might be the
shortage of the bending angle information of the bronchoscope bendable part.
We did not realize the function of automatically measuring the bending angle.
We currently only provide information on the insertion depth and the rotation of
the running direction for motion prediction. Otherwise, the nonlinear illumina-
tion changes result in dark video images; hence, they cause difficulties of sample
weight calculation, and incorrect sample weights unavoidably happen.

Moreover, the following issues must be clarified. First, although our method
provides significant tracking accuracy, we clarified that the position and orien-
tation errors shown in Table 1 are stated relative to GTD. However, GTD it-
self involves errors originating from our manual registration or synchronization.
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Next, since bronchoscopic images were collected inside a static phantom without
respiration motion or other deformations, another particular challenge of airway
deformation was not explicitly validated in this work. We need to further eval-
uate our tracking prototype on patient data. Additionally, the computational
efficiency of the proposed method is about 1.1 seconds per frame without speed
optimizations and multi-threading. Last, although we concentrated on develop-
ing bronchoscope motion tracking for navigated bronchoscopy, our prototype
should also be appropriate to navigate other endoscopes, e.g., colonoscope.

5 Conclusions and Future Work

This paper proposed a novel bronchoscope tracking prototype and its validation
on phantom datasets. We realized two functions of our model and applied them
to estimate bronchoscope movements. The experimental results demonstrated
the accuracy and robustness of our method by pose errors of only 1.10 mm and
3.88◦, successfully registered a total of 7142 (86.0%) images, and increased the
tracking performance by at least 23.4%, compared to image- and EMT-based
methods. Besides evaluation of our method on patient data and reducing com-
putational times, future work also includes the extension of another function of
our bronchoscope prototype and further improvement of its performance.
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Abstract. During a laparoscopic surgery, the endoscope can be manip-
ulated by an assistant or a robot. Several teams have worked on the
tracking of surgical instruments, based on methods ranging from the de-
velopment of specific devices to image processing methods. We propose
to exploit the instruments’ insertion points, which are fixed on the pa-
tients abdominal cavity, as a geometric constraint for the localization
of the instruments. A simple geometric model of a laparoscopic instru-
ment is described, as well as a parametrization that exploits a spherical
geometric grid, which offers attracting homogeneity and isotropy prop-
erties. The general architecture of our proposed approach is based on the
probabilistic Condensation algorithm.

Keywords: laparoscopic surgery, image-based localization of surgical
instruments, Condensation algorithm.

1 Introduction

Minimally invasive surgery (MIS) has become more and more popular with sur-
geons and the public in the recent years, although its superiority on open surgery
has not been systematically proven in terms of per and post-operative complica-
tions ([8]). Furthermore, the mini-invasive approach is more expensive and more
challenging technically for the surgeons than open surgery (loss of depth infor-
mation, loss of tactile information, limited field of view, inverted movements of
the instruments due to their insertion in the patient’s abdominal cavity through
“fixed” points on the abdominal wall).

These limitations highlight the need to develop further new methodologies
dedicated to MIS. These methodologies can be divided in two categories: skills
(learning, practicing and evaluating) and tools to perform these skills (end-
effectors, endoscopic cameras). New approaches to learn MIS have already been
developed, especially using virtual reality simulators [7] and video recordings of
surgeries for the evaluation of the surgeon’s performance [1]. Extensive research
has also been performed on the optimization of laparoscopic tools, the most out-
standing being the development of robots, either holding the endoscope inside
� This work has been supported by French National Research Agency (ANR) through

TecSan program (project DEPORRA nANR-09-TECS-006).
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the abdominal cavity (AESOP R©, ViKY R©) or offering more degrees of freedom
than the standard instruments (DaVinci R©). Here we will concentrate on the
enhancement of the endoscope manipulator. It is bothersome and distracting
for the surgeons to control the positioning of the robot manually or by voice.
Therefore there has been some research to visually track the tip of the surgeon’s
instruments and adapt the position of the endoscope to follow them[3,9].

In this paper, we present a new method to localize a laparoscopic instrument
from video images in real time, using only a priori knowledge on the geometry
of the instrument, the position of its insertion point and a statistical model
for the displacement of the instrument based on the Condensation algorithm.
Compared to other methods described until today, this algorithm allows us to
automatically retrieve the 3D orientation and tip position of the instrument in
the camera referential, offering new opportunities such as analysing the motion
of the instruments to classify the operating task.

2 Materials and Methods

2.1 General Framework

The goal of our method is to track the motion of a laparoscopic instrument
inside the abdominal cavity without modifying it (ie. without a physical tracking
system such as infrared or magnetic localizers), using only information from the
endoscopic image and a geometric model of the tool.

After an initial calibration procedure, we determine the insertion point of each
instrument in 3D using a priori knowledge about its geometry. We then build a
geode centered on the insertion point describing the different orientations that
can be taken by the tool. A propagation algorithm using particles evolving over
the geode’s elements according to a determinist and a stochastic law is then
computed (the Conditional Density Propagation or Condensation algorithm
[4]), with measures performed at each time step to guess the most likely orien-
tation of the tool, after reconstruction and projection of the instrument model
in the 2D image. Finally, we determine the tip depth along this orientation with
an Otsu-based [5] segmentation method over a sliding window.

2.2 System Calibration

Our method requires system calibration: in particular it must be possible to
calculate the 3D line in the fixed field of reference (FOR) that corresponds to a
2D image point on the screen. This requires an intrinsic calibration and distor-
tion correction performed using Zhang’s procedure[11] with a planar chessboard,
which is validated in the medical imaging community.

If the endoscope is displaced by a robot, it is also necessary to know the
camera’s displacement in the robot’s referential, which requires a “hand-eye”
calibration of the robotic system. In this paper, we choose to work with a fixed
camera, since we concentrate on the presentation of our localization method.
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2.3 Instrument Model

Laparoscopic tools can have differents appearances, according to their color
(which is not standardized) or to their tip which varies according to their fonc-
tion. However, they all have in common a cylindrical shape and a standardized
radius, in order to fit in trocars. It is thus possible to model a tool as a finite
cylinder of known diameter [2]. Our search, given a predefined insertion point
(see section 2.4), is thus limited to its two angular parameters (pan and tilt)
that define a direction axis, depicted by a 3D unit vector e1, and a translational
parameter, γ, representing the instrument’s depth along its axis (see section 2.6).

The knowledge of the axis of the tool and of its insertion point permits the
reconstruction of its borders as seen by the camera (see fig.1, left): the vector
CT is the translation vector representing the instrument insertion point T in the
camera’s FOR (where C is the camera’s center of projection). We can construct
a referential linked to the tool by defining two new vectors as follow:

e2 = T⊗e1
‖T⊗e1‖ , e3 = e1 ⊗ e2

The instrument axis can be defined by the line (T ,e1) but also by the line (P ,e1),
where CP = ‖T⊗e1‖e3, as shown in fig. 1, left. The plane (P,e2,e3) is the only
right section of the cylinder representing the tool that contains the camera’s cen-
ter of projection C. Working in this right section (fig.1, right), its is possible to
define two points S1 and S2 that belong to the tangent planes to the instrument
running through the camera center. S1 and S2 satisfy ‖PS1,2‖ = ρ, where ρ is
the instrument’s radius and CS1,2 · PS1,2 = 0, i.e. the following system:{ ‖αe2 + βe3‖ = ρ

(αe2 + (‖T ⊗ e1‖ + β)e3) · (αe2 + βe3) = 0
(α, β) ∈ R2

This system admits two solutions (one for each tangent plane) :

(α, β) =

(
±ρ

√
1 − 1

‖T⊗ e1‖
,− ρ2

‖T⊗ e1‖

)

Fig. 1. Description of the tool model
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Once these parameters have been extracted, one can easily build in 3D the
lines defined by the tangent plane to the instrument passing through the camera
center (corresponding to the instrument borders in the 2D image).

L = T ± |α|e2 + βe3 + γe1 γ ∈ R

2.4 Determination of the Insertion Point

Several methods have already been developed in order to retrieve the lines repre-
senting the borders of a laparoscopic instrument in 2D images[9,3]. Here we use
manual selection of these lines in a sequence of images with one camera position
and a moving instrument, which allows us to find (thanks to the calibration and
the geometric model of the tool) a beam of 3D lines each representing an instru-
ment’s axis. The intersection of these lines, which corresponds to the insertion
point, is computed by solving a rank-3 system with a SVD decomposition. We
will see in the discussion that this method could easily be automatized.

2.5 Instrument Localization

Our tracking system is based on the Condensation algorithm[4]: it uses factored
sampling in which randomly generated sets represent the probability distribution
of a certain feature. The random set is propagated using a dynamic model and
visual observations, which is of particuliar interest in our situation in which
background clutter can often cause direct observation to fail. We therefore need
to build a specific dynamic model for our process, along with the corresponding
observation model. Given our model construction, it is preferable to detect the
instrument 3D position in two steps, determining the angular parameters before
the translational parameter, since this parameter only influences the length of
the apparent segments, and not their orientation.

Geodesic Geometry. Two parameters are needed to describe the angular ori-
entation of the tool in a 3D space. The typical representation of these parameters
would be standard latitude and longitude coordinates (pan and tilt), but these
are not well suited to our problem as they are not isotropic (non-uniform dis-
tribution) and computational stability near the poles is non-trivial. A solution
developed in the field of climate modeling is the use of quasi-uniform spherical
geodesic grids [6] among which icosahedral grids give almost homogeneous and
quasi-isotropic coverage of the sphere. These grids are obtained by the successive
subdivisions of an isocahedron (fig. 2a). Parametrization is easily obtained by
dividing the geodesic sphere into 5 panels (fig. 2b) composed almost exclusively
of hexagonal cells. Each panel, once rotated and twisted, can be represented as
a rectangular array (fig. 2c).

Each 3D unit vector that runs from the center of the sphere to a cell on its surface
corresponds to a unique cell on one of the 5 rectangular arrays, as illustrated by
the hexagonal cell marked in blue on the sphere in fig. 2a, which corresponds to an
unique cell of the rectangular array in fig. 2c. This vector can easily be computed
given the 2D position of the cell in the rectangular array, and in our algorithm
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(a) (b)

(c) (d)

Fig. 2. Representation of the geodesic grid: (a) The spherical geodesic grid composed of
hexagonal and pentagonal cells. (b) Cutting the geodesic sphere in 5 panels. (c) Twisted
and rotated panels can be represented in rectangular arrays. (d) A particle evolves freely
in three independent directions in the hexagonal tiling. Note that j = i + k. (images
source http://kiwi.atmos.colostate.edu/BUGS/geodesic)

correspondences between 2D cells and 3D vectors are computed and stored in cor-
respondence tables in order to increase speed for the rest of the execution.

Particle Model. In our model, each particle is described at a given time by
five variables: the current and previous 2D coordinates of the particle
st = [xt, yt, xt−1, yt−1] expressed in the panel variable pt.

Particle dynamics are controlled by a linear stochastic equation, st evolving
as:

st = Ast−1 + Bwt, where A =

⎛⎜⎝ 0 0 1 0
0 0 0 1

−0.8 0 1.8 0
0 −0.8 0 1.8

⎞⎟⎠
Matrix A represents the deterministic evolution of the particle, wt is a vector
of standard normal variates and BBT is the process noise covariance. The co-
efficients of A have been set empirically for now, describing an exponentially
decreasing speed. The determination of B is achieved by noting that proba-
bilities of random motion are isotropic: the correponding probability density
function is described in Eq. 1, where i, j, k represent the three directions on the
hexagonal grid (see fig. 2d). Fitting the hexagonal grid on the rectangular array
parametrized by x = i and y = k coordinates, the probability density function
can be expressed as Eq. 2.

p(i, j, k) ∝ exp(−(i2 + j2 + k2)) (1)
p(x, y) ∝ exp(−(x2 + y2 + (x + y)2)) (2)

which has a covariance matrix proportional to : BBT =
(

1 1
2

1
2

1

)
Particle dynamics are therefore almost defined for a single panel. The scale fac-

tor for the covariance matrix is however unknown and is determined empirically.
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Measurements. At each time step, the different cell values are extracted using
the instrument model. For each particle, the 3D vector v that corresponds to
the 2D cell it occupies is extracted from the precomputed correspondence table.
The segments that correspond to the projection in the 2D image of the borders
of a cylinder of direction vector v passing through the insertion point T are then
extracted according to the instrument model previously described.

The image measurements we use are based on contour detection: image deriva-
tives along the x and y axis are approximated by convoluting the image with
corresponding Sobel kernels. The two components being extracted, the gradient
vector Gi is available in each image point. We define a score, calculated for each
segment : σj =

∑mj

i=1(Gi · nj), where j = (1, 2), nj is the unit vector normal to
the segment j and mj is the number of points in segment j. Finally the score
π = |σ1−σ2| is given to the cell and the particle (n1 and n2 have opposite direc-
tions). The instrument axis is then computed as the average of all the particle
vectors weighted by their score.

2.6 Determination of the Instrument Depth

Once the instrument axis has been computed, we determine the tip position
along this axis by looking for a transition point between the instrument and
the background. We developed an algorithm using a sliding window moving
along the projection of the instrument’s axis in the 2D image. For each position
of the sliding window, we find the optimal threshold value dividing the pixels
into two distinct classes according to Otsu’s method [5]. We consider that the
transition between the intrument’s body and its tip is the point where the inter-
class variance will be maximal. Therefore we store the position of the sliding
window for which the inter-class variance is maximal,the position of the middle
of this window returning the position of the tip of the instrument.

3 Results

Our first evaluation parameter is the angular error between the theorical instru-
ment’s axis and the computed one, in 3D and in the projected image. First,
we tested the validity of our method with simulated data. We built a fictive
sequence using an abdominal background image on which we pasted a black
mask, corresponding to known 3D positions and orientations of the instrument.
Its dynamic law was governed by the same equation as the particles (addition
of a deterministic and a stochastic evolution).

We then tested our method on a testbench modeling a laparoscopic surgery,
and compared our results with 1) manual segmentation of the tool in the image
followed by 3D reconstruction in the same fashion as in 2.4 and 2) 3D results ob-
tained using an Optical localizer. Our testbench consisted of a fixed endoscope
imaging a surgical instrument inserted through a 5mm trocart, with a back-
ground image of an abdominal cavity containing another tool (the blue tool in
fig. 4). The angular error for each setup according to the number of particles and
geode resolution can be found fig. 3. Fig.4 shows typical image results that we
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Fig. 3. Results for 1050 consecutive frames, using 2000 particles and a geode resolution
of 163842 cells covering the 3D sphere

Fig. 4. Examples of the 2D results of an instrument’s borders and tip detection in
laparoscopic images

obtained on our testbench. Working with 768x576 images acquired by a clinical
endoscope (no downsampling was performed), a geode resolution of 163842 cells
and 500 or 2000 particles, our algorithm computes at the speed of respectively
16 and 8.6Hz with an Intel Xeon 2.67GHz, 3.48Go RAM PC.

Our second evaluation parameter was the 2D tip position in the image, which
was compared to the tip position manually clicked on the images, with the error
expressed in pixels. Our mean error is evaluated at 27.8 pixels for the same data
set as in fig. 3.

4 Discussion - Conclusion

Our tracking system allows a surgeon to track the motion of his tools during an
intervention, in order to either automatically control the movements of the robot,
or to evaluate the quality of the surgeon’s gesture. As shown by the results, our
precision in the 2D orientation of the instrument inside the image is precise,
robust and quick enough to allow the first anticipated use. The precision in the
3D orientation and the depth evaluation are still imperfect and should call for
several improvements in our algorithm.

Increasing the number of cells in the geode (i.e. its resolution) does not slow
down the algorithm as the correspondence table between the cells and 3D ori-
entations is computed only once. However a limit is reached when the order is
superior to 128 (163842 cells), as the surface of a cell at a distance of 35cm
(the instrument’s length) from the insertion point will be 3,13mm2, which is
approximatively the surface of the instrument tip.

Simulated data highlights the intrinsic error of the method, linked to the
statistical and dynamical model, as the insertion point remains fixed, when test-
bench data shows as well the error due to the motion of the insertion point.
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We now plan several improvements of our method to improve the 3D orientation
detection and ensure its compliance with clinical conditions: first, we plan to allow
the insertion point to move freely around its computed position , as it is the case
in real surgery (in an amplitude range described in [10]), following a white noise
or an evolution law which needs to be determined. Secondly, we plan to detect
automatically the insertion point at the beginning of the procedure by extracting
lines using the Hough transformation and the same pivot procedure as presented
in section 2.4 (time-requesting computation, not adapted to real-time tracking).

Our next step will be to test our method on anatomic specimens mimicking
true surgical interventions, in order to improve the deterministic and stochastic
matrices describing the evolution of the particles - currently empirically eval-
uated - and to study their influence on the results. Improvements will also be
brought to the tip detection in order to include an evolution model similar to
that used for the axis orientation, thus smoothing aberrant measurements which
pollute our mean result.
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Abstract. Fragments generated by explosions and similar incidents can
become trapped in a patient’s heart chambers, potentially causing dis-
ruption of cardiac function. The conventional approach to removing such
foreign bodies is through open heart surgery, which comes with high pe-
rioperative risk and long recovery times. We thus advocate a minimally
invasive surgical approach through the use of 3D transesophageal echocar-
diography (TEE) and a flexible robotic end effector. In a phantom study,
we use 3D TEE to track a foreign body in a beating heart, and propose
a modified normalized cross-correlation method for improved accuracy
and robustness of the tracking, with mean RMS errors of 2.3 mm. Mo-
tion analysis of the foreign body trajectory indicates very high speeds
and accelerations, which render unfeasible a robotic retrieval method
based on following the tracked trajectory. Instead, a probability map of
the locus of the foreign body shows that the fragment tends to occupy
only a small sub-volume of the ventricle, suggesting a retrieval strategy
based on moving the robot end effector to the position with the highest
spatial probability in order to maximize the possibility of capture.

1 Introduction

Penetration of a fragment into the heart is a common injury in both civilian
accidents and military warfare [9], [11]. Small caliber bullets and small shell
fragments with low velocity tend to circulate freely in the chambers, potentially
leading to arrhythmia, occlusion, and possibly death [3], [8]. The most frequent
treatment approach to removing these fragments involves open surgery via a
median sternotomy and cardiopulmonary bypasss (CPB) [9], a highly invasive
procedure requiring a long recovery period. Risks of this procedure include bac-
terial mediastinitis, hemolysis, blood clotting, and air embolism.

The long term objective of this work is to develop a flexible robotic system for
minimally invasive retrieval of fragments from a beating heart. In the envisioned
clinical scenario, the end effector is inserted transapically into the heart (Fig. 1
[left ]) after selection of the fragment via preoperative imaging. Then, under ul-
trasound guidance, the robot moves to capture the fragment; distal dexterity is

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAI 2011, Part I, LNCS 6891, pp. 211–218, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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needed to adequately cover the workspace. A minimally invasive approach can
significantly improve the management of cardiac fragments by reducing risk and
mortality, improving postoperative recovery, and potentially reducing operating
room times. The objectives of the present study are (1) to demonstrate the util-
ity of 3D transesophageal echocardiography (TEE) in tracking a target moving
rigorously against a dynamic background; (2) to develop real-time tracking of
the fragments; and (3) to analyze its motion in the context of a robotic system.

The use of 3D ultrasound for interventional systems is a fairly recent devel-
opment due to high cost, low resolution, and inability to access real-time data
streams [2]. In [7], markers were attached to an instrument to allow for image-
based tracking. Variability in the readings was less than 1 mm. The instrument
was subsequently driven towards targets in a water tank, reaching them with an
error of 1.2 mm [4]. Experiments with low-resolution 3D catheter transducers
[10] yielded errors of around 3 mm. Targets were static in these experiments.

Ferrous shrapnel can be difficult to detect in ultrasound when adjacent to
other hyperechoic surfaces. In [5], a variable magnetic field is used to induce
vibrations in shrapnel, thus illuminating it under color flow Doppler and allowing
it to be located within an error of 1.06 mm.

The performance requirements for tracking a foreign body in the heart are
more akin to the 1-degree-of-freedom (DOF) heartbeat compensation device of
[12]. Predictive control was employed to track heart structures in one dimension
with positive results. On the other hand, cardiac motions are more predictable
than that of an object moving freely within the heart. Due to a variety of in-
fluences, foreign bodies are prone to seemingly arbitrary motions. A predictive
control scheme is less likely to be effective in this case. The main contribution
of this paper is the tracking of an unpredictably moving target using 3D TEE,
for the purpose of developing a retrieval strategy by a flexible robotic device
inserted through the apex of the heart.

2 Experimental Setup

A system for studying the problem of minimally invasive evacuation of fragments
from a beating heart is illustrated in Fig. 1 (center). It includes an ultrasound
system, a beating heart phantom, and a workstation (2.3 GHz Intel Xeon, 4 GB
of RAM) that acquires live streaming ultrasound volumes over TCP/IP.

The Philips iE33 xMATRIX Echocardiography System is used with the X7-2t
3D TEE probe. Each image has a resolution of 128×48×112 voxels of size 0.81,
0.96, and 0.98 mm, spanning a field of view of 60◦ azimuth, 30◦ elevation, and
12 cm depth respectively. Gain and compression are set at 47% and 40 dB.

The beating heart phantom is a custom developed multi-modality phantom
compatible with X-ray, ultrasound, and MR imaging. Made of polyvinyl acetate
(PVA), it is a full replica of a human heart and resides in an acrylic glass water
tank. Two servo-actuated pneumatic pistons pump water into and out of the
phantom to create the deformable effect of a heartbeat and blood flow. Each
piston pumps about 18 ml of water per heartbeat; its motion is given in Fig. 1
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Fig. 1. (Left) Robotic fragment retrieval from the heart under 3D TEE guidance.
(Center) Arrangement of the TEE probe and the heart phantom. (Right) Piston dis-
placement in the beating heart phantom for one heartbeat.

(right). An experimental heart rate of 1 Hz and stroke volume lower than in
healthy humans were chosen to mimic surgical [6] and post-injury cardiovascular
conditions.

As an early approximation, a 3.2 mm steel ball was selected to act as a frag-
ment due to its likeness to the clinical case in terms of size (typically 2-5 mm)
and material. The fragment was imaged under 3D TEE at 20 frames per second
(fps) and manually segmentated from five datasets (n=5) of 400 frames (20 sec-
onds) each. This duration was empirically found to capture most of the activity
that would occur in a given trial. Furthermore, 20 heart cycles permit robust
testing of online tracking methods—a previous study reports on an in vivo in-
strument tracking experiment using a five-second window [4]. Fig. 2 shows the
fragment in the heart phantom manually outlined in the 3D TEE image.

Fig. 2. (Left and center) Orthogonal slices showing the fragment (outlined) in the right
ventricle of the heart phantom at rest. (Right) A three-dimensional view.
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3 Real-Time Tracking of the Fragment

3.1 Approach

Normalized cross-correlation (NCC) is a well-known image processing algorithm
used for template matching. The correlation coefficient at a voxel, R(u, v, w),
for a template t(x, y, z) is given in (1). Normalization, accomplished by sub-
tracting the mean from both the template and the image under it (t and f
respectively) and dividing by their standard deviations, provides for robustness
against changes in intensity, which can occur as both the fragment and back-
ground move.

R(u, v, w) =

∑
x,y,z

[
f(x, y, z) − f

] [
t(x − u, y − v, z − w) − t

]√∑
x,y,z

[
f(x, y, z) − f

]2∑
x,y,z

[
t(x − u, y − v, z − w) − t

]2 (1)

The fragment was selected interactively from the first image frame to define the
template for the algorithm to track in subsequent frames. A template of size
10×10×10 voxels was suitable for enclosing the entire fragment, while a search
space of 40×30×30 was sufficient to capture displacements between frames. The
low computation time of NCC (38 ms per frame) makes it especially suitable for
tracking when real-time performance is required.

The coefficient R in (1) is a real number in [−1, 1], with higher values indicat-
ing a close match and values tending toward −1 signifying a match of opposite
intensity. The location of the maximum R (Rmax) found in a search space is
taken to be the position of the fragment. However, a weakness of NCC is that
it relies on consistency in the apperance of the target, whereas apperances may
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Fig. 3. Fragment trajectories based on NCC vs. manual tracking. Dropped frames are
marked by vertical lines.
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vary in ultrasound due to noise, artifacts, and low resolution. This can lead to
the target being incorrectly identified in some frames. A low Rmax suggests that
NCC was not confident in its decision, and errant tracking can be avoided by ig-
noring such frames. In our experiments, a frame i is dropped if Ri,max is less than
c standard deviations below the mean of the dataset: Ri,max < Rmean − c ·Rsd.
The value of c can be tuned to the level of confidence desired; we found c=0.9
to exhibit a reasonable compromise between spatial and temporal accuracy.

3.2 Results

Accuracy. Fig. 3 shows a trace of the fragment as determined by NCC, with
manually-segmented fragment localization serving as a basis for evaluation.1

Table 1 lists the number of dropped frames and accuracy for all datasets. NCC-
based fragment tracking with detection of low confidence intervals (post-drop
error) was accurate to within 2.3 mm rms after dropping 18.5% of frames. As
expected, in the case of NCC without frame dropping (pre-drop error), tracking
was lost in some frames resulting in mean errors that were almost twice as high
(4.3 mm). For frames in which the reported fragment location is unavailable or
doubtful, it is preferable to have the system wait until tracking is recovered,
allowing the robotic retrieval instrument to stay in its current position or to be
placed at a safe location if the uncertainty is prolonged over several frames.

Table 1. Accuracy of NCC referenced to data extracted manually

Datasets Aggregate

Parameter 1 2 3 4 5 Min Mean Max SD

Pre-Drop Error (mm rms) 6.2 4.8 5.3 2.5 2.6 2.5 4.3 6.2 1.7

Post-Drop Error (mm rms) 2.0 3.1 2.6 1.8 2.1 1.8 2.3 3.1 0.5

% Frames Dropped 20.9 15.5 20.1 22.9 13.3 13.3 18.5 22.9 4.0

100 × Rmean 80.4 71.0 83.6 85.1 84.0 71.0 80.8 85.1 5.8

100 × Rsd 9.2 8.5 10.3 4.8 3.7 3.7 7.3 10.3 2.9

Table 2. Fragment motion parameters obtained from 3D TEE images

Datasets Aggregate

Parameter 1 2 3 4 5 Min Mean Max SD

Range (mm) 51.4 49.0 47.5 23.5 29.8 23.5 40.2 51.4 12.7

Speed (mm/s) 336.2 334.2 530.0 208.7 308.3 208.7 343.5 530.0 116.5

Accel. (m/s2) 5.3 9.5 9.1 6.2 8.7 5.3 7.8 9.5 1.9

Motion Characterization. Table 2 summarizes the extracted motion param-
eters. The average range of motion is 40.2 mm over three axes. While there
is some correspondence between fragment motion and heartbeats (see Fig. 3),
there is an element of motion that can seem arbitrary. Frequency domain anal-
ysis (Fig. 4) supports this observation with the primary peak located at 1 Hz,

1 Video posted at http://www.youtube.com/watch?v=u-KYpbS33-8.

http://www.youtube.com/watch?v=u-KYpbS33-8
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Fig. 4. Frequency components of fragment motion

but with spectral power at both lower (drift) and higher frequencies (heartbeat
harmonics) suggesting a more complex behavior. Previous studies have found
higher frequency components in the mitral valve as well [12].

4 Probability Map

The fragment reaches speeds of about 343.5 mm/s. Similar speeds have been
reported for the heart wall (300 mm/s [1]) and mitral valve (200 mm/s [12]).
Acceleration (7.8 m/s2 on average) is higher than figures reported for the mitral
valve (3.8 m/s2 [12]). A retrieval strategy based on following the trajectory of the
foreign body using a robotic end effector would be extremely challenging given
these high speeds and accelerations. Furthermore, the uncertainties inherent in
a beating heart environment may make it hazardous to do so. We thus propose a
different approach for retrieval of the foreign body, wherein the real-time tracking
method described in this paper is used to build a spatial probability map of the
fragment, based on its past locations. The map can then be used to position a
dexterous robotic device in the most visited locations of the fragment in order
to maximize the possibility of capture.

Fig. 5. Probability map of the fragment position. (Left and center) Coronal and sagittal
slices of the map. (Right) Three-dimensional view.
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Fig. 6. Cumulative histograms showing how frequently voxels are visited by the frag-
ment. Around Y=94% of the volume is never touched (X=0%), and roughly Y=99%
of the volume is occupied at most X=5% of the time.

Table 3. Tendency of fragment to visit certain locations. The first row describes the
percentage of the volume occupied at least 25% of the time. The second lists the
maximum percentage of time that any one voxel was occupied.

Datasets Aggregate

Parameter 1 2 3 4 5 Min Mean Max SD

25% FB Occupancy 0.07 0.03 0.17 0.19 0.24 0.03 0.14 0.24 0.09

Max Occupancy Level 39.8 38.0 57.5 54.0 63.0 38.0 50.5 63.0 11.1

A qualitative representation of the fragment motion, generated using the
tracking approach described above, is shown in Fig. 5. Warmer (red) regions
indicate where the fragment is more likely to be located based on fragment
traces. The observed tendency of the fragment to be localized in a subsection
of the overall ventrical volume suggests the viability of a more relaxed retrieval
approach based on aiming the dexterous robotic end effector at the volume of
highest probability of fragment location. Histograms (Fig. 6 and Table 3) show
that on the average across datasets, the fragment spends up to 50.5% of the time
in the most visited voxel. Although it is shown in the frequency domain (Fig. 4)
that the motion of the fragment is more irregular than the motion of the heart
wall, predictive models using the spatial position of the fragment can be used to
move the robot to a ‘waiting’ position, i.e. a position of high probability.

5 Conclusions and Future Work

In this paper, the motion of a fragment in a beating heart phantom is quantified
using motion tracking in 3D TEE images. We show that the fragment motion is
fast, abrupt, and often unpredictable. This provides valuable insight regarding
the design of an interventional system that is capable of catching the particle.
The next milestones will involve the design of a robot control scheme that uses
the spatial probability map to safely retrieve the fragment, as well as studies of
different fragment counts and physical properties.
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Abstract. Minimal invasive procedures such as transcatheter valve in-
terventions are substituting conventional surgical techniques. Thus, novel
operating rooms have been designed to augment traditional surgical
equipment with advanced imaging systems to guide the procedures. We
propose a novel method to fuse pre-operative and intra-operative in-
formation by jointly estimating anatomical models from multiple image
modalities. Thereby high-quality patient-specific models are integrated
into the imaging environment of operating rooms to guide cardiac in-
terventions. Robust and fast machine learning techniques are utilized to
guide the estimation process. Our method integrates both the redundant
and complementary multimodal information to achieve a comprehensive
modeling and simultaneously reduce the estimation uncertainty. Exper-
iments performed on 28 patients with pairs of multimodal volumetric
data are used to demonstrate high quality intra-operative patient-specific
modeling of the aortic valve with a precision of 1.09mm in TEE and
1.73mm in 3D C-arm CT. Within a processing time of 10 seconds we
additionally obtain model sensitive mapping between the pre- and intra-
operative images.

1 Introduction

There has been a major trend in cardiac therapy towards minimally invasive
transcatheter procedures to reduce the side effects of classical surgical techniques.
Instead of full sternotomy, instruments and devices are introduced through small
incisions, advanced through vessels and positioned to perform various procedures
[1]. Without direct access and view to the affected structures those interventions
are usually performed in so-called Hybrid ORs, operating rooms outfitted with
advanced imaging equipment. Thus, procedures such as the Transcatheter Aortic
Valve Replacement (TAV) are permanently guided via real-time intra-operative
images provided by C-arm X-ray and Transesophageal Echocardiography sys-
tems [2].
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c© Springer-Verlag Berlin Heidelberg 2011



220 S. Grbić et al.

Traditionally the field of medical image analysis has been focusing on the con-
struction of patient-specific anatomical models from well established diagnostic
modalities (e.g. CT and MR) to aid disease analysis and treatment planning
[3]. In the context of valvular disease management, the authors in [4] and [5]
proposed the modeling of the aortic valve from cardiac CT. Models of the mi-
tral valve from MR have been proposed in [6]. However, these methods have
not been developed to cope with the reduced quality and contrast characteristic
to intra-operative images, hence their usage is strictly limited to pre-operative
decision making.

Delivering high-quality models into the operating room to guide cardiac ther-
apy will be a major focus of future clinical applications. The fusion of pre-operative
models with intra-operative images for mitral valve replacement has been pro-
posed by [7]. The pre-op model of the mitral valve was annotated from CT data
and registered into the intra-op MR and echocardiography images. Major limi-
tation is the required tracking equipment and semi-automatic delineation of the
mitral annuls. Alternatively, multi-modal image registration has been proposed to
fuse multi-modal data. In [8] the mutual information is used as the metric to cope
with the intensity inconsistencies between CT and MR. In [9] an atlas-based ap-
proach was presented to track the myocardium and left and right ventricles from
MR data. The registration is used to align the cardiac atlas to the patient data.
However, these methods are computationally expensive, and without the appro-
priate guidance of a shape prior likely to converge into local minima.

As we seek to provide both, the fusion of pre- and intra-operative imaging
and patient-specific models of relevant anatomical structures, the field of si-
multaneous registration and segmentation is important to our work. In [10] a
probabilistic framework was proposed where registration is performed jointly
with segmentation. It was applied to the segmentation of brain tissues and their
substructures in uni-modal MR data. [11] recently proposed a method to jointly
segment the prostate and provide registration in MR. It introduced point sets to
allow fast initial registration. However most of these methods suffer from long
run-times, as the problem of registration and segmentation is trying to be solved
simultaneously, and the necessity of manual initialization.

We propose a novel method to fuse pre-operative and intra-operative infor-
mation by jointly estimating anatomical models from multiple image modalities.
Thereby high-quality patient-specific models are integrated into the imaging en-
vironment of operating rooms to guide cardiac interventions. Robustness and
efficiency are achieved by relying on machine learning techniques to drive the
joint estimation process whereby similarities between multiple modalities are
exploited. Statistical models of the anatomy are utilized within the probabilis-
tic estimation framework to ensure physiologically compliant results. The main
benefits of our method are: 1) Completeness - by exploiting the complementary
information from multiple modalities, 2) Robustness - by exploiting the redun-
dant information from multiple modalities to reduce the estimation uncertainty,
and 3) Fusion - by obtaining a model-sensitive integration of the pre-operative
and intra-operative modalities.
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Fig. 1. Diagram of the problem formulation showing the surface model M , anatomical
landmarks m, transformation φ to map the intra-op image I2 to the pre-op data I1

2 Problem Formulation

Our goal is to estimate a 3D anatomical patient-specific model M from volumet-
ric multi-modal datasets I1 and I2, where I1 is the pre-op and I2 the intra-op
image, and the transformation φ which maps the intra-op model M2 to the
pre-op model M1 (see Fig 1).

(φ̂, M̂) = arg max
M,φ

log P (M, φ |I1, I2 ) (1)

φ is composed of an affine- A and a non-linear warping transformation D,
φ = D A. D is modeling the small deformation of M due to respiration and
uncertainties in the acquisition phase between the pre- and intra-op data. The
model M is represented as a point distribution model. Using the transformation
φ the pre- M1 and intra-op M2 models can be computed: M = M1, M = D A M2

and M2 = A−1 D−1 M .

3 Method

In general finding an optimal solution to Eqn. 1 is difficult and has high computa-
tional cost therefore we approximate the problem by expanding the formulation
and exploiting independencies. In addition a shape constraint term is added
to restrict the estimated model M in a shape space built from a database of
annotations.

(φ̂, M̂) = arg max
M,φ

log (P (M |I1 ) · P (M |φ(I2) ) · P (M |I1, φ(I2) ) · P (M, φ |μ, Σ )) (2)

All the probabilities in our formulations are modeled using robust learning based
algorithms. The first P (M |I1 ) and the second term P (M |φ(I2)) define the inde-
pendent model estimations in the multi-modal images I1 and I2. As proposed in
[4] a classifier is trained using the probabilistic boosting tree and Haar-features
to estimate the posterior probability. The best model parameters for M are se-
lected based on a joint probability term P (M |I1, φ(I2) ) explained in chapter 3.1.
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The transformation φ is modeled as a warping transform with Gaussian radial
basis functions. The last term P (M, φ |μ, Σ ) symbolizes a regularization of the
shape M and the transformation φ based on the learned statistical shape model
defined as a Gaussian distribution with the mean μ and the covariance matrix Σ
learned from manual annotations. Both the affine A and the non-linear transfor-
mation D are updated in this stage. A bias is applied towards the pre-op model
M = M1 as the model estimation is more robust in the pre-op images. In our
case I1 represents the CT image and I2 the TEE and 3D C-arm CT image.

In this work we focus on the estimation of the aortic valve model. The valve
is modeled hierarchically using two layers. On the coarse level it is represented
as a landmark model m with 6 points (3 commissures and 3 hinges). They define
the most important morphological and functional properties of the valve. The
finer level is defined as a point distribution model M with 1440 points spread
along a 36×20 parametric grid.

3.1 Similarity Learning

The joint term P (M |I1, φ(I2) ) in Eqn. 2 exploits the similarities between the
models from the multi-modality images. Similarity functions proposed in the
current literature, such as mutual information or cross correlation, could be
used but as mentioned in [12] learning the similarity for a specific problem yields
better performance.

We employ a boosting framework in order to train a cascade of strong clas-
sifiers. Each strong classifier Fstrong consists of k weak classifiers Fweak which
learn the similarity between pairs of image patches IS1 ∈ I1 and IS2 ∈ I2,
Fweak(IS1, IS2). The weak learners are constructed based on Haar-like features
extracted locally from rectangular patches IS1 and IS2 from image slices sam-
pled perpendicular to the tubular aortic root surfaces M1 and M2. The patch
size is fixed for both modalities.

The weak learner is modeled as a 2D piecewise constant function defined on a
2D feature space by the feature responses of h(IS1) and h(IS1). The 2D feature
space is separated in equal rectangular non-overlapping regions. Therefore we
quantize the feature responses from both modalities in 64×64 bins whereby the
values are scaled between the minimum and maximum feature responses h(IS1)
and h(IS1).

Fweak(IS1, IS2) =
B∑

b=1

C∑
c=1

βb,c Rb,c [h(IS1) × h(IS2)] (3)

where B and C are the bin numbers for the feature responses in each modality
and βb,c symbolizes the constant associated with the region Rb,c representing
a bin in the 2D feature space. As in [13] the optimal weights βb,c would be
determined by fitting a least-squares regression function. During detection a
probability for each weak classifier is evaluated by extracting Haar-features from
pairs of image patches. The features are assigned to a bin Rb,c based on the
feature response and multiplied with the corresponding weight βb,c.
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A cascade of l strong classifiers Fstrong is trained in order to determine the
posterior probability P (M |I1, φ(I2) ) = S(IS1, IS2) of the similarity function.

3.2 Model-Based Fusion Approach

The first stage in our hierarchical model estimation algorithm consists of pre-
aligning the multi-modal images using the anatomical landmarks. The affine
transformation A is estimated by obtaining a least-squares solution based on
the independently detected landmarks m1 from the image I1 and m2 from the
image I2. The landmark detectors are trained using the probabilistic boosting
tree classifier and Haar-like features. The surface M is initialized by learning
a correlation model between measurements extracted from the landmarks m1

and the point distribution model M , as described in [14]. The nonlinear warping
transformation D is set to identity. Based on A the model M can be projected
to the image I2.

In the optimization phase we apply an iterative approach. We sample candi-
dates N1 and N2 along the surfaces normals of M1 and M2, and evaluate the
probability P (M |I1 ) for each candidate n1 ∈ N1 and P (M |φ(I2) ) for each point
n2 ∈ N2 using the learned detectors. The joint probability P (M |I1, φ(I2) ) is de-
termined by training a boosting classifier, as mentioned in chapter 3.1, to evalu-
ate pairs of candidates. A cross product of the candidates N1×N2 is constructed
and the highest probable candidate pair (ni, nj) is selected by multiplying the
single modality probabilities with the joint term.

(ni, nj) = arg max
ni,nj

log (P (ni |I1 ) · P (nj |φ(I2) ) · P (ni, nj |I1, φ(I2) )) (4)

The estimated candidate pairs are used to update the models M1 and M2.
The second step of the iteration involves calculating the posterior probability
P (M, φ |μ, Σ ) of M and φ based on the learned statistical shape models. This
could be perceived as a regularization to the shape M . Thereby M1 is projected
to the PCA shape space using the largest 40 eigenvectors. φ is updated by com-
puting the rigid transformation R based on the posterior probability of the pairs
(ni, nj). D is updated by obtaining a least-squares solution to the warping trans-
formation D̂ = argmin

∥∥T M2 − D−1M1

∥∥2 using radial basis functions. Thereby

Fig. 2. Diagram showing the model based fusion approach for the estimation of the
model M and the transformation φ
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Fig. 3. Example of the joint aortic valve model estimation from pre- and intra-op
volumetric data. The left 2 images show fused CT-TEE data sets and the right 2
images show fused CT-3D C-arm CT data. The mapping of the intra-op image I2 to
the pre-op image I1 is done by the estimated non-linear transform φ.

the number of control points is much smaller than the number of shape points M .
The algorithm converges in a small number of iterations. Figure 2 demonstrates
the complete estimation approach.

4 Experimental Results

The most relevant intra-operative modalities with 3D capabilities (3D C-arm
CT and TEE) in the OR environment were incorporated for evaluation. In total
56 volumes, 13 pairs of CT-TEE data sets and 15 pairs of CT-3D C-arm CT
data pairs were selected to demonstrate the effectiveness of our method. This
dataset was solely used for evaluation and not included in training. The ground-
truth annotations were obtained from clinical experts by manually placing the
anatomical landmarks in the pre- (m1) and intra-op (m2) images and finally
delineating the aortic valve surfaces M1 and M2.

As our algorithm depends on the automatic detection of the anatomical land-
marks m1 and m2 during the initialization step in order to estimate the affine
transform A we evaluate their detection performance on the test dataset. For
training 160 separate landmarks annotations in CT, 320 in TEE and 192 in 3D
C-arm CT were used to train the landmark detectors. The error is computed as
the Euclidian distance between the automatic estimation and the expert annota-
tion. For the hinges we obtain an error of 2.40±0.81mm in CT, 2.56±0.71mm in
TEE and 2.30±1.56mm in 3D C-arm CT and for the commissures 2.74±1.01mm
in CT, 3.31 ± 1.55mm in TEE and 2.98 ± 1.44mm in 3D C-arm CT.

The mesh-to-mesh error was computed between the ground-truth annotations
and the detected models in order to obtain quantitative results for the automatic
surface estimation. Results shown in table 1 confirm that our model-based fusion
estimation approach yields the best results.

In transcatheter aortic valve procedures both the selection of the appropriate
stent size but also the positioning of it in the intra-op data has clinical signifi-
cance. However in 3D C-arm CT the aortic valve annulus is not visible as the
contrast is injected at the cusp area. Fusing the 3D C-arm image with pre-op CT
data would allow the physician to properly examine the annulus area and enable
accurate positioning of the stent during the procedure. We evaluate the error
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Table 1. System precision for aortic valve surface model estimation in CT, TEE and
3D C-arm CT. Comparison between our novel model-based fusion approach and single
modality estimations.

single modality estimation fusion approach

Mean STD Median Mean STD Median

CT-TEE [mm] 1.22 0.23 1.13 1.09 0.22 1.10

CT-3D C-arm CT [mm] 1.96 0.54 1.99 1.73 0.49 1.79

Fig. 4. Bland-Altman plots for the aortic valve annulus circumference measurement
extracted from the model M with (a) independent detection in 3D C-arm CT and (b)
fusion of pre-op CT and 3D C-arm CT. (c) and (d) are showing short and long axis
views of the model M and the fused pre- and intra-op images I1 + φ(I2).

for the aortic valve annulus ring circumference, extracted from the estimated
aortic valve model M , by comparing the result of the independent detection in
3D C-arm CT image and our model-based fusion approach. Quantitative and
qualitative results are shown in figure 4.

5 Conclusion

In this paper, we propose a novel approach to estimate comprehensive pa-
tient specific models of the aortic valve by model-sensitive fusing of multimodal
pre- and intra-operative data. Fast and robust machine learning techniques are
employed during the estimation exploiting redundant and complementary in-
formation from the multimodal images. Thereby high-quality patient-specific
models are integrated into the imaging environment of operating rooms to guide
cardiac interventions. Comprehensive quantitative and qualitative experiments
on the aortic valve modeling demonstrate the effectiveness of our approach with
an accuracy of 1.09mm in CT-TEE and 1.73mm in CT-3D C-arm CT.
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Abstract. Functional nuclear imaging systems like PET or SPECT pro-
vide unique information that is used extensively in diagnosis, but it has
also proven very useful for image–guided interventions. In the case of
SPECT and radio–guided surgeries, 1D gamma detectors called gamma
probes are routinely used during interventions to localize hotspots in
conjunction with pre–operative SPECT images, or more recently, intra–
operative SPECT images. As the tissue is being manipulated during
surgery, these SPECT images quickly lose their validity, necessitating
either new scans, which is in most cases unfeasible, or requiring the
surgeon to do a mental update of the available imagery. In this paper,
we present a novel 1D–3D registration procedure for functional nuclear
imaging that registers tracked intra–operative 1D probe readings to a
pre– or intra–operatively acquired 3D functional image. This procedure
allows incorporating prior knowledge during radio–guided surgeries, en-
abling rapid updates of the visualization in the case of tissue deformation
without the overhead of an additional complete scan. We show results
using phantom data as well as patient data.

1 Introduction

Functional nuclear imaging modalities like PET or SPECT provide specific in-
formation to localize in 3D even very small tumors in several oncological appli-
cations [2,3]. Translating this information to the operating room however faces
several difficulties: the patient posture may change, treatment in between the
imaging and surgery might affect the region of interest and finally, tissue ma-
nipulation during surgery invalidates the previous imaging information [1].

In the case of SPECT and radio–guided surgeries, 1D gamma detectors (also
called gamma probes) are routinely used during interventions to localize hotspots
in conjunction with pre–operative SPECT images, or more recently, intra–
operative SPECT images [7] (see figure 1). The count rates from the gamma
probe, presented visually as well as acoustically (like a Geiger counter), help the
surgeon translating in his mind the available functional imaging information to
the current situation.
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In this work we suggest a novel, automatic 1D–3D registration procedure to
register 1D gamma probe readings, augmented by synchronized position and ori-
entation data acquired by an optical tracking system, to pre– or intra–operative
3D SPECT imaging data, which has been invalidated due to tissue manipula-
tion during surgery. We demonstrate our approach for the use case of sentinel
lymph node biopsies (SLNB) in breast cancer. Sentinel lymph node biopsy is
a technique to determine if breast cancer has spread into the lymphatic sys-
tem in a low morbidity way and is now standard practice for early stage breast
cancer patients [5]. In the SLNB procedure a low–energy radioactive tracer for
SPECT is injected near the tumor, and the lymph nodes showing radioactivity
as for example indicated by a hand–held gamma probe (i.e. the first nodes in the
lymph drainage path of the tumor) are then excised and examined histologically
for cancerous cells. Given the presence or absence of metastases in the excised
nodes, different treatments are indicated making this technique of major im-
portance in cancer staging. The possibility of selectively excising the first nodes
in the drainage of the tumor with the help of this nuclear medicine approach
allows better targeted surgery, less morbidity and shorter hospital stays for the
patient. Technical advancements like 3D intra–operative SPECT imaging are
poised to improve the accuracy of the SLNB procedure [6], but even there tissue
manipulation during surgery poses difficulties that can be addressed using the
introduced 1D–3D registration procedure in this work.

The technique suggested here is one step towards a future in which surgical
instrument containing integrated detectors provide a constantly updated view
of the radioactivity in tissue, allowing real–time updates of the guidance for
the surgeon, which results in faster and more efficient surgery as well as a better
quality control. This paper presents the methods employed for the proposed 1D–
3D registration procedure and evaluates the procedure using a series of phantom
experiments as well as patient data.

2 Methods

2.1 Input Data and Output

The registration method requires two inputs, a three–dimensional volume V ⊂
R3 (for example SPECT) and a series of tracked 1D probe measurements bj ∈ R,
j = 1, . . . , k (for example from a gamma probe), which are acquired during
the surgery. Here bj denotes the count rate (counts per second) of the probe,
and associated with each measurement bj are the synchronized position and
orientation (pj , oj) ∈ R3 × R3 as acquired by the tracking device. The output
of the method will be an updated 3D volume T̂ (V ), where T̂ : R3 → R3 is an
approximation of the optimal transformation transforming the no longer valid
volume V into the desired volume T̂ (V ).

The challenge in this registration method lies in the very limited number
of probe measurements covering only a fraction of the volume of interest due
to time and practical constraints. Several other factors also add complications,
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Fig. 1. a) shows two pre–operative projection angles of a scintigraphy for SLNB (top:
frontal, bottom: left lateral) with the lymph node (1), and the injection site (2), b)
shows the workstation with the gamma probe and the tracking device (3) during a
SLNB procedure, c) shows an augmented reality view of the surgery area. The visual
guidance overlay consists of the node in blue indicating the lymph node (4) and the
triangle in green, indicating the field of view of the probe (5). The hand–held gamma
probe is marked as 6.

namely the statistical nature of the detection process, the large field of view of
the gamma probe as well as inaccuracies of the tracking system along with the
lack of information of the tissue’s attenuation and scattering properties.

In the particular case of SLNB, the probe measurements are typically acquired
using gyrating movements around the suspected location of a lymph node, start-
ing at the old location indicated by the SPECT, moving closer to the current
location as guided by the probe measurements via visual or acoustic feedback.
This means that large parts of the SPECT volume are not covered by probe
measurements and that many measurement angles are missing.

To cope with this, the registration method partitions the SPECT volume into
a fixed part Vf and a moving part Vm, Vf ∪ Vm = V , Vf ∩ Vm = ∅. This is
accomplished by segmenting the lymph nodes N = {N1, . . . , Nl} in the SPECT
volume, choosing the lymph nodes M ⊂ N which are closest to the probe
measurement positions pj and then forming Vm =

⋃
M∈M bbox(M) as the union

of spherical bounding boxes around the nodes in M. We set Vf = V \ Vm. The
actual registration procedure is then only applied to Vm, that is, the output of
the method is T̂ (Vm), where T̂ : Vm → R

3 reuses the previous notation of the
unrestricted T̂ .

2.2 Registration Procedure

For choosing a deformation model, it is important to note that the deforma-
tion model can only incorporate information that is provided by the nuclear
probe. Even though the unlabeled tissue around the radioactively labeled nodes
restricts the nodes’ movement, no information about this tissue is available. In
particular, surgical operations like cutting or cauterizing change tissue and tis-
sue connectivity. Hence our deformation model treats each node in M as moving
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independently. Furthermore, each node in M is assumed to not deform from its
spherical shape. The deformation model then ends up as pure translations T̂ |M
for each M ∈ M.

For the actual registration, the probe measurements bj act as the fixed image,
while the moving image are measurements simulated from the current trans-
formed volume T (Vm), where T : Vm → R

3 denotes the current estimate of
T̂ . The similarity measure employed is sum of squared differences (SSD). This
results in the minimization of

T̂ = argminT

k∑
j=1

(
Pj

(
T (Vm)

)
− bj

)2 + reg
(
T (Vm)

)
, (1)

where Pj

(
T (Vm)

)
denotes the j–th simulated measurement from T (Vm), and

reg
(
T (Vm)

)
denotes a regularization term. In this work we used reg

(
T (Vm)

)
=

‖T (Vm)‖2
2.

The resulting minimization problem can be solved with standard optimiza-
tion methods. For this work we chose gradient descent, but other methods are
applicable as well.

The most notable part in equation (1) are the mappings Pj : Vm → R,
which perform the 1D–3D transformation step by simulating probe measure-
ments at position/orientation (pj , oj) from the moving image T (Vm). It can also
be thought of as a forward projection in tomography terms. This requires a
model of the detection process in the probe device, modeling characteristics like
detector sensitivity, collimation and shielding. In this work we employ a simple
solid angle physical model of the detection process, modeling the field of view,
angular detection as well as distance sensitivity analytically [4]. Any source in
T (Vm) is modeled as a Poisson distribution dependent on the activity in T (Vm),
as is regularly done in emission tomography. In mathematical terms we discretize
T (Vm) = (xi)i=1,...,n into n regular isotropic voxels, then

Pj

(
T (Vm)

)
=

n∑
i=1

model(pj , oj , xi), (2)

where model(pj, oj , xi) denotes the physical model, that is the contribution of
voxel xi to the measurement of the probe located at position/orientation (pj , oj).

3 Experiments and Results

3.1 Hardware Setup

SPECT/CT imaging was provided by a Symbia T6 system (Siemens, Healthcare,
Germany), intra–operative SPECT (in short: ioSPECT) by the declipseSPECT
cart system (SurgicEye, Germany). The gamma detector employed was a
Gamma–Probe System (Crystal Photonics, Germany), and tracking was per-
formed using a Polaris Vicra infrared optical tracking system (Northern Digital,
Canada) with reflective markers attached to both the gamma probe and to the
scanning target (phantom or patient).
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Fig. 2. Left: the phantom with three hollow spheres filled with a 99mTc solution. The
arrows illustrate scanning directions for ioSPECT, scanning from top not shown. The
red sphere is moved by 2cm to simulate deformation during surgery. Middle: full scan
suited for reconstruction (arrows (green/red) indicating gamma probe measurements).
Right: a fast search scan, with much less measurements and covering a much smaller
region, used for registration.

3.2 Phantom Experiments

The phantom consists of a plastic cylinder mounted on a rectangular base plate,
which also mounts the tracking target with reflective markers. Inside the cylinder
three hollow spheres with a radius of 9.86mm each are mounted at mid–height in
a triangular fashion with a separation of 4cm each. A Technetium–99m solution
is filled into these spheres to simulate radioactive lymph nodes. The three spheres
contained an activity of 1.6MBq, 1.6MBq and 1.65MBq. No attenuating medium
has been used. One of the spheres could be moved by 2cm away from the other
two spheres to simulate deformation during surgery, see Fig. 2 for an illustration.

Three series of experiments were performed on the phantom. Series 1: V is a
SPECT from the SPECT/CT device, 4 search scans (used as the 1D input bj for
the registration) were performed. Series 2: V is an ioSPECT with a search scan
performed after reconstruction, repeated 4 times. Series 3: V is an ioSPECT
scan with a search scan performed after reconstruction, repeated 8 times. All
the experiments were performed with the same equipment.

The SPECT V was discretized into 128 × 128 × 55 isotropic voxels of size
4.8mm. The registration of the SPECT to the tracking coordinate system was
performed via the CT that was generated as part of the SPECT/CT acquisition
(the SPECT and the CT are automatically co-registered). The ioSPECT used
a 50 × 50 × 20 volume for V with isotropic voxels of size 2.5mm, the scanning
protocol is illustrated in Fig. 2. The ioSPECT scans contained an average of
4832 measurements (min. 3576, max. 5445) with a scan duration between 4
and 5 minutes. The search scans all took about 30 seconds and contain 534
measurements on average (min. 513, max. 629). See also Fig. 2 for examples of
a full scan versus a search scan. For all the experiments, the actual computation
times of the registration process are on the order of seconds.

3.3 Phantom Results

We evaluate several types of errors. First, the accuracy of SPECT and ioSPECT
compared to CT for series 1 and 2 is calculated using the euclidean distance
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Table 1. Results of the phantom experiments

accuracy of V ground truth 3D error 2D in–plane error
compared to CT (average) (average)

series 1 (SPECT) 4.6mm CT 7.5 ± 1.4mm 4.8 ± 0.6mm
series 2 (ioSPECT) 11.9 ± 6.6mm CT 9.5 ± 2.3mm 7.9 ± 3.0mm
series 2 (ioSPECT) 11.9 ± 6.6mm ioSPECT 8.1 ± 6.7mm 2.2 ± 1.2mm
series 3 (ioSPECT) n/a ioSPECT 7.1 ± 2.8mm 4.2 ± 2.9mm

between the centers of mass of the segmented spheres in both modalities. For all
series, the 1D–3D registration was performed using the search scan of the moved
phantom and compared the result to the ground truth. Here we computed two
error measures, the positional euclidean error in 3D, as well as a 2D euclidean
error in a plane orthogonal to the surgeon’s view. This latter error is more
relevant in actual surgeries, as the surgeon is mainly interested in the location of
nodes in the plane orthogonal to his viewing direction, since this determines the
cutting direction, whereas a node that is located farther away but in the correct
cutting direction is less of an issue. All the error types for series 1, 2 and 3 are
summarized in Table 1.

For series 3, the search scan data was also tomographically reconstructed
(using the same method as for ioSPECT) and then registered to the ioSPECT
using a standard SSD–based 3D–3D registration. The 3D average error here was
30.4 ± 13.8mm, the 2D average error was 15.2 ± 7.0mm. This clearly shows
that the search scan data is insufficient for tomographic treatment. In contrast,
the error of the proposed 1D–3D registration method was 7.1 ± 2.8mm (3D
average error) and 4.2 ± 2.9mm (2D in–plane average error), which is close to
the inaccuracies of SPECT and ioSPECT themselves (4.6mm and 11.9±6.6mm).
It is also interesting to note that the registration error using ioSPECT as ground
truth is smaller than the one using CT as ground truth, as both ioSPECT and
the search scan for registration use the same physical equipment with the same
measurement error sources.

For series 3, we also studied the effect of using less than 500 average search scan
data points, i.e. scanning with the probe for even less time. The measurements
were thinned out, but still covered the same region, the results are outlined in
Table 2. As long as the same area is covered, the registration error does not
change significantly, even when just using 10% of the search scan data.

Finally for series 3, a full ioSPECT data scan with an average of 4832 measure-
ments was used as a “search scan”, here the average 3D error was 6.3± 2.5mm,
the average 2D error was 3.7 ± 2.4mm. This shows that when enough data is
available to do a proper tomographic reconstruction, the results will be superior
compared to our registration approach. However, in practical situations, having
enough data for a reconstruction is not feasible due to the extra duration of the
scanning and reconstruction procedure.
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Table 2. Results of phantom experiments of series 3 using less search scan data

series 3 (ioSPECT) no. of mea- 3D error 2D in–plane error
(ground truth ioSPECT) surements (average) (average)

100% search scan 500 7.1 ± 2.8mm 4.2 ± 2.9mm
50% search scan 250 7.0 ± 2.7mm 4.2 ± 2.7mm
33% search scan 165 6.9 ± 2.9mm 4.2 ± 3.1mm
25% search scan 125 6.7 ± 2.6mm 4.0 ± 2.7mm
20% search scan 100 6.8 ± 2.5mm 4.6 ± 2.8mm
10% search scan 50 6.5 ± 2.7mm 4.5 ± 2.7mm

3.4 Experiment with Patient Data

For a more realistic evaluation, we test the registration method on patient data as
well. For this an ioSPECT of a breast cancer patient undergoing sentinel lymph
node biopsy was used with 7078 measurements reconstructed into a 40×50×25
volume with isotropic voxels of size 5mm (see Fig. 1). The radioactive lymph
node was segmented and artificially moved 40mm from its original position, sim-
ilar to the phantom experiment. We perform a search scan of 350 measurements
on the patient to register the artificially moved nodes back to their original posi-
tion. The resulting 3D error with respect to the ioSPECT ground truth is 4.2mm
and the 2D error is 4.2mm as well.

4 Discussion

The accuracy of the proposed registration method is clinically acceptable using
ioSPECT as ground truth, since the accuracy of clinical SPECT is between 5mm
to 12mm. As one of the aims is to update ioSPECT data, using it as ground
truth seems most appropriate. When using pre–operative CT as the ground
truth, results suffer, as tracking errors have a higher impact in this scenario.
Our evaluation on the patient data set is satisfactory. Even though gathering
intra–operative patient data is complex, we plan to investigate further into this
direction, in particular analyzing shorter and shorter scan times.

The registration accuracy is limited by the inherent resolution limitations
of functional imaging as well as the tracking inaccuracies. However the quality
of the input volume used as prior information is also crucial. Intra–operative
SPECT scans vary in quality, especially if performed by inexperienced operators.
Please note that the flexibility offered by the intra–operative SPECT comes at
such a cost. Such compromises within surgical environments are acceptable since
the information is provided not to a surgical robotic system, but to an expert
surgeon in order to improve his or her performance.

5 Conclusion

To our knowledge this is the first work proposing a 1D–3D registration method
for intra–operative functional imaging, which allows registering 3D volumes to
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1D measurements with an accuracy suitable for a surgical setting. Our approach
provides 3–dimensional image data but requires less readings, and is therefore
faster, than a complete scan. Together with upcoming developments of intelligent
surgical instruments including integrated detectors this method will enable real–
time updates for the guidance of surgeons towards deep–seated targets, resulting
in faster and more efficient surgeries and a better quality control.
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Abstract. In order to use pre-operatively acquired computed tomogra-
phy (CT) scans to guide surgical tool movements in orthopaedic surgery,
the CT scan must first be registered to the patient’s anatomy. Three-
dimensional (3D) ultrasound (US) could potentially be used for this pur-
pose if the registration process could be made sufficiently automatic, fast
and accurate, but existingmethods have difficulties meeting one ormore of
these criteria. We propose a near-real-time US-to-CT registration method
that matches point clouds extracted from local phase images with points
selected in part on the basis of local curvature. The point clouds are repre-
sented as Gaussian Mixture Models (GMM) and registration is achieved
byminimizing the statistical dissimilarity between the GMMs using an L2
distance metric. We present quantitative and qualitative results on both
phantom and clinical pelvis data and show a mean registration time of
2.11 s with a mean accuracy of 0.49 mm.

Keywords: US-CT registration, point cloud matching, local phase fea-
tures, curvature, Gaussian mixture model registration.

1 Introduction

US has emerged as a desirable intra-operative imaging modality for computer-
assisted orthopaedic surgeries, as it is inexpensive, safe and real-time. Despite
its many desirable characteristics, it can be difficult for a surgeon to utilize,
since B-Mode US images are susceptible to noise, artifacts and a limited field of
view. To overcome these deficiencies, US can theoretically be fused with a high
resolution image that has a high signal-to-noise ratio, such as pre-operative CT,
but in order for US and CT to be successfully used in tandem to visualize bone
in orthopaedic surgery, they must be quickly and accurately registered.

Several methods of registering US to CT have been proposed in recent years,
but current methods are not sufficiently fast for real-time use. The most widely
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used registration method in computer assisted orthopaedic systems (CAOS) to
date is the iterative closest point (ICP) algorithm. Methods have been proposed
to improve the robustness and speed of the standard ICP method [1,2]. Although
relatively successful, ICP exhibits susceptibility to converging to local minima
and, therefore, a close initial manual alignment is necessary. Moghari et al. [3]
proposed a point-based registration algorithm based on the Unscented Kalman
Filter where he achieved more robust and accurate registration results compared
to standard ICP. The main drawback of their approach is the need to manually
extract bone surfaces from US data. Some researchers have tried to automate
the extraction of bone surfaces from US images [4]; however, the techniques
were limited to two dimensions (2D). Winter et al. [5] maximized the sum of
the overlapping gray values of pre-processed CT bone surfaces and the Three-
dimensional (3D) US volume. While this method showed accurate registration
results, it assumed a fixed probe orientation for CT pre-processing, which signif-
icantly reduces its practicality in real life applications (e.g., in fracture surgery
where the US probe needs to be realigned after a fracture reduction). Penney et
al. [6] created probability images of the CT and US data and registered these us-
ing a normalized cross-correlation metric. The registration results were accurate;
however manual segmentation of the CT and US volumes was required to create
training sets for the probability images. A more recent method for intensity-
based registration involves simulating US images from re-sliced CT data [7] that
is updated throughout the registration process, which Gill et al. [8] later ex-
tended for registering bone surfaces of the spine. They were able to achieve a
mean target registration accuracy of 1.44 mm for phantom scans and 1.25 mm
for sheep cadaver scans; however their intensity-based registration took an av-
erage of 14 minutes on a central processing unit (CPU) and 11 seconds when
implemented on a graphics processing unit (GPU).

To move closer to the goal of fully automated real-time registration of 3D US
to CT volumes, we propose in this paper a registration method based on using
local phase information to identify surface points in the US volume, culling the
points in both the US and CT volumes based in part on curvature metrics and
registering the two point clouds using a GMM technique. We demonstrate im-
proved accuracy and run-time compared to state-of-the-art techniques on pelvic
phantom and clinical data.

2 Methods

2.1 Image Pre-processing and Bone Surface Extraction

One of the main challenges of point-based registration of US and CT volumes is
extracting a point set from the US data that corresponds with a point set from
the CT set. Recently, 3D local phase information has been proposed to extract
the surfaces of bones in US volumes [9] using a 3D Log-Gabor filter, LG(ω) to
extract local phase information in the B-Mode US volume:

LG(ω) = e
− log(ω/ωo)2

2log(κ/ωo)2 × e
−α(φi,θi)

2

2σ2
α . (1)
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In Equation 1, κ defines the bandwidth of the filter, which determines the fre-
quency specificity. α(φi, θi) is the filter’s angle between the azimuth (φ) and the
elevation (θ) angles. The angular bandwidth is determined by σ. The Log-Gabor
filter is built on multiples of the minimum wavelength, λmin, which determine
the centre frequency ωo as ωo = 2/λmin×(δ)m−1 for the scaling factor δ and mul-
tiple m. The even and odd components, erm(x, y, z) and orm(x, y, z), of LG(ω)
are calculated using the real and imaginary responses of the Log-Gabor filter for
each point (x, y, z). The 3D phase symmetry (PS) is defined in Equation 2 for
each scale (m) and orientation (r):

PS3D(x, y, z) =

∑
r

∑
m

�[|erm(x, y, z)| − |orm(x, y, z)|]− Tr�∑
r

∑
m

√
e2rm(x, y, z)− o2rm(x, y, z) + ε

. (2)

Here, Tr is a threshold to account for noise in the US image and ε is a small num-
ber to avoid division by zero. The bone surface is determined as the maximum
PS value along the direction of the US probe.

Compared to the bone surface segmentation of US, CT segmentation is rela-
tively simple. Typically, CT can be segmented using a binary threshold at 200
H.U. Ray-casting is then used to find the bone surface in these binary CT vol-
umes resulting in extracted surfaces that are one voxel thick.

2.2 Point Cloud Selection and Curvature Features

After the bone surface has been extracted from both the US and the CT data,
point clouds are created. Our experiments indicate that using between 800 and
1,000 points in each data set produces a reasonable trade-off between a fast
run-time and accurate results when matching the volumes using GMMs. Our
extraction of both US and CT bone surfaces in Section 2.1 constitutes data re-
duction from a volume of over 4 million voxels to approximately 10 thousand
surface points. To register these volumes in real-time, it is helpful to further
significantly reduce the number of points. Therefore, we sub-sample the points
extracted in 2.1 to create point clouds for registration, keeping only 5% of the
surface points. Though sub-sampling generally preserves the low curvature re-
gions, high curvature regions may be significantly degraded. For example, when
matching the iliac spine region of the pelvis using only a sub-sample of the bone
surface, registration is accurate and robust with respect to the pelvic table. This
is sufficient for 2D registration of the pelvis, but there is little low curvature
variability between slices along the iliac spine and this lack of distinguishable
features renders the volumes prone to mis-alignment along the crest in 3D regis-
tration. To better preserve these salient regions, we use Gaussian curvature, K,
to localize high curvature features of the bone surface. K is the product of the

principle curvatures κ1 and κ2 and is expressed as [10]: K = κ1κ2 = eg−f2

EG−F 2 ,

where E = ||xu||2, F = xu · xv and G = ||xv||2 are the coefficients of the
first fundamental form, and e = (xuuxuxv)/

√
EG − F 2, f = (xuvxuxv)/

√
EG − F 2 and
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g = (xvvxuxv)/
√
EG − F 2 are the coefficients of the second fundamental form for

the surface x(u, v). The top decile of curvature values contribute to the point
cloud.

2.3 GMM Registration of US and CT

We registered the US and CT volumes by representing the corresponding point
clouds as GMMs and minimizing the distance between the models. GMMs are
statistical models representing an entire population using multi-dimensional
Gaussian distributions to describe sub-populations, known as components and
are represent by the probability density function, p(x). Each component den-
sity, φi, is characterized by its mean, μi and its covariance matrix, Σi. Using a
GMM to represent a point cloud alleviates the need to find point-to-point corre-
spondence between volumes—a major obstacle in many point-based registration
methods.

The GMMs are iteratively registered using the L2 similarity metric. The L2
distance has the advantage of having a closed-form solution. The registration
algorithm minimizes the L2 cost function of the two GMMs representing the
model point cloud, M(x) = pm(x), and the scene, S(x) = ps(x) with a rigid
transformation, T(M(x), θ, t), giving the L2 distance:

dL2(M(x),S(x), θ, t) =
∫
(S(x)−T(M(x), θ, t))2dx. (3)

It should be noted that the scene model, S(x), is fixed during the optimization
and

∫
T(M(x), θ, t)2dx is invariant for rigid transformations, so minimizing the

L2 distance in Equation 3 becomes equivalent to solving:

argmin
θ,t

[dL2(M (x),S(x), θ, t)] = argmin
θ,t

[
−

∫
S(x)T(M(x), θ, t)dx

]
. (4)

Given Equation 4 and the formula
∫
φ(x|μ1, Σ1)φ(x|μ2, Σ2)dx = φ(0|μ1−μ2, Σ1+

Σ2), the closed form expression for the L2 distance between GMMs can be
found [11].

2.4 Validation Setup

Phantom Data: In the phantom study we used a Sawbone pelvis #1301 (Pacific
Research Laboratories, Inc., Vashon, WA) with 38 1 mm fiducials attached to the
surface of the iliac crest and pubic bone. Ten 3D US volumes were acquired of the
phantom and were used to create ten US-CT registrations. The US volumes were
taken with a G.E. Volusion 730 Expert Ultrasound Machine (GE Healthcare,
Waukesha, WI) using a 3D RSP4-12 probe in a water bath. The US phantom
volumes were 152x198x148 voxels with an isometric resolution of 0.24 mm. A CT
volume was taken with a Toshiba Aquilion 64 (Tustin, CA) and has a resolution
of 0.76 mm×0.76 mm×0.3 mm. The pre-processing steps were implemented in
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Matlab and the registration was implemented in C++ on a 3.0 GHz Dual Core
Intel Xeon CPU using 64-bit Windows 7 and 8 GB of RAM.

Point clouds were created both with and without high curvature features.
The fiducial registration error (FRE) was calculated as the average distance
between all corresponding fiducial pairs found in both volumes and the surface
registration error (SRE) was calculated as the rms distance between the surfaces
found in the two imaging modalities.

Each of the ten data sets used for registration as described in Section 2 was
comprised of one 3D US volume and a CT volume cropped to the area of inter-
est. The phantom volumes were typically misaligned by as much as 26 degrees
and translated by 22mm. For each volume, approximately 800-1000 points were
automatically selected on the bone surface. Successful registration should have
an error less than 2 - 4 mm for fracture reduction applications in CAOS[12].

Clinical Data: Validation was completed on three US - CT sets acquired from
a pelvic fracture patient prior to fracture reduction surgery. The US volumes
were acquired using the same setup as described in the phantom study. The CT
volume was 512x512x121 voxels and had a resolution of 0.73 mm×0.73 mm×2.0
mm. The SRE and registration run-time were used to quantitatively validate the
results.

3 Results and Discussion

Figure 1 shows the results of the pre-processing and registration of the phan-
tom. The resulting surfaces are closely matched, as reflected by the qualitative

Fig. 1. Qualitative results of the phantom study: (a) is the B-Mode volume of the
iliac spine. (b) is the corresponding PS volume. (c) shows the entire CT of the pelvis
with the region of interest enclosed in the red box. (d) is the thresholded CT region
of interest of the iliac spine. (e) shows the PS volume overlaid on the thresholded CT.
Note that the fiducials are visible in both the US and CT volumes.



240 A. Brounstein et al.

Fig. 2. Quantitative results: (a) is a summary of the quantitative phantom results
comparing registration completed with and without reinforcing the point clouds with
high curvature features, K. (b) is the results of the clinical data study. (c) is the box
plot of the phantom results, showing the large standard deviation of the FRE in cases
when curvature features are not used.

Fig. 3. Comparison of registering volumes with and without K: (a) is a slice of a CT
volume. (b) is a slice of a US volume that was registered to (a) using K features. (c) is
the same slice of an US volume registered without K. Notice the fiducials (red squares)
are visible in (a) and (b) and not in (c), due to a misregistration along the iliac crest.

results in Figure 1 (e). The SRE was very low in all tests and averaged 0.49 mm
when curvature metrics were used (vs 1.30 mm when not). The FRE noticeably
improved when Gaussian curvature features, K, were used to create the point
clouds, Figure 2 (c) - 1.22 vs 3.71 mm. The consistent SRE demonstrates the
ability of GMM registration to reliably match surfaces; the improved FRE for
tests including K indicates that curvature features improve registration when
other surface features are too similar. The average run-time of the registration
of all tests was less than 2.11 s. It should be noted that the PS surface has been
reported to be biased slightly inwards relative to the bone surface (on the order
of 0.4 mm) [9], which likely contributes slightly to the FRE.

Qualitative results of the clinical study can be seen in Figure 4. The US
volumes were acquired in a region of the iliac spine unaffected by the fracture.
The three pairs of registered data sets had a mean SRE of 0.63 mm and run-time
of 1.99 s for tests including high curvature points and can be seen in Figure 2.
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Fig. 4. Qualitative results of the clinical study: (a) is the in vivo B-Mode US and (b)
is the PS. (c) is the CT data of a pelvic fracture patient with the region of interest
enclosed in the red box. (d) is the thresholded region of interest. (e) and (f) are 2D
slices of the CT and US respectively, and (g) is the fused overlaid slice.

4 Conclusion

We proposed a novel method for near real-time 3D US-CT registration using
GMM matching of automatically extracted phase and curvature features. We
demonstrated the high discriminability of our feature point extraction and have
shown that reinforcing highly sub-sampled local phase information with points in
high curvature regions improves the robustness and accuracy of the registration
without significantly increasing the run-time of the registration. Validating our
method on both phantom and real clinical data showed over 80% improvement
in run-time compared to state-of-the-art methods [8] with an average accuracy
improvement of over 65%. Our method is aimed for prospective US-based OR
guidance and thus we will focus our future work efforts on achieving real-time
operation by optimizing this algorithm to run on the GPU.
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2D X-ray Fluoroscopy
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Siemens Corporation, Corporate Research,
755 College Road East, Princeton, NJ, USA

Abstract. 2D X-ray fluoroscopy is widely used in computer assisted and
image guided interventions because of the real time visual guidance it can
provide to the physicians. During cardiac interventions, acquisitions of
angiography are often used to assist the physician in visualizing the blood
vessel structures, guide wires, or catheters, localizing bifurcations, esti-
mating severity of a lesion, or observing the blood flow. Computational
algorithms often need to process differently to frames with or without
contrast medium. In order to automate this process and streamline the
clinical workflow, a fully automatic contrast inflow detection algorithm
is proposed. The robustness of the algorithm is validated by more than
1300 real fluoroscopic scenes. The algorithm is computationally efficient;
a sequence with 100 frames can be processed within a second.

Keywords: Contrast detection, fluoroscopy, vessel detection.

1 Introduction

Image-guided interventions have become more and more important for different
advanced cardiovascular treatments in recent years. They are widely used for
pre-operative planning, intraoperative guidance, and post-operative assessment.
In interventional cardiology, 2D X-ray fluoroscopy is still used as the standard
imaging modality due to the real time visual guidance it can provide to the
physicians. During interventions, it is common to have several angiography ac-
quisitions throughout the entire procedure. An angiography is acquired by in-
jecting a radio-opaque contrast medium into the blood vessel and imaging with
X-ray fluoroscopy. Physicians can then visualize the vessels and the blood flow
to facilitate the operation.

Although it is rather easy for a physician to tell when the contrast medium
appears in a fluoroscopy scene and make judgements accordingly, an automatic
contrast inflow detection algorithm is desired for many computer assisted inter-
ventions. A few examples include: 1. In a stent enhancement application such as
[7], the algorithm needs to discard frames with contrast medium since they could
undermine the visibility of stent enhancement. For this purpose, the algorithm
needs to determine whether there is contrast injection during the acquisition. If
there is, the algorithm has to estimate at which frame the contrast inflow be-
gins to appear and only pre-contrast frames should be processed. 2. In order to
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generated a DSA-like enhancement on coronary arteries [13], the algorithm has
to know when the contrast inflow begins to appear so that masks are collected
from frames which are free of contrast medium. 3. In order to improve the over-
lay of a 3D model when contrast agent is present [6], the system has to know the
presence of contrast medium so that it can register the vessel/aorta with a pre-
segmented vessel/aorta model. 4. In order to provide automatic roadmapping [2],
the algorithm needs to know when the contrast agent appears in the fluoroscopy
to disable the overlay. All these interventional procedures can be streamlined
with a robust and automatic contrast inflow detection algorithm such that the
physician can obtain desired information with less interactions or constraints.

Robust contrast inflow detection in a large scale is challenging. Little work
has been done in the literature. Ideally, sharp changes of the overall intensity
histograms along the temporal domain can be used as potential candidates indi-
cating when contrast inflow appears. Nevertheless, this works poorly in practice
since moving diaphragm and other darker regions can often appear in cardiac X-
ray images and mislead the algorithm. Condurache [2] et al. proposed a method
which applies morphological operations and a difference of Gaussians (DoG) fil-
ter to generate a vessel map. A threshold is then applied to the histogram of the
vessel map to decide whether contrast medium appears.

Based on our experience, the main challenge of automatic contrast inflow
detection lies in the high variability of data, especially when the images are
often acquired using low dose radiation where the contrast medium is weakly
detectable by a traditional filter. Previous methods such as [2] were evaluated
only on a limited number of data sets and are with empirically set parameters.
They can hardly be generalized to work in different clinical applications.

In this paper, we present a learning-based framework to overcome this prob-
lem. Given an input fluoroscopic sequence, the proposed framework first classifies
it into a contrast scene (CS), where there is contrast medium injection during
the acquisition, or a non-contrast scene (NCS), where contrast medium is not
used during the acquisition. For a contrast scene, the algorithm then estimates
at which frame the contrast inflow begins to appear in the image. We call this
frame the beginning contrast frame (BCF). In order to achieve high robustness
against data variability, more than 1300 real fluoroscopic sequences are collected
at clinical sites in US, Asia, and Europe. Promising results are obtained.

2 Methodology

The use of the discriminative learning techniques has been proven in many med-
ical imaging applications [1][11] as well as in interventional applications [13][10]
with high accuracy and efficiency. One of the reasons is that in medical imaging,
data variability is often high due to different clinical settings, patients, or dose
of radiation. Learning from a large labeled database is one of the most reliable
and systematic methods to achieve high robustness against data variability.

Given an input sequence of a fluoroscopic scene, the proposed framework has
to first determine whether this is a contrast scene (CS). If it is, the framework
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Fig. 1. Workflow of the proposed framework

then estimates the beginning contrast frame. This is more difficult than doing the
second step alone, where contrast injection is known for sure to the algorithm.

To solve this problem, we propose a learning-based framework which combines
multiple classifiers. Figure 1 illustrates the workflow of the proposed contrast
inflow detection framework, where vessel segments detector outputs probability
of a patch being inside the vessel or not. The contrast medium detector is a
binary classifier to determine whether an input scene is a contrast scene (CS)
or a non-contrast scene (NCS). At last, the contrast inflow detector outputs the
index of the frame which has the highest probability being the BCF.

2.1 Learning-Based Vessel Detection

T o achieve a robust solution against large data variability, we make use of the
discriminative learning technique to facilitate contrast agent detection. Tradi-
tional vesselness measurements use different kinds of ridge filters, gradient, edge
filters to estimate the vessel-like structures inside an image. Nevertheless, due to
the noisy characteristic of the X-ray images, false positives can easily happen. On
the other hand, because of preferable low dose radiation in clinics, false negatives
on smaller vessels can hardly be avoided. It has been shown that [12] learning
based vesselness measurement not only can achieve better performance than
conventional filtering based approach [4] but also can be more computationally
efficient. For this reason, a learning-based vesselness measurement is applied in
our framework. While [12] tried to learn the vesselness in 3D CTA data, we train
a learning-based classifier to measure the vesselness for a fluoroscopic image.

To obtain a probability score for a given image to indicate how much contrast
(vessel) is present, a binary classifier is implemented as a vessel segment detector,
which is learned from a large set of vessel and non-vessel fluoroscopic images.
The probabilistic boosting tree (PBT) algorithm [8] is used to learn the classifier.
Given an image patch Ipatch, the PBT classifier calculates the conditional proba-
bility that a vessel segment appears in this patch P (vessel|Ipatch). For efficiency,
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Fig. 2. Haar wavelet-like feature type examples

Fig. 3. Input images and the vessel detection results. The darker the red color is, the
higher the score is.

the vessel detector is applied to a down-sampled image. Specifically, images are
resized to 128×128 for both training and detection. We first apply a set of steer-
able filters [5] to find ridge points in different orientations in the contrast image.
The learned PBT classifier is then applied to each ridge point to compute the
probability that the ridge point is from a vessel. A detected vessel region can be
defined as the image area where vessel segments are detected with high probabil-
ities. The remaining area of the image contains primarily background structures
and is defined as the background region. For vessel segment detection, we choose
Haar wavelet-like features generated within a patch size of 8×10. Some examples
are shown in Figure 2, which are efficiently calculated using integral image-based
techniques [9]. In our implementation, 120000 patches of vessel segments were
collected from coronary images to train the PBT classifier. The same number of
negative patches were generated automatically by any position which is 10 mm
away from the positive patches. The vessel segment detector are tested on 367
images where the coronary vessels were manually annotated. Figure 3 illustrates
two examples of the original image and the response of our vessel detector.

2.2 Contrast Medium Detection

With the vessel measure for image, we define a vesselness score vector V for an
input sequence:

V = {v1, v2, . . . , vn}, (1)

where n is the number of frames in the sequence. vi =
∑
P (vessel|Ipatch) for all

patches in frame i, which represents the vesselness score for the whole image of
frame i.

Given the vesselness score vector V, smoothed vectors GV1 ,GV2 , ....,GVm

are calculated by applying Gaussian kernels to V with m different variance σ2.
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Fig. 4. From left to right: an example of the values of V, and one example of GV, F′,
and F′′. The horizontal axis represents the frame index number.

In practice, we set m = 10 to include kernel sizes range from 3 to 31 frames.
Vectors of the first order and the second order derivatives F′

1,F
′
2, ....,F

′
m+1 and

F′′
1 ,F

′′
2 , ....,F

′′
m+1 for V, GV1 ,GV2 , ....,GVm are then calculated. From each

vector of V, GVs, F′s, and F′′s, the following values are calculated as features.
The goal is to capture the magnitude and slope of the changes of vesselness
measurement throughout the sequence. Let X be any of the aforementioned
vector, X ∈ {V,GVs, F′s,F′′s}, and let xa = min(X), xb = max(X), xc =
median(X), xd = mean(X), xe = std(X). For each X, it is divided into 10
disjoint parts x1,x2, ...,x10, where

∑
i |xi| = n, and |xi| = n

10 . The minimum,
maximum, median, mean, and standard deviation are also calculated for all xi

of each X. At last, absolute differences and ratios between each pair of these
values are also added into the feature pool. For example, we find one of the
most important features is |xb −mean(x1)| for V, which capture the change of
vesselness between the frame with the highest vesselness score and the beginning
frames, which are contrast free. Since we only need a binary classifier instead of
a probabilistic classifier, a support vector machine (SVM) [3] using radial basis
function (RBF) as kernel is then applied to train a binary classifier to decide
whether a given sequence is a contrast scene or a non-contrast scene. Figure 4
illustrates an example of V, GV, F′, and F′′.

2.3 Contrast Inflow Detection

If the previous classifier reports that there is no contrast injection in the input
scene, the algorithm terminates and outputs NCS to the user. Otherwise, the
next task is to find the beginning contrast frame (BCF).

In order to reduce the variation due to different acquisition frame rates, given
the vesselness score vector V of an input sequence, V is sub-sampled using a
standard acquisition frame rate. In our case, 15 fps is chosen as the standard
acquisition frame rate. By doing so, we try to normalize the sequence to have
a closer blood flow rate and facilitate the detection of BCF. Let V̂ be the sub-
sampled vector.

Manual labels of BCF for all the sequences in our database are used as gold
standard for a supervised learning. Let x be the labeled position in V and x̂ be
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its corresponding position in V̂. x̂ is marked as a positive example. For other
frame i ∈ {0, ..., |V̂|}, if i < x̂ − 3 or i > x̂ + 3, then i is marked as a negative
example. 1D Haar features generated from a window size of 11 frames at each
example are fed into the PBT classifier [8] to train a classifier P (f |V̂), where f
indicates the frame where contrast inflow begins. As a result, the BCF is learned
by the classifier:

BCF = argmaxf∈{0,..,|V̂|}P (f |V̂). (2)

3 Numerical Evaluation

In this section, we present the quantitative evaluation conducted on 1348 flu-
oroscopy sequences acquired during different interventional procedures, includ-
ing balloon angioplasty, chronic total occlusion (CTO), intravascular ultrasound
catheter pullback, and electrophysiology (EP) procedure. The sequences are ac-
quired in clinical sites in US, Asia, and Europe. Our goal is to collect a database
with large data variability.

In the first experiment, we evaluate the performance of the contrast medium
detection. In the 1348 sequences, there are 956 contrast scenes and 492 non-
contrast scenes. We apply a 4-fold cross validation on our data set, evenly dis-
tributed the contrast and non-contrast scenes into 4 parts. For each run, three
folds of the data are used for training and the remaining one for testing. The per-
formance is validated by missed detection and false detection. Missed detection
denotes that a contrast scene is misclassified as a non-contrast scene and missed
detection rate (MDR) is the number of missed detection over the total number
of contrast scenes. False detection denotes a non-contrast scene misclassified as
a contrast scene. False detection rate (FDR) is the number of false detection
over the total number of non-contrast scenes. Table 1 columns A1 and A2 show
the average training and testing errors, where the missed detection rate is less
than 2% and the false detection rate is less than 5%.

Table 1. Training and testing error of contrast medium detection. The unit of columns
B1, B2, B3 is frame number.

A1. MDR A2. FDR B1. Mean B2. Median B3. Max

Avg. training error 1.5% 3.3% 0.75 1.82 8
Avg. testing error 1.8% 4.1% 0.9 1.98 11

Although both the missed detection rate and the false detection rate are quite
low, we further look into the misclassified scenes and notice the following reasons
for misclassification. Most of the missed detection is due to extremely low signal
to noise ratio (SNR) or poor contrast visibility and when the scene includes
only a major vessel branch with very few branches. In such cases, the vesselness
scores of contrast-filled images and non-filled images are hardly distinguishable.
Figure 5 (A)-1, and (A)-2 shows one of such scenes. On the other hand, the main
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Fig. 5. (A)-1, (A)-2: A missed detection example. (A)-1 shows one frame before con-
trast injection. (A)-2 shows one of the frames with maximal contrast medium. (B),
(C): Two examples of false detection where there is contrast residue moving in the
background.

reason for false detection is because in some scenes contrast residue exists in the
vessel structures moving in the background, which confuses the detector. Figure
5 (B) and (C) illustrates two examples of false detection. In theory, catheters are
hardly distinguishable from the vessels and hence movement of catheters may
cause false detection as well. However, this is rarely observed in our experiments.

In the next experiment, we evaluate the accuracy of the beginning contrast
frame (BCF), which is measured by the error |L − D|, where L is the manual
label of BCF, and D is the estimated BCF by the detector. Among the 956
contrast scenes, we again apply a 4 fold cross-validation. Table 1 column B1,
B2, and B3 show the average training and testing errors, while Max shows the
maximum error across all 4 runs. The mean error is less than 2 frames, which
is highly accurate. The accuracy is sufficient for most of real applications. For
example, in the stent enhancement application, one can select frames before BCF
to generate the enhanced stent.

It is worth noting that another useful output of a contrast inflow detection is
a frame with sufficient contrast medium (e.g., presenting one angiography frame
to the physician). This can be obtained easily by outputting the frame with the
largest vi in an appropriate GV (c.f. GV in figure 4)

Lastly, we report the computation time of the proposed framework. Since the
vessel detector is only applied to small sub-sampled images (128×128), and the
remaining two classifiers are applied to 1D vectors, the computation is very fast.
It processes a sequence with 100 frames of original size 1024 × 1024 within 1
second on a Intel Xeon PC (2.2 GHz) with 3 GB RAM. The average processing
time on all the 1348 sequences is about 0.36 seconds, where the average number
of frames is 49.3 and the size of images range between 384× 384 to 1024× 1024.

4 Conclusion

Automatic contrast inflow detection has been found important in many inter-
ventional applications. Nevertheless, there is little work in the literature to solve
this problem in a large scale. In this paper, we present a learning-based frame-
work which combines three learned classifiers including both SVM and boosting
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methods to detect the contrast inflow. Experiments on more than 1300 real fluo-
roscopic sequences demonstrate that our method is very robust against different
clinical settings, dose of radiation, patients, etc. Both missed detection and false
detection rates are below 5% and the begin contrast frame can be accurately
estimated. In addition, it is with little computational overhead and can be per-
formed within 1 second for most of the fluoroscopic scene. The next step of our
work includes but is not limited to extending the current framework for online
detection.
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Abstract. Real-time image-guided cardiac procedures (manual or robot-
assisted) are emerging due to potential improvement in patient man-
agement and reduction in the overall cost. These minimally invasive
procedures require both real-time visualization and guidance for ma-
neuvering an interventional tool safely inside the dynamic environment
of a heart. In this work, we propose an approach to generate dynamic
4D access corridors from the apex to the aortic annulus for performing
real-time MRI guided transapical valvuloplasties. Ultrafast MR images
(collected every 49.3 ms) are processed on-the-fly using projections to ex-
tract a conservative dynamic trace in form of a three-dimensional access
corridor. Our experimental results show that the reconstructed corridors
can be refreshed with a delay of less than 0.5ms to reflect the changes
inside the left ventricle caused by breathing motion and the heartbeat.

Keywords: Cardiac Interventions, Real-Time Image-Guided Interven-
tions, 4D Access Corridors, and Magnetic Resonance Imaging.

1 Introduction

The advent of real time image guidance, especially combined with robotic ma-
nipulators, may offer new opportunities in interventional medicine. Among the
procedures that may benefit from image guidance are intracardiac procedures
on the beating heart, such as Transapical Aortic Valve Implantation(TA-AVI)
that entail access to the aortic annulus via an apical entrance. Such procedures
are usually performed under x-ray fluoroscopy or ultrasound guidance. Three-
dimensional ultrasound is commonly used due to its real-time volumetric data
collection and lack of ionizing radiation, and it can be combined with robotic
systems to synchronize the motion of a device and the heart [7]. Existing lit-
erature in the field of image-guided and/or robot-assisted surgeries is vast and
inclusive of highly innovative approaches; herein, we only focus on a few most
related efforts and it is by no means a comprehensive literature review.
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In TA-AVI visualization of the Area of Operation (AoO) (i.e., the left ventricle
(LV)) is crucial for manual or robot-assisted maneuvering of the interventional
tool, that is, constraining interventions inside the dynamic environment of LV
without harming healthy tissue. Recently, real-time magnetic resonance imaging
(MRI) has emerged as a promising modality for guiding TA-AVI [2,4] since it
offers certain advantages [1], such as: (a) a wide range of contrast mechanisms,
(b) on-the-fly adjustment of the imaging parameters, (c) an inherent coordinate
system, (d) tracking of interventional tools, and (e) lack of ionizing radiation.
Robot-assisted, MRI-guided TA-AVI have also been successfully demonstrated
[4,9]. For MRI guided intracardiac interventions, several studies have introduced
the concept of access corridors, trajectories, and virtual fixtures to reach the
targeted anatomy. In addition to imaging speed, another important factor is the
extraction and visualization of such access corridors. Ren et al. [8] introduced
the concept of dynamic virtual fixtures to assist the operator in minimally in-
vasive procedures in the beating heart. With virtual fixtures, abstract sensory
information extracted from preoperative dynamic MRI is overlaid to images to
avoid unwanted motion of the interventional tool. Recently, researchers have
also reported the generation of dynamic 3D access corridors from preoperative
short axis CINE MRI [9] and an efficient algorithm to track the motion of spe-
cific anatomical landmarks for guidance [10]. However, both the approaches used
CINE MRI that is slow (i.e., requiring several heart beats for one set) and thus
inappropriate for real-time guidance. Notably, real-time MRI can reach a speed
of 30ms per image [6].

As real-time MRI evolves, new methods can be pursued to improve guidance.
In this work, we demonstrates by proper image selection and scheduling, a slow
imagining modality (i.e. the MR scanner) can be used in real-time for guidance
by generating sufficient information of dynamic interventional environment. We
propose a novel algorithm for computing dynamic access corridors from oblique-
to-each-other, real-time MRI slices and demonstrate its usefulness for a TA-AVI.
The introduced three-step method introduces computational tools for:

– Dynamic MRI by collecting a number of oblique-to-each-other slices with
ultrafast MRI prescribed to image particular areas of interest,

– Extraction of the moving LV/endocardium by calculating boundary points
from signal intensity projections on those slices, and

– Generation of dynamic access corridor in form of 3D dynamic meshes from
those boundary points inside the moving LV.

2 Methodology

Generation of dynamic access corridors is based on two criteria. First, it should
ensure that the interventional tool does not harm the moving endocardial wall
and other vital structures including mitral valve leaflets, papillary muscles, and
chordae tendinae. Second, it should bring the tool to the targeted anatomy (aor-
tic root). In the proposed approach, generation of the dynamic access corridors
entails three steps that run in parallel, as shown in Fig. 1, and are described in
the following sections.
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Fig. 1. Illustration of the data collection and processing pipeline: Non-triggered sets
of three oblique MR slices are continuously collected (49.3 ms/image) and transferred
to the processing core. The core calculates a number of signal intensity projections (4,
2 and 2 for slices 1, 2 and 3 respectively; the numbers 1 to 8 denote the eight signal
intensity projections), extracts the boundary points of endocardium and aortic root,
organizes and refreshes them (shown by different color lines) to generate a dynamic
access corridor. To maintain a uniform frame rate, equivalent to that of MR image col-
lection, data from an individual slice acquisition is retained for the next two acquisition
steps until it is refreshed. TPROC is the time lag between MR collection and refreshing
the access corridor.

2.1 Collection of Dynamic MR Data

In our particular TA-AVI paradigm, imaging of the AoO is performed by continu-
ously collecting three oblique-to-each-other slices with ultrafast MRI (at TACQ =
49.3 ms/slice). These slices were selected preoperatively by the interventionalist
physician to image particular areas of interest (shown in Fig. 2a). In particular:
(1) Slice 1 (I1(t)) is a long axis of view that images the apical region of heart
and the aortic and mitral valves, (2) Slice 2 (I2(t)) is also a long axis view that
depicts the apical region of the heart, and (3) Slice 3 (I3(t)) is a short axis view
prescribed to include the aortic annulus and the LV.

2.2 Extraction of Boundary Points

As each individual MR image is collected, it is sent to a computer via the MR
scanner local network, where it is processed to extract the endocardium-LV
boundary points Xi,j(t) (i = slice index, j = marker index). The boundary points
are calculated from signal intensity projections that correspond to bands PrBi,
with a width Wi and a length Li (where i = 1 to 8). Those bands are assigned
preoperatively by the operator on scout MR runs, to monitor the motion of spe-
cific areas of the endocardium. In this case, the operator selects four projection
bands on slice I1(t) and two each on slices I2(t) and I3(t) (shown in Fig. 2a).
The selection of the projection bands is arranged so that PrB1, PrB2, PrB5,
and PrB6 depict the motion of the endocardium, whereas PrB3, PrB4, PrB7,
and PrB8 capture the motion of aortic root.

To calculate the boundary points in the coordinate system of the MR scanner,
the following algorithm is used. For each projection band, a local 2D coordinate
system is defined on the slice with its origin set at the center of the projection
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Fig. 2. (a) Example of the three slices (I1(t), I2(t) and I3(t)) and the eight operator
prescribed projection-bands (PrB1 to PrB8). The dashed lines on any one of the slices
show the intersection of other two slices, and the blue dots correspond to the boundary
points. (b) Representative Projection Pri,t(x) generated from the projection-band.

band PrBi and the axes parallel and orthogonal to its length (Fig. 2b). A pro-
jection profile Pri,t(x) is generated along the local X-axis of the band. For each
value of x, Pri,t(x) represents the averaged signal intensity along its width, i.e.
from (x,Wi/2) to (x,−Wi/2) at time t.

In the TrueFISP images, the myocardium exhibits lower signal intensity as
compared to the LV, and on the projection signal intensity appears as a deep.
To identify this deep, a threshold is applied and an algorithm traverses the
projection function along the X-axis starting from its center and moving along
both directions. The threshold is also selected manually from the scout MR
scans using a custom GUI gadget. A point is marked on the X-axis if the value
of Pri,t(x) falls below the threshold. After this step, two boundary points Xi,j1(t)
and Xi,j2(t) are extracted on the slice i at time t (indexing of the boundary points
with respective projection bands is given in Table 1). It takes 9 to 12 minutes
for cardiac MR technicians to set up the initial parameters for the pipeline.

2.3 Generation of 4D Dynamic Access Corridor

In this step, the dynamic access corridor at time t is represented with a triangular
mesh M(t) and is generated from the boundary points using a two-stage mesh
reconstruction process (Fig. 3a). In the first stage, a coarse structure is created
using the boundary points. The eight boundary points that correspond to the
motion of the endocardium, extracted from {PrBi} (i = 1, 2, 5 and 6), are
interconnected to define a coarse mesh M̃E(t). Similarly, a coarse mesh M̃A(t)
is defined for the aortic root from the remaining boundary points, extracted
from {PrBi} (i = 3, 4, 7 and 8). The region between the two meshes is created
by using Kochanek-Bartels curves [3]. As an example (shown in Fig. 3a) , curve
c1,t(u) is defined by the boundary points X1,1(t), X1,3(t), X1,5(t), X1,7(t) and
is interpolated between the points X1,3(t) and X1,5(t). Curves c2,t(u), c3,t(u),
and c4,t(u) are defined in a similar manner. It is noteworthy that the tangential
properties of the curve can be altered to adjust the deflection of the access
corridor from the endocardium to the aortic root.
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Fig. 3. (a) Generation of dynamic access corridor M(t) from boundary points (overlaid
on slices I1(t), I2(t) and I3(t)). (b) Generation of deflection mesh MD(t) from the
curves (overlaid on slice I1(t)).

The second stage refines the above coarse mesh structure. Points at regular
intervals on the curves c1,t(u), c2,t(u), c3,t(u), and c4,t(u) are interconnected
to form intermediate loops, which are further subdivided to get circular rings
[5]. These circular ring are then interconnected to form a deflection mesh MD(t)
(Fig. 3b). The coarse meshes M̃A(t) and M̃E(t) are also subdivided to get finer
meshes MA(t) and ME(t), respectively [5]. Since for the three meshes MD(t),
MA(t), and ME(t) we use the same subdivision scheme (with the same number
(n=2) of iterations), the three meshes can be stitched together to form the final
mesh M(t) without altering the positions of the boundary vertices.

Our refinement process is conservative in nature as the mesh M(t) is confined
within the region defined by the coarse meshes M̃A(t) and M̃E(t) and the curves
ci,t(u) (where i = 1 to 4). The region defined by the coarse meshes and the
curves is confined by the anatomical structures. For every time frame, the final
mesh M(t) will always have the same number of vertices and faces. Thus, the
vertices on the mesh could be indexed based on the nearby anatomical structure.
This allows the corridor to provide an adaptive guidance mechanism for an
interventional region. The total time required for computing the mesh from the
boundary points is given by TMESH .

3 Experimental Studies and Discussion

The proposed approach was experimentally tested and validated on a Siemens
1.5T Avanto MR scanner. Multislice non-triggered and free-breathing imaging
was performed with a true fast imaging with steady-state precession (TrueFISP),
at a TACQ = 49.3 ms per slice (Pixel Spacing: 1.25x1.25; FOV: 275x400; TR:
49.3ms; TE: 1ms; Matrix: 320x200; and Slice Thickness: 6mm). The computa-
tional core was implemented on a dedicated PC (Intel 3.2GHz processor with
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Fig. 4. Four selected frames from the stream generated by the computational core
showing the dynamic access corridor overlaid to the real time MR images (a) I1(t),
I3(t) and (b) I2(t) and I3(t). In (b) the dashed line is included for appreciation of
motion caused by breathing.

9GB RAM). Fig. 4 shows an example outcome of the access corridor superim-
posed onto two slices (out of three) for the sake of clarity. The deformation of
the access corridor secondary to heart beating, as well as its relative motion due
to free breathing, can be appreciated in those frames. For all the time frames in
our studies, we found the access corridor never collided with the endocardium
and aortic root depicted on the real-time MR images. The corridor acts as a
‘base mesh’ and could be further processed as per the needs of intervention.

With the interleaved multislice MRI, each individual slice is refreshed ev-
ery 3TACQ. Thus, one interesting question is to what degree this reduced (one
third) refreshing rate may result in loss of information. To assess this, we per-
formed experiments that continuously collected only one slice (every 49.3 ms)
and extracted the boundary points. Variations with time in the distance of the
boundary points from the origin ‖Xi,j(t)‖ (measured in the local coordinate sys-
tem of the projection band) were calculated. From those data, two signals were
generated (shown in Fig. 5a): the original (i.e. complete series) signal and one
that sampled the original every 3TACQ. The difference between the two signals
was used to calculate the error due to interleaving (shown in Fig. 5b). The mean
error EM and the correlation coefficient κ of the two signals for a period of 9
seconds is shown in Table 1. For all the boundary points, EM stays below two
pixel spacing.

Table 1 summarizes our analysis results reporting the time required to com-
pute each projection band (TPr,i) and the time lag (TPROC) between MR collec-
tion and refreshing the access corridor. Specifically, TPROC is computed as max
(
∑4

i=1 TPr,i,
∑6

i=5 TPr,i,
∑8

i=7 TPr,i) + TMESH . In the experiment ( parameters
described in Table 1), the measured TPROC was 0.261ms (i.e., 1/184 of TACQ);
and 0.194 ms (TMESH) was used for the meshing step. In general, for different
configurations TPROC stayed below 0.5 ms.
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Table 1.

Slice Projections Li(mm) Wi(mm) TPr,i(ms) Points EM(mm) κ

I1(t)

PrB1 55.13 6.13 0.018
X1,1(t) 1.22 0.83
X1,2(t) 1.07 0.84

PrB2 70.40 6.09 0.022
X1,3(t) 1.03 0.81
X1,4(t) 1.57 0.87

PrB3 47.05 5.93 0.013
X1,5(t) 1.41 0.78
X1,6(t) 1.89 0.64

PrB4 49.69 6.02 0.014
X1,7(t) 1.25 0.81
X1,8(t) 1.12 0.83

I2(t)
PrB5 62.84 5.07 0.021

X2,1(t) 1.36 0.83
X2,2(t) 1.18 0.84

PrB6 82.53 5.07 0.027
X2,3(t) 1.79 0.83
X2,4(t) 1.90 0.74

I3(t)
PrB7 64.96 18.94 0.043

X3,1(t) 0.60 0.92
X3,2(t) 0.43 0.95

PrB8 43.45 10.23 0.017
X3,3(t) 0.71 0.90
X3,4(t) 0.80 0.84

Fig. 5. (a) Comparison of the time-delay
effect. The single slice signal is sampled at
20.28Hz (i.e. 49.3 ms/slice) and the multi-
slice at 6.76Hz (i.e. 147.9 ms/slice). (b) The
error between single and multislice (n=3)
acquisition. The “Error” (Y axis) is the ab-
solute value of the difference between the
two signals.

Future work can be geared towards
optimizing MR collection in two di-
rections. First, while in this work the
flow of information is one-way (i.e.,
from the MR scanner to the process-
ing core), real-time feedback to the
MR scanner can be added to adjust
the orientation of the imaging planes
on-the-fly based on projections. Sec-
ond, 2D imaging can be substituted
with the collection of actual MR pro-
jections, as is the case with naviga-
tor echoes (with a 90-180 MR pulse
sequence to select a column through
the tissue and sample the actual pro-
jection from the MR signal). This
can further speed up data acquisition
(since a complete image is not col-
lected) and, in addition, improve the
SNR (since a read out projection is collected instead of an image).

4 Conclusion

This work proposes an approach to generate 4D access corridors for performing
interventions in the beating heart, from a non-triggered continuously acquired
set of oblique-to-each-other MR images. This approach is largely motivated by
the challenge associated with the inherent low sensitivity of MRI modality that
prevents collecting high SNR, and often high CNR, images in real-time. The re-
constructed corridor is virtually refreshed with the same speed as the individual
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MR slices are collected (in this case, 49.3 ms/image) with a delay of less than
0.50 ms. This dynamic corridor can be used, without or with an additional
safety margin (for a more conservative approach), for visual servoing, image-
based robot control, or force-feedback-assisted manual control.
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Abstract. We propose an automated method for preoperative trajectory planning 
of deep brain stimulation image-guided neurosurgery. Our framework integrates 
multi-modal MRI analysis (T1w, SWI, TOF-MRA) to determine an optimal 
trajectory to DBS targets (subthalamic nuclei and globus pallidus interna) while 
avoiding critical brain structures for prevention of hemorrhages, loss of function 
and other complications. Results show that our method is well suited to 
aggregate many surgical constraints and allows the analysis of thousands of 
trajectories in less than 1/10th of the time for manual planning. Finally, a 
qualitative evaluation of computed trajectories resulted in the identification of 
potential new constraints, which are not addressed in the current literature, to 
better mimic the decision-making of the neurosurgeon during DBS planning. 

Keywords: Deep brain stimulation, Parkinson’s disease, image-guided 
neurosurgery, automatic planning. 

1   Introduction 

Over the past decade, Deep Brain Stimulation (DBS) has become a valuable surgical 
treatment to severe Parkinson’s Disease (PD) – a neurodegenerative disease that affects 
1% of population over 60 years of age [1] and over one million people in North 
America [2]. DBS consists of the surgical insertion of stimulation electrodes, in 
specific nuclei of the basal ganglia circuitry, programmed to reduce PD symptoms. 
These electrodes are inserted via minimally invasive neurosurgery using precise image 
guidance from a neuro-navigation platform.  

Before the operation, the neurosurgeon undertakes a preoperative planning 
procedure. The goal is to examine the patient’s imaging data to determine: i) precise 
target locations where to implant the DBS electrodes and ii) safe linear trajectories, 
from the surface of the head to the targets, that avoid critical structures of the brain to 
prevent hemorrhages, loss of function and other complications.  

Trajectory planning is normally done by manual inspection of a single anatomical 
MRI dataset using visualization tools offered by commercial neuronavigation 
platforms. The surgeon empirically searches for a safe trajectory that avoids several 
critical structures such as: i) the ventricles, ii) deep sulci, iii) large blood vessels, and 
iv) critical motor and sensory cortex. However, only few trajectories can be thoroughly 
analyzed in a reasonable amount of time therefore yielding subjective and sub-optimal 
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planning. There has been recent interest in the design of automatic planning algorithms 
to allow the rapid analysis of many more trajectories across multi-modal imaging 
datasets. With this new paradigm, mimicking the decision-making process of 
neurosurgeons poses an important challenge.  

Proposed methods for automatic planning can be distinguished based on: i) the level 
of automation, ii) the choice of critical structures and their representation, iii) the 
trajectory analysis criteria and final scoring, and iv) the overall ease-of-use. Some 
software tools [3-4] were proposed to simulate the surgical insertion and automatically 
detect intersected structures, but the entry point selection remains empirical. Many 
methods encode critical structures once in an atlas [5-7] although recent methods favor 
direct segmentation in the native patient datasets to better account for inter-subject 
variability, especially for important structures such as sulci and blood vessels. Very 
relevant to our work, the method of Brunenberg et al. [8] returns many valid 
trajectories with no further ranking. In the work of Shamir et al. [9], trajectories are 
ranked separately according to either a maximal risk or a sum or risks criteria with no 
further aggregation. The method of Essert et al. [10] automatically ranks trajectories 
according to several weighted surgical constraints defined by the neurosurgeon using 
an elaborated extensible markup language (xml) schema. They compare automatic and 
manual planning according to the final aggregated score, rather than showing how each 
individual constraint, taken separately, is optimized. 

In this work, we present an automatic path planning framework that incorporates 
several key improvements at every stage of the process: from MRI acquisition to 
automatic trajectory selection. First, our approach takes advantage of the most recent 
advances regarding venous and arterial blood vessel imaging with the use of 
susceptibility weighted imaging (SWI) [11-12] and time-of-flight (TOF) [13] 
protocols. Second, our trajectory analysis software can handle binary and fuzzy 
segmentation datasets without the use of a global threshold or of lengthy, iterative, 
post-processing. Third, our framework meaningfully aggregates several, easy-to-
configure, clinical criteria into a single trajectory ranking. 

2   Method Overview 

Our framework performs multi-modal analysis of patient data to determine the most 
suitable trajectory to a DBS target according to a set of constraints defined by the 
surgeon. This section provides detailed information about the multi-modal MRI 
acquisition protocol, the definition of relevant surgical constraints, and the 
implementation of the trajectory planning algorithm. 

2.1   MRI Acquisition 

A multi-modal MRI acquisition protocol is performed on a 3T Siemens TIM Trio 
with a 32-channel coil. First, a sagittal T1w anatomical scan of the entire head with 
1x1x1-mm resolution is obtained using a 3D magnetization-prepared rapid gradient-
echo (MP RAGE) sequence (TR=2300ms, TI=900ms, TE=2.98ms, α=9°). Second, a 
transverse SWI dataset of the brain with 0.5x0.5x1-mm resolution is obtained using a 
fully flow compensated 3D gradient echo sequence (TR=34ms, TE=20ms, α=12°, 
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BW=120Hz/px). Third, an MRA dataset is obtained with 1x1x1-mm resolution using 
a 3D multi-slab TOF (4 slabs, 44 slices/slab, transverse acquisition, TR=22ms, 
TE=3.85ms, α=18°). These three datasets are acquired in a single session and are 
aligned by linear registration (rigid body, 6 parameters). Furthermore, the T1w dataset 
is aligned to the ICBM-152 atlas by non-linear registration [14]. 

The SWI and TOF sequences provide dense visualization of venous and arterial 
vasculature (see Fig. 1a-c) without requiring the injection of gadolinium, which adds 
significant cost to each study and has some associated medical risks. In particular, the 
SWI sequence (Fig.1a) can image very small veins in comparison to a typical 
gadolinium protocol (e.g. Fig. 1d). While this dense SWI-TOF protocol allows for a 
safer trajectory to be planned, the high density makes manual planning a very 
laborious and challenging task. 

    

 (a) (b) (c) (d) 

Fig. 1. SWI-TOF protocol for dense visualization of venous and arterial blood. (a) 30-mm 
minimum intensity projection (mIP) of an SWI dataset. (b) Maximum intensity projection 
(MIP) of a TOF dataset. (c) 3D rendering of combined SWI-TOF dataset. (d) 30-mm MIP of a 
PD patient’s clinical scan (T1w with gadolinium). 

2.2   Surgical Constraints Definition 

Our automatic trajectory planning framework is governed by a set of customizable 
surgical constraints obtained from multiple interview sessions with a senior neurosurgery 
resident and an experienced neurosurgeon. These constraints are summarized below. As 
discussed in Section 4, this list can be further extended and customized as new 
constraints are found to interplay with the surgeon’s decision-making. 

1. Avoid critical cortex area. To reduce the risk of introducing new neurological 
deficits, the surgeon typically selects an entry point within the superior frontal 
lobe, anterior to the primary motor cortex and posterior to the hairline. To mimic 
this behavior, entry points are limited to a surgeon-chosen region-of-interest (ROI) 
defined once on the ICBM-152 atlas.  

2. Avoid crossing the midline. The midline is avoided because it is filled with CSF, it 
encompasses the thick mid-sagittal sinus vessel and it implicitly eliminates long 
and risky paths. In our implementation, any entry points on the opposite side of the 
target are immediately discarded. 
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3. Avoid ventricles. Ventricles are avoided to prevent CSF leaks and to remain in 
control of the lead. Ventricles are automatically segmented from the T1w dataset 
using a standard tissue classification method [14]. 

4. Avoid blood vessels. Vessels are avoided to prevent intra-operative complications 
such as hemorrhages. Veins (SWI dataset) and arteries (TOF dataset) are 
segmented using a fuzzy vesselness measure [15].  

5. Avoid sulci. Sulci are avoided because they contain many small vessels that may 
not be well depicted by current MRI protocols. Sulci are segmented from the T1w 
dataset using a standard tissue classification method [14]. 

2.3   Automatic Trajectory Planning 

The trajectory planning algorithm consists of analyzing every trajectory linking a set 
of entry points (on the head surface) to the target. Similarly to work of Essert et al. 
[10], our analysis is conducted in two passes. A first pass quickly eliminates any 
trajectory that crosses a critical structure at an unsafe distance. With the remaining 
trajectories, a second pass optimizes the distance to all critical structures 
simultaneously. Pseudo-code for the second pass is shown at the end of this section. 

In other related work [6, 8-10], trajectory optimization is based on a pre-calculated 
distance map that encodes the minimal distance of a voxel from a critical structure. 
This method is computationally efficient because the distance map is computed only 
once and applied to every trajectory. However, this technique only consider the 
distance to the closest critical structure, therefore giving too much importance to false 
positive voxels over large clusters representing true critical structures (see Fig. 2 for 
an example). Furthermore, a distance map can be calculated only on binary 
segmented datasets. Instead, we represent each trajectory as a cylinder of interest with 
a N-mm radius (N = 5-mm) i) to account for the dimension of the insertion tool and 
the precision of patient-to-image registration, and ii) to exclude critical structures 
already at a safe distance (above 5-mm) without any further processing. With this 
technique, a distinction can be made between the thick structure of Fig. 2a and the 
isolated structure of Fig. 2b because, locally, more foreground voxels would intersect 
the cylinder of interest. 

A risk value is given to every voxel inside the cylinder according to the distance 
from the cylinder’s centerline and the voxel value (for fuzzy datasets). For example, 
the associated risk of a fuzzy vesselness voxel is determined by a combination of: i) its 
distance from trajectory`s centerline and ii) its vessel-likeliness value. This allows the 
extraction of many statistical parameters (e.g. riskmax, risksum, riskmean, riskmedian, etc). In 
this prototype, the maximal risk (riskmax) and sum of risks (risksum) are extracted and 
normalized, using a histogram analysis, to a [1 100] range for comparison with other 
surgical constraints [10]. A final trajectory score is computed by aggregating the 
riskmax and risksum parameters for all surgical constraints using a weighted cost function 
(see Algorithm 1). The weights are chosen by the neurosurgeons to represent the 
relative importance of each constraint. A greater weight is usually given to the riskmax 
criterion because almost hitting a critical structure once is more severe than 
approaching the same critical structure multiple times at a safer distance [8]. On the 
other hand, the sum criterion is useful because it distinguishes among cases where a 
trajectory approaches a critical structure once or multiple times along the path [9]. 
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Algorithm 1. Trajectory optim

Input: ePnts[p]; 
Input: tPnt;     
Input: cs[i];    
Input: wmax[i];  
Input: wsum[i];  
Output: fScores[p
for each p in ePn
  cylinder = Calc
  for each i in c
    for each j in
      costs[p][i]
    riskMax[p][i]
    riskSum[p][i]
for each i in cs 
  NormalizeToRang
  NormalizeToRang
for each p in ePn
  fScores[p] = 0;
  for each i in c
    fScores[p]+=r
    fScores[p]+=r
Sort(fScores) 

3   Experimental Resu

Our automatic trajectory 
resident and an experienced
on two healthy subjects and
For all subjects, four DBS 
the two subthalamic nuclei
total of 12 planning experim

g of DBS Neurosurgery from Multi-modal MRI Datasets 

(b) (c) 

on fails to distinguish between (a) a true critical structure and
el as they both result in the same distance map (c) for the 
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First, the senior resident was asked to perform manual trajectory planning of all 12 
targets using the commercial Medtronic StealthStation™ software. The same 12 
targets were passed to our automatic trajectory planning system. Table 1 shows a 
quantitative comparison between the risk, on a [1-100] scale, of manual and automatic 
trajectories with respect to each surgical constraint to remove any bias due to the 
choice of weights at the final aggregation stage. From Table 1, it is clear that 
automatically computed trajectory almost always exhibits a smaller risk for all 
individual criteria of ventricle, sulci and vessel avoidance.  

Table 1. Comparison of automatic and manual planning (in parenthesis) for two normal subjects 
and one severe PD patient. The individual score for each surgical constraint is shown on a  
[1-100] scale. The automatic trajectory corresponds to the one with the lowest aggregated score 
and the manual trajectory was found by a senior neurosurgery resident using the Medtronic 
StealthStation™ platform.  

  
Target 

Ventricles Sulci SWI vessels TOF vessels 
riskmax riskmax risksum riskmax risksum riskmax risksum 

su
bj

. 0
 STNleft 1 (15) 2 (4) 2 (34) 1 (1) 7 (25) 3 (1) 10 (15) 

STNright 1 (1) 1 (7) 2 (18) 4 (9) 16 (26) 2 (1) 23 (22) 
GPileft 1 (22) 1 (8) 5 (27) 1 (16) 31 (56) 1 (1) 5 (8) 
GPiright 1 (1) 2 (15) 7 (15) 1 (1) 5 (33) 1 (1) 2 (18) 

su
bj

. 1
 STNleft 1 (31) 7 (22) 7 (57) 8 (9) 7 (27) 1 (1) 12 (49) 

STNright 1 (1) 2 (45) 7 (43) 2 (39) 2 (93) 1 (1) 20 (45) 
GPileft 1 (44) 2 (26) 7 (44) 1 (30) 32 (36) 1 (2) 32 (44) 
GPiright 1 (11) 5 (24) 14 (40) 5 (12)  6 (51) 1 (1) 12 (39) 

su
bj

. P
D

 STNleft 1 (1) 5 (46) 13 (42) 4 (16) 37 (41) 2 (1) 5 (28) 
STNright 1 (21) 5 (4) 21 (9) 4 (23) 15 (52) 1 (2) 3 (66) 
GPileft 1 (1) 3 (7) 10 (24) 1 (1) 24 (54) 1 (2) 5 (35) 
GPiright 12 (11) 1 (33) 3 (29) 4 (30) 5 (79) 1 (11) 12 (5) 

Second, both surgeons were asked to qualitatively evaluate the 12 automatic 
trajectories selected by our software. This was done using 3D visualization software 
we developed and also by supplying the trajectories to the Medtronic StealthStation 
software because surgeons were most familiar with this platform. The surgeons found 
our automatic method more effective than manual planning for simultaneous avoidance 
of all critical structures. For examples: i) the manual trajectories to subject 0’s STNleft 
and GPileft travel near the ventral horn of the lateral ventricles; ii) because of subject 
1’s complex gyri pattern, manual sulci avoidance was sometime at a distance <1.5mm 
(instead of >2.5 mm with automatic planning), iii) the PD case exhibited larger 
ventricles and some brain atrophy, making the manual search more challenging.  

Interestingly, the surgeons were able to identify new problems that are not handled 
by the current set of implemented constraints. For few suggested trajectories, they 
argued they would prefer a trajectory that is either more medial or that can avoid other 
basal ganglia nuclei (caudate, putamen). Only one suggested trajectory was found 
unsuitable because it was running parallel to a sulcus, at a safe distance, but in a way 
where a longer stretch of frontal lobe’s cortex (grey matter) was traversed which 
could increase the risk of causing new neurological deficits.  
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 Subject 0 Subject 1 PD patient 

Fig. 3. Examples of color-coded trajectory map generated by our software. Color scale: 
green=recommended, yellow=acceptable, red=rejected. 

4   Discussion and Conclusions 

From the quantitative analysis of Table 1, it is clear that automatic planning 
outperforms manual planning with the task of aggregating several, well-defined, 
surgical constraints. Furthermore, automatic planning allows for thousands of 
trajectories (~12000) to be thoroughly analyzed in less than 4 minutes whereas 
manual planning approximately requires over 40 minutes per target.  

Our experimental results showed that this quantitative analysis alone does not 
assess whether the implemented constraints mimic the complete decision-making 
process of neurosurgeons. Indeed, a qualitative analysis revealed the presence of 
previously undescribed surgical constraints. Fortunately, when an issue was raised an 
alternate entry point could easily be selected using the intuitive color-coded map 
outputted by our framework (see Fig. 3). In addition, we were able to eliminate most 
of these exceptional situations by adapting some of the user parameters. For example, 
we can force our software to find a more medial entry point simply by reducing the 
initial search to a more medial ROI. 

In conclusion, manual path planning, especially with dense multi-modal datasets, is 
a complex and lengthy process that yields subjective and potentially sub-optimal 
solutions. This work provides neurosurgeons with an intuitive decision support 
system for automatic planning of DBS neurosurgeries that aggregates multiple 
surgical requirements into a single weighted ranking of available trajectories. Future 
work will concentrate on optimizing the weights attributed to each surgical constraint 
and on integrating additional constraints that were found to interplay with the 
decision-making process of surgeons to avoid long stretches of grey matter cortex and 
other basal ganglia nuclei (caudate and putamen).  

Acknowledgement. This research was funded by the Natural Sciences and Engineering 
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Abstract. We describe and evaluate a computer algorithm that auto-
matically develops a surgical plan for computer assisted mosaic arthro-
plasty, a technically demanding procedure in which a set of osteochondral
plugs are transplanted from a non-load-bearing area of the joint to the
site of a cartilage defect. We found that the algorithm produced plans
that were at least as good as a human expert, had less variability, and
took less time.

1 Introduction

Cartilage degeneration is a widespread problem which occurs predominantly in
the knee, ankle, and shoulder. Articular cartilage is not vascularized and does
not naturally repair when damaged [1]. In the event of traumatic injury, this can
lead to long-term damage and a loss of bearing capacity in the joint surface.

Mosaic arthroplasty is an operation that repairs damaged cartilage by trans-
planting osteochondral plugs from a non-load-bearing part of the joint to the
site of the cartilage defect [2,3].

Mosaic arthroplasty is a technically challenging operation. The osteochondral
plugs must be delivered so as to exactly reconstruct the original surface. But the
top surface of a plug is curved and may not be perpendicular to the axis of the
plug, so the position and orientation of each plug must be planned and achieved.

Plugs that are too high can result in poor plug integration due to micromotion
and increased contact pressure [4,5]. Plugs that are too low can result in cartilage
necrosis and fibrocartilage overgrowth [6]. A plug with an angled surface that is
incorrectly delivered may be too high in some parts and too low in other parts.
The percentage of the repair surface that is too high is inversely correlated with
the quality of healing [7].

Computer assisted mosaic arthroplasty (CAMA) uses computer planning and
intraoperative guidance to overcome these problems. The surgical plan indicates
the position and orientation of each plug’s harvest location and delivery location.
The surgeon follows the plan using optically tracked surgical instruments or
patient-specific instrument guides [8].

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAI 2011, Part I, LNCS 6891, pp. 267–274, 2011.
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The surgical plan is critical to the success of the operation. In the surgical
plan:

– the original articular surface must be predicted as a reconstruction goal;
– the reconstructed cartilage thickness must match the original cartilage thick-

ness to avoid degeneration at the bone/cartilage interface;
– the plug harvest sites must be planned so that surface orientation of each

plug matches the predicted surface orientation at the corresponding delivery
site; and

– an optimal pattern of plugs must be planned to cover the defect site with
minimal overlapping and minimal gapping.

Manual planning for CAMA has been shown to be effective at finding harvest
and delivery sites to reconstruct the original articular surface [9]. But manual
planning is slow and requires a highly skilled human operator with knowledge of
mosaic arthroplasty and the ability to use a 3D computer interface. The quality
of a manually developed plan depends upon the skill of the operator and will be
subject to inter-operator variability.

We describe a computer algorithm that automatically builds a surgical plan
for CAMA. We show that the automatic planner achieves results that are at least
as good as those of a skilled human operator and can reconstruct the correct
surface to an accuracy of 0.3 mm RMS.

2 Related Work

Clinical evaluations have shown that surface congruency is critical to achieving
a good repair. In an animal study [4], plugs that were too high were found to
subside under weight bearing but showed fissuring, bone cysts, and poor bony
incorporation. Elevated angled grafts (with an angled tip of the plug surface
above the surrounding surface) are subject to increased contact pressure [5]
which leads to peak loading and abrasion of the plug’s surface [10]. On the
other hand, plugs that are too low may be disposed to late degradation from
inappropriate pressure [10] and have shown cartilage necrosis and fibrocartilage
overgrowth [6].

Computer navigation of surgical tools has been shown to achieve greater plug
perpendicularity and more appropriate plug depth [11] than with a freehand
operation.

Computer planning and navigation have successfully been used in retrograde
plug delivery in the human talus [12]. The planning consisted of using patient
images to manually choose a path for the surgical drill. Another study using
the talus found better plug harvesting and placement with computer assist [13].
Computer planning has also been used to match plugs from the femoral condyles
to defects in the talus [14].

Computer imaging has been used to match cartilage topography at harvest
and defect sites. One study determined the congruity between the surfaces at
a harvest site and a donor site by finding the rigid transformation between
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(a) (b) (c)

(d) (e)

Fig. 1. The automatic planning process. (a) A bicubic spline is placed over the defect.
(b) The defect area and harvest areas are outlined. (c) A pattern of plugs is made over
the defect, and corresponding harvest sites found. (d,e) The final plan.

the surfaces that minimized the RMS error. The study applied this measure
to seven cadaveric knees to propose the best harvest sites for particular defect
sites [15]. Another study on six dog femurs used similar topographic matching
and considered different plug diameters, finding that larger plug diameters had
fewer good harvest sites [16].

Computer planning requires that the original articular surface be estimated,
since it is no longer present at the site of the defect. A cubic spline can be used
to accurately predict the original articular surface [17].

3 The Planning Algorithm

We found that a surprising simple planning algorithm could obtain results at
least as good as those of a human operator.

The input to the algorithm consists of two coregistered triangle meshes: one
of the cartilage surface and one of the underlying bone. These meshes can be
obtained from segmented MRI or CT-arthrogram images. The output of the
algorithm consists of the harvest and implant positions and orientations of a set
of plugs, along with the plug dimensions.
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In a preprocessing step, the original articular surface is estimated with a bicu-
bic spline: The operator uses a 3D interface to pick four points on the cartilage
surface around the defect and the algorithm creates a bicubic spline over the
defect that interpolates those points and has the same tangent plan at those
points (Figure 1(a)). This method has been shown to produce a surface within
0.27 mm RMS of the original, pre-defect surface [17].

Next, the operator outlines the defect on the spline surface. This is not done
automatically because the defective cartilage usually extends beyond the area of
visibly depressed cartilage (Figure 1(b)).

Next, the operator outlines areas of the joint from which cartilage plugs may
be harvested (Figure 1(b)). This could be done automatically (but currently is
not) by incorporating known good donor sites [15,16].

Finally, the algorithm is executed. The first phase of the algorithm builds
an optimal pattern of plugs at the defect site. The second phase finds optimal
harvest locations for each of the plugs. Results are shown in Figure 1(c,d,e).

Phase 1: Build plugs over defect
A hexagon grid is placed on the spline surface over the defect area. The initial
position and orientation of the grid are arbitrary. Hexagon centers are spaced√

3 r apart for plugs of radius r (in our case, r = 2.25 mm). A plug is placed at
each hexagon center, oriented perpendicular to the spline surface.

The pattern of plugs should cover as much of the defect as possible while
minimizing the overlapping of plugs, since plug stability may be reduced by
overlapping [18]. To achieve this, the algorithm finds a pattern of plugs to min-
imize the cost function

Auncovered + 0.4
∑

i

Ai

where Auncovered is the area of the defect not covered by any plug and Ai is
the area of the ith plug. An area covered by multiple plugs is counted multiple
times in the sum, which discourages overlapping, but not at the expense of too
much uncovered area. The constant 0.4 was chosen through experimentation to
balance the number of plugs against the uncovered area.

For a given pattern of plugs, the cost function is approximated by sampling
the defect area on a 0.1 mm square grid. Each grid point that is not covered by
a plug counts (0.1 mm)2 and each plug of radius r counts 0.4 π r2.

Ten thousand iterations of simulated annealing are performed to minimize the
cost function. In each iteration, three cases are considered: add a random plug;
remove a random plug; and keep the same plugs. In each of the three cases,
the position of every plug is perturbed uniformly randomly within a kr × kr
square centered at the plug’s current position on the spline surface, where k
is the “annealing temperature” which starts at one and decreases linearly with
each iteration until it becomes zero in the last iteration. Of the three patterns
considered, only the pattern of minimum cost is carried to the next iteration.

Note that plugs over the defect site are placed perpendicular to the surface.
The algorithm could be extended to permit slanted plugs and to penalize sub-
surface plug intersection, in which a plug may be undercut by another plug,
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making the undercut plug more likely to loosen. We also consider plugs of only
one radius, although it would be easy for the algorithm to choose random radii
from the set of radii available among the surgical tools.

Phase 2: Find harvest locations

Given a pattern of plugs over the defect, the second phase finds optimal locations
at which to harvest those plugs. This is done in a greedy fashion: The plugs are
randomly ordered and an optimal harvest location is found for each plug, in
order.

Since the order affects the harvest locations (i.e. plugs that are later in the
order have fewer locations from which to choose) the algorithm picks ten random
orderings of the plugs, tries each, and chooses the ordering that results in the
best harvest locations.

To find the best harvest location for a particular plug, a 0.3 mm square grid
is placed over the harvest areas and each grid point is considered as a harvest
location. (Grid points that are within one diameter of an already-harvested plug
are discarded because the joint is weakened when harvest holes are too close
together.) For a particular grid point, the plug from the defect site is translated
so that the middle of its top surface is coincident with the grid point and 49
orientations are considered by varying the angle from perpendicular in 5 degree
increments from -15 to +15 degrees in both the x and y directions of the grid.
At each orientation, the rotation around the plug axis and the translation along
the plug axis are determined that give the best fit between the surface of the
plug and the surface at the harvest site. The best fitting plug is chosen and its
RMS surface error is used as the cost.

A variant of the algorithm tries to match both the cartilage surface and the
bone surface. In this case, 49 orientations are again considered and the best axial
rotation and translation are found for the cartilage surface and, separately, for
the bone surface. Then each angle between the two axial rotations is tested in
0.5 degree increments. At each such angle, the best-fit translation along the axis
is found. In this variant, the cost of a harvest location is the sum of the RMS
errors for the two surfaces.

4 Evaluation of the Algorithm

The algorithm was tested on twelve in-vivo sheep knees for which data was
gathered as part of a larger study. Each knee was scanned using a CT arthrogram
with a slice thickness of 0.625 mm. The bone and cartilage surfaces were manually
segmented from the CT images. In a minimally invasive surgery, a cartilage defect
was induced on the medial condyle with a calibrated impact. Three months later,
a second CT arthrogram was taken and the bone and cartilage surfaces manually
segmented.

The post-defect models were used for planning and the resulting plans were
evaluated in comparison to the pre-defect models. Three conditions were tested
for each knee:
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– An expert human operator, who had substantial experience planning mosaic
arthroplasty, manually produced a surgical plan. The operator matched only
the cartilage surface and did not attempt to match the bone surface.

– An inexperienced operator used the planning algorithm to produce a surgical
plan that optimized the fit of only the cartilage surface.

– The inexperienced operator used the planning algorithm to produce a sur-
gical plan that optimized the fit of both the cartilage surface and the bone
surface.

Each plan was evaluated for surface congruency by computing the RMS error
between the planned cartilage surface and the pre-defect cartilage surface of
the pre-defect CT arthrogram. The RMS calculation used six points on the
circumference and one point at the center of each plug surface. A similar RMS
calculation was made for congruency at the bone surface. The percentage of
the defect surface covered by plugs was calculated. The total planning time was
recorded.

5 Results

Table 1 summarizes the results. For manual and automatic planning that con-
sidered only the cartilage surface (evaluating significance with one-sided t-tests):

– No significant difference was found in the RMS errors (manual 0.31 mm,
automatic 0.25 mm, p = 0.085), although the low p value is suggestive of a
trend in favor of automatic planning.

– Automatic planning shows a tighter variance in RMS error (± 0.06, min
0.13, max 0.38) than manual planning (±0.10, min 0.09, max 0.61), but not
to a statistically significant degree using Levene’s test for equal variances (p
= 0.17).

– No significant difference was found in the coverage of the defect surface
(manual 84%, automatic 88%, p = 0.10), although the trend is also in favor
of automatic planning.

– There was significantly less plug overlap with automatic planning (manual
16.1%, automatic 9.7%, p = 0.02).

– The automatic planning time was substantially faster (4.5 minutes) than
the reported manual planning time (30 to 45 minutes), but we cannot make
any statistical claims because the manual planning time was not measured
accurately.

When the automatic planner optimized both the cartilage and bone surfaces, the
defect coverage remained the same at 88% and the total planning time remained
the same at 4.5 minutes. The RMS error of the cartilage surface increased,
as one would expect when the bone surface also had to be considered in the
optimization. Interestingly, the overall (bone plus cartilage) RMS error was less
when only cartilage was considered (although not by a statistically significant
amount, so we cannot attribute any meaning to this).
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Table 1. Results showing, for each measure, “average ± 95% confidence interval”. In
the Condition column, “C” denotes cartilage only and “C+B” denotes cartilage and
bone. * Unfortunately, the manual planning was not timed and the 30 to 45 minutes
shown in the table is an estimate provided by the operator. Automatic planning time
includes the time for the operator to set up the spline and regions.

Condition RMSE cartilage RMSE cartilage Coverage Overlap Time
(mm) and bone (mm) (%) (%) (minutes)

Manual, C 0.31 ± 0.10 0.31 ± 0.07 84 ± 7 16.1 ± 4.9 30 − 45∗

Auto, C 0.26 ± 0.06 0.27 ± 0.07 88 ± 3 9.7 ± 4.2 4.5 ± 1.7
Auto, C+B 0.35 ± 0.09 0.29 ± 0.06 88 ± 3 9.7 ± 4.2 4.5 ± 1.9

6 Conclusions

We have described a computer algorithm to automatically develop a surgical plan
for computer assisted mosaic arthroplasty. No statistically significant difference
was found between the RMS error of automatic planning and manual planning,
although the trends suggest that automatic planning gives better coverage, is
more accurate, and has less variance. Automatic planning produces less plug
overlap (a good feature) and the algorithm takes much less time than a highly
trained human expert and can be used by an inexperienced operator. These
results suggest that the automatic planner should be used in place of manual
planning, with the plans being subject to final approval from the surgeon.

In ongoing work, we are augmenting the automatic planner with multiple plug
radii and non-perpendicular plugs at the defect site, and will shortly be using
the automatic planner in human surgeries.
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Abstract. This paper presents a method for assisting the placement of stented 
aortic valve prosthesis during minimally invasive off-pump transcatheter aortic 
valve implantation (TAVI) under live 2-D X-ray fluoroscopy guidance. The 
proposed method includes a dynamic overlay of an intra-operative 3-D aortic 
root mesh model and an estimated target area of valve implantation onto live 2-
D fluoroscopic images. This is based on a template-based tracking procedure of 
a pigtail catheter without further injections of contrast agent. Minimal user-
interaction is required to initialize the algorithm and to correct fluoroscopy 
overlay errors if needed. Retrospective experiments were carried out on ten 
patient datasets from the clinical routine of the TAVI. The mean displacement 
errors of the updated aortic root mesh model overlays are less than 2.0 mm 
without manual overlay corrections. The results show that the guidance 
performance of live 2-D fluoroscopy is potentially improved when using our 
proposed method for the TAVIs. 

Keywords: Transcatheter aortic valve implantation, X-ray fluoroscopy, image-
guided interventions, aortic valve prosthesis. 

1   Introduction 

Aortic valve replacement is the standard treatment of degenerative aortic valve 
stenosis. However, many elderly patients have an elevated predicted operative risk 
that could compromise the patient’s outcome after standard open heart surgery [1]. 
Transcatheter aortic valve implantation (TAVI) therefore presents a good alternative 
to the standard surgical treatment for elderly and high-risk patients with severe aortic 
stenosis [1]. 

The transapical TAVI is a recent and minimally invasive, off-pump technique that 
consists of a left anterolateral mini-thoracotomy for direct antegrade surgical access 
through the apex of the left ventricle [2]. This is followed by the insertion of an 
inflatable bioprosthetic valve through a catheter and the implantation within the 
diseased, native aortic valve under rapid ventricular pacing (RVP). During the 
intervention, the placement of stented aortic valve prosthesis such as the Edwards 
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Sapien™ THV stent-valve (Edwards Lifesciences, Irvine, USA) is crucial and is 
typically performed under two-dimensional (2-D) X-ray fluoroscopy guidance [1-3]. 

Live 2-D fluoroscopy displays 2-D projection images of interventional devices 
such as intra-cardiac catheters, aortic valve prosthesis (AVP) and some anatomical 
structures. Cardiac blood vessels, such as the aortic root and coronary arteries, are 
only visible in single-plane fluoroscopic images if the contrast agent is injected using 
a pigtail catheter for guiding the TAVI [2]. However, the dosages of contrast 
injections must be minimized because of renal insufficiencies in elderly patients. 
Before starting the TAVI procedure, the surgeon can use an angiographic C-arm 
system to reconstruct intra-operative three-dimensional (3-D) CT-like images of the 
aortic root under RVP from an acquired rotational 2-D fluoroscopic image sequence 
with 15-25 ml contrast agent of 200o over 5 seconds [3], see Fig. 1. This small amount 
of contrast agent is equivalent to just a single angiogram aortic root shot.  

There are few previous studies related to image-guided TAVI interventions. In [4], 
an intra-operative guidance system has been proposed to include the planning system 
of [5] and to perform real-time tracking of the AVP in fluoroscopic images. A system 
for automatic segmentation and for the static overlay of aortic root volume and 
landmarks on live fluoroscopic images is described in [6,7]. Using intra-operative 
MRI guidance, a new robotic assistance system has been evaluated for delivering the 
AVP using a phantom [8]. 

In this paper, we aim to automatically display an appropriate placement position of 
the transcatheter AVP using live 2-D fluoroscopy guidance. Based on the motion of a 
pigtail catheter in the absence of contrast agent, the proposed method approximates 
the motion of the aortic root to update the overlay of a 3-D aortic root mesh model 
including anatomical valve landmarks such as coronary ostia from intra-operative 3-D 
C-arm CT images onto 2-D fluoroscopic images. If the contrast agent appears in 
fluoroscopic images, this fluoroscopy overlay is not required and can be switched off 
[9]. Furthermore, automatic estimation of a target area of implantation is visualized to 
potentially improve the accuracy of the implanted AVP. 

 

Fig. 1. Intra-operative 3-D C-arm CT image of the aortic root (left) and 2-D fluoroscopy 
guidance for assisting the placement of aortic valve prosthesis (right) 
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2   Method 

The proposed method starts with algorithm initialization, followed by an updating 
procedure of the overlaid aortic root model. In the initialization step, a 3-D 
geometrical mesh model of the aortic root with valve landmarks is acquired from the 
interventional C-arm system. Based on the best experience and knowledge of the 
physician, a target area of valve implantation is automatically estimated inside the 3-
D mesh model. The aortic root model and the target area of valve implantation are 
then projected and manually aligned onto a contrast image. The contrast image is a 
fluoroscopic image which is automatically detected to display the aortic root roadmap 
with contrast agent. Finally, the overlay of the aortic root model and the target area of 
implantation onto live fluoroscopic images are updated by following the aortic root 
motion via the tracking of a pigtail catheter. 

In the following, each component of this proposed method is described in more 
detail. 

2.1   Aortic Root Mesh Model and Target Area of Implantation 

In order to guide the TAVI procedure, a 3-D triangulated mesh model of the aortic 
root has been used. The mesh geometry is generated based on a learning-based 3-D 
boundary detector of the aortic root in intra-operative C-arm CT images [6]. Using a 
discriminative learning-based landmark detector, the resulting model moreover 
includes eight anatomical valve landmarks [6]; namely two points of coronary ostia 
(left LCO3d and right RCO3d), three points of commissures (left LC3d, right RC3d and 
non-coronary NC3d) and the three lowest points (hinge points) of each leaflet cusp 
(left LLC3d, right RLC3d and non-coronary NLC3d), see Fig. 2 (left) .  

Based on professional surgical experience, the correct placement of AVP should be 
one-third to one-half of its length above and perpendicular to the aortic annulus [2]. In 
this study, a target area of valve implantation is defined by two embedded circles of 
annulus and ostia planes with the normal center line to the valve annulus [5]. The 
annulus circle AC3d = C (ca, ra) is defined by the three lowest points of the valve 
cusps. The circle’s center ca is the centroid of the cusp points (LLC3d, RLC3d, NLC3d). 
The radius ra is calculated from the lengths of the sides of the cusp points (a, b, c) and 
the area of three cusps points Aa from heron’s formula: 
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Similarly, the ostia circle OC3d is calculated at the level of the lowest coronary ostium 
within the aortic root and parallel to the AC3d. The normal center line CL3d is 
connected between the two centers of AC3d and OC3d as shown in Fig. 2 (left). 
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2.2   Alignment of Aortic Root Model onto Contrast Image 

By analyzing the histogram of live fluoroscopic images and using the 98-percentile as 
a threshold measurement of contrast agent, a contrast image is automatically detected 
after learning the histogram feature curve of the first 20 frames of the fluoroscopic 
sequence without contrast agent [9]. In this contrast image, the aortic root roadmap 
shows up in dark pixels as depicted in Fig. 2 (middle). 

The 3-D aortic mesh model with landmarks and the target area of implantation are 
then projected onto a 2-D fluoroscopy plane by using the transformation matrix of the 
interventional C-arm system. This projected data is initially aligned with the aortic 
root roadmap onto the contrast image by the physician, as shown in Fig. 2 (right).  

 

Fig. 2. 3-D aortic root mesh model including anatomical valve landmarks and target area of 
implantation (left), a contrast image shows up the aortic root roadmap with contrast agent 
(middle), and the manual alignment of projected aortic mesh model and target area of 
implantation with the aortic roadmap onto the contrast image (right) 

2.3   Updating Aortic Root Model Overlay 

The collaborating physicians confirmed that the aortic root moves with the pigtail 
catheter unless it is pulled or pushed manually. Therefore, we assumed the image-
based tracking procedure of the pigtail catheter to provide a dynamic overlay of the 
projected aortic mesh model with landmarks and the target area of implantation onto 
live 2-D fluoroscopy as follows. Firstly, fluoroscopic images are preprocessed using a 
2-D Gabor filter [10], in order to reduce the image noise and to enhance the features 
of the pigtail catheter. Secondly, a template matching approach [11] is applied to 
determine the current position of the pigtail catheter within each fluoroscopic image 
of the live sequence, see Fig. 3 (left). The template image of the pigtail catheter t is 
manually defined on the first image of the sequence. A region of interest (ROI) is 
defined to reduce the processing time and increase the algorithm robustness. In 
practice, the size of the ROI is chosen to be 2.5x the size of the template image. 

In this matching approach, I(x,y) denotes the intensity of a preprocessed ROI image 
of the size Sx × Sy at point (x,y), x ∈{0, ..., Sx-1}, y∈{0, ..., Sy-1} and the template 
image t of the size sx×sy. The position of the catheter is determined by a pixelwise 
comparison of the ROI image with the template image, based on the computing of fast 
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normalized cross correlation (FNCC) coefficient γ at each point (u, v) for ROI and for 
template images. Eq. 3 provides the definition of γ. Here vui , and t are the mean 
brightness values within the ROI and the template image respectively. The 
normalized value γmax at the point (u, v) in the current ROI image defines the best 
matching location of the template. 

22
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Finally, the translational motion of the visualized aortic root model, valve landmarks 
and the target area of implantation is then updated by calculating the displacement d = 
(dx, dy) of pigtail catheter between two images of the sequence [12]. This is based on 
the different matching positions of the catheter template between these two images. In 
order to ensure the high accuracy of the tracked pigtail catheter, the template-based 
tracking algorithm can be temporarily stopped if the best matching value of γmax is less 
than 50% in the current proceeded image. 

 

Fig. 3. Template matching of a pigtail catheter (left), projected aortic mesh model with 
landmarks and target area of implantation onto a fluoroscopic image of live sequence with 
static overlay (middle) and with updating model overlay (right) 

 

Fig. 4. Views of visualized aortic mesh model (left), valve landmarks (middle), and target area 
of implantation (right) projected onto a fluoroscopic image 
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2.4   User Interaction and Visualization 

An interactive graphical user interface (GUI) is integrated within the proposed 
method based on C++ and open source components such as the Visualization Toolkit 
(VTK) [13]. The parameter values needed to compute the 3-D to 2-D transformation 
matrix of the C-arm imaging system are imported from a Digital Imaging and 
Communications in Medicine (DICOM) file or given by the user. Moreover, different 
views of the overlaid mesh model, valve landmarks and target area of implantation 
are separately visualized to allow the physician to display only the required 
information for the prosthesis deployment, as depicted in Fig. 4. 

3   Results and Evaluation 

In order to test and evaluate the proposed method, experiments were retrospectively 
carried out on different patient datasets from the clinical routine of the TAVI. These 
datasets included ten fluoroscopic image sequences and related aortic root mesh 
models of three female and two male patients around 84 years of age. Each 
fluoroscopic sequence included 90 images with 512 × 512 to 1024 × 1024 pixels. The 
pixel size was approximately 0.15 mm. All fluoroscopic images and aortic root 
models were acquired from the interventional C-arm system (Artis zeego, Siemens 
AG, Healthcare Sector, Forchheim, Germany) at the Heart Center Leipzig, Germany. 

Using a standard PC with Intel CPU (2.4 GHz), the total computation times of the 
algorithm initialization and dynamic overlay procedures were approximately three to 
five minutes and 100 to 125 milliseconds per frame respectively.  

The updating performance of overlaid aortic root model onto live fluoroscopic 
images was indirectly evaluated by calculating the absolute mean and maximum 
displacement errors, dmean ± standard deviation (SD) and dmax, between the expected 
and the computed displacements of the pigtail template over all tested fluoroscopic 
images, see Fig. 5. The expected displacements of the tracked catheter are manually 
performed by an experienced user during the evaluation procedure only. The 
evaluation results did not include the images with high doses of contrast agent, 
because these contrasted images (three to ten images per each sequence) can 
temporarily stop the template-based tracking algorithm of the pigtail catheter.  

 

Fig. 5. Evaluation results of the updated aortic root model overlay onto fluoroscopic image 
sequences for ten patient datasets based on displacement errors of the pigtail catheter 
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As depicted in Fig. 5, the fluoroscopic image sequence (seq. 1) shows relatively 
high displacement errors of dmean = 1.73 ± 0.86 mm and dmax = 4.37 mm. This is due 
to the pigtail catheter having been slightly pulled by the physician.  

Due to an overlapping of the pigtail catheter with the prosthesis, image sequences 7 
and 10 yielded the highest maximum displacement errors 4.65 mm and 4.84 mm, 
respectively, but have such large errors for only one to three images per sequence. 
However, all tested fluoroscopic images showed that the absolute mean displacement 
errors are less than 2.0 mm and within the clinically accepted ranges. 

4   Discussion 

We have proposed a method to assist the placement of the AVP during minimally 
invasive off-pump TAVI under 2-D fluoroscopy guidance. Compared to the work in 
[7], this proposed method can avoid misalignments between the static overlay of the 
aortic root model and invisible aortic root roadmaps in live fluoroscopic images 
during the TAVI procedure. Furthermore, automatic definition and visualization of 
the target area of implantation is potentially saving the physician’s effort and surgery 
time as well. 

In order to perform dynamic overlay of the aortic root model and the target area of 
implantation onto live fluoroscopic images, the template matching using FNCC 
approach has been applied for tracking the pigtail catheter which approximates the 
translational motion of the aortic root without contrast agent injections. Interventional 
devices such as the transesophageal echocardiography (TEE) probe and guide wires 
have no effect on the detection of the pigtail catheter, because they often lie outside of 
the ROI. Overlapping with the AVP may affect the matching accuracy of the pigtail 
catheter. Nevertheless, the obtained results demonstrated that our method is robust 
enough to track the pigtail catheter in the context of the TAVI procedure. 

Unfortunately a clinical validation of this study would require additional contrast 
agent injections which are dangerous for elderly and high-risk patients who have renal 
insufficiencies. Because there are no tools or ground truth datasets to accurately 
identify the correct overly of the aortic root model without contrast injections, the 
updating accuracy of overlaid aortic root models has therefore been indirectly 
evaluated by estimating the displacement errors of the pigtail catheter for all ten patient 
datasets, see Fig. 5. The collaborating physicians assumed that the displacement errors 
for the TAVI were 2 to 5 mm, and that the margin of errors should not exceed 2 mm in 
narrow calcific aortic stenosis. In Fig. 5, the evaluation results show that the absolute 
mean errors are approximately less than 2.0 mm within the clinically accepted ranges. 
An interactive GUI has been developed to manually correct the high displacement 
errors by adding suitable offset values in X-Y directions for the tracked pigtail catheter. 

Using this image-based method to guide the TAVI procedure, an assistance system 
in a “hybrid” operating room is under development which is connected to the 
interventional C-arm system and is capable of real-time clinical studies. 
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Abstract. This paper describes a clinically translatable interventional guidance
platform to improve the accuracy and precision of stem cell injections into a beat-
ing heart. The proposed platform overlays live position of an injection catheter
onto a fusion of a pre-procedural MR roadmap with real-time 3D transesophageal
echocardiography (TEE). Electromagnetic (EM) tracking is used to initialize the
fusion. The fusion is intra-operatively compensated for respiratory motion using
a novel algorithm that uses peri-operative full volume ultrasound images. Valida-
tion of the system on a moving heart phantom produced a landmark registration
accuracy of 2.8 ± 1.45mm. Validation on animal in vivo data produced an aver-
age registration accuracy of 2.2 ± 1.8 mm; indicating that it is feasible to reliably
and robustly fuse the MR road-map with catheter position using 3D ultrasound in
a clinical setting.

Keywords: Stem cell therapy, Motion compensation, 3D TEE, EM tracking, Im-
age fusion, Interventional cardiology.

1 Introduction

Stem cell repair of recently infarcted tissue could be a potential cure for patients with
recent heart attacks [1]. One way to deliver stem cells to the infarcted region of a heart
is through direct myocardial injection using a catheter. These cardiac injections need to
be precisely targeted in order to avoid puncturing the infarcted portion; thereby needing
precise localization of the catheter with respect to the anatomy of the heart that is mov-
ing due to both cardiac and respiratory motion. In this work, we aim to provide accurate
localization by integrating three coordinate systems: 1) pre-operative MR road map, 2)
live-3D ultrasound (US) using transesophageal echo, and 3) injection catheter. Such an
interventional fusion system can help visualize the live 3D ultrasound volumes and the
catheter in the larger context of the pre-procedural planning volumes. For this solution
to be clinically viable in interventional cardiology and electrophysiology procedures,
the set of registrations required to achieve this fusion needs to be accurate, fast, and ro-
bust, i.e. to be able to maintain continuous real-time registration between the different
coordinate systems in free breathing mode for the entire procedure.

Maintaining continuous registration requires continuous re-adjustment of registra-
tion due to cardiac and respiratory motion. Continuous registrations of preoperative

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAI 2011, Part I, LNCS 6891, pp. 283–290, 2011.
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volumetric images with real-time intraoperative ultrasound images are challenging and
computationally demanding. In the case of real-time 3D ultrasound imaging probes like
TEE and intracardiac echo (ICE), the accuracy and robustness of continuous registra-
tions is compromised due to three factors: 1) small field-of-view (FOV) of ultrasound
images, 2) artifacts and limited signal-to-noise ratio of in vivo ultrasound images, and
3) very different contrast mechanisms between pre-procedural images and ultrasound
images.
Related Work. The demands of speed, accuracy, and robustness in procedures involv-
ing real-time registration have been addressed in several ways. Addressing the speed
issue, Huang et al., proposed using very small number of pixels along the edges of the
image volumes for doing a mutual information based spatiotemporal registration [2].
This registration, however, was performed on data collected during breath-hold. Simi-
larly, Sun et al [3], performed registration between 2D ICE and C-arm-CT volumes us-
ing cardiac and respiratory gating. To address the problem of different contrasts, King
et al. [4] and Wein et al. [5] proposed a ultrasound physics-based simulation of the
corresponding US image from the MR/CT volumes and used that to register with the
live ultrasound images. Finally, in order to address the problem of small field of view
of live ultrasound streams, Wein et al. [5] proposed using an extended field of view by
sweeping the ICE catheter in vivo and reconstructing a larger field of view on-the-fly
by constraining the catheter to lie on a linear trajectory model.
Contributions. In this paper, we develop an interventional guidance platform that in-
cludes a novel method to improve the accuracy and robustness of fusion between stream-
ing live-3D ultrasound and pre-procedural MR images. An extended-FOV full-volume
US image is used as an intermediary to register the live-3D ultrasound to the MR im-
ages. The large FOV of full-volume images and the similarity of contrasts and artifacts
between full-volume US and live-3D ultrasound makes the proposed registration ap-
proach more robust, accurate, and efficient when compared to direct multimodal regis-
tration approaches. The interventional platform that integrates the proposed registration
framework has been used and validated in three live animal experiments.

2 Methods and Materials

Clinical Workflow. Fig. 1 outlines the clinical workflow that was followed in using
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Fig. 1. Clinical Workflow for 3D US Guided Stem cell delivery

the proposed interventional
guidance platform. The fu-
sion of the imaging modali-
ties is first bootstrapped us-
ing electromagnetic (EM)
tracking system and then
an image based registra-
tion is used to compen-
sate for respiratory mo-
tion intra-operatively. First,
prior to the procedure, the
live-3D US image is pre-
calibrated to the tracking
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system by rigidly attaching 6-DOF EM sensors to the probe and calibrating using the
method described in [6]. Second, the tip of the stem cell injection catheter is also pre-
calibrated to the 5-DOF EM sensor mounted on it. During the procedure, pre-operative
MR images are acquired with cardiac and respiratory gating. The specific MR volume
that is used to segment the infarct is acquired at end-expiration and at a particular car-
diac phase in diastole. In this work, we call that phase the ‘infarct phase’, which is deter-
mined by the MR imaging parameters. MR images are acquired with external fiducials
stuck on the subject’s body that are used for MR-EM registration. The injection targets
are usually planned on the border zone between the infarct and healthy heart tissue.

During the procedure, a 6-degree of freedom (DOF) EM tracking sensor is rigidly
mounted to the patient table and acts as a ground reference for the tracking system.
MR images are registered to the EM frame of reference using fiducials. Following the
MR-EM registration, TEE ultrasound probe is inserted into the esophagus. Live-3D
ultrasound images are streamed live into the fusion workstation, wherein the fusion
between MR and L3DUS is initialized using EM tracking. This initial registration is
valid only at end-expiration and the ‘infarct phase’.

The stem cell injection procedure, however, is performed in free breathing mode,
during which the motion compensation algorithm is used to correct the registration for
respiratory motion at every ‘infarct’ phase. In order to perform the motion compensa-
tion, an one time acquisition of full-volume 3D ultrasound volume is acquired using
ECG gating at end-expiration. The MR images and the full-volume 3D US are regis-
tered using visual assessment. During the stem cell injection procedure, the live-3D US
images are registered to the MR images using the full-volume 3D US using the algo-
rithms described below. In addition, the EM tracked position of the injection catheter
is displayed live within the motion compensated MR volume. Any gross motion of the
US probe is also tracked, thereby providing continuous and robust tracking of the live-
3D US volume in a motion compensated MR volume. The quality of the registration is
monitored visually by the interventional cardiologist, and in the event of drift in regis-
tration, the registration is re-initialized using the EM based framework.
Real-time Respiratory Motion Compensation. The full-volume ultrasound (FVUS)
is used as an intermediary in the registration between live-3D ultrasound (L3DUS) and
MRI. Mathematically, MRTL3DUS =MR TFVUS • FVUSTL3DUS. The acquisition of full-
volume ultrasound volumes is a feature that already exists in the Philips xMatrixTM

probes (Philips Healthcare, Bothell, WA). Full-volume imaging is an ECG gated ac-
quisition of the 3D+Time volumetric acquisition of the entire heart in four heart beats.
The ‘infarct phase’ in the full-volume image is identified using QLAB image analysis
tool (Philips Healthcare, Bothell, WA) using the ECG gating values, and is manually
registered to the MR image volume to yield a rigid transformation MRTFVUS. The ‘infarct
phase’ of the live 3D ultrasound stream is determined using a time-synchronized ECG
gating signal that is output from the Ultrasound scanner via a dedicated A/D card (Na-
tional Instruments, Austin, TX). Both the live-3D and the full-volume images are scan
converted before registration.

Since the registration is performed only during the ‘infarct phase’ of the cardiac
cycle, we use a rigid transformation to register the two ultrasound volumes. Mutual in-
formation (MI) is used as similarity metric in the registration [2]. A thresholding step



286 V. Parthasarathy et al.

is performed on the ultrasound images prior to the mutual information computation to
consider voxels only in areas with non-zero signal. The registration problem is framed
as an optimization problem, arg max

φ
MI (L3DUS, FVUS◦T(φ)) where φ is a 6 param-

eter rigid transform vector parameterizing the rigid homogenous transformation matrix
(L3DUSTFVUS) between full-volume ultrasound and live-3D ultrasound. The registration
was implemented in an ITK framework [7]. A regular step size gradient descent opti-
mizer was used for the optimization. The algorithm is integrated within the visualization
platform with several user interfaces to control the optimizer behavior and the similarity
metric computation, especially the number of histogram samples.

3 Experimental Design and Results

3.1 Phantom Validation

We conducted three phantom-based validation experiments to 1) validate the accuracy
of EM-tracking based initialization, 2) measure the landmark registration accuracy, and
3) validate the motion tracking accuracy.

Accuracy of EM-Based Initialization. The accuracy of the EM based initialization
was computed on a stationary heart phantom, which is a replica of a human heart, built
in-house and constructed using poly-vinyl alcohol and doped to provide realistic vis-
ibility in both MR and ultrasound. The one time calibration of the live 3D US image
coordinate to the 6-DOF EM sensor was performed with a calibration accuracy of 1.94
mm [6]. MRI images of the phantom were acquired using Philips Panorama 1T sys-
tem with fiducials mounted on the phantom. The fiducials were used to register the MR
to the EM frame of reference by localizing them in both coordinate systems. This ap-
proach resulted in a fiducial registration error (FRE) of 1.29 mm and target registration
error (TRE) of 1.77 mm. It was also observed that keeping the fiducials too far apart
decreased the accuracy due to EM distortions. Further, in order to measure US-MR fu-
sion accuracy, seven home made thread-like fiducials were attached to the surface of the
heart phantom. These were visible on both MRI and on 3D US images. By manually
segmenting them in the 3D US and MRI images, and comparing the transformed points
to the ones segmented in MRI, we estimated the US-MRI registration accuracy with a
mean landmark accuracy 3.3 ± 0.22 mm.

Registration Accuracy Using Respiratory Motion Phantom. For the next two phan-
tom validation studies, we designed a servomechanisms to move the heart phantom on a
ramp to simulate respiratory motion (see Fig. 2). In addition, a new ‘apex’ was designed
as a detachable slab that can fit custom made target samples to measure landmark ac-
curacy. These samples are 4.5 mm in radius and are doped with magnevist and graphite
to achieve realistic contrast in both MR and in ultrasound.

Image acquisition: An IE33 ultrasound scanner with X7-2T TEE probe (Philips
Healthcare, Bothell, WA) was used to acquire both the full-volume and streaming ul-
trasound data sets. The pre-procedure MR was acquired on a GE 1.5T MR scanner (GE
Healthcare, Waukesha, WI).
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Experiments: The respiratory motion ramp had both translation and rotation stages.
Ground truth motion was tracked using a dedicated 6-DOF EM sensor attached to the
moving stage. The phantom was moved to three positions on the ramp at approximately
5, 10, and 15 mm from the baseline position; displacements that are representative of the
amount of respiratory motion that we expect in a clinical setting [8]. At each position,
three trials of the proposed registration was performed with the baseline registration be-
ing loaded before every trial. The full-volume based registration was performed using
1.6% of the number of pixels in the live-3D ultrasound image for histogram computa-
tion. The pixels were randomly sampled at each iteration of the registration. The amount
of motion computed using the full-volume based registration was compared against the
ground truth from the reference EM sensor. On an average from all trials and all po-
sitions, the translation error was 2.25 ± 1.96 mm and rotation error was 4.5 ± 1.98
degrees.

Fig. 2. Custom built
heart phantom with
multi-modality visi-
bility employed for in
vitro experiments, and
screen shot of MR-US
fusion

Landmark Accuracy Using Respiratory Motion Phantom.
Another validation study was performed with the same phantom
experimental set-up as described in the previous study. In this
study, eight custom made fiducials were segmented from the
MR images and the center of these segmentations were marked
as targets. At each displacement of the phantom, three trials of
full-volume US based registration was performed and the fu-
sion between MR and live 3D was visualized. The centers of
the fiducials were manually segmented from the US volumes
(with MR visualization switched off to avoid bias) and trans-
formed to the MR coordinate frame using the computed reg-
istration. These co-ordinates were then compared to the fidu-
cials segmented in the MR coordinate frame. Since the FOV of
the live-3D volumes is limited, only 3 fiducials were visible for
computing landmark error. The average landmark registration
error was 2.8±1.45 mm.

3.2 Animal Data Validation

We are currently evaluating the accuracy and robustness of the proposed fusion system
in series of animal studies. In this paper, we present data from three anesthetized pigs
with acute myocardial infarction that was created 2-4 days prior to the procedure. All
studies were performed within the guidelines set by the Committee of Animal Research
and Ethics at the University of Wisconsin Hospital, Madison, WI.

Image Acquisition: The baseline MR images were collected using the delayed hyper-
enhancement MR protocol at breath-hold. The MR volumes are 256x256x20 with a
resolution of 1.3x1.3x5 mm. Following the MR imaging, the pig is brought to the
cath-lab where the TEE probe is inserted and full volume US images are acquired at
breath-hold and end-expiration. After scan conversion, the size of the full-volume im-
ages are 224x208x208 with a pixel resolution of 0.5x0.5x0.48 mm. The live 3D images
are streamed in real-time to the workstation at≈ 20 Hz with a size of 112x48x112 with
a pixel spacing of 0.7827x0.9403x0.9229 mm.
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Fig. 3. Left:Top Row shows fusion of full-volume US and
MR images, middle row shows results of intra-operative
registration of live-3D US and full-volume US, bottom
row shows fusion between live-3D and MR that is shown
to the user. Right: 3D visualization of 2 multi-planar re-
formats (MPR) of the Live-3D ultrasound volume with
the segmented MR images displayed as a mesh with aor-
tic (yellow) and mitral valve leaflets also segmented to
provide 3D context. The catheter is displayed as a yellow
arrow seen in the bottom

The minimum number of his-
togram samples needed to achieve
as stable registration varied be-
tween 1250 (0.06% of US im-
age size) samples to 10000 sam-
ples (1.6% of US image size) de-
pending on the amount of high-
frequency details on the ultra-
sound images. The histogram pa-
rameters could be changed dy-
namically by the user during the
procedure depending on the ro-
bustness of the registration. The
time for registration varied be-
tween 350 milliseconds for 1250
to 3 seconds for 10000 sam-
ples on a 2.66GHz Dual Quad-
Core processor with 4GB DDR
memory. Example of a qualita-
tive evaluation of the registra-
tion can be seen in Fig. 3, which

shows good overlap between live-3D US and MR images in 2D and 3D visualizations.

In vivo Motion Compensation Accuracy. One live-3D ultrasound image correspond-
ing to the ‘infarct phase’ was selected manually from the live-3D US stream and ana-
lyzed off line. The ground truth registration between this live-3D image and the
full-volume US image was selected manually with expert physician’s guidance. Five
hundred registration trials were performed, with initializations randomly misaligned
around the ground truth registration with uniform distribution. For the capture range
experiments, the translation and rotations were simultaneously varied by 15 mm and 15
degrees respectively with a uniform distribution. Similarly, for the accuracy related ex-
periments, the translation and rotation shifts were simultaneously varied by 9 mm and
9 degrees respectively. The capture range was defined as the error below which >90%
of the misalignments were able converge to an error< 3 mm. The number of histogram
samples was set at 1.6% of image size of live-3D US. From data analyzed from 3 pig
data sets, the average translation error compared to ground truth was 1.5 ± 1.7 mm,
and rotation error was 4.9 ± 3.9 degrees, with overall registration accuracy of 2.2 ±
1.8 mm. These average values of accuracy and robustness to randomly varying initial-
izations is indicative of the smoothness of the objective function between full-volume
US and live-3D US. The average capture range for the algorithm was 15.3 ± 2.1 mm,
which is greater than respiratory motion in humans [8].

In vivo Validation of Respiratory Motion Tracking. Managing synchronization [9]
and data frame rates of streaming data – ECG, ultrasound and EM — is a challenge
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Fig. 4. Results of the motion compensation algorithm. Rotation and
translation tracking of the cardiorespiratory motion of the heart respec-
tively can be seen in (a) and (c) respectively. (b) and (d) show the under-
lying sinusoidal motion components of cardiac (blue) and respiratory
(red) motion components

in interventional sys-
tems such as the one
proposed in this pa-
per. In order to test
the proposed motion
compensation system
on reduced data rates,
we tested its robust-
ness to sub-sampling
of US image streams
in spatial and tempo-
ral dimensions. We
established ground
truth data by us-
ing a cardiac-gated
15 second long se-
quence high-resolution
live-3D images acquired at 30 Hz (444 images in sequence) on the IE33 on free-
breathing pig. The breathing rate was set at 17 breaths/min on the ventilator and the
cardiac rate was 81 beats/min. Each frame was rigidly registered to the full volume ‘in-
farct phase’ in a sequential manner with the registration results from image n serving
as an initialization to registration to image n + 1. Although the deformation between
the full volume and live-3D is indeed non-rigid, a rigid registration transform is used
to approximate the translation and rotation offset between the two images. The first
initialization was done manually.

Data shown in Figs. 4(a) and (c) represents the computed rotation and translation
motion of the heart that is used as the ground truth for this study. Figs. 4(b) and (d)
show the respective sinusoidal components extracted using Fourier analysis of the mo-
tion tracking data. The blue curves are the measured rotation and translation values

Table 1. Robustness to spatial and temporal dec-
imation of live 3D streams

Temporal sub-sampling
Freq(Hz) Rot err(deg) Trans err(mm)

15 0.23 0.12
10 0.23 0.08
6 0.20 0.08
3 0.34 0.15

Spatial sub-sampling
Pix size red(%) Rot err(deg) Trans err(mm)

20 1.3 0.37
60 1.73 0.40
100 0.69 0.37
200 1.15 0.52

shown with mean subtracted for clarity
of visualization. The red curves in these
plots are samples of the tracking values at
R-wave ECG trigger; and hence should
ideally represent only respiratory com-
ponent of cardiac motion. Note that the
number of cardiac and respiratory cycles
correlate with the cardiac and respiratory
rate of the animal.

The stream of 444 images was sub-
sampled in both spatial and temporal di-
rections and the sequential registrations
were performed on these sequences. The
result was compared to the ground truth.
Results in Table 1 show that the motion
compensation is very robust to temporal
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decimation of the streams with errors < 1mm even for 3 Hz temporal acquisitions. In
addition, the reduction of spatial resolution by 200% yields an error on only about 1.15
degrees and 0.52 mm suggesting that the algorithm is robust to sub-sampling in both
spatial and temporal resolutions.

4 Discussion and Conclusion

A clinically translatable multi-modality fusion system for stem cell therapy has been
proposed. The system integrates a novel motion compensation scheme that uses full-
volume ultrasound imaging to enhance the accuracy, robustness, and speed of fusion be-
tween MRI and live-3D ultrasound. Validation on a moving heart phantom and
preliminary data from animal studies have demonstrated the clinical feasibility of the
proposed approach. Further in vivo validation of respiratory motion tracking and man-
agement of latencies in the system will be crucial to translate this technology to human
clinical studies. Prospective registration schemes for respiratory motion compensation
is another research direction to make this technology work in real-time.
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Abstract. Intraoperative dosimetry during prostate brachytherapy is
a long standing clinical problem. We propose a novel framework to ad-
dress this problem by reliable detection of a subset of seeds from 3D
transrectal ultrasound and registration to fluoroscopy. Seed detection in
ultrasound is achieved through template matching in the RF ultrasound
domain followed by thresholding and spatial filtering based on the fixed
distance between stranded seeds. This subset of seeds is registered to the
complete reconstruction of the implant in C-arm fluoroscopy. We report
results, validated with a leave-one-needle-out approach, both in a phan-
tom (average post-registration seed distance of 2.5 mm) and in three
clinical patient datasets (average error: 3.9 mm over 113 seeds).

1 Introduction

Low dose rate brachytherapy is a minimally invasive therapeutic procedure for
prostate cancer that has rapidly gained acceptance due to highly successful clini-
cal results. In this procedure, a number of small radioactive sources or seeds (125I
or 103Pd) are permanently implanted into the prostate using brachytherapy nee-
dles. The aim is to deliver a sufficient radiation dose to kill cancerous tissue
while limiting the dose in radio-sensitive regions such as the bladder, urethra
and rectum. Transrectal ultrasound (TRUS) is used to intraoperatively guide
the transperineal insertion of needles. As a result of prostate edema, motion of
the gland due to needle forces, and possible intra-operative changes to the plan
due to various factors such as interference with the pubic arch, the locations of
the implanted seeds do not necessarily match with the initial treatment plan.
Hence, for quality assurance, intra-operative dosimetry is highly beneficial.
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Researchers have approached ultrasound-based seed detection [1]. However,
accurate seed localization based on ultrasound has proven to be a very difficult
task due to clutter from other highly reflecting objects such as calcifications re-
sulting in false positive appearances, seed specularity and shadowing, and limited
field of view. Even when hand-segmented, up to 25% of the seeds remain hid-
den in ultrasound images [2]. Therefore, C-arm fluoroscopy is commonly used
for visual assessment of the implanted seeds. However, the prostate gland is
not discernible in fluoroscopy images. Fusion of the fluoroscopy images and ul-
trasound is therefore considered as a possible solution [3–6]. If complete seed
localization and implant reconstruction from fluoroscopy images is available, the
registration of the result to ultrasound will enable dosimetry. In recent years,
the fluoroscopy reconstruction problem has been extensively addressed. Given
3-5 fluoroscopy images, and the relative pose of the C-arm in each acquisition,
the back-projection technique can be used to reconstruct the 3D implant [7].
For registration, attaching fiducial markers to the ultrasound probe [8], using
the ultrasound probe itself as a fiducial [4], or using the seeds as fiducials [9]
have been mentioned. Due to patient and equipment motion between the acqui-
sition of ultrasound and fluoroscopy, registration based on static markers is not
reliable. Furthermore, the use of fiducial markers is an unwelcome addition to
the ordinary setup in the operating room due to time and space limitations.

In this work we propose using a subset of seeds extracted from ultrasound
images to perform point-based registration between the seed clouds from fluo-
roscopy and 3D ultrasound. We present several technical innovations. Instead of
conventional B-mode ultrasound, we use RF signals processed to enhance seed
contrast. Template matching with a variety of in vivo and ex vivo seed tem-
plates is reported. To enable dosimetry, we have devised a two stage strategy
consisting of first 2D registration of needle projections from the ultrasound and
fluoroscopy, followed by the 3D registration of only the seeds in the matched
needles. We provide the results of this approach on both clinical and phantom
data. This novel methodology targets a complicated and long standing problem,
with no addition to the routine therapeutic procedure. We show that our method
has good promise to address this clinical challenge.

2 Methods

The outline of our methodology is presented in Figure 1. For reconstruction of
the implant in fluoroscopy, we implemented and used the method described in
[7]. The steps for acquiring the fluoroscopy reconstruction included C-arm pose
estimation from rotation angle and compensation for sagging, followed by back-
projection of the seeds, and finally seed to needle assignment using a minimum
cost flow (MCF) algorithm. The outcome was validated in terms of number of
seeds, needles, and seed to needle assignments based on the brachytherapy plans,
both in patient and phantom datasets. In this article we focus on ultrasound-
based partial seed detection, needle matching and registration from ultrasound
to fluoroscopy.
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2.1 Seed Detection

3D Ultrasound Setup and Data: We developed a 3D ultrasound system
based on a brachytherapy stepper (EXII, CIVCO Medical Solutions) modi-
fied by motorizing the cradle rotation. The sagittal array of a dual plane lin-
ear/microconvex broadband 5 − 9 MHz endorectal transducer (Ultrasonix) was
used. RF data was recorded at a frame rate of 42 fps, during the probe rotation
from -45◦ to 50◦ (0◦ corresponded to the probe aligned with the central sagittal
cross section of the prostate gland). 2D frame size was 5×5.5 cm. We present
the results of our work on data collected immediately after seed implantation
in the OR, from three brachytherapy patients in Vancouver Cancer Center. We
also present data from a CIRS Model 053 tissue-equivalent ultrasound prostate
phantom (CIRS, Inc., Norfolk, VA). For this phantom, a plan consisting of 135
seeds and 26 needles was created which was carried out by a radiation oncologist.

RF Signal Processing: In order to improve the seed to background contrast,
we averaged the signal power over windowed blocks of the RF signals. In other
words, we replaced a segment of length n at depth d of an RF line with the
reflected power Pd computed as:

Fig. 1. Workflow of the seed detection method
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Pd =
∑n

k=1 w(k)x(k)2

n
(1)

where x(k) (k = 1, ..., n) are the samples in the RF segment, and w(k) are
Hamming window weights. This step was applied with n =10 and a 50% over-
lap between consecutive blocks. We have previously reported that this process
doubles the contrast to noise ratio (CNR) between the seed regions and the
background [10]. Furthermore, the resulting five fold reducion in the size of the
RF signals improved the speed of the template matching step.

Seed Templates: Simple thresholding of the contrast enhanced RF data results
in a large number of seed candidates and seed-like clutter. In order to reduce false
positive detections, we computed the normalized cross correlation of the seed
regions with seed templates. We experimented with three groups of templates
and will provide a comparison.

Ex vivo templates: We created a 3D template acquired by imaging a seed in
water, placed parallel to the probe at the center of the ultrasound probe. The
3D template was formed by rotating the probe and acquiring 21 sagittal images.

In vivo templates: In the clinical situation, the existence of background tis-
sue, blood and edema significantly alters the appearance of seeds on ultrasound
images compared to the described ex vivo templates, resulting in low normal-
ized cross correlation values. Therefore, we created a second set of templates
extracted from in vivo data. These were extracted from different cases to ensure
that the template extracted from a specific patient dataset, was not used for seed
detection in that dataset. They were acquired by manually clicking the center
of a visually distinct seed in in vivo 3D data.

In vivo and ex vivo two-seed templates: We also created templates, both in
vivo and ex vivo, in which the template area contained two seeds. The two-
seed templates were examined as a potential solution to reduce the number of
false positives, given the fact that in stranded brachytherapy performed in our
institution, the distance between seeds is fixed at 1 cm with very few excep-
tions. Therefore, the existence of two strong seed candidates, 1 cm apart, is an
indication of a true detection.

NCC-Based 3D Template Matching: The normalized cross correlation of
the 3D template g and a cropped area of the image f equal in size with g and
centered at location (i, j, k) can be computed as:

f � g(i, j, k) =
(
∑

x,y,z fi,j,k(x, y, z) − fi,j,k).(g(x, y, z) − g)√
[
∑

x,y,z(fi,j,k(x, y, z) − fi,j,k)2
∑

x,y,z(g(x, y, x) − g)2]
(2)

where x, y and z represent the directions in the image coordinate system. Com-
putation of f �g results in a new image of the same size as f , with values in range
of [0,1] with largest values representing the centers of areas most similar to the
template. The frequency domain implementation of NCC was completed in under
six minutes on a regular PC with MATLAB for template size of 30×60×21, and
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image size of 128×258×391. Note that NCC is not invariant to scale. However,
in our case, the images and the templates were acquired with similar imaging
parameters, therefore the scales matched.

Thresholding, Spatial Filtering, and Grouping in the NCC Image: The
NCC image was thresholded. Starting from the point with the highest NCC, a
neighborhood of the size of the seed was cleared around each non-zero voxel.
This was necessary because each seed consists of several bright voxels, while we
need a single voxel to represent the seed. The remaining voxels were grouped
into needles using the Hough transform [11] followed by eliminating single seeds
that could not be grouped into lines. Using the knowledge of the fixed 1 cm
distance between the seeds in our data, we applied an additional trimming step.
On each needle, starting from the seed with the highest NCC value, any other
seed candidate that was within 0.8 cm was removed.

2.2 Matching and Registration

After applying a transformation that matched the centers of mass of the two
datasets, we applied a 2D needle matching process. This provided an initial
alignment and reduced the risk of local minima due to the unbalanced number
of seeds in ultrasound and fluoroscopy. Matching was performed by applying a 2D
rigid registration between the needle projections on the transverse plane passing
through the prostate mid-gland in the fluoroscopy implant. Assuming that X is
the set of n projection points from ultrasound, and Y is the set of m projection
points from fluoroscopy, the rotation and translation parameters of the transfor-
mation T were found to minimize

∑
i=1:n dc[T (Xi), Y ] where dc[T (Xi), Y ] is the

Euclidean distance of the ultrasound projection point Xi from its closest match
in the point set Y . After the matching step, the fluoroscopy needles without a
match in ultrasound were removed and the standard 3D point-based Iterative
Closest Point (ICP) registration algorithm [12] was applied.

3 Results and Conclusions

We quantified the outcome of our ICP seed registration method based on 1)
the post-registration distances between ultrasound seeds and their closest fluo-
roscopy counterparts, 2) the stability of needle matches and the recorded regis-
tration errors subject to the removal of any of the detected needles.

Registration Errors: Table 1 presents the results of ultrasound seed detection
and registration for the CIRS phantom. The best outcome was achieved when
the two-seed ex vivo template set was used. The post-registration seed distances
from ultrasound to the closest matching fluoroscopy seed was 2.48 mm. Note
that the best registration result was obtained when the lowest number of seeds
(73 out of 135, 17 needles out of 26) were detected. The result of the 2D matching
and 3D registration of the seed clouds for the phantom data, using the two-seed
ex vivo template, is depicted in Figure 2.
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Fig. 2. Phantom results: 2D matching of needle projections in transverse plane (left),
3D seed cloud registration using the matched needles from fluoroscopy and ultrasound

Table 1. Phantom result: # of detected seeds, registration errors with all detected
needles, and average registration error for the leave-one-needle-out validation test

dist. er.(mm) dist. er. # fl # fl seeds, # of detected
Phantom all needles (mm) seeds in matching seeds in

L.O.O Total needles ultrasound

1-seed, ex vivo templ. 2.69±2.03 2.71±1.98 135 95 86
1-seed, in vivo templ. 4.33±2.21 4.40±2.24 135 101 95
2-seed, ex vivo templ. 2.48±1.52 2.48±1.41 135 82 73

Table 2 presents the results for the three patient datasets. The one-seed and
the two-seed templates did not result in significantly different error values. We
obtained errors of 3.36 mm, 3.73 mm, and 4.76 mm for the three cases on in
vivo templates. With ex vivo templates, we witnessed a decrease in the number
of detected seeds for all cases and an error increase in two patients with a slight
improvement in case 3 in terms of registration error (to 4.38, 4.08 and 4.22 mm).
For case 2, Figure 3 illustrates the results of 2D matching and 3D registration.
In both Figures 2 and 3 one can see that the unmatched needles tend to be from
the anterior side (top of the images), while the posterior seeds that are closest
to the probe are accurately detected. This is likely due to signal attenuation and
the depth dependent reduction in the resolution of our 3D ultrasound system.

Leave-one-needle-out Validation of the Registration Process: In order
to study the stability of our matching and registration procedure, we also ran
a leave-one-needle-out experiment. For each patient and the phantom case, as-
suming that n ultrasound needles were identified, we repeated the matching and
registration procedure n times, each time with n− 1 needles. This amounted to
the removal of three to seven (10% to 20%) of the seeds in each round for patient
cases. The idea is that if the registration is valid, and not just a local minimum,
the removal of any specific needle should not drastically change the outcome.

The average of the errors in the leave one out experiments (column 3 in
Tables 1 and 2) were close to the errors when all detected seeds were used in
the registration step (column 2). We also examined the stability of the needle
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Fig. 3. A patient case: 2D matching (left), registered seeds in matched needles (right)

Table 2. Number of the detected seeds, registration errors and leave-one-needle-out
errors for the 3 patient datasets

dist. er.(mm) dist. er. # fl # fl seeds, # of detected
Case all needles (mm) seeds in matching seeds in

L.O.O Total needles ultrasound

P1 1-seed in vivo templ. 3.72±1.86 3.85±1.96 102 51 35
P1 2-seed in vivo templ. 3.36±1.78 3.44±1.95 102 57 37

P1 ex vivo templ. 4.07±2.10 4.38±1.87 102 30 16

P2 1-seed in vivo templ. 3.98±2.50 3.77±2.27 115 74 56
P2 2-seed in vivo templ. 3.73±1.86 3.79±1.94 115 71 49

P2 ex vivo templ. 3.74±2.8 4.08±2.58 115 55 37

P3 1-seed in vivo templ. 4.76±1.87 4.90±2.12 100 35 27
P3 2-seed in vivo templ. 4.88±1.95 4.79±2.25 100 33 23

P3 ex vivo templ. 4.52±1.65 4.22±1.49 100 26 16

matching step subject to removal of needles. In the case of the phantom data,
and case 1 among the patient datasets, it was noted that regardless of which
needle was removed in the leave one out experiment, the matched fluoroscopy
needle for the rest of ultrasound needles remained the same (number of detected
needles: n=17). In patient cases 2 and 3, on average, the match for one needle
changed due to the removal of a needle (n =14 and n =12).

4 Conclusions

We showed that it is feasible to use contrast enhanced RF ultrasound data, tem-
plate matching, and spatial filtering to detect a reliable subset of brachytherapy
seeds from ultrasound to enable registration to fluoroscopy. Real-time implemen-
tation requires the matching process to be computationally improved though
parallelization to enhance the current computation time of around six minutes.
More robustness analysis and additional registration approaches will be imple-
mented in future work. The 3D ultrasound system used in this work acquired
sagittal images while rotating radially. This results in a significant decrease in
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spatial resolution at increasing distances from the probe. The use of a com-
prehensive depth dependent set of templates can improve our results. It is also
possible to perform the ultrasound seed detection after only a part of the im-
plant, for example the top row of needles, is completed. This will reduce the
shadowing effects. Clinical data is being acquired to test these possibilities.
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Abstract. Purpose: Ultrasound section-thickness is the out-of-plane
beamwidth causing major roles in creating image artifacts normally ap-
pearing around the anechoic areas. These artifacts can introduce errors
in localizing the needle tips during any ultrasound-guided procedure. To
study how section-thickness and imaging parameters can affect observ-
ing and localizing needle tips, we have conducted a typical calibration
setup experiment. Method: Multiple needles were inserted orthogonal to
the axial image plane, at various distances from the transducer. The ex-
periment was conducted on a brachytherapy stepper for a curvilinear
transrectal-ultrasound probe. Result: Experiments demonstrated that
the imaging parameters have direct impacts on observing needle tips
at different axial locations. They suggest specific settings to minimize
the imaging artifacts. Conclusion: The ultrasound section-thickness and
side lobes could result in misjudgment of needle insertion depth in an
ultrasound-guided procedure. A beam profile could assist in consider-
ing the likelihood of position errors, when the effects of side lobes are
minimized.

1 Introduction

Ultrasound (US) imaging is ubiquitous in intra-operative surgical guidance. It
has been discussed in the literature [1–5] that the US images may contain certain
artifacts caused by the section-thickness (elevation beamwidth) of the beam, or-
thogonal to both the axial and lateral beam axes. These artifacts may conceal
tissue structures and may lead to incorrect medical diagnosis [1]. The motivat-
ing application for the present work is transrectal ultrasound (TRUS) guided
prostate cancer brachytherapy, a procedure that entails the permanent implan-
tation of small radioactive capsules through hollow needles into the patient’s
prostate in order to eradicate the cancer with radiation. During the brachyther-
apy procedure, the physician uses ultrasound slices to visualize the current posi-
tion of the needle tip that appears as a bright spot in the image. Section-thickness
is a unique problem for TRUS-guided brachytherapy because the needles are
perpendicular to the ultrasound image slice. The nonuniform section-thickness
causes error in localizing the needle tip and thus lead to inaccurate needle
placement and ultimately to suboptimal deposition of the radioactive dose. The
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Fig. 1. (a) US beam pattern in Axial, Lateral, and Elevation axes. (b) Axial resolution,
(c) Lateral resolution, and (d) Elevation resolution

objective of this paper is to quantify the needle tip placement error in during
the brachytherapy procedure.

The quality of an US image primarily depends on three factors. Axial and
lateral resolutions, which is the ability of the US device to distinguish between
two structures along the axial and lateral direction, respectively. The third factor
is the so called elevation resolution, where the US device assumes that all received
echoes originate from structures situated precisely on the central line of the US
beam [6], as depicted in Fig. 1 and in more details in Fig. 2. Figure 2(a) and (b)
show the cross-section of an unfocused beam pattern and its corresponding A-
mode echoes generated by reflecting materials in the medium. The first reflected
beams, A-C, correspond to the three objects located at the same depth (D) from
the transducer within the near-field of the US beam. Since the strength of the
US beam is at its peak at the center and it decreases gradually toward the side
edges of the beam [1], the maximum echo amplitude (A) corresponds to point
A on the central beam line and the minimum echo corresponds to point C near
the side edges of the beam. The same concept applies to reflecting objects D-
F, except that the overall US beam intensity decreases farther away from the
transducer. Since echoes from the same axial distance and lateral position of the
US beam are received by the transducer at the same time, they are absorbed
simultaneously. All echoes received at the same time are summed and interpreted
as a single object located on the US central beam line [1]. As a consequence,
echoes from an object located along the side edge of the US beam appear to be
originating from a non-existing virtual reflector on the central region of the US
beam, shown as point G in Fig. 2(b). Putting it simply, reflectors along the side
edge of the beam do not appear at their true position.

The US section-thickness has been measured using phantoms incorporating
inclined surfaces and multiple filaments [1–4]. Recently, we have constructed a
device to measure the section-thickness of side firing TRUS probes [5]. We used
the same replica of this device for measuring needle localization and placement
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Fig. 2. (a)-(b) Beam pattern of an unfocused B-mode and A-mode US linear array
with corresponding point reflectors [1]. (c) Axial, lateral and elevational axes convention
with respect to the TRUS beam pattern. (d) Section-thickness estimation principle.

errors caused by the section-thickness of the TRUS beam in a standard clinical
brachytherapy setup. To the best of our knowledge there has been no published
work on this subject in the open literature.

2 Methodology

2.1 Experimental Setup

To generate a beam profile for the TRUS probe at 6MHz central frequency, we
moved the probe back and forth (along the elevation axis) to acquire US images
of the inclined-plane device (Fig. 3(a)). This is performed when the TRUS probe
transducer and profiling phantom were inserted into a clear water bath.

To observe needle tip effects (appeared as bright spots in Fig. 4(c)) on the US
images, 6 needles were inserted through holes of a brachytherapy stepper grid
template as shown in Fig. 3(b). The needles were placed at the grid’s central
holes to ensure the distorted parts of the image (along the sides) does not have
any influence in our measurements. For each needle, we moved the TRUS probe
back and forth (along the elevation axis) in a water bath until the reflection
from the needle tips appear on the US image as they intersect with the US
beam’s boundary. The corresponding probe depth were then recorded for further
analysis.

2.2 US Beam Profile Estimation

To have an estimate of localization error for a TRUS probe, the US main beam
thickness for all depths of the US beam (effective imaging region) from the
transducer is found. We do this for the curvilinear transducer by using the same
principle first explained in [1]. According to this approach (Fig. 2(d)), as the US
beam propagates through the medium it first intersects with point A (nearest
point to the transducer) on the inclined diffusive surface (45◦ to the beam).
Similarly, the last point with which the US beam intersects would be the point
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Fig. 3. (a) The beam profiling phantom mounted on a Burdette Medical Systems
stepper, (b) Needle insertion setup, (c) Needle offset measurement principle

B (farthest point to the transducer). The sound echoes return to the transducer,
however, since the US device assumes all the echoes received to the transducer
along the elevation axis of the beam are from the structures on the beam’s central
line, the line AB would be assumed as line CD to the device. Hence the TRUS
image would include a thick bright band which the thickness approximately
represents the US main beam thickness. A set of TRUS images with different
imaging parameters were collected at 6MHz for all depths of the imaging region.
The artifacts (bright bands) were segmented manually from the images and their
distances to the US transducer (position of the band) were taken as the depth
measurements. A beam profile of US main beam thickness versus axial distance
from the transducer is then plotted as shown in Fig. 4(b) and Fig. 5(a),(c), and
(e). Figure 4(a) shows a subset of these measurements.

2.3 Needle Offset Measurement on US Images

To calculate the needle insertion offsets for every experiment, we set the closest
needle to the transducer (needle No. 1) as the reference needle and subtract the
depths of the other observed needle positions from that of the reference needle,
as shown in Fig. 3(c). The subtracted values represent the amount of divergence
or convergence of the beam pattern with respect to the reference needle. Hence
the section-thickness relationship between every two inserted needles is defined
as:

B(j) = |(N(j) −N(i))| × 2 +B(i)

Where i and j are the two axial depths where the needles are inserted; N(i) and
N(j) are the needle insertion depths at axial depths i and j respectively; and
B(i) and B(j) are the US main beam thickness at the corresponding i and j
axial depths respectively.

3 Results and Discussion

In order to observe the effects of the US device imaging parameters on the beam
pattern we performed a series of needle insertion tests for 27 combinations of US
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Fig. 4. (a) A subset of elevation main beam thickness measurements from 28mm
to 90mm axial distance, at gain= 55%, dynamic range= 78dB, and power= 0. (b)
TRUS elevation beam profile at 6MHz central operating frequency from 10mm to
65mm axial distance, at gain= 55%, dynamic range= 78dB, and power= 0. (c) Needle
tip appearance in a TRUS image at gain= 0%, dynamic range= 15dB, and power= −7.

Fig. 5. (a) US beam profile for gain= 100%, dynamic range= 50dB, and power= 0.
(b) Average and std. of N(j) − N(1) for gain= 100%. (c) US beam profile for gain=
50%, dynamic range= 50dB, and power= 0. (d) Average and std. of N(j) − N(1) for
gain= 50%. (e) US beam profile for gain= 0%, dynamic range= 50dB, and power= 0.
(f) Average and std. of N(j) − N(1) for gain= 0%.
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Table 1. Summary of the needle insertion offsets for different US settings

Gain (%) Dyn. Range (dB) Power
N(j)-N(1) (mm)

j=1 j=2 j=3 j=4 j=5 j=6

0

15
0 0 -0.354 -1.134 0 -0.992 -0.567
-4 0 -0.354 -1.204 -0.07 -1.134 -0.637
-7 0 -0.496 -1.13 -0.921 -1.063 -0.708

50
0 0 -0.496 -1.559 -0.637 -1.275 -0.779
-4 0 -0.567 -1.417 -0.85 -1.134 -0.637
-7 0 -0.496 -1.559 -0.637 -1.275 -0.779

100
0 0 -0.425 -1.488 -0.992 -1.134 -1.063
-4 0 -0.567 -1.701 -0.851 -1.134 -0.567
-7 0 -0.637 -1.77 -0.708 -0.708 -0.425

50

15
0 0 1.913 3.047 5.174 6.449 7.796
-4 0 1.488 1.913 4.748 5.17 6.024
-7 0 1.204 2.26 4 4.181 6.024

50
0 0 1.771 2.835 5.315 6.024 7.016
-4 0 1.913 2.551 4.536 5.528 6.591
-7 0 0.992 2.197 1.913 2.976 4.181

100
0 0 1.488 2.338 4.6 5.244 6.237
-4 0 1.488 2.409 4.394 4.465 6.166
-7 0 1.204 1.771 3.827 6.449 5.741

100

15
0 0 1.134 2.055 4.394 5.244 5.457
-4 0 1.134 2.126 3.402 4.252 4.748
-7 0 1.275 1.7 2.551 2.976 4.394

50
0 0 1.488 2.409 4.6 6.095 5.67
-4 0 1.204 1.772 3.118 3.402 5.174
-7 0 1.417 1.134 3.331 3.969 3.543

100
0 0 1.13 1.488 3.685 4.394 5.032
-4 0 1.204 1.559 4.252 4.252 3.969
-7 0 1.063 0.779 2.551 3.402 4.04

gain (0, 50, and 100%), dynamic range (15, 50, and 100 dB) and power (0, -4,
and -7). The results are shown in Fig. 5 and Table 1.

According to Fig. 5(b)-(d), when gain=50% or gain=100%, the needle off-
sets are monotonously increasing, which indicates the beam diverges constantly.
However, this is not the case when comparing with the beam profile generated
at the same settings (Fig. 5(a)-(c)). The beam profile pattern shows that the US
beam converges up to a focal point and diverges right after that. This contra-
diction in the beam profile and needle insertion offset plots could be because of
the US side lobes artifacts.

Side lobes consist of multiple low-intensity off-axis ultrasound beams that
produce image artifacts due to the error in localizing the returning echoes within
the main US beam [6, 7]. If a highly reflective structure is encountered, it will
be wrongly positioned in the image along the main US beam [6]. When the gain
is set to high, the energy assigned to the US side lobes increases and hence their
effects on the TRUS images increase. Hence, during needle insertion, the needle
tips are first intersect with the side lobe energies and their echo artifacts are
shown as if they are intersected with the main US beam. This clearly shows that
the US main lobe thickness and the side lobe artifacts together might have large
effects on localizing needle tips and objects within the TRUS images.

On the other hand, when gain=0%, the side lobe energies are set to be mini-
mum and the needle offsets are less than zero (Fig. 5(f)) which indicates that the



Effects of US Section-Thickness on Needle Tip Localization Error 305

beam constantly converges up to a focal zone (around 30 mm from the trans-
ducer). The beam pattern starts diverging quickly after the focal zone which
matches the main beam thickness measurements using the profiling phantom
shown in Fig. 5(e). This indicates that the US section-thickness is small and
hence the section-thickness must not introduce much error in the images cap-
tured in this setting. On the other hand, when gain is set to zero, the amount of
false reflections due to the US side lobes are minimized and hence the needle tip
reflections on the TRUS images are ensured to be due to intersecting the needle
tips and US main beam only.

4 Conclusion

To the best of our knowledge there has been no previous work to examine the
effects of imaging parameters and the US section-thickness on needle insertion
depth estimation error. The US section-thickness is the combination of the both
main sound-energy lobe (the main beam) and the side energy lobe. The side
lobe artifacts maybe an important issue to be addressed during needle insertion
procedures since they may introduce further localization errors beyond the main
beam thickness artifacts.

Both the beam profile and the needle insertion experiments have provided
evidence that the high-gain in US imaging setting would increase the side lobe
energy of the US beam. This could result in a large elevation section-thickness
profile, which directly leads to larger errors in needle insertion for TRUS-guided
brachytherapy.

It is highly recommended to reduce the gain of the US imaging device to as
low as practically possible to suppress the side lobe-introduced section-thickness,
which would effectively minimize the needle insertion depth estimation errors
(up to around 2.5 mm). The US beam profile also could help the surgeon in
considering the likelihood of position errors during needle insertions.

The proposed technology is indeed tailored to brachytherapy, but the underly-
ing principle applies to three-dimensional localization in US imagery, in general,
as the US section-thickness is inherent to the modality. Side-lobes artifacts are
present in every application where a needle (catheter, etc.) penetrates the US
beam in the elevational direction which occurs quite ubiquitously.
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Abstract. We aim to compute radioactive stranded-implant displace-
ment during and after prostate brachytherapy. We present the methods
used to identify corresponding seeds in planned, intra-operative and post-
implant patient data that enable us to compute seed displacements. A
minimum cost network flow algorithm is used, on 8 patients, for needle
track detection to group seeds into needles that can be matched between
datasets. An iterative best line detection algorithm is used both to help
with needle detection and to register the different datasets. Our results
show that there was an average seed misplacement of 5.08±2.35 mm
during the procedure, which then moved another 3.10±1.91 mm by the
time the quality assurance CT was taken. Several directional trends in
different regions of the prostate were noted and commented on.

1 Introduction

Prostate brachytherapy is an effective, minimally invasive treatment technique
for men with prostate cancer[1]. It involves transperineal insertion of permanent
radioactive sources, or seeds, into the prostate using needles. Many research
groups have recognized the importance of monitoring the seed displacement and
have used manual seed labeling, contouring or fiducial markers [2–5] to do this.
We present a novel approach to automatically register different datasets and
match corresponding seeds for displacement analysis.

This paper describes the computation of the misplacement, due to prostate
rotation and needle deflection, of individual seeds in a stranded implant by
comparing the pre-operation planned placement (pre-plan data) to the actual
placement during surgery. The latter seed positions are computed from intra-
operative fluoroscopic data [6]. We extended the study to include the quantifica-
tion of seed movement from the intra-operative conditions to immediately after
surgery where CT reconstruction is used to compute seed positions [7]. This
movement is caused by change in patient pose from dorsal lithotomy during the
procedure to horizontal recumbent during CT imaging and also from immedi-
ate inflammation. We wish to point out that although the term misplacement
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Fig. 1. Flow chart of the full process used
to compute seed displacement. (∗Figure
2 shows how the needle intersections are
found).

Fig. 2. Needle detection and calculation of
mid transverse plane needle track intersec-
tions

may imply it, we cannot distinguish between tissue deformation and implant
misplacement - analyzing this would require a separate study.

The entire process requires matching of individual seeds between these datasets
to calculate the amounts of displacement. Seeds were grouped into their respec-
tive needles using a minimum cost network flow algorithm [8] (used previously by
Chng et al. on CT data [7]). Needles were then matched so that individual seeds
could be identified between datasets. To correctly compute the displacement of a
given seed, a registration process was needed to put the pre-plan, intra-operative
fluoroscopic and post-implant CT data into correspondence. A technical novelty
for this process involved an iterative sampling algorithm to average potential
needles and determine the implantation axis direction, which is not consistent
between datasets.

Seed movement from pre-plan to intra-operative to post-implant have not been
presented before. Seed displacement results will be presented after a description
of the the methods used to label seeds in different datasets.

2 Methods

For stranded implants, seeds from the same needle stay ordered and somewhat
aligned in a needle track, therefore a needle track is an intuitive class to group
seeds into. Matching needle groupings between datasets simplifies the problem
from matching ≈ 100 seeds to ≈ 20 needles and allows individual seed identifi-
cation and therefore displacements computation.

The methods are summarized in Figure 1 and described in the next subsec-
tions. The needle detection process alone is summarized in Figure 2.

All the data used was obtained from eight consenting patients undergoing
low-dose prostate brachytherapy with institutional research ethics approval.
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2.1 Inter-dataset Seed Matching

Detection of the Insertion Axis. We use an iterative best line detection to
find the axis of insertion of needles. Our algorithm is similar to the RANSAC
(RANdom SAmple Consensus, [9]) algorithm which involves fitting lines to pairs
of randomly chosen points and scoring each line. The highest scored lines are
then kept as needles. Lines that have large deviations from the the z axis, which
is the cranio-caudal axis in the CT, and the axis of rotation of the source-detector
on the C-arm of the fluoroscope, are rejected immediately, saving unnecessary
calculations. An exhaustive search on all possible pairs of points for this applica-
tion is not computationally intensive so we have no random component. Pairs of
points are used to fit straight lines and a Gaussian cone is used to cut-off seeds
that are clearly not part of the needle.

Although the algorithm does not consistently assign seeds to needle groups
correctly, the highest scoring lines are correct needle directions for a wide range
of parameter values. The top eight needle directions, which are chosen to be
consistent between datasets, were then averaged to find the implantation axis.
This was not required for the pre-plan data which has the transducer axis already
parallel to the z axis.

Needle Detection. Once the dataset is rotated so that it is aligned with the
implantation axis, it is possible to use an algorithm with tighter restrictions.
Because seeds from a single needle do not necessarily lie on a line, instead of
looking at parameterizable lines, the seeds are viewed as nodes within a network
that allow a single unit of flow through them. Each arc between two nodes carries
a cost. Open source code (“matlog”) written by Kay [10] was used to perform
the minimization.

The cost function is made up of the same components as the scoring function
iterative best line approach. Namely, these are: a measure of the angle, θij , that
the arc ij between seed i and seed j makes with the implantation axis, and a
lower cost for arcs that are the length of a typical seed spacer, denoted as s0,
which is equal to integer multiples of 1 cm. The angle and spacing costs ACij

and SCij are defined as follows:

ACij = A(e|θij |/θ0 − 1)4 (1)

SCij = −Be−sij/sd((
3∑

n=1

δ(sij − ns0)) ∗ (e−sij/sv )2) (2)

where sij is the spacing between node i and node j. The ∗ symbol denotes convo-
lution. The spacing cost is defined as a Gaussian with a variance of sv convolved
with a train of delta functions to give negative peaks at integer multiples of the
smallest spacing (s0 = 10 mm). A final decaying exponential with a variance of
sd is used to make the closer spacings more desirable. The spacing cost reflects
the spacing seen in stranded implants.
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The final objective function is:

Cij = γACij + SCij (3)

where γ is only used for the pre-plan data to heavily weight towards the angle.

Inter-dataset Needle Matching. After rotating the seed clusters and group-
ing the seeds into needles, the intersection of each needle with the most inferior
transverse plane is computed. Matching is then performed using another min-
imum cost network flow algorithm. Each node of the network contains the x,y
coordinates of an intersection as well as the number of seeds that were in the
needle. Including the number of seeds per needle in each node, and the cost of a
unit flow, was found to remove ambiguities caused when there are several needles
close to each other.

2.2 Cluster Registration and Seed Displacement Computation

After the needles are matched, each seed position can be compared to its corre-
sponding seed from a different data type to obtain a displacement vector. To do
this the seeds clusters have to be registered so that they are in the same coor-
dinate system. This registration was performed by translating each seed cluster
so that the origin is at the centroid of all the seeds and then rotating it so that
the z axis is aligned with the implantation axis. This process ensures that the
centers of mass of the seed clusters are in the same place and that both the pitch
and yaw of the clusters are matched. It is assumed that there is no significant
differences in the rotation about the implantation axis between clusters since
the bed is horizontal for both the CT and the fluoroscopic images.

An average distance was computed over all seeds from all patients for the
entire volume as well as for each of the six (left, right, posterior, anterior, supe-
rior, inferior) half-sections. The average lateral, superior-inferior and anterior-
posterior components of the displacement were also calculated in each section.
This was done for both pre-plan to intra-operative misplacement and intra-
operative to post-implant movement.

3 Results and Discussions

3.1 Inter-dataset Seed Matching Results

Iterative Best Line Detection Results. The iterative best line detection
algorithm correctly assigned 79.0% to 93.2% of the seeds. 80% to 100% of the
needle vectors were correctly found. In all the patients and data types, the top 8
needle directions found were correctly so the average direction gave the correct
insertion axis direction.
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Fig. 3. Needle detection results for 1 patient for pre-plan, intra-operative and post-
implant data

Minimum Cost Network Flow Needle Detection Results. Both cluster
rotation and network flow calculation were tested on our 8 datasets. Figure 3
shows the results from a single patient for all three data types.

Summarizing the results, an average of 99.3% of the seeds were correctly
assigned for the intra-operative data, while an average of 99.4% of the seeds were
correctly assigned for the post-implant data. Once again, no pre-plan information
is used in the needle detection and the algorithm takes between 1 to 2.5 seconds
to rotate the cluster and find the needles. The needle detection for the pre-plan
data correctly assigned all the seeds in all patients.

Inter-dataset Needle Matching Results. The few incorrectly assigned seeds
in the various datasets were manually adjusted to be grouped with the correct
needle. The method described earlier, achieved a correct needle matching for
all the datasets, for both the pre-plan to intra-operative and intra-operative to
post-implant matching.

3.2 Seed Displacement Results

With the needles correctly identified and matched in corresponding data sets
for a given patient, the seed locations could be directly compared which gave
us a measure of the seed displacement. As an example of a pre-plan to intra-
operative comparison, Figure 4 shows the misplacement of the seeds for a single
patient. Similar illustrations were computed for intra-operative to post-implant
comparisons. Figure 5 shows all three sets of data for a single needle.

Average Displacement Magnitudes. The distance that every seed moved
between datasets was computed for all 871 seeds from the 8 patient data sets,
then averaged. The average displacement was significantly larger for the pre-
plan to intra-operative case than for the intra-operative to post-implant data
(5.08 mm versus 3.10 mm with p<0.01, n= 871) and both distances were within
the reported localization error of 0.9 mm [6].

The average distance was computed for each half-section in the 3D space to
quantify the motion in each region. Table 1 shows these distances.
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Fig. 4. Pre-plan to intra-operative seed
misplacement results

Fig. 5. Seed positions of a single needle
from all three datasets

Table 1. Seed displacement results for different regions within the prostate volume

Half-section Av. misplacement Av. movement
(pre to intra) /mm (intra to post) /mm

left 5.07±2.46 3.11±1.87
right 5.15±2.43 3.12±1.78

inferior 4.94±2.47 3.19±1.87
superior 5.29±2.42 3.04±1.78

posterior 4.63±2.34 2.97±1.61
anterior 5.60±2.55 3.26±2.04

Table 2. Displacement results for intra-operative misplacement and post-implant
movement

Intra-operative misplacement Post-implant movement

Half- lateral inf-sup ant-post lateral inf-sup ant-post
section /mm /mm /mm /mm /mm /mm

left -0.42±1.69 0.13±2.71 0.28±1.81 0.34±0.94 -0.32±1.63 0.09±1.18
right 0.44±1.93 -0.31±2.28 -0.20±1.85 -0.28±1.00 0.29±2.06 0.08±1.16

inf -0.22±1.54 -0.27±2.66 -0.02±1.70 0.05±0.99 0.28±1.83 0.24±1.14
sup 0.24±2.11 0.09±2.34 0.10±1.99 0.01±1.05 -0.31±1.89 -0.07±1.18

post 0.34±1.16 2.02±1.30 -0.30±1.63 -0.10±1.14 0.40±1.55 -0.13±1.24
ant -0.32±2.32 -2.19±1.32 0.38±1.98 0.16±0.86 -0.44±2.08 0.29±1.06

For both pre-plan to intra-operative and intra-operative to post-implant dis-
placements, there were no significant differences in the amount of motion be-
tween the different half sections. All half-sections, however, had larger pre-plan
to intra-operative misplacement as compared to intra-operative to post-implant
movement.
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Displacement Vectors. Table 2 summarizes the general displacement direc-
tions seen.

As with the scalar measurements, these directional displacements were smaller
for the intra-operative to post-implant case than in the pre-plan to intra-operative
case. With the calculated standard deviations, the only statistically significant
displacement was the superior misplacement of the posterior seeds and the in-
ferior misplacement of anterior seeds between the pre-plan and intra-operative
conditions. No other significant trends were seen.

4 Summary and Conclusions

We have combined several techniques, including the use of an iterative best line
detection algorithm and network flow algorithms, to formulate a new method to
identify seeds from stranded implants in different datasets and therefore compute
their displacements.

For the pre-plan to intra-operative comparison, the inferior misplacement of
anterior seeds and superior misplacement of posterior seeds is in agreement with
discussions with oncologists on preferred placement. Since there is a lack of
implantable tissue in the anterior superior quadrant (close to the bladder), seeds
are deliberately placed more inferiorly. Also, the divergence of the rectum from
the prostate in the superior posterior quadrant leads to a tendency to “over-plan”
this region.

The misplacement of seeds (due to needle deflection and prostate rotation)
is shown to be more significant than the movement immediately after surgery.
This agrees with work done by Wan et al. to evaluate needle deflection [11]
and by Lagerburg et al. who evaluate prostate rotation during the insertion of
needles [12]. The results also emphasize the seed placement process as a research
area that requires more attention, in comparison to immediate post-implant seed
movement, in future efforts to improve prostate brachytherapy.

The algorithms explained in this paper have been described for pre-plan to
intra-operative fluoroscopic to post-implant CT-data. However, they can also
be used to compare seed positions over several days after a surgery to further
monitor inflammation. Another application of the developed algorithms is in
real-time dosimetry. Complete ultrasound-based brachytherapy seed detection
is a notoriously challenging problem. However, Moradi et al. have shown that
given a complete reconstruction of the fluoroscopic data and identification of the
seeds, registration can be performed with an incomplete reconstruction of the
seed cloud in ultrasound data [13]. Therefore, the complete seed identification
(or labeling) algorithm described here, could make it possible to perform intra-
operative dosimetry.
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Abstract. In this paper we introduce a new method to compute, in real-
time, the physical behavior of several colliding soft-tissues in a surgical
simulation. The numerical approach is based on finite element modeling
and allows for a fast update of a large number of tetrahedral elements.
The speed-up is obtained by the use of a specific preconditioner that
is updated at low frequency. The preconditioning enables an optimized
computation of both large deformations and precise contact response.
Moreover, homogeneous and inhomogeneous tissues are simulated with
the same accuracy. Finally, we illustrate our method in a simulation of
one step in a cataract surgery procedure, which require to handle contacts
with non homogeneous objects precisely.

1 Introduction

Several methods have been presented for real-time bio-mechanical simulations of
contacting soft-tissues. However, this work is motivated by a training simulator
for cataract surgery, whose needs can not be addressed with existing methods.
Thus, we first present the context and the motivations for this work before
highlighting simulation requirements and the contributions of our method.

Context: In developed countries, when the crystalline lens is being clouded
over by a cataract, a therapy based on phacoemulsification is commonly used.
Training simulation of this procedure has been studied [3,4], and a commercial
solution is provided by VRmagicR©. Another surgical procedure known as Manual
Small Incision Cataract Surgery (MSICS), requires low technology with almost
equivalent results when performed by a well-trained specialist. A recent report
[7] shows that there is a great need of training for this surgery, to face the huge
number of people that need care. This work provides the first steps toward a
simulator that could help solve this training bottleneck.

Unlike during phacoemulsification, MSICS consists in pulling out the crys-
talline lens as a single piece through a small incision (see Fig. 1). This step gen-
erates large deformations on both lens and eyeball. Moreover, for older patients,
the center of the lens can be much stiffer than the outer part. This inhomogene-
ity must be taken into account, as it impacts the successful completion of the
surgery. Indeed, it changes the mechanical behaviors and may require adapting
the size of the incision. A training system for MSICS necessitates an accurate
modeling of these soft-tissues in a simulation executed in real-time.

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAI 2011, Part I, LNCS 6891, pp. 315–322, 2011.
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(a) Extraction of the nucleous (b) Simulated procedure

Fig. 1. Nucleus extraction with an irrigating vectis. (a) motion of the tool, (b) simu-
lated lens. Elements at the center (in red) are stiffer than at the periphery (blue).

Contributions: In this context of tradeoff between accuracy and compu-
tation time, we need: (1) to account for precise contact response in highly
constrained cases and for strong stiffness inhomogeneities. We note that these
inhomogeneities create ill-conditioned systems that are more difficult to solve.
(2) to use a large number of nodes and elements in the finite element formulation,
in order to maintain the realism of the deformations.

The contribution of this paper is to answer these needs (which probably exist
for other surgical procedures) in a real-time simulation. The method is based
on an implicit integration scheme (to manage the large range of stiffnesses while
keeping large time steps) and uses a preconditioner that is updated at low fre-
quency. This preconditioner provides almost an exact solution to the deformation
solver, allowing its fast convergence. Moreover, it provides a very good estima-
tion of the mechanical coupling between the contacting nodes. This allows for a
precise constraint solving process based on accurate contact laws.

2 Related Works

Many previous works involve the simulation of soft body in contacts. We will
concentrate here on aspects related to the proposed strategies to solve the me-
chanical and contact equations once they have been expressed.

The core mechanical equations are based on Newton’s second law and the
Finite Element Method (FEM). We rely on a linearized implicit integration
scheme [2], which is more stable when sudden contacts occur. Thus we update
the next positions and velocities with the following equations :

Mat+h = f(xt+h,vt+h) vt+h =vt + hat+h xt+h = xt + hvt+h (1)(
M + hB + h2K

)︸ ︷︷ ︸
A

at+h = f(xt,vt) + hKvt︸ ︷︷ ︸
b

(2)

where M is the mass matrix, B the damping matrix and K the stiffness matrix.
Eq. (2) must be solved at each time-step, but continuously changes due to

material and geometrical non-linearities. As the system matrix is positive semi-
definite, a popular algorithm to efficiently solve this problem is the Conjugate
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Gradient (CG) iterative solver. However, it suffers from convergence issues for
ill-conditioned matrices, which can appear for inhomogeneous materials or finite
element meshes of non optimal quality. Preconditioning techniques consists in
computing an approximation P of matrix A which is easier to invert. Then, this
preconditioner can be used to solve (2) by relying on P−1A, which is better con-
ditioned and thus converge to an adequate solution in fewer iterations. However,
computing a preconditioner adds two overheads: first to invert (or factorize)
the preconditioner itself, then to apply it at each CG iteration. Several precon-
ditioners can be used, from simple diagonal matrices [2] to costly but precise
incomplete Cholesky factorizations.

When contacts occur, they must be taken into account in the above equation
system. A common solution consists in using a penalty method, which handle
contacts by adding a contact force f = kδn at each contact point, where δ is
a measure of the interpenetration, n is the contact normal and k is a stiffness
factor. This stiffness is difficult to determine, as it must be tuned according to the
stiffness of the object in contact. This becomes particularly an issue when dealing
with inhomogeneous objects. Stiff penalty forces can either be considered as
explicitly-integrated external forces, which can introduce instabilities and would
require lowering the time-steps. Alternatively, they can be placed in the same
implicit equations as the internal forces, creating a large system that can be
difficult to solve.

Other methods rely on Lagrange multiplier [8,10,6] to compute contact forces
such that all intersections are removed at the end of each time step. The core
computation of the algorithm involves solving a Linear Complementary Problem
(LCP) deriving from Signorini’s law :

δ = HCHT λ + δ0 with 0 ≤ δ⊥λ ≥ 0 (3)

where H is the Jacobian of the contacts, and C is the compliance matrix, λ is
the contact force, δ0 and δ are the measure of interpenetrations before and after
collision response. This equation means that, if λ is positive at the end of the
time step, then δ must be equal to zero, and vice versa.

For explicit methods C is the inverse of the (often diagonalized) mass ma-
trix, whereas for implicit schemes it also involves damping and stiffness, i.e.
C = ( 1

h2 M + 1
hB + K)−1 for the scheme used in (2). This matrix changes at

every time steps, and its computation can be prohibitive for large deformable
meshes. It is possible to use an approximation of the compliance, because an
approximated local deformation in response to a collision is visually acceptable.
The most extreme approximation is to only consider the mass, as for explicit
schemes. When it is used, contacts are corrected without any mechanical coupling
between nodes. A more accurate method has been proposed in [11], inspired by
the co-rotational formulation used in FEM to remove non-linearities introduced
by rotations. C can be precomputed from the rest configuration and updated at
each time step based on a local estimation of the rotations. However, this ap-
proximation can become inaccurate for large deformations. Moreover, it requires
storing a dense matrix, with 9n2 values where n is the number of vertices of the
object, therefore preventing its application on detailed meshes.
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3 Inhomogeneous Deformable Model on GPU

Soft tissue deformations are modeled using a geometrically non-linear elastic
formulation and a Finite Element Method (co-rotational model introduced in
[9]). The local rotation of each element is estimated in order remove the influ-
ence of geometrical nonlinearities, allowing to account for large deformations. To
compute the deformation in real-time with detailed meshes (more than 10,000
tetrahedral elements), we implemented a CG solver on the GPU [1].

Recently, we introduced a new approach [5] to maintain a good approximation
of the inverse of the system matrix during the simulation. This method exploits
time coherency to update an exact factorization of the system matrix within a
separated loop computed at a lower frequency. It only requires a few simulation
steps to provide a new factorization, thus constantly providing a good approxi-
mation usable as a preconditioner. It is further improved by estimating rotations
between the current position and the state used for the last factorization, simi-
lar to the co-rotational formulation. Even if the preconditioner is applied on the
CPU, the GPU can still be used for the remaining operations. Finally, as it uses
a sparse factorization, it supports simulations with a large number of elements.

As a consequence the above method significantly reduces the number of itera-
tions needed for the CG algorithm to converge. However, the paper only consid-
ered simulations involving a single object without any contacts. In this paper,
we extend this idea to the computation of contact responses, as is detailed in the
next section, and apply this new technique in the field of medical simulation. In
the context of the cataract simulation, two deformable tissues need to be sim-
ulated: the eye lens and sclera (Fig. 1) which both undergo large deformations
combined with multiple contacts during surgery. Furthermore, the crystalline
lens is by nature inhomogeneous, with a stiff kernel and softer boundaries, while
the meshes of these structures contain elements of potentially very different size
(in particular near the incision located in the sclera). All of these characteristics
lead to a very poor conditioning of the system matrix, and it is obvious that in
this case, preconditioning techniques could greatly improve the converge rate of
the solver. For this application, we found the LDLT factorization to be more
stable than the LLT Cholesky factorization. Therefore, the complete expression
of the preconditioner we use is:

P = RT
t→t−Δt Lt−ΔtDt−ΔtLT

t−Δt Rt→t−Δt (4)

where Rt→t−Δt is the current local rotations matrix, and Lt−ΔtDt−ΔtLT
t−Δt

the most recent factorization.

4 Preconditioner for Contact Response

Local mechanical coupling must be taken into account to compute accurate colli-
sion response (see Fig 2). Indeed, while the constraint-based formulation will en-
sure a contact-free configuration at the end of each time-step in all cases, the local
deformation near contacts obtained without the correct compliance (Fig. 2(b))
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(a) Homogeneous object (b) Inhomogeneous object
without coupling

(c) Inhomogeneous object
with coupling

Fig. 2. Force repartition for homogeneous and inhomogeneous objects on which colli-
sions are solved with and without mechanical coupling. Stiffer part are shown in red.

is invalid. While this difference would be reduced after several time-steps, using
a more accurate compliance produces better intermediate configurations and,
more importantly for real-time simulations, allow larger time-steps.

To solve this issue, we propose to extend the work introduced in [11], using
the preconditioner as compliance matrix instead of a precomputed dense inverse
matrix. Indeed, the compliance matrix is only a scaled version of the inverse
system matrix: C = h2A−1. Moreover, we showed in section 3 that we maintain
a good approximation of A−1 by updating the preconditioner at low frequency.
Thus, if P remains a good approximation of the system, it can be re-used to build
the compliance matrix. That way, we guarantee a contact-free configuration at
the end of the time step with almost the exact mechanical coupling of elements
taken into account. To build the LCP matrix, we combine eq. (3) and (4) to
compute for each object:

HCHT = h2 HA−1HT ≈ h2 H
(
RLDLTRT

)−1
HT

≈ h2 J
(
LDLT

)−1
JT with J = HR

(5)

This computation can be implemented in three steps. The first step consists
in applying the local rotations since the last update to H. This operation is
inexpensive because it is done by computing the product of a block-diagonal
matrix R with a sparse matrix into matrix J with the same sparsity structure.
Next, we compute the product of JT with the inverse of the factorization. This is
achieved by computing rows independently, each requiring two sparse triangular
solves (STS) using one row of J. Finally, the resulting matrix is multiplied by
matrix J to obtain the final contribution to the LCP matrix.

The number of STS in step 2 is proportional to the number of contacts, which
can become very large in some cases. However, as each row is independent, we
proposeto implement them on GPU, by computing several STS in parallel, re-
ducing the level of parallelism that must be achieved within each STS. This
maps nicely to the two-level SIMD architecture of todays GPU where synchro-
nizations within a group of cores is fast, whereas global synchronization over
multiple groups is much more prohibitive. Such synchronizations are necessary
to guarantee the respect of dependencies within the computation, and would be
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difficult to implement efficiently if only a single STS was computed on all GPU
computing cores.

Matrices H, J and L can be stored in compressed sparse row (CSR) format to
save memory. However in the GPU implementation it is more efficient to use a
dense representation for J, such that the elements of the right-hand vectors for
each solve can be accessed directly. Another consequence is that the final matrix
product then involves two dense matrices, and can therefore be implemented
using a standard BLAS library, such as CUBLAS for NVIDIAR© GPUs. While the
LCP matrix is computed on GPU, it is then solved on CPU using Gauss-Siedel
algorithm.. The size of this matrix only depends on the number of contacts,
which is often much smaller that the number of mechanical vertices, so this
transfer and solve is much faster that the previous steps in most simulations,
and the gain to implement them on GPU would be negligible.

5 Results

Evaluation: We measured the error introduced by using an approximation
to the compliance, compared to an exact factorization at each time step. We
produced a simulation involving a non-homogeneous disc pushed by a sphere
through a small hole. The difference of vertex positions was compared using
Root Mean Square error (see Fig. 3), when using only the diagonal matrix and
our method with several update frequencies, with no update being equivalent
to [11], and async corresponding to our contribution where the preconditioner
is updated as soon as possible using another thread. Results show that using
inaccurate approximation does not lead to the correct behavior. Using a diagonal
compliance does not consider the coupling between vertices within each time-step
and is stable only for very small steps, relying on the mechanical computations
to propagate contact forces. With the proposed method, we can simulate such
scenario in real time if the preconditioner can be updated sufficiently frequently.
Indeed, when the factorization is updated more often, the obtained shape and
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Fig. 5. Simulation of the extraction of the eye lens during MSICS

behavior is increasingly accurate. In this example, the multi threaded version
updates the preconditioner on average every 3 steps, allowing to simulate almost
the exact behavior.

GPU Implementation: We measured the computation time (see Fig. 4) re-
quired to build the compliance matrix with our GPU-based algorithm compared
to a sequential CPU implementation. As expected, the computation time to ob-
tain a single solve with our GPU algorithm (21.90 ms) is larger than the CPU
(2.44 ms) version. Thus, we maintain the application of the preconditioner dur-
ing the mechanical CG solver on the CPU (as each iteration only requires one
solve). However, the computation time for solving multiple contacts remains al-
most constant with the GPU algorithm, which allows to quickly take advantage
of the graphic processor. Indeed, until 130 contacts the computation units of the
GPU are not fully exploited, and each STS is computed in parallel. Beyond this
number of contacts, some of the computation units will compute several STS
successively. However, the GPU is able to overlay waiting times, due to synchro-
nizations and read/write operations in memory, with computations for another
STS. Thus, solving 260 contacts is only 1.5 times slower than 130.

MSICS Simulation: Finally, we show in Fig. 5 our simulation of the extraction
of an opacified lens during a MSICS simulation. The lens is modeled with 1, 113
vertices and 4, 862 tetrahedra, whereas the eye contains 1, 249 vertices and 3, 734
tetrahedra. The center of the lens is five times stiffer than the periphery. For
both structures, we used the LDL-based preconditioner, which was updated on
average every 4 time steps for the eye and 3 time steps for the lens. With this
preconditioner, the CG required an average of 8.5 iterations to converge.

The lens is removed with the help of the deformations of the sclera and friction
between the tool and the lens. The surgical instrument is controlled by the user
with an haptic device, with the method introduced in [12]. As we model the
compliance of the objects in contact with the instrument, we are able to compute
and transmit feedback forces to the device.

The simulation runs between 15 and 50 FPS depending on the number of
contacts, which varies between 50 and 90 during the extraction. The computation
within a single time is split between 31.5% for the preconditioned CG, 47.40%
for the GPU-based assembly of the compliance matrix, and less than 22% for
the other computations, including collision detection and LCP solver.
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All the previous results were obtained on a quad-core IntelR© CoreTM i7 3.07
GHz CPU with a NvidiaR© GeForceR© GTX 580 GPU.

6 Conclusion

In this paper, we have presented a novel method for solving accurate contacts
response between soft tissues which is based on the use of a periodically up-
dated preconditioner. The proposed method allows to simulate a large number
of elements and supports both homogeneous and inhomogeneous objects with
a similar accuracy, while taking into account the mechanical coupling between
contacts. We applied our method to a MSICS simulation, which presents very
constrained situations during the eye lens extraction. Although this method was
illustrated in a cataract surgery, it can be applicable to any simulations with
similar requirements. As future works, we would like to simulate the complete
simulation of MSICS, including the incision and capsulorhexis, as well as han-
dling the influence of fluid pressure within the eye.
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Abstract. We present a novel approach to fluid simulation over com-
plex dynamic geometry designed for the specific context of virtual surgery
simulation. The method combines a surface-based fluid simulation model
with a multi-layer depth peeling representation to allow realistic yet ef-
ficient simulation of bleeding on complex surfaces undergoing geometry
and topology modifications. Our implementation allows for fast fluid
propagation and accumulation over the entire scene, and runs on the
GPU at a constant low cost that is independent of the amount of blood
in the scene. The proposed bleeding simulation is integrated in a com-
plete simulator for brain tumor resection, where trainees have to manage
blood aspiration and tissue/vessel cauterization while they perform vir-
tual surgery tasks.

Keywords: visual simulation, GPU, fluid simulation, bleeding, cauter-
ization, aspiration, depth peeling, surgery, neurosurgery.

1 Introduction

The key challenge in virtual surgery simulation lies in the large amount of com-
puter resources required for real-time interactive simulation of complex physics
and for realistic haptic and visual feedback. This paper contributes a technique
for the efficient integration of a proven and low-cost fluid simulation approach
to the context of bleeding simulation for surgery, where the fluid must adapt to
the constantly transforming geometry associated with the tissue simulation.

The research presented in this paper was performed in the context of the de-
velopment of a complete patient-specific brain tumor resection simulator, shown
in Figure 1. The simulator provides haptic feedback for two hands/tools, finite
element (FE) tissue modeling and simulation with topological adaptation during
resection, and realistic visual feedback including high resolution texturing and
lighting, smooth cast shadows, depth of field, lens distortion, and bleeding. The
simulator is currently being evaluated in hospitals for resident training.

Significant research efforts have already been targeted at fluid simulation in
the context of bleeding for surgery training. Andersson [1] surveys the various
fluid effects required by surgery simulation. Our specific requirement, established
with clinical partners, was for a model supporting fast and realistic surface blood
flow and accumulation over the entire simulated surface of the surgical zone.

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAI 2011, Part I, LNCS 6891, pp. 323–330, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Fig. 1. Brain tumor resection with the Neurotouch simulator. 1. Initial brain surface.
2. After surface vessels cauterization with virtual bipolar tool. 3. Tissue aspiration.
4. Blood accumulation and cauterization. 5. Final blood aspiration, bleeding has been
stopped. 6. Simulator prototype with haptic tools and stereoscopic display.

Among particle-based fluid simulation techniques, many recent contributions
expand on the Smoothed Particle Hydrodynamics method [7][10][11], but such
techniques were too slow for our application. Most other solutions are grid-based
approaches in either 3D or 2D. In full 3D, good results have been achieved with
3D simulations using cubic interpolated propagation [13] that allows the use of a
coarser simulation grid. Among 2D techniques, Basdogan [2] presents a real-time
model of blood flow over soft tissues that projects a two-dimensional grid placed
over the region of interest of the geometric tissue model. Kerwin [5] uses a two-
dimensional Eulerian fluid simulation performed on the GPU which is integrated
with a volume renderer. Numerous works build on height field (water column)
methods where fluid equations are implemented in two dimensions using hydro-
static pressure pipe models [4][9][12]. These methods allow for fast computation,
wave-like behavior, net fluid transport, and dynamic boundary conditions, but
due to their inherent 2D nature their application scope is limited. Such ap-
proaches are also used with physically-based erosion simulation models [15][6].
For gaming, simpler models have also been proposed for fluid simulation on tex-
tures [8]. But such methods usually rely on surface parameterizations that could
not easily be maintained under major surface topology changes.

In this paper, we adapt the class of water column surface models to the case
of complex and deforming/transforming scene geometries by applying them over
a layered depth image version of the geometric model produced using a depth
peeling approach [3]. The mesh is rendered at each frame into a stack of height
maps. Then, an extended version of the GPU implementation of a grid-based
fluid model proposed by Mei [6] is used to propagate blood on the surface. The
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Fig. 2. Top: Processing sequence for a given frame. Bottom: input data at each step.

resulting fluid images are used when rendering the deforming geometry to add
proper color, shading and elevation to the mesh. This approach brings many
benefits:

– By working on images on the GPU, we achieve a fast and low-cost simulation,
thus leaving most resources available for other tasks.

– Independence from the simulated mesh: by working in image space, we do
not need to compute contact with the geometry, but only to be able to
render it. We simply need to receive vertex offsets at each frame and a list
of changed/new vertices when the topology is modified. In fact, the mesh’s
physical deformation could actually be simulated on a different machine.

– There is no need for a surface parameterization.
– Performance is independent of the amount of blood in the scene.

The remainder of the paper describes how a grid-based fluid model can be ef-
ficiently mapped onto a deforming and topology-changing mesh, using a water-
column model for our application. The integration of the fluid simulation with
the rendering as well as the performance of the method are also discussed.

2 Bleeding Simulation

In order to run an image-based fluid simulation on the deforming surface mesh
computed for haptics and tissue simulation, we repeat the following sequence for
each frame (Fig. 2). The mesh is first converted on the GPU into a stack of depth
images rendered from a view direction aligned with gravity. We then run the
modified column-based simulation on those multiple interconnected depth layers,
fetching information from the image stack of the previous frame as the base for
the simulation step. We finally render the mesh with the bleeding by using the
simulation layers as input texture. During this process, one important challenge
is to maintain a mapping between consecutive frames so that inter-frame fluid
propagation takes into account mesh displacement and transformation.

Mesh to Depth Maps: The conversion of the mesh into a depth image stack
is achieved by a process called depth peeling [3]: the polygonal mesh is first
rendered at a chosen resolution under an orthographic view aligned with gravity
and closely encompassing the entire scene. Depth/height rendered from that
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(a) (b) (c)

Fig. 3. Slice view of the depth peeling process and blood propagation for a simple
geometric model with an overhang. Color denotes the depth layer on which a portion
of the surface is represented. We illustrate 3 complex cases of blood propagation at the
junction between different layers: (a) the central (green) cell gives to neighbors on the
mesh, but located on different layers; (b) because of accumulation, the center cell nows
gives blood to a different (higher) layer; (c) the cell receives blood from two different
layers on the right

viewpoint is stored in a floating-point GPU buffer. This process is repeated in a
sequence of additional buffers, but each time all the geometry located above or
at the previous height map is culled at the fragment/pixel level. We therefore
end up with a decomposition of the mesh into a stack of occluding depth layers
(color-coded in Fig. 3). If the 3D model is closed and not self-intersecting, the
peeling process will naturally produce an alternation of front and back facing
layers. In our implementation, we use the front (upward) facing layers to run the
actual simulation, and keep the information of the back facing layers to insure
that blood cannot accumulate beyond the upper surfaces of an enclosed area. To
accelerate computations, we pack front facing layers in a single texture buffer
and back facing layers in another.

Fluid Simulation: The core of the fluid simulation is similar to the work of
Mei[6], but with the added difficulty that fluid must propagate properly between
the different layers of the stack representing the model at a given frame and,
as previously stated, between the layers associated with consecutive frames as
they deform. The equations are also adapted to our application context, but the
physics remains the same: cells exchange fluid with their 4 neighbors through
virtual pipes, and a flow velocity, or flux, is updated at each frame based on
hydrostatic pressure in the virtual pipe between the neighboring cells. Fluid
propagation is computed in two rendering steps. After generating new depth
layers, a first step computes a set of outflow flux (velocity) textures, setting the
amount of outgoing fluid in all 4 directions and properly identifying the depth
layer where the fluid must be transferred for each direction, taking into account
the amount of fluid available in the cell, and the remaining available height in
the target cell. Initial blood amount and flux/velocity are obtained from the last
frame textures as described in the next section. Flux equations are controlled by
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Fig. 4. Two simple models to illustrate the GPU buffers used for the fluid simulation
and for the depth peeling process.Left: Depth peeling and partial simulation on a helical
slide model. Buffers from left to right: Blood velocity, amount of blood, and surface
normals. Right: Simulation on simple terrain model with simulation GPU buffers.

application-specific parameters. For example, in the blood flux computation, we
set a minimum amount of blood in a cell before it can be transferred to another
one, in order to force trainees to clean tissue surfaces with the suction device.

Figure 3 illustrates different cases of inter-layer fluid exchange within a frame.
As can be seen in the figure, continuous surfaces can be located on different
layers of the depth image stack. When computing output flux for a cell, one
target layer is selected separately in each 4 directions. However, a cell can receive
fluid from the same direction from multiple neighbors located in different layers
(Fig. 3(c)). The case in Figure 3(b) illustrates that, as blood accumulates, it may
be sent to different layers even if the geometry does not change. When computing
target layers for fluid output in one direction, we compare the height of the cell
(including blood) to the height of neighboring cells (also with blood) of all layers
in that direction. By integrating the maximum height (back faces) information
in the comparison process, the correct target can be deterministically selected.

The second fluid simulation step computes the resulting amount of blood in
a cell by gathering the flux value for each cell into a set of textures representing
fluid amounts, and then modifying that value based on new bleeding and aspi-
ration that may occur within that frame. The amount of new blood generated
for a given layer cell is obtained from other components of the simulation. In
our implementation, the FE volume structure from which the rendered surface
mesh is extracted is associated through a fixed parameterization to a set of 3D
volumetric textures. A high resolution texture is derived from medical imaging
enhanced with synthetic data and provides vascularization information at the
given location. Another 3D texture storing cauterization levels is updated locally
at each frame based on the location of active cauterization tools. We also tag
vertices in the mesh based on their creation or modification time, which corre-
spond to the time of the last tissue cutting. All this information is combined to
compute the amount of new blood at each cell. Information on the location and
orientation of the blood aspiration tools is passed to the same GPU program to
apply suction. Figure 4 shows the content of the flux and fluid amount textures
for two simple illustrative models.

Inter-Frame Fluid Propagation: The depth image layers corresponding to
consecutive simulation frames have different shapes since the rendered surface
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mesh undergoes continuous transformation. We therefore must establish a map-
ping between these stacks to propagate the fluid and its velocity from frame to
frame. To achieve this, each vertex in the geometric model retains its coordinates
in the previous frame as a vertex attribute. After the peeling, we render all the
vertices into a dedicated floating-point texture to store that information for the
next frame.

During the fluid simulation step, a texture position and depth in the previous
frame’s depth image stack is computed for each cell to allow texture fetches in
the previous frame data. This position is produced on the GPU by interpolating
the spatial position of the surrounding vertices in the last frame. Since the texels
are generally not aligned between frames, proper sampling and filtering must be
applied when fetching values from those previous frame texture stacks to avoid
any aliasing effect, as well as to account for discontinuities between layers that
might lead to inconsistencies in the simulation. When fetching values in the
previous frame stack, all layers are sampled and depth values in the stack are
used to prune out invalid samples.

Bleeding Rendering: During the final rendering, blood information is fetched
from the simulation results using a custom texture filtering approach similar to
the one used in inter-frame propagation, since the changing observer viewpoint
does not in general match the fluid simulation viewpoint and texture resolu-
tion. At that stage, we first displace the vertices on the GPU to account for
the amount of blood at that location. This is mostly a simple step, but in areas
at risk of numerical uncertainty errors, such as areas where the mesh is almost
aligned with gravity (e.g. the left side of the surface in Fig. 3), a validation test
is applied to insure that the displaced mesh is coherent with the elevation com-
puted by the image-based simulation. This allows for example multiple vertices
located on a vertical wall to be displaced to the same position when under the
fluid surface. For meshes that are too coarse to support this approach, we have
experimented with surface subdivision in a GPU geometry shader based on PN
triangles [14]. This allowed the mesh displacement to be sufficiently fine, and re-
duced performance only slightly more than if using the finer mesh without GPU
subdivision. To deal with lighting in areas where the blood has accumulated,
we compute on the GPU a set of n surface normal maps (one per front-facing
layer) by taking the derivative on the n layers of depth map, again taking into
account the surface connectivity between the maps. These normals progressively
replace the ones computed from the mesh as a factor of blood accumulation.
Such normal maps are displayed in Figure 4. In the same manner, we blend the
original tissue color with the blood color as a function of the amount of fluid.
The blending parameters are variables in the simulator.

3 Results and Discussion

For the results discussed here (Fig. 1), we used a stack of five depth layers, three
front facing and two back facing, and a monoscopic final rendering window at
1280 × 1024 resolution. Tests were run on a quad-core Intel i7 PC and with
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one core of a NVIDIA GeForce GTX 295 GPU. Figure 1 illustrates the typical
steps followed by a trainee learning to perform cauterization and aspiration for
hemostasis during tumor resection. Videos are available at http://Neurotouch.ca.
Since the mesh may need to be rendered with the fluid many times per frame
due to special effects such as cast shadows, times required for fluid propagation
and rendering are given separately. For the 128×128 simulation grid used in the
videos, the fluid simulation time is of 3.2 ms per frame + 1.7 ms for rendering of
the global scene including the vertex displacement of a 30K polygon deformable
surface mesh. With much larger 512 × 512 blood and depth textures, blood-
related simulation time only increases to 9 + 4.4 = 13.4 ms. As can be seen
from those numbers, the algorithm allows interactive simulation of the bleeding
process at a relatively large simulation resolution. But for our application we
get a bleeding that is more realistic by using smaller textures and better texture
sampling/filtering at the final stage of rendering. This allows blood to propagate
more quickly and at a more realistic granularity given the surgery scale (3-5 cm).
Alternately, one could run two iterations of fluid simulation for each iteration
of rendering. The complete visual simulation including bleeding, shadows and
depth of field effects runs at a refresh rate of 60 Hz with more than 15 rendering
passes per frame.

The current approach does have some limitations. Performance will diminish
rapidly as the number of required layers increases, so the technique may not
be practical for very intricate geometric models. This is due mainly to the fact
that the custom texture filtering associated with the rendering and inter-frame
texture fetches require comparison and combination of all layers in the stack.
There would also be a benefit in expanding the method to be able to change
the viewpoint for the depth peeling, to increase the rendering quality when
observer viewpoints are too far away from the gravity axis. Finally, the vertex
displacement approach used for the final rendering can lead to discontinuities
in the geometric mesh in specific cases. These issues do not affect the validity
of the simulation, but can lead to visual artefacts that need to be mitigated by
modifying color and normal attributes on the mesh. This will happen when an
enclosed pool of fluid gets filled and a part of the mesh closes on itself due to the
blood displacement (e.g. Fig. 3(b)). A vertex displacement strategy also makes
it difficult to assign different levels of transparency to the fluid columns in the
final rendering, which may be an issue for rinsing/dilution simulation.

4 Conclusion

We have presented a method to efficiently integrate grid-based surface fluid sim-
ulation to context of neuro-surgery simulation. The proposed technique allows
the realistic simulation of surface bleeding, including aspiration and cauteriza-
tion, over the entire operating field at a low computational cost. Future work
will include the implementation of a ray-traced final render pass to allow a more
complete set of visual features for the bleeding simulation, thus enabling the
simulation of other important aspects of surgery. Jet bleeding and fluid falling



330 L. Borgeat et al.

from overhangs could be added using localized special effects or small amounts
of particles at relatively low cost. Finally, the method proposed here could be
adapted to other contexts, from gaming to scientific simulation.
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Abstract. Surgical process analysis and modeling is a recent and important 
topic aiming at introducing a new generation of computer-assisted surgical 
systems. Among all of the techniques already in use for extracting data from the 
Operating Room, the use of image videos allows automating the surgeons' 
assistance without altering the surgical routine. We proposed in this paper an 
application-dependent framework able to automatically extract the phases of the 
surgery only by using microscope videos as input data and that can be adaptable 
to different surgical specialties. First, four distinct types of classifiers based on 
image processing were implemented to extract visual cues from video frames. 
Each of these classifiers was related to one kind of visual cue: visual cues 
recognizable through color were detected with a color histogram approach, for 
shape-oriented visual cues we trained a Haar classifier, for texture-oriented 
visual cues we used a bag-of-word approach with SIFT descriptors, and for all 
other visual cues we used a classical image classification approach including a 
feature extraction, selection, and a supervised classification. The extraction of 
this semantic vector for each video frame then permitted to classify time series 
using either Hidden Markov Model or Dynamic Time Warping algorithms. The 
framework was validated on cataract surgeries, obtaining accuracies of 95%. 

Keywords: Surgical phase, digital microscope, cataract surgeries, DTW. 

1   Introduction 

The field of surgical process analysis and modelling has recently gained much 
interest. Due to the technologically rich environment of the Operating Room (OR), a 
new generation of computer-assisted surgical (CAS) systems has appeared. As a 
result of these new systems, a better management, safety, and comprehension of the 
surgical process is needed. For such purposes, systems should rely on a context-aware 
tool, which knows the score to be played for adapting assistance accordingly. The 
challenge is therefore to assist surgery through the understanding of OR activities, 
which could be introduced in CAS systems. Clinical applications also include 
evaluation and training of surgeons, the creation of context-sensitive user interfaces, 
or the generation of automatic post operative reports. 
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The goal is to collect signals from the OR and automatically derive a model. While 
it is possible to design such model manually, there are advantages of automating this 
process, mainly because manual work is time-consuming and can be affected by 
human bias and subjectivity. Due to the increasing number of sensors in the OR, the 
automatic extraction of data is now easier. Based on these signals, it's possible to 
recognize high-level tasks and hence avoid any additional installation of materials. 
Among all sensors, teams recently focused on videos coming from cameras already 
used in the clinical routine, which are a rich source of information. Compared to other 
data extraction techniques, it uses a source that does not have to be controlled by 
humans, automating the surgeons' assistance without altering the surgical routine. 

Current work has made progress in classifying and automating the recognition of 
high-level tasks in the OR based on videos. Using laparoscopic videos, Speidel et al. 
[1] focused on surgical assistance by identifying 2 scenarios: one for recognizing risk 
situations and one for selecting adequate images for visualization. Their analysis was 
based on augmented reality and computer vision techniques. Lo et al. [2] used vision 
to segment the surgical episode. They used color segmentation, shape-from-shading 
techniques, and optical flows for tracking instruments. These features, combined with 
other low-level cues, were integrated into a Bayesian framework. Klank et al. [3] 
extracted image features for scene analysis and frame classification. A crossover 
combination was used for selecting features, while Support Vector Machines (SVMs) 
were used for the classification. Blum et al. [4] automatically segmented the surgery 
into phases. A Canonical Correlation Analysis was applied based on tool usage to 
reduce the feature space, and the modeling of resulting feature vectors was performed 
using Dynamic Time Warping (DTW) and Hidden Markov Model (HMM). Bhatia  
et al. [5] analyses overall OR view videos. After identifying 4 states of a common 
surgery, relevant image features were extracted and HMMs were trained to detect OR 
occupancy. Padoy et al. [6] also used external OR videos to extract low-level image 
features through 3D motion flows combined with hierarchical HMMs to recognize 
on-line surgical phases. In robotic using the Da Vinci, Voros and Hager [7] used 
kinematic and visual features to classify tool/tissue interactions. Similarly, Reiley and 
Hager [8] focused on the detection of subtasks for surgical skill assessment. 

In a previous work [9], using neurosurgical videos, we proposed to extract surgical 
phases by combining a feature extraction process with HMM. In this paper, we extend 
this approach by proposing an application-dependent framework that can be adaptable 
to any type of surgeries. The idea is first to extract visual cues that can be helpful for 
discriminating high-level tasks. The visual cues are detected by specific image-based 
classifiers, obtaining a semantic signature for each frame. Then, these time series are 
aligned with a reference surgery using DTW algorithm to recognize surgical phases. 
Compare to traditional video understanding algorithms, this framework extracts 
application-dependant visual cues that are generic. The combination of image-based 
analysis and time series classification allows getting high recognition rates. We 
evaluated our framework with a dataset of cataract surgeries through cross-validation 
studies, and compared results of the DTW approach with the HMM classification. 
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2   Materials and Methods 

2.1   Application-Dependant Visual Cues 

Four classifiers based on different 
image processing tools were 
implemented (Fig. 1.). Each of 
these classifiers was related to one 
kind of possible visual cue. Visual 
cues recognizable through color 
were detected using a color 
histogram approach. For each 
shape-oriented visual cue such as 
the recognition of a specific 
object, a Haar classifier was 
trained. For texture-oriented visual 
cues, we used a bag-of-word 
approach using Scale Invariant 
Feature Transform (SIFT) 
descriptors, and finally for other 
visual cues that don't match these 
descriptions, we used an image 
classification approach including a 
feature extraction, selection and a 
classification with SVM.            Fig. 1. Framework of the recognition system 
 
Color-oriented visual cues: The color is one of the primary features used to represent 
and compare visual content. Especially, color histograms have a long history as a 
method for image description, and can also be used for identifying color shade 
through images. Here we used the principle of histogram classification to extract 
color-oriented visual cues, by creating a training image database composed of positive 
and negative images. Two complementary color spaces were extracted: RGB and 
HSV space. For quantifying similarities between histograms, we used the correlation. 
 
Shape-oriented visual cues: We used here a Viola-Jones object detection framework 
[10], mainly used to detect specific object within images. The basic idea is to create a 
classifier based on features selected by AdaBoost. Weak learners of the algorithm are 
based on the Haar-like rectangular features, comparing the sum of intensities in 
adjacent regions inside a detection window. Then, strong learners are arranged into a 
classifier cascade tree in complexity order. The cascade classifier is therefore 
composed of stages, each one containing a strong learner. During the detection phase, 
a window looks through the image with different scales and positions. The idea is to 
determine at each stage if a given sub-window may be the searched object or not. The 
false positive rate and the detection rate are thus the product of each rate at each stage.  
 
Texture-oriented visual cues: For whole-image categorization tasks, bag-of-visual-
words (BVW) representations, which represent an image as an orderless collection of 



334 F. Lalys et al. 

local features, have demonstrated impressive performances. The idea of BVW is to 
treat images as loose collections of independent patches, sampling a representative set 
of patches from the image, evaluating a descriptor vector for each patch 
independently, and using the resulting distribution of samples in descriptor space as a 
characterization of the image. A bag of keypoints is then expressed as a histogram 
recounting the number of occurrences of each pattern in a given image. For the 
texture analysis, we used the SIFT [11] descriptors. 
 
Other visual cues: We already presented this approach in a previous paper [12]. Each 
frame was represented by a signature composed of low-level spatial features (RGB 
space, co-occurrence matrix with Haralick descriptors [13], spatial moments [14], and 
Discrete Cosine Transform (DCT) [15] coefficients). This signature was then reduced 
by feature selection. For that purpose, we fused a filter and a wrapper approach by 
using the union of both selection results. The RFE-SVM [16] and the mutual 
information (MI) [17] were chosen for the wrapper and the filter method respectively, 
keeping the 40 first features. Finally, a SVM was applied to extract the binary cue. 

2.2   Time Series Classification 

A binary semantic signature was extracted from each frame, composed of the 
recognized visual cues. We used the DTW algorithm [18] to classify these time series 
in a supervised way. The objective of DTW is to compare two sequences by 
computing an optimal match. These sequences may be time-series composed of 
feature sequences sampled at equidistant points in time. A local cost measure is 
needed to compare features. We used here the Hamming distance. To compare each 
surgery, we created an average surgery with the method described in [19]. Every 
query surgery was first processed to extract visual cues, and then the time series were 
compared to the average one. Once warped, the phases of the average surgery are 
transposed to the query one. We also used the Itakura parallelogram global constraint 
that limits the warping path to be within a parallelogram. 

2.3   Data-Set 

Our framework was evaluated on cataract surgeries. 20 cataract surgeries from the 
Hospital of Munich were included to the study (mean surgical time: 15 min). Videos 
were recorded using the OPMI Lumera surgical microscope (Carl Zeiss) with a 
resolution of 720 x 576 at 25 fps. We downsampled the videos to 1 fps, and spatially 
downsampled by a factor 8 with a 5-by-5 Gaussian kernel. Eight surgical phases were 
defined (Fig. 2). Additionally, five binary visual cues were chosen: the pupil color 
range (orange or black), the presence of antiseptic, of the knife, of the IOL 
instrument, and the global aspect of the cataract. Combinations of these five binary 
cues are informative enough to discriminate all 8 phases. The pupil color range and 
the presence of the antiseptic were extracted using color histograms. The knife was 
recognized using a Haar classifier. The IOL instrument was not identifiable through 
only color or shape analysis, that's why we chose the fourth approach using global  
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spatial feature extraction and SVM classification. Finally, the global aspect of the 
cataract was recognized using the BVW approach. For this detection as well as for the 
pupil color range classification, a step of pupil segmentation was first applied, using 
preprocessing steps composed of dilation/erosion operations and a Hough transform. 

 

Fig. 2. Example of typical digital microscope images for the eight phases: 1-preparation, 2-
betadine injection, 3-corneal incision, 4-capsulorhexis, 5-phacoemulsification, 6-cortical 
aspiration of the remanescent lens, 7-implantation of artificial IOL, 8-adjustment of the IOL 

2.4   Cross-Validation 

The initial work of phase and visual cue labeling was performed for each video. From 
each video, we randomly extracted 100 frames, getting an image database composed 
of 2000 labeled images. We then evaluated both aspects of our framework. First, 
every visual cue detection was assessed trough 10-fold cross-validation studies, by 
dividing the image database into 10 random subsets. Then, we evaluated the global 
framework with the same procedure. At each stage, 18 videos (and their 
corresponding frames from the image database) were used for training and 
recognitions were made on the 2 others. For this validation, we computed the 
Frequency Recognition Rate (FRR). We also validated the added-value of the DTW 
algorithm, by comparing with an HMM approach, described in previous studies [9]. 

3   Results 

Results of the cross-validation studies (Tab. 1.) showed that very good accuracies 
were obtained for visual cues with quite low standard deviations. The best recognition 
was obtained for the detection of the antiseptic, with a recognition rate of 98.5%, 
whereas the lower rate was obtained for the IOL instrument recognition (94.8%). An 
example of a DTW computation is shown on Fig. 3. Small errors occur in the phase 
transitions, but the global FRR stay high (~93%). Tab. 2. shows the global accuracy 
of the framework, using DTW or HMM approach. The global validation study with 
DTW showed a mean FRR of 94.8%, with a min of 90.5% and a max of 98.6%.  
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Table 1. Mean accuracy and standard deviation (Std) for the recognition of the 5 binary visual 
cues, computed on the entire video dataset 

 Pupil color 
range 

Presence 
antiseptic 

Presence 
Knife 

Presence IOL 
instrument 

Cataract aspect 

Accuracy (%) 96,5 98,5 96,7 94,8 95,2 
Std (%) 3,7 0,9 3,4 1,1 1,8 

 

Fig. 3. Distance map of two surgeries and dedicated warping path using the Itakura constraint 
(up), along with the transposition of the surgical phases (down) 

Table 2. Mean, minimum and maximum FRR of the HMM and DTW studies 

 FRR (Std) Minimum (%) Maximum (%) 

HMM (%) 92,2 (6,1) 84,5 99,8 
DTW (%) 94,8 (3,7) 90,5 98,6 

4   Discussion 

4.1   Visual Cues and DTW 

Combining with state-of-the-art techniques of visual cues recognition, DTW showed 
very good performance and allows further promising works on high-level tasks 
recognition in surgery. The comportment in color, texture and shape of the visual cues 
are intuitively known, allowing the classifiers to be effective. This approach turns out 
to be as generic as possible, and adaptable to any type of surgery. However, one 
limitation of the DTW algorithm is that it can't be used on-line, because the entire 
surgery is needed in order to find the optimal path. However, first results showed that 
the DTW algorithm was quite better for classifying times series data than the HMM. 
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4.2   Microscope Video Data 

The real added value of the project lies in the use of microscope videos. This device is 
not only already installed in the OR, but it has also not to be monitored by the staff. 
Compared to other additional sensors, this allows the recognition to be fully automatic 
and independent. Moreover, microscope video data are reproducible within a same 
surgical environment and image features are invariant to task distortion [20]. Due to 
facilities differences between surgical departments, the system could not be flexible. 
The solution would be to train dedicated databases for each department, which would 
be adapted to the corresponding surgical environment and microscope scene layout. 

4.3   Clinical Applications 

The automatic recognition of surgical phases might be helpful for various 
applications. Purposes are generally to bring an added value to the surgery or to the 
OR management. This work could be integrated in an architecture that would take in 
real-time the microscope videos as input and transform it into information helping the 
decision making process, and driving context-sensitive user interfaces. Off-line, 
surgical videos would be very useful for learning and teaching purposes given their 
automatic indexation. Moreover, we could imagine the creation of pre-filled post 
operative reports that will have to be completed by surgeons. The recognition of 
lower level information, such as gestures, is difficult with microscope videos only. In 
future works, lower-level information such as surgeon's gestures will have to be 
detected to create multi-layer architectures.  

5   Conclusion 

We proposed in this paper a framework that automatically recognizes surgical phases 
from microscope videos. The first step of the framework is the definition of several 
visual cues for extracting semantic information and therefore characterizing every 
frame. Then, time series models allow an efficient representation of the problem by 
modeling time varying data. This association permits to combine the advantages of all 
methods for better modeling. We tested the framework on cataract surgeries, where 8 
phases and 5 visual cues were defined by an expert, getting global accuracies of 95%. 
This recognition process is a first step in the construction of context-aware surgical 
systems, opening perspectives for a new generation of CAS systems.  
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Abstract. Deep Brain Stimulation is a modern surgical technique for
treating patients who suffer from affective or motion disorders such as
Parkinson’s disease. The efficiency of the procedure relies heavily on the
accuracy of the placement of a micro-electrode which sends electrical
pulses to a specific part of the brain that controls motion and affective
symptoms. However, targeting this small anatomical structure is ren-
dered difficult due to a series of brain shifts that take place during and
after the procedure. This paper introduces a biomechanical simulation of
the intra and postoperative stages of the procedure in order to determine
lead deformation and electrode migration due to brain shift. To achieve
this goal, we propose a global approach, which accounts for brain defor-
mation but also for the numerous interactions that take place during the
procedure (contacts between the brain and the inner part of the skull
and falx cerebri, effect of the cerebro-spinal fluid, and biomechanical in-
teractions between the brain and the electrodes and cannula used during
the procedure). Preliminary results show a good correlation between our
simulations and various results reported in the literature.

1 Introduction

Deep Brain Stimulation (DBS) is a modern surgical treatment of brain disorders
such as Parkinson’s disease or dystonia. This procedure consists in the placement
of a micro-electrode in the subthalamic area, deep into the brain. The placement
of the electrode is crucial to maximize outcomes and to prevent adverse effects.
This placement is achieved in two main stages: first, pre-operative medical images
of the patient are combined with the use of a stereotactic frame (and sometimes
an atlas of the brain) to determine the target coordinates and optimal trajectory
for the electrode(s). Second, the patient is taken to the operating room where
a macro-electrode attached to a thin wire is inserted into the brain according
to the planned trajectory. However, a combination of brain shift and a certain
inaccuracy in the exact location of the target area require to test the area next
to the planned target to optimize the placement of the electrode. This testing is
performed by recording the brain activity using the macro-electrode. This entire
process takes several hours, and once the appropriate area has been identified the
final (micro) electrode will be left in place and secured to the skull. However,
two major problems arise during this process: first, the planning stage does
not account for the brain shift that takes place during surgery. Depending on
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the amplitude of the brain shift, the effective location for the electrode can be
quite remote from the planned location (5 mm or more) [13] requiring extensive
mapping of the area to determine the final location. As a consequence, this
stage of the procedure usually lasts several hours, while the patient is awake,
and increases the likelihood of complications due to the number of insertions to
reach the targeted area [4]. The second problem, also linked to the amplitude of
the brain shift, takes places several days or weeks after the surgery. As reported
in [13] a post-operative electrode displacement and deformation may appear as
the brain returns to its initial position when the subdural air introduced during
surgery has resolved (see Fig.1). This hinders the efficiency of the procedure
because upward migration of the electrode may fail to correctly stimulate the
subthalamic area.

In this context, our objective is to propose a global approach that can model
these two phenomena in order to adjust the planned trajectory, determine a po-
tential post-operative electrode migration, and propose alternative strategies to
minimize its amplitude. As a first step in this direction, this paper introduces an
original and unified approach to model the brain behavior during a DBS proce-
dure. The focus of the paper is not set on a specific biomechanical model of the
brain but rather on a complete framework that is able to simulate intra-cranial
fluid loss, subdural air invasion, brain shift and electrode migration and curva-
ture. This work includes the following contributions: mechanical models of the
brain and the devices (cannula and electrode); mechanical interactions between
the brain and these devices (in particular electrode deformation when the brain
reverts to its initial shape); influence of the surrounding cerebro-spinal fluid
(CSF) and air invasion in the skull on the brain shift (including the asymme-
try of the brain shift). Results of the simulation exhibit qualitatively consistent
results compared to these various points reported in the literature.

This paper is organized as follows: section 2 reviews previous works related
to simulation of brain and DBS, section 3 details the various elements of our
approach, and finally section 4 provides preliminary results.

Fig. 1. Post-operative (left) and follow-up (right) CT scans. The post-operative scan
illustrates the brain shift at the end of the procedure. The follow-up scan emphasizes
the deformation of the electrode due to the inverse brain shift, leading to an upward
migration of the electrode away from its initial location after the craniotomy (black
cross). For large brain shifts, the electrode can move of up to 5 mm. Courtesy of [13].
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2 Previous Works

As stated in the introduction, the craniotomy-induced brain shift is one of the
main factors that impact the planning, duration and complexity of DBS pro-
cedures. Brain shift also impacts many other neurosurgical procedures. In the
literature related to brain shift, the focus is on measuring or computing the
displacement field of the brain in order to accurately track the targeted area
(for instance a tumor). Most of these approaches rely on more or less advanced
biomechanical models of the brain, usually guided by coarse intra-operative in-
formation such as ultrasonography [2], intra-operative MRI [3] or laser-range
scanner [15]. However, such approaches, that typically use per-operative infor-
mation to post-correct the deformation of the brain to match measured surface
displacement rely on oversimplified boundary conditions. These approaches fail
to correctly reproduce the complex interactions that take place inside the skull.
While this is acceptable when only local tissue deformation is sought (e.g. tu-
mor removal near the brain surface), this becomes a limitation for a more global
estimation of the deformation (as needed for DBS). They also do not consider
post-operative recovery of the brain which plays a crucial role in deep brain
stimulations because of possible electrode migration, which has been recently
highlighted by [6,13].

Estimating the final position (e.g. after brain recovery) of the electrode re-
quires to take into account various elements in the simulation: a) biomechanical
brain model, b) bilateral and unilateral boundary conditions with the skull and
falx cerebri, c) interactions between the brain, the cannula and the electrode(and
its wire) and finally d) loss of CSF due to the craniotomy. To our knowledge,
such a complete and unified framework has not been addressed in the litera-
ture. Some works have proposed advanced biomechanical brain models based on
linear elasticity [3] or non-linear visco-elasticity [11]. The influence of boundary
conditions is emphasized in [14] where three scenarios for brain-skull boundary
conditions are compared and experiments show that best results are achieved
when brain motion is allowed in the cranial cavity. Regarding the insertion of the
cannula or electrode in the brain, the closest works are in the field of brachyther-
apy (the reader may refer to [1] for a survey on the insertion of needles into soft
tissues). Finally regarding the influence of CSF, Lunn et al [8] propose to model
the brain as a porous media and use consolidation theory to take into account
the CSF in the brain.

3 Simulation Framework and Methods

The principal contribution of this paper is to propose a global, physics-based
approach that models the main (bio)mechanical phenomena that can be observed
during and after a DBS procedure, i.e.:

– Asymmetric brain shift which can be observed during the first electrode
implantation. It is due to a unilateral air invasion on the side of the first
craniotomy, resulting in a contralateral brain shift.
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– Two-stage brain shift which appears after removing the cannula. While
most of the brain shift takes place right after the craniotomy and before the
insertion of the cannula and macro-electrode, the air invasion continues to
occur during the lengthy testing process. However, the cannula being rigid, it
locally reduces brain shift. When the cannula is removed, an additional shift
of the brain can sometimes be observed and can drive to a first deformation
of the flexible electrode.

– Inverse brain shift which takes place several days or weeks after the pro-
cedure. As the air invasion is resolved and new CSF has been produced, the
brain recovers its initial shape and position. During this inverse brain shift,
a deformation is also applied to the micro-electrode and its wire. This inter-
action creates a relative motion between the electrode and the brain, along
the axis of the electrode. If this motion is important, the electrodes are no
longer able to stimulate the correct subthalamic area.

3.1 Cerebro-Spinal Fluid Model

Brain shift takes place due to a loss of cerebro-spinal fluid and subdural air
invasion after the skull opening(see Fig.3). Before the craniotomy, the buoyancy
force created by the CSF balances the gravity force acting on the brain. But
after a loss of fluid through the burr hole, a part of the cerebral tissue is left
above the remaining CSF surface and undergoes only gravity. This unbalance
can deform and move the brain significantly. Reported measures indicate that
even deep brain structures (e.g. the targets of a DBS such as the Subthalamic
Nucleus) may shift of up to 5mm [12].

The external force created on the surface of the brain by the CSF is computed
as fCSF =

∫∫
S ρgh(P )dS with ρ is the density of CSF, g the norm of the gravity

and h the distance between a point P on the brain surface and the fluid level.
This force is computed on each triangle S of the brain mesh (see below) that
corresponds to the immersed surface. Results are illustrated in section 4.

3.2 Constrained Deformations of the Brain

The anatomy of the brain and skull is based on a generic atlas and is not issued
from patient data. The deformations of the brain are modeled using the finite
element method. The volume of the brain hemispheres is meshed as a set of
tetrahedral elements, and different constitutive models can be used to describe
the brain deformation. In the current results, we have used both a co-rotational
approach (to capture the geometrical non-linearities of the deformations) and a
Saint Venant-Kirchhoff model to describe a hyperelastic material. While there
are other constitutive laws that have been proposed for modeling brain tissue,
we want to emphasize in this section the importance of correctly accounting for
the complex boundary conditions, which can have a larger impact on the final
deformation than the choice of a particular deformation model. In the particular
case of the CSF influence on brain deformation, the change of forces acting on
the brain leads to a brain shift, while the falx cerebri which separates the two
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Fig. 2. Illustration of the different models used by the simulation and their relative
boundary conditions. The use of complex constraints, combined with a FEM modeling
technique permits to capture some of the key characteristics of a DBS procedure.

brain hemispheres limits the influence of the CSF loss and air invasion to the
side of the craniotomy. This relatively complex process is simulated by modeling
independently each hemisphere of the brain and by precisely defining boundary
conditions between the brain hemispheres themselves, and between the brain
and skull or falx cerebri.

Independently of the choice of the deformation model, we end up with the fol-
lowing differential system of non-linear equations Ma = f(x,v)+p+fCSF +HTλ
where M is the mass matrix, f gathers the internal forces. a, v and x are re-
spectively the acceleration, the velocity and the position of the nodes from the
mesh. The forces p are exerted by the gravity and fCSF by the CSF. Finally,
HTλ gathers constraints response resulting from unilateral contacts and bilat-
eral constraints (e.g. see Fig. 2 for brain-falx cerebri and brain-skull contacts;
moving bilateral constraints between the two brain hemispheres; fixed bilateral
constraints near the area of the optic nerves and the brainsterm). An implicit
integration scheme (Backward Euler) is used to enforce stability even when using
large time steps.

3.3 Brain-Electrode Interactions

With the objective to estimate the relative motion between the electrode and
the brain during the inverse brain shift, and define new strategies to compensate
for that, it is essential to accurately model the mechanical interactions between
the cannula, the electrode and the brain tissue during the different stages of the
insertion and deformation. The electrode and cannula are modeled using serially-
linked beams elements as done in [5] for coil modeling. This non-linear elastic
model can be parametrized to reproduce the resistance to bending, stretching
and torsion of the two types of devices. The mechanical coupling between the
devices and brain is controlled using constraints that are solved using additional
Lagrange Multipliers, following the approach presented in [5]. A set of sliding
point constraints is positioned in the brain model along the path of the cannula;
and a similar set of constraints is used for the electrode. For solving the coupling
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Fig. 3. Asymmetrical brain shift simulation: the brain shift is more important on the
side where the craniotomy first takes place, as illustrated in the left most images (cour-
tesy of [9]). The rightmost images show the evolution of brain shift during our simula-
tion: (a) no brain shift; (b) after a right craniotomy; and (c) after both craniotomies.

between the models, Lagrange Multipliers are set for both the brain tissue model
and beam models. The final values of the Lagrange Multipliers are solved using
a Mixed-Complementarity Problem solver (MCP).

4 Results

In this section we present a series of results for the main steps of the procedure
described in section 3. The conditions and parameters used in the simulation
reproduce as closely as possible the conditions and parameters reported in the
literature to facilitate comparisons, i.e : the patient lies in the supine position
with the head elevated at 10 to 20 degrees; the craniotomy is performed first on
the right side of the skull; a first brain shift takes place before the cannula is
inserted through the right hemisphere; the electrode and wire are then inserted
through the cannula; the cannula is removed and the electrode remains in the
brain but is slightly shifted due to secondary brain shift; the CSF is restored
and the air is removed to simulate post-operative conditions several weeks after
the surgery. The same process is repeated for the left side of the brain. As
values reported in the literature for the Young’s modulus range from 2,100 [10]
to 40,000 Pa[7], we use, for both the co-rotational and Saint Venant Kirchhoff
models a Young’s modulus E = 6000Pa and a Poisson ratio ν = 0.45 for a total
mass of the brain of 1.4kg. The density of CSF ρ is set to 1000 kg/m3. Figure 3
illustrates the simulation of the asymmetric brain shift. During the surgery and
even after the loss of CSF, the brain shifts continuously because of the pressure
due to air invasion. However, the rigid material of the cannula prevents the brain
motion. That is why, the removal of the cannula causes a second but minor brain
shift. This effect involves an anteroposterior deformation of the implanted wire,
as depicted in figure 4. Several days after surgery no more air is in the cranial
space and the CSF has been restored. We simulate this effect by modifying the
CSF level. The resulting deformations of the brain are computed using our FEM
approach. As the electrode and its wire are constrained within the brain (only
sliding is possible) and the wire is secured on the skull surface, this results in a
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Fig. 4. Screenshot showing the deflection of the right electrode after the cannula re-
moval (left) and after CSF recovery (right).

relative motion of the electrode with respect to its intra-operative location. This
leads to a posteroanterior curvature, as illustrate in figure 4 which correlates
very well with data from figure 1.

We also quantitatively compared our results (amplitude of electrode migra-
tion) with data reported in [13]. In their study, a correlation between the volume
of subdural air and upward electrode displacement along its trajectory was de-
termined. The relationship between the displacement D (in mm) and subdural
air volume V (in cm33) can be empirically described as D = 2 + 0.08 ∗ V .
We simulated two relatively different amounts of CSF loss, and computed the
corresponding values of V (as the difference between the volume of the brain be-
fore and after brain shift) and D. We found that for V = 22cm3 a displacement
D = 3mm is computed, compared to 3.7mm±2mm according to the experimen-
tal data [13]. Similarly, for V = 62cm3 a displacement D = 6.8mm is computed,
compared to D = 6.96mm± 2.5mm according to the experimental law above.
This strong correlation between our results and published data illustrates the
potential of our method. It is also important to note that the entire simulation
of the combined models (from pre- to post-operative stages) only requires a few
minutes to be computed.

5 Conclusion

Preliminary results show a good correlation with data reported in the literature,
while all our results are obtained using a unique physics-based framework that
offers a global approach rather than independently modeling each phenomena.
In addition, we account for the interaction between the brain and electrode, and
show that our simulations quantitatively correlate with recently reported ex-
perimental data. Finally, our computation times remain compatible with future
clinical use. Obviously, this is only a first step, and the accuracy of our simu-
lations could certainly be increased by integrating feedback from intraoperative
data in the form of additional constraints. This is our next objective, which will
also facilitate direct comparison with intra and post-operative results.
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Abstract. In this paper we present a computer model that simulates
blood flow in the portal system, the vascular network that delivers nu-
trients and hormones to the liver from other digestion organs. Firstly
the vascular geometry of a patient-specific portal system was digitised
from a 3D CT image. Then blood flow in this system was solved using a
set of 1D partial differential equations coupled with a bifurcation model.
Some preliminary results are presented and compared with published
ultrasonography and phase contrast MRA data. We further simulate a
surgical procedure (portacaval shunting) that connects the portal vein
with the inferior vena cava (IVC). The simulation confirms that the high
pressure gradient between the portal vein and IVC leads to substantially
reduced portal perfusion or even reversed flow in the portal veins, thus
makes the shunting graft a flow ‘highway’ in directing portal flow.

1 Introduction

The portal system is the venous network that starts from the intestine and ter-
minates at capillaries in the liver [2]. This network, together with the splanchnic
network which are the veins connecting the spleen and the liver, constitutes
a vital pathway for digestion. It delivers nutrients from the intestine and hor-
mones from the pancreas and spleen into the liver, where nutrient metabolism
and detoxification further take place. Pathology of the portal system will hamper
food digestion and may even cause death. For example, liver cirrhosis leads to
an increased resistance to portal flow, and in turn causes portal hypertension.
Serious portal hypertension is the major cause of bleeding esophagus varices,
which is fatal if not treated urgently [2].

Hemodynamics research of the portal system is the study of blood flow in
the system, in both healthy and pathological conditions. The importance of this
research can be appreciated from the amount of literature on this subject over
the last several decades. Quantitative flow data have been collected from in
vivo (e.g., in [1,3,4]) and in vitro measurements (e.g., in [5]). Computer models
have been designed in line with in vitro experiments and clinical observations to
explain portal circulation phenomena (e.g., in [5]). These models have provided
great insights into the physiology of portal and splanchnic circulation, thus aided
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clinical and physiological research. For example, an analog electronic model was
proposed to provide the theoretical basis for a portacaval shunting procedure [5].
These hemodynamic models, however, are mostly zero-dimensional (0D) models
that lump the blood vessels into electronic components (e.g., resistors, capaci-
tors) to represent their resistance and compliance.

The advance of medical scanning techniques and increasing computational
power have made it possible to study the portal system in great detail. Not
only can a large portal network be segmented for structural analysis [6], but the
blood flow in a local portal bifurcation can be simulated for functional study
[7]. However, blood flow modelling for a large image-based portal/splanchnic
network has not yet been reported, to our knowledge.

The purpose of this paper is two fold. First, we present a vascular network
construction method that facilitates further flow simulation. Second, we model
blood flow in the portal system by solving governing flow equations. Based on this
model, we simulate a surgical procedure whereby a shunting graft is employed
to connect the portal vein and the inferior vena cava (IVC). We present some
preliminary results and compare the results with published in vivo data. We also
comment on the performance of this model in the Discussion section.

2 Method

2.1 Blood Vessel Digitisation and Medical Imaging

We retrospectively studied a 3D CT image of an anonymous patient. The image
spanned the whole torso (Fig. 1(a)) and its voxel resolution was 0.879mm ×
0.879mm × 0.625mm. The scanning was performed at the portal-venous phase
to enhance the portal and hepatic veins (indicated by arrows) via a contrast
agent. The objective of this work was to simulate blood flow in these vessels by
solving flow equations. To this end we needed to identify the topology of the
network, clarify the connectivity between parent/daughter vessels, and deter-
mine the radius and length of each blood vessel in the network. We employed an
imaging and visualization tool CMGUI (http://www.cmiss.org/cmgui) for this
work. The procedure was as follows:

1. Locate the key points (nodes) along the centreline of blood vessels;
2. Measure vessel diameter at each node; and
3. Connect these nodes using one dimensional (1D) finite element elements.

This process is illustrated in Fig. 1(b): the small red dots are the key nodes,
which are connected by 1D linear elements, then updated to incorporate vessel
radius to mimic blood vessels. The final portal network, plus the IVC, the renal
and iliac veins (as part of systemic veins), are shown in Fig. 1(c). The portal
veins are colored in gold, and the systemic veins in blue. We also digitised the
torso, liver, heart and the spleen as spatial references for these blood vessels. The
timeframe for the digitisation process was 15 hours for the portal vasculature,
and 16 hours for the organs and the torso. The whole vasculature contains 109
venous segments, with 57 branch (bifurcating or merging) points, 42 inlets and
18 outlets.
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Fig. 1. (a) CT image: the arrows indicate hepatic veins; (b) The process of vessel
digitisation; (c) Digitised portal veins and systemic veins. 1 - portal vein; 2 - splenic
vein; 3 - superior mesenteric vein (SMV); 4 -iliac vein; 5 - inferior vena cava (IVC).

2.2 Haemodynamics Modelling

We adopted a 1D flow solver to simulate flow in this vasculature. A 1D model
essentially works by regarding the longitudinal (or axial) direction as the major
flow direction, ignoring flow in other directions [8]. The governing equations are:
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where R, P , V are the vessel radius, pressure and flow velocity, respectively.
Eqs. (1) and (2) are mass and momentum conservation equations. Eq. (3) is an
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empirical vessel wall equation that describes the relationship between transmural
pressure and vessel radius. E, h0, R0 are Young’s modulus, wall thickness and
unstressed radius, respectively. α is a constant that defines the axial flow profile.
Note, that Eq. (3) only describes the scenario where a vein is expanded (i.e.,
P > 0) and ignores its (partly) collapsed status. The later case is not considered
in this work for modelling simplicity’s reason.

Eqs. (1)-(3) constitute a closed partial differential equation system for solving
hemodynamics in a single vessel. We employed a second-order MacCormack finite
difference scheme to solve this system. The spatial and temporal steps were set as
1mm and 0.1 milliseconds respectively for numerical convergence. To simulate
flow in a network, we incorporated a bifurcation model which evaluates the
flow distribution, velocity and pressure gradient across branches, and therefore
the whole tree. We refer the interested reader to the literature [8] for more
mathematical details of the bifurcation model.

2.3 Simulation of Portacaval Shunting

Portacaval shunting is a surgical procedure that connects the portal vein with
the IVC using an H-graft [1,3,5]. The rationale is that the blood pressure in the
IVC is lower than that in the portal vein. The pressure gradient drains portal
blood flow into IVC via the shunt to reduce portal pressure and hence relieve the
lethal threat of variceal bleeding [2]. The drawback of this procedure, however, is
that it can lead to hepatic encephalopathy (i.e., mind-confusion or coma). This
is because a large portion of portal blood bypasses the liver, where detoxification
takes place, and flows into the brain via blood circulation [2].

The effectiveness of this procedure was investigated by various surgical groups,
e.g., by Rypins et. al. [1,5]. They found that different shunt sizes led to different
clinical outcome. They also used a mathematical model to justify their observa-
tions [5]. Based on the pressure and flow data in [5], we can construct a virtual
shunt to simulate this procedure, utilizing the vascular network of Fig. 1. In
particular, we are able to analyze the portal flow diversion due to the shunting,
as shown in the next section.

3 Results

3.1 Flow Simulation for the Portal System

In the first step we simulate flow in the portal system without considering the
systemic veins and the shunt. Since the actual measurements for the inlets and
outlets of the portal system were not available, we took an empirical approach in
the boundary condition (BC) arrangement. This approach is illustrated in Fig.
2. The red dots represent different groups of inlets or outlets that shared the
same pressure BC intra-group but there was a pressure gradient between these
groups, thus drove flow in the tree. The pressure data in Fig. 2 were adopted
from [5].
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Fig. 2. An empirical approach to pressure boundary condition configuration: (a)
inlet group 1: P1=22.5mmHg; (b) inlet group 2: P2=20.6mmHg; (c) inlet group 3:
P3=18.75mmHg; (4) outlet group: P4=15mmHg. Note: 1kPa≈7.5mmHg.

Table 1. Comparison of flow velocities in major veins (Unit: mm/s)

Name Our model Koslin et al [4] George [7]

Portal vein 71 65 79.9±37.0
SMV 65.4 - 54.4±24.5

Splenic vein 33.6 - 88.5±19.5

As the initial BC, the pressure across the tree was assumed to be the same
and there was no flow in the network. Then the blood pressures at the inlets were
raised gradually within 0.5 seconds until they reached their respective configured
values (as per Fig. 2). The inlet pressures were then held unchanged for another
0.5 seconds to stabilize the simulation. The whole computation took 105 seconds
to complete on a desktop computer (Intel Core II, 2.4GHz CPU, 2GB RAM).

Fig. 3(a) and (b) show the pressure and velocity distribution across the portal
network. The hierarchical pressure gradient between the inlets and outlets can
be appreciated from Fig. 3(a). The pressure profile indicates the time course of
inlet pressure BC. The flow velocity distribution, as shown in Fig. 3(b), reflects
the fact that the flow velocity is strongly related to vessel diameters. For ex-
ample, blood flow will be accelerated in a tapering vessel, but decelerated in an
expanding vessel.

A comparison was made between the flow velocities calculated from the model
and that measured using Duplex ultrasonic measurement [4] and phase contrast
MRA [7]. The comparison result, shown in Table 1, indicates that the flow ve-
locities in the portal vein and SMV of our model are consistent with that in
literature. The discrepancy of flow velocities in the splenic vein may however be
minimized by using a different set of BC and requires further investigation.

3.2 Portacaval Shunt Simulation

Based on the above model, we added systemic veins and the portacaval shunt-
ing into the simulation. We analyzed two flow cases: Case 1, an 8mm graft was
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Fig. 3. Blood flow simulation in the portal system: (a) pressure distribution. The
pressure profile is the time course of an inlet pressure: it increases from P1 to P2
within 0.5 seconds, then held steady for another 0.5 seconds. The outlet pressure stays
at P1 - the pressure gradient between the inlets and outlets drives blood flow; (b) flow
velocity distribution: the flow velocity at the portal vein is 71mm/s.

Table 2. Flow distribution in the portal vein and the shunt (Unit: ml/s)

Venous segment Case 1 Case 2

1 14.46 48.51
2 19.74 31.19
3 5.35 17.73

employed and a prograde flow in the portal vein was sustained; and Case 2,
a 10mm shunt was used and the flow in the portal vein was reversed. Both
scenarios were observed clinically, e.g., as reported in [1] and [3].

Fig. 4 shows the computational results in the two cases. The flow directions in
the shunt, the portal vein pre- and aft-shunt (marked 1, 2, and 3) are indicated
by arrows in the sketches. The flow rates (F = V · πR2) in these segments
are shown in Table 2. In Case 1, F1 + F3 = 19.81(ml/s) ≈ F2; in Case 2,
F2 + F3 = 48.92(ml/s) ≈ F1. Thus mass conservation in the shunting branch
was obeyed.

We observed that a large portion (14.46÷19.74 ≈ 73%) of portal blood flowed
to the shunt in Case 1. While this helps to decompress the portal hypertension,
the substantially reduced portal perfusion implies that toxins in the blood were
not removed sufficiently. In Case 2 the prograde and retrograde portal merged
into shunting flow, thus causing a high flow rate in the graft. Again, this can
lead to a high rate of hepatic encephalopathy [1]. The mechanism underlying
these phenomena is that the high pressure gradient between the portal vein and
the IVC makes the shunting graft a flow ‘highway’ in directing portal flow.
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Fig. 4. Flow simulation for the portalcaval shunt: (a) Case 1: prograde flow in the
portal vein (using a 8mm graft); (b) Case 2: retrograde flow in the portal vein (using
a 10mm graft). The sketches show the flow directions in the portal vein and the shunt.

4 Discussion

This work represents the first portal flow model built on an anatomically accurate
portal/splanchnic tree digitised from a 3D scanning image. We employed a 1D
solver to calculate the blood flow in this vasculature and used the model to
simulate hemodynamics after a surgical procedure that connects the portal vein
with the IVC. Some preliminary results were presented and compared with in
vivo measurements and clinical observations.

The reason we adopted a 1D model instead of a 3D model for the vascular net-
work was due to its computational efficiency. Some other advantages of the 1D
model are its ability to capture pressure wave [8] and its flexibility in modelling
wall elasticity. However, the convergence of a 1D model is largely affected by
boundary conditions. This is particularly true for a large vasculature such as the
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one modelled in this paper. While the hierarchical pressure boundary scheme
employed in this work can generate a pressure gradient in the network thus the
flow, future measured in vivo data can further improve the model.

One of the unique flow characteristics of portal circulation is that the hepatic
resistance to portal flow is very low. For example, only a 0.5mmHg pressure
gradient is required for portal perfusion [5]. Therefore, a small variation of portal
pressure due to, e.g., liver cirrhosis, can disturb the portal circulation. These
interwoven physiological phenomena require adoption of a combination of flow
models, from 0D to 3D, to yield an integrative picture, and thus better interpret
and combat portal system diseases.

5 Conclusion

In this paper we simulated blood flow in a portal system that was digitised
from a 3D CT image. We used this model to simulate a surgical procedure that
connects the portal vein and the IVC via a virtual shunting graft. The simulation
confirms the clinical observations that the shunting can induce a substantially
reduced portal perfusion or a reversed flow in the portal veins.
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Abstract. Coiling is possibly the most widespread endovascular treat-
ment for intracranial aneurysms. It consists in the placement of metal
wires inside the aneurysm to promote blood coagulation. This work
presents a virtual coiling technique for pre-interventional planning and
post-operative assessment of coil embolization procedure of aneurysms.
The technique uses a dynamic path planning algorithm to mimic coil
insertion inside a 3D aneurysm model, which allows to obtain a plausi-
ble distribution of coils within a patient-specific anatomy. The technique
was tested on two idealized geometries: an sphere and a hexahedron. Sub-
sequently, the proposed technique was applied in 10 realistic aneurysm
geometries to show its reliability in anatomical models. The results of
the technique was compared to digital substraction angiography images
of two aneurysms.

1 Introduction

Endovascular therapies of intracranial aneurysms are an alternative to the tradi-
tional surgical clipping. Among them, coiling is the most popular and common
option. This treatment consists in the insertion of biocompatible metal wires
inside the aneurysm through a catheter. During treatment, angiographic images
are produced to guide the catheter and coils while they navigate inside the vas-
culature. The amount of inserted coils depends on several factors, including the
aneurysm morphology, the selected coils and the operator skills, among others.
However, clinicians usually try to insert as many coils as possible to achieve high
packing densities (defined as the ratio between the inserted coil and aneurysm
volume) [1]. The goal is to induce through the coils a mechanical resistance
against the pulsatile blood flow to promote the hemodynamic conditions that
triggers blood coagulation [2].

In recent years, computational methods have appeared as an interesting source
of information for clinicians to support them during diagnosis, planning or evalu-
ation of aneurysm treatments. A virtual stenting technique [3] and an interactive
simulator for virtual coiling [4] are examples of these methods. In this work, we
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present a virtual coiling technique for virtually treating image-based patient-
specific cerebral aneurysm models. The proposed method relies on a dynamic
path planning algorithm to insert computational models of the coils.

2 Virtual Coiling Technique

The proposed virtual coiling technique uses a dynamic path planning algorithm
to mimic coil insertion. The description of this algorithm is presented in the
following section.

2.1 The Dynamic Path Planning Algorithm

A virtual coil model, from here on called a coil, is defined as a set of ordered
points (see equation 1). Here, the index j denotes the coil currently under inser-
tion, while the index i corresponds to the points of that coil.

Cj ≡ {pi
j ∈ R

3 : i = 0...nj}, (1)

where nj is the number of segments in the coil j. This number is defined as
the floor function of the ratio between the coil length (Lj) and the coil radius
(rj). For each coil to be inserted both, Lj and rj are provided as input to our
algorithm.

To add a new point pi+1
j to the coil Cj , a set of candidate locations is created

as Hj,i ≡ {hi
j ∈ R3 : ||pi

j − hi
j || = rj}. The number of candidate locations (|Hj,i|)

is a parameter of the algorithm, but in general we have set it to over 150 elements
to ensure a proper spatial discretization. The h ∈ Hj,i with the lowest potential
field φ(h) is selected and included in Cj as pi+1

j . This potential field φ(h) is
based on three rules, namely: coiling domain, coil flexibility and coil pull-back,
and it is mathematically defined as follows:

φ(h) = φD(h) + φF (h) + φPB(h) . (2)

Coiling Domain: It represents the region where the coil is allowed to move and
it is defined as the sum of two potential fields.

φD(h) = φA(h) + φC(h) . (3)

the first term, φA(h) : R3 → {0, 1}, is defined by the aneurysm model to be filled
with coils. If the candidate location h is inside the model, φA(h) is set to zero,
otherwise to one (see Fig. 1A). The second term, φC(h) : R

3 → {[0, 1
2 ), 1}, avoids

crossings of the coils. Also, it accounts for the distance between coils such that
newly inserted coils avoid highly dense coiled areas. The field φC(h) is defined
as follows:

φC(h) =

⎧⎪⎨⎪⎩
1, if ∃ m satisfying ||h − m|| ≤ 2 · rj ,
rj

|Mj,i|
·
∑
m

1
||h − m|| , otherwise . (4)
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where h ∈ Hj,i and m ∈ Mj,i. The set Mj,i (see equation 5) is a subset of all
points of the inserted coils within a distance of α ·rj from the last inserted point
of Cj , called the coil tip.

Mj,i ≡ {m ∈
⋃
q

Cq : ||pi
j − m|| ≤ α · rj , q = 1...j} , (5)

The Euclidean distance, α · rj , with α = 4 was used to limit the size of Mj,i,
and thereby, to reduce the computational cost of the algorithm. This value of α
was set to take into account at least the closest coil points that could potentially
produce coil crossings. Figure 1B shows a schematic representation of how φC(h)
is evaluated.

Coil Flexibility: It takes into account the deformation of the coil while it is
inserted, by comparing the angle θ of the evaluated candidate location with
respect to the previous direction (pi

j −pi−1
j ) as it is visualized in figure 1C. The

potential field φF (h) : R3 → [0, 1
2 ] is defined as:

φF (h) = θ/(2 · π) , (6)

where θ = arccos[(h − pi
j) · (pi

j − pi−1
j )/r2j ].

Coil Pull-Back: It is meant to solve the situation when φ(h) ≥ 1 ∀ h ∈ Hj,i

(becoming a dead-end). In such cases the algorithm pulls back and relocates the
coil tip to the position pi−(k+1)

j , being k the number of consecutive dead-ends.
Then, a potential field, φPB = 1 is assigned to the location pi+1

j , and thereby, the
dead-end is avoided. An schematic example of the coil pull back is presented in
figure 1D.

Fig. 1. Two-dimensional schematic description of virtual coiling technique. (A) Re-
jected candidate locations (red dots) due to φA = 1, since their distance to the
aneurysm wall is less than one coil diameter. (B) Evaluation of φC . The set Mj,i

contains the coil points inside the green circle. (C) Evaluation of φF . (D) Dead-end
condition, pull back and redirection of the last coil.

Algorithm Initialization: To initialize Cj , a set of initial candidate locations,
Sj , is defined around the geometrical center of the aneurysm model within a
distance of β · rj , with β = 4. The value of β was set to guarantee a sufficient
distance between any two initial coil points. Afterwards, the element s of Sj with
the lowest φC(s)+φF (s) is selected as the first coil point p0

j . A user-defined initial
direction is set (for instance x̂), to calculate φF (s) during the evaluation of the
first two coil points p0

j and p1
j .
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The proposed approach is summarized in Algorithm 1.

Virtual Coiling Technique based on dynamic path planning ;
input : Aneurysm model, number of coils (J), coil radius (rj) and length (Lj), initial

direction and number of candidates.
output: Inserted virtual coils.

begin
for j = 1 to J do1

nj = �( Lj
rj

)�;2

Create Sj ;3
s’ = argmin

s∈Sj

(φC + φF )
4

s’ → Cj,0;5
for i = 0 to i = nj do6

Create the set Hj,i;7
for Hj,i do8

h’ = argmin
h∈Hj,i

(φ)
9

if φ(h’) < 1 then10

h’ → pi+1
j .11

i → i+1 ;12

k=013

else14
if there are consecutive dead-ends then15

k → k + 1;16

i → i − (k + 1);17

φP B = 1 at p
i+(k+1)
j ;18

Finalize Cj with (nj + 1) elements;19
j → j+1 ;20

end

Algorithm 1. Pseudocode of algorithm for virtual coiling

3 Test on Idealized Geometries

We tested how our method behaves inside idealized geometries. For this two
geometries were created (see figure 2): a 2mm-radius sphere, and a 4x4mm2-base
1.5mm-height hexahedron with a 0.3mm-diameter 0.5mm-height tube above it.
Both geometries, sphere and hexahedron, were used to show that the method
adapts the shape of the coils to the morphology of the containing geometry,
although the hexahedron does not represent a anatomical structure. The small
tube on top of the hexahedron was added to force a dead-end and to illustrate
how the coil pull-back mechanics operates. This dead-end will appear since the
first coil will go straight to the tube end and no chance to bend the coil will be
available since the tube diameter would be slightly higher than the coil one.

Five experiments were performed, four of them using the sphere and the last
one using the hexahedron. Table 1 summarizes each experiment. The test I and
II are meant to see the differences in the coil configuration by changing the
coil lengths, maintaining the total coil length (19cm). The objective of tests
III and IV is to see the influence of the number of candidate locations and to
compare the required computational times against the previous experiments.
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Table 1. Experimental set-up on idealized geometries

Test Idealized Number of Coil Coil Number of Initial
Model coils diameter [mm] lengths [cm] candidate locations direction

I Sphere 3 0.25 2-2-15 350 ẑ
II Sphere 3 0.25 5-5-9 350 ẑ
III Sphere 3 0.25 2-2-15 150 ẑ
IV Sphere 3 0.25 5-5-9 150 ẑ
V Hexahedron 3 0.25 2-2-20 350 ẑ

Note that, although clinicians first insert the longest coils, here the shortest ones
were placed before to show how the coils are initiated and to have a better idea
of the algorithm functioning when the models are almost empty.

3.1 Results on Idealized Models

Figure 2A, B and C present the result of Test I with one, two and the three
coils, respectively. The obtained packing density with these coils was 27.3%. The
result of Test II is visualized in figure 2D, where a different coil configuration
was obtained compared to Test I, although the same high packing density of
27.3% was achieved. Figure 2E and F showed the results of Test II and IV,
respectively. As it is visualized, the reduction of candidate locations produces
different coil configurations, and the coil roughness increased (sharper angles).
The same packing density of 27.3% was obtained with these two experiments.

Test I and II required 230s each to be computed in a Intel Core(TM)2 Quad
CPU Q6600 @2.4GHz with 8 GB of RAM. This time was reduced to 93 seconds
in Test III and IV, due to the reduction of candidate locations.

The results of Test V are presented in figure 2G to J. To show how the coil
pull back works, two iterations are presented in figure 2G, corresponding to the
7th (transparent coil inside the tube) and the 15th (outside the tube) iteration.
When the coil is inside the tube, the algorithm pushes the tip towards the ẑ axis.
However, once the tip reaches the end of the tube, the algorithm progressively
pulls back the tip until it is outside the tube, then the algorithm blocks the
tube entrance by adding a potential field φPB = 1. Therefore, the algorithm
selects a candidate location outside the tube, forcing the tip to follow another
direction as it is presented with the iteration 15. Figure 2H, I and J present how
the algorithm fully inserts the first, second and third coil, respectively. The final
packing density inside the hexahedron was 23.7%.

4 Evaluation in Real Geometries

To evaluate the results of our virtual coiling technique on patient-specific
aneurysm geometries, two coiled aneurysms were selected. The first case was
located at the right middle cerebral artery bifurcation and the second case at
the anterior communicating artery. For each of these cases, a three dimensional
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Fig. 2. Virtual coiling on idealized geometries. Test I is presented in (A) after one coil,
(B) after two coils and (C) after three coils. (D), (E) and (F) show Test II, III and IV,
respectively. Test V is depicted in (G) for two iterations of the first coil, (H) after one
coil, (I) after two coils and (J) after three coils.

Fig. 3. Comparison of a DSA and a virtual models of case 1, (A) and (B); and case 2,
(C) and (D)

rotational angiography (3DRA) image before coiling and a digital subtraction
angiography (DSA) image after coiling were acquired. Besides, the treatment
information (number of coils and type) was recorded. For case 1, 11 coils were
inserted with diameters between 0.245mm and 0.29mm and a total length of
67cm. In case 2, 6 coils were inserted with diameter between 0.245mm and
0.282mm and a total length of 24cm.

Using the two selected cases, the following procedure was applied in each of
them. The 3DRA image was segmented using a geodesic active region to get a 3D
geometrical representation of the arteries and aneurysm [5]. Subsequently, the
aneurysm geometry was extracted and isolated from the rest of the vasculature
by placing a surface at its ostium. The virtual coiling technique was applied on
the aneurysm model following the treatment procedure chosen for that case.

To compare the outcomes of the proposed technique in these realistic anatomies,
a DSA image versus a virtual coiling image of the same case is presented in fig-
ure 3. A similar orientation of the 3D models was created, to match the virtual
models with the DSA view. This orientation was created by a manual registration
of the 3D geometries on the DSA image. In both cases, a similar filled area with
coils was observed, although some wires produced particular differences.

Additional Cases: Figure 4 presents 10 additional patient-specific aneurysm
models that were virtually treated. To apply our technique, each aneurysm was
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Fig. 4. Additional patient-specific aneurysm models

previously closed by adding a surface at its ostium. As it is visualized, the
aneurysm location, morphology and size were different among cases. Besides,
neither a DSA image sequence nor treatment data was available for these cases
for comparison, and thereby, the presented results are meant for testing and vi-
sualization. Moreover, These results show the reliability of the technique when
patient-specific models are used. The obtained packing densities were between
19% to 34.5%.

5 Discussion

We have presented a technique to virtually coil intracranial aneurysms, based
on a dynamic path planning algorithm to create the devices. This method relies
on the facts that the final coil distribution is quasi-random, that currently it
is not possible to reproduce exactly the same position and orientation of a real
inserted coil inside a patient-specific aneurysm, and that clinicians aim at high
packing densities when treating with coils [1].

The goal of this method is not for training, where physics-based models are
essential [4]. Instead, we aim to understand the macroscopic behavior of the
coil mesh, but considering the geometrical features of each coil. The simplic-
ity of our technique allows reproducing realistic inserted coils and distribution
and especially, obtaining similar results compared to physics-based techniques.
Moreover, it produces high packing densities in patient-specific (34.5%) and ide-
alized models (27.3%), which has been reported as a key parameter for coiling
outcome [1].

The proposed method is fast to compute as it was observed from our results.
The number of candidate locations is the most important parameter that impact
the computational time. Elevating the number of candidate locations increases
the computational time but also enhances the smoothness of the coils. Addition-
ally, the computational time is proportional to the coil length, which clinically
depends on the aneurysm size.

The application of our technique is focused on pre- and post-operative plan-
ning and diagnosis. For planning, the method calculates the packing density per
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coil, allows visualizing the coil distribution inside the aneurysm (angiography-
like and 3D) and assessing the coiling outcome from a hemodynamics point of
view using computational fluid dynamics solvers. For post-operative diagnosis,
it is possible to assess for instance, the influence of different coil diameters or coil
configurations on hemodynamics. Besides, the use of fluid-structure interaction
methods could help to understand coil compaction phenomenon, which is one of
the main causes of aneurysm recanalization after coiling.

6 Conclusion

We have described a technique for the virtual coiling of intracranial aneurysm,
which can be used in either idealized geometries or patient-specific anatomies.
The technique is based on a dynamic path planning algorithm to insert the coils.
A comparison with DSA images for two real coiled aneurysm was performed and
similar results were obtained. Additionally, 10 patient-specific aneurysm models
were used show the reliability of the method in anatomical models.
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Abstract. A k-space pseudospectral model is developed for the fast
full-wave simulation of nonlinear ultrasound propagation through het-
erogeneous media. The model uses a novel equation of state to account
for nonlinearity in addition to power law absorption. The spectral cal-
culation of the spatial gradients enables a significant reduction in the
number of required grid nodes compared to finite difference methods.
The model is parallelized using a graphical processing unit (GPU) which
allows the simulation of individual ultrasound scan lines using a 256 ×
256 × 128 voxel grid in less than five minutes. Several numerical exam-
ples are given, including the simulation of harmonic ultrasound images
and beam patterns using a linear phased array transducer.

Keywords: ultrasound simulation, nonlinear, k-space methods, GPU.

1 Introduction

The simulation of ultrasound propagation through biological tissue has many ap-
plications. These include the design of ultrasound transducers; the development
of new apodization, beamforming, and signal processing techniques; training ul-
trasonographers to use ultrasound equipment and interpret ultrasound images;
medical image registration; and treatment planning [9]. However, simulations
based on the conservation equations that govern the propagation of acoustic
waves in tissue can be very computationally expensive. This is because the size
of the computational domains can equate to hundreds of wavelengths in each
spatial dimension. Moreover, established numerical techniques such as the fi-
nite element and finite difference methods require on the order of 10 grid nodes
per wavelength to achieve acceptable accuracy. This yields a requirement for
computational domains with thousands of grid nodes in each spatial dimension.
Consequently, 3D simulations can require large amounts of memory and take
days or weeks to run, even when distributed computing systems are used [8,4].

To avoid directly solving the fundamental acoustic conservation equations (or
the equivalent wave equations), researchers have previously been forced to make
a number of simplifying assumptions. For example, for computing the shape
of the acoustic field produced by different ultrasound transducers, a parabolic
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Table 1. Required grid sizes and memory capabilities for ultrasound simulations in
three-dimensions using a k-space pseudospectral model. The number of required ele-
ments is based on two grid nodes per wavelength using a sound speed of 1500 m/s.
The required memory is based on the storage of 20 single-precision matrices (these are
used to store the tissue properties, acoustic variables, etc).

Domain Size Maximum Freq Number of Required Required Memory
(cm3) (MHz) Elements (GB)

53 1 673 0.022
5 3333 2.8
10 6673 22

103 1 1333 0.18
5 6673 22
10 13333 180

approximation is often used [2]. However, this approximation makes it diffi-
cult to accurately model the wave-field away from the transducer axis. For the
simulation of diagnostic ultrasound images, both ray-tracing and convolution
based approaches are frequently used [14,6]. However, these approaches are not
normally extended to model multiple reflections or nonlinear effects. The lat-
ter is particularly important as modern ultrasound scanners rely on nonlinear
wave propagation (in which acoustic waves at lower frequencies produce waves
at higher frequency harmonics as they propagate) for tissue harmonic imag-
ing which gives improved image clarity and contrast. There is thus a need for
ultrasound simulation tools with less restrictive assumptions but improved com-
putational efficiency.

Here, the k-space pseudospectral method is applied to the simulation of non-
linear ultrasound propagation in biological tissue. The spectral calculation of the
spatial derivatives is performed using the fast Fourier transform (FFT) and only
requires two grid nodes per acoustic wavelength to achieve acceptable accuracy
[10]. This significantly relaxes the requirement for dense computational domains
compared to finite difference methods. The use of the FFT also provides a con-
venient method for parallelization using graphical processing units (GPUs). A
summary of the required computing capabilities is given in Table 1; the equiv-
alent finite difference model would require more than two orders of magnitude
more elements rendering most of these problems intractable for normal comput-
ing systems. Note, for nonlinear simulations, the maximum frequency may be
several times higher than the centre frequency of the transducer. In addition to
the spectral calculation of spatial derivatives, the accuracy of the finite difference
time step is also improved using a k-space adjustment (this makes the temporal
discretization scheme exact in the case of linear propagation in homogeneous
media [10]). For heterogeneous media, this is similar to using a pseudospectral
method with a higher order scheme for the temporal derivative, but has a smaller
memory penalty. This approach has previously been used to model linear wave
propagation in biomedical photoacoustics [3] and ultrasonics [4].
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The numerical solution is based directly on coupled acoustic conservation
equations governing nonlinear wave propagation in heterogeneous media. A novel
equation of state is used which accounts for material nonlinearity in addition to
power law acoustic absorption (biological tissue has been experimentally shown
to exhibit absorption characteristics of this form [9]). An accurate model for
acoustic absorption is of particular importance for nonlinear wave propagation as
the generation of higher frequencies via nonlinearity is delicately balanced with
their absorption. Previous full-wave models have included only thermoviscous
absorption (which is inaccurate for biological tissue) or a spectrum of relaxation
processes [5]. While the latter can account for power law absorption over a limited
frequency range, this requires an a priori fitting of an array of relaxation times
for each value of absorption and set of simulation parameters.

2 Model Development

The equations governing the nonlinear propagation of compressional acoustic
waves in heterogeneous fluid media can be derived from the mass, momentum,
and energy conservation laws for continuum mechanics. Under the assumption
of a quiescent, isotropic, and inviscid medium in which shear waves can be ne-
glected, the momentum and mass conservation equations can be respectively
written as

ρ0
∂u
∂t

+ ∇p = −ρ∂u
∂t

− 1
2
ρ0∇u2 ,

∂ρ

∂t
+ ∇ · (ρ0u) = −∇ · (ρu) . (1)

Here p and ρ are the acoustic pressure and density, u is the particle velocity
where u2 = u · u, ρ0 is the ambient (background) density, and only terms up
to second order in the acoustic variables have been retained. Following the ap-
proach taken by Aanonsen et al. [1], the second order terms which appear on
the right hand side in (1) can be re-written in terms of the Lagrangian density
via the repeated substitution of the acoustic equations in linearized form. If only
cumulative nonlinear effects are important (as is the case for biomedical ultra-
sound in the absence of microbubbles), the Lagrangian density terms can then
be neglected which yields the expressions

∂u
∂t

= − 1
ρ0

∇p ,
∂ρ

∂t
= −ρ0∇ · u − u · ∇ρ0 +

1
ρ0c40

∂p2

∂t
. (2)

The final term in the mass conservation equation corresponds to a convective
nonlinearity in which the particle velocity contributes to the wave velocity.

Neglecting thermoviscous losses and instead including a phenomenological
loss operator to account for arbitrary power law absorption [13], the expansion
of the total pressure using a Taylor series about the equilibrium density for a
heterogeneous medium yields the equation of state

p = c20

(
ρ+ d · ∇ρ0 +

B

2A
ρ2

ρ0
− τ

∂

∂t

(
−∇2

)y
2−1

ρ− η
(
−∇2

)y+1
2 −1

ρ

)
. (3)
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The five terms within the brackets separately account for linear wave propa-
gation, heterogeneities in the ambient density, material nonlinearity, power law
acoustic absorption, and sound speed dispersion. Here c0 is the isentropic sound
speed, d is the particle displacement vector, and τ and η are the absorption
and dispersion proportionality coefficients given by τ = −2α0c

y−1
0 and η =

2α0c
y
0 tan (πy/2). These operators account for acoustic absorption of the form

α = α0ω
y where α0 is the absorption coefficient prefactor in Np (rad/s)−y m−1

and y is the power law exponent [13]. Note, the ∇ρ0 terms in (2) and (3) cancel
to first order and are not included in the discrete equations given below.

The three expressions given in (2) and (3) form a coupled set of equations for
the acoustic particle velocity, density, and pressure. It is also possible to combine
these expressions into a single second order wave equation for the acoustic pres-
sure. Neglecting higher order absorption, nonlinearity, and heterogeneity terms,
this can be written in the form of a modified Westervelt equation

∇2p− 1
c20

∂2p

∂t2
− 1
ρ0

∇ρ0 ·∇p+
β

ρ0c40

∂2p2

∂t2
+
(
τ
∂

∂t

(
−∇2

)y
2 + η

(
−∇2

)y+1
2

)
p = 0 ,

(4)
where β = 1 + B/2A is the coefficient of nonlinearity. An equation of this form
without the power law absorption term has previously been used for the simu-
lation of ultrasound images in 2D using the finite difference method [8,7].

Neglecting higher order absorption and nonlinearity effects, the conservation
equations in (2) written in discrete form using a k-space pseudospectral method
are given by

∂

∂ξ
pn = F

−1
{
ikξ κF

{
pn

}}
, (5a)

un+1
ξ = un

ξ − Δt
ρ0

∂

∂ξ
pn , (5b)

∂

∂ξ
un+1

ξ = F
−1

{
ikξ κF

{
un+1

ξ

}}
, (5c)

ρn+1
ξ = ρn

ξ − Δtρ0
∂

∂ξ
un+1

ξ +
(pn)2 −

(
pn−1

)2

N ρ0c40
. (5d)

Here i is the imaginary unit, kξ is the wavenumber in the ξ direction, κ is the
k-space adjustment where κ = sinc (c0kΔt/2), F and F−1 denote the forward
and inverse Fourier transform, Δt is the time step, and (5a)-(5d) are repeated
for each Cartesian direction in R

N where ξ = (x) in R
1, ξ = (x, y) in R

2, and
ξ = (x, y, z) in R3. The corresponding equation of state in discrete form is

pn+1 = c20

(
ρn+1 +

B

2A
1
ρ0

(
ρn+1

)2 − L
)

, (5e)

where the total density is given by ρ =
∑

ξ ρξ and the discrete loss term is

L = −τ F
−1

{
(k)y−2

F

{
ρ0

∑
ξ

∂

∂ξ
un+1

ξ

}}
+ η F

−1

{
(k)y−1

F

{
ρn+1

}}
. (5f)



Simulation of Harmonic Ultrasound Images 367

The discrete equations in (5) are iteratively solved using a time step based
on the Courant-Friedrichs-Lewy (CFL) number, where Δt = CFL Δx/cmax. A
CFL number of 0.3 typically provides a good balance between accuracy and
computational speed for weakly heterogeneous media [10]. At each time step,
a velocity (or pressure) source can be included by adding the source values to
the appropriate voxels within the computational domain. Similarly, the output
from the simulation can be obtained by recording the acoustic variables at each
time step at particular voxels within the grid. For the simulations presented
here, the computational grids were also spatially and temporally staggered to
improve accuracy, and an absorbing boundary layer included to prevent waves
from wrapping around the domain [12]. The codes were written as an extension
to the k-Wave MATLAB toolbox (http://www.k-wave.org) and parallelization
was achieved by interfacing with the GPU using Accelereyes Jacket. The reported
simulation times correspond to execution on an NVIDIA TESLA C2070 which
has 448 CUDA cores and 6 GB of onboard memory.

To validate the discrete equations, the one-dimensional propagation of a 5
MPa sinusoidal pressure source through a lossy medium with α0 = 0.25 dB
MHz−2 cm−1 was compared to the analytical expansion provided by Mendousse
[5]. The acoustic pressure versus the non-dimensional shock parameter σ for
0 ≤ σ ≤ 3 is shown in Fig. 1. There is a close agreement between the two solutions
illustrating that cumulative nonlinear effects are correctly encapsulated.

3 Harmonic Ultrasound Simulations

To illustrate the applicability of the developed nonlinear k-space model to ul-
trasound simulation, the beam pattern produced by a linear phased array trans-
ducer was investigated. The utilized transducer model was 30 mm wide with
72 rectangular elements 5 mm in length and a kerf width of 0.25 mm. The
computational grid including the absorbing boundary layer was 120 × 60 × 30
mm (512 × 256 × 128 voxels) supporting a maximum frequency of 3.54 MHz.
The transducer was driven by a 5 cycle tone burst with a center frequency of 1
MHz and an equivalent single element source pressure of 1 MPa. The beam was
electronically focused at 50 mm (with no elevation focusing), all elements were
active, and no transmit apodization was used. The simulation was completed in
12.3 minutes (2360 time steps). The resulting beam patterns are shown using a
linear plot scale in Fig. 2. These appear visually similar to those produced in 2D
by Wojcik using the pseudospectral method [15]. Note, the same simulation per-
formed using a 256 × 128 × 64 voxel grid and 1080 time steps was computed in
51 seconds which demonstrates the excellent scaling characteristics of the model.

As a second example, the same transducer was used to simulate a B-mode
ultrasound image of a scattering phantom (see Fig. 3). The ultrasound image
was formed from 33 scan lines swept from -32◦ to 32◦ using the conventional pro-
cedure of transmit and receive beamforming, time gain compensation, envelope
detection, log compression, and scan conversion [9]. The total computational
grid was 60 × 60 × 30 mm (256 × 256 × 128 voxels) supporting a maximum
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Fig. 1. Evolution of a finite amplitude pressure field in a one-dimensional medium
with the shock parameter σ. The k-space solution is shown with a dotted line and the
analytical expansion given by Mendousse is shown as a solid line for comparison.
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Fig. 2. Normalized beam patterns generated by a linear phased array transducer elec-
tronically focused at 50 mm. The total beam pattern is extracted from the integrated
frequency spectrum at each position, while the beam pattern at the fundamental and
harmonics correspond to the relative spectral amplitudes at these frequencies.

frequency of 3.54 MHz with a time step of 40 ns. The transducer focus was set
to 30 mm and the harmonic image was generated using phase inversion. The
phantom was created by modulating the mean sound speed and density at each
voxel using random Gaussian noise. For contrast, three spherical regions with
increased scattering and impedance were defined. Each ultrasound scan line was
computed in 4.78 minutes (corresponding to 1700 time steps).

In comparison, Daoud et al. reported simulation times of 2.86 hours per scan
line for the same number of total voxels using a linear k-space model on a com-
puter cluster with 2 nodes per scan line and 10 scan lines computed in parallel
[4]. While the relative computation time per scan line can be reduced by using
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Fig. 3. Simulated B-mode ultrasound images of a scattering phantom. The images look
realistic and contain the features and artifacts seen in B-mode images from commercial
diagnostic scanners.

more nodes, this also reduces the computational efficiency due to the additional
communication required (for 30 nodes the reported efficiency was approximately
90% and for 60 nodes 75%). Thus, to achieve a comparable execution time to
that reported here, nearly 100 nodes are required. This illustrates the architec-
tural advantages of using GPUs for spectral methods over conventional computer
clusters (the parallel performance of the FFT is discussed in more detail in [11]).
It is useful to note that for comparable simulations, finite difference methods
yield significantly better performance when normalized by the number of voxels
and time steps [8,7]. For example, Karamalis et al. reported simulation times on
the order of 20 seconds per scan line for 2D simulations with 222 grid elements
and 6000 time steps using a finite difference method accelerated by the GPU [7].
However, for the same accuracy, the finite difference method requires as many
as two orders of magnitude more voxels (in 3D) and an order of magnitude more
time steps, thus the overall advantage of the k-space method is retained.

4 Summary and Discussion

A fast method for 3D simulations of nonlinear ultrasound propagation in bio-
logical tissue has been presented. This incorporates a novel equation of state
that includes both nonlinearity and power law acoustic absorption. The spectral
calculation of the spatial derivatives significantly reduces the requirement for
dense computational domains compared to finite difference and finite element
models. The model is applicable to all areas of ultrasound simulation but has
particular relevance in treatment planning and exposure limit studies in which
an accurate model of acoustic absorption is critical. The model is parallelized
using a GPU which yields computational times significantly less than equivalent
studies previously reported in the literature. This approach also has the poten-
tial to substantially reduce the total time taken to simulate ultrasound images
by distributing scan lines across a cluster of GPUs.
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Ultrasound Elastography Using Three Images

Hassan Rivaz, Emad M. Boctor, Michael A. Choti, and Gregory D. Hager

Johns Hopkins University

Abstract. Displacement1 estimation is an essential step for ultrasound
elastography and numerous techniques have been proposed to improve
its quality using two frames of ultrasound RF data. This paper intro-
duces a technique for calculating a displacement field from three frames
of ultrasound RF data. To this end, we first introduce constraints on
variations of the displacement field with time using mechanics of ma-
terials. These constraints are then used to generate a regularized cost
function that incorporates amplitude similarity of three ultrasound im-
ages and displacement continuity. We optimize the cost function in an
expectation maximization (EM) framework. Iteratively reweighted least
squares (IRLS) is used to minimize the effect of outliers. We show that,
compared to using two images, the new algorithm reduces the noise of
the displacement estimation. The displacement field is used to generate
strain images for quasi-static elastography. Phantom experiments and
in-vivo patient trials of imaging liver tumors and monitoring thermal
ablation therapy of liver cancer are presented for validation.

1 Introduction

Displacement, motion or time delay estimation in ultrasound images is an essen-
tial step in numerous medical imaging tasks including the rapidly growing field
of imaging the mechanical properties of tissue [1]. In this work, we perform dis-
placement estimation for quasi-static ultrasound elastography [1], which involves
deforming the tissue slowly with an external mechanical force, imaging the tis-
sue during the deformation, and performing displacement estimation using the
images. More specifically, we focus on real-time freehand palpation elastography
[2–7] where the external force is applied by simply pressing the ultrasound probe
against the tissue. Ease of use, real-time performance and providing invaluable
elasticity images for diagnosis and guidance/monitoring of surgical operations
are the key factors that have led to its successful commercialization.

A typical ultrasound frame rate is 20-60 fps. As a result, an entire series of
ultrasound images are freely available during the tissue deformation. Multiple
ultrasound images have been used before to obtain strain images of highly com-
pressed tissue by accumulating the intermediate strain images, and to obtain
persistently high quality strain images by performing weighted averaging of the
strain images [8–10]. Accumulating and averaging strain images increases their
signal to noise ratio (SNR) and contrast to noise ratio (CNR). However, these
techniques are susceptible to drift, a problem with any sequential tracking system

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAI 2011, Part I, LNCS 6891, pp. 371–378, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Fig. 1. Left: in-vivo images of liver. First and second (S1 and S2 from left) are two
strain fields calculated from I1 and I2, and from I2 and I3 respectively. S1 & S2 look
“similar”. Third image is S1 −ηS2 for η = 1.1. The strain range in the first two images
is 0 to 0.6%, and in the third image is ±0.3%. Right shows the ElastMI algorithm.

[11]. In addition, these techniques do not exploit additional images to improve
displacement estimation, which has many applications besides strain estimation.
Time series of ultrasound data has also been used to characterize tissue [12] and
improve elasticity reconstruction [13] and viscoelastic parameters [14, 15].

Figure 1 shows two consecutive strain images calculated from three ultrasound
images using the 2D analytic minimization (AM) method [16]. Our motivation is
to utilize the similarity of these two images to calculate a low variance displace-
ment field from three images. The contributions of this work are: (1) introducing
constraints on variation of the motion fields based on similarities of strain images
through time; (2) proposing an EM algorithm to solve for motion fields using
three images, and (3) reporting clinical tstudies of ablation guidance/monitoring,
with data collection corresponding to before, during and after ablation.

The rest of this paper is summarized as follows. We first introduce the Elas-
tography using Multiple Images (ElastMI) algorithm for tissue displacement es-
timation, which minimizes a cost function that incorporates data obtained from
three images and exploits mechanical constraints. The estimated low variance
displacement field can be used in numerous applications in imaging mechanical
properties of tissue; we use it for generating strain images by calculating its spa-
tial derivative. We use phantom and in-vivo clinical studies to compare ElastMI
versus the recently developed elastography technique of 2D AM (code available
online at www.cs.jhu.edu/~rivaz) [16].

2 ElastMI: Elastography Using Multiple Images

We have a set of p = 3 images Ik, k = 1 · · · 3, each of size m × n. Let the 2D
displacement field dk = (ak, lk) denote the displacement between Ik and I1,
where a refers to the axial (i.e. in the direction of the ultrasound beam) and l to
the lateral (i.e. perpendicular to the beam and in the imaging plane) directions.
By the choice of reference d1 = 0. Note that we set I1 as the reference image
to simplify the notation. However, in our implementation we always take the
middle image (i.e. I2) as the reference. Our goal is to calculate a high quality d2

by utilizing all three images in a group-wise approach.

www.cs.jhu.edu/~rivaz


Ultrasound Elastography Using Three Images 373

It is well known that many tissue types display linear strain-stress relation in
the 0 to 5% range (see [1] for example). In a freehand palpation elastography
setup with ultrasound acquisition rate of 20 fps or more, taking three consecutive
images as I1, I2, I3 corresponds to strain values of less than 1% and therefore
the linearity assumption is valid. Using this property and some simplifying as-
sumptions, it can be shown that the ratio of the strain and displacement fields
in different times is a constant value, i.e. strain images are similar up to a scale
as in Figure 1. We denote the scale factor by η = (ηa, ηl), and allow it to slightly
change spatially to account for small nonlinearities in the tissue. As such, ηa

and ηl are themselves scale fields in the axial and lateral directions each of size
m×n. Using this notation we have a3 = ηa.∗a2 and l3 = ηl.∗ l2 where .∗ denotes
point-wise multiplication.

Let θ contain all the displacement unknowns d2 and d3. The MAP estimate
of θ is obtained by maximizing its posterior probability

Pr(θ | I1, I2, I3) ∝ Pr(I1, I2, I3 | θ) Pr(θ) (1)

where we have ignored the normalization denominator. The data term is cal-
culated as Pr(I1, I2, I3 | θ) = Ση Pr(I1, I2, I3,η | θ). The summation over the
latent variable η makes the optimization problem intractable. We therefore use
Expectation Maximization (EM) to make the problem tractable as following.

1. Initialize: find an estimate for θ by applying the 2D AM method [16] to two
pairs of images (I1,I2) and (I1,I3) independently.

2. E-step: find an estimate for η using θ (details below).
3. M-step: update θ with the current estimate of η (details below).
4. Iterate between 2 and 3 until convergence.

The algorithm is shown in Figure 1 right. Note that unlike the traditional EM
which maximizes Pr(I1, I2, I3 | θ), we maximize the posterior probability of θ
(Equation 1). Steps 2 and 3 are elaborated below.

Calculating η from θ Using Least Squares. At each sample (i, j) in the
displacement field d2

i,j , i = 1 · · ·m, j = 1 · · ·n take a window of size mw × nw

centered at the sample (mw and nw are in the axial and lateral directions re-
spectively and both are odd numbers). Stack the axial and lateral components of
d2

i,j that are in the window in two vectors a2
i,j and l2i,j , each of length mw × nw.

Similarly, generate a3
i,j and l3i,j using d3. Note that since both displacement

fields d2
i,j and d3

i,j are calculated with respect to samples on I1, they corre-
spond to the same sample (i, j). We first calculate the axial component η(i,j),a

(η(i,j) = (η(i,j),a, η(i,j),l)). Discarding the spatial information in a2
i,j and a3

i,j ,
we can average the two vectors into two scalers ā2

i,j and ā3
i,j and simply cal-

culate η(i,j),a = ā3
i,j/ā

2
i,j . However, a more elegant way which also takes into

account the spatial information is by calculating the least squares solution to
the following over-determined problem (superscript T denotes transpose).

a2
i,jη(i,j),a = a3

i,j giving η(i,j),a =
a2T

i,j a
3
i,j

a2T
i,j a

2
i,j

, (2)
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which is what we use in our implementation. To calculate the ratio of the lateral
displacement fields η(i,j),l, we take into account possible lateral slip of the probe,
which results in a rigid-body-motion. The rigid-body-motion can be simply cal-
culated by averaging the lateral displacement in d2

i,j and d3
i,j in the entire image,

and calculating the difference between these two average lateral displacements.
The lateral scaling factor η(i,j),l can be calculated using an equation similar to 2
where the axial displacement ai,j is replaced with the lateral displacements li,j .
However, we use the following approach which results in a better estimate for
η(i,j),l. The lateral strain εl is simply νεa where ν is an unknown Poisson’s ratio.
Since ν has a small dynamic range in soft tissue and since the difference between
the two displacement maps d2 and d3 is small, we can assume that ν does not
vary from d2 to d3. Therefore, η(i,j),l = η(i,j),a. This gives better estimate for
η(i,j),l since axial displacement estimation is more accurate [16].

Calculating θ by Maximizing Its Posterior Probability. To analytically
solve the MAP estimate of θ, we assume that the data is independent and
that the noise model is Gaussian. Although not completely held in real images,
these assumptions are also the foundation behind sum of square difference and
correlation based elastography methods, which have been extensively shown to
produce reliable results. With these assumptions, the robust MAP estimate for
θ can be obtained by minimizing the following cost function

C(θ) =
m∑

i=1

w12,i

(
I1(xi) − I2(xi + d̂2

i ) − δd2T
i ∇I2(xi + d̂2

i )
)2

+

m∑
i=1

w13,i

(
I1(xi) − I3(xi + ηi,ad̂2

i ) − ηi,aδd2T
i ∇I3(xi + ηi,ad̂2

i )
)2

+

m∑
i=1

(d2
i − d2

i−1)
TA(d2

i − d2
i−1) (3)

where d̂2
i is the estimate obtained using 2D AM, δd2

i = d2
i − d̂2

i is the update
in the displacement that we are looking for, A = diag(α, β) is a 2 × 2 diagonal
matrix with tunable regularization weights (α, β) that we adjust manually in
this work, and ∇ denotes the gradient operator. Robustness is achieved using
IRLS through weights w12,i and w13,i which are calculated as following

w1k,i = w(I1(xi) − Ik(xi + d̂k
i )), for k = 2, 3, and w(ri) =

{
1 |ri| < T

T
|ri| |ri| > T

(4)

where T is a tunable parameter which determines the residual level for which
sample i can be treated as outlier. A small T will treat many samples as outliers.

Setting the derivative of C w.r.t. the axial (δa2
i = δd2

i,a) and lateral (δl2i =
δd2

i,l) components of δd2
i for i = 1 · · ·m to zero and stacking the 2m unknowns

in δd2 =
[
δa2

1 δl
2
1 δa

2
2 δl

2
2 · · · δa2

m δl2m
]T

and the 2m initial estimates in d̂2 =[
â2
1 l̂

2
1 â

2
2 l̂

2
2 · · · â2

m l̂2m

]T

we obtain the linear system of size 2m:
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Table 1. The SNR and CNR of the strain images of Figure 2

Axial, 2D AM Axial, ElastMI Lateral, 2D AM Lateral, ElastMI

SNR 11.11 12.64 6.06 6.63

CNR 8.48 9.63 2.96 3.39

(I ′ + D)δd2 = r −Dd̂2, D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α 0 −α 0 0 0 · · · 0
0 β 0 −β 0 0 · · · 0
−α 0 2α 0 −α 0 · · · 0
0 −β 0 2β 0 −β · · · 0
0 0 −α 0 2α 0 · · · 0
...

. . .
0 0 0 · · · −α 0 α 0
0 0 0 · · · 0 −β 0 β

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (5)

where I ′ is a symmetric tridiagonal matrix with 2×2 matrices I′ in its diagonal:

I ′ = diag(I′2(1) · · · I′2(m)),

I′2(i) =

[
(w12,i + w13,iηi,a

2)I ′1,a
2 (w12,i + w13,iηi,aηi,l)I ′1,aI

′
1,l

(w12,i + w13,iηi,aηi,l)I ′1,aI
′
1,l (w12,i + w13,iηi,l

2)I ′1,l
2

]
(6)

where I ′2 and I ′3 are calculated respectively at (xi + d̂2
i ) and at (xi + ηi. ∗ d̂2

i ),
superscript ′ indicates derivative and subscript a and l determine whether the
derivation is in the axial or lateral direction, and r is a vector of length 2m with
elements:

i even : ri = w12,iI
′
1,a(xi)

[
I1(xi) − I2(xi + d̂2

i )
]

+

w13,iηi. ∗ I ′1,a(xi)
[
I1(xi) − I3(xi + ηi. ∗ d̂2

i )
]

i odd : ri = w12,iI
′
1,l(xi)

[
I1(xi) − I2(xi + d̂2

i )
]

+

w13,iηi. ∗ I ′1,l(xi)
[
I1(xi) − I3(xi + ηi. ∗ d̂2

i )
]
. (7)

The coefficient matrix in Equation 5 is pentadiagonal and symmetric. As such,
it can be solved in 8m operations, significantly less than (2m)3/3 required for
solving a full system. For all the results presented in this work, the EM algorithm
is iterated once.

3 Results of Phantom Experiments and Patient Trials

RF data is acquired from an Antares Siemens system (Issaquah, WA) at the
center frequency of 6.67 MHz with a VF10-5 linear array at a sampling rate
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(d) ElastMI lateral

Fig. 2. Strain images of the CIRS phantom with the target and background windows
(for calculation of SNR and CNR). No Kalman filter [16] is used to ease the comparison.

Table 2. The CNR of the strain images of first, second and third patient trials (images
of second patient are shown in Figure 3). P1, P2 and P3 respectively correspond to
patients 1, 2 and 3. 2(s̄b − s̄t)

2 and σ2
b + σ2

t indicate contrast and noise respectively.

before ablation during ablation after ablation
2D AM ElastMI 2D AM ElastMI 2D AM ElastMI

P1
104 × 2(s̄b − s̄t)

2 - - - - 2.18 2.22
104 × (

σ2
b + σ2

t

)
- - - - 0.108 0.083

CNR =

√
2(s̄b−s̄t)2

σ2
b
+σ2

t
- - - - 4.49 5.17

P2
104 × 2(s̄b − s̄t)

2 0.45 0.89 - - 2.08 2.15
104 × (

σ2
b + σ2

t

)
0.0036 0.0045 - - 0.204 0.142

CNR =

√
2(s̄b−s̄t)2

σ2
b
+σ2

t
11.16 14.05 - - 3.19 3.89

P3
104 × 2(s̄b − s̄t)

2 0.235 0.234 0.0745 0.1716 4.85 4.82
104 × (

σ2
b + σ2

t

)
0.0045 0.0036 0.0091 0.0161 0.204 0.171

CNR =

√
2(s̄b−s̄t)2

σ2
b
+σ2

t
7.22 8.01 2.87 3.26 4.87 5.31

of 40 MHz. An elastography phantom (CIRS elastography phantom, Norfolk,
VA) is compressed axially in two steps using a linear stage, and three images
are acquired. Resulting strain images are shown in Figure 2. The unitless metric
signal to noise ratio (SNR = s̄b

σb
) and contrast to noise ratio (CNR =

√
2(s̄b−s̄t)2

σ2
b+σ2

t
)

[1] of the ElastMI algorithm are shown in Table 1 (The SNR is only calculated
for the background window). Comparing to the 2D AM, the ElastMI algorithm
improves the SNR by approximately 14% and the CNR by approximately 11%.
The high quality of the lateral strain image, compared to state of the art strain
imaging techniques, is visually noticeable.

In the clinical studies, RF data was acquired from ablation therapy of three
patients with liver cancer using the Siemens Antares ultrasound machine in
the following way: for the first patient only after ablation, for the second patient
before and after ablation, and for the third patient before, during and after abla-
tion. The ablation was administered using the RITA Model 1500 XRF generator
(Rita Medical Systems, Fremont, CA). Tissue was simply compressed freehand
at a frequency of approximately 1 compression per 2 sec with the ultrasound
probe without any attachment, and the strain images are generated offline.
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Fig. 3. Axial strain images of the second in-vivo patient trial corresponding to before
(top row) and after (bottom row) ablation. The first, second and third columns are
respectively B-mode, 2D AM strain and ElastMI strain images. The cancer tumor in
the top row, and the ablated lesion in the bottom row are delineated. The CNR between
the target and background (marked by t & b) windows are given in Table 2.

Results of the second patient trial are shown in Figure 3. Considering the
numerous sources of noise in the clinical data, the high contrast of the tumor
(top row) and the ablated lesion (bottom row) in the strain images make ElastMI
a promising tool for both finding the tumor and monitoring the ablation. It
should be noted that elastographic analysis of the ablated lesion is known to be
challenging due to high temperatures which significantly degrade the quality of
ultrasound data (mainly because of the air bubbles). Table 2 summarizes the
CNR, as well as noise and contrast values, in the patient trials obtained using
2D AM and ElastMI methods. In the six cases presented in this table (two before
ablation, one during ablation and three after ablation), the average increase in
the CNR achieved using ElastMI compared to 2D AM is 17%.

4 Conclusions

In this work, we proposed to utilize three ultrasound images to calculate high
quality displacement fields. We neglected the dynamics of tissue motion and
assumed a static model for tissue mechanics, which is valid in the quasi-static
elastography. Using this model and assuming tissue linearity, which holds in
the low strain rates of the freehand elastography, we introduced constraints on
the variations of the strain field with time. We then proposed ElastMI, an EM
algorithm that exploits these constraints for estimating displacement fields using
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three images. The algorithm involves solving sparse linear systems, and therefore
runs in real-time. The low variance motion field that we compute by exploiting
this new prior can be used in numerous applications in ultrasound imaging; we
used it here to generate strain images.
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Abstract. Purpose: This paper is the first report on the monitoring of
tissue ablation using ultrasound RF echo time series. Methods: We cal-
cuate frequency and time domain features of time series of RF echoes
from stationary tissue and transducer, and correlate them with ablated
and non-ablated tissue properties. Results: We combine these features
in a nonlinear classification framework and demonstrate up to 99% clas-
sification accuracy in distinguishing ablated and non-ablated regions of
tissue, in areas as small as 12mm2 in size. We also demonstrate signif-
icant improvement of ablated tissue classification using RF time series
compared to the conventional approach of using single RF scan lines.
Conclusions: The results of this study suggest RF echo time series as a
promising approach for monitoring ablation, and capturing the changes
in the tissue microstructure as a result of heat-induced necrosis.

Keywords: tissue ablation, ablation monitoring, RF timer series.

1 Introduction

Primary and metastatic cancers of the liver cause significant distress, drastically
decrease life expectancy for patients worldwide, and have an increasing frequency
in North America [1]. Surgical resection, and in some cases liver transplantation,
are amongst potential interventions; however, only a small proportion of patients
are candidates for these treatments [2]. As a result, there has been increasing
interest in ablation, including chemical ablation, cryoablation, and heat abla-
tion, as an alternative mode of therapy [11]. Ablation therapy can be focused to
specific tumor locations, thus preserving most of the surrounding tissue. In ad-
dition to metastatic disease, multiple primary tumors may not be resectable. As
a result, ablation can be utilized as a minimally invasive procedure, increasing
the number of patients that can receive therapy.

In heat ablation therapy, the ablation applicator is placed within the target
tissue and heat is transferred to the surrounding tissue causing necrosis of the
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target area. Microwave, laser, and Radio Frequency (RF) signals [11] have all
been used as sources for heat ablation, with RF ablation being the method of
choice for many clinicians. Despite advances in ablation therapy, real-time mon-
itoring of the extent of ablation is a major limitation. The need to monitor the
ablation zone is the key step to avoiding necrosis of healthy tissue and complete
targeting of primary or metastatic tumors. Non-invasive monitoring techniques
using magnetic resonance imaging (MRI), computed tomography (CT) and ul-
trasound imaging have been used for this purpose. A series of T1 and T2 MRI
measurements were found to characterize changes in a variety of ex vivo tis-
sues as a result of thermal coagulation [3], while computed tomography (CT)
has been shown to effectively monitor RF ablation zones in porcine liver [10].
Despite these successes, MRI and CT-based ablation monitoring suffer several
drawbacks, including requiring specialized equipment for compatibility, limita-
tions for real-time application, and universal availability.

Ultrasound-based ablation monitoring has garnered interest due to its wide
availability and relative low cost. Conventional B-mode imaging does not clearly
indicate the ablation zone, and in some cases can overestimate the extent of
ablation [9]. Ultrasound elastography has emerged as a technique to augment
conventional images for monitoring the ablation zone [9]. Following a mechan-
ical stimulus, various elastic properties of the tissue have been calculated from
ultrasound images to identify stiffer ablated lesions.

Another mechanism to augment conventional ultrasound is to utilize raw RF
signals; these signals contain tissue typing information and have been previously
used for monitoring changes in frequency-dependent attenuation to determine
temperature [4]. RF time series signals have also been effectively used for tissue
typing at both high- and clinical-frequencies [8]. RF time series was acquired
from stationary tissue and transducer over a few seconds. Frequency domain
features and fractal dimension of these signals were used to distinguish between
various tissue types, including healthy and cancerous prostate tissue [8].

In this paper, we aim to classify ablated and non-ablated regions of interest
(ROI) in animal tissue following thermal ablation using time and frequency do-
main features of calibrated RF time series data. We show that the classification
accuracies obtained by these features significantly outperform those achieved by
spectral analysis of individual RF scan lines. The remainder of this paper is or-
ganized as follows: Section 2 presents the ablation data collection setup, feature
extraction, and tissue classification approaches. Section 3 presents the results
and discussion followed by concluding remarks and a summary in Section 4.

2 Methods

To differentiate between ablated and non-ablated tissue using RF time series, we
acquired data from homogeneous, fresh chicken breast tissue [12]. Three exper-
iments were performed to collect data for monitoring the ablation process. An
ultrasound intersitial thermal therapy (USITT) applicator (Acoustic MedSys-
tems, Champaign, IL) is used for tissue coagulation. In each experiment, a piece
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Fig. 1. Tissue ablation and data acquisition setup

of lean chicken breast tissue is placed in a warm water bath (37◦C) with generous
water flow surrounding the tissue as depicted in Fig. 1. The water bath is then
placed on a warming plate to ensure the temperature stays constant. The ablator
is attached to two multi-sensor type T thermocouples (Physitemp Instruments,
Clifton, NJ), and inserted in the tissue. The thermocouples are used to monitor
the temperature of the tissue during ablation; each thermocouple contains three
sensors located at the tip, and 0.5 cm and 1 cm from the tip. A water pump
is used to cool the ablator with a water flow rate of 25 ml/min. The ablator is
configured to transmit RF waves with a power of 21.5 W. Ablation is initiated
while the thermal dose to the tissue increases. The experiment continues until
at least one sensor displays a reading of 45◦C.

RF time series data is acquired at multiple points during the experiments:
prior to ablation, at the end of ablation, and after a cooling period following ab-
lation. Sample B-mode images prior to and at the end of ablation are shown in
Figure 2. As seen, the ablation zone is not obvious in the B-mode images. Ultra-
sound data acquisition is performed using an Ultrasonix RP scanner (Ultrasonix,
Richmond, BC) with a L14-5/38 linear array transducer (Ultrasonix, Richmod,
BC) operating at a central frequency of 6.6 MHz. The maximum depth of imag-
ing is 4.5 cm while the focal point is set to 2 cm. For RF time series acquisition,
178 frames of RF data are acquired at a frame rate of 45 frames/sec. Each RF
frame has 256 scan lines in the lateral direction, each with 1080 samples in the
axial direction. The coupling medium for ultrasound imaging is water.

For calibration purposes, RF data is also collected from a thick piece of glass
placed in the water bath at the focal point of the transducer, with imaging
parameters identical to the ablation experiments.

2.1 ROI Selection and Feature Extraction

To characterize ablated and non-ablated tissue, frequency and time domain fea-
tures of calibrated RF time series are calculated over ROIs. RF time series from
cooled tissue at the end of ablation is used for our analysis. After aligning the
orientation of the ultrasound and histology images, the tip of the ablator is used
as a landmark for selection of the ROIs. Tissue characterization is compared
with that of spectral features of a single RF frame over the same ROIs.
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(a) (b)

Fig. 2. B-mode images of the tissue (a) prior to, and (b) at the end of ablation. Note
that the ablation zone is not visible on the ultrasound image after ablation.

A set of 120 equally-sized ROIs from ablated and non-ablated regions of the
tissue are selected in each experiment, resulting in a total of 360 ROIs. The size
of each ROI is 54 samples of RF from 4 scan lines that translate to a physical
dimension of 5.93mm× 2.08mm. The ratio of the number of selected ablated to
non-ablated ROIs is 1:1 (i.e. a total of 180 ablated and 180 non-ablated ROIs
from three experiments). Following ablation, cooling, and data acquisition, the
tissue specimen is cut approximately at the same plane as the ultrasound image
acquisition, as seen in Fig. 3. The ablated zone of the tissue is clearly depicted.
A crude manual registration approach is used to align ultrasound data with the
image of the tissue slice at the same plane, and ROI selections are made from
the ablated and non-ablated tissue accordingly.

RF time series data is calibrated for transducer effects, and used to extract
features that are only related to the tissue properties. Calibration has been
previously used in the literature prior to extracting spectral properties of RF
ultrasound data to deconvolve the point spread function of the ultrasound imag-
ing system [5]. Therefore, the deconvolved ultrasound RF signal is dominated
by the response function of the tissue. Similarly, we use the RF data acquired
from a piece of glass with high reflection. For each time frame of RF time series,
its deconvolution with the glass RF signal is calculated and used as calibrated
data. To compute this, the Fourier transform of a frame is divided by the Fourier
transform of the glass RF signal; the calibrated RF data is computed by taking
the inverse Fourier transform of this division. The time series data is then passed
through a hamming window to remove the effect of artifacts in the frequency
domain due to sharp edges of the rectangular windowing.

The calculated features of the calibrated RF time series are: i) the integral of
the power spectrum of the first to the fourth quarter of its frequency range (Fea-
tures 1-4); ii) the intercept and slope of a line fitted to the average power spec-
trum of the calibrated RF time series in each ROI (Features 5-6, respectively);
iii) the trend of the power spectrum in different frequency bands captured by the
slope of the power spectrum over the first to the fourth quarter of the frequency
range (Features 7-10); and iv) the fractal dimension of the calibrated RF time
series calculated using Higuchi’s algorithm (Feature 11) [8].
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Spectral analysis of single RF frames has been applied to tissue typing dur-
ing the past decades [5]. We evaluate the performance of RF time series for
characterizing ablated tissue by comparing it to the performance of the spec-
tral features of a single RF frame from cooled tissue at the end of ablation.
To extract spectral features, each scan line of an RF frame is passed through a
Hamming window, followed by calibration where the power spectrum of an ROI
is divided by the power spectrum of the RF data from the glass. The intercept
and the slope of the regression line to the power spectrum, and the average value
of the spectrum over the measurement bandwidth (midband fit) constitute the
spectral features (Features 12-14). It is worth mentioning that we compensate
for the effect of depth on the slope and the midband fit features using a linear
attenuation coefficient similar to [5].

2.2 Classification

A support vector machine (SVM) classifier is used to classify ablated and non-
ablated ROIs [6]. This classifier finds an optimal hyperplane with maximum
margin separating the data into two classes. The parameters of this hyperplane
are tuned by trying different kernel functions to map the training vector to higher
dimensions. Among different kernel functions, the radial basis function is easier
to initialize and outperforms others in terms of accuracy.

We follow a five-fold cross validation strategy. In other words, we randomly
partition the ROIs into an 80%-20% ratio. We select 80% of the ROIs as training
data and the remainder for testing, and repeat this for all 5 portions of the data.
The entire process of five-fold cross validation is repeated 100 times, each time
with random partitioning of the ROIs into five folds, to remove the effect of bias
in data division. The mean classification accuracies and standard deviations are
calculated over these 500 trials.

We also perform an exhaustive search for all 11 time series and three spectral
features to find the optimal feature group in each category for characterizing
the ablated tissue. To choose the optimal subset of 11 features, different subsets
should be examined. We try subsets of 2-10 features of the time series automat-
ically. The optimal search is done similarly for subsets of size two and three for
the spectral features. The optimal classification accuracy and the best feature
subset are found for each classification.

3 Results and Discussion

Ablated Tissue Classification: Two categories of features including RF time
series and conventional single RF frame features are extracted from the ROIs. We
performed a separate exhaustive search on each category and each experiment
to identify optimal features for characterizing ablated tissue. In addition, we
pooled all ROIs from the three experiments and searched for optimal features of
RF time series and single RF frame.

Mean classification accuracies and standard deviations from 500 cross valida-
tion runs for individual experiments and pooled data are presented in Table 1.
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Fig. 3. An example of classifying entire image. Note the black circle in the B mode
image indicating the location of the ablator, and the shadow underneath.

As seen in this table, almost perfect characterization of ablated and non-ablated
tissue regions are made using only three to six RF time series features. The
integral of the power spectrum of RF time series in the fourth quarter of the
frequency band (Feature 4) is the single dominant feature for ablated tissue
characterization in all three experiments and the pooled ROIs (rows 1-4 of the
table). In addition, the intercept and the slope of the line fitted to the entire
power spectrum, and the slope of the line fitted to the first frequency quarter
of the power spectrum of the RF time series are the main features contributing
to tissue typing. We calculated the Receiver Operating Characteristic (ROC) of
tissue classification for pooled data from all experiments using the optimal time
series features. The area under ROC curve obtained from RF time series features
is close to one. Note that we tested RF time series data both immediately after
ablation, and following a cool down period at the end of ablation. The results
reported here are from the RF time series of cooled tissue; however results from
the data at the end of ablation were very similar to those above.

In addition to classifying the ROIs of ablated and non-ablated tissue, we
used the trained SVM classifier to test the accuracy of tissue characterization in
the entire image. The B-mode ultrasound image, a color-map of the predicted
posterior probabilities of ablation, and the tissue image at approximately the
ultrasound imaging plane showing the physical extent of ablation are presented
in Fig. 3. The ablation zone color-map is created by using all 11 features from
ROIs in that particular experiment to train a model, which is then tested on the
entire imaging plane. As seen, we are able to capture the ablated zone, using
only a limited number of ROIs for training. The gray zone in the middle of
the figure is mostly due to the deconvolution process involved in the calibration
phase which results in discontinuity of the features between the RF scan lines.

Comparison with Tissue Characterization Using Conventional Single
RF Frame: Similar to RF time series features, the combination of features
from a single RF frame that results in the best ablated tissue characterization
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Table 1. Mean and standard deviation of classification accuracies using optimal RF
time series features, and conventional RF spectral features

Experiment Combination of time series Combination of spectral
features (mean ± std) features (mean ± std)

Experiment 1 Features 3,4,6,7,10,11 Features 12,13,14
(99.09±0.24%) (82.3±2.84%)

Experiment 2 Features 3,4,5 Features 12,14
(98.01± 0.64%) (92.05± 1.69%)

Experiment 3 Features 4,5,6,7 Features 12,13,14
(98.2± 0.29%) (72.41± 2.89%)

Pooled Experiments Features 4,5,6,7,9 Features 12,13,14
(99.29± 0.24%) (75.59± 1.28%)

are presented in Table 1. For most of the experiments as well as data from pooled
experiments, all three spectral features are required. Comparing the columns of
Table 1 shows that classification accuracies achieved using optimal time series
features are above 98% for all of the experiments, whereas accuracies obtained
incorporating the best spectral features vary between 72% and 92%. Further-
more, the standard deviations of the classification accuracies obtained by time
series features are superior as well. When the ROIs of three experiments are
mixed, the classification accuracy obtained using the combination of time series
features is 99.29%. For the same ROIs, the classification accuracy computed by
using spectral features is 75.59%. Finally, the area under the ROC curve for the
RF time series features is close to 1 compared to 0.8 for spectral features.

Previously, it was shown that temperature rise produced by acoustic propaga-
tion may be the major contributor to the ability of time series analysis for tissue
typing [7]. In other words, the speed of acoustic waves in the tissue is dependent
on the tissue temperature. Ultrasound frames from RF time series can be used
to estimate phase delay, hence virtual displacement. In our preliminary results,
we have also observed that there is an upward trend for the phase delay of the
ablated ROIs. Furthermore, the amplitude and frequency components of phase
delay are distinguishable between ablated and non-ablated ROIs.

4 Conclusion

Monitoring the ablation zone is essential in ablation therapy to avoid necrosis of
healthy tissue, and to completely target tumors. RF time series has shown great
promise for tissue typing at both high and clinical frequencies. In this paper, we
report for the first time the application of frequency and time domain features
of RF time series for characterizing ablated tissue. We calibrate the RF signals
of each individual frame to remove the contribution of the ultrasound imaging
system. We calculate eleven features from the time series of RF signals of 360
ROIs in three animal experiments. We use an SVM classifier to characterize
tissue into ablated and non-ablated categories, within a five-fold cross validation
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framework. The results show classification accuracies as high as 99% are obtained
using these features by analyzing ROIs with sizes of 12mm2. In addition, time
series features significantly outperform spectral features of a conventional RF
frame in terms of the classification mean accuracy and standard deviation, and
the area under ROC curve. Future work will focus on expanding the current
approach to real-time monitoring of the ablation zone in the entire imaging
plane. Towards this goal, we extend the classification framework to the entire
plane and demonstrate color-maps of the ablation zone that mimic the tissue
histology closely. More work needs to be done on more accurate registration
of the histology to ultrasound images, in addition to further experiments for
generalization of the ablation zone beyond ROIs.

References

1. Nakakura, E.K., Choti, M.A.: Management of hepatocellular carcinoma. Oncology
(Williston Park) 14(7), 1085–1102 (2000)

2. Steele, G.J.: Colorectal Cancer Metastatic to the Liver Resection. In: Cameron,
J.L. (ed.) Current surgical therapy, 5th edn., pp. 283–289. St. Louis (1995)

3. Graham, S.J., Stanisz, G.J., Kecojevic, A., Bronskill, M.J., Henkelman, R.M.:
Analysis of Changes in MRI Properties of Tissues After Heat Treatment. Magn.
Reson. Med. 42(6), 1061–1071 (1999)

4. Ueno, S., Hashimoto, M., Fukukita, H., Yano, T.: Ultrasound Thermometry in
Hyperthermia. In: Proc. of the IEEE Ultrasonics Symp., pp. 1645–1652 (1990)

5. Lizzi, F., Greenebaum, M., Feleppa, E., Elbaum, M.: Theoretical Framework
for Spectrum Analysis in Ultrasonic Tissue Characterization. J. Acoust. Soc.
Am. 73(4), 1366–1373 (1983)

6. A Library for SVMs, http://www.csie.ntu.edu.tw/~cjlin/libsvm/
7. Daoud, M.I., Mousavi, P., Imani, F., Rohling, R., Abolmaesumi, P.: Computer-

aided Tissue Characterization Using Ultrasound-induced Thermal Effects: Analyt-
ical Formulation and In vitro Animal Study. In: SPIE, Orlando (2011)

8. Moradi, M., Abolmaesumi, P., Siemens, D.R., Sauerbrei, E.E., Boag, A., Mousavi,
P.: Augmenting Detection of Prostate Cancer in Transrectal Ultrasound Images
Using SVM and RF Time Series. IEEE Trans. Biomed. Eng. 56(9), 2214–2223
(2009)

9. Boctor, E., deOliveira, M., Choti, M., Ghanem, R., Taylor, R., Hager, G.,
Fichtinger, G.: US Monitoring of Tissue Ablation Via Deformation Model and
Shape Priors. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS,
vol. 4191, pp. 405–412. Springer, Heidelberg (2006)

10. Cha, C.H., Lee, F.T., Gurney, J.M.: CT versus sonography for monitoring radiofre-
quency ablation in a porcine liver. Am. J. Roentgenol. 175, 705–711 (2000)

11. Lau, W.Y., Leung, T.W.T., Yu, S.C.H., Ho, S.K.W.: Percutaneous Local Ablative
Therapy for Hepatocellular Carcinoma: A Review and Look Into the Future. Ann.
Surg. 237(2), 171–179 (2003)

12. Zheng, X., Vaezy, S.: An Acoustic Backscatter-based Method for Localization of
Lesions Induced by High-intensity Focused Ultrasound. Ultrasound in Med. and
Biol. 36(4), 610–622 (2010)

http://www.csie.ntu.edu.tw/~cjlin/libsvm/


G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAI 2011, Part I, LNCS 6891, pp. 387–395, 2011. 
© Springer-Verlag Berlin Heidelberg 2011 

Evaluation of in vivo Liver Tissue Characterization with 
Spectral RF Analysis versus Elasticity  

Stéphane Audière1,2, Elsa D. Angelini1, Maurice Charbit1, and Véronique Miette2 

1 Institut Telecom, Telecom ParisTech, CNRS LTCI, Paris, France 
2 Echosens, Research and Development Department, Paris, France 

Abstract. Ultrasonic elastography, via vibration-controlled transient elastogra-
phy (VCTE™), enables to assess, under active mechanical constraints, the elas-
ticity of the liver, correlating with fibrosis stages. On the other hand, the same 
VCTE™ probe can also be used in passive mode, acquiring RF lines at different 
locations in the liver. This paper presents a thorough evaluation of passive-
mode RF spectral parameters (integrated backscatter coefficient, power spectral 
index, effective scattering size and spectral variance), for tissue characterization 
on a large cohort of volunteers with various ranges of elasticity measures. Re-
sults showed that capabilities to discriminate between liver and subcutaneous 
fat tissues were highly variable among spectral parameters. Furthermore, it ap-
pears that no in vivo discrimination of liver elasticity/fibrosis stage can be per-
formed with passive RF spectral analysis, at 3.5MHz.   

Keywords: ultrasound, RF lines, liver, backscatter coefficient, scatterer size, spec-
tral analysis, elastography. 

1   Introduction 

A large amount of literature exists on the potential of backscatter radiofrequency (RF) 
analysis to characterize tissue content. The underlying assumption in this field is that 
scattering properties characterize and discriminate tissues. However, in conventional 
ultrasonic data processing and image formation, the frequency content of the back-
scattered RF data is generally not exploited. The backscattered RF ultrasound signal 
content depends on the acoustic properties of the tissue (density and size of the reflec-
tors), but also on the transfer function of the transducer. Both components are  
frequency dependent through signal attenuation and backscattering intensity in the tis-
sue. In this study we investigated several spectral parameters to discriminate in vivo 
different types of tissues and different stages of liver fibrosis. The study was divided 
into two steps: first we investigated if liver fibrosis stage correlates with some acous-
tic parameters that are sensitive to tissue microstructures. Secondly, we investigated if 
subcutaneous and liver tissues could be discriminated based on acoustic parameters 
that are sensitive to tissue macrostructures. Such information is necessary for ade-
quate use of the Vibration-controlled transient elastography (VCTE™) probe. Meas-
urements were performed on a database of 181 volunteers, with a single-transducer 
VCTE™ probe operating at f0 = 3.5MHz in a bandwidth 2.5-4.5MHz and with a focus 
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at 35mm. Similar studies appear in the literature but on smaller in vivo databases and 
with histological fibrosis scores, while we used mechanical elasticity measurements.  

The ultrasound RF signals were acquired for a depth range between 5 and 65 mm, 
to accommodate for the variability of the skin-liver capsule distance within the volun-
teers population. Pass-band filtering was applied in band 1-8 MHz by the frontal 
hardware. From individual RF lines, we extracted the following parameters: the 
broadband ultrasound attenuation (BUA), the backscattered coefficient (BSC), the 
scattering power index (SPI), the effective scatterer size (ESS) and the spectral vari-
ance (SV). Screening was also performed in active (elastography) mode, using the 
VCTE™ technique [1] to quantify liver elasticity  by measuring the velocity of a low-
frequency shear wave generated by a pulse and travelling through the liver. It has 
been demonstrated that stiffness is highly correlated with fibrosis stage assessed by 
liver biopsy [2].  

2   Materials and Methods 

Measured RF signals correspond to echoes of an initially transmitted pulse, which 
propagated up to a certain depth in the body, attenuated along the travel path and  
partially reflected at interfaces between tissues and by non-specular reflections in 
"granular" tissues such as the liver. The notion of granularity depends on the ratio of 
the wavelength of the emitted signal and the micro-texture of the tissue. At 3.5MHz, 
for an average speed of sound of 1500 m/s in human soft tissues, this corresponds to 
wavelength λ=430μm, which is of the order of magnitude of the liver microstructures. 
The spectrogram ),( zfS  of the RF signal at frequency f and at a distance z from the 
probe is generally modelled as [3-4]:  

zfefRfHzfS )(222
)()(),( α−= , (1) 

where H is the Fourier Transform (FT) of the composite pulse, consisting of the 
transmitted pulse and the response of the electronic device. R is the FT of the back-
scatter component from the echoes and )( fα  is the attenuation coefficient function. 

The last two terms encode the interaction of the transmitted pulse with the tissues. 
Within the limited bandwidth of the ultrasound transducer, experimental measures 
have shown that RF lines are attenuated in soft tissues proportionally to the operating 
frequency so that ff βα =)( , where β  is the BUA. 

Regarding the generation of non-specular reflection in a homogeneous tissue, the 
backscattering spectrum is often modeled as nffR =)( , where n is the SPI that 

ranges from 0 to 4 in soft materials, and from 1 to 2 for most human soft tissues.  
The transmitted pulse consisted of two periods of sinusoid with apodization. This 

signal can be adequately approximated by a modulated Gaussian pulse leading to a 
Gaussian spectral distribution that writes:  
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where 0f is the transducer central frequency and σ  the pulse spectrum bandwidth. 
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2.1   RF Spectral Parameters Related to Tissue Characterization 

Five spectral parameters were studied as illustrated in Fig. 1 

 

Fig. 1. Liver screening protocol (left) and flowchart of spectral RF signal analysis 

We now detail the estimation of these parameters, based on various models common-
ly used in the literature dedicated to ultrasound-based tissue characterization.  
 

Estimation of the BUA 
Taking the log of Eq. (1), the log-spectrum writes 

2 2
ln( ( , )) ln ( ) ln ( ) ( )2S f z H f R f f zα= + − , (3) 

Assuming that the tissue is homogeneous over a thickness of a few wavelengths, we 
use  a short-term spectral analysis (STSA) based on the Welch’s approach. The atten-
uation coefficient α(f) is then accessed via the derivative of the log-spectrum with re-
spect to z. Indeed, for each frequency component, we have: 
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For the linear model, ( )f fα β= , the broadband ultrasound attenuation (BUA) coef-

ficient can be estimated by least square regression on the experimental attenuation 
coefficient [5]. It is general practice in clinical use to reconstruct ultrasound images 
assuming a fixed β  value of 115.0 −− MHzcmdB  for human soft tissues. 
 

Estimation of the Backscatter Coefficients BSC and IBC 
The backscatterer coefficient was introduced in [6] and corresponds to the relative 
scattering cross-section per unit solid angle and volume. Indeed to compute the BSC, 
echoes from the media of interest are compared to specular echoes measured from a 
steel plate with a reflection coefficient of R=0.9 and placed at the focal length of the 
transducer. This plate is used as the reference signal to learn the transducer transfer 
function. The BSC is then computed as: 
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where A0 is the area of the transducer aperture, zΔ is the axial length used for local 
measures, and Z  is the axial distance between the transducer and plate. W(f,Z) is the 
ratio between the spectrograms of the backscattered RF signal and the reference sig-
nal, and given by: 
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where mS is the STSA of the sample media RF signal, 0S is the STSA of the plate RF 

signal, ))(),(( 0 ffm αα are the attenuation coefficients (Eq. 1) for the sample and ref-

erence media. From a series of BSC measurements at different frequencies within the 
bandwidth [ ]maxmin , ff of the transducer, we can compute the integrated backscatter 

coefficient (IBC), as the frequency-average of the BSC: 
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Estimation of the Scattering Power Index (SPI) 
For independent scatterers of size smaller than the wavelength, theoretical approaches 

[7] lead to a BSC frequency dependence in 4f  : this is called the Rayleigh limit. In 

practice, it was observed that this simple model fails in soft tissues [8], leading to a 
generalization of the BSC frequency dependence model as:  nfZfBSC ∝),( , 

where n is the scattering power index. To estimate the SPI, a log-log linear regression 
analysis on the empirical BSC with respect to frequency within the bandwidth of the 
transducer is performed. The regression slope yields a tissue-specific SPI value which 
ranges between 1 and 4 in soft tissues, as reported in several studies [9-10]. 
 

Estimation of the Effective Scatterer Size (ESS) 
Rather than relying on a macroscopic measure of the backscatterer intensity with the 
BSC, alternative theoretical backscattering models have been proposed [9-10]. These 
models provide theoretical BSC expressions as the TF of the autocorrelation functions 
explicitly parameterized with the effective scatterer size a, corresponding to the spa-
tial variation of the density and compressibility within the tissue. A series of BSC 
curves was generated for different values of a. From the slope of the log-log linear re-
gression, a series of theoretical SPI values, related to a, was derived. The a value pro-
viding the theoretical SPI closest to the empirical SPI is then selected as the scatterer 
size of the observed tissue. In this study we tested two autocorrelation models [4, 9], 
described in Table 1, to estimate the ESS.  

Table 1. Spatial autocorrelation models and theoretical BSC functions 
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Spectral Variance σ'2 

As in [11], the spectrogram of the received echoes ),( zfS  can be approximate as a 

Gaussian pulse, around the central frequency Cf  following:  
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where 'σ is given by:  
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According to this model, soft tissues with different acoustic properties (characterized 
by n) should generate echoes with different spectrum bandwidth. Computation of this 
parameter on in vivo RF signals is detailed in [12]. 

The literature on RF based tissue characterization, exploiting all the previous mod-
els, contains very few in vivo studies, and only performed on small cohorts of volun-
teers. We exploited a large cohort of volunteers, to evaluate the models, and investi-
gate the potential correlation between elasticity measures and spectral RF parameters 
for a large range of values.   

3   Results and Discussion 

3.1   Ultrasound RF Scanning Setup and Procedure 

The VCTE™ device used in this study was composed of a probe containing a  
low-frequency vibrator, an ultrasonic transducer operating, at 3.5 MHz, a dedicated 
electronic system and a control unit (50 MHz sampling frequency with a 14-bit reso-
lution). A single element probe was used both as an emitter and a receiver. For each 
volunteer, 400 ultrasound RF lines were acquired, along a fixed scan line, at a pulse 
repetition frequency of 20 Hz during 20 s. 

A database was acquired with the VCTE™ probe, operating in passive and elasto-
graphy modes [1], on 181 volunteers. Elastography mode was used to measure the 
elasticity of the liver. The ultrasound RF lines were acquired for a depth range be-
tween 5 and 65mm, to accommodate for the variability of the skin-liver capsule dis-
tance within the population. 

A phantom was also used to validate our computational framework for the experi-
mental BSC, SPI and ESS computations. It was made of a mixture of cohesive  
copolymer, white mineral oil, and silica powder as acoustic scatterers [13]. Particle 
diameters ranged between 35–70 μm. The diameter of these particles, smaller by an 
order of ten than the wavelength of the ultrasound pulse (λ=430 μm) provides 
Rayleigh scattering conditions (i.e. BSC proportional to f 4).  

Spectral parameters were estimated on individual RF lines, using STSA with 75% 
overlapping windows of length 12λ, along the whole depth range.  Spatial parameter 
values can be displayed as parametric images for tissue segmentation, as [14], or con-
catenated into their median value for quantitative characterization of tissue types 
(such as liver tissues with different fibrosis stages).  
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3.2   Quantitative Liver Fibrosis Stage Characterization via Spectral Analysis 

Phantom Study 
Average elasticity of the phantom was measured, using the VCTE™ elastography 
probe, as E=6.0±0.05 kPa over 10 measurements. Median values over the 400 RF 
lines provided attenuation and BSC measures illustrated in Fig. 2. We can observe on 
these results that the phantom media behaved as expected, with attenuation and BSC 
coefficients varying linearly, in frequency and in log-frequency respectively, within 
the bandwidth of the transducer. Linear interpolations, illustrated in Fig. 2, lead to 
empirical estimations of the BUA=1.14±0.03 dB/cm/MHz and SPI= 3.97±0.15. The 
other spectral parameters provided the following measures: IBC= -68.14±0.89dB, 
ESS =19.85±9.24 μm with the exponential model, ESS=55.9±26.16 μm with the 
Gaussian model and σ'2=1.36±0.05. These results were in agreement with what was 
expected, with a SPI close to 4 and ESS size close to the phantom, specifications us-
ing the Gaussian autocorrelation model. 

 

Fig. 2. Experimental measures on a phantom(a-b) and liver (c-d): (a-c) Attenuation and BUA 
measurements. (b-d) BSC and SPI measurements.  

In vivo Study 
For in vivo RF signals, we report, in Table 2, median values of the spectral parameters 
computed on the 400 RF lines. We have considered three classes of liver fibrosis [2]. 
In Table 2, N denotes the number of volunteers in each class. 

Table 2. Average-median spectral parameters on in vivo liver tissue scanning 

Fibrosis 
stage N E (kPa) BUA 

(dB/cm/MHz) SPI (f n) ESS (μm) IBC 
(dB) 

σ’ 
(MHz) 

Non to mild 105 4.7±0.8 0.41±0.23 1.68±0.68 220.5±36.8 -58.5±6.8 1.03±0.03 
Significant 
to extensive 

66 7.2±1.3 0.37±0.29 1.73±0.88 218.0±44.9 -59.9±8.3 1.05±0.03 

Cirrhosis 10 21.0±9.2 0.38±0.33 1.81±0.94 214.3±51.2 -58.8±9.7 1.06±0.04 
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BUA and BSC are reported  Fig. 2. We observed that linear fits on the attenuation 
and the BSC curves was suitable for in vivo RF measures, within the bandwidth of the 
transducer. None of the average parameter measures was able to discriminate between 
the three classes of liver fibrosis stages. This result is in agreement with the in vivo 
study of [15] but which was performed on a cohort of only 17 volunteers.  

3.3   Spectral Parametric Images for Tissue Segmentation 

Parametric images were generated for all the spectral parameters. As illustrated in 
Fig. 3 for three of the parameters, these images showed high spatial variations of the 
parameter values and poor homogeneity within the three tissue layers: subcutaneous 
fat, muscle/fat layer and liver. 

 

Fig. 3. Image of RF line envelopes (a) and parametric maps of SPI (b), ESS (c) and σ’2 (d) 
spectral parameters 

Segmentation of these layers might be worthwhile to investigate via three ap-
proaches: (1) thresholding of the RF envelope, which is limited by a high noise level 
and uncalibrated variations on the RF envelope intensity, (2) thresholding of the spec-
tral variance, confirming the results reported in [12], (3) exploitation of the SPI con-
verging to zero at specular interfaces between the three layers, as clearly observed in 
Fig. 3. Regarding the ESS parameter, it is not discriminating for small SPI values and 
can only reflect macro granularity of the tissues, rather than characterizes interfaces. 

4   Conclusion 

This paper has presented an in vivo study of spectral parametric analysis of RF ultra-
sound signals for tissue characterization. Results were in agreement with the literature 
and showed that in vivo spectral tissue characterization remains challenging.  While 
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spectral parametric analysis provides promising capabilities for tissue segmentation, 
fine classification of tissue fibrosis stage seems too difficult. Maybe the experimental 
conditions were not appropriate for accurate quantification of scattering properties. 
Indeed, one important limitation is that all these parameters (except the SV) rely en-
tirely on an accurate estimate of the BUA that requires a homogeneous tissue, which 
is not the case in the fat layer. In the majority of papers, the problem was acknowl-
edged too challenging and an average value of 0.5dB/cm/MHz is used.  

From our results, we conclude that no in vivo discrimination of liver elastici-
ty/fibrosis stage can be performed with passive RF spectral analysis, at 3.5MHz and a 
wavelength of 430μm. We infer from this that either liver tissue homogeneity must be 
studied at a shorter wavelength, which is not applicable in vivo due to attenuation ef-
fects, or we need to look at the tissue structures at a larger scale, for example with the 
mean scatterer spacing [16], which is a non-parametric approach requiring higher fre-
quencies in the echo pulses. 
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Abstract. Recent evidence has suggested that the presence and proliferation of
vasa vasorum (VV) in the plaque is correlated to an increase in plaque inflam-
mation and destabilization, leading to acute coronary events (e.g., heart attacks).
Therefore, the detection and quantification of VV in plaque (i.e., extra luminal
blood perfusion) is an important problem since it may enable the development
of an index of plaque vulnerability. In this paper, we explore the feasibility of a
method that employs a physics-based model of the scattered intravascular ultra-
sound (IVUS) radio frequency signal for the detection of blood. We evaluate our
method using synthetic data and validate it using six 40 MHz pullback sequences
acquired with three different IVUS systems from different arteries of rabbits and
swines. Our experimental results are very promising and indicate the feasibility of
our method for the computation of a feature that leads to automatic extra-luminal
blood detection which may be an indication of plaque inflammation.

1 Introduction

Atherosclerosis is characterized by the formation and accumulation of plaque in the
walls of the arteries which results in the hardening and thickening of the arteries [8,16].
Coronary events such as heart attacks are the result of inflammation or thrombotic com-
plications of the plaque. Vasa vasorum (VV) is a network of microvessels that penetrate
and nourish the wall of the vessel [3]. Recent evidence has suggested that the pres-
ence and proliferation (i.e., increase in density) of VV in the plaque is correlated with
an increase in plaque inflammation and the processes which lead to its destabilization
[7]. Based on this evidence, it is believed that the detection and measurement of VV in
plaque and the detection of leakage of blood within the plaques can enable the develop-
ment of an index of plaque vulnerability.

Intravascular ultrasound (IVUS) is a catheter-based medical imaging modality that is
capable of providing cross-sectional images of the interior of blood vessels and is cur-
rently the gold-standard technique for assessing the morphology of blood vessels and
atherosclerotic plaques in-vivo. The IVUS catheter consists of a miniaturized ultrasound
transducer which transmits ultrasound pulses and receives its acoustic radio frequency
(RF) echo signals (i.e., A-line) at a discrete set of angles. The gray-scale B-mode IVUS
images are the result of postprocessing (i.e., envelope detection, compression, compen-
sation, scaling, and geometrical transformation) of these A-line signals.

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAI 2011, Part I, LNCS 6891, pp. 396–403, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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While there have been several efforts to automatically extract and analyze the infor-
mation from by IVUS data, it has not been until recent years that research has started to
focus on the analysis of the RF ultrasound signals instead of the IVUS B-mode images
as they are more reliable since they are not affected by any processing or transfor-
mations. Nair et al. [10,11] proposed a method for plaque characterization, known as
“virtual histology” (IVUS-VH), that is based on the use of features extracted from the
signal’s power spectrum. Kawasaki et al. [5] proposed a tissue classification method
using features computed with from integrated backscatter of the RF signal. The fea-
sibility of using wavelet analysis for plaque characterization using the RF amplitude
was studied by Katouzian et al. [4] and Roodaki et al. [15]. Recently, Ciompi et al.
[1] presented a method for plaque characterization that enhances in-vitro training sets
by including examples from in-vivo coronary plaques using a floating forward feature
selection method. Korga et al. [6] proposed a method for plaque characterization using
fractal analysis-based features of the IVUS RF signal and a k-nearest neighbor classifier.
O’Malley et al. [12] presented a study of the feasibility of blood characterization using
IVUS data by employing features based on frequency-domain measures of the high-
frequency signal. A common limitation of most of these methods is that the features
that characterize the tissues of interest do not consider the effects of the interactions of
the sound waves with the tissues. These effects (e.g., radial attenuation and attenuation
due to the medium) determine the characteristics of the RF signal along the time axis.
Therefore, the validity of a set of features may not be the same for the same type of
tissues at different distances from the transducer. To overcome these limitations, our
group has previously presented a method for the segmentation of the lumen in IVUS
data using the RF signal and a physics-based model of the received IVUS RF signal [9].
In that work, the lumen/wall interface for each transducer angle was detected by solv-
ing an inverse problem. In this paper, we explore the feasibility of a new method for the
detection of blood from IVUS using a similar approach with the following differences:
(i) the new method is based on the comparison of the root mean square (RMS) power
of the RF IVUS signal instead of the raw B-mode data, (ii) we perform the detection of
several interfaces simultaneously instead of only the lumen and wall interface, (iii) the
proposed method includes a regularization term to increase stability, and (iv) the pro-
posed method is considerably faster since the problem can be formulated as a banded
linear system which can be solved very efficiently. Specifically, our contributions are:
(i) an efficient method for extracting a physics-based feature for blood detection from
IVUS RF data, and (ii) a method for generating pseudo-colored B-mode images based
on this feature. The rest of the paper is organized as follows: Section 2 presents the
methods, Section 3 presents the results obtained, Section 4 presents our discussion, and
Section 5 presents our conclusions and future work.

2 Methods

2.1 Scattering Model

When an incident sound wave interacts with an object, a fraction of its power will be
reflected and a fraction will be absorbed by the object. When the wavelength of the in-
cident wave is smaller in comparison to the size of the object, the wave is reflected in all
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directions (i.e., scattering). The power scattered by each object in the direction opposite
to the direction of the incident wave depends on the differential backscattering cross
section (DBC), which can be considered as a measurement of the effective (acoustic)
area of the object [14]. The collective interaction of all the scatterers can be modeled
using the Born approximation [2] which implies that the scattered echoes are weak in
comparison to the incident signal, and therefore it is possible to use the principle of
superposition to represent the total scattered wave as a sum of the individual reflections
of each point scatterer. By considering that the wavelength of the IVUS impulse signal
is large in comparison to the structures in the vessel, we can model the received IVUS
RF signal by representing the structures in the vessel as a finite set of scatterers with an
associated DBC coefficient. Consider a set of N point scatterers, Φ = {φ1, φ2, ..., φN},
where each scatterer φi = {θi, ri, τi} is characterized by its angular position θ, its ra-
dial distance from the transducer r, and its DBC τ . An A-line signal can be modeled
by computing the interaction of the impulse wave with the set of M scatterers inside
an angular window {Φθ : (θ − �θ) ≤ θ ≤ (θ + �θ)}, where 2�θ is the angular
divergence of the ultrasound beam. The received RF signal for the transducer angular
position θ can be modeled as:

Ŝθ(t) =
M∑
i=1

τi
e(−μri)

ri
e

(
−(t− ri

c
)2

2σ2

)
sin

(
ω
(
t− ri

c

))
, (1)

were, ω = 2πf is the angular velocity of the impulse wave of frequency f , c is the
speed of sound, and σ is the standard deviation of a Gaussian function that is used to
approximate the envelope of the impulse function [18].

2.2 Characterization of Blood

Our hypothesis is that we can estimate the DBC value for small partitions of the IVUS
RF signal and use these values to characterize and detect blood. Let Sθ(t) and Ŝθ(t) be
the received and modeled RF signals, respectively, for the transducer angular position θ
(i.e., A-line). These signals are divided into NP non-overlapping partitions of the same
size �P = βp − αp ∀p ∈ {1, 2, ..., Np}. By assuming that the signal contained on
each partition Pθ,p is generated by a unique type of tissue, it is considered that all the
scatterers that generate that signal have the same DBC τi = τθ,p, ∀i : αp ≤ ri < βp.
To estimate the DBC value that generates the signal in each partition we propose to
compute the value τθ,p such that the quadratic error between the RMS power of the
real signal Rθ,p and the modeled signal R̂θ,p for the partition Pθ,p is minimal. How-
ever, the characteristics of the RF signals depend on the spatial position arrangement
of the scatterers, which is unknown. Similar with our previous work [9], we employ
the Monte-Carlo approach on which Ns samplings of random scatterers’ positions with
a given density D (i.e., number of scatterers per mm2) are used to estimate the DBC
τθ,p such that the quadratic error between the RMS power of the real and each of the
sampling modeled signals R̂s

θ,p is minimum. Additionally, in this work we introduce
a regularization term that embodies our assumptions about the variability in the DBC
values of the neighboring partitions Gδ across the angular direction. Here, δ refers to
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the cardinality of the neighbors and Nn = 2δ is the number of neighbors. For each
partition, the DBC can be computed as:

arg min
τθ,p

Ns∑
s=1

(
R̂s

θ,p(τ) −Rθ,p

)2

+ β
∑

j∈Gδ

(τθ,p − τj,p)
2
, (2)

where β is a parameter that controls the contribution of the regularization term. The
DBC for all the partitions can be efficiently computed simultaneously by solving a
banded-matrix linear system.

3 Results

Synthetic data: To verify the capability of our method in recovering the DBC of the
tissues of interest using the IVUS RF data, we performed experiments using synthetic
IVUS RF data that were created using parameters obtained from the literature and using
a mask which determine the blood and non-blood regions. The DBC values were τb =
1 mm2 and τw = 2 mm2 for blood and non-blood, respectively, while the scatterer
densities were Db = 100 scatterers/mm2 and Dw = 150 scatterers/mm−2 for blood
and non-blood, respectively. Since the exact values of DBC are known, it is possible
to assess the sensitivity of our method with respect to the parameters such as the size
of partition, number of samplings, value of the regularization term parameter, and the
cardinality of the neighbors (Fig. 2). The mask used for creating the synthetic data, its
corresponding IVUS B-mode reconstruction, and the recovered DBC values using 100
samplings, �P = 0.05 mm, β = 1, and δ = 3 are depicted in Fig. 1.

(a) (b) (c)

Fig. 1. (a) Mask used for creating the synthetic IVUS data, (b) its corresponding IVUS B-mode
reconstruction, and (c) recovered DBC values using 100 samplings ( 	P = 0.05 mm, β = 1,
and δ = 3)

Real RF data: Experiments were performed using real IVUS RF data from six 40 MHz
pullback sequences acquired with three different IVUS systems. These sequences cor-
respond to different arteries from rabbits and swines. For each sequence we employed
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(a) (b)

(c) (d)

Fig. 2. (a, c) Relative error and (b, d) standard deviation for the mean of the recovered DBC values
for two type of scatterers with respect to (a) the size of partition and (b) number of samplings,
and (c) the cardinality of neighbors and (d) the value of the regularization term

our method on ten frames from different parts of the sequence and we compared the
recovered DBC values for samples of lumen (i.e., blood) acquired from manual annota-
tions provided by an expert. For these experiments the value of the width of the envelope
of the impulse function was set to σ = 5.3e−8, while the attenuation coefficient was
set to the attenuation coefficient of blood (i.e., μ = 0.08276 dB/mm [17]). The speed
of sound was set to the speed of sound in a biological tissue (c = 1540× 103 mm/s).
The size of partition was set to �P = 0.05 mm, the density was set to D = 400
scatterers/mm−2 using the voxel approach of Rosales et al. [13]. The cardinality of the
neighbors was set to δ = 3 and β = 1. The information of the sequences and the mean
of the recovered DBC values for each of the six cases are listed in Table 1.

As a preliminary blood detection experiment, we used our method to recover the
DBC values from the IVUS RF data of a frame corresponding to a 40 MHz IVUS from
swine (Fig. 3(a)), for which histological information is available. The regions corre-
sponding to vascularization in the histology data have been annotated by an expert.
The resulting DBC values for each pixel of the corresponding B-mode image are de-
picted using a color palette. Additionally, we created a pseudo-colored version of the
IVUS image (Fig. 3(d)) using the DBC values and the same color representation. For
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Table 1. Information of the sequences used for the experiments, and mean recovered DBC values
for blood (τb) for each sequence

ID Specimen Artery IVUS system τb ×10−3 (mm2) std ×10−3

1 Swine Illiac 1 5.2 0.59
2 Swine RCA 1 5.5 1.84
3 Swine LAD 2 6.4 0.28
4 Swine LAD 2 5.7 0.30
5 Rabbit Aorta 3 5.5 0.56
6 Rabbit Aorta 3 6.0 1.7

comparison, we have manually annotated the regions of the resulting image that cor-
respond to vascularization based to the criterion that a vessel should contain a region
with DBC values corresponding to blood surrounded by DBC values corresponding to
non-blood. In Fig. 3(c) it can be observed that the recovered DBC values corresponding
to blood from the lumen and the vessels in the adventitia are very similar. However,
although there might be a correspondence between the VV in plaque (indicated by the
blue rectangle in Fig. 3(b)) and some of the regions inside the plaque in the recon-
structed images, we consider that the DBC might not be sufficient to detect such small
vasculature by itself and should be considered along with other features.

4 Discussion

The size of the partition is a parameter that determines the size of the smallest structure
that we can detect with our method. Moreover, from the synthetic data results it can be
observed that, as the size of the partition decreases, the error between the recovered and
true DBC values also decreases. However, the variability of the recovered DBC values
increases as the size of the partition decreases. This variability is compensated with the
regularization term. In the experiments with real data, the recovered DBC values for
blood are similar for all the cases, which is an indication of the feasibility of using this
approach for blood detection. By using a color map with the recovered DBC values,
it is possible to generate pseudo colored IVUS images as the example depicted in Fig.
3(d), which may help the physicians to easier identify the different vessel structures.
Exact correspondence between a histological slide and an IVUS image is difficult due
to the variability in the orientation and position of the catheter and transducer. However,
a fair correspondence may be achieved by locating large structures (side vessels) as in
our histological example. While Figs. 3 (a, b, c) offer evidence of the feasibility of our
method for extra-luminal blood detection, the manual detection of small vasculature
such as VV in the recovered DBC or the colored B-mode images remains a difficult
task. Therefore, a limitation of the present method is the lack of an automatic method
for detecting the vasculature. We believe that the extra-luminal blood detection method
can be improved by using the recovered DBC along with other image or RF-based
features.
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(a) (b)

(c) (d)

Fig. 3. (a) B-mode Cartesian frame of a 40 MHz IVUS swine case, (b) its corresponding histology,
(c) recovered DBC values, and pseudo colored B-mode image obtained using the recovered DBC
values. The main vasculature has been annotated by an expert observer on (b, c, and d).

5 Conclusions

We have presented a new method that employs a physics-based model of the IVUS RF
signal for the computation of the DBC of the scatterers that generates the IVUS RF data.
Our results are very encouraging and we believe that further research in this direction
will lead to the development of a fast and reliable method for extra-luminal blood de-
tection. Future work includes the use of overlapping partitions, additional quantitative
validation, a method for the automatic segmentation of the vasculature, improvements
to the scatterer model (i.e., adding attenuation by absorption), and the use of machine
learning techniques for automatic blood detection.
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Abstract. We present an approach to generate 3-D arterial tree models based on
physiological principles while at the same time certain morphological properties
are enforced at construction time in order to build individual vascular models
down to the capillary level. The driving force of our approach is an angiogen-
esis model incorporating case-specific information about the metabolic activity
in the considered domain. Additionally, we enforce morphometrically confirmed
bifurcation statistics of vascular networks. The proposed method is able to gen-
erate artificial, yet physiologically plausible, arterial tree models that match the
metabolic demand of the embedding tissue and fulfill the enforced morphologi-
cal properties at the same time. We demonstrate the plausibility of our method on
synthetic data for different metabolic configurations and analyze physiological
and morphological properties of the generated tree models.

Keywords: vascular tree construction, arterial tree model, angiogenesis, mor-
phological statistics, computer simulation, computational physiology.

1 Introduction

An in-depth understanding of the microvascular structure is required in many research
areas both in normal and pathological tissue. As an example, detailed, explicit vascular
models are needed in surgical training simulation, when generating variable anatomical
scenes with realistic physiological properties [14]. Similarly, knowledge of the entire
cerebrovascular network down to capillary level is required for gaining insight into
blood flow dynamics and its regulation by numerical simulations [10]. Additionally, it
has been shown that many of the neurodegenerative diseases (e.g. Alzheimer’s disease)
have a prominent vascular component, and there is increasing evidence that reduced
energy substrate and oxygen delivery is in part responsible for the severe symptoms of
the disease. This underlines the need for a better knowledge of the vascular network’s
structure in normal and pathological tissue in order to increase our understanding of the
pathophysiological mechanisms. Microvascular structures have been analyzed based on
intravascular dye injections, staining of vessel components, or vascular corrosion casts
using state of the art imaging modalities, e.g., all-optical histology, or synchrotron radi-
ation based x-ray tomographic microscopy. Since the segmentation and reconstruction
of consistent arterial trees still remains a challenge, numerous methods for the genera-
tion of artificial vascular models have been proposed.
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The main approaches are typically based on optimality or evolutionary principles.
Nekka et al. [9] proposed a deterministic construction method for 2-D vascular struc-
tures incorporating a highly simplified angiogenesis model. Vascular formation is mod-
eled as evolutionary process in response to angiogenic factors produced by ischemic
tissue cells. As the formation process is purely based on the distribution of angiogenic
factors without imposing any further restriction regarding the geometry of the evolv-
ing network, the results appear rather artificial and too regular. A more sophisticated
angiogenesis-based simulation framework for the construction of vascular systems in
arbitrary anatomies has been proposed by Szczerba et al. [13]. Even though the results
show high similarity with real vasculatures, the underlying simplifications still do not
allow to generate vascular morphologies in full accordance with experimental findings.

Based on experimental observations from real vessel networks, several optimality
principles have long been hypothesized, e.g., minimal building material or minimal
energy dissipation [8,15]. Klarbring et al. [6] apply strategies for topology optimization
of electrical networks and load carrying trusses to fluid mechanics. The flow network
topology is optimized w.r.t. the cross-section of the pipes in order to minimize the total
pressure loss (dissipation) under a total volume constraint.

Schreiner and Buxbaum [11] proposed to use constrained constructive optimiza-
tion (CCO) to iteratively construct a 2-D binary tree. The method of CCO (and its
variations) is a stochastic construction process purely based on structural optimality
principles under hemodynamic boundary conditions. In order to generate visually more
realistic vascular trees in 3-D, Karch et al. [5] combined CCO with staged tissue growth
leading to structural changes of the simulated tree models. However, the vascular net-
works have been truncated at the pre-arteriolar scale. Similarly, CCO has recently been
combined with time-dependent constraints on a level set distance function to restrict the
morphology of major (cerebral) arteries, in particular [1].

In contrast, we pursue a modeling approach based on physiological principles while
enforcing certain morphological properties at construction time in order to build indi-
vidual vascular models down to the capillary level. In our method, we use an angiogen-
esis model as the driving force of vascular tree formation while relying on the metabolic
activity of the tissue in the considered domain as may be obtained from functional imag-
ing, for instance. At the same time we incorporate morphometrically confirmed opti-
mality hypotheses concerning the branching structure of vascular systems. This way,
we iteratively construct an arterial tree model that meets the metabolic requirements of
the embedding tissue on a gradually growing domain. As opposed to previously sug-
gested approaches, we do not explicitly enforce hemodynamic constraints.

2 Methods

Our approach for the generation of artificial arterial trees is based on physiological prin-
ciples related to (sprouting) angiogenesis in order to achieve physiologically plausible
results. Angiogenesis describes the formation of new capillary blood vessels from a
pre-existing vasculature in well-characterized stages. It plays a crucial role in different
growth processes such as embryonic development, wound healing, or tumor growth [7].
In chemotactic response to angiogenic signals, also known as angiogenic growth fac-
tors, solid capillary sprouts develop from pre-existing vessels by means of endothelial
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cell (EC) proliferation and migration towards the source of the angiogenic stimulus. We
will reduce the complex signaling cascade involved in angiogenesis to a single trans-
mitter, namely the vascular endothelial growth factor (VEGF), which has widely been
studied and proven to be a potent stimulator of physiological and pathological angiogen-
esis [3]. VEGF, secreted by, e.g., tumor or ischemic cells, diffuses into the surrounding
tissue establishing a concentration gradient between the source and the vessels. In our
method, these physiological principles are applied on a gradually growing simulation
domain to drive the iterative construction of an arterial tree model.

Arterial Tree Model. In this work, we consider arterial trees rather than full-fledged
vascular networks. According to morphometric analysis, bifurcations of vascular trees
almost invariably branch into two distal branches [15]. Arterial trees can hence be con-
sidered as binary trees. Each vessel segment is represented by an edge which is mod-
eled as rigid cylindrical tube with radius r and length l connecting two nodes. This
gives rise to four different types of nodes, namely root, leaf, bifurcation ( ), and in-
ter nodes ( ). The latter links two successive segments and allows to approximate the
shape of a tortuous vessel branch. Note that this model does not allow for interconnec-
tions (anastomoses). In the following, we will distinguish between tree segments (single
edge between any two connected nodes) and branches (path from a bifurcation or root
node to the next distal bifurcation or leaf node).

The relation of the decreasing vessel radii from proximal to distal segments is gov-
erned by a bifurcation law (Murray’s Law) relating the radius of the proximal parent
branch rp to the radii rl, rr of the left and right daughter branches [8]: rγ

p = rγ
l + rγ

r ,
where γ denotes the bifurcation exponent, with values reported ranging from γ = 2.0
to γ = 3.0 [2,11].

The bifurcation geometry is further constrained w.r.t. the bifurcation angles based on
fluid dynamic considerations [2]:

cos(φl) =
r4p + r4l − r4r

2r2pr2l
, cos(φr) =

r4p + r4r − r4l
2r2pr2r

, (1)

with φl, φr denoting the bifurcation angle of the left and right daughter branch, respec-
tively. Geometrically, this corresponds to the optimal position of the branching point pb

minimizing the total lumen volume for fixed boundary points:

p̂b = argmin
pb

∑
k∈{p,l,r}

r2k ‖pk − pb‖2 , (2)

where pp, pl, pr are the boundary nodes of the parent, left, and right segment, respec-
tively (see Figure 1a).

Angiogenesis Model. We use a simplified angiogenesis model as the driving force
for our simulations. The model considers the mutual interplay of arterial oxygen (O2)
supply and VEGF secreted by ischemic cells. Tissue is assumed to be homogeneous
w.r.t. O2 and VEGF transport with diffusivity D1 and D2, respectively. Assuming
steady-state conditions, Fick’s first law postulates [12]:

D1∇2c1 = R1(c1) , R1(c1) = R0
1

c1

c1 + ch1
, (3)



Physiologically Based Construction of Optimized 3-D Arterial Tree Models 407

where c1 represents the O2 concentration. R1(c1) denotes the O2 consumption rate
which is described by a Michaelis-Menten relationship defined by the O2 demand at
saturation levelR0

1 (unlimitedO2 supply) and the half-saturation concentration ch1 . Note
that R0

1 is subject to regional variations, in general.
VEGF secretion in tissue is dependent on the average oxygenation level. However,

the exact relationship has not yet been experimentally measured. We model the oxygen-
dependent VEGF secretion rate as follows [3]:

R2(c1) =

⎧⎪⎨⎪⎩
6R0

2 , c1 ≤ tlow1

(1 + 5
(

thigh
1 −c1

thigh
1 −tlow1

)
R0

2 , t
low
1 < c1 < thigh

1 .

R0
2 , c1 ≥ thigh

1

(4)

The secreted VEGF isotropically diffuses and is subject to natural decay [7]:

D2∇2c2 = ν2c2 −R2(c1) , (5)

with diffusivity D2 and decay rate ν2, while neglecting VEGF uptake by EC.

Vascular Growth. Vascular growth is modeled as a chemotactic process w.r.t. the
VEGF concentration. In general, we distinguish between apical growth at leaf nodes
(apices) and sprouting at inter nodes. A capillary may either elongate or bifurcate into
two similar branches resulting mostly in symmetric bifurcations. This decision is made
randomly with a sigmoidal bifurcation probability pb(a) = sig (−η(1 − a/A0)), where
a = l/r denotes the aspect ratio of the proximal branch with length l and radius r. The
probability distribution pb(a) can be considered as global bifurcation length statistics
with adjustable shape and normalization factor η and A0, respectively. In case of elon-
gation at a leaf node, the radius of the new distal segment is adopted from the proximal
segment. The growth direction dg is estimated by dg = ∇c2(x)/‖∇c2(x)‖2 + λgds,
where ds denotes the (normalized) direction of the proximal segment and λg is a con-
stant weighting factor. The distal segment length and the lengths and radii of the two
new branches are drawn from normal distributions, while enforcing a minimum radius
constraint r ≥ rmin. According to the principle of minimal building material, the par-
ent and daughter segments at a bifurcation node are coplanar [2]. The branching angles
are computed according to Equation (1). The two distal daughter branches are arranged
such that the angle between the VEGF gradient and the growth direction of either of the
two segments is minimized (see Figure 1a).

Besides apical growth at leaf nodes, vessels may also build sprouts at inter nodes
producing both symmetric and asymmetric bifurcations. The sprouting probability is
defined as ps = min (pb(lp/r), pb(ld/r)), where r, lp, and ld denote the radius and
length of the proximal and distal branch meeting at the inter node. Similar to the bifur-
cation case, the length and radius of the new sprout are normally distributed. The VEGF
gradient determines the sprout direction.

Both sprouting inter nodes and bifurcating leaf nodes spoil the bifurcation law, in
general. Additional tree rebalancing is required to reinforce optimality. To this end, the
segment radii have to be updated along the path from the site of growth up to the root
node according to Murray’s Law. Adjusting the radii, in turn, impairs the optimality
of the branching angles. However, the bifurcations can be rebalanced by relocating the
bifurcation node according to Equation (2).
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Table 1. Main simulation parameters

Param Value Unit Ref

D1 2.41·10−9 m2s−1 [4]
R0

1 3.01·10−3 m3
O2

m−3
tissues−1 [4]

ch
1 1.95·10−5 m3

O2
m−3

tissue [4]

D2 1.04·10−10 m2s−1 [3]
ν2 1.81·10−4 s−1 [7]
R0

2 2.50·10−18 mol m−2s−1 [3]
tlow1 3.89·10−5 m3

O2
m−3

tissue [3]

thigh
1 7.78·10−4 m3

O2
m−3

tissue [3]

γ 3 - [2]
θ1 1.5·R0

1 m3
O2

m−3
tissues−1 -

η 7 - -
A0 10 - -
λg 1 - -
rmin 3.50·10−6 m -

Algorithm 1. Arterial tree construction
Require: domain Ω0, tree(s) Ψ0 , metabolic map R0

for scale s = 1 to N do
[Ωs,Rs, Ψs] ← rescale Ωs−1, Rs−1, Ψs−1
repeat

c1 ← O2-map(Ψs ,Ωs,Rs)
c2 ← VEGF-map(c1,Ωs)
Ψs ← grow-tree(Ψs ,c2)
Ψs ← rebalance(Ψs)

until supply rate ≥ κs

end for

Table 2. Global quantities (mean±std)

total M1 M2
length [m] 1.94 ± 0.018 2.68 ± 0.009
surface [mm2] 166 ± 1.00 214 ± 1.06
volume [mm3] 1.89 ± 0.070 2.25 ± 0.037
# terminals 1.25·104 ± 132 1.84·104 ± 119

Iterative Tree Construction. We use a multiscale approach for the iterative tree con-
struction as summarized in Algorithm 1. The scaling can be considered as virtual staged
growth of the domain (tissue) from a downscaled domain Ω1 (s = 1) to the final target
domainΩN = Ω0 (s = N ). For a given arterial tree and scale s, the total oxygenation of
the simulation domain Ωs is computed as the superimposition of the oxygenation maps
of each individual tree segment according to Equation (3) assuming radial O2 diffusion
with a Dirichlet boundary condition on the surface of the artery wall. TheO2 concentra-
tion inside the vessel lumen is in fact considered constant cl1 =2.04·10−4 m3

O2
m−3

blood,
assuming 100%O2 saturation of hemoglobin at a concentration of 1.50·104 gHb m−3

blood,
and 95 mmHg partial pressure of O2 in blood. The O2 concentration on the surface of
the artery wall has been chosen as 25% cl1 which corresponds to a maximum O2 diffu-
sion distance in tissue of approximately 100μm [12]. The induced VEGF steady-state
concentration map is subsequently computed according to Equation (5) and used as
an excitatory potential field. The tree nodes are sampled “in rounds” with random order
within each round to find excited nodes. A node is considered excited if the local VEGF
level exceeds a threshold θ1. After the tree has grown at an excited node, the O2 and
VEGF maps are updated accordingly. The simulation proceeds to the next scale if the
O2 supply rate exceeds a scale-dependent level κs.

3 Simulation Results

We have tested and analyzed the iterative tree construction approach described in Algo-
rithm 1 for different synthetic data sets. A cylindrical simulation domain Ω0 of height
and diameter 4.1 mm has been discretized by a grid with isotropic spacing 32μm (1283

voxels). The initial trees Ψ0 have been defined by six tiny sprouts (r = 5μm) on the
surface of the cylinder each marking an entry point of a feeding vessel. We have inves-
tigated two different configurations for the prescribed metabolic map R0. Model M1

assumes uniform metabolic activity R0 = R0
1. The metabolic map of model M2 shows

an increased level of O2 consumption at the center of the domain. The maximum level
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Fig. 1. (a) Apical growth at leaf node. (b) Average frequency of bifurcation symmetry index
ξrad. (c) Average bifurcation angle deviation over diameter-defined Strahler order of the parent
segment [5]. The correction threshold β is indicated by the dashed line. (d) Average length,
radius, and aspect ratio of branches over Strahler order. Upward error bars indicate the standard
deviation over all eight simulations per model.

at the center has been set to 11·R0
1 and decays to R0

1 according to a Gaussian profile as
shown in Figure 3a. The simulations have been conducted for N = 32 scales starting at
a scaling factor of 1/16 corresponding to an effective voxel spacing of 2μm. The supply
rate has been computed as the ratio of perfused voxels and the total number of voxels in
the domain. A voxel was considered perfused if the effectiveO2 concentration exceeded
thigh
1 , i.e., there was no extra VEGF secreted. The scale-dependent target supply rate κs

was linearly interpolated between 50% (s = 1) and 95% (s = N ). Defective bifurcation
configurations have been readjusted by tree remodeling if the maximum deviation of the
left and right bifurcation angle from the optimal bifurcation angle exceeded β = 5◦.

We have simulated eight realizations of each model M1 and M2 using different
seeds for the employed pseudo random number generator (PRNG). The simulation pa-
rameters are summarized in Table 1. Figure 2 visualizes the evolving vasculature at
different scales for a single realization of M2 as well as the final tree model of M1.

Despite remarkable variations of the visual appearance of the constructed tree models
depending on the PRNG seeds, global geometric quantities such as total lumen volume,
surface, and total segment length remained surprisingly stable with virtually no varia-
tion for different seeds as summarized in Table 2. However, there are significant dif-
ferences between the simulation models. The trees constructed for M2 show increased
figures w.r.t. the considered global geometric properties. This can be explained by the
fact that the trees have to deliver much more oxygen to the tissue corresponding to the
increased level of metabolic activity.

We have analyzed the bifurcation pattern in terms of the local symmetry index
ξrad = rS/rL, where rS and rL denote the radius of the smaller and larger distal
segment, respectively [5]. The estimated distribution of ξrad is shown in Figure 1b.
Comparing the bifurcation symmetry, we note that the trees of M1 show an increased
number of asymmetric bifurcations (conveying vessels for transport of blood across
larger distances), whereas the vasculature of M2 is clearly dominated by symmet-
ric bifurcations (mostly resulting from delivering vessels). The “harmonic” peaks at
ξrad = 4/9, 2/3, 1 result from a constraint on the choice of bifurcation radii (radii
clamped to [rmin, 3/2·rp]) to avoid excessive enlargement of the proximal segment.

Tree remodeling, which had become necessary to rebalance the constructed tree after
sprouting or bifurcating, has been validated w.r.t. the optimality of bifurcation angles.
To this end, the average deviation of the observed bifurcation angles from the optimal
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Fig. 2. Evolution of constructed trees for model M2 at scales s = 8, 16, 24, 32 (a-d). (e) Arterial
tree model for model M1 at scale s = 32. The downscaled simulation domains have been
normalized to the size of the target domain (d,e) for better comparability. The segment radii are
color-coded on a logarithmic scale. The entry points of the feeding vessels are marked red (a).
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Fig. 3. (a) Synthetic metabolic activity used for model M2. (b,c) Simulated perfusion maps for
arterial trees of model M1 (b) and M2 (c). (d,e) Arterial tree models within a centered sphere of
radius 1.2 mm for M1 (d) and M2 (e). The segment radii are color-coded as in Figure 2.

configuration has been computed for each bifurcation as shown in Figure 1c. The aver-
age angular variations stay well below the correction threshold β = 5 ◦ that has been
used in the simulations.

It is also interesting to analyze the trees w.r.t. the bifurcation length statistics that has
been used for the construction to enforce a certain morphological structure. To this end,
we have classified the branches by Strahler order and computed the average length and
radius for all classes as reported in Figure 1d. Length and radius show an exponential
profile for both models. The average aspect ratio is almost constant over all Strahler
orders at a level of about 10 which corresponds to the normalization factor A0 that has
been used for our simulations and hence matches the “expected” value (pb(A0) = 0.5).

The perfusion maps of the artificial tree models are visualized in Figure 3. As op-
posed to M1 with uniform metabolic activity, the perfusion map for M2 increases to-
wards the center of the domain to meet the prescribed non-uniform metabolic demand.
As already indicated by the bifurcation symmetry analysis, the vascular density in the
center of the domain is significantly higher for M2 as opposed to M1 (see Figure 3d-e).

Explicit comparison of the tree models with real vascular systems is still an open
problem. Considering the structural complexity and the inherently stochastic nature of
vessel formation, particularly at the capillary level, comparing functional properties and
structural statistics might be the best approach to define meaningful similarity measures.

4 Conclusions and Future Work

We presented an iterative multi-scale approach for the construction of optimized
3-D arterial tree models based on physiological principles. The driving force of our
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simulations is an angiogenesis model using individual, case-specific information about
the metabolic activity of the tissue in the considered domain. Besides, bifurcation statis-
tics and morphological optimality principles are incorporated into the construction. We
presented promising results for different synthetic datasets, demonstrating the ability of
the algorithm to respect prescribed morphological constraints.

As for future work, there are still many unconsidered aspects, e.g., transition from
vascular trees to network-like structures including anastomoses. Likewise, it would be
interesting to analyze the fluid dynamic properties of the generated tree models in more
detail. The most significant challenge we face is the comparison of the results with ex-
perimentally observed real vascular systems w.r.t. structural and functional properties.
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Abstract. We present a completely noninvasive technique to estimate soft 
tissue surface strain by differentiating three-dimensional displacements 
obtained from optical flow motion tracking using stereo images. The 
implementation of the strain estimation algorithm was verified with simulated 
data and its application was illustrated in three open cranial neurosurgical cases, 
where cortical surface strain induced by arterial blood pressure pulsation was 
evaluated. Local least squares smoothing was applied to the displacement field 
prior to strain estimation to reduce the effect of noise during differentiation. 
Maximum principal strains (ε1) of up to 7% were found in the exposed cortical 
area on average, and the largest strains (up to ~18%) occurred near the 
craniotomy rim with the majority of ε1 perpendicular to the boundary, 
indicating relative stretching along this direction. The technique offers a new 
approach for soft tissue strain estimation for the purpose of biomechanical 
characterization. 

1   Introduction 

Tracking cortical surface motion noninvasively using stereovision is a practical and 
important intraoperative imaging technique to compensate for brain shift in image-
guided neurosurgery. Typically, cortical surface displacement data is obtained 
through a rigid or nonrigid registration between the reconstructed stereo surface and 
preoperative magnetic resonance images [1] or between two stereo surfaces acquired 
at different surgical stages [2]. Because the parenchyma is constantly subjected to 
complex loading and boundary conditions throughout surgery (e.g., from surgical 
intervention, confinement by the craniotomy, and changes in intracranial pressure), 
the brain often deforms nonrigidly within the field of view. Although considerable 
attention has been focused on tracking cortical surface displacements, little effort has 
been devoted to investigating the non-uniformity of their distribution that directly 
determines the tissue surface strain. 

Tissue surface strain is an important indictor of inherent tissue compliance and has 
been investigated in studies of the biomechanics of the eye where principal strain of 
the scleral shell detected from a single digital camera was found to correlate inversely 
with intraocular pressure [3]. Because a more compliant material undergoes a larger 
strain under the same applied force, tissue surface strains directly reflect the level of 
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tissue compliance, which is an important indicator of physiological state, especially in 
the brain (e.g., [4]). A comprehensive understanding of the state of tissue strain may 
also be clinically valuable when the risk of mechanical damage exists (e.g., in cases of 
herniation, tissue retraction, and decompressive craniectomy).  

In this paper, we present a computational framework to estimate surface strain 
from tracked tissue motion using stereovision and illustrate its application in the 
context of open cranial neurosurgery. Specifically, we estimate dynamic cortical 
surface strains induced by arterial blood pressure pulsation after dural opening, which 
is commonly observed but has not been previously quantified. We focus on the 
essential computational aspects of the approach in order to establish a foundation for 
the technique in anticipation of future studies relating cortical surface strain to clinical 
factors such as brain compliance and/or risk of tissue damage.  

2 Material and Methods 

2.1   Cortical Surface Reconstruction through Stereovision 

Acquisition of stereo image pairs was externally triggered using two charge-coupled 
device (CCD) cameras (image size of 768 × 1024; pixel resolution of approximately 
50–100 μm; images are in red, green, and blue (RGB)) rigidly attached to a surgical 
microscope. The stereo image acquisition frame rate varied for different patients (4–
10 frames per second (fps)) but remained relatively constant for a given subject. 
Techniques for stereo image calibration and reconstruction based on a pinhole camera 
model and radial lens distortion correction can be found, e.g., in [1], and are briefly 
outlined here for completeness. A 3D point in world space (X, Y, Z) is transformed 
into the camera image coordinates (x, y) using a perspective projection matrix: 

x

y

1

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 

=
α x 0 Cx 0

0 αy Cy 0

0 0 1 0

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 

× T ×

X

Y

Z

1

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

 , (1) 

where α x  and α y  incorporate the perspective projection from camera to sensor 

coordinates and the transformation from sensor to image coordinates, (Cx, Cy) is the 
image center, while T is a rigid body transformation describing the geometrical 
relationship between the two cameras. A total of 11 camera parameters (6 extrinsic: 3 
rotation and 3 translation; and 5 intrinsic: focal length, f, lens distortion parameter, k1, 
scale factor, Sx, and image center, (Cx, Cy)) are determined through calibration using a 
least squares approach.  

Stereo matching was facilitated by constraining the search for correspondence 
points along an epipolar line (defined as the projection of the optical ray of one 
camera via the center of the other camera following a pinhole model) through image 
rectification and subsequent intensity correlation and smoothness criteria defined in 
[1]. Each pair of correspondence points was transformed into their respective 3D 
camera space using the intrinsic parameters, and then transformed into a common 3D 
space using the extrinsic parameters. Together with their respective camera centers in 
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the common space, two optical rays were constructed with their intersection defining 
the 3D location of the correspondence point pair.  

2.2   Motion Tracking through Optical Flow 

Because radial image distortion is effectively compensated for during rectification, 
rectified images of the left camera taken at times t and (t+1) were used to track 
surface displacement. Similarly to [3], displacements were tracked from continuously 
acquired RGB images using an optical flow algorithm subject to constraint: 

I xux + I yuy + I t = 0  ,  (2) 
where Ix, Iy and It are the derivatives of RGB image intensity at spatio-temporal 
location (x, y, t) in the corresponding directions, and (ux, uy) denotes displacement in 
the x and y directions. We employed an algorithm proposed in [5] based on [6] in 
which a gradient constancy assumption (Eqn. 3) is applied to allow small variations in 
image gray values to determine displacement vectors:  

∇I x, y, t( )= ∇I x + ux , y + uy , t +1( ) . (3) 

In addition, a discontinuity-preserving spatio-temporal smoothness constraint was 
further applied to generate a piecewise smooth flow field. A multiscale approach 
starting with a coarse, smoothed image set is also used to ensure global minimization 
[6]. The computational cost to achieve full-field displacements for each pair of 
rectified images was approximately 70 sec. The computational efficiency can be 
further improved by down-sampling the input images (e.g., by selecting one of every 
three pixels in both directions for both images, leading to a computational cost of 
approximately 12 sec), which did not result in a significant change in displacement 
(<~5%). The start and end points of each displacement vector in image space were 
then transformed into 3D space through stereovision, and the corresponding 
displacement vector was generated by subtracting the corresponding point locations.  

2.3   In-Plane Strain Estimation 

In-plane strain was calculated numerically by differentiating the displacement field. 
Because of noise in the measured displacements, smoothing prior to differentiation is 
typical [7], and a point-wise local least squares fitting scheme was employed for this 
purpose. For each 3D point of interest, a linear plane was used to approximate 
displacements (ux, uy, uz) from the neighboring set of points of size (2m+1)×(2m+1): 

ux i, j( )= a0 + a1 xi, j + a2 yi , j + a3zi, j ,  

uy i, j( )= b0 + b1 xi , j + b2 yi , j + b3zi , j  ,  

uz i, j( )= c0 + c1 xi , j + c2 yi , j + c3zi , j  , 
(4) 

where i and j span from –m to m for a set of grid points; (xi,j, yi,j, zi,j) is the 
corresponding 3D point location; while (a, b, c) are the polynomial coefficients to be 
determined. A large m tends to eliminate local variations in strain, while a small m 
may not sufficiently smooth strain estimation in certain regions. In this work, m was 
empirically chosen to be 4 as a reasonable trade-off.  
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A set of discrete surface points and their displacement vectors generated from 
motion tracking, stereovision, and smoothing were used to calculate in-plane strains. 
The computations were facilitated by triangulating the points into a set of finite 
elements to approximate element strains using linear shape functions. Because the 
brain surface is not coplanar, a single 2D coordinate system is not sufficient for 
representation. Instead, local 2D coordinate systems were constructed for each 
triangular element with the x-axis parallel to one edge, and the in-plane nodal 
displacements (ui, uj) were transformed into these coordinates (Fig. 1). 

 

Fig. 1. Schematic of transforming a triangular element in 3D coordinates (X, Y, Z) into a 2D 
local coordinate system (x, y) with the x-axis parallel to one edge 

The strain of each element, ε (defined as {εx εy 2γxy}
T), was determined from: 
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where Ni (i=1:6) are the element shape functions for the six in-plane displacement 
components (Fig. 1), and {u} are the nodal displacements [8]. Since the strain 
components depend on choice of coordinate system, we evaluated system-invariant 
in-plane principal strains by forming a strain tensor for each triangular element by re-
arranging the strain components (assuming an infinitesimal strain theory): 

ε =
εx γ xy

γ xy εy

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  . (6) 

The maximum and minimum components of the principal strain (denoted as ε1and ε2, 
respectively) and their directions were then obtained by computing the Eigen values 
and Eigen vectors of the strain tensor [9].  

2.4   Simulated Displacement Data and Clinical Cases 

To verify algorithmic implementation for computing principal strains, two simulated 
displacement fields were generated where each grid point, (x, y), had a displacement, 
(ux, uy), governed by Eqns. 7 (for simple stretch) or 8 (for simple shear): 
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ux = x / 20 , and uy = 0 ,  (7) 

ux = y / 20 , and uy = 0 . (8) 

The numerically computed principal strains were compared with their ground-truth 
counterparts (ε1,2=(0.05,0) and ε1,2=(0.025,–0.025) for stretch and shear, respectively). 

For clinical data, stereo image sequences captured from three patients (an 18 year-
old male with epilepsy, a 65 year-old male with glioblastoma, and a 61 year-old 
female with meningioma, respectively) after dural opening were used to evaluate the 
dynamic surface displacement and strain. Patient arterial blood pressure synchronized 
with stereo image acquisition was also recorded (at 1 kHz). For illustration, the first 
stereo image pair in each case was selected as the “baseline” from which cortical 
surface deformation was estimated by comparing with subsequent stereo image 
acquisitions. All data analyses were performed on a Linux computer (2.6 GHz, 8 GB 
RAM) using MATLAB (R2010b, The Mathworks, Natick, MA). 

3 Results 

The computed principal strains were plotted at the centroid of each element for the 
two simulated displacement fields (Fig. 2). Both magnitudes and orientations of the 
computed principal strains matched exactly with their ground-truth counterparts, 
suggesting a correct implementation of the algorithm for calculating principal strains.  

  

Fig. 2. The computed ε1 (red) and ε2 (blue) for the two simulated displacement fields (left: 
simple stretch in the x direction; right: simple shear) 

Using clinical data, the rectified image corresponding to the largest relative 
displacement (on average) was overlaid on the baseline for patient 1 (Fig. 3a), where 
relative movements in two representative regions are shown (insets). The 
corresponding composite distribution of displacement components in the x and y 
directions was generated on the same rectified baseline image (Fig. 3b). A 
heterogeneous distribution of displacement components was evident that appears to 
correlate spatially with cortical areas defined by major vessels. Artifact due to 
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Fig. 3. A rectified image corresponding to the maximum relative displacement on average 
(green) overlaid on the baseline (red; a), showing distinctive motion patterns in two 
representative regions (insets; dominant motion represented by thick arrows). The resulting 
distribution of displacement components in the cortical area is also shown (b; displacement 
vectors are shown at one of every 9 points and are magnified by 10 times). 

specularity (arrow in Fig. 3b) was confined locally, demonstrating the robustness of 
the motion-tracking algorithm in estimating the overall displacement distribution. 

Cortical surface principal strains were computed by first transforming the locally 
smoothed displacements into 3D space through stereopsis. Representative 
distributions of ε1 for patients 1 (Fig. 4a) and 3 (Fig. 4b) are overlaid on their 
corresponding cortical surfaces reconstructed in 3D. For all patients, the largest 
strains occurred in areas near the craniotomy rim (up to 0.18; patient 2 not shown). 
The majority of ε1 in this region was perpendicular to the craniotomy boundary (Fig. 
4), indicating relative stretching along this direction. The maximum average ε1 across 
the cortical area for the three patients was 0.067, 0.038, and 0.047, respectively. 

Typical average displacement and ε1 as a function of time are shown for patient 3 
in Fig. 5, clearly demonstrating that the cortical surface motion was in concert with 
blood pressure pulsation at a frequency of approximately 1 Hz. The peak values of 
displacement and ε1 as well as the normalized arterial blood pressure also varied in 
time, likely due to patient respiration (at a frequency of approximately 0.125 Hz).  

4 Discussion and Conclusion 

An accurate and comprehensive understanding of the state of soft tissue strain is 
important in determining tissue physiological and biomechanical properties that could 
provide new information for patient care and/or biomechanical modeling. Using 
stereovision, we have developed a completely noninvasive approach to estimate 
cortical surface strain from motion tracking. Our technique is based on spatially 
smooth full-field displacements that allow strain to be estimated over a complete 3D 
tissue surface determined from stereovision rather than from a single camera that is 
typically used in digital image correlation (DIC) which is popular in experimental 
mechanics [7].  In addition, the high-resolution images also allow a high sensitivity in 
displacement tracking (within 0.05–0.1 mm), which is important for high precision in 
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strain estimation. The sensitivity of displacement tracking and precision in strain 
estimation can be enhanced further by either increasing the camera image resolution 
or decreasing the field of view (e.g., through image magnification).  

 

Fig. 4. Representative distributions of ε1 for patient 1 (a; 0.067 on average) and 3 (b; 0.047 on 
average). Directions of ε1 are shown at every 3rd point (magnified by 10 times), and a representative 
few are magnified further to enhance visualization (thick arrows).  

 

Fig. 5. Typical average displacement and ε1 as a function of time for patient 3, demonstrating 
that cortical surface motion was in concert with blood pressure pulsation (normalized for 
visualization) at approximately 1 Hz. Stereo images were captured at a frequency of ~9.3 fps.  

The application of the technique was demonstrated in three surgical cases where 
cortical surface motion due to arterial blood pressure pulsation was evaluated. Local 
displacement smoothing was first performed prior to differentiation to reduce noise. 
In addition, in-plane principal strains were calculated to characterize the 3D surface 
strain because they are invariant to the coordinate system selected. Results suggest 
that the dominant cortical surface strain occurred near the craniotomy rim (ε1 up to 
~18%), likely because of brain-skull friction when the parenchyma distended in this 
vicinity. When the brain otherwise sagged resulting in brain-skull separation (e.g., as 
a result of gravity), the stretching near the craniotomy boundary was not evident (e.g., 
see upper boundaries in Fig. 4a and b). While an accuracy evaluation is nearly 
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impossible because of the difficulties in determining ground-truth under clinical 
conditions, the dynamic evolution of displacement and strain over time with the 
synchronized blood pressure pulsation (Fig. 5) suggests our technique estimates strain 
with high fidelity (although the values are relative because they are based on a 
baseline that does not necessarily correspond to the true zero-state of strain). 
Nonetheless, our studies would benefit from additional quantitative assessments 
conducted in more controlled simulated and experimental environments in the future. 
Because of the relatively large strains especially around the craniotomy rim, finite 
strain theory which is applicable for arbitrarily large rotations and strains may also be 
more appropriate, and will be incorporated in the future (difference of ~10% at the 0.2 
strain level is expected relative to the infinitesimal strain theory used in this study). 

In summary, we have demonstrated the application of a completely noninvasive 
technique to estimate cortical surface strain from motion tracking during open cranial 
neurosurgery. The technique provides sensitive detection of surface displacement and 
tissue strain under physiological conditions as long as the surface is sufficiently rich 
in tracking features. With this technique, it may be possible to correlate the level of 
surface strain with tissue compliance [3], which is an important clinical indicator; or 
to provide tissue deformation feedback during surgical operations (e.g., tracking 
tissue strain around a retractor blade), which is important for patient care in practice.  
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Abstract. Cardiac deformation recovery is to recover quantitative subject-specific
myocardial deformation from imaging data. In the last decade, cardiac physiolog-
ical models derived from anatomy, biomechanics, and cardiac electrophysiology
have become increasingly popular in constraining the recovery problems because
of their physiological meaningfulness. Although physiological models with var-
ious electrical and biomechanical components have been adopted by different
frameworks and have exhibited promising results, these models have not been
systematically compared under the same recovery framework, input data, and
experimental setups. As different models comprise varying physiological plausi-
bilities and complexities, comparisons under the same settings can aid choosing
the proper models for specific goals and available resources. In this paper, un-
der a state-space filtering framework for statistically optimal couplings between
models and image data, we compare the performances of six different cardiac
physiological models with different biomechanical constraints. Experiments were
performed on synthetic data for quantitative comparisons, and on clinical data for
their capabilities in identifying pathological situations.

1 Introduction

Cardiac deformation recovery is to recover quantitative subject-specific myocardial de-
formation from measurements. For noninvasive recoveries, medical images such as
magnetic resonance images (MRI) provide an excellent source of in vivo anatomical
and motion information. Nevertheless, as these measurements are sparse, projective, or
noisy, and cannot directly provide quantitative cardiac deformation, a priori models are
necessary to constrain the inverse problems for unique and meaningful results.

To provide physiologically meaningful constraints for deformation recovery from
cardiac images, constraining models of different physiological plausibilities have started
to be utilized in the last decade. In [1], a linear and isotropic biomechanical model
(BM model) was used for statistical joint estimation of cardiac deformation and mate-
rial properties. In [2], apart from the linear and transversely isotropic BM model with
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(a) (b) (c)

Fig. 1. Synthetic data. (a) Heart represented as nodes bounded by surfaces. (b) Tissue structure
indicated by local coordinate systems (f ,s,n: fiber, sheet, sheet normal: blue, yellow, cyan). (c)
Infarcted regions shown in red.

fiber orientations considered, contraction forces were also simulated to provide an ac-
tive deformation prior. In [3], a hyperelastic and orthotropic BM model was adopted
with a nonlinear state-space filtering framework. The constraining models have become
more physiologically plausible and complicated, from passive models with linear and
isotropic materials to active models with hyperelastic and orthotropic materials.

These frameworks show promising results, however, as they were developed by dif-
ferent researchers at different times with different implementation difficulties, the mod-
els were not compared under the same recovery framework, input data, and experi-
mental setups. As different models comprise varying physiological plausibilities and
complexities, comparisons under the same settings can aid choosing the proper models
for specific goals and available resources, so that unnecessary theoretical and imple-
mentation difficulties could be avoided. In view of this, we present here a comparative
study of physiological models for cardiac deformation recovery from medical images
using the recently developed framework in [3]. A nonlinearity-preserving state-space
filtering framework based on unscented Kalman filter was used to couple physiologi-
cal models with imaging data. Under this framework, the performances of six cardiac
physiological models comprising different biomechanical material properties and force
components were compared with the same input data and experimental settings. Exper-
iments were performed on synthetic data for quantitative comparisons, and on clinical
data for their capabilities in identifying pathological situations.

2 Cardiac Physiological Models

2.1 Cardiac System Dynamics

The heart is typically represented as a set of nodes bounded by the heart surfaces (Fig.
1(a)). The matrix representation of the cardiac system dynamics is given as:

MÜ + CU̇ + KΔU = F (1)

where M, C, and K are the mass, damping, and stiffness matrices respectively. Ü,
U̇, and ΔU comprise the respective nodal accelerations, velocities, and incremental
displacements. F contains nodal external forces applied to the system. Different con-
straining models comprise different material properties in K and external forces in F.
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Table 1. Physiological models compared in this study

Models
Stress-strain relation Tissue structure External forces
Linear Nonlinear Isotropic Anisotropic Passive Active

LI-PBM X X X
LI-APM X X X
LTI-PBM X X X
LTI-APM X X X
HO-PBM X X X
HO-APM X X X

2.2 Physiological Models for Comparisons

Physiological models with different material properties and external forces were tested.
For the material properties in K, hyperelastic and orthotropic (HO), linear and trans-
versely isotropic (LTI), and linear and isotropic (LI) material models were tested. For
the external forces in F, the passive biomechanical model-based (PBM-based) recov-
eries with only image-derived forces, and the active physiological model-based (APM-
based) recoveries with also simulated active contraction were tested. As the LI, LTI, or
HO BM models can be used with either the PBM-based or the APM-based recoveries,
a total of six models were studied (Table 1).

Material Properties. Different material properties associate with different assump-
tions of material nonlinearity and anisotropy of the myocardial tissue.

Hyperelastic and Orthotropic (HO) Material Model. Cardiac anatomy and biomechan-
ics have shown that the myocardial tissue should be modeled as hyperelastic and or-
thotropic [4]. The HO model in [5] was used in the study, with strain energy function:

Ψ(ε) = κ(J lnJ − J + 1) +
1
2
aBM(eQ − 1) (2)

where Q =bff ε
2
ff + bssε

2
ss + bnnε

2
nn

+ bfs

(
ε2fs + ε2sf

)
+ bfn

(
ε2fn + ε2nf

)
+ bsn

(
ε2sn + ε2ns

) (3)

with J the determinant of deformation gradient, and κ the penalty factor for tissue in-
compressibility. εij are the isovolumetric components of the Green-Lagrange strain ten-
sor ε. aBM and bij are the material constants. The f -s-n coordinate system represents
the fibrous-sheet structure (Fig. 1(b)).

Linear and Transversely Isotropic (LTI) Material Model. This model has been typically
used for image-based cardiac deformation recovery [2]. The model is characterized by
four material constants, Ef , Ecf , νf , νcf , which are the Young’s moduli and Poisson’s
ratios along and across the fiber respectively.

Linear and Isotropic (LI) Material Model. This model was used in the earlier approaches
[1]. The model is characterized by two material constants, with Young’s modulus E =
Ef = Ecf and Poisson’s ratio ν = νf = νcf .
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External Force Components. The force vector F in (1) drives the deformation, which
can be provided by enforcing displacements of salient cardiac features derived from
images [1], or by active contraction simulated using electrophysiological models [2,3].

Passive Biomechanical Model-Based (PBM-Based) Recoveries. The BM models are
used without active contraction stresses. In consequence, the deformations are intro-
duced passively by the image information through the filtering process in Section 3.

Active Physiological Model-Based (APM-Based) Recoveries. The BM models are used
with simulated active contraction stresses. A two-variable diffusion-reaction system has
been adopted to model the action potential propagation [6], which is further transformed
into active stresses through the electromechanical coupling model in [2].

3 Cardiac Deformation Recovery with Statistically Optimal
Model-Measurement Coupling

The cardiac physiological models provide physiological constraints for cardiac defor-
mation recovery. Nevertheless, as the models are not subject-specific, and the measure-
ments extracted from images are not perfect, a nonlinear state-space filtering framework
is required to couple the measurements with the models according to their own merits.

To utilize state-space filtering, the stochastic state-space equations:

x(k) = f (x(k − 1)) + ω(k − 1) (4)

y(k) = h (x(k)) + ν(k) (5)

need to be defined. In (4), x is the state vector to be estimated with model uncertainties
ω, and f projects x from time step k− 1 to k. In (5), y is the measurement vector with
measurement errors ν, and h relates the state to the measurements.

For cardiac deformation recovery, x is the nodal displacement vector U. Using the
relation U(k) = U(k − 1) +ΔU, we have the concrete form of (4) as:

U(k) = f (U(k − 1)) + ω(k − 1) = U(k − 1) +ΔU + ω(k − 1) (6)

where ΔU is obtained by solving (1), in which K depends nonlinearly on U.
The concrete form of (5) is given as:

y(k) = Hx(k) + ν(k) (7)

with y the nodal displacements of salient cardiac features extracted from images through
motion tracking, and H the measurement matrix relating U to y.

With (4,5), the model and measurements are connected together, and state-space fil-
tering can be performed to obtain the optimal estimation. To preserve model nonlinear-
ity and maintain computational feasibility, we utilize the unscented Kalman filter which
comprises the advantages of Monte Carlo methods and Kalman filter updates [7].
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Fig. 2. Synthetic data. (a) First principal strains at the end of systole (250 ms). (b) Mutual infor-
mation between strain patterns of the ground truth and the recovered deformations for the whole
cardiac cycle.

4 Comparisons of Physiological Models

The model parameters were adopted from the literature. For the HO BM model, aBM =
0.88 kPa, bff = 6, bss = 7, bnn = 3, bfs = 12, bfn = 3, bsn = 3, and κ = 5 × 104

[5]. For the LTI BM model, Ef = 75 kPa, Ecf = 25 kPa, νf = 0.4, and νcf = 0.2. For
the LI BM model, E = 75 kPa and ν = 0.4 [1].

4.1 Synthetic Data

Experimental Setups. The heart architecture from the University of Auckland was
used to provide the cardiac geometry and tissue structure [8], and a heart representation
of 1746 nodes was constructed (Fig. 1(a) and (b)). To verify the capabilities of locating
diseased areas, some regions of the heart were set to be infarcted (Fig. 1(c)), where the
electricity could not propagate through, and the stiffness was set to be three times as that
in the normal regions. With this setting, the HO BM model in Section 2.2 was used to
simulate a cardiac cycle of 450 ms as the ground truth. The nodal displacements on the
heart boundaries were extracted and noises of 10dB signal-to-noise ratio were added,
which were treated as the measurement inputs from medical images.

Results and Discussion. Fig. 2(a) shows the first principal strain maps for visual com-
parisons, as there is a strong inverse relation between the first principal strain and the
extent of myocardial infarction [9]. There is almost no deformation in the infarcted re-
gions in the ground truth. This observation also appears in the recovered strains of dif-
ferent models, but different models possess different similarities to the ground truth. To
quantify the similarities of patterns rather than the absolute values, mutual information
comparison is used (Fig. 2(b)). Higher mutual information implies higher similarity.

The strain maps and mutual information show that the PBM-based and APM-based
recoveries behave similarly, as the measurements on the heart surfaces provided the dis-
placement boundary conditions of the deformations. When the boundary conditions of
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(a) (b) (c)

Fig. 3. Patient data. (a) MRI at end of diastole and end of systole. (b) Cardiac geometry segmented
from the first frame of the MRI sequence, with mapped tissue structure (f ,s,n: blue, yellow,
cyan). (c) Infarcted segments (3, 4, 9, 10) shown in red.

LI-PBM LTI-PBM HO-PBM

LI-APM LTI-APM HO-APM

Fig. 4. Patient data. First principal strains at the end of systole.

most surfaces were given, the effects of the active stresses decreased. Such similarities
are more obvious for the LI and LTI models, as the active forces were calibrated using
the HO-APM model and only caused relatively small deformations when applied to the
linear BM models. Therefore, the active forces did not contribute much to the recovery.

On the other hand, the differences between different BM models are more obvious.
The differences between the LI and the LTI models are very clear, especially around
the end of systole. As the only differences between these two linear BM models are the
Young’s modulus Ecf and the Poisson’s ratio νcf , this shows the importance of using
anisotropic BM model. For the HO models, the HO-APM model has the highest MI,
but the HO-PBM model behaves very similar to the LTI-models. Therefore, HO models
need to be used with proper active contraction stresses to gain the benefits.

4.2 Patient Data

Experimental Setups. The data sets are available in [10], for case 1 and case 2 from
two patients with acute myocardial infarction, with the infarcted regions identified by
experts. Case 1 contains a human short-axis MRI sequence of 19 frames in one cardiac
cycle (52.5 ms/frame), with 12 slices/frame, 8 mm inter-slice spacing, and in-plane res-
olution 1.32 mm/pixel. Case 2 contains a human short-axis MRI sequence of 16 frames
in one cardiac cycle (50 ms/frame), with 13 slices/frame, 8 mm inter-slice spacing, and
in-plane resolution 1.32 mm/pixel. In this paper, only the figures of case 2 are shown
for illustration. Fig. 3(a) shows the MRI. Segmentations were performed to obtain the
heart geometries at the end of diastole, and the fibrous-sheet structures were mapped
from the Auckland heart architecture using nonrigid registration (Fig. 3(b)). Fig. 3(c)
shows the infarcted regions identified by experts from contrast-enhanced MRI with the
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Table 2. Patient data. Segment numbers at different levels sorted by the mean of the first principal
strains of each segment at the end of systole, in ascending order. The numbers of the infarcted
segments are highlighted in red. The optimal cutoff segments for identifying infarcted segments
are indicated through double vertical lines (‖).

Case 1 Basal Mid Apical
LI-PBM 3 2 4 1 6 5 10 9 8 7 11 12 14 15 13 16
LI-APM 3 4 2 1 6 5 10 9 8 11 7 12 14 15 13 16
LTI-PBM 3 4 5 2 1 6 9 10 8 11 7 12 14 13 15 16
LTI-APM 3 4 2 5 1 6 9 8 10 11 7 12 14 13 15 16
HO-PBM 3 2 4 1 5 6 9 8 10 12 7 11 14 13 15 16
HO-APM 3 2 4 1 5 6 8 9 10 12 7 11 14 13 15 16

Case 2 Basal Mid Apical
LI-PBM 3 6 5 1 2 4 9 12 10 8 7 11 15 14 16 13
LI-APM 3 6 5 1 4 2 9 12 10 8 11 7 15 14 16 13
LTI-PBM 3 2 1 6 5 4 9 10 12 7 8 11 15 14 16 13
LTI-APM 3 2 5 1 6 4 9 10 12 8 7 11 15 14 16 13
HO-PBM 3 1 4 6 5 2 10 9 11 12 8 7 15 14 16 13
HO-APM 1 3 4 5 6 2 10 9 12 7 11 8 15 14 16 13

Table 3. Patient data. Optimal sensitivities (SEN) and specificities (SPEC) for identifying in-
farcted segments.

Case 1
Basal Mid Apical

SEN / SPEC SEN / SPEC SEN / SPEC
LI-PBM 100% / 67% 100% / 75% 100% / 100%
LI-APM 100% / 67% 100% / 75% 100% / 100%
LTI-PBM 100% / 33% 100% / 75% 100% / 100%
LTI-APM 67% / 67% 100% / 100% 100% / 100%
HO-PBM 100% / 67% 100% / 100% 100% / 100%
HO-APM 100% / 67% 100% / 100% 100% / 100%

Case 2
Basal Mid

SEN / SPEC SEN / SPEC
LI-PBM 50% / 100% 100% / 75%
LI-APM 50% / 100% 100% / 75%
LTI-PBM 50% / 100% 100% / 100%
LTI-APM 50% / 100% 100% / 100%
HO-PBM 100% / 75% 100% / 100%
HO-APM 100% / 75% 100% / 100%

segmentation and nomenclature suggested by the American Heart Association. The in-
farcted segments of case 1 are 1, 2, 3, 8, 9, 13, 14, 15, and of case 2 are 3, 4, 9, 10.
As short-axis MRI cannot provide accurate motion at the apex, segment 17 was not
considered in our experiments. To obtain the measurement inputs, a registration frame-
work based on free-form deformation was used to extract the displacement field from
the image sequences [11], and the displacements on the current heart boundaries were
utilized. The infarcted regions were unknown in the recoveries.

Results and Discussion. The qualitative assessments are shown in Fig. 4. The strain
patterns of all models show relatively small deformations in the infarcted regions. Sim-
ilar to the synthetic data, the PBM-based and the APM-based models are relatively
similar, and the differences between different BM models are more obvious. All expla-
nations for the strain patterns of the synthetic data are applicable here.

For clinical applications, the capabilities of frameworks in locating diseased regions
are of great interest, thus the results are compared in this aspect. We sorted the segments
at different levels by the mean of the first principal strains of each segment at the end
of systole, in ascending order (Table 2). From Table 2, we can calculate the various
sensitivities and specificities of the frameworks with different cutoff segments, where
sensitivities are the ratios between the correctly identified positives (infarcted segments)
and the actual positives, and the specificities are the ratios between the correctly identi-
fied negatives (normal segments) and the actual negatives. The optimal sensitivities and
specificities are shown in Table 3. As there is no infarction at the apical level for case
2, the corresponding optimal sensitivities and specificities are unavailable.

Table 2 shows again that the differences between PBM-based and APM-based mod-
els are small. Table 3 shows that the HO models have the best capabilities in both case
1 and 2. Comparing between the LTI and LI models, in case 1, the LTI models have
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better capabilities than the LI models at the mid-ventricular level but worse capa-
bilities at the basal level. In case 2, the LTI models have better capabilities at the
mid-ventricular level than the LI models. Considering also the results in the synthetic
experiments, the LTI models perform better than the LI models.

5 Conclusion

The results show that when image information is used, the active contraction stresses
do not contribute much in the recovery. Therefore, if subject-specific active contraction
stresses are unavailable but the image quality is good, the PBM-based models can be
the proper choices. On the other hand, the anisotropies of the BM models have more
impacts on the results, but the HO models do not necessarily provide much better results
than the LTI models especially in verifying infarcted regions. Therefore, if the absolute
strain values are unimportant, the use of LTI models might be enough.
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Abstract. This paper presents a new imaging method for quasi-static magnetic 
resonance elastography (MRE). Tagged magnetic resonance (MR) imaging of 
human lower leg was acquired with probe indentation using a MR-compatible 
actuation system. Indentation force was recorded for soft tissue elasticity 
reconstruction. Motion tracking and strain map of human lower leg are 
calculated using a harmonic phase (HARP)-based method. Simulated tagged 
MR images were constructed and analyzed to validate the HARP-based method. 
Our results show that the proposed imaging method can be used to generate 
accurate motion distribution and strain maps of the targeted soft tissue. 

Keywords: MR tagging, HARP, motion tracking, strain, soft tissue indentation. 

1   Introduction 

Elasticity is an important property for characterization of biological soft tissues. Local 
changes in mechanical properties of soft tissues may indicate the presence of tumors 
and other diseases [1]. In order to quantitatively study the soft tissue mechanical 
properties, Magnetic Resonance Elastography (MRE) has been developed in recent 
years. MRE can be categorized into dynamic MRE [2-4] and static or quasi-static 
MRE [5,6]. However, there are less literature about the quasi-static MRE due to the 
difficulty of motion tracking and strain calculation of soft tissue.  

Various techniques, such as Ultrasound, Computed Tomography (CT), and 
Magnetic Resonance Imaging (MRI) have been used to image the spatial deformation 
of soft tissue. Tagged MRI is widely used for the quantification of motion and 
deformation of cardiac tissue due to its easy access and good performance. However, 
the applicability of Tagged MRI on other parts of human body has not been 
investigated. In this paper, we extended the use of tagged MRI technique to other 
biological soft tissue by building a MR compatible actuating device synchronized 
with simulated electrocardiogram (ECG) signal. Large indentation tests on human 
lower leg were conducted using this imaging method.  

Template Matching [7-10], Active Geometry [11-13], Optical Flow [14-17] and 
Harmonic Phase (HARP) [18] are the main methods for tagged MR images 
processing. Template matching methods calculate the displacement by tracking the 
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tag lines. Optical flow is advantageous over template matching in providing a dense 
estimation of the motion field instead of a sparse set of data located at the tag lines. 
However, the optical flow methods require a material point with constant brightness 
which is not available for tagged MR images due to tag fading. The HARP method 
proposed by Osman et al. [20] is widely spread in cardiac image processing [21,23]. 
However, the applicability of HARP analysis on soft tissue other than cardiac tissue 
has not been investigated. In this paper, the applicability and accuracy of HARP 
analysis for automatic motion tracking and strain calculation was investigated on 
tagged MR images of human lower leg.  

2   Materials and Methods 

2.1   MR Imaging 

A MR-Compatible actuation system is developed for tagged MR imaging of soft 
tissue indentation (Fig. 1(a)). ECG signal is simulated and outputted to both the motor 
controller and MR scanner. MRI k-space data acquisition is synchronized with the 
simulated ECG signal. Specific k-space segment data is acquired and filled into 
corresponding images repeatedly after each ECG period. Twenty images are acquired 
over multiple ECG periods within time duration of 10-20s with GE SIGNA 1.5T MRI 
Scanner. Ultrasonic motor is controlled by microprocessor based controller interfaced 
with USB-6221 DAQ device. The control software and signal processing is 
implemented using LabView version 8.6. Motor is activated to rotate when R peak of 
simulated ECG is detected and stop after one full rotation. Indentation of the actuation 
device is synchronized with the simulated ECG signal. This ensures the deformation 
of imaged object to be consistent during each ECG period. 

 

          
a                                                                      b 

Fig. 1. a: Overview of imaging system, b: Human lower leg indentation diagram 

Indentation experiment was conducted on a volunteer’s lower leg. Indentation 
force was recorded by a force sensor. The lower leg was indented at the top middle 
region of the leg using a sphere-shaped indenter with a diameter of 15mm (Fig. 1(b).). 
MR tags were generated by applying the tagging sequence immediately after the 
detection of the R-wave. Gradient-echo images were acquired during the entire 
imaging cycle to capture the displacement of the tags. Tagging period of 5mm is used. 
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Other imaging parameters are as follows: flip angle, 15°; tag orientation, 45°; echo 
time (TE), 1.704msec; repetition time (TR), 6.032msec; slice thickness, 15mm; 
spacing between slices, 15mm; field of view (FOV), 20×20 cm. The first and the 
seventh frames of the tagged images are shown in Fig. 1(b) and Fig. 4(a). 

2.2   HARP Analysis 

The spatial modulation of magnetization (SPAMM) sequence modulates the 
longitudinal magnetization in a sinusoidal manner, which produces an array of 
spectral peaks (harmonic peaks) in the Fourier domain (k-space). A circular band-pass 
filter (Fig. 4(b)) is often used to extract the off-center harmonic peaks. Harmonic 
phase image can be calculated by applying the inverse Fourier transform of a 
harmonic peak. Since the harmonic image is complex, it has both magnitude and 
phase at each pixel. The magnitude image reflects the anatomy of the lower leg and is 
used for segmentation of the leg in this study. The harmonic phase angle of the leg 
can be used to infer the tissue material property and remains invariant through the 
image sequences [19]. Displacement distribution and strain maps are calculated from 
these harmonic phase images. 

Motion Tracking. The phase of the image at time  is given by  

 , ,  (1) 

where ,  is the phase,  is the frequency vector of a harmonic spectral peak,  is 
the spatial position,  is the image coordinate [20].  At time t, the phase shift can be 
calculated as 

 , , 0 , , 0  (2) 
 

where  is the displacement vector. Since the phase ,  differs from the 
harmonic phase angle ,  by a multiple of 2π, 

 ∆ , , 0   (3) 

where the nonlinear wrapping function is given by  

 , 2 . (4) 

If| | ,  can be calculated by 

 ∆ . (5) 

If| | , ∆  is always wrapped. For soft tissue indentation, it is reasonable to 
assume that the displacement varies smoothly within the soft tissue. Given this 
assumption, can be calculated by unwrapping ∆  starting from a pixel where | |  is satisfied. In this study, a quality guided phase unwrapping method is 
used.  

Strain Calculation. Once the displacement field  is calculated, the deformation 
gradient tensor of the lower leg is given by 

 .  (6) 
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Therefore the 2D Lagrangian strain tensor can be calculated as 

 . (7) 

However, this method does not perform well in the presence of noise since the phase 
unwrapping procedure is needed to calculate . The strain map is calculated using 

 ·  (8) 

where  is the 2D Lagrangian strain,  matrices related with the tagging and 
imaging plane [20,21]. 

3   Results 

3.1   Validation Using Simulated Tagging Images 

Simulated tagging images were used to validate the strain calculation. The simulated 
tagging images were constructed by applying sinusoidal modulation to a digital 
circular image. A circular band-pass filter was used to extract the off-center harmonic 
peak. The radius of the filter was chosen at one third of the tagging frequency. Stretch 
strains ranging from 0.1 to 0.4 and shear strains ranging from 0.05 to 0.2 were 
constructed and processed (Fig. 2(a-e)). 100% Gaussian white noise was added to test 
the sensitivity of the algorithm to noise. The calculated strains show good agreement 
with the true values. The error of  is calculated to be within ±8.07% and ±7.21% 
for images with and without noise respectively. The error of  is within ±14.95% 
and ±13.65% for images with and without noise respectively. The strain calculation is 
accurate even in the presence of noise (Fig. 3(a-d)). 

 

 

                a                             b                             c                           d                              e 

Fig. 2. Simulated images. a: Reference image. b: Deformed image of 0.4 without noise. 
c: Deformed image of 0.4 with noise. d: Deformed image of 0.2 without noise. e: 
Deformed image of 0.2 with noise. 

3.2   Imaging of Human Lower Leg 

The bones of the lower leg were segmented and excluded from the strain map 
computation. We processed only soft tissue of the leg. A circular band-pass filter with 
radius of 1.56mm was used to extract the off-center harmonic peak. The calculated 
harmonic phase image of one direction is shown in Fig. 4(c). We observed from Fig. 
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4(a) and Fig. 4(c) that the tag lines correspond well with the wrapped harmonic phase 
lines. Since the lower leg was indented from the top and around the middle region of 
the leg, the left and right regions of the lower leg were expectedly having negative 
and positive displacement values respectively in the  direction (Fig. 5(a)). In the  
direction, area located near the indenter has larger displacement (Fig. 5(b)). Since the 
lower leg was compressed, negative strain values were expected to dominate in both 
directions. In  direction, smaller strain values were shown in areas away from the 
indenter and behind the bones (Fig. 5(d)). Due to the presence of noise, strain 
variation was observed in the bottom left and top right regions. 
 

 
                                                   a                                                    b  

 
                                                    c                                                    d 

Fig. 3. Strain calculation with simulated images. a: Calculated strain of  without noise. b: 
Calculated strain of  with noise. c: Calculated strain of  without noise. d: Calculated 
strain of  with noise. 

              
             a                                              b                                            c   

Fig. 4. a: Frame 7 of tagging image, b: Band-pass filter in Fourier domain, c: Wrapped harmonic 
phase image in one direction 
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                                          a                                                           b 

          

                                     c                                                             d                                    

Fig. 5. a: Displacement in the  direction (unit: mm), b: Displacement in the  direction (unit: 
mm), c: Lagrangian strain in the  direction, d: Lagrangian strain in the  direction 

4   Discussion and Conclusion 

The proposed imaging system is a clinically viable image acquisition method for 
quasi-static MRE. To date, most MR strain imaging method for quasi-static MRE 
requires extensive programming of imaging sequence [5, 22] which can be 
challenging. In contrast, Tagged MRI is an imaging method widely equipped in 
almost every clinical MRI scanner. Using tagged MRI and the proposed method, 
strain imaging can be performed without imaging sequence programming. In this 
paper, tagging images of human lower leg indentation was obtained by building a 
MR-compatible actuator. Indentation force is recorded at the same time. Motion 
tracking and strain map of a human leg are calculated using the HARP-based method.  

Motion tracking is performed by first measuring the phase shift of soft tissue during 
indentation. Displacement distribution maps were generated and analyzed. One 
limitation of the proposed motion tracking method is that it only applies to situation 
where smooth deformation presents. Validation of the HARP strain calculation is 
performed on a series of simulated tagged images. Strong agreement between the 
calculated and true strains is observed. The good noise reduction performance is due to 
the band-pass filter which also serves as a noise filter. The radius of the band-pass filter 
is important.  Large radius may introduce unnecessary noise while small radius may 
suppress the actual deformation signal. Optimal radius selection is proposed in [20]. 

Although the current study was performed on human lower leg, our actuation 
system can be readily applied to other parts such as abdominal organs, breasts and 
foot. HARP analysis of images of these organs can be performed to obtain 
displacement distribution and strain maps. The elasticity distribution of these organs 
can then be calculated using various elasticity reconstruction methods. 
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Abstract. In this paper, anisotropic Fast Marching is employed to com-
pute blood flow trajectories as minimal paths in 3D phase-contrast MRI
images. Uncertainty in the estimated blood flow vectors is incorporated
in a tensor which is used as metric for the anisotropic Fast Marching.
A flow connectivity distribution is computed simultaneously to the Fast
Marching. Based on the connectivity distribution the most likely flow
trajectories can be identified. Results are presented for several PC MRI
data sets and the capability of the method to indicate uncertainty of the
flow trajectories is shown.

Keywords: blood flow computation, uncertainty, minimal path,
anisotropic Fast Marching

1 Introduction

Fast Marching (FM) methods have been widely used for segmentation and anal-
ysis of medical images [9]. The FM method is a numerical scheme for solving
the so-called Eikonal differential equation, whose solution can be interpreted as
the monotone evolution of an interface on a domain with a spatially varying
speed function. A main application of FM methods is to find a minimal path
that describes the fastest way to travel between two points considering the speed
function. The minimal path can for example represent a segmentation contour
or the centerline of a vessel [2,4]. A generalization of the original FM method is
obtained by considering anisotropic speed functions, meaning that the speed at
each point is direction dependent. For example, for vessel segmentation, consider
a speed function that propagates the interface faster along the vessel direction
than orthogonal to it [1]. An anisotropic FM method solves the Eikonal equa-
tion when the speed anisotropy is modeled as a metric tensor, i.e., in 3D, the
anisotropy has the form of an ellipsoid. Anisotropic FM has been applied in
medical imaging for vessel segmentation [1], brain connectivity analysis [8], and
tumor growth modeling [7].
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In this contribution, a novel application of anisotropic FM is investigated,
namely the computation of blood flow trajectories in Phase-Contrast (PC) MRI
images. PC MRI is able to measure blood flow and the acquired images can
be reconstructed into vector fields in which each voxel contains a vector that
describes the local blood flow velocity. The clinical interest in applying PC MRI
for assessing stenoses, aneurysms and heart valves, and for surgical planning in
congenital heart disease, is increasing. Traditionally, streamline methods such as
Runge-Kutta’s are used for tracing blood flow trajectories in the PC MRI data
[3], but these methods ignore the intrinsic uncertainty due to noise in the mea-
sured vector field. Recently, a sequential Monte Carlo method was proposed for
investigating the probability distribution of flow trajectories [5]. In this work, an
alternative approach to incorporate the measurement uncertainty is proposed in
the framework of anisotropic minimal paths. Ideas from anisotropic Fast March-
ing applications in other fields, namely brain connectivity analysis [8] are adapted
to the novel application to compute blood flow trajectories. As a result of the
modeling of the problem as anisotropic minimal paths, any anisotropic Fast
Marching method available can be applied to solve the problem.

2 Methods and Materials

2.1 Minimal Paths

Informally, a minimal path is the path along which one travels between two given
points in the shortest time given a spatially varying speed function. Formally,
let γ(s) : R

+
0 → R3 be a path connecting two points in 3D space, s be a positive

running variable. Furthermore, let M(x) denote a metric tensor at position x
in 3D space represented by a symmetric positive definite matrix that defines a
spatially varying traveling cost, i.e., the inverse of the speed. Hence, the speed
along γ is dependent both on the spatial position γ(s) as well as the tangent
direction γ′(s). The local cost of traveling at a certain position γ(s) along the
path can be written

F (γ(s), γ′(s)) =
√
γ′(s)T M(γ(s))γ′(s) (1)

and the total cost of a path connecting two points a and b is

J(γ) =
∫ sb

sa=0

F (γ(s), γ′(s)) ds =
∫ sb

sa=0

√
γ′(s)T M(γ(s))γ′(s) ds. (2)

Considering all paths Γa,b between a and b, the minimal path is the one with
the minimum cost. Minimal paths from all points ∀x ∈ Ω ⊆ R3 to a target
region ∂Ω can be described using the so-called value function U(x)

U(x) =

⎧⎨⎩ min
γ∈Γx,∂Ω

J(γ) x ∈ Ω

0 x ∈ ∂Ω.
(3)
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Along a minimal path, the values of U are strictly decreasing as we move closer
in time to the target region, i.e., for a point g = γ(sg) on the minimal path
between the target region and a point x = γ(sx), it holds that U (g) < U (x).
More precisely,

U (x) = U (g) +
∫ sx

sg

F (γ(s), γ′(s)) ds, (4)

and forms the basis for Dijkstra’s shortest path and FM algorithms. Furthermore,
it can be shown that the value function U satisfies the static Hamilton-Jacobi
equation [6]

∇U(x)T M(x)−1∇U(x) = 1, (5)

also known as the anisotropic Eikonal equation, and that the tangents of the
minimal paths satisfy γ′ ∝ M−1∇U . Thus, we are able to solve the problem of
computing the minimal paths by first solving the partial differential equation
in Eq. 5 with boundary condition U(x) = 0 on the target region ∂Ω to find
U(x), and then reconstructing the minimal paths by backtracking using standard
numerical methods like Euler’s, Heun’s or Runge-Kutta’s. It can further be noted
that for an isotropic metric M(x) = f(x)I, Eq. 5 reduces to the well known
Eikonal equation ‖∇U(x)‖ = 1√

f(x)
. The numerical scheme to compute the

solution of Eq. 5 with given boundary conditions U(x) = 0 is a novel anisotropic
Fast Marching solver that we developed. The description of the solver is beyond
the scope of this contribution and will be done in a future publication. Generally,
any anisotropic Fast Marching solver available is applicable to solve the stated
problem.

2.2 Modeling Blood Flow Trajectories as Minimal Paths

Anisotropic FM has previously been applied for computing brain connectivity
maps in Diffusion Tensor Imaging [8]. In this work, blood flow computation and
flow connectivity mapping in PC MRI images using anisotropic FM is proposed.
From the PC MRI images, a 3D vector field of blood flow velocities can be
reconstructed, see Fig. 2(a). Traditionally, vector field visualization methods
such as streamlines computed using Euler, Heun or Runge-Kutta schemes are
used to compute blood flow trajectories [3]. However, these methods do not
consider the uncertainty in the measured flow vectors due to image noise and
the streamlines may therefore give a false impression of precision. In [5], it was
shown that each component ṽ of a measured flow vector is well approximated
by a Gaussian distribution around a true velocity v:

ṽ ∈ N (v, σ) with σ =
venc

π

√
2

SNR
, (6)

where venc is a known velocity encoding sequence parameter and SNR the signal-
to-noise-ratio of the PC MRI images within vessels. Typical values for the pa-
rameters are venc = 1500 mm/s and an SNR of 10, resulting in a standard
deviation of about σ = 70 mm/s. As a reference, normal flow velocities range
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between 0 mm/s and 1500 mm/s at peak systole in the aorta, and in smaller
vessels, the peak flow rate is lower. Each PC MRI flow vector consists of an vx,
vy and vz component, v = [vx, vy, vz]T , so that a flow vector can be considered as
drawn from a multivariate Gaussian distribution with independent components
identically distributed according to the variance parameter σ.

To capture uncertainty in flow trajectories traced in PC MRI data, instead of
considering deterministic vectors, in this work we view the data as a field of 3-
dimensional multivariate Gaussian distributions. We incorporate the uncertainty
of the measured velocities into a metric tensor and then solve the minimal path
problem in the ensuing metric space to find flow trajectories. The inverse of the
metric tensor is constructed as

M−1 = vvT + σI, (7)

see Fig. 1 for an schematic illustration and Fig. 2(b) for a tensor field constructed
based on a PC MRI data set of an aorta. Figure 2(c) shows the value function

Fig. 1. Construction of a metric tensor from a given PC-MRI velocity vector

U obtained with anisotropic FM from a start point in the aortic arch. From
every point in the aorta, a minimal path that represents the flow trajectory to
that point can be found via a backtracking on U . To differentiate more likely
paths from less likely paths, an approach similar to the one proposed in [8] in the
context of DTI is adopted, in which the alignment of the minimal path tangent
with the major eigenvector of the metric tensor M is evaluated. In the current
case, the alignment can be measured by C (γ(s), γ′(s)) = ‖v (γ (s))T

γ′ (s) ‖ and
the mean alignment μ (x) along the minimal path to the point x is

μ (x) =
1

U (x)

∫ sx=U(x)

0

C (γ(s), γ′(s)) ds. (8)

Figure 2(d) shows μ (x), which can be interpreted as a flow connectivity map.
Figure 2(e) and 2(f) show the minimal paths with the highest connectivities,
representing the most likely paths under the influence of noise in the PC MRI
images.

Note that the PC MRI flow vectors have a direction whereas the constructed
metric tensor in Eq. 7 has not. In a flow application, it may be of interest to trace
trajectories either forwards or backwards. To this end, the direction of the FM
propagation needs to be restricted as follows: After computation of the minimal
path tangent during the FM update at a point, the propagation is restricted to
points for which the dot product with the flow direction is strictly positive or
negative respectively.
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2.3 Data

Three PC MRI data sets are used to demonstrate the blood flow computation
using anisotropic FM: a data set covering the aorta of a healthy subject (P1),
see Fig. 2(a), a patient with an aortic aneurysm (P2), see Fig. 4, and a patient
with an aneurysm in the carotid artery (P3), see Fig. 5. The aorta data sets have
a spatial resolution of about 1.7 × 1.7 × 3mm3, and the carotid artery data set
has a resolution of 0.86 × 0.86 × 1.4mm3.

(a) PC MRI vector field (b) Tensor field

(c) Level-sets of U (d) Connectivity distribution

(e) Connectivity distribution with
most likely flow trajectories

(f) Most likely flow trajectories

Fig. 2. Flow trajectories as minimal paths: (a) PC MRI vector field inside the aorta,
(b) the constructed tensor field, (c) level-sets of U(x), (d) the connectivity distribution
μ(x), (e) the 20% most likely trajectories superimposed on the connectivity distribu-
tion, and (f) the 20% most likely trajectories inside the flow field
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3 Results

The experiments were carried out on a PC with 2.4 GHz CPU and 2 GB memory.
The different steps for calculating flow connectivity maps and flow trajectories
as minimal paths based on PC MRI data are shown in Fig. 2 for the normal
aorta data set P1. From a start point, the value function U(x) and connectivity
map μ (x) as described in Sec. 2.2 are calculated. The flow connectivity map may
be interpreted as a distribution of possible flow trajectories under the influence
of image noise. Figure 3 shows a comparison of the FM-based connectivity map
with the probabilistic connectivity map computed with the method described
in [5] and for which the authors kindly provided an implementation. The flow
field is generated based on a sinus curve that is superimposed in the figures. The
probabilistic connectivity map counts the number of pathlines passing through

(a) (b)

Fig. 3. Visual comparison of (a) the probabilistic connectivity map [5] and (b) the
FM-based connectivity map. Superimposed in both images is the sinus curve, based on
which the artificial flow field was generated, and the flow field itself. The source point
is located at the bottom of the field and is marked by a sphere.

(a) (b) (c)

Fig. 4. Blood particle trajectories in an aorta with an aortic aneurysm: (a) Flow field
and connectivity distribution, (b) blood flow trajectories, and (c) a close-up. The tra-
jectories are color coded based on the connectivity: (green/brightest) 0.8-1.0, (yellow)
0.7-0.8, and (red/darkest) 0.6-0.7.
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(a) (b)

Fig. 5. Blood flow trajectories in a carotid artery with an aneurysm: (a) flow field and
connectivity distribution and (b) blood flow trajectories. Trajectories are color coded
based on the connectivity: (green/brightest) 0.8-1.0, (yellow) 0.7-0.8, and (red/darkest)
0.6-0.7.

each point of the map. Both methods show a widening effect going further away
from the source point that reflects uncertainty due to image noise. The major
difference between both results is that the FM-based connectivity map gives the
mean value of connectivity along a path, thus resulting in a almost constant value
along the path, while the probabilistic connectivity map has decreasing values
along a path. Figure 4 shows a visualization of the trajectories computed for data
set P2 with an aortic aneurysm. The trajectories are color coded according to
how likely they are: green (brightest) means a connectivity between 0.8 and 1.0,
yellow between 0.7 and 0.8, and red (darkest) between 0.6 to 0.7. Similar flow
paths for the carotid artery data set P3 are shown in Fig. 5. The computations
for the above examples took about 10 seconds using our developed FM method.

4 Discussion and Future Work

In this contribution, a novel modeling of blood flow trajectories as minimal paths
is presented. Knowing the measurement uncertainty is important in all science
and decision making, including medical imaging. A visualization of blood flow
as minimal paths and flow connectivity maps gives a notion of the inherent un-
certainty in the PC MRI data which is not provided by traditional streamlining
techniques. The focus in this contribution is to present the methodological basis
for blood flow estimation based on minimal paths. Currently, the main applica-
tion is uncertainty visualization for flow patterns, e.g., for surgical planning in
congenital heart disease. There are several possible extensions for future work,
the most immediate one being to implement the method for 4D data as the PC
MRI images frequently also have a temporal dimension. Furthermore, more ex-
perimental work, using for example physical flow phantoms or flow simulations,
to further validate the method is required. However, as the flow connectivity
maps obtained with the anisotropic FM method do not correspond to a physical
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quantity, a strict validation may prove difficult. Similar problems are encounterd
in other applications, such as in the reconstruction of white matter fibers based
on Diffusion Tensor Imaging, where both stochastic tracking and anisotropic FM
approaches are utilized, and in which validation of the corresponding connectiv-
ity maps is still an open issue. A different avenue of work is to investigate if
the flow connectivity maps can be used as an imaging biomarker for disease, for
example, to investigate via group studies if connectivity-based biomarkers have
any discriminative power to separate patients from healthy controls. Example
applications for this include stroke and embolization pathways, flow patterns
related to aneurysm rupture, and connectivities through leaking heart valves.

Acknowledgements. The authors would like to thank Dr. Michael Markl,
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Abstract. Breast cancer is the most common cancer among women and the sec-
ond highest cause of cancer-related death. Diagnostic magnetic resonance imag-
ing (MRI) is recommended to screen high-risk patients. Strain-Encoded (SENC)
can improve MRI’s specificity by detecting and differentiating masses according
to their stiffness. Previous phantom and ex-vivo studies have utilized SENC to
detect cancerous masses. However, SENC required a 30% compression of the
tissue, which may not be feasible for in-vivo imaging. In this work, we use finite
element method simulations and phantom experiments to determine the minimum
compression required to detect and classify masses. Results show that SENC is
capable of detecting stiff masses at compression level of 7%, though higher com-
pression is needed in order to differentiate between normal tissue and benign or
malignant masses. With on-line SENC calculations implemented on the scanner
console, we propose to start with small compressions for maximum patient com-
fort, then progress to larger compressions if any masses are detected.

1 Introduction

According to the American Cancer Society’s 2009 report [1], one in eight women will
develop breast cancer in her lifetime. Early detection of breast lesions using mammog-
raphy has resulted in lower mortality rates. However, some breast lesions are mammog-
raphy occult (e.g. dense breasts) and the use of magnetic resonance imaging (MRI) is
recommended, especially for women who are at high risk of developing breast cancer.

MRI has high sensitivity (95%) and moderate specificity (83%) [2]. Cancerous
masses are 3-13 times stiffer than normal tissue [3]; therefore, MRI’s Specificity can
be increased by incorporating the tissue’s stiffness. Osman et al. developed Strain-
Encoded (SENC) MRI [4] to directly measures strain, which is inversely proportional
to stiffness. The feasibility of SENC to detect stiff masses in a homogeneous phan-
tom was shown in [5,6] using a simple hardware with single compression that limited
the scan time to one second and the scanning resolution to 4x4x10 mm3. In [7], we
introduced a new hardware capable of accurately repeating compressions, which al-
lows to increase scanning time. Thus, achieving a high resolution of 1x1x5 mm3 and
significantly improving signal-to-noise ratio and contrast-to-noise ratio. Then in a later
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study[8], an alternation of SENC called SENC relaxation (SENC-REX) was introduced
to complement traditional SENC compression (SENC-CMP). Phantom and ex-vivo re-
sults showed the potential of SENC-CMP and SENC-REX to detect cancerous masses.
Currently however, SENC requires multiple compressions of 30%. This compression
level was originally developed and optimized to image the myocardial circumferential
strain, which ranges from+5% to −30% [4], but such a high compression may prove to
be uncomfortable or infeasible in a clinical setting.

In this work, we focus on determining the minimum amount of compression nec-
essary to detect and differentiate between benign and malignant masses. We built a
phantom that contains masses with known stiffness, performed finite element method
simulations and compared the results with acquired MRI data.

2 Methods and Material

2.1 Hardware

We used our hardware previously described in [7] for compression. The hardware
consists of two air-cylinders fitted underneath a standard MR breast coil. Figure 1a
shows a patient laying in prone position with two air-cylinders compressing each breast.
Figure 1b shows a top-view of a single side of the hardware compressing a breast phan-
tom. The hardware can operate in either compression or relaxation mode, generating
SENC-CMP and SENC-REX strain images, which examine the compression and relax-
ation properties of the tissue, respectively. More details can be found in [7,8].

Breast
coil

a) b)

Air
cylinder

Air cylinder

Breast
Phantom

Motion

MotionMotion

Patient

Fig. 1. a) Schematic of the hardware fitted under a standard breast coil with a patient lying in the
prone position. b) Image of the hardware compressing a gel phantom.

2.2 Strain-Encoded (SENC )

As introduced in [4], SENC is a method for directly measuring strain, which is defined
as the percentage change in length of tissue given by ε = �L

L0
, where L0 is the initial

tissue length and �L is the change in length due to tissue deformation. SENC imaging
applies a tagging preparation pulse, which corresponds to a sinc peak at the tagging fre-
quency, ω0. After deformation this peak shifts to different frequency. This shift, which
is proportional to the strain, can be estimated by acquiring two images at two different
z-encoding frequencies, ωL and ωH .
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Fig. 2. a) Dynamic mechanical analyzer used to test each mass. b) Stress-strain curves for masses
in Groups A, B, C, D, E and the background. c) Young’s modulus (E) in KPa variation with strain
for Groups A, B, C, D , E and the background.

2.3 Phantom Composition

In order to emulate breast cancer masses with different stiffnesses, a custom-made phan-
tom was created by varying the A to B gel compounds mixing ratios of four different
silicon materials. We constructed five groups of masses; masses of Groups A, B, C, and
D were stiffer than the background, whereas masses of Group E were softer than the
background. Table1 shows the types of gel with corresponding mixing ratios. All of the
masses were 10 mm-thick cuboids, varying in plane from 3 mm to 12 mm (Fig. 4a, b).

We used a dynamic mechanical analyzer to determine the stiffness of the phantom
(see Fig.2a). We used a ramped displacement to induce 10%-30% strain on the sample.
Figure 2b shows non-linear stress-strain curves obtained from the dynamic mechanical
analyzer, and Figure 2c shows Young’s modulus in KPa. Groups A, B, and C are re-
spectively 8, 3, and 2 times stiffer than the background, while the stiffness of Groups
D and E are very similar to the background. Comparing our phantom’s Young’s mod-
ulus with the ex-vivo breast stiffness measured by Samani et al. [3], masses of Group
A would mimic malignant tumors, Groups B and C would mimic benign masses, while
Groups D and E would mimic normal tissue. Table 1 shows Young’s modulus for each
gel mixtures calculated as: 1) the slope of a linear fit of the stress-strain data; 2) the
differentiation of the second degree polynomial fit of the stress-strain data.

Table 1. Properties of different silicon masses, including mixing ratio, corresponding Young’s
modulus (E) in KPa, and mass classification.

Group Material Mixing ratio E (KPa) Group:Back Classification
A:B Linear fit Polynomial fit stiffness ratio

A 3-4207 1.0:1.0 593 E= 2478ε +443 8.4:1 Malignant
B 3-4133 1.5:1.0 226 E= 714ε +167 3.2:1 Benign
C 3-4207 1.0:1.2 171 E= 278ε +148 2.4:1 Benign
D 3-4133 1.2:1.0 100 E= 284ε +51 1.4:1 Normal

Background A-341 1.0:10.0 71 E= 145ε +48.5 - Normal
E 3-4222 1.0:1.5 20 E= 64ε +2.9 0.3:1 Normal
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3 Experiments

3.1 Finite Element Method (FEM) Simulations

To simulate the tissue deformation due to different compressions levels, we developed a
finite element method using Matlab7.5®. We simulated a cross section of the phantom
using 31x55 nodes connected together by two constant strain triangles having linear
shape function. Fixed boundary conditions and Poisson ratio of 0.49 were assumed. For
each compression level, we simulated a cross-section of the background containing five
masses with 10 mm thick and width of 2, 4, 6, 8, and 10 mm (see Fig.3a). Multiple FEM
iterations were performed to simulate the phantom’s Young’s modulus non-linearity.

3.2 Scanning Protocol

We performed scans on a 3T MRI Philips scanner (Achieva, Philips Medical Systems,
Best, the Netherlands) using a four-channel phased array breast coil. All slices were
scanned using in-plane resolution of 1x1 mm2, field-of-view = 192 x 192 mm2, slice
thickness = 5 mm. The phantom was scanned using: T1-weighted (TR = 495 / TE = 10
ms, sense factor = 2), T2-weighted spin echo (TR = 2500/ TE = 60 ms, sense factor =
2), SENC-CMP and SENC-REX protocols. For SENC scans we used ramp flip angles
described in [7] with last flip angle = 80◦, Tagging delay = 100 ms, trigger delay = 500
ms, segmented Cartesian K-space acquisition using turbo field echo (TFE) factor of 10
with no echo planar imaging (EPI), 19 compression cycles/slice.

For a given expected strain value at the boundaries of the compressing device, we
used SENC equations given in [9] to calculate ω0, ωL, and ωH . In [9], Basha et al.
showed that if the tissue of interest is compressed or stretched beyond the expected
range, SENC measurements would saturate at either high or low strain values. Simu-
lations showed that parts of the tissue would retain larger strain values than the strain
applied at the tissue’s boundaries; therefore, the scanning parameters were set to en-
compass strain values larger than levels applied at the boundaries (see Table 2).

Table 2. Scanning parameters for measured strain values for SENC-CMP and SENC-REX scans
at different levels of applied compression. All frequencies (ω0,ωL,ωH ) are in mm−1.

SENC Compression (SENC-CMP) SENC Relaxation (SENC-REX)
Compression Measured ω0 = ωL ωH Relaxation Measured ωL ω0 = ωH
at boundary strain range at boundary strain range

-7 % 0 to -10% 1.8 2.0 +8% 0 to +10% 2.0 2.2
-10% 0 to -15% 1.132 1.332 +11% 0 to +18% 1.1111 1.3111
-16% 0 to -22% 0.708 0.908 +18% 0 to +25% 0.8 1.0
-23% 0 to -30% 0.4667 0.6667 +29% 0 to +35% 0.5714 0.7714

3.3 Quantification

Masses were manually segmented and their detectability were quantified using the CNR

Elastography defined by CNRe = 2(Smass−Sbackground)2

σ 2
mass+σ 2

background
, where S and σ are the mean and
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Fig. 3. a) FEM simulations while the phantom is compressed 10%. b) Strain values at blue, red
and green slices calculated from the FEM simulations. Solid black arrows point to different in
background strain values depending on mass separation distances. Dotted black arrows point
to different strain values within the masses depending on the mass width. c-f) Phantom MRI
SENC-CMP and SENC-REX images. Slice positioned immediately behind the masses (c,e) and
encompassing the masses (d,f) corresponds to the red and green slices in FEM simulations. White
arrows point higher strain detected behind the masses.

standard deviation, respectively, and the background is a rectangular region surrounding
the mass. Philips pride software was used to generate colored SENC strain images at the
scanner console immediately after acquisition. For visual comparisons,all color pallets
for SENC-CMP and SENC-REX were unified such that masses having low strain values
are colored red, while normal background is colored blue.

4 Results

4.1 FEM Simulation Results

Figure 3a shows a diagram for FEM simulations of a cross section of a homogeneous
background with five different masses at 10% compression. All masses had same thick-
ness (10 mm) but varied in width (2, 4, 6, 8, and 10 mm). Figure 3b shows the corre-
sponding x-axis strain profile along blue, red, and green slices. The strain profile at the
blue slice (furthest from the masses) remains constant around −11%, while the strain
profile at the green slice (intersecting the masses) ranges from −2% within the masses
to−11% in the surrounding background. By examining the simulation results, we ob-
serve the following:

1. The strain inside each masses depends on the width of the mass. The largest mass
(10 mm in width) had strain of −2%, whereas the smallest mass (2 mm in width)
had strain of −4% (see dotted black arrows in Fig. 3b).

2. The strain measured within the background between the masses depends indirectly
on the distance between the masses. If the separation between masses exceeds the
combined width of the two masses, then the strain approaches the expected strain
(−11%). Conversely, if the separation between masses is less than the combined
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Fig. 4. a) Layout for the custom-made phantom containing five different groups of masses (di-
mensions are in mm). b) Image showing masses during phantom manufacturing with ruler scale.
Groups A, B, C, and D are stiffer than the background, while Group E is softer than the back-
ground. c) T1W image d) T2W image for the phantom. SENC-CMP images (e-h) and SENC-
REX images (i-l) for different compression levels and relaxation levels.

width of the masses, then the strain does not approach the expected strain (see solid
black arrows in Fig. 3b). This interaction between masses affects the CNRe and
consequently the ability to detect the masses.

3. The strain profile of the red slice (directly adjacent to the masses) appears to be
mirroring the strain profile of the green slice (encompassing the masses). This is
caused by the stiff masses pushing against the surrounding soft tissue (see Fig. 3b).

4.2 Phantom Results

Figures 3c-f show SENC MRI images of the phantom at 10% compression. Figure 3d
and Figure 3f are SENC-CMP and SENC-REX images, respectively, at the same posi-
tion as the green slice in the FEM simulations, which encompasses the masses. Both
images confirm FEM simulations results, with nearly zero strain within the masses.
Figure 3c and Figure 3e show SENC-CMP and SENC-REX images, respectively, at the
same position as the red slice in the FEM simulations, located adjacent to the masses.
Arrows indicate the tissue surrounding the masses, which experience a higher level of
compression than the applied external compression. This increases the confidence level
of detecting the masses.

Figure 4c and Figure 4d show T1W and T2W images of the phantom detecting all
masses: malignant (Group A), benign (Groups B and C), and normal (Groups D and E).
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Table 3. Strain (mean±SD) measured from manually segmented masses form SENC-CMP and
SENC-REX images at different compression and relaxation levels. Negative and positive signs
indicates compression and relaxation, respectively.

SENC Compression (SENC-CMP) SENC Relaxation (SENC-REX)
Compression -7% -10% -16% -23% +8% +11% +18% +29%

Group A -3.0±1.0 -5.1±1.7 -10.5±2.6 -13.4±5.0 1.1±0.8 3.3±1.8 5.5±4.3 8.1±5.9
Group B -3.7±0.9 -8.2±1.3 -14.5±2.0 -18.1±4.5 1.3±0.8 4.5±1.9 9.7±3.3 15.2±5.5
Group C -3.9±0.9 -8.8±1.6 -15.0±2.4 -20.1±3.9 1.4±0.8 4.8±1.8 10.4±3.6 15.7±6.4

Figures 4e-h show SENC-CMP images for compression levels of 7%, 10%, 16%, and
23%, respectively. Figures 4i-l show SENC-REX images for relaxation levels of 8%,
11%, 18%, and 29%, respectively. Malignant masses of Group A and benign masses of
Groups B and C are easily detectable visually. However, normal masses of Groups D
and E lacked enough contrast to distinguish them from the background.

With SENC-CMP images at 7% compression and SENC-REX images at 8% and
11% compression, we could detect both malignant and benign but not normal masses;
therefore, differentiating normal from suspicious masses. That said, these images had
moderate CNRe (11-20) and suffered from rim artifacts due to imperfect compressions.
SENC-CMP images at 10% compression and SENC-REX images at 18% had higher
CNRe of 60 and 30, respectively. This allowed the differentiation between malignant
and benign masses (see Table 3).

By visual comparison, relaxation always performs better than compression. None of
the SENC-CMP or SENC-REX images allowed differentiation between Group B and
Group C, but these groups can be distinguished from Group A for all masses larger than
4x4 mm2 using 16% and 23% compression levels as well as 18% and 29% relaxation
levels. The smallest mass (4x4 mm2) of Group A can sometimes be misclassified as
Group B and C, which matches FEM simulation results described earlier.

5 Discussion

Our phantom results demonstrate that both malignant (Group A) and benign (Groups B
and C) masses can be detected under all compression and relaxation levels. With small
compression (7%), SENC-CMP7% image allows the detection of malignant and benign
masses with moderate CNRe (>10). The corresponding SENC-REX8% image can also
be used to detect all the masses, but has rim artifacts (see Fig. 4i). These artifacts are
reduced when applying larger compression of 10% resulting in SENC-REX11% image,
which has higher CNRe and better detection capability. In order to differentiate between
the benign and malignant masses we have to use even larger compression of 16% to
obtain SENC-CMP16% and SENC-REX18% images.

In our phantom, the embedded masses were only eight times stiffer than the back-
ground. High-grade cancer masses are five to thirteen times stiffer than both fat and
glandular tissue [3]; therefore, we would expect to see even more contrast in clini-
cal trials. Our FEM simulations were limited to a cross-section of the phantom. If de-
sired, this can be extended to 3D. Also, instead of using linear shape functions for the
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triangular elements, which results in a constant strain for each triangular element, we
could use a more complicated model.

In conclusion, we have showed using FEM simulations and phantom study that
SENC-CMP and SENC-REX are able to detect both benign- and malignant-like masses
with compressions as small as 7%. We have also shown that the slices adjacent to the
masses show reverse contrast compared to slices containing the masses. These slices in-
crease the confidence of our detection and classification method. Human trials need to
be conducted in order to validate these phantom results. Normal volunteers, as well as
patients having benign and malignant masses should be scanned. Therefore, we propose
the following protocol for breast cancer screening: a) scan the whole breast using low
compression. b) Examine SENC images at the scanner console using SENC on-line cal-
culations to detect masses. c) If masses are detected, we would re-scan these slices using
higher compression level in order to distinguish benign from malignant masses. Since
higher compression would only be required for mass classifications, this protocol would
maximize patient comfort without sacrificing detection and classification accuracy.
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Abstract. MitralClip is a novel minimally invasive procedure to treat
mitral valve (MV) regurgitation. It consists in clipping the mitral leaflets
together to close the regurgitant hole. A careful preoperative planning
is necessary to select respondent patients and to determine the clipping
sites. Although preliminary indications criteria are established, they lack
prediction power with respect to complications and effectiveness of the
therapy in specific patients. We propose an integrated framework for
personalized simulation of MV function and apply it to simulate Mitral-
Clip procedure. A patient-specific dynamic model of the MV apparatus
is computed automatically from 4D TEE images. A biomechanical model
of the MV, constrained by the observed motion of the mitral annulus and
papillary muscles, is employed to simulate valve closure and MitralClip
intervention. The proposed integrated framework enables, for the first
time, to quantitatively evaluate an MV finite-element model in-vivo, on
eleven patients, and to predict the outcome of MitralClip intervention
in one of these patients. The simulations are compared to ground truth
and to postoperative images, resulting in promising accuracy (average
point-to-mesh distance: 1.47±0.24 mm). Our framework may constitute
a tool for MV therapy planning and patient management.

1 Introduction

The mitral valve (MV), between the left atrium and the left ventricle, prevents
the blood from coming back to the left atrium during systole. Incorrect MV
closure appears in many cardiac diseases and often requires surgery. The edge-
to-edge technique, which consists in suturing the two mitral leaflets at the re-
gurgitant hole, has demonstrated good clinical outcomes in patients with severe
mitral insufficiency due to leaflet prolapse or calcified annulus [7]. Nowadays,
this procedure can be performed percutaneously by clipping the leaflets using
a MitralClip catheter [3]. Nonetheless, a careful preoperative planning is neces-
sary to select respondent patients and to determine the clipping sites. Although
preliminary indications criteria are established, they lack prediction power with
respect to complications and effectiveness of the therapy in specific patients. It
is not uncommon to perform several trials during the intervention and, in some

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAI 2011, Part I, LNCS 6891, pp. 452–459, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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cases, decide to place two clips (≈ 30% of the patients [3]) or even to abort the
procedure due to complications (≈ 10% of the patients [3]). Therefore, there is
a need for an efficient and predictive framework that can assist the surgeon in
planning the MitralClip procedure and guide him during the intervention.

Driven by the growing prevalence of MV diseases, researchers are developing
computational models of MV biomechanics to simulate its function. Several con-
stitutive laws have been proposed, from simple isotropic linear elasticity to more
complex anisotropic non-linear hyper-elasticity [9,11,13]. Fluid-structure inter-
action models have also been investigated [2]. Yet, most of these models have
been developed on synthetic or ex-vivo anatomies [4]. Patient-specific anatomies
and boundary conditions are starting to be used but tedious manual delineations
are still required, with no [12] or partial automation [1,13]. Recently, a patient-
specific simulation of MV annuloplasty has been presented [12] but the results
were not confronted to postoperative data. At the same time, automatic algo-
rithms are being developed to delineate the MV in medical images. In [5], the
authors provided a fast and accurate method based on machine learning to de-
tect the MV on 3D+t transesophageal echocardiogram (TEE) or CT images. All
the elements are starting to be available for patient-specific MV simulations.

We thus propose in this paper to combine data-driven modeling of the MV
with a biomechanical model of the valve apparatus to simulate MV closure in pa-
tients and test therapies, in particular the MitralClip procedure. As described in
Sec. 2, we use machine-learning techniques to automatically detect the complete
MV apparatus in sequences of 3D TEE images. A biomechanical model of the
MV is then employed to simulate valve closure on the patient-specific anatomies
and boundary conditions. As model generation is automatic and integrated, we
could quantitatively evaluate the simulations with respect to the observed valve
motion in eleven subjects (Sec. 3). In one of these patients, post- MitralClip
images were available. The intervention was simulated and compared with the
real outcome, showing promising prediction power.

2 Methods

Starting from 4D TEE images, we automatically detect the MV apparatus in all
time frames using machine-learning algorithms and generate a patient-specific
anatomical model of the open MV (Sec. 2.1). We then apply a biomechanical
model to simulate valve closure (Sec. 2.2) and valve clipping (Sec. 2.3).

2.1 Anatomical Model of the Mitral Valve Apparatus

The anatomical model of the MV apparatus that is detected in the images com-
prises (Fig. 1): the mitral annulus, the anterior and posterior leaflets (AL and PL
resp.), the anterior and posterior papillary heads and the chordae. To capture a
broad spectrum of morphological variations, the model is parameterized by three
coarse-to-fine components: i) Three transforms B for global location, orientation
and scale over the cardiac cycle; ii) The trajectories of ten anatomical landmarks
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Fig. 1. Anatomical model of the MV and subvalvular apparatus, with 2 trigones
(squares), 1 posterior annulus mid-point (cross), 2 commissures (circles) and 2 leaflet
tips (triangles). The tetrahedral mesh (left) is tagged for regional tissue properties.

L(B) = (l1 . . . l10) ∈ R3×10 (see Fig. 1); and iii) Two triangulated surface meshes
SLA(B,L) and SLV (B,L) to represent the left atrial (LA) and left ventricular
(LV) leaflet surfaces respectively. The vertices of each surface are constrained
by the landmarks, resulting in an anatomically consistent parameterization that
ensures intra- and inter-patient point correspondence.
B, L(B) and SLA(L,B) are personalized from the images using a hierarchi-

cal discriminative learning algorithm [5]. The probability p(B,L, S|I) knowing
the image data I is incrementally modeled within the Marginal Space Learning
(MSL) framework, based on the Probabilistic Boosting Tree (PBT) [14]. Due
to the poor image quality, it is still difficult to estimate the thickness of the
leaflets automatically and reliably at every time frame of the cardiac sequence.
We therefore obtain the LV leaflet surface SLV by artificially extruding SLA

in the direction of the surface normals, towards the LV, by 2mm, the average
leaflet thickness measured in our patients (see Sec. 3).

Finally, we generate a tetrahedral volume mesh of the MV (Fig. 1). For re-
gional personalization, the tetrahedra are tagged according to the leaflet they
belong to thanks to the anatomically consistent surface parameterization. 30
marginal chordae are evenly attached between papillary heads and leaflet free
edges as well as four sets of two basal chordae, two sets for each leaflet. Inser-
tion points, identical for every patient according to the point correspondence
inherited from the anatomical model, are determined by visual inspection of the
images, when visible, or like in previous studies [4,13] otherwise.

2.2 Biomechanical Model of Mitral Valve Apparatus

Valve closure is simulated by solving the dynamic system MÜ + CU̇ + KU =
Fc+Fp. U is the displacement vector of the free vertices of the MV mesh, U̇ their
velocity and Ü their acceleration. M is the diagonal mass matrix (leaflet mass
density ρ = 1.04 g/mL), K is the stiffness matrix of the internal elastic forces
and C is a Rayleigh damping matrix with coefficient 0.1 for both M and K. Fc

and Fp are the forces developed by the chordae and heart pressure respectively.
Leaflets are near-incompressible, anisotropic, non-linear elastic [10]. In this

study we are not directly interested in leaflet stresses but we rather seek to
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predict how well they close to assess possible residual regurgitant holes after
MitralClip intervention. Hence, we approximate the MV properties by a linear
isotropic elastic model [4], which optimizes the computational efficiency for fast
simulations in the operative room. Near-incompressibility is achieved with a
Poisson ratio ν of 0.488. The AL being stiffer than the PL, two different Young
moduli are used, EAL = 2.08MPa and EPL = 1.88MPa respectively [11]. In
this study we considered the cross-fiber stiffness (perpendicular to the mitral
annulus), lower than the fiber stiffness, to capture the radial deformations.

Chordae are modeled by piecewise tensile springs between papillary heads and
insertion points (Fig. 1), Fc,i = −kc,i(εc,i) × (Li − Li,0), i ∈ {marginal, basal}.
Li is the current elongation and Li,0 is the rest length defined as the dis-
tance between the papillary heads and the insertion points measured at mid-
diastole. The stiffness kc,i(εc,i) depends on the strain εc,i = (Li − Li,0)/Li,0 to
model the non-linear response of the chordae. At compression, ε < 0, kc,i =
0 g/mm (free compression). At low tension ε < 2.5%, chordae exhibit low stress-
strain behavior (Young moduli Ec,basal = 66 g/mm2, Ec,marginal = 312 g/mm2),
which then increases dramatically and almost linearly (Ec,basal = 2120 g/mm2,
Ec,marginal = 3406 g/mm2) [6]. Spring stiffnesses kc,i are calculated from the
chordae Young moduli by kc,i = A0,iEc,i/L0,i. A0,i is the chordae cross-section
at rest (A0,basal = 2.05mm2, A0,marginal = 0.40mm2).

Pressures being not available, we apply a generic profile that increases from
0mmHg to 120mmHg [9]. The motion of the papillary heads, modeled as spatial
points, and of the mitral annulus is prescribed from the automatic detection.
This contribution is of fundamental importance as valve closure highly depends
on the papillary positions and the shape of the annulus during systole [9]. As
mitral clip modifies the leaflets morphology only, it is reasonable to assume that
the acute motion of the annulus and papillaries stays unchanged (it depends
mostly on the ventricular mechanics). Self-collisions and frictions are handled
using collision springs.

The models are implemented in SOFA1, a real-time soft-tissue intervention
platform. The dynamic system is solved using co-rotational tetrahedral finite
elements to cope with large deformations and rotations [8]. The simulation time
is personalized and scaled such that the simulated MV closure is 10× longer than
what is observed in the images (from 70ms to 150ms) to handle the strong
and discontinuous contact forces. An implicit Euler solver is used to update
mesh positions. We finally stress that the pipeline is completely integrated and
automatic, although the user can manually adjust the models if necessary.

2.3 MitralClip Simulation

Virtual mitral clipping is performed interactively on the preoperative anatomical
model as illustrated in Fig. 2. Stiff springs (kclip = 1000 g/mm) are created
between the two leaflets to simulate the clip. Tissue properties are like in Sec. 2.2.

1 http://www.sofa-framework.org

http://www.sofa-framework.org
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Fig. 2. Virtual MitralClip procedure. (A) The user picks two vertices vAL and vPL on
each leaflet to create springs (red lines) that will (B) progressively bring the leaflets
close to each other and (C) stitch them. The procedure is done interactively.

3 Experiments and Results

Validation of the MV Anatomical Model. Automatic detection of the MV and its
subvalvular apparatus was quantitatively validated on 200 4D TEE images from
120 patients with various diseases (MV prolapse, calcified mitral annulus, steno-
sis, ventricular dysfunction, . . . ). Images were acquired with different capture
range and image resolutions. Three-fold cross-validation against manual delin-
eation yielded a point-to-mesh error of 2.75 ± 0.86mm (detection speed: 4.8 s
per 3D volume, Intel Core2Duo, 2.66GHz quad core, 2GB RAM). As shown in
Fig. 3, the model was able to faithfully track the MV even during valve closure.

Evaluation of MV Closure Simulation. Our simulation framework was evaluated
on eleven randomly selected patients from three hospitals with various degrees of
MV regurgitation or MV stenosis. The complete MV apparatus was detected, un-
der expert guidance, on clinical 4D TEE images (image resolution: 0.75−1.58mm
isotropic, 8−23 time frames). Papillary heads could be detected reliably as they
were visible on all images. The anatomical model at end-diastole, when the valve
is fully open, was used to simulate MV closure. Tetrahedral meshes showed no
skewed cells. The detected motion of the mitral annulus and papillary heads
were used as boundary conditions. Because the biomechanical parameters of
the leaflets and chordae are difficult to identify in clinical data, we decided to
use the nominal parameters reported in Sec. 2 for every patient. This enabled
us to evaluate the generalization of such an approach for future clinical use.
Table 1 reports the average point-to-mesh distances from the simulations to the

3D Volume 2D Views during Valve Closure

Fig. 3. Automatic detection of the mitral valve on a time sequence of 3D TEE. As one
can see, the detected model faithfully tracks the moving valve over time.
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Table 1. Point-to-mesh distance between simulated and detected closed configuration
of the MV valve. In average, the error (1.47 ± 0.24 mm) was of the same order of
magnitude as that of the automatic detection (2.75 ± 0.86 mm).

Patient Point-to-Mesh Error Patient Point-to-Mesh Error Patient Point-to-Mesh Error

01 1.33 ± 0.77 mm 05 1.56 ± 1.24 mm 09 2.00 ± 1.62 mm
02 1.16 ± 0.68 mm 06 1.36 ± 0.82 mm 10 1.53 ± 1.42 mm
03 1.56 ± 1.14 mm 07 1.36 ± 0.89 mm 11 1.25 ± 0.80 mm
04 1.31 ± 0.81 mm 08 1.76 ± 1.40 mm

Patient 11 Patient 03 Patient 10
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Fig. 4. Simulated MV closure in three patients compared to observed MV shape. In
seven out of eleven cases, the biomechanical model managed to simulate valve closure,
as in patient 03 and 11. In four patients, some chordae were too short to achieve a
correct closure, as in patient 10. See text for details.

anatomical models detected on the first frame when the MV is closed. The av-
erage error was 1.47 ± 0.24mm, which is of the same order of magnitude of the
automated detection. The biomechanical model correctly reproduced valve clo-
sure in seven patients (63%) despite the simplified leaflet model and the generic
parameters (Fig. 4, left and mid panels). On the other four patients, the valve
did not coapt correctly (Fig. 4, right panel). Nonetheless, correct coaptation
could be simulated by adjusting the rest length of selected chordae, which con-
firms their importance in MV function [9]. Simulation speed was ≈ 4 frames per
second (fps). Total simulation time was ≈ 20 s with a time-step Δt = 10ms (In-
tel Core2Duo, 2.66GHz dual core, 4GB RAM). Non-reported simulations with
Δt = {1ms, 0.1ms} yielded very similar results, confirming the temporal con-
vergence of the simulation. The entire process, from the TEE images to the
simulation, took about one minute.
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Simulation Segmentation

Fig. 5. To assess the ability of the model to predict MitralClip outcomes, the interven-
tion was simulated on the preoperative anatomy of a patient (Fig. 4, patient 1), with
preoperative boundary conditions (left panel). The result was qualitatively consistent
with the true postoperative outcome (right panel).

Simulation of Mitral Clip. We tested the ability of our model to predict the
acute outcome of MitralClip intervention in one patient (patient 3) for whom
intra-operative images just after clip release were available. Since the simulation
of valve closure on the preoperative anatomy was successful, we could repro-
duce the intervention on the preoperative anatomy and simulate the subsequent
valve closure (Fig. 2, frame-rate: 8 fps) using the preoperative biomechanical pa-
rameters and boundary conditions (mitral annulus and papillary heads motion).
Results were qualitatively similar to the real surgical outcome (Fig. 5).

4 Discussion and Future Works

We proposed in this paper an integrated framework for the personalized simu-
lation of MV closure and MitralClip procedure. Our approach, fully automatic,
enables easy and computationally efficient simulations. We could evaluate a
patient-specific biomechanical model of the MV in eleven patients. Results demon-
strated that despite the simplifications of our model and the generic parameters,
good prediction power can be achieved by using patient-specific anatomies and
mitral annulus and papillary heads motion. We also simulated MitralClip inter-
vention in one patient, resulting in promising predictions compared to postoper-
ative data. In some patients, valve closure could be achieved only by adjusting
chordae biomechanical parameters (rest length and stiffness). It is therefore im-
portant to model chordae correctly for accurate and predictive simulations. As
a first step, we proposed to estimate chordae rest length from the mid-diastole
images, when they are at rest. One could use inverse problem methods to further
personalize them, along with MV stiffness. Yet, detecting the insertion points re-
mains a technical challenge. The proposed framework can be easily extended to
other imaging modalities like TTE or CT, wherever the MV is visible. Future
works include the development of non-linear anisotropic model of MV [13], simu-
lation of valve opening to assess the effects of MitralClip on the diastolic function,
anatomical model improvement and validation on larger cohorts. To the best of
our knowledge, it is the first time that a biomechanical model of the MV is eval-
uated against in-vivo clinical data in a predictive manner. As illustrated by our
MitralClip simulation, our framework could open, once validated, new perspec-
tives to test MV therapies in-silico to optimize treatment outcome.
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Abstract. We have developed an automatic model-based deformable
registration method applicable to MR soft-tissue imaging. The registra-
tion algorithm uses a dynamic finite element (FE) continuum mechanics
model of the tissue deformation to register its 3D preoperative images
with intraoperative 1) 3D low-resolution or 2) 2D MR images. The regis-
tration is achieved through a filtering process that combines information
from the deformation model and observation errors based on correlation
ratio, mutual information or sum of square differences between images.
Experimental results with a breast phantom show that the proposed
method converges in few iterations in the presence of very large defor-
mations, similar to those typically observed in breast biopsy applications.

Keywords: Image registration, soft-tissue deformation, MR imaging,
breast biopsy, continuum mechanics, finite element method.

1 Introduction

Image registration is the process of aligning a pair of images to establish special
correspondence between their features. Co-registering images obtained through
multiple modalities or over a period of time can be instrumental in the diagnosis
of diseases. Modern computed tomography (CT) and magnetic resonance imag-
ing (MRI) systems can precisely image individual anatomy of human organs.
However, plans based on preoperative images are not always effective during
surgery because of possible movement and deformation of underlying tissue. In
the last two decades, a considerable amount of effort has been devoted to re-
search on developing intraoperative imaging techniques [1]. Although interven-
tional MRI (iMRI) systems provide intraoperative images, their long acquisition
time restricts the number of 2D slices that can be taken during the operation. A
single or even a few slices of data provide much less information than a volume of
high-resolution data. Furthermore, iMRI images often have lower signal-to-noise
ratio than diagnostic MR images [1].

Finite element method (FEM) discretization of the continuum mechanics
based model using elastic body deformation is the most popular physical model-
based analysis in various medical applications. This method is more accurate
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and reliable than other simpler methods such as mass-spring modeling [2]. FEM-
based deformation analysis has been extensively studied for surgical simulation
especially for modeling of brain shift and deformation in neurosurgery [3]. In
breast imaging, FE models have been used to predict mechanical deformations
during MRI-guided biopsy [4], and to validate non-rigid registration algorithms.
Moreover, they have been explored to model multi-object deformations in ab-
dominal region for deformable image registration [5]. Similarities (or differences)
between two sets of image data to be matched are used to deform the FE model
utilized in non-rigid registration. In most cases, local information in images such
as objects’ surfaces and extracted feature points are employed to find external
and internal forces applied to a discretized mesh [3]. In [4], landmarks are tapped
to the breast surface in order to track its movement during biopsy. One main
drawback of these methods is that they require user intervention. Another short-
coming is that surface construction via edge detection and feature extraction is
a difficult and unreliable process especially in multi-modal image matching.

In this paper we propose a FE model based deformable registration method
to volumetrically register high-resolution undeformed MR images of a breast
phantom to low-resolution deformed data. We also provide an algorithm to non-
rigidly register 3D undeformed images to 2D slices of the deformed data. In the
proposed method a dynamic FE model acts as a regularization constraint on the
image similarity criterion. The model not only leads the nonlinear optimization
problem involved in registration process to its global extremum, but also pro-
vides temporal correlation for information obtained through 2D slices over time.
This would allow tracking of the 3D volume deformation of soft-tissue based
on intraoperative 2D sequences of MR images using a filtering process. In the
volumetric registration, a voxel intensities based variational method is used to
implicitly compute the forces applied to the 3D model. The same method is em-
ployed to find displacements of the regular 2D grid of the preoperative volume
to match it with the 2D intraoperative image.

2 Methods

2.1 Mathematical Formulation of the Registration Problem

Given a reference image R and a template image T, image registration is basically
finding a reasonable displacement field u, so that the transformed image T [u] is
similar to R. The objective function to be minimized is:

J(u) = I(T [u], R) + αS(u); α ∈ �+ (1)

where I is the distance (similarity) measure between two images. In this pa-
per, three different measures are considered: sum of squared differences (SSD)
between the images which is a distance measure, mutual information (MI) and
correlation ratio (CR) of two image data which are both similarity measures.
In (1), S is a regularization term which ensures that the displacement field is
“reasonable”. The linear elastic energy of the deformable body is used as the
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regularization term in our work [3,4,5]. Finally α weighs the importance of the
regulation term compared with the distance (similarity) measure.

In a linear elastic continuum with no initial strains or stresses the potential
energy of a body subjected to externally applied forces can be expressed as [6]:

E =
∫

Ω

σT ε dΩ +
∫

Ω

uT f dΩ (2)

where f is the vector of forces applied to the elastic body, u the displacement
field, and Ω is the body of the elastic subject. Also, ε and σ are the strain
and stress vectors respectively which are explained in details in [6,7]. Based on
the concept of a FE discretization, a volume of elastic body is approximated as
an assemblage of discrete finite elements interconnected at nodal points on the
element boundaries. Hence, displacements within the elastic body can be written
as a function of the displacements at the element’s nodal points weighted by the
element’s shape function [7]. Discretizing the continuous body with tetrahedral
elements, for the volume of every tetrahedral element el with 4 vertices points,
the potential energy function at every node i (2) can be written as:

E(uel
i ) =

∫
Ω

4∑
j=1

uel
i

T
Bel

i

T
DBel

j u
el
j dΩ +

∫
Ω

uel
i

T
fel

i dΩ (3)

Here uel
i is the nodal points displacement, fel

i is the vector of forces concentrated
at the nodal points, D is the elasticity matrix characterizing the material’s prop-
erty, and Bel

i depends on the shape function [6]. fel
i can be computed as a clas-

sical optical flow field between the images to be matched; this would provide a
semi-implicit method where the optical flow field would be an initial estimate
of the deformation field which is regularized by the elastic model [7]. In the
discretized domain, the objective function to be minimized (1) would become:

J(uel
i ) = I(T [uel

i ], R) + α

∫
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4∑
j=1

uel
i

T
Bel
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T
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j u
el
j dΩ (4)

If J has a local extremum at uel
i , its first variation at uel

i must vanish, i.e.
dJ(uel

i )

duel
i

= 0. Then using Eq. (4), we have:

dI(T [uel
i ], R)

duel
i

+ α

∫
Ω

4∑
j=1

Bel
i

T
DBel

j u
el
j dΩ = 0 (5)

Comparing (3) and (4), and considering forces fel
i concentrated at the nodal

points, (5) can be written in a matrix form for each element as Keluel = fel

where Kel
i,j =

∫
Ω
Bel

i
T
DBel

j dΩ is a 3×3 matrix and every element i,j refers

to pairs of nodes of the element el ; fel
j = − 1

α

dI(T [uel
j ],R)

duel
j

is a 3×1 vector. The
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12×12 matrices Kel and the vector fel
j are computed for each element and are

then assembled in a global system as:

Ku = f(u) (6)

where K is the global stiffness matrix associated with the volumetric mesh, u
is the vector of nodal displacements and f(u) is the vector of nodal forces. The
solution to this nonlinear system of equations will provide the displacement field
corresponding to the global minimum of the objective function (1).

2.2 Dynamic Finite Element Model

An iterative numerical method has to be employed to solve the nonlinear sys-
tem of equations in (6). To this end, in this paper we consider a second-order
dynamical system of the form of [8]

Mü+ Cu̇+Ku = f(u) (7)

where M is the mass matrix of the elements concentrated at nodes, and C =
βM + γK is the damping matrix for constant values of β and γ. It is noted that
the steady-stated equilibrium of the this dynamical system is the solution to the
static system of equations in (6). The dynamic equations can be solved using
existing implicit or explicit numerical integration routines over time.

This dynamic model also allows for real-time intraoperative registration of a
deforming organ in our approach. It provides a temporal correlation model for
the images taken at different sample times. Such situation can arise, for example,
in real-time MR based biopsy interventions where the soft tissue undergoes de-
formation due to the force of needle insertion. In this paper a modal-based model
reduction is employed to solve (7) more efficiently [8]. Using this method, very
fast modes of (7) are eliminated to significantly reduce computations without
affecting the steady-state solution.

2.3 3D Volumetric Registration

In the volumetric registration, 3D high-resolution and 3D low-resolution MR
images of an undeformed and deformed breast phantom are the template and
reference image data sets, respectively. The nodal forces are computed based on
the derivative of the distance (similarity) measure. By letting h denote a generic
intensity comparison function, f(u) at each iteration can be computed as:

f(u) = − 1
α
h(T [u], R)∇T [u] (8)

where ∇T [u] is the gradient of the template image in every iteration. The ex-
act form of h(·, ·) for three (similarity) measures, i.e. SSD, CR and MI, are
given in [9]. The nodal forces computed from (8) are applied to the dynamic
model in (7) and the resulting displacement field is used to interpolate a new 3D
template image. This new template image is used to calculate the nodal forces
in the next iteration. The process continues until the solution converges to an
equilibrium.
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2.4 2D-3D Deformable Registration

This section presents a method for deformable registration of a 3D preoper-
ative (undeformed) MR image to one or more 2D intraoperative (deformed)
MR images. For any 2D slice of the intraoperative image data, the correspond-
ing 2D slice of the preoperative image data is found based on the position
and the orientation of the virtual 2D iMRI plane. We employ a method sim-
ilar to that of Section 2.3 to find the displacement of voxel points to match
these two slices. Hence, for every point of the regular grid y, its displacement
dy = −λh(T [u(y)], R)∇T [u(y)] where λ ∈ �+ is a constant gain. It should be
noted that dy is a 3×1 vector, i.e. the computed displacement is not restricted
to the plane of the 2D slice. The shape functions of the elements relate the dis-
placements of regular grid points of the 2D slice to those of the nodal points of
the FE mesh in which these regular points reside. This essentially constitutes the
process measurement in our filtering approach to the deformation estimation.

The discretized version of the dynamic deformation model in (7) can be writ-
ten in the following general state-space form:

x(k + 1) = Ax(k) +Gf z(k) = Hx(k) (9)

where x is the vector of system states, i.e., nodal displacements and velocities,
and z(k) is the vector of measurements, i.e., the computed displacements at the
regular 2D grid points. Moreover, A, G, and H are the state transition matrix,
the model input matrix and the model output matrix, respectively. Having the
model (9) and the measurements, one can iteratively estimate the system states
using a Kalman-type filtering process [10]. The deformed 3D intraoperative im-
age can then be obtained by an interpolation of the deformed FE mesh.

3 Experiments and Results

A triple modality biopsy training breast phantom (CIRS model 051) is used for
obtaining the experimental data. A 3D volume high-resolution (512×512×136)
set of MR images has been taken from the undeformed phantom using a GE
3T Signa MRI machine. Also, two sets of 3D high-resolution (512×512×136)
and low-resolution (64×64×32) are taken from the deformed phantom. Fig. 1
shows the apparatus developed for deforming the phantom and two sample im-
ages taken in undeformed and deformed states. The device in Fig. 1(a) is made
of plexiglass and is MR compatible. Four capsules of vitamin E are attached to
the device as landmarks to rigidly register the reference coordinate frames of
the deformed and undeformed image data sets. An isotropic linear elastic defor-
mation model with the Young’s elasticity modulus E = 105 and Poisson’s ratio
ν = 0.45 has been used in the experiments. Since the deformation model merely
acts a constraint in the registration process, these parameters could essentially
be tuned by the user to achieve a desirable outcome. A cubic mesh of tetrahedral
elements encompassing the whole volume of the deformed and undeformed data
is created using the COMSOL Software. Fig. 2 depicts the volumetric mesh of
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(a) (b) (c)

Fig. 1. The experimental setup and sample images: (a) the apparatus used for deform-
ing the breast phantom, (b) image of undeformed phantom, (c) image of deformed
phantom

7502 elements and 1601 nodal points before (a) and after (b) deformation. It
is clear from this figure that the mesh has to translate and deform in order to
cope with the large deformation in the phantom. It should be noted that our
approach requires no segmentation of the preoperative image since it does not
use a specific geometry for the mesh and applies forces to all nodes.

The evolution of three different distance (similarity) measures in the itera-
tive registration of 3D high-resolution to low-resolution are shown in Fig. 2(c).
For this experiment, the registration is done based on the SSD measure, and
CR and MI are computed and used for comparison in each iteration. It is ev-
ident that the algorithm converges to a solution after about 15 iterations. It
is also shown in Fig. 3 that registering the 3D high-resolution preoperative
image data (a) to the 3D low-resolution intraoperative image data (b) pro-
duces a deformed preoperative image (c) which is very similar to the actual
high-resolution intraoperative image (d). A quantitative comparison of the three
distance (similarity) measures for three different measures based registration
is given in Table 1. For a better comparison, normalized mutual information
(NMI) is computed instead of MI because 0≤NMI≤2 for any two sets of image
data. The optimal values of the image similarity metrics are zero for SSD, 1 for
CR, and 2 for NMI. In Table 1 different distance (similarity) measures for the

(a) (b)
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Fig. 2. (a) undeformed mesh, (b) deformed mesh, (c) distance (similarity) measures
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(d)(c)(b)(a)

Fig. 3. The x-y view of the (a) preoperative images (template data), (b) low-resolution
intraoperative images (reference data), (c) deformed preoperative images after regis-
tration, (d) actual high-resolution intraoperative image

Table 1. Distance (similarity) measures for images with (0-255) gray scale values

3D volumetric registration 2D-3D registration

Registration SSD CR NMI SSD CR NMI

SSD based 139×106 0.941 1.151 167×106 0.910 1.061

CR based 141×106 0.956 1.159 172×106 0.918 1.078

MI based 152×106 0.923 1.143 181×106 0.882 0.970

case of 2D-3D registration are also given. These measures are computed between
the 3D volume of the actual high resolution intraoperative images and the 3D
volume of deformed preoperative images obtained through registration. In this
case, 15 slices of the 3D volume from various orientations are used and for each
slice the iterative Kalman-type filter is executed for 10 time steps.

Table 1 shows that CR-based registration yields the most optimal values of
the three metrics, especially in volumetric low-high registration. One reason for
the poor performance of MI-based registration may be the rather low resolution
images used for registration and the highly nonlinear nature of this similarity
measure. Moreover, the results for 3D volumetric registration is better than 2D-
3D registration. The 2D-3D method could be improved using better estimation
methods and more 2D slices over time.

4 Discussion and Conclusion

A model-based deformable image registration method has been proposed to
register high-resolution 3D volume of preoperative MR images to either low-
resolution 3D volume or 2D sequences of intraoperative MR images. Within a
filtering and estimation framework, the approach employs a continuum mechan-
ics based model of deformation and similarity (distance) measures such as SSD,
CR, and MI to non-rigidly register the images. The method converges in few
iterations in the presence of large deformations in the experiments with a breast
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biopsy phantom. The registration algorithm is based on voxel intensities and
requires no feature extraction or image segmentation.

The proposed registration method involves tasks such as three-linear inter-
polation, solving the equilibrium equations in dynamic FE analysis using the
Newmark method [8], finding grid points deformation based on the shape func-
tion and matrix computations, which are all computationally expensive. However
these tasks are highly amenable to parallel computing using graphics processing
units (GPUs). We are currently working on the implementation of the algorithms
on a GPU. Our preliminary results for SSD based volumetric registration indi-
cate a factor of 60 speedup over an optimized CPU-based implementation. In
future we will extend the algorithm for multi-modal registration. In particular,
we will investigate 2D-3D US to MR registration for medical diagnostic as well
interventional applications.
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Shahram Shirani for their comments and feedback on the work.
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Abstract. In this paper, we present a method to simulate and visualize
blood flow through the human heart, using the reconstructed 4D motion
of the endocardial surface of the left ventricle as boundary conditions.
The reconstruction captures the motion of the full 3D surfaces of the
complex features, such as the papillary muscles and the ventricular tra-
beculae. We use visualizations of the flow field to view the interactions
between the blood and the trabeculae in far more detail than has been
achieved previously, which promises to give a better understanding of
cardiac flow. Finally, we use our simulation results to compare the blood
flow within one healthy heart and two diseased hearts.

1 Introduction

Following a heart attack or the development of some cardiovascular diseases,
the movement of the heart walls during the cardiac cycle may change. This
affects the motion of blood through the heart, potentially leading to an increased
risk of thrombus. While Doppler ultrasound and MRI can be used to monitor
valvular blood flow, the image resolutions are low and they cannot capture the
interactions between the highly complex heart wall and the blood flow. For
this reason, with the rapid development of high-resolution cardiac CT, patient-
specific blood flow simulation can provide a useful tool for the study of cardiac
blood flow.

Recently, Mihalef et al. [9] used smoothed 4D CT data to simulate left ven-
tricular blood flow, and compared the flow through the aortic valve in a healthy
heart and two diseased hearts. However, the models derived from CT data in [9]
were too highly smoothed to capture the local structural details and were not
useful for understanding the true interactions between the blood flow and the
walls.

Later, in [7], more accurate heart models were achieved by generating a mesh
from high-resolution CT data at mid-diastole. Then, motion was transferred to
this model from the smooth mesh motion obtained from the same CT data to
create the animation. This allowed for more realistic features to be present on the
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(a) (b)

Fig. 1. Meshes reconstructed from CT data (valves removed). (a) Healthy heart (b)
Diseased heart.

heart walls in the simulation, including the papillary muscles and some trabec-
ulae. However, while this approach was an improvement from the smooth-wall
assumption, the trabeculae were missing details and did not move accurately.

Earlier work in blood flow simulation used less refined models. For example, [5]
was the first to extract boundaries from MRI data to perform patient-specific
blood flow simulations. Later, [8] used simple models of the left side of the
heart, with smooth ventricular walls, and imposed boundary conditions in the
valve regions. In 2010, [6] developed a technique to drive the deformation of a
smoothed left ventricle by implicitly coupled fluid motion.

In this paper, we use an improved method of creating the mesh to capture
these smaller details and generate a more accurate simulation. To the best of
our knowledge, we are able to visualize blood flow in unprecedented detail.

2 Data Acquisition

The CT images were acquired on a 320-MSCT scanner (Toshiba Aquilion ONE,
Toshiba Medical Systems Corporation) using contrast agent. This advanced di-
agnostic imaging system is a dynamic volume CT scanner that captures a whole-
heart scan in a single rotation, and achieves an isotropic 0.3mm volumetric reso-
lution. A conventional contrast-enhanced CT angiography protocol was adapted
to acquire the CT data in this work. After the intravenous injection of contrast
agent, the 3D+time CT data were acquired in a single heart beat cycle when the
contrast agent was circulated to the left ventricle and aorta. After acquisition,
3D images were reconstructed at 10 time phases in between the R-to-R waves
using ECG gating. The acquired isotropic data had an in-plane dimension of 512
by 512 pixels.

The detailed cardiac shape features can be used as the boundary conditions
and incorporated in a fluid simulator to derive the hemodynamics throughout
the whole heart cycle. Our goal in defining these boundary conditions is to
capture the fine detail structures of the myocardium, as well as the one-to-one
vertex correspondence between frames, which is required in the fluid simulation.
There has been much recent work in cardiac reconstruction, such as [11], who
combined high-resolution MRI images with serial histological sectioning data
to build histo-anatomically detailed individualized cardiac models to investigate
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cardiac function. In this work, we use the techniques described in [3]. Here, snake
based semi-automatic segmentation is used to acquire the initial segmentation
from high resolution CT data for an initial (3D) frame of data. The initial mesh
is generated as an isosurface of the segmentation, which is deformed to match
the shape of the heart in each consecutive frame. also during the deformation,
we achieve the necessary one-to-one correspondence between frames.

The aortic and mitral valves are thin and move fast, and so the CT data is
not currently able to adequately capture these details. We add 3D models of the
valves created from ultrasound data to each mesh in the sequence, and open and
close the valves at the appropriate time steps.

Reconstruction results for a healthy and a diseased heart can be seen in Fig-
ure 1. Note the high level of structural detail at the apex. To the best of our
knowledge, this has never been simulated before.

3 Fluid Simulation

The motion of an incompressible fluid is governed by the laws of conservation of
momentum and mass, modeled by the Navier-Stokes (NS) equations:

ρ(∂u
∂t + u · ∇u) = −∇P + μ∇2u,

∇ · u = 0.

Here, ρ is the fluid density, u is the 3D velocity vector field, P is the pressure
field, and μ is the coefficient of viscosity. We seek to solve these equations for
velocity and pressure.

Foster and Metaxas [2] were the first to develop a fast method of solving the
NS equations for graphics applications by applying a staggered grid across the
domain and explicitly solving for velocity at the cell faces. They then used SOR
to solve for pressure and correct the velocities to maintain incompressibility.

Our fluid-solid interaction system uses a “boundary immersed in a Cartesian
grid formulation”, allowing for an easy treatment of complex moving geome-
tries embedded in the computational domain. Recent work that employs such a
formulation is [13], which applies the formulation of [12] to both graphics and
medical simulations. Recently, [1] implemented the approach of [4] to obtain a
system that can efficiently deal with complex geometric data, such as a system
of blood vessels.

The heart models used here are embedded in a computational mesh of 1003

cells on which the full NS equations are solved using FDM. The blood is modeled
as a Newtonian fluid, with viscosity of 4mPa· s and density of 1050kg/m3, which
are physiologically accepted values for normal human blood[9]. The heart model
is given to the solver as a set of meshes with point correspondences, which
allows for easy interpolation and also obtaining the velocity of the heart mesh
at every point in time. Our system represents the 3D meshes as a Marker Level
Set(MLS) [10], where markers are placed on the boundary and are used to correct
the level set at every time step. Since markers are only placed on the surface, MLS
has been proven to be more efficient and more accurate for complex boundaries.
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(a) (b) (c)

Fig. 2. Visualization of streamlines within the healthy heart. (a) Streamlines of cardiac
blood flow during diastole. (b) Blood flow near apex during diastole. (c) Blood flow
during systole at the apex, against the trabeculae.

The MLS and its velocity are rasterized onto the Eulerian grid and are used
to impose the appropriate boundary conditions in the fluid solver. A simulation
of two complete cardiac cycles takes about four days to complete on a machine
with a Core 2 Quad processor and 8GB of RAM.

4 Visualizations

With the fluid velocity fields and level sets generated for each time step, we
use Paraview to visualize the simulations. We analyzed a healthy heart and two
diseased hearts, and we describe below our visualization methods and our results.

Blood Flow Velocity. We performed a visualization of the velocity field within
the heart, as seen in Figure 3. The velocity of the blood at a given point is
represented by a cone pointed in the direction of the flow. The size of cone
increases linearly as the velocity increases. We also adjust the color of a cone
by first setting its hue to 160 (blue), and then linearly lowering this value to a
minimum of 0 (red) as velocity increases. The magnitude of fluid velocity ranges
from 0-.9 m/s.

Streamline visualizations are shown in Figure 2. The color at a point within
a streamline is chosen in the same way as the cones described above. In order to
disambiguate direction, we add cones that point in the direction of flow

4.1 Blood Residence Time

In addition to the blood flow velocities, we wish to visualize the residence time
of blood within the heart. By doing so, we can quantitatively determine regions
of the heart that are at greater risk of thrombus, as slower flows are known to
be a significant factor predisposing to thrombus formation.

At the initial time step, ten thousand particles are generated randomly within
the heart. At the beginning of each time step, new particles are generated at the
valves, allowing fresh blood particles to enter the heart during diastole. Each new
particle has an initial age of zero, and this age is incremented at every time step.
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At each consecutive time step, we determine a particle’s velocity by interpo-
lation, given the fluid velocities at the center of each cell. Each particle’s new
position is calculated using Euler time integration. Then, any particle in a cell
exterior to the heart is removed from the system, and the average particle resi-
dence time within each cell can then be easily determined. We run this for four
cardiac cycles and create volumetric visualizations, as seen in Figure 4. Here,
blue represent regions in which average residency is less than 1 cardiac cycle,
green-yellow represents 1-3 cardiac cycles, and red represents 3-4 cycles.

We can also take advantage of these particles in validation of our simulation,
by computing an estimated ejection fraction. During systole, we know exactly
how many particles there originally existed in the system, and how many are
being expelled at each time step. To estimate the ejection fraction, we simply
divide the total number of deleted particles by the original number of particles.

5 Discussion

The streamline visualizations provide detailed information on the trabeculae-
blood interaction. Figure 2(b), taken during diastole, demonstrates how the
complex surface causes the flow to move through and around the empty spaces
between the trabeculae. Then, in Figure 2(c), during systole, we see another
example of how the blood is forcefully expelled out of the spaces between the
trabeculae, rather than simply flowing directly towards the aortic valve as older
methods with simpler meshes have suggested.

The simulation and visualization methods are performed described above on
three different hearts. The first is a healthy heart with no visible medical prob-
lems with an ejection fraction of about 50%. The second is a heart that has
simulated hypokinesis, where the motion of the heart walls is decreased at the
apex by a maximum of 50%. The third comes from a patient who has post
tetralogy of Fallot repair. This heart is known to suffer from right ventricle hy-
pertrophy, significant dyssynchrony in the basal-midseptum of the left ventricle,
and a decreased left ventricle ejection fraction of about 30%.

The streamline visualizations provide detailed information on the trabeculae-
blood interaction. Figure 2(b), taken during diastole, demonstrates how the com-
plex surface causes the flow to fill the empty spaces between the trabeculae.
Then, in Figure 2(c), during systole, we see another example of how the blood
is expelled out of the spaces between the trabeculae, rather than simply flowing
directly towards the aortic valve as older methods with simpler meshes have
suggested.

Validation is a difficult task, as current imaging techniques, such as PC-MRI,
are not able to capture flow information at the required level of detail for use-
ful comparison. We performed a partial validation by comparing the estimated
ejection fraction to the true ejection fraction. The computed ejection fraction
is approximately 45% for the healthy heart, 40% for the hypokinesis heart, and
30% for the dyssynchronous heart. These values for the healthy and dyssyn-
chronous heart are in agreement with the true values, so we have confidence in
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3. Velocity fields at various time steps for three different hearts. Top row: Healthy
Heart, Middle row: Hypokinetic heart, Bottom row: Dyssynchronous heart. Left col-
umn: Diastole, Middle column: Systole, Right column: Velocity field at trabeculae
during systole.

the rest of our results. Performing similar validation techniques to a smoothed
healthy heart model, we computed an ejection fraction of about 40%, slightly
lower than that of our complex model. However, it may not be especially useful
to compare the accuracy of different modeling methods using this approach, as
the ejection fraction does not give information about the flow local to the apex,
the region of primary interest.

Velocity field visualizations are illustrated in Figure 3. We can see that in
the healthy heart, the inflow during diastole is significant and fairly uniformly
distributed, circulating blood throughout the heart. During systole, the velocity
field throughout the heart remains high, and fluid in the apex moves toward the
valves. In Figure 3(c), we see more detail of the interactions between blood flow
and the trabeculae, as the blood is visibly expelled from these regions. However,
in the heart suffering from hypokinesis, we find that the velocity field is much
weaker toward the apex during both diastole and systole. In Figure 3(f), we also
see that the trabeculae are no longer adequately expelling blood as they do in
the healthy heart case. We also see in Figure 3(g)-(i) that the flow patterns in
the heart with dyssynchronous heart wall movement appears non-normal, with
overall lower velocities and even less fluid being pushed out from the trabeculae.
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(a) (b) (c)

Fig. 4. Visualization of average particle residence time. Colors closer to red represent
longer average residence time. (a) Healthy Heart (b) Heart with Hypokinesis (c) Heart
with dyssynchronous wall movement.

We then compare the visualizations of the average particle residence times
for each of the three simulations, as seen in Figure 4. Each of these images were
made at the same time step, at the start of systole, after four cardiac cycles. We
find that in Figure 4(a), in the healthy heart, nearly the entire domain contains
blood with average residence time of less than three cycles, suggesting that the
blood is not remaining stagnant, and turning over well between cardiac cycles.
In contrast, Figure 4(b) shows that in the heart suffering from hypokinesis, the
average residence time is significantly higher near the walls, particularly near
the hypokinetic apex. Finally, in Figure 4(c), we find that a very significant
region of the blood has a long residence time, suggesting that due to the low
ejection fraction and relatively low fluid velocities, blood is not being adequately
circulated and thus is remaining stagnant near the walls, again, particularly
toward the apex of the heart.

6 Conclusions

In this paper, we have described our new framework to generate detailed mesh
sequences from CT data, and used them to run patient-specific blood flow simu-
lations. We then created several visualizations to reveal the interactions between
the complex trabeculae of the heart wall and the blood, which has never been
possible before, and used them to compare the flow fields between a healthy
heart and two diseased hearts, which would potentially be extremely useful to
doctors to help in diagnosis and treatment plans. This is the first time that in-
tracardiac blood flow fields and their interaction with the heart wall have been
investigated at this level of resolution.
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Abstract. We present a novel Bayesian framework for non-rigid mo-
tion correction and pharmacokinetic parameter estimation in dceMRI
sequences which incorporates a physiological image formation model into
the similarity measure used for motion correction. The similarity mea-
sure is based on the maximization of the joint posterior probability of the
transformations which need to be applied to each image in the dataset to
bring all images into alignment, and the physiological parameters which
best explain the data. The deformation framework used to deform each
image is based on the diffeomorphic logDemons algorithm. We then use
this method to co-register images from simulated and real dceMRI data-
sets and show that the method leads to an improvement in the estimation
of physiological parameters as well as improved alignment of the images.

1 Introduction

Colorectal cancer is the third most common cancer and the fourth largest cause
of cancer deaths worldwide, with an estimated 1.2 million cases and 609,000
deaths in 2008 alone [5]. The standard protocol for treating people with col-
orectal cancer is to give the patient 6-12 weekly cycles of chemoradiotherapy
and then to surgically remove the tumour. Roughly 30% patients do not re-
spond to chemoradiotherapy, and hence should have gone straight to surgery
(non-responders), whereas 15-20% respond completely and still undergo unnec-
essary surgery (responders). Although there is currently a lack of any objective
mechanism of discriminating between these two groups at an early stage in the
treatment, dynamic contrast-enhanced MRI (dceMRI) has recently emerged as
a promising non-invasive imaging technique that could help in making these
clinical decisions [11].

Anatomical MRI is used widely in oncology since it shows good contrast
between soft tissues, and because it does not involve any harmful radiation.
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In dceMRI, the patient is injected with a paramagnetic contrast agent (CA)
and then imaged every 10-12 seconds for 5-6 minutes after injection. The data
obtained can be used to calculate physiologically relevant parameter maps by
fitting an appropriate pharmacokinetic (PK) model to the signal-intensity curve
obtained at each voxel, and these maps can then be used to assess tissue perfusion
and heterogeneity. However, the biggest challenge in trying to calculate these PK
parameter values for each voxel is posed by patient motion during the scan, which
causes a voxel in the image to correspond to different anatomical locations at
different time points. This problem is more pronounced in the case of colorectal
images, since movement in this area cannot be constrained.

The problem of PK-parameter estimation for dceMRI images has been ad-
dressed previously in [4], [7], [3] and [12]. In [7] the authors focussed on esti-
mation of PK-parameters for each voxel using a Bayesian model, whereas in
[3] and [12] motion correction and parameter estimation were tackled in a se-
quential manner. In [3] the authors incorporate a PK model into the similarity
measure used for registration of images, but this model only allows for simple
translations of the image and is based on curve-fitting at each iteration, which is
computationally very expensive. In [12], the images are registered using mutual
information as a similarity measure and B-Splines as a deformation framework.
The PK-parameters are then estimated by fitting curves to the data for each
voxel. In this paper we have addressed both problems in a unified probabilistic
framework. In Section 2 we describe our algorithm in detail. In Section 3 we
show results on simulated and real data, and finally conclude in Section 4.

2 Methods

2.1 Similarity Measure

The main contribution in this paper is to derive a Bayesian similarity measure
for simultaneous motion correction and PK-parameter estimation in dceMRI
scans. It has been shown in [6] that most of the conventional similarity mea-
sures used in image registration can be derived in a Bayesian manner if we
assume certain image formation models. We have followed the same general-
ized approach to derive a similarity measure for motion-correction in dceMRI
sequences by assuming an image formation model based on a PK model. The
key assumption that we make in order to define our Bayesian similarity measure
is that the ‘true’ uncorrupted image Xi (for each time-point i = 1, ..., t) is a
function of some physiological characteristics of the tissue, i.e. Xi = fi(θ). The
similarity measure used to co-register all the images obtained during the scan is
based on maximizing the joint posterior probability of the set of transformations
T = {Ti}i=1,..,t that need to be applied to the observed images in order to re-
cover the ‘ground-truth’ images and the set of PK-parameters θ = {θj}j=1,..,N ,
which provide the best-fit curve to the intensities observed at each voxel. In this
paper, we have assumed that the concentration of CA at each voxel is governed by
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the Tofts pharmacokinetic model [8] assuming the arterial input function pro-
posed by Weinmann et al. [10], and is given by:

C(t) = DKepVe

{
3.99

(
e−Kept − e−0.144t

0.144−Kep

)
+ 4.78

(
e−Kept − e−0.0111t

0.0111−Kep

)}
(1)

Here C(t) is the concentration of CA at time t,Kep and Ve are the two parameters
of the model (per voxel), and D is the dosage of the CA. We have chosen this
because it is a simple yet widely accepted PK model that has physiologically
relevant model parameters. However, it is important to remember that the PK
model is simply one component of our algorithm, and could be replaced with
any other PK model if desired.

The MR intensity observed at time t is a function of C(t), the MR intensity
before injection of CA (i.e. the pre-contrast image X0), the T1-relaxation time
of the tissue, and the MRI acquisition parameters. Previously, the concentration
of CA and the signal intensity were thought to be linearly related, but recent
studies have shown that this relationship is quite complex and non-linear [1]. In
our implementation, we have incorporated this non-linear relationship between
the CA concentration and the MR intensity for greater accuracy.

In our model, we assume that the set of images actually observed, Y =
[Yi] i=1,..,t is obtained when each original image Xi is deformed (due to patient-
motion) and then subjected to some noise process, i.e.

Yi = Ti (Xi) + εi (2)

Here, εi is a Gaussian noise-process with 0 mean and standard deviation σi.
In this paper, we assume that the standard deviation for the noise process is
constant for all time-points, i.e. ∀i, εi ∼ N (0, σ). The physiological parameters
of interest at each voxel are given by θ = [Kep,Ve] and the intensity of voxel j at
time-point i can be written as fi(θj). It is worthwhile noting that the intensity in
a voxel at time t also depends on the intensity at that voxel in the pre-contrast
image X0, but this dependence has been left implicit in our notation. The entire
ground-truth image Xi can be expressed as fi(θ), where θ = {θj}j=1,..,N and we
can re-write our image formation model as Y = T (f(θ)) + ε, where each term
is actually a t-dimensional vector, and each element of this vector is an image
with N voxels. In this scenario, the likelihood term becomes:

P (Y | X0,T ,θ, σ) = P
(
ε =

∥∥f(θ) − T−1 (Y )
∥∥) (3)

=
1

(2πσ2)N/2
exp

(
−

∥∥f (θ) − T−1 (Y )
∥∥2

2σ2

)
(4)

Here X0 is the true pre-contrast image (which is known to us) and σ is the
unknown noise parameter. We are interested in estimating the set of transfor-
mations T̂ , and PK parameters θ̂ which maximize the joint posterior probability:

P (θ,T | X0,Y , σ) ∝ P (Y | X0,T ,θ, σ)P (θ)P (T ) (5)
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In this paper, we assume that the pre-contrast image X0, the set of trans-
formations T , the physiological parameter θ and the noise parameter σ are all
independent of each other and that the prior distributions on these terms are un-
informative. However, our framework allows us to incorporate informative priors
on any of these terms if required. Thus, the basic steps of our algorithm are:

– Step 1: Choose initial values for θ and T and calculate P (θ,T | X0,Y , σ).
– Step 2: Calculate ∂

∂T (P (θ,T | X0,Y , σ)), ∂
∂θ (P (θ,T | X0,Y , σ)) using the

current estimates of θ and T .
– Step 3: Use the gradients calculated in Step 2 to update the values of θ and

T (simultaneously) so that P (θ,T | X0,Y , σ) increases.
– Step 4: Repeat Steps 2 and 3 using the new estimates of θ, T and P (θ,T |
X0,Y , σ) until convergence.

In Step 1, the initial value of θ is chosen by fitting a curve through the initial
data for each voxel, and T is initialized as the identity transformation. Since
the choice of σ only scales the gradients, we set it to 1. The main step in this
procedure is to calculate the analytic derivative of the joint posterior probability
with respect to the transformation parameters and the PK-parameters. We then
use these derivatives in a Gauss-Newton optimization framework to find:

[θ̂, T̂ ] = argmax
θ,T

P (θ,T | X0,Y , σ) (6)

2.2 Diffeomorphic Registration Framework

Since our objective is to correct for patient motion during a single scan, it would
be natural to assume that there should be no change in topology when we apply
the deformations. In other words, we would expect all deformations to be in-
vertible and smooth. For these reasons, we have chosen to use the diffeomorphic
deformation framework based on the LogDemons approach followed in [9], where
the transformation that needs to be applied to each image is parametrized by
a stationary velocity field instead of a displacement field. In other words, there
is a 3D velocity vector associated to each voxel, and each transformation Ti is
parametrized by the matrices [Ui, Vi,Wi], where U , V and W are the components
of the velocity field along the X, Y and Z axis respectively. In our implemen-
tation, the update to the velocity field at a particular time point i is taken to
be dUi = ∂

∂Ui
(P (θ,Ti | X0, Y, σ)), and similarly for V and W . We then find the

resulting deformation by dividing the velocity field into small time-steps and
integrating over it for one unit of time, as explained in [9].

3 Results

3.1 Tests on Simulated Data

Our main contribution in the motion-correction and parameter estimation algo-
rithm described above is the Bayesian similarity measure that has been used to
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co-register all the images. Thus, we were interested in comparing our method
with motion correction algorithms using the same deformation framework, but
different similarity measures. For this purpose, we compared our algorithm with
the same framework using sum-of-squared differences (SSD), mutual information
(MI) and block-wise normalized cross-correlation (NCC) as a similarity measure,
as described in [2]. In order to use these other similarity measures within our
framework, we replaced the gradient with respect to the transformation T cal-
culated in Step 2 of our algorithm with the gradient of the respective similarity
functions, and ignored the gradient with respect to the PK-parameters.

We generated 5 simulated datasets by choosing a small ROI in a pre-contrast
image volume from a real dceMRI scan and simulated contrast uptake using the
Tofts model and 5 different artificial parameter maps for θ (starting with only
one spherical region of high θ values at the centre, and then choosing a larger
number of high-θ regions for each new dataset). The pre-contrast ROI volume
was of dimensions 100× 100× 52, and we used 10 different time-points for each
dataset. To simulate motion, we deformed each image independently by taking
a grid of dimensions 5 × 5 × 4 and applied a random displacement to each grid
point and then upsampled the grid to the image volume. We applied Gaussian
smoothing to the final deformation field before applying it to the image with
simulated contrast. This is equivalent to using a radial basis function for each
image and convolving it with a Gaussian kernel. The parameters for the artificial
deformations were chosen to be such that the maximum deformation in the final
deformation fields were of the order ±3.5 voxels (±5 mm) along each direction,
and there were no negative Jacobians.

Fig. 1. An axial slice of the 1st time-point image (1) and voxel plots for the locations
shown in red (2) and blue (3). The signal-intensity curve in the ground-truth image
is shown in green, the one observed before registration is shown in dark blue, the one
obtained after SSD registration is shown in light blue, after NCC registration in purple,
and after applying our method in red.

Table (1) shows the average results obtained after testing each method on
the 5 datasets. In order to test SSD, MI and NCC, we registered all the images
in each dataset to the first time-point image (Method A), the 5th time-point
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Table 1. Average results on simulated data. BR stand for Before Registration, MSE for
Mean Squared Error in intensity values (between the registered images and the original
simulated images), and TRE for Target Registration Error (i.e. the average difference
between the ground truth deformation field, and the deformation field estimated by
the algorithm).

Method A Method B Method C
Measure BR MI SSD NCC MI SSD NCC MI SSD NCC Our Method

MSE 0.159 0.101 0.116 0.062 0.096 0.139 0.061 0.095 0.081 0.062 0.057
Error in Kep 0.462 0.168 0.095 0.046 0.155 0.103 0.043 0.089 0.075 0.039 0.034
Error in Ve 0.116 0.054 0.059 0.021 0.043 0.072 0.021 0.037 0.023 0.019 0.016

TRE 1.933 1.161 1.087 0.765 1.178 1.109 0.729 1.152 0.876 0.743 0.678

image (Method B), and each image to the previous time-point image (Method
C). After applying each method, we estimated the PK-parameters for each voxel
by fitting curves (using least-squares fitting) in the registered dataset. Thus, the
errors in Kep and Ve denote the average absolute difference between parameter
values used to generate the dataset, and those estimated from the registered
dataset. Our method took 12 mins and NCC 4 mins for the co-registration of all
images within each dataset. The standard deviation of the errors in estimation
of PK-parameters was about 0.009 (our method) and 0.011 (NCC using Method
C) for Kep and 0.0027 (our method) and 0.0043 (NCC using Method C) for Ve.
It is worthwhile noting that in our method the PK-parameter values are updated
in each iteration and the final values are obtained as outputs at the completion
of the registration algorithm. Thus our method does not require curve-fitting
(which is computationally expensive) at the end of the registration process.

3.2 Tests on Real Data

After comparing our method with other similarity measures on simulated data,
we applied our method to datasets for 6 patients with histologically proven rectal
adenocarcinoma (2 responders and 4 non-responders). High spatial resolution 3D
T2-weighted images, as well as 3D dceMRI scans were acquired for each of the
patients before, and after 5 weeks of chemoradiotherapy. After therapy, tumours
were surgically removed and assessed histopathologically to determine the grade.
The MRI sequence used to acquire each image during the dceMRI scan was a
T1-weighted, gradient-echo, fat-suppressed sequence (LAVA) with TR=4.5ms,
TE=2.2ms and flip angle α = 12 degrees. The contrast agent (gadobenate dimeg-
lumine, also known as MultiHance) was injected via a peripheral vein after 4 ini-
tial acquisitions and MRI volumes (of dimensions 512× 512× 52) were acquired
every 12-15 seconds for the next 5 minutes for each patient.

We applied our algorithm to the tumour ROI (shown in the inset in Fig. 2)
which had dimensions 100× 100× 52 from all the images acquired immediately
after injection of the CA, and before the second pass of the CA (to ensure
that the Tofts model is applicable to the data). We also applied the motion-
correction algorithm using NCC (Method C) as a similarity measure (since this
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Fig. 2. An axial slice of a post-contrast image volume and the tumour ROI in inset
(1). Axial slices of the pre-therapy (2,4) and post-therapy (3,5) Kep maps for a non-
responder obtained after motion correction using NCC (2,3) and after using our method
(4,5). Axial slices for pre-therapy (6,8) and post-therapy (7,9) Kep maps for a responder
after motion correction using NCC (6,7) and using our method (8,9).

performed best after our method on the simulated data) and then compared
the results that we obtained for the pre-therapy and post-therapy scans for each
patient. Although the results were qualitative, we found that the parameter
maps obtained after motion correction using NCC were generally more noisy,
and generally higher than the values estimated using our method (Fig 2). Fig 3
demonstrates that the algorithm using our similarity measure has the potential
to distinguish responders from non-responders more clearly than NCC, since we
would expect the distribution of Kep values for a non-responder to stay the same,
and for a responder to change after treatment.

Fig. 3. The histograms (using 10 equally spaced bins) for the Kep values estimated
for a non-responder using NCC (1) and our method (2), and for a responder using
NCC (3) and our method (4). Blue and red show the pre-therapy and post-therapy
distributions respectively.

4 Conclusion

We have developed a Bayesian framework for simultaneous motion-correction
and parameter estimation in dceMRI sequences. The derived similarity measure
has been compared with other conventional similarity measures used in image
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registration and shown to outperform them under four different error metrics.
The method has been tested on real data for 6 patients and shown to have the
potential for improving the distinction between responders and non-responders.
This generic Bayesian framework will also allow us to incorporate other PK-
models and obtain a probabilistic quantification of the PK-parameter maps and
their uncertainty.
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Abstract. Development of molecular imaging such as positron-emission tomo-
graphy (PET) offers an opportunity to optimize radiotherapy treatment planning
by conforming the dose distribution to physiological details within tumors, so
called dose painting. Quantification of the acquired images and an efficient and
practical dose prescription remain two key questions in this field. This paper pro-
poses a novel framework to optimize the dose prescription based on dual-pass
modeling of dynamic [18F]FMISO PET images. An optimization algorithm for
sparse dose painting (SDP) is developed by minimizing a linear combination of
two terms corresponding to the efficiency and total variation of the dose distribu-
tion with the constraint of a constant mean dose. Dose efficiency is defined using
the linear-quadratic model. The radiosensitivity given by the oxygen tension is
estimated using a dual-pass kinetic-oxygen mapping strategy. This is achieved
by integrating a realistic [18F]FMISO PET imaging simulation model, which can
simulate the distribution of oxygen and tracer under the same tumor microen-
vironment setting. The algorithm was compared with a typical dose painting by
number (DPBN) method in one data set of a patient with head and neck cancer.

Keywords: Dose Painting, Sparse Optimization, Radiation Therapy, Computa-
tional Simulation, Positron Emission Tomography.

1 Introduction

Medical imaging plays an important role in radiotherapy including treatment plan-
ning [1,2], delivery [3] and monitoring. Recent developments have focused on the in-
corporation of image derived physiological information into treatment planning [1,2].
Molecular imaging modalities, such as positron-emission tomography (PET), can be ap-
plied to improve the therapy outcome by conforming the dose distribution to the hetero-
geneous tumor microenvironment, which is called dose painting [4]. Inverse planning
and intensity-modulated radiotherapy (IMRT) with dynamic multileaf collimators are
applied to shape the delivery to match the dose prescription [5]. To prescribe a proper
and efficient dose distribution based on the acquired molecular images is one key factor
for successful dose painting.

In practice, two strategies have been applied to paint dose values within a tumor:
(1) boost escalation, which outlines the resistant regions and escalates uniform doses

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAI 2011, Part I, LNCS 6891, pp. 484–491, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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correspondingly; (2) dose painting by numbers (DPBN), which prescribes the dose ac-
cording to the radiosensitivity difference of each image voxel [6,7]. Concerning the
highly heterogeneous tumor microenvironment [8], DPBN has advantages in confor-
mance to biological details. However, it is often hardly feasible in practice due to the
exploded complexities in planning and delivery procedure, which not only increases the
burden to patients and machines, but also reduces the freedom of normal tissue sparing.
To prescribe a practical dose distribution while keeping the efficiency remains chal-
lenging in dose painting. Sparsity regularization is one booming technology to explore
the information usage while reducing the data complexity, which is now popular in the
application of image reconstruction [9] and data analysis [10]. For the application in
dose painting, proper regularization terms need to be integrated during the optimization
of dose efficiency.

Radiation response is strongly influenced by tumor oxygenation, which is usually as-
sessed using [18F]FMISO PET images. Kinetic modeling is often used to assess tracer
pharmacokinetic parameters [11] and has been reported to be of advantage compared to
direct evaluation of static [18F]FMISO PET images [11]. However, it is usually not pos-
sible to quantitatively relate the estimated kinetic parameters directly to the underlying
oxygen tensions due to the complex tracer transport and metabolism process in the het-
erogeneous tumor microenvironment. On the other hand, a recently developed simula-
tion model based on reaction-diffusion equations by Kelly et al. [12] is able to simulate
the distributions of tracer and oxygen under the same tumor microenvironment, thus it
is possible to explore the relation between [18F]FMISO imaging and oxygen tension.
An extension of the Kelly model called flow-limited oxygen-dependent (FLOD) model
has been validated with preclinical PET data [13].

This paper proposes a framework to optimize the dose distribution based on quanti-
tative analysis of [18F]FMISO PET image series. We developed a sparse dose painting
(SDP) algorithm by optimizing a linear combination of two terms corresponding to the
efficiency and total variation of the dose distribution under the constraint of constant
mean dose, which comprises the therapy outcome and the treatment complexity. The
radiosensitivity parameter, oxygen tension, is estimated using one dual-pass kinetic-
oxygen mapping strategy, which is achieved by simulating the transport and metabolism
of oxygen and tracer under the same condition and setting up a kinetic-oxygen mapping
curve based on the simulation results of various tumor microenvironments.

2 Sparse Dose Painting

One aim in dose painting is to compute a proper dose distribution D in a tumor do-
main Ω based on the estimated oxygen tensions from [18F]FMISO PET images. Given
a certain prescribed mean dose Dmean, treatment planning attempts to optimize the
dose D(u) of each image voxel u,u ∈ Ω and achieve a maximum treatment effi-
ciency, i.e. a minimum fraction of surviving cells after irradiation (surviving fraction
SF ). However, IMRT is usually done with a limited number of beams and restricted
range of intensity modulation leading to a sparse dose prescription. An additional term
‖D‖TV =

∑
i,j,k∈Ω((∇1Dijk)2+(∇2Dijk)2+(∇3Dijk)2) is introduced to regularize

the total variation (TV) and to reduce the complexity of the dose distribution. Here ∇1,
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∇2 and ∇3 denote the forward finite difference operators on the three coordinates, re-
spectively. The optimization metric can be described in the following mathematic form,

arg min
D

{log(‖SF (D)‖1) + λ
‖D‖TV

Nvoxel
} subject to mean(D) = Dmean (1)

where λ is the regularization parameter, which is patient-specific concerning the patient
tolerance, tumor geometry and the topology with the surrounding normal tissue.

The surviving fraction SF (u) of each voxel is determined by the linear-quadratic
model, which is an empirical formula for the predication of radiation response [14]:

SF (u) = e−α(p̄(u))D(u)−β(p̄(u))D(u)2

α(p̄(u)) = α0
mp̄(u) +K

p̄(u) +K
(2)

β(p̄(u)) = β0(
mp̄(u) +K

p̄(u) +K
)2

α and β are the radiation sensitivity coefficients, which are determined by the mean
oxygen tension p̄ of imaging voxels u. α0, β0, m and K are constants. Eqn 1 is solved
using a conjugate gradient method [15] with the initialization of DPBN applied to the
results of kinetic modeling.

3 Dual-Pass Kinetic-Oxygen Mapping

4D [18F]FMISO
PET image

3D map of
oxygen tension

Arterial input
function (AIF)

Kinetic
modeling

Computational
simulation

3D parametric
image

Kinetic-oxygen
mapping curve

Fig. 1. The procedure of dual-pass kinetic-oxygen mapping.

One prerequisite to solve Eqn. 1 is to quantitatively estimate the radiosensitivity para-
meter, oxygen tension, from the acquired [18F]FMISO PET images. Kinetic modeling
is often used for quantitative analysis of PET images [11,16]. However, the estimated
parameters are still not directly related to oxygen tension. On the other hand, computa-
tional simulation of [18F]FMISO PET imaging has advantages in revealing the correla-
tion between [18F]FMISO kinetics and oxygen tension by computing their distribution
under the same tumor microenvironment [12]. We developed a strategy to combine both
the forward and backward modeling and to quantify the oxygen tension from dynamic
PET images. The procedure is sketched in Fig. 1. A kinetic-oxygen mapping curve is
derived by fitting the computational simulation results using the following formula,

k3 =
a

p̄+ b
+ c (3)
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where k3 is the estimated kinetic parameter using a typical irreversible two-compartment
model [16] and p̄ is the mean oxygen tension of a voxel u. Constants of a, b, c reflect the
integral of the heterogeneous tracer binding procedure. They vary for different patients
or animals due to different metabolic properties. The mapping curve of Eqn. 3 is then
applied to transform the parametric image to the oxygen tension image.

Reaction-Diffusion Simulation Model

To identify the constants of Eqn. 3, we use an extension of the Kelly model [12] called
flow-limited oxygen-dependent (FLOD) model to simulate the relation between the
oxygen consumption and the [18F]FMISO binding inside an imaging voxel in hetero-
geneous tumor microenvironments [13]. Tumor microenvironments are modeled as 2D
grids (grid size 10 μm) spreading with heterogeneously distributed vessels. The trans-
port and metabolism of oxygen and [18F]FMISO molecules are modeled as a diffusion-
reaction procedure with an assumption of flow-limited extraction. Given the physical
and metabolic properties of oxygen and [18F]FMISO molecules measured from in vitro
experiments, the distribution of oxygen and [18F]FMISO in tumor areas can be com-
puted by solving the following reaction-diffusion equations:

∂Trfree(x, t)
∂t

= DTr∇2Trfree(x, t) − kbinding(x)Trfree(x, t)

∂Trbound(x, t)
∂t

= kbinding(x)Trfree(x, t)

kbinding(x) =
ka

p(x) + kb

DO2∇2p(x) = −qmax
p(x)

p(x) + kp
(4)

where Trfree(x, t) describes the concentration of the free ligand for a spatial location
x at time t, and Trbound(x, t) is the concentration of the bound ligand. kbinding(x) is
the binding rate of the tracer, which relates to the cellular oxygen tension p(x). DTr

andDO2 are diffusion coefficients of [18F]FMISO and oxygen. qmax and kp are oxygen
metabolic constants. ka and kb are constants determined by [18F]FMISO pharmacody-
namics. Note that these cellular parameters are different from the macroscopic para-
meters a, b, c in Eqn. 3. Further, the microscopic binding parameter kbinding is different
from the macroscopic estimation parameter k3 using kinetic modeling.

4 Experiments and Results

We tested our algorithm on one data set of a patient with head and neck cancer, which
was scanned with CT and a dynamic [18F]FMISO PET. The image series consist of
30 continuous frames of the first 15 min post injection (p. i.) of [18F]FMISO and an
additional frame at 2 hours p. i.. Two blood samples were acquired after the PET scan.
The arterial input function (AIF) is derived using an image based method by selection of
a carotid artery in the [18F]FMISO PET images followed by a correction of the partial
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volume effect. The measured blood activity is applied to correct the spill over effect by
replacing the tail part of the image derived AIF. A three exponential model is applied
to smooth the combined AIF [17]. The PET images were registered to the CT images
using a mutual information algorithm. The tumor regions (primary tumor and affected
lymph nodes) were outlined manually by an experienced radiation oncologist. Fig. 2a
shows a slice of the fused CT and PET images.

Fig. 2 shows the results of the analysis of the dynamic [18F]FMISO PET images
using the dual-pass kinetic-oxygen mapping method. Fig. 2b depicts the estimated k3

image of the slice in Fig. 2a. Around 400 PET imaging voxels (voxel size: 4 × 4 mm2)
were simulated based on the extracted AIF. The k3 values of the simulated TACs and
the corresponding mean oxygen tensions are plotted in Fig. 2c. The kinetic-oxygen
mapping curve is generated by fitting the simulation results using Eqn. 3. A slice of the
map of the oxygen tension after kinetic-oxygen mapping is illustrated in Fig. 2d.
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Fig. 2. Results of the dual-pass kinetic-oxygen mapping: (a) slice of the fusion of the CT image
and the [18F]FMISO PET image 2 hours p.i.; (b) parametric image of k3 using pixel-wise irre-
versible two-compartment model within the tumor regions for slice a; (c) plot of the values of the
kinetic parameters k3 and the mean oxygen tensions of 400 simulated voxels and the resulting
kinetic-oxygen mapping curve fitted using Eqn. 3; (d) reconstructed oxygen tension map within
the tumor regions for slice a.

SDP with different λ values was tested and compared with direct DPBN, which uses
a linear transformation of static [18F]FMISO images to the dose prescription [6]1. The
prescribed dose distributions using SDP and DPBN were compared for the prescribed
mean dose of Dmean = 2.3 Gy for a single fraction within the tumor regions here. One
example slice of different resulting dose prescriptions is displayed in Fig.3a-e. Even
without sparsity regularization, dose painting based on the dual-pass kinetic-oxygen
quantification (Fig. 3a) generates significantly different results compared to DPBN
(Fig. 3e). It confirms that a direct evaluation of PET image may not be sufficient to
assess the underlying oxygen tension [11].

Fig. 3a-d show the comparison of increasing λ values, which will reduce the com-
plexity of dose prescription correspondingly. The regulated dose prescription has sev-
eral advantages: (1) it will diminish the burden of inverse planning; (2) it will reduce

1 The DPBN presented in [7] is not considered in this paper. The comparison of different tumor
control probability models is not feasible in this framework.
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Fig. 3. Comparison of SDP with different λ and DPBN for the patient case: (a-d) One slice of
SDP dose prescription, λ = 0, 10−7, 10−6, 10−5, respectively; (e) One slice of DPBN dose
prescription; (f) A plot of the dose values along the blue lines in the middle of the selected slice
shown in a-e.

Table 1. Comparison of the resulting average surviving fraction of different methods

DPBN
SDP

λ = 0 λ = 10−7 λ = 10−6 λ = 10−5

2.99 × 10−4 2.61 × 10−6 4.69 × 10−6 1.17 × 10−4 1.22 × 10−4

λ: regularization parameter; SDP: sparse dose painting; DPBN: dose painting by number.

the number of beams and the complexity of fluence modulation leading to a reduced
treatment time; (3) it will improve the quality of normal tissues sparing; besides treat-
ing the tumor, radiotherapy needs to avoid too much side effects in normal tissues. For a
constant total dose, SDP reduces extremely high dose prescriptions in the tumor (shown
in Fig. 3). Thus it is also possible to reduce the probability of hot spots in the normal
tissue. Overall, the sparsity regularization will increase the feasibility of dose painting.
The corresponding dose efficiency after 30 fractions is listed in Tab 1. SDP has a better
dose efficiency compared to DPBN due to the improved quantification of the oxygen
tensions. Note, due to the large values of the TV norm, the λ values are quite small here
to ensure a proper regularization. A suitable λ value is determined by various factors,
such as the volume and geometry of the tumor and the topology with the surrounding
normal tissues. It can be adapted in real applications and will be optimized based on
statistical analysis of further studies.
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5 Conclusion

This paper develops a novel framework to optimize the dose prescription in dose paint-
ing based on quantitative analysis of [18F]FMISO PET images. In particular, we made
the following two contributions: (1) By incorporating a realistic PET imaging simu-
lation model, this paper sets up a dual-pass kinetic-oxygen mapping to transform the
estimated kinetic parameters to physiological parameters of the tumor microenviron-
ment. (2) A sparse dose painting algorithm is developed to optimize the dose efficiency
as well as the dose modulation. This is achieved by adding a sparsity regularization term
during the optimization of dose efficiency with the constraint of constant mean dose.

Our method is limited by the indirect quantification by integrating computational
simulation into tracer kinetic modeling, which might induce bias and errors. (1) Al-
though the FLOD simulation model is in good agreement with preclinical experimental
data, for clinical applications it is necessary to further adjust and validate the model
settings. (2) The two-pass quantification procedure may accumulate and amplify errors
in some situations. Direct matching of reaction-diffusion simulation to imaging data is
desired [2]. However, the tracer uptake procedure is determined by both the spatial loca-
tion and the perfusion of vessels spreading into tissues discretely and randomly, which
is generally not differentiable. Nevertheless, our method offers the potential to improve
the treatment outcome of dose painting. Future work will focus on the further opti-
mization of dose prescription in the clinical target volume by integrating tumor growth
parameters [2] in a tumor control probability model and on the testing and integration
of the algorithm in real therapy planning systems.

Acknowledgements. Supported by BMBF MobiTUM project (01EZ0826) and DFG
Cluster of Excellence: Munich-Centre for Advanced Photonics.

References
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Abstract. Dynamic PET imaging provides important information
for biological research, clinical diagnosis and pharmacokinetic analysis
through kinetic modeling and data-driven parameter estimation. Ki-
netic parameters quantitatively describe dynamic material exchange and
metabolism of radiotracers in plasma and tissues. While many efforts
have been devoted to estimate kinetic parameters from dynamic PET,
the poor statistical properties of the measurement data in low count dy-
namic acquisition and the uncertainties in estimating the arterial input
function have limited the accuracy and reliability of the kinetic parameter
estimation. Additionally, the quantitative analysis of individual kinetic
parameters is not yet implemented. In this paper, we present a robust
kinetic parameter estimation framework which is robust to both the poor
statistical properties of measurement data in dynamic PET and the un-
certainties in estimated arterial input function, and is able to analyze
every single kinetic parameter quantitatively. The strategy is optimized
with robust H∞ estimation under minimax criterion. Experiments are
conducted on Monte Carlo simulated data set for quantitative analy-
sis and validation, and on real patient scans for assessment of clinical
potential.

1 Introduction

Dynamic Positron Emission Tomography (PET) is a molecular imaging tech-
nique used to monitor the spatiotemporal distribution of a radiotracer in vivo
and provides important information for biological research, clinical diagnosis and
pharmacokinetic analysis [1,2]. PET offers good promise for accelerating the pro-
cess from pre-clinical discover to Phase III studies of drug development, which
benefits from various radiolabelled biochemicals and well established metabolism
models. The accurate quantitative descriptions (kinetic parameters) of the inter-
action of the drug with a desired binding site and the neurotransmitter concen-
tration will significantly advance the studies of drug discovery and development.

The typical approach of estimating kinetic parameters is first to reconstruct
activity distributions, and then to fit the calculated time activity curve (TAC)
to a predefined kinetic model. However, the practicability of this kind of ap-
proaches relies on the accuracy of image reconstruction. There are also many
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efforts trying to estimate from projection data directly by introducing either
linear or nonlinear models [3], however, the optimization algorithms are gener-
ally very complicated to implement. Kamasak et al. applied coordinate descent
optimization but which is still limited in specific models [4]. Wang et al. applied
an generalized algorithm for reconstruction of parametric images [5]. However,
in dynamic PET imaging, the low count data acquisition procedures make the
statistical properties of measurement data very poor, moreover, the uncertainties
introduced by various data corrections make the noise properties complicated,
and will lead to a suboptimal estimation [6]. Additionally, difficulties in arte-
rial sampling and uncertainties during input function fitting will result in errors
in kinetic parameter estimation. Furthermore, the quantitative estimation and
analysis of the dynamic change of individual kinetic parameter, which is not yet
implemented, will definitely lead to better understandings of tissue biology [7].

In this paper, we concentrate on the development of a robust kinetic parameter
estimation framework from projection data directly. PET measurement equation
is successfully transformed and combined with kinetic models, which makes it
very flexible to satisfy different kinetic models. The framework is robust to both
poor statistical properties of measurement data and uncertainties in arterial
input function estimation when no blood sampling exists, and is able to analyze
every single kinetic parameter quantitatively. The strategy is optimized by robust
H∞ filter under minimax criterion. Experiments are conducted with Monte Carlo
simulated dynamic data for statistical analysis and validation, and on real patient
scans for assessment of clinical potential.

2 Method

2.1 Modeling of Tracer Kinetics

In this paper, a general two-tissue three-compartment model is adopted to de-
scribe regional tracer kinetics as shown in Fig.1, where CP (pmol/ml) is arterial
concentration of radiotracer, CF and CB (pmol/ml) are the concentrations of
non–specific binding and specific binding tracers in tissues. Parameters k1, k2, k3

and k4(min−1) specify radiotracer transport rates. The time variation of kinetic
model in voxel i can be denoted by first–order differential equations as:

dCFi(t)
dt

= k1i(t)CPi(t) + k4i(t)CBi(t) − (k2i(t) + k3i(t))CFi(t) (1)

dCBi(t)
dt

= k3i(t)CFi(t) − k4i(t)CBi(t) (2)

2.2 Modeling of Dynamic PET Measurement with Tracer Kinetics

Dynamic PET imaging involves a sequence of contiguous acquisition with dif-
ferent temporal resolutions, which can be formulated as a projection transform:

y(t) = Dx(t) + e(t) (3)
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Fig. 1. Two–tissue three–compartment model

Here, y(t) is the projection data and x(t) = {xi(t)|i = 1, · · · , n}T is the activity
concentration at time frame t. n is the total number of voxels. D is the system
probability matrix. e(t) is the overall measurement uncertainties. Here we will
transform Eqn.(3) to accommodate kinetic models. Firstly, activity concentra-
tion x will be the combination of CF and CB , then Eqn.(3) will be

y(t) =
[
D D

] [CF (t)
CB(t)

]
+ e(t) (4)

where CF (t) = {CFi(t)|i = 1, · · · , n}T and CB(t) = [CBi(t)|i = 1, · · · , n}T .
After the dynamic change of measurement dyi(t)

dt being deduced, we substitute
the differential equations Eqn.(1) and (2) and do a simple transformation to
arrange 4 kinetic parameters (k1, k2, k3, k4) in a column vector will yield

dyi(t)

dt
=

[
D D

]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+e

′
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[
D D

]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.

.
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.

.

.

0 0 CF i(t) −CBi(t)

.

.

.

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎣
k1i(t)

k2i(t)

k3i(t)

k4i(t)

⎤⎥⎥⎦+e
′
i(t)

(5)

By denoting Ri(t)=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

...
CPi(t) −CFi(t) −CFi(t) CBi(t)

...
0 0 CFi(t) −CBi(t)

...

⎤⎥⎥⎥⎥⎥⎥⎥⎦
and Si(t)=

⎡⎢⎢⎣
k1i(t)
k2i(t)
k3i(t)
k4i(t)

⎤⎥⎥⎦,

we can get the dynamic change of total measurement data from all voxels as

dy(t)
dt

=
n∑

i=1

dyi(t)
dt

=
[
D D

] [
R1(t) · · · Ri(t) · · · Rn(t)

]
⎡⎢⎢⎢⎢⎢⎢⎣

S1(t)
...

Si(t)
...

Sn(t)

⎤⎥⎥⎥⎥⎥⎥⎦ + e
′
(t) (6)

=
[
D D

]
R(t)S(t) + e

′
(t)

Now we have set up the relationship between the change of measurement data
and kinetic parameters directly by Eqn.(6).
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(a) (b) (c)

Fig. 2. (a) Zubal phantom; (b) Blood input function; (c) Output TACs of 3 ROIs

2.3 Robust Solution by H∞ Optimization Under Minimax Criterion

Gao et al.[8] present an efficient and robust estimation framework for activity
reconstruction of dynamic PET imaging. No statistical assumptions needed make
it robust to the poor statistical properties in low count acquisition and system
noises. We will transform our problem to fit that solution framework. Since
kinetic parameters are generally assumed to be constant, we can set:

S(t+ 1) = S(t) + v(t) (7)

Here, v is possible disturbances. With Eqn.(6) and Eqn.(7), the corresponding
minimax performance equation will be ”minS∈L maxe∈E,v∈V F (S, e, v)”, where
L, E and V are the sets of solutions, uncertainties of measurement and state
transition. As an iterative solution, we also define a linear combination of S(t)
as ”z(t) = g(S(m), v(m)) where m = 1, 2...t”, then objective function J will be

J =

∑
‖z(t) − ẑ(t)‖2

Q(t)

‖S(0) − Ŝ(0)‖2
p−1

o
+

∑
(‖v(t)‖2

V (t)−1 + ‖e(t)‖2
E(t)−1)

(8)

where the notation ‖x‖2
G is defined as the square of the weighted (by G) L2 norm

of x. po, E(t), V (t) and Q(t) are weighting matrices. Ŝ(0) is the initialization of
x. More detailed settings and initialization of parameters can be found in [9].

3 Experiments

3.1 Monte Carlo Simulated Dynamic PET Data

The first dynamic PET data set is from Monte Carlo simulation. The simulated
PET scanner is Hamamatsu SHR74000. The phantom used here is Zubal thorax
phantom. One sample slice is shown in Fig. 2(a). 3 regions including heart, muscle
and chest wall are selected as ROI1–3. The experiment is a dynamic 18F–FDG
study with the compartment model in Sec 2.1 for imaging glucose metabolism.
The TACs of 3 ROIs are generated by analytical Feng’s input function:

CFDG
P (t) = (A1t−A2 −A3)e−λ1t +A2e

−λ2t +A3e
−λ3t (9)
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Experiment 1 Experiment 2 Experiment 3 Experiment 4

(a)

(b)

(c)

Fig. 3. Influx rate maps. (a) Ground Truth; (b) WLSCF; (c) Our Method.

The parameters λi and Ai used here are A1 = 85.112μCi/mL/min, A2 =
2.081μCi/mL,A3 = 2.188μCi/mL, λ1 = 4.1339min−1, λ2 = 0.01043min−1 and
λ3 = 0.1191min−1. The dynamic acquisition consists of 85 frames: 15×0.2min,
20×0.5min, 40×1min and 10×3min. Kinetic parameters in simulations are,
ROI1: 0.102, 0.130, 0.062, 0.0068; ROI2: 0.082, 0.102, 0.045, 0.004; ROI3: 0.064,
0124, 0.042, 0.0035. Calculated input function and TACs are shown in Fig.2 (b)
and (c). The differences of total counts between time frames are around 1k.
4 experiments (Experiment 1-4) are conducted under different conditions. Since
input function is required and no blood sampling is desired, firstly, 4 experiments
are divided into 2 groups: the first group (Experiment 1 and 2) uses a perfect
input function, while the second group (Experiment 3 and 4) uses an imper-
fect input function generated by image-derived sampling method. Secondly, due
to poor statistical properties of measurement data in low count dynamic PET
imaging, spatial constrains are also introduced. In Experiment 1 and 3, every
voxel is estimated separately. For a comparison, Experiment 2 and 4 are per-
formed with ”local average” constraints to improve statistical properties, which
means the measurement data in one voxel is averaged by surrounding voxels. Be-
sides our method, a typical Weighted Least Square Curve Fit (WLSCF) method
provided by COMKAT toolbox, is conducted as comparison. To evaluate the
experiments quantitatively, statistical analysis on estimated results against true
values is performed. Let Np be the total number of voxels or ROIs, SEi and STi

be the estimation of ith kinetic parameter and corresponding true value, then
define Bias = 1

Np

∑Np

i=1
(SEi−STi)

STi
and Std =

√
1

Np−1

∑Np

i=1 (SEi−STi

STi
)2. We also
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Table 1. The calculated Bias and Std of Experiment 1 (top) and 2 (bottom)

Bias±Std k1 k2 k3 k4

ROI1 WLSCF 0.10706 ± 0.21072 0.17943 ± 0.30803 -0.09460 ± 0.25205 -0.26725 ± 0.40846
Our Method -0.04794 ± 0.05450 -0.16225 ± 0.17368 -0.20677 ± 0.22111 -0.14092 ± 0.15652

ROI2 WLSCF -0.01347 ± 0.22397 0.24409 ± 0.32029 -0.03134 ± 0.22162 0.16834 ± 0.65988
Our Method -0.00459 ± 0.04190 0.10929 ± 0.11838 0.18639 ± 0.19926 0.09558 ± 0.14263

ROI3 WLSCF -0.16228 ± 0.29534 0.37212 ± 0.47103 0.07289 ± 0.24139 0.29611 ± 0.81515
Our Method -0.12107 ± 0.14058 -0.02826 ± 0.08700 0.00574 ± 0.00614 0.19748 ± 0.21488

Bias±Std k1 k2 k3 k4

ROI1 WLSCF 0.00502 ± 0.08444 0.09966 ± 0.12406 -0.08475 ± 0.11367 -0.11420 ± 0.20296
Our Method -0.01904 ± 0.02867 -0.03211 ± 0.03446 -0.07005 ± 0.07490 0.10215 ± 0.10967

ROI2 WLSCF -0.01809 ± 0.08325 0.21458 ± 0.23228 0.03688 ± 0.09033 0.13241 ± 0.32270
Our Method -0.06743 ± 0.07298 -0.03760 ± 0.04064 -0.00786 ± 0.00840 0.05390 ± 0.05763

ROI3 WLSCF -0.16799 ± 0.20050 0.33093 ± 0.34760 0.05029 ± 0.09786 0.28117 ± 0.42891
Our Method -0.05638 ± 0.06740 0.08000 ± 0.09407 0.04364 ± 0.04665 -0.14543 ± 0.15650

calculate the influx rate map (Rate) which is related to the glucose metabolic
rate as Rate = k1k3

k2+k3
. Parametric maps also show visual comparisons.

Table 1 and 2 show calculated Bias and Std of 4 experiments in 2 groups.
Fig.3 shows the calculated influx rate maps. Table 1 indicates that WLSCF can
achieve acceptable results with perfect input function, and the local average
constraint introduced in Experiment 2 improves Std of all estimated parameters
by improving the statistical properties of measurement data. The Bias and Std
of results from our methods are better than that from WLSCF. The results
also show the robustness of our method in dealing with the poor statistical
properties of measurement data. The statistical analysis in Table 2 shows that
with input function from estimation, WLSCF leads to worse results indicated
by increased Std values in both experiments, especially k1 and k4. k1 is the
rate constant indicating the radiotracer exchange from arterial to tissue, which
is highly affected by the accuracy of estimated input function, and k4 is the
FDG dephosphorylation rate and very sensitive to the system. The influx rate
maps also show obvious overestimation of WLSCF. However, our method still
achieves robust estimation results of all parameters in both experiments and
yields acceptable Std with the imperfect input function. And the calculated Std
shows that some parameter estimations by our method with imperfect input
function are even comparable with that by WLSCF with perfect input function.

3.2 Experiments with Data from Real Patient Scan

The real patient data in this study is a dynamic PET scan acquired from a 28-
year-old, 75kg male volunteer. The scanner used is Hamamatsu SHR-22000 whole
body PET scanner. 10 mCi 18F-FDG is injected and a dynamic acquisition of
the thoracic cavity starts just after injection. The acquisition consists of 40 time
frames: 20×0.5min, 15×1min, and 5×2min. The input function is estimated by
the image-derived method. Since the influx rate maps have direct relationships
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Table 2. The calculated Bias and Std of Experiment 3 (top) and 4 (bottom)

Bias±Std k1 k2 k3 k4

ROI1 WLSCF 1.05780 ± 1.14375 -0.09464 ± 0.30377 0.37156 ± 0.68273 0.12470 ± 0.94807
Our Method -0.27954 ± 0.30441 -0.15235 ± 0.16289 0.05914 ± 0.06328 -0.12877 ± 0.13901

ROI2 WLSCF 1.25494 ± 1.31110 0.11049 ± 0.38121 0.45580 ± 0.67132 0.24023 ± 1.13308
Our Method -0.36468 ± 0.39731 -0.16074 ± 0.17187 0.21405 ± 0.22883 0.30306 ± 0.32609

ROI3 WLSCF 1.20747 ± 1.28191 -0.12640 ± 0.26492 0.00213 ± 0.28536 0.48420 ± 1.51799
Our Method -0.39567 ± 0.42691 -0.13915 ± 0.25402 -0.05089 ± 0.05440 0.24891 ± 0.27461

Bias±Std k1 k2 k3 k4

ROI1 WLSCF 1.14242 ± 1.20911 0.17117 ± 0.33201 0.66864 ± 0.82730 -0.17832 ± 0.51223
Our Method -0.19232 ± 0.21434 0.17155 ± 0.18339 0.22930 ± 0.24531 -0.06705 ± 0.07176

ROI2 WLSCF 1.24255 ± 1.27450 0.15610 ± 0.28138 0.50822 ± 0.61257 -0.00525 ± 0.78607
Our Method -0.26658 ± 0.28651 0.25757 ± 0.27536 0.12868 ± 0.13816 -0.26835 ± 0.28689

ROI3 WLSCF 1.25741 ± 1.27605 -0.13817 ± 0.22765 -0.00537 ± 0.11263 0.19770 ± 1.04567
Our Method -0.22002 ± 0.23667 -0.22338 ± 0.24597 -0.00636 ± 0.00680 0.16175 ± 0.17297

(a) (b) WLSCF (c) Our Method

Fig. 4. (a) Reference activity map with 3 ROIs; (b), (c) Influx rate map

Table 3. Estimated kinetic parameters (top) and their MSE (bottom)

ROI1 ROI2 ROI3

k1 k2 k3 k4 k1 k2 k3 k4 k1 k2 k3 k4

0.0805 0.4659 0.1020 0.0058 0.0493 0.9758 0.1198 0.0059 0.0094 0.1984 0.0973 0.0079

ROI1 ROI2 ROI3

k1 k2 k3 k4 k1 k2 k3 k4 k1 k2 k3 k4

0.1426 0.2030 0.1326 0.2018 0.2770 0.1438 0.1445 0.2047 0.3284 0.2236 0.1873 0.1989

with activity distribution, so we choose an activity map from static scan as
reference to extract ROIs. Fig. 4(a) shows the reference activity map and 3 ROIs
are selected including left ventricular, heart muscle and body surface. Table 3
shows the estimated kinetic parameters by our method and their mean square
error (MSE) in the 3 ROIs. The influx rate maps calculated by WLSCF and our
method are shown in Fig.4(b) and (c). Our method generates parametric maps
with better contrast and MSEs are overall stable in 3 ROIs.
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4 Conclusion

A robust kinetic parameter estimation framework is presented, which is robust
to both poor statistical properties in dynamic PET and uncertainties in arterial
input function, and is able to analyze every single kinetic parameter.
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Abstract. In this paper, we propose to create a rich database of syn-
thetic time series of 3D echocardiography (US) images using simulations
of a cardiac electromechanical model, in order to study the relationship
between electrical disorders and kinematic patterns visible in medical
images. From a real 4D sequence, a software pipeline is applied to create
several synthetic sequences by combining various steps including motion
tracking and segmentation. We use here this synthetic database to train
a machine learning algorithm which estimates the depolarization times
of each cardiac segment from invariant kinematic descriptors such as
local displacements or strains. First experiments on the inverse electro-
kinematic learning are demonstrated on the synthetic 3D US database
and are evaluated on clinical 3D US sequences from two patients with
Left Bundle Branch Block.

1 Introduction

Despite advances in both medical image analysis and intracardiac electrophysi-
ological mapping technology, the understanding of the relationship between the
cardiac electrophysiology and the cardiac motion visible in images is only partial.
However such understanding would be very valuable as it would open possibil-
ities in non-invasive electrophysiological mapping. Since 3D echocardiography
(US) is readily available, an important topic of interest for cardiologists would
be the estimation of the cardiac electrophysiology function from the analysis of
3D US images. This is specifically important, for example, in the evaluation of
the Cardiac Resynchronization Therapy (CRT) where the placement and tuning
of pacemaker leads play a crucial role in the outcome of the therapy. In this con-
text, cardiologists need to interpret time series of US images in order to detect
and characterize kinematic patterns (motion asynchrony, delayed contraction)
and then infer possible electrical conduction disorders.

While there is an important literature on the estimation of the cardiac kine-
matics from 3D US sequences (see for instance [3] and references therein), there
exists no such tools to estimate the electrical wave propagation from such im-
age sequences. However, the relationship between cardiac motion and electrical
activation has been investigated in several studies [5–7].

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAI 2011, Part I, LNCS 6891, pp. 500–507, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Synthetic Echocardiographic Image Sequences 501

In this paper, we propose to study the inverse electro-kinematic relationship
through the creation of a large database of synthetic 3D US images. Because
it is difficult to obtain a large number of cases where both electrophysiological
mapping and 3D US images are available, we use an electromechanical (E/M)
model of the heart to produce synthetic but realistic image sequences for which
the electrical stimulation is known. Previous work [6, 7] has mainly focused in de-
tecting E/M wave directly from the displacement and strain patterns estimated
from image sequences during the contraction and relaxation of the myocardium.
Since the relationship between those mechanical waves and electrical waves is
certainly complex, our approach is to learn it through an E/M model of the heart.
Compared to [5], instead of estimating displacements and strains from the E/M
model, we propose a more realistic estimation by first simulating 3D US images
and then using an image-based motion tracking algorithm. Furthermore, rather
than learning the activation forces over time, we have chosen to learn the depo-
larization times of all American Heart Association (AHA) segments. Finally, our
learning approach is optimized in order to detect which kinematic descriptor is
most correlated with the electrophysiology waves.

Different studies have been conducted for the creation of simulated 3D US se-
quences, e.g. [2, 3]. Instead of simulating the ultrasonic image formation process,
in this paper, we propose a new approach to create synthetic 3D US sequences
by deforming a real 3D US sequence and combining simulated myocardium dis-
placements with the visible motion of the surrounding environment (blood pool
speckle, mitral valve). This approach has the advantage of providing a realis-
tic 3D US sequence at little computational cost and including all neighboring
structures. A vast database of electrical propagations along with corresponding
synthetic sequences based on the E/M simulation was created. On this database,
invariant kinematic descriptors were extracted from each synthetic sequence and
then fed to a machine learning algorithm which estimates the electrical pattern
from kinematic descriptors during the cardiac cycle. The created synthetic 3D
US sequences are of realistic quality and first experiments on the inverse electro-
kinematic learning using this database are discussed.

2 Creating Synthetic 3D US Sequences

2.1 3D US Sequence Non-rigid Registration

We use as input to our method a real 3D US sequence acquired by the iE33
Philips probe on a patient suffering from heart failure. The first step in the
pipeline was to segment semi-interactively or automatically the left ventricle
(LV). The binary mask was then used to apply the iLogDemons non-rigid reg-
istration algorithm [4] which had been applied in the cardiac cine MR sequence
analysis. This motion tracking algorithm enforces the incompressibility of the
myocardium during the cardiac motion which provides an additional prior in-
formation to regularize the visible motion in the image sequence. With this
non-rigid registration algorithm, the displacement field (DF) u between the end
diastole (ED) image and each image of the real 3D US sequence was estimated
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Fig. 1. Registration of Images and Meshes. iLog Demons registration method is
applied to all images in the sequence to register them to the ED reference image. All
meshes in a simulation cycle are also registered to the ED mesh.

(see Fig. 1). Thanks to the diffeomorphic nature of u, we computed its inverse
and thus resampled each image of the sequence in the ED geometry.

2.2 Deformation of Registered 3D US Images Using E/M
Simulation

From the segmented images of the myocardium at ED, we created a computa-
tional tetrahedral mesh which was suitable for the simulation of a cardiac E/M
model [8] whose myocardium motion is used for the generation of the synthetic
sequences. This required additional work since only part of the LV and right
ventricle (RV) were visible in the image. Registration of a template mask of the
2 ventricle was used to infer the missing parts.

With this model, we simulated the cardiac motion after specifying an elec-
trophysiological pattern (see Section 2.3). We sampled the cardiac simulated
motion to follow the temporal resolution of the real 3D US sequence and then
computed the DF between the reference configuration (ED) and the deformed
position at each time of the sequence using the linear interpolation of the dis-
placement of each vertex of the tetrahedral mesh rasterized in a 3D image having
the same size and spatial resolution as the real 3D US image (see Fig. 2). This
dense synthetic DF of the myocardium was then merged with the DF estimated
from the non-rigid registration. The synthetic DF completely overwrites the reg-
istration DF within the myocardium. Additionally, the synthetic DF within the
eroded myocardium is diffused by solving the Laplace equation and fused with
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(2) (3) (1) 

Fig. 2. Fusion of the Displacement Fields. (1) The DF estimated from the iLog
Demons registration (left) is combined with the myocardium DF from the E/M simu-
lation (second left). The two fields are fused, (2) smoothed, (3) inversed and cropped
along the acquisition cone.

the registration DF to smooth the transition outside the myocardium. Then, the
new DF was inversed and applied to each real image previously resampled in
the ED configuration. Finally, a 3D cone mask was applied to remove all the
displacements outside the cone, as observed in real acquisitions. With this ap-
proach, most of the image will stay unchanged in the synthetic image compared
to the original sequence. We preserve the dynamics of the image, in particular
the speckle visible in 3D US for most voxels. Only in the myocardium is the im-
age texture slightly warped, the amount of warping depending on the difference
between the simulated cardiac motion and the motion in the original images.

2.3 Generation of Healthy and Pathological Cardiac Motion

Different simulation scenarios were performed including normal and pathological
cases such as left bundle branch block (LBBB) and right bundle branch block
(RBBB) by blocking the LV and RV initial electrical activation respectively,
LBBB with LV pacing, RBBB with RV pacing and also LBBB and RBBB with
biventricular (BV) pacing. The different pacing positions were based on the LV
AHA segments (see Fig. 3). Table 1 summarizes the electrical and mechanical
parameters used for the 120 simulations done from each real 3D US sequences.

3 Learning Electro-Kinematic Inverse Relationship

3.1 Kinematic Descriptors

With the method described previously, a large database of synthetic 3D US
images was created. We then tracked the cardiac motion from those synthetic
images by using the iLogDemons registration algorithm [4]. More precisely, we
registered all the images of the synthetic sequence to its reference ED image. As
an input to a machine learning algorithm, we needed to first extract kinematic
descriptors which describe in a compact and exhaustive way the cardiac motion.
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(1) (2) (3)

Fig. 3. Cardiac Geometry and Electrical Stimulation. (1) LV segmentation (2)
Initial electrical activation area for the normal stimulation (3) Positions of the stimu-
lation leads in the LV AHA zones

Table 1. Simulation Database. Parameters of the 120 simulations. Global con-
ductivity (cm/s) is the conduction velocity of the electrophysiology model and global
contractility (adimensioned) is the peak contractility of the E/M coupling.

Simulation Initial Electrical Global Global
Number Activation Position Conductivity Contractility

1-4 LVRV (Normal) 50/30 0.09/0.05
5-8 LV (RBBB) 50/30 0.09/0.05
9-12 RV (LBBB) 50/30 0.09/0.05
13-36 RV + AHA 1/5/6/7/11/12 (LV Pacing) 50/30 0.09/0.05
37-48 LV + AHA 3/9/14 (RV Pacing) 50/30 0.09/0.05
49-120 AHA 1/5/6/7/11/12 + AHA 3/9/14 50/30 0.09/0.05

(BV Pacing)

To this end, we characterized the motion of each AHA segment by fitting in the
least-square sense an affine transformation f(p) = Ap + B to the iLogDemons
estimated DF. The strain tensor was computed from the affine matrix E =
1
2 (ATA− I). We propose to extract kinematic descriptors that are invariant to
any change of reference frame (or rigid transformation). For the strain matrix E,
the three Euclidean invariants are written as x1 = trace(E), x2 = trace(E2), and
x3 = det(E). For the displacement vector, we only extracted its norm as invari-
ant: x4 = ‖u‖ = ‖Ab+B − b‖, where ‖u‖ is the displacement norm of the zone
centroid with b the initial position of the centroid. Finally, we also used the strain
in the direction of displacement as the last invariant x5 = 1

2‖u‖2 (uTEu). These
5 descriptors for the 17 AHA zones during the 19 time instances of a cardiac
cycle were used to create a vectorial kinematic descriptor for each simulation:
X = xi ∈ Rd where d=5 (Descriptors)× 19 (Times) × 17 (Zones) = 1615.

3.2 Inverse Electro-Kinematic Learning

In the inverse electro-kinematic learning process, the non-linear relationship be-
tween the kinematic descriptors and the electrical propagation was estimated
based on a training set extracted from the synthetic database. To represent the
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(1) (2) (3) (4)

Fig. 4. Synthetic 3D US. (1) original real image with (2) contour of the mesh at the
corresponding time from the model simulation overlayed, (3) synthetic image generated
with the model simulation with model contour overlay, (4) synthetic image.

cardiac electrophysiology, we considered the activation time when the electrical
potential starts to depolarize at a point of the myocardium. The activation time
was averaged for all points in each AHA segment. Therefore, the vector character-
izing electrophysiology for each simulation is Y = yi ∈ Rr=17 (AHA Zones) =
log(Activation Times).

We modelled the non-linear relationship using Least-Square Support Vector
Machine (LS-SVM) Y = f(X) = Ak(xi, X) + b with the Radial Basis Function

(RBF) K(xi, xj) = e−z as the Kernel function where z =
∑5

k=1

(
|xk

i −xk
j |

σkαk

)2

.

In this kernel function, σk is the standard deviation of each descriptor and αk

is a dimensionless coefficient which weights the importance of the descriptor in
the learning process. Finally, following the LS-SVM theory, k(xi, X) is a kernel
vector while matrix A is computed as A = Y T (λI +K)−1. In order to have
a good generalization of the model, the αk parameters and the regularization
parameter λ were optimized with a downhill simplex method using leave-one-
out cross-validation based on Allen’s predicted residual sum-of-squares (PRESS)
statistic [1].

4 Results

The proposed synthetic 3D US generation method produces realistic synthetic
3D US sequence (cf. Fig. 4) with a seamless fusion of simulated myocardium mo-
tion with neighboring moving structures. The created synthetic 3D US database
contains 120 different cardiac cases consisting of a sequence of 19 3D US images
describing a complete cardiac cycle. In total, 120 × 19 = 2280 synthetic 3D US
images were generated.
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Fig. 5. RMS Residual vs Size of Training Data. Less than 10 ms RMS residual
is obtained by using more than 15 training cases.

4.1 Machine Learning Validation on Synthetic Data

We evaluated the learning process on synthetic data and estimated the minimum
size of the training set to have a small regression error for the remaining entries
of the database. Fig. 5 shows a good generalization with a root mean square
(RMS) error of less than 10 ms of residual by using at least 15 training datasets.

4.2 Machine Learning Evaluation on Real Data

After optimizing the PRESS criterion on the whole synthetic database, we ob-
tained the following LS-SVM parameters : λ = 7.89 × 10−31, α1 = 463.65,
α2 = 2.29 × 1013, α3 = 8.02 × 1012, α4 = 14.37 and α5 = 174.51. This clearly
shows that the kinematic descriptors x1, x4 and x5 are the only meaningful
ones to learn the electro-kinematic relationship. We did a first evaluation of this
learning process on clinical 3D US sequences for two patients with LBBB. After
performing non-rigid registration and extracting the vector X of kinematic de-
scriptors, the electrophysiology vector Y was estimated from the LS-SVM. Very
similar estimated depolarization times were obtained for these two patients (cf.
Fig. 6). Moreover, the activation patterns correspond to what was expected: de-
polarization starts from the septum towards the lateral wall, and the difference
between the first activated zone and the last activated zone, which indicates the
QRS duration, is around 150 ms which is also a characteristic of the LBBB.

ms ms

(1) (2)

Fig. 6. Depolarization Time Estimation from Clinical 3D US Sequences. First
evaluation of the learning process on patient (1) and patient (2). Both patients have
LBBB.
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5 Conclusion

We developed a pipeline to create realistic synthetic 3D US sequences using the
deformation from an E/M model simulation. Those sequences represent in them-
selves a valuable result for instance to benchmark motion tracking algorithms. As
these synthetic 3D US sequences have electro-kinematic ”ground truth” informa-
tion, we thus performed an inverse electro-kinematic learning on this database.
Invariant kinematic descriptors were extracted from the DF obtained from the
synthetic 3D US images registration. The non-linear inverse relationship between
the electrical activation times and the kinematic descriptors was modelled using
LS-SVM. Evaluation of the learning process for the synthetic 3D US sequences
database shows good generalization and the first evaluation on clinical 3D US
sequences shows encouraging results.
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Abstract. CT colonography is routinely performed with the patient
prone and supine to differentiate fixed colonic pathology from mobile
faecal residue. We propose a novel method to automatically establish
correspondence. Haustral folds are detected using a graph cut method
applied to a surface curvature-based metric, where image patches are
generated using endoluminal CT colonography surface rendering. The
intensity difference between image pairs, along with additional neigh-
bourhood information to enforce geometric constraints, are used with a
Markov Random Field (MRF) model to estimate the fold labelling as-
signment. The method achieved fold matching accuracy of 83.1% and
88.5% with and without local colonic collapse. Moreover, it improves an
existing surface-based registration algorithm, decreasing mean registra-
tion error from 9.7mm to 7.7mm in cases exhibiting collapse.

1 Introduction

Computed tomographic colonography (CTC) is widely considered the preferred
radiological technique for detecting colorectal cancer or potentially precancer-
ous polyps. When characterising potential polyps, the radiologist must manu-
ally match corresponding areas in the prone and supine data. However, this is a
difficult, time-consuming task due to considerable deformation that occurs dur-
ing repositioning [1]. Hence, a method for automatic registration of prone and
supine datasets has the potential to improve radiologists’ efficiency and confi-
dence. Furthermore, accurate surface registration could improve specificity of
computer-aided detection systems (CAD).

A number of methods have been proposed to find correspondence between the
prone and supine positions. For example, centreline-based methods extract and
align colonic centrelines by stretching and shrinking based on path geometries
[2]. Anatomical landmarks can be used to help align the two datasets by first
identifying a stable set of anatomical features, such as the caecum, rectum and
flexures [3]. Voxel-based methods provide a further means of registration [4].
However, these methods rely to varying extents upon continuous prone-supine
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colonic segmentations, free from occlusion by fluid or collapse; a scenario which
occurs infrequently in daily practice, despite optimal bowel preparation [5].

Fukano et al. proposed a registration method based on haustral fold matching
[6]. A second-order derivative difference filter was used to extract folds; their
volume and relative positions along the centreline were used for matching. The
method relied on prior automatic identification of a set of landmark locations
for registration. They reported correct registration of only 65.1% of large folds
and 13.3% of small folds.

Recently, methods which involve conformal mapping of the colonic surface
have been proposed in order to reduce the complexity of the three-dimensional
task. For example, Zeng et al. combined conformal mapping with feature match-
ing between the prone and supine surfaces [7]. The prone and supine colonic
segmentations were mapped onto five rectangle pairs. Correspondences were es-
tablished using a feature matching method based upon mean curvature. The
method relied on accurately determining five matching segments in the prone
and supine datasets, which is difficult to achieve and may not be possible in
the case of local colonic collapse. The method proposed by Roth et al. [8], aims
to overcome these limitations by mapping the entire endoluminal surface to a
cylinder. Dense surface correspondence was then achieved by non-rigid cylin-
drical B-spline registration, driven by local shape measurements. However, this
method can be susceptible to mis-registration of continuous sections due to the
similarities of neighbouring features.

We present a novel method for generating a set of robust landmark correspon-
dences between the prone and supine CT data. While previous methods tried to
match corresponding folds based on spatial location and size alone, e. g. [6,7],
we also compare visual renderings of the colonic surface at the fold positions as
well as local geometric information, without reliance on a conformal mapping.
The matching problem is modelled with an MRF and the maximum a posteriori
labelling solution is estimated to provide a correspondence. This method explic-
itly addresses the problem of colonic collapse and can provide an initialisation
in order to improve methods which aim to provide a full surface correspondence.

2 Methods

2.1 Haustral Fold Segmentation

Haustral folds are elongated, ridgelike structures on the endoluminal surface
which can be identified by extracting curvature measurements from a surface
reconstruction of the colonic wall. The maximum and minimum values of the
normal curvature at a point are called the principal curvatures, k1 and k2 repec-
tively. A metric based on the principal curvatures is used to classify each vertex
as fold, or non-fold: M = k1 − γ||k2||. This recognises that at a fold, one expects
k1 >> 0 and k2 ≈ 0. The γ parameter penalises the metric against curvature in
any direction other than in the maximum, helping to separate the folds at the
tenaie coli. The surface mesh is treated as a graph, with graph nodes defined
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(a) (b) (c) (d)

Fig. 1. External (a) and internal (b) views of segmented haustral folds with marked
centres. Virtual colonoscopy views of corresponding folds in the prone (c) and supine (d)

by the mesh vertices and graph edges defined by the mesh edges. Using a vir-
tual sink and source with the given weighting, a graph cut segmentation [9] is
performed which minimises an energy function using M as a unary term and a
Potts energy function smoothing term: δ(fp, fq) = (fp == fq) · ζ. This results in
a label assignment of fold or non-fold over the entire surface mesh (Fig. 1). The
centre of each fold is taken as the vertex with the shortest maximum distance
to any vertex lying on the border of the segmented region. An observer study
was carried out using 4 data sets to evaluate the segmentation performance.
Given these cases, a sensitivity of 86.5% and positive predictive value of 97.0%
is achieved.

2.2 Markov Random Field Modelling

The matching of prone and supine haustral folds is formulated as a labelling
problem. First, m haustral folds are detected in the supine data and these are
uniquely labelled; the objective is to then assign labels to the detected prone
folds, achieved by solving an MRF. The identified haustral folds in the prone
data set are modelled as sites S = S1, ..., Sn, each of which has an associated
random variable F = F1, . . . , Fn taking on a discrete label f = f1, . . . , fn taken
from the set of haustral folds identified in the supine data set. A neighbourhood
system N = Ni|∀i ∈ S defines the extent of local connections between sites;
and a pair-wise clique defined on N and S, C2 = {i, i′}|Ni, i ∈ S allows the
incorporation of a-priori knowledge of geometric dependencies between labels.

The maximum a posteriori (MAP) estimate of the optimum labelling is com-
puted, which is equivalent to minimising the energy function:

f (MAP ) = argmin
f

⎡⎣∑
i∈S

Vu(fi) +
∑
i∈S

∑
j∈Ni

Vp(fi, fj)

⎤⎦ (1)

where Vu(fi) is the unary term, a cost function for assigning label value fi to
site Si. The pair-wise term Vp(fi, fj) is the cost for assigning neighbouring sites
Si and Sj to their current values.
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Unary Cost Function. The aim is to calculate an n ×m unary cost matrix,
where n = ‖S‖ is the number of sites or prone folds, and m = ‖L‖ is the number
of labels or supine folds. To calculate the cost Vu(fi = Lj) of assigning label
Lj to site Si image patches are rendered at the fold positions, visualising the
internal colon wall (Fig. 1). The resulting images are then compared using a
sum-of-squared-difference similarity metric. An optimisation over the external
parameters of the virtual camera used to visualise the supine dataset accounts
for any inaccuracies in the fold point identification. Restricting the number of
degrees of freedom of camera search ensures that the camera focus remains on
the correct fold. The degrees of freedom are as follows: Elevation (θ) - the fold
centre and camera right vector give a position and axis about which the the
camera is rotated; roll (φ) - rotation around the camera view direction; dollying
(τ) - translation along the camera right vector.

Given the three parameters θ, φ, τ ; the optimisation finds the local minimum
in a mean sum of squared difference between the rendered images I1 and I2
using Powell’s gradient descent method [10]. Adding a scaling parameter W
allows the weighting of unary to pair-wise costs. Additionally, a constraint is
added so that the matching folds must lie in a similar region. The fold centreline
positions νc

s , νc
p are used to limit corresponding fold matches to a window of one

fifth of the colon length. Finally, a constant unary cost α is associated with the
assignment of the null label to any given node, allowing for missing labels. We
define R(I1, I2) = W

√
MSSD(I1, I2|θ, φ, τ). The unary costs are then defined:

Vu(fi = Lj) =

⎧⎨⎩
α if Lj = L0

R(I1, I2) − min(R(I1, ·)) if νc
s→p ≤ ‖νc

full‖/10
∞ otherwise

(2)

Pair-wise Cost Function. To improve labelling performance, geometric in-
formation about neighbouring fold positions can be used. In this work a Rota-
tion Minimising Frame (RMF) [11] is employed to describe the relative position
of each fold to its neighbours: ν = [νc, νθ]T ; where νc is the difference in fold
position along the centreline and νθ, the difference in angle of rotation around
the centreline. This 2D parameterisation simplifies the description of the trans-
lation between corresponding pairs of folds between the prone and supine as
the centreline νc and rotational νθ displacement should be similar (νp ≈ νs).
Alternatively we can state νp = νs +ε, where ε represents some uncertainty, and
can be modelled with a zero mean bivariate normal distribution ε ∼ N (0,Σ),
with Σ = diag(Σc, Σθ). Finally we recognise that the position of a neighbour-
ing site becomes more uncertain as the displacement along the centreline in-
creases. For each site pair {i, j} we calculate Σij = (I + (νc

S · λ))Σbase, where
λ = diag(λ1, λ2) is a parameter to control the increase in positional uncer-
tainty with centreline displacement, and Σbase is a base covariance. With this
information, a pair-wise cost for assigning neighbouring sites Si and Sj label
configurations fi and fj , is defined by the negative log-normal distribution:
ϕ(fi, fj) = (νS−νL)T Σ−1

ij (νS−νL)/2. A local neighbourhood system is defined
in order to enforce local geometric constraints on neighbouring fold positions.
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The local neighbourhood of a site is set to be N local
i = {i �= j | ‖νc

i − νc
j ‖ < t},

where t is a threshold distance. Pairs of sites that are separated by a local colonic
collapse are removed from the neighbourhood set. A uniqueness constraint is also
enforced so any two sites may not be assigned the same label. This is included
in the pair-wise cost function by connecting each site with every other site in a
global neighbourhood system Nglobal

i = {i �= j} and defining the pair-wise cost
of assigning the same label to two nodes to be infinity, except in the case of a
null label assignment Vb(fi, fj) = ∞ if fi = fj �= L0. The full pair-wise cost
function is:

Vb(fi, fj) =

⎧⎪⎪⎨⎪⎪⎩
∞ if fi = fj

β if Sj ∈ N local
i and (fi = L0 or fj = L0)

ϕ(fi, fj) if Sj ∈ N local
i and fi �= L0 and fj �= L0

0 otherwise

(3)

MRF Inference. The uniqueness constraint on the pair-wise costs means the
problem of solving the MRF is non-submodular and restricts the possible al-
gorithm choice for MAP inference. The Belief Propagation (BP) algorithm is
suitable for this purpose. To estimate the maximum probability state configu-
ration, the min-sum variant is used [12]. Parameters are found using a gradient
ascent optimisation on training data.

3 Experimental Results

3.1 Clinical Validation

Ethical approval and informed consent was obtained to use anonymised CT
colonography data. Colonic cleansing and insufflations had been performed in
accordance with current recommendations [13]. A radiologist (with experience
of over 500 endoscopically validated studies) used virtual colonoscopic recon-
structions to identify corresponding folds in the prone and supine datasets to
establish a reference standard. Any folds where a confident manual correspon-
dence could not be established were disregarded. This resulted in a total of 1175
corresponding fold pairs over 13 datasets, 5 of which exhibited at least one local
colonic collapse in one or both views (case 10 is shown in Figure 2). For a small
subset of 3 randomly selected cases the reference standard was reestablished af-
ter a period of three months. Folds which have a correspondence in both sets
of reference standard are used to evaluate the level of intra-observer variability,
showing a 85.3% agreement.

3.2 Haustral Fold Matching

To assess the performance of the algorithm, for each case the maximum a pos-
teriori labelling solution is compared against the reference standard described
above. Table 1 shows the results for the cases with and without colonic collapse.
Although the percentage of correctly labelled folds is high, at 83.1% and 88.5%
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(a) (b) (c)

Fig. 2. External view of prone (a) and supine (b) datasets in case 10. The dotted
line indicates an area of colonic collapse. (c) shows the conformally mapped colonic
prone (top) and supine (bottom) surfaces at the sigmoid with shape index values. The
rectangles represent unfolded cylinders. Red areas indicate a collapsed region. Black
lines show detected fold correspondences of which all agree with the reference standard.

Table 1. Fold labelling performance. The number of Reference Standard (RS) points
are shown. Label shows the percentage of RS points identified with a label.

Without colonic collapse With colonic collapse

Case 1 2 3 4 5 6 7 8 Total 9 10 11 12 13 Total

RS Points 74 104 112 88 86 112 107 91 774 65 107 66 83 80 401
Labelled 66 97 106 84 82 92 99 88 714 62 101 63 77 51 354
Correct 49 90 98 70 74 76 91 84 632 50 78 53 74 39 294
Incorrect 17 7 8 14 8 16 8 4 82 12 23 10 3 12 60
Label(%) 89.2 93.3 94.6 95.5 95.3 82.1 92.5 96.7 92.2 95.4 94.4 95.5 92.8 63.8 88.3

Correct(%) 74.2 92.8 92.5 83.3 90.2 82.6 91.9 95.5 88.5 80.6 77.2 84.1 96.1 76.5 83.1

for cases with and without colonic collapse respectively, it is apparent that some
cases show a much higher rate of accuracy than others. This is primarily due
to different levels of distension causing inconsistent fold identification between
data sets. Whilst the method is robust to missing data, a greater proportion of
correctly labelled folds is demonstrated in cases with better fold segmentation. A
second factor which contributes largely to the variance in fold pair matching in
the pair-wise term, is the inaccurate estimation of the angle of rotation between
folds using the centreline-based RMF estimation method, especially apparent in
areas of high torsion, such as the flexures.

3.3 Initialisation of Surface Based Registration Method

There are scenarios where obtaining a one-to-one surface correspondence is re-
quired. In this case, the results of this fold matching method can be used to
provide automated initialization for a surface-based registration technique [8].
Here, the fold positions are mapped onto a conformally mapped image and used
to provide a linear scaling between haustral folds in the direction of the cen-
treline, prior to the B-spline registration where full surface correspondence is
established. To determine the registration error, each reference standard point is
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Table 2. Surface registration initialisation with non-collapsed cases. The number of
Reference Standard (RS) points are shown. Error 1 and 2 show the error of the surface-
based registration without and with using points as an initialisation.

Without colonic collapse With colonic collapse

Case 1 2 3 4 5 6 7 8 Total 9 10 11 12 13 Total

RS Points 74 104 112 88 86 112 107 91 774 65 107 66 83 80 401
Error 1 (mm) 11.5 8.6 5.3 5.7 5.5 5.2 5.8 6.7 6.6 12.2 6.5 7.8 13.5 9.6 9.7
Error 2 (mm) 11.5 7.2 5.5 5.7 5.8 5.5 6.1 6.9 6.6 7.9 5.8 7.8 8.7 9.1 7.7

Difference (mm) 0.0 -1.4 0.2 0.0 0.3 0.3 0.3 0.2 0.0 -4.3 -0.7 0 -4.8 -0.5 -2

transformed from one dataset to the other using the registration result, and the
3D Euclidean distance between this and the corresponding reference standard
point is measured. The results for cases with and without colonic collapse are
shown in Table 2 using the same reference standard as in the previous exper-
iment. It can be seen that the initialisation improves registration in cases ex-
hibiting local colonic collapse, decreasing the mean error from 9.7mm± 8.7mm
to 7.7mm± 7.1mm; however in cases without a local colonic collapse, the mean
error was unchanged at 6.6mm. This shows that the fold matching technique is
more robust than the surface-based registration in the case of poor insufflation
(e.g. collapse); however, in well distended cases, the space to improve upon the
registration of the surface-based method is limited. Using a Related Samples
Wilcoxon Signed Rank Test with a significance level set at p < 0.01, the differ-
ences in mean errors are not significantly significant in the cases without colonic
collapse (p = 0.317). However, in the cases with colonic collapse a statistical
significance is observed (p = 0.009).

4 Conclusion and Future Work

Although several registration methods have been proposed, they often require
manual initialisation using anatomical landmarks or are likely to fail in the
presence of local colonic under-distension. Colonic collapse or segments with in-
adequate fluid tagging are very common in routine practice and methods must
have the inherent capability to deal with this in order to be clinically useful. We
propose a novel method for detecting and establishing correspondence between
haustral folds in prone and supine CT colonography data sets which accurately
deals with these issues. In addition, applying this method to initialise a surface-
based registration technique can reduce registration error. It is clear that the
unary costs are not as reliable in areas of high deformation due to the change
in appearance of haustral folds. Investigation into a dynamic weighting of unary
to pair-wise costs may allow for improved robustness in these situations. Future
work would include the use of tenaie coli identification to provide a ’zero an-
gle’, improving the accuracy of the pair-wise costs. Although thorough clinical
validation on a large dataset is ongoing, current results presented in this paper
clearly demonstrate the promise of our MRF approach to match corresponding
haustral folds in CTC data.
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Detecting Patient Motion in Projection Space

for Cone-beam Computed Tomography

Wolfgang Wein and Alexander Ladikos
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Abstract. Cone-beam X-Ray systems strictly depend on the imaged
object being stationary over the entire acquisition process. Even slight
patient motion can affect the quality of the final 3D reconstruction. It
would be desirable to be able to discover and model patient motion right
from the actual projection images, in order to take it into account during
reconstruction. However, while the source-detector arrangement is rotat-
ing around the patient, it is difficult to separate this motion from the
additional patient motion. We present a novel similarity metric for suc-
cessive X-Ray projections, which is able to distinguish between the ex-
pected rotational and additional sources of motion. We quantitatively
evaluate it on simulated dental cone-beam X-Rays and qualitatively
demonstrate its performance on real patient data.

1 Introduction

As opposed to rapidly spinning Computed Tomography (CT) devices, 3D cone-
beam X-Ray systems take much longer (10-30 seconds) to acquire enough pro-
jection images for a 3D reconstruction. Both unexpected motion of the device
itself (i.e. deviation from its calibrated circular path) as well as patient motion
have negative effects on the reconstruction, if not modeled correctly. Depend-
ing on the organ being imaged, the latter can be categorized into respiratory
movement, cardiac motion, as well as direct movement of the patient.

If additional information, such as an ECG sensor, is available which allows to
separate motion phases, a binned reconstruction is possible, whereafter further
motion refinement is possible [5]. In the absence of such information, both image
and motion can be simultaneously reconstructed using an iterative framework
[2]. While such approaches are computationally demanding, they potentially are
able to recover small internal anatomic movement. However, convergence is not
guaranteed if large-scale, non-periodic patient motion is present, as an initial
reconstruction has to use either zero motion or a prior motion model.

Estimating motion in projection image space is difficult because the source-
detector motion itself causes change. On top of that, the amount of change varies
with the viewing angle and anatomy traversed by the X-Rays. In [6], an optical
flow estimation between projection images and known reference images is used
for a rough estimation. In [1] various standard similarity measures are evaluated
with respect to their capability of distinguishing motion directly from successive
X-Ray projections. Regardless of the specific measure used, such an approach can
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Fig. 1. Geometry of two successive X-Ray images during a cone-beam acquisition. For
better illustration, the angle increment, and therefore the length of the epipolar line
segment, has been increased.

only work if the amount of image change due to patient motion is significantly
larger than the change induced by the device angle increment.

In the following, we present our approach for detecting motion in projection
space. A new similarity measure is developed, which uses the projection geometry
of two successive X-Ray images for estimating to which region in the second
image a certain location in the first image can contribute. Inconsistent structural
change can therefore be singled out and used to assess patient motion.

2 Methods

2.1 Geometric Modeling

Let us consider the geometric relationship of two successive cone-beam X-Ray
projection images I and J as illustrated in figure 1. Let the projection matrices
of images I and J be PI = K[I|0] and PJ = K[R|t] with K the internal camera
parameters and [R|t] the pose increment of image J with respect to image I. If
the image intensities represent linear X-Ray attenuation (as opposed to detector
intensity), the value of a single pixel I(x) at location x can be described as a
line integral

I(x) =
∫ yn

y1

μ(r)dr (1)

where μ : R3 → R is the volume of X-Ray attenuation, and y1, yn the start
and end position along the ray between source and detector position x. As
illustrated in figure 1 the attenuation values μ(r) along this ray also contribute
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to pixel intensities in the neighboring projection image J . The affected pixels
are located on a segment of the epipolar line of x in J . We can discretize and
rewrite equation 1 as

I(x) =
n∑

k=1

μ(yk) + με (2)

Here, yk are sampling points along the projection ray going through x and με

is the residual X-Ray attenuation not found within these sampling points. The
attenuation values μ(yk) contribute each with a particular fraction to the pixels
J(xk):

μ(yk) = wkJ(xk) (3)

It is therefore valid to describe the relationship of a pixel I(x) with the neigboring
image as follows:

I(x) =
n∑

k=1

wkJ(xk) + wn+1 (4)

where xk are a number of chosen discrete locations along the epipolar line in J .
Essentially, the value of pixel x in I is composed of a linear combination of some
of the X-Ray attenuation values its ray shares with the ones in the neighboring
image’s locations xk, plus a constant value for attenuation values outside the
epipolar line segment.

If we restrict the locations of xk such that the ray segment |y1 − yn| cor-
responds to the cylindrical core reconstruction area, the epipolar line segment
in J should span from a few to maximum a dozen pixels (depending on image
resolution, angle increment and reconstruction size). More precisely the start
and end point of the epipolar line segment are given by

x1 = KRK−1x +
Kt
Zstart

xn = KRK−1x +
Kt
Zend

(5)

where Zstart and Zend are the start and end depths along the projection ray
through x (for a derivation see [3] chapter 9). We linearly interpolate the samples
in between as xk = x1 + k−1

n−1 (xn − x1).
The weights wk basically describe at which depths in reconstruction space

corresponding structures occur, and, consequently, in which horizontal direction
and how fast they move in different ”layers” in projection space. If they were
known, one could assess how well the images satisfy equation 4.

2.2 Projection Similarity

Image similarity metrics which allow local variation of unknown parameters in
the assumed intensity relationship, exhibit superior performance in certain X-Ray
image registration problems. One particular example is local cross-correlation,
where brightness and contrast may vary, since they are implicitly computed,
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within the neighborhood of every image pixel [4]. It is also possible to implicitly
recover unknown parameters of a linear combination of two image components
within a similarity formulation [7].

We extend such an approach to create a similarity measure which assesses
how well equation 4 locally holds. We use the following variables to specify the
situation for a neighborhood Ω of size m surrounding a pixel x

ix =

⎛⎜⎝ i1
...
im

⎞⎟⎠ ;Jx =

⎛⎜⎝ j11 . . . j1n 1
...

...
...

jm1 . . . jmn 1

⎞⎟⎠ ; wx =

⎛⎜⎝ w1

...
wn+1

⎞⎟⎠ (6)

where ix is a linearization of the pixel intensities {I(x)|x ∈ Ω} and row l of Jx

contains n samples taken from the epipolar line corresponding to location il and
a constant entry. We then interpret equation 4 as a linear regression problem

ix = Jxwx (7)

which we solve using ordinary least squares (OLS):

wx = (JT
x Jx)−1JT

x ix (8)

The local similarity around pixel x then writes as

Sx(I, J) = 1 − |ix − Jxwx|2
V ar(ix)

(9)

The global image similarity is composed weighted by the local variance, in order
to suppress regions without structural appearance:

S(I, J) =
∑

x

(
V ar(ix) − |ix − Jxwx|2

)∑
x V ar(ix)

= 1 −
∑

x |ix − Jxwx|2∑
x V ar(ix)

(10)

Rather than computing vector ix and matrix Jx for every pixel (and hence re-
evaluating all neighborhood pixels repeatedly), we directly establish all required
sums to solve equation 8 using an efficient recursive filtering approach.

2.3 Motion Detection

Depending on the parameters m and n which discretize the local X-Ray depth
properties, the similarity measure value will slightly vary with changing image
content even in absence of patient motion. On the other hand, it is dependant
on the projection matrices PI and PJ. If we incorporate a rigid transformation
matrix T(p) = [ΔR|Δt], parameterized over p, the start and end point of the
epipolar line segment of point I(x) become

xs = K(RΔR)K−1x +
K(RΔt + t)

Zstart

xe = K(RΔR)K−1x +
K(RΔt + t)

Zend
(11)
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(a) Projection I (b) Values of J(xk) (c) Weights wk
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Fig. 2. Illustration of similarity measure properties from a pair of DRRs (please refer
to the colored electronic version of this manuscript)

Even though it is just defined on the 2D projection images, the measure S will
change with respect to all 3D transformation parameters, because T(p) directly
affects the pixel locations xk in equation 4. If there is no patient motion the
similarity measure should have a maximum at T(0) = I, i.e. ∂S

∂p |p=0 should be
zero. Due to the local least-squares solutions inherent to the measure, analytic
gradients are difficult to derive. We therefore use a numeric difference operator
in order to assess if S(I, J,p) is at a maximum. More precisely, we sum over all
forward and backward differences which are positive:

S′ =
12∑

i=1

1
2

(sgn(ΔSi) + 1)ΔSi with ΔSi = S(Δi) − S(0) (12)

3 Evaluation

3.1 Analysis of the Similarity Value

We use a high-fidelity dental cone beam reconstruction with 5123 voxels and
compute digitally reconstructed radiographs (DRRs) from it. Their quality is
insignificantly lower than the original projection images, however they enable
us to simulate arbitrary motion of the patient’s head in known conditions. Fig-
ure 2 visualizes the similarity measure. A parameter selection of n = 3 and
m = 212 was used. The three values J(xi), as well as the weights wi, are en-
coded in the red, green and blue color channels of figure 2(b). The distribution
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Fig. 3. Location of local maxima for the parameters of ΔR and Δt

along the epipolar line can nicely be seen by the horizontal split into color com-
ponents, in particular at vertical structures. The computed weights wi in figure
2(c) essentially represent a rough depth reconstruction from the two projections.
Structures in the front of the volume which are moving to the right in the pro-
jections are blue. Structures in the center of the volume or tangential to the
rotation are green; structures in the back (moving to the left) are red. The simi-
larity measure S in equation 10 was evaluated with respect to all parameters in
ΔR and Δt, figure 2(d) and (e) depict the corresponding curves for the image
pair shown. This evaluation was then repeated for all projection pairs of a simu-
lated cone-beam acquisition without any patient motion (300◦ rotation, 2◦ angle
increment). Figure 3 shows the location of the similarity measure maximum for
all frames (it should be zero). The mean deviation and variance (σ) are:

ΔRx ΔRy ΔRz Δtx Δty Δtz

mean 0.0892 -0.0024 -0.0040 -0.0214 0.0060 0.0754
σ 0.0870 0.1173 0.0655 0.0879 0.0351 0.3542

All parameters vary within a very small scale. The variation of the translation
Δtz towards the X-Ray source is highest, which is expected since it causes very
little change in the projections (compare fig. 2(e)).

3.2 Recovering Motion

A cone-beam acquisition was simulated which includes a gentle nod of the pa-
tient’s head with an amplitude of 10◦ and 7◦ in the rotational parameters ΔRy

and ΔRz. Here, the first parameter corresponds to a relative change of the cone-
beam rotation speed, therefore the combined rotation slows down first. In this
case, a standard similarity measure will yield higher similarity, as can be seen in
figure 4(a) for the normalized cross-correlation (NCC) similarity. Our detection
S′ accurately reflects the amount of motion (the plot shows S′ + 0.99 to fit on
the same scale). S′ is zero throughout the sequence without motion (hence not
included in the plot). Figure 4(b) shows the derivative of our simulated motion
(i.e. the motion per frame pair) along with the result of a full non-linear opti-
mization over S′, individually for each image pair. Even though the incremental
patient motion between frames has a maximum amplitude of only ≈ 0.75◦, our
method can approximately recover it with an average deviation of 0.093±0.122◦

in ΔRy and 0.046± 0.059◦ in ΔRz .
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Fig. 4. Result of the motion detection experiment
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Fig. 5. Motion detection on clinical projection data from two patients

3.3 Parameter Selection

The parameters of our system to be defined up-front, namely the local neighbor-
hood size m and the number of motion layers n, have to be chosen in order to op-
timize the similarity robustness for a particular clinical application or anatomy.
While a systematic evaluation is beyond the scope of this manuscript, we have
generally obtained good results for m = 212 . . . 312 and n = 3 . . . 7 on various
anatomy, given a projection image size of 5122 pixels. Those parameters are also
intuitively defined; in dental applications n = 3 is sufficient since the structures
are dominated by two layers of teeth moving in opposite direction (see figure 2).
The maximum reasonable value of n is where |xi+1 − xi| is roughly the size of
an individual image pixel (see equation 11).

3.4 Real Projection Data

We have computed the motion detection measure S′ on the original projection
images of two orthodontic cone-beam acquisitions. Patient 1 exerts a strong head
movement towards the end of the sequence. Patient 2 is trembling several times
during the entire acquisition. Figure 5 depicts the detection value S′ for all frame
pairs, and the NCC measure for comparison. The value S′ only deviates from
zero where patient motion is clearly visible.
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4 Conclusion

As opposed to disparity computation from stereo cameras, a pair of X-Ray im-
ages yields correspondence at multiple depths. We were able to approximately
recover this information as a number of discrete weights, through a local least-
squares estimation for every pixel’s neighborhood. This in turn allowed us to
derive an optimal similarity formulation in projection space, which is sensitive
to 3D object changes beyond the expected relation of the projections themselves.
We have shown on dental cone-beam data that this measure accurately detects
global rigid patient motion. Besides, we could estimate the intra-frame motion
parameters with an accuracy of < 0.1◦ and < 0.4mm, respectively.

We believe that this formulation can help future reconstruction algorithms to
better take patient motion into account. Equation 12 can detect motion right
during the acquisition and suggest if the reconstruction needs to consider it in
the first place. While our actual motion estimates from X-Ray image pairs alone
would yield drift applied over a sequence, they can bootstrap more powerful iter-
ative methods which simultaneously estimate a volume and motion parameters.
The computed depth weights wi are a by-product of our formulation, and could
be exploited to accelerate the back-projection step during a reconstruction. Ex-
tensions to use more than two projections, as well as non-linear motion models,
are straightforward.
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Abstract. Nonrigid image registration methods based on the optimization of
information-theoretic measures provide versatile solutions for robustly aligning
mono-modal data with nonlinear variations and multi-modal data in radiology.
Whereas mutual information and its variations arise as a first choice, genera-
lized information measures offer relevant alternatives in specific clinical contexts.
Their usual application setting is the alignement of image pairs by statistically
matching scalar random variables (generally, greylevel distributions), handled via
their probability densities. In this paper, we address the issue of estimating and
optimizing generalized information measures over high-dimensional state spaces
to derive multi-feature statistical nonrigid registration models. Specifically, we
introduce novel consistent and asymptotically unbiaised k nearest neighbors esti-
mators of α-informations, and study their variational optimization over finite and
infinite dimensional smooth transform spaces. The resulting theoretical frame-
work provides a well-posed and computationally efficient alternative to entropic
graph techniques. Its performances are assessed on two cardiological applica-
tions: measuring myocardial deformations in tagged MRI, and compensating
cardio-thoracic motions in perfusion MRI.

Keywords: Multi-feature nonrigid registration, groupwise nonrigid registration,
kNN entropy estimators, high-dimensional α-information, cardiac tagged MRI,
cardiac perfusion MRI.

1 Introduction

Nonrigid image registration methods based on the optimization of information mea-
sures provide versatile solutions for robustly aligning mono-modal data with nonlinear
variations and multi-modal (inhomogeneous or incommensurable) data in medical radi-
ology. Whereas mutual information and its variations arise as a first choice [8], genera-
lized information measures, such as f -informations [11,12] and Jensen f -divergences
[9], have been shown to be relevant alternatives in specific clinical contexts.

Their usual application setting is the alignement of image pairs by statistically match-
ing luminance distributions, handled using marginal and joint probability densities esti-
mated via kernel techniques. Though efficient for joint densities exhibiting well-separated
clusters or reducible to simple mixtures, these approaches reach their limits for nonlin-
ear mixtures, such as generated by textured objects over complex backgrounds. In this
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case, pixelwise luminance appears to be a too coarse feature for allowing unambiguous
local statistical decisions, resulting into inaccurate or inconsistent matches, especially
problematic in atlas propagation or motion estimation frameworks.

An intuitive idea to overcome this limitation is to combine multiple higher-dimen-
sional image features (which may convey spatial information) within a vector random
variable (RV). Its implementation, however, is faced with the curse of dimensionality:
the number of samples required to consistently estimate a probability density increases
exponentially with the state space dimension. In particular, kernel density estimators
fail in high dimensions due to the fixed size of sample sets, which precludes estimating
and optimizing information measures using plug-in techniques. Groupwise registration
of image series, i.e. their simultaneous alignment onto a common reference, comes up
against a similar obstacle, linked to handling spatio-temporal luminance distributions.

This theorerical issue can be bypassed by computing information measures directly
from data using geometric entropy estimators. The latter include (i) entropic graphs, ap-
plicable to the broader class of α-informations, whose relevance for image registration
is today well-established [9,13]; and (ii) more recent kth-nearest neighbor (kNN) en-
tropy estimators [4,7], whose application to image science has been until today confined
to the Shannon framework [3,5,6].

In this paper, we introduce novel, consistent and asymptotically unbiased kNN es-
timators of α-informations, and study their variational optimization over finite- and
infinite-dimensional spaces of smooth spatial mappings. The resulting theoretical frame-
work provides a well-posed and computationally efficient alternative to entropic graph
techniques for multi-feature nonrigid image registration. Its performances are assessed
in cardiac MRI for two clinical challenges: measuring myocardial deformations in
tagged MRI, and compensating cardio-thoracic motions in perfusion MRI.

2 Multi-feature Information-Theoretic Registration

2.1 Problem Statement and Modeling

In order to build a unified formalism including pairwise and groupwise approaches, we
deal with the general issue of registering synchronized image sequences. A sequence of
2D greylevel images defined over a domain Ω ⊂ R2 is modeled as a mapping I : Ω ×
[1..d] → Λ with values in an interval Λ ⊂ Z. Given a source sequence IM comprising
d unregistered images, and a reference sequence IT with the same length, let xτ denote
the spatial coordinates1 in frame IM (·, τ) and let x = [x1...xd] ∈ Ωd. We seek for a
d-dimensional vector of smooth spatial transforms φ(x) = [φ1(x1)...φd(xd)] in some
space T such that φτ (τ ∈ [1..d]) maps the source frame IM (·, τ) onto its analog
IT (·, τ) in the reference sequence. The case d = 1 amounts to pairwise registration.
Groupwise registration corresponds to d > 1, IT being either a registered sequence or
the concatenation of d instances of the same reference image.

Local correspondences are established via a dense setM (resp. T ) of spatio-temporal
features extracted from IM (IT ) with values in a D-dimensional space F , which can
comprise both radiometric and spatial information. Features are integrated in vectors

1 Similarly, the τ th component of a vector r is hereafter denoted by rτ .
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M(x) = [M(x1, 1)...M(xd, d)] ∈ F (resp. T (x))2. To robustly account for sensor-,
patient- and pathology-related variability, we adopt a statistical framework, and model
M and T as random variables (RV) over the state space F , with respective marginal

densities pM and pT , joint density pM,T and copula density πM,T = pM,T

pM pT .
Registration is then tackled as an optimal statistical matching problem between fea-

ture distributions over the transform space T : φ∗ = argminφ∈T C(M,T, φ). The
matching criterion C(M,T, φ) is expressed as the sum of a discrepancy term S(Mφ, T )
between the reference RV T and the RV Mφ computed from the warped sequence
Iφ
M = IM ◦ φ−1, shortly denoted by M ; and a regularization term R(φ) ensuring

smooth solutions. In this paper, we study the α-information family, comprising the
pseudo-additive Havrda-Charvát information Iα(M,T ) = 1

α−1 (Jα(M,T ) − 1) and
the additive Renyi information I∗α(M,T ) = 1

α−1 log Jα(M,T ) , where:

Jα(M,T ) =
∫
F2

pM,T (m, t)
(
πM,T (m, t)

)α−1
dmdt = EM,T

[(
πM,T

)α−1
]

These measures, defined for α ∈ R+\{0, 1} , generalize mutual information which is
obtained in the limit α → 1, yielding discrepancy functionals S = −Iα and S = −I∗α.

2.2 kNN Estimators of α-Informations

Given a q-dimensional RV Y , let Y (Ωd) be a set of i.i.d. samples Y (x) of Y indexed
by x ∈ Ωd. kNN estimation techniques aim at characterizing Y from the statistics of
q-dimensional balls BY

k (x) ⊂ Rq , centered at sample Y (x) and containing its k near-
est neighbors in Y (Ωd)\{Y (x)}. The resulting estimators are functions of the radius
ρY

k (x) of BY
k (x), equal to the Euclidean distance from Y (x) to its kth nearest neigh-

bor in this set. An early example is the Loftsgaarden-Quesenberry density estimator:
pY

LQ(Y (x)) = k
|Ω|Vq (ρY

k (x))q . Though notoriously biased in high dimension, the latter

leads however to a consistent and asymptotically unbiased kNN estimator of Shannon
entropy [4], from which kNN estimators of Kullback-Leibler divergence [4,3], and mu-
tual information and its variations [5,6] have been derived.

This result has been recently extented to α-entropies [7], based on a consistent and
asymptotically unbiased kNN estimator of the integral Jα(Y ) =

∫
Rq

(
pY (y)

)α
dy :

J knn
α (Y ) =

1
|Ω|

∑
x∈Ωd

(
(|Ω| − 1)Ck(α)Vq

[
ρY

k (x)
]q

)1−α

(1)

where Ck(α) =
[

Γ (k)
Γ (k+1−α)

] 1
1−α

and Vq = πq/2

Γ (q/2+1) is the volume of the unit ball

of R
q . J knn

α (Y ) can be interpreted as a plug-in estimator, built from an Ahmad-Lin

estimator [1] J AL
α (Y ) = 1

|Ω|
∑

x∈Ωd

(
pY (Y (x))

)α−1
of Jα(Y ) = EY

[(
pY

)α−1]
using the following kNN density estimator:

pY
knn(Y (x)) =

1
(|Ω| − 1)Ck(α)Vq

(
ρY

k (x)
)q

2 Here, M(xτ , τ ) is a D1-dimensional feature vector extracted from IM (·, τ ) with D = dD1.
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Along the same lines, we derive high-dimensional kNN estimators of α-informations
by introducing a novel consistent and asymptotically unbiased estimator of the integral
Jα(M,T ), defined as:

J knn
α (M,T ) =

1
|Ω|

∑
x∈Ωd

⎛⎝(|Ω| − 1)Ck(α)
V 2

D

V2D

[
ρM

k (x)ρT
k (x)

(ρM,T
k (x))2

]D
⎞⎠α−1

(2)

Building this estimator, which is achieved similarly to the entropy estimator J knn
α (Y ),

is formally equivalent to plugging the kNN copula density estimator πM,T
knn = pM,T

knn
pM

knnpT
knn

of πM,T in the following Ahmad-Lin estimator of Jα(M,T ):

J AL
α (M,T ) =

1
|Ω|

∑
x∈Ωd

(
πM,T (x)

)α−1

where πM,T (x) = πM,T (M(x), T (x)) . From (2), we obtain consistent estimators
I knn
α (M,T ) = 1

α−1

(
J knn

α (M,T ) − 1
)

and I ∗knn
α (M,T ) = 1

α−1 log J knn
α (M,T )

of Havrda-Charvát and Renyi information, respectively. In addition, I knn
α (M,T ) is

asymptotically unbiased.

2.3 Variational Optimization

Searching for the optimal transform φ∗ using gradient descent requires a closed-form
expression of the first variation of α-informations over the transform space T . Since the
kNN estimator J knn

α (M,T ) is not differentiable, a two-step plug-in approach is used.
Starting from consistent Ahmad-Lin estimators I AL

α (M,T ) = 1
α−1

(
J AL

α (M,T ) − 1
)

and I ∗AL
α (M,T ) = 1

α−1 log J AL
α (M,T ) , we first classically compute a closed-form

expression of their variational derivatives using differentiable kernel density estimates
and a Mean-Shift approximation of the ratio ∇p/p for the densities pM and pM,T . We
then switch to the kNN framework by considering uniform kernels over the balls BM

k

and BM,T
k (their derivatives being indicators over the spheres SM

k and SM,T
k ). This stra-

tegy yields consistent kNN estimators of the variational derivative of α-informations.
For infinite dimensional transform spaces, consisting of smooth mappings φτ =

Id + uτ described by displacement fields uτ to be estimated at all x ∈ Ωd, we get:

∂uτJ
knn

α (x) = V(x)DM
τ (x)

where V(x)= c3

[
KM,T

k (x)
(
LM

k,τ (x) − LM,T
k,τ (x)

)
+ c2

(
LM

k,τ (x) − LM,T
k,τ (x)

)]
and

DM
τ (x) = (∂xτM(x))T . Letting NM,T

k (x) = { y ∈ Ωd |x ∈ SM,T
k (y) } , we have:

LM,T
k,τ (x) =

2d+ 2

ρM,T
k (x)2

∑
y∈BM,T

k
(x)

rM (x, y) LM,T
k,τ (x) =

∑
y∈NM,T

k
(x)

rM (x, y)
|rM (x, y)|

(
πM,T

knn (y)
)α−1

LM
k,τ (x) =

d+ 2
ρM

k (x)2
∑

y∈BM
k (x)

rM (x, y) LM
k,τ (x) =

∑
y∈NM

k (x)

rM (x, y)
ρM

k (y)
(
πM,T

knn (y)
)α−1
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IM IT Iu∗
M u∗ = φ∗ − Id

Fig. 1. Estimating myocardial deformations in tagged MRI using multi-feature Havrda-Charvát
information-minimizing nonrigid registration

Finally: KM,T
k (x) = 1

k

(
πM,T

knn (x)
)α−1

, c2 = Ck(α) |Ω|−1
|Ω| and c3 = α−1

|Ω| .

The optimal transforms φ∗τ are iteratively estimated at every pixel x ∈ Ωd with the
explicit scheme: u t+1

τ (x) = u t
τ (x) + δt ∂uτ Iα

knn(x) and accordingly for I ∗knn
α .

For finite dimensional transform spaces, consisting of smooth mappings φτ (xτ ) =
B(xτ )Θτ described by a parameter Θτ ∈ Rp in a local basis encoded by the (2 × p)
matrix B(xτ ), we get:

∂ΘτJ
knn

α =
∑

x∈Ωd

V(x)DM
B,τ (x)

where DM
B,τ (x) = (∂xτM(x))T B(xτ ). The optimal parameters Θ∗

τ are computed

using the update equation:Θ t+1
τ = Θ t

τ + δt ∂Θτ Iα
knn(Θ t) and accordingly for I ∗knn

α .

2.4 Implementation Details

The numerical complexity of the optimization scheme, dictated by the kNN search al-
gorithm, is reduced by using an approximate nearest neighbor technique [2] with linear
complexity and memory usage w.r.t. the number of samples |Ω| and feature dimension
D. Obviously, complexity increases with k. In practise, this parameter is tuned empiri-
cally by searching for a trade-off between registration accuracy and processing time.
For the cardiac MRI applications hereafter, setting k = 15 yielded satisfying results.

3 Application to Cardiac MRI

3.1 Estimating Myocardial Motion in Tagged MRI Using Pairwise Registration

The proposed model has been applied to the estimation of myocardial deformations
from tagged MRI exams by sequentially performing frame-to-frame registration [12].
We used a local feature vector with normalized components, comprising the greylevel,
and the eigenvalues and eigenvectors of the structure tensor ∂xτ I(x)T ∂xτ I(x) � Gσ

of the image I , computed at a Gaussian scale σ equal to the half-width of the tagging
pattern (D = 5). We studied the impact on registration accuracy of using a directional
local contrast descriptor by comparing performances with a similar registration model
exploiting solely the greylevel information [12]. To be consistent with the later work, we
considered an infinite dimensional (non-parametric) transform space, and a registration
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Table 1. MSE (in pixels) between estimated and ground-truth motion magnitude for simulated
tagged MRI datasets using greylevel (D = 1) and greylevel + structure tensor (D = 5) features

D Base Median Apex

1 0.73 ± 0.31 0.88 ± 0.51 1.53 ± 0.75
5 0.35 ± 0.22 0.42 ± 0.34 0.65 ± 0.59

Table 2. MSE and Pearson correlation coefficient (R2) between estimated and ground-truth pa-
rameters as a function of maximal displacement δ (in pixels) for simulated p-MRI datasets at
median level with random FFD misalignment

δ 1 3 5 7 10

MSE
NMI 0.52 0.76 0.63 0.83 1.5

I∗
α 0.41 0.49 0.57 0.62 0.80

R2 NMI 0.94 0.91 0.93 0.90 0.83
I∗

α 0.95 0.94 0.93 0.93 0.91

Table 3. Dice similarity indices between reference and registration-induced segmentations of the
left ventricle (Lv), right ventricle (Rv) and myocardium (Myo)

Lv Rv Myo

native 0.89 0.003 0.20
registered using NMI 0.98 0.95 0.88

registered using I∗
α 0.98 0.87 0.93

criterion combining Havrda-Charvát information (α = 1.2) and the Nagel-Enkelmann
oriented smoothness stabilizer, and performed experiments on the SPAMM dataset used
in [12]. Qualitative assessment of the estimated displacement fields by an expert cardio-
logist indicate systematic improvement of motion estimates (i) on endo- and epicardial
boundaries, where the tagging signal suffers from poor localization and contrast fad-
ing artifacts, and (ii) over the whole myocardium at end of sequence (Figure 1). This
was confirmed on synthetic tagged MRI sequences generated from natural exams by
warping their first frame with the statistical myocardial motion atlas described in [10].
Comparing the MSE between ground-truth and estimated motion over the dataset shows
that accuracy is improved by a multi-feature registration model (Table 1).

3.2 Groupwise Registration of Perfusion MRI Exams

The proposed model has been also applied to the compensation of cardio-thoracic mo-
tions in partial breath-hold and free-breathing contrast-enhanced cardiac perfusion MRI
(p-MRI) exams. Here, the challenge lies in aligning structures exhibiting highly non-
linear contrast variations and complex deformations. We adopt a groupwise registration
strategy involving a motion-free reference p-MRI exam and using pixel-wise contrast
enhancement curves M(x) = [IM (x1, 1)...IM (xd, d)] (resp. T (x)) as local features
(D = d ∈ [25..35]). Using spatio-temporal features induces an alignment process
driven by the statistical properties of the whole exam, with the expected benefit of an
improved alignment overall consistency compared to classical pairwise schemes based
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Fig. 2. Evaluation of registration accuracy. Top: Simulated unregistered exam (δ = 7) at median
level (d = 34 frames). Bottom: registration over a reference motion-free exam IT using I∗

α.

Fig. 3. Evaluation of registration robustness. Top: unregistered synthetic exam at median level
created by concatenating 3 + 3 frames from 2 different patient exams. Middle (resp. bottom):
registration using NMI (resp. I∗

α). Overlay: registration-induced segmentation derived from a su-
pervised delineation of the heart in a reference frame (top) replicated on all images. Warping arte-
facts over thoracic regions originate from using a synthetic template with uniform background.

on a reference frame with maximal myocardial contrast. We use a matching criterion
combining Renyi information (α = 1.2) and a thin-plate spline stabilizer, which is opti-
mized over a Free-Form Deformation (FFD) basis parameterized by 8×8 control grids.
Registration results were systematically compared with those delivered by a similar
model [6] using a high-dimensional kNN estimator of normalized mutual information
(NMI) instead of Renyi information. To this end, the dataset and experimental valida-
tion protocol described in [6] were used. Results on synthetic sequences, generated by
applying to the reference exam random FFD transforms with control point displace-
ments uniformly distributed in the [−δ, δ] pixels range (Figure 2), show that Renyi in-
formation leads to improving registration accuracy (Table 2). Similar conclusions were
reached for registration robustness (Table 3), which was assessed on composite datasets
synthetized by intermixing frames from different patient exams at the same slice level
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(Figure 3). Processing d = 35 frames at 3 slice levels (i.e. base, medium, apex) requires
approximately 13 minutes on a standard 2.4GHz dual core PC with 2Gb RAM.

4 Conclusion

We have presented novel kNN estimators of high-dimensional α-informations, and de-
rived closed-form expressions of their first variation over finite- and infinite-dimensional
spaces of smooth spatial tranforms. This theoretical framework enables variational multi-
feature nonrigid registration based on a non-Shannon information-theoretic model, and
provides a computationally efficient alternative to entropic graph techniques. The for-
malism, developed for the alignement of 2D image sequences, encompasses both pair-
wise and groupwise registration, and is obviously readily valid in 3D. Future work is
currently directed towards increasing computational performances by using more effi-
cient gradient descent schemes and boosting kNN search using GPU implementations.
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Abstract. The estimation of lung motion in 4D-CT with respect to the 
respiratory phase becomes more and more important for radiation therapy of 
lung cancer. Modern CT scanner can only scan a limited region of body at each 
couch table position. Thus, motion artifacts due to the patient’s free breathing 
during scan are often observable in 4D-CT, which could undermine the 
procedure of correspondence detection in the registration. Another challenge of 
motion estimation in 4D-CT is how to keep the lung motion consistent over time. 
However, the current approaches fail to meet this requirement since they usually 
register each phase image to a pre-defined phase image independently, without 
considering the temporal coherence in 4D-CT. To overcome these limitations, 
we present a unified approach to estimate the respiratory lung motion with two 
iterative steps. First, we propose a new spatiotemporal registration algorithm to 
align all phase images of 4D-CT (in low-resolution) onto a high-resolution 
group-mean image in the common space. The temporal consistency is persevered 
by introducing the concept of temporal fibers for delineating the spatiotemporal 
behavior of lung motion along the respiratory phase. Second, the idea of super 
resolution is utilized to build the group-mean image with more details, by 
integrating the highly-redundant image information contained in the multiple 
respiratory phases. Accordingly, by establishing the correspondence of each 
phase image w.r.t. the high-resolution group-mean image, the difficulty of 
detecting correspondences between original phase images with missing 
structures is greatly alleviated, thus more accurate registration results can be 
achieved. The performance of our proposed 4D motion estimation method has 
been extensively evaluated on a public lung dataset. In all experiments, our 
method achieves more accurate and consistent results in lung motion estimation 
than all other state-of-the-art approaches. 

1   Introduction 

The modern 4D-CT technique is very useful in many clinical applications, which 
provides the solid way for the researchers to investigate the dynamics of organ 
motions in the patient. For example, 4D-CT has been widely used in lung cancer 
radiation treatment planning for the design of radiation beams to cover the tumor in 
different respiratory phases. However, the respiratory motion is the one of the major 
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sources of uncertainty in radiotherapy planning of thoracic tumors and many other 
image guided procedures [1]. Therefore, there is increasing growth in investigating 
the methods for accurate estimation of the respiratory motion in 4D-CT [2-4].  

Image registration plays an important role in the current motion estimation 
methods by establishing temporal correspondences, e.g., between the maximum 
inhale phase and all other phases [3, 4]. However, there are some critical limitations 
in these methods. The first obvious limitation is the independent registration for 
different pairs of phase images. In this way, the coherence in 4D-CT is totally ignored 
in the whole motion estimation procedure, thus making it difficult to maintain the 
temporal consistency along the respiratory phases. The second limitation is mainly 
coming from the image quality of 4D-CT. Since the modern CT scanner can only scan 
a limited region of human body at each couch position, the final 4D-CT has to be 
assembled by sorting multiple free-breathing CT segments w.r.t. the couch position 
and tidal volume [3]. However, due to the patient’s free breathing during scan, no CT 
segment can be scanned exactly at the particular tidal volume. Thus, motion artifacts 
can be observed in the 4D-CT, including motion blur, discontinuity of lung vessel, 
and irregular shape of lung tumor. All these artifacts in 4D-CT challenge the 
registration methods to establish reasonable correspondences. The final limitation is 
that the motion estimation in the current methods is generally completed with a single 
step, i.e., registering all phase images to the fixed phase image, without providing any 
chance to rectify the possible mis-estimation of respiratory motions.  

To overcome these limitations, we present a novel registration-based framework to 
estimate the lung respiratory motion in 4D-CT. Our method consists of two iterative 
steps. In the first step, a spatiotemporal registration algorithm is proposed to 
simultaneously align all phase images onto a group-mean image in common space. 
Particularly, rather than equally estimating the correspondence for each point, we 
propose to hierarchically select a set of key points in the group-mean image as the 
representation of group-mean shape, and let them drive the whole registration process 
by robust feature matching with each phase image. By mapping the group-mean shape 
to the domain of each phase image, every point in the group-mean shape has several 
warped positions in different phases, which can be regarded as a virtual temporal fiber 
once assembling them into a time sequence. Thus, the temporal consistency of 
registration is achieved by requiring the smoothness on all temporal fibers during the 
registration. In the second step, after registering all phase images, the respiratory 
motion of lung can be obtained to guide the reconstruction of the high-resolution 
group-mean image. By repeating these two steps, not only more accurate but also more 
consistent motion estimation along respiratory phases can be achieved, as confirmed in 
the experiment on a public lung dataset [2], by comparing with the diffeomorphic 
Demons [5] and the B-spline based 4D registration method [4]. 

2   Methods 

The goal of our method is to estimate the respiratory motion ,  at arbitrary 
location  and time . In 4D-CT, only a limited number of phase images are acquired. 
Thus, given the 4D-CT image | 1, … ,  acquired with  phases, we can 
model the respiratory motion ,  as a continuous trajectory function with its 
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known landmark at the position  of the phase , i.e., , , which is 
obtained by simultaneously estimating the deformation fields, | Ω ,1, … , , from the common space  to all  phase images.  

Our method consists of two iterative steps, as shown in Fig. 1. First, we will 
calculate the deformation field  for each phase image  w.r.t. the current-estimated 
group-mean image  in the common space. Generally,  has higher image resolution 
than all s, since it integrates all information from the aligned s. Thus, the 
registration can be performed between the high-resolution group-mean image  and 
the low-resolution phase images , by requiring the respiratory motion ,  to be 
temporally smooth across all  phases. Second, after aligning all phase images onto 
the common space, the procedure of super resolution (SR) is performed to construct a 
high-resolution group-mean image  based on the latest estimated deformation fields 

 and the corresponding phase images . By repeating these two steps, all phase 
images can be jointly registered onto the common space, with their temporal motions 
well delineated by , . The final super-resolution group-mean image  integrates 
all image information from all phases, thus it has much clearer anatomical details than 
any phase image , as will be shown next (Fig. 3). Also, it can help resolve the 
uncertainty in correspondence detection for the case of directly registering different 
phase images, since, in our method, each point in the phase image  can easily find its 
correspondence in the group-mean image (which has complete image information). 

Our method differs from the conventional group-wise registration method [6] in 
several ways: 1) The registration between group-mean image and all phase images is 
simultaneously performed by exploring the spatiotemporal behavior on a set of 
temporal fibers, instead of independently deploying the pairwise registrations; 2) The 
correspondence is always determined between high-resolution group-mean image and 
low-resolution phase image; 3) The construction of group-mean image considers the 
alignment of local structures, instead of simple intensity average, thus better 
alleviating the artifacts of misalignment. Next, we will explain the proposed 
spatiotemporal registration and super resolution methods.  

 

Fig. 1. The overview of our method in respiratory motion estimation by joint spatiotemporal 
registration and high-resolution image reconstruction 

2.1   Hierarchical Spatiotemporal Registration of 4D-CT 

Before registration, we will first segment each phase image into bone, soft tissue 
(muscle and fat), and lung. Then, the vessels inside lung will be enhanced by multi-
scale hessian filters [7], in order to allow the registration algorithm to focus on the 
alignment of lung vessels during the registration. Meanwhile, instead of using only 

 



 Estimating the 4D Respiratory Lung Motion by Spatiotemporal Registration 535 

image intensity, we employ an attribute vector ,  as the morphological 
signature for each point  in the image  to characterize its local image appearance. 
The attribute vector consists of image intensity, Canny edge response, and geometric 
moments of each segmented structure (i.e., bone, soft tissue, lung, and vessel). 

In general, simultaneous estimation of deformation fields for all phase images is 
very complicated and vulnerable of being trapped in local minima during the 
registration. Since different image points play different roles in registration, we select 
to focus only on a limited number of key points with distinctive attribute vectors (i.e., 
obtained by thresholding the Canny edge response in the attribute vector) and let them 
drive the whole registration. Both key points in the group-mean image, | 1, … , , and in each phase image , | 1, … , , are extracted, as 
overlaid in red and green in Fig. 1, respectively, to mutually guide the registration. 
With use of these key points, we can decouple the complicated registration problem 
into two simple sub-problems, i.e., (1) robust correspondence detection on the key 
points and (2) dense deformation interpolation from the key points.  

Robust Correspondence Detection by Feature Matching: Inspired by [8], the key 
points  in the group-mean image  can be considered as the mean shape of the 
aligned phase images. Similarly, the respective shape in each phase image  can be 
represented by its key point set . Then, each key point  in the phase image  
can be regarded as an observation drawn from the Gaussian mixture model (GMM) 
with its centers as the deformed mean shape  in . In order to find the reliable 
anatomical correspondences, we also require the attribute vector ,  of the key 
point  in the group-mean image to be similar with the attribute vector of its 
corresponding point in . Thus, the discrepancy criterion is given as: , · 1 · , , , (1)

where  balances between shape and appearance similarities. 
Soft correspondence assignment [8] is further used to improve the robustness of 

correspondence detection by calculating the matching probability for each candidate. 
Specifically, we use ,  to denote the likelihood of  being the true correspondence 
of  in the phase image . It is worth noting that the correspondence assignment is 
hierarchically set for soft correspondence detection in the beginning, and turn to one-
to-one correspondence in the final registration in order to increase the specificity of 
correspondence detection results. Accordingly, the entropy of correspondence 
assignment ,  is set from large to small value with progress of registration. As we 
will explain later, this dynamic setting is controlled by introducing the temperature  
to the entropy degree of , , which is widely used in annealing system [8]. 

Kernel Regression on Temporal Fibers: After detecting correspondence for each key 
point , its deformed position  in each phase image  can be regarded as the 
landmark of ,  at time . Here we call this motion function ,  on the key 
point  as the temporal fiber, with the total number of temporal fibers equal to  
(i.e., the number of key points in the group-mean image). In the middle of Fig. 1, we 
show the deformed group-mean shape in the space of each phase image. By 
sequentially connecting the deformed position  along respiratory phases, a set of 
temporal fibers can be constructed, which are shown as blue dashed curves in Fig. 1. 
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The advantages of using temporal fibers include: 1) The modeling of temporal motion 
is much easier on the particular temporal fiber ,  than on the entire motion field , ; 2) The spatial correspondence detection and temporal motion regularization 
are unified along the temporal fibers. Here, we model the motion regularization on 
each temporal fiber as the kernel regression problem with kernel function :  min , , , 1 , (2)

Energy Function of Spatiotemporal Registration: The energy function in our 
spatiotemporal registration method is defined as: 

, · , · , · , , , (3)

where  is the bending energy for requiring the deformation field  to be 
spatially smooth [8].  and  are the two scalars to balance the strengths of spatial 
smoothness  and temporal consistency . The terms in the square brackets 
measure the alignment between the group-mean shape  and each shape  in the -
th phase image, where  is used similarly as the temperature in annealing system to 
dynamically control the correspondence assignment from soft to one-to-one 
correspondence, as explained next.  

Optimization of Energy Function: First, the spatial assignment ,  can be 
calculated by minimizing  in Eq.3 w.r.t. , :  

, , , . (4)

It is clear that ,  is penalized in the exponential way according to the discrepancy 
degree ,  defined in Eq. 1. Notice that  is the denominator of the exponential 
function in Eq. 4. Therefore, when  is very high in the beginning of registration, 
although the discrepancy between  and  is large, the key point  still might have 
the chance to be selected as the correspondence of  w.r.t. . In order to increase the 
registration accuracy, the specificity of correspondence will be encouraged by 
gradually decreasing the temperature , until only the key points  with the smallest 
discrepancy will be considered as the correspondences of  in the end of registration. 

Then, the correspondence of each  w.r.t. the shape  in the -th phase image 
can be determined as the weighted mean location of all s, i.e., ∑ , , 

by discarding all unnecessary terms with  in Eq. 3. Recall that ,
, thus a set of temporal fibers can be constructed to further estimate the 

continuous motion function ,  by performing the kernel regression on a limited 
number of landmarks , . Here, we use ,  to denote the deformed 
position of  in phase image  after kernel regression. The last step is to interpolate 
each dense deformation field . TPS [8] is used to calculate dense deformation field 

 by considering  and ,  as the source and target point sets, 
respectively, which has the explicit solution to minimize the bending energy . In 
the next section, we will introduce our super-resolution method for updating of the 
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group-mean image  with guidance of the estimated s. After that, the group-mean 
shape  can be extracted in the updated group-mean image  again to guide the 
spatiotemporal registration in next round. We use the 3DCT in the maximum inhale 
stage as the initialization since its image quality is better than all other phases. 

2.2   Construction of High Resolution Group-Mean Image 

Given the deformation field  of each phase image , all image information of 4D-
CT in different phases can be brought into the common space. Thus, the highly-
redundant information among all registered phase images can be utilized to reconstruct 
the high-resolution group-mean image by the technique of super resolution [9]. It is 
worth noting that we consider both spatiotemporal registration and group-mean 
construction in the same physical space, although the image resolutions of group-mean 
image and each phase image are different. Thus, given the point  from low-resolution 
phase image , we are able to locate its corresponding position in high-resolution 
space as , where  is the inverse deformation field of . 

Here, we follow the generalized nonlocal-means approach [9] to estimate  by 
minimizing the differences of local patches between high-resolution image  and each 
aligned low-resolution phase image . By taking the possible misalignment during 
registration into account, the calculation of  is the weighted intensity average of 
not only all corresponding points  in different phase images  but also their 
neighboring points in the neighborhood : , ; , · , ; , , (5)

where , ; , ∑ 1 1 , , 2
, measuring the 

alignment of local structures by computing the regional similarity on attribute vectors 
in neighborhood . In our implementation, the neighborhood size of  is fixed 
(i.e., 5 mm) throughout registration. The size of neighborhood  will gradually 
reduce from 3 mm to only consider the center point in the end of registration.   

3   Experiments 

To demonstrate the performance of our proposed registration algorithms in estimating 
lung motions, we evaluate its registration accuracy on DIR-lab data [2], by comparison 
with the pairwise diffeomorphic Demons [5] and B-spline based 4D registration 
algorithm [4]. For the same dataset, the computation time for Diffeomorphic Demons 
and our method is 40min and ~2h (Intel Quad 2.3GHz) respectively, comparable with 
1.5h by B-spline based 4D registration method.  

Evaluation of Motion Estimation Accuracy on DIR-Lab Dataset: There are 10 
cases in DIR-lab dataset, each case having a 4D-CT with six phases. The resolution for 
intra-slice is around 1mm×1mm, and the thickness is 2.5mm. For each case, 300 
corresponding landmarks in the maximum inhale (MI) and the maximum exhale (ME) 
phases are available with manual delineations, and also the correspondences of 75 
landmarks are provided for each phase. Thus, we can evaluate the registration accuracy 
by measuring the Euclidean distance between the reference landmark positions and 



538 G. Wu et al. 

those estimated by the registration method. It is worth noting that our registration is 
always performed on the entire 4D-CT, regardless in the evaluation of 300 landmarks 
in MI and ME phases or 75 landmarks in all 6 phases. The image resolution of the 
group-mean image is increased to 1mm×1mm×1mm.  

The registration results by Demons, B-splines based 4D registration, and our 
algorithm on 300 landmarks between MI and ME phases are shown in the left part of 
Table 1. Note that we show the results only for the first 5 cases, since the authors in [4] 
also reported their results only for these 5 cases. It can be observed that our method 
achieves the lowest mean registration errors. Also, the mean and standard deviation on 
75 landmark points over all six phases by the two 4D registration methods, the B-
spline based 4D registration algorithm and our algorithm, are shown in the right part of 
Table 1. Again, our method achieves the lower registration errors.  

Fig. 2 (a) and (b) show the velocity magnitudes between consecutive phases for all 
75 trajectories, obtained by Demons and our algorithm, respectively. The yellow 
curves denote the mean velocity magnitude along phases. Since we use the temporal 
fibers to constrain the continuity along phases, it can be observed that the velocity 
magnitude is much more continuous by our algorithm. 

Table 1. The mean and standard devidation of registration error (mm) on 300 landmark points 
between maximum inhale and exhale phases, and on 75 landmark points in all six phases 

 300 landmark points  75 landmark points 
# Initial Demons Bspline4D Our method Initial Bspline4D Our Method 
1 3.89(2.78) 2.91(2.34) 1.02 (0.50) 0.64(0.61) 2.18(2.54) 0.92 (0.66) 0.51(0.39) 
2 4.34(3.90) 4.09(3.67) 1.06 (0.56) 0.56(0.63) 3.78(3.69) 1.00 (0.62) 0.47(0.34) 
3 6.94(4.05) 4.21(3.98) 1.19 (0.66) 0.70(0.68) 5.05(3.81) 1.14 (0.61) 0.55(0.32) 
4 9.83(4.85) 4.81(4.26) 1.57 (1.20) 0.91(0.79) 6.69(4.72) 1.40 (1.02) 0.69(0.49) 
5 7.48(5.50) 5.15(4.85) 1.73 (1.49) 1.10(1.14) 5.22(4.61) 1.50 (1.31) 0.82(0.71) 

 

Fig. 2. The estimated velocity magnitudes from MI to ME phase, by Demons (a) and our 
algorithm (b), respectively. The yellow curve is the mean velocity magnitude along phases. 

Evaluation of High-Resolution Group-Mean Image: After obtaining the high-
resolution group-mean image, we can map it back onto the original phase image space. 
Since the estimated group-mean image has richer information than any phase image in 
4D-CT, some missing anatomical structures in the individual phase image could be 
recovered after mapping our group-mean image with high resolution onto each phase 
image space. The left panel in Fig. 3 shows the vessel trees at MI, middle phase (MP) 
between MI and ME, and ME phases of one original 4D-CT. Note that the vessels are 
extracted by setting threshold (top 10%) on the hessian map and further morphologically 
processed. Using the same technique, the vessel trees are also extracted from the 
deformed group-mean images at all phases and shown in the right panel of Fig. 3.  

 

(a) By diffeomorphic Demons (b) By our algorithm 
phase phase 

velocity magnitude (mm) velocity magnitude (mm) 
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It can be observed that (1) more details on vessels have been recovered by employing 
the super resolution technique in our method, and (2) the vessel trees are temporally 
consistent along the respiratory lung motion. 

 

Fig. 3. The vessels tree in all respiratory phases before and after super resolution 

4   Conclusion 

In this paper, a novel motion estimation method has been presented to measure lung 
respiratory motion in 4D-CT. Our method is completed by repeating two iterative 
steps, i.e., (1) simultaneously aligned all phase images onto the common space by 
spatiotemporal registration and (2) estimating the high-resolution group-mean image 
with improved anatomical details by super resolution technique. Compared to the 
other two state-of-the-art registration methods, our algorithm improves not only the 
estimated motion accuracy, but also the temporal consistency of lung motion.  
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Abstract. Catheter ablation of atrial fibrillation has become an ac-
cepted treatment option if a patient no longer responds to or tolerates
drug therapy. A main goal is the electrical isolation of the pulmonary
veins attached to the left atrium. Catheter ablation may be performed
under fluoroscopic image guidance. Due to the rather low soft-tissue con-
trast of X-ray imaging, the heart is not visible in these images. To over-
come this problem, overlay images from pre-operative 3-D volumetric
data can be used to add anatomical detail. Unfortunately, this over-
lay is compromised by respiratory and cardiac motion. In the past, two
methods have been proposed to perform motion compensation. The first
approach involves tracking of a circumferential mapping catheter placed
at an ostium of a pulmonary vein. The second method relies on a mo-
tion estimate obtained by localizing an electrode of the coronary sinus
(CS) catheter. We propose a new motion compensation scheme which
combines these two methods. The effectiveness of the proposed method
is verified using 19 real clinical data sets. The motion in the fluoro-
scopic images was estimated with an overall average error of 0.55 mm
by tracking the circumferential mapping catheter. By applying an algo-
rithm involving both the CS catheter and the circumferential mapping
catheter, we were able to detect motion of the mapping catheter from
one pulmonary vein to another with a false positive rate of 5.8 %.

1 Introduction

Atrial fibrillation (AFib) is widely recognized as a leading cause of stroke [1]. An
increasingly popular treatment option for AFib is catheter ablation during which
the pulmonary veins attached to the left atrium (LA) are electrically isolated [2].
These procedures are performed in electrophysiology (EP) labs often equipped
with modern C-arm X-ray systems providing 3-D imaging of the heart [3]. The
use of fluoroscopic overlay images, perspectively rendered from 3-D data sets,
makes it possible to augment live 2-D X-ray projections with soft-tissue informa-
tion [4]. Unfortunately, catheter navigation using augmented fluoroscopy may be

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAI 2011, Part I, LNCS 6891, pp. 540–547, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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(a) (b) (c)

Fig. 1. (a) Cropped image for catheter segmentation. The position of the region is
determined by the previous tracking result. (b) Segmented catheter using our boosted
classifier approach. (c) The L2-distance transform of the segmentation after skeletoniza-
tion is used as cost function for our combined registration-tracking approach.

compromised by cardiac and respiratory motion. The first approach to overcome
this problem, by providing a motion compensated fluoroscopic overlay image, has
been proposed in [5]. It involved tracking of a commonly used circumferential
mapping (CFM) catheter firmly positioned at the ostium of the pulmonary vein
in simultaneous biplane images. Drawbacks of this method are simultaneous bi-
plane imaging and a need to detect when the CFM catheter has been moved from
one PV to another. Another method for respiratory motion compensation has
been introduced that tracks a catheter placed in the coronary sinus (CS) vein [6].
Its drawback is that the CS catheter is far away from the site of ablation. As a
consequence,it is not obvious that the motion derived from the CS catheter can
be directly applied to compensation of both cardiac and respiratory motion. For
example, relying on the CS catheter for motion compensation, we may encounter
two problems. First, the correlation between the observed CS catheter motion
and the actual motion required for dynamic overlay may be low. Second, the
catheter in the coronary sinus may not always be visible due to collimation to
reduce X-ray dose. Motion compensation using the CS catheter in [6] focused
on 2-D motion compensation. Since simultaneous biplane fluoroscopy is hardly
used in clinical practice, we also restrict ourselves to 2-D motion compensation
as in [7,6]. We present a novel method that combines the best ideas of the pre-
vious methods. The CS catheter is used as a point of reference to detect when
the circumferential mapping catheter has been moved from one PV to another,
while the motion estimate for adapting the fluoroscopic overlay is derived by lo-
calizing the CFM catheter. To obtain a good anchor point along the CS catheter,
we decided to introduce a virtual electrode (VE). It is placed on the CS catheter
more proximal than any other electrode. Below, we briefly explain our new mo-
tion compensation method first. Then we turn to our evaluation and the results.
Afterwards, we discuss our results and draw conclusions from this work.

2 Motion Compensation

Our motion compensation approach involves tracking of the CFM catheter as
well as tracking of a VE placed on the CS catheter. The absolute distance be-
tween the center of the CFM catheter and the VE is used to identify whether
the CFM has been moved from one PV to another.
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2.1 Circumferential Mapping Catheter Tracking

The circumferential mapping catheter is initially extracted in the 2-D X-ray
image by manual interaction to get an accurate catheter model. The manual in-
teraction is used only for the first frame of a sequence. The catheter is segmented
on a region of interest, see Fig. 1(a). The position of this region is determined
by the center of the tracked model from the previous frame. Haar-like features
and a cascade of boosted classifiers [8] are used for segmentation. We use clas-
sification and regression trees as weak classifiers [9] which are composed to a
strong classifier by the AdaBoost algorithm [10]. Our tracking approach follows
the method proposed in [7]. A L2-distance map IDT [11] is calculated from the
skeleton of the segmentation, see Fig. 1(c). One pixel p is accessed by IDT(p).
Using a 2-D/2-D registration, the result is a 2-D pixel offset t ∈ R2. The average
distance between model and segmentation derived from the image is considered
as the cost value. The optimal translation t̂ is found by minimizing

t̂ = arg min
t

∑
i

IDT(qi + t) (1)

with qi denoting a point of the catheter model. The estimated 2-D translation
t̂ is then considered as candidate for motion compensation.

2.2 Coronary Sinus Catheter Tracking

The coronary sinus catheter is modeled by a set of electrodes, starting from the
tip of the catheter going through each individual electrode including the most
proximal electrode (MPE), to the virtual electrode, see Fig. 2 (a). The VE is a
reference point set by clicking on an arbitrary position along the catheter sheath
that has to be more proximal than the real MPE. Similar to the circumferential
mapping catheter, manual interaction is used to generate the initial CS catheter
model in the first frame in a fluoroscopic sequence. For the remaining frames,
all the electrodes are tracked using the approach proposed in [12]. Localization
of the VE is performed in a two-stage process. In the first stage, we robustly
track all the real electrodes. In the second stage, the VE is inferred from the
MPE along the CS catheter using a robust tracking framework combined with
a geodesic constraint. We rely on learning-based detectors to generate hypothe-
ses of possible models. The classifiers use Haar-like features. Each classifier is a
Probabilistic Boosting Tree [13]. To track the VE, specially-designed hypotheses
generated by the learning-based catheter body detector are fused. Robust hy-
pothesis matching through a Bayesian framework is then used to select the best
hypothesis for each frame. Given the MPE robustly localized in the first stage,
the hypotheses for tracking VE are generated automatically by a novel scheme
in the second stage. The set of hypotheses is generated by parametrically manip-
ulating the VE model based on the MPE location. A seed hypothesis v̄t for time
step t ∈ N is generated by translating v̂t−1, a set of 2-D image points in homo-
geneous coordinates, to the MPE. Then we apply a set of affine transformation
to generate tracking hypotheses as
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(a) (b) (c) (d)

Fig. 2. CS catheter detection and VE tracking. (a) Fluoroscopic image with user inputs
(electrodes and VE). (b) Automatically detected electrode positions after non-max
suppression, without decision which electrode is the tip and which electrodes belong
to the body. (c) Detected catheter body points. (d) Tracked electrodes and VE.

vt =
(

R t
0T 1

)
· v̄t (2)

with R ∈ R2×2 and t ∈ R2 being the parameter of an affine transformation. The
MPE is used as transformation center. This strategy is efficient in generating a
near-complete pool of tracking hypotheses. The overall goal for evaluating a VE
tracking hypothesis is to maximize the posterior probability

v̂t = argmax
vt

P (vt|I0,...,t) (3)

with the image observation I0,...,t from 0 to t-th frame. The tracking is summa-
rized in Fig. 2.

2.3 Displacement Detection

Motion compensation was performed by tracking the circumferential mapping
(CFM) catheter. We settled on the CFM approach, because our data did not re-
veal a sufficiently strong correlation between the motion at the CS catheter and
the PV ostium. To explain our findings, let us first recall that the CS catheter,
placed in the coronary sinus vein, lies between the left atrium and the left ven-
tricle. As a result, its motion may be highly influenced by the motion of the left
ventricle in addition to breathing. The motion of the circumferential mapping
catheter, on the other hand, is more constrained because the left atrium is con-
nected to the lungs via the pulmonary veins. Although we decided against using
the CS for motion estimation directly, we found it very useful as an anchor, i.e.,
to detect if the CFM catheter was moved from one PV ostium to the next. To
this end, we assumed that the absolute distance between CS catheter and CFM
catheter remains sufficiently stable to classify whether the CFM catheter has
been moved away from a PV ostium. To achieve a reliable and robust motion
compensation, we track both catheters at the same time and compare the ab-
solute 2-D distance between the virtual electrode and the loop’s center of the
circumferential mapping catheter between two consecutive frames. If the distance
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Table 1. Displacement detection using the absolute difference between the CFM
catheter and the VE on the CS catheter. False positive (FP) is the percentage of
wrongly detected motion and false negative (FN) of undetected motion.

Displacement Detection

2 % 5 % 6 % 7 % 10 % 15 % 20 %

VE
FP 22.7 % 5.8 % 4.2 % 2.7 % 0.5 % 0.0 % 0.0 %
FN 0.0 % 0.0 % 14.3 % 57.1 % 42.9 % 57.1 % 85.7 %

changes by more than a certain percentage, we assume that the CFM catheter
has been moved from one pulmonary vein to another. In this case, no motion
compensation is applied to the fluoroscopic images until another stable CFM
position has been reached. Catheter tracking is still performed. As soon as the
absolute distance becomes stable again, i.e., the distance change is ≤ 5 %, the
motion of the tracked CFM catheter is again applied to the fluoroscopic overlay.

3 Evaluation and Results

Our methods were evaluated on 14 clinical data sets from two different hospitals
and from 10 different patients using leave-one-out validation1. During three of
these sequences, a 10-electrode CS catheter was used. In the remaining data sets,
4-electrode catheters were chosen. The images were either 512 × 512 pixels or
1024×1024 pixels. The pixel size varied between 0.173 mm and 0.345 mm. Image
acquisition was performed without using ECG-triggered fluoroscopy. Hence, both
respiratory and cardiac motion were present. At first, we evaluated the accuracy
of the tracking methods. The localization error of the detected circumferential
mapping catheter was calculated by considering the 2-D Euclidean distance to a
gold-standard segmentation. To this end, the L2-distance transform of the gold-
standard segmentation was calculated. The 2-D Euclidean distance was then
obtained as the average over all values of the distance transform when evaluat-
ing it at the 2-D positions of the detected CFM. The gold-standard segmentation
was manually generated for each frame in every sequence. The segmentation was
supervised by an electrophysiologist. The localization accuracy of the coronary
sinus catheter and the virtual electrode was calculated as the 2-D Euclidean dis-
tance to a gold-standard segmentation of the whole CS catheter. As before, the
L2-distance transform was used. The results are given in Fig. 3(a). The CFM
localization yielded an average 2-D error of 0.55 mm, which includes the inherent
model error. The detection of the MPE on the CS catheter yielded an average 2-
D error of 0.52 mm. The VE detection yielded an average 2-D error of 0.49 mm.
Further, we compared the motion calculated from the catheter detection meth-
ods to the motion observed at the PV ostia. This motion was obtained by using a
gold-standard segmentation of the circumferential mapping catheter. The center
of the 2-D catheter model was used to calculate the underlying motion of the

1 Data is available from the authors on request for non-commercial research purposes.
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Fig. 3. (a) Accuracy for the catheter tracking methods. Tracking of the circumferential
mapping (CFM) catheter, the most proximal electrode (MPE) on the CS catheter, and
the virtual electrode (VE) on the CS catheter. (b) Difference between the observed
motion by the circumferential mapping catheter and the catheter tracking methods.

PV between successive frames. The comparison is given in Fig. 3(b). The motion
obtained by CFM catheter detection differs on average by about 0.48 mm from
the real motion, whereas the motion from the proximal CS electrode had a mean
error of about 2.61 mm. Using the virtual electrode, we could reduce the mean
error from 2.61 mm to 1.68 mm. The maximum difference between the true and
the estimated motion using the CFM catheter was 2.06 mm. The MPE was off by
up to 11.80 mm and the VE by up to 7.14 mm, see Fig. 3(b). The 14 fluoroscopic
sequences used for evaluating the tracking performance had the CFM catheter
firmly placed at a single pulmonary vein, i.e., the CFM catheter was not moved
from one PV to the next. To evaluate our displacement detection method, five
further sequences were added to our data set. To detect CFM catheter displace-
ment, we introduced a displacement threshold. The displacement threshold is
a percentage of the distance between VE and the center of the loop represent-
ing the CFM catheter. Results for different displacement thresholds are given
in Tab. 1. The best result for displacement detection was found for an allowed
change of the distance between 5 % and 10 %. A change in the absolute distance
of 5 % turned out to be the best threshold for detecting catheter repositioning
in our experiments. In this case, the false positive rate was 5.8 %. We decided
on the VE for displacement detection, because it turned out to be a much more
stable reference than the MPE. This can be seen, e.g., by taking a look at their
mean errors and maximum differences, see Fig. 3(b).

4 Discussion and Conclusions

The results indicate that our catheter localization and tracking algorithms are
accurate enough to meet clinical needs, cf. Fig. 3(a). In our experiments, involv-
ing non-ECG-triggered X-ray data acquired under free breathing conditions,
only tracking of the CFM was accurate enough to be directly applicable to mo-
tion compensation without any need for a more sophisticated motion model,
see Fig. 3(b). The tracking of the circumferential mapping catheter yielded an
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(a) (b)

Fig. 4. (a) Motion compensation using the circumferential mapping catheter. (c) Mo-
tion compensation using the most proximal electrode on the coronary sinus catheter.

overall average error of 0.55 mm. Since this error also contains some model er-
ror of the underlying B-spline catheter model, which is not adapted over time,
the actual tracking performance of the distance-transform-based method is even
better. The motion difference between the real motion at the PV ostia and the
estimated motion, yielded a maximum error of 2.06 mm. The same error for the
MPE was 11.80 mm and 7.14 mm for the VE, respectively, see Fig. 3(b). From
these numbers, we conclude that the circumferential mapping catheter is the
best surrogate for the motion of the left atrium. A visual comparison between
motion compensation using the CFM and the VE is given in Fig. 4. At first
sight, our observations seem to contradict the results reported in [6]. Maybe the
varying results are due to differences in how the procedures were performed. For
example, some centers apply general anesthesia while only mild sedation was
used in our cases. Some clinical sites also provide a setup where ECG signals
can be recorded on the fluoroscopy system. The ECG could be exploited to select
proper fluoroscopic frames. As our cases came from multiple sites using different
ECG recording equipment, we decided to not take advantage of any ECG sig-
nals to keep things consistent. The choice for one method or the other may come
down to how well you control the procedure. For example, if there is general
anesthesia, stable sinus rhythm, and available ECG information, the approach
presented in [6] may be the method of choice. However, in the general case it may
not be straightforward to apply it as successfully. Although we found it difficult
to rely on the CS catheter for motion compensation, we observed that it could
be used to detect displacement of the CFM catheter. If the distance between the
circumferential mapping catheter and the virtual electrode changes by a certain
amount, we assume that the mapping catheter has been moved from one PV to
the other. From our experiments, using the absolute distance between the CFM
and the VE yielded the best results to detect that the CFM moved away from a
particular PV. A change in the absolute distance of 5 % was the best threshold
in our experiments yielding a false positive rate of 5.8 %. Compared to a mis-
detection which may lead to incorrect fluoroscopic overlays, a false detection is
preferred. At most, there are a few frames without motion correction. As the
catheter displacement approach has only been evaluated on five sequences so
far, further validation on a more comprehensive data set is currently underway.
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Abstract. We present a probabilistic framework to estimate the accu-
mulated radiation dose and the corresponding dose uncertainty that is
delivered to important anatomical structures, e.g. the primary tumor and
healthy surrounding organs, during radiotherapy. The dose uncertainty
we report is a direct result of uncertainties in the estimates of the defor-
mation which aligns the daily cone-beam CT images with the planning
CT. The accumulated radiation dose is an important measure to monitor
during treatment, in particular to see if it significantly deviates from the
planned dose which might indicate that either the patient was not prop-
erly positioned before treatment or that the anatomy has changed due
to the treatment. In the case of the latter, the treatment plan should
be adaptively changed to align with the current patient anatomy. We
estimate the accumulated dose distribution, and its uncertainty, retro-
spectively on a dataset acquired during treatment of cancer in the neck
and show the dose distributions in the form of dose volume histograms.

1 Introduction

Oral and pharyngeal cancers are a significant cause of morbidity and mortality.
Approximately 36 000 Americans will be diagnosed with such cancers in 2011,
and, of these, only half will survive more than 5 years. Radiotherapy (RT) for
cancer in the neck involves extreme precision in planning, image guidance, and
delivery, due to the complex distribution of possible tumor locations and their
close proximity to a large variety of healthy organs. Using intensity modulated
radiation therapy (IMRT), highly sculpted dose distributions can be planned
for achieving the dual goals of treating the primary tumor and nearby tissue
suspected of containing disease with high doses, while limiting the dose, and
thus toxicity risk, to healthy organs.

RT of cancer in the neck region is commonly delivered in 30-35 fractions over
6-7 weeks where the patient must be positioned appropriately for each fraction
in order to receive the treatment dose [7]. On any day, the position, orientation,
and configuration may vary due to the random nature of the immobilization and
setup processes [3]. In addition, chronic changes in response to the treatment
and its side effects will manifest as shape changes in the tumor, which typically
diminishes in size as treatment progresses, and other tissue changes in the neck
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due to e.g. weight loss. The typical method employed for ensuring that the dose
is delivered safely and effectively on a given day involves changing the position
of the patient under image guidance. Such changes, however, are typically re-
stricted to simple translational adjustments [8], as most linear accelerators are
not equipped with rotational adjustment systems.

To understand the deviation of dose delivered to a patient from that planned,
and thus to guide decisions to adaptively modify treatment plans, it is necessary
to accumulate the dose delivered to an important tissue structure as treatment
progresses. By non-rigidly aligning the daily Cone-Beam Computed Tomography
(CBCT) image with the Computed Tomography (CT) acquired for planning [4],
the dose can be summed up for various tissues as treatment progresses and is
commonly presented in the form of Dose Volume Histograms (DVH) [1].

The large variety of non-rigid registration methods available have different
possible biases as well as random variations due to their driving algorithms and
the signals (or degeneracy of signals) available to drive them to optimal solutions.
Most methods are deterministic and disregard any concept of uncertainties which
may manifest in inaccurate contour mapping and dose reporting. This may lead
to erroneous conclusions when deciding whether certain shape changes and their
resulting dosimetric impacts warrant more significant intervention than patient
position adjustment. In this work we propose a probabilistic framework for esti-
mating the accumulated radiation dose delivered during IMRT in the neck. The
daily CBCT is non-rigidly registered with the planning CT using a probabilistic
registration framework [5,6] that quantifies the deformation as well as the de-
formation uncertainty. We show how the delivered dose estimates are influenced
by registration uncertainty.

2 Methods

Based on the planning CT image c(x) and the corresponding binary images of
critical structures (e.g. spinal cord, tumor, etc) s1(x), . . . , sK(x), a radiation dose
volume r(x) is determined, where x ∈ Ω and Ω denotes the treatment domain.
The total dose is delivered over T identical dose fractions r1 = . . . = rT such
that r = r1 + . . . + rT . Before each fraction, a new CBCT image ft is acquired
and used to find a translational (rigid) alignment of the patient with respect to
the pre-treatment plan.

However, a rigid alignment cannot account for non-rigid anatomical changes,
and thus, in those places where non-rigid shifts occur, the dose will not be
delivered accurately to the planned treatment site. By estimating the non-rigid
deformation ut which aligns ft with c, we can estimate the deviation between
the planned radiation and the actual radiation dt delivered to a structure si at
fraction t. We model p(d∗

T ), the accumulated marginal dose distribution after
fraction T , according to the hierarchical model in Fig. 1 (and drop the conditional
dependence of d on r, c and f for notational convenience):
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T

ut

rt

c

ft

dt d∗
T

Fig. 1. Hierarchical model of the problem of estimating the actual accumulated ra-
diation dose d∗

T after T fractions given the planning CT c, the daily CBCT images
ft and the planned per-fraction dose images rt. The deformations ut and the actual
per-fraction doses dt are unknowns.

p(d∗
T ) = p(d1) ∗ . . . ∗ p(dT ) , (1)

p(dt) =
∫
ut

p(dt | ut, rt) p(ut | c, ft) , (2)

where we can estimate p(d∗
T ) by convolution of p(dt) for t = 1, . . . , T because

they are conditionally independent given rt, c and ft. In the following sections
we show how to compute the posterior distribution over deformations, the condi-
tional dose distribution, the marginal per-fraction dose distribution, and finally
the accumulated dose distribution.

2.1 Probabilistic Non-rigid Registration

Here we provide a summary of the probabilistic registration framework in [5,6]
where the posterior distribution on deformations is written

p(ut | c, ft) ∝ p(c, ft | ut) p(ut) . (3)

In the deformation likelihood p(c, ft | ut) = 1
Zs

exp(−Es/Ts) we convert a Sum
of Squared Differences (SSD) similarity criterion Es(ut; c, ft) into a proba-
bility by way of Boltzmann’s equation with temperature Ts. Similarly in the
prior p(ut) = 1

Ze
exp(−Ee/Te), Boltzmann’s equation with temperature Te is

used to convert a non-linear elastic (St. Venant-Kirchoff) energy Ee(ut) into a
probability. The computation domain is discretized with a Finite Element (FE)
tetrahedral mesh which is used to calculate both Es and Ee and we prevent fold-
ing of elements by setting the elastic energy to infinity when folding is detected.

The method uses Metropolis-Hastings (MH), a Markov Chain Monte Carlo
(MCMC) method, to draw deformation samples from the posterior distribution
[2]. The MH method constructs a Markov chain that asymptotically has the
posterior distribution as its equilibrium distribution. In practice, the method
starts with an initial estimate of the deformation u0, and generates candidate
samples from a multi-variate Gaussian proposal distribution centered on the
previous sample u∗ ∼ N (ut, σ2Σ). The covariance matrix is defined by Σij =
exp(−D(ni, nj)/ρ) where D computes the distance between nodes i and j in
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the FE-mesh and ρ is a constant. Candidate samples are accepted (ut+1 = u∗),
or rejected (ut+1 = ut), according to the MH criterion [2]. Typically, the first
set of samples is discarded to avoid burn-in effects, and to reduce intra-sample
dependencies the chain is often thinned by saving every k-th sample. Eventually,
a set of deformations û = {ui}i=1...N that represent the posterior distribution
is generated.

2.2 Marginal Radiation Dose Distributions

We assume dose invariance with respect to anatomical changes and therefore
model the conditional per-fraction dose distribution p(dt | ut, rt) = δ(dt − rt ◦
ut) with a delta distribution. Consequently, we characterize the marginal dose
distribution in Eq. (2) by the set of deformed dose samples d̂t = {rt ◦ui}i=1...N

where ◦ denotes composition.
We are interested in monitoring the accumulated dose delivered to a structure

si over the duration of the treatment. A simple way to estimate p(d∗
T ), given

that we have samples that characterize the per-fraction marginal dose distribu-
tions, is by drawing a single random sample from each of the per-fraction dose
distributions and adding them together. We draw a set of M = TNk samples
d̂∗

T to characterize p(d∗
T ), where k is a constant that determines the amount of

over-sampling we need to get good coverage of the distribution.
A DVH summarizes a 3D dose distribution for a specific structure si in a

graphical 2D format and is used for both planning and monitoring radiation
treatment [1]. We use it to visualize the most likely radiation dose delivered
to a specific structure, either at a single fraction, or the cumulative dose over
several fractions. In addition to visualizing the most likely dose distribution, we
also visualize the uncertainty (spread) of the dose distribution by plotting the
DVHs corresponding to the minimum and maximum limit of the range of the
accumulated dose distribution represented by the samples in d̂∗

T .

2.3 Marginal Contour Distributions

It is difficult to assess the final registration results because of the lack of ground
truth. We propose to assess the registration through p(sj ◦u−1), i.e. the marginal
posterior location of the critical structures in the planning image to see if they
align with the structure seen in the daily CBCT. It is especially critical to
compare the estimated location of these structures with the planned location
and the planned dose distribution for those structures where the estimated DVH
starts diverging from the planned DVH. A marginal posterior map of the location
of the structure in the CBCT can be constructed by deforming the structure with
the inverse of each of the sampled deformations {sj ◦ (ui)−1}i=1...N and making
a histogram of the number of times a voxel is within the structure. We can view
this 3D histogram as a probabilistic map which conveys the probability that a
voxel belongs to the structure given the posterior distribution over deformations.
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Fig. 2. RT planning data. In the two leftmost images, critical structures (Blue=PTV70,
Red=Pharyngeal constrictors, Orange=Left submandibular gland, Green=Left parotid
gland, Purple=Spinal cord) used in planning of the radiation dose are overlaid on axial
and sagittal slices of the planning CT. In the two rightmost images, corresponding
structures are overlaid on axial and sagittal slices of the planned dose r. Notice the
steep dose gradients between the spinal cord, pharyngeal constrictor and PTV70.

3 Results

Dataset. We applied our method retrospectively to a Head & Neck data set
which consisted of a planning CT (512x512x135) with resolution (0.95, 0.95, 3.00)
mm. Important critical structures were delineated on this CT image (see Fig.
2) and a dose volume (61x47x45) with isotropic 5mm resolution was estimated
based on the contoured data to maximize the tumor radiation and minimize the
radiation to healthy tissue. In the rest of this paper, we will monitor DVHs of
normal structures pharyngeal constrictor, brain stem, left submandibular gland
and left parotid gland to confirm that the actual dose delivered does not exceed
the planned dose, and the planning target volume (PTV70) to monitor that the
delivered dose does not fall below the planned dose.

The patient came in for 35 fractions over 7 weeks, and at each fraction a
CBCT (512x512x61) with a resolution of (0.5, 0.5, 2.5)mm was acquired to find
a translational alignment of the patient with the treatment scan. We used the
CBCT from end of week 1, 4 and 7 and assumed that 1/3 of the total dose was
applied at each of these time points. We registered the CBCTs to the planning
CT to monitor the cumulative DVH for each structure and how they are affected
by registration uncertainty and tissue movements due to changing anatomy.

Registration. First we estimated a translation which best aligned the CBCT
with the planning CT and assumed this reproduced the translational alignment
used during treatment. We generated a FE-mesh, with 1402 nodes and 6398
tetrahedral elements, which covered the treatment region of the neck and used
homogeneous elastic parameters with Young’s modulus and Poisson’s ratio set to
E = 108 and ν = 0.45 respectively. Next we applied our probabilistic registration
(σ2 = 0.008, ρ = 50mm, Te = 108, Ts = 1.0), sampled 400 000 samples, used
a thinning-factor of 10, and removed the first half of the data to avoid burn-
in effects. Effectively, we had 20 000 independent samples from the posterior
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Fig. 3. Cumulative DVH after week 7 for the spinal cord and pharyngeal constrictor
on the left and submandibular gland, parotid gland and PTV70 on the right. The gray
area is the uncertainty of the DVH and the dashed line is the planned dose. Notice
the large deviation from the plan for the submandibular gland and that the planned
DVH for the parotid gland falls outside of the estimated DVH. The large deviation
from the plan indicates anatomical changes and that the treatment can be replanned.
Fig. 4 plots the DVHs for the parotid and submandibular gland from week 1 to 7.

distribution for each dataset. The temperatures were set empirically to balance
the contribution of the likelihood and the prior, while σ2 was set to achieve an
MH acceptance rate of approximately 25%.

Dose Estimation. From the per-fraction dose distributions we estimated the
cumulative dose distribution per voxel with k = 100. In Fig. 3 we show the cu-
mulative DVHs after week 7 and the corresponding uncertainty (dispersion) of
the estimates for the 5 different structures we are studying. It is apparent from
Fig. 3 that there are deviations in the estimated DVH compared to the planned
DVH for the submandibular and parotid glands. In Fig. 4 we study the accu-
mulated dose for these structures closer and plot the cumulative DVH for weeks
1, 4, and 7. After week 1, the actual radiation delivered to the submandibular
gland apparently diverges from the planned radiation and is an indication that
the tissue in or around the left submandibular gland has moved/changed during
treatment and that large dose gradients close to the structure have moved in or
out of the structure.

In Fig. 5 we visualize the marginal position of the submandibular and parotid
glands overlaid on the week 7 CBCT based on the estimated posterior distribu-
tion over deformations to 1) visually validate the registration and 2) to assess
if the tissue has moved/changed such that the structure contoured in the treat-
ment CT no longer overlaps with the marginal location of the contour. For the
submandibular gland, it is evident that the tissue has moved such that large
dose gradients that were previously outside the structure are now inside, which
means that the structure is receiving a lower amount than the planned dosage.
This might be an indication to re-plan the treatment and possibly taking further
advantage of the possible dose sparing to this organ.
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Week 7

Fig. 4. Cumulative DVHs for the submandibular (left) and the parotid (right) glands.
The dashed line is the planned dose, while the gray area is the dose uncertainty. Because
we see a large uncertainty in the cumulative DVH for the parotid and submandibular
glands in Fig. 3, we plot here the cumulative DVH after weeks 1, 4 and 7 to study
the temporal evolution of the delivered dose distributions. At week 4, the estimated
DVH for the submandibular gland starts to diverge from the planned DVH. To confirm
that these deviations are due to changing and moving anatomy, we plot the marginal
distribution of the glands in relation to the planned position in Fig. 5.

(a) p(sparot ◦ u−1
7 ) and sparot (b) sparot (c) p(sparot ◦ u−1

7 ) (d)

(e) p(ssubm ◦ u−1
7 ) and ssubm (f) ssubm (g) p(ssubm ◦ u−1

7 )

Fig. 5. Marginal maps and planned contours of the parotid and submandibular glands.
The probability of a voxel being inside the marginal contour is colored according to (d).
(a, e): Marginal maps and planned location (in blue) overlaid on r. Notice the deviation
of the real location of the submandibular gland (according to the marginal map) from
the planned location and how this translates into a deviation in the DVHs (see Fig.
4) because of the large dose gradients in this area. (b, f): Planned contours overlaid
on c. (c, g): Marginal maps overlaid on f7 (week 7 CBCT). Notice the uncertainty
in the location of the upper right part of the parotid gland. However, this locational
uncertainty does not translate into a large uncertainty in the DVH (see Fig. 3) because
there are no large dose gradients in this area.
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4 Discussion

This paper presented a probabilistic framework for estimating the cumulative
radiation dose delivered to tissue during IMRT and the corresponding dose un-
certainty contributed by non-rigid registration. Our preliminary results show
that the dose uncertainty varies with the structure we are studying and whether
it is close to large dose gradients. The resolution of the dose volume was low
which resulted in relatively small dose uncertainties. With finer resolution dose
volumes and by accumulating dose from more than three fractions, we anticipate
that the dose uncertainties will play a role in deciding whether to re-plan the
treatment. The uncertainty estimates also depend on the Boltzmann temper-
atures. In future work, we will use a likelihood approach to estimate physical
meaningful temperatures, and we will also differentiate between tissue types by
modeling them with different elasticity. Our current similarity metric (SSD) is
not a robust measure, but was used for its computational efficiency. MCMC
sampling is generally slow, and we achieved a sampling frequency of 10 samples
per second on a 8-core PC for a total computation time of about 11h for one
fraction. However, these computations can be done offline between fractions and
computational speed is therefore not critical.

Acknowledgments. The work was supported by NIH grants P01CA59827,
P41RR13218 and P41RR019703.

References

1. Drzymala, R., Mohan, R., Brewster, L., Chu, J., Goitein, M., Harms, W., Urie, M.:
Dose-volume histograms. Int. J. Radiat. Oncol. Biol. Phys. 21(1), 71–78 (1991)

2. Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B.: Bayesian Data Analysis, 2nd
edn. Chapman & Hall/CRC (July 2003)

3. Hong, T.S., Tome, W.A., Chappell, R.J., Chinnaiyan, P., Mehta, M.P., Harari, P.M.:
The impact of daily setup variations on head-and-neck intensity-modulated radia-
tion therapy. Int. J. Radiat. Oncol. Biol. Phys. 61(3), 779–788 (2005)

4. Lu, W., Olivera, G.H., Chen, Q., Ruchala, K.J., Haimerl, J., Meeks, S.L., Langen,
K.M., Kupelian, P.A.: Deformable registration of the planning image (kvct) and the
daily images (mvct) for adaptive radiation therapy. Phys. Med. Biol. 51(17), 4357
(2006)

5. Risholm, P., Pieper, S., Samset, E., Wells III, W.M.: Summarizing and visualiz-
ing uncertainty in non-rigid registration. In: Jiang, T., Navab, N., Pluim, J.P.W.,
Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6362, pp. 554–561. Springer,
Heidelberg (2010)

6. Risholm, P., Samset, E., Wells III, W.: Bayesian estimation of deformation and
elastic parameters in non-rigid registration. In: Fischer, B., Dawant, B.M., Lorenz,
C. (eds.) WBIR 2010. LNCS, vol. 6204, pp. 104–115. Springer, Heidelberg (2010)

7. Schwartz, D.L., Dong, L.: Adaptive radiation therapy for head and neck cancer-can
an old goal evolve into a new standard? J. Oncol. (2011)

8. Sykes, J.R., Brettle, D.S., Magee, D.R., Thwaites, D.I.: Investigation of uncertainties
in image registration of cone beam ct to ct on an image-guided radiotherapy system.
Phys. Med. and Biol. 54(24), 7263 (2009)



Deformable Registration of High-Resolution and

Cine MR Tongue Images

Jonghye Woo1,2, Maureen Stone1, and Jerry L. Prince2

1 Department of Neural and Pain Science, University of Maryland Dental School,
Baltimore MD, USA

2 Department of Electrical and Computer Engineering, Johns Hopkins University,
Baltimore MD, USA

{jwoo,mstone}@umaryland.edu, prince@jhu.edu

Abstract. This work investigates a novel 3D multimodal deformable
registration method to align high-resolution magnetic resonance imag-
ing (MRI) with cine MRI of the tongue for better visual and motion
analysis. Both modalities have different strengths to characterize and
analyze the tongue structure or motion. Visual and motion analysis of
combined anatomical and temporal information can synergistically im-
prove the utility of each modality. An automated multimodal registra-
tion method is presented utilizing structural information computed from
the 3D Harris operator to encode spatial and geometric cues into the
computation of mutual information. The robustness and accuracy of the
proposed method have been demonstrated using experiments on clinical
datasets and yielded better performance compared to the conventional
method and an average error comparable to the inter-observer variability.

1 Introduction

Assessment of tongue motion can help the early diagnosis of disease, the evalua-
tion of speech quality before and after surgery, and the functional analysis of the
tongue [1]. Tongue anatomy is unusual; the tongue has three orthogonal fiber di-
rections and extensive fiber inter-digitation, no bones or joints. This architecture
makes the motion pattern of the tongue difficult to measure and quantify.

Assessment, diagnosis, and treatment of tongue disorders and understanding
the tongue’s motor control can be improved through a combinatorial analy-
sis of tongue muscle anatomy and related tissue motion observed in magnetic
resonance (MR) images [2,3]. For example, high-resolution magnetic resonance
imaging (hMRI) provides muscle anatomy as shown in Figure 1(a) and cine
MRI provides tongue surface motion as shown in Figure 1(b). The combina-
tion of hMRI and cine MRI offers complementary information in the study of
tongue motion. However, each modality has its limits. hMRI is restricted to a
static position and cine MRI does not have sufficient spatial resolution to provide
high-quality tongue anatomy. To enhance the advantages of both modalities, it
is necessary to combine them through registration.

In this work, we develop a fully automated and accurate 3D deformable regis-
tration method to align hMRI with cine MRI. Anatomical (hMRI) and temporal

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAI 2011, Part I, LNCS 6891, pp. 556–563, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Deformable Registration of High-Resolution and Cine MR Tongue Images 557

(a) (b)

Fig. 1. Example of the high-resolution MRI (hMRI) that was acquired at rest (a) and
the first time frame of cine MRI that was acquired during speech task of “a geese” (b)

(cine MRI) data can be registered to provide correspondences between muscle
anatomy identified in hMRI and tongue surface motions in cine, thus mapping
changes in muscle pattern with surface motion. To our knowledge, this is the
first study to perform registration between these two modalities.

Although mutual information (MI) is considered as a gold standard similar-
ity measure for multimodal image registration, there are two problems in the
conventional MI-based registration method. First, MI cannot handle the local
intensity variations, which affects the estimation of joint histogram in MI com-
putation [4,5]. Second, the statistics that are computed from overlap regions
only considers corresponding intensity information and thus cannot encode spa-
tial information [6]. Figure 2 illustrates a simple yet demonstrative example of
this problem. Aligned synthetic circles as in [7] are used to show the limitation
of the conventional MI. We compute the cost values with respect to different
translations where no local maximum is found in conventional MI as shown
in Figure 2(b) whereas the proposed method coincides with a local maximum
corresponding to correct alignment as illustrated in Figure 2(c).

These problems were addressed partly by incorporating spatial information
into calculation of the MI. Pluim et al. [6] combined spatial information by
multiplying the MI with an external local gradient. Rueckert et al. [8] pro-
posed higher-order mutual information. Russakoff et al. [9] proposed regional
mutual information to take neighboring information of corresponding pixels into
account. Yi et al. [7] proposed to include spatial variability via a weighted

(a) (b) (c)

Fig. 2. Comparison between conventional mutual information (b) and the proposed
method (c). With aligned synthetic circles (a), we plot the cost values with respect to
the different translations along x and y axes.
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combination of normalized mutual information and local matching statistics.
Zhuang et al. [5] proposed to unify spatial information into the computation of
the joint histogram. Loeckx et al. [10] investigated the conditional MI by incor-
porating both intensity dimensions and spatial dimension to express the location
of the joint intensity pair.

To mitigate the limitations of conventional MI, we propose a novel mechanism
to incorporate both spatial and geometric information into the calculation of MI
using the Harris operator.

2 Method

Our method is based on an iterative framework of computing MI incorporating
spatial information and geometric cues. The underlying idea is to split the image
into a set of non-overlapping regions using a 3D Harris operator and to perform
registration on spatially meaningful regions. Additionally, we exploit structural
information describing gradient of the local neighborhood of each pixel to define
structural saliency to compute MI.

2.1 Maximization of Mutual Information

We denote the images I1 : Ω1 ⊂ Rn → R and I2 : Ω2 ⊂ Rn → R, defined on
the open and bounded domains Ω1 and Ω, as the template and target images,
respectively. Given two images, a deformation field is defined by the mapping
u : Ω2 �→ Ω1. The goal of registration is to find a deformation field at each pixel
location x such that the deformed template I1(u(x)) is as close as possible to
I2(x) satisfying the given criterion. Since I1 and I2 are considered to be different
modalities, we focus on the MI criterion for registration [4]. The main idea is to
find the deformation field û by maximizing the statistical dependency between
the intensity distributions of the two images, i.e.,

û = arg max
u

(M(I1(u(x)), I2(x))), (1)

where M denotes the mutual information of the two distributions. M can be
computed using joint entropy H as

H(I1(u(x)), I2(x)) = −
∫∫

p(i1, i2) log p(i1, i2)di1i2

M(I1(u(x)), I2(x)) = H(I1(u(x))) + H(I2(x)) −H(I1(u(x)), I2(x))

=
∫

R3
pu(i1, i2) log

pu(i1, i2)
pI1(i1)pI2(i2)

di1di2,

(2)

where i1 = I1(u(x)), i2 = I2(x), and pI1(i1) and pI2(i2) are marginal distribu-
tions. pu(i1, i2) denotes the joint distribution of I1(u(x)) and I2(x) in the overlap
region V = u−1(Ω1)∩Ω2 which can be computed using the Parzen window given
by

pu(i1, i2) =
1
|V |

∫
V

ϕ

(
i1 − I1(u(x))

ρ

)
ϕ

(
i2 − I2(x)

ρ

)
dx , (3)

where ϕ is a Gaussian kernel and ρ controls the width of window.
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2.2 Volume Labeling Using 3D Harris Operator

The Harris corner detector [11] was first introduced to detect corner features
that contain high intensity changes in the horizontal and vertical directions. In
this work, we extend the 2D Harris detector used for images or video sequences
to localize meaningful features in 3D images. The Harris operator is based on the
local autocorrelation function of the intensity, which measures the local changes
of the intensity with patches shifted in different directions. We first define the
autocorrelation function as

c(x, y, z) =
∑

xi,yi,zi

W (xi, yi, zi) [I(xi, yi, zi) − I(xi +Δx, yi +Δy, zi +Δz)]2,

(4)
where I(·, ·, ·) denotes the image function, (xi, yi, zi) are the points in the Gaussian
function W (·, ·, ·) centered on (x, y, z) and (Δx,Δy,Δz) represents a shift to
define the neighborhood area. Using a first-order Taylor expansion, we can write

c(x, y, z) =
∑

xi,yi,zi

⎡⎣W · I(xi + Δx, yi + Δy, zi + Δz)

⎡⎣Δx
Δy
Δz

⎤⎦⎤⎦2

= [Δx Δy Δz]

⎡⎢⎢⎢⎣
∑

xi,yi,zi

W · I2
x

∑
xi,yi,zi

W · IxIy

∑
xi,yi,zi

W · IxIz∑
xi,yi,zi

W · IxIy

∑
xi,yi,zi

W · I2
y

∑
xi,yi,zi

W · IyIz∑
xi,yi,zi

W · IxIz

∑
xi,yi,zi

W · IyIz

∑
xi,yi,zi

W · I2
z

⎤⎥⎥⎥⎦
⎡⎣Δx

Δy
Δz

⎤⎦

= [Δx Δy Δz] C(x, y, z)

⎡⎣Δx
Δy
Δz

⎤⎦ ,

(5)

where Ix, Iy, and Iz denote the partial derivatives in the x, y, and z axes, respec-
tively, and the local structure matrix C(x, y, z) captures the intensity structure of
the local neighborhood. Let λ1 � λ2 � λ3 denote the eigenvalues of the matrix
C(x, y, z) and let the 3D Harris operator be defined as

H = det(C) − k(trace(C))3, (6)

where k is an arbitrary constant. Then each pixel can be classified as one of
three types using a threshold T and the following definitions

– Type 1: H ≥ T , Location having significant local variation
– Type 2: H ≤ −T , Location having moderate local variation
– Type 3: −T ≤ H ≤ T , Location having small local variation

We assume that Type 1 and Type 2 regions have more structural and character-
istic information compared to Type 3 (homogeneous) region to calculate local
statistics. Thus we consider Type 1 and Type 2 regions to calculate MI. One
example result of the voxel labeling is shown in Figure 3(b). The white, gray
and black color represent the Type 1, Type 2, and Type 3, respectively.
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2.3 Mutual Information Using Local Structure Matrix

MI represents the statistical relationship between the template and target im-
ages. As shown in Eq. (2), MI is calculated using the marginal and joint distri-
butions of the two images. To address limitations stated before, we compute a
weighted joint distribution in order to encode both spatial and geometric infor-
mation in the objective function. The local structure matrix C(x, y, z) derived in
Eq. (5) exhibits local intensity structure that implies gradient directions within a
local neighborhood of each pixel. We can rewrite the joint distribution weighted
by the distance between two matrices defined in corresponding pixels as:

pCu(i1, i2) =
1
|V |

∫
V

γ(x) · ϕ
(
i1 − I1(u(x))

ρ

)
ϕ

(
i2 − I2(x)

ρ

)
dx (7)

where γ(x) is a weighting function that incorporates the distance between local
structure matrices between corresponding pixels given by

γ(x) = exp(−Δ(Ci1(x), Ci2(x))
m

). (8)

Here, Δ(Ci1(x), Ci2 (x)) is a distance between two matrices, m is a normalization
constant, and Ci1(x) and Ci2(x) are the local structure matrices of the corre-
sponding pixels in I1(u(x)) and I2(x), respectively. The local structure matrices
do not reside in a vector space and therefore the Euclidean metric does not hold.
However, local structure matrices are symmetric and positive semidefinite (like
covariance matrices), and therefore belong to a connected Riemannian manifold
that is locally Euclidean [12]. Accordingly, we can define the distance between
two structure matrices as

Δ(Ci1(x), Ci2 (x)) =

√√√√ N∑
n=1

ln2 λn(Ci1(x), Ci2 (x)), (9)

where λn are the generalized eigenvalues of Ci1(x) and Ci2(x) and N is the
number of rows and columns in each matrix. This definition of distance satisfies
the metric properties including symmetry, positivity, and the triangle inequality.

We can rewrite MI based on the above weighting scheme as follows:

MC(I1(u(x)), I2(x)) =
∫

R3
pCu(i1, i2) log

pCu(i1, i2)
pI1(i1)pI2(i2)

di1di2. (10)

Using this (modified) MI, the local structure matrices provide a geometric sim-
ilarity measure while the image intensities continue to provide an appearance
measure, thereby allowing us to find correspondence more reliably and address
the limitation of the conventional MI-based registration.

2.4 Registration Model

Data fidelity Term. With the modified MI defined in Eq. (10) and labeled
regional information, we can define data fidelity term given by

D(I1(u(x)), I2(x)) =
K∑

k=1

wkχDk
(u(x))MC(I1(u(x)), I2(x)), (11)
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(a) (b) (c) (d) (e)

Fig. 3. One example of the results: (a) template image (hMRI) (b) volume labeling of
the template image using the Harris operator, (c) a resulting image using conventional
MI-based registration, (d) a resulting image using the proposed method and (e) the
target image (cine MRI). The red arrows show that (d) and (e) are better aligned than
(c) and (e) in terms of vocal tract edge.

where wk ∈ R+ is the weight assigned to kth region and χDk
is kth characteristic

function defined by

χDk
(x) =

{
1, x ∈ Dk

0, x /∈ Dk
(12)

Transformation Model. We use free-form deformations (FFD) based on uni-
form cubic B-splines to model the deformable registration as in [13]. Additionally,
a multi-resolution scheme is used to represent coarse-to-fine details of both vol-
umes for fast and robust registration. The energy functional is minimized using
a Simultaneous Perturbation Stochastic Approximation (SPSA) [14] method.

3 Experiments and Results

3.1 Subjects and Task

Nine normal native American English speakers were subjects in this experiment.
The speech task was “a geese”. Both types of MRI datasets were recorded in the
same session using a head and neck coil. Cine MRI datasets were collected with a
6mm slice thickness and had an in-plane resolution of 1.875mm/pixel resolution.
hMRI datasets were 3mm thick with an in-plane resolution of 0.94mm/pixel.
The subjects were required to remain still from 1.5 to 3 minutes for each plane.

3.2 Evaluation of the Registration Method

To evaluate the accuracy and robustness of the proposed method, we have per-
formed two registration experiments on nine pairs of 3D axial MRI volumes
described above. Both registrations were performed on the same two static vol-
umes: (1) the first time frame of axial cine MRI that was acquired during speech
task of “a geese” and (2) the axial hMRI volume that was acquired at rest. The
registration methods used affine registration as an initialization, followed by the
deformable registration using the proposed and conventional MI-based method
using FFD. In our experiments, we set the number of histograms to 50, and used
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Table 1. Registration errors and observer variability

TRE (voxel) Before Affine Conventional Proposed Observer Variability

Tongue Tip 6.2±3.7 3.8±1.4 3.6±1.8 2.5±1.2 1.8±1.3
Lower Tip 3.9±1.8 2.8±1.1 2.6±1.4 1.8±1.2 2.7±1.7

Posterior pharynx 3.9±5.8 1.9±0.9 1.5±0.7 1.5±0.9 1.4±1.3

Average 4.7±4.0 3.1±2.8 2.7±2.6 2.1±1.2 2.0±1.4

Table 2. Registration errors in different non-uniformity fields

TRE (voxel) Affine Conventional method Proposed method

Small bias field (20%) 3.8±1.6 3.5±2.6 2.3±1.2
Medium bias field (40%) 3.7±1.3 3.6±2.6 2.4±1.2
Large bias field (60%) 3.8±1.5 3.8±2.5 2.7±1.5

the entire volume as the sample size. We used control point spacings of 8 mm in
each axis. For the 3D Harris operator, we set k=0.001 and T=50,000,000. The
method stops when the movement is less than 0.001 mm or iteration reaches the
predefined iteration number 100 in both methods.

The first experiment assessed the accuracy of the registration method us-
ing target registration error (TRE) [15]. Two expert observers independently
selected three corresponding anatomical landmarks from each volume including
tongue tip, lower lip, and posterior pharynx. Table 1 lists the mean and standard
deviation of TRE and inter-observer variability using both methods. The TRE
results show that the proposed method provides accurate results compared to
the conventional MI-based method and is comparable to the observer-variability.
Figure 3 shows one result of the first experiment. It is apparent in the figure
that the proposed method has better alignment. Of note, selecting anatomical
landmarks is of great importance, and a challenging task even for humans, in
assessing the accuracy of the registration method. There is no true gold standard
other than visual judgment, which is marred by inter-observer variability.

The second experiment further demonstrated the performance of the regis-
tration method. Three different levels of intensity non-uniformity (bias) were
generated including small (20%), medium (40%) and large (60%) bias fields. In
these experiments, we also used TRE to measure the performance of the meth-
ods. As shown in Table 2, the results of the proposed method were superior to
the conventional method and were also robust against the bias fields.

4 Conclusion

In this work, we propose a novel registration algorithm to align hMRI with cine
MRI. We utilize structural information computed from the 3D Harris operator to
encode spatial and geometric cues into the computation of MI. Fully automated
3D deformable registration of hMRI with cine MRI of tongue can be performed
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accurately with average error of TRE comparable to inter-observer variability.
The proposed approach can be applied to the mapping of muscle anatomy in
hMRI to tongue surface motions in cine MRI.
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Abstract. Patient motion is a major limitation for magnetic resonance imaging. 
Recent theoretical advances incorporate explicit rigid and non-rigid motion 
compensation into conventional image reconstruction for multi-shot acquisitions 
and recover motion-free images by solving a general matrix inversion problem. 
Although the theory has been established, applications are rare due to the 
challenges of estimating motion field for every pixel of every shot. In this paper 
we propose a method to overcome this difficulty using the inverse-consistent 
deformable registration supplying both forward and backward deformations for 
matrix inversion. We further extend this framework for multi-coil motion 
compensated image reconstruction using the eigen-mode analysis. Both 
simulations and in vivo studies demonstrate the effectiveness of our approach. 

1   Introduction 

Patient motion during magnetic resonance imaging (MRI) causes blurring or ghosting 
that degrades image quality. The undesired effects of patient motion are introduced 
during the acquisition of Fourier domain or k-space data. Any inconsistencies in k-
space can strongly influence every pixel in the image domain. Even slight motion will 
cause blurring in linearly acquired k-space or ghosting artifacts in interleaved k-space 
acquisitions. Significant movement may create artificial structures that may interfere 
with diagnostic interpretation of the image (Fig. 1). 

Motion compensation in MRI is an active research area [1]. Published methods can 
be classified as either prospective or retrospective. Prospective approaches such as 
breath-holding, ECG synchronization or respiratory gating require additional clinical 
set-up, rely on patient cooperation, regular breathing and/or cardiac rhythm, and can 
lengthen the scan time. The majority of retrospective methods deals with rigid 
motion, and may be insufficient for applications like cardiac or liver imaging where 
significant deformation of organs could occur in addition to rigid motion.  

Recently proposed methods aim to extend conventional MR reconstruction to 
incorporate explicit motion compensation for non-rigid deformations. Recent theoretical 
 

                                                           
* This work was supported in part by the NIH grant RO1 HL102450. 



 Motion Compensated Magnetic Resonance Reconstruction 565 

 

Fig. 1. An illustration of motion induced artifacts. The left shows a cardiac cine frame whose k-
space was divided into 2 shots by picking every the other line. Significant artifacts are induced 
on the right after two shots are shifted by 3 pixels. 

advances [2] elucidate that if a) the MR data acquisition is performed in a multi-shot 
or multi-segment manner, which is often the case for many cardiac and 3D imaging 
applications, and b) the motion between every shot is known, motion compensation 
can be achieved by solving a general matrix inversion problem [2]. A ‘shot’ here is 
defined as a subset of k-space, but can be extended to include the k-space data for an 
entire image; i.e., in dynamic single-shot or real-time acquisition. The assumption in 
[2] is that all k-space points within a shot are acquired during a sufficiently short 
period to be considered motion-free. Although the theory has been established, this 
methodology is rarely applied mainly due to the difficulty of estimating dense 
deformation fields for every shot. An attempt to bypass this problem was published in 
[3], where a motion model within the field of view is assumed and parameterized as a 
linear combination of selected input basis signals, e.g. navigator echoes or respiratory 
belts or signals derived from ECG. The optimization process is extended to interleave 
the estimation of a motion-free image and a motion model by consecutively solving 
two large linear systems. Although this approach avoids the estimation of deformation 
fields, it requires a more complicated matrix representation and couples motion 
estimation and compensation. Significant computational cost is thus incurred to 
converge to a solution.  

With the aim to correct non-rigid motion, we propose an efficient algorithm as an 
extension of the motion compensation framework based on matrix inversion. The key 
feature is to estimate the pixel-wise forward and backward deformation fields using 
the inverse-consistent non-rigid registration algorithm, and to perform multi-coil 
reconstruction using eigen-mode analysis. In this way, the motion field can be 
interpreted as a prior, simplifying the solver and reducing total reconstruction times to 
the order of seconds. The algorithm was successfully applied to cardiac real-time cine 
imaging showing suppression of ghosting artifacts caused by chest-wall motion. 

2   Methods 

2.1   General Motion Compensation Framework  

Suppose the MR acquisition consists of  shots, presenting a  image. The k-
space sampling pattern for every shot is defined by the sampling matrix  

. The motion-free image  1  is corrupted by the motion field 
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 . Then the final image with motion artifacts  1  can be 
expressed by the following matrix equation, as proposed in [3]:  

  ∑ · · · · ·       (1) 

Here   is the Fourier transform and  is the inverse of  (hermitian 
conjugate).  is the image transform, corresponding to the deformation for shot . 
We emphasize that ·  represents the transformed image intensities and can be 
efficiently computed by image interpolation operation. For every pixel in , its 
spatial position is calculated after applying the transform. The intensity at this 
position is estimated by performing an image interpolation. This process is repeated 
for all pixels in  and the resulting transformed image is · . The task here is to 
estimate the motion-free image , given the measured k-space data , sampling 
pattern  and deformation field . While the Eq. 1 is linear, it is fully capable to 
represent both rigid and non-rigid motion, because only transformed image 
intensities, not the motion itself, are needed. 

To estimate the motion-free image , the inversion of ghosting matrix  (here 
‘ghosting’ means motion artifacts are introduced after applying this matrix to motion-
free images) is necessary. Despite the large size of matrix , the standard conjugate 
gradient solver such as LSQR only requires the computation of matrix-vector product ·  and · , as pointed out in [2]. These matrix-vector products can be efficiently 
computed using image pixel-wise operations, such as FFT and image interpolation.  

Given the matrix description of motion compensation and its fast solver, the 
deformation field  for every shot is still missing. Besides,  ∑ · ··  is needed since ·  is required by the LSQR solver. One way to get  is to 
explicitly compute . But this will disable the fast algorithm using image based 
operations. Fortunately, as suggested in [2], if the inverse deformation  is 
available in the sense of inverse consistency · , the  can be replaced by 

. Then, fast pixel-wise operations can be applied to computing ·  and · .  

2.2   Inverse-Consistent Non-rigid Registration 

Incorporating motion compensation into MR reconstruction requires the availability 
of both forward and backward deformation fields  and  for every shot. While 
most non-rigid algorithms neither supply the inverse deformation field as the output 
nor maintain the inverse consistency, there are some researches in this topic [4,5]. To 
estimate both forward and backward deformation, we propose to utilize an inverse 
consistent non-rigid registration algorithm [6] which estimates both deformation 
fields using an interleaved optimization scheme and maintaining the symmetry and 
inverse-consistency of image alignment. In this optimization scheme, a symmetric 
energy functional is descended by alternating the registration direction after each 
iteration and enforcing the inverse consistency. This inverse-consistency optimization 
is added on top of a variational registration framework [6]. Although current 
algorithm is selected because of its great efficiency and ability to produce the pixel-
wise deformation field which is required by the matrix description of motion 
compensation, other inverse consistent registration algorithms can be applied.  
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2.3   Motion Compensated MR Reconstruction with Multiple Coils 

The usage of multiple phased array receiver coils has become essential in 
contemporary MR systems due to the success of parallel imaging. It is thus necessary 
to utilize the proposed technique in the context of multi-coil imaging using parallel 
image acquisition.  

There are two approaches that extend the above-mentioned technique for multi-coil 
imaging. Firstly, one could repeat the solver to correct motion independently for 
every coil with the same deformation fields. After all coils are corrected, they can be 
combined to generate the final image. To estimate the deformation fields, non-rigid 
registration needs to be applied to the magnitude image of every shot. There are many 
possible ways to achieve this. In dynamic imaging, an initial round of parallel 
imaging reconstruction can be applied to generating images needed to estimate the 
deformation fields. In multi-segment 3D imaging, images for every shot could be 
computed by a rough re-gridding reconstruction. In 2D imaging, those images can be 
obtained by a simple SENSE reconstruction. Other alternatives include performing 
the registration on low-resolution pre-scan before running the intended protocol.  

An apparent drawback of performing the solver on every coil is the increased 
computational cost since coils with 32 channels or more are commonly used in 
clinical settings. To avoid this, suppose a total of  coils are used for imaging, the 
ghosting matrix formula can be listed for every coil: ∑ · · · · ··  where  is the coil sensitivity for the channel . The above matrix 
equation can be repeated for every coil and stacked together except  , ending up 
solving a linear system of . The pixel-wise image operation can still be 
applied for efficiency. The main disadvantage here is that the coil sensitivity must be 
known beforehand, which can be achieved if a reference scan is feasible. However, in 
many applications a precise estimation of coil sensitivity is problematic due to motion 
of the chest-wall or abdomen that alters the coil sensitivity between the pre-scan and 
subsequent image acquisitions.  

We propose to employ the so-called ‘eigen-coil’ method to reduce computational 
cost without affecting reconstruction accuracy. The eigen-coil images are computed 
by performing a Karhunen-Loeve Transform or principal component analysis on the 
multi-coil images [7]. Suppose a set of  coils, each coil acquires an image of ·  
pixels at the same time. These  images can be represented by a  data 
matrix . As the same object is imaged by all coils and there are overlaps between 
coil sensitivities, images from every coil bear redundancy. Therefore, the empirical 
covariance matrix of , defined as / , has maximal  non-zero 
eigenvalues. The eigen-coil images are computed by multiplying the data matrix by 
corresponding eigenvectors. If we sort the eigenvalues by its magnitude and the first 
few eigen-coil images will occupy most image information, while those 
corresponding to small eigenvalues are basically representing noise. Therefore, it is 
adequate to only perform the motion compensation on the first few eigen-coil images 
without discernibly jeopardizing the accuracy. In this way, the computational cost can 
be largely reduced and coil sensitivity is not required. 
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Fig. 2. Motion compensation reconstruction for time-interleaved real-time cine imaging 

2.4   Motion Compensated Real-Time Cine Imaging 

Real-time cine imaging is a technique that captures cardiac motion without the need 
for breath-holding and regular cardiac rhythm; these are requirements of segmented 
multi-shot acquisition strategies. Temporal GRAPPA, i.e. TGRAPPA [8], and 
temporal SENSE, i.e. TSENSE [9] are state-of-the-art dynamic parallel imaging 
methods that acquire time-interleaved, undersampled k-space data and fuse 
information from adjacent frames in order to estimate the coil sensitivity for TSENSE 
or the autocalibrating signals (ACS) for TGRAPPA. This fusion of information from 
k-space data acquired in an interleaved fashion can lead to ghosting artifacts in the 
estimated coil sensitivity that might corrupt the reconstructed image. This can be 
especially problematic in the real-time stress imaging, where patient heart-rate and 
respiratory motion are at extremes, and there may be severe mismatches between the 
estimated coil sensitivity and the acquired image data .We propose here to apply the 
presented technique to correct the chest-wall motion between adjacent frames and 
suppress artifacts in the coil sensitivity estimation, which leads to an improved 
reconstruction. Fig. 2 illustrates the workflow of this reconstruction. In this scheme, 
an initial reconstruction was performed using standard TGRAPPA and the frame-to-
frame deformation fields were estimated from the magnitude images. To reconstruct 
frame , every  neighboring k-spaces around  were treated as  shots from a MR 
acquisition and a motion-compensated reference image was computed by solving the 
general matrix inversion with the deformation fields as inputs. This reference was fed 
into the GRAPPA computation to reconstruct frame . 
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Fig. 3. Simulation of non-rigid motion compensation for multi-coil complex image. K-space 
was divided into 4 shots and deformation fields were applied to mimic the chest wall motion. 
(a) Original image of the first coil; (b) Ghosting image of first coil due to non-rigid chest wall 
motion. (c) After motion compensation, the image content is completely recovered. (e-g) Sum-
of-square original image, its ghosting version and recovered result. (d,h) Effect of chest wall 
motion. 

3   Results 

Proposed algorithm was implemented using Matlab (MathWorks, Natick, Massachusetts) 
and the non-rigid registration was programmed in C++. All computations were 
performed on a dual-core desktop with 3.00GHz CPU and 6GB RAM without utilizing 
multi-threading. Typical computation time needed for non-rigid registration is less than 
0.1ms (320×80 pixels). The conjugate gradient solver costs ~1s for every eigen-coil 
image. In all following tests, the solver was fixed to iterate 15 times due to the 
observation that more iterations did not result in better results. 

3.1   Simulation 

To test feasibility, two simulations were performed. The first was designed to apply a 
known non-rigid deformation to a complex 32 channel cardiac cine image. Four 
artificial deformation fields were applied to warp this image to simulate a continuous 
chest-wall motion. K-space sub-sampling was restricted to the phase-encoding 
direction (horizontal axis in this case) and a regular sampling pattern with 4 times 
reduction was used and leads to 4 shots for every coil. After contaminating these 4 
shots with corresponding deformation fields, the motion compensation solver was 
performed on each coil independently and thus repeated 32 times. Simulation results 
are shown in Fig. 3, presenting an accurate correction that is virtually identical to the 
ground truth. The second simulation was designed to perform motion compensation 
on the eigen-coil images. Fig. 4 shows the motion compensation results on eigen 
images where we empirically selected 0.05 as the cutoff of accumulated eigenvalue 
and kept 10 modes out of 32. Motion correction was applied to those kept and results 
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Fig. 4. Simulation of motion compensation using eigen-coil. (a) Ghosting artifacts appear on 
every coil; (b) All eigen modes bear ghosting artifacts, but only those corresponding to large 
eigenvalues need correction. (c) Eigen images after correction show good artifact removal. (d) 
Sum-of-square image after correcting 10 modes and leaving other 22 unchanged. Difference 
compared to Fig. 3(f) where all coils are processed is indiscernible with ~70% time-saving. The 
curve shows the accumulated eigen-values for all 32 channels. 

were transformed back to original image space by multiplying the hermitian transpose 
of eigenvector matrix. As 95% of the total image content was actually compensated 
for motion, the corrected image was indiscernible compared to previous simulation 
with ~70% of processing time reduced. 

3.2   In Vivo Study 

18 volunteers (10 men, 8 women; mean age 36.7 15.2 years) underwent time-
interleaved free-breathing real-time cine examinations. The study protocol was 
approved by the Institutional Review Board and all participants gave written informed 
consent. A clinical 1.5T MR scanner (MAGNETOM Avanto, Siemens) equipped with 
a 32 channel phased-array coil (Rapid MR International, Columbus, Ohio, USA) was 
used. MR sequence parameters included: balanced SSFP readout, TR=1.09/TE=0.9ms, 
acquired matrix 160×80 (interpolated to 160×120), flip angle 58°, interpolated in-plane 
resolution 2.44×2.44 mm2, slice thickness 10mm, bandwidth 1420Hz/pixel and parallel 
imaging reduction factor of 4. For every patient, 9 slices were acquired to cover the left 
ventricle of the heart. Both standard TGRAPPA and motion compensated version were 
performed on all datasets. Image qualify was assessed by both noise and artifacts 
levels. To measure image noise, a retrospective signal-noise-ratio (SNR) estimation 
algorithm based on random matrix theory was applied [10]. This method has been 
validated for dynamic imaging. Although images reconstructed with or without motion 
compensation showed similar SNR (26.8 vs. 28.1), the advantage of propose method 
was that motion induced artifacts were clearly reduced when the chest all motion is 
 

1 5 10 15 20 25 30
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Coil

A
ccum

ulated eigen-value 

(a) 

(b) 

(c) 

(d)



 Motion Compensated Magnetic Resonance Reconstruction 571 

 

Fig. 5. Example images generated using three different methods to estimate ACS signals for 
TGRAPPA reconstruction. (a,d) Averaging all undersampled k-space; (b,e) Moving averaging 
every 4 consecutive frames; (c,f) Moving averaging every 4 frames with motion compensation, 
where artifacts induced by chest wall motion were better suppressed. 

severe during the image acquisition, as illustrated in Fig. 5. The motion compensation 
via eigen-coil method was found to be robust and visual equivalent to the per-coil 
strategy, while the  reduction of reconstruction time is around 60~70%.  

4   Conclusion and Discussion 

This paper describes a novel MR motion compensation algorithm based on inverse-
consistent non-rigid registration and general matrix inversion. A practical realization 
of this method was proposed for real-time cine imaging. The proposed method 
requires a multi-shot interleaved k-space acquisition where each shot is free of motion 
inconsistency. In case this condition is violated, a longer shot can be divided into 
multiple shorter ones. The specific implementation for cardiac cine imaging relies on 
2D image registration, implying that through-slice motion is not specifically handled. 
For future work, we plan to extend the proposed method to compensate multi-shot 3D 
imaging as the registration is not limited to 2D. Further validation studies are being 
pursued with emphasis on the clinical benefits of our technique. 

Acknowledgments. Authors would like to thank Dr Philip Batchlor (King’s College 
London) for discussion and providing general matrix inversion program. 
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Automatic Motion Analysis in Tagged MRI
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Abstract. Tagged magnetic resonance imaging (tMRI) is a well-known
noninvasive method allowing quantitative analysis of regional heart dy-
namics. Its clinical use has so far been limited, in part due to the lack
of robustness and accuracy of existing tag tracking algorithms in dealing
with low (and intrinsically time-varying) image quality. In this paper,
we propose a novel probabilistic method for tag tracking, implemented
by means of Bayesian particle filtering and a trans-dimensional Markov
chain Monte Carlo (MCMC) approach, which efficiently combines infor-
mation about the imaging process and tag appearance with prior knowl-
edge about the heart dynamics obtained by means of non-rigid image
registration. Experiments using synthetic image data (with ground truth)
and real data (with expert manual annotation) from preclinical (small
animal) and clinical (human) studies confirm that the proposed method
yields higher consistency, accuracy, and intrinsic tag reliability assess-
ment in comparison with other frequently used tag tracking methods.

Keywords: Tracking, motion analysis, tagged MRI, cardiac imaging,
particle filtering, Markov chain Monte Carlo.

1 Introduction

In magnetic resonance imaging (MRI), tissue tagging by spatial modulation of
magnetization (SPAMM) [2] has shown great potential for studying myocardial
motion and treatment effects after myocardial infarction. Contrary to conven-
tional MRI, tagged MRI (tMRI) allows for quantitative assessment of the my-
ocardium, for example by analyzing regional strain. With tMRI, two orthogonal
sets of magnetic saturation planes, each orthogonal to the image plane, can be
created in short time. The deformation of the resulting tag pattern over time
reflects the deformation of the underlying cardiac tissue, and is of clinical sig-
nificance for assessing dynamic properties of the heart. Existing methods, based
on active contours [1,5], non-rigid image registration [4], and optical flow [3], are
not robust or accurate enough to deal with the strongly varying image quality
of typical experimental data. The inevitable fading of the tag pattern and acqui-
sition noise (Fig. 1) also affect commercially available tracking methods, based
on harmonic phase (HARP) MRI [11].

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAI 2011, Part I, LNCS 6891, pp. 573–580, 2011.
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Fig. 1. Examples of images from studies of rat hearts, with frames 6, 12, and 18 (out
of 24 per heart cycle) showing the fading of the tagging

In this paper we propose a novel Bayesian method for motion analysis in
tMRI, implemented by means of particle filtering (PF), and a trans-dimensional
Markov chain Monte Carlo (TDMCMC) approach. Using a specially designed
tag likelihood measure and heart motion model (based on non-rigid image regis-
tration), the method allows for more robust and accurate tag position estimation
in a sequence of noisy images. Moreover, TDMCMC makes statistical inference
about both the existence and position of hundreds of appearing and disappear-
ing tags possible and tractable. We demonstrate how tag existence can be used
for automatic detection of left ventricular (LV) contours (or the myocardium).
The performance of the proposed method is evaluated using realistic synthetic
image data of several types, and real data from both preclinical (small animal)
and clinical (human) experiments.

2 Proposed Tracking Framework

2.1 Particle Filtering and Importance Sampling

Bayesian estimation infers the posterior distribution p(st|z1:t) of the unobserved
state st of a system (the tag pattern in our case), which changes over time,
taking into account noisy measurements (images in our case) z1:t � {z1, . . . , zt}
up to time t. The conceptual solution is a two-step recursion p(st|z1:t−1) =∫
D(st|st−1)p(st−1|z1:t−1)dst−1 and p(st|z1:t) ∝ L(zt|st)p(st|z1:t−1), where two

application specific models (the state transition D(st|st−1) and the likelihood
L(zt|st)) need to be specified. In practice, p(st|z1:t) is obtained using a particle
filtering (PF) approximation [6], which represents the posterior by a set of Ns

random samples (“particles”), and associated normalized weights {s(i)
t , w

(i)
t }Ns

i=1.
With standard PF, these samples and weights are then propagated through time
to give an approximation of the filtering distribution at subsequent time steps
as s(i)

t ∼ D(st|s(i)
t−1) and w

(i)
t ∝ L(zt|s(i)

t ), i = {1, . . . , Ns}, t = {1, 2, . . .}. At
each time step, the optimal state is estimated from p(st|z1:t), for example using
the MMSE estimator as ŝt =

∑Ns

i=1 w
(i)
t s(i)

t .
More advanced and efficient PF variants (such as sequential importance sam-

pling (SIS) [6]) choose the weights using an importance function describing which
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areas of the state space contain most information about the posterior. Here, we
propose to use as importance function a time-dependent transform, Tt, obtained
using mutual-information based non-rigid image registration (NRR) [4], to pre-
dict the position of tags. The transform maps any point (x, y) in the reference
image It=0 to its corresponding point (x′, y′) in the image It at time t, and
serves to approximately estimate the global motion of the myocardium, after
which particle sampling can be constrained to the relevant parts of the state
space, much closer to the optimal solution. To utilize Tt as importance function,
we transform the original image sequence {It}T−1

t=0 to form new measurements
(images) zt(x, y) = It(Tt(x, y)), which all resemble the initial frame It=0. The
proposed PF-based approach is subsequently applied to zt and refines the initial
coarse tag position estimation (obtained by NRR).

2.2 Refining the Particle Filtering Framework

At each time step t, the configuration of M tags (taken as the intersections
of the lines in the tagging pattern) is represented by a set of state vectors
St = {sm,t}M

m=1. Each tag m is described by sm,t = (xm,t, ym,t, θm,t, em,t),
where (xm,t, ym,t) and θm,t define the spatial position and local orientation,
respectively. The binary “existence” variable em,t indicates whether tag m lies
within (em,t = 1) or outside (em,t = 0) the myocardium. In the initial configura-
tion at t = 0, the coordinates (xm,0, ym,0) of the state vectors correspond to the
intersections of perfectly orthogonal tag lines, and the local orientation θm,0 is
known from the imaging protocol (see also Fig. 2). For each tag m with em,t = 1,
a neighborhood system Nm,t = {m′ : m ∼ m′, em′,t = 1} is defined, where “∼”
indicates that tag m′ belongs to one of the four possible nearest neighbors of tag
m. At each time point, the set of “live” tags Et = {m : em,t = 1} defines the
lattice st = {sm,t : m ∈ Et}, which corresponds to the myocardium.

Likelihood. For each tag m, the likelihood Ls(zt|sm,t, Nm,t) of the state sm,t

is dependent on the tag neighborhood, and given by one of 16 models (Fig. 2).
The complete likelihood is factorized as L(zt|st) =

∏
m∈Et

Ls(zt|sm,t, Nm,t). To
measure the likelihood of the state sm,t, the model is positioned at (xm,t, ym,t)
with orientation θm,t, the mean and variance of the image intensities in the
“black” and “gray” regions (Fig. 2) are computed (μ0 and σ2

0 versus μ1 and
σ2

1), and the discriminative power of the t-value (related to the Student’s t-test)
is used to measure whether the intensity samples from the likelihood model in
the two regions are from the same distribution. Thus, the likelihood is defined
as Ls(zt|sm,t, Nm,t) = max

{
0, (μ1 − μ0)(σ2

1n
−1
1 + σ2

0n
−1
0 )−1/2

}
, where n0 and

n1 denote the number of counted samples in the corresponding regions of the
model. Due to the fact that a larger number of samples is used to estimate the
means and variances, the proposed likelihood model is both accurate and very
robust, even for extremely low-SNR image data.

Transition Prior and Tag Interactions. The state evolution is modeled as
D(st|st−1) = Ds(st|st−1)DN (st), where DN(st) models tag interactions, and the
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Fig. 2. From left to right: example of initial configuration with “live” (black dots) tags
and the corresponding schematic LV contours interpolation (gray curves), positioning
of the likelihood models depending on the neighborhood (θexp = 45◦), and the possi-
ble neighborhood configurations and corresponding models with indicated number of
possible unique rotations (d and h are known from the acquisition protocol)

multi-tag transition prior is factorized as Ds(st|st−1) =
∏

m∈Et
Ds(sm,t|sm,t−1),

which is valid due to the fact that the global (correlated) tag motion was
removed by the transform Tt. To assess the remaining (uncorrelated) devia-
tions of the tags in zt from the perfect square grid, the transition prior for
(xm,t, ym,t, θm,t) of a tag is modeled as a constrained random walk. State transi-
tions are further constrained by explicitly modeling the interaction between the
tags using a Markov random field (MRF) [9] with respect to the neighborhood
systems, using a spring-like model DN(st) =

∏
m∈Et

∏
m′∈Nm,t

Φ(sm,t, sm′,t),
where Φ(sm,t, sm′,t) is maximal for tags separated by distance d, and goes to
zero if the distance is larger or smaller than d (see also [9]), which penalizes
neighboring tag locations that are either too close or too far from each other.

Initialization. The initial tag positions for configuration S0 are obtained by a
completely automatic initialization procedure [13], which matches the position
of an artificial pattern of orthogonal lines (defined by θexp, d, and h) with the
observed tag pattern in the image It=0. Each tag is tested if it falls into the
myocardial region or the background, using the likelihood Ls and the one-tailed
t-test: em,0 = 1 if the p-value < 0.01, and em,0 = 0 otherwise.

2.3 MCMC-Based Particle Filtering

Tracking of multiple objects using PF in a joint state space (where the state
vector st is a collection of individual object states) suffers from exponential
complexity in the number of tracked objects, rendering it infeasible for more
than a few objects [9, 6]. To deal with a large and variable number of tags
(variable dimensionality of the state vector st), we employ TDMCMC-based
PF [9]. MCMC methods define a Markov chain over the space of configurations,
such that the stationary distribution of the chain is equal to the sought posterior
p(st|z1:t). The simulation of the chain (the sets of samples {s(i)

t }Ns

i=1 representing
the posterior), using for example the Metropolis-Hastings (MH) algorithm [7],
includes proposing a new state s∗t (as s(i)), sampled from a proposal density
q(s∗t |s

(i−1)
t ), and accepting or rejecting it according to an acceptance ratio α =

min (1, p(s∗t |z1:t)q(s
(i−1)
t |s∗t )/(p(s

(i−1)
t |z1:t)q(s∗t |s

(i−1)
t ))).
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In TDMCMC [8], the approach is modified to define a Markov chain over a
variable-dimensional state space. The algorithm first selects a move type v from
a finite set of allowed moves designed to explore a variable-dimensional state
space. We propose three moves, which increase the dimensionality of the state
(tag birth), decrease it (tag death), or leave it unchanged (tag update). Choosing
the move type is done by sampling from a prior distribution p(v). TDMCMC
PF generates new samples from the proposal distribution q(s∗t |s

(i−1)
t ), where the

move-specific proposal qv(m) selects (uniformly from the “live” or “dead” tags)
a tag that should be updated, added, or removed from st, and the tag-specific
proposal qv(s∗t |st,m) (in our case N−1

s

∑
iDs(st|s(i)

t−1)) samples its new state. In
this case, the corresponding acceptance ratios can be readily computed [8, 9].

Having defined the necessary moves, models and acceptance ratios, we run the
TDMCMC PF to obtain an approximation of the filtering distribution p(st|z1:t),
where the Markov chain constructed by the TDMCMC represents the believe
distribution of the current tag states given the observations. Point estimates are
obtained by computing the MMSE position of each tag. The filtering distribution
is also used to compute an estimate of tag existence in time at any point within
the myocardium by computing the MMSE estimate êm,t = N−1

s

∑
i e

(i)
m,t. This

information is further used to segment the myocardium by averaging the exis-
tence variables for each tag êm,t over time and thresholding at value 0.5. The
resulting boundary tags are used for spline interpolation of the LV contours.
The final result is a dense motion field estimation together with the indication
of the tag existence within the myocardial region during motion. The results of
tag tracking using the TDMCMC PF are used to refine the B-spline representa-
tion of the dense displacement field (initially obtained by the NRR step) using
the B-spline refinement procedure proposed in [10].

3 Experimental Results

3.1 Evaluation on Synthetic Image Data

The performance of tag tracking depending on image quality (SNR) was assessed
using synthetic image sequences, for which the ground truth was available. To
realistically simulate LV motion through the cardiac cycle, we used a numerical
phantom [3], which modeled simultaneous radial expansion/contraction and ro-
tation of “tagged” myocardium (Fig. 3). The image sequences (30 frames of size
256×176 pixels) were created for SNRs of {18.06, 12.04, 8.51, 6.02} dB, by cor-
rupting the noise-free images with Rician noise (Fig. 3), which is typical in MRI.
Additionally, the typically observed fading of the tag pattern during a heart cy-
cle was modeled, resulting in sequences with time-varying SNR (changing from
18.06 dB in the initial frame to 6.02 dB in the last frame).

The accuracy of tag tracking was evaluated using the root mean square er-
ror (RMSE) in tag positions, averaged for each method over five independent
runs on different realizations of the synthetic data. The NRR step was done using
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(a) (b)

(c) (d) (e) (f)

Fig. 3. Example of synthetic data with time-varying SNR (modeling tag fading) in
frame 1 (a) and frame 10 (b), and zoomed image regions demonstrating the modeled
tag and myocardium appearance for different SNR levels, corresponding to 18.06 dB
(c), 12.04 dB (d), 8.51 dB (e), 6.02 dB (f)

Table 1. The results of tracking accuracy assessment (RMSE as a function of SNR),
where the numbers represent RMSE ± standard deviation, given in pixel units

SNR 6.02 dB 8.51 dB 12.04 dB 18.06 dB Time-varying SNR

HARP 1.99±3.15 1.15±8.56 0.51±0.66 0.39±0.88 1.17±1.79
Standard PF 0.94±0.78 0.76±0.56 0.43±0.45 0.29±0.32 0.53±0.37

TDMCMC PF 0.64±0.37 0.39±0.22 0.24±0.16 0.13±0.10 0.34±0.25
Manual 1.24±0.71 0.88±0.55 0.71±0.50 0.61±0.41 0.64±0.38

elastix, an open source image registration toolbox (http://elastix.isi.uu.
nl/). The parameters for the TDMCMC simulation were fixed to p(death) =
p(birth) = 0.1, p(update) = 0.8, Ns = 100000. All other parameters were opti-
mized for best performance. The results of tag tracking using TDMCMC PF are
shown in Table 1, in comparison with manual analysis, tracking using HARP [11]
and a “standard” PF implementation (recently proposed by Smal et al. [12],
which does not use NRR-based importance sampling). Our method clearly per-
forms superiorly. The computational costs are given in Table 2.

3.2 Evaluation on Real Image Data

Experiments on real tMRI data were conducted on a clinical 3T MRI scanner
(GE Medical Systems). Image sequences were collected from studies on healthy
and diseased rats and pigs, and diseased human patients. Multiple short-axis
view images of size 256 × 256 pixels were acquired with the following imaging
parameters {human-, rat-, pig-related}: repetition time {6.5, 13, 4} msec, echo
time {3.1, 4, 1.25} msec, flip angle {12, 7, 11} degrees, slice thickness {8, 1.6, 6}
mm, spacing between slices {28, 1.6, 12} mm, pixel size {1.48×1.48, 0.19×0.19,
1.25×1.25} mm2, frames per heart cycle {20, 24, 20}, number of slice positions
{3, 7, 4}, tag spacing {7.7, 1.5, 6} mm, and θexp = 45◦. Five tMRI sequences
of each type (human, rat, pig) were analyzed using the proposed method. The
algorithm parameters were fixed to the same values as in the experiments on
synthetic data. As no ground truth was available this time, we measured the
accuracy in comparison with manual tracking produced by experts.

The results of the comparison are given in Table 3 and typical tracking re-
sults in comparison with HARP are shown in Fig. 4. Visual inspection reveals
that the proposed method correctly estimated the tag intersections within the

elastix
http://elastix.isi.uu.nl/
http://elastix.isi.uu.nl/
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Table 2. Average computa-
tional times in [s/frame] for con-
sidered image sequences

Time

HARP 1.3
Standard PF 3.4

NRR+TDMCMC PF 11.7+10.2

Table 3. The results of tracking accuracy assess-
ment (RMSE) using real image data from human,
pig and rat experiments

Human Rat Pig

HARP 1.65±1.73 1.36±0.93 1.43±1.35
Standard PF 1.48±1.43 1.35±0.87 1.27±1.17

TDMCMC PF 1.23±1.02 1.33±0.84 1.12±0.84

-0.15

0.00

0.15

0.30

0.45(a) (b) (c) (d)

Fig. 4. Tag trajectories obtained using HARP (a) and TDMCMC PF (b), with ex-
amples of Lagrangian circumferential strain maps obtained using TDMCMC PF for
frames 12 (c) and 16 (d) of the human-heart image data

myocardium through the whole image sequence. Contrary to our method, HARP
produced many erroneous tracks, and reliable tag tracking was achieved only in
the first 3–6 frames of the image sequence (where the tags had not faded yet)
or in regions within the myocardium with sufficiently high SNR. The results in
Table 3 do not include these erroneous tracks, because of their absence in the
manually annotated data (it was difficult and tedious even for the experts to
track the myocardial boundary points). Thus, the results in the table are biased
towards tags that could be tracked relatively well, and the differences between
the methods would likely be larger if all tags would be included.

4 Conclusions

Motion analysis in cardiac tMRI is a challenging problem in practice due to the
poor quality of image data and complex motion scenarios. In this paper we have
proposed and evaluated a novel Bayesian approach to tag tracking in tMRI,
which combines prior knowledge about the heart dynamics (obtained using non-
rigid image registration) with modeling of the myocardium appearance in noisy
tMRI data. Straightforward generalization of the Bayesian formulation to the
problem of multi-tag tracking is computationally prohibitive due to the increase
in dimensionality of the state space. Therefore we have proposed a novel par-
ticle filtering (PF) method based on a trans-dimensional Markov chain Monte
Carlo (TDMCMC) approach that efficiently deals with high-dimensional spaces
and can track varying numbers of tags over time. The new method, which was
evaluated using both synthetic and real tMRI data, demonstrated higher track-
ing consistency, accuracy and robustness in comparison with the commercially
available HARP and a standard PF approach. Apart from yielding more accu-
rate tracking results, the proposed TDMCMC PF is also capable of detecting
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the presence/absence of tags within the myocardium in a probabilistic fashion,
which can be used to signify whether the tracking results in the different parts
of the myocardium are reliable or not. The analysis results (dense displacement
and strain maps, obtained after refining the initial B-spline representation of
the dense displacement field (obtained by the NRR step) with the tag tracking
using the TDMCMC PF) can be used to develop new classification techniques
for automatic diagnosis of healthy and diseased patients. This will be a subject
of future work. As yet, the method is already being employed in ongoing lon-
gitudinal experiments in our institute, with the primary goal to quantify left
ventricular remodeling after myocardial infarction in small animals.
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Abstract. We introduce a 4-dimensional joint generative probabilistic
model for estimation of activity in a PET/MRI imaging system. The
model is based on a mixture of Gaussians, relating time dependent ac-
tivity and MRI image intensity to a hidden static variable, allowing one
to estimate jointly activity, the parameters that capture the interdepen-
dence of the two images and motion parameters. An iterative algorithm
for optimisation of the model is described. Noisy simulation data, model-
ing 3-D patient head movements, is obtained with realistic PET and MRI
simulators and with a brain phantom from the BrainWeb database. Joint
estimation of activity and motion parameters within the same framework
allows us to use information from the MRI images to improve the activity
estimate in terms of noise and recovery.

Keywords: Molecular Imaging, Emission Tomography, Motion correc-
tion, Multi-modality, Bayesian Networks.

1 Introduction

Resolution of pharmaceutical concentration in emission tomography is limited
by photon count statistics and by motion of the patient [1]. The recent devel-
opment of imaging systems that combine Emission Tomography and MRI in
the same machine is enabling new biological and pathological analysis tools for
clinical and pre-clinical research [2]. Inherent co-registration and simultaneity of
the acquisitions introduce a number of advantages over the separate modalities,
including improved image fusion, motion correction and enhancement of the res-
olution of the functional image [3], posing new algorithmic and computational
challenges. Several publications have focused on improvement of the activity esti-
mate by means of an intra-patient anatomical image, for combined or sequential
imaging systems, relying on the assumption that activity is related to the un-
derlying anatomy, which is linked to the MRI or CT image intensity. Methods
in the literature fall into three main categories: methods that favor a piecewise
uniform reconstruction by segmenting the anatomical image and subsequently
applying a smoothing prior within each identified region [3]; methods that ex-
plicitly extract boundary information from the anatomical image and relax the
effect of a global smoothing prior across the identified edges [4] and methods
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based on information theoretic similarity functionals [5]. All such methods as-
sume perfect co-registration of the two images and motion free acquisitions;
however in brain imaging typical translations in the range of 5-20 mm and ro-
tations of 1-4 deg are observed during PET and SPECT scans, concentrated in
large sporadic movements occurring at discrete times [1], justifying event-driven
motion compensation methods based on motion information provided by an ex-
ternal motion-tracking device [6]. Less successful methods to correct for patient
movements involve the division of the scan into a number of frames, followed by
spatial registration of the reconstructed images, relying on registration of highly
photon limited image frames. In the context of combined PET/MRI we propose
an event-driven motion compensation algorithm based on the acquisition of an
MRI image each time large motion is detected by a tracking system or by an
MRI navigator. Inspired by the Unified Segmentation [7] framework, in order
to describe the interdependence of the variables in the multi-modal system we
introduce a unified framework based on a 4-D joint generative model that allows
us to estimate motion parameters from the MRI image and from the photon
counts, obtaining a time consistent estimate of activity that accounts for its
relation with the underlying anatomy, imaged by MRI.

2 Method

The model that is described is an extension to four dimensions of a bivari-
ate Gaussian Mixture (GM) where the interdependence of the two imaging
modalities is captured by assuming that image intensity y produced by the
MRI sequence and activity λ are the expression of a hidden discrete variable
k = 1, 2, .., Nk representing anatomical/functional states (such as healthy gray
matter, healthy white matter, hypoactive gray matter). k is considered the only
reason of covariability of y and λ: y ⊥ λ|k. In order to account for a number of
reasons of uncertainty of y (electronic noise, partial volume) and of λ (density
of receptors, active radio-pharmaceutical molecules, perfusion), the probability
distribution function (pdf ) of y and λ is assumed to be a Gaussian of unknown
parameters conditionally to k: p(λb|k) = N (λb, θλ) and p(yb|k) = N (yb, θy),
where b indexes voxels and θ are the parameters of the Gaussians.

Considering the time dimension, with t indexing discrete time frames cor-
responding to detected motion events, motion is described by considering that
the hidden states move. The hidden state is defined at the centre of voxel loca-
tions Xb = (Xb,1, Xb,2, Xb,3) in a reference space at time t = 0, assumed to be
the instant the scan starts. Motion at time t warps the anatomical/functional
state: k[t](Y [t]

b ) = k(Xb), with Y [t]
b = Tγ[t]Xb being the coordinates of body space

warped by transformation Tγ[t] of parameter γ[t]. As the body (the hidden state)
deforms over time, at time t the MRI intensity in Y

[t]
b is related to the hidden

variable in Xb, being a realisation of the random process described by the GM of
parameters θ[t]

y = (μ
y
[t]
k

, σ
y
[t]
k

). For compactness y[t]
b = y[t](Tγ[t]Xb); λb = λ(Xb):

p(y[t]
b |k[t](T [t]

γ Xb)) = p(y[t]
b |k(Xb)) = N (y[t]
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Fig. 1. Directed Acyclical Graph (DAG) of the proposed model. Observed (known)
quantities are shaded. Voxels are indexed by b and lines of response (LOR) of the
PET detector are indexed by d. The hidden anatomical/functional state k determines
activity λ and, along with deformation parameters γ[t], determines MRI intensity y[t] at
each time frame t. The dependence of activity and MRI intensity from the hidden state
is parameterised by θ, with prior distribution of parameters ξ. Activity and deformation
parameters determine photon counts q[t] at time t.

Activity in a voxel Y [t]
b at time t, assuming steady state distribution of the

pharmaceutical, is a single realisation of the random process that relates it to
the hidden state: λ[1](Tγ[1]Xb) = λ[2](Tγ[2]Xb) = .. = λ(Xb). Photon counts q[t]d

along line of response (LOR) d are a realisation of the Poisson process with
expected value given by the activity warped by the transformation at time t, or
equivalently by activity λb and a time dependent transition matrix P [t] = {p[t]

bd}

p(λb|k) = N (λb, μλk
, σλk

) p(q[t]|λ) =
∏
d

P(
∑

b

p
[t]
bdλb, q

[t]
d ) (2)

Regarding all parameters as random variables, this model is represented by the
Directed Acyclical Graph (DAG) in figure 1, where π is a multinomial distribu-
tion of the hidden state k and is here assumed to be spatially independent and
unknown; ξ are hyper-parameters of the conjugate prior distribution for each
of the mixture parameters. The deformation parameters γ[t] are assumed to be
independent from one another conditionally to y and q as motion is considered
unpredictable. Solving for the most likely state of the system provides motion
parameters, activity at time t = 0 (and at all times when warped by Tγ[t]) and
fuzzy multi-modal segmentation p(kb|λb, y

[t]
b ) according to any combination of

the MRI time frames, in fact any of y[t]
b (and λ) can be ignored when estimat-

ing the probability of the discrete states in a voxel. To summarise, the model
accounts for the existence of an underlying tissue variable that explains the de-
pendence of the two imaging modalities; the warping of tissue due to motion
is described by a parametric deformation model. The deformation parameters,
activity (in the reference space) and the parameters of the bivariate GM that de-
scribes the MR imaging system and the uncertainty about radio-pharmaceutical
concentration are unknown. For a given estimate of the parameters, the marginal
p(kb|λb, y

[t]
b , θy, γy, θλ) represents a probabilistic classification of the tissue in the

reference space, according to the MRI and the projections at all time frames.
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2.1 Inference

We aim at computing a point estimate of the unknown variables that maximises
the joint pdf. Reasoning on the graph (Markov blankets), marginalising over k,
all variables are independent of motion parameter γ[t] conditionally to λ, θ[t]

y , π;
λ is independent of all other variables given θλ, π, q, γ; θ[t]

y is independent of
all other variables conditionally to y[t], γ[t], π and π is independent of all other
variables given λ, y, γ, θ. Starting from an initial estimate of each variable, always
increasing joint pdf is obtained by updating the unknowns iteratively by the
Iterated Conditional Modes (ICM) algorithm [8], converging to a local minimum.
For compactness the expected value of the hidden state in b given λb, y

[t]
b and

all the parameters is defined as zbk

zbk = p(kb|λb, y
[1]
b , . . . , y

[t]
b ) =
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(i) p(γ[t]|y, q, θ, λ, π) Given activity and the GM parameters, the deformation
parameters are updated by maximising the partial probability distribution by
gradient ascent. For each t: γ[t](n+1)

g = γ
[t](n)
g + β ∂ log p(γ[t]|y,q,θ,λ,π)

∂γ
[t]
g

∣∣∣
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∏
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⎤⎦ p(q[t]|λ, γ[t])

Substituting (1) and (2) and differentiating its logarithm, by the chain rule, it
simplifies to the following:

∂ log p(γ[t]|y, q, θ, λ, π)
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where the gradient of the MRI image intensity with respect to the transforma-
tion parameters is, by the chain rule, the dot product of the gradient of the
transformed image and the gradient of the coordinates Yb with respect to the
transformation parameters:

∂y[t](Tγ[t]Xb)

∂γ
[t]
g

= ∇y[t](Tγ[t]Xb) ·
(

∂

∂γ
[t]
g

Tγ[t]

)
Xb

The same derivation applies to the gradient of the activity with respect to the
transformation parameters.

(ii) p(λ|γ, π, q, θ) = p(λ|γ, y, π, θ)p(q|λ, γ) Given the deformations and the GM
parameters, activity is estimated by the EM algorithm for Poisson likelihood,
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Fig. 2. Simulated random rigid motion parameters. Rotation in degrees (left) and
translation im mm (right) along the three axes.

which is preferred over other gradient type optimisation algorithms as it guar-
antees positivity. The One Step Late approximation is adopted as the M step
isn’t otherwise solvable in closed form for any p(λ|γ, y, π, θ), as discussed in [9]:
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Differentiating and expanding, the gradient in (3) simplifies to the following:

∂ log p(λ|γ, y, π, θ)
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=
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(iii) p(θ[t]
y |y[t], γ[t], π) Given activity and the transformation parameters, the pa-

rameters of the GM and the latent prior probability of the hidden state are up-
dated by EM as it has better convergence properties than other gradient based
algorithms: the expected value of the unobserved variables zbd is updated using
the provisional estimate of the parameters and the parameters are updated by:
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3 Validation Study

Noisy simulation data modeling 3-D patient head movements were constructed
by projecting at various orientations a brain phantom based on the BrainWeb
database [11] and by warping the corresponding MRI image. Rigid motion was
simulated by randomly generating rotation and translation along the three axes,
according to amplitudes and frequency that resemble typical measurements of
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Fig. 3. From left to right: (1) MRI image frame at time t = 0; (2) activity phantom; (3)
MLEM reconstruction of single frame (t = 0); (4) MLEM reconstruction of motion-free
simulation; (5) MLEM reconstruction with no motion compensation; (6) reconstruction
of single frame using joint generative model; (7) joint estimation of motion and activity.
The method estimates correctly the rigid motion parameters, and reduces noise.

head movement within a scanner for Emission Tomography [1] (figure 2). The
MRI and functional imaging processes were decoupled by running independent
simulations based on the ground truth normal brain tissue model from Brain-
Web. The MRI image was generated with the BrainWeb simulator, which realis-
tically accounts for noise of the imaging system. The parameters of the simulator
were set for T1-weighted imaging with noise standard deviation set at 3% of the
brightest tissue and perfect uniformity of the magnetic field (in accordance with
the simplistic GM model). Activity of 18F -FDG was simulated by associating
typical activity levels to different tissue types, proportionally to partial voxel
occupation. Specifically the activity in gray matter was set to a value 4 times
higher than in all other tissues. The total number of counts was set to 32 Million.
A 1.9M LOR PET imaging system was simulated by means of a rotation-based
projector with realistic position dependent point source response [10] and ideal
pre-reconstruction correction for randoms, scatter and attenuation. The MRI
and activity images were defined on a cubic grid of (128 × 128 × 128) voxels.
The number of tissue types was assumed to be Nk = 4; for each t, μ

y
[t]
k

were
initialised to evenly spaced values in the range of intensity of the MRI image;
σ

y
[t]
k

were initialised to 1/Nk of the image intensity range; μλk
were initialised

to evenly spaced values between 0 and the maximum activity assigned to the
phantom; σλk

to 1/Nk of the maximum activity assigned to the phantom; the
mixing coefficients to πk = 1/Nk ∀ k ∈ Nk. Though ICM can be applied in any
order, in this validation study the transformations and the parameters of the
GM were updated for all time points at the same time and activity was esti-
mated considering projections at all time frames, repeating 5 iterations of (i),
(ii), (iii) for 20 iterations (early termination). Results of the reconstruction are
reported in figures 3 and 4. The activity estimate produced by applying the joint
generative model presents higher coefficients of recovery both in gray matter and
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Fig. 4. Left: multi-modal anatomical/functional classification (p(kb|λb, y
[t]
b )). Right:

Recovery Coefficient (RC) and Signal to Noise Ratio (SNR) in the gray matter and
white matter regions. The table refers to the images in figure 3. The proposed method
improves recovery and reduces noise by virtue of the additional information provided
by the MRI image.

white matter when compared to standard MLEM reconstruction of the motion
affected data. Even when compared to motion free MLEM reconstruction, the
activity obtained by the generative model presents slightly higher recovery and
signal to noise ratio, due to the MRI images improving the activity estimate.

3.1 Computational Complexity

Computing the registration, reconstruction and segmentation jointly is costly.
The proposed algorithm is essentially based on the recursive computation of
projections and back-projections, exponentials (Gaussian likelihoods), spatial
gradients, linear interpolations and 3-D transformations. Projections and back-
projections constitute by far the most demanding part. Computing and storing
the projection matrix P = {pbd} is not feasible. However the matrix is sparse
and can be applied efficiently to an activity vector by a series of convolutions and
summations if activity is defined on a regularly spaced grid [10]. If P = {pbd} is
the probability that an event emitted in Xb in the reference space is detected in
LOR d, then the expected photon counts at time t is n̄[t] = ΔtPλ[t](Xb), where
Δt is the length of the time frame

λ[t](Xb) = λ[t](T−1TXb) = λ(T−1Xb) n̄[t] = PΔtλ(T−1Xb)

Projection and backprojection in (3) are then computed efficiently by convolu-
tion on a ragular grid as in [10] by warping the current activity estimate by
each transformation, projecting, back-projecting and transforming back. This
applies to any invertible transformation. A fast GPU based algorithm was used
[10] along with an ordered subset scheme that updates activity considering only
subsets of the lines of response in space and time, achieving convergence in 2 h.

4 Discussion

In this paper we presented a novel unified framework to reconstruct brain PET
images taking into account potential motion during the acquisition and prior in-
formation coming from a second modality. With the growing field of PET/MRI
scanners, we believe that such paradigm can have a tremendous impact on the
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quality of the reconstructed PET images. The model has been evaluated with
synthetic data, proving feasibility of the method; it is difficult, however, to envis-
age at this stage implementation strategies on real imaging systems such as defin-
ing the most appropriate MRI sequence and frequency of the frames. Given the
general acceptance of probabilistic atlas based segmentation algorithm [7][12],
we believe that a joint generative model for PET/MRI might prove useful when
coupled with population based spatially varying priors of the hidden states and
hyperpriors for the parameters of the mixture model in order to include ex-
perience in the reconstruction process. Since the presented model is valid for
any invertible transformation, the method could be applied to other parts of
the body by using a non-rigid transformation. Application to continuously mov-
ing structures however would require continuous MR acquisition, generating a
tremendous amount of data and requiring a conspicuous amount of computa-
tional resources. Possible extensions of the model may include accounting for
farmacokinetics and modeling lesions as outliers.
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Abstract. Pathologies of the thoracic aorta can alter the shape and mo-
tion pattern of the aorta throughout the cardiac cycle. For diagnosis and
therapy planning, determination of the aortic shape and motion is impor-
tant. We introduce a new approach for segmentation and motion analysis
of the thoracic aorta from 4D ECG-CTA images, which combines spatial
and temporal tracking, motion determination by intensity-based match-
ing, and 3D fitting of vessel models. The approach has been successfully
applied to 30 clinically relevant 4D CTA image sequences. We have also
performed a quantitative evaluation of the segmentation accuracy.

1 Introduction

The aorta is the largest vessel of the human body and exhibits a complex 3D mo-
tion pattern which is altered by cardiovascular diseases. For diagnosis and ther-
apy planning, motion quantification of the aorta is important. However, while
3D high-resolution and time-resolved imaging of the aorta by electro-cardiogram-
gated computed tomography angiography (ECG-CTA) has now become widely
available, diagnosis and therapy planning in standard clinical routine still relies
on static 3D images. On the other hand, manual determination of the aortic
motion is difficult, time-consuming, as well as subjective, and infeasible for a
large number of clinical cases. Therefore, automated methods are indispensable.

In previous work, only few approaches have been introduced for analyzing
the aorta in dynamic ECG-CTA images (e.g., [5,7]). Most approaches for dy-
namic images have considered other imaging modalities such as MR images
(e.g., [4,3,2,9]) or other vessel types such as the carotid or coronary arteries
(e.g., [1,8]). Previous approaches for segmentation of the aorta from dynamic
images of different modalities employ deformable models (e.g., [4,5,7]), graph-
based approaches (e.g., [9]), Markov random fields (e.g. [2]), or registration-based
approaches (e.g., [3]). However, in these approaches, the change of the position of
the vessel centerline and the change in vessel diameters are not quantified. More-
over, while both the motion along and orthogonal to the vessel centerline are
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clinically important, none of the previous approaches quantifies the motion along
the vessel centerline (longitudinal motion). In addition, most approaches have
been developed only for 2D images (e.g., [3]), or perform vessel segmentation
based on 2D slices of 3D image data (e.g., [5]). Furthermore, the segmentation
of the aorta is typically computed independently for each time step (e.g., [2,5])
and time-coherence is rarely exploited (e.g., [9,7]). In [9], a 4D graph-based ap-
proach was introduced, where information over time is used for contour-based
segmentation of MR images. However, changes of the vessel centerline position,
the local vessel diameters, and the longitudinal vessel motion are not quantified.
In [7], time-coherence is exploited for segmentation by using a biomechanical
model of vessels. However, the longitudinal vessel motion cannot be determined
since the model is kept fixed in this direction by boundary conditions. Also, the
centerline position and the vessel diameters are not quantified.

In this contribution, we introduce a new approach for segmentation and mo-
tion analysis of the thoracic aorta from 4D ECG-CTA images. Our approach
combines spatial and temporal tracking, intensity-based matching, and 3D fit-
ting of intensity vessel models. To improve the computational efficiency and
robustness, we employ a multiresolution framework. In contrast to previous ap-
proaches, we quantify both the motion of the vessel centerline and the change
of local vessel diameters. Also, we explicitly determine both the orthogonal and
the longitudinal vessel motion. Moreover, we exploit the time-coherence of the
motion by temporal tracking based on a Kalman filter to improve the initializa-
tion and thus the computational efficiency and the accuracy. The approach has
been successfully applied to 30 clinically relevant 4D CTA image sequences. We
have also performed a quantitative evaluation of the segmentation accuracy.

2 Model-Based Vessel Segmentation and Motion Analysis

Our approach for the segmentation of the aortia from dynamic 4D ECG-CTA
images consists of (1) model-based initialization and segmentation of the aortic
arch, (2) temporal tracking based on a Kalman filter and a 3D vessel model, as
well as (3) longitudinal motion determination using intensity-based matching.

2.1 3D Model-Based Initialization

For initialization of our approach, we compute a coarse segmentation of the aorta.
To this end, we use a 3D parametric intensity model of vessels gCyl(x,R, σ),
which is a cylindrical approximation of the local vessel shape and represents the
image intensities for each voxel position x = (x, y, z)T within a 3D region-of-
interest (ROI). The model includes parameters for the width R of the vessel and
the image blur σ, and is well-suited to describe the plateau-like intensity struc-
ture of the aorta. The complete model includes intensity levels a0 (background)
and a1 (vessel) as well as a 3D rigid transform R with rotation α = (α, β, γ)T

and translation x0 = (x0, y0, z0)T , which yields

gM,Cyl(x,pCyl) = a0 + (a1 − a0) gCyl(R(x,α,x0), R, σ) (1)

with 10 parameters pCyl = (R, a0, a1, σ, α, β, γ, x0, y0, z0)T [6].
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To obtain an initial segmentation of the vessel, we use an incremental fitting
procedure along the aorta that starts with a user-supplied start point, the ap-
proximate vessel orientation, as well as an estimation of the local vessel radius.
The orientation is estimated based on two points along the vessel centerline and
the radius is determined manually using a scalable sphere. In each increment k
of the fitting procedure, the parameters of the cylinder segment are estimated by
fitting the model gM,Cyl(x,pCyl) to the image intensities g(x) within a 3D ROI.

To improve the computational efficiency, we determine the initial segmenta-
tion based on the first image of a sequence with reduced isotropic resolution of
1.0mm/voxel (original resolution: 0.29-0.82mm/voxel). This improves the com-
putational efficiency by a factor of about 10-30 and also the robustness. Note that
the final segmentation result for all time points is determined using the original
image resolution so that the overall segmentation accuracy is not affected.

2.2 Temporal Tracking and Determination of the Orthogonal Motion

As a result of the initialization we obtain a dense set of 200-400 vessel segments
describing the geometry of the aorta in a 4D CTA image at the first time point.
To determine the motion of the aorta, we compute the segmentation result for a
vessel segment at each time point based on the results of the same segment from
previous time points. However, note that in contrast to the previous initialization
step, we here use the original image resolution and a different vessel model.

The vessel model used in the initialization has circular cross-sections. How-
ever, minimum and maximum vessel diameters are important in clinical ap-
plications. Thus, for the measurement using the original image resolution, we
use a novel model with elliptical cross-sections. The vessel model represents an
ideal sharp 3D elliptic cylinder convolved with a 3D Gaussian. In contrast to
the model in (1), two parameters for the minimum and maximum radius of the
tubular structure, Rx and Ry, are used, and the model can be stated as

gEll(x, Rx, Ry, σ) = Φ

(√
Rx ·Ry

σ
·
(

1 −
√
x2

R2
x

+
y2

R2
y

))
(2)

where Φ(x) =
∫ x

−∞(2π)−1/2e−ξ2/2dξ, leading to the complete model

gM,Ell(x,pEll) = a0 + (a1 − a0) gEll(R(x,α,x0), Rx, Ry, σ) (3)

with 11 parameters pEll = (Rx, Ry, a0, a1, σ, α, β, γ, x0, y0, z0)T .
To initialize the elliptical model, we make use of the observation that the aortic

arch exhibits a directed (non-random) motion throughout the cardiac cycle while
there exist only relatively small deformations between subsequent time points.
Therefore, we predict the vessel centerline position x0 for a vessel segment based
on the previous centerline positions of the same vessel segment using a linear
Kalman filter. The prediction x∗

t of the centerline position for time point t ≥ 2 is
computed by x∗

t = Φt,t−1x̂t−1, where Φt,t−1 denotes the transition matrix and
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(a) (b) (c)

Fig. 1. (a) Sketch of curved multi-planar reformation. (b) Segmentation result for five
time points of a 4D ECG-CTA image: Centerline and zoomed section (different time
points indicated by different colors), and (c) cross-section of the ascending aorta.

x̂t−1 is the estimate for the previous time point t− 1. The estimate x̂t for time
point t can be computed based on

x̂t = x∗
t + K̂t(zt − Htx∗

t ), (4)

where K̂t is the gain matrix, zt is the measurement vector (representing the es-
timates from the minimization described below), and Ht is the measurement
matrix. We use a linear motion model, i.e., x∗

t = xt−1 + ẋt−1Δt,Δt = 1. The re-
maining parameters in pEll are initialized using the previous segmentation result
at time point t− 1 since we expect similar values at subsequent time points.

To estimate the parameters for one vessel segment, the 3D model
gM,Ell(x,pEll) is fitted to the image intensities within a 3D ROI by minimizing∑

x∈ROI (gM,Ell(x,pEll) − g(x))2 using the method of Levenberg-Marquardt. To
increase the robustness, we perform model fitting within a 3D ROI with orien-
tation α0,k = (α0,k, β0,k, γ0,k) of vessel segment k in the first image. Using a
3D ROI with the same orientation as the vessel centerline (but allowing rotation
within the orthogonal cross-section) has the advantage that the longitudinal ves-
sel motion can be fixed during model fitting. Note that if the longitudinal motion
is not fixed, the model may slide along the vessel during fitting (which is a gen-
eral problem with tubular structures since the shape in longitudinal direction
hardly changes), and this could affect the spatial order of the vessel segments.

2.3 Determination of the Longitudinal Vessel Motion

The 3D motion of the thoracic aorta from 4D ECG-CTA images is difficult to
determine since it is composed of different motion types including (1) motion
orthogonal to the vessel centerline, (2) deformations of the aorta, as well as (3)
longitudinal motion along the vessel centerline. Note that our approach for tem-
poral tracking described above (Sect. 2.2) can determine the motion orthogonal
to the vessel centerline and the deformations of the aorta (i.e., changes of the
diameters). However, the longitudinal vessel motion cannot be determined.

To determine the longitudinal motion of the aorta, our idea is to decouple
the longitudinal motion from the overall 3D motion. To this end we use curved
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Fig. 2. Segmentation result of the aorta for a 4D ECG-CTA image at 10 time points

multi-planar reformations (CMPRs) of the aorta, a normalization of the vessel
diameter for all vessel segments at a time point, and intensity-based matching.
To obtain a CMPR, we resample the 3D CTA image along the vessel centerline
(Fig. 1a). For each time point, we extract the sequence of orthogonal 2D slices
to the vessel centerline with centers x0,k and orientations αk. For x0,k and
αk, we use the estimates from temporal tracking (see Sect. 2.2 above). As a
result, the curved vessel is transformed to a straight vessel. Doing this, and
considering corresponding cross-sections, we can fix the orthogonal vessel motion.
The vessel diameters, however, still can change over time which may bias the
motion estimation. Therefore, we normalize the vessel radii based on the largest
mean vessel radius rmax of all vessel segments at all time points. Doing this,
we preserve the anisotropic shape and improve the robustness of intensity-based
matching compared to normalization to a circle since more image information is
exploited. For normalization, we perform isotropic scaling of each orthogonal 2D
slice k by a factor of sk = rk/rmax, where rk is the mean vessel radius of segment
k. As a result, we obtain an image of a straight vessel with normalized vessel radii
where the centerline is parallel to the z-axis. Based on the normalized CMPR,
we determine the longitudinal vessel motion for each slice zt at time point t ≥ 2
by intensity-based matching of 3D ROIs (size: 4 ·rmax×4 ·rmax×5 voxels) along
the centerline in temporally successive CMPRs by minimizing

zt = arg min
∑

x∈ROI

(
gCMPR

t (x, zt) − gCMPR
t−1 (x, zt−1)

)2
. (5)

With this approach, the above-mentioned sliding problem for model-image match-
ing is less severe since we perform image-image matching and exploit more infor-
mation from surrounding structures (e.g., branches).

3 Experimental Results

We have applied our approach to 30 clinically relevant 4D ECG-CTA images of
the thoracic aorta. The images were acquired on a SOMATOM Definition CT
scanner and comprise between 168 and 423 slices with a spacing of 0.6-1.5mm
and an in-plane resolution of 0.29-0.82mm. 28 4D images in our set were acquired
in 5% ECG-intervals, yielding 21 3D CTA images over time for each 4D image,
while two 4D images were acquired in 10% ECG-intervals, yielding 11 3D CTA
images each. The images included a variety of pathologies such as atherosclerosis,
aneurysms, or aortocoronary bypasses.
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3.1 Quantitative Evaluation Based on Ground Truth Segmentations

We have quantified the accuracy of our approach for determining the vessel cen-
terline position and the minimum and maximum vessel diameter based on 5 4D
ECG-CTA images with 21 time points each. Ground truth was determined in-
dependently by two radiologists for three anatomical landmarks along the aorta:
(1) a coronary artery bypass branching from the ascending aorta (CAB), (2) the
left subclavian artery (LSA), and (3) an intercostal artery branching from the
descending thoracic aorta (ICA). The three landmarks were selected by the ra-
diologists since they were clearly identifiable and representative to capture the
range of motion in different anatomical regions (ascending aorta, aortic arch,
and descending thoracic aorta, see Fig. 3a). At each landmark, the radiologists
determined an orthogonal slice through the aorta and measured the centerline
position as well as the minimum and maximum vessel diameter. In total, 630
manual measurements were performed (5×21×3×2). For the evaluation of our
approach, we used the positions of these landmarks at the first time point and
automatically determined the centerline position and the minimum and maxi-
mum diameters for all subsequent time points.

To quantify the segmentation accuracy, we have computed the error of the
centerline position ex0 . Since we are particularly interested in the longitudinal
and orthogonal aortic motion, we also determined both components of the error,
ex0,long and ex0,orth. The errors are defined as the Euclidean distance between
the manually obtained positions and the automatically determined positions. In
addition, we have computed the errors for the minimum and maximum diam-
eters, edmin and edmax , defined as the absolute difference between the manual
and automatic measurement. Tab. 1 gives mean values for the different measures
over all images, time points, and observers.

From Tab. 1 it can be seen that for the centerline position x0, we obtain the
best result for the landmark ICA with ex0 = 1.20mm. Considering all land-
marks, we obtain a mean of ex0 = 1.53mm. It also turns out that ex0,orth

is significantly larger than ex0,long (for the means we obtain ex0,long = 0.33mm
and ex0,orth = 1.40mm). This is due to the fact that the absolute motion is much
larger in orthogonal than in longitudinal direction (e.g., the maximum motion
in orthogonal direction is 23.7mm and in longitudinal direction 7.2mm). Note
that for ex0,long we obtain submillimeter accuracy. For edmin and edmax we also

Table 1. Mean errors for the vessel centerline position ex0 , as well as longitudinal and
orthogonal component, ex0,long and ex0,orth, respectively, for three different landmarks.
The table also includes the errors for the vessel diameters edmin and edmax .

��������������Landmark

Mean error [mm] Centerline position Vessel diameters
ex0 ex0,long ex0,orth edmin edmax

(1) CAB (Ascending Aorta) 1.47 0.24 1.38 0.63 0.46

(2) LSA (Aortic Arch) 1.93 0.50 1.73 0.74 0.89

(3) ICA (Descending Aorta) 1.20 0.26 1.09 0.65 0.87

Overall Mean 1.53 0.33 1.40 0.67 0.74
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(a) (b) (c)

Fig. 3. (a) 3D segmentation result for one time point of a 4D CTA image. The planes
indicate the three landmarks (CAB, LSA, ICA, from left to right). (b) Motion repre-
sented by ellipsoids at seven points. (c) Change in dmin for the three landmarks.

obtain submillimeter accuracy and both values are similar. The computation
time for one time point using the original image resolution on a 2.40GHz Intel
Core 2 Quad CPU is about 30 minutes.

3.2 Application to 30 Clinically Relevant 4D ECG-CTA Images

We have successfully applied our approach to 30 clinically relevant 4D ECG-CTA
images of the thoracic aorta and determined the change of the vessel centerline
position and the change in local vessel diameters. Fig. 1 shows the segmentation
results for the centerline (b) at five time points in 3D and (c) in an orthogonal
view. Fig. 2 displays the segmentation result for a 4D image at 10 time points.

Fig. 3b shows the centerline motion represented by ellipsoids for all 30 datasets
at seven centerline points along the aorta. The motion ellipsoids have been de-
termined as follows. For each of the seven centerline points and each 4D image
we determine the mean of the time-varying positions. Then we align the means
for all 4D images (for one centerline point) by 3D translations yielding a point
cloud of 610 points (28×21+2×11 positions). For each point cloud, we perform
a principal components analysis to determine the main axes of the ellipsoid. The
size of the ellipsoid is determined using a 90% quantile. In Fig. 3b, for a better
visibility, we have scaled the ellipsoids by a factor of 5. Based on the orientation
and size of the ellipsoids, it can be seen that the aortic motion changes in ori-
entation and amplitude along the aorta. While the amplitude of the motion is
high near the heart (left side), the amplitude decreases with increasing distance
from the heart. The lowest amplitude is at the descending aorta (right side). It
can also be seen that the aorta expresses a highly twisted vessel motion.

Fig. 3c shows the change in vessel diameters for the three landmarks CAB,
LSA, ICA in Tab. 1 (blue, red, and green curves) using the minimum diameter
dmin over two cardiac cycles. As expected, dmin decreases with increasing dis-
tance from the heart (the curves for CAB, LSA, ICA lie above each other). Also,
it can be seen that dmin changes periodically over the cardiac cycle. At systole
(beginning of the cardiac cycle), the vessel is dilated by the increase in blood
flow before it relaxes slowly back to the initial diameter.
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4 Discussion

We have introduced a new approach for segmentation and motion analysis of the
aorta from 4D ECG-CTA images. Our approach combines spatial and temporal
tracking, motion determination by intensity-based matching, and 3D fitting of
vessel models. The approach has been successfully applied to 30 clinically rele-
vant 4D CTA images. Moreover, we have performed a quantitative evaluation of
the accuracy for determining the centerline position and the diameters.
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Keep Breathing!

Common Motion Helps Multi-modal Mapping

V. De Luca1,�, H. Grabner1, L. Petrusca2, R. Salomir2,
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Abstract. We propose an unconventional approach for transferring of
information between multi-modal images. It exploits the temporal com-
monality of multi-modal images acquired from the same organ dur-
ing free-breathing. Strikingly there is no need for capturing the same
region by the modalities. The method is based on extracting a low-
dimensional description of the image sequences, selecting the common
cause signal (breathing) for both modalities and finding the most similar
sub-sequences for predicting image feature location. The approach was
evaluated for 3 volunteers on sequences of 2D MRI and 2D US images
of the liver acquired at different locations. Simultaneous acquisition of
these images allowed for quantitative evaluation (predicted versus ground
truth MRI feature locations). The best performance was achieved with
signal extraction by slow feature analysis resulting in an average error of
2.6 mm (4.2 mm) for sequences acquired at the same (a different) time.

Keywords: motion prediction, multi-modal, ultrasound, magnetic res-
onance images, tracking, liver.

1 Introduction

The attention paid to organ motion due to breathing during radiation therapy
has risen in recent years [4]. As treatment devices become more sophisticated,
their guidance requires higher accuracy. Yet motion prediction is complicated due
to the large variability in respiratory patterns, invalidating the assumption of
periodic motion [4]. Unfortunately, observation of the tumor motion in real-time
during therapy is often impossible, making surrogate measures of this motion
essential. Common surrogates include measurements from a breathing bellow,
a spirometer, optical imaging of the chest wall and imaging of the diaphragm
position. The latter could be achieved by fluoroscopy, ultrasound or cine MRI,
with ultrasound being the preferred choice to avoid radiation and high costs. The
question remains how well the surrogates can be related to the tumor motion.
Studies have shown that assuming a linear relationship between the abdominal
and tumor displacements can be misleading (correlation range [0.39− 0.99]) [4].
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Statistical motion models [8,15] aim to overcome this uncertainty by learning
the motion pattern for the whole organ. Tumor motion is then predicted from
the motion of some landmarks in the organ. This requires that spatial correspon-
dence between the surrogate and the organ motion model can be established,
which is essentially a multi-modal image registration problem. Relating the US
structures back to the pre-therapeutic MRI is not an easy task, especially in
2D. A main challenge is to define an effective image similarity measure. For liver
US images, approaches include gradient images [9], matching of extracted ves-
sels [13,11], simulations of US from CT images [17,5] and hybrids [6]. Assuming
the same breathing phase, alignments are often optimized with respect to a rigid
transformation. The reported registration errors were on average in the range
of 3.7 mm. Additionally, tracking of US features are neither without error (e.g.
1.5 mm [2,3] for 3D US). Processing time is another issue in real-time tracking.

For a clinical setup, we propose to acquire a short pre-therapeutic 4D MRI,
and record US images of the same organ during treatment. The organ under
investigation is then the same before and during therapy, while the position of the
image acquisition and modality have changed, see Fig. 1. Instead of multi-modal
image registration of two static images, we propose a novel approach. It is based
on the observation, that the appearance changes of the organ in time are mainly
due to a common cause, i.e. the breathing. Inspired by recent investigation of
learning invariants in time series [18], we look for low-dimensional embeddings
of the image sequences in order to extract such invariant signals, which are
associated to a common cause. Invariance in this context refers to independence
of multi-modal image appearance and exact slice location. Summarizing, our
hypothesis is that due to the presence of a global temporal pattern in the data,
it is possible to relate multi-modal images of a moving organ without the need
for explicit image registration.

2 Material

US and MR images of the liver were simultaneously acquired for 3 volunteers
during free-breathing at the Radiology Department of Geneva University Hos-
pital [12]. This was accomplished by modifying the US equipment to be MR
compatible. The US transducer and cables were EM shielded, coupling material
was added and the transducer finally mounted on a fixation frame. The sequence
of 2D US images obtained from real time US 2nd-harmonic imaging (center fre-
quency = 2.2 MHz) had a temporal resolution of 25 fps and a spatial resolution
of 0.6 mm. The acquisition sequence of MRIs consisted of alternating between
2D navigator slices (at a fixed spatial position) and 2D data slices (at different lo-
cations to cover the liver) with a frequency of 2.45 Hz for the first two volunteers
and 2.86 Hz for the third volunteer. 4D MR images can be created by sorting
the data slices based on the similarity of the enclosing navigator slices [14]. This
allows us to process 2D navigators and extend our results to 3D MR volumes.
MR navigator images had a spatial resolution of 2.34 mm, 2.42 mm and 1.72 mm
for the first, second and third volunteer respectively.
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Fig. 1. Left: MR and US images of the liver are acquired at different spatial locations
(e.g. sagittal MRI, right subcostal oblique US). Center: typical liver images from
simultaneously acquired 2D MR (top) US (bottom) in exhale and inhale position are
depicted. Right: We aim for extracting, from the image sequences, a description of
the breathing as common cause, invariant of the image modality and slice location, in
order to transfer image information between the two modalities.

3 Method

In this work we propose a new approach for exploiting the temporal commonality
of multi-modal images (US, MRI) acquired from the liver during free-breathing.
We assume that the breathing signal is statistically similar across different image
modalities that represent the same organ. Hence, we extract the breathing signal
from each modality, look for the similarity between these signals, and use the
resulting match to predict the corresponding images. In particular, we predicted
MR navigators from the observation of US images. Our method (illustrated in
Fig. 2 and described in more details in Sects. 3.1-3.3) consists of 3 steps, namely

Dimensionality Reduction. Given an image sequence Im from modality m ∈
{MRI,US}, we embed Im into a low-dimensional data representation Sm

using dimensionality reduction techniques.
Selection of Common Cause Signals. We select components from SMRI and

SUS characterized by a global repetitive pattern related to breathing.
Prediction of Feature Location. The prediction of image feature locations

in one modality is achieved by evaluating the similarity between the breath-
ing signals and selecting the associated images.

3.1 Dimensionality Reduction

We aim to find an invariant description of the breathing signal with respect to
the image modality and independently from an exact spatial correspondence.
We assume that the breathing signal lies in a low-dimension manifold extracted
from the data. Numerous methods are available for dimensionality reduction [7].
However it is often unclear which method is applicable for a specific problem. We
explored the following dimensionality reduction methods: Principle Component
Analysis (PCA), Slow Feature Analysis (SFA) [18], Isomaps [16] and Laplacian
eigenmaps [1]. Especially, SFA was proposed to capture the invariant temporal
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Fig. 2. (a) Low-dimensional representation of the images and selection of the breathing
signals (ŝUS, ŝMRI). (b) From the observation of a short sequence of ŝUS , we find the
most similar sequences in ŝMRI . (c) We select the associated MRIs and extract image
information (vessel landmarks). (d) For evaluation, we interpolate the vessel landmarks
(v̄MRI) and calculate the prediction error ĒtUS w.r.t. ground truth (vGT ).

structures in the data by extracting slowly to quickly changing components [18].
For each modality m ∈ {MRI,US}, we acquire images characterized by Dm

pixels at a frequency rate of fm. We consider a time sequence of Lm images
Im(τm

i ), with τm
i = τm

0 + i/fm for 0 ≤ i ≤ Lm − 1. Dimensionality reduc-
tion methods transform the initial dataset Im(τm

i ) ∈ IRDm

into a new dataset
Sm(τm

i ) = [sm
1 (τm

i ); . . . ; sm
d (τm

i )] ∈ IRd, with d � Dm. We used the dimension-
ality reduction toolbox from Laurens van der Maaten [7] for manifold learning
of Isomaps and the Laplacian eigenmaps, and Matlab for PCA and SFA.

PCA. Each image Im(τm
i ) is reshaped into a single column vector xm(τm

i ) ∈
IRDm

. We calculate the mean with respect to time (x̄m) and the covariance
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matrix CX̂ = X̂
m

X̂
m

, where the i-th column of X̂ is equal to xm(τm
i )− x̄.

We then solve CX̂wPCA
j = λPCA

j CX̂wPCA
j , ∀j ∈ [1, . . . , Lm]. λPCA

j is the
i-th largest eigenvalue and wPCA

j the corresponding eigenvector. In each j-
th eigendirection we calculate the data projection pPCA

j = (wPCA
j )T x̂m. We

consider d projections so that sm
j (τm

i ) = pPCA
j (τm

i ) for j ∈ [1, . . . , d].
SFA. We perform SFA on the PCA projections in order to extract signals with

increasing temporal frequency from P =
[
pPCA

1 ; . . . ; pPCA
J

]
∈ IRJ×Lm

, with
J � Lm. Let P̂ be the zero-mean data matrix. We solve the generalized
eigenproblem ĊP̂ wSFA

j = λSFA
j CP̂ wSFA

j , where CP̂ and ĊP̂ are the co-
variance matrix of the dataset and the temporal difference, respectively. The
slowest components in P̂ are the projections onto the eigenvectors wSFA

j as-
sociated with the smallest λSFA

j and sm
j (τm

i ) = (wSFA
j )T P̂

m
, ∀j ∈ [1, . . . , d].

The individual components sm
i (τm

i ) are then normalized to zero mean and a
standard deviation of one. The signals are further normalized to a common
sampling frequency f = min

{
fMRI , fUS

}
(in our case f = fMRI). We denote

the normalized low-dimensional descriptions as Ŝ
m

(t) = [ŝm
1 (t); . . . ; ŝm

d (t)], with

t = τm
0 + i/f and 0 ≤ i ≤ Lm − 1. Fig. 2(a) shows examples of Ŝ

US
and Ŝ

MRI
.

3.2 Selection of Common Cause Signals

We aim to select corresponding individual components in Ŝ
US

and Ŝ
MRI

. Rely-
ing on the statistical assumption that a similar breathing pattern is observed in
the two modalities, we want to find the components which indicate the breath-
ing as common cause. Hence, we employ frequency analysis (i.e. Fast Fourier
Transform) to the 1D eigenmodes of both modalities. Then we choose the sig-
nals characterized by a power spectral density maximum at a frequency in the
range of 0.15-0.40 Hz (common breathing frequency window). We denote the
selected breathing signals as ŝm(t) for modality m ∈ {US,MRI}.

3.3 Prediction of Feature Location

After normalization and selection of the breathing signals, we look for their sim-
ilarity. We select the most similar short sequences in ŝMRI from a finite number
of observations in ŝUS , in order to predict MR navigators. Our observation con-
sists of a short sequence [ŝUS(t − (N − 1)/f), . . . , ŝUS(t/f)] from the selected
signal ŝUS , in order to take into account the breathing history (e.g. exhalation,
inhalation). We calculate the K -nearest neighbors (K -NN) in ŝMRI to this se-
quence. In detail, we find tMRI

k so that, for a given tUS , we minimize the distance

dk =

√√√√N−1∑
n=0

[
ŝUS(tUS − n/f) − ŝMRI(tMRI

k − n/f)
]2
, (1)

∀ 1 ≤ k ≤ K, see Fig. 2(b). We considered N = 4 and K = 3. Having found
the K -NN MR short sequences from the US sequence, we selected the associated
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MR navigator images, see Fig. 2(c). We evaluated this approach on vessel center
locations on the MR navigators. Specifically, vessels with cross-sectional cuts
were semi-automatically segmented from MR navigator images1 and their center
locations v(t) extracted. For each of the N frames, we linearly interpolate the K
center locations, to get the prediction of the vessel center position (see Fig 2(d)):

v̄MRI(tUS − n/f) =
K∑

k=1

(
1 − dk∑

k dk

)
vMRI (tMRI

k − n/f). (2)

Prediction Evaluation. We used data from 3 volunteers (Vol.1 - Vol.3). For
each volunteer we considered one US sequence and two MRI sequences and dif-
ferentiate between two setups. For Seq1 the US and MR sequences were acquired
simultaneously. The MRIs of this sequence define our ground truth (GT) data,
allowing us to validate the method. For Seq2 we use MRIs acquired minutes later
and the ultrasounds from Seq1. This setup was used to evaluate the performance
for an independent MR set, similarly to the targeted clinical application.

We also assessed the effect of replacing ŝUS with the main diaphragm motion
(first PCA eigenmode of a point displacement at the diaphragm). The diaphragm
displacement was obtained from intensity-based tracking of US liver images. The
tracking method was optimizing the parameters of an affine transformation of a
region enclosing the diaphragm with respect to normalized cross correlation.

We quantified the prediction error by computing the mean of the Euclidean
distance between the ground truth vessel center location vGT and the corre-
sponding location on the predicted MRIs v̄MRI , see Fig. 2(d):

ĒtUS =
1
N

N−1∑
n=0

∥∥vGT (tUS − n/f) − v̄MRI (tUS − n/f)
∥∥ . (3)

We summarized the results by the mean and standard deviation of ĒtUS ∀tUS .

4 Results

Table 1 lists the mean prediction error Ē obtained from each volunteer and tested
method. It can be observed that SFA achieved on average lowest errors closely
followed by PCA. Average errors increased by 1 mm (0.6 mm) for diaphragm
tracking for Seq1 (Seq2 ). When assuming no respiratory motion (using the mean
position of vGT over Seq1 as prediction), we obtained an average prediction error
over all 3 volunteers of 5.94±2.11 mm (7.49±3.55 mm) for Seq1 (Seq2 ). For the
best approach (SFA), we evaluated the linear dependence between the selected
breathing signals ŝUS and ŝMRI , and between ŝMRI and vGT . We compared the
correlation with that of the common prediction approach, i.e. diaphragm tracking
to vGT , see Table 2. SFA provides on average higher correlations, supporting the
better performance of SFA over diaphragm tracking for Seq1 (Table 1).
1 Sagittal navigator images were acquired. Hence out-of-plane motion is expected to

be minor (2 mm) compared to the captured in-plane motion (15 and 8 mm) [10].
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Table 1. Mean ± SD of the prediction error (in mm), see Equation (3). Best results
are in bold face and second best are underlined.

common approach our approach
Tracking Isomap Lap.Eigenmap PCA SFA

S
eq

1 Vol. 1 3.91 ± 1.94 2.86 ± 1.66 3.73 ± 1.13 1.89 ± 0.98 1.72 ± 0.93
Vol. 2 3.00 ± 1.97 4.36 ± 2.52 3.08 ± 1.76 2.98 ± 1.72 2.89 ± 1.63
Vol. 3 4.02 ± 2.85 4.64 ± 3.45 3.39 ± 2.45 3.57 ± 2.45 3.35 ± 2.37
Mean 3.65 ± 2.25 3.96 ± 2.54 3.40 ± 1.78 2.81 ± 1.72 2.65 ± 1.65

S
eq

2 Vol. 1 5.87 ± 3.60 5.14 ± 2.38 6.05 ± 2.59 3.58 ± 1.55 3.36 ± 1.50
Vol. 2 3.99 ± 1.33 3.31 ± 1.73 6.40 ± 3.41 4.84 ± 2.64 4.60 ± 2.57
Vol. 3 4.55 ± 2.69 6.98 ± 5.07 10.83 ± 6.77 4.32 ± 2.64 4.67 ± 2.88
Mean 4.80 ± 2.54 5.14 ± 2.73 7.76 ± 4.26 4.25 ± 2.28 4.21 ± 2.31

Table 2. Correlation between extracted signals and vGT

Vol. 1 Vol. 2 Vol. 3 Mean

Tracking - vGT 30.7% 84.4% 85.1% 66.7%

S
F
A ŝUS - ŝMRI 92.3% 79.6% 91.7% 87.9%

ŝMRI - vGT 87.6% 94.8% 87.6% 90.0%

5 Conclusion

We proposed an unconventional method for relating multi-modal images se-
quences. It is based on representing the acquired data in a low-dimensional
embedding, extracting common cause signals (e.g. breathing) from both image
sequences, finding the most similar sub-sequences of these signals, and using
the associated images in order to predict the location of image features. The
method generates the prediction in a completely unsupervised manner. Using
this approach, we predicted the location of anatomical landmarks by relying
on a temporal pre-therapeutical MRI sequence based on the observation of US
images acquired during therapy with an average accuracy of 4.2 mm. Our per-
formance is comparable to state-of-the-art methods (3.7 mm for multi-modal
registration [11,17,6], 1.5 mm for US tracking [2,3]) while being less complex.
Lowest mean errors were achieved when employing SFA. This demonstrates the
advantage of explicitly using the temporal information stored in the data and
supports previous investigations [18]. After these encouraging results, we plan to
apply the method to 3D landmark prediction by using 4D MR techniques [14], to
acquire longer image sequences and to investigate potential improvements when
combining the presented approach with statistical breathing models [15].
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Abstract. Purpose: To quantify the effects of respiratory motion on
high-intensity focused ultrasound heating of liver tissue by comparing
the simulated ablation using a conventional respiratory gating versus a
MR-model-based motion compensation approach.

Methods: To measure liver motion, dynamic free-breathing abdomi-
nal MR scans were acquired for five volunteers. Deformable registration
was used to calculate continuous motion models, and tissue heating at a
moving single focus was computed in 3-D by solving the bioheat equa-
tion. Ablated volume ratios with respect to the static case, Vab, were
determined for a range of exposure times texp and heating rates r.

Results: To achieve Vab > 90% required texp < 0.5s and r > 120◦C/s
when gating, whereas texp < 1s and r > 60◦C/s for motion-compensation.

Conclusions: Accurate compensation for respiratory motion is impor-
tant for efficient tissue ablation. Model-based motion compensation al-
lows substantially lower heating rates than gating, reducing the risk of
skin burns and focal boiling.

Keywords: motion compensation, HIFU, heating, liver.

1 Introduction

High-intensity focused ultrasound (HIFU) ablation is being increasingly studied
as a non-invasive treatment option for liver cancer [1–3]. However, liver res-
piratory motion can be up to a few centimetres under normal free-breathing
conditions [4, 5]. Therefore, conventional gating methods lead to very lengthy
treatment times, whereas to facilitate continuous ablation, some form of image
guidance to steer the HIFU focus needs to be applied.

Recently reported MR-guided approaches show promising results [3], but these
are logistically difficult and relatively expensive techniques, requiring specialist
equipment. Ultrasound guidance based on direct speckle tracking may have lim-
ited application in practice due to the presence of ribs in the beam path [1, 2].
Moreover, the target location still needs to be identified during the procedure,
typically using information from a pre-procedural CT or MR scan.

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAI 2011, Part I, LNCS 6891, pp. 605–612, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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The model-based motion compensation approach proposed in this paper over-
comes some of these limitations by predicting liver motion using a continuous
motion model. In this method, alignment of the patient’s rigid anatomy with
the model’s co-ordinate system results in a known target location. In addition,
temporal synchronisation of the motion model with the subject’s breathing by
means of a surrogate respiratory signal is required. This can be achieved, for in-
stance, using a separate diagnostic ultrasound probe to track diaphragm motion
during treatment at an oblique angle from below the ribs.

Although the need for real-time organ motion compensation is widely ac-
knowledged, the impact of residual liver motion for different image-guidance
schemes in terms of thermal dose has received little attention to date. The aim
of this work was to compare the performance of a conventional gated approach
with a model-based motion compensation method. To achieve the same ablated
volume, gating requires shorter exposure times and higher heating rates than
motion-compensated HIFU, but undesired effects such as skin burns and fo-
cal boiling may then become a significant limitation. To compute the required
heating rates, continuous motion models using deformable image registration of
dynamic MR sequences obtained from five human volunteers were calculated.
Both gated and model-guided HIFU treatments in the presence of respiratory
liver motion were simulated by solving the bioheat equation, and the thermal
dose and corresponding ablated volumes were computed for a range of heating
rates and exposure times.

2 Materials and Methods

2.1 Free-Breathing MR Scans

Free-breathing MR scans with a field-of-view covering the whole abdomen were
acquired for five volunteers. A balanced-SSFP sequence (TR/TE=4.3/1.46 ms,
30◦ flip angle) was used to obtain high-resolution 4D dynamic scans during free
breathing using a 1.5 T MR scanner (Philips Achieva, Best, The Netherlands)
at Guy’s Hospital, London. Parallel imaging with a 32-channel coil array using
a SENSE acceleration factor of 4.6 resulted in scan times of approximately one
second per dynamic volume. Since the largest liver motion normally occurs in
the sagittal plane [4, 5], the highest reconstruction resolution of 1.4×1.4 mm was
chosen in this plane, resulting in a slice thickness of 4 mm. For each volunteer,
first a set of normal breathing scans were acquired, followed by a set obtained
during deeper breathing. Each set contained a total of Nacq = 25 volumes,
covering ∼ 4 breathing cycles and took ∼ 20 s to acquire.

2.2 Deformable Registration of the Dynamic Scans

Tissue displacements throughout the liver were computed by registering each
volume within a set of dynamic MR scans to a reference volume using a non-rigid
fluid registration method [6]. This method solves the time-dependent Navier-
Lamé equations for a compressible viscous fluid resulting in a diffeomorphic
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Fig. 1. Geometry of the virtual ultrasound sector used to re-slice the dynamic MR
scans (1st panel). Example of a diaphragm navigator window manually located in a
slice taken through the reference dynamic MR volume at the interventional ultrasound
location (2nd panel) and corresponding surrogate respiratory signal (3rd panel). The
4th panel shows an example of a motion model fit of y-displacement data as a function
of signal value for a single voxel location.

transformation. The registration is driven by image-derived forces and employs a
full multi-grid scheme. The volume corresponding to the breathing phase closest
to the time of full exhale was chosen as the reference volume. Registering this
volume to all other volumes resulted in a set of Nacq displacement fields, denoted
by ui(r), with r denoting the 3-D voxel location within the volumes.

To assess the deformable registration accuracy, corresponding anatomical
landmarks, such as vessels and vessel bifurcations, were picked manually in each
dynamic scan, resulting in a set of Nacq points for each location. Landmark
points were identified for each volunteer at five different locations distributed
throughout the liver. The slice thickness in the lateral direction was 4 mm, and,
because of the poor image quality of the dynamic scans, we did not attempt
to quantify motion in the lateral direction. Consequently, only those landmarks
clearly visible in a single sagittal plane over the complete dynamic sequence
were chosen for the analysis. The target registration error (TRE) was calculated
as the root-mean-square distance between the landmark points in the reference
volume and all other volumes, following registration.

2.3 Surrogate Respiratory Signal

To synchronise a motion model with a subject’s breathing during treatment,
we assume a diagnostic ultrasound probe is used to acquire dynamic B-mode
images of the moving diaphragm at an oblique angle from below the ribs. The
motion model is computed using a corresponding diaphragm signal, obtained by
re-slicing the dynamic MR volumes at the same location as used during treat-
ment (see Fig. 1). A navigator window was placed over the dome of the right
hemi-diaphragm, and successive navigator images were aligned to a reference
navigator image at the time of full exhale. This was done using a 1-D transla-
tional registration method employing a gradient descent optimisation, and the
mean of squared intensity differences as the similarity measure. The resulting
1-D displacements, si (i = 1, . . . , Nacq), were used as the surrogate respiratory
signal (Fig. 1).
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2.4 Liver Motion Models

To express continuous liver motion as a function of the respiratory signal s, a
smooth function (see Fig. 1, rightmost panel) is fitted to the discrete registration
derived displacements u, denoted by

ui(r) ≡ u(r, si) , with i = 1, . . . , Nacq . (1)

Second order polynomials, given by

û(r, s) = α1(r) + α2(r)s+ α3(r)s2 , (2)

were used as the motion model fitting function to approximate the data sets.
Note that the motion model coefficients α are vector quantities defined at each
voxel location r. Inserting Eq. (1) into (2) results in an over-determined system
of linear equations, given by⎡⎢⎣ u1(r)

...
uNacq(r)

⎤⎥⎦ =

⎡⎢⎣1 s1 s21
...

...
...

1 sNacq s2Nacq

⎤⎥⎦
⎡⎣α1(r)
α2(r)
α3(r)

⎤⎦ . (3)

From this, the motion model coefficients were determined by computing the
Moore-Penrose pseudo-inverse using singular value decomposition.

2.5 Thermal Model of Tissue Heating

The evolution of the tissue temperature T as a function of time was computed
in 3-D using the implicit Crank-Nicolson finite difference method for solving the
bioheat equation [7, 8]

ρC
∂T

∂t
= K∇2T −WbCb(T − Tb) + q(t) , (4)

with ρ the mass density, C the specific heat, and K the thermal conductivity
of the tissue. Cooling due to perfusion is modelled by the second term on the
right hand side, with Cb the specific heat, Wb the perfusion rate, and Tb the
temperature of the blood. Table 1 presents the material parameters which were
kept constant in the simulations. The HIFU energy density q(t) was computed
from the intensity profile obtained using the Rayleigh integral for a spherical

Table 1. Material parameters used in the heating simulations [8, 10]

parameter description value unit

liver specific heat C = 3770 J kg−1 ◦C−1

liver thermal conductivity K = 0.508 W m−1 ◦C−1

blood perfusion rate Wb = 19.5 kg m−3 s−1

blood specific heat Cb = 3770 J kg−1 ◦C−1

blood temperature Tb = 37 ◦C
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bowl transducer [8] with a focal length of 15 cm and a radius of 5 cm. The
dependence of the energy density q on time t in Eq. 4 denotes the effects of
motion on heating. This was implemented by using the motion model coefficients
α from Eq. 3 to compute local displacements with which to translate q relative
to the computational domain. To quantify heating effects we use the concept of
thermal dose [9], given by

TD =
texp∑
t0

R43−TΔt , (5)

with R = 0.25 for T < 43◦C, and R = 0.5 for T > 43◦C, and Δt the time step
used in the heating simulations. Tissue was assumed to be fully ablated when
TD ≥ 240 cumulative equivalent minutes.

2.6 Simulated Treatment Scenarios

Two scenarios for HIFU treatment during free-breathing were simulated: respi-
ratory gating and continuous MR-model-based motion compensation. For both
methods, respiratory liver motion as it occurs during an intervention was simu-
lated using a subject-specific motion model, derived from a set of dynamic MR
scans obtained during normal breathing. For the gating approach, ablation was
gated symmetrically around the time of full exhale in the breathing cycle.

For the motion compensation method, the HIFU focus was assumed to be
steered according to a model-based prediction of local liver motion. Although
it would be more realistic to simulate focus steering using a transducer array,
for this initial study we opted to simply translate the heating pattern generated
by a single bowl transducer. The prediction model was computed from a second
set of dynamic MR scans, obtained during deeper breathing a few minutes after
the first set was acquired. In practice, the prediction model can be synchronised
during treatment to the subject’s breathing by means of a navigator signal ob-
tained using real-time ultrasound imaging of the diaphragm (see Fig. 2). In our
simulations motion correction was implemented by subtracting the predicted
motion from the simulated subject motion, resulting in residual guidance errors
representative of those that may occur in practice.

To take into account variations in motion occurring in different parts of the
liver, three different simulated ablation locations were chosen. The treatment
depth was set to 5 cm in the anterior-posterior direction, and the location of

Fig. 2. Schematic of computations performed for the MR-model-based motion com-
pensation scenario
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Fig. 3. Temperature contour plots of the temperature at texp = 1.5 s of a single
focus ablation with a heating rate of r = 40◦Cs−1. The outer contour is at 40◦C,
with a 5◦C spacing between contours. The filled contour shows the extent of the lesion
corresponding to a thermal dose TD ≥ 240 minutes. Shown are the static case (left),
gated (middle), and motion-compensated approach (right).

the focus was centred on the extent of the liver in the lateral direction. The
locations were then set to 20%, 50%, and 80% of the extent of the liver in the
inferior-superior direction. For each subject, simulations of single focus HIFU
heating were performed for four different combinations of heating rate r = q/ρC
and exposure time texp, for both the gated and motion-compensated approaches.
In all simulations, a sinusoidal function with a breathing period of 4 seconds,
representative of actual observed subject breathing, was used as an input signal
for the subject model. The ablated volume ratio with respect to the static case,
denoted by Vab, was determined for all three ablation locations within the liver.

3 Results

By analysing the registration results at the anatomical landmark locations for
all volunteers, we found a mean displacement of 7.4 mm with a standard devi-
ation of 5.9 mm, and a maximum displacement of 27.2 mm. After registration,
the mean TRE was 1.7 mm, with a standard deviation of 1.2 mm, and a maxi-
mum of 8.4 mm. These results indicate that the registration accurately captures
the respiratory motion from the sets of dynamic MR scans. As an example,
Fig. 3 shows heating contour plots for a single focus ablation after 1.5 seconds
of heating at a rate of 40◦C s−1. For this particular case, the gated approach is
insufficient to produce a properly ablated region, as can be seen from the spread
of the temperature profile and much smaller ablated volume. In contrast, the
motion-compensated method almost fully recovers the ablated volume of the
static case. Table 2 presents the motion amplitudes at the three chosen treat-
ment locations for all subjects as computed from the normal breathing motion
models, together with the residual amplitudes after this motion was corrected
for using the deeper breathing guidance motion models. Table 3 summarises the
results for the ablated volume ratios Vab relative to the equivalent static cases for
the gated and motion-compensated scenarios for four combinations of heating
rate and exposure time. For each volunteer, results are given for three different
locations, distributed over the superior-inferior extent of the liver. To achieve an
ablated volume ratio Vab > 90% relative to the static case, required an expo-
sure time texp < 0.5 s and a heating rate r > 120◦C/s for the gated approach,
whereas for the motion-compensated method texp < 1 s and r > 60◦C/s.
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Table 2. Maximum motion amplitudes in mm occurring during the simulations with
the longest exposure times of texp = 2 s, for all subjects. Amplitudes of simulated res-
piratory motion as they would occur during gated treatments are given in the first row.
The second row shows residual displacement amplitudes after a second motion model
was used to compensate for the subject motion.

subject 1 subject 2 subject 3 subject 4 subject 5
point location 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

gated approach 9.1 6.1 6.5 7.5 5.6 4.9 8.0 7.1 6.5 6.5 5.8 6.4 9.2 6.7 6.5

motion-compensated 1.5 0.1 0.7 2.1 1.8 2.2 1.0 0.9 0.5 3.3 3.2 2.7 0.6 0.8 1.0

Table 3. Ablated volume ratios Vab expressed as a percentage relative to the equiv-
alent static case for each subject, are given as a function of heating rates r and total
exposure times texp for three different locations within the liver. Results for conven-
tional gated and MR-model-based motion compensation approaches are shown.

heating exposure subject 1 subject 2 subject 3 subject 4 subject 5
rate time locations locations locations locations locations

r (◦C/s) texp (s) 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

conventional
gated

approach

30 2.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
40 1.5 0 18 11 2 23 34 0 8 13 16 25 16 0 16 16
60 1.0 50 76 71 64 80 85 62 71 74 77 81 77 52 75 75
120 0.5 95 97 96 96 97 97 94 97 97 98 97 97 95 98 98

model-based
motion

compensation

30 2.0 64 99 90 46 47 31 92 84 91 0 13 17 91 87 80
40 1.5 88 100 91 81 82 76 97 95 99 51 67 70 96 95 94
60 1.0 94 99 97 95 95 94 95 97 98 90 92 93 98 98 96
120 0.5 97 100 98 98 97 97 96 96 97 98 97 97 99 98 98

4 Discussion and Conclusions

We have presented detailed simulations of HIFU heating in the presence of re-
alistic respiratory liver motion, for both gated and MR-model-based motion-
compensated ablation. For the gated simulations, we found that the ablated
volume increases when shorter HIFU exposure times, and correspondingly higher
heating rates, were used. This is intuitive, since the target moves less when short-
ening the exposure time, and therefore less spread occurs in the applied heating
pattern. Furthermore, from the results of Tables 2 and 3, the largest liver mo-
tion occurred at the most superior location in the liver, resulting in consistently
smaller ablated volumes than for more inferior located points in the liver. For
the motion-compensated method, the ablated volume sizes are much less sensi-
tive to variations in exposure time and heating rate, as long as texp < 1 s and
r > 60◦C/s.

Although the use of a simple spherical bowl transducer is sufficient for the
purpose of this initial study, we are planning to incorporate more realistic phased
array pressure fields to simulate beam steering while compensating for the effects
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of ribs in the beam path. We conclude that model-based motion compensation
allows for two times lower heating rates than gating, thereby reducing the risk
of negative side-effects such as skin burns and focal boiling.
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Multiple Structure Tracing in 3D Electron

Micrographs�
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Abstract. Automatic interpretation of Transmission Electron Micro-
graph (TEM) volumes is central to advancing current understanding of
neural circuitry. In the context of TEM image analysis, tracing 3D neu-
ronal structures is a significant problem. This work proposes a new model
using the conditional random field (CRF) framework with higher order
potentials for tracing multiple neuronal structures in 3D. The model con-
sists of two key features. First, the higher order CRF cost is designed
to enforce label smoothness in 3D and capture rich textures inherent in
the data. Second, a technique based on semi-supervised edge learning is
used to propagate high confidence structural edges during the tracing
process. In contrast to predominantly edge based methods in the TEM
tracing literature, this work simultaneously combines regional texture
and learnt edge features into a single framework. Experimental results
show that the proposed method outperforms more traditional models in
tracing neuronal structures from TEM stacks.

Keywords: Tracing, CRFs, Textures.

1 Introduction

Understanding the interconnectivity structure of the brain is a grand challenge
in neuroscience. Recent developments in imaging have enabled capturing mas-
sive amounts (in terabytes) of Transmission Electron Micrograph (TEM) data
at sub-nanometer resolutions. Manual analysis of these data repositories is in-
feasible, justifying the need for evolving image analysis algorithms. One of the
challenges in interpreting these data repositories lies in automated tracing of
multiple interacting neuronal structures in 3D. This paper proposes a robust
and efficient tracing algorithm employing conditional random fields(CRFs).

Problem Definition: Images displayed in Figure 1 correspond to different z-
slices from a TEM stack. Three sample structures are shaded to illustrate dif-
ficulty levels in tracing: simple(red), medium(green) and hard(blue). As can be
seen, the structures express regional textures that are discriminative and noisy.
� This work was supported by NSF OIA 0941717. The authors thank Dr.Robert Marc,

Dr.Brain Jones and Dr.James Anderson from the Univ. of Utah for providing data
used in experiments and for useful discussions.
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(a) (b) (c)

Fig. 1. (Best Viewed in Color) Three representative slices with manual annotations.
Structure in red is simple to trace since it has well defined gradients and regional cues.
Structure in green is tougher since it shares boundaries with many different neighbors
and a variety of gradient profiles arise on its border. Structure in blue is toughest to
trace due to inconsistent region and edge information.

Furthermore, each structure has special gradient profiles that cannot be captured
using simple gradient operators. Finally, structures could deform considerably
without arbitrary movement from one slice to another. The figure also illus-
trates problems introduced during the imaging process (sample damage shown
by a black box in Figure 1(b), illumination artifacts from Figure 1(b) to 1(c)).
As is evident from Figure 1, it would be desirable to model regional cues (in-
tensity, texture etc .. ), characteristic gradient profiles (learnt edges) and 3D
smoothness constraints (dynamics of structures in the z-direction) in a unified
framework that implicitly handles arbitrary changes in topology. This work aims
to convince the reader that CRFs are capable of exploiting multiple information
sources for tracing neuronal structures in TEM stacks.

Contributions: The primary contribution of this work is in designing an al-
gorithm for tracing multiple interacting 3D structures in TEM stacks. Salient
features of the proposed model include:

– Semi-supervised edge learning scheme for propagating high confidence edge
maps during the tracing process (Section 2.1)

– Design of a higher order CRF cost for simultaneously enforcing 3D label
smoothness and capturing regional textures (Section 2.2)

Related Work: While there has been a lot of interest in EM tracing over the past
year, this work differs from existing literature [3],[6],[5],[4] (and references therein)
in the following ways. The nature of data considered is vastly different, in that it
has discriminative regional texture in addition to characteristic gradient profiles.
Most existing techniques approach the problem employing strong edge learning
methods since the datasets considered present edge detection as the important
challenge. In particular [7] propose a global technique that performs optimization
over the entire stack. However, scaling global techniques to large datasets would
be difficult. Sample damage and unfavorable imaging conditions could further
seriously affect a truly global approach. This motivates the proposed approach
where multiple interacting structures are traced in a scalable manner.
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The proposed solution adopts a CRF framework for integrating multiple
sources of information described previously. The following paragraph provides
a brief background and introduces notations that will be used in this paper.
CRFs are image models that capture contextual interaction between pixels.
Given features xpz of a pixel p in slice z of the stack, the goal is to infer its
label ypz ∈ L = {1, 2..L}. L is the label set containing L labels, which in the
present case is the number of structures to be traced. Pz denotes the set of
pixels constituting slice z. Labeling is achieved by minimizing a CRF energy
comprising unary, interaction and higher order terms, see Equation 1. Unary
potentials encode the likelihood of a pixel pz to take on label ypz . Interaction
potentials encourage label smoothness between pz and its neighbors qz contained
in a neighborhood system Npz . Higher order terms encourage label consistency
across any clique (group of pixels) cz contained in the set of cliques Cz in slice z.
For this work, cliques are superpixels generated by oversegmentation. The CRF
energy is given by:

E(ypz ) =
∑

pz∈Pz

Vp(ypz )︸ ︷︷ ︸
Unary Potential

+
∑

pz∈Pz,qz∈Npz

Vpq(ypz , yqz )

︸ ︷︷ ︸
Interaction Potential

+
∑

cz∈Cz

Vc(ycz)︸ ︷︷ ︸
Higher Order Term

(1)

The above energy function can be efficiently minimized using graph cuts if each
term obeys a submodularity constraint. The time complexity of inference em-
ployed in this work is similar to traditional alpha expansions. For further details
[9],[2],[1] are comprehensive sources of reference.

This paper is organized as follows. The second section describes the construc-
tion of potential functions for the proposed higher order CRF model. The sub-
sequent section presents experimental results on TEM stacks with a quantitative
analysis. The final section concludes the paper with a discussion on future work.

2 Multiple Structure Tracing with Higher Order CRFs

The proposed model is obtained by constructing unary, interaction and higher
order terms in Equation 1. The unary potentials are coarse object/background
likelihoods computed using information from previous segmentations. The unary
potentials are unregularized and require interaction models (second and higher
order) for smooth segmentation. Traditional second order interaction models
comprise first order gradient operators, which are often incapable of capturing
a wide range of edge profiles. In contrast, the proposed semi-supervised scheme
for edge propagation captures a wider range of edge profiles using a learnt model
as shown in Figure 2. The edge propagation scheme does not assume smooth-
ness across the z-direction in its construction. However, there are scenarios where
unary and pairwise terms become unreliable (for the hard structure in Figure 1(c)
and in case of sample damage). In such scenarios, a model for capturing higher
order regional interactions for resisting failure caused due to first and second or-
der models, and for enforcing smoothness across the third dimension is required.
The robust Pn model is employed for this purpose.
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(a) (b)

(c) (d)

Fig. 2. (Best viewed in color, red pixels have high values/blue pixels have lower values)
(a) Green region is to be traced. Red region in (a) shows a sample edge that needs to
be detected. (b) Filterbank used (c) Traditional second order energy, gradients not well
localized and edges in the red region shown in (a) are missed. (d) Proposed scheme
provides accuracy localization for structure of interest. Observe red region in (a) is
detected with high confidence.

2.1 Semi-supervised Edge Propagation

Interaction potentials are given by Vpq(ypz , yqz ) = λI exp(− (Ipz−Iqz )2

2σ2
I

) 1
dist(pz ,qz)

δ(ypz = yqz ). λI , σI are parameters controlling influence of interaction potentials
and edge quality respectively, δ is a dirac delta function evaluating to 0 if the
condition in parenthesis is satisfied and 1 otherwise. Computing Vpq in the above
fashion is equivalent to a first order gradient operator, which is not suitable for
TEM datasets. This work leverages contour initialization as partial labeling and
propagates edges through the stack using a semi supervised scheme. The idea
is to learn edge textons [10] to improve structure specific edge detection. This
is in contrast to recent efforts that learn application specific edges using large
amounts of training data. For ease of explanation, a two label problem with the
goal of propagating edges between slices z − 1 and z is considered.

The filter bank considered comprises of M filters and is given by F = [F1F2...
FM ], see 2(b). Specifically, the filter bank has twelve first and twelve second
derivative filters, each at six orientations and two scales (a subset of the Leung
Malik filter bank). The labels ypz−1 are known and so are edge pixels for slice
z−1. Initially the images are convolved with F resulting in filter responses Ri

pz−1

andRi
pz for slices z−1 and z respectively. The intuition behind using a filter bank

is capture varied gradient profiles exhibited by the individual filters, in contrast
to simple first order gradients. Since there are M filter responses, concatenation
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of all responses Ri
pz−1 , ∀i ∈ [1, 2, ..M ] at a pixel pz−1 is represented by the M

dimensional vector Rpz−1. Subsequently, the edge filter responses are clustered
in an M dimensional feature space for the the K edge textons Ck. The texton
indices tpz are found by performing a nearest neighbor search of filter responses
on the image in slice z with the textons Ck. The feature descriptor for training
classifiers are local histograms of texton indices, hpz (k) =

∑
qz∈Npz

δ(tqz �=
k), ∀k ∈ [1, 2, ...K], hpz ∈ RK . A naive Bayes classifier is trained using the
feature vectors hpz−1 and tested on features from the current frame hpz . The
output of the classifier is a posterior probability Pr(epz ) that yields large values
at locations where there is a high probability of the structure specific edge. The
interaction potentials for the conditional random field can now be rewritten as
Vpq(ypz , yqz |yz−1) = λI(1 − Pr(epz )+Pr(eqz )

2 )δ(ypz = yqz ).

2.2 Robust Higher Order Potentials

It is well known that higher order CRFs are capable of modeling larger spatial
interactions. These models are ideal for capturing textures inherent in the neu-
ronal structures. This work adopts the recently proposed Robust Pn model[8], a
class of potential functions that are a strict generalization of the Potts model for
second order interactions. The idea behind the model is that pixels constituting
a superpixel (homogenous regions) are more likely to take the same label. The
cost is expressed as Vc(ycz) = min{min

k∈L
((|cz |−nk(ycz))θk +γk), γmax}, where |cz |

is the cardinality of the clique in slice z, L is the label set containing the set of
possible labels, nk(ycz) is the number of labels in the clique taking label k ∈ L,
θk = γmax−γk

Q and Q is a truncation parameter controlling magnitude of label
violations in the clique. γk, γmax are penalties associated with the clique taking
label k and mixed labeling respectively. γk is usually set to zero since uniform su-
perpixel labelings are not penalized, γmax = |c|θα(θh

p + θh
vG(c)), where θα, θ

h
p , θ

h
v

are free parameters and G(cz) is a quantity indicative of superpixel quality.
While enforcing label consistency, it is imperative that smoothness across the
z-direction is preserved. One requires a cost Vc(ycz |yz−1) and a method for eval-
uating Gc for superpixels.

Intuition: If a contour with label l propagates down till slice z − 1, then the
superpixels in slice z overlapping with the contour in slice z−1 are most likely to
take the label l. In other words, the dominant label for superpixel cz (overlapping
with contour labelled l in slice z−1 )is l. If all pixels constituting the superpixel
take on the dominant label, minimal penalty is incurred. On the other hand, as
the number of pixels violating the dominant label increases, higher cost (closer
to γmax) is incurred.

Modified Higher Order Cost: The segmentation of the current slice needs to
respect the label homogeneity of the current slice, and also preserve smoothness
across the z-direction. The proposed model incorporates smoothness across the
z-direction using the variables γk. In previous constructions, the value of γk was
usually set to zero since label homogeneity indicated smooth segments in 2D.
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However, label homogeneity across 2D does not directly imply smoothness across
3D. In particular, an unsymmetrical Dice coefficient is used for measuring the
overlap of a certain superpixel (cz) to its overlapping contour in slice z − 1.

nk
cz =

∑
pz∈P z M cz

pz ∧ δ(ŷpz �= k)∑
pz∈P z M cz

pz

, M cz

pz =

{
1, ∀pz ∈ cz,

0, otherwise

In the above equation ŷpz = ypz−1 , meaning that label predictions for slice z
are labels propagated from slice z − 1. Smoothness across the third dimension
can now be incorporated as γk ∝ 1 − nk

cz

|cz| , cz ∈ Cz, ∀k ∈ L. The constraint
γk < γmax is always enforced for the cost to be minimized by graph cuts. Su-
perpixel quality is evaluated using the variance of local intensity features on the
superpixel. The modified higher order cost is obtained by substituting for γk,
Vc(ycz |yz−1) = min{min

k∈L
((|cz | − nk(ycz ))θk + γk), γmax}.

2.3 First Order Potentials

The unary potential models the likelihood of a certain pixel taking up label
l ∈ L = {1, 2, ..L}. Electron Micrograph data is rich in texture, but not of the
sort one would find in traditional texture analysis literature. It is used as a valu-
able cue by biologists, but seems to contain a lot of noise. A local multiscale
feature similar to texture histograms, Ii

z = Iz ∗ gσi , 1 ≤ i ≤ Nf where Nf = 3
is employed. The above equation refers to smoothing of image Iz at position z on
the stack by a Gaussian kernel gσi with variances σi. Concatenation of filter re-
sponses at each pixel yields a feature vector in RNf and likelihoods are obtained
by standard histogram backprojection techniques. The overall unary potential
can be expressed as: Vp(ypz |ypz−1 , Iz) = − log(Pr(Iz |ypz , ypz−1)Pr(ypz−1 |ypz)).
Note that Pr(Iz |ypz , ypz−1) is obtained by backprojecting the multiscale his-
tograms, and Pr(ypz−1 |ypz ) is a signed distance function constraining the con-
tour to be close to its position in the previous slice (shape prior). Further, optical
flow fields could also be employed if there are mild registration errors between
slices for simultaneous segmentation and registration.

3 Experimental Results

Experimental results are reported on Electron Micrographs of the retina. Neu-
ronal structures were traced for over 45 slices of the stack. Results are compared
with ground truth for a quantitative analysis of pixel errors.

Single Structure Tracing: Tracing single structures is performed to provide a
proof of concept for the edge learning and higher order models. Tracing was done
by providing an initial contour on the first frame of the stack, and is quantified
by computing the F-measure (where P and R are precision and recall), F =
2PR
P+R . As can be observed from Figure 3(b), traditional second order terms get
distracted by noisy gradients and were not able to recover once the contour was
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Fig. 3. (Best Viewed in Color) (a) Tracing on simple structure (shown in 1) (b) Perfor-
mance on medium difficulty structure. (c) Performance on difficult target. (d) and (e)
Sample tracing results on different z slices. (f) 3D reconstruction of 20 traced structures.

Table 1. F measures for multiple structure tracing

#Slices #Contours Traditional Proposed

10 300 0.892 0.906
20 600 0.852 0.872
30 900 0.800 0.823

lost. The error on subsequent slices were additive, leading to poor performance
as shown by the red lines. However, the second order model with proposed
edge learning was able to resist distractions of noisy gradients as can be seen
from green lines. On the medium difficulty structure, average F-measure for the
traditional scheme was 0.925, in comparison to 0.962 for the proposed scheme.
Figure 3(c) illustrates an example using the difficult target where the higher
order model was able to outperform simple second order interactions. On the
hard structure, average F-measure for the second order model was 0.817, while
the higher order model yielded 0.889.
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Multiple Structure Tracing: Experiments were also performed for multi-
ple structure tracing in 3D. A total of 30 interacting structures were traced in
parallel. The performance of the algorithm is promising (see Figure 3(f)) with
quantitative results in Table 1. Losing the trace of a structure usually happens
when there are arbitrary appearance variations (also caused due to illumination
artifacts).

Conclusions: This paper presented a novel framework for tracing multiple neu-
ronal structures in TEM stacks. Experimental results were presented on data
from TEM stacks for single and multiple structure tracing. Future work includes
investigation of techniques to scale up tracing to large datasets and testing sta-
bility of the algorithm under imperfect initialization.
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Abstract. We present a novel semi-automatic method for segmenting
neural processes in large, highly anisotropic EM (electron microscopy)
image stacks. Our method takes advantage of sparse scribble annota-
tions provided by the user to guide a 3D variational segmentation model,
thereby allowing our method to globally optimally enforce 3D geometric
constraints on the segmentation. Moreover, we leverage a novel algorithm
for propagating segmentation constraints through the image stack via
optimal volumetric pathways, thereby allowing our method to compute
highly accurate 3D segmentations from very sparse user input. We evalu-
ate our method by reconstructing 16 neural processes in a 1024×1024×50
nanometer-scale EM image stack of a mouse hippocampus. We demon-
strate that, on average, our method is 68% more accurate than previous
state-of-the-art semi-automatic methods.

1 Introduction

Mapping neural circuitry is an important ongoing challenge in neurobiology. Cur-
rent approaches to this task involve tracing neural processes through segmented
nanometer-scale EM (electron microscopy) image stacks of brain tissue. Since our
understanding of neural circuitry is often limited by our ability to reconstruct
neural processes from EM image stacks, accurately segmenting neural processes
is an important open problem in the medical image analysis community.

Dense reconstruction algorithms [1, 7, 11–13, 15, 20] generally rely on super-
vised learning methods to automatically classify every pixel in an image stack
according to the type of cellular structure to which it belongs. However, no dense
reconstruction algorithm can reliably produce segmentations that are completely
free of topological errors. In practice, these methods often require significant user
effort to correct errors in the automatically generated segmentations.

On the other hand, sparse reconstruction algorithms rely on the user to in-
teractively guide the segmentation of individual neural processes. Most existing
sparse algorithms compute 3D reconstructions as sequences of locally optimal 2D
segmentations after the user provides an initial 2D contour [4, 8, 10, 14, 19]. How-
ever, these approaches do not optimally enforce 3D geometric consistency con-
straints on the resulting segmentation, and therefore often require frequent user
intervention. The recent Markov Surfaces algorithm [16] requires user-defined
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Fig. 1. Overview of our method. We assume that we are given scribble annotations
indicating a neural process of interest on the first and last slices of an image stack (top
left). We compute 2D segmentations that contain the scribble annotations and align
with strong image edges; these 2D segmentations define hard constraints on our 3D
segmentation (top right). We propagate the 2D segmentations through the image stack
according to an implicitly represented volumetric pathway, which we compute based
on the dense optical flow between image slices; the interior level sets of this volumetric
pathway define soft constraints on our 3D segmentation (bottom left). We compute
the final 3D segmentation by globally refining the volumetric pathway according to
an anisotropic variational segmentation model that aligns with strong in-plane image
edges and enforces 3D smoothness (bottom right).

2D contours on the first and last slices of an image stack. This algorithm au-
tomatically tessellates a set of globally optimal paths between these contours,
relying on 2D Bézier interpolation to produce smooth surfaces. However, since
Bézier interpolation does not take into account the underlying image data, the
resulting segmentations may ignore important image features.

In this paper, we introduce a novel method for neural process reconstruction
that only requires very sparse scribble annotations as input (Fig. 1). We eval-
uate our method by reconstructing 16 neural processes in a 1024 × 1024 × 50
nanometer-scale EM image stack of a mouse hippocampus. We demonstrate
that, on average, our method is 68% more accurate than Markov Surfaces [16],
91% more accurate than Geo-Cuts [2], and 263% more accurate than Marker-
Controlled Watersheds [6].

2 Our Method

We observe that the problem of reconstructing neural processes through highly
anisotropic EM image stacks is conceptually similar to the problem of tracking
moving objects in video sequences. Based on this observation, our work is in-
spired by the recent Anisotropic Total Variation model proposed by Unger et
al. [17], which tracks objects through video sequences based on sparse constraints
provided by the user. However, the absence of color information in EM image
data and poor spatial continuity across EM image slices prevent the direct ap-
plication of this method to neural process reconstruction (Fig. 2a). We observe
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Fig. 2. Key observations motivating our method. Anisotropic Total Variation [17] fails
to segment this neural process from sparse scribble annotations (a), but succeeds if
scribble annotations are given on every slice (b). Our method only requires scribble
annotations on the first and last slices because we automatically propagate segmenta-
tion constraints through the image stack. However, propagating scribble annotations
as segmentation constraints results in a significant under-segmentation of this neural
process (c). Instead, we compute 2D segmentations from the scribble annotations and
propagate the 2D segmentations, resulting in an accurate segmentation of this neural
process (d). Scribble annotations are shown in light blue, segmentations are shown in
dark blue, and automatically propagated segmentation constraints are shown in green.

that this model can robustly track the neural process of interest if the user pro-
vides constraints on each slice of the image stack (Fig. 2b). This observation
motivates our method for automatically propagating segmentation constraints
through the image stack based on the dense optical flow between slices.

If we propagate the user-provided scribble annotations through the image
stack as soft segmentation constraints, we observe an uneven distribution of
propagated constraints. This can result in a significant under-segmentation of
the neural process of interest (Fig. 2c). In contrast, if we propagate accurate
2D segmentations (instead of scribble annotations) through the image stack,
we observe more evenly distributed segmentation constraints. This results in an
accurate 3D segmentation of the neural process of interest (Fig. 2d). These obser-
vations motivate our method for computing 2D segmentations and subsequently
propagating them through the image stack as soft segmentation constraints.
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Input. We assume that the user marks the neural process of interest with a few
foreground and background scribbles on the first and last image slices. For the
sake of notational clarity, we assume that the neural process of interest is roughly
orthogonal to the image stack. In practice, we allow the user to segment neural
processes that run in any direction by projecting the segmentation problem along
any 1D path through the image volume.

Computing 2D Segmentations. We compute 2D segmentations of the neural
process of interest by globally minimizing the following variational segmentation
energy [18]:

argmin
ui

∫
x∈Ωi

(gi|∇ui| + fiui) dx, (1)

where i refers to the indices of the first and last slices, Ωi is the 2D image do-
main. The function ui : Ωi → [0, 1] encodes the resulting 2D segmentation for
each slice, where ui >

1
2 is foreground and ui ≤ 1

2 is background. The function
gi : Ωi → [0, 1] encodes strong image edges as small values, and the function
fi : Ωi → (−∞,∞) is defined according to the user-provided scribble annota-
tions, where we set fi := −∞ for foreground scribbles, fi := ∞ for background
scribbles, and fi := 0 otherwise. Minimizing (1) results in 2D segmentations
that respect the user-provided scribbles annotations and align with strong im-
age edges.

The foreground and background regions of these 2D segmentations define hard
foreground and background constraints on our 3D segmentation, respectively.

Computing an Optimal Volumetric Pathway. Once we have obtained hard
constraints on the first and last slices of our image stack, we generate soft con-
straints on all the other slices by automatically propagating the previously com-
puted 2D segmentations through the stack. One way to accomplish this would
be to advect each foreground pixel in each 2D segmentation through the image
stack according to the dense optical flow between image slices. However, this
approach is unreliable since small errors in the pairwise optical flow between
images accumulate quickly, as noted previously by Pan et al. [16].

Instead, we define an optimal volumetric pathway through the image stack
that connects the previously computed 2D segmentations and encloses the pixels
that are most likely to belong to the neural process of interest. In this formula-
tion, the optimal volumetric pathway is given by the interior level sets of a cost
volume that encodes the probability of each pixel in the image stack belonging
to the neural process of interest.

We define the cost of each pixel p in the cost volume as the length of the
shortest path that connects the previously computed 2D segmentations via p,
as described in Fig. 3. We compute the length of each path through the image
stack as a function of the dense optical flow between image slices as follows. For
the pixels p ∈ Ωi, q ∈ Ωi+1, and the optical flow vector v(p), we define the
length from p to q as d(p,q) = |p + v(p) − q|.

To compute our cost volume, we find the minimum distances from each pixel
to the 2D segmentations on the first and and last image slices in two distinct
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Fig. 3. Computing the cost volume. There are many possible paths through the image
stack (shown in red) that connect the 2D segmentations on the first and last slices
(shown in dark blue) via p, but there is only one shortest path (shown in black); we
set the cost of each pixel in the cost volume to be the length of this path (a). For
example, p2 will be assigned a higher cost than p1, since the length of its shortest path
is longer; this means p2 is less likely to belong to the neural process of interest than p1

(b). When computing the length of each path, we model the distance (shown in green)
between pixels on adjacent slices as a function of the dense optical flow vectors (shown
in orange) between the pixels; in this formulation, paths that agree strongly with the
dense optical flow field have very short lengths (c).

passes, using the dynamic programming algorithm proposed by Pan et al. [16].
We set the cost of each pixel to be the sum of both distances, as proposed
by Jeong et al. [9]. We compute dense optical flow using use the open-source
implementation of Farnebäck’s algorithm [5] in The OpenCV Library [3].

The interior level sets of our cost volume define soft foreground constraints
on our 3D segmentation.

Computing the 3D Segmentation. Once we have obtained hard constraints
on the first and last slices of the image stack, and soft constraints on all other
slices, we obtain the final 3D segmentation by globally minimizing the following
variational segmentation energy [17]:

argmin
u

∫
x∈Ω

(g|∇xyu| + |∇zu| + fu)dx, (2)

where Ω is the 3D image domain corresponding to the entire image stack, and
∇xyu and ∇zu are the in-plane and out-of-plane gradients of u, respectively. As
in (1), the function u encodes the resulting segmentation, the function g encodes
strong in-plane image edges as small values, and the function f encodes con-
straints on the segmentation. Using the hard and soft constraints computed in
the previous sections, we set f := −∞ for hard foreground constraints, f := ∞
for hard background constraints, f := c for some scalar value c ∈ R− for soft
foreground constraints, f := c for some scalar value c ∈ R

+ for soft background
constraints, and f := 0 otherwise. Minimizing (2) results in a smooth 3D seg-
mentation that respects the previously computed constraints, follows the neural
process of interest, and aligns with strong in-plane image edges.

Minimizing the 2D and 3D Segmentation Energies. We compute the
global minimum of (1) and (2) using the iterative parallel algorithm proposed by
Unger et al. [17, 18]. We begin by reformulating these equations as optimization
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Fig. 4. Accuracy of our method, Markov Surfaces [16], Geo-Cuts [2], and Marker-
Controlled Watersheds [6] while segmenting 16 neural processes in an annotated 1024×
1024 × 50 mouse hippocampus EM image stack.

problems of two variables to preserve their differentiability. In this two-variable
formulation, (1) and (2) become strictly convex, so we use a projected gradi-
ent descent strategy to obtain a globally optimal solution for the segmentation
variable u.

3 Results and Discussion

We evaluated our method, Markov Surfaces [16], Geo-Cuts [2], and Marker-
Controlled Watersheds [6] by segmenting 16 neural processes in a 1024×1024×50
mouse hippocampus image stack for which the ground truth classification of each
neural process was known.

We implemented our method in CUDA and C++ on a PC with an Intel Xeon
3 GHz CPU (12GB of memory), and an NVIDIA GTX 480 graphics processor
(1.5GB of memory). In all cases, computing each 2D segmentation took at most
3 seconds, computing the cost volume took at most 5 seconds, and computing
the final 3D segmentation took at most 10 seconds. Total segmentation times,
including all user interaction and computation time, varied between 45 and 70
seconds, with an average of 50 seconds per neural process.

Fig. 4 shows the Dice Scores1 of all the methods used and neural processes
segmented in our evaluation. On average, our method is 68% more accurate than
Markov Surfaces [16], 91% more accurate than Geo-Cuts [2], and 263% more
accurate than Marker-Controlled Watersheds [6]. Fig. 5 shows the segmentation
results for one neural process from Fig. 4 across several 2D image slices.

As indicated in Fig. 5, Marker-Controlled Watersheds tended to under-segment
neural processes, since it places segmentation boundaries at local intensity max-
ima. Geo-Cuts performed reasonably well on slices containing scribble annota-
tions, but generally tended to miss the correct segmentation on other slices, since
it does not propagate segmentation constraints through the image stack. Markov
Surfaces performed well in regions with well-delineated boundaries, but tended
to diverge heavily from image features, since it relies on Bézier interpolation

1 2|G∩S|
|G|+|S| for a ground truth set of pixels G and a set of segmented pixels S.
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Fig. 5. Segmentation results from our method, Markov Surfaces [16], Geo-Cuts [2],
and Marker-Controlled Watersheds [6] on various slices of a 1024 × 1024 × 50 mouse
hippocampus EM image stack. Bright blue regions indicate user-provided annotations
used to initialize the algorithm, dark blue regions indicate the resulting segmentations.

to produce smooth surfaces and does not enforce 3D geometric constraints on
the segmentation. Our method outperformed these methods, due to its ability
to robustly propagate segmentation constraints through the image stack and
optimally enforce 3D smoothness on the segmentation.
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Abstract. Multi-angle total internal reflection fluorescence microscopy
(MA-TIRFM) is a new generation of TIRF microscopy to study cellular
processes near dorsal cell membrane in 4 dimensions (3D+t). To perform
quantitative analysis using MA-TIRFM, it is necessary to track subcellu-
lar particles in these processes. In this paper, we propose a method based
on a MAP framework for automatic particle tracking and apply it to
track clathrin coated pits (CCPs). The expectation maximization (EM)
algorithm is employed to solve the MAP problem. To provide the initial
estimations for the EM algorithm, we develop a forward filter based on
the most probable trajectory (MPT) filter. Multiple linear models are
used to model particle dynamics. For CCP tracking, we use two linear
models to describe constrained Brownian motion and fluorophore varia-
tion according to CCP properties. The tracking method is evaluated on
synthetic data and results show that it has high accuracy. The result on
real data confirmed by human expert cell biologists is also presented.

1 Introduction

With the assistance of live cell microscopy, especially TIRFM due to its unique
illumination mechanism, biologists can investigate the underlying mechanisms of
cellular processes taking place near the cell cortex, and understand some disease
processes. The cell cortex is the cell’s portal for intercellular communication and
integrates signaling and cytoskeleton remodeling to control exo- and endocytosis.
Here, we focus on clathrin mediated endocytosis (CME), which is an essential cel-
lular process [1] that cells use for the selective internalization of surface molecules
and of extracellular material. The study of CME has profound implications in
neuroscience and virology. For instance, CME is the major route for synaptic
vesicle recycling in neurons critical for synaptic transmission [1], and it is also one
of the pathways through which viruses enter cells [2]. To study the process, the
membrane associated protein complexes, namely clathrin coated pits (CCPs),
are usually imaged by TIRFM. However conventional TIRFM can not provide
� This work was supported in part by the Keck Foundation and NIH grants
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accurate information about z-positions and relative fluorophore amounts of in-
dividual particles. For MA-TIRFM [3], a set of images are obtained by quickly
varying the incident angle, which can reveal the 3D information of the particles.

Some particle tracking methods for biological applications have been proposed
in the literature [4,5,6,7]. A joint probabilistic data association (JPDA) filter
based method [4] is proposed to track microtubule tips whose trajectories often
cross over each other. An interacting multiple model (IMM) filter based method
[5] is applied to track quantum dots with changing motion patterns. This method
assumes that one motion pattern can be well described by one linear model,
which is not necessarily true for our application. Recently, we proposed a 2D
particle tracking method using TIRFM [6], which does better than the method
in [7] for CCP tracking by incorporating information on the properties of CCPs.
However, it does not consider the uncertainties from the feature detection stage,
which may lead to relatively low estimation accuracy.

In this paper, we present an automatic tracking method based on MAP-
Bayesian analysis to find the most probable trajectories of individual particles in
3D+t using MA-TIRFM. We adopt the basic ideas of probabilistic data associa-
tion and multiple model method [8], and assume that particle dynamics at each
time can be described by a set of models with a certain probability distribution.
In section 2, we present the tracking framework and describe some details. In
section 3, we report the evaluation results on synthetic datasets with different
SNRs, and also show the result on real data.

2 Method

2.1 The Tracking Framework

Let It be the MA-TIRFM image stack acquired at time t (stack index), con-
sisting of 2D images taken at different angles. Let Xt be the joint state of all
particles at time t, assembled from each particle’s state X

(i)
t . Let Dt be the

observation/measurement set, and D
(j)
t be the observation of a single particle.

The goal is to find particle states that maximize the posterior probability:

{X̂t}tmax
t=1 = arg max

{Xt}tmax
t=1

log p
(
{Xt}tmax

t=1

∣∣{It}tmax
t=1

)
(1)

Here, {Xt}tmax
t=1 = {X1, ...,Xtmax}. Since it is difficult to find the optimal solution

directly, a practical way is to run detection and tracking iteratively:

Detection :{D̂τ}t
τ=1 = arg max

{Dτ}t
τ=1

log p
(
{Dτ}t

τ=1

∣∣∣{X̂τ , Iτ}t
τ=1

)
(2)

Tracking :{X̂τ}t
τ=1 = arg max

{Xτ}t
τ=1

log p
(
{Xτ}t

τ=1

∣∣∣{D̂τ}t
τ=1

)
(3)

Detection is to find the most likely features of the particles given the image data
and previously estimated states (if available). We have developed an algorithm
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for 3D particle feature estimation (3D positions and relative amount of fluo-
rophores) using MA-TIRFM similar to the method in [3]. Tracking is to find the
most probable states/trajectories of the particles given the observation data.

To solve the MAP problem (Eq.(3)), we develop an expectation maximization
(EM) based algorithm. We also develop a forward filter based on the MPT
filter [8,9] and the idea of probabilistic data association [4] to provide initial
estimations for the EM algorithm. The models of particle dynamics are described
in section 2.2. The EM algorithm and the forward filter are described in section
2.3 and 2.4 respectively. The tracking flow is presented in section 2.5.

2.2 The Particle Dynamics Models

We assume particle dynamics/modes can be modeled using linear state space
models [8] with a certain probability distribution at each time. π(k, n) is the
prior transition probability for each particle to switch from mode (model) n to
k when the current mode (model) is n, and

∑
k π(k, n) = 1. Each model k has a

posterior probability φ(i,k)
t for each particle i, and

∑
k φ

(i,k)
t = 1. Each model is

given as

X
(i)
t = F

(k)
t X

(i)
t−1 + U

(i,k)
t +W

(k)
t (4)

D
(j)
t = HX

(i)
t + V

(j)
t (5)

Here, F (k)
t is the state transition matrix. U (i,k)

t is the external input that we
use to impose constraints. W (k)

t is the process noise with covariance matrix
Q

(k)
t learned from training data. H is a constant observation matrix. V (j)

t is the
observation noise with covariance matrix R(j)

t provided by the detection module.
Each of these noise sources is assumed to be Gaussian and independent.

We define the state of each CCP i at time t as X
(i)
t = [xt, yt, zt, ct, ċt]′.

[xt, yt, zt] is the position of the particle. ct is the relative amount of fluorophores
in the particle, and ċt is the rate of change of fluorophores over time. We pro-
pose to use two linear state space models. For particle motion, the first model
describes it as free Brownian motion because the motion is indeed random, and
the second model describes it as confined motion because each CCP is linked to
the plasma membrane through its neck [1,6]. For fluorophore variation in each
CCP, both models describe it as a linear process. The parameters are given by

F
(1)
t =

⎡⎢⎢⎢⎢⎣
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1

⎤⎥⎥⎥⎥⎦ , F (2)
t =

⎡⎢⎢⎢⎢⎣
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 1
0 0 0 0 1

⎤⎥⎥⎥⎥⎦ , U (i,2)
t =

⎡⎢⎢⎢⎢⎣
x̄t−1

ȳt−1

z̄t−1

0
0

⎤⎥⎥⎥⎥⎦ , H =

⎡⎢⎢⎣
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

⎤⎥⎥⎦
U

(i,1)
t is a zero vector for the first model, and U

(i,2)
t is the expected position of

the particle determined by its neck joint. [x̄t, ȳt, z̄t] is the time-average position,
i.e., x̄t = 1

t−t0+1

∑t
τ=t0

xτ , and t0 is the starting-time of the trajectory. Since
each model reveals just half truth, we set the prior transition probabilities to be
equal. The initial model probabilities are given as φ(i,1)

1 = 1 and φ
(i,2)
1 = 0.
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2.3 The EM Algorithm

In the literature [8], some EM-based algorithms have already been proposed for
general multiple target tracking, in which either the model probabilities or the
data association probabilities are hidden variables. Here, we treat all of them as
hidden variables, and combine deterministic annealing with the EM algorithm,
and make some simplifications.

The lower bound B of the objective function (Eq.(3)) is constructed as:

B
(
{Xτ}t

τ=1; {X̃τ}t
τ=1

)
= E

[
log p

(
{Dτ ,Xτ ,Aτ ,Φτ}t

τ=1

) ∣∣∣{Dτ , X̃τ}t
τ=1

]
+H

(
p
(
{Aτ ,Φτ}t

τ=1

∣∣∣{Dτ , X̃τ}t
τ=1

))
(6)

Here, {X̃τ}t
τ=1 is the estimated states from the previous iteration.H (p) is the

entropy of the probability distribution p. Aτ is the binary matrix of data asso-
ciation. Aτ (i, j) = 1 is the event that the observation D

(j)
τ is from the particle

i at time τ , and Aτ (i, 0) = 1 is the event that the particle i disappears, and
Aτ (0, j) = 1 is the event that a new particle appears with observation D(j)

τ . Let
a
(i,j)
τ be the data association probability, a(i,j)

τ = p
(
Aτ (i, j) = 1

∣∣∣{Dτ , X̃τ}t
τ=1

)
with

∑
i>0 a

(i,j)
τ = 1 and

∑
j>0 a

(i,j)
τ = 1 assuming one-to-one correspondences.

Φτ is the binary matrix of model assignment. Φτ (i, k) = 1 means the kth model
matches the dynamics of the particle i at time τ . The model probability φ

(i,k)
τ

is defined as φ(i,k)
τ = p

(
Φτ (i, k) = 1

∣∣∣{Dτ , X̃τ}t
τ=1

)
with

∑
k φ

(i,k)
τ = 1.

By using Eq.(4)-(6) and assuming that Aτ and Φτ are statistically indepen-
dent given the states and observation data, and ignoring constant terms, and
combining deterministic annealing method, we obtain the expression of B :

B = −1
2

t∑
τ=1

∑
i,j,k

a(i,j)
τ φ(i,k)

τ

(∥∥∥X(i)
τ − F (k)

τ X
(i)
τ−1 − U (i,k)

τ

∥∥∥2

Q
(k)
τ

+ log(|Q(k)
τ |)

+
∥∥∥D(j)

τ −HX(i)
τ

∥∥∥2

R
(j)
τ

+ log(|R(j)
τ |)

)
− T

t∑
τ=1

∑
i,j

a(i,j)
τ log

(
a(i,j)

τ

)

−
t∑

τ=1

∑
i,k

φ(i,k)
τ log

(
φ(i,k)

τ

)
+

t∑
τ=1

∑
i,k

φ(i,k)
τ

∑
n

φ
(i,n)
τ−1 log π(k, n) (7)

Here, the vector norm is defined as ‖V ‖2
L = V ′L−1V . T is the annealing tem-

perature. D(0)
τ is virtual observation specified for each particle similar to those

in [6], which is commonly used to handle particle disappearing.
The exact formula for a(i,j)

τ is very complicated for implementation, and there-
fore we make some approximations. By taking the derivative of B with respect
to a

(i,j)
τ at {Xτ}t

τ=1 = {X̃τ}t
τ=1, setting the result to zero, and making some

modifications for robustness purpose, we obtain:
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a(i,j)
τ ∝ exp

[
−1
T

∑
k

φ(i,k)
τ

(∥∥∥H(
X̃(i)

τ − X̃
(i,k)
τ |τ−1

)∥∥∥2

Q̃
(k)
τ

+
∥∥∥D(j)

τ −HX̃(i)
τ

∥∥∥2

R
(j)
τ

)]
(8)

Here, X̃(i,k)
τ |τ−1 = F

(k)
τ X̃

(i)
τ−1 + U

(i,k)
τ , and Q̃

(k)
τ = HQ

(k)
τ H ′. The softassign algo-

rithm [10] is applied to ensure that
∑

i>0 a
(i,j)
τ = 1 and

∑
j>0 a

(i,j)
τ = 1.

Similarly, we can obtain the update formula for φ(i,k)
τ :

φ(i,k)
τ ∝ exp

[
−1

2

∥∥∥H(
X̃(i)

τ − X̃
(i,k)
τ |τ−1

)∥∥∥2

Q̃
(k)
τ

+
∑

n

φ
(i,n)
τ−1 log π(k, n) +

∑
n

φ
(i,n)
τ+1 log π(n, k)

]
(9)

Therefore, in the E-step, the probabilities of models and data associations are
calculated using Eq.(8)-(9). In the M-step, the particle states that maximize
B are estimated, which is achieved by taking the derivative of B with respect
to the states of each particle, setting the result to zero, and solving a lin-
ear system of equations. In this step, the terms containing virtual observa-
tions are ignored. After each EM iteration, the annealing temperature is re-
duced. Eventually each a

(i,j)
τ converges to 0 or 1, and one particle state has one

observation.

2.4 The Forward Filter

We develop a forward filter based on the most probable trajectory (MPT)
filter [8,9] that was proposed for tracking a single target with multiple mod-
els. The forward filter handles the data association problem in a manner con-
sistent with the EM algorithm, and provides state estimation and prediction
given the observation data. Following the similar derivation process and nota-
tions in [9], we obtain the prediction and update formulas for each particle’s
state:

X
(i)
t+1|t = K−1

t+1

[
QUt +QFtSt

(
−F ′QUt +H ′RDt +KtX

(i)
t|t−1

)]
(10)

X
(i)
t|t =

(
Ft

)−1
(
X

(i)
t+1|t − Ut

)
(11)

St =
(
F ′QFt +H ′RHt +Kt

)−1 (12)

Kt+1 = Qt −QFtStF ′Qt (13)

Here, we define Gt =
∑

k φ
(i,k)
t G

(i,k)
t and GQPt =

∑
k φ

(i,k)
t G

(i,k)
t (Q(k)

t )−1P
(i,k)
t

for any matrix G and P , e.g., F ′QUt =
∑

k φ
(i,k)
t (F (k)

t )′(Q(k)
t )−1U

(i,k)
t , and

H ′RHt =
∑

j>0 a
(i,j)
t H ′(R(j)

t )−1H , and H ′RDt =
∑

j>0 a
(i,j)
t H ′(R(j)

t )−1D
(j)
t .
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We define the data association probabilities and model probabilities as:

a
(i,j)
t ∝ exp

[
−

∑
k

φ
(i,k)
t|t−1

∥∥∥D(j)
t −HX

(i)
t|t−1
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Q̃
(k)
t

]
(14)

φ
(i,k)
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(i,j)
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(
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(k)
t X

(i)
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(i,k)
t
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Q̃
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φ
(i,k)
t|t−1 =

∑
n

π (k, n)φ(i,n)
t−1 (16)

Here,
∑

k φ
(i,k)
t = 1,

∑
i>0 a

(i,j)
t = 1 and

∑
j>0 a

(i,j)
t = 1.

2.5 The Tracking Flow

After the detection module runs on the image stacks, the tracking module starts
with the forward filter to obtain state estimations in the time window [t, t+ w].
Then, the EM algorithm runs in the time window to update the relevant esti-
mations. Given the updated states as prior information, in the time window the
detection module runs again to refine the detection results and the EM algorithm
runs again to refine state estimations. Then, the forward filter is reinitialized at
time t+w, and the window slides, and the process is repeated. During the track-
ing process, a track i is terminated when a

(i,0)
t is greater than a threshold (0.9

in experiments), and new tracks are initialized if the number of observations is
greater than the number of existing particles.

3 Experimental Results

3.1 Evaluation on Synthetic Data

The proposed method is evaluated on synthetic MA-TIRFM image datasets.
Each dataset contains 200 image stacks, and each image stack consists of four
images acquired at penetration depth 100nm, 200nm, 300nm, and 400nm. Gaus-
sian distributions are fitted to the histogram of particle displacements and to
the histogram of the deviations from the mean positions of individual particles,
and therefore trajectories can be created by sampling from the distributions.
Three major types of noises are considered in the simulation process, the ther-
mal noise of laser, the Poisson (shot) noise of input photon, and the excess noise
generated in the EMCCD. The SNR of each dataset can be tuned by varying
the ratio of the average fluorophore amount of individual CCPs and the back-
ground fluorophore concentration. We also test an alternative method which is
essentially the same as the proposed method except that it only uses the first
model described in section 2.2.

The results are shown in Fig. 1(a)-(h). Tracking accuracies (defined in [6])
under different SNRs are shown in Fig.1(a). The proposed method is consis-
tently better. The alternative method produces some long but wrong trajectories
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Fig. 1. (a) Accuracy-SNR curves. (b) MAPE of the estimated relative amount of flu-
orophores. (c)&(d) Trajectory samples in 3D. (e)&(f) Synthetic images at d = 100nm
and d = 400nm. (g)&(h) Trajectory samples in 2D. (i) Image samples of real datasets.
(j)&(k) Real images acquired at d = 64nm and d = ∞. (l) Real trajectory samples
obtained by using the proposed method.

(Fig.1(h)), which happens most likely when new CCPs appear near the positions
where matured CCPs disappear. The result is consistent with what is reported
in [6]. In Fig.1(b), we show the mean absolute percentage error (MAPE) of the
estimated relative amount of fluorophores. The MAPE calculated after tracking
(using the proposed method) is smaller than the MAPE calculated after initial
detection. Since the uncertainties from the detection stage are considered in the
tracking framework, the method can improve feature estimation accuracy.

3.2 Evaluation on Real Data

Mouse fibroblast cells were electroporated with clathrin light chain GFP con-
struct using the Amaxa Nucleofector method, and were plated at subconfluent
densities into 35mm glass bottom dishes, and allowed to grow for 12 to 48 hours.
Images were acquired by Nikon Ti-E Eclipse inverted microscope with Apo TIRF
100× oil objective lens (NA 1.49) and Andor iXon 897 EMCCD camera. For the
initial evaluation, two angles were used. The first one corresponds to penetration
depth d = 64nm, to observe the particles near the glass slide. The second one is
greater than the critical angle, to observe particles in the deeper range. Although
total internal reflection will not occur with the second angle, the axial profile of
the light field can still be modeled as an exponential function f(z) = I0e

−z/d = I0
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with d = ∞. Mathematically, it does not make any difference to the method.
Regions of interest are selected from image datasets, and the tracking results
are visually inspected and confirmed by human expert cell biologists. Samples
of image regions and trajectories are shown in Fig. 1 (i)-(l).

4 Conclusion

We have proposed an automatic particle tracking method based on a MAP
framework and applied it to track clathrin coated pits (CCPs) in 3D+t using
MA-TIRFM. We use a set of linear models to model particle dynamics, and de-
velop the EM-based algorithm and the forward filter to solve the MAP problem.
We evaluate the method using simulation with different SNRs, and also test it
on real data. The results show the method is promising for the analysis of CCPs.
In the near future, we’ll optimize MA-TIRFM imaging parameters and obtain
images with four penetration depths and two fluorescent channels.
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Abstract. Microscopic cellular images segmentation has become an important
routine procedure in modern biological research, due to the rapid advancement
of fluorescence probes and robotic microscopes in recent years. In this paper we
advocate a discriminative learning approach for cellular image segmentation. In
particular, three new features are proposed to capture the appearance, shape and
context information, respectively. Experiments are conducted on three different
cellular image datasets. Despite the significant disparity among these datasets, the
proposed approach is demonstrated to perform reasonably well. As expected, for
a particular dataset, some features turn out to be more suitable than others. Inter-
estingly, we observe that a further gain can often be obtained on top of using the
“good” features, by also retaining those features that perform poorly. This might
be due to the complementary nature of these features, as well as the capacity of
our approach to better integrate and exploit different sources of information.

1 Introduction

Cellular images segmentation is an indispensable step for modern biological research,
and this is greatly facilitated by the recent development of fluorescence dyes and robotic
microscopes. A number of unsupervised segmentation methods [1], such as thresh-
olding, region-growing, watershed, level-set, and edge-based methods, have been de-
veloped to address this problem in scenarios where the foreground objects and the
background regions have distinct color or textural properties. Many of these methods
are dedicated to specific problems where domain knowledge is heavily exploited by
tuning algorithmic parameters manually. This case-by-case approach could be very te-
dious. On the other hand, there are many images (such as in Figure 1) that turns to be
rather difficult for unsupervised approaches [1], partly due to the variations of specimen
types, staining techniques, and imaging hardware. This leads to a recent development
in learning-based algorithms, including support vector machines (SVMs) [10], as well
as conditional random fields and variants [4]. While they demonstrate that reasonable
segmentation results can be produced for some difficult cases, these methods are often
still dedicated to certain type of microscopic images for specific problems.

In this paper we propose a flexible learning framework for cellular image segmenta-
tion, and we intend to show that it is possible to develop a more generic segmentation
framework that works effectively over a broader spectrum of microscopic images such
as those displayed in Figure 1. This is achieved by carefully integrating information

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAI 2011, Part I, LNCS 6891, pp. 637–644, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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(b)

(c)

(a)

Fig. 1. Illustration of some difficult examples encountered in microscopic image segmentation.
These are crop-out examples from three cellular image datasets: (a) hand, (b) serous, (c) ssTEM.
Ground truth is shown in the inlet for each of the examples.

from both local and global aspects, as illustrated in Figure 2. In particular, three novel
features are proposed: (1) An appearance feature that integrates both color and texture
information; (2) A spoke feature that effectively encodes the shape of cellular fore-
ground objects; (3) Meanwhile the detection score is also used to exploit the strength
of object detection developed over the years in computer vision. Besides, a superpixel-
based coding scheme is devised to incorporate higher-order scene context.

2 Our Approach

The flow chart of our approach is depicted in Figure 2. An image pixel is characterized
by a set of features describing various local aspects in its neighborhood, such as shape,
appearance, and context information. These pixel-based features are further pooled to
form one vector for a superpixel or oversegment [7]. Finally, a global discriminative
classifier is utilized to incorporate these superpixel-based shape, appearance, and con-
text features to produce a segmentation prediction for the input image.

Appearance feature: Unary & Binary Extensions of Color BoW model. For a pixel
in color images, its RGB and YUV color values are combined to form a 6D vector. For
grayscale images, 1D intensity feature is used directly. As illustrated in the middle panel
of Figure 3, a visual Bag-of-Words (BoW) model with K codewords is built, and these
color vectors are thus mapped to the quantized space spanned by the codewords [11]. A
novel appearance feature is proposed here by integrating BoW model with local neigh-
boring information by means of unary/binary extensions: A unary extension partitions
the local neighbors into disjoint parts. One scheme is to partition into concentric lay-
ers, as displayed in Figure 3(a). By pooling the codeword assignments of these features
and normalizing to sum to 1, one partition is characterized by a histogram of length K
codewords. A length K × S vector is thus produced by concatenating over S partitions
(S = 3 in Figure 3(a)). Note that other partition schemes might also be possible.
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pooling

glogal
model

appearance feat. supxl-based feat.

+

shape feature

context feature

Fig. 2. An illustrative flowchart of the proposed approach. From a pixel of an input image, a set of
features is extracted to capture various aspects in its neighborhood, including appearance, shape,
and context information. A novel superpixel (over-segmentation) feature is devised to provide a
more compact signature and to incorporate higher-order scene context. These superpixel-based
features are fed to a global discriminative learning model to deliver a segmentation.

Meanwhile, a binary extension considers pairs of neighboring pixels, and similar to
the concept of co-occurrence matrix, accumulates the counts into a 3D array indexed
by (codewords, codewords, distance). Naively this leads to a vector of length K ×
K × S′, by accumulating the quantized distance of every feature pair with S′ possible
outcomes. Here we adopt hamming distance. In practice it is further summarized into
a more compact vector representation: For a particular quantized distance, (a) a K-dim
vector is extracted from the diagonal elements, and (b) a K-dim vector is obtained by
summing over all the off-diagonal elements row-wise. For both cases the output vectors
are normalized to sum to 1. As each case ends up giving aK×S′ vector, a concatenation
of both finally leads to a vector representation of length 2K × S′. Our final appearance
feature is thus produced by concatenating both unary and binary extensions. In this
paper, we fix K = 100, S = 3, and S′ = 3.

Shape feature: Multi-scale Spoke Feature. as illustrated in Figure 4(a), for any lo-
cation in an image, its spokes are equally sampled in angular space and each reach
out until an edge is met. Determined by its local convexity (i.e. the orientation of its
signed curvature), the spoke will contribute to one of the three bins: +, 0, and -, that
encode the local shape as being convex, undecided, or concave, respectively. Therefore,
the spoke feature essentially encodes the local shape information from the direct object
boundaries surrounding this location, while being invariant to rigid transformation. As
cellular objects often possess convex shapes, this feature ideally provide sufficient dis-
crimination power to differentiate a location inside a cellular object from being outside.
On the other hand, a single edge map usually does not faithfully retain object bound-
aries of the image. To address this issue, we use Canny edge detector together with its
Gaussian smooth kernels at multiple scales. This gives rise to the multi-scale feature in
Figure 4(c). In practice, for a pixel, 9 spokes are used and the number of scales is set to
5. The elements in the histogram vector of each scale are also normalized to sum to 1.

Context feature: Detection Score BoW model. Object detection is usually regarded
as a separate problem from image segmentation, and thus dealt with by substantially
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Fig. 3. Unary and binary extensions. (a) A unary feature extension partitions the window into
concentric layers. By pooling the pixels’ codeword assignments in the BoW model (length K)
within each partition, a K × S length vector is produced as a concatenation of S histograms.
Each histogram of length K comes from one partition. (b) A binary feature extension. Each pair
of pixels in the window is used to accumulate the counts in a 3-dimensional array. Naively this
leads to a vector of length K × K × S′, for a quantized distance of S′ possible outcomes. In
practice it is further summarized into a more compact vector of length 2K × S′. Then unary and
binary extensions are concatenated together to form an appearance feature.

different techniques. Nevertheless, detection outputs possesses important information
about the locations and sizes of the foreground objects that can be utilized to help seg-
mentation. In addition, as generated through top-down schemes, the detection scores
carries context information over to pixel level. Here we adopt a dedicated mixture
model-based object detector [6]. The bounding box detections are overlayed onto a
two dimensional space with each assigning its detection score. This is treated as a sep-
arate channel of the input image. Then the context feature is produced through a BoW
model, similar to that of the color BoW model as previously shown in the middle panel
of Figure 3. Here the number of bins in the BoW model is set to 4.

Superpixel-based Feature. An image is usually represented as a two-dimensional lat-
tice where each node corresponds to a pixel. However a pixel by itself contains limited
information. Alternatively, an image can be expressed as a general planar graph, and
each node is now a superpixel or oversegmentation [7]containing a set of nearby pixels,
usually obtained using an unsupervised segmentation. As depicted in Figure 2, for pix-
els within a superpixel, their features are pooled to form a higher-order feature vector
that describes the entire superpixel. Similarly, the output vectors are each normalized to
sum to 1. While providing a more compact feature representation, this superpixel-based
feature is also able to capture higher-order scene context.

Global Model and Postprocessing. The discriminative learning method we have uti-
lized is a Structured Support Vector Machine (SSVM) [12], where the optimal assign-
ment problem is solved by the graph-cuts algorithm [2] that incorporates both node
and edge energies to ensure local and global compatibilities. The proposed features are
concatenated as a long feature vector used for the node energy; While our edge energy
adopts a simple Ising model [2]. Our postprocessing step utilizes distance transform and
generalized Voronoi diagram [13], to remove tiny segments and separate those lightly
touched objects.
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Fig. 4. (a) An illustration of the proposed spoke feature, (b) its usages in an edge map of the
image in Figure 2 on four image locations, and (c) a multi-scale spoke feature. Spokes are equally
sampled in angular space, and are further mapped into a histogram vector of three bins marked by
+, 0, and -, which denote locally convex, undecided, and concave, respectively. To alleviate the
issues introduced by edge detection, edge maps are extracted at multiple scales, and the associated
histograms are concatenated to form a multi-scale spoke feature. A common procedure in edge
(e.g. Canny) detectors is to convolve raw image with Gaussian kernel of certain width, which
is regarded as selecting a scale-space [9]. Multi-scale here refers to applying kernel of multiple
widths, leading to multiple edge maps. For a fixed image location, a multi-scale spoke feature is
obtained by concatenating the spoke feature vectors obtained over scales.

3 Experiments

Image Datasets. Three image datasets are used during the experiments, where for each
dataset, half of the images are used for training and the rest images are retained for test-
ing purpose. The hand dataset contains images of hand nerve endings harvested from
fresh frozen adult human cadavers. They are preserved in gluteradehyde and refridger-
ated, then embedded in liquid wax to form a block to facilitate microtome section-
ing of the specimen perpendicular to the longitudinal axis of the axons. They are then
stained with methylene blue and photographed using a light microscope to facilitate
the process of histomorphometry. They are further partitioned into 24 smaller images
of similar sizes, with ground-truth provided for nerve endings. To study the drosophila
first instar larva ventral nerve cord (VNC), the ssTEM dataset is generated, which has
30 images[3]1 taken from a serial section Transmission Electron Microscopy (ssTEM),
with image resolution 4x4 nm/pixel. Ground-truth annotations are provided for mito-
chondria. Finally, the serous dataset [8] contains 10 microscopic images2 from serous
cytology. Ground-truth annotations are provided for cell nuclei.

Performance Evaluation. Performance of a cellular segmentation method is often
quantitatively assessed by two types of metrics: those of pixel-based and those of object-
based. We follow the PASCAL VOC evaluation criteria [5]: For pixel-level, we directly
adopt the criteria of its image segmentation task [5]. The metric for object-level evalua-
tion is an adaptation of the criteria used in its object detection task [5]. For Pixel-based

1 The dataset is downloaded from
http://www.ini.uzh.ch/˜acardona/data/tifs.tar.bz2

2 The dataset is downloaded from
http://users.info.unicaen.fr/˜lezoray/databases/
SerousDatabase.zip

http://www.ini.uzh.ch/~acardona/data/tifs.tar.bz2
http://users.info.unicaen.fr/~lezoray/databases/SerousDatabase.zip
http://users.info.unicaen.fr/~lezoray/databases/SerousDatabase.zip
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Fig. 5. Sample experimental results on the three datasets

Evaluation , a common accuracy measures the average percentage of pixels being cor-
rectly classified for both foreground and background classes. This metric however can
be misleading when class distribution is unbalanced, e.g. when the dataset contains
fewer foreground object pixels and a larger percentage of background pixels (the ssTEM
dataset). To rectify this issue, the PASCAL image segmentation task advocates to com-
pute the accuracy as (Eq.(4) of [5]) TP

TP+FN+FP
3. For object-level Evaluation , object-

based image segmentation can be considered as a special object detection task, where
in addition to location and scale, it also demands the detailed shape of a foreground ob-
ject. Following the object detection task of PASCAL [5], we use an intersection/union
ratio to determine a correct object-level match: Given a pair of objects consisting of
a prediction area Op and a ground-truth Ogt, there exists a match if the overlap ratio,
area(Op∩Ogt)
area(Op∪Ogt)

exceeds a threshold t, where ∩ denotes the intersection, and ∪ the union. t

is set to 0.5 as in [5]. Similarly we define object-level accuracy as TP
TP+FN+FP .

Experiments. Throughout the experiments, the unsupervised method of [7] is used to
partition an image into superpixels, and the C value of the linear SSVM [12] is fixed
to 100.

As expected, a multi-scale shape feature leads to improved performance, when com-
paring to its single-scale counterpart. This is demonstrated in hand dataset, where the
pixel- (and object-) level accuracy is around 68% vs. 51% (and 76% vs. 73%), when
a multi-scale shape feature is compared to a single-scale one. We also observe that no
single feature excels in all datasets. For example, the appearance feature dominates the
performance for the serous dataset, while it works less well in the hand dataset, and
leads to the worst results for the ssTEM dataset. Meanwhile, it is mostly preferable to

3 TP, TN, FP, and FN refer to True Positive, True Negative, False Positive and False Negative,
respectively.
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Table 1. Comparisons of pixel- & object- level accuracies. Here ‘three features’ refers to the full
version of our proposed method; ‘appearance’, ‘shape’, and ‘context’ are variants where only
one type of feature is used; Meanwhile, ‘dedicated unsupervised seg.’ refers to the segmentation
method in [13]. See text for more detail.

Dataset Brief Description Pixel Acc. Obj. Acc.

appearance 45.06% 10.01%
shape 51.14% 15.37%

ssTEM context 72.03% 56.25%
three features 75.07% 64.71%

appearance 78.18% 82.07%
shape: only single-scale 51.16% 73.33%

hand shape 68.02% 75.69%
context 74.46% 83.06%
three features 79.05% 85.10%
dedicated unsupervised seg. 56.99% 50.85%

appearance 83.91% 81.43%
serous shape 71.61% 64.07%

context 65.15% 47.60%
three features 85.11% 83.98%
dedicated unsupervised seg. 62.92% 38.28%

consider all the complementary features. Since our discriminative learning approach is
able to perform an implicit feature selection, through learning it usually allocates higher
weights to the “good” features. Interestingly, even when some features fail or perform
less well when being used alone, a further gain can usually be obtained by retaining
those features: Empirically this phenomenon is observed for all three datasets. Con-
sider the ssTEM dataset for example, by employing the best (context) feature, a pixel-
(object-) level performance of about 72% (56%) is attained; which is much better than
considering the other two features where the corresponding results are merely no more
than 51% (15%). However, when considering all three features jointly, the performance
is further improved to 75% (65%). We think this might be attributed to the complemen-
tary nature of these features.

As a comparison method, a state-of-the-art dedicated unsupervised Segmenter [13]
has been implemented. This method contains a few steps including noise removal,
Gaussian smoothing, and thresholding based on the color histogram. After converted
to binary images, distance transform is applied, and object centers are detected by seed
finding. Then the generalized Voronoi diagram is applied to separate the touching ob-
jects. Unfortunately we can not produce a reasonable result for ssTEM dataset using the
method of [13], despite significant effort in tuning the internal parameters. We specu-
late this is because the mitochondria objects are not sufficiently distinct in any of the
color channels. Notice for each of the datasets, the internal parameters are manually ad-
justed to attain best performance. Nevertheless, as demonstrated in Table 1, this method
performs considerably inferior to those from our approach.

We also compare our results to those of [8], which describes a supervised method
combining pixel classifier and watershed, and has its results on the serous dataset: This
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method reports an accuracy of 93.67% when a K-means RGB is used, and 96.47% if
a Bayes RGB is deployed instead. Note [8] uses the traditional pixel-level accuracy,
as the average percentage of pixels being correctly classified for both foreground and
background classes. Meanwhile our approach on serous dataset achieves a better result
of 98.12% under this evaluation criteria (85.11% under our evaluation criteria). Note
that for serous dataset the overall class distributions are 7% for the nuclei pixels and
93% for the background pixels. As explained previously, these scores therefore tend to
be saturated and more biased toward the background class.

4 Outlook

For future work we plan to conduct extensive evaluation of our approach on different
microscopic datasets, and extend to work with 3D.
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Abstract. Accurate and efficient segmentation of cells in fluorescence
microscopy images is of central importance for the quantification of pro-
tein expression in high-throughput screening applications. We propose a
new approach for segmenting cell nuclei which is based on active con-
tours and convex energy functionals. Compared to previous work, our
approach determines the global solution. Thus, the approach does not
suffer from local minima and the segmentation result does not depend
on the initialization. We also suggest a numeric approach for efficiently
computing the solution. The performance of our approach has been eval-
uated using fluorescence microscopy images of different cell types. We
have also performed a quantitative comparison with previous segmenta-
tion approaches.

1 Introduction

Cell nucleus segmentation is one of the most important tasks in analyzing and
quantifying fluorescence microscopy images. In particular, in high-throughput
applications, semi-automatic and manual analysis are not feasible because of
the enormous amount of image data. Automatic methods are needed which
efficiently deal with different cell types and image artifacts such as intensity
inhomogeneities.

In recent years, different approaches for the segmentation of cell nuclei in
fluorescence microscopy images have been introduced. Often thresholding ap-
proaches are applied which, however, suffer from intensity inhomogeneities within
nuclei and over a whole image. To separate clustered nuclei, watershed-based
techniques are frequently used (e.g. [13,7]). A main class of cell segmentation
approaches is based on deformable models, which allow incorporation of a priori
knowledge and can capture a wide spectrum of different shapes. One can distin-
guish between parametric models and implicit models (e.g. [12,4,9,14,8,10,5]).
Implicit representations based on level sets have gained increased interest since
topological changes can be handled naturally. In most of these approaches region-
based energy functionals are employed. However, a disadvantage of previous level
set approaches is that the underlying energy functionals lead to non-convex min-
imization problems. Hence, the optimization function has local minima and the
global solution is generally not found (using local optimization methods which
are typically applied). In addition, the segmentation result depends on the ini-
tialization.
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In this contribution, we introduce a new approach for cell nucleus segmen-
tation in fluorescence microscopy images. Compared to previous work, our ap-
proach is based on two energy functionals that lead to convex minimization
problems for which global solutions are determined. Also, we take advantage of
the combination of the region-based functional of Chan-Vese [2] and the Bayesian
functional proposed in [11] which was used for cell segmentation in [5]. A con-
vex formulation for the region-based functional in [2] was derived in [6] and
we employ this scheme for splitting clustered cell nuclei. In addition, we use
the Bayesian functional in [11] to cope with intensity inhomogeneities. We re-
formulate this functional leading to a convex optimization problem. For both
functionals we propose an efficient minimization scheme based on the Split Breg-
man method. We have successfully applied our approach to two different sets of
2D fluorescence microscopy images comprising different cell types and we have
compared the results with previous segmentation approaches.

2 Cell Nuclei Segmentation

Our approach for the segmentation of cell nuclei in fluorescence microscopy im-
ages is based on two energy functionals. In this section, we first describe the
original non-convex formulation of the functionals. Then we introduce a refor-
mulation as convex optimization problem and we suggest an efficient numerical
technique for finding the solution.

2.1 Non-convex Energy Functionals

The first functional used in our approach is the region-based energy functional
proposed by Chan-Vese [2]:

E1(Θ, ∂Ω) = λ

(
κ0

∫
Ω0

(I(x) − μ0)2dx + κ1

∫
Ω1

(I(x) − μ1)2dx
)

+ Per(Ω1),

(1)
with Θ = (μ0, μ1), where μ0 and μ1 are the mean intensities of the background
region Ω0 and the foreground region Ω1, respectively. ∂Ω denotes the boundaries
between the regions Ωi, I(x) are the image intensities at position x, Per(Ω1) is
the perimeter ofΩ1, and κ0, κ1, λ are weighting factors. As the second functional,
we use the one proposed in [11], which was derived based on a Bayesian approach:

E2(Θ, ∂Ω) = λ

(∫
Ω0

− logP (I(x)|Ω0)dx +
∫

Ω1

− logP (I(x)|Ω1)dx
)

+Per(Ω1),

(2)
with Θ = (μ0, μ1, σ0, σ1), where μi and σi are the mean intensities and stan-
dard deviations of the regions Ωi. P (I(x)|Ωi) is the conditional probability that
pixel x with intensity I(x) belongs to region Ωi. Here, we assume a Gaussian

distribution P (I(x)|Ωi) = 1√
2πσi

e
− (I(x)−μi )2

2σ2
i . An advantage of E2 compared to

E1 is that the weights κ0 and κ1 are not needed, but are implicitly included via
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the standard deviations σi, which are estimated from the image data. Using a
level set representation for E1 and E2 and applying the Euler-Lagrange equation
leads to the gradient flow for the level set function φ

∂φ(x)
∂t

=
(
−λrj + ∇ · ∇φ

|∇φ|

)
H ′(φ(x)), (3)

with H(x)′ being the derivative of the Heaviside function H(x) = {0 if x <
0, 1 if x ≥ 0}. The term rj corresponds to the external image forces of the two
energies Ej , j = 1, 2, which are defined as

r1 = κ1(I(x) − μ1)2 − κ0(I(x) − μ0)2 (4)
r2 = logP (I(x)|Ω1) − logP (I(x)|Ω0) (5)

The parameter vector Θ can be computed directly:

μ0 =
∫
I(x)(1 −H(φ(x)))dx∫

(1 −H(φ(x)))dx
μ1 =

∫
I(x)H(φ(x))dx∫
H(φ(x))dx

σ2
0 =

∫
(I(x) − μ0)2(1 −H(φ(x)))dx∫

(1 −H(φ(x)))dx
σ2

1 =
∫
(I(x) − μ1)2H(φ(x))dx∫

H(φ(x))dx

2.2 Convex Energy Functionals

In [1], it has been shown that certain non-convex minimization problems can be
reformulated as convex problems. There, a convex formulation for E1 in (1) was
derived. In our approach, we use this formulation and we also derive a convex
formulation for E2 in (2). Following [1], the Heaviside function in (3) is omitted
since (3) and the following gradient descent equation have the same steady state
solution

∂φ(x)
∂t

= −λrj + ∇ · ∇φ
|∇φ| . (6)

Then, the corresponding energy functional can be stated as

Ej(Θ, φ) = λ 〈φ, rj〉 + |∇φ|1, (7)

where 〈·, ·〉 denotes the inner product, |·|1 is the L1-norm, and |∇φ|1 corresponds
to Per(Ω1). By restricting φ to lie in a finite interval, e.g. [0, 1], the global
minimum can be guaranteed by solving the following convex problem for the
normalized φn:

min
0≤φn≤1

Ej(Θ, φn) = λ 〈φn, rj〉 + |∇φn|1 (8)

2.3 Split Bregman Method

To solve (8) we use the Split Bregman method. This method is a general tech-
nique for efficiently solving L1-regularized problems and for iteratively find-
ing extrema of convex functionals [6]. The method consists of variable splitting
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and Bregman iteration. Variable splitting is achieved by introducing the auxil-
iary vector d (with dimension according to the image domain) and by using a
quadratic penalty term to enforce the constraint d = ∇φn. For (8) this leads to

(φ∗n,d
∗) = arg min

0≤φn≤1,d

(
λ 〈φn, rj〉 + |d|1 +

ν

2
|d −∇φn|22

)
, (9)

where φ∗n and d∗ denote the iteratively computed solution. In (9) ∇φn is no
longer associated with the L1-norm, however, the constraint d = ∇φn is only
weakly enforced. To enforce the constraint exactly, the Bregman iteration tech-
nique is applied. With this technique a vector b is included in the penalty function
and an alternating minimization is carried out:

(φk
n,d

k) = arg min
0≤φn≤1,d

(
λ 〈φn, rj〉 + |d|1 +

ν

2
|d −∇φn − bk−1|22

)
, (10)

bk = bk−1 + ∇φk
n − dk, (11)

where φk
n and dk represent the solution at iteration k. The problem in (10),(11)

is first solved w.r.t. φn, while d and b are fixed and second w.r.t. d. In our case,
we use a fast iterative Gauss-Seidel solver for the first minimization. The second
minimization is obtained explicitly using the vector-valued shrinkage operator:

dk = max{|bk−1 + ∇φk
n|2 − ν, 0} bk−1 + ∇φk

n

|bk−1 + ∇φk
n|2

(12)

2.4 Globally Optimal Cell Segmentation

Our approach for cell nuclei segmentation combines the two convex energy func-
tionals E1 and E2 in (8). The functional E2 is used to deal with intensity in-
homogeneities over the whole image and to segment cell nuclei with varying
intensities. E1 is used to split cell nuclei which have been falsely merged using
E2 and is minimized independently for all regions that were segmented using E2.
Note, that doing this we use multiple level sets for the segmentation of an im-
age. This is similar to multiple level set approaches (e.g. [12,4,9,14,8]). However,
in our case we do not need a coupling term to prevent level sets from merging
because we perform the minimization within previously segmented regions.

Our approach consists of three steps. In the first step, we perform a segmenta-
tion of the whole image using the functional E2. Since this functional comprises
parameters for both the mean intensities and the variances of objects we can deal
with varying background intensities and with cell nuclei with varying intensities.
However, cell nuclei that are close to each other are likely to be merged in this
step (see Fig. 1a). In the second step, we minimize E1 for each of the segmented
cell nuclei regions in the first step. This allows splitting of clustered cell nuclei
(see Fig. 1b). In the third step, we use E2 again but this time for the segmented
objects from the second step within a region of interest around the object. The
third step is needed because the second step cannot deal with inhomogeneities
within cell nuclei. The result of the third step in Fig. 1c shows that the segmen-
tation at the border of the nuclei is more accurate and smoother compared to
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(a) (b) (c) (d)

Fig. 1. Original images overlaid with contours of the segmentation results. Result after
the first step (a), the second step (b), and the third step (c). (d) shows the result when
using E2 in the second step.

the result after the second step. Note, that if we would use E2 in the second step
then clustered nuclei could not be separated because the contrast in the region
between the cells is not large enough (see Fig. 1d).

3 Experimental Results

We have applied our approach to two sets of 2D fluorescence microscopy images
of cell nuclei of different cell types from [3] for which ground truth is available.
The first data set consists of 48 images with a size of 1349 × 1030 pixels which
include in total 1831 U20S Hoechst stained cell nuclei (see Fig. 2a). The second
data set contains 49 images with a size of 1344× 1024 pixels comprising in total
2178 NIH3T3 Hoechst stained nuclei (see Fig. 2d). Note, that several images in
the second data set are heavily affected by intensity inhomogeneities and visible
artifacts. Therefore, automatic analysis of the second set is more challenging
compared to the images in the first set.

To evaluate the performance of our approach we determined region-based
and contour-based measures. As region-based measure we used the Dice co-
efficient and as contour-based measures we employed the normalized sum of
distances (NSD) [3] and the Hausdorff distance. The Dice coefficient is defined
as Dice(R,S) = 2|R∩S|

|R|+|S| , where R is the binary reference image, and S is the

binary segmented image. The NSD is defined as NSD(R,S) =
∑

i∈R∪S\R∩S D(i)∑
i∈R∪S D(i) ,

where D(i) is the minimal Euclidean distance of pixel i to the contour of the
reference object. The Hausdorff distance is defined as h(R,S) = maxi∈Sc{D(i)},
with Sc being the contour of the segmented object. We also used two detection
measures, namely the number of false positives (FP) and the number of false
negatives (FN). FP corresponds to spuriously segmented nuclei and FN corre-
sponds to nuclei that have not been segmented. In all our experiments we used
ν = 10 and κ0 = 1, κ1 = 1 in (10),(11). In the first and second step of our
approach we used λ = 10000 and in the third step we chose λ = 1000.

Table 1 shows the results of our approach (after 1 step and after all 3 steps)
for the different performance measures averaged over all images of each data set.
As a comparison we also show the results for Otsu thresholding as well as the
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(a) (b) (c)

(d) (e) (f)

Fig. 2. Original images with overlaid contours of segmentation results. First row: U20S
cells, second row: NIH3T3 cells; first column: ground truth, second column: merging
algorithm [7], third column: our approach.

watershed algorithm and the region merging algorithm [7] applied to the mean
thresholded image. The latter approach uses an improved watershed algorithm
followed by statistical model-based region merging to cope with oversegmenta-
tion and yielded the best results in the study in [3]. Also, we included the result
of using the non-convex functional E2 in (2). In addition, we included the result
of manual segmentation (for a subset of 5 images for each data set) by a different
observer than the one who provided the ground truth (second row, Manual). It
can be seen that our approach yields the best result for the Dice coefficient and
the NSD for both data sets, and that the result is comparable to the result by
the different observer (Manual). In particular, for the more challenging NIH3T3
images we obtain significantly better results than previous approaches. Regard-
ing the Hausdorff distance, our approach yields better results for the NIH3T3
cell images, while the results are equally good as those for the algorithm in [7] for
the U20S images. Furthermore, it can be seen that our approach (3 steps) yields
better results than our 1 step approach and thus the multiple step scheme is
advantageous. However, the 1 step approach still yields better results than using
the non-convex functional E2 in (2). For the FP value the result is equally good
or similar to the best results of the other approaches. Regarding the FN value
we obtain for the U20S cell images similar results as for the other approaches,
while for the NIH3T3 cell images we obtain intermediate results. However, note
that in biological applications a small FP value is more important than a small
FN value. The reason is that it is often necessary to quantify the signal in-
tensity in a second channel within segmented nucleus regions, and FP regions
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Table 1. Quantitative results for the different approaches

Approach
U20S cells (48 images) NIH3T3 cells (49 images)

Dice NSD Hausdorff FP FN Dice NSD Hausdorff FP FN

Manual 0.93 0.04 9.8 0.6 2.2 0.87 0.07 12.1 0.0 3.2

Otsu 0.87 0.12 34.8 0.3 5.5 0.64 0.35 36.7 1.7 26.4

Watershed 0.69 0.36 34.3 1.9 3.0 0.62 0.37 19.1 11.6 5.5

Merging algorithm [7] 0.92 0.08 13.3 1.0 3.3 0.70 0.28 19.0 7.0 5.8

Non-convex E2 in (2) 0.88 0.15 25.2 1.5 2.8 0.76 0.24 21.9 3.5 5.2

Our approach (1 step) 0.93 0.11 18.1 1.4 3.2 0.84 0.23 21.0 3.3 8.6

Our approach (3 steps) 0.94 0.06 13.3 0.5 3.9 0.83 0.14 16.5 1.7 11.3

have a strong influence on the statistical analysis. Compared to the approach
in [7] our approach allows better splitting of clustered cell nuclei and spurious
objects are not included (see Fig. 2b,c), and our approach yields a more accurate
segmentation of cell nuclei shapes (see Fig. 2e,f).

In our approach, the minimization of E2 in (8) on the whole image converges
after about 5 iterations and the computation time is approximately 15 seconds
per image. In comparison, using a standard level set scheme for the non-convex
energy E2 in (2) with gradient descent optimization needs about 400 iterations
and the computation time is about 9 minutes. Thus, our approach is significantly
faster. As convergence criterion we used the average Euclidean distance between
the contours of segmented objects in two successive iterations.

4 Discussion

We have introduced a new approach based on active contours for cell nuclei
segmentation in fluorescence microscopy images. Our approach employs two
convex energy functionals for which globally optimal solutions are determined.
By combining the two functionals we can cope with clustered cells, different
cell types, and intensity inhomogeneities. To minimize the energy functionals
we suggested using the Split Bregman method which significantly reduces the
computation time compared to standard level set approaches. Thus, our ap-
proach is suitable for high-throughput applications and very large data sets. We
have demonstrated the applicability of our approach using 97 real fluorescence
microscopy images comprising in total 4009 cells of two different cell types.
It turned out that our approach yields superior results compared to previous
approaches.

Acknowledgments. We thank Luis Pedro Coelho (CMU) for help with his
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edged.
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13. Wählby, C., Lindblad, J., Vondrus, M., Bengtsson, E., Björkesten, L.: Algo-
rithms for cytoplasm segmentation of fluorescence labelled cells. Analytical Cellular
Pathology 24(2), 101–111 (2002)

14. Yan, P., Zhou, X., Shah, M., Wong, S.T.C.: Automatic segmentation of high-
throughput RNAi fluorescent cellular images. IEEE Trans. Inf. Techn. in
Biomed 12(1), 109–117 (2008)



Carving: Scalable Interactive Segmentation of

Neural Volume Electron Microscopy Images
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Abstract. Interactive segmentation algorithms should respond within
seconds and require minimal user guidance. This is a challenge on 3D
neural electron microscopy images. We propose a supervoxel-based en-
ergy function with a novel background prior that achieves these goals.
This is verified by extensive experiments with a robot mimicking human
interactions. A graphical user interface offering access to an open source
implementation of these algorithms is made available.

Keywords: electron microscopy, seeded segmentation, interactive seg-
mentation, graph cut, watershed, supervoxel.

1 Introduction

Electron microscopy has provided images with revealing resolution in two di-
mensions since the mid-20th century. More recent volume imaging techniques
such as Focused Ion Beam Scanning Electron Microscopy (FIBSEM), however,
yield images with an isotropic resolution of a few nm in all three dimensions
[11], see Fig. 1. Full automation is required for the analysis of very large scale
experiments, e.g. in connectivity studies. Several recent methods [1,16,15,10,6,9]
already take advantage of the isotropy in new datasets. However, the error rates
of these methods still fall short of human performance. In contrast, interactive
methods allow live user corrections until the desired quality is achieved. This
is useful during rapid exploration of new data, but even more important for
generating the ground truth needed for training and validation of automated
algorithms.

Interactive or “seeded” segmentation methods come in two main flavors: de-
formable models (“snakes” e.g. [7,8,17]) and random fields (e.g. [18,19]). The
former are particularly useful when objects are characterized by recurring shape
properties that constrain the segmentation. Slice-oriented versions of this ap-
proach (using 3D tracking of 2D models) were successfully used on anisotropic
neuron data [7], but truly 3-dimensional modeling is challenged by the intricate
geometry of neurons, which bend and branch out in complex ways. Random
fields naturally lend themselves to 3D modeling and thus seem a natural choice

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAI 2011, Part I, LNCS 6891, pp. 653–660, 2011.
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Fig. 1. (left) Small subset of the ground truth segmentation. (center) Slice from
FIBSEM raw data, with seeds provided by the user (background: cyan, foreground:
black,white) and the resulting segmentation (orange, blue). (right) 3D rendering of the
segmentation shown in (b). (Rendering done with V3D [13]).

for isotropic neuron data. However, different neurons of the same type are indis-
tinguishable by their local appearance (intensity and texture), so that local class
probabilities are hard to define. This also causes strong shrinking bias [18,19].
Our main contributions and insights are a graph cut formulation and a watershed
with:

– a problem-specific objective function whose potentials are biased toward the
background region, so that uncertain voxels are preferably assigned to the
background. We show that this simple idea works surprisingly well on neural
data.

– a supervoxel approximation [14] of the original problem defined on a voxel
grid. We achieve 100-fold speed-ups with virtually identical results.

– an edge weight parametrization which overcomes the shrinking bias. This is
complementary to, and arguably simpler than, gradient fluxes [18,19].

– an extensive quantitative comparison of graph cut and watershed results
with ground truth on 20 dendrites by means of a robot user that mimics
human seed selection.

Satisfactory segmentations of individual 3D objects from a 5003 FIBSEM volume
can typically be achieved with 2-4 seeds with a response time of ca. 1 second per
click (after ≈ 3 minutes of preprocessing at program startup).

2 The Optimization Problem: Basic Definition,
Enhancements and Efficient Solution via Supervoxels

Reference [3] is the culmination of a series of important papers relating graph
cut, random walk, shortest paths and watershed in a unified seeded segmenta-
tion framework, the “Power watershed”. We will start from these insights, and
represent an image as a weighted graph G = (V,E) of pixels v ∈ V and their
neighborhood relations e ∈ E. A segmentation is represented by a set of labels x
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associated with the vertices V . A label xi is coupled to the underlying observa-
tions at node vi by a node weight wi, and to its neighbors by weights wij ∈ [0, 1]
assigned to the edges eij . Large edge weights express a pronounced penchant for
the incident vertices to share the same label. Finally, user input is added in the
form of seeds yi ∈ {0, . . . , |C|−1} in an interactive fashion, where C is the set of
distinct regions. Graph cut can handle only |C| = 2 distinct regions (foreground
vs. background), while the watershed can account for an arbitrary number of
regions. A segmentation is then given by the minimizer

argminx

∑
eij∈E

wp
ij |xi − xj |q +

∑
vi∈V

wp
i |xi − yi|q (1)

with graph cut (p= q= 1, yi, xi ∈ {0, 1}), random walk (p= 1, q= 2, yi ∈ {0, 1},
xi ∈ [0, 1]) and watershed (p → ∞, q = 1, yi, xi ∈ {0, . . . , |C| − 1}) emerging as
special cases.

2.1 The Crucial Choice of Weight Functions

Given the above framework, the developer has to choose p, q and, importantly,
the weights w. Node weights are often used to couple the node label to the ap-
pearance of the underlying region, as in GrabCut. This is not viable in the data
studied here: for instance, the texture, color, etc. of one dendrite are indistin-
guishable from that of others in the vicinity. The modeling effort must hence
concentrate on region boundaries. This can happen indirectly, through nonlo-
cal geometric terms which can be cleverly encoded in node potentials [12,18],
or directly through boundary detectors. These are often implemented through
wij = exp

(
−β|∇I|2ij

)
where |∇I|2ij is the squared image gradient between nodes

i and j. As noted in [3], the parameter β plays a crucial role. It not only indicates
what gradients are deemed significant, but is directly related to the parameter
p from (1): increasing β is tantamount to increasing p!

Since the staining in the neural EM images studied here can directly be in-
terpreted as an edge map, we instead define

wij = exp (−β (Ii + Ij) /2) (2)

where I is an estimate for membrane probability. Besides the (inverted) EM im-
age itself, I ∈ [0, 1] can be any membrane indicator, for instance a discriminative
classifier [1,15] or the first eigenvalue of the Hessian matrix of the membrane
image. We tried both, but concentrate on the latter here because it needs no
training and allows us to focus on the improvements described below.

The Impact of β. Changing β in (2) has important implications for graph cut:
When using β = 1 and unary weights wi = 0 (except at locations with user
seeds), severe shrinking bias [12] occurs: the cheapest segmentation boundary
tightly encloses either the foreground or background seeds, assigning nearly the
complete volume to the other class. Increasing β to around 100 (and thus raising
p 100-fold) implies that erroneous cuts within regions of low membrane strength
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become very expensive, while label transitions on membranes remain cheap. In
our data, this is sufficient to obviate more complex modeling, e.g. in terms of
gradient flux unary potentials [18].

In contrast, changing β in the watershed amounts to a monotonous height
transformation of the landscape that this algorithm implicitly sees, without
however changing its salient features: the locations and ordering of the minima,
maxima, saddle points and, most importantly, the watersheds do not change.
The same conclusion – invariance of the watershed algorithm to the choice of β
– can be reached by a study of the limit p→ ∞ in (2).

Background Bias. Assume that an appropriate value of β has been found. If
a single foreground and a single background seed of similar size are given, one
would expect around half of all neurons to be assigned to either class. This is
borne out in practice. To achieve something closer to the desired result, namely
a segmentation of one neuron versus all others, we propose to use a small bias
favoring the background. For the graph cut, this bias is easily incorporated
by assuming an implicit background label yi = 0 for all unseeded points, and
adding a small unary weight wi = α to these points. The quality of the resulting
segmentation is robust w.r.t. α across three orders of magnitude: choosing α ∈
[10−5, 10−3] results in much better segmentations than α = 0 (results not shown).

The above recipe does not work for the watershed. Instead, we build the
bias directly into the priority queue that controls the region assignment or-
der of the algorithm: In every iteration, there is a set of regions (initially the
seeds), and all edges connecting these regions to unlabeled nodes are ordered
by weight wij . The end node of the most expensive edge is then assigned to
the region where the edge starts. In this way, watersheds cut cheap edges, min-
imizing (1). Clearly, manipulations of the unary weights wi and monotonous
transformations of the binary weights wij have no influence on the outcome.
Therefore, we change (2) so that assignments to the background class are pre-
ferred: wij(xi) = exp (−γ(xi)β (Ii + Ij) /2) with 0 < γ(xi = 0) < γ(xi �= 0) ≤ 1.
Qualitatively speaking, the dams in the flooding metaphor of the watershed al-
gorithm appear lower to the background class.

2.2 Speedup by Coarse-Graining: Supervoxels

All algorithms studied here are too slow, in their native implementations, for a
truly interactive experience when working with 3D volumes of the order of 5123

voxels on a standard desktop PC. We hence suggest a coarse graining which is a
heuristic approximation for graph cut and random walker, but does not affect the
solution of the watershed. The simplification is best explained for random walk
segmentation, but applies to the other cases as well: the labels computed by the
random walker change little (cf. [4]) over homogeneous regions (where the binary
weights are large), and abruptly near boundaries (where the binary weights
are small). One natural simplification of the problem is to reduce the number
of unknowns in the linear system of equations by grouping such pixels as are
expected to have very similar labels in the solution. Conceptually, this amounts
to setting some of the binary weights to very large values, and hence constraining
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all pixels within a group or “superpixel” to have the same label. More explicitly,
we propose to augment (1) with a set of constraints xi = xj |i, j ∈ sk for a
suitable partitioning

⋃
k sk = V, sk ∩ sl = ∅ of the original graph G.

The quality of this approximation crucially depends on the partitioning used,
and finding a good partitioning looks like a daunting task: it should on the one
hand be cheap to compute, and on the other hand anticipate the solution of
the segmentation algorithm even before that is executed. However, based on
the analysis of the powerwatershed energy (1), we argue that the catchment
basins of the watershed are a useful proxy: remember that both graph cut and
random walk require very pronounced edge weights (large β, or large p) to yield
sensible solutions on the type of data used here. Such large powers p ≈ 100 are
an approximation to the special case p → ∞ which is solved by the watershed.
Conversely, the catchment basins {sk} of an (unseeded) watershed based on the
same edge weights are regions in which the labels of graph cut or random walk
are relatively homogeneous.

Making this simplifying assumption, we obtain a supervoxel graph G′(E′, V ′)
in which the vertices sk ∈ V ′ represent the individual catchment basins of the
original graphG, and the weight w′

k,l of an edge in E′ is given by the sum over the
edge weights connecting the two catchment basins sk, sl from the original graph.
This approximation makes for large savings, especially for the segmentation of
multiple objects in the same data set for which other strategies such as reusing
the residual flow of a graph cut computation cannot be employed.

3 Experiments

Data. The 600× 800× 409 dataset shows neural tissue imaged with a FIBSEM
instrument [11]. To evaluate the algorithms objectively, we designed an Interac-
tive Segmentation Robot. [5]. The automaton emulates the human seeding
strategy for different parameters and objects. Given ground truth (Fig. 1), the
robot seeks to interactively segment a single object of interest using the following
strategy:

1. Calculate the set differences between ground truth and current segmentation.
Place a correcting single voxel seed in the center (maximum of the Euclidean
distance transform) of the largest false region.

2. Re-run the segmentation algorithm with the new set of seeds.
3. Iterate until convergence to ground truth.

The convergence criterion is that the detected boundaries are within three pixels
of the true boundaries (which roughly corresponds to the accuracy of the ground
truth). Note that the estimated number of seeds required to reach a good seg-
mentation is conservative because the robot only labels a single voxel at a time,
while most humans would provide extended brush strokes which are potentially
more informative.

All tests were executed on an Intel iCore 7 machine with 2.4GHz. Unfortu-
nately, the random walker was too slow for an interactive procedure even in the
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(a) (b) (c) (d)

Fig. 2. (a) Agreement between voxel and supervoxel variants of the algorithms. (b)
Speedup factor due to supervoxels. (c) Distribution of absolute response times to each
click (after one-time preprocessing), on a 600×800×409 volume. (d) Agreement between
ground truth and robot segmentations, as a function of the number of interactions.

supervoxel implementation, so the corresponding results are omitted. The graph
cut problem was solved using the public code of [2]. The free parameters of the
algorithms (scale of the Hessian matrix feature, exponent p in (1), strength of
background bias γ(xi), α) were optimized on a volume that does not overlap
the test region. Interestingly, the best choice for p was p ≈ 100, confirming our
discussion about the impact of this parameter in Section 2.

Results. The first experiment (Fig. 2a) investigates whether supervoxel segmen-
tation is a valid approximation of voxel-level segmentation. This can be affirmed
for the watershed (the observed minor differences can be traced to different im-
plementations of the priority queue). For the graph cut, the results are a little
surprising: while there is a discrepancy between voxel and supervoxel implemen-
tations, it is actually the latter that performs better! The reason is the shrinking
bias: since the robot labels individual voxels, graph cut sometimes ignores these
seeds by turning them into tiny “islands”. This phenomenon does not occur when
an entire supervoxel is seeded. The second experiment compares the speed of the
supervoxel algorithms relative to their voxel-level implementations (Fig. 2b) and
the absolute run time (Fig. 2c). We observe a median speed-up of around 120
for the watershed and around 170 for graph cut. Once the supervoxel graph
has been constructed – this is a matter of minutes – the turnaround time for a
user interaction is of the order of (sometimes many) seconds for the graph cut,
and consistently around one second for the watershed. The third experiment
(Fig. 2d) shows the number of clicks (single voxel seeds) given by the robot
following the segmentation strategy and the ground truth agreement of the re-
sulting segmentations. The figure shows the median over the 20 largest objects
in a 3003 subregion of the volume. Using a background bias clearly reduces the
number of interactions required. For a qualitative impression, exemplary carving
results are shown in Figs. 1 and 3.
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Fig. 3. The proposed approach works well on objects other than dendrites, here: mi-
tochondria. Shown are (left): slice view of the raw data and user given segmentation
seeds (background seed: cyan) and (right): the resulting segmentation for the fore-
ground seeds.

4 Conclusions

We have systematically evaluated two well known algorithms (watersheds and
graph cut) with regard to their applicability to interactive neuron segmentation
in FIBSEM volume data. Our experiments have shown that the supervoxel ap-
proximation can be safely used as an approximation of the voxel-level energy
function. This is in part due to the choice of a very large power p ≈ 100 in (1).
The main effect of this choice is to counter the shrinking bias of the graph cut,
but it also serves to minimize the error arising from grouping voxels into super-
voxels. The simple idea of preferring background over foreground assignments
effectively helps ensuring that each foreground region consists of a single neuron
only – the number of required user interactions is reduced considerably relative
to unbiased assignments, resulting in correct segmentations after only a handful
of mouse clicks. Moreover, no additional calculations are required to realize this
behavior. All results were confirmed by extensive experiments using an objec-
tive segmentation robot. It applies a transparent seed placement strategy that
emulates the actions of a human user.

Minimizing user effort and algorithm response times allows to analyze large
data sets interactively, i.e. with immediate feedback on segmentation quality.
The described supervoxel algorithms can be downloaded, along with a graphical
user interface, as an open source program from http://www.ilastik.org/carving.
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Abstract. Shape based active contours have emerged as a natural solu-
tion to overlap resolution. However, most of these shape-based methods
are computationally expensive. There are instances in an image where no
overlapping objects are present and applying these schemes results in sig-
nificant computational overhead without any accompanying, additional
benefit. In this paper we present a novel adaptive active contour scheme
(AdACM) that combines boundary and region based energy terms with
a shape prior in a multi level set formulation. To reduce the computa-
tional overhead, the shape prior term in the variational formulation is
only invoked for those instances in the image where overlaps between
objects are identified; these overlaps being identified via a contour con-
cavity detection scheme. By not having to invoke all 3 terms (shape,
boundary, region) for segmenting every object in the scene, the compu-
tational expense of the integrated active contour model is dramatically
reduced, a particularly relevant consideration when multiple objects have
to be segmented on very large histopathological images. The AdACM
was employed for the task of segmenting nuclei on 80 prostate cancer
tissue microarray images. Morphological features extracted from these
segmentations were found to able to discriminate different Gleason grade
patterns with a classification accuracy of 84% via a Support Vector Ma-
chine classifier. On average the AdACM model provided 100% savings
in computational times compared to a non-optimized hybrid AC model
involving a shape prior.

1 Introduction

Active Contours (AC) can be categorized as boundary-based (first generation)
and region-based (second generation) schemes [1–3]. Most AC models are not
intrinsically capable of handling object occlusion or scene clutter. Therefore, the
integration of shape priors into the variational formulation represents a natu-
ral way to overcome occlusion. Third generation (hybrid) AC models involve
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combining a shape prior with geometric/geodesic active contours that simulta-
neously achieves registration and segmentation [4–6]. Rousson et al.[5] proposed
a novel approach for introducing shape priors into level set representations, fo-
cused on 2D closed shapes. A limitation of most third generation AC models,
however, is that only one pair of overlapping objects can be accurately resolved
at a time. Further, most of these methods are sensitive to model initialization
and typically require varying degrees of user intervention [1–6]. Moreover, the
efficiency of these hybrid schemes are limited by the computational overhead
of the non linearity of the convergence of the evolving curve. Additionally, the
shape prior (the most computationally heavy term in the variational formula-
tion) is typically invoked in segmenting every object in the scene, regardless of
whether or not an overlap exists. Non-overlapping objects, in most cases, can be
segmented by first and second generation AC models alone.

In this paper, a variational adaptive segmentation scheme (AdACM) is pre-
sented. AdACM is fully automated and provides concurrent segmentation of all
the overlapping and non overlapping objects in the image. Most of the shape
based models reported in literature are only able to handle the overlap reso-
lution of a single pair of objects per image. To decrease the user intervention,
we propose to automatically initialize our segmentation scheme via the popular
Watershed method. To reduce the computational expense of the model, we se-
lectively invoke the shape prior term, only when overlapping objects need to be
resolved and segmented. To do this we leverage a technique based on concavity
detection [8], to detect the number of overlapping objects, and hence selectively
invoke the appropriate energy functionals (see Figure 1). Note that the com-
plexity of the concavity detection scheme [8] is significantly smaller compared to
invoking the shape prior.

The Gleason score (obtained by summing the primary and secondary grades
of prostate cancer (CaP) in the tissue specimen) is the single most important

(a) (b) (c) (d)

Fig. 1. Selective incorporation of variational terms based on detection of concavity
points. In (a) the absence of concavity point reflects the presence of a single nucleus.
Similarly (b) and (c) detection of the number of concavity points represents the number
of nuclei. (d) Concavity detection: Three consecutive points on s (cw−1, cw and cw+1)
are used to define two vectors (shown with arrows). The angle θ between them is a
measure of concavity/convexity of the point cw [8].
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prognostic factor in Cap, determined using the glandular and nuclear architec-
ture and morphology within the tumor [7]. In recent years, computerized image
analysis methods have been studied in an effort to overcome the subjectivity of
conventional grading system. An important prerequisite to such a computerized
CaP grading scheme, however, is the ability to accurately and efficiently segment
histological structures (glands and nuclei) of interest. In this work, we leverage
the AdACM scheme for automatic segmentation of all nuclei on large digitized
tissue microarrays (TMAs) of CaP. Additionally, we leverage previous research
that has demonstrated a link between nuclear morphology and gleason grade
[7] to develop a nuclear morphology based classifier to predict Gleason grade.
The accuracy of this classifier is also implicitly reflective of the performance of
AdACM, since accurate nuclear segmentation is a pre-requisite for accurately
quantifying nuclear morphology.

2 Hybrid Active Contour Model

The contours that segment the nuclear-boundaries are represented using the level
set method, and are evolved by minimizing the variational energy functional.
Under the level set framework, the contour is represented implicitly as the zero
level of a higher dimensional embedding function, and the contour propagation is
performed by evolving the embedding function. This enables handling topological
changes of the boundary (splitting and merging) easily.

2.1 Shape Term - Fshape

We combine the shape prior, ψ, with a Geodesic Active Contour (GAC) to create
the shape functional. ψ, is created using the statistical methods described in [5].
Each shape in the training sample is embedded as the zero level set of a higher
dimensional surface. The Signed Distance Function (SDF) is used to encode the
distance between the level set (shape contour) and the grid pixels. The level set
formulation of the shape functional is expressed as:

Fshape =
∫

Ω

(φ(x) − ψ(x))2|∇φ|δ(φ)dx (1)

where {φ} is a level set function, ψ is the shape prior, δ(.) is the Dirac function,
and δ(φ) is the contour measure on {φ = 0}. Equation 1 introduces a shape
prior in such a way that only objects of interest similar to the shape prior can
be recovered, and all unfamiliar image structures are suppressed. It evaluates
the shape difference between the level set φ and the the shape prior ψ at each
iteration of the evolution. However, this formulation only solves for a single level
set consistent with the shape prior.

2.2 Region Homogeneity Term

We define a functional to drive the shape functional towards a homogeneous
intensity region corresponding to the shape of interest. The functional Fregion
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2. (a)-(c) Nuclear segmentations (orange boundaries) for three different TMA
cylinders corresponding to Gleason scores 6, 7 and 9. (b)-(f) Magnified ROI’s from (a)-
(c), respectively, reveal that our hybrid ACM (AdACM) with a selective shape prior is
able to accurately segment almost all nuclei. (g)-(i) Further magnification of the ROI
shown in (a), (b), (c) reveals that our model is able to accurately resolve overlaps and
intersections.

can be written with the shape function ψ and statistics of partitioned foreground
and background regions, uin, uout:

Fregion(ψ, uin, uout) =
∫

Ω

ΘinHψdx +
∫

Ω

ΘoutH−ψdx, (2)

where ψ is the shape function, H(.) is the Heaviside function, Θr = |I − ur|2 +
μ|∇ur|2 and r ∈ {in, out}.
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2.3 Combining Shape, Boundary and Region-Based Functionals

We combine Fshape and Fregion into a variational formulation:

F = βs

∫
Ω

(φ(x) − ψ(x))2|∇φ|δ(φ)dx︸ ︷︷ ︸
Shape+boundaryforce

+ βr

∫
Ω

ΘinHψdx +
∫

Ω

ΘoutH−ψdx︸ ︷︷ ︸
Regionforce

(3)
where βs, βr > 0 are constants that balance contributions of the boundary based
shape prior and the region term. This is an extension of the work of Chen et al
in [6]. This formulation effectively integrates shape prior with local and regional
intensity information into an unified variational formulation.

2.4 Segmenting Multiple Objects under Mutual Occlusion

The level set formulation in Equation (3) is limited in that it allows for segmen-
tation of only a single object at a time. In this work, we incorporate the method
presented in [9] into Equation 3. Consider a given image consisting of multiple
objects {O1, O2, · · · , On} of the same shape. For the problems considered in this
work (nuclei segmentation on histopathology images), all nuclei are assumed to
be roughly elliptical in shape. Instead of partitioning the image domain into
mutually exclusive regions, we allow each pixel to be associated with multiple
objects or the background. Specifically, we try to find a set of characteristic

functions χi such that: χi(x) =
{

1 if x ∈ Oi

0 otherwise. We associate one level set per

object in such a way that any Oa, Ob, a, b ∈ {1, 2, · · · , n} are allowed to over-
lap with each other within the image. These level set components may both be
positive on the area of overlap, and enforce the prior on the shapes of objects
extracted from the image.

We consider a case of segmenting two objects within an input image. Given
an image with two similarly shaped objects Oa, Ob, a, b ∈ {1, · · · , n}, and for
simplicity, assume that they are consistent with the shape prior ψ. Then simul-
taneous segmentation of Oa, Ob with respect to ψ is solved by minimizing the
following modified version of Equation (3):

F (Φ, Ψ, uin, uout) =

N=2∑
i=1

∫
Ω

(φi(x) − ψ(x))2|∇φi|δ(φi)dx + βr

∫
Ω

ΘinHχ1∨χ2dx

+

∫
Ω

Θout − Hχ1∨χ2dx + ω

∫
Ω

Hχ1∧χ2dx +

N=2∑
i=1

∫
Ω

(φi − ψi)
2dx

(4)

with Hχ1∨χ2 = Hψ1 + Hψ2 − Hψ1Hψ2 , Hχ1∧χ2 = Hψ1Hψ2 where Φ = (φ1, φ2)
and Ψ = (ψ1, ψ2). The fourth term penalizes the overlapping area between the
two segmenting regions, and prevents the two evolving level set functions from
becoming identical. Minimizing Equation 4 iteratively with respect to dynamic
variables, yields the associated Euler-Lagrange equations. The above model can
be adapted for N objects (proof not shown).
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3 Selectively Invoking Energy Terms in Hybrid ACM

3.1 Watershed Based Initialization and Concavity Detection

We use the popular watershed transformation to obtain the initial delineations
of nuclear boundaries in the entire image. By creating the binary mask of the
delineations, we obtain the estimated boundaries of the nuclei present.

High concavity points are characteristic of contours that enclose multiple ob-
jects and represent junctions where object intersection occurs (Figure 1(d)).
The area A(s) of the closed sub-contour s is compared to predetermined area
of an ideal nucleus τA (empirically set to τA = 33). Hence a sub-contour is
eligible for a split if A(s) > τA. Since c = (x, y), the difference between any
two points cw and cw−1 will represent a vector in 2D. Concavity points are
detected by computing the angle between vectors defined by three consecutive
points (cw−1, cw, cw+1) ∈ s. The degree of concavity/convexity is proportional
to the angle θ(cw) as shown in Figure 1(d). θ(cw) can be computed from the dot
product relation (Equation 5):

θ(cw) = π − arccos
(

(cw − cw−1) · (cw+1 − cw)
||(cw − cw−1)|| ||(cw+1 − cw)||

)
. (5)

3.2 Adaptive Selection of Energy Functionals in Hybrid AC Model

Number of detected concavity points, cw ≤ 1, indicates presence of a single
non overlapping nucleus. In such cases, shape prior constraint is not necessary
and we reduce the model to only employ the region term by setting βs = 0.
Similarly, l number of cw indicate the presence of l overlapping objects. Hence
in those regions we initialize the model with the integrated hybrid model (region,
boundary, shape terms) with l level sets and set N = l (in Equation 4). Figure
3 illustrates the work flow from initialization to final segmentation for AdACM.

4 Experimental Design and Results

Since it is not feasible to evaluate AdACM quantitatively on a per nucleus basis
(manual annotation not practical for thousands of nuclei), AdACM was instead
evaluated in terms of the ability of the morphologic descriptors extracted from
the nuclear boundaries (based off [7]) to distinguish different Gleason patterns of
CaP from a total of 40 (2 images per study) TMA images obtained from prostate
needle core biopsy samples. The 40 studies comprised 13 Gleason patterns 6
(3+3), 8 pattern 7 (3+4), 7 pattern 8 (4+4) and 5 pattern 9 (4+5) studies
where the first number in the parenthesis refers to the primary and the second
number to the secondary Gleason grade. Additionally the ability of the model to
selectively invoke energy terms in the variational functional was also evaluated
in terms of the (a) overlaps between nuclei resolved (for a randomly selected
subset of nuclei) and (b) computational savings over a hybrid model without
selective invocation of the shape term.
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(a) (b) (c) (d)

Fig. 3. Constituent modules of the AdACM. (a) Original image; (b) Watershed seg-
mentation of individual nuclei with an overlay detected concavity points; (c) Placement
of initial level sets in the image; (d) final segmentation. Note that in the region shown
as A where 4 concavity points where detected, 3 level sets were initialized with the
shape prior, whereas in region B, only a single level set (only region based term) was
initialized.

4.1 Discriminating Gleason Patterns Based off Nuclear Morphology

A total of 7 nuclear features from each of the segmented nuclei were extracted
(Morphologic features include: Area Overlap Ratio, Average Radial Ratio, Com-
pactness, Convexity, Mean Nuclear Area, Mean Nuclear Perimeter, Mean Nu-
clear Diameter). We apply PCA to this feature set to visualize the arrangement
of different Gleason patterns in the reduced embedding space. Figure 4(a) illus-
trates the PCA representation of the 7 morphologic features averaged over each
of 40 studies (total of 80 images) and reveals a clear separation between Gleason
patterns 3 and 4. Similarly, by exposing the labels for the Gleason scores for each
of 40 studies (Figure 4(b)), one can appreciate the separation between Gleason
patterns 6, 7, 8, and 9. Note that the PCA plots suggest that the nuclear shape
features are able to capture the subtle morphologic differences between the differ-
ent Gleason patterns, in turn reflecting the accuracy of AdACM. The separation
of the intermediate primary grade 3 and grade 4 tumors in the reduced PCA
space was also quantitatively evaluated using a support vector machine (SVM)
classifier. For a database of 80 images, the SVM classifier achieved an accuracy
of 83.8 ± 0.4% in distinguishing primary grade 3 from 4. Classifier evaluation
was done via a 3 fold cross validation scheme, over 10 successive runs.

4.2 Evaluating Overlap Resolution and Segmentation Accuracy

Quantitative comparison of AdACM with a GAC (Geodesic Active Contour) [2]
and the Rousson-Deriche shape based model (RD) [5] was performed (see Ta-
ble 1). Overlap resolution was evaluated via: OR = #overlaps resolved

Total # of overlaps .

4.3 Computational Efficiency

We evaluated the computational efficiency of AdACM with respect to a hybrid
ACM (HACM) which did not employ selective invocation of the shape prior.



668 S. Ali et al.

−200
−100

0
100

200

−1

−0.5

0

0.5

1

−0.1

0

0.1

 

 

Grade 3
Grade 4

(a) (b)

Fig. 4. PCA representation of nuclear morphologic features reveals separation of (a)
primary grade 3 and grade 4 and (b) Gleason patterns 6, 7, 8 and 9

Table 1. Quantitative evaluation of segmentation, and Overlap Resolution between
the Geodesic Active Contour [2], Rousson-Deriche [5] and AdACM for 200 randomly
selected nuclei across the 80 TMA images

Sensitivity Specificity Mean Average Distance OR

GAC 0.28 0.92 7.1 0.04

RD 0.76 0.88 1.5 0.74

AdACM 0.82 1.0 1.1 0.90

On image patches of 200 × 200 pixels and in the presence of 120 nuclei with 40
overlaps, AdACM required 250s to accurately segment all objects and resolve
all intersections, compared to HACM which took 550s; all evaluations being
performed on a 3 GHz, dual core processor with 4 GB RAM.

5 Concluding Remarks

In this work we presented a new hybrid active contour that employs a shape prior
for concurrent segmentation of multiple nuclei. Our model (AdACM) selectively
invokes the shape prior terms (computationally expensive step) in those image re-
gions where objects overlap, overlaps being determined via a concavity detection
scheme. This selective invocation of energy terms in the variational formulation
yields a hybrid ACM that is both accurate and computationally efficient. Mor-
phologic features derived from nuclei segmented via AdACM enabled discrimi-
nation of different Gleason grade patterns, on prostate cancer TMAs, reflecting
the segmentation accuracy of AdACM. Additionally, independent segmentation
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based performance based measures also reflected the efficacy of our scheme. In
future work we intend to leverage AdACM in the context of nuclear and cell
segmentation in other domains within digital pathology.
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Abstract. Automated neural circuit reconstruction through electron
microscopy (EM) images is a challenging problem. In this paper, we
present a novel method that exploits multi-scale contextual information
together with Radon-like features (RLF) to learn a series of discrimi-
native models. The main idea is to build a framework which is capable
of extracting information about cell membranes from a large contextual
area of an EM image in a computationally efficient way. Toward this goal,
we extract RLF that can be computed efficiently from the input image
and generate a scale-space representation of the context images that are
obtained at the output of each discriminative model in the series. Com-
pared to a single-scale model, the use of a multi-scale representation of
the context image gives the subsequent classifiers access to a larger con-
textual area in an effective way. Our strategy is general and independent
of the classifier and has the potential to be used in any context based
framework. We demonstrate that our method outperforms the state-of-
the-art algorithms in detection of neuron membranes in EM images.

Keywords: Machine learning, Membrane detection, Neural circuit re-
construction, Multi-scale context, Radon-like features (RLF).

1 Introduction

Electron microscopy (EM) is an imaging technique that can generate nanoscale
images that contain enough details for reconstruction of the connectome, i.e.,
the wiring diagram of neural processes in the mammalian nervous system [4,11].
Because of the large number and size of images, their manual analysis is infeasible
and in some cases may take more than a decade [3]. Hence, automated image
analysis is required. However, fully automatic reconstruction of the connectome
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is challenging because of the complex intracellular structures, noisy texture, and
the large variation in the physical topologies of cells [5]. Therefore, a successful
automated method must overcome these issues in order to reconstruct the neural
circuit with high accuracy.

Many supervised and unsupervised techniques have been proposed to solve
the connectome reconstruction problem. Macke et al. [9] proposed a contour
propagation model that minimizes an energy function to find the cell mem-
branes. However, this active contour model can get stuck in local minima due
to the complex intracellular structures and may find false boundaries [10]. Vu
and Manjunath [12] proposed a graph-cut framework that minimizes an energy
defined over the image intensity and the intensity gradient field. But, the graph-
cut method might be misled by the complex intracellular structure of the EM
images and requires the user to correct segmentation errors. Kumar et al. [7]
introduced a set of so-called Radon-like features (RLF), which take into account
both texture and geometric information and overcome the problem of complex
intracellular structures but only achieve modest accuracy levels due to the lack
of a supervised classification scheme.

Supervised methods that use contextual information [2] have been proven
successful to solve the reconstruction problem. Jain et al. [5] proposed a convo-
lutional neural network for restoring membranes in EM images. Convolutional
networks take advantage of context information from increasingly large regions
as one progresses through the layers. To capture context from a large region,
however, convolutional networks need many hidden layers, adding significant
complexity to training. Jurrus et al. [6] proposed a framework to detect neuron
membranes that integrates information from the original image together with
contextual information by learning a series of artificial neural networks (ANN).
This makes the network much easier to train because the classifiers in the series
are trained one at a time and in sequential order.

Even though these approaches improve the accuracy of the segmentation over
unsupervised methods, they don’t utilize the context information in an effective
way. In [6], Jurrus et al. utilize context locations that are selected by a stencil
and use them as input to a neural network. The performance of the classifier
can be improved by using context from a large neighborhood; however, it is not
practical to sample every pixel in a very large context area because of compu-
tational complexity and the overfitting problem. To address this problem, we
develop a multi-scale strategy to take advantage of context from a larger area
while keeping the computational complexity tractable and avoiding overfitting.
We apply a series of linear averaging filters to the context image consecutively
to generate a scale-space representation [1] of the context. Thus the classifier
can have as input a small neighborhood, i.e., a 5 × 5 patch, at the original
scale as well as the coarser scales. While scale-space methods are well known,
to our knowledge their use for modelling context in classification problems is
novel. Combining scale-space representation and contextual information leads
to a novel segmentation framework that provides more information from the
context for the classifiers in the series. This extra information from the context
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helps the later classifiers to correct the mistakes of the early stages and thus
improves the overall performance.

In addition to the above problem with existing context based methods that
we address in this paper, we also note that none of the existing methods make
use of textural and geometric features specifically designed for connectome im-
ages. We also address this by incorporating the recently proposed Radon-like
features [7] in our method. RLF, which can be efficiently computed, provide our
classifier discriminative information in addition to that present in the grayscale
micrograph. It must be emphasized that [7] proposes that RLF be used only at
a single scale with certain set of parameters. We sidestep this parameter tuning
problem by computing RLF at various scales and using them all in our classifier.

2 Sequential Training with Context

Given a set of training images and corresponding groundtruth labels for each
pixel, we learn a set of classifiers in sequential order as in [6]. The first classifier
is trained only on the input image features. The output of this classifier, the
probability image map, is used together with the input image features to train
the next stage classifier. The algorithm iterates until the improvement in the
performance of the current stage is small compared to the previous stage.

Let X = (x(i, j)) be the input image that comes with a ground truth Y =
(y(i, j)) where y(i, j) ∈ {−1, 1} is the class label for pixel (i, j). The training
set is T = {(Xk, Yk); k = 1, . . . ,M} where M denotes the number of training
images. A typical approximation of the MAP estimator for Y givenX is obtained
by using the Markov assumption that decreases the computational complexity:

ŷMAP (i, j) = argmax p(y(i, j)|XN(i,j)), (1)

where N(i, j) denotes all the pixels in the neighborhood of pixel (i, j). Instead
of using the entire input image the classifier has access to a limited number of
neighborhood pixels at each input pixel (i, j).

In the series-ANN [6], a classifier is trained based on the neighborhood features
at each pixel. We call the output image of this classifier C = (c(i, j)). The next
classifier is trained not only on the neighborhood features of X but also on the
neighborhood features of C. The MAP estimation for this classifier is:

ŷMAP (i, j) = argmax p(y(i, j)|XN(i,j), CN ′ (i,j)), (2)

where N
′
(i, j) is the set of all neighborhood pixels of pixel (i, j) in the context

image. Note that N and N ′ can be different neighborhoods. The same procedure
is repeated through the different stages of the series classifier until convergence. It
is worth mentioning that Eq. 2 is closely related to the CRF model [8]; however
in our approach multiple models in series are learned, which is an important
difference from standard CRF approaches.

According to Eq. 2, context provides prior information to solve the MAP prob-
lem. Even though the Markov assumption is reasonable and makes the problem
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Fig. 1. Illustration of the multi-scale contextual model. Each feature map is sampled
at different scales (green rectangles). The blue rectangles represent the center pixel and
the yellow rectangles show the selected context locations at original scale.

tractable, it still results in a significant loss of information from global context.
However, it is not practical to sample every pixel in a very large neighborhood
area of the context due to the computational complexity problem and overfitting.
Previous approaches [6] have used a sparse sampling approach to cover large con-
text areas as shown in Fig. 2(a). However, single pixel contextual information
at the finest scale conveys only partial information about its neighborhood in
a sparse sampling strategy while each pixel at the coarser scales conveys more
information about its surrounding area due to the use of averaging filters. Fur-
thermore, single pixel context is noise prone whereas context at coarser scales
is more robust due to the averaging. In other words, while it is reasonable to
sample context at the finest level at a distance of a few pixels, sampling context
at the finest scale tens to hundreds of pixels away is error prone and presents a
non-optimal summary of its local area. We argue that more information can be
obtained by creating a scale-space representation of the context and allowing the
classifier access to samples of small patches at each scale. Conceptually, sampling
from scale-space representation increases the effective size of the neighborhood
while keeping the number of samples small.

3 Multi-scale Contextual Model

Multi-scale contextual model is shown in Fig. 1. Each stage is composed of two
layers: a classifier layer and a feature pooling layer. Classifier: Different types
of classifiers can be used in series architecture such as AdaBoost and neural net-
works. The first classifier operates only on the input image while the later stages
are trained on both the input image and the context from the previous stage.
Feature Pooling: In the conventional series structure, the feature pooling layer
simply takes sparsely sampled context as in Fig. 2(a) and combines them with
input image features. In the proposed method, the feature pooling layer treats
each feature map as an image and creates a scale-space representation by apply-
ing a series of Gaussian filters. This results in a feature map with lower resolution
that is robust against the small variations in the location of features and noise.
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(a) (b)

Fig. 2. Sampling strategy of context: Sam-
pling at (a) single-scale (b) multi-scale.
Green circles illustrate the summary of pix-
els in dashed circles.

Fig. 2 shows our sampling strategy
versus single space sampling strategy.
In Fig. 2(b) the classifier can have as
an input the center 3× 3 patch at the
original scale and a summary of 8 sur-
rounding 3 × 3 patches at a coarser
scale. The green circles in Fig. 2(b)
are more informative and less noisy
compared to their equivalent red cir-
cles in Fig. 2(a). The summaries be-
come more informative as the number
of scales increases. For example, in the
first scale the summary is computed
over 9 pixels (3 × 3 neighborhood) while it is computed over 25 pixels (5 × 5
neighborhood) in the second scale. In practice, we use Gaussian averaging filters
to create the summary (green circles in Fig. 2(b)). Other methods like max-
pooling can be used instead of Gaussian averaging. The number of scales and
the Gaussian filter size are set according to the application characteristics.

Taking multiple scales into account, Eq. 2 can be rewritten as:

ŷMAP (i, j) = argmax p(y(i, j)|XN(i,j), CN
′
0(i,j)(0), . . . , CN

′
l (i,j)(l)), (3)

where C(0), . . . , C(l) denote the scale-space representation of the context and
N

′
0(i, j), . . . , N

′
l (i, j) are corresponding sampling structures. Unlike Eq. 2 that

uses the context in a single scale, Eq. 3 takes advantage of multi-scale contextual
information. Although in Eq. 3 we still use the Markov assumption, the size of
the neighborhood is larger, and thus we lose less information compared to Eq. 2.

4 Radon-Like Features

As mentioned earlier, the overall performance of our method can be improved
by extracting RLF from the input image in addition to pixel intensities. It has
been shown empirically that trying to segment the structures in connectome im-
ages using only geometric or textural features is not very effective [7]. RLF were
proposed as a remedy to this problem as they are designed to leverage both
the texture and the geometric information present in the connectome images
to segment structures of interest. As a first step, RLF use the edge map of a
connectome image as a means to divide it into regions that are defined by the
geometry of the constituent structures. Next, for each pixel, line segments with
their end points on the closest edges are computed in all directions. Finally, for
each pixel, a scalar value is computed along each direction using the informa-
tion in the original image along these line segments using a so-called extraction
function. Extraction functions tuned to extract cell boundaries, mitochondria,
vesicles, and cell background have been defined in [7].

In this paper, we are interested in obtaining the cell boundaries from the
connectome images. Moreover, we intend to define a supervised scheme to au-
tomatically segment the cell boundaries while [7] presented an unsupervised,
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and consequently less accurate, framework. Both of these objectives allow us to
use the RLF in a more targeted manner towards cell boundary segmentation.
Foremost, we use not just the cell boundary extraction function but also the
mitochondria extraction function since we train our classifier to not select mito-
chondria boundaries as cell boundaries. Secondly, we use what we call multi-scale
RLF by computing RLF at multiple scales and for different edge threshold set-
tings. This richer set of features allow for correct detection of cell boundaries in
the regions that cannot be detected by the original RLF as proposed in [7] and
avoids the need for extensive parameter tuning.

Combining these set of features and the multi-scale contextual model, the
update equation for the framework can be written as:

ŷk+1
MAP (i, j) = argmax p(y(i, j)|XN(i,j), f(XN(i,j)),

Ck
N

′
0(i,j)

(0), . . . , Ck
N

′
l (i,j)

(l)), (4)

where Ck(0), . . . , Ck(l) are the scale-space representation of the output of clas-
sifier stage k, k = 1, . . . ,K − 1, ŷk+1

MAP (i, j) is the output of the stage k + 1 and
f(.) is the RLF function. In turn, the k+1’st classifier output as defined in Eq. 4
creates the context for the k+ 2’nd classifier. The model repeats Eq. 4 until the
performance improvement between two consecutive stages becomes small.

5 Experimental Results

We test the performance of our proposed method on a set of 70 EM images
of a mouse cerebellum with corresponding groundtruth maps. The groundtruth
images were annotated by an expert who marked neuron membranes with a one-
pixel wide contour. 14 of these images were used for training and the remaining
images were used for testing. In this experiment, we employed MLP-ANNs as
the classifier in a series structure, as in [6]. Each MLP-ANN in the series had
one hidden layer with 10 nodes.

To optimize the network performance, 5.5 million pixels were randomly se-
lected from the training images such that there are twice the number of negative
examples, than positive as in [6]. Input image feature vectors were computed on
a 11 × 11 stencil centered on each pixel. The same stencil was used to sample
the RLF for cell boundaries (at two scales) and mitochondria. The context fea-
tures were computed using 5×5 patches at four scales (one at original resolution
and three at coarser scales). The classifier then gets as input the 5 × 5 patch
at the original resolution (CN

′
0(i,j)(0)) and 5 × 5 patches at three coarser scales

(CN
′
l (i,j)(l)). The ROC curves for pixel-wise membrane detection are shown in

Fig. 3(a). It can be noted that our method outperforms the state-of-the-art meth-
ods proposed in [6] and [7]. The average F − value = 2×Precision×Recall

Precision+Recall at zero
threshold for different stages and different methods is shown in Fig. 3(b). The
performance of the multi-scale contextual model without RLF is 2.65% better
than using a single-scale context [6]. This improvement increases to 3.76% when
we use RLF in addition to multi-scale contextual information. Fig. 4 shows some
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Fig. 3. (a) The ROC curves for test images and for different methods. (b) The F-value
at different stages for different methods. The F-value for RLF method [7] is 59.40%.

(a) (b) (c) (d) (e) (f)

Fig. 4. Test results for the membrane detection for two different input images: (a)
Input image, the remaining columns show the output results (probability maps) for (b)
RLF [7] (c) single-scale context [6] (d) multi-scale context (e) multi-scale context+RLF,
and (f) shows the manually marked groundtruth

examples of our test images and corresponding membrane detection results for
different methods. As shown in our results, the approach presented here per-
forms better in membrane detection compared to [6], and it is more successful
in removing undesired parts (green rectangles) from inside cells.

6 Conclusion

This paper introduced an image segmentation algorithm using a multi-scale con-
textual model. The main idea of our method is to take advantage of context
images at different scales instead of a single scale, thereby providing the classi-
fier with a richer set of information. We also modified the RLF to extract more
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information from different structures of the input image. The proposed method
is very general and does not depend on any particular classifier or any specific
scale-space method.

We applied our method to membrane detection in EM images. Results in-
dicate that the proposed method outperforms state-of-the-art algorithms while
maintaining nearly identical computational complexity. We used linear averaging
filters to generate the scale-space representation of the context. In future work,
we will conduct a full study of the effect of scale-space depth and the advantage
of using other linear or nonlinear scale-space methods.
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Declerck, Jérôme III-338, III-667
De Craene, Mathieu III-256
Deguet, Anton II-615
Dehghan, Ehsan I-291, I-307, II-615
de Jong, Pim A. III-207



Author Index 681

Delgado Leyton, Edgar J.F. III-9
Delingette, Hervé I-500
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Fouard, Céline I-137
Fouque, Anne-Laure II-9
Framme, Carsten I-33
Frangi, Alejandro F. I-355, II-50, II-393,

III-256, III-330, III-395
Freiman, M. II-74
Friman, Ola I-436
Frisoni, Giovanni B. II-663
Fritsch, Virgile III-264
Fritscher, Karl III-554
Fritscher, Karl D. II-393
Fu, Chi-Wing II-384
Fu, Y.B. I-428
Fuhrmann, Simon II-500
Fulham, Michael J. III-191
Funka-Lea, Gareth I-243, III-403,

III-471

Gangloff, Jacques I-57
Gao, Fei I-492
Gao, Mingchen I-468
Gaonkar, Bilwaj II-459
Gardiazabal, José II-582
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Pécot, Thierry II-343
Pedemonte, Stefano I-581
Peikari, Mohammad I-299
Pelletier, Daniel II-327
Pengcheng, Shi II-242
Pennec, Xavier II-631, II-663
Perez-Rossello, J.M. II-74



686 Author Index

Perrin, Douglas P. III-520
Perrot, Matthieu II-310
Peters, Jochen III-463
Peters, Terry III-107
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