

Lecture Notes in Computer Science 6932
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Shlomo Geva Jaap Kamps Ralf Schenkel
Andrew Trotman (Eds.)

Comparative Evaluation
of Focused Retrieval

9th International Workshop of the Initiative
for the Evaluation of XML Retrieval, INEX 2010
Vught, The Netherlands, December 13-15, 2010
Revised Selected Papers

13

Volume Editors

Shlomo Geva
Queensland University of Technology
Faculty of Science and Technology
Brisbane QLD 4001, Australia
E-mail: s.geva@qut.edu.au

Jaap Kamps
University of Amsterdam
Archives and Information Studies/Humanities
1012 XT Amsterdam, The Netherlands
E-mail: kamps@uva.nl

Ralf Schenkel
Saarland University
Multimodal Computing and Interaction
66123 Saarbrücken, Germany
E-mail: schenkel@mmci.uni-saarland.de

Andrew Trotman
University of Otago
Department of Computer Science
Dunedin 9054, New Zealand
E-mail: andrew@cs.otago.ac.nz

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-23576-4 e-ISBN 978-3-642-23577-1
DOI 10.1007/978-3-642-23577-1

Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011936359

CR Subject Classification (1998): H.3, H.3.3-4, H.2.8, H.2.3, H.2.4, E.1

LNCS Sublibrary: SL 3 – Information Systems and Application,
incl. Internet/Web and HCI

© Springer-Verlag Berlin Heidelberg 2011

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Welcome to the proceedings of the 9th Workshop of the Initiative for the
Evaluation of XML Retrieval (INEX)!

Traditional IR focuses on pure text retrieval over “bags of words,” but the
use of structure—such as document structure, semantic metadata, entities, or
genre/topical structure—is of increasing importance on the Web and in profes-
sional search. INEX has been pioneering the use of structure for focused retrieval
since 2002, by providing large test collections of structured documents, uniform
evaluation measures, and a forum for organizations to compare their results.

2010 was an exciting year for INEX, in which a number of new tracks started.
In total, nine research tracks were included, studying different aspects of focused
information access:

Ad Hoc Track: investigated the effectiveness of XML-IR and Passage Retrieval
for highly focused retrieval by restricting result length to “snippets” or
discounting for reading effort, using Wikipedia as a corpus.

Book Track: investigated techniques to support users in reading, searching,
and navigating full texts of digitized books, by constructing reading lists of
books for a given topic, or by looking for book pages that refute or confirm
a factual statement.

Data-Centric Track: investigated focused retrieval over a strongly structured
collection of IMDb documents, containing information about various entities
like movies, actors, directors.

Interactive Track: investigated the behavior of users when interacting with
XML documents, working on large set of Amazon book data (formal book
descriptions) augmented by LibraryThing data (user-generated data).

Link-the-Wiki Track: investigated link discovery in the Te Ara encyclopedia.
Question Answering Track: investigated real-world focused information

needs formulated as natural language questions, using the collection struc-
ture to construct readable summaries of question context and lists of answers.

Relevance Feedback Track: investigated the utility of incremental passage
level feedback by simulating a searcher’s interaction, with submissions in
the form of a executable computer program.

Web Service Discovery: investigated techniques for discovery of Web services
based on searching service descriptions provided in WSDL.

XML-Mining Track: investigated structured document mining, especially the
classification and clustering of semi-structured documents.

The aim of the INEX 2010 workshop was to bring together researchers who
participated in the INEX 2010 campaign. During the year participating orga-
nizations contributed to the building of a large-scale XML test collection by
creating topics, performing retrieval runs, and providing relevance assessments.

VI Preface

The workshop concluded the results of this large-scale effort, summarized and
addressed issues encountered, and devised a work plan for the future evalua-
tion of XML retrieval systems. There proceedings report on the final results of
INEX 2010. We received 42 submissions, already being a selection of work at
INEX, and accepted a total of 37 papers based on peer-reviewing, yielding an
88% acceptance rate.

All INEX tracks start from having available suitable text collections. We
gratefully acknowledge the data made available by: Amazon and LibraryThing
(Interactive Track), New Zealand Ministry for Culture and Heritage (Te Ara,
Link-the-Wiki Track), Microsoft Research (Book Track), the Internet Movie
Database (Data Centric Track), and the Wikimedia Foundation (Adhoc,
Relevance Feedback, and XML-Mining Track).

After many years at Schloss Dagstuhl, and a trip to Brisbane, Australia, in
2009, the INEX workshop returned to Europe and was held in The Nether-
lands. Thanks to the Amsterdam team for preserving the unique atmosphere of
INEX—a setting where informal interaction and discussion occur naturally and
frequently—in the unique location of Huize Bergen in Vught.

We thank the Dutch Association for Information Science (Werkgemeenschap
Informatiewetenschap, WGI) for sponsoring the best student award, which was
presented to Ning Gao (Peking University) for the paper entitled “Combining
Strategy for XML Retrieval.”

Finally, INEX is run for, but especially by, the participants. It was a result of
tracks and tasks suggested by participants, topics created by particants, systems
built by participants, and relevance judgments provided by participants. So the
main thank you goes to each of these individuals!

May 2011 Shlomo Geva
Jaap Kamps

Ralf Schenkel
Andrew Trotman

Organization

Steering Committee

Charles L. A. Clarke University of Waterloo, Canada
Norbert Fuhr University of Duisburg-Essen, Germany
Shlomo Geva Queensland University of Technology, Australia
Jaap Kamps University of Amsterdam, The Netherlands
Mounia Lalmas Yahoo Research Barcelona, Spain
Stephen Robertson Microsoft Research Cambridge, UK
Andrew Trotman University of Otago, New Zealand
Arjen P. de Vries CWI, The Netherlands
Ellen Voorhees NIST, USA

Chairs

Shlomo Geva Queensland University of Technology, Australia
Jaap Kamps University of Amsterdam, The Netherlands
Ralf Schenkel Max-Planck-Institut für Informatik, Germany
Andrew Trotman University of Otago, New Zealand

Track Organizers

Ad Hoc
Paavo Arvola University of Tampere, Finland
Shlomo Geva Queensland University of Technology, Australia
Jaap Kamps University of Amsterdam, The Netherlands
Ralf Schenkel Max-Planck-Institut für Informatik, Germany
Andrew Trotman University of Otago, New Zealand

Book
Antoine Doucet University of Caen, France
Gabriella Kazai Microsoft Research Cambridge, UK
Marijn Koolen University of Amsterdam, The Netherlands
Monica Landoni University of Lugano, Switzerland

Data-Centric
Qiuyue Wang Renmin University, China
Andrew Trotman University of Otago, New Zealand

VIII Organization

Interactive (iTrack)

Thomas Beckers University of Duisburg-Essen, Germany
Norbert Fuhr University of Duisburg-Essen, Germany
Ragnar Nordlie Oslo University College, Norway
Nils Pharo Oslo University College, Norway

Link-the-Wiki
Shlomo Geva Queensland University of Technology, Australia
Andrew Trotman University of Otago, New Zealand

Question Answering (QA)

Veronique Moriceau LIMSI-CNRS, University Paris-Sud 11, France
Eric SanJuan University of Avignon, France
Xavier Tannier LIMSI-CNRS, University Paris-Sud 11, France

Relevance Feedback
Timothy Chappell Queensland University of Technology, Australia
Shlomo Geva Queensland University of Technology, Australia

Web Service Discovery

James Thom RMIT University, Australia
Chen Wu Curtin University of Technology, Australia

XML-Mining

Chris De Vries Queensland University of Technology, Australia
Sangeetha Kutty Queensland University of Technology, Australia
Richi Nayak Queensland University of Technology, Australia
Andrea Tagarelli University of Calabria, Italy

Table of Contents

Ad Hoc Track

Overview of the INEX 2010 Ad Hoc Track . 1
Paavo Arvola, Shlomo Geva, Jaap Kamps, Ralf Schenkel,
Andrew Trotman, and Johanna Vainio

The Potential Benefit of Focused Retrieval in Relevant-in-Context
Task . 33

Paavo Arvola and Johanna Vainio

ENSM-SE and UJM at INEX 2010: Scoring with Proximity and Tag
Weights . 44

Michel Beigbeder, Mathias Géry, Christine Largeron, and
Howard Seck

LIP6 at INEX’10: OWPC for Ad Hoc track . 54
David Buffoni, Nicolas Usunier, and Patrick Gallinari

A Useful Method for Producing Competitive Ad Hoc Task Results 63
Carolyn J. Crouch, Donald B. Crouch, Sandeep Vadlamudi,
Ramakrisha Cherukuri, and Abhijeet Mahule

Relaxed Global Term Weights for XML Element Search 71
Atsushi Keyaki, Kenji Hatano, and Jun Miyazaki

Searching the Wikipedia with Public Online Search Engines 82
Miro Lehtonen

Extended Language Models for XML Element Retrieval 89
Rongmei Li and Theo van der Weide

Book Track

Overview of the INEX 2010 Book Track: Scaling Up the Evaluation
Using Crowdsourcing . 98

Gabriella Kazai, Marijn Koolen, Jaap Kamps, Antoine Doucet, and
Monica Landoni

LIA at INEX 2010 Book Track . 118
Romain Deveaud, Florian Boudin, and Patrice Bellot

The Book Structure Extraction Competition with the Resurgence
Software for Part and Chapter Detection at Caen University 128

Emmanuel Giguet and Nadine Lucas

X Table of Contents

Focus and Element Length for Book and Wikipedia Retrieval 140
Jaap Kamps and Marijn Koolen

Combining Page Scores for XML Book Retrieval . 154
Ray R. Larson

OUC’s Participation in the 2010 INEX Book Track 164
Michael Preminger and Ragnar Nordlie

Data Centric Track

Overview of the INEX 2010 Data Centric Track . 171
Andrew Trotman and Qiuyue Wang

DCU and ISI@INEX 2010: Adhoc and Data-Centric Tracks 182
Debasis Ganguly, Johannes Leveling, Gareth J.F. Jones,
Sauparna Palchowdhury, Sukomal Pal, and Mandar Mitra

Automatically Generating Structured Queries in XML Keyword
Search . 194

Felipe da C. Hummel, Altigran S. da Silva, Mirella M. Moro, and
Alberto H.F. Laender

UPF at INEX 2010: Towards Query-Type Based Focused Retrieval 206
Georgina Ramı́rez

BUAP: A First Approach to the Data-Centric Track of INEX 2010 219
Darnes Vilariño, David Pinto, Carlos Balderas, Mireya Tovar, and
Saul León

Interactive Track

Overview of the INEX 2010 Interactive Track . 227
Nils Pharo, Thomas Beckers, Ragnar Nordlie, and Norbert Fuhr

Using Eye-Tracking for the Evaluation of Interactive Information
Retrieval . 236

Thomas Beckers and Dennis Korbar

Link the Wiki Track

Overview of the INEX 2010 Link the Wiki Track . 241
Andrew Trotman, David Alexander, and Shlomo Geva

University of Otago at INEX 2010 . 250
Xiang-Fei Jia, David Alexander, Vaughn Wood, and
Andrew Trotman

Table of Contents XI

Question Answering Track

Overview of the INEX 2010 Question Answering Track (QA@INEX) . . . 269
Eric SanJuan, Patrice Bellot, Veronique Moriceau, and
Xavier Tannier

The GIL Summarizers: Experiments in the Track QA@INEX’10 282
Edmundo-Pavel Soriano-Morales, Alfonso Medina-Urrea,
Gerardo Sierra Mart́ınez, and Carlos-Francisco Méndez-Cruz

The Cortex Automatic Summarization System at the QA@INEX Track
2010 . 290

Juan-Manuel Torres-Moreno and Michel Gagnon

The REG Summarization System with Question Reformulation at
QA@INEX Track 2010 . 295

Jorge Vivaldi, Iria da Cunha, and Javier Ramı́rez

Relevance Feedback Track

Overview of the INEX 2010 Focused Relevance Feedback Track 303
Timothy Chappell and Shlomo Geva

Exploring Accumulative Query Expansion for Relevance Feedback 313
Debasis Ganguly, Johannes Leveling, and Gareth J.F. Jones

Combining Strategies for XML Retrieval . 319
Ning Gao, Zhi-Hong Deng, Jia-Jian Jiang, Sheng-Long Lv, and
Hang Yu

Web Service Discovery Track

Overview of the INEX 2010 Web Service Discovery Track 332
James A. Thom and Chen Wu

Semantics-Based Web Service Discovery Using Information Retrieval
Techniques . 336

Jun Hou, Jinglan Zhang, Richi Nayak, and Aishwarya Bose

The BUAP Participation at the Web Service Discovery Track of INEX
2010 . 347

Maŕıa Josefa Somodevilla, Beatriz Beltrán, David Pinto,
Darnes Vilariño, and José Cruz Aaron

XML Retrieval More Efficient Using Double Scoring Scheme 351
Tanakorn Wichaiwong and Chuleerat Jaruskulchai

XII Table of Contents

XML Mining Track

Overview of the INEX 2010 XML Mining Track: Clustering and
Classification of XML Documents . 363

Christopher M. De Vries, Richi Nayak, Sangeetha Kutty,
Shlomo Geva, and Andrea Tagarelli

An Iterative Clustering Method for the XML-Mining Task of the INEX
2010 . 377

Mireya Tovar, Adrián Cruz, Blanca Vázquez, David Pinto,
Darnes Vilariño, and Azucena Montes

PKU at INEX 2010 XML Mining Track . 383
Songlin Wang, Feng Liang, and Jianwu Yang

Author Index . 397

Overview of the INEX 2010 Ad Hoc Track

Paavo Arvola1, Shlomo Geva2, Jaap Kamps3,
Ralf Schenkel4, Andrew Trotman5, and Johanna Vainio1

1 University of Tampere, Tampere, Finland
paavo.arvola@uta.fi, s.johanna.vainio@uta.fi

2 Queensland University of Technology, Brisbane, Australia
s.geva@qut.edu.au

3 University of Amsterdam, Amsterdam, The Netherlands
kamps@uva.nl

4 Max-Planck-Institut für Informatik, Saarbrücken, Germany
schenkel@mpi-sb.mpg.de

5 University of Otago, Dunedin, New Zealand
andrew@cs.otago.ac.nz

Abstract. This paper gives an overview of the INEX 2010 Ad Hoc
Track. The main goals of the Ad Hoc Track were three-fold. The first
goal was to study focused retrieval under resource restricted conditions
such as a small screen mobile device or a document summary on a hit-
list. This leads to variants of the focused retrieval tasks that address
the impact of result length/reading effort, thinking of focused retrieval
as a form of “snippet” retrieval. The second goal was to extend the ad
hoc retrieval test collection on the INEX 2009 Wikipedia Collection with
additional topics and judgments. For this reason the Ad Hoc track topics
and assessments stayed unchanged. The third goal was to examine the
trade-off between effectiveness and efficiency by continuing the Efficiency
Track as a task in the Ad Hoc Track. The INEX 2010 Ad Hoc Track
featured four tasks: the Relevant in Context Task, the Restricted Relevant
in Context Task, the Restrict Focused Task, and the Efficiency Task. We
discuss the setup of the track, and the results for the four tasks.

1 Introduction

The main novelty of the Ad Hoc Track at INEX 2010 is its focus on retrieval
under resource restricted conditions such as a small screen mobile device or a
document summary on a hit-list. Here, retrieving full articles is no option, and
we need to find the best elements/passages that convey the relevant information
in the Wikipedia pages. So one can view the retrieved elements/passages as
extensive result snippets, or as an on-the-fly document summary, that allow
searchers to directly jump to the relevant document parts.

There are three main research questions underlying the Ad Hoc Track. The
first goal is to study focused retrieval under resource restricted conditions, think-
ing of focused retrieval as a form of “snippet” retrieval, suggesting measures that
factor in reading effort or by tasks that have restrictions on the length of results.

S. Geva et al. (Eds.): INEX 2010, LNCS 6932, pp. 1–32, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

2 P. Arvola et al.

The second goal is to extend the ad hoc retrieval test collection on the INEX
2009 Wikipedia Collection—four times the size, with longer articles, and ad-
ditional semantic markup than the collection used at INEX 2006–2008—with
additional topics and judgments. For this reason the Ad Hoc track topics and
assessments stayed unchanged, and the test collections of INEX 2009 and 2010
can be combined to form a valuable resource for future research. The third goal
is to examine the trade-off between effectiveness and efficiency by continuing
the Efficiency Track as a task in the Ad Hoc Track. After running as a sep-
arate track for two years, the Efficiency Track was merged into the Ad Hoc
Track for 2010. For this new Efficiency Task, participants were asked to report
efficiency-oriented statistics for their Ad Hoc-style runs on the 2010 Ad Hoc
topics, enabling a systematic study of efficiency-effectiveness trade-offs with the
different systems.

To study the value of the document structure through direct comparison of
element and passage retrieval approaches, the retrieval results were liberalized
to arbitrary passages since INEX 2007. Every XML element is, of course, also a
passage of text. At INEX 2008, a simple passage retrieval format was introduced
using file-offset-length (FOL) triplets, that allow for standard passage retrieval
systems to work on content-only versions of the collection. That is, the offset
and length are calculated over the text of the article, ignoring all mark-up. The
evaluation measures are based directly on the highlighted passages, or arbitrary
best-entry points, as identified by the assessors. As a result it is possible to fairly
compare systems retrieving elements, ranges of elements, or arbitrary passages.
These changes address earlier requests to liberalize the retrieval format to ranges
of elements [3] and to arbitrary passages of text [13].

The INEX 2010 Ad Hoc Track featured four tasks:

1. The Relevant in Context Task asks for non-overlapping results (elements or
passages) grouped by the article from which they came, but is now evaluated
with an effort-based measure.

2. The Restricted Relevant in Context Task is a variant in which we restrict re-
sults to maximally 500 characters per article, directly simulating the require-
ments of resource bounded conditions such as small screen mobile devices or
summaries in a hitlist.

3. The Restrict Focused Task asks for a ranked-list of non-overlapping results
(elements or passages) when restricted to maximally 1,000 chars per topic,
simulating the summarization of all information available in the Wikipedia.

4. The Efficiency Task asks for a ranked-list of results (elements or passages)
by estimated relevance and varying length (top 15, 150, or 1,500 results per
topic), enabling a systematic study of efficiency-effectiveness trade-offs with
the different systems.

Note that the resulting test collection also supports the INEX Ad Hoc tasks from
earlier years: Thorough, Focused, and Best in Context. We discuss the results for
the four tasks, giving results for the top 10 participating groups and discussing
their best scoring approaches in detail.

Overview of the INEX 2010 Ad Hoc Track 3

The rest of the paper is organized as follows. First, Section 2 describes the
INEX 2010 ad hoc retrieval tasks and measures. Section 3 details the collection,
topics, and assessments of the INEX 2010 Ad Hoc Track. In Section 4, we report
the results for the Relevant in Context Task (Section 4.2); the Restricted in
Context Task (Section 4.3); the Restricted Focused Task (Section 4.4); and the
Efficiency Task (Section 4.5). Section 5 discusses the differences between the
measures that factor in result length and reading effort, and the old measures
that were based on precision and recall of highlighted text retrieval. Section 6
looks at the article retrieval aspects of the submissions, treating any article with
highlighted text as relevant. Finally, in Section 7, we discuss our findings and
draw some conclusions.

2 Ad Hoc Retrieval Track

In this section, we briefly summarize the ad hoc retrieval tasks and the sub-
mission format (especially how elements and passages are identified). We also
summarize the measures used for evaluation.

2.1 Tasks

Relevant in Context Task. The scenario underlying the Relevant in Context
Task is the return of a ranked list of articles and within those articles the rel-
evant information (captured by a set of non-overlapping elements or passages).
A relevant article will likely contain relevant information that could be spread
across different elements. The task requires systems to find a set of results that
corresponds well to all relevant information in each relevant article. The task
has a number of assumptions:

Display results will be grouped per article, in their original document order,
access will be provided through further navigational means, such as a docu-
ment heat-map or table of contents.

Users consider the article to be the most natural retrieval unit, and prefer an
overview of relevance within this context.

At INEX 2010, the task is interpreted as a form of “snippet” retrieval, and the
evaluation will factor in result length/reading effort.

Restricted Relevant in Context Task. The scenario underlying Restricted
Relevant in Context addresses the requirements of resource bounded conditions,
such as small screen mobile devices or summaries in a hitlist, directly by imposing
a limit of maximally 500 characters per article.

Restricted Focused Task. The scenario underlying the Focused Task is the
return, to the user, of a ranked list of elements or passages for their topic of
request. The Focused Task requires systems to find the most focused results that
satisfy an information need, without returning “overlapping” elements (shorter

4 P. Arvola et al.

is preferred in the case of equally relevant elements). Since ancestors elements
and longer passages are always relevant (to a greater or lesser extent) it is a
challenge to chose the correct granularity.

The task has a number of assumptions:

Display the results are presented to the user as a ranked-list of results.
Users view the results top-down, one-by-one.

At INEX 2010, we interpret the task as a form of summarization of all informa-
tion available in the Wikipedia, and restrict results to exactly 1,000 chars per
topic.

Efficiency Task. The efficiency task is different in its focus on the trade-
off between effectiveness and efficiency. Specifically, participants should create
runs with the top-15, top-150, and top-1500 results for the Thorough task, a
system-oriented task that has been used for many years in the Ad Hoc Track.
Additionally, participants reported runtimes and I/O costs for evaluating each
query as well as general statistics about the hard- and software environment
used for generating the runs.

The core system’s task underlying most XML retrieval strategies is the ability
to estimate the relevance of potentially retrievable elements or passages in the
collection. Hence, the Thorough Task simply asks systems to return elements or
passages ranked by their relevance to the topic of request. Since the retrieved
results are meant for further processing (either by a dedicated interface, or by
other tools) there are no display-related assumptions nor user-related assump-
tions underlying the task.

2.2 Submission Format

Since XML retrieval approaches may return arbitrary results from within docu-
ments, a way to identify these nodes is needed. At INEX 2010, we allowed the
submission of three types of results: XML elements, file-offset-length (FOL) text
passages, and ranges of XML elements. The submission format for all tasks is a
variant of the familiar TREC format extended with two additional fields.

topic Q0 file rank rsv run id column 7 column 8

Here:

– The first column is the topic number.
– The second column (the query number within that topic) is currently unused

and should always be Q0.
– The third column is the file name (without .xml) from which a result is

retrieved, which is identical to the 〈id〉 of the Wikipedia
– The fourth column is the rank the document is retrieved.
– The fifth column shows the retrieval status value (RSV) or score that gen-

erated the ranking.
– The sixth column is called the “run tag” identifying the group and for the

method used.

Overview of the INEX 2010 Ad Hoc Track 5

Element Results. XML element results are identified by means of a file name
and an element (node) path specification. File names in the Wikipedia collection
are unique, and (with the .xml extension removed) identical to the 〈id〉 of the
Wikipedia document. That is, file 9996.xml contains the article as the target
document from the Wikipedia collection with 〈id〉 9996.

Element paths are given in XPath, but only fully specified paths are allowed.
The next example identifies the only (hence first) “article” element, then within
that, the first “body” element, then the first “section” element, and finally within
that the first “p” element.

/article[1]/body[1]/section[1]/p[1]

Importantly, XPath counts elements from 1 and counts element types. For ex-
ample if a section had a title and two paragraphs then their paths would be:
title[1], p[1] and p[2].

A result element may then be identified unambiguously using the combination
of its file name (or 〈id〉) in column 3 and the element path in column 7. Column
8 will not be used. Example:

1 Q0 9996 1 0.9999 I09UniXRun1 /article[1]/bdy[1]/sec[1]

1 Q0 9996 2 0.9998 I09UniXRun1 /article[1]/bdy[1]/sec[2]

1 Q0 9996 3 0.9997 I09UniXRun1 /article[1]/bdy[1]/sec[3]/p[1]

Here the results are from 9996 and select the first section, the second section,
and the first paragraph of the third section.

FOL Passages. Passage results can be given in File-Offset-Length (FOL) for-
mat, where offset and length are calculated in characters with respect to the
textual content (ignoring all tags) of the XML file. A special text-only version of
the collection is provided to facilitate the use of passage retrieval systems. File
offsets start counting a 0 (zero).

A result element may then be identified unambiguously using the combination
of its file name (or 〈id〉) in column 3 and an offset in column 7 and a length in
column 8. The following example is effectively equivalent to the example element
result above:

1 Q0 9996 1 0.9999 I09UniXRun1 465 3426

1 Q0 9996 2 0.9998 I09UniXRun1 3892 960

1 Q0 9996 3 0.9997 I09UniXRun1 4865 496

The results are from article 9996, and the first section starts at the 466th char-
acter (so 465 characters beyond the first character which has offset 0), and has
a length of 3,426 characters.

Ranges of Elements. To support ranges of elements, elemental passages can
be specified by their containing elements. We only allow elemental paths (ending
in an element, not a text-node in the DOM tree) plus an optional offset.

A result element may then be identified unambiguously using the combination
of its file name (or 〈id〉) in column 3, its start at the element path in column 7,
and its end at the element path in column 8. Example:

6 P. Arvola et al.

1 Q0 9996 1 0.9999 I09UniRun1 /article[1]/bdy[1]/sec[1] /article[1]/bdy[1]/sec[1]

Here the result is again the first section from 9996. Note that the seventh column
will refer to the beginning of an element (or its first content), and the eighth
column will refer to the ending of an element (or its last content). Note that this
format is very convenient for specifying ranges of elements, e.g., the first three
sections:

1 Q0 9996 1 0.9999 I09UniXRun1 /article[1]/bdy[1]/sec[1] /article[1]/bdy[1]/sec[3]

2.3 Evaluation Measures

We briefly summarize the main measures used for the Ad Hoc Track. Since
INEX 2007, we allow the retrieval of arbitrary passages of text matching the
judges ability to regard any passage of text as relevant. Unfortunately this simple
change has necessitated the deprecation of element-based metrics used in prior
INEX campaigns because the “natural” retrieval unit is no longer an element,
so elements cannot be used as the basis of measure. We note that properly
evaluating the effectiveness in XML-IR remains an ongoing research question at
INEX.

The INEX 2010 measures are solely based on the retrieval of highlighted text.
We simplify all INEX tasks to highlighted text retrieval and assume that systems
will try to return all, and only, highlighted text. We then compare the characters
of text retrieved by a search engine to the number and location of characters of
text identified as relevant by the assessor. For the earlier Best in Context Task
we used the distance between the best entry point in the run to that identified
by an assessor.

Relevant in Context Task (INEX 2009). The evaluation of the Relevant
in Context Task is based on the measures of generalized precision and recall [10]
over articles, where the per document score reflects how well the retrieved text
matches the relevant text in the document. Specifically, the per document score
is the harmonic mean of precision and recall in terms of the fractions of retrieved
and highlighted text in the document. We use an Fβ score with β = 1/4 making
precision four times as important as recall:

Fβ =
(1 + β2) · Precision · Recall
(β2 · Precision) + Recall

.

We are most interested in overall performances, so the main measure is mean
average generalized precision (MAgP). We also present the generalized precision
scores at early ranks (5, 10, 25, 50).

Relevant in Context Task (INEX 2010). The INEX 2010 version of the
Relevant in Context Task is as before, but viewed as a form of snippet retrieval,
and uses a different per-document score that takes reading effort into account.
Specifically, the per document score is the character precision at a tolerance

Overview of the INEX 2010 Ad Hoc Track 7

to irrelevance (T2I) point. In this measure, the user is expected to read the
returned passages in document order. When result passages are read, the user is
expected to continue reading from the beginning of the document and read the
remaining parts in document order. The reading stops when the user’s tolerance
to irrelevance (i.e. the amount of irrelevant characters) is met, or all characters
of a document are read. In other words, the reading/browsing is expected to end
when the user has bypassed 300 (default) irrelevant characters. The T2I(300)
score per document is again used in the measure based on generalized precision
and recall. We are most interested in overall performances so the main measure
is mean average generalized precision (MAgP). We also present the generalized
precision scores at early ranks (5, 10, 25, 50).

Restricted Relevant in Context Task. The evaluation of the Restricted Rel-
evant in Context Task is the same as of the (unrestricted) Relevant in Context
Task using T2I(300). So the main performance measure is mean average gen-
eralized precision (MAgP) based on T2I(300). We also present the generalized
precision scores at early ranks (5, 10, 25, 50).

Restricted Focused Task. We are interested in giving a quick overview of
the relevant information in the whole Wikipedia. This is a variant of the Fo-
cused Task where we restrict the results to exactly 1,000 characters per topic.
Evaluation will be in terms of set-based precision over the retrieved characters
(char prec). In addition, we will report on the earlier Focused measures such as
mean average interpolated precision (MAiP), calculated over over 101 standard
recall points (0.00, 0.01, 0.02, ..., 1.00). We also present interpolated precision
at early recall points (iP[0.00], iP[0.01], iP[0.05], and iP[0.10]),

Efficiency Task. Precision is measured as the fraction of retrieved text that
was highlighted. Recall is measured as the fraction of all highlighted text that
has been retrieved. The Efficiency Task is evaluated as the INEX 2009 Thorough
Task, which is basically identical to the Focused task. Since the Thorough Tasks
allows for “overlapping” results, the evaluation will automatically discount text
seen before in the ranked list. The notion of rank is relatively fluid for pas-
sages so we use an interpolated precision measure which calculates interpolated
precision scores at selected recall levels. Since we are most interested in overall
performance, the main measure is mean average interpolated precision (MAiP),
calculated over over 101 standard recall points (0.00, 0.01, 0.02, ..., 1.00). We also
present interpolated precision at early recall points (iP[0.00], iP[0.01], iP[0.05],
and iP[0.10]),

For further details on the INEX measures, we refer to [1, 9].

3 Ad Hoc Test Collection

In this section, we discuss the corpus, topics, and relevance assessments used in
the Ad Hoc Track.

8 P. Arvola et al.

3.1 Corpus

Starting in 2009, INEX uses a new document collection based on the Wikipedia.
The original Wiki syntax has been converted into XML, using both general
tags of the layout structure (like article, section, paragraph, title, list and item),
typographical tags (like bold, emphatic), and frequently occurring link-tags. The
annotation is enhanced with semantic markup of articles and outgoing links,
based on the semantic knowledge base YAGO, explicitly labeling more than
5,800 classes of entities like persons, movies, cities, and many more. For a more
technical description of a preliminary version of this collection, see [12].

The collection was created from the October 8, 2008 dump of the English
Wikipedia articles and incorporates semantic annotations from the 2008-w40-
2 version of YAGO. It contains 2,666,190 Wikipedia articles and has a total
uncompressed size of 50.7 Gb. There are 101,917,424 XML elements of at least
50 characters (excluding white-space).

Figure 1 shows part of a document in the corpus. The whole article has been
encapsulated with tags, such as the 〈group〉 tag added to the Queen page.

This allows us to find particular article types easily, e.g., instead of a query
requesting articles about Freddie Mercury:

//article[about(., Freddie Mercury)]

we can specifically ask about a group about Freddie Mercury:

//group[about(., Freddie Mercury)]

which will return pages of (pop) groups mentioning Freddy Mercury. In fact, also
all internal Wikipedia links have been annotated with the tags assigned to the
page they link to, e.g., in the example about the link to Freddie Mercury gets
the 〈singer〉 tag assigned. We can also use these tags to identify pages where
certain types of links occur, and further refine the query as:

//group[about(.//singer, Freddie Mercury)]

The exact NEXI query format used to express the structural hints will be ex-
plained below.

3.2 Topics

The ad hoc topics were created by participants following precise instructions.
Candidate topics contained a short CO (keyword) query, an optional structured
CAS query, a phrase title, a one line description of the search request, and nar-
rative with a details of the topic of request and the task context in which the in-
formation need arose. For candidate topics without a 〈castitle〉 field, a default
CAS-query was added based on the CO-query: //*[about(., "CO-query")].
Figure 2 presents an example of an ad hoc topic. Based on the submitted can-
didate topics, 107 topics were selected for use in the INEX 2010 Ad Hoc Track
as topic numbers 2010001–2010107.

Overview of the INEX 2010 Ad Hoc Track 9

<article xmlns:xlink="http://www.w3.org/1999/xlink">

<holder confidence="0.9511911446218017" wordnetid="103525454">

<entity confidence="0.9511911446218017" wordnetid="100001740">

<musical_organization confidence="0.8" wordnetid="108246613">

<artist confidence="0.9511911446218017" wordnetid="109812338">

<group confidence="0.8" wordnetid="100031264">

<header>

<title>Queen (band)</title>

<id>42010</id>

...

</header>

<bdy>

...

<songwriter wordnetid="110624540" confidence="0.9173553029164789">

<person wordnetid="100007846" confidence="0.9508927676800064">

<manufacturer wordnetid="110292316" confidence="0.9173553029164789">

<musician wordnetid="110340312" confidence="0.9173553029164789">

<singer wordnetid="110599806" confidence="0.9173553029164789">

<artist wordnetid="109812338" confidence="0.9508927676800064">

<link xlink:type="simple" xlink:href="../068/42068.xml">

Freddie Mercury</link></artist>

</singer>

</musician>

</manufacturer>

</person>

</songwriter>

...

</bdy>

</group>

</artist>

</musical_organization>

</entity>

</holder>

</article>
Fig. 1. Ad Hoc Track document 42010.xml (in part)

Each topic contains
Title. A short explanation of the information need using simple keywords, also

known as the content only (CO) query. It serves as a summary of the content
of the user’s information need.

Castitle. A short explanation of the information need, specifying any structural
requirements, also known as the content and structure (CAS) query. The
castitle is optional but the majority of topics should include one.

Phrasetitle. A more verbose explanation of the information need given as a
series of phrases, just as the 〈title〉 is given as a series of keywords.

Description. A brief description of the information need written in natural
language, typically one or two sentences.

Narrative. A detailed explanation of the information need and the description
of what makes an element relevant or not. The 〈narrative〉 should explain

10 P. Arvola et al.

<topic id="2010048" ct_no="371">

<title>Pacific navigators Australia explorers</title>

<castitle>

//explorer[about(., Pacific navigators Australia explorers)]

</castitle>

<phrasetitle>"Pacific navigators" "Australia explorers"</phrasetitle>

<description>

Find the navigators and explorers in the Pacific sea in search of

Australia

</description>

<narrative>

I am doing an essay on the explorers who discovered or charted

Australia. I am already aware of Tasman, Cook and La Prouse and

would like to get the full list of navigators who contributed to

the discovery of Australia. Those for who there are disputes about

their actual discovery of (parts of) Australia are still

acceptable. I am mainly interested by the captains of the ships

but other people who were on board with those navigators still

relevant (naturalists or others). I am not interested in those

who came later to settle in Australia.

</narrative>

</topic>

Fig. 2. INEX 2010 Ad Hoc Track topic 2010048

not only what information is being sought, but also the context and motiva-
tion of the information need, i.e., why the information is being sought and
what work-task it might help to solve. Assessments will be made on compli-
ance to the narrative alone; it is therefore important that this description is
clear and precise.

The 〈castitle〉 contains the CAS query, an XPath expressions of the form:
A[B] or A[B]C[D] where A and C are navigational XPath expressions using only the
descendant axis. B and D are predicates using functions for text; the arithmetic
operators <, <=, >, and >= for numbers; or the connectives and and or. For
text, the about function has (nearly) the same syntax as the XPath function
contains. Usage is restricted to the form about(.path, query) where path is empty
or contains only tag-names and descendant axis; and query is an IR query having
the same syntax as the CO titles (i.e., query terms). The about function denotes
that the content of the element located by the path is about the information
need expressed in the query. As with the title, the castitle is only a hint to the
search engine and does not have definite semantics.

3.3 Judgments

Topics were assessed by participants following precise instructions. The assessors
used the GPXrai assessment system that assists assessors in highlight relevant
text. Topic assessors were asked to mark all, and only, relevant text in a pool of
documents. After assessing an article with relevance, a separate best entry point

Overview of the INEX 2010 Ad Hoc Track 11

Table 1. Statistics over judged and relevant articles per topic

total # per topic
topics number min max median mean st.dev

judged articles 52 39,031 735 757 751 750.6 4.2
articles with relevance 52 5,471 5 506 65 105.2 112.8
highlighted passages 52 13,154 5 4,343 111 253.0 625.6
highlighted characters 52 17,641,119 3,841 2,624,502 129,440 339,252.3 527,349.0

Number of passages per article

0 2 4 6 8 10 12 14 16 18 20 22 24 28 31 33 39 41 44 56 63 80 104250500

0

5000

10000

15000

20000

25000

30000

35000

40000

Fig. 3. Distribution of passages over articles

decision was made by the assessor. All INEX 2010 tasks were evaluated against
the text highlighted by the assessors, but the test collection does support the
tasks of earlier years, such as the Thorough, Focused and Relevant in Context
Tasks evaluated in terms of precision/recall, as well as the Best in Context Task
evaluated against the best-entry-points.

The relevance judgments were frozen on November 3, 2010. At this time 52
topics had been fully assessed. Moreover, for 7 topics there is a second set of
judgments by another assessor. All results in this paper refer to the 52 topics
with the judgments of the first assigned assessor, which is typically the topic
author.

– The 52 assessed topics were numbered 2010n with n: 003, 004, 006, 007,
010, 014, 016–021, 023, 025–027, 030–041, 043, 045–050, 054, 056, 057, 061,
068–070, 072, 075, 079, 095–097, 100, and 105–107.

Table 1 presents statistics of the number of judged and relevant articles, and
passages. In total 39,031 articles were judged. Relevant passages were found
in 5,471 articles. The mean number of relevant articles per topic is 105, but
the distribution is skewed with a median of 65. There were 13,154 highlighted
passages. The mean was 253 passages and the median was 111 passages per
topic.

Figure 3 presents the number of articles with the given number of passages.
The vast majority of relevant articles (3,388 out of 5,471) had only a single
highlighted passage, and the number of passages quickly tapers off.

12 P. Arvola et al.

Table 2. Statistics over relevant articles

total # per relevant article
topics number min max median mean st.dev

best entry point offset 52 5,471 2 130,618 665 3,166.1 7,944.9
first relevant character offset 52 5,471 2 90,258 525 2,622.2 6,850.0
length relevant documents 52 5,471 249 179,200 5,545 12,084.9 17,274.5
relevant characters 52 5,471 4 179,166 897 3,224.5 7,326.1
fraction highlighted text 52 5,471 0.00036 1.000 0.239 0.358 0.332

Best entry point offset

0 20000 40000 60000 80000 100000 120000 140000

0

1000

2000

3000

4000

5000

6000

Fig. 4. Distribution of best entry point offsets

Assessors where requested to provide a separate best entry point (BEP) judg-
ment, for every article where they highlighted relevant text. Table 2 presents
statistics on the best entry point offset, on the first highlighted or relevant char-
acter, and on the fraction of highlighted text in relevant articles. We first look
at the BEPs. The mean BEP is well within the article with 3,166 but the dis-
tribution is very skewed with a median BEP offset of only 665. Figure 4 shows
the distribution of the character offsets of the 5,471 best entry points. It is clear
that the overwhelming majority of BEPs is at the beginning of the article.

The statistics of the first highlighted or relevant character (FRC) in Table 2
give very similar numbers as the BEP offsets: the mean offset of the first relevant
character is 2,662 but the median offset is only 525. This suggests a relation
between the BEP offset and the FRC offset. Figure 5 shows a scatter plot the
BEP and FRC offsets. Two observations present themselves. First, there is a clear
diagonal where the BEP is positioned exactly at the first highlighted character
in the article. Second, there is also a vertical line at BEP offset zero, indicating
a tendency to put the BEP at the start of the article even when the relevant
text appears later on.

Table 2 also shows statistics on the length of relevant articles. Many articles
are relatively short with a median length of 5,545 characters, the mean length is
12,085 characters. The length of highlighted text in characters has a median of
897 (mean length is 3,225). Table 2 also show that amount of relevant text varies
from almost nothing to almost everything. The mean fraction is 0.36, and the
median is 0.24, indicating that typically one-third of the article is relevant. Given

Overview of the INEX 2010 Ad Hoc Track 13

Best entry point offset

0 20000 40000 60000 80000 100000120000140000160000

F
ir
s
t
re

le
v
a
n
t
c
h
a
ra

c
te

r
o
ff
s
e
t

0

20000

40000

60000

80000

100000

Fig. 5. Scatter plot of best entry point offsets versus the first relevant character

that the majority of relevant articles contain such a large fraction of relevant text
plausibly explains that BEPs being frequently positioned on or near the start of
the article.

3.4 Questionnaires

At INEX 2010, as in earlier years, all candidate topic authors and assessors were
asked to complete a questionnaire designed to capture the context of the topic
author and the topic of request. The candidate topic questionnaire (shown in
Table 3) featured 20 questions capturing contextual data on the search request.
The post-assessment questionnaire (shown in Table 4) featured 14 questions
capturing further contextual data on the search request, and the way the topic
has been judged (a few questions on GPXrai were added to the end).

The responses to the questionnaires show a considerable variation over topics
and topic authors in terms of topic familiarity; the type of information requested;
the expected results; the interpretation of structural information in the search
request; the meaning of a highlighted passage; and the meaning of best entry
points. There is a need for further analysis of the contextual data of the topics
in relation to the results of the INEX 2010 Ad Hoc Track.

4 Ad Hoc Retrieval Results

In this section, we discuss, for the four ad hoc tasks, the participants and their
results.

14 P. Arvola et al.

Table 3. Candidate Topic Questionnaire

B1 How familiar are you with the subject matter of the topic?
B2 Would you search for this topic in real-life?
B3 Does your query differ from what you would type in a web search engine?
B4 Are you looking for very specific information?
B5 Are you interested in reading a lot of relevant information on the topic?
B6 Could the topic be satisfied by combining the information in different (parts of)

documents?
B7 Is the topic based on a seen relevant (part of a) document?
B8 Can information of equal relevance to the topic be found in several documents?
B9 Approximately how many articles in the whole collection do you expect to contain

relevant information?
B10 Approximately how many relevant document parts do you expect in the whole

collection?
B11 Could a relevant result be (check all that apply): a single sentence; a single para-

graph; a single (sub)section; a whole article
B12 Can the topic be completely satisfied by a single relevant result?
B13 Is there additional value in reading several relevant results?
B14 Is there additional value in knowing all relevant results?
B15 Would you prefer seeing: only the best results; all relevant results; don’t know
B16 Would you prefer seeing: isolated document parts; the article’s context; don’t know
B17 Do you assume perfect knowledge of the DTD?
B18 Do you assume that the structure of at least one relevant result is known?
B19 Do you assume that references to the document structure are vague and imprecise?
B20 Comments or suggestions on any of the above (optional)

Table 4. Post Assessment Questionnaire

C1 Did you submit this topic to INEX?
C2 How familiar were you with the subject matter of the topic?
C3 How hard was it to decide whether information was relevant?
C4 Is Wikipedia an obvious source to look for information on the topic?
C5 Can a highlighted passage be (check all that apply): a single sentence; a single

paragraph; a single (sub)section; a whole article
C6 Is a single highlighted passage enough to answer the topic?
C7 Are highlighted passages still informative when presented out of context?
C8 How often does relevant information occur in an article about something else?
C9 How well does the total length of highlighted text correspond to the usefulness of

an article?
C10 Which of the following two strategies is closer to your actual highlighting:

(I) I located useful articles and highlighted the best passages and nothing more,
(II) I highlighted all text relevant according to narrative, even if this meant high-
lighting an entire article.

C11 Can a best entry point be (check all that apply): the start of a highlighted passage;
the sectioning structure containing the highlighted text; the start of the article

C12 Does the best entry point correspond to the best passage?
C13 Does the best entry point correspond to the first passage?
C14 Comments or suggestions on any of the above (optional)

Overview of the INEX 2010 Ad Hoc Track 15

Table 5. Participants in the Ad Hoc Track

Id Participant R
el

ev
a
n
t

in
C

o
n
te

x
t

R
es

tr
ic

te
d

R
el

ev
a
n
t

in
C

o
n
te

x
t

R
es

tr
ic

te
d

F
o
cu

se
d

E
ffi

ci
en

cy

C
O

q
u
er

y

C
A

S
q
u
er

y

P
h
ra

se
q
u
er

y

R
ef

er
en

ce
ru

n

E
le

m
en

t
re

su
lt
s

R
a
n
g
e

o
f
el

em
en

ts
re

su
lt

s

F
O

L
re

su
lt
s

#
va

li
d

ru
n
s

#
su

b
m

it
te

d
ru

n
s

4 University of Otago 8 1 1 58 68 0 0 0 68 0 0 68 68
5 Queensland University of Technology 4 5 6 0 15 0 0 7 8 2 5 15 15
6 University of Amsterdam 2 2 2 0 6 0 0 0 0 0 6 6 6
9 University of Helsinki 0 0 4 0 4 0 0 0 0 0 4 4 8

22 ENSM-SE 4 0 0 0 4 0 4 2 4 0 0 4 4
25 Renmin University of China 2 0 0 0 2 0 0 0 2 0 0 2 2
29 INDIAN STATISTICAL INSTI-

TUTE
2 2 3 3 10 0 0 1 3 0 7 10 12

55 Doshisha University 3 3 3 0 0 9 0 3 9 0 0 9 9
60 Saint Etienne University 1 0 0 0 1 0 0 1 1 0 0 1 2
62 RMIT University 2 0 0 0 2 0 0 0 2 0 0 2 2
65 Radboud University Nijmegen 1 1 3 0 4 1 0 3 0 0 5 5 9
68 University Pierre et Marie Curie -

LIP6
0 0 3 3 6 0 0 2 6 0 0 6 6

72 University of Minnesota Duluth 1 1 1 0 0 3 0 0 3 0 0 3 0
78 University of Waterloo 1 1 1 0 3 0 0 0 0 0 3 3 3
98 LIA - University of Avignon 4 2 2 3 11 0 11 0 3 0 8 11 10

138 Kasetsart University 0 0 0 0 0 0 0 0 0 0 0 0 3
167 Peking University 12 9 2 17 40 0 0 0 40 0 0 40 45
557 Universitat Pompeu Fabra 0 0 3 0 3 0 0 1 0 0 3 3 9

Total runs 47 27 34 84 179 13 15 20 149 2 41 192 213

4.1 Participation

A total of 213 runs were submitted by 18 participating groups. Table 5 lists
the participants and the number of runs they submitted, also broken down over
the tasks (Relevant in Context, Restricted Relevant in Context, Restricted Fo-
cused, or Efficiency); the used query (Content-Only or Content-And-Structure);
whether it used the Phrase query or Reference run; and the used result type
(Element, Range of elements, or FOL passage). Unfortunately, no less than 21
runs turned out to be invalid.

Participants were allowed to submit up to two element result-type runs per
task and up to two passage result-type runs per task (for all four tasks). In
addition, we allowed for an extra submission per task based on a reference run
containing an article-level ranking using the BM25 model. For the efficiency task,

16 P. Arvola et al.

Table 6. Top 10 Participants in the Ad Hoc Track Relevant in Context Task (INEX
2010 T2I-score)

Participant gP[5] gP[10] gP[25] gP[50] MAgP

p22-Emse303R 0.3752 0.3273 0.2343 0.1902 0.1977
p167-36p167 0.2974 0.2536 0.1921 0.1636 0.1615
p98-I10LIA1FTri 0.2734 0.2607 0.2067 0.1692 0.1588
p5-Reference 0.2736 0.2372 0.1800 0.1535 0.1521
p4-Reference 0.2684 0.2322 0.1714 0.1442 0.1436
p65-runRiCORef 0.2642 0.2310 0.1694 0.1431 0.1377
p25-ruc-2010-base2 0.2447 0.2198 0.1744 0.1359 0.1372
p62-RMIT10titleO 0.2743 0.2487 0.1880 0.1495 0.1335
p55-DUR10atcl 0.1917 0.1484 0.1163 0.0982 0.1014
p6-0 0.1798 0.1614 0.1314 0.1183 0.0695

we allowed sets of runs with 15, 150, 1,500 results per topic. The submissions
are spread well over the ad hoc retrieval tasks with 47 submissions for Relevant
in Context, 27 submissions for Restricted Relevant in Context, 34 for Restricted
Focused, and 84 submissions for Efficiency.

4.2 Relevant in Context Task

We now discuss the results of the Relevant in Context Task in which non-
overlapping results (elements or passages) need to be returned grouped by the
article they came from. The task was evaluated using generalized precision where
the generalized score per article was based on the retrieved highlighted text, fac-
toring reading effort with T2I(300). The official measure for the task was mean
average generalized precision (MAgP).

Table 6 shows the top 10 participating groups (only the best run per group is
shown) in the Relevant in Context Task. The first column lists the participant,
see Table 5 for the full name of group. The second to fifth column list generalized
precision at 5, 10, 25, 50 retrieved articles. The sixth column lists mean average
generalized precision.

Here we briefly summarize the information available about the experiments
conducted by the top three groups (based on MAgP).

ENSM-SE. An element run, using the keyword (CO) query, the phrase title
and the reference run.
Description: The method for scoring one document/element is based on the
proximity of query terms in the document [2]. In this basic method, the in-
fluence of query terms is modelized by triangular functions. For the Run
Emse303R, the height of the triangle was enlarged proportionnally to a
weight learnt with the 2009 queries and assessments [5]. In the final run
the elements and the documents are sorted with many keys. The first doc-
uments returned are those that appear both in our list and in the reference
run, then documents from our list. For each document, elements are returned
according to their score.

Overview of the INEX 2010 Ad Hoc Track 17

Peking University. An element run, using the keyword (CO) query.
Description: Starting from a BM25 article retrieval run, then according to
the semantic query model MAXimal Lowest Common Ancestor (MAXLCA),
candidate element results are extracted. These elements are further ranked
by BM25 and Distribution Measurements.

LIA – University of Avignon. A FOL run, using the keyword (CO) query,
and the phrase query.
Description: Based on advanced query expansion. We first retrieve the 10 top
documents with a baseline query. The queries of this baseline are generated
by combining the words from the 〈title〉 and 〈phrasetitle〉 fields of the
topics. The documents are ranked with a language modeling approach and
the probabilities are estimated using Dirichlet smoothing. We select the 50
most frequent unigrams, 20 most frequent 2-grams and 10 most frequent
3-grams from these 10 top-ranked documents, and we use them to expand
the baseline query, allowing term insertions within the 2-grams and 3-grams.
Finally, we retrieve the 1000 top documents with this expanded query and
we get the file offset lengths corresponding to the first ¡section¿ field of each
document.

Based on the information from these and other participants:

– The runs ranked ninth (p55-DUR10atcl) is using the CAS query. All other
runs use only the CO query in the topic’s title field.

– The first (p22-Emse303R), second (p167-36p167) and fourth (p5-Reference)
run retrieve elements; the second (p167-36p167) and tenth (p6-0) run use
FOL passages.

– Solid article ranking seems a prerequisite for good overall performance, with
fifth (p4-Reference) through ninth (p55-DUR10atcl) runs retrieving only full
articles.

4.3 Restricted Relevant in Context Task

We now discuss the results of the Restricted Relevant in Context Task in which
we allow for only 500 characters per article to be retrieved. The Restricted
Relevant in Context Task was also evaluated using generalized precision with
the generalized score per article based on T2I(300). The official measure for the
task was mean average generalized precision (MAgP).

Table 7 shows the top 10 participating groups (only the best run per group
is shown) in the Restricted Relevant in Context Task. The first column lists the
participant, see Table 5 for the full name of group. The second to fifth column
list generalized precision at 5, 10, 25, 50 retrieved articles. The sixth column lists
mean average generalized precision.

Here we briefly summarize the information available about the experiments
conducted by the top three groups (based on MAgP).

Peking University. Element retrieval run using the CO query.
Description: This is a variant of the run for the Relevant in Context task.
That is, starting from a BM25 article retrieval run, then according to the

18 P. Arvola et al.

Table 7. Top 10 Participants in the Ad Hoc Track Restricted Relevant in Context
Task (INEX 2010 T2I-score)

Participant gP[5] gP[10] gP[25] gP[50] MAgP

p167-32p167 0.2910 0.2474 0.1872 0.1595 0.1580
p98-I10LIA2FTri 0.2631 0.2503 0.1972 0.1621 0.1541
p5-Reference 0.2722 0.2362 0.1785 0.1520 0.1508
p4-Reference 0.2684 0.2322 0.1714 0.1442 0.1436
p65-runReRiCORef 0.2641 0.2313 0.1686 0.1428 0.1375
p78-UWBOOKRRIC2010 0.1111 0.1001 0.0874 0.0671 0.0650
p55-DURR10atcl 0.1555 0.1300 0.1003 0.0822 0.0600
p6-categoryscore 0.1439 0.1191 0.1053 0.0980 0.0576
p29-ISI2010 rric ro 0.1979 0.1673 0.1183 0.1008 0.0485
p72-1 0.0000 0.0000 0.0000 0.0000 0.0000

semantic query model MAXimal Lowest Common Ancestor (MAXLCA),
candidate element results are extracted. These elements are further ranked
by BM25 and Distribution Measurements. Here, the first 500 characters are
returned for each element.

LIA – University of Avignon. FOL passage retrieval using the CO query
and phrases.
Description: Based on advanced query expansion. We first retrieve the 10 top
documents with a baseline query. The queries of this baseline are generated
by combining the words from the 〈title〉 and 〈phrasetitle〉 fields of the
topics. The documents are ranked with a language modeling approach and
the probabilities are estimated using Dirichlet smoothing. We select the 50
most frequent unigrams, 20 most frequent 2-grams and 10 most frequent
3-grams from these 10 top-ranked documents, and we use them to expand
the baseline query, allowing term insertions within the 2-grams and 3-grams.
Finally, we only select the 500 first characters of the first 〈section〉 field of
each document (or less if the field contains less than 500 characters).

Queensland University of Technology. Element retrieval run using the CO
query, based on the reference run. Description: Starting from a BM25 article
retrieval run on an index of terms and tags-as-terms (produced by Otago),
the top 50 retrieved articles are further processed by identifying the first
element (in reading order) containing any of the search terms. The list is
padded with the remaining articles.

Based on the information from these and other participants:

– The best run (p167-32p167), the third run (p5-Reference), and the tenth
run (p72-1) retrieve elements. The fourth run (p4-Reference), seventh run
(p55-DURR10atcl), eighth run (p6-categoryscore) retrieve full articles, and
the remaining four runs retrieve FOL passages.

– With the exception of the runs ranked seventh (p55-DURR10atcl) and tenth
(p72-1), which used the CAS query, all the other best runs per group use
the CO query.

Overview of the INEX 2010 Ad Hoc Track 19

Table 8. Top 10 Participants in the Ad Hoc Track Restricted Focused Task

Participant char prec iP[.01] iP[.05] iP[.10] MAiP

p68-LIP6-OWPCparentFo 0.4125 0.1012 0.0385 0.0000 0.0076
p55-DURF10SIXF� 0.3884 0.1822 0.0382 0.0000 0.0088
p9-yahRFT 0.3435 0.1186 0.0273 0.0000 0.0069
p98-LIAenertexTopic 0.3434 0.1500 0.0000 0.0000 0.0077
p167-40p167 0.3370 0.1105 0.0384 0.0000 0.0067
p65-runFocCORef 0.3361 0.0964 0.0435 0.0000 0.0067
p5-Reference 0.3199 0.1170 0.0431 0.0000 0.0070
p557-UPFpLM45co 0.3066 0.1129 0.0264 0.0000 0.0070
p4-Reference 0.3036 0.0951 0.0429 0.0000 0.0063
p29-ISI2010 rfcs ref 0.2451 0.1528 0.0192 0.0000 0.0072

4.4 Restricted Focused Task

We now discuss the results of the Restricted Focused Task in which a ranked-list
of non-overlapping results (elements or passages) was required, totalling maxi-
mally 1,000 characters per topic.

The official measure for the task was the set-based character precision over
the 1,000 characters retrieved (runs were restricted or padded to retrieve exactly
1,000 characters if needed). Table 8 shows the best run of the top 10 participat-
ing groups. The first column gives the participant, see Table 5 for the full name
of group. The second column gives the character-based precision over 1,000 char-
acters retrieved, the third to fifth column give the interpolated precision at 1%,
5%, and 10% recall. The sixth column gives mean average interpolated precision
over 101 standard recall levels (0%, 1%, . . . , 100%).

Here we briefly summarize what is currently known about the experiments
conducted by the top three groups (based on official measure for the task,
char prec).

LIP6. An element retrieval run using the CO query.
Description: A learning to rank run that is retrieving elements for the CO
queries (negated words are removed and words are not stemmed). We limit
the domain of elements to the tag-types: {sec, ss, ss1, ss2, ss3, ss4, p}.

Doshisha University. A manual element retrieval run, using the CAS query.
Description: We used the result reconstruction method from earlier years.
In this method, we aim to extract more relevant fragments without irrele-
vant parts to return appropriate granular fragments as search results. We
considered: 1) which granular fragments are more appropriate in overlapped
fragments, and 2) what size is more suitable for search results. Our method
combines neighbor relevant fragments to satisfy these views, by using the
initial fragments obtained by a well-known scoring technique: BM25E as a
basic scoring method for scoring each fragment, and ITF (inverse tag fre-
quency) instead of IPF (inverse path frequency) because there are a number
of tags in the test collection.

University of Helsinki. A passage retrieval run using the CO query.

20 P. Arvola et al.

Table 9. Participants in the Ad Hoc Track Efficiency Task

Participant iP[.00] iP[.01] iP[.05] iP[.10] MAiP

p167-18P167 0.4561 0.4432 0.4215 0.3936 0.2354
p4-OTAGO-2010-10topk-18 0.4425 0.4272 0.4033 0.3697 0.2304
p68-LIP6-OWPCRefRunTh 0.4790 0.4651 0.4343 0.3985 0.2196
p29-ISI2010 thorough.1500 0.2931 0.2930 0.2480 0.2145 0.0846
p98-I10LIA4FBas 0.5234 0.4215 0.2500 0.1677 0.0417

Description: The result list for each topic consists of a total of 1,000 char-
acters from the beginning of the top two articles as ranked by the Yahoo!
search-engine. Retrieving the passages from the beginning of the article is
based on the assumption that the best entry point is in the beginning of the
article. Because Yahoo! does not suggest any other entry point to the article,
retrieving the beginning of the article is also what Yahoo! provides to users.
Only the title field of the topic was used in the query.

Based on the information from these and other participants:

– Nine runs use the CO query. Only the second run (p55-DURF10SIXF) is a
manual run using the CAS query.

– Only the ninth ranked system, (p4-Reference), retrieves full articles. The
runs ranked first (p68-LIP6-OWPCparentFo), second (p55-DURF10SIXF�),
and fifth (p167-40p167), and seventh (p5-Reference), retrieve elements. The
remaining five runs retrieve FOL passages.

4.5 Efficiency Task

We now discuss the results of the Efficiency Task focusing on efficiency rather
than effectiveness, and especially the trade-off between efficiency and effective-
ness. Participants were asked to submit ranked-lists of 15 results, or 150 results,
or 1,500 results per topic. The official measure for the task was mean average
interpolated precision (MAiP). Table 9 shows the best run of the participating
groups. The first column gives the participant, see Table 5 for the full name of
group. The second to fifth column give the interpolated precision at 0%, 1%,
5%, and 10% recall. The sixth column gives mean average interpolated precision
over 101 standard recall levels (0%, 1%, . . . , 100%).

Here we briefly summarize what is currently known about the experiments
conducted by the top three groups (based on official measure for the task, MAiP).

Peking University. An element retrieval run using the CO query.
Description: This is again a variant of the runs for (Restricted) Relevant
in Context. That is, starting from a BM25 article retrieval run, then ac-
cording to the semantic query model MAXimal Lowest Common Ancestor
(MAXLCA), candidate element results are extracted. These elements are
further ranked by BM25 and Distribution Measurements. Here, the param-
eters in ranking functions are tuned by a learning method.

Overview of the INEX 2010 Ad Hoc Track 21

iP[0.01]

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 10 100 1000 10000

runtime (ms)

iP
[0

.0
1]

Peking University

Otago top-15

Otago top-150

Otago top-1500

MAiP

0

0.05

0.1

0.15

0.2

0.25

1 10 100 1000 10000

runtime (ms)

M
A

iP

Peking University Otago top-15

Otago top-150 Otago top-1500

Fig. 6. Trade-off between Effectiveness and Efficiency: iP[0.01] (top) and MAiP
(bottom)

University of Otago. An article retrieval run using the CO query.

Description: The goal of the Otago runs was sub-millisecond per query. This
was achieved using three techniques: impact ordered indexes, static pruning,
and the use of a top-k ranking algorithm. Run p4-OTAGO-2010-10topk-18
scored the best in precision because it did the least pruning and least top-k
restriction. It used BM25 and index-time S-stripper stemming. The fastest
runs were, indeed, sub-millisecond, but at a reduced precision.

LIP6. An article retrieval run using the CO query.

Description: A learning to rank run that is retrieving top 1,500 documents
for the CO queries (negated words are removed and words are not stemmed).
For each document, the /article[1] element is retrieved.

22 P. Arvola et al.

Table 10. Statistical significance (t-test, one-tailed, 95%)

(a) Relevant in Context Task (b) Restricted Relevant in Context Task
1 2 3 4 5 6 7 8 9 10

p22 � � � � � � � � �
p167 - � � � � � � �
p98 - - � � � � �
p5 � � � � � �
p4 � - - � �
p65 - - � �
p25 - � �
p62 � �
p55 -
p6

1 2 3 4 5 6 7 8 9 10

p167 - � � � � � � � �
p98 - - - � � � � �
p5 � � � � � � �
p4 � � � � � �
p65 � � � � �
p78 - - � �
p55 - - �
p6 - �
p29 �
p72

(c) Restricted Focused Task (d) Efficiency Task
1 2 3 4 5 6 7 8 9 10

p68 - - - - - � � � �
p55 - - - - - - - �
p9 - - - - - - �
p98 - - - - - �
p167 - - - - �
p65 - - - -
p5 - - -
p557 - -
p4 -
p29

1 2 3 4 5

p167 - - � �
p4 - � �
p68 � �
p29 �
p98

Figure 6 shows the effectiveness, in terms of either iP[0.01] or MAiP, against
the run-time efficiency. There is a vague diagonal trend—the best scoring runs
tend to be the least efficient—but the trend is weak at best. Only the University
of Otago submitted provided a large set of runs with all details. The MAiP scores
tend to improve with longer runs, other things being equal this is no surprise.
For the iP[0.01] scores, this is hardly the case.

Based on the information from these and other participants:

– The top scoring run (p167-18P167) uses elements, and the fifth run (p98-
I10LIA4FBas) uses FOL passages. The other three runs retrieve articles.

– All runs use the CO query.

4.6 Significance Tests

We tested whether higher ranked systems were significantly better than lower
ranked system, using a t-test (one-tailed) at 95%. Table 10 shows, for each task,
whether it is significantly better (indicated by “�”) than lower ranked runs. For the
Relevant in Context Task, we see that the top run is significantly better than ranks
2 through 10. The second best run is significantly better than ranks 4 through 10.
The third run better than ranks 6–10, the fourth run better than ranks 5-10, the
fifth run better than runs 6 and 9–10, the sixth through eighth run better than runs

Overview of the INEX 2010 Ad Hoc Track 23

Table 11. Top 10 Participants in the Ad Hoc Track Relevant in Context Task (INEX
2009 F-score)

Participant gP[5] gP[10] gP[25] gP[50] MAgP

p22-Emse301R 0.3467 0.3034 0.2396 0.1928 0.1970
p167-21p167 0.3231 0.2729 0.2107 0.1767 0.1726
p4-Reference 0.3217 0.2715 0.2095 0.1751 0.1710
p25-ruc-2010-base2 0.2761 0.2627 0.2128 0.1686 0.1671
p65-runRiCORef 0.3190 0.2700 0.2078 0.1735 0.1623
p62-RMIT10title 0.2869 0.2585 0.1958 0.1573 0.1541
p98-I10LIA1FTri 0.2230 0.2048 0.1725 0.1421 0.1298
p55-DUR10atcl 0.2031 0.1663 0.1339 0.1096 0.1122
p29-ISI2010 ric ro 0.2082 0.1874 0.1429 0.1250 0.0693
p5-Reference 0.0978 0.0879 0.0698 0.0640 0.0634

9–10. Of the 45 possible pairs of runs, there are 36 (or 80%) significant differences,
making MAgP a very discriminative measure. For the Restricted Relevant in Con-
text Task, we see that the top run is significantly better than ranks 2 through 10.
The second best run is significantly better than ranks 6 through 10. The third run
better than ranks 4–10, the fourth run better than ranks 5–10, the fifth run better
than runs 6–10, the sixth run better than 9–10, and the seventh through ninth run
better than runs 10. Of the 45 possible pairs of runs, there are again 36 (or 80%)
significant differences, confirming that MAgP is a very discriminative measure.
For the Restricted Focused Task, we see that character precision at 1,000 charac-
ters is a rather unstable measure. The best run is significantly better than runs
7–10, and the runs ranked 2–5 and significantly better than the run ranked 10.
Of the 45 possible pairs of runs, there are only 8 (or 18%) significant differences.
Hence we should be careful when drawing conclusions based on the Focused Task
results. For the Efficiency Task, we see that the performance (measured by MAiP)
of the top scoring run is significantly better than the runs at rank 4 and 5. The
same holds for the second and third best run. The fourth best run is significantly
better than the run at rank 5. Of the 10 possible pairs of runs, there are 7 (or 70%)
significant differences.

5 Analysis of Reading Effort

In this section, we will look in detail at the impact of the reading effort measures
on the effectiveness of Ad Hoc Track submissions, by comparing them to the
INEX 2009 measures based on precision and recall.

5.1 Relevant in Context

Table 11 shows the top 10 participating groups (only the best run per group is
shown) in the Relevant in Context Task evaluated using the INEX 2009 measures
based on a per article F-score. The first column lists the participant, see Table 5
for the full name of group. The second to fifth column list generalized precision at
5, 10, 25, 50 retrieved articles. The sixth column lists mean average generalized
precision.

24 P. Arvola et al.

Table 12. Top 10 Participants in the Ad Hoc Track Restricted Relevant in Context
Task (INEX 2009 F-score)

Participant gP[5] gP[10] gP[25] gP[50] MAgP

p5-Reference 0.1815 0.1717 0.1368 0.1206 0.1064
p98-I10LIA2FTri 0.1639 0.1571 0.1340 0.1130 0.1053
p167-27p167 0.1622 0.1570 0.1217 0.1061 0.1030
p4-Reference 0.1521 0.1469 0.1119 0.0968 0.0953
p65-runReRiCORef 0.1610 0.1508 0.1138 0.0986 0.0945
p55-DURR10atcl 0.1369 0.1102 0.0870 0.0727 0.0537
p78-UWBOOKRRIC2010 0.0760 0.0777 0.0711 0.0544 0.0497
p6-0 0.0996 0.0880 0.0816 0.0782 0.0462
p29-ISI2010 rric ro 0.1276 0.1189 0.0820 0.0759 0.0327
p72-1 0.0000 0.0000 0.0000 0.0000 0.0000

Comparing Table 11 using the F-score and Table 6 using the T2I-score, we
see some agreement. There are six runs in both tables, and some variant of the
runs. There are however, notable upsets in the system rankings:

– Over all 47 Relevant in Context submissions, the system rank correlation is
0.488 between the F-score based and the T2I-score based evaluation.

– Taking the top 10 systems based on the T2I-score, their system ranks on the
F-score have a correlation of 0.467.

– Taking the top 10 systems based on the F-score, their system ranks on the
T2I-scores have a correlation of 0.956.

The overall system rank correlation is fairly low: the reading effort measure
significantly affects the ranking. There is an interesting unbalance between the
top 10 rankings. On the one hand, systems scoring well on the F-score tend to
get very similar rankings based on the T2I-score. This makes sense since systems
with a high F-score will tend to retrieve a lot of relevant text, and hence are
to some degree immune to the T2I conditions. On the other hand, systems that
score well on the T2I-score tend to have fairly different rankings based on the
F-score. This can be explained by the high emphasis on precision of the T2I
measures, and the relative importance of recall for the F-score.

Restricted Relevant in Context. Table 12 shows the top 10 participating
groups (only the best run per group is shown) in the Restricted Relevant in
Context Task evaluated using the INEX 2009 measures based on a per article
F-score. The first column lists the participant, see Table 5 for the full name
of group. The second to fifth column list generalized precision at 5, 10, 25, 50
retrieved articles. The sixth column lists mean average generalized precision.

Comparing Table 12 using the F-score and Table 7 using the T2I-score, we
see some agreement.

– Over all 27 Restricted Relevant in Context submissions, the system rank
correlation is 0.761 between the F-score based and the T2I-score based
evaluation.

Overview of the INEX 2010 Ad Hoc Track 25

Table 13. Top 10 Participants in the Ad Hoc Track: Article retrieval

Participant P5 P10 1/rank map bpref

p22-Emse301R 0.6962 0.6423 0.8506 0.4294 0.4257
p167-38P167 0.7115 0.6173 0.8371 0.3909 0.3863
p25-ruc-2010-base2 0.6077 0.5846 0.7970 0.3885 0.3985
p98-I10LIA2FTri 0.6192 0.5827 0.7469 0.3845 0.3866
p4-Reference 0.6423 0.5750 0.7774 0.3805 0.3765
p5-Reference 0.6423 0.5750 0.7774 0.3805 0.3765
p62-RMIT10title 0.6346 0.5712 0.8087 0.3653 0.3683
p68-LIP6-OWPCRefRunTh 0.6115 0.5673 0.7765 0.3310 0.3480
p78-UWBOOKRRIC2010 0.5615 0.5115 0.7281 0.3237 0.3395
p65-runRiCORef 0.5808 0.5346 0.7529 0.3177 0.3382

– Taking the top 10 systems based on the T2I-score, their system ranks on the
F-score have a correlation of 0.022.

– Taking the top 10 systems based on the F-score, their system ranks on the
T2I-scores have a correlation of 0.156.

The overall system rank correlation is higher than for the Relevant in Context
task above, but the system rank correlations between the top 10’s however are
substantially lower.

6 Analysis of Article Retrieval

In this section, we will look in detail at the effectiveness of Ad Hoc Track sub-
missions as article retrieval systems.

6.1 Article Retrieval: Relevance Judgments

We will first look at the topics judged during INEX 2010, but now using the
judgments to derive standard document-level relevance by regarding an article
as relevant if some part of it is highlighted by the assessor. We derive an article
retrieval run from every submission using a first-come, first served mapping.
That is, we simply keep every first occurrence of an article (retrieved indirectly
through some element contained in it) and ignore further results from the same
article.

We use trec eval to evaluate the mapped runs and qrels, and use mean aver-
age precision (map) as the main measure. Since all runs are now article retrieval
runs, the differences between the tasks disappear. Moreover, runs violating the
task requirements are now also considered, and we work with all 213 runs sub-
mitted to the Ad Hoc Track.

Table 13 shows the best run of the top 10 participating groups. The first
column gives the participant, see Table 5 for the full name of group. The second
and third column give the precision at ranks 5 and 10, respectively. The fourth
column gives the mean reciprocal rank. The fifth column gives mean average

26 P. Arvola et al.

Table 14. Top 10 Participants in the Ad Hoc Track: Article retrieval per task

(a) Relevant in Context Task
Participant P5 P10 1/rank map bpref

p22-Emse301R 0.6962 0.6423 0.8506 0.4294 0.4257
p25-ruc-2010-base2 0.6077 0.5846 0.7970 0.3885 0.3985
p98-I10LIA1ElTri 0.6192 0.5827 0.7469 0.3845 0.3866
p167-21p167 0.6423 0.5750 0.7774 0.3805 0.3765
p4-Reference 0.6423 0.5750 0.7774 0.3805 0.3765
p5-Reference 0.6423 0.5750 0.7774 0.3805 0.3765
p62-RMIT10title 0.6346 0.5712 0.8087 0.3653 0.3683
p78-UWBOOKRIC2010 0.5615 0.5115 0.7281 0.3237 0.3395
p65-runRiCORef 0.5808 0.5346 0.7529 0.3177 0.3382
p557-UPFpLM45co 0.5885 0.5423 0.7623 0.3041 0.3210

(b) Restricted Relevant in Context Task
Participant P5 P10 1/rank map bpref

p98-I10LIA2FTri 0.6192 0.5827 0.7469 0.3845 0.3866
p4-Reference 0.6423 0.5750 0.7774 0.3805 0.3765
p167-29p167 0.6423 0.5750 0.7774 0.3805 0.3765
p5-Reference 0.6423 0.5750 0.7774 0.3805 0.3765
p78-UWBOOKRRIC2010 0.5615 0.5115 0.7281 0.3237 0.3395
p65-runReRiCORef 0.5808 0.5346 0.7529 0.3177 0.3382
p557-UPFsecLM45co 0.5846 0.5212 0.7904 0.2684 0.2919
p9-goo100RRIC 0.6423 0.5712 0.8830 0.2180 0.2503
p6-categoryscore 0.3115 0.2981 0.4319 0.1395 0.2566
p55-DURR10atcl 0.3269 0.2769 0.4465 0.1243 0.1540

(c) Restricted Focused Task
Participant P5 P10 1/rank map bpref

p4-Reference 0.6423 0.5750 0.7774 0.3805 0.3765
p5-Reference 0.6423 0.5750 0.7774 0.3805 0.3765
p65-runFocCORef 0.5808 0.5346 0.7529 0.3177 0.3382
p98-LIAenertexDoc 0.5654 0.3192 0.7388 0.0636 0.0759
p55-DURF10SIXF� 0.4000 0.2442 0.7186 0.0531 0.0603
p557-UPFpLM45co 0.3769 0.2038 0.7308 0.0492 0.0531
p167-40p167 0.3038 0.1519 0.8462 0.0474 0.0484
p6-0 0.3154 0.3096 0.4230 0.0384 0.0591
p9-goo100RFT 0.3038 0.1519 0.8654 0.0382 0.0399
p29-ISI2010 rfcs ref 0.2577 0.1308 0.5689 0.0300 0.0346

(d) Thorough Task
Participant P5 P10 1/rank map bpref

p167-38P167 0.7115 0.6173 0.8371 0.3909 0.3863
p4-OTAGO-2010-10topk-18 0.6115 0.5654 0.7632 0.3738 0.3752
p98-I10LIA4FBas 0.6115 0.5673 0.7984 0.3648 0.3671
p68-LIP6-OWPCRefRunTh 0.6115 0.5673 0.7765 0.3310 0.3480
p29-ISI2010 thorough.1500 0.3731 0.2865 0.7294 0.0886 0.1804

Overview of the INEX 2010 Ad Hoc Track 27

precision. The sixth column gives binary preference measures (using the top R
judged non-relevant documents).

No less than five of the top 10 runs retrieved exclusively full articles: the three
runs at rank one (p22-Emse301R), rank two (p167-38P167), and rank six (p5-
Reference) retrieved elements proper, and the two runs at rank four (p98-I10LIA2
FTri) and rank nine (p78-UWBOOKRRIC2010) retrievedFOL passages.The rel-
ative effectiveness of these article retrieval runs in terms of their article ranking
is no surprise. Furthermore, we see submissions from all four ad hoc tasks. Runs
from the Relevant in Context task at ranks 1, 3, 7; runs from the Restricted Rel-
evant in Context task at ranks 4, 5, 9, 10; runs from the Restricted Focused task
at ranks 6; and runs from the Efficiency task at ranks 2, 8.

If we break-down all runs over the original tasks, shown in Table 14, we can
compare the ranking to Section 4 above. We see some runs that are familiar from
the earlier tables: five Relevant in Context runs correspond to Table 6, seven
Restricted in Context runs correspond to Table 7, seven Restricted Focused
runs correspond to Table 8, and five Efficiency runs correspond to Table 9. More
formally, we looked at how the two system rankings correlate using kendall’s
tau.

– Over all 47 Relevant in Context submissions the system rank correlation
between MAgP and map is 0.674.

– Over all 27 Restricted Relevant in Context submissions the system rank
correlation between MAgP and map is 0.647.

– Over all 34 Restricted Focused task submissions the system rank correlation
is 0.134 between char prec and map, and 0.194 between MAiP and map.

– Over all 84 Efficiency Task submissions the system rank correlation is 0.697
between MAiP and map.

Overall, we see a reasonable correspondence between the rankings for the ad hoc
tasks in Section 4 and the rankings for the derived article retrieval measures.
The only exception is the correlation between article retrieval and the Restricted
Focused task. This is a likely effect of the evaluation over the bag of all retrieved
text, regardless of the internal ranking.

7 Discussion and Conclusions

The Ad Hoc Track at INEX 2010 studied focused retrieval under resource re-
stricted conditions such as a small screen mobile device or a document summary
on a hit-list. Here, retrieving full articles is no option, and we need to find the
best elements/passages that convey the relevant information in the Wikipedia
pages. So one can view the retrieved elements/passages as extensive result snip-
pets, or as an on-the-fly document summary, that allow searchers to directly
jump to the relevant document parts.

In this paper we provided an overview of the INEX 2010 Ad Hoc Track that
contained four tasks: The Relevant in Context Task asked for non-overlapping
results (elements or passages) grouped by the article from which they came,

28 P. Arvola et al.

but evaluated with an effort-based measure. The Restricted Relevant in Context
Task is a variant in which we restricted results to maximally 500 characters per
article, directly simulating the requirements of resource bounded conditions such
as small screen mobile devices or summaries in a hitlist. The Restrict Focused
Task asked for a ranked-list of non-overlapping results (elements or passages)
restricted to maximally 1,000 chars per topic, simulating the summarization
of all information available in the Wikipedia. The Efficiency Task asked for a
ranked-list of results (elements or passages) by estimated relevance and varying
length (top 15, 150, or 1,500 results per topic), enabling a systematic study of
efficiency-effectiveness trade-offs with the different systems. We discussed the
results for the four tasks.

The Ad Hoc Track had three main research questions. The first goal was to
study focused retrieval under resource restricted conditions such as a small screen
mobile device or a document summary on a hit-list. That is, to think of focused
retrieval as a form of “snippet” retrieval. This leads to variants of the focused
retrieval tasks that address the impact of result length/reading effort, either by
measures that factor in reading effort or by tasks that have restrictions on the
length of results. The results of the effort based measures are a welcome addi-
tion to the earlier recall/precision measures. It addresses the counter-intuitive
effectiveness of article-level retrieval—given that ensuring good recall is much
easier than ensuring good precision [7]. As a result there are significant shifts
in the effectiveness of systems that attempt to pinpoint the exact relevant text,
and are effective enough at it. Having said that, even here locating the right
articles remains a prerequisite for obtaining good performance, and finding a set
of measures that resonate closely with the perception of the searchers remains
an ongoing quest in focused retrieval.

The second goal was to extend the ad hoc retrieval test collection on the
INEX 2009 Wikipedia Collection—four times the size, with longer articles, and
additional semantic markup—with additional topics and judgments. For this
reason the Ad Hoc track topics and assessments stayed unchanged, and the test
collections of INEX 2009 and 2010 combined form a valuable resource for fu-
ture research. INEX 2010 added 52 topics to the test collection on the INEX
Wikipedia Corpus, making it a total of 120 topics. In addition there are seven
double judged topics. This results in an impressive test collection, with a large
topic set and highly complete judgments [11]. There are many ways of (re)using
the resulting test collection for passage retrieval, XML element retrieval, or ar-
ticle retrieval.

The third goal was to examine the trade-off between effectiveness and effi-
ciency by continuing the Efficiency Track as a task in the Ad Hoc Track. After
running as a separate track for two years, the Efficiency Track was merged into
the Ad Hoc Track for 2010. For this new Efficiency Task, participants were
asked to report efficiency-oriented statistics for their Ad Hoc-style runs on the
2010 Ad Hoc topics, enabling a systematic study of efficiency-effectiveness trade-
offs with the different systems. The Efficiency task received more runs than at
INEX 2009 but of a smaller number of participants. Regarding efficiency, average

Overview of the INEX 2010 Ad Hoc Track 29

running times per topic varied from 1ms to 1.5 seconds, where the fastest runs
where run on indexes kept in memory. This is again almost an order of mag-
nitude faster than the fastest system from INEX 2009, and the low absolute
response times clearly demonstrate that the current Wikipedia-based collection
is not large enough to be a true challenge for current systems. Result quality
was comparable to other runs submitted to other tasks in the AdHoc Track.

This is the fifth year that INEX has studied ad hoc retrieval against the
Wikipedia. In 2006–2008 the English Wikipedia of early 2006 transformed into
XML was used covering 659,338 Wikipedia articles [4]. Over the three years a
combined test collection of 291 topics was created. In 2009–2010 a new collec-
tion was created based on a late 2008 dump of the English Wikipedia, contain-
ing 2,666,190 Wikipedia articles and incorporating semantic annotations from
YAGO [based on 12]. Over the last two years a combined test collection of 120
topics was created. The test collections on Wikipedia have large sets of topics,
291 for the 2006–2008 Wikipedia and 120 for the 2009–2010 Wikipedia. There
are relevance judgments at the passage level (both best-entry-points as well
as the exact relevant text) plus derived article-level judgments. The resulting
judgments are relatively “complete” due to the varied pools and especially the
encyclopedic corpus [11]. There is a range of evaluation measures for evaluating
the various retrieval tasks [1, 9], in addition to the standard measures that can
be used for article-level retrieval. In addition, there is rich information on topic
authors and assessors, and their topics and judgments based on extensive ques-
tionnaire, allowing for detailed further analysis and reusing topics that satisfy
particular conditions [6, 8]. After five years, there seems little additional bene-
fit in continuing with focused retrieval against the Wikipedia corpus, given the
available test collections that are reusable in various ways. It is time for a new
challenge, and other tracks have started already addressing other aspects of ad
hoc retrieval: the INEX 2010 Book Track using a corpus of scanned books, the
INEX 2010 Data Centric Track using a corpus of IMDb data, and the INEX
2010 Interactive Track using a corpus of Amazon and Library Thing data.

Acknowledgments. Jaap Kamps was supported by the Netherlands Organi-
zation for Scientific Research (NWO, grants 612.066.513, 639.072.601, and 640.-
001.501). Paavo Arvola and Johanna Vainio were supported by the Academy of
Finland (grants #115480 and #130482).

References

[1] Arvola, P., Kekäläinen, J., Junkkari, M.: Expected reading effort in focused re-
trieval evaluation. Information Retrieval 13, 460–484 (2010)

[2] Beigbeder, M.: Focused retrieval with proximity scoring. In: Proceedings of the
2010 ACM Symposium on Applied Computing (SAC 2010), pp. 1755–1759. ACM
Press, New York (2010)

[3] Clarke, C.L.A.: Range results in XML retrieval. In: Proceedings of the INEX 2005
Workshop on Element Retrieval Methodology, Glasgow, UK, pp. 4–5 (2005)

[4] Denoyer, L., Gallinari, P.: The Wikipedia XML Corpus. INEX 2006 40, 64–69
(2006)

30 P. Arvola et al.

[5] Géry, M., Largeron, C., Thollard, F.: Integrating structure in the probabilistic
model for information retrieval. In: Proceedings of the 2008 IEEE/WIC/ACM
International Conference on Web Intelligence and Intelligent Agent Technology,
pp. 763–769. IEEE Computer Society Press, Los Alamitos (2008)

[6] Kamps, J., Larsen, B.: Understanding differences between search requests in XML
element retrieval. In: Trotman, A., Geva, S. (eds.) Proceedings of the SIGIR 2006
Workshop on XML Element Retrieval Methodology, pp. 13–19 (2006)

[7] Kamps, J., Koolen, M., Lalmas, M.: Locating relevant text within XML docu-
ments. In: Proceedings of the 31st Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, pp. 847–849. ACM Press,
New York (2008)

[8] Kamps, J., Pehcevski, J., Kazai, G., Lalmas, M., Robertson, S.: INEX 2007 eval-
uation measures. In: Fuhr, N., Kamps, J., Lalmas, M., Trotman, A. (eds.) INEX
2007. LNCS, vol. 4862, pp. 24–33. Springer, Heidelberg (2008)

[9] Kamps, J., Lalmas, M., Larsen, B.: Evaluation in context. In: Agosti, M.,
Borbinha, J., Kapidakis, S., Papatheodorou, C., Tsakonas, G. (eds.) ECDL 2009.
LNCS, vol. 5714, pp. 339–351. Springer, Heidelberg (2009)

[10] Kekäläinen, J., Järvelin, K.: Using graded relevance assessments in IR evaluation.
Journal of the American Society for Information Science and Technology 53, 1120–
1129 (2002)

[11] Pal, S., Mitra, M., Kamps, J.: Evaluation effort, reliability and reusability in XML
retrieval. Journal of the American Society for Information Science and Technol-
ogy 62, 375–394 (2011)

[12] Schenkel, R., Suchanek, F.M., Kasneci, G.: YAWN: A semantically annotated
Wikipedia XML corpus. In: 12. GI-Fachtagung für Datenbanksysteme in Business,
Technologie und Web (BTW 2007), pp. 277–291 (2007)

[13] Trotman, A., Geva, S.: Passage retrieval and other XML-retrieval tasks. In: Pro-
ceedings of the SIGIR 2006 Workshop on XML Element Retrieval Methodology,
University of Otago, Dunedin New Zealand, pp. 43–50 (2006)

Overview of the INEX 2010 Ad Hoc Track 31

A Appendix: Full Run Names

Group Run Label Task Query Results Notes

4 1019 Reference RiC CO Ele Article-only
4 1020 Reference RRiC CO Ele Article-only
4 1021 Reference RFoc CO Ele Article-only
4 1138 OTAGO-2010-10topk-18 Eff CO Ele Article-only
5 1205 Reference RiC CO Ele Reference run
5 1206 Reference RRiC CO Ele Reference run
5 1207 Reference RFoc CO Ele Reference run
5 1208 Reference RiC CO Ran Reference run Invalid
5 1212 Reference RRiC CO Ele Reference run
5 1213 Reference RFoc CO Ele Reference run
6 1261 0 RiC CO FOL
6 1265 categoryscore RRiC CO FOL Article-only
6 1266 0 RRiC CO FOL
6 1268 0 RFoc CO FOL
9 1287 goo100RRIC RRiC CO FOL Invalid
9 1294 goo100RFT RFoc CO FOL
9 1295 yahRFT RFoc CO FOL
22 1249 Emse301R RiC CO Ele Phrases Reference run
22 1251 Emse303R RiC CO Ele Phrases Reference run
25 1282 ruc-2010-base2 RiC CO Ele Article-only
29 1067 ISI2010 thorough.1500 Eff CO Ele Article-only
29 1073 ISI2010 rric ro RRiC CO FOL
29 1094 ISI2010 ric ro RiC CO FOL
29 1096 ISI2010 ref ric aggr RiC CO FOL Reference run Invalid
29 1098 ISI2010 rfcs ref RFoc CO FOL Reference run
55 1163 DUR10atcl RiC CAS Ele Reference run Article-only
55 1164 DURF10SIXF RFoc CAS Ele Manual
55 1169 DURR10atcl RRiC CAS Ele Reference run Article-only
60 1289 UJM 33456 RiC CO Ele Reference run
62 1290 RMIT10title RiC CO Ele Article-only
62 1291 RMIT10titleO RiC CO Ele Article-only
65 1273 runRiCORef RiC CO FOL Reference run Article-only
65 1274 runReRiCORef RRiC CO FOL Reference run
65 1275 runFocCORef RFoc CO FOL Reference run
68 1170 LIP6-OWPCparentFo RFoc CO Ele
68 1181 LIP6-OWPCRefRunTh Eff CO Ele Reference run Article-only
72 1031 1 RRiC CAS Ele
78 1024 UWBOOKRIC2010 RiC CO FOL
78 1025 UWBOOKRRIC2010 RRiC CO FOL
98 1255 I10LIA4FBas Eff CO FOL Phrases
98 1258 I10LIA1ElTri RiC CO Ele Phrases
98 1260 I10LIA1FTri RiC CO FOL Phrases
98 1270 I10LIA2FTri RRiC CO FOL Phrases
98 1284 LIAenertexTopic RFoc CO FOL Phrases
98 1285 LIAenertexDoc RFoc CO FOL Phrases
Continued on Next Page. . .

32 P. Arvola et al.

Group Run Label Task Query Results Notes

167 1049 21p167 RiC CO Ele
167 1076 32p167 RRiC CO Ele
167 1079 29p167 RRiC CO Ele
167 1081 27p167 RRiC CO Ele
167 1092 36p167 RiC CO Ele
167 1219 40p167 RFoc CO Ele
167 1241 18P167 Eff CO Ele
167 1242 38P167 Eff CO Ele
557 1313 UPFpLM45co RiC CO FOL Reference run Invalid
557 1316 UPFsecLM45co RRiC CO FOL Reference run Invalid
557 1319 UPFpLM45co RFoc CO FOL Reference run

S. Geva et al. (Eds.): INEX 2010, LNCS 6932, pp. 33–43, 2011.
© Springer-Verlag Berlin Heidelberg 2011

The Potential Benefit of Focused Retrieval in
Relevant-in-Context Task

Paavo Arvola and Johanna Vainio

University of Tampere, School of Information Sciences
33014 University of Tampere, Finland

{paavo.arvola,s.johanna.vainio}@uta.fi

Abstract. This study addresses the Relevant-in-Context retrieval task and seeks
justification for systems providing focused answers to be successful in it.
Obviously, under some circumstances the full document retrieval is sufficient in
finding relevant material effectively. Namely, the Relevant-in-Context retrieval
does not bring any improvements in case the retrieved documents are
thoroughly (i.e. densely) relevant, or the relevant material is located in the
document start. By using the INEX data, we perform a topic-wise analysis
focusing on these qualities of the retrieved relevant documents. In addition, we
evaluate the submitted INEX runs with various measures, in order to study how
different T2I values affect the mutual rankings and measure the systems in
locating the relevant material within a document.

Keywords: Relevant-in-Context, evaluation, metrics.

1 Introduction

The Relevant-in-Context (RiC) retrieval task can be considered as focused retrieval
enhanced document retrieval, where the retrievable unit is a document having the best
matching passages highlighted. In other words, the user’s attention is drawn to the
relevant content of the document. This kind of grouping the result passages by their
document is called fetch and browse retrieval [5]. It is worth mentioning that the RiC
task is considered as the most credible task of all tasks in the ad hoc track [12].

Document parts, referred to as elements, have both hierarchical and sequential
order within the document. The sequential order corresponds with the order of the
running text. There is also an implicit chronological order (temporal order) of a
document’s text, which is formed, when the document is read by a user. This is
actually the internal ranking of the parts within the document. From this perspective, a
focused retrieval system should have an impact on this chronological reading order,
so that the relevant content of a document is found and read with minimal effort.

The reading order assumption behind the official measure (T2I(300)) of the RiC
task considers the sequential order of an individual document [1,3]. When everything
within a document is delivered by the retrieval system, this resembles to a full
document retrieval scenario, where the user starts reading from the beginning of a
document and continues to read sequentially the document’s text until his or her

34 P. Arvola and J. Vainio

information needs are fulfilled [13]. If, instead of everything, only parts of the
document are retrieved, those are assumed to be read sequentially first. Thus, a simple
browsing model for a document with two consecutive phases is assumed:

1. The text passages retrieved by the focused retrieval system are read
sequentially.

2. The remaining passages are read until all relevant content has been reached
starting from the first remaining passage of the document.

Fig. 1. Conventional reading order (left) and focused retrieval driven reading order (right)

Figure 1 illustrates the difference between conventional browsing and focused
retrieval driven browsing. The conventional browsing is assumed to be rather
straightforward. In real life, the user might use skim reading in order to locate the
relevant spots. However, when using a small screen device [e.g. 2] this option is
limited. Nevertheless, focused retrieval is beneficial if the focused retrieval driven
browsing methods overcome the conventional ones. In other words, it is beneficial
only if the relevant content is yielded with less effort.

However, in Figure 1, this is not the case. The relevant content is already at the
beginning of the document, which part is shown to the user by default and there is no
way a focused retrieval system to improve the chronological reading order of the
document. In general, the potential benefit of a focused retrieval system depends also
on the document qualities, which are in this study the location of relevant material and
the relevance density [4], i.e. how much relevant material there is in relation to all text
in the document. With these qualities in mind, we aim to study the potential and
actual benefit of the RiC task by using the INEX data.

The rest of the study is organized so that in Section 2, we report results for the
INEX 2010 runs measured with different T2I assumptions and as the effort the user
has to take in order to localize the relevant content with localizing effort (LE) metric.
The metric is based on how much text the user is expected to browse through before

 The Potential Benefit of Focused Retrieval in Relevant-in-Context Task 35

discovering the relevant material from a document. The metric is introduced in
Section 2.1. In Section 3, we perform a topic-wise analysis based on relevance density
and the location of the relevant text measured as the distance of the first relevant
passage from the document start in the retrieved relevant documents.

2 Metrics and Results

The official INEX measures, such as the T2I based character precision (ChP) as well
as the F-Score used in previous years, are defined in the ad hoc track overview paper
of the proceedings (see also [7, 8]). Thus, in this study we introduce only the
localizing effort metrics.

2.1 Cumulating the Localizing Effort

In the RiC task, separate scores are calculated for each individual retrieved document
as a document score, and for the document result lists as a list score. In T2I based character precision recall metric (ChPR) and F-Score metrics the relevance score
values scale between 0 and 1, and the list score is calculated analogously to
generalized precision-recall [10], whereas in localizing effort (LE), the document
scoring is looser and the list score is calculated by cumulated effort (CE), which has
evolved from the cumulated gain metric [6]. Next, we present briefly the LE metrics
for the document score and CE for the list score.

Cumulated effort [3] is similar to the cumulated gain metric [6], except that
instead of the gain the user receives by reading the documents in the result list,
cumulated effort (CE) focuses on the effort the user has to spend while looking for
relevant content. For calculating CE, an effort score for each ranked document d,
ES(d), is needed. The values of ES(d) should increase with the effort; in other words
the lower the score the better. Normalized cumulated effort (vector NCE) averages the
scores over multiple topics. It is defined as follows:

[] []∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

i

j

j

jIE

dES
iNCE

1

1
)(

 (1)

where i is the cut-off point in the result list and IE is the vector representing the ideal
performance for the topic. A normalized optimal run produces a curve having zero
values only. In this study, we report a value for the whole result list or a run. An
average at a given cut-off point for normalized cumulated effort is calculated as
follows:

[]
[]

i

jNCE

iANCE

i

j
∑

== 1
(2)

In this paper, we report a MANCE@300 value, which is calculated over a set of
topics. This means the mean average cumulated effort at 300 top ranked documents.

36 P. Arvola and J. Vainio

The function ES(d) can be defined in numerous ways, but here we assume that the
system’s task is just to point out that the retrieved document is relevant by guiding the
user to relevant content. The document score represents how much expected effort it
takes to find relevant text within the document. The scoring depends directly on (non-
relevant) characters read before finding the first relevant passage or element.

The document effort score ES(d) is the score, that the LE function gives after the
relevant text within the document is yielded. For non-relevant documents, we assume
a default effort score NR:

⎩⎨
⎧= relevant is d if ,)(

otherwise ,)('drLE
NRdES (3)

where d’ is the expected reading order of document d and rd’ is the position of the first
relevant character with the reading order d’ , i.e. number of characters to be read
before the relevant text is yielded. The function LE(rd’) gives the localizing effort
score for an individual document, when rd’ characters are read before the relevant text.
Measuring the effort on finding relevant content is done with the Localizing Effort
metric for the document score and Cumulated Effort for the list score. As scoring for
an individual document, we set:

⎪
⎪
⎩

⎪
⎪
⎨

⎧

≤<
≤<

≤

=

otherwise ,

i fi ,

i fi ,

i fi ,

iLE

4

150010003

10005002

5001

)(

NR = 5

(4)

Next, we report results using the CE, generalized precision metrics, for the list
score together with localizing effort score, ChPR and F-Score for each individual
result document.

2.2 Results

The official measure T2I(300) is interpreted so, that the user is willing to read up to
300 irrelevant characters within a result document before quitting. The amount of 300
characters is a low figure and applies only to a small screen or a snippet. In
comparison, the amount of 2000 characters corresponds approximately to the first
page of the present study. Therefore, in Table 1 (columns 5-7), we report results of
submitted INEX runs1 using higher T2I values, namely 500, 1000 and 2000 characters
as the T2I threshold. The results using F-Score with β value 0.25 and 1 are reported
(columns 8-9) as well. Kendall’s tau rank correlation value between the T2I(300) and

1 One run producing zero results is omitted.

 The Potential Benefit of Focused Retrieval in Relevant-in-Context Task 37

T2I(2000) measures is relatively high 0.877 in comparison for instance to the values
between T2I(300) and the F-Scores (β = 0.25: 0.471, β = 1: 0.374).

Figure 2 shows the NCE curves of four INEX 2010 runs by the top 5 participants
(Emse301R, I10LIA1FTri, 31p167, Reference/qtau) plus the reference run as full
document run: Reference_1. Using the average measure MANCE@300 the run
I10LIA1FTri of LIA – Univ. Avignon ranked 1st among the automatic runs.
The MANCE@300 and T2I(300) have a rank correlation of 0.808 (Table 1,
column 10).

In Table 1, the columns 3 and 4 report the median average number of retrieved
characters and median average first occurrence of the retrieved text in characters from
the document start, when top 20 documents from each assessed topics are considered.
In other words, for each topic the median value of the top 20 ranked documents is
calculated and the averaging is done over all topics. This is done in order to illustrate
the “focusedness” of the runs. Only top 20 (accepted) documents are considered,
because lower ranks tend to match more poorly, and either do not affect so much the
overall performance.

It seems that systems retrieving large quantities of material per document retain
their performance levels regardless of the measure. However, systems delivering
focused answers, such as the runs of QUT, get harshly penalized when measured with
the F-Score. The same phenomenon is present with the starting point criterion, i.e. the
earlier the better for the F-Score, although the Emse303r and Emse301r perform well
regardless of the measure, even though they start on average very late.

In the next section, we analyze in detail what are the potential benefits of the RiC
task in the light of the starting point of the relevant text and the amount of relevant
material per document.

0

50

100

150

0 20 40 60 80 100

rank

N
C

E

Emse301R_36

I10LIA1FTri_40

31p167_12

Reference_30

Reference_1

Fig. 2. Normalized cumulated effort curves of the runs of some of the best participants

38 P. Arvola and J. Vainio

Table 1. In columns 5 - 9 MAgP scores for official INEX runs in ChPR using T2I values 500,
1000 and 2000 in F-Score using beta values 0.25 and 1. Column 10 shows mean average
cumulated effort at 300 documents. Median average number of retrieved characters and median
average starting point of retrieved text in columns 3 and 4, when top 20 documents from each
assessed topic are considered.

3 Analysis Based on Three Document Retrieval Scenarios

In a nutshell, an information retrieval system aims to comprise the following tasks
within the fetch and browse retrieval:

1. In the fetch phase to rank the documents in decreasing order of relevance.
2. In the browse phase to identify the relevant passages in the retrieved

sparsely relevant documents.

The fetch phase is a task for a document retrieval system, whereas the browse
phase is a task for a focused retrieval system. The optimal document ranking is
sometimes defined based on the exhaustivity and specificity dimensions of relevance
[9]. Currently, in INEX, the exhaustivity dimension is binary and the specificity

 The Potential Benefit of Focused Retrieval in Relevant-in-Context Task 39

dimension is approximated as the density of relevance, i.e. the amount of relevant text
divided by total text within a retrievable unit [4, 11].

However, aiming to rank the documents based on their relevance density is
problematic from the perspective of focused retrieval. Namely, if the relevance
density of a document is high, there is no need for a focused retrieval system to
identify the relevant passages, because (nearly) everything within the document is
relevant. Instead, with sparsely relevant documents, the focused retrieval may be
beneficial. Another defeat for the focused retrieval approach is the case when the
relevant content occurs at the beginning of a document. Namely, most user interfaces
offer the document start to the user by default and there is no need to guide the user
elsewhere.

We claim that focused retrieval can be beneficial in locating relevant material
from a document especially, when

• the relevance density of the relevant result document is low and
• the relevant material doesn’t occur at the beginning of the document.

Based on these axioms, we compare three different document retrieval scenarios
using the INEX 2010 recall base and some of the top performing runs. The aim of this
is to study, whether focused retrieval is a justified approach in reducing user’s effort
in general in terms of relevance density and the starting point of the relevant text
within the document. We examine each topic with the following document retrieval
scenarios:

1) optimal
2) average
3) realistic.

The optimal scenario refers to a case, where a document retrieval system is
capable of delivering the documents in the best possible order, i.e. the ranking is
optimal. When density is considered, we define the optimality so that the documents
are ranked in descending order by their density. When, in turn, the starting point is
considered, the optimality means that the documents are ranked by the distance of
the first relevant character from the document start. It is worth noting that the
optimal scenario is actually the worst scenario from the perspective of the potential
benefit of focused retrieval. The average scenario is the average of the relevant
documents in the recall base and the realistic scenario is based on the fetch phase of
some best performing runs of INEX 2010 (Emse303R, 32p167, I10LIA1FTri,
Reference/qtau).

Figure 3 presents a topic-wise comparison between the scenarios based on
relevance density. In order to emphasize precision in the optimal and realistic
strategies, only the top five relevant documents are considered and the average is
reported among them. That means we discard the possible non-relevant documents in
between focusing on the top five relevant documents in the realistic scenario, because
the non-relevant documents are not interesting in studying about finding the relevant

40 P. Arvola and J. Vainio

optimal

0

0.2

0.4

0.6

0.8

1

26 21 18 54 70 30 10
5 34 32 17 6 4 56 16 36 57 33 39 41 40 3 38 96 10 46 48 72 49 27 69 23 68 14 75 10
0 25 95 10
6 50 35 31 43 45 61 97 19 20 47 7

10
7 79 37

topic id

de
ns

it
y

average

0

0.2

0.4

0.6

0.8

1

17 26 70 18 34 21 4 6 54 38 56 41 32 3 33 57 36 46 49 96 10
5 39 10
0 72 19 40 68 48 10 16 30 25 69 10
6 35 61 95 47 31 75 10
7 97 27 23 45 20 14 50 37 7 43 79

topic id

de
ns

it
y

real istic

0

0.2

0.4

0.6

0.8

1

10
5 54 17 18 26 32 70 56 41 4 38 6 46 96 40 3 34 33 75 57 21 10
0 16 10 68 72 10
6 23 19 35 61 14 25 48 39 36 49 30 97 10
7 47 43 27 95 45 50 7 69 31 37 20 79

topic id

de
ns

it
y

Fig. 3. The average densities of retrieved documents by topic with optimal, average and
realistic document retrieval scenarios. The topics are sorted according to the average density for
each scenario.

material from a document. The average densities over all topics are 0.71, 0.34 and
0.42, for optimal, average and realistic scenarios respectively.

Figure 4 illustrates the location of the first occurrence of relevant text, more
precisely, how far the first relevant passage is from the document start on average per
topic. The further the relevant content the more room for improvements there are
from the focused retrieval perspective. The document retrieval scenarios are
equivalent to the analysis based on density in Figure 3, except that the criterion is
based on the distance of the first relevant passage from the document start. That is, the
optimal run delivers first documents having the shortest distance between document
start and the first relevant passage. It is worth noting that the higher the bar, the more
beneficial a focused retrieval system can be. The average distances are approximately
230, 3049 and 1836 characters for optimal, average and realistic scenarios
respectively.

 The Potential Benefit of Focused Retrieval in Relevant-in-Context Task 41

optimal

1

10

100

1000

10000

100000
54 16 18 26 96 10
5 10 56 46 33 34 70 40 45 30 21 17 7 95 43 32 39 69 14 36 4 6 41 61 23 72 49 57 48 38 27 47 3 68 50 79 75 20 25 35 37 10
0

10
6 97 31 19 10
7

topic id

ch
ar

s

average

1

10

100

1000

10000

100000

17 26 39 96 70 18 4 40 10 38 68 49 47 69 46 6 34 72 36 54 21 57 32 16 56 3 61 41 48 19 10
7 37 33 95 7 43 10
0 45 50 23 25 27 31 10
5 30 79 10
6 35 14 20 97 75

topic id

ch
ar

s

average

realistic

1

10

100

1000

10000

100000

54 16 17 18 26 96 10
5 10 6 56 38 3 39 46 33 47 34 41 68 32 27 70 57 50 36 61 4 48 23 79 40 37 10
6 49 72 7 69 19 25 35 14 10
7

10
0 75 45 30 97 95 20 21 43 31

topic id

ch
ar

s

Fig. 4. The average distances of the first relevant passage from the document start measured in
characters by topic with optimal, average and realistic document retrieval scenarios. The topics
are sorted according to the distance for each scenario. Note the logarithmic scale.

4 Discussion and Conclusions

The focused retrieval strategy is not beneficial, if a result document is densely
relevant or the relevant content is located in the document start. Therefore, this study
aimed to motivate the RiC task by analyzing the relevance densities and the locations
of the relevant material in the relevant result documents. The location was measured
as a distance in characters between the document start and the start of the first
relevant passage. The current official INEX measures alongside with the localizing
effort seemed to favor systems retrieving focused answers in comparison with the F-
Score. Increasing the T2I value from 300 to 2000 did not affect substantially on the
results.

42 P. Arvola and J. Vainio

In order to study the potential benefit of the RiC task three document retrieval
scenarios: optimal, average and realistic, were considered. With the optimal scenario,
the average density of the top 5 documents was below 50% for only a minority of the
topics. However, assuming the realistic scenario, a majority of the topics went below
0.5 density (using the top 5 relevant documents).

The same trend was present in the location analysis. In the optimal scenario in
most of the topics, the relevant content was situated on average within 100 characters
or less from the document start using top 5 documents for each topic. In the realistic
scenario most of the first relevant material within a document was situated within
1000 characters or more in most of the topics. Accordingly, the results obtained with
the localizing effort metric as document level metric and cumulated effort metric as
list level metric showed the benefit of focused retrieval over plain full document
retrieval.

This study elicits the information about the quality of the topics and the test
collection in relation to focused retrieval. The current 2010 collection seems to serve
the aims of focused retrieval better than the previous collection [4], yet the current
collection covers still several types of topics. In future studies, two separate research
lines could be distinguished: one focusing on topics which can be answered with
shorter passages and another over realistic set of topics, where some topics can be
answered only with verbose passages.

Consequently, the Relevant-in-Context task of INEX seems to be beneficial in
studying means to reduce user effort in locating relevant material within a document.
This is the case even if the Wikipedia documents tend to be relatively short.
Relevance sparsity and long non relevant document parts require scrolling when only
conventional document retrieval is used. Scrolling thousands of characters for
instance with a cumbersome small screen device requires effort, which can be aided
using focused retrieval driven browsing methods within a document.

Acknowledgements. The study was supported by Academy of Finland under grants
#115480 and #130482.

References

1. Arvola, P.: Passage Retrieval Evaluation Based on Intended Reading Order. In: Workshop
Information Retrieval, LWA 2008, pp. 91–94 (2008)

2. Arvola, P., Junkkari, M., Kekäläinen, J.: Applying XML Retrieval Methods for Result
Document Navigation in Small Screen Devices. In: Proceedings of MUIA at MobileHCI
2006, pp. 6–10 (2006)

3. Arvola, P., Kekäläinen, J., Junkkari, M.: Expected reading effort in focused retrieval
evaluation. Information Retrieval 13(4), 460–484 (2010)

4. Arvola, P., Kekäläinen, J., Junkkari, M.: Focused access to sparsely and densely relevant
documents. In: Proceedings of SIGIR 2010, pp. 781–782 (2010)

5. Chiaramella, Y.: Information retrieval and structured documents. Lectures on Information
Retrieval, pp. 286–309 (2001)

6. Järvelin, K., Kekäläinen, J.: Cumulated Gain-Based Evaluation of IR Techniques. ACM
Transactions on Information Systems 20(4), 422–446 (2002)

 The Potential Benefit of Focused Retrieval in Relevant-in-Context Task 43

7. Kamps, J., Lalmas, M., Pehcevski, J.: Evaluating relevant in context: Document retrieval
with a twist. In: Proceedings SIGIR 2007, pp. 749–750 (2007)

8. Kamps, J., Pehcevski, J., Kazai, G., Lalmas, M., Robertson, S.: INEX 2007 evaluation
measures. In: Fuhr, N., Kamps, J., Lalmas, M., Trotman, A. (eds.) INEX 2007. LNCS,
vol. 4862, pp. 24–33. Springer, Heidelberg (2008)

9. Kazai, G., Lalmas, M.: Notes on what to measure in INEX. In: Proceedings of the INEX,
Workshop on Element Retrieval Methodology, INEX 2005, pp. 22–38 (2005)

10. Kekäläinen, J., Järvelin, K.: Using graded relevance assessments in IR evaluation. Journal
of the American Society for Information Science and Technology 53, 1120–1129 (2002)

11. Piwowarski, B., Lalmas, M.: Providing consistent and exhaustive relevance assessments
for XML retrieval evaluation. In: Proceedings of CIKM 2004, pp. 361–370 (2004)

12. Trotman, A., Pharo, N., Lehtonen, M.: XML-IR Users and Use Cases. In: Fuhr, N.,
Lalmas, M., Trotman, A. (eds.) INEX 2006. LNCS, vol. 4518, pp. 400–412. Springer,
Heidelberg (2007)

13. de Vries, A.P., Kazai, G., Lalmas, M.: Tolerance to irrelevance: A user-effort oriented
evaluation of retrieval systems without predefined retrieval unit. In: Proceedings of RIAO
2004, pp. 463–473 (2004)

ENSM-SE and UJM at INEX 2010:

Scoring with Proximity and Tag Weights

Michel Beigbeder1, Mathias Géry2, Christine Largeron2, and Howard Seck3

1 École Nationale Supérieure des Mines de Saint-Étienne
michel.beigbeder@emse.fr

2 Université de Lyon, Saint-Étienne, France
{Mathias.Gery,Christine.Largeron}@univ-st-etienne.fr

3 Université Paris-Dauphine, Paris, France
bseck@olaneo.fr

Abstract. This paper presents our participation in the Relevant in Con-
text task (ad-hoc track) during the 2010 INEX competition, and a poste-
rior analysis. Two models presented in previous editions of INEX by the
authors were merged for our 2010 participation. The first one is based
on the proximity of the query terms in the documents [1] and the sec-
ond one is based on learnt tag weights [2]. The results demonstrate the
improvement of focused information retrieval, thanks to the integration
of the tag weights in the approach based on proximity.

1 Introduction

INEX Ad-Hoc track aims at evaluating focused XML information retrieval on
large collections of structured documents in order to retrieve small units of
information, smaller than document. Indeed, the structure allows to divide a
document into elements which can be returned to a user instead of the whole
document. But, as the tags may be used to emphasize words, the structure can
also be used to improve the detection of relevant information. Thus, a word is
probably more important if it is marked by certain tags, for instance if it appears
in a particular font or if it appears within certain parts of a document (e.g. a
title). In order to exploit this hypothesis, we proposed an extension of the BM25
weighting function, called BM25t [2], which takes the tags found in XML doc-
uments into account. In this model, a weight is estimated for each tag during a
learning stage. This weight measures the capacity of the tag to emphasize terms
which appear in relevant passages. This model was evaluated in a previous INEX
campaign [3].

However, other approaches than the probabilistic model seemed promising in
the context of focused information retrieval, notably those based on the prox-
imity of the query terms in the documents. The use of the term positions first
appeared in some implementations of the boolean model [4]. However, this model
did not allow ranking of documents but this limitation was removed in subse-
quent works [5,6,7]. This approach has proved effective in the INEX 2009 cam-
paign [8]. For this reason, the model based on the proximity of the query terms

S. Geva et al. (Eds.): INEX 2010, LNCS 6932, pp. 44–53, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

ENSM-SE and UJM at INEX 2010: Scoring with Proximity and Tag Weights 45

in structured documents [1] and the BM25t model [2] were merged for our 2010
participation. This led us to study the way to take into account the structure
into the model based on the proximity. So, the four runs labelled with “Emse”
in the 2010 INEX campaign were done by a team both from the École Na-
tionale Supérieure des Mines de Saint-Étienne and the Université de Lyon -
Saint-Étienne.

The proximity based model uses the positions of the occurrences of the query
terms in the documents to score them. More precisely, we define a text area
around each occurrence of a query term. The positions belonging to this text
area are influenced by this occurrence of the query term. We quantify this influ-
ence with a function, called influence function. Then, the influence functions of
the query terms are combined in order to score the documents. A more formal
presentation of these notions appears in section 2. The section 3 will be dedicated
to the learning of the tag weights according to their capacity to mark relevant
passages on a training collection.

The integration of the stucture into the proximity based model was done by
modifying the shape of the influence functions according to the weight of the
tags. In other words, in our model, the values of the function computed for an
occurrence of each query term take into account the weight of the tag of the
element in which this occurrence appears. Finally in section 4, we present how
elements are scored with these weighted influence functions and how our runs
were built with these scores. We also present runs which mix our proximity scores
with the INEX Reference run.

Moreover, experiments posterior to the INEX campaign are also presented
in this last section. Indeed, as it was pointed out during the INEX workshop,
one limit of the evaluation in the INEX campaign of the model based on the
proximity lies in the fact that this model requires boolean queries which do
not exist in the evaluation framework. In order to avoid manual intervention to
build boolean queries, the topic title fields were automatically transformed into
boolean queries and the results obtained using these automatically generated
queries are presented in this last section.

2 Influence Functions

2.1 Structure, Elements and Logical Elements

An XML document is composed of elements, each of them is delimited by an
opening tag and a closing tag. Given an XML collection, we consider a partition
of the set of tags, B, that appears in the collection with three subsets:

– Bl: the logical tags (or section-like tags, e.g. ss1, ss2, ss3, ss4);
– Bt: the title tags ;
– Bl ∪ Bt (the complement of the set Bl ∪Bt): the set of tags that are neither

logical tags, nor title tags.

The structure is exploited at two levels. Firstly, the logical tags belonging to Bl

are used to determine the elements which can be returned to the user. Secondly,

46 M. Beigbeder et al.

Document d1

<article>Document
<ss1><st>Caesar in title</st>The section which deals

with Caesar</ss1>
Following of the document.

</article>

T = {caesar , deals, document, following , in, of , section, the, title, which , with}
E(d1) = {d1/article[1], d1/article[1]/ss1[1], d1/article[1]/ss1[1]/st[1],

d1/article[1]/ss1[1]/em[1], d1/article[1]/ss1[1]/em[2]}
B = {article, em, ss1, st}
Bl = {article, ss1}
Bt = {st}
d1(0) = document
d1(1) = caesar
d1(2) = in
. . .
d1(9) = caesar
. . .
|d1| = 14

d−1
1 (caesar) = {1, 9}

x1(d1/article[1]/ss1[1]) = 1
x2(d1/article[1]/ss1[1]) = 9
e(5) = d1/article[1]/ss1[1]/em[1]
el(5) = d1/article[1]/ss1[1]
b(5) = em
Mst(d1/article[1]) = {1, 2, 3}
Mem(d1/article[1]) = {5, 7}

Fig. 1. Collection example with one document

the tags belonging to B, including the logical tags, are used to estimate the
relevance of an element as detailed in section 3.

When the vector space model considers the number of occurrences of the
terms in the documents (through the term frequency or the inverse document
frequency), the proximity based model, introduced by [7] takes also into account
their positions in the document. Thus, a document is defined as a function which
associates a term t ∈ T to each position in the document:

d : N → T
x �→ d(x) (1)

Given a position x in a document, e(x) is the deepest element (in the XML
tree) that surrounds the position x, and el(x) is the deepest logical element that
surrounds the position x; b(x) is the tag of the element e(x). Given an element
e, x1(e) (resp. x2(e)) denotes the position of its firts (resp. last) term. Figure
1 shows a sample document and illustrates all these notations. For instance,
for the fifth position, corresponding to the word section, the deepest element is
e(5) = d1/article[1]/ss1[1]/em[1] while the deepest logical element is el(5) =
d1/article[1]/ss1[1].

In order to compute the score s(q, e) of an element e, given a query q, this
model introduces the influence function of a term to a position and the influence

ENSM-SE and UJM at INEX 2010: Scoring with Proximity and Tag Weights 47

of a query to a position. These notions are briefly presented in the following
sections. An extended presentation can be found in [1].

2.2 Influence Function of a Term to a Position

Firstly, we modelize the influence of one occurrence of term t at position i on
one position x in a document d with an influence function. Any function with
the three following properties is acceptable and modelizes the proximity idea:

– symmetric around i,
– decreasing with the distance to i,
– maximum (value 1) reached at i.

The simplest one is a linearly decreasing function centered around i: x �→
max(k−|x−i|

k , 0) where k is a parameter which controls the size of the influence
area. The graphs of such functions have a triangular shape, so we call triangle
functions these functions. When the distance between x and i is greater than
k, the influence is zero – that’s to say that the occurrence of term t at position
i is too far from position x to influence it. Moreover the influence is limited to
the logical element el(i) that surrounds the position i of the occurrence of the
query term t. To do that we take the product of the triangle function by the
characteristic function 1el(i) of the position range that belongs to the logical el-
ement el(i). Lastly, the influence should be that of the nearest occurrence of the
term t, which can be obtained with maxi∈d−1(t) because the influence function
are symmetric and decreasing with the distance1.

So the influence pd
t (x) of term t to the position x in the document d is defined

by:

pd
t (x) = max

i∈d−1(t)

(
1el(i) · max

(
0,

k − |x − i|
k

))
(2)

Though when e(i) is a title-like element, the triangle function is replaced by
the constant function 1. Thus one occurrence of a query term in a title spreads
its influence over the whole surrounding logical element.

2.3 Influence Function of a Query to a Position

As explained previously, the influence function of a term to a position is used to
compute the influence of a query to a position which is used itself to compute
the score of an element for this query. This influence function of a query to a
position is defined as follows: in the simplest case where a query q contains only
one term t ∈ T , the influence of the query to a position x equals the influence
of the term t to the position x:

pd
q(x) = pd

t (x) (3)

1 The notation d−1(t) denotes the set of positions in the document d where one oc-
currence of term t does appear.

48 M. Beigbeder et al.

In the other cases, as a boolean query, the query q is a tree with conjunctive and
disjunctive nodes. To define the influence on a conjunctive node q1 AND q2 the
minimum is taken over the influence functions of its children:

pd
q1 AND q2

(x) = min(pd
q1

(x), pd
q2

(x)) (4)

Similarly, the influence on a disjunctive node q1 OR q2 is defined as the max-
imum over the influence functions of its children:

pd
q1 OR q2

(x) = max(pd
q1

(x), pd
q2

(x)) (5)

These formulas are recursively used during a post order traversal of the query
tree to compute the influence function at the root of the tree, that’s to say the
influence function of the query itself.

2.4 Score of an Element

Given the influence function of a document d to a query q that maps the positions
in the document d to [0,1] with pd

q(x), the score s(q, e) of an element e is computed
with the following formula:

s(q, e) =

∑
x1(e)≤x≤x2(e)

pd
q(x)

x2(e) − x1(e) + 1
(6)

where x1(e) (resp. x2(e)) is the first position (resp. the last position) of the
textual content of the element e.

3 Weighting Tags and Modulating Influence Function
Shapes

As explained previously, we suppose that the tags may be used to emphasize
words. So, the structure can be used to improve the detection of relevant in-
formation. A weight is estimated for each tag using a training set. This weight
measures the capacity of the tag to emphasize terms in relevant or in non relevant
passages.

3.1 Weighting Tags

A weight is computed for each tag b ∈ B, following the learning method intro-
duced by [2]. It estimates the probability that b marks a relevant term or an
irrelevant one. This weight is afterwards used to modulate the influence function
of the term occurrences that appear in the elements of type b.

The set of assessments from INEX 2009 is used as a learning set. In the
contingency table of Table 1, Rq(e) is the set of the relevant positions in the
element e ∈ E for the topic q ∈ Q, and Mb(e) is the set of the positions of e
marked by the tag b ∈ B.

ENSM-SE and UJM at INEX 2010: Scoring with Proximity and Tag Weights 49

Table 1. Contingency table for the query q and for the tag b

Rq(e) Rq(e)

Mb(e) trm(b, q) trm(b, q)

Mb(e) trm(b, q) trm(b, q)

Total tcoll
r (q) tcoll

r (q)

The weight wb(q) of a tag b for a query q is defined by:

wb(q) =
trm(b,q)+s

trm(b,q)+trm(b,q)+s

trm(b,q)+s
trm(b,q)+trm(b,q)+s

(7)

with:

– trm(b, q) =
∑

e∈E |Rq(e) ∩ Mb(e)|: number of relevant positions for the query
q marked by the tag b;

– trm(b, q) =
∑

e∈E |Rq(e) ∩ Mb(e)|: number of relevant positions for the query
q not marked by the tag b;

– trm(b, q) =
∑

e∈E |Rq(e) ∩ Mb(e)|: number of irrelevant positions for the
query q marked by the tag b;

– trm(b, q) =
∑

e∈E |Rq(e) ∩ Mb(e)|: number of irrelevant positions for the
query q not marked by the tag b.

The parameter s is a smoothing parameter, which was fixed to 0.5 in our
experiments.

In fact, we believe that the capacity of a tag to highlight relevant terms (or on
the contrary those that are not relevant) is intrinsic to the tag itself and is not
dependant on the query. Thus, we estimate the weight wb for each tag b instead
of a weight for each pair (tag b, query q). The weight wb of a tag b is averaged
using the set of 68 evaluated queries from INEX 2009, using the formula:

wb =
1
|Q|

∑
q∈Q

wb(q) (8)

3.2 Modulating Influence Function Shapes

Then the weights of the tags are integrated into the score of an element. More
precisely, the weights of the tags are used to modulate the influence function of
the query term occurrences with two methods. In the first one, the height of the
triangle is modified and the resulting influence function of a term is:

phd
t (x) = max

i∈d−1(t)

(
1el(i) · max

(
0, wb(i) · k − |x − i|

k

))
(9)

and in the second one, both the height and the width of the triangle are modified
and the resulting influence function of a term is:

phwd
t (x) = max

i∈d−1(t)

(
1el(i) · max

(
0,

wb(i) · k − |x − i|
k

))
(10)

50 M. Beigbeder et al.

4 Experiments

4.1 Building Runs

For the experiments, we used the following sets of logical tags and title tags:

Bl = {article, sec, section, ss1, ss2, ss3, ss4, ss5}
Bt = {title, st}

We submitted four official runs (Emse301, Emse301R, Emse303 and Emse303R)
at the Relevance in Context task. For the runs Emse301 and Emse301R, the influ-
ence function of a query term is phw , and for the runs Emse303 and Emse303R,
the influence function is ph .

As the proximity based model requires boolean queries, for these runs the
topic title fields were manually transformed into boolean queries during the
competition. We call Extended queries this set of queries. After the competition,
we conducted posterior experiments in order to obtain a system which is com-
pletely automatic in regards to the data currently available in the topics. In this
posterior analysis, the following rules were applied to transform the title field
into boolean queries:

– removing of the ’+’ operator
– replacement of the ’-’ operator by the NOT (’ !’) operator
– the remaining items (either simple terms or phrases) are connected by the

AND operator.

We call Title queries this set of queries. Then we used the same settings used
in our official runs to build another four runs which we named with the same
name completed with an ’A’. Thus, for instance, the sole difference between our
official run Emse301 and the run Emse301A is the set of queries used.

Table 2 recaps the settings for the runs. Letter ’R’ means that the Reference
run was used as described latter.

Table 2. Settings for our four official runs and for the four subsequent runs

Extended queries Title queries
(INEX 2010) (post-INEX)

Height modulation ph Emse303, Emse303R Emse303A, Emse303RA

Height and width modulation phw Emse301, Emse301R Emse301A, Emse301RA

As each document is analyzed, a score is computed for each logical element
according to formula 6. A score is computed for a document as the maximum of
the scores of its descendants.

To choose some elements within a document, the scores of the elements of the
document are sorted in decreasing order in a ranked list. The top ranked element
is inserted in the result list. To fulfill the non overlapping requirement, at the

ENSM-SE and UJM at INEX 2010: Scoring with Proximity and Tag Weights 51

same time every descendants and every ascendants of this element are removed
from the ranked list. This process is repeated util the ranked list is empty.

For the runs Emse301 and Emse303 and their automatic versions Emse301A
and Emse303A, the elements are sorted:

1. firstly, by document score;
2. then, by document id;
3. and finally, by element score.

For the ’R’ versions (Emse301R, Emse303R, Emse301RA and Emse303RA)
the same sorting keys are used but the Reference run is also used. The elements
are returned using the following method: the element of the documents that
appear both in our results list and in the Reference run are firstly returned in
the order of the Reference run, then the elements of the documents that appear
only in our list and finally, the documents that only appear in the Reference run.

4.2 Results

The results obtained by our model during the 2010 INEX competition are pre-
sented in Table 3, together with the results obtained during our posterior analysis
experiments. The results were computed using the INEX software: inex eval 3.0.

Table 3. MAgP results of our four official runs and the four subsequent runs

Extended queries Title queries
(INEX 2010) (post-INEX)

without R with R without R with R

Height modulation ph Emse303 Emse303R Emse303A Emse303RA
0.1163 0.1977 0.0760 0.1591

Height and width modulation phw Emse301 Emse301R Emse301A Emse301RA
0.1207 0.1967 0.0751 0.1596

Baseline Reference run
0.1436

The first conclusion concerning our experiments is that both the Reference
run and our method get benefits from the other one: use of the Reference Run
is very beneficial to every methods and reciprocally all the methods that use the
Reference run are significantly better than the Reference run itself.

Furthermore, the experiments permit to compare the methods used to mod-
ulate the influence functions with the tag weights. Both strategies ph and phw
improve the Reference run results, but it is not clear if modifying both the height
and the width of the triangles is better than only modifying the height.

Finally, the results of the subsequent runs with title queries are not as good
as those obtained with extended queries. However, they stay very good when
the Reference run is used. Indeed, Table 4 shows that the runs Emse301RA and
Emse303RA are ranked just after the runs from ”Peking University” which were
ranked from 3rd to 6th during the INEX competition.

52 M. Beigbeder et al.

Table 4. INEX 2010 results (Relevant in Context task)

Rank MAgP Institute Run

1 0.1977 ENSM-SE Emse303R
2 0.1967 ENSM-SE Emse301R
3 0.1615 Peking University 32p167
4 0.1615 Peking University 36p167
5 0.1598 Peking University 31p167
6 0.1598 Peking University 37p167

new 0.1596 ENSM-SE Emse301RA
new 0.1591 ENSM-SE Emse303RA

7 0.1588 LIA - U. of Avignon I10LIA1FTri
8 0.1587 LIA - U. of Avignon I10LIA1FUni
9 0.1521 Queensland U. of Technology Reference

10 0.1519 Peking University 22p167

5 Conclusion

This article reports the results of our experiments in the Relevance in Context
task during the 2010 INEX competition and a posterior analysis. Our official
INEX 2010 runs used manually built boolean queries. The posterior experiments
use automatically built queries which are a conjunctive interpretation of the title
topic fields.

Two models presented in previous editions of INEX by the authors were
merged for our 2010 participation. The first one is based on the proximity of
the query terms in the documents through the use of influence functions around
each occurrence of the query terms in the documents [1] and the second one
is based on learnt tags weights [2]. The results demonstrate that the proximity
model which already proved effective in the previous INEX campaigns is en-
hanced by modulating the shape of the influence functions of the query terms
by the tag weights. Is is also shown that the two phase retrieval process with
Fetch and Browse gets much benefits from the use of the BM25 based Reference
run. Though the best results are obtained with actual boolean queries rather
than with the conjunctive interpretation of the title topic field.

Acknowledgements. This work has been partly funded by the Web Intelli-
gence project (région Rhône-Alpes, cf. http://www.web-intelligence-rhone-
alpes.org) and the Conseil Général de la Loire.

References

1. Beigbeder, M.: Focused retrieval with proximity scoring. In: Proceedings of the
2010 ACM Symposium on Applied Computing, SAC 2010, pp. 1755–1759. ACM,
New York (2010)

2. Géry, M., Largeron, C., Thollard, F.: Integrating structure in the probabilistic model
for information retrieval. In: Web Intelligence, pp. 763–769 (2008)

http://www.web-intelligence-rhone-alpes.org
http://www.web-intelligence-rhone-alpes.org

ENSM-SE and UJM at INEX 2010: Scoring with Proximity and Tag Weights 53

3. Géry, M., Largeron, C., Thollard, F.: UJM at INEX 2008: Pre-impacting of tags
weights. In: Geva, S., Kamps, J., Trotman, A. (eds.) INEX 2008. LNCS, vol. 5631,
pp. 46–53. Springer, Heidelberg (2009)

4. Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval, ch. 2.
McGraw-Hill, New York (1983)

5. Hawking, D., Thistlewaite, P.: Proximity operators - so near and yet so far. In: [9]
6. Clarke, C.L.A., Cormack, G.V., Burkowski, F.J.: Shortest substring ranking (mul-

titext experiments for TREC-4) In: [9]
7. Beigbeder, M., Mercier, A.: An information retrieval model using the fuzzy proximity

degree of term occurences. In: Proceedings of the 2005 ACM Symposium on Applied
Computing, SAC 2005, pp. 1018–1022. ACM, New York (2005)

8. Beigbeder, M., Imafouo, A., Mercier, A.: ENSM-SE at INEX 2009: Scoring with
proximity and semantic tag information. In: Geva, S., Kamps, J., Trotman, A. (eds.)
INEX 2009. LNCS, vol. 6203, pp. 49–58. Springer, Heidelberg (2010)

9. Harman, D.K. (ed.): The Fourth Text REtrieval Conference (TREC-4), Department
of Commerce, National Institute of Standards and Technology (1995)

LIP6 at INEX’10: OWPC for Ad Hoc Track

David Buffoni, Nicolas Usunier, and Patrick Gallinari

Université Pierre et Marie Curie - Laboratoire d’Informatique de Paris 6
4, place Jussieu, 75005 Paris, France

{buffoni,usunier,gallinari}@poleia.lip6.fr

Abstract. We present a Retrieval Information system for XML docu-
ments using a Machine Learning Ranking approach. This year, we com-
plement the work presented the previous year by enhancing the precision
of our machine learning runs.

1 Introduction

Learning to rank algorithms have been used in the Machine Learning field for
a while now. In the field of IR, they have first been used to combine features
or preference relations in the meta search [6], [7]. Learning ranking functions
has also lead to improved performances in a series of tasks such as passage
classification or automatic summarization [1]. More recently, they have been
used for learning the rank function of search engines [4], [14], and [12].

Ranking algorithms work by combining features which characterize the data
elements to be ranked. In our case, these features will depend on the document
or the element itself, its structural context and its internal structure. Ranking
algorithms will learn to combine these different features in an optimal way, ac-
cording to a specific loss function related to IR criteria, using a set of examples.
This set of examples is in fact a set of queries where for each one, a list of doc-
uments is given. In ranking, starting from this list, we make a set of pairs of
documents where one is relevant to the query and the other is irrelevant.

The main problem in ranking is that the loss associated to a predicted ranked
list is the mean of the pairwise classification losses. This loss is inadequate for
IR tasks where we prefer high precision on the top of the predicted list. We
propose, here to use a ranking algorithm, named OWPC [12] which optimizes
loss functions focused on the top of the list.

This year, we concentrated our attention on the features we have to take into
account to enhance the precision of our runs.

In this paper, we describe the selection of features which represent an element
according a query (Section 2). We then present our learning to rank model,
OWPC, in Section 3. Finally, in Section 4 we discuss the results obtained by our
runs for the adhoc track.

2 Learning Base

INEX uses a document collection based on Wikipedia where the original Wiki
syntax has been converted into XML [10]. This collection is composed of 2,666,190

S. Geva et al. (Eds.): INEX 2010, LNCS 6932, pp. 54–62, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

LIP6 at INEX’10: OWPC for Ad Hoc Track 55

documents and for each document we can separate semantic annotation elements
and content elements. In our case, we indexed only content elements without do-
ing any preprocessing step along the corpus (such as stemming or using a stop
word list). To use a machine learning algorithm on this collection we have to
build manually a set of examples (i.e of queries) as a learning base. For each
query, we must create a pool of retrieved elements, assess them and represent
them as a vector of extracted features.

We assessed manually 40 randomly chosen queries from previous INEX com-
petitions (from 2006 to 2009) and according to the process described in [3].

Now, after annotating a set of queries, we can select the elements we will
submit to our learning algorithm. Thus, we have to select elements according to
a query. The strategy used was to select objects by a pooling technique following
the suggestion made by [2] to improve efficiency and robustness of learning to
rank algorithms. Therefore we decided to build our learning base as a pool of
the top k elements of three information retrieval models as BM25, LogTF and
a Language Model with Absolute Discount smoothing function.

2.1 Basic Features

Once we have obtained a set of elements for a given query, we have to represent
each element by a feature representation. In our case each feature is a similarity
function between a query and an element. We can separate the features in two
families :

a content feature: is a similarity function based on the content of an element
and the content of the query. For example, models such as BM25 [9], TF-IDF
or Language Models [15] can be placed in this class.

an element structure feature: provides information on the internal struc-
ture of an element. In practice, we used an indicator function on the type
of the considered element. For instance, if the retrieved element is a para-
graph (i.e. < p >) the indicator function returns 1 and the other indicator
functions return 0.

We sum up in Table 1 all the features used in our experiments for the Restricted
Focused and the Efficiency/Thorough tasks1. We denote tf(t, x) as the term
frequency of the term t of a query q in the element x, [x] as the length of
x, Col as the collection and df(t) as the number of elements in the corpus
containing t. In the end, BM25(t, x) stands for the BM25 model applied to
the term t in the element x and LM∗(t, x) is a Language Model where ∗ ∈
{Dirichlet, Jelinek − Mercer, AbsoluteDiscount} is the smoothing function.

2.2 Context Features

The aim of this work is to identify features that are informative to help a learning
to rank algorithm perform well on a set of elements. In traditional search engines,
1 These features are commonly employed in IR but we were interested in what kind

of information could bring these features.

56 D. Buffoni, N. Usunier, and P. Gallinari

Table 1. Extracted features for the joint representation of a document according to
a query. x is either an element or a document. The 19-25th features give a boolean
attribute for the family tag of the current element x ∈ {sec, ss, ss1, ss2, ss3, ss4, p}.

ID Feature Description

1 [x]

2 # of unique words of x

3
∑

t∈q
⋂

x tf(t, x)

4
∑

t∈q
⋂

x log(1 + tf(t, x))

5
∑

t∈q
⋂

x
tf(t,x)

[x]

6
∑

t∈q
⋂

x log(1 + tf(t,x)
[x]

)

7
∑

t∈q
⋂

x log([Col]+1
df(t)+0.5

) in x

8
∑

t∈q
⋂

x log(1 + log([Col]+1
df(t)+0.5

)) in x

9
∑

t∈q
⋂

x log(1 + [Col]+1
tf(t,x)

) in x

10
∑

t∈q
⋂

x log(1 + tf(t,x)
[x]

× [Col]+1
df(t)+0.5

)

11
∑

t∈q
⋂

x log(1 + tf(t,x)
[x]

× [Col]
tf(t,Col)

)

12
∑

t∈q
⋂

x log(1 + tf(t, x)) × log([Col]+1
0.5+df(t)

)

13
∑

t∈q
⋂

x tf(t, x) ∗ log([Col]+1
0.5+df(t)

)

14
∑

t∈q
⋂

x BM25(t, x) with k1 = 2 and b = 0.2

15
∑

t∈q
⋂

x log(1 + BM25(t, x)) with k1 = 2 and b = 0.2

16
∑

t∈q
⋂

x LMJelinek−Mercer(t, x) with λ = 0.5

17
∑

t∈q
⋂

x LMDirichlet(t, x) with μ = 2500

18
∑

t∈q
⋂

x LMAbsoluteDiscount(t, x) with δ = 0.88

19,20,...,25 family tag of the element

the features of the whole document are used, but the features of importance in
XML retrieval, where the retrieved element must be both specific and exhaustive,
remain to be determined. The approach we present focuses on this problem.

We built a total of three sets of context features based on the 18 first features
described in Table 1 for our INEX submissions. Then, we added independently
features 19 to 25.

The description of the feature representation of an element in the retrieved
pool for a given query is as follows:

Reference Run Set: In this set, an element x is described through 18 features
(exactly as presented in Table 1) where x is the whole document (i.e. <
article > element). Submissions based on this set are used as baselines and
called LIP6-OWPCRefRun*2 .

Element-Document and Ratio Set: In this case, we concat extracted fea-
tures of Table 1 where x is a XML element retrieved in the pool and then
the document (doc(x)) which x belongs to. In addition, for each feature

2 The * corresponds to the task, in our case, “Th” for Efficiency/Thorough and “Fo”
for Restricted Focused.

LIP6 at INEX’10: OWPC for Ad Hoc Track 57

feat(x) computed on x of Table 1, we add the ratio ri(x) = feati(x)
feati(doc(x)) .

This ratio should compare the proportion of the information included in the
element in the overall information of the document, to determine whether
the element is exhaustive. We inject into the algorithm both the local infor-
mation held by the element and the global information brought by document
scores. We suppose that the best element is going to be located in one of
the most relevant documents, and thus we select the best documents and
then the best elements of these documents. This set gives the submission
LIP6-OWPCnormal*.

Element-Parent-Document and Ratios Set: In this case, we compute fea-
tures when x is the retrieved XML element, then we add features of the
father of x (father(x)) and finally, we expand by computed features on
the document where x belongs to. As before, we add two ratios: r1i(x) =

feati(x)
feati(father(x)) and r2i(x) = feati(father(x))

feati(doc(x)) . and we add the context infor-
mation of the element by computing the scores of his parent. We know that
the information inside a parent is greater or equally exhaustive, compared
to that of the element and it remains more specific than the information in
the whole document. This submission is LIP6-OWPCparent*.

Once we obtain the learning datasets thus described, we can apply a learning
to rank algorithm which minimizes the ranking error focused to the top of the
retrieved list.

3 OWPC, Our Learning to Rank Model

We outline here the learning to rank model described more in detail in [12].
We consider a standard setting for learning to rank. The ranking system re-
ceives as input a query q, which defines a sequence of XML elements denoted
X(q) def=

(
X1(q), ...,Xq

)
(where [q] is used as a shortcut for [X(q)]). In our

case, the sequence is a subset of the whole collection filtered by the pooling tech-
nique as described in Section 2. Xj(q) corresponds to the feature representation,
i.e the vector of features, of the j-th element. The score function f takes as
input the feature representation of an element, thus f

(
Xj(q)

)
), denoted fj(q)

for simplicity, and returns a real-valued score of the j-th element. In the end,
the output of the ranking system is the list of the elements for a given query q
sorted by decreasing scores.

The aim of a learning to rank algorithm is to learn a scoring function while
minimizing the measured error on the predicted list for a given query. This
ranking error must be optimizable and related to an IR evaluation measure
which gives more importance at the errors made at the top of the list. In the
rest of the section, we describe our model which learns a ranking function by
minimizing errors made at the top of the list.

58 D. Buffoni, N. Usunier, and P. Gallinari

3.1 Learning Step

For clarity in the discussion, we assume a binary relevance of the elements: a
sequence y contains the indexes of the relevant objects labeled by a human expert
for a given query q (ȳ contains the indexes of the irrelevant ones).

Given a training set S = (qi,yi)m
i=1 of m examples (in our case m = 40, see

Section 2), learning to rank consists in choosing a score function f that will
minimize a given ranking error function R̂Φ(f, S) :

R̂Φ(f, S) def= Ê
(q,y)∼S

err
(
rank(f, q,y)

)
Ê(q,y)∼S is the mean on S of ranking errors and err is the number of misranked
relevant XML elements in the predicted list.

Rank Function. We define the rank of a relevant document for a given query q,
its relevant candidates y, and a score function f , as follows:

∀y ∈ y, ranky(f, q,y) def=
∑
ȳ∈ȳ

I (fy(q) ≤ fȳ(q)) (1)

where I (fy(q) ≤ fȳ(q)) is an indicator function (returns 1 if the score of a rel-
evant element is lower than the score of an irrelevant one and 0 otherwise).
However, directly minimizing the ranking error function R̂Φ(f, S) is difficult due
to the non-differentiable and non-convex properties of function I (fy(q) ≤ fȳ(q))
of ranky(f, q,y). To solve this problem we generally take a convex upper bound
of the indicator function which is differentiable and admits only one minimum.
This bound is denoted �

(
fy(q) − fȳ(q)

)
and is set to the hinge loss function3

� : t �→ [1 − t]+ (where [1 − t]+ stands for max(0, 1 − t) and t = fy(q) − fȳ(q)).

Error Function. With equation 1, we can define a general form of the ranking
error functions err of a real valued function f on (q,y) as:

err(f, q,y) def=
1

[y]

∑
y∈y

Φ[ȳ] (ranky(f, q,y))

where Φ[ȳ] is an aggregation operator over the position of each relevant element
in the predicted list. Traditionally, this aggregation operator Φ[ȳ] was set to the
mean in learning to rank algorithms as in [8, 5]. Yet, optimizing the mean of
the rank of relevant element does not constitute a related ranking error function
to classical Information Retrieval measures. In fact, we obtain the same ranking
error for a relevant element ranked on the top or on the bottom of the list. This
behaviour is not shared by IR metrics where more consideration is given to the
rank of the relevant documents on the top of the list.

To overcome this problem, we showed that fixing Φ[ȳ] by the convex Ordered
Weighted Aggregation (OWA) operators [13] we can affect the degree to which
the ranking loss function focuses on the top of the list. The definition of the
OWA operator is given as follows:
3 Instead of the hinge loss function, all standard convex loss function can be used.

LIP6 at INEX’10: OWPC for Ad Hoc Track 59

Definition 1 (OWA Operator [13]). Let α = (α1, ..., αn) be a sequence of n
non-negative numberswith

∑n
j=1 αj = 1.The OrderedWeightedAveraging (OWA)

Operator associated to α, is the function owa α : R
n → R defined as follows:

∀t = (t1, ..., tn) ∈ R
n, owa α(t) =

n∑
j=1

αjtσ(j)

where σ ∈ Sn (set of permutations) such that ∀j, tσ(j) ≥ tσ(j+1).

Then we can rewrite the ranking error function as follows:

err(f, q,y) def=
1

[y]

∑
y∈y

owa
ȳ∈ȳ

(ranky(f, q,y)) (2)

SVM Formulation. Thus, this provides a regularized version of the empirical risk
of equation (2) and can be solved using existing algorithms as Support Vector
Machines for structured output spaces [11].

min
w

1
2
||w||2 + C

∑
(q,y)∈S

1
[y]

∑
y∈y

owa
ȳ∈ȳ

[1 − 〈w, Xy(q) − Xȳ(q)〉]+ (3)

where the learning algorithm according to the training set S and the ranking er-
ror function err(f, q,y) will determine the parameter vector w. This weight
vector will be used in the prediction step to compute the score of a docu-
ment (f function). C is a trade-off parameter fixed by the user, to balance the
learning model complexity ||w||2 and the upper bounded ranking loss function
err(f, q,y).

To sum up, this algorithm learns a score function by minimizing a ranking
error function focused on the top of the list. The user has to fix the non-increasing
weights α of the OWA operators to vary the consideration on the errors incurred
on the top of the list. It’s the typical behaviour of a IR evaluation measure.

3.2 Ranking Prediction

Given an unlabeled query qu with a candidate Xj(qu) of the sequence of elements
X(qu), the corresponding predicted score based on the learned weight vector w is:

fj(z) = 〈w, Xj(qu)〉
where 〈., .〉 is the scalar product between the weight vector and the similarity rep-
resentation of Xj(qu). This allows us to sort all elements of X(qu) by decreasing
scores.

4 Experiments – Results

In this section, we present our experiments and results for the Restricted Focused
and the Efficiency/Thorough tasks in Adhoc track for INEX’10. We concentrated
on these two tasks to validate the extraction of elements features which are
provided to the learning to rank algorithm.

60 D. Buffoni, N. Usunier, and P. Gallinari

For this purpose, for each query, we use a fetch and browse strategy to build
a pool of elements given to OWPC algorithm. As a reminder, the pool is built
in two steps according the three models described in Section 2, that is BM25,
LogTF and a Language Model with Absolute Discount smoothing function. First
we retrieve the top k (with k = 1, 500) articles of each model for the fetch step
and then for the browse step, we extract the list of all overlapping elements
(top k′ = All) which contained at least one of the search terms. We strive to
collect only small elements to enhance the precision of our system by limiting
the domain to types ∈ {sec, ss, ss1, ss2, ss3, ss4, p}. Thus, the side effects due
to waste labeling4 are reduced.

We fixed the parameters of our learning to rank algorithm on a validation
set composed of Inex’09’s queries. We set the weights of the OWA operator to
be linearly decreasing as suggested by [12]. We fixed the C parameter of the
equation (3) among {1, 10, 100} using the iP[0.01] score on the validation set
(Inex’09’s queries).

4.1 Efficiency/thorough Task

We present here only the runs experimented for the Thorough task. The per-
formances of our learning to rank model are summarized in Table 2 for the
Efficiency/Thorough task.

As explained above (in Section 2), LIP6-OWPCRefRunTh is our reference
run returning only the top 1,500 articles. LIP6-OWPCnormalTh retrieves small
elements which carry only information on the document and the considered
element (plus a ratio). In the end, LIP6-OWPCparentTh gives the top 1,500
elements ranked according the information given by the element, its parent and
the document is belong to (plus two ratios).

Table 2. Test performances of OWPC model in the Efficiency/Thorough task in terms
of MAiP and MAP

MAiP MAP

LIP6-OWPCRefRunTh 0.2196 0.2801

LIP6-OWPCnormalTh 0.1673 0.2561

LIP6-OWPCparentTh 0.1800 0.2581

As expected, runs which return articles have better performances in MAP and
MAiP than runs returning only small elements. This shows that the strategy of
retrieving articles is most informative both with respect to precision and recall.
A simple explanation for this, is the effect of the limitation of the results list. In
fact, only the top 1,500 elements for each query are evaluated and in the case
4 The algorithm gives same importance to two elements with the same label (our

labels are binary) as opposed to the INEX evaluation measure which depends on the
number of relevant characters in them. This difference between our approach and
the evaluation function results in undesirable effects.

LIP6 at INEX’10: OWPC for Ad Hoc Track 61

of the Efficiency/Thorough task, where the overlap is permitted, this penalizes
runs returning a lot of small elements rather than one article.

In the end, taking also into account information on the parent of the consid-
ered element, performs better than a run where information is only given by the
element and the document. This is encouraging for our Restricted Focused runs.

4.2 Restricted Focused Task

We present in this paragraph the performances of our models for the Restricted
Focused task. For this task, our algorithm produces a list containing only small
elements due to the limitation of retrieving 1,000 characters per query.

We report the performances of our models for the Restricted Focused task in
Table 3 in terms of character precision measure.

Table 3. Test performances of OWPC in the Restricted Focused task in terms of
Character Precision and MAP

Char prec MAP

LIP6-OWPCRefRunFo 0.3391 0.0016

LIP6-OWPCnormalFo 0.3451 0.0013

LIP6-OWPCparentFo 0.4125 0.0022

LIP6-OWPCRefRunFo is our reference run and returning only articles from
the LIP6-OWPCnormalFo run and taking into account the size limitation of the
query. LIP6-OWPCnormalFo retrieves small elements which carry only infor-
mation on the document and the considered element. We remove overlapping
elements, and we limit the size of the ranked list for each topic to 1,000 charac-
ters. As previously, LIP6-OWPCparentTh gives elements ranked according the
information given by the element, its parent and the document it belongs to.

We can conclude that in terms of character precision and MAP the learning to
rank algorithm with information providing by the parent (LIP6-OWPCparentFo)
outperforms other runs. This is the same trend that can be seen in the Effi-
ciency/Thorough task.

In our case, the learning to rank algorithm performs better when an infor-
mation on the parent of the element is given in terms of character precision. In
terms of MAP, this difference is less significant.

5 Conclusion

In conclusion, we built a training set for our learning to rank model named
OWPC. We studied different ways to extract informative features and see their
influence in terms of Character Precision, MAiP and MAP measures.

As in previous INEX competitions, retrieving articles rather than smaller
elements gives better results in terms of MAiP (and MAP if there are not a
limitation on the size of each topic). However, OWPC which retrieves only small

62 D. Buffoni, N. Usunier, and P. Gallinari

elements performed well on the Restricted Focused task where the evaluation
measure (character precision) gives more importance to the precision of the run
than to its recall.

References

[1] Amini, M.R., Usunier, N., Gallinari, P.: Automatic Text Summarization Based on
Word-Clusters and Ranking Algorithms. In: Losada, D.E., Fernández-Luna, J.M.
(eds.) ECIR 2005. LNCS, vol. 3408, pp. 142–156. Springer, Heidelberg (2005)

[2] Aslam, J.A., Kanoulas, E., Pavlu, V., Savev, S., Yilmaz, E.: Document selec-
tion methodologies for efficient and effective learning-to-rank. In: SIGIR 2009:
Proceedings of the 32nd International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 468–475. ACM, New York (2009)

[3] Buffoni, D., Usunier, N., Gallinari, P.: LIP6 at INEX’09: OWPC for Ad Hoc
Track. In: Geva, S., Kamps, J., Trotman, A. (eds.) INEX 2009. LNCS, vol. 6203,
pp. 59–69. Springer, Heidelberg (2010)

[4] Burges, C.J.C., Ragno, R., Le, Q.V.: Learning to rank with nonsmooth cost func-
tions. In: NIPS, pp. 193–200 (2006)

[5] Cao, Y., Xu, J., Liu, T.-Y., Hang, L., Huang, Y., Hon, H.-W.: Adapting ranking
SVM to document retrieval. In: Proceedings of the 29th Annual International
Conference on Research and Development in Information Retrieval SIGIR 2006
(2006)

[6] Cohen, W.W., Schapire, R.E., Singer, Y.: Learning to order things. In: NIPS
(1997)

[7] Freund, Y., Iyer, R., Schapire, R.E., Singer, Y.: An efficient boosting algorithm
for combining preferences. JMLR 4, 933–969 (2003)

[8] Joachims, T.: Optimizing search engines using clickthrough data. In: Proceedings
of the Eighth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (2002)

[9] Robertson, S.E., Walker, S., Hancock-Beaulieu, M., Gull, A., Lau, M.: Okapi at
trec. In: TREC, pp. 21–30 (1992)

[10] Schenkel, R., Suchanek, F.M., Kasneci, G.: Yawn: A semantically annotated
wikipedia xml corpus. In: Kemper, A., Schöning, H., Rose, T., Jarke, M., Seidl,
T., Quix, C., Brochhaus, C. (eds.) BTW, LNI, vol. 103, pp. 277–291, GI (2007)

[11] Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y.: Large margin methods
for structured and interdependent output variables. Journal of Machine Learning
Research 6, 1453–1484 (2005)

[12] Usunier, N., Buffoni, D., Gallinari, P.: Ranking with ordered weighted pairwise
classification. In: Danyluk, A.P., Bottou, L., Littman, M.L. (eds.) ICML. ACM
International Conference Proceeding Series, vol. 382, p. 133. ACM, New York
(2009)

[13] Yager, R.R.: On ordered weighted averaging aggregation operators in multi-
criteria decision making. IEEE Transactions on Systems, Man and Cybernetics
(1988)

[14] Yue, Y., Finley, T., Radlinski, F., Joachims, T.: A support vector method for
optimizing average precision. In: SIGIR, pp. 271–278 (2007)

[15] Zhai, C., Lafferty, J.: A study of smoothing methods for language models applied
to information retrieval. ACM Trans. Inf. Syst. (2004)

S. Geva et al. (Eds.): INEX 2010, LNCS 6932, pp. 63–70, 2011.
© Springer-Verlag Berlin Heidelberg 2011

A Useful Method for Producing Competitive
Ad Hoc Task Results

Carolyn J. Crouch, Donald B. Crouch,
Sandeep Vadlamudi, Ramakrisha Cherukuri, and Abhijeet Mahule

Department of Computer Science
University of Minnesota Duluth

Duluth, MN 55812
(218) 726-7607

ccrouch@d.umn.edu

Abstract. This paper reports the final results of our experiments involving the
2009 INEX Ad-Hoc Track and describes the methodology upon which our cur-
rent, 2010 experiments are built. In 2009, our INEX investigations centered on
indentifying a methodology for producing what we have referred to as improved
focused elements—i.e., elements which when evaluated are competitive with
others in the upper ranges of the official rankings. Our 2009 INEX paper [5]
describes our approach to producing such elements, which is based on the com-
bination of traditional document retrieval (to identify the document set of inter-
est to the query) with our method of dynamic element retrieval (to generate and
retrieve the elements of the document(s) so identified) and the subsequent ap-
plication of a specific focusing technique for the Focused and Relevant-in-
Context tasks (to select the focused elements). The system is based on the
Vector Space Model [10]; basic functions are performed using the Smart ex-
perimental retrieval system [9]. In this paper, we report the final results of these
experiments, applied to the INEX 2009 Thorough, Focused and Relevant-in-
Context tasks. Results show that this approach produces highly ranked results
for all three of these Ad Hoc tasks. Significance tests, applied to these results
as compared to the top-ranked runs, show in which cases statistically significant
results are obtained. Our 2010 work is ongoing at present.

1 Introduction

In 2009, our INEX investigations centered on establishing a methodology for produc-
ing competitive results for the Ad Hoc Focused Task, applied in the environment of
the INEX 2009 collection (the larger, scaled-up version of Wikipedia). (Results re-
ported in [5] show that our basic approach had produced competitive focused results
when applied to the smaller, 2008 Wiki collection.) As our experiments progressed, it
became clear that the same basic methodology, applied in general to the Thorough
Task and extended with the production of focused elements to the Focused and
Relevant-in-Context Tasks, was capable of producing competitive results for all
three tasks. In this paper, we report the results of these experiments, along with the

64 C.J. Crouch et al.

corresponding significance tests which establish that results produced by this method
are competitive with those of the top-ranked participants for each task.

Dynamic element retrieval—i.e., the dynamic retrieval of elements at the desired
degree of granularity—has been the focus of our INEX investigations for some years.
The incorporation of dynamic element retrieval with traditional document retrieval
enables us to generate, with respect to the query, a rank-ordered set of all its elements
for each document of interest. Thorough elements (i.e., all the [overlapping] elements
along a path) are extracted from this set. These elements are then filtered to produce
the corresponding set of focused (i.e., non-overlapping) elements, thus yielding re-
sults for the Focused and Relevant-in-Context Tasks. A more detailed view is given
below.

2 Dynamic Element Retrieval and the Ad Hoc Tasks

In this section, we describe our methodology for producing, for each query, a set
of elements of interest with respect to the three major INEX Ad Hoc Tasks. The ex-
periments performed using this approach are detailed and their results reported in
Section 3. Basic functions are performed using Smart. The queries are taken from the
title field.

2.1 Producing the Element Set

Given any one of the three major Ad Hoc tasks, our concern is to produce, for each
query, a set of elements as required for that specific task. The approach described here
incorporates article retrieval (to identify the articles of interest) with dynamic element
retrieval (to produce the set of elements associated with each article). These results
are then either reported or further processed as required by the task. A lower-level
view of the process follows.

For each query, we retrieve n articles or documents. We then use dynamic element
retrieval to produce the elements themselves. Dynamic element retrieval [3, 7] builds
the document tree at execution time, based on (1) a stored schema representing a pre-
order traversal of the document, created when it is parsed, and (2) a terminal node in-
dex of the collection. Given a specific article, our document-building routine, Flex,
identifies its document tree and then seeds the tree by connecting each of its terminal
nodes to the vector representing that node in the terminal node index. (In this context,
the terminal node represents a leaf of the document tree; the content of this node con-
tributes, with that of its siblings, to form the element vector of the parent node.) Since
the articles are semi-structured, all untagged text is collected and becomes a new [arti-
ficial] child node of its parent. (These nodes are included in the terminal node
index.) Given all the terminal nodes associated with a parent, Flex then builds the
parent node and the process continues until each element vector in the document
tree has been generated, bottom up, from the terminal node level to the body node of
the article.

All of the element vectors thus generated, along with the query vector in question,
are term-frequency weighted. To determine the correlation between the query and the
element vectors, we use inner product with Lnu-ltu term weighting [11], designed by

 A Useful Method for Producing Competitive Ad Hoc Task Results 65

Singhal to deal with differences in vector length (which would otherwise bias results
in favor of long vectors [e.g., those representing articles or sections] over short ones
[e.g., paragraphs]). Lnu-ltu weighting requires the use of two collection-dependent
parameters, slope and pivot. (All-element values of slope and pivot are used here.)
Correlation of the ltu-weighted query with the Lnu-weighted element vectors of the
document tree produces a rank-ordered list of elements from the document.

2.2 Producing Task-Specific Output

Thorough results are now available. For the top-ranked article identified by document
retrieval, we output the set of all Thorough elements (all overlapping elements along a
path), do the same for the second- ranked document, and continue until either all n
documents are processed or the window is full. Focused results require additional fil-
tering to select the most relevant element along a path. We use one of the three focus-
ing strategies described below to remove overlap. A set of focused elements, < m in
size, is then reported for each of the top n documents. (Here m represents the number
of focused elements reported for each query.) These same results, i.e., focused ele-
ments output by document, are reported for the Relevant-in-Context Task.

Three focusing or overlap removal strategies were investigated in these experi-
ments. The section strategy chooses the highest correlating non-body element along a
path as the focused element. (Most of these elements turn out in fact to be sections. A
body element appears in this list of focused elements if and only if none of its child
elements are ranked within the top m.) The correlation strategy chooses the highest
correlating element along a path as the focused element, without restriction on ele-
ment type. And the child strategy chooses the terminal element along a path as the fo-
cused element (i.e., ignores correlation and always gives preference to the child rather
than the parent).

2.3 Early Results

Our earlier work in 2008 centered on the Focused Task. The best results achieved in
those experiments (reported in [1, 4]) were competitive with those in the upper ranges
of the official ranking. In 2009, our goal was to confirm that the same methodology
could produce competitive results when applied to the new (2009) Wikipedia collec-
tion. But problems with xpaths (a result of an early decision to generate simplified
versions of the document trees–i.e., reduce the tag set) meant that tags present in the
new Wiki Collection were not always present in the element path, thus making the
proper evaluation of these elements impossible. In this paper, having corrected this
xpath problem, we present the results of experiments applying our methodology to the
2009 Wikipedia Collection for the Thorough, Focused, and Relevant-in-Context
Tasks and compare the results to those in the official rankings. Significance testing of
these results is addressed in Section 4.

3 Experiments and Results

The description of our experiments when applied to the Through, Focused, and Rele-
vant-in-Context Ad Hoc Tasks and the results produced are described here in Sections

66 C.J. Crouch et al.

3.1, 3.2, and 3.3, respectively. All of these experiments were performed using the
INEX 2009 collection. Significance testing, observations and analysis follow in
Section 4.

In these experiments, n represents the number of articles retrieved and m is the
number of elements reported. In all cases, n, the number of articles, ranges from 25 to
500, and m, the number of elements, ranges from 50 to 1500. Slope and pivot values
are 0.11 and 44, respectively.

3.1 Thorough Task

Recall the basic approach described above. Given a query, the top-ranked n articles are
identified based on Smart retrieval. Dynamic element retrieval is then used to build the
document trees. As the trees are built, bottom up, each Lnu-weighted element vector is
correlated with the ltu-weighted query using inner product. For each tree, a rank-
ordered list of elements is produced. This list includes elements representing untagged
text in the document, which must be present in order to generate the trees properly but
which do not physically exist as elements per se and so are removed from the element
list before either thorough or focused elements are reported.

Table 1 displays the results of Thorough Task evaluation for the 2009 INEX
collection.

Table 1. MAiP 2009 Thorough Task Evaluation

50 100 150 200 250 500 1000 1500

25 0.2062 0.2069 0.2081 0.2081 0.2081 0.2081 0.2081 0.2081

50 0.2062 0.2071 0.2081 0.2085 0.2085 0.2085 0.2085 0.2085

100 0.2063 0.2071 0.2082 0.2086 0.2095 0.2095 0.2095 0.2095

150 0.2063 0.2073 0.2084 0.2087 0.2096 0.2098 0.2098 0.2098

200 0.2064 0.2074 0.2083 0.2088 0.2098 0.2099 0.2105 0.2105

250 0.2064 0.2075 0.2085 0.2091 0.2097 0.2101 0.2109 0.2109

500 0.2065 0.2077 0.2085 0.2091 0.2098 0.2103 0.2109 0.2120

The best result is obtained here as expected at n=500 and m=1500. The MAiP
score of 0.2120 places this run at rank 8 with respect to the official results.

3.2 Focused Task

By definition, overlapping elements must be removed from the element set identified
in Section 3.1 (above) to produce the set of focused elements for each document tree.
The focused elements from each tree are then reported, in article order, for evaluation.
The approach used here guarantees that if m focused elements are available (i.e., re-
trieved by the query), the top-ranked m are reported.

 A Useful Method for Producing Competitive Ad Hoc Task Results 67

The results of these experiments for each of the three focusing strategies (described
in Section 2.2) are given below in Tables 2, 3, and 4, respectively. The best result for
each focusing strategy is again obtained at n=500 and m=1500. The best iP[0.01] val-
ue is 0.6594 for the Section strategy. The best result from each of these strategies
ranks above the best value reported in the official ranking (Waterloo at 0.6333). Sta-
tistical significance is addressed below. (See Section 4.)

Table 2. iP[0.01] 2009 Focused Task – Section Strategy

Table 3. iP[0.01] 2009 Focused Task – Correlation Strategy

Table 4. iP]0.01] 2009 Focused Task – Child Strategy

68 C.J. Crouch et al.

3.3 Relevant-in-Context Task

For this task, we use the same methodology described in Section 3.2 (above) to pro-
duce and then report the focused elements. The resulting list is then evaluated using
MAgP. Results for each of the three focusing strategies is given in Tables 5, 6, and 7
below.

Table 5. MAgP 2009 Relevant-in-Context Task – Section Strategy

Table 6. MAgP 2009 Relevant-in-Context Task – Correlation Strategy

Table 7. MAgP 2009 Relevant-in-Context Task – Child Strategy

 A Useful Method for Producing Competitive Ad Hoc Task Results 69

Each strategy produces a best value that would place in the top 10 of the official
ranking (i.e., Correlation at 5, Child at 6, and Section at 7). The best result, with an
MAgP value of 0.1731, is produced by the Correlation strategy.

With respect to the data reported in Tables 1-7, we note that (for each task) m
represents the total number of elements reported with respect to n documents. At
1500, the window is filled (if enough elements of the required type have been pro-
duced by the n top-ranked documents to fill it). Indications are that guaranteeing, for
each query, a value of n sufficiently large to fill the reporting window may produce
slightly improved results, but we have not done that here.

4 Analysis and Observations

We compared our experimental results for the 2009 Thorough, Focused, and Rele-
vant-in-Context tasks with the baseline runs of the ten top-ranked participants. We
utilized a t-test, one-tailed, at 95% - the approach used by Kamps for significance
testing of participant scores in the Ad Hoc Track of INEX 2008 [6]. The same test-
ing, applied to our 2008 Ad Hoc results [4], is detailed in [2] and reveals a very simi-
lar picture to that of 2009, which is summarized below.

Significance testing of 2009 Thorough Task results reveals the following: Our
results are significantly better than those of participants ranked 9-10. There is no sta-
tistically significant difference between our results and those of participants in the
mid-range, and only the top-ranked participant, LIG, produced a significantly better
result for this task.

With respect to the 2009 Focused Task, although our scores for all three focusing
methods rank above those of the baseline (i.e., participant scores), there is no
statistically significant difference between (1) results produced by the three focusing
methods or (2) results produced by our methods versus those of the baseline
participants.

Consider now the 2009 Relevant-in-Context Task. Testing shows that our results
are significantly better than those of participants ranked 6-10. There is no difference
between our results and those of participants ranked 2-5, but the result produced by
the top-ranked participant, Queensland, is significantly better than ours.

In evaluating the results of our methodology, we find that it produces results that
are (1) statistically equivalent to those of the top ten participants for the Focused
Task and (2) either superior or equivalent to 9 of the top 10 participants for the Thor-
ough and Relevant-in-Context Tasks. Two participants produced superior results: LIG
with the top-ranked Thorough run and Queensland with the top-ranked Relevance-in
Content run.

We began our Focused experiments several years ago with the aim of producing
superior elements, by which we meant producing results which, when evaluated,
would rank in the top 10 (or, from our viewpoint, could claim to be in good com-
pany). Better expressed, our objective has been to produce competitive elements.
Results from both 2008 and 2009 show that this objective has now been met. (Details
of these experiments for both 2008 and 2009 may be found in [2, 8, 12].) Further-
more, a single methodology has been applied to yield such results for all three Ad
Hoc tasks. Our current ongoing work is directed at extracting good snippets from
these elements.

70 C.J. Crouch et al.

References

[1] Bapat, S.: Improving the results for focused and relevant-in-context tasks. M.S. Thesis,
Department of Computer Science, University of Minnesota Duluth (2008),
http://www.d.umn.edu/cs/thesis/bapat.pdf

[2] Cherukuri, R.: Significance testing for the INEX 2008-2009 Ad Hoc Tracks. M.S. Thesis,
Department of Computer Science, University of Minnesota Duluth (2010),
http://www.d.umn.edu/cs/thesis/cherukuri.pdf

[3] Crouch, C.: Dynamic element retrieval in a structured environment. ACM TOIS 24(4),
437–454 (2006)

[4] Crouch, C.J., Crouch, D.B., Bapat, S., Mehta, S., Paranjape, D.: Finding Good Elements
for Focused Retrieval. In: Geva, S., Kamps, J., Trotman, A. (eds.) INEX 2008. LNCS,
vol. 5631, pp. 33–38. Springer, Heidelberg (2009)

[5] Crouch, C.J., Crouch, D.B., Bhirud, D., Poluri, P., Polumetla, C., Sudhakar, V.: A Meth-
odology for Producing Improved Focused Elements. In: Geva, S., Kamps, J., Trotman, A.
(eds.) INEX 2009. LNCS, vol. 6203, pp. 70–80. Springer, Heidelberg (2010)

[6] Kamps, J., Geva, S., Trotman, A.: Analysis of the INEX 2009 Ad Hoc Track Results. In:
Geva, S., Kamps, J., Trotman, A. (eds.) INEX 2009. LNCS, vol. 6203, pp. 26–48.
Springer, Heidelberg (2010)

[7] Khanna, S.: Design and implementation of a flexible retrieval system. M.S. The-sis, De-
partment of Computer Science, University of Minnesota Duluth (2005),
http://www.d.umn.edu/cs/thesis/khanna.pdf

[8] Mahule, A.: Improving results of the INEX Thorough Task. M.S. Thesis, Department of
Computer Science, University of Minnesota Duluth (2010),
http://www.d.umn.edu/cs/thesis/mahule.pdf

[9] Salton, G. (ed.): The Smart Retrieval System—Experiments in Automatic Document
Processing. Prentice-Hall, Englewood Cliffs (1971)

[10] Salton, G., Wong, A., Yang, C.: A vector space model for automatic indexing. Comm.
ACM 18(11), 613–620 (1975)

[11] Singhal, A., Buckley, C., Mitra, M.: Pivoted document length normalization. In: Proc. Of
the 19th Annual International ACM SIGIR Conference, pp. 21–29 (1996)

[12] Vadlamudi, S.: Producing improved results for the INEX Focused and Relevant-in-
Context Tasks. M.S. Thesis, Department of Computer Science, University of Minnesota
Duluth (2009), http://www.d.umn.edu/cs/thesis/vadlamudi.pdf

Relaxed Global Term Weights

for XML Element Search

Atsushi Keyaki1,�, Kenji Hatano2, and Jun Miyazaki3

1 Graduate School of Culture and Information Science, Doshisha University
1-3 Tatara-Miyakodani, Kyotanabe, Kyoto 610-0394, Japan

keyaki@ilab.doshisha.ac.jp
2 Faculty of Culture and Information Science, Doshisha University

1-3 Tatara-Miyakodani, Kyotanabe, Kyoto 610-0394, Japan
khatano@mail.doshisha.ac.jp

3 Graduate School of Information Science, Nara Institute of Science and Technology
8916-5 Takayama, Ikoma, Nara 630-0192, Japan

miyazaki@is.naist.jp

Abstract. XML element search engines return XML elements which
are part of XML documents as search results. Existing studies related
to XML element search are brought from the information retrieval tech-
niques for document search. There are some ways to calculate global
weights of each term from statistics of XML elements with 1) the same
path expression or 2) the same tag. In the first approach, the more com-
plex a path expression is, the less the number of XML elements with
the path expression becomes. This is a problem that global term weights
may be calculated using statistics of a few XML elements. Such global
weights are never global. The second approach also has a problem that it
does not consider document structures of XML elements. To resolve the
problems, we propose a method for calculating accurate global weights.
In our method, we regard a path expression as an array of tags. We relax
the restriction of appearance order and appearance frequency of tags in
a path expression to gather similar path expressions into the same class.
Therefore, we try to decrease the number of classes which hardly contain
elements. Our experimental results show that our method can integrate
path expressions without decreasing search accuracy with a certain test
collection.

Keywords: XML element search, accurate global term weights, classi-
fication of similar path expressions.

1 Introduction

The XML1 is a markup language for structured documents that has become the
de facto format for data exchange. A large number of XML documents are now
available on the Web, so that it continues to be used in the future.
� Current affiliation: Graduate School of Information Science, Nara Institute of Science

and Technology.
1 http://www.w3.org/TR/REC-xml/

S. Geva et al. (Eds.): INEX 2010, LNCS 6932, pp. 71–81, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

72 A. Keyaki, K. Hatano, and J. Miyazaki

An XML element is usually defined as a part of an XML document. The XML
element is identified by the surrounding start and end tags. The key goal of XML
search is to obtain relevant XML elements to a query instead of just returning the
entire XML documents, in particular, with document-centric XML documents
[2]. Therefore, XML search engines can generate a ranked list composed of a
set of relevant XML elements, while several Web search engines return a set
of entire Web documents. By searching XML elements, users do not need to
identify relevant descriptions from entire XML documents.

In the field of XML element search, existing term weighting schemes are often
brought from the information retrieval techniques of document search. There
are two approaches which are often used to calculate global weights of each
term. One uses statistics of XML element with the same path expression, while
the other uses the statistics of the same tag. In the first approach, the more
complex a path expression is, the less the number of XML elements with the
path expression becomes. This is one of the problems that global weights may be
calculated using statistics of a few elements. Such global weights are not global.
The second approach also has a problem that it does not consider document
structure of XML elements.

To resolve these problems, we should calculate global weights for each term
from statistics of XML elements which are global enough with considering struc-
tures of the XML elements. Therefore, we integrate similar path expressions into
the same class and calculate global weights based on the classes. In this paper,
we define a class as classification with a certain property. To integrate them,
we regard a path expression as an array of tags and identify path expressions
which are similar to each other in terms of appearance order or appearance fre-
quency of tags. As a result of the integration, we try to decrease the classes which
do not contain enough XML elements to calculate accurate global weights. In
other words, we propose a method to calculate the relaxed global weights by
integrating similar path expressions.

This paper is organized as follows. In Section 2, we explain about information
retrieval technique for XML element search and related studies. In Section 3, we
propose a new method to calculate relaxed global weights. Experiments results
are shown in Section 4, followed by concluding remarks and future work in
Section 5.

2 XML Element Search Techniques and Related Studies

In this section, we describe existing XML element search techniques and their
ways of calculating global weights. In addition, we also discuss on a related
study which relaxes the query restriction related to document structures of XML
elements.

2.1 An Expansion from Document Search to Element Search

Information retrieval techniques of XML element search often make use of the
ones used in document search. In general, term weighting schemes of document

Relaxed Global Term Weights for XML Element Search 73

search utilize some kinds of the statistics, for example, local weights of each
term, global weights of each term, normalization by document length, and statis-
tics given by entire document collection [8]. Term weighting schemes of element
search also utilize these statistics; however, we should treat global weights care-
fully. In the term weighting schemes of document search, we use all documents
when we calculate global weights. This is because document is a unit for calcu-
lating global weights, that is, all documents are in a class. In element search,
on the other hand, each element belongs to one of the classes; therefore, most
term weighting schemes of element search are not based on elements but on the
classes to which the elements with the same and/or similar path expressions
belong. Now, the question is how we identify the “same class.” In the next sub-
section, we refer to some of the most popular XML element search techniques
and their standard classification of the same class.

2.2 Existing Methods of Calculating Global Weights

TF-IPF [3], a popular term weighting scheme of XML element search, is a path-
based term weighting scheme that extends the well-known TF-IDF [12] approach
for document search with the vector space model. In TF-IDF, local weights are
calculated by the term frequency (TF) of each term in each document and global
weights use inverse document frequency (IDF) of each term in all documents.
Finally, a weight of TF-IDF is derived by the product of TF and IDF. In TF-IPF,
global weights use inverse path frequency (IPF) which is the inverse of element
frequency with the same path expression, while local weights are calculated in
the same manner as TF-IDF. A weight of TF-IPF is, then, calculated by the
product of TF and IPF. Furthermore, there are some studies which refine TF-IPF
into more accurate one. Normalized TF-IPF [6] is one of them and it normalizes
each element in its length. These term weighting schemes treat that the XML
elements with the same path expression belong to the same class. In other words,
if there are the elements which have different path expressions, these elements are
classified to different classes. Hence, if the path expressions of elements become
more complex, the number of classes increases. In this case, appropriate global
weights cannot be calculated, because each class does not have enough XML
elements. Therefore, we should consider how to decrease the classes which do
not contain enough XML elements to calculate global weights.

Other popular approaches for XML element search are BM25E [7], which is
based on Okapi’s BM25 [11] term weighting scheme of document search with
probabilistic model, and BM25F [10] for field search. Information retrieval tech-
niques for field search are based on a document as a search unit, and used for
structured document. BM25F gives a weight to each tag to consider the field
that it appears by adjusting important degrees of each tag2.

Meanwhile, BM25E is an information retrieval technique of element search like
TF-IPF. There are two ways to calculate global weights where 1) all elements
belong to the same class (inverse element frequency, IEF), and 2) the elements
2 For example, the weight of title tag is given high value, because the element which

includes title tag tends to be relevant if query keywords appear in such tags.

74 A. Keyaki, K. Hatano, and J. Miyazaki

with the same tag belong to the same class (inverse tag frequency, ITF) [9]. We
overview the problems of these approaches. IEF is calculated by counting text
nodes repeatedly because there are overlaps among elements in the ancestor-
descendant relationship. This means that documents containing numerous tags
become influential too much. Even if the feature of each tag is considered in
ITF, it does not consider the document structures of XML elements. Since both
keywords and structures are used as a query in XML search, it is not appropriate
to ignore document structures. Therefore, IEF and ITF are not suitable for global
weights.

2.3 Relaxing Restriction of Document Structure in a Query

Keeping above points in mind, we should integrate path expressions if they are
supposed to be in the same class. There is an existing study which relaxes query
restrictions in terms of document structures [4]. This approach first calculates
the global weights in advance based on the path-based classification, i.e., IPF,
and then, calculates the term weights of query keywords based on the elements
that satisfy query restrictions when the query is posted. However, we cannot
identify which class the path expressions included in a query are categorized to
before the query is given. Since the class classification is determined by a query,
it takes longer search time because the term weights are calculated after the
query is posted.

3 Classification of Similar Path Expressions

Concerning the problems of the existing methods of calculating global weights
and the related studies of relaxing query restriction introduced in Section 2,
we should develop new strategies to decrease the classes each of which contains
enough XML elements for calculating global weights. It is better if the classes are
classified before a query is processed. To satisfy these requirements, we integrate
the path expressions which are similar in terms of their document structures
in XML elements. Therefore, we propose a method to calculate relaxed global
weights by integrating path expressions.

We define a path expression as an array of tags whose appearance order and
appearance frequency of tags in the location steps are considered. Hence, we
can relax the restriction of document structures in the order and frequency
by our proposed classification, while existing approaches are based on path-
based ones. Here, we propose the following three ways for calculating global
weights by integrating path expressions; 1) relaxing appearance order of tags, 2)
relaxing appearance frequency of tags, and 3) both relaxing appearance order
and frequency.

3.1 Inverse Combination Frequency

Concrete examples of path integration with path expressions are shown in Fig. 1.
First, we explain inverse combination frequency (ICF) which relaxes the ap-
pearance order of tags in path expressions. Tags in structured documents are

Relaxed Global Term Weights for XML Element Search 75

1: /article/sec
2: /article/sec/sec

3: /article/sec/person/sec

4: /article/sec/p/

5: /article/person/sec

6: /article/sec/sec/person

7: /article/person/sec/sec

8: /article/sec/sec/p

Fig. 1. Examples of path expressions

article: 1, sec: 1

article: 1, sec: 2

article: 1, sec: 2, person: 1

article: 1, sec: 1, sep: 1

article: 1, sec: 1, person: 1

1: /article/sec

2: /article/sec/sec

3: /article/sec/person/sec

4: /article/sec/p/

5: /article/person/sec

6: /article/sec/sec/person

7: /article/person/sec/sec

8: /article/sec/sec/particle: 1, sec: 2, sep: 1

Fig. 2. An example of classification in ICF

1: /article/sec
2: /article/sec/sec

4: /article/sec/p/

5: /article/person/sec
7: /article/person/sec/sec

8: /article/sec/sec/p

/article+/sec+

/article+/sec+/p+

/article+/person+/sec+

3: /article/sec/person/sec

6: /article/sec/sec/person

/article+/sec+/person+/sec+

/article+/sec+/person+

Fig. 3. An example of classification in IAF

76 A. Keyaki, K. Hatano, and J. Miyazaki

categorized into two types of tags. One represents structural classification, and
the other indicates something ideas, attributes, specific contents, etc. These two
types of tags are supposed to be independent in their appearance. This suggests
that a combination of tags can consist of two or more path expressions. How-
ever, it is not appropriate that these path expressions are classified to different
classes. In ICF, we, therefore, do not consider the order of tags strictly but the
combination of tags, i.e., names and frequency of tags.

To illustrate a concrete example of classification by ICF, a classification re-
sult of path expressions in Fig. 1 by ICF is shown in Fig. 2. We preliminarily
enumerate the names and frequency of tags in each path expression to integrate
path expressions classified as the same class. As a consequence, we integrate path
expressions 3, 6, and 7 because all of them have one article tag, two sec tags,
and one person tag. The global weights are calculated by all XML elements in
path expression 3, 6, and 7 because they are in the same class.

3.2 Inverse Aggregated-Path Frequency

We explain inverse aggregated-path frequency (IAF) which relaxes appearance
frequency of tags in a path expression. In some path expressions, a tag appears
consecutively twice or more times, for example, col tags in table tag of HTML.
In this case, even if the frequencies of the same tag appearing consecutively are
different, we suppose that the features of a path expression are not so different
because the semantics of each tag is fixed. Therefore, if consecutive tags are the
same, such tags can be aggregated into one.

Consequently, we do not strictly consider the frequency of tags but their order,
i.e., names and order of tags in IAF. In the same manner as ICF explained
in Section 3.1, a classification result of path expressions in Fig. 1 by IAF is
shown in Fig. 3. When the same tag consecutively appears twice or more times,
such a tag is aggregated preliminarily. For example, since sec tags appear in
path expression 2, 6, 7, and 8, path expressions 1 and 2, 4 and 8, 5 and 7 are
integrated. This is because path expressions 1 and 2 have one or more article
tags followed by one or more sec tags while expressions 4 and 8 have one or
more article tags followed by one or more sec tags, and one or more p tags.
Path expressions 5 and 7 also have one or more article tags followed by one or
more person tags, and one or more sec tags.

3.3 Inverse Set Frequency

We described the way of integrating path expressions in terms of either appear-
ance order or appearance frequency of tags in Section 3.1 and 3.2. In contrast,
inverse set frequency (ISF) relaxes both appearance order and frequency of tags
in path expressions. Accordingly, we do not consider the order and frequency of
tags but the names of tag in ISF. Therefore, we classify the path expressions
which are composed of the same tag name as the same class.

A classification result of path expressions in Fig. 1 by ISF is shown in Fig. 4.
Path expressions 1 and 2 are in the same class because they are both composed of
article and sec tags. Path expressions 3, 5, 6, and 7 are composed of article,

Relaxed Global Term Weights for XML Element Search 77

1: /article/sec
2: /article/sec/sec

3: /article/sec/person/sec

4: /article/sec/p/

5: /article/person/sec

6: /article/sec/sec/person

7: /article/person/sec/sec

8: /article/sec/sec/p

article

sec

article

sec

person

article

sec

p

Fig. 4. An example of classification in ISF

Table 1. Effects of integrating path ex-
pressions in the INEX 2008 test collection

method number of the ratio compared
classes to IPF

ICF 56,369 .85

IAF 32,421 .49

ISF 16,007 .24

IPF 66,210 1.0

ITF 495 .0075

Table 2. Effects of integrating path ex-
pressions in the INEX 2010 test collection

method number of the ratio compared
classes to IPF

ICF 22,743,778 .97

IAF 23,383,388 .99

ISF 19,587,224 .83

IPF 23,502,448 1.0

ITF 22,110 .000094

sec, and person tags, while path expressions 4 and 8 are composed of article,
sec, and p tags.

4 Experiments

In this section, we show some experimental results with the INEX 2008 test col-
lection [5] and the INEX 2010 test collection [1], so as to confirm the usefulness
of our proposed methods. In more detail, we conducted three kinds of experi-
ments; 1) assessing the effectiveness of integrating path expressions, 2) analyzing
the number of XML elements in each class, and 3) evaluating search accuracy.

4.1 Experiments for Integrating Path Expressions

Table 1 and 2 explain that how many path expressions are integrated. Each table
shows the number of classes of each method and their ratios compared to IPF.

First, we discuss on Table 1. The result shows that the proposed methods could
appropriately integrate the path expressions in the INEX 2008 test collection.
IAF which relaxes appearance frequency cloud integrate more effectively than
ICF which relaxes appearance order. The number of classes of ISF decreased to
a quarter compared to IPF.

78 A. Keyaki, K. Hatano, and J. Miyazaki

Table 3. The number of XML elements in a class and the ratio of the classes in the
INEX 2008 test collection

numbers of elements IPF ITF ICF IAF ISF

1 .57 .58 .53 .42 .37

2 .13 .14 .14 .16 .13

3 .062 .055 .067 .080 .063

4 .041 .026 .042 .057 .052

5 .027 .018 .028 .031 .036

6 .021 .0080 .022 .027 .032

7 .014 .010 .017 .017 .019

8 .014 .0040 .014 .019 .017

9 .011 .010 .012 .012 .013

10 .090 .0060 .010 .011 .010

11 or more .10 .14 .12 .17 .25

In contrast, the proposed methods did not integrate path expressions effec-
tively in the INEX 2010 test collection as shown in Table 2. Though both ICF
and IAF did not work well, it seemed to be effective for ISF comparatively. This
indicates that our methods did not seem to be sufficient. In particular, we need
to consider that whether IAF which hardly integrates path expressions works
well or not.

The reason of the result obtained was due to growth in the number of kinds
of tags included in the INEX 2010 test collection. This causes an increase in
the number of the combination of path expressions. As a result, we could not
integrate path expressions effectively. Therefore, we should consider another con-
dition for relaxing path expressions. For example, we need to screen valid tags,
while we did not consider in the proposed methods. Because we supposed that
the classes of path expressions are mainly based on the structural tags, it might
be reasonable that we do not use content tags but the structural tags only. Oth-
erwise, it might also be reasonable to integrate the tags with the same seman-
tics. We should further consider a new relaxation method because the proposed
relaxing approaches are not well sufficient.

We conducted some more experiments in the next section to investigate the
results.

4.2 Analyzing the Number of XML Elements in Classes

The experimental result in Section 4.1 indicated that the usefulness of the pro-
posed methods depends on the test collection. We, then, analyze whether the
proposed methods can reduce the number of classes which do not contain enough
XML elements to calculate global weights. Table 3 and 4 represent the number
of XML elements in each class and the ratios of the number of the classes to
that of all classes.

Table 3 explains that all of the proposed method reduce the ratio of the
classes which contain only an element compared to IPF in the INEX 2008 test

Relaxed Global Term Weights for XML Element Search 79

Table 4. The numbers of XML elements in a class and the ratio of classes in the INEX
2010 test collection

numbers of elements IPF ITF ICF IAF ISF

1 .65 .61 .66 .65 .65

2 .13 .14 .11 .13 .12

3 .047 .053 .050 .048 .052

4 .028 .031 .029 .028 .031

5 .017 .018 .018 .017 .020

6 .013 .016 .015 .013 .017

7 .015 .012 .013 .015 .0084

8 .011 .012 .0088 .011 .0070

9 .0061 .0052 .0059 .006 .0033

10 .0057 .0078 .0059 .006 .010

11 or more .081 .10 .081 .081 .086

collection. In addition, the ratio of the classes which contain eleven or more
XML elements increases in all our methods. For these reasons, we conclude
that we could reduce the ratio of the classes which contain few elements by
relaxing restrictions of appearance order and appearance frequency of tags in
path expressions. Therefore, it is natural that ISF which relaxes both order and
frequency is the most effective as our goal. Although it is arguable how many
XML elements are enough to appropriately calculate global weights, we verified
some effects on reducing the ratio of the classes containing few XML elements
when path expressions are integrated.

Moreover, it is notable that a lot of classes in ITF have only a few elements.
Though the INEX 2008 test collection has 495 kinds of tags, 298 kinds of tags
(58%) appear only once. In other words, only a few tags are used repeatedly
in all documents. It suggests that we should focus on the low-frequent tags to
improve our approach.

As expected, we could not observe difference between our methods and IPF
when using the INEX 2010 test collection, as long as we see Table 4. We should
take another ways to achieve our goal, as mentioned in Section 4.1.

4.3 Evaluation on Search Accuracies

We examined search accuracy of three term weighting schemes by using the
global weights obtained by our proposed methods.

More precisely, we used BM25E3 by varying global weights. In addition, we
also examined search accuracy of four more methods, three existing methods
and a method without global weight, to compare to our proposed methods.
Note that we evaluated only with the INEX 2008 test collection4 because the
proposed methods did not work well with the INEX 2010 test collection.
3 The weight of term j in an XML element i is calculated as follows:

(k1+1)tfi,j

k1((1−b)+b el
avel

)+tfi,j
log N−dfi+0.5

dfi+0.5
[7]D.

4 We used 68 queries in the experiment.

80 A. Keyaki, K. Hatano, and J. Miyazaki

Table 5. Search accuracy of our proposed methods

method iP[.01] MAiP

ICF .6169 .1713

IAF .6178 .1724

ISF .6166 .1716

IPF .6146 .1723

IEF .6107 .1321

ITF .6135 .1719

no global weights .2364 .04689

We show search accuracy of these methods in Table 5. All of the proposed
method slightly improved search accuracy. In other words, they do not affect the
accuracy. Since the search accuracies of IEF and ITF are comparatively lower,
we needs to consider the document structures of XML elements. Furthermore,
we should give proper global weights to each term, because the method without
global weights decreased its search accuracy significantly.

Both ICF and IAF could improve search accuracy. However, ISF reduced its
search accuracy. It suggests that the deterioration of search accuracy might be
caused by excessive relaxation.

We summarize the experiments in Section 4.1 through 4.3. Our methods do
not work well with the INEX 2010 test collection but are effective with the INEX
2008 test collection. In the INEX 2008 test collection, ISF is the most effective
approach in terms of the integration of path expressions, while IAF is the most
effective one in terms of the search accuracy.

5 Conclusion

In this paper, we proposed methods to calculate relaxed global weights for XML
element search.

In these methods, we integrate path expressions which are similar in terms
of the order and frequency of tags to reduce the number of classes containing
only a few elements. Our methods could reduce the ratio of such classes with the
INEX 2008 test collection, whereas they do not work well with the INEX 2010
test collection. The experimental evaluations with the INEX 2008 test collec-
tion indicated that we could attain more accurate search. However, the results
also showed that it might cause deterioration of search accuracy by excessive
relaxation.

As future works, we should consider how we treat low-frequent tags, and more
precisely explore to reveal why the proposed methods did not work well with
the INEX 2010 test collection.

Acknowledgements. This work was supported in part by MEXT (Grant-
in-Aid for Scientific Research on Priority Areas #21013035, #22240005, and
#22700248).

Relaxed Global Term Weights for XML Element Search 81

References

1. Arvola, P., Geva, S., Kamps, J., Schenkel, R., Trotman, A., Vainio, J.: Overview
of the INEX 2010 Ad Hoc Track. In: INEX 2010 Workshop Pre-proceedings, pp.
11–40 (December 2010)

2. Blanken, H., Grabs, T., Schek, H.-J., Schenkel, R., Weikum, G.: Intelligent Search
on XML Data: Applications, Languages, Models, Implementations, and Bench-
marks. LNCS, vol. 2818. Springer, Heidelberg (2003)

3. Grabs, T., Schek, H.-J.: PowerDB-XML: A Platform for Data–Centric and
Document–Centric XML Processing. In: Bellahsène, Z., Chaudhri, A.B., Rahm, E.,
Rys, M., Unland, R. (eds.) XSym 2003. LNCS, vol. 2824, pp. 100–117. Springer,
Heidelberg (2003)

4. Hatano, K., Amer-yahia, S., Srivastava, D.: Document-Scoring, for XML Informa-
tion Retrieval using Structural Condition of XML Queries. In: IEICE technical
report, pp. 13–18, DE2007-117 (October 2007)

5. Kamps, J., Geva, S., Trotman, A., Woodley, A., Koolen, M.: Overview of the INEX
2008 Ad Hoc Track. In: Geva, S., Kamps, J., Trotman, A. (eds.) INEX 2008. LNCS,
vol. 5631, pp. 1–28. Springer, Heidelberg (2009)

6. Liu, F., Yu, C., Meng, W., Chowdhury, A.: Effective Keyword search in Relational
Databases. In: Proceedings of the 2006 ACM SIGMOD International Conference
on Management of Data, pp. 563–574. ACM, New York (2006)

7. Lu, W., Robertson, S., MacFarlane, A.: Field-Weighted XML Retrieval Based on
BM25. In: Fuhr, N., Lalmas, M., Malik, S., Kazai, G. (eds.) INEX 2005. LNCS,
vol. 3977, pp. 161–171. Springer, Heidelberg (2006)

8. Manning, C.D., Raghavan, P., Schutze, H.: Introduction to Information Retrieval,
pp. 157–159. Cambridge University Press, Cambridge (2008)

9. Piwowarski, B., Gallinari, P.: A Bayesian Framework for XML Information Re-
trieval: Searching and Learning with the INEX Collection. Journal of Information
Retrieval 8(4), 655–681 (2005)

10. Robertson, S., Zaragoza, H., Taylor, M.: Simple BM25 Extension to Multiple
Weighted Fields. In: Proceedings of the 13 ACM International Conference on In-
formation and Knowledge Management, pp. 42–49 (November 2004)

11. Robertson, S.E., Walker, S., Jones, S., Hancock-Beaulieu, M., Gatford, M.: Okapi at
TREC-3. In: The Third Text Retrieval Conference (TREC-3), pp. 109–126 (1995)

12. Salton, G., Buckley, C.: Term-Weighting Approaches in Automatic Text Retrieval.
Journal of Information Processing and Management 24(5), 513–523 (1988)

Searching the Wikipedia with

Public Online Search Engines

Miro Lehtonen

Department of Computer Science
P.O. Box 68 (Gustaf Hällströmin katu 2b)

FI–00014 University of Helsinki
Finland

Miro.Lehtonen@cs.helsinki.fi

Abstract. Commercial search engines were put to a test as we searched
the online Wikipedia which is a newer version of the INEX 2010 docu-
ment collection. Although the INEX 2010 ad hoc search tasks and the
search features of the public search engines are not 100% compatible, we
were able to compare and evaluate the search results of online search en-
gines with INEX 2010 topics, assessments, and metrics. Considering the
first page of results, we cannot see a big difference between the perfor-
mance of the best academic search engines and the best commercial ones.
Of the public search engines, Google and Yahoo perform marginally bet-
ter than Bing and significantly better than the on-site Wikipedia search.

1 Introduction

Public online search engines have not been seen in the official INEX evaluations
in the past despite the highly competitive performance that they offer to web
users. Whether they are competitive also when measured in such a standard
IR evaluation has not been reported before, to the best of my knowledge. The
purpose of this experiment was to find out how well some of the most popular
search engines fare with the academic search engines and with each other. The
search engines of choice are Google, Bing, Yahoo!, and the default Wikipedia
search which specialises in searching the online version of the Wikipedia1.

The comparison is not completely fair for a number of reasons. For one thing,
the Wikipedia articles evolve constantly. Not only is the online Wikipedia dif-
ferent from the INEX version, but each online search engine indexes a slightly
different version of the document collection, as well. For another thing, none of
the search engines return 1500 results per query. It is possible to set a limit on
the results per page, but ultimately, the number of retrieved results depends on
the query. Sometimes the search engines do not return any results, which can be
considered more user-friendly than returning nearly 1500 non-relevant results.
User satisfaction is however not taken into account by the metrics of INEX.
For example, novelty and diversity [3] are not rewarded; nor is wasted user

1 This experiment has not been endorsed by any of the mentioned search engines.

S. Geva et al. (Eds.): INEX 2010, LNCS 6932, pp. 82–88, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Searching the Wikipedia with Public Online Search Engines 83

effort penalized. Nevertheless, the results should be indicative of the true perfor-
mance, given the variety of different metrics and appropriate interpretation of the
results.

It is commonly known that web search engines rely on information outside the
Wikipedia, including incoming links from other web pages as well as click data
specific to each query and search engine. This might give them an advantage
over the academic search engines that only rely on the INEX version of the
Wikipedia. However, as the Web is available to all the INEX participants, we
cannot assume that the presumed advantage is unfair.

The analysis of the results shows that the best academic search engines are just
as competitive as the best commercial search engines when all the circumstances
are taken into account, e.g. we only search the Wikipedia. Google and Yahoo
are highly competitive when looking at the first page of results.

2 Related Work

Commercial online search engines have been compared in the past in various
ways and various metrics. Measuring the popularity and profitability is without
a doubt an interesting way to rank the search businesses by their success. A more
technical aspect that is often measured is the size of the index or web coverage
[5]. However, there is no search business without a search engine with an effective
search algorithm. Previously, not many Cranfield-style evaluations of this scale
on commercial search engines have ever been published. For example, Tümer
et al. compared Google, Yahoo, MSN, and Hakia with 10 queries on the live
WWW [6], whereas Bar-Ilan et al. compared the result lists of Google, Yahoo,
and Teoma and measured overlap and statistical correlation between the lists [2].

A recent study worth noting was conducted by Ganjisaffar et al. [4] who
pooled the top 10 results of Google, Yahoo, and Live search on the domain
of en.wikipedia.org. In their experiment, seven assessors labelled a total of 240
queries resulting in a finding that Live search outperforms both Google and
Yahoo.

3 Running Online Search Engines

The tests described in this section were conducted in August 2010. Although
the results for individual queries may change over time as the search engines
index and re-index updated pages, the changes should not affect the overall
performance or the mutual rankings of the search engines.

All the search engines were used in a uniform fashion. One HTTP request
was made for each INEX 2010 topic and for each search engine, after which
the server response — the first page of results — was dumped into a file for
further analysis and processing. The maximum number of results on the first
page naturally depends on the search engine. The URLs for the HTTP requests
came from entering the title field of the topic in the search box as written in the
topic file. Quotation marks, plus and minus signs were all included as such.

84 M. Lehtonen

3.1 Google

Of all the different Google search sites, the one that is not specific to any coun-
try was chosen2 although the rankings might be stable across different country
versions when searching a single site. The maximum number of results per page
was set to 100.

Most of the results that Google returns also exist in the INEX version of the
Wikipedia. The retrieved pages that are not found in the INEX collection are
either new articles or combinations of old ones with a new article ID.

3.2 Bing

Bing seems to assume that different rankings are called for in different countries
— even when searching a single site such as the English Wikipedia. Therefore,
choosing a country version for this experiment makes a real difference. American
bing3 was chosen for except the assumption that, as one of the most frequently
used country versions of Bing, it should be up-to-date and the rankings should
be rather stable. The maximum number of results on the first page was set to
50 which is the biggest number allowed.

Unlike Google, Bing retrieves a fair amount of pages that are not included in
the INEX collection although the content is. For example, one of the pages that
Bing returns has the title of “Marilyn Munroe” and the URL

http://en.wikipedia.org/wiki/Marilyn Munroe.
The page redirects to a page correctly titled “Marilyn Monroe” which does

exist in the INEX collection and which is retrieved by Google as a link to
http://en.wikipedia.org/wiki/Marilyn Monroe.
The contents of these two pages are equivalent, but, if the page is relevant to

a query, only Google scores whereas Bing hits a missing page. None of the search
engines retrieve both pages because they try to avoid including duplicate pages
in the results. This might be a case where Bing is being unfairly penalized for
retrieving “wrong” pages where the content is relevant but the title is misspelled.

3.3 Yahoo!

Yahoo4 returns a maximum of 100 results on the first page with a note “Powered
by Bing”. The exact reliance on Bing is somewhat unclear but one of the prolems
is the same: Yahoo too retrieves a number of redirected pages which are not
included in the INEX version of Wikipedia.

3.4 Wikisearch

The on site Wikipedia search engine5 is the only search engine in this experi-
ment that returns focused results — in addition to generating snippets for each
2 www.google.com/ncr
3 www.bing.com/search?setmkt=en-US&q=...
4 search.yahoo.com
5 http://en.wikipedia.org/w/index.php?title=Special:Search&search=...

Searching the Wikipedia with Public Online Search Engines 85

article. While other search engines retrieve whole articles from the Wikipedia,
the Wikipedia search engine also suggests which section might be relevant to the
query. However, this feature of Wikisearch was ignored because the anchor of
the section under focus cannot be converted into an entry point without opening
the INEX version of the article, and even then the conversion is not completely
reliable.

Wikisearch allows a total of 500 results to be shown on the first page. Like
Google, the on site search does not return any pages that redirect further, so
most of the retrieved articles also exist in the INEX version of the Wikipedia.

4 From Result Pages to Run Submissions

Run submissions were created for two different tasks: Restricted Focused (RF)
and Restricted Relevant in Context (RRIC). Processing the first page of results
began the same way for both tasks. First, the article titles were collected by
scanning the result page and extracting the title from the URL. Second, the
corresponding pages were found in the INEX collection by matching the titles
of the online article to the titles in the INEX 2009 version of the Wikipedia.
Because the actual online article was not accessed, the reason for not finding a
matching article in the INEX collection was not analysed. Once we had a ranked
list of articles for each topic, we could create a task-specific run submission.

4.1 Restricted Focused

The ranked list of articles which was specific to each search engine did not contain
any focused results. Therefore, the focus had to be artificially added to the result
list. It had to be a blind process because the document and element scores of the
search engines were not accessible and because we wanted to eliminate the effect
of all external factors. A simple but heuristic way to meet the task requirement
of 1000 characters per topic was to pick the top two articles from the list and
return a passage consisting of the first 500 characters of each.

4.2 Restricted Relevant in Context

Creating a run submission for the RRIC task was straightforward. All of the
articles on the first page of results were included. Restricting the results to 500
characters per article was a task requirement. Because none of the search engines
provide ways to define such a restriction, a simple heuristic had to be defined
for all of them. Assuming that the beginning of the article would be the best
entry point, the first 500 characters of the article would be a good guess on the
restricted passage. Retrieving 500 characters from the beginning of the article
was also simple to implement.

The Wikipedia search is the only search engine where the first 500 characters
are not always part of the result retrieved by the online search engine because
Wikipedia search sometimes focuses the results to certain sections. In those cases,
the real Wikipedia might get better scores than it gets in this experiment.

86 M. Lehtonen

4.3 Summary

All the search engines are good at removing duplicate pages from the results
so that the same content is not retrieved multiple times although it may exist
under several different URLs. How many pages each search engine retrieved that
also exist in the INEX Wikipedia collection is summarised in Table 1.

Table 1. Summary of submitted results for the 107 topics of INEX 2010

Search engine First page Total RF Total RRIC Max RRIC

Google 100 212 7,353 10,700

Bing 50 208 1,156 5,350

Yahoo! 100 209 5,893 10,700

Wikisearch 500 202 28,770 53,500

There were a total of 107 topics in 2010, so the maximum number of submitted
results for the RF task would be 214 and for the RRIC task 160,500 (1500 results
per query), given the chosen heuristics. The number of results that was actually
retrieved is bigger than the number of submitted results because of new pages
and redirecting pages.

5 Results

The evaluation for the runs submitted for the RF task is shown in Table 2.
Although Google seems to retrieve relevant articles with the highest precision,
Yahoo has the highest character precision, retrieving the highest ratio of relevant
content to non-relevant content. However, limiting the results to 500 characters
per article was merely an artificial post-search procedure to satisfy the task
requirements, and therefore, the search engines should not be rewarded or pe-
nalised for it. As this comparison only considers the top two results for each
query, it is fair to compare how many relevant articles the search engines ranked
in the top two ranks of the result list. Google tops the chart as the only search
engine that returns at least two results for each of the 52 queries included in the
evaluation. Google also has the highest total number of relevant articles found
(79) and the highest precision (75.96%).

Table 2. Evaluation of the top two results for the 52 topics submitted for the restricted
focused task

Search engine articles relevant art prec char prec iP0.01

Google 104 79 0.7596 0.3276 0.1040

Yahoo 102 77 0.7404 0.3435 0.1186

Bing 102 75 0.7212 0.3354 0.1062

Wiki 100 68 0.6538 0.2670 0.0713

Searching the Wikipedia with Public Online Search Engines 87

Comparing the public search engines with the best academic ones, we note
that Yahoo (0.3435) ranks the 3rd in the Restricted Focused task where the
official measure was character precision [1]. Bing (0.3354) and Google (0.3276)
are not far behind whereas Wikisearch has the lowest score — obviously due to
the largest number of results per query.

Whether there is any significant difference between the results is tested in
Table 3. According to the topic-wise t-test on article precision, both Google and
Yahoo perform significantly better than the default Wikipedia search but the
differences between other search engines are not statistically significant.

Table 3. P-values of the t-test (one-tailed)

T-test Yahoo Bing Wiki

Google 0.2424 0.1260 0.0074

Yahoo 0.2989 0.0138

Bing 0.0818

The RRIC runs consist of the first page of results for each query before restrict-
ing the submission to the first 500 characters of the article. The performance of
the official RRIC runs are shown in Table 4. The number of results returned on
the first page varies a lot, which makes a direct comparison of absolute precision
or recall unjustified. As we are interested in article precision at fairly low ranks,
we order the runs according to interpolated precision at 0.01 which has been
considered a rather stable measure in the past INEX evaluations.

Table 4. Evaluation of runs submitted for the restricted relevant in context task

Search engine articles (avg) relevant art prec char prec iP0.01

Yahoo 2946 (56.7) 1075 0.3463 0.1290 0.2848

Google 3537 (68.0) 1305 0.3629 0.1264 0.2658

Wiki 13688 (263.2) 2344 0.1819 0.0463 0.1995

Bing 549 (10.6) 301 0.5363 0.0115 0.1975

As a side note, Bing and Yahoo results are slightly compromised because of the
mismatch between titles returned and titles in the INEX collection. Moreover,
all the search engines did slightly better live than in this experiment as they
retrieved relevant articles which were more recent than the INEX 2009 document
collection.

6 Conclusion

Four public online search engines were tested when searching the Wikipedia
with the INEX 2010 topics. Google, Bing, Yahoo, and the on site search of
Wikipedia all retrieve relevant articles from the Wikipedia with varying success.

88 M. Lehtonen

What we learn from this experiment is that searching the Wikipedia with Google
or Yahoo is worth a try when the Wikipedia search does not find any relevant
articles. However, the only search engine that returned focused results was the
Wikipedia search — a feature that will hopefully be appreciated by future users.

References

1. Arvola, P., Geva, S., Kamps, J., Schenkel, R., Trotman, A., Vainio, J.: Overview of
the inex 2010 ad hoc track. In: INEX 2010. LNCS, vol. 6932, pp. 1–32. Springer,
Heidelberg (2011)

2. Bar-Ilan, J., Mat-Hassan, M., Levene, M.: Methods for comparing rankings of search
engine results. Comput. Netw. 50, 1448–1463 (2006)

3. Clarke, C.L., Kolla, M., Cormack, G.V., Vechtomova, O., Ashkan, A., Büttcher,
S., MacKinnon, I.: Novelty and diversity in information retrieval evaluation. In:
Proceedings of the 31st Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR 2008, pp. 659–666. ACM, New
York (2008)

4. Ganjisaffar, Y., Javanmardi, S., Lopes, C.: Leveraging crowdsourcing heuristics to
improve search in wikipedia. In: Proceedings of the 5th International Symposium
on Wikis and Open Collaboration, WikiSym 2009, pp. 27:1–27:2. ACM, New York
(2009)

5. Kim, Y.S., Kang, B.H., Compton, P., Motoda, H.: Search engine retrieval of changing
information. In: Proceedings of the 16th International Conference on World Wide
Web, WWW 2007, pp. 1195–1196. ACM, New York (2007)

6. Tumer, D., Shah, M.A., Bitirim, Y.: An empirical evaluation on semantic search
performance of keyword-based and semantic search engines: Google, yahoo, msn
and hakia. In: Proceedings of the 2009 Fourth International Conference on Internet
Monitoring and Protection, pp. 51–55. IEEE Computer Society, Washington, DC,
USA (2009)

Extended Language Models

for XML Element Retrieval

Rongmei Li and Theo van der Weide

Radboud University, Nijmegen, The Netherlands

Abstract. In this paper we describe our participation in the INEX 2010
ad-hoc track. We participated in three retrieval tasks (restricted focused
task, relevant-in-context, restricted relevant-in-context) and report our
findings based on a single set of measure for all tasks. In this year’s par-
ticipation, we evaluate the performance of the standard language model
that is more focused on a fixed number of relevant characters than on
relevant paragraphs. Our findings are: 1) the simplest language model for
document retrieval performs relatively well in the restricted focused task
when using a fixed offset that is close to the average character distance
from the beginning of a document to its main content; 2) a good result
of document ranking does improve the performance of snippet retrieval;
3) stemming and stopword removal can further boost performance.

1 Introduction

INEX offers a framework for cross comparison among content-oriented XML
retrieval approaches given the same test collections and evaluation measures.
The INEX ad-hoc track is to evaluate system performance in retrieving relevant
document components (e.g. XML elements or passages) for a given topic of
request. The relevant results should discuss the topic exhaustively and have
as little non-relevant information as possible (specific for the topic). This year
the retrieved components are restricted to a fixed number of characters as a
form of snippet. Additionally, the system efficiency is evaluated. The ad-hoc
track includes four retrieval tasks: the Restricted Focused task, the Relevant in
Context task, the Restricted Relevant in Context task, and the system efficiency.

The 2010 collection is the same English Wikipedia as in 2009 with XML
format. The ad-hoc topics have been created by the INEX participants to rep-
resent real life information needs. As in 2009, each topic consists of five fields.
The <title> field (Content Only, or CO query) is the same as the standard
keyword query. The <castitle> field (Content And Structure, or CAS query)
adds structural constraints to the CO query by explicitly specifying where to
look and what to return. The <phrasetitle> field (Phrase query) presents ex-
plicitly a marked up query phrase. The <description> and <narrative> fields
provide more information about topical context. Especially the <narrative>
field is used for relevance assessment.

In our last year’s work [1], we investigated how a standard IR engine performs
in document and XML element retrieval using the simplest language model. We

S. Geva et al. (Eds.): INEX 2010, LNCS 6932, pp. 89–97, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

90 R. Li and T. van der Weide

found 1) the full document retrieval outperforms the XML element retrieval
using language model based on Dirichlet priors; 2) the element relevance score
itself can be used to remove overlapping element results effectively.

This paper documents our primary, official, and unofficial results in the INEX
2010 ad-hoc track. Our aims are to: 1) evaluate the performance of standard
IR engines (Indri search engine) used in full document retrieval and snippet
retrieval; 2) investigate possible improvement techniques (e.g. stemming and
stopping). We adopt the language modeling approach [2] and tailor the estimate
of query term generation from a document to query term generation from an
XML element according to the user request. The retrieval results are evaluated
as: 1) focused (snippet) retrieval; 2) full document retrieval.

The rest of the paper describes our experiments in the ad-hoc track. The pre-
processing and indexing steps are described in section 2. Section 3 explains how
to convert a user query to an Indri structured query. The retrieval model and
strategies that we used are summarized in section 4. We present our results and
their analysis in section 5 and conclude this paper in section 6.

2 Pre-processing and Indexing

The 2010 INEX Wikipedia collection has 2,666,190 English XML documents
that were taken on 8 October 2008. It is annotated with the 2008-w40-2 version
of YAGO ([3]), which is a knowledge base developed at the Max-Planck-Institute
Saarbrücken.

We build up two indices. One is from the original Wikipedia version and the
other from the stemmed and stopped version of this Wikipedia. We only index
the following XML elements:

category, actor, actress, adversity, aircraft, alchemist, article, artifact,
bdy, bicycle, caption, catastrophe, categories, chemist, classical music,
conflict, director, dog, driver, group, facility, figure, film festival, food,
home, image, information, language, link, misfortune, mission, missions,
movie, museum, music genre, occupation, opera, orchestra, p, performer,
person, personality, physicist, politics, political party, protest, revolution,
scientist, sec, section, series, singer, site, song, st, theory, title, vehicles,
village.

3 Query Formulation

We handle CO and CAS queries as full document retrieval while ignoring boolean
operators (e.g. “-” or “+”) in their respective <title> and <castitle> fields.
We extract all <castitle> terms within “about”. Both types of queries use the
Indri belief operator #combine [4].

Additionally, we remove terms like “of”, “or”, “and”, “in”, “the”, “from”,
“on”, “by”, and “for” from both CO and CAS queries when retrieving articles
on the original Wikipedia. For the stemmed and stopped Wikipedia, we also

Extended Language Models for XML Element Retrieval 91

stem and stop CO and CAS queries using Porter’s stemmer and the stopword
list of the Indri search engine.

CO or CAS queries for full document retrieval: For instance, for INEX query
(id=2010003) we have:

<title>Monuments of India</title>

<castitle>

//article[about(., Monuments) and about(., India)]

//sec[about(., Monuments of India)]

</castitle>

After the described operation, the formulated Indri queries look like:

- CO query:
#combine[article](monuments india)

- CAS query:
#combine[article](monuments india monuments india)

- Stemmed and stopped CO query:
#combine[article](monument india)

- Stemmed and stopped CAS query:
#combine[article](monument india monument india)

4 Retrieval Models and Strategies

We first retrieve full articles using either CO or CAS (stemmed and stopped)
queries. The retrieval model is based on cross-entropy scores between the query
model and the document model that is smoothed using Dirichlet priors [2]. It is
defined as follows:

score(D|Q) =
l∑

i=1

Pml(ti|θQ) · log
(

tf (ti, D) + μPml(ti|θC)
|D| + μ

)
(1)

where l is the length of the query, Pml(ti|θQ) and Pml(ti|θC) are the Maximum
Likelihood (ML) estimates of respectively the query model θQ and the collection
model θC . tf (ti, D) is the frequency of query term ti in a document D. |D| is
the document length. μ is the smoothing parameter.

We set up our language model and model parameters based on the experi-
mental results of similar tasks for INEX 2008. Here μ is considered to be 500.

4.1 Full Document Retrieval

Baseline runs retrieve full documents for CO or CAS queries. Only the #combine
operator is used. To improve the performance, additional runs are made on
stemmed and stopped CO or CAS queries. Based on last year’s experience that
aggregating good result of document retrieval can further improve performance,
the provided reference run is used as the final rank of retrieved documents for
all our results. For instance, one of our runs has result document ranking: 1, 2,
3, 4. The reference run has document ranking: 3, 1, 5, 4. The reference-based

92 R. Li and T. van der Weide

result is then 3, 1, 4. Document 2 from our run is then missed while document
5 from the reference run is not considered.

The reference run uses BM25 ranking function:

score(D|Q) =
l∑

i=1

idf (qi)
tf (qi, D) · (k1 + 1)

tf (qi, D) + k1 · (1 − b + b · |D|
avgdl)

(2)

idf (qi) = log
N − n(qi) + 0.5

n(qi) + 0.5
(3)

with k1 = 1.2 and b = 0.3. It is stemmed by a simple s-stemmer. These parame-
ters are learned using the INEX 2009 topics and assessments on the INEX 2009
Wikipedia collection using the Mean uninterpolated Average Precision (MAP)
metric.

In our full document retrieval experiment, we submitted 9 results for official
evaluation of three tasks. The focus of these experiments is on the retrieval model
only. Consequently, for these experiments we did not consider system efficiency.
In this paper, we provide more unofficial results when stemming and stopping
techniques are used.

4.2 Snippet Retrieval

Within the ad-hoc retrieval track three sub-tasks have the form of snippet
retrieval:

• The Restricted Focused (ResFocus) task is a variant of the Focused
Task where only results with at most 1,000 characters per topic are allowed.
This year we generate snippet retrieval from full document retrieval. We
adopt a fixed offset for this task. The relevant characters are offset to 1000
characters or offset to the length of a document that contains less than 1000
characters.

• The Relevant in Context (RiC) task requires the system to return rele-
vant elements or passages clustered per article. Within each article, reading
order of the retrieved element matters. This year we submit our full docu-
ment retrieval for this task.

• The Restricted Relevant in Context (ResRiC) task is similar to RiC
but only allow 500 characters per article may be retrieved. Our runs are
built in the similar way as for the restricted focused task except the relevent
characters are only 500.

Empirically the main content of an article does not start from the very beginning,
namely at offset zero. We take the average offset from the main content that is
assumed to be 20 characters for two restricted retrieval tasks.

5 Results

For each of the three sub-tasks, we have two document retrieval results for CO
and CAS (with and without stemming and stopping) queries and two reference-
based results. On the whole, we have 9 official runs, of which 5 are qualified in the

Extended Language Models for XML Element Retrieval 93

ad-hoc track. For unofficial runs (noted as *), we remove the duplicated articles in
the disqualified official results and produce 12 more runs for (restricted) relevant
in context tasks.

5.1 Runs

Our official and unofficial runs are named in the following way:

first field: abbreviation of sub-tasks
second field: query type (e.g. CO or CAS)
third field: reference-based run if it is used (e.g. Ref)
last field: stemmed and stopped
unofficial runs are noted as *

Our runs are referred as baseline runs when not using stemming and stopping
or the reference run. We also convert the provided reference run to the required
format of sub-tasks using the same strategy descried in sub-section 4.2. The
pure reference runs are named with “Ref” and abbreviation of sub-tasks (e.g.
RefRiC).

5.2 Measured as Document Retrieval

When measured as document retrieval, our reference-based runs outperform our
baseline runs in all sub-tasks in terms of MAP score. The results of CO queries
perform better than the results of CAS queries in all sub-tasks. Compared to
other participating groups, our best run ranks 9th of 19 groups with MAP of
0.2593. However, the MAP scores for our baselines of CO and CAS queries are
only 0.0243 and 0.0226 respectively.

The split performance overview in sub-tasks are summarized in Table 1. The
total evaluated runs from participating groups are 34, 65, and 39 following the
top-down order of sub-tasks in this table. Our simple approach for restricted
focused document retrieval is relatively effective, even when there is no help of
the reference run.

5.3 Measured as Snippet Retrieval

When measured as thorough task, our results for the RiC task rank higher than
our other results, followed by the results of the restricted focused task in terms
of MAiP score. Our reference-based runs are still better than their counterparts
in each sub-task accordingly. Our best run ranks 3rd in 17 participating groups
and 14th in all 217 evaluated runs with MAiP of 0.2230 when measured as
thorough retrieval. The performance overview of sub-tasks of snippet retrieval
is represented separately in the following sub-sections.

Restricted Focused. The ResFocus task is to return a user a ranked list of
snippets with a maximum length of 1000 characters. Our results start from the
21th character of the retrieved relevant documents and return the following 1000
characters or the rest of the document that has less than 1000 characters. The

94 R. Li and T. van der Weide

Table 1. Measured as document retrieval

performance metrics official runs for restricted focused
ResFocusCORef ResFocusCO ResFocusCAS

MAP 0.2593 0.0243 0.0226

our rank / all official runs 6/34 7/34 8/34

official runs for relevant in context
RiCCORef RiCCO RiCCAS

MAP 0.2593 0.0243 0.0226

our rank / all official runs 32/65 61/65 62/65

official runs for restricted relevant in context
ResRiCCORef ResRiCCO ResRiCCAS

MAP 0.2593 0.0243 0.0226

our rank / all official runs 14/39 35/39 36/39

overall performance of our submissions is shown in Table 2. Our best run is based
on the given reference with the score of char prec 0.3361. It ranks 5th among
the participating groups and ranks 8th in all 34 evaluated runs in terms of the
score of character precision (char prec). Our other two runs rank 12th and 13th
in all runs with close char prec score to our best run. The performance of all our
runs drops quickly with the increase of recall. This is also true for the results of
other groups. The detailed information is shown in Table 2.

Table 2. Measured as focused retrieval

runs for restricted focused performance metrics
iP[.00] iP[.01] iP[.05] iP[.10] MAiP char prec

ResFocusCORef 0.3361 0.0964 0.0435 0.0000 0.0067 0.3361

ResFocusCAS 0.3241 0.0820 0.0357 0.0000 0.0061 0.3241

ResFocusCO 0.3237 0.0756 0.0357 0.0000 0.0059 0.3237

Relevant in Context. The RiC task has the same goal as year 2009. It is to
return the relevant information within the full article. Our baseline runs com-
plete this task as document retrieval. Only the reference-based run is officially
evaluated. All official and unofficial (noted as *) results are presented in Table 3.
Our reference-based run ranks 6th among 15 participating groups and 20th in
all 47 evaluated runs with the score of MAgP 0.1377 (see Table 3).

The result of CAS queries is better than that of CO queries for original
and stemmed-stopped indices. The reference run boosts the performance of CO
queries more compared to CAS queries. The technique of stemming and stop-
ping brings more performance gain. The best performance reaches MAgp 0.1395
when reference run, stemming, and stopping are applied.

Restricted Relevant in Context. The ResRiC task limits the result of the
RiC task to be 500 characters at most. Similar to the restricted focused task, our

Extended Language Models for XML Element Retrieval 95

Table 3. Measured as focused retrieval

runs for relevant in context performance metrics
gP[5] gP[10] gP[25] gP[50] MAgP

RiCCORef 0.2642 0.2310 0.1694 0.1431 0.1377

RiCCASRef* 0.2641 0.2318 0.1686 0.1445 0.1377

RiCCAS* 0.2360 0.2081 0.1734 0.1408 0.1232

RiCCO* 0.2333 0.1985 0.1656 0.1305 0.1212

RiCCORef ss* 0.2618 0.2325 0.1706 0.1439 0.1395

RiCCASRef ss* 0.2618 0.2325 0.1702 0.1439 0.1393

RiCCAS ss* 0.2787 0.2309 0.1769 0.1326 0.1316

RiCCO ss* 0.2836 0.2215 0.1694 0.1269 0.1304

RefRiC* 0.2684 0.2322 0.1714 0.1442 0.1436

results start from the 21-th character of the result of document retrieval. Again
only the reference-based run is officially evaluated and its performance with
others (noted as *) is summarized in Table 4. It ranks 9th among 9 participating
groups and 12th in all 24 evaluated runs with the score of MAgP 0.1375 (see
Table 4).

Similar to the findings in the RiC task, the result of CAS queries outperforms
that of CO queries without reference information. The best result is MAgP
0.1392 for the reference-based, stemmed, and stopped run in case of CO queries.

Table 4. Measured as focused retrieval

runs for restricted relevant in context performance metrics
gP[5] gP[10] gP[25] gP[50] MAgP

ResRiCCORef 0.2641 0.2313 0.1686 0.1428 0.1375

ResRiCCASRef* 0.2641 0.2313 0.1682 0.1435 0.1374

ResRiCCAS* 0.2346 0.2067 0.1727 0.1404 0.1229

ResRiCCO* 0.2319 0.1972 0.1650 0.1300 0.1209

ResRiCCORef ss* 0.2618 0.2319 0.1701 0.1430 0.1392

ResRiCCASRef ss* 0.2618 0.2319 0.1697 0.1430 0.1390

ResRiCCAS ss* 0.2786 0.2316 0.1767 0.1326 0.1317

ResRiCCO ss* 0.2823 0.2224 0.1693 0.1265 0.1304

RefResRiC* 0.2685 0.2325 0.1708 0.1439 0.1434

5.4 Analysis

In general, BM25 ranking function generates better results than our simplest
language model, which has no stopping and stemming. When stemming and
stopping techniques are applied, improvement by reference run is marginal. Our
baseline runs perform relatively good in the restricted focused task. The result
of CAS queries is better than that of CO queries in this task as it contains more
query terms, thus more context information.

96 R. Li and T. van der Weide

Table 5. Number of queries with measure score less than average

all query type non-article element any type performance measure

ResFocusCORef 32 13 13 char prec
ResFocusCAS 33 12 14 char prec
ResFocusCO 32 11 14 char prec
RiCCORef 31 14 13 MAgP
ResRiCCORef 32 14 13 MAgP
RiCCORef ss* 31 14 13 MAgP
RefRiC* 31 14 13 MAgP
ResRiCCORef ss* 31 14 14 MAgP
RefResRiC* 32 14 13 MAgP

There are 52 queries (topics) used for evaluation in all snippet retrieval. 18
out of 52 is to return XML elements such as “sec”, “p”, “person”, “flower”, and
“*/sec” rather than “article”. The rest is the document retrieval with restriction
on a fixed number of characters. When a query is about any XML element type
(noted as * or “article/*”), we may also accept the whole document. There are
15 queries on the “article” element and 19 queries on any XML element.

For possible performance improvement, it is important to identify the difficult
queries that bring down the average measure score. The number of queries that
have lower measure score than the average is presented in column 2 of the Table 5.
The number of queries that retrieve XML elements other than “article” and any
type is in column3while the total number of suchqueries is 18.Thoughour retrieval
model also fails on queries for “article”, there is slightly more percentage loss on
other types of XML elements. The column 4 is the number of queries that retrieve
any XML elements. The column 5 is the performance metric used for identifying
difficult queries. We only examine the official results and the best unofficial runs.

The number of queries that have zero measure score at average are 27 for all
restricted focused runs, 3 for the RiC run, and 4 for the restricted RiC run.

Particularly, the most difficult queries that gain the least measure score in all
tasks are topic 19, topic 31, and topic 107. Their title and castitle fields are
as follows:

topic 19:
<title>gallo roman architecture in paris</title>

<castitle>//*[about(.,gallo roman architecture in paris)]</castitle>

topic 31:
<title>science women few</title>

<castitle>//*[about(., science women few)]</castitle>

topic 107:
<title>factors determining human height</title>

<castitle>

//article[about(., human)]

//p[about(., factors determining height)]

</castitle>

Extended Language Models for XML Element Retrieval 97

These queries retrieve either non-article elements or elements of any type. It is
not surprised that non-article element retrieval has worse performance than ar-
ticle and any type element retrieval because our runs favors document retrieval
rather than element retrieval. For the retrieval of any type element, more investi-
gation is needed on the relevance judgement (qrels) such as if there is preference
on a certain element and which element it is.

6 Conclusion

In this paper, we present our results for the ad-hoc track of INEX 2010. Our of-
ficial runs contain two baseline runs, namely document retrieval for CO queries
and CAS queries as a form of snippet retrieval. Additionally, we generate a
reference-based run. Our baseline runs perform relatively good among partici-
pating groups in the restricted focused retrieval. Our performance loss happens
more on retrieval of non-article elements than on retrieval of article element.
The reference run does provide better document ranking, which in turn improve
the performance of our baselines. When stemming and stopping are applied,
the reference-based run can be further improved. At the meantime, the baseline
runs gain more performance improvement that reduces the difference between
baselines and reference-based runs.

References

1. Li, R.M., van der Weide, T.P.: Language Models for XML Element Retrieval. In:
Proceedings of INEX (2009)

2. Zhai, C.X., Lafferty, J.: A Study of Smoothing Methods for Language Models Ap-
plied to Information Retrieval. ACM Trans. on Information Systems. 22(2), 179–214
(2004)

3. Schenkel, R., Suchanek, F.M., Kasneci, G.: YAWN: A Semantically Annotated
Wikipedia XML Corpus. In: 12. GI-Fachtagung für Datenbanksysteme in Business,
Technologie und Web, Aachen, Germany (March 2007)

4. Strohman, T., Metzler, D., Turtle, H., Croft, W.B.: Indri: A Language-model Based
Search Engine for Complex Queries. In: Proceedings of ICIA (2005)

Overview of the INEX 2010 Book Track:

Scaling Up the Evaluation Using Crowdsourcing

Gabriella Kazai1, Marijn Koolen2, Jaap Kamps2,
Antoine Doucet3, and Monica Landoni4

1 Microsoft Research, United Kingdom
v-gabkaz@microsoft.com

2 University of Amsterdam, Netherlands
{m.h.a.koolen,kamps}@uva.nl

3 University of Caen, France
doucet@info.unicaen.fr

4 University of Lugano
monica.landoni@unisi.ch

Abstract. The goal of the INEX Book Track is to evaluate approaches
for supporting users in searching, navigating and reading the full texts
of digitized books. The investigation is focused around four tasks: 1)
Best Books to Reference, 2) Prove It, 3) Structure Extraction, and 4)
Active Reading. In this paper, we report on the setup and the results of
these tasks in 2010. The main outcome of the track lies in the changes to
the methodology for constructing the test collection for the evaluation
of the Best Books and Prove It search tasks. In an effort to scale up
the evaluation, we explored the use of crowdsourcing both to create the
test topics and then to gather the relevance labels for the topics over a
corpus of 50k digitized books. The resulting test collection construction
methodology combines editorial judgments contributed by INEX partic-
ipants with crowdsourced relevance labels. We provide an analysis of the
crowdsourced data and conclude that – with appropriate task design –
crowdsourcing does provide a suitable framework for the evaluation of
book search approaches.

1 Introduction

Prompted by the availability of large collections of digitized books, e.g., the
Million Book project1 and the Google Books Library project,2 the Book Track
was launched in 2007 with the aim to promote research into techniques for
supporting users in searching, navigating and reading the full texts of digitized
books. Toward this goal, the track provides opportunities to explore research
questions around three areas:

– Information retrieval (IR) methods for searching collections of digitized books,
– Mechanisms to increase accessibility to the contents of digitized books, and
– Users’ interactions with eBooks and collections of digitized books.

1 http://www.ulib.org/
2 http://books.google.com/

S. Geva et al. (Eds.): INEX 2010, LNCS 6932, pp. 98–117, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.ulib.org/
http://books.google.com/

Overview of the INEX 2010 Book Track 99

Based around the three main themes above, the following four tasks were
investigated in 2010:

1. The Best Books to Reference (BB) task, framed within the user task of
building a reading list for a given topic of interest, aims at comparing tradi-
tional document retrieval methods with domain-specific techniques, exploit-
ing book-specific features, e.g., back-of-book index, or associated metadata,
e.g., library catalogue information;

2. The Prove It (PI) task aims to test focused retrieval approaches on collec-
tions of books, where users expect to be pointed directly at relevant book
parts that may help to confirm or refute a factual claim;

3. The Structure Extraction (SE) task aims at evaluating automatic techniques
for deriving structure from OCR and building hyperlinked table of contents;

4. The Active Reading task (ART) aims to explore suitable user interfaces to
read, annotate, review, and summarize multiple books.

In this paper, we report on the setup and the results of each of these tasks
at INEX 2010. However, the main focus of the paper is on the challenge of
constructing a test collection for the evaluation of the BB and PI tasks. This
challenge has so far remained the main bottleneck of the Book Track, which in
the past three years has struggled to build a suitably large scale test collection
relying on its participants’ efforts alone. Indeed, the effort required to contribute
to the building of such a test collection is daunting. For example, the estimated
effort that would have been required of a participant of the INEX 2008 Book
Track to judge a single topic was to spend 95 minutes a day for 33.3 days [11].
This level of demand is clearly unattainable. At the same time, as a requirement
of participation, it poses a huge burden and is likely to be one of the causes of the
low levels of active participation that follows the high number of registrations.

To address this issue, this year we explored the use of crowdsourcing meth-
ods to contribute both the topics and the relevance labels to the test collection.
This follows the recent emergence of human computing or crowdsourcing [8] as a
feasible alternative to editorial judgments [2,1,7,13]. Similarly to our case, such
efforts are motivated by the need to scale up the Cranfield method for con-
structing test collections where the most significant effort and cost is associated
with the collection of relevance judgments. By harnessing the collective work of
the crowds, crowdsourcing offers an increasingly popular alternative for gath-
ering large amounts of relevance data feasibly at a relatively low cost and in a
relatively short time.

Our goal this year was to establish if crowdsourcing could indeed be relied
upon for creating a suitable test collection for the Book Track. To this end,
we combined editorial judgments contributed by ’trusted’ INEX participants
with crowdsourced data, using the editorial labels as a gold set to measure the
quality of the crowdsourced labels. In addition, we also explored the possibility
to crowdsource not only the relevance labels, but the test topics too. Our analysis
shows that with the appropriate task design, crowdsourcing does indeed offer a
solution to the scalability challenge of test collection building [10].

100 G. Kazai et al.

Table 1. Active participants of the INEX 2010 Book Track, contributing topics, runs,
and/or relevance assessments (BB = Best Books, PI = Prove It, SE = Structure Ex-
traction, ART = Active Reading Task)

ID Institute Created
topics

Runs Judged topics

6 University of Amsterdam 19-20, 22 2 BB, 4 PI 05, 10, 18-19, 42, 64, 82
7 Oslo University College 02-06 5 PI 02-03

14 Uni. of California, Berkeley - 4 BB -
41 University of Caen - SE SE
54 Microsoft Research Cam-

bridge
00-01, 07-09,
24-25

- 00-01, 05-09, 12, 15, 18,
23-25, 31, 33, 42-43, 63-
63, 70, 78, 81-82

86 University of Lugano 15-18, 21, 23 -
98 University of Avignon - 9 BB, 1 PI 00, 24, 77

339 University of Firenze - - SE
386 University of Tokyo - SE -
663 IIIT-H 10-14 - -
732 Wuhan University - SE -

In the following, we first we give a brief summary of the actively participating
organizations (Section 2). In Section 3, we describe the book corpus that forms
the basis of the test collection. The following three sections discuss our test
collection building efforts using crowdsourcing: Section 4 details the two search
tasks: BB and PI; Section 5 details our topic creation efforts; and Section 6 details
the gathering of relevance labels. Then, in Section 7 we present the results of
the BB and PI tasks, while Sections 8 and 9 summarize the SE and ART tasks.
We close in Section 10 with a summary and plans for INEX 2011.

2 Participating Organizations

A total of 93 organizations registered for the track (compared with 84 in 2009,
54 in 2008, and 27 in 2007). However, of those registered only 11 groups took an
active role (compared with 16 in 2009, 15 in 2008, and 9 in 2007), see Table 1.

2.1 Summary of Participants’ Approaches

The University of Avignon (ID=98, [3]) contributed runs to the BB and PI tasks.
They experimented with a method for correcting hyphenations in the books
and applying different query expansion techniques. For retrieval they used the
language modeling approach of the Lemur toolkit. In total, they corrected over
37 million lines (about 6%) in the corpus that contained hyphenated words,
leading to around 1% improvement in MAP. No improvements were observed as
a result of query expansion.

Oslo University College (ID=7, [14]) took part in the PI task and explored
semantics-aware retrieval techniques where the weights of verbs that reflect

Overview of the INEX 2010 Book Track 101

confirmation were increased in the index. Using language modeling as their re-
trieval approach, they show that the new index can improve precision at the top
ranks.

The University of California, Berkeley (ID=14, [12]) experimented with page
level retrieval in the BB task. They derived book level scores by summing the
page level scores within the books. Page level scores were generated in two
ways: using a probabilistic approach based on logistic regression, and using
coordination-level match (CML). They found that simple methods, e.g., CML
do not work for book retrieval. Their page level logistic regression based method
yielded the best results overall.

The University of Amsterdam (ID=6, [9]) looked at the effects of pseudo
relevance feedback (RF) in both the BB and PI tasks, and also investigated
the impact of varying the units of retrieval, e.g., books, individual pages, and
multiple pages as units in the PI task. In the BB task, they found that their
book level retrieval method benefited from RF. In the PI task, they achieved
best performance with individual page level index and using RF. With larger
units, RF was found to hurt performance.

The University of Caen (ID=41, [6]) participated in the SE task, continuing
their approach of last year that uses a top-down document representation with
two levels, part and chapter, to build a model describing relationships for ele-
ments in the document structure. They found that their approach is simple, fast,
and generic—using no lexicon or special language dependent heuristics—but is
also outperformed by methods tuned to the corpus and task at hand.

3 The Book Corpus

The Book Track builds on a collection of 50,239 out-of-copyright books3, dig-
itized by Microsoft. The corpus contains books of different genre, including
history books, biographies, literary studies, religious texts and teachings, ref-
erence works, encyclopedias, essays, proceedings, novels, and poetry. 50,099 of
the books also come with an associated MAchine-Readable Cataloging (MARC)
record, which contains publication (author, title, etc.) and classification in-
formation. Each book in the corpus is identified by a 16 character bookID,
which is also the name of the directory that contains the book’s OCR file, e.g.,
A1CD363253B0F403.

The OCR text of the books has been converted from the original DjVu for-
mat to an XML format referred to as BookML, developed by Microsoft De-
velopment Center Serbia. BookML provides additional structure information,
including a set of labels (as attributes) and additional marker elements for more
complex structures, like table of contents. For example, the first label attribute
in the XML extract below signals the start of a new chapter on page 1 (la-
bel=“PT CHAPTER”). Other semantic units include headers (SEC HEADER),
footers (SEC FOOTER), back-of-book index (SEC INDEX), table of contents

3 Also available from the Internet Archive (although in a different XML format).

102 G. Kazai et al.

(SEC TOC). Marker elements provide detailed markup, e.g., indicating entry
titles (TOC TITLE) or page numbers (TOC CH PN) in a table of contents.

The basic XML structure of a typical book in BookML is a sequence of pages
containing nested structures of regions, sections, lines, and words, most of them
with associated coordinate information, defining the position of a bounding rect-
angle ([coords]):

<document>

<page pageNumber="1" label="PT CHAPTER" [coords] key="0" id="0">

<region regionType="Text" [coords] key="0" id="0">

<section label="SEC BODY" key="408" id="0">

<line [coords] key="0" id="0">

<word [coords] key="0" id="0" val="Moby"/>

<word [coords] key="1" id="1" val="Dick"/>

</line>

<line [...]><word [...] val="Melville"/>[...]</line>[...]

</section> [...]

</region> [...]

</page> [...]

</document>

The full corpus, totaling around 400GB, is available on USB HDDs. A reduced
version (50GB, or 13GB compressed) is available via download. The reduced
version was generated by removing the word tags and propagating the values of
the val attributes as text content into the parent (i.e., line) elements.

4 Search Tasks

Focusing on IR challenges, two search tasks were investigated in 2010: 1) Best
Books to Reference (BB), and 2) Prove It (PI). Both these tasks used the corpus
described in Section 3, and shared the same set of topics (see Section 5).

4.1 Best Books to Reference (BB) Task

This task was set up with the goal to compare book-specific IR techniques with
standard IR methods for the retrieval of books, where (whole) books are returned
to the user. The scenario underlying this task is that of a user searching for books
on a given topic with the intent to build a reading or reference list, similar to
those often found in academic publications or Wikipedia articles. The reading
list may be for educational purposes or for entertainment, etc.

The task was defined as: “The task is to return, for each test topic, a ranked list
of 100 (one hundred) books estimated relevant to the general subject area of the
factual statement expressed within the test topics, ranked in order of estimated
relevance.”

Participants were invited to submit either single or pairs of runs. Each run had
to include the search results for all the 83 topics of the 2010 test collection (see
Section 5). A single run could be the result of either a generic (non-book-specific)
or a book-specific IR approach. A pair of runs had to contain a non-book-specific

Overview of the INEX 2010 Book Track 103

run as a baseline and a book-specific run that extended upon the baseline by
exploiting book-specific features (e.g., back-of-book index, citation statistics,
book reviews, etc.) or specifically tuned methods. A run could contain, for each
topic, a maximum of only100 books, ranked in order of estimated relevance.

A total of 15 runs were submitted by 3 groups (2 runs by University of Am-
sterdam (ID=6); 4 runs by University of California, Berkeley (ID=14); and 9
runs by the University of Avignon (ID=98)), see Table 1.

4.2 Prove It (PI) Task

The goal of this task is to investigate the application of focused retrieval ap-
proaches to a collection of digitized books. The scenario underlying this task is
that of a user searching for specific information in a library of books that can
provide evidence to confirm or refute a given factual statement (topic). Users
are assumed to view the ranked list of book parts, moving from the top of the
list down, examining each result.

In the guidelines distributed to participants, the task was defined as: “The
task is to return a ranked list of 1000 (one thousand) book pages (given by their
XPaths), containing relevant information that can be used to either confirm or
reject the factual statement expressed in the topic, ranked in order of estimated
relevance.”

Participants could submit up to 12 runs, each containing a maximum of 1,000
book pages per topic for each of the 83 topics (see Section 5), ranked in order of
estimated relevance.

A total of 10 runs were submitted by 3 groups (4 runs by the University of
Amsterdam (ID=6); 5 runs by Oslo University College (ID=7); and 1 run by
the University of Avignon (ID=98)), see Table 1.

5 Test Topics for the Search Tasks

In an effort to focus the search intentions to more specific (narrow) topics, this
year we defined the test topics around one-sentence factual statements. Unlike
previous years, we also solicited test topics both from INEX participants and
from workers on Amazon’s Mechanical Turk (AMT) service,4 a popular crowd-
sourcing platform and labour market. Our aim was to compare the two sources
and to assess the feasibility of crowdsourcing the topics (and the relevance judg-
ments later on) of the test collection.

5.1 INEX Topics

We asked the INEX Book Track participants to create 5 topics each, 2 of which
had to contain factual statements that appear both in the book corpus and in
Wikipedia. Participants were asked to fill in a web form for each of their topics,
specifying the factual statement they found in a book, the query they would

4 https://www.mturk.com/mturk/

104 G. Kazai et al.

use to search for this information, the URL of the book containing the fact, the
exact page number, the URL of the related Wikipedia article, the version of
the fact as it appears in the Wikipedia page, and a narrative detailing the task
and what information is regarded by the topic author as relevant. A total of 25
topics were submitted by 5 groups. Of these, 16 facts appear both in books and
in Wikipedia.

5.2 Crowdsourced Topics

To crowdsource topics, we created two different human intelligence tasks (HITs)
on AMT which asked workers to find general knowledge facts either in the books
of the INEX corpus or both in the books and in Wikipedia:

Fact Finding Both in Books and in Wikipedia (Wiki HIT): To gather
factual statements that appear both in the book corpus and in Wikipedia, we
created a HIT with the following instructions: “Your task is to find a general
knowledge fact that appears BOTH in a Wikipedia article AND in a book that
is available at http://www.booksearch.org.uk. You can start either by finding a
fact on Wikipedia first then locating the same fact in a book, or you can start by
finding a fact in a book and then in Wikipedia. Once you found a fact both in
Wikipedia and in the book collection, fill in the form below. HITs with correct
matching facts will be paid $0.25. Only facts that appear both in Wikipedia and
in the booksearch.org’s book collection will be paid.” We provided an example
fact and instructed workers to record the following data for the factual statement
they found: the Wikipedia article’s URL, the fact as it appeared in the Wikipedia
article, the URL of the book that states the same fact and the exact page number.

We set payment at $0.25 per HIT and published 10 assignments. All 10 as-
signments were completed within 4 hours and 18 minutes.On average, workers
spent 11 minutes on the task, resulting in an effective hourly rate of $1.31.

Fact Finding in Books (Book HIT): To gather factual statements that ap-
pear in the book corpus, we created a simple HIT with the following instructions:
“Your task is to find a general knowledge fact that you believe is true in a book
available at http://www.booksearch.org.uk. Both the fact and the book must
be in English. The fact should not be longer than a sentence. Only facts that
appear in the book collection at http://www.booksearch.org.uk will be paid.”
As with the Wiki HIT, we provided an example fact and instructed workers to
fill in a form, recording the factual statement they found, the URL of the book
containing the fact and the exact page number.

Given the response we got for the Wiki HIT and the simpler task of the
Book HIT, we first set payment at $0.10 per HIT and published 50 assignments.
However, only 32 of the 50 assignments were completed in 13 days. We then
cancelled the batch and published a second set of 50 assignments at $0.20 per
HIT, this time pre-selecting to workers by requiring at least 95% HIT approval
rate. This time, all 50 assignments were completed in 14 days. The average time
workers spent on the task was 8 minutes in the first batch and 7 minutes in the
second batch (hourly rate of $0.73 and $1.63, respectively).

Overview of the INEX 2010 Book Track 105

5.3 Topic Selection

All collected topics were carefully reviewed and those judged suitable were se-
lected into the final test collection. All topics contributed by INEX participants
were acceptable, while filtering was necessary for topics created by AMT work-
ers. Out of the 10 Wiki HITs, only 4 topics were selected (40%). Of the 32 Book
HITs in the first batch, 18 were acceptable (56%), while 36 were selected from
the 50 Book HITs in the second batch (72%). Topics from AMT workers were
rejected for a number of reasons:

– 19 topics were rejected as the information given was a (random) extract
from a book, rather than a fact, e.g., “logical history of principle of natural
selection”, “This is a picture diagram of fall pipes with imperfect joints being
carried through the basement of house into drain”, “At the age of twenty
five he married a widow forty years old; and for five-and-twenty years he was
a faithful husband to her alone”, “A comparison of all the known specimens
shows the material to be of slate and exhibits general uniformity in shape, the
most noticeable differences being in the handle and the connecting neck.”;

– 5 topics were nonsensical, e.g., “As a result of this experience I became
tremendously interested in the theater can be found on page 63 of the book
titled Printing and book designing by Wilson, Adrian.”, “dance”, “I want a
woman with a soul”,“the objective facts, in nature or in the life of man”;

– 2 topics had missing data, i.e., book URL, fact or page number;
– 2 topics referred to facts outside the book corpus, e.g., CBS news;
– 5 topics had incorrect book URLs or page references;
– 1 topic was the example fact included in the HIT.

Comparing the average time workers took to complete their task in the ac-
ceptable and not-acceptable sets of topics, we only found a small difference of
522 seconds vs. 427 seconds, respectively (st.dev. 676 and 503 seconds, min. 13
and 22 seconds, and max. 3389 and 2437 seconds), thus proving of little use in
our case to automate filtering in the future.

In addition, out of the total 58 selected AMT topics, 18 had to be modified,
either to rephrase slightly or to correct a date or name, or to add additional in-
formation. The remaining 40 HITs were however high quality (even more diverse
and creative than the topics created by the INEX participants) and seemingly
reflecting real interest or information need.

From the above, it is clear that crowdsourcing provides an attractive and
promising means to scale up test topic creation: AMT workers contributed 58
topics, while INEX participants created only 25 topics. However, the quality of
crowdsourced topics varies greatly and thus requires extra effort to weed out
unsuitable submissions. This may be improved upon by pre-selection workers
through qualification tasks [2,1] or by adopting more defensive task design [15].
Indeed, we found that selecting workers based on their approval rate had a
positive effect on quality: batch 2 of the Book HITs which required workers
to have a HIT approval rate of 95% had the highest rate of acceptable topics
(72%). In addition, paying workers more (per hour) also shows correlation with
the resulting quality.

106 G. Kazai et al.

6 Relevance Assessments

Like the topics, the relevance assessments were also collected from two sources:
INEX participants and workers on AMT.

6.1 Gathering Relevance Labels from INEX Participants

INEX participants used the assessment system module of the Book Search Sys-
tem,5 developed at Microsoft Research Cambridge. This is an online tool that
allows participants to search, browse, read, and annotate the books of the test
corpus. Annotation includes the assignment of book and page level relevance
labels and recording book and page level notes or comments. Screenshots of the
relevance assessment module are shown in Figures 1 and 2.

The assessment pools were created by taking the top 100 books from the BB
and PI runs and ordering them by minimum rank and by popularity, i.e., the
number of runs in which a book was retrieved. The book ranking of PI runs was
based on the top ranked page of each book.

Relevance labels were contributed to a total of 30 topics. Of these, 21 topics
were selected, those with the most judged pages at the start of January 2011,
which were then consequently used for the AMT experiments (see next section).
Relevance data gathering from INEX participant was frozen on the 22nd of
February 2011.

6.2 Crowdsourcing Relevance Labels

We collected further relevance labels from workers on AMT for the selected 21
topics. We created 21 separate HITs, one for each topic, so that the title of the
HITs could reflect the subject area of the topic in the hope of attracting workers
with interest in the subject.

Each HIT consisted of 10 pages to judge, where at least one page was already
labeled as confirm or refute by an INEX participant. This was done to ensure
that a worker encountered at least one relevant page and that we had at least
one label per HIT to check the quality of the worker’s work. In each batch of
HITs, we published 10 HITs per topic and thus collected labels for 100 pages
per topic from 3 workers, obtaining a total of 6,300 labels (3 labels per page).

Pooling Strategy. When constructing the AMT assessment pools (100 pages
per topic), we combined three different pooling strategies with the aim to get i)
a good coverage of the top results of the official PI runs, ii) a large overlap with
the pages judged by INEX assessors (so that labels can be compared), and iii)
to maximise the number of possibly relevant pages in the pool:

– Top-n pool: we pool the top n pages of the official PI runs using a round-robin
strategy.

5 http://www.booksearch.org.uk/

http://www.booksearch.org.uk/

Overview of the INEX 2010 Book Track 107

Fig. 1. Relevance assessment module of the Book Search System, showing the list of
books in the assessment pool for a selected topic

Fig. 2. Relevance assessment module of the Book Search System, showing the Book
Viewer window. Relevance options are listed below the book page image.

108 G. Kazai et al.

Table 2. Statistics on the INEX and AMT relevance labels for the selected 21 topics

Source INEX AMT INEX+AMT

Unknown 2 805 807
Irrelevant (0) 4,792 3,913 8,705
Relevant (1) 814 148 962
Refute (2) 18 113 131
Confirm (3) 349 1,321 1,670

Total 5,975 6,300 12,275

– Rank-boosted pool: in this pool the pages from the PI runs are reranked
using a favorable book ranking. This book ranking is based on both the
official BB and PI runs, and was used to create the pools for the INEX
assessors to judge. The resulting page ranking has potentially more relevant
pages in the top ranks and has a large coverage of the pages judged by the
INEX assessors.

– Answer-boosted pool: we use a heuristic similarity function to increase the
number of potentially relevant pages in the pool. We take all keywords (re-
moving stopwords) from the factual statement of the topic that does not
appear in the query and subject part of the topic, and rank the pages sub-
mitted to the PI task using coordination level matching.

As a result of the mixed pooling methods, in each 100 page assessment pool
we have roughly the top 30 pages per pooling method plus the known relevant
pages. Pages can occur only once in each HIT, but the known relevant pages
could occur in multiple HITs, leading to 1,918 query/page pairs.

6.3 Collected Relevance Data

Statistics of the collected relevance labels are presented in Table 2. The Unknown
category is used for when assessors could not judge a page (because the page was
not properly displayed, or the text was written a language the assessor could not
read). This happened more often in the crowdsourcing phase than in the INEX
assessment phase.

For the 21 topics, a total of 5,975 page-level relevance labels were collected
from INEX participant and 6,300 labels from workers on AMT. However, the
AMT set contains 3 judgments per page, while the INEX data contains only one
label per page (mostly). Due to missing participant IDs in the user accounts of
two INEX assessors, 430 pages ended up being judged by multiple assessors. As
a rule, only one label was required from the set of INEX participants, so when a
page was judged by an INEX participant, it was removed from the pool. On the
other hand, three labels were required by non-INEX users of the Book Search
System. Interestingly, out of the 430 pages with multiple judgments, there are
only 39 pages with disagreements (agreement is 91%).

A noticeable difference between the INEX and AMT labels is the relative high
volume of relevant labels at INEX and confirm labels in the AMT set. The latter

Overview of the INEX 2010 Book Track 109

Table 3. Agreement and consensus among the AMT workers and agreement between
AMT majority vote and INEX labels, over different classes of labels

All Binary proof

AMT agreement 0.71 0.78 0.89
AMT consensus 0.90 0.92 0.91

AMT-INEX agreement 0.72 0.77 0.78
AMT-INEX consensus 0.87 0.89 0.91

is at least partly due to the fact that each HIT had at least one page labeled
as confirm or refute (but mostly confirm). In the next section, we look at the
agreement between INEX and AMT labels.

6.4 Analysis of Crowdsourced Relevance Labels

In this section, we look at agreement and consensus among the AMT workers.
For agreement we look at average pairwise agreement per topic and page (so over
pairs of judgments). We have, in principle, judgments from three AMT workers,
resulting in three pairs of different workers, whose average pairwise agreement
may range from 0 (all three pick a different label) to 1 (all three pick the same
label). Consensus is the percentage of labels that form the majority vote. That
is, the page label that gets the majority vote of m workers out of the total of n
workers labelling that page leads to a consensus of m

n . A higher consensus means
agreement is more concentrated among a single label. This is useful when there
are more than 2 possible labels. Again we have, in principle, judgments from
three AMT workers, whose consensus may range from 0.3333 (all three pick a
different label) to 1 (all three pick the same label). We also look at agreement
between AMT majority vote labels and INEX labels. If this agreement is high,
AMT labels might reliably be used to complement or replace editorial judgments
from INEX participants.

We look at agreement and consensus among the AMT labels using a number
of label classes:

– All classes: no conflation of labels, giving four classes: irrelevant, relevant,
refute and confirm

– Binary: the relevant, refute and confirm labels are conflated, leading to only
two classes: irrelevant and relevant/confirm/refute.

– Proof: we ignore the irrelevant labels and conflate the refute and confirm
labels, leading to two classes: relevant and confirm/refute.

In Table 3 we see the agreement and consensus among the AMT labels. If we
differentiate between all 4 labels, agreement is 0.71. Consensus is 0.90, which
means that, on average, the majority vote for a label forms 90% of all worker
votes. If we consider only binary labels, the percentage agreement is higher. Also
the agreement among the different degrees of relevance is high with 0.78. Due
to the relatively strong percentage agreement, consensus is high among all sets.

110 G. Kazai et al.

Table 4. Statistics on the official Prove It relevance assessments based on the INEX
and AMT labels

Sets INEX AMT ip2c-set

Judgements 5,537 1,873 6,527

Irrelevant (0) 4,502 1,500 5,319
Relevant (1) 712 17 719
Confirm/Refute (2) 323 356 489

We also look at agreement between the relevance judgments derived from the
majority vote of the AMT labels with gold set of INEX labels (bottom half
of Table 3). Agreement over all 4 label classes is 0.72. AMT workers are more
likely to label a page as refute or confirm than INEX participants. Without
the irrelevant labels, the relevant labels dominate the INEX judgments and the
refute/confirm labels dominate the AMT judgments, which leads to a somewhat
lower agreement on these labels.

6.5 Official Qrels

Page Level Judgments. From the multiple labels per page, we derived a
single judgment for evaluation. First, we discarded judgments in the unknown
category and conflate the refute and confirm labels to a single relevance value
(=2). We give confirm and refute pages the same relevance value because the
PI task requires a system to find pages that either confirm or refute the factual
statement of the topic. Thus, both types of pages satisfy this task. We then use
majority rule among the AMT labels and keep the lower relevance value in case
of ties. For the 39 pages with disagreeing INEX labels, we chose the label with
the higher relevance value. We merge the two sets by always keeping the INEX
labels over and above an AMT label for the same page. We refer to the resulting
set as the ip2c-set qrel set (INEX page level judgments and crowdsourced label
set) and use this set as the official set for the evaluation of the PI task. Statistics
for this set are given in Table 4. In total, we have 489 pages that confirm or refute
a factual statement (23 per topic on average) and 719 pages that are relevant to
the topic of the factual statement (34 per topic).

Book Level Judgments. In addition to the page level judgments, it was nec-
essary to gather book level judgments to evaluate the BB runs. These labels were
provided by the task organizers for the pool of books constructed from the top
10 books of all BB runs. Books were judged on a four-point scale: 0) irrelevant,
1) marginally relevant (i.e., the book contains only a handful of pages related
to the subject of the topic, 2) relevant (i.e., the topic is a minor theme), and 3)
perfect (the book is dedicated to the topic).

Statistics on the relevance judgements are given in Table 5. A total of 990
books have been judged for 21 topics (47 per topic). Of these, 210 were marginally
relevant, 117 relevant and 36 were perfect. The 36 perfect books are spread across
11 topics. That is, for 10 topics no perfect books were pooled. There is 1 topic
(2010070) with no relevant or perfect books.

Overview of the INEX 2010 Book Track 111

Table 5. Statistics on the official Best Books relevance assessments

Judgements 990

Irrelevant (0) 627
Marginally relevant (1) 210
Relevant (2) 117
Perfect (3) 36

7 Evaluation Measures and Results for the Search Tasks

7.1 Best Books Task Evaluation

For the evaluation of the Best Books task, we use the book level relevance labels
given in the ib-org-set qrel set and report standard trec-eval measures: Mean
Average Precision (MAP), Precision at 10 (P@10) and Normalized Cumulative
Gain at 10 (NDCG@10). NDCG@10 uses the graded relevance scores, while for
the binary measures the four-point relevance scale was collapsed to binary labels
(Irrelevant (0), all other relevant degrees (1)).

Table 6 shows the effectiveness scores for the Best Book runs, where NDCG@10
is regarded as the official measure.

The best BB run (NDCG@10=0.6579) was submitted by the University of
California, Berkeley (p14-BOOKS2010 T2 PAGE SUM 300) who employed page
level retrieval methods and derived book level scores by summing the page
level scores within the books. Page level scores were generated using a prob-
abilistic approach based on logistic regression. A run by the University of Avi-
gnon followed close second with NDCG@10=0.6500. They experimented with a
method for correcting hyphenations in the books and used the language modeling
approach of the Lemur toolkit.

Table 6. Evaluation results for the INEX 2010 Best Books task

Run ID MAP P@10 NDCG@10

p14-BOOKS2010 CLM PAGE SUM 0.1507 0.2714 0.2017
p14-BOOKS2010 CLM PAGE SUM 300 0.1640 0.2810 0.2156
p14-BOOKS2010 T2FB BASE BST 0.3981 0.5048 0.5456
p14-BOOKS2010 T2 PAGE SUM 300 0.5050 0.6667 0.6579
p6-inex10.book.fb.10.50 0.3087 0.4286 0.3869
p6-inex10.book 0.3286 0.4429 0.4151
p98-baseline 1 0.4374 0.5810 0.5764
p98-baseline 1 wikifact 0.4565 0.5905 0.5960
p98-baseline 2 0.4806 0.6143 0.6302
p98-baseline 2 wikifact 0.5044 0.6381 0.6500
p98-fact query 10wikibests 0.4328 0.5714 0.5638
p98-fact query entropy 0.4250 0.5476 0.5442
p98-fact query tfidfwiki 0.3442 0.4667 0.4677
p98-fact query tfwiki 0.4706 0.5571 0.5919
p98-fact stanford deps 0.4573 0.5857 0.5976

112 G. Kazai et al.

7.2 Prove It Task Evaluation

For the evaluation of the PI task, we use the qrel set of ip2c-set, which contains
page level judgements contributed both by INEX participants and by the workers
on AMT. As detailed in Section 6, the set was created by first applying majority
rule to the AMT labels after spam labels have been removed, where in case of
ties we kept the lower relevance degree, then merging this set with the INEX
labels always taking the INEX label above an AMT label.

As with the BB task, we report standard trec-eval measures: MAP, P@10 and
NDCG@10. For NDCG, we used two different weighting options:

– 0-1-2 weighting, which simply reflects the original relevance grades, where
pages that confirm/refute the topic statement are twice as important as
pages that simply contain related information.

– 01-10 weighting that emphasizes pages that confirm/refute the topic state-
ment, treating them 10 times as important as other relevant pages:
• Irrelevant (0) → 0
• Relevant (1) → 1
• Confirm/Refute (2) → 10

For the binary measures, all classes of relevance were mapped to 1, while irrele-
vant to 0. We regard the NDCG@10 as the official measure. Table 7 shows the
effectiveness scores for the Prove It runs, where only exact page matches are
counted as hits.

The best PI run (NDCG@10=0.2946) was submitted by the University of
Amsterdam (p6-inex10.page.fb.10.50), who investigated the impact of varying
the units of retrieval, e.g., books, individual pages, and multiple pages as units
in the PI task. They achieved best performance with their individual page level
index and using pseudo relevance feedback.

Accounting for Near-Misses in the PI Task. Figure 3 shows the effective-
ness scores for the Prove It runs, calculated over the ip2c-set, where near-misses

Table 7. Evaluation results for the INEX 2010 Prove It task (exact match only)

Run ID MAP P@10
NDCG@10 NDCG@10

(0-1-2 weighting) (0-1-10 weighting)

p6-inex10.5page.fb.10.50 0.1163 0.2143 0.1703 0.1371
p6-inex10.5page 0.1209 0.2619 0.2182 0.1714
p6-inex10.page.fb.10.50 0.1521 0.3524 0.2946 0.2322
p6-inex10.page 0.1216 0.3238 0.2795 0.2338
p7-to g.res 0.0453 0.1714 0.1276 0.0876
p7-to g 2xover1.res 0.0342 0.1476 0.1225 0.0882
p7-to g 2xover3.res 0.0288 0.1286 0.1124 0.0827
p7-to g 5xover1.res 0.0340 0.1476 0.1195 0.0841
p7-to g 5xover3.res 0.0262 0.1333 0.1119 0.0826
p98-fact query 10wikibests focus 0.0097q 0.0429 0.0321 0.0222

Overview of the INEX 2010 Book Track 113

M
A

P
P

@
1
0

N
D

C
G

@
1
0

(w
ei

g
h
ti
n
g

0
-1

-2
)

Fig. 3. Evaluation results for the INEX 2010 Prove It task with near-misses of n page
distance

114 G. Kazai et al.

are taken into account. This was done by ‘replacing’ an irrelevant page in a run
with a relevant page that is within n distance, starting with n=0 and increasing
to 10 (where a relevant page could only be ‘claimed’ once). Some of the lower
scoring submission pick up quickly, showing that they do retrieve pages in books
with relevance, even retrieve pages that are in close proximity to the desired
relevant page. The better scoring runs are fairly stable, demonstrating clearly
that they are effective in locating the precise relevant pages inside the books.

8 The Structure Extraction (SE) Task

The goal of the SE task is to test and compare automatic techniques for extract-
ing structure information from digitized books and building a hyperlinked table
of contents (ToC). In 2010, the task was run only as a follow-up of the conjoint
INEX and ICDAR 2009 competition [4,5], enabling participants to refine their
approaches with the help of the ground-truth built in 2009.

Only one institution, the University of Caen, participated in this rerun of
the 2009 task. Both the University of Caen and a new group, the University of
Firenze, contributed to the building of the SE ground-truth data, adding 114
new books with annotated ToCs, increasing the total to 641 books.

The performance of the 2010 run is given in Table 8. A summary of the
performance of the 2009 runs with the extended 2010 ground-truth data is given
in Table 9.

Table 8. Score sheet of the run submitted by the University of Caen during the 2010
rerun of the SE competition 2009

Precision Recall F-measure

Titles 18.03% 12.53% 12.33%
Levels 13.29% 9.60% 9.34%
Links 14.89% 7.84% 7.86%
Complete except depth 14.89% 10.17% 10.37%
Complete entries 10.89% 7.84% 4.86%

Table 9. Summary of performance scores for the 2009 runs with the extended 2010
ground-truth data; results are for complete entries

RunID Participant F-measure (2010) F-measure (2009)

MDCS MDCS 43.39% 41.51%
XRCE-run2 XRCE 28.15% 28.47%
XRCE-run1 XRCE 27.52% 27.72%
XRCE-run3 XRCE 26.89% 27.33%
Noopsis Noopsis 8.31% 8.32%
GREYC-run1 University of Caen 0.09% 0.08%
GREYC-run2 University of Caen 0.09% 0.08%
GREYC-run3 University of Caen 0.09% 0.08%

Overview of the INEX 2010 Book Track 115

9 The Active Reading Task (ART)

The main aim of ART is to explore how hardware or software tools for reading
eBooks can provide support to users engaged with a variety of reading related
activities, such as fact finding, memory tasks, or learning. The goal of the investi-
gation is to derive user requirements and consequently design recommendations
for more usable tools to support active reading practices for eBooks.

ART is based on the evaluation experience of EBONI [16], and adopts its
evaluation framework with the aim to guide participants in organising and run-
ning user studies whose results could then be compared. The task is to run
one or more user studies in order to test the usability of established products
(e.g., Amazon’s Kindle, iRex’s Ilaid Reader and Sony’s Readers models 550 and
700) or novel e-readers by following the provided EBONI-based procedure and
focusing on INEX content. Participants may then gather and analyse results
according to the EBONI approach and submit these for overall comparison and
evaluation. The evaluation is task-oriented in nature.

Our aim is to run a comparable but individualized set of studies, all contribut-
ing to elicit user and usability issues related to eBooks and e-reading. However,
the task has so far only attracted 2 groups, none of whom submitted any results
at the time of writing.

10 Conclusions and Plans

The INEX Book Track promotes the evaluation of modern access methods that
support users in searching, navigating and reading the full texts of digitized
books, and investigated four tasks: 1) Best Books to Reference, 2) Prove It, 3)
Structure Extraction, and 4) Active Reading. In this paper, we reported on the
setup and the results of these tasks in 2010.

The main track activity was in the two search tasks, Best Books and Prove It.
A total of 15 BB runs were submitted by 3 groups, and a total of 10 PI runs by
3 groups. Best Book submissions were shown to be highly effective, the best BB
run obtaining an NDCG@10 score of 0.6579 (University of California, Berkeley,
who combine book level and page level scores), and the runner up run a score of
0.6500 (University of Avignon, who used a dedicated tokenizer within the lan-
guage modeling approach). The Prove It submissions were surprisingly effective,
given that they try to solve the genuine needle-in-a-haystack problem of book
page retrieval. This was probably aided by the topics being verbose and specific
statements of facts to be confirmed or refuted. The best PI run obtained an
NDCG@10 score of 0.2946 (University of Amsterdam, using an individual page
level index with pseudo relevance feedback). The SE task was run (though not
advertised), using the same data set as last year. One institution participated and
contributed additional annotations. The final task, ART, attracted the interest
of two participants, but no comprehensive experiment was conducted.

The main outcome of the track this year lies in the changes to the methodology
for constructing the test collection for the evaluation of the two search tasks. In

116 G. Kazai et al.

an effort to scale up the evaluation, we explored the use of crowdsourcing both
to create the test topics and then to gather the relevance labels for the topics
over a corpus of 50k digitized books. The resulting test collection construction
methodology combines editorial judgments contributed by INEX participants
with crowdsourced relevance labels. With our quality control rich crowdsourcing
design, we obtained high quality labels showing 78% agreement with INEX gold
set data [10]. This has paved the way to completely removing the burden of
relevance assessments from the participants in 2011.

In 2011, the track will shift focus onto more social and semantic search sce-
narios, while also continuing with the ART and SE tasks. The track will build
on its current book corpus as well as a new collection from Amazon Books and
LibraryThing. The PI task will run with minor changes, also asking systems
to differentiate positive and negative evidence for a given factual claim. The
BB task will be replaced by the new Social Search for Best Books (SSBB) task
which will build on the corpus of 1.5 million records from Amazon Books and Li-
braryThing. SSBB will investigate the value of user-generated metadata, such as
reviews and tags, in addition to publisher-supplied and library catalogue meta-
data, to aid retrieval systems in finding the best, most relevant books for a set
of topics of interest.

Acknowledgments. The crowdsourcing experiments of the track were gen-
erously supported by Microsoft Research Cambridge. Marijn Koolen and Jaap
Kamps were supported by the Netherlands Organization for Scientific Research
(NWO, grants 612.066.513, 639.072.601, and 640.001.501).

References

1. Alonso, O., Mizzaro, S.: Can we get rid of TREC assessors? using Mechanical Turk
for relevance assessment. In: Geva, S., Kamps, J., Peters, C., Sakai, T., Trotman,
A., Voorhees, E. (eds.) Proceedings of the SIGIR 2009 Workshop on the Future of
IR Evaluation, pp. 15–16 (2009)

2. Alonso, O., Rose, D.E., Stewart, B.: Crowdsourcing for relevance evaluation. SIGIR
Forum 42, 9–15 (2008)

3. Deveaud, R., Boudin, F., Bellot, P.: LIA at INEX 2010 Book Track. In: Geva, S.,
et al. (eds.) INEX 2010. LNCS, vol. 6932, pp. 118–127. Springer, Heidelberg (2010)

4. Doucet, A., Kazai, G., Dresevic, B., Uzelac, A., Radakovic, B., Todic, N.: IC-
DAR 2009 Book Structure Extraction Competition. In: Proceedings of the Tenth
International Conference on Document Analysis and Recognition (ICDAR 2009),
Barcelona, Spain, pp. 1408–1412 (2009)

5. Doucet, A., Kazai, G., Dresevic, B., Uzelac, A., Radakovic, B., Todic, N.: Setting
up a competition framework for the evaluation of structure extraction from OCR-ed
books. International Journal on Document Analysis and Recognition, 1–8 (2010)

6. Giguet, E., Lucas, N.: The Book Structure Extraction Competition with the Resur-
gence software for part and chapter detection at Caen University. In: Geva, S.,
et al. (eds.) INEX 2010. LNCS, vol. 6932, pp. 128–139. Springer, Heidelberg (2010)

Overview of the INEX 2010 Book Track 117

7. Grady, C., Lease, M.: Crowdsourcing document relevance assessment with me-
chanical turk. In: Proceedings of the NAACL HLT 2010 Workshop on Creating
Speech and Language Data with Amazon’s Mechanical Turk, CSLDAMT 2010,
pp. 172–179, Association for Computational Linguistics (2010)

8. Howe, J.: Crowdsourcing: Why the Power of the Crowd Is Driving the Future of
Business, 1st edn. Crown Publishing Group (2008)

9. Kamps, J., Koolen, M.: Focus and Element Length in Book and Wikipedia Re-
trieval. In: Geva, S., et al. (eds.) INEX 2010. LNCS, vol. 6932, pp. 140–153.
Springer, Heidelberg (2010)

10. Kazai, G., Kamps, J., Koolen, M., Milic-Frayling, N.: Crowdsourcing for book
search evaluation: Impact of quality on comparative system ranking. In: SIGIR
2011: Proceedings of the 34th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval. ACM Press, New York (2011)

11. Kazai, G., Milic-Frayling, N., Costello, J.: Towards methods for the collective gath-
ering and quality control of relevance assessments. In: SIGIR 2009: Proceedings of
the 32nd Annual International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval. ACM Press, New York (2009)

12. Larson, R.R.: Combining Page Scores for XML Book Retrieval. In: Geva, S., et al.
(eds.) INEX 2010. LNCS, vol. 6932, pp. 154–163. Springer, Heidelberg (2010)

13. Le, J., Edmonds, A., Hester, V., Biewald, L.: Ensuring quality in crowdsourced
search relevance evaluation: The effects of training question distribution. In: SIGIR
2010 Workshop on Crowdsourcing for Search Evaluation, pp. 21–26 (2010)

14. Preminger, M., Nordlie, R.: OUCs participation in the 2010 INEX Book Track.
In: Geva, S., et al. (eds.) INEX 2010. LNCS, vol. 6932, pp. 164–170. Springer,
Heidelberg (2010)

15. Quinn, A.J., Bederson, B.B.: Human computation: A survey and taxonomy of a
growing field. In: Proceedings of CHI 2011 (2011)

16. Wilson, R., Landoni, M., Gibb, F.: The web experiments in electronic textbook
design. Journal of Documentation 59(4), 454–477 (2003)

LIA at INEX 2010 Book Track

Romain Deveaud, Florian Boudin, and Patrice Bellot

Laboratoire Informatique d’Avignon - University of Avignon (CERI-LIA)
339, chemin des Meinajariès, F-84000 Avignon Cedex 9

firstname.lastname@univ-avignon.fr

Abstract. In this paper we describe our participation and present our
contributions in the INEX 2010 Book Track. Digitized books are now
a common source of information on the Web, however OCR sometimes
introduces errors that can penalize Information Retrieval. We propose
a method for correcting hyphenations in the books and we analyse its
impact on the Best Books for Reference task. The observed improvement
is around 1%.

This year we also experimented different query expansion techniques.
The first one consists of selecting informative words from a Wikipedia
page related to the topic. The second one uses a dependency parser to
enrich the query with the detected phrases using a Markov Random Field
model. We show that there is a significant improvement over the state-of-
the-art when using a large weighted list of Wikipedia words, meanwhile
hyphenation correction has an impact on their distribution over the book
corpus.

1 Introduction

The number of books available in electronic format increases continuously. The
mass-digitization of books is creating large digital libraries containing informa-
tion about a broad range of topics. Well known examples of these digital libraries
are the project Gutenberg1 and Google Books2, allowing people to read books
for free on different devices (iPhone, iPad, Kindle...). The development of spe-
cialized Information Retrieval methods for this kind of documents is a real issue
for the community.

The electronic representation of books are obtained using an Optical Char-
acter Recognition (OCR) process that automatically generates the machine-
encoded text corresponding to the images of the pages. However it generally
introduces some errors [10], increasing the difficulty for retrieval models to deal
with these documents. Hyphenated words are one source of errors. They are
introduced to control line wrapping in the physical books, but they will be in-
terpreted as two different words at the indexing step. Considering the following
lines3:
1 www.gutenberg.org
2 books.google.com
3 Extract from 1984, Georges Orwell, http://books.google.com

S. Geva et al. (Eds.): INEX 2010, LNCS 6932, pp. 118–127, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

LIA at INEX 2010 Book Track 119

On each landing, opposite the lift
shaft, the poster with the enor-
mous face gazed from the wall.

In this example, the terms “enor-” and “mous” are indexed instead of “enor-
mous”. As far as we know, no previous work has reported experiments on the
impact of word hyphenation correction on book retrieval effectiveness. We pro-
pose in Section 2 a simple and efficient approach for correcting hyphenated
words, which produce an almost errorless version of the corpus. We evaluate its
performance on the Best Books for Reference task with the topics and the qrels
of the 2009 and 2010 Book tracks.

Several studies had been conducted on Information Retrieval (IR) inside books
in general, and some of them show that indexing specific parts (e.g. headers,
titles or table of contents) is nearly as effective as indexing the entire content of
books [6,11]. However, considering these information are not always available,
we did not take into account these different parts in our experiments.

This year we tried different query expansion and query enrichment methods
for the Best Books for Reference task. We started by using Wikipedia as an
external source of knowledge for selecting informative words. A Wikipedia page
is associated to each topic, and the most informative words of the pages are
selected to expand the queries. This approach was already studied in [4] and we
enhanced it with some features, different weighting schemes and several term
extraction measures. We finally observed that on previous year qrels (2009),
the entropy measure for selecting the words within the Wikipedia page gives
the better results. As a second approach for modifying the query, we used the
Stanford Parser [1] to extract phrases from the topics and applied a Markov
Random Field model [8] to enrich the query.

The rest of the paper is organized as follows. In Section 2, we present our
contribution with the correction of the hyphenated words in the corpus and its
evaluation. Then, we detail in Section 3 our retrieval framework, our query ex-
pansion approaches and the runs we submitted for the Best Books for Reference
task. Finally, we present our results in Section 4.

2 Word Hyphenation Correction

Although we observed a small amount of OCR errors in the corpus, there is a
large number of hyphenations. To tackle this problem, we decided to reconstruct
hyphenated words using a lexicon made of 118,221 unique words extracted from
the English Gigaword corpus4.

The correction algorithm iterates through each couple of successive lines and
generates word candidates from the last substring of the first line and the first
substring of the second line. The candidate word is then corrected if it occurs in
the lexicon.

4 LDC Catalog No. LDC2007T07, Available at www.ldc.upenn.edu

120 R. Deveaud, F. Boudin, and P. Bellot

We evaluated the correction impact with the official qrels and topics from the
2009 and 2010 Book Tracks [2,3]. This year, 21 topics were validated over the
82 initially proposed, but there were fewer relevance judgements than in 2009,
where only 16 topics were validated. Table 1 sums up some information about
the collection. We can note that the standard deviation is high, it reveals that
the sizes of the books vary a lot within the collection.

Table 1. Some important numbers about the book collection

Number of books 50,239
Size of the collection (words) 5,080,414,177

Size of the largest book 1,659,491
Size of the smallest book 590

Average size 101,125
Standard deviation of the size 102,127

The collection contains 613,107,923 lines, in which 37,551,834 (6,125%) were
corrected by our method. To measure how much book retrieval is impacted
by these corrections, we tested with three configurations of the same retrieval
model. This model uses a Language Modeling (LM) approach to IR with different
Dirichlet prior smoothing (μ) values, along with the stopword list provided by
Lemur and the Porter stemmer. Queries are generated from the <title> fields
of the 2009 topics and the <query> fields of the 2010 topics. The number of
retrieved books is set to 100. Results are reported in Table 2 for the 2009 topics
and in Table 3 for the 2010 ones.

Table 2. Book retrieval results on both initial and corrected Book Track corpus, with
the 2009 topics and qrels, in terms of Mean Average Precision (MAP) and precision at
10 (P@10)

Model
Uncorrected data Corrected data

MAP P@10 MAP P@10

LM, μ = 2500 0.302 0.486 0.304 0.507
LM, μ = 1000 0.299 0.493 0.302 0.507
LM, μ = 0 0.244 0.443 0.243 0.450

Despite the sizeable number of corrected words, the improvement is relatively
low, however we note that it is in the same order for these two years (≈ 1%). As
said previously, books are larger that traditionnal web documents and there are
very few words that appear only once in a book. Hence, the errors introduced
by some misspelled words are greatly reduced.

Apart from the word hyphenation correction, we can see that the scores vary
a lot between the 2009 and the 2010 topics. The very high scores achieved by

LIA at INEX 2010 Book Track 121

Table 3. Book retrieval results on both initial and corrected Book Track corpus, with
the 2010 topics and qrels, in terms of Mean Average Precision (MAP) and precision at
10 (P@10)

Model
Uncorrected data Corrected data

MAP P@10 MAP P@10

LM, μ = 2500 0.444 0.581 0.447 0.586
LM, μ = 1000 0.435 0.576 0.439 0.581
LM, μ = 0 0.390 0.528 0.393 0.524

this basic model on this year topics results from the small amount of assessments
that could be collected. We used the corrected version of the corpus for all our
further experiments and all the runs we submitted.

3 Best Books for Reference

3.1 Retrieval Model

All the runs and experiments we will further describe follow the same retrieval
model. We use Indri, which is part of the Lemur project5 and provide an imple-
mentation of a LM approach for retrieval [7]. The embedded stoplist provided
by Lemur is used for stopword removal along with the standard Porter stemmer.

Given a sequence of query terms Q = (q1, ..., qn) treated as a bag of words,
the scoring function of a document D is defined as follow :

sQ(D) =
n∏

i=1

pD(qi)
1
n

pD(·) is estimated by Maximum Likelihood Estimation with Dirichlet prior
smoothing:

pD(qi) =
tfqi,D + μ × pC(qi)

|D| + μ

where C is the entire collection, |D| the size of the documents and tfqi,D the
frequency of the query term qi in the document D. The μ parameter is empirically
set to 2500, which is also the default value proposed by Indri.

3.2 Baselines

The first baseline (namely baseline 1) uses the content of the <query> fields
of the topics, while the second one (baseline 2) uses the content of the <fact>
fields. We submitted two other baselines (baseline 1 wikifact and

5 www.lemurproject.org

122 R. Deveaud, F. Boudin, and P. Bellot

baseline 2 wikifact) which are exactly the same as before, except that we
add the content of the <wikifact> field, when it is available. The text of this
field corresponds to the first paragraph of a Wikipedia page identified as related
to the topic. Queries are treated as bag of words and retrieval is performed using
the model described in Section 3.1. Results are presented in Section 4.

3.3 Contextual Query Expansion Using Wikipedia

Several studies previously investigated the use of Wikipedia as an external corpus
for Query Expansion [4,5,9,12]. In their approach, Koolen et al. [4] extract useful
terms from Wikipedia pages to expand queries and use them for Book Retrieval.
A page is selected by querying Wikipedia with the original query and getting the
page that matches the query, or the best result. The well-known tf.idf measure is
then computed for each word of the selected Wikipedia page, and the expanded
query is formed by adding the top-ranked N words to the original query. The
idf values are computed within the whole test collection. They employ a simple
term weighting method: the original query terms are weighted N times more
than the N added terms. We started by expanding this work.

We use the <wikiurl> field, when available, to get a Wikipedia page closely
related to each topic. Otherwise we query the Wikipedia search engine with the
<query> field and we select the best ranked article. Then we extract terms from
this article using different measures described below (tf, tf.idf, entropy...) and we
use them to expand the query. We also keep the scores of these term selection
measures in order to weigh the words inside the query. Indeed, some terms are
more important than other in the Wikipedia page, and a representation of this
relative importance is the score of the measure. A weight is therefore associated
to each selected term.

In the following runs, we used the <query> field as the original query. We
also noticed that the <fact> field was most of the time a cut-and-paste sentence
from a book, therefore we used it as a first query expansion. Given a sequence of
query terms Q = (q1, ..., qk), a sequence of fact terms F = (f1, ..., fm) and a list
of weighted terms TQ = {(t1, w1), ..., (tn, wn)} extracted from related Wikipedia
pages, we rank books according to the following scoring function ΔQ(D):

ΔQ(D) =

(
k∏

i=1

pD(qi)
1
k

) X
X+Y +Z

×
(

m∏
i=1

pD(fi)
1
m

) Y
X+Y +Z

×
(

n∏
i=1

pD(ti)
wi∑n

j=1 wj

) Z
X+Y +Z

Here, we could not learn an appropriate weighting scheme for the X , Y and Z
weights, so they were set empirically. We gave the same weight to the <query>

LIA at INEX 2010 Book Track 123

and the <fact> fields (X = Y = 4), whereas the expansion terms were weighted
half (Z = 2). We use these weights for all the runs featuring Wikipedia query
expansion.

In the following runs, we split the Wikipedia pages into chunks with Tree-
Tagger6. Therefore, a term can be composed of one or many words.

Fact query tfwiki Run. In this run, the terms from the associated Wikipedia
page are ranked by tf , and the top 10 ones are selected for the expansion. Their
scores are also normalized inside the expansion in order to weight appropriately
the important words.

Fact query tfidfwiki Run. This run is practically the same as above, except
that we rank the terms by tf.idf , where the idf is computed whithin the whole
collection. The scores are also normalized and used in the expansion.

Fact query entropy Run. This run is similar to the fact query tfidfwiki
run but the term selection measure is only computed within the associated
Wikipedia page. We use an entropy measure to rank the words accordingly to
their informativeness, and the 10 words with best score are selected for the ex-
pansion. Considering a sequence of words S = (w1, ..., wn), the entropy measure
we use is defined as follow:

E(S) = −
n∑

i=1

p(wi) log2(p(wi))

Where the p(wi) are computed within the whole Wikipedia article.

Fact query 10bestswiki Run. This run is a sort of query expansion baseline.
Indeed we didn’t normalized the scores inside the expansion and the selected
terms are words and not chunks from Tree-Tagger. As for the prior runs, the 10
most frequent words are selected for the expansion.

3.4 Using the Stanford Parser

In this model, we consider multiword phrases. It is clear that finding the exact
phrase “New York” is a much stronger indicator of relevance than just finding
“New” and “York” scattered within a document. We use Metzler and Croft’s
Markov Random Field model [8] to integrate that. In this model three fea-
tures are considered: single term features (standard unigram language model
features), exact phrase features (words appearing in sequence) and unordered
window features (require words to be close together, but not necessarily in an
exact sequence order). Features weights are set according to the authors’s recom-
mendation. Multiword phrases are detected using the Stanford parser [1]. In this
work, we use the typed dependency representation of the <fact> fields to extract
complex noun phrases (e.g. “london daily mail”, “sioux north american shields”
or “symphony no 3”). The submitted run is named fact stanford deps.
6 www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/

124 R. Deveaud, F. Boudin, and P. Bellot

3.5 Applying the Book Track’s Contextual Query Expansion to the
Ad Hoc Track

In this Section we briefly present the generalization of the approach we tried in
the Book Track. This approach consists of expanding the user query with con-
textual words taken from a Wikipedia page related to the topic. The contextual
Wikipedia page is obtained by querying the Wikipedia search engine with the
original user query (which is the <title> field in the INEX Ad Hoc topics).
A page is automatically selected if the query matches its title. Otherwise, we
assume that the first result returned by the Wikipedia search engine is relevant
enough.

We developped a specific tool named Mirmiri7 to achieve this automatic se-
lection. This tool is a Ruby library which provides some utilities related to
Information Retrieval and Text Processing in general. It is Open-Source and
available for free8.

We produced a run which expands the original query with 200 words taken
from the related Wikipedia page, and we evaluated it with the official qrels. The
retrieval is done at the Document level (i.e. Relevance in Context task).

Table 4. Document retrieval results on the Relevance in Context task in terms of Mean
Average Precision (MAP) and Precision at 5 and 10 documents (P@5 and P@10)

Run MAP P@5 P@10

p22-Emse301R 0.4292 0.6962 0.6423
qe wiki entropy 0.3858 0.6500 0.6077
Reference Run 0.3805 0.6423 0.5750
baseline 0.3496 0.6115 0.5596

We can see in Table 4 that it does not beat the best run of this year (p22-
Emse301R) for the Relevance in Context Tak. However it outperforms the Ref-
erence Run given by the INEX organizers which was high this year, due to the
tuning on the 2009 topics and judgements. The baseline run we used in this
experiment is obtained by using only the <title> fields as a bag of words (i.e.
the same run as qe wiki entropy but without expansion terms). The results
show that expanding the baseline queries with Wikipedia terms leads to an
improvement of the perfomance wich is situated in the order of 10%. These dif-
ferent results confirm that this approach performs well for the retrieval of whole
documents.

4 Results

The official results of the Book Track are presented in Table 5.
7 mirimiri.org
8 github.com/romaindeveaud/mirimiri

LIA at INEX 2010 Book Track 125

Table 5. Evaluation results of all runs submitted for the Best Books for Reference
task. Our run identifiers are prefixed with p98.

Runs MAP P@10 NDCG@10

p14-BOOKS2010 T2 PAGE SUM 300.trec 0.5050 0.6667 0.6579
p98-baseline 2 wikifact.trec 0.5044 0.6381 0.6500
p98-baseline 2.trec 0.4806 0.6143 0.6302
p98-fact query tfwiki.trec 0.4706 0.5571 0.5919
p98-fact stanford deps.trec 0.4573 0.5857 0.5976
p98-baseline 1 wikifact.trec 0.4565 0.5905 0.5960
p98-baseline 1.trec 0.4374 0.5810 0.5764
p98-fact query 10wikibests.trec 0.4328 0.5714 0.5638
p98-fact query entropy.trec 0.4250 0.5476 0.5442
p14-BOOKS2010 T2FB BASE BST.trec 0.3981 0.5048 0.5456
p98-fact query tfidfwiki.trec 0.3442 0.4667 0.4677
p6-inex10.book.trec 0.3286 0.4429 0.4151
p6-inex10.book.fb.10.50.trec 0.3087 0.4286 0.3869
p14-BOOKS2010 CLM PAGE SUM 300.trec 0.1640 0.2810 0.2156
p14-BOOKS2010 CLM PAGE SUM.trec 0.1507 0.2714 0.2017

We can see that our baselines that use the <fact> fields achieve the best
results. This behaviour can be explained by the fact that the <fact> are actual
full sentences taken from the books for most of the topics. Again, relevance
judgements are a bit insufficient considering the number of topics, and it favours
the books containing these sentences. Assessments sparsity also explains the
high scores achieved by the best runs. The fact stanford deps, ranked fifth,
also performed well considering that no external resources are involved except a
dependency parser.

We see that the term-frequency measure for selecting expansion words within
a Wikipedia page performs better than the tf.idf or the entropy. It denies our ini-
tial intuition which was that the entropy would perform better. Indeed the good
results presented in Section 3.5 led us to think that query expansion was an ef-
ficient approach, and that the entropy was an appropriate measure for selecting
important and informative words. There are two main reasons that can explain
the relative gap between the Ad Hoc and the Book results for the same method.
First, the vocabulary of a common encyclopedia and of 19th century books is very
different, and can cause word mismatch. Second, the fact that full sentences di-
rectly taken from the books appear in the topics highly favours the query words.
The small number of assessments collected also plays a major role here.

To highlight this problem we experimented the same method with the 2009
topics and qrels and compared it with the best run from last year and the
same baseline as baseline 1. The results presented in Table 6 show that the
entropy measure achieves the best results overall when performing the contextual
query expansion we presented in Section 3.3. This experiment indicates that
this approach is efficient and can achieve high scores even with very different
documents.

126 R. Deveaud, F. Boudin, and P. Bellot

Table 6. Evaluation results for the 2009 INEX Book Retrieval task in terms of Mean
Average Precision (MAP) and Precision at 10 documents (P@10)

Run MAP P@10

qe wiki entropy 0.363 0.593
BR inex09.book.fb.10.50 (best 2009 run) 0.347 0.486
baseline 1 0.304 0.507

5 Conclusions

In this paper we presented our contributions to the INEX Book Track. We
proposed to enhance Book Search performance by correcting word hyphenations
and produced a corrected version of the collection. Although we cannot see a
significant improvement on a Book Retrieval task the retrieval accuracy of the
models we experimented were all enhanced. We expect that this correction can
lead to better better in focused search tasks such as page or extent retrieval.

We also presented the runs we submitted within the Best Books for Refer-
ence task. Our baselines achieved the best results mainly because of the topics
that were containing unmodified sentences from books, and also because of the
small number of relevance judgements collected. However we evaluated the query
expansion approach on the 2009 topics and qrels and we showed that an appro-
priated weighting scheme combined to a score normalization between the terms
of the expansion leads to better results.

References

1. De Marneffe, M.C., MacCartney, B., Manning, C.D.: Generating typed dependency
parses from phrase structure parses. In: Proceedings of LREC 2006 Conference
(2006)

2. Kazai, G., Doucet, A., Koolen, M., Landoni, M.: Overview of the INEX 2009 Book
Track. In: Geva, S., Kamps, J., Trotman, A. (eds.) INEX 2009. LNCS, vol. 6203,
pp. 145–159. Springer, Heidelberg (2010)

3. Kazai, G., Koolen, M., Doucet, A., Landoni, M.: Overview of the inex 2010 book
track: At the mercy of crowdsourcing. In: Geva, S., et al. (eds.) INEX 2010. LNCS,
vol. 6932, pp. 98–117. Springer, Heidelberg (2011)

4. Koolen, M., Kazai, G., Craswell, N.: Wikipedia pages as entry points for book
search. In: Proceedings of the Second ACM International Conference on Web
Search and Data Mining. WSDM 2009, pp. 45–53. ACM, New York (2009)

5. Li, Y., Luk, W.P.R., Ho, K.S.E., Chung, F.L.K.: Improving weak ad-hoc queries us-
ing wikipedia as external corpus. In: Proceedings of the 30th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval
SIGIR 2007, pp. 797–798. ACM, New York (2007)

6. Magdy, W., Darwish, K.: Book search: indexing the valuable parts. In: Proceeding
of the 2008 ACM Workshop on Research Advances in Large Digital Book Reposi-
tories, Books Online 2008, pp. 53–56. ACM, New York (2008)

LIA at INEX 2010 Book Track 127

7. Metzler, D., Croft, W.B.: Combining the language model and inference network
approaches to retrieval. Inf. Process. Manage. 40, 735–750 (2004)

8. Metzler, D., Bruce Croft, W.: A markov random field model for term dependencies.
In: Proceedings of the 28th Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval SIGIR 2005, pp. 472–479. ACM,
New York (2005)

9. Milne, D.N., Witten, I.H., Nichols, D.M.: A knowledge-based search engine powered
by wikipedia. In: Proceedings of the Sixteenth ACM Conference on Conference on
Information and Knowledge Management, CIKM 2007, pp. 445–454. ACM, New
York (2007)

10. Taghva, K., Borsack, J., Condit, A.: Results of applying probabilistic ir to ocr
text. In: Proceedings of the 17th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR 1994, pp. 202–211.
Springer, New York (1994)

11. Wu, H., Kazai, G., Taylor, M.: Book Search Experiments: Investigating IR Methods
for the Indexing and Retrieval of Books. In: Macdonald, C., Ounis, I., Plachouras,
V., Ruthven, I., White, R.W. (eds.) ECIR 2008. LNCS, vol. 4956, pp. 234–245.
Springer, Heidelberg (2008)

12. Yu, X., Jones, G.J.F., Wang, B.: Query dependent pseudo-relevance feedback based
on wikipedia. In: Proceedings of the 32nd International ACM SIGIR Conference
on Research and Development in Information Retrieval SIGIR 2009, pp. 59–66.
ACM, New York (2009)

The Book Structure Extraction Competition

with the Resurgence Software
for Part and Chapter Detection

at Caen University

Emmanuel Giguet and Nadine Lucas

GREYC Cnrs, Caen Basse Normandie University
BP 5186 F-14032 Caen Cedex, France

name.surname@unicaen.fr

Abstract. The GREYC Island team participated in the Structure Ex-
traction Competition part of the INEX Book track for the second time,
with the Resurgence software. We used a minimal strategy primarily
based on top-down document representation with two levels, part and
chapter. The main idea is to use a model describing relationships for
elements in the document structure. Frontiers between high-level units
are detected, parts and then chapters. Page is also used. The periphery
center relationship is calculated on the entire document and reflected on
each page. The strong points of the approach are that it deals with the
entire document; it handles books without ToCs, and titles that are not
represented in the ToC (e. g. preface); it is not dependent on lexicon,
hence tolerant to OCR errors and language independent; it is simple
and fast.

1 Introduction

The GREYC Island team participated for the second time in the Book Structure
Extraction Competition part of the INEX evaluations [6]. The INEX Resurgence
software used at Caen University to structure voluminous documents was mod-
ified to handle book parts, on top of chapters. The original Resurgence software
processes academic articles (mainly in pdf format) and news articles (mainly in
HTML format) in various text parsing tasks [8].

The experiment was conducted from pdf documents to ensure the control of
the entire process. The document content is extracted using the pdf2xml software
[2]. In the first experiment, we handled only the chapter level [7]. We still could
not propagate our principles on all the levels of the book hierarchy at a time. We
consequently focused on the higher levels of book structure, part and chapter
detection.

In the following, we explain our strategy and we detail the actual results on
the INEX book corpus, both the 2010 corpus and the 2009 one. In section 3, we
discuss the advantages of our method and make proposals for future competi-
tions. In the last section we sum up our contribution.

S. Geva et al. (Eds.): INEX 2010, LNCS 6932, pp. 128–139, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

The Book Structure Extraction Competition with the Resurgence Software 129

2 Our Book Structure Extraction Method

2.1 Challenges

In the first experiment, the huge memory needed to handle books was found to
be indeed a serious hindrance, as compared with the ease in handling academic
articles: pdf2xml required up to 8 Gb of memory and Resurgence required up
to 2 Gb to parse the content of large books (> 150 Mb). This was due to the
fact that the whole content of the book was stored in memory. The underlying
algorithms did not actually require the availability of the whole content at a
time. Resurgence was modified in order to load the necessary pages only. The
objective was to allow processing on usual laptop computers.

The fact that the corpus was OCR documents also challenged our previ-
ous program that detected the structure of electronic academic articles. A new
branch in Resurgence had to be written in order to deal with scanned documents.
We propagated our document parsing principles on two levels of the book hi-
erarchy at a time, part (meaning here part including a number of chapters)
and chapter, hoping for an improvement of the results, but two levels proved
insufficient to boost the quality.

2.2 Strategy

The strategy in Resurgence is based on document positional representation, and
does not rely on the table of contents (ToC). This means that the whole docu-
ment is considered first. Then document constituents are considered top-down
(by successive subdivision), with focus on the middle part (main body) of the
book. The document is thus the unit that can be broken down ultimately to
pages. The main idea is to use a model describing relationships for elements in
the document structure. The model is a periphery-center dichotomy. The pe-
riphery center relationship is calculated on the entire document and reflected
on each page. The algorithm aims at retrieving the book main content bounded
by annex material like preface and post-face with different layout. It ultimately
retrieves the page body in a page, surrounded by margins [8].

Implementation Rules. For this experiment, we focused on part (if any) and
chapter title detection so that the program detects only two levels, i. e. part
titles and chapter titles.

Chapter Title Detection throughout the document was conducted using
a sliding window to detect chapter transitions with two patterns, as explained
in [7].

Chapter title extraction is made from the first third of the top of the page
body. The model assumes that the title begins at the top of the page. The
title right end is detected, by calculating the line height disruption: a contrast
between the would-be title line height and the rest of the page line height. A
constraint rule allows a number of lines containing at most 40 words.

Parts Wrapping Chapters are detected throughout the document using a
sliding window of one page. The idea is to detect a page with few written lines.
The transition page between two parts is characterized as follows:

130 E. Giguet and N. Lucas

Fig. 1. View of the four-page sliding window to detect chapter beginning. Pattern 1
matches. Excerpt from 2009 book id = 00AF1EE1CC79B277.

Fig. 2. View of the four-page sliding window to detect chapter announced by a blank
page. Pattern 2 matches. Excerpt from 2009 book id= 00AF1EE1CC79B277.

– the text body in the page is mainly blank,
– with a blank line at least 5 times the standard line space height;
– followed by 1 to 3 written lines;
– with a blank line at least 5 times the standard line space height.

A global test checks if there are at least two successive parts in the book.
Figure 3 illustrates the pattern. It applies on a single page. 3 context pages are
given but are not used in the process.

2.3 Calibrating the System

Working on the whole document requires the ability to detect and deal with
possible heterogeneous layouts in different parts of the document (preface, main
body, appendices). Layout changes can impact page formatting (e.g., margin
sizes, column numbers) as well as text formatting (e.g., font sizes, text align-
ments).

The Book Structure Extraction Competition with the Resurgence Software 131

Fig. 3. View of the one-page sliding window to detect parts beginning. 3 context pages
(1 page before, two pages after) are given but not used. Excerpt from 2009 book id =
2A5029E027B7427C.

The standard page structure recognition has been improved, by correcting a
bug in the previous program that impaired the recognition of page header and
footer [7]. It has also been improved by a better recognition of the shape of the
body, which is not always rectangular in scanned books.

Line detection, standard line height and standard space height detection were
also improved. They are important in our approach, because the standard line is
the background against which salient features such as large blanks and title lines
can be detected. The improvements in line computation improved the results in
chapter detection.

The standard line height and standard line space height are computed in
the following way. The most frequent representative intervals are computed to
cope with OCR variation in line height. In the previous experiment, line height
was calculated somewhat rigidly, after pdf2xml was used. Line recognition was
dependent on bounding box heights. However, this is not very reliable for scanned
text, and the program tended to create loose line segments. Moreover it also
tended to artificially augment the line height, due to the presence of one capital
letter for example, and thus the standard line was not contrasted against title
lines, which are slightly bigger.

In the current experiment, the model drives the detection process. This means
that unless there is a strong clue against it, the line is considered as continue.
The line common characteristics are favored against occasional disruptions in
bounding box height.

2.4 Experiment

The corpus provided in 2010 was extended as compared with the 2009 one.
It comprised 1114 books instead of 1000 in 2009. The GREYC 2010 program
detected only part and chapter titles. No effort was exerted to find the section
titles and sub-titles. On the practical side, the team was interested in handling
voluminous documents, such as textbooks and cultural heritage books, hence
the interest in INEX. The top-down strategy and the highest levels in the book

132 E. Giguet and N. Lucas

hierarchy were favoured because this is the most useful step when filtering large
book collections, in text mining tasks for instance. Moreover, most if not all
techniques start from the lower levels. Reasonable results can be obtained for
those levels with existing programs once the relevant parts or chapters have been
retrieved.

There was only one run.

2.5 Results

GREYC Results. The entire corpus was handled, but 26 books were not
analyzed. This was due to lack of time, since we could not use parallel computing
this time, as we did in 2009 for the pdf2XML task.

The official results for 2010 are given in Table 1 and are compared with the
first official evaluation in 2009 in Table 2. However, the very bad results in 2009
were due to a bug in page numbers.

Table 3 shows the complementary alternative evaluation based on links and
provided by Xerox Research Center Europe (XRCE).

The 2010 results outperform the 2009 results as expected. This is mainly
explained by improvements in the system calibration. Little gain is obtained
from part detection. This is due to the fact that the number of parts is low (and
even often null in individual books), as compared to the total number of sections

Table 1. Official evaluation 2010 on 2010 ground truth (641 books)

Results 2010 Precision Recall F-Measure

Titles 18,03% 12,53% 12,33%
Levels 13,29% 9,60% 9,34%
Links 14,89% 10,17% 10,37%
Complete entries 10,89% 7,84% 7,86%

Entries disregarding depth 14,89% 10,17% 10,37%

Table 2. Official evaluation 2009 against 2009 ground truth (527 books)

Results 2009 Precision Recall F-Measure

Titles 19,83% 13,60% 13,63%
Levels 16,48% 12,08% 11,85%
Links 1,04% 0,14% 0,23%
Complete entries 0,40% 0,05% 0,08%
Entries disregarding depth 1,04% 0,14% 0,23%

Table 3. Alternative 2010 evaluation with Xerox linked-based metrics

XRCE Link-based Measure

Links Accuracy (for valid links)

Precision Recall F1 Title
GREYC 2010 63.9 39.5 42.1 47.6

The Book Structure Extraction Competition with the Resurgence Software 133

and subsections to be found throughout the collection. The official evaluation
does not distinguish false responses from nonresponses, so all sections titles are
considered as false.
Comparison. GREYC was the sole participant in 2010 and was evaluated on a
slightly extended book collection (1114 books). The ground truth contained 641
books. Hence, results could not be compared directly with the 2009 participants
results on the 2009 corpus.

Results were therefore compared against the 2009 ground truth that com-
prised 527 books using the Python evaluation toolkit provided on sourceforge
[3]. GREYC results were compared with results obtained by the 2009 official
best run (run 3), 2009 results after correction of the page bug by Xerox (called
GREYC-1 in [7,5] and GREYC-1C 2009 in the tables below to avoid confu-
sion with runs), and the 2010 results. They were also compared with the results
obtained on the same ground truth by other participants in 2009 (Table 4).

Table 4. Alternative evaluation comparing all participants against the 2009 ground
truth

XRCE Link-based Measure

Links Accuracy (for valid links)

Precision Recall F1 Title
MDCS 65.9 70.3 66.4 86.7
XRCE-run3 69.7 65.7 64.6 74.4
Noopsis 46.4 38.0 39.9 71.9
GREYC run 3 6.7 0.7 1.2 13.9
GREYC-1C 2009 page bug correction 59.7 34.2 38.0 42.1
GREYC 2010 64.4 38.9 41.5 47.6

Table 5 shows another tentative measure, provided by [4,3] to check if accuracy
measured on title wording (INEX 08 like measure) could be useful, along with a
level accuracy measure based on correct title retrieval. Results are given for the
official best GREYC run (run 3) and for the results with page number correction
GREYC-1C.

Table 5. Alternative accuracy evaluation with INEX 08 like measures for all partici-
pants, against the 2009 ground truth

INEX08 like measure

Accuracy

Title Level
MDCS 86.7 75.2
XRCE-run3 74.4 68.8
Noopsis 71.9 68.5
GREYC run 3 0.0 31.4
GREYC-1C 2009 42.1 73.2
GREYC 2010 22.3 64.2

134 E. Giguet and N. Lucas

3 Discussion

GREYC was the only candidate this year, but since official results in 2009 suf-
fered from a gross error in page numbers, it was worth re-evaluating results on
a comparable corpus. Moreover, the book part level was also tested. The low
recall is still due to the fact that the full hierarchy of titles was not addressed
as mentioned earlier. This will be addressed in the future.

3.1 Reflections on the Experiment

Despite shortcomings, mostly due to early stage development, the INEX book
structure extraction competition is very interesting. The corpus provided for the
INEX Book track is the best available corpus offering full books at document
level [9]. Although it comprises mostly XIXth century printed books, it is very
valuable for it provides various examples of layout. Besides, this meets our re-
quirements for electronic use of patrimonial assets. The ground truth is manually
corrected, so the dataset is easier to work with than the dataset provided by [10].

On the scientific side, some strong points of the Resurgence program, based on
relative position and differential principles, were better implemented. We intend
to further explore this way. The advantages are the following:

– The program deals with the entire document body, not on the table of con-
tents;

– It handles books without table of contents (ToC), and titles that are not
represented in the ToC (e. g. preface);

– It is dependent on typographical position, which is very stable in the corpus;
– It is not dependent on lexicon, hence tolerant to OCR errors and language

independent.

Last, it is simple and fast.
The fact that typographical position is very stable in the corpus reflects real-

life conventions in book printing.
The advantage of using the book body is clear when comparing two datasets,

books without ToC and books with ToC [5,1]. The difference is clearer in the
GREYC case with the link-based measure.

Another advantage is robustness. Since no list of expected and memorized
forms is used, but position and distribution instead, fairly common strings are
extracted, such as CHAPTER or SECTION, but also uncommon ones, such
as PSALM or SONNET. When chapters have no numbering and no explicit

Table 6. Comparison of results on two books datasets after [5]

whole dataset (precision / recall) no-ToC dataset (precision/ recall)
MDCS 65.9 / 70.3 0.7 / 0.7
XRCE 69.7 / 65.7 30.7 / 17.5
NOOPSIS 46.4 / 38.0 0.0 / 0.0
GREYC-1C 2009 59.7 / 34.2 48.2 / 27.6

The Book Structure Extraction Competition with the Resurgence Software 135

mention such as chapter, they are found as well, for instance a plain title stating
“Christmas Day”. Resurgence did not rely on numbering of chapters: this is an
important source of OCR errors. Hence they were retrieved as they were by our
robust extractor. This approach reflects an original breakthrough to improve
robustness and proves very useful to generate ToCs to help navigate digitized
books when none was provided in the printed version.

3.2 Reflections on Evaluation Measures

Concerning evaluation rules, the very small increment in quantified results did
not reflect our qualitative assessment of a significant improvement. Though this
is a subjective impression that seems fairly common, we were puzzled.

Generally speaking, the ground truth is still very coarse and it mostly relies
on automated results depending on the ToC. If the ToC is the reference, it is an
error to extract prefaces, for instance, because they generally do not figure in
ToCs. In the same way, most ToCs do not reflect the whole hierarchy of sections
and subsections, but skip lower levels. The participants using the book body as
main reference are penalized if they extract the whole hierarchy of titles as it
appears in the book, when the ToC represents only higher levels.

For all participants, accuracy on titles seems to be a thorny question, because
there is a huge difference in title accuracy as calculated by INEX organizers from
the retrieval of the wording, and title accuracy as calculated by XRCE from the
links [1]. In the INEX08-like measure on accuracy for title and level provided by
XRCE, the figures decrease while precision and recall grow.

A test was made to evaluate level accuracy, since proceeding one level at a
time allowed a relevance check on this measure. In 2009 GREYC calculated only
chapters and the level accuracy was high, 73.2, in the GREYC results, after
correction on the page bug. Scores in level accuracy in 2010 were calculated
with part and chapter level information and then without part and chapter level
information to check consistency (Table 7).

Level accuracy according to title wording was called Inex08 like measure after
[4] The difference in level accuracy raises questions. Results in 2009 (GREYC-
1C with page bug correction) were given for one level only, namely chapters.
The submitted 2010 GREYC results with level information for part and chapter
levels had a level accuracy of 64.2, but when level information was scrapped,
it was better, 77.9. It should be the contrary. Another intriguing observation
is that linked-based title accuracy and text-based level accuracy did not evolve
together. Our guess is that level accuracy is not relevant, for it is calculated from
the XML with relative depth for each book, and not against a standard layout
scale for the entire collection.

Title accuracy improved in 2010 according to both XRCE link based mea-
sure and Inex08-like title wording based measure. This is explained by a better
rightward segmentation, already tested in 2009 after the runs and mentioned
in [7]. However, title accuracy according to the INEX08 like calculation sharply
collapsed between 2009 and 2010.

136 E. Giguet and N. Lucas

Table 7. GREYC alternative link-based evaluation with and without level information
against the 2009 ground truth

XRCE Link-based Measure

Links Title accuracy
for valid links

Inex08 like Accuracy
Precision Recall F1 Title Level

GREYC-1C 2009 59.7 34.2 38.0 13.9 42.1 73.2
GREYC 2010 64.4 38.9 41.5 47.6 22.3 64.2
GREYC 2010 with-
out level info

64.4 38.9 41.5 47.6 22.3 77.9

Fig. 4. View of the ToC entry. Excerpt from 2010 book id =A803EBAC7E50C7D0.

Since GREYC was the only candidate working from the actual book body
layout and not after the ToC, results suffered from the fact that ToC when
present is used as the reference in the groundtruth. However, there is a significant
difference between ToC and book titles. Sometimes, the mention chapter was not
found in the book or was abbreviated as C in the ToC. Although differences in
case, such as CHAPTER III in the book and Chapter 3 in the ToC are cared for
in the evaluation, by using case insensitive option, differences in numbering and
word segmentation penalized our results. The edit distance error margin seems
to be wide, but we tried a Levenshtein distance error margin of 20% and found
it is not sufficient, confirming other findings as suggested by [5,1].

In some cases, detailed subentries were included in the chapter title, while
they are not present in the ToC, or vice versa, as explained in [5]. All these
details explain very low results in title accuracy. Figure 4 compared with Fig-
ure 5 shows an example where subentries are included in the ToC and in the
reference deriving from it, but not on the corresponding page in the book body.
Here is the ground truth entry for the book Life of Archpriest Therry (book id
A803EBAC7E50C7D0) Chapter X, p. 146.

<toc-entry title="CHAPTER X Governor Bourke arrives Sympathizes
with Catholic claims Pro vision made for four more priests Arrival
of Father McEncroe He recommends the appointment of a Bishop
Public moneys lavished on Anglican Church Dispute about the area
granted as site for St. Mary s Buildings erected by Father Therry
have to be de molished pp." page="206" />

The Book Structure Extraction Competition with the Resurgence Software 137

4 Proposals

The bias introduced by a semi-automatically constructed ground truth was salient
as can be seen in Figure 4 above, where split words or added pp. at the end of the
entry illustrate poor quality against human judgment. Manually corrected anno-
tation is still to be checked to improve the ground truth quality. As mentioned in
[9,1] quantitative effort is also needed, but it is time-consuming. However, it might
not be realistic to expect a clean unique reference for a large book collection. It
might be better to handle parameters according to the final aim of the book pro-
cessing, such as navigation or information filtering. Thus known automatic biases
might be countered or valued in the performance measure.

One simple idea would be to consider equally right results for titles match-
ing with either the ToC or the book body. It might be a good idea to give the
bounding box containing the title as a reference for the ground truth. This solu-
tion would solve conflicts between manual annotation and automatic annotation,

Fig. 5. View of first page of Chapter X (p. 146). Excerpt from 2010 groundtruth, book
id = A803EBAC7E50C7D0.

138 E. Giguet and N. Lucas

leaving man or machine to read and interpret the content of the bounding box.
It would also alleviate conflicts between ToC-based or text-based approaches.

Concerning details, it should be clear whether or when the prefix label indi-
cating the book hierarchy level (Chapter, Section, and so on) and the numbering
should be part of the extracted result. The chapter title is not necessarily pre-
ceded by such mentions, but in other cases there is no specific chapter title and
only a number. The ground truth is not clear either on the extracted title case:
sometimes the case differs in the ToC and in the actual title in the book.

It would be very useful to provide results by title depth (level) as suggested
by [4,5], because providing complete and accurate results for one or more levels
would be more satisfying than missing some items at all levels. It is important
to get coherent and comparable text spans for many tasks, such as indexing,
helping navigation or text mining.

The reason why the beginning and end of the titles are overrepresented in
the evaluation scores is not clear and a more straightforward edit distance for
extracted titles should be provided.

The time is ripe for eliciting effective face-to-face interaction between partic-
ipants, to stimulate discussion and make the evaluation rules evolve faster. This
should entice new participants to enter an important field of development with
a lively discussion ahead.

5 Conclusion

The paper presents a strategy of detecting parts and chapters in a book without
the use of the table of contents, using only layout features of the scanned pages.
The strategy is mostly easy to follow and is reproduceable.

Acknowledgments. We thank student Alexandre Baudrillart who implemented
new features in the program during his summer job at GREYC, Caen University.
We also thank anonymous reviewers for their excellent comments and sugges-
tions.

References

1. Doucet, A., Kazai, G., Dresevic, B., Uzelac, A., Radakovic, B., Todic, N.: Setting
up a competition framework for the evaluation of structure extraction from ocr-
ed books. International Journal of Document Analysis and Recognition (IJDAR),
Special Issue on Performance Evaluation of Document Analysis and Recognition
Algorithms 14(1), 45–52 (2011)

2. Déjean, H.: pdf2xml open source software,
http://sourceforge.net/projects/pdf2xml/ (last visited March 2010)

3. Déjean, H., Meunier, J.-L.: INEX structure extraction groundtruth,
https://sourceforge.net/projects/inexse/ (last update 2010-09-29, last vis-
ited March 2011)

4. Déjean, H., Meunier, J.L.: XRCE Participation to the Book Structure Task, pp.
124–131. Springer, Heidelberg (2009),
http://portal.acm.org/citation.cfm?id=1611913.1611928

http://sourceforge.net/projects/pdf2xml/
https://sourceforge.net/projects/inexse/
http://portal.acm.org/citation.cfm?id=1611913.1611928

The Book Structure Extraction Competition with the Resurgence Software 139

5. Déjean, H., Meunier, J.L.: Reflections on the INEX structure extraction compe-
tition. In: Proceedings of the 9th IAPR International Workshop on Document
Analysis Systems, DAS 2010, pp. 301–308. ACM, New York (2010),
http://doi.acm.org/10.1145/1815330.1815369

6. Doucet, A., Kazai, G.: Icdar 2009 book structure extraction competition. In: IEEE
(ed.) 10th International Conference on Document Analysis and Recognition IC-
DAR 2009, Barcelona, Spain, pp. 1408–1412 (2009)

7. Giguet, E., Lucas, N.: The book structure extraction competition with the Resur-
gence software at Caen university. In: Geva, S., Kamps, J., Trotman, A. (eds.)
INEX 2009. LNCS, vol. 6203, pp. 170–178. Springer, Heidelberg (2010)

8. Giguet, E., Lucas, N., Chircu, C.: Le projet Resurgence: Recouvrement de la struc-
ture logique des documents électroniques. In: JEP-TALN-RECITAL 2008, Avi-
gnon, France (2008)

9. Kazai, G., Doucet, A., Koolen, M., Landoni, M.: Overview of the INEX 2009 book
track. In: Geva, S., Kamps, J., Trotman, A. (eds.) INEX 2009. LNCS, vol. 6203,
pp. 145–159. Springer, Heidelberg (2010),
http://portal.acm.org/citation.cfm?id=1881065.1881084

10. Vincent, L.: Google book search: Document understanding on a massive scale.
In: Proceedings of the Ninth International Conference on Document Analysis and
Recognition - Volume 02, pp. 819–823. IEEE Computer Society, Washington, DC,
USA (2007), http://portal.acm.org/citation.cfm?id=1304596.1304903

http://doi.acm.org/10.1145/1815330.1815369
http://portal.acm.org/citation.cfm?id=1881065.1881084
http://portal.acm.org/citation.cfm?id=1304596.1304903

Focus and Element Length for Book and

Wikipedia Retrieval

Jaap Kamps1,2 and Marijn Koolen1

1 Archives and Information Studies, Faculty of Humanities, University of Amsterdam
2 ISLA, Faculty of Science, University of Amsterdam

Abstract. In this paper we describe our participation in INEX 2010
in the Ad Hoc Track and the Book Track. In the Ad Hoc track we in-
vestigate the impact of propagated anchor-text on article level precision
and the impact of an element length prior on the within-document pre-
cision and recall. Using the article ranking of an document level run for
both document and focused retrieval techniques, we find that focused
retrieval techniques clearly outperform document retrieval, especially for
the Focused and Restricted Relevant in Context Tasks, which limit the
amount of text than can be returned per topic and per article respec-
tively. Somewhat surprisingly, an element length prior increases within-
document precision even when we restrict the amount of retrieved text to
only 1000 characters per topic. The query-independent evidence of the
length prior can help locate elements with a large fraction of relevant
text. For the Book Track we look at the relative impact of retrieval units
based on whole books, individual pages and multiple pages.

1 Introduction

In this paper, we describe our participation in the INEX 2010 Ad Hoc and Book
Tracks. Our aims for the Ad Hoc Track this year were to investigate the impact
of an element length prior on the trade-off between within-document precision
and recall. In previous years we merged article and element level runs—using the
article ranking of the article run and the element run to select the text to retrieve
in those articles—and found that this can improve performance compared to
individual article and element retrieval runs. But how much text should we
retrieve per article?

For the Book Track we look at the relative impact of books, individual pages,
and multiple pages as units of retrieval for the Best Books and Prove It Tasks.

The rest of the paper is organised as follows. Then, in Section 2, we report our
runs and results for the Ad Hoc Track. Section 3 briefly discusses our Book Track
experiments. Finally, in Section 4, we discuss our findings and draw preliminary
conclusions.

2 Ad Hoc Track

For the INEX 2010 Ad Hoc Track we aim to investigate:

S. Geva et al. (Eds.): INEX 2010, LNCS 6932, pp. 140–153, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Focus and Element Length for Book and Wikipedia Retrieval 141

– The effectiveness of anchor-text for focused ad hoc retrieval. Anchor-text
can improve early precision in Web retrieval [10], which might be beneficial
for focused retrieval in Wikipedia as well. The new Focused and Restricted
Relevant in Context Tasks put large emphasis on (early) precision.

– The relation between element length and within-document precision and re-
call. With the new tasks restricting systems to return only a limited number
of characters per article (Restricted Relevant in Context Task) or per topic
(Focused Task), an element length prior might be less effective, as it increases
the chances of retrieving irrelevant text.

We will first describe our indexing and retrieval approach, then the official runs,
and finally per task, we present and discuss our results.

2.1 Indexing

In this section we describe the index that is used for our runs in the ad hoc
track. We used Indri [16] for indexing and retrieval. Our indexing approach is
based on earlier work [1, 3, 5, 13–15].

– Section index : We used the <section> element to cut up each article in
sections and indexed each section as a retrievable unit. Some articles have a
leading paragraph not contained in any <section> element. These leading
paragraphs, contained in <p> elements are also indexed as retrievable units.
The resulting index contains no overlapping elements.

– Article index : We also build an index containing all full-text articles (i.e., all
wikipages) as is standard in IR.

– Anchor text index : For this index we concatenated all propagated anchor
text of an article as a single anchor text representation for that article.

For all indexes, stop-words were removed, and terms were stemmed using the
Krovetz stemmer. Queries are processed similar to the documents. This year we
only used the CO queries for the official runs.

2.2 Category Evidence

Based on previous experiments, we used category distance scores as extra evi-
dence for ranking [11]. We determine two target categories for a query based on
the top 20 results. We select the two most frequent categories to which the top 20
results are assigned and compute a category distance score using parsimonious
language models of each category.

This technique was successfully employed on the INEX 2007 Ad hoc topics
by [8] and on the larger INEX 2009 collection [12] with two sets of category
labels [11]; one based on the Wikipedia category structure and one based on the
WordNet category labels. [11] found that the labels of the original Wikipedia
category structure are more effective for ad hoc retrieval. In our experiments,
we use the original Wikipedia category labels.

The category distance scores are computed as follows. For each target cate-
gory we estimate the distances to the categories assigned to retrieved document,

142 J. Kamps and M. Koolen

similar to what is done in [17]. The distance between two categories is estimated
according to the category titles. In previous experiments we also experimented
with a binary distance, and a distance between category contents, but we found
the distance estimated using category titles the most efficient and at the same
time effective method.

To estimate title distance, we need to calculate the probability of a term occur-
ring in a category title. To avoid a division by zero, we smooth the probabilities
of a term occurring in a category title with the background collection:

P (t1, ..., tn|C) =
∑n

i=1
λP (ti|C) + (1 − λ)P (ti|D)

where C is the category title and D is the entire wikipedia document collection,
which is used to estimate background probabilities. We estimate P (t|C) with a
parsimonious model [2] that uses an iterative EM algorithm as follows:

E-step: et = tft,C · αP (t|C)
αP (t|C) + (1 − α)P (t|D)

M-step: P (t|C) =
et∑
t et

, i.e. normalize the model

The initial probability P (t|C) is estimated using maximum likelihood estimation.
We use KL-divergence to calculate distances, and calculate a category score that
is high when the distance is small as follows:

Scat(Cd|Ct) = −DKL(Cd|Ct) = −
∑

t∈D

(
P (t|Ct) ∗ log

(
P (t|Ct)
P (t|Cd)

))

where d is a retrieved document, Ct is a target category and Cd a category
assigned to a document. The score for a document in relation to a target category
S(d|Ct) is the highest score, or shortest distance from any of the document’s
categories to the target category. So if one of the categories of the document is a
target category, the distance and also the category score for that target category
is 0, no matter what other categories are assigned to the document. Finally, the
score for a document in relation to a query topic S(d|QT) is the sum of the
scores of all target categories:

Scat(d|QT) =
∑

Ct∈QT
argmax

Cd∈d
S(Cd|Ct)

Besides the category score, we also need a query score for each document.
This score is calculated using a language model with Jelinek-Mercer smoothing
with a linear length prior:

P (q1, ..., qn|d) = P (d)
n∑

i=1

λP (qi|d) + (1 − λ)P (qi|D)

where P(d) is proportional to the document length, computed as:

P (d) =
|d|
|D|

Focus and Element Length for Book and Wikipedia Retrieval 143

Finally, we combine our query score and the category score through a linear
combination. For our official runs both scores are calculated in the log space,
and then a weighted addition is made.

S(d|QT) = μP (q|d) + (1 − μ)Scat(d|QT)

Based on previous experiments [8], we use μ = 0.9.

2.3 Runs

Combining the methods described in the previous section with our baseline runs
leads to the following official runs.

Article: an article index run with length prior (λ = 0.85 and β = 1).
ArticleRF: an article index run with length prior (λ = 0.85 and β = 1) and

relevance feedback (top 50 terms from top 10 results).
Anchor: anchor text index run without length prior (λ = 0.85 and β = 0).
AnchorLen: anchor text index run with length prior (λ = 0.85 and β = 1).
Sec: a section index run without length prior (λ = 0.85 and β = 0).
SecLen: a section index run with length prior (λ = 0.85 and β = 1).

From these initial runs we have constructed our baseline runs:

Base: the ArticleRF combined with the category scores based on the 2 most
frequent categories of the top 20 results.

Base Sec: the Baseline run where an article is replaced by the sections of that
article retrieved by the Sec run. If no sections for that article are retrieved,
the full article is used.

Fusion: a linear combination of the ArticleRF and the AnchorLen runs with
weight S(d) = 0.7ArticleRF (d) + 0.3AnchorLen(d). The combined run is
used to compute category scores based on the 2 most frequent categories
of the top 20 results, which are then combined with the merged article and
anchor text scores.

Fusion Sec: the Fusion run where an article is replaced by the sections of that
article retrieved by the Sec run. If no sections for that article are retrieved,
the full article is used.

For the Focused Task, systems are restricted to return no more than 1000
characters per topic. We submitted two runs:

Base Sec F1000 Topic: The Base Sec run with only the first 1000 characters
retrieved for each topic.

Base Sec F100 Article: The Base Sec run with only the first 100 characters
retrieved per article, cut-off after 1000 characters retrieved for each topic.

With the first 1000 characters retrieved, we expect to return only very few doc-
uments per topic. With a restriction of at most N characters per document, we
can control the minimum number of documents returned, thereby increasing the
possible number of relevant documents returned. Both runs have the retrieved

144 J. Kamps and M. Koolen

sections grouped per article, with the sections ordered according to the retrieval
score of the Sec run. That is, if sections s1, s2 and s3 of document d1 are re-
trieved by the Sec run in the order (s2, s3, s1), then after grouping, s2 is still
returned first, then s3 and then s1. The first 1000 characters retrieved will come
mostly from a single document (the highest ranked document). With a limit of
100 characters per article, the first 1000 characters will come from at least 10
documents. Although precision among the first 10 documents will probably be
lower than precision at rank 1, the larger number of retrieved documents might
give the user access to more relevant documents. We will look at the set-based
precision of the 1000 characters retrieved as well as the article-based precision
and the number of retrieved and relevant retrieved articles.

For the Relevant in Context Task, systems are restricted to returning no more
than 1500 results. We submitted two runs:

Base SecLen: the baseline run Base SecLen described above, cut off after the
first 1500 results.

Fusion Sec: the baseline run Fusion Sec described above, cut off after the first
1500 results.

The Base and Fusion runs will allow us to see the impact of using propagated
anchor-text for early precision.

For the Restricted Relevant in Context Task, systems are restricted to return-
ing no more than 500 characters per result. We submitted two runs:

Base F500 Article: the Base run reduced to the first 500 characters per re-
trieved article, and cut off after the first 1500 results.

Base Sec F500 Article: the Base Sec run reduced to the first 500 characters
per retrieved article, and cut off after the first 1500 results.

Article retrieval is a competitive alternative to element retrieval when it comes to
focused retrieval in Wikipedia [3, 6]. The full per-article recall of article retrieval
makes up for its lack in focus. However, for the Restricted Relevant in Context
Task, the amount of text retrieved per article is limited to 500 characters, which
reduces the high impact of full within-document recall and puts more emphasis
on achieving high precision. Relevant articles tend to have relevant text near the
start of the article [7], which could give fair precision with the first 500 characters
of an article. On the other hand, using the more focused evidence of the section
index on the same article ranking, we can select the first 500 characters of the
most promising elements of the article. With a restricted number of characters
per article, and therefore restricted recall, we expect to a see a clearer advantage
in using focused retrieval techniques.

We discovered an error in the baseline runs, which caused our official runs to
have very low scores. In the next sections, we show results for both the officially
submitted runs and the corrected runs.

2.4 Thorough Evaluation

We first look at the performance of the baseline runs using the Thorough inter-
polated precision measure. Results can be found in Table 1. The Fusion run is

Focus and Element Length for Book and Wikipedia Retrieval 145

Table 1. Interpolated precision scores of the baseline runs (runs in italics are official
submissions, runs with an asteriks are the corrected versions)

Run id MAiP iP[0.00] iP[0.01] iP[0.05] iP[0.10]

Base 0.2139 0.4398 0.4219 0.3810 0.3577
Fusion 0.1823 0.4001 0.3894 0.3370 0.3189
Base Sec 0.1555 0.5669 0.5130 0.4039 0.3600
*Base SecLen 0.1702 0.5507 0.5100 0.4162 0.3784
*Fusion Sec 0.1317 0.5447 0.4632 0.3439 0.2967

Base SecLen 0.0723 0.3308 0.2910 0.2184 0.1944
Fusion Sec 0.0678 0.3027 0.2694 0.2110 0.1906

less effective than the Base run. The anchor text does not help early precision,
although we did not range over all possible weighted combinations. Perhaps a
lower weight on the anchor text might be beneficial. The length prior on the
sections increases recall for the cost of a slight drop in early precision. The fo-
cused runs have a lower MAiP but a higher early precision than the article level
runs. The article level runs have a much higher recall, and thereby score better
on average precision. But the focused runs retrieve less irrelevant text and score
better on early precision.

2.5 Focused Task

We have no overlapping elements in our indexes, so no overlap filtering is done.
However, systems can return no more than 1000 characters per topic. This means
the result list needs to be cut-off. Articles tend to be longer than 1000 characters,
so for the article-level runs, some part of an article needs to be selected to be
returned. Section elements might also be longer, in which case a part of a section
needs to be selected. We choose to select the first 1000 characters returned in
retrieval order, based on the idea that precision tends to drop over ranks. For
example, if the highest ranked section has 500 characters and the second ranked
section has 600 characters, we return the highest ranked section and the first 500
characters of the second ranked section. If the highest ranked section or article
is longer than 1000 characters, we select the first 1000 characters.

Because relevant text tends to start near the beginning of XML elements [4],
we also looked at a method that cuts off results after 100 characters, so that the
initial text from multiple high-ranked results is returned.

The mean length of Sec results is 936, although most results have far fewer
(median is 397) characters. The first 1000 characters often corresponds to more
than one section. The SecLen and Base results are longer, with a median length
of 2,227 and 6,098 characters respectively (mean lengths are 5,763 and 13,383).
For most topics, the first returned result needs to be cut-off after the first 1000
characters.

How does precision among the first 1000 characters correspond to older Fo-
cused evaluation measures, such as interpolated precision at the first percentage
of recall (iP[0.01])? The median number of characters per topic is 129,440 (mean

146 J. Kamps and M. Koolen

Table 2. Results for the Ad Hoc Track Focused Task (runs in italics are official sub-
missions, runs with an asterix are the corrected versions)

Run id # ret. # rel. ret. Particle Pchar iP[0.00] iP[0.01]

Base Sec F1000 Topic 1.25 0.38 0.3301 0.1232 0.1694 0.0386
Base Sec F100 Article 10.17 3.17 0.3105 0.1162 0.2468 0.0338

Sec F1000 Topic 3.94 2.13 0.5196 0.2340 0.3372 0.1087
SecLen F1000 Topic 1.56 0.90 0.5667 0.2975 0.3188 0.1261
*Base Sec F1000 Topic 1.29 0.81 0.6250 0.3490 0.4012 0.1376
Base SecLen F1000 Topic 1.29 0.81 0.6186 0.3526 0.3903 0.1518
Base F1000 Topic 1.10 0.69 0.6250 0.2806 0.2828 0.0737

Sec F100 Article 10.63 4.87 0.4576 0.2127 0.4117 0.0842
SecLen F100 Article 10.08 4.85 0.4804 0.1981 0.4403 0.0934
*Base Sec F100 Article 10.06 5.27 0.5229 0.2445 0.4626 0.1140
Base SecLen F100 Article 10.06 5.27 0.5229 0.2677 0.5015 0.1226
Base F100 Article 10.00 5.23 0.5231 0.1415 0.2623 0.0340

339,252). For most topics, precision of the first 1000 retrieved characters is some-
where between iP[0.00] and iP[0.01].

Table 2 shows the results for the Focused Task, where Particle is the article-
level precision and Pchar is the character-level precision. Article-level precision
is based on binary relevance judgements. If the returned (part of the) article
contains relevant text, the article is considered relevant at this level. For the
character level precision, the set-based precision of all returned characters is
computed as the number of returned highlighted characters divided by the total
number of returned characters. As expected, the Pchar for all the runs is some-
where between iP[0.00] and iP[0.01]. The first 1000 retrieved characters (denoted
F1000 Topic) gives higher precision than first 100 per article up to 1000 char-
acters (denoted F100 Article). But by restricting each article to 100 characters,
many more articles, including relevant articles, are retrieved. Thus, although the
set-based precision of the F100 Article runs is lower, they do give direct access
to many more relevant documents. The focused runs Base Sec and Base SecLen
have a higher set-based character precision than the article level Base run. The
length prior on the section index has a positive impact on the precision of the
first 1000 characters. The Base Sec and Base SecLen runs have the same number
of retrieved articles and retrieved relevant articles, but the Base SecLen run has
more relevant text in the first 1000 characters. The query-independent length
prior helps locate elements with a larger proportion of relevant text.

We note that, although the F100 Article runs have a lower Pchar than the
F1000 Topic runs, they have a higher iP[0.00] score. This is because they return
smaller and therefore more results. Relevant text tends to be concentrated near
the start of XML elements [4], so it is often beneficial to return text from the
start of an element. In the case of the F1000 Topic runs, the first retrieved result
is usually 1000 characters long, so iP[0.00], which is determined after the first
relevant retrieved result, is based on the first 1000 characters of an element, be
it article or section. For the F100 Article runs, iP[0.00] will often be based on

Focus and Element Length for Book and Wikipedia Retrieval 147

Table 3. Results for the Ad Hoc Track Relevant in Context Task (runs in italics are
official submissions, runs with an asteriks are the corrected versions)

Run id MAgP gP[5] gP[10] gP[25] gP[50]

Base Sec Len 0.0597 0.1492 0.1330 0.1080 0.1031
Fusion Sec 0.0563 0.1207 0.1068 0.1008 0.0963

Base 0.1613 0.2900 0.2619 0.2123 0.1766
Base Sec 0.1615 0.3026 0.2657 0.2112 0.1763
*Base Sec Len 0.1646 0.3149 0.2790 0.2213 0.1817
Fusion 0.1344 0.2849 0.2399 0.1945 0.1547
*Fusion Sec 0.1294 0.2840 0.2427 0.1917 0.1548

Table 4. Results for the Ad Hoc Track Restricted Relevant in Context Task (runs in
italics are official submissions, runs with an asteriks are the corrected versions)

Run id MAgP gP[5] gP[10] gP[25] gP[50]

Base F500 Article 0.0576 0.1439 0.1191 0.1053 0.0980
Base Sec F500 Article 0.0566 0.1375 0.1199 0.1040 0.0952

*Base F500 Article 0.1358 0.2516 0.2186 0.1696 0.1473
*Base Sec F500 Article 0.1503 0.2592 0.2288 0.1887 0.1624
Base SecLen F500 Article 0.1545 0.2666 0.2368 0.1868 0.1570

a smaller number of characters. If the first 500 characters of the highest ranked
section or article are relevant, taking the first 1000 characters from that section
or article gives an iP[0.00] of 0.5, while taking the first 100 characters gives an
iP[0.00] of 1.

2.6 Relevant in Context Task

For the Relevant in Context Task, we group results per article. Table 3 shows the
results for the Relevant in Context Task. We make the following observations:

– The difference between the Base and Fusion runs is small.
– The length prior on the section index results in higher early and average

precision.

2.7 Restricted Relevant in Context Task

The aim of the Restricted Relevant in Context task is to return relevant results
grouped per article, with a restriction to return no more than 500 characters per
article. Table 4 shows the results for the Best in Context Task. We make the
following observations:

– Similar to the normal Relevant in Context task, the focused run Base Sec
F500 Article has somewhat better precision than the run based on the full
articles.

– A length prior over the element lengths (Base SecLen F500 Article) leads
to a further improvement in precision. Thus, longer elements give higher
precision in the first 500 characters.

148 J. Kamps and M. Koolen

In summary, with the restrictions on the amount of text per article and per
topic that can be retrieved, focused retrieval techniques clearly outperform stan-
dard document retrieval. What is somewhat surprising is that a length prior on
the section index is effective even when we use the article ranking of an article
level run. The query-independent length prior helps locate elements with a large
fraction and amount of relevant text.

3 Book Track

In the INEX 2010 Book Track we participated in the Best Book and Prove It
tasks. Continuing our efforts of last year, we aim to find the appropriate level of
granularity for focused book search. The BookML markup has XML elements
on the page level. In the assessments of last year, relevant passages often cover
multiple pages [9]. With larger relevant passages, query terms might be spread
over multiple pages, making it hard for a page level retrieval model to assess the
relevance of individual pages.

Can we better locate relevant passages by considering larger book parts as
retrievable units? One simple option is to divide the whole book in sequences
of n pages. Another approach would be to use the logical structure of a book
to determine the retrievable units. The INEX Book corpus has no explicit XML
elements for the various logical units of the books, so as a first approach we
divide each book in sequences of pages.

Book Index: each whole book is indexed as a retrievable unit. This index con-
tains 50,239 books.

1-Page Index: each individual page is indexed as a retrievable unit. This index
contains 16,105,669 1-page units.

5-Page Index: each sequence of 5 pages is indexed as a retrievable unit. That
is, pages 1-5, 6-10, etc., are treated as text units. Note that a book with 53
pages is divided into 11 units: 10 units with 5 pages and 1 unit with 3 pages.
Most books have more than 300 pages, so the number of units with less than
5 pages is small; less than 2% of units in the index, in fact. The average
number of pages per unit is 4.97. This index contains 3,241,347 5-page units.

For the 2010 Book Track, there are 83 topics in total. Each of these topics
consists of a factual statement derived from a book in the collection, as well as
a query with the most important words in the factual statement. Of these 83
topics, 21 have relevance assessments for pages pooled from the official runs. For
the Best Book task, the aim is to return the best books in the collection on the
general topic of the statement. For the Prove It task, the aim is to return pages
that either refute or confirm the factual statement. We submitted six runs in
total: two for the Best Book (BB) task and four for the Prove It (PI) task.

Book: a standard Book index run. Up to 100 results are returned per topic.
Book RF: a Book index run with Relevance Feedback (RF). The initial queries

are expanded with 50 terms from the top 10 results.

Focus and Element Length for Book and Wikipedia Retrieval 149

Table 5. Page level statistics for the 2010 Prove It runs

Run # pages # books # pages/book

1-page 985 464 2.1
1-page RF 1000 444 2.3
5-page 988 112 8.8
5-page RF 1000 105 9.5

Table 6. Results for the inex 2010 Best Book Task

Run map P@5 ndcg@5 P@10 ndcg@10

Book 0.3286 0.4952 0.4436 0.4429 0.4151
Book-RF 0.3087 0.4667 0.3948 0.4286 0.3869

Page: a standard Page index run.
Page RF: a Page index run with Relevance Feedback (RF). The initial queries

are expanded with 50 terms from the top 10 results.
5-Page: a standard 5-Page index run. Because the returned results need to be

individual pages, each 5-page unit is segmented into its individual pages. The
highest ranked 5-page unit is split into 5 pages with each page receiving the
same score as the 5-page unit. Thus, the first N retrieved units are presented
as 5N results.

5-Page RF: a 5-Page index run with Relevance Feedback (RF). The initial
queries are expanded with 50 terms from the top 10 results.

3.1 Prove It Run Analysis

With the single page index, we get an average of 2.1 pages per book, while the
5-page index gives us 8.8 pages per book. With an average 4.97 pages per unit,
that is 1.77 units per book. The 5-page index gives us less units per book than
the single page index, but we get more pages from a single book. The impact
of relevance feedback is a slight increase in the number of pages from the same
book. Expanding the query with terms from the top ranked book pages probably
results in retrieving more pages from those books because similar terms are used
throughout the same book.

3.2 Best Book Results

In Table 6 we see the results for the Best Book Task. The standard Book retrieval
system performs better than the system with pseudo relevance feedback. PRF
expands the topic of the query somewhat, which is unnecessary for the task of
finding only the best books on a topic.

Books are have graded relevance judgements, with labels excellent, good,
marginal, irrelevant and cannot judge. The latter is used for instance when the
scanned image of a book is unreadable. For the Best Book task we are mainly
interested in books labelled good or excellent. In Figure 1 we see the success rates

150 J. Kamps and M. Koolen

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1 2 3 4 5 6 7 8 9 10

Book good
Book excl

Book-RF good
Book-RF excl

Fig. 1. Success rate over ranks 1 to 10 in the 2010 Best Books task

Table 7. Mapping of the Prove It relevance labels to graded relevance values

Label Official Extra

Irrelevant (0) 0 0
Relevant (1) 1 1
Refute (2) or Confirm (3) 2 10

over the top 10 for retrieving at least one book labelled good or higher, and for
retrieving at least one excellent book. We see that the Book run has a success
rate for books labelled good or higher of almost 0.4 at rank 1 going up to 0.81
at rank 10. The Book-RF runs has a slightly lower success rate. For the books
labelled excellent, the success rates are much lower. The Book run returns an
excellent book in the top 10 for 33% of the topics, the Book-RF run for 24% of
the topics.

3.3 Prove It Results

For the Prove It task, the goal is to return individual book pages that either
confirm or refute a factual statement. The same set of topics is used as for the
Best Book task, but here, participants could use the query field, as well as the
factual statement. For our runs we only use the query field.

The assessed book pages could be assessed as either irrelevant, relevant, refute
or confirm. Pages are labelled relevant when they discuss the topic of the state-
ment, but neither refute or confirm that statement. These labels can be mapped
to relevance values in multiple ways. We show results for the official mapping, and
a mapping in which the refute/confirm pages are weighted extra. These mappings
to graded relevance values are shown in Table 7. For the Extra mappings, the re-
fute/confirm pages weight 10 times as much as pages labelled relevant.

The nDCG@10 measure uses the graded relevance scores, and we regard the
nDCG@10 as the official measure. The results are given in Table 8. The 1-page
index gives better results than the 5-page index in terms of early precision. For

Focus and Element Length for Book and Wikipedia Retrieval 151

Table 8. Evaluation results for the INEX 2010 Prove It task, nDCG@10 with official
weights 0-1-2 (4th column) and Extra weights 0-1-10 (5th column)

Run ID MAP P@10 nDCG@10
Official Extra

1-page 0.1216 0.3238 0.2795 0.2338
1-page RF 0.1521 0.3524 0.2946 0.2322
5-page 0.1209 0.2619 0.2182 0.1714
5-page RF 0.1163 0.2143 0.1703 0.1371

the 1-page index, feedback improves precision, while for the 5-page index, feed-
back hurts performance. The top single page results are probably more focussed
on the topic, so the expansion terms are also more related to the topic. The 5-
page units might have only one or two pages on the topic, with the surrounding
pages slowly drifting to other topics, which causes further topic drift through
pseudo relevance feedback.

If we put extra weight on the confirm/retute pages, the nDCG@10 scores of
all four runs drop. However, they drop slightly more for the 1-page RF run than
for the other runs. Although feedback improves precision of the 1-page run, it
apparently finds more relevant pages, but fewer confirm/refute pages. This could
again be caused by topic drift introduced through pseudo relevance feedback.

Longer units seem to provide no benefit to finding confirm/refute pages or
relevant pages. At least not when treating each page within the 5-page units as
individual results. Of course, one could still score a whole 5-page unit if any one
of the 5 pages is relevant or confirms/refutes the factual statement. However,
the relevance judgements treat each page as a separate document, so scoring
larger units based on these page level judgements would give systems returning
larger units an unfair advantage, as they can return more pages within the same
number of ranks as systems returning only individual pages.

We have also looked at near-misses, that is, retrieved pages that are not relevant
themselves, but are next to a relevant pages in the book. Because pages typically

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 2 4 6 8 10

1-page
5-page

1-page RF
5-page RF

Fig. 2. Impact of near misses on nDCG@10 performance in the 2010 Prove It task

152 J. Kamps and M. Koolen

do not coincide with the logical of a book—section and paragraphs can start or end
anywhere on the page and be split over multiple pages—a topic might be discussed
over multiple pages. Although the information requested by a user might be on one
page, the page preceding or succeeding it might still be closely related, and contain
clues for the reader that the actual relevant information is nearby.

4 Conclusion

In this paper we discussed our participation in the INEX 2010 Ad Hoc and Book
Tracks.

For the Ad Hoc Track we found that, with the restrictions on the amount of
text per article and per topic that can be retrieved, focused retrieval techniques
clearly outperform standard document retrieval. What is somewhat surprising is
that a length prior on the section index is effective even when we use the article
ranking of an article level run. The query-independent length prior helps locate
elements with a large fraction and amount of relevant text.

For the Book Track, we found that pseudo relevance feedback is effective
in combination with an index of individual pages as units. With larger units,
feedback hurts precision. Given that the topics consist of specific factual state-
ments, feedback only works when the top ranked results are highly focused on
the topic of these statements. Although larger units might make it easier to find
relevant material—early precision of the book-level runs is higher than that of
the page-level runs—they also provide more off-topic text with which feedback
terms introduce topic drift.

Acknowledgments. Jaap Kamps was supported by the Netherlands Organization
for Scientific Research (NWO, grants # 612.066.513, 639.072.601, and 640.001.-
501). Marijn Koolen was supported by NWO under grants # 639.072.601 and
640.001.501.

Bibliography

[1] Fachry, K.N., Kamps, J., Koolen, M., Zhang, J.: Using and detecting links in
wikipedia. In: Fuhr, N., Kamps, J., Lalmas, M., Trotman, A. (eds.) INEX 2007.
LNCS, vol. 4862, pp. 388–403. Springer, Heidelberg (2008)

[2] Hiemstra, D., Robertson, S., Zaragoza, H.: Parsimonious language models for in-
formation retrieval. In: Proceedings of the 27th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp. 178–185.
ACM Press, New York (2004)

[3] Kamps, J., Koolen, M.: The impact of document level ranking on focused retrieval.
In: Geva, S., Kamps, J., Trotman, A. (eds.) INEX 2008. LNCS, vol. 5631, pp. 140–
151. Springer, Heidelberg (2009)

[4] Kamps, J., Koolen, M.: On the relation between relevant passages and XML docu-
ment structure. In: Trotman, A., Geva, S., Kamps, J. (eds.) SIGIR 2007 Workshop
on Focused Retrieval, pp. 28–32. University of Otago, Dunedin (2007)

Focus and Element Length for Book and Wikipedia Retrieval 153

[5] Kamps, J., Koolen, M., Sigurbjörnsson, B.: Filtering and clustering XML retrieval
results. In: Fuhr, N., Lalmas, M., Trotman, A. (eds.) INEX 2006. LNCS, vol. 4518,
pp. 121–136. Springer, Heidelberg (2007)

[6] Kamps, J., Koolen, M., Lalmas, M.: Locating relevant text within XML docu-
ments. In: Proceedings of the 31th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, pp. 847–849. ACM Press,
New York (2008)

[7] Kamps, J., Geva, S., Trotman, A., Woodley, A., Koolen, M.: Overview of the
INEX 2008 ad hoc track. In: Geva, S., Kamps, J., Trotman, A. (eds.) INEX 2008.
LNCS, vol. 5631, pp. 1–28. Springer, Heidelberg (2009)

[8] Kaptein, R., Koolen, M., Kamps, J.: Using Wikipedia categories for ad hoc search.
In: Proceedings of the 32nd Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, ACM Press, New York (2009)

[9] Kazai, G., Milic-Frayling, N., Costello, J.: Towards methods for the collective
gathering and quality control of relevance assessments. In: SIGIR 2009: Proceed-
ings of the 32nd International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, pp. 452–459. ACM, New York (2009), doi:
http://doi.acm.org/10.1145/1571941.1572019 ISBN 978-1-60558-483-6

[10] Koolen, M., Kamps, J.: The importance of anchor-text for ad hoc search revisited.
In: Chen, H.-H., Efthimiadis, E.N., Savoy, J., Crestani, F., Marchand-Maillet, S.
(eds.) Proceedings of the 33rd Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, pp. 122–129. ACM Press,
New York (2010)

[11] Koolen, M., Kaptein, R., Kamps, J.: Focused search in books and wikipedia:
Categories, links and relevance feedback. In: Geva, S., Kamps, J., Trotman, A.
(eds.) INEX 2009. LNCS, vol. 6203, pp. 273–291. Springer, Heidelberg (2010)

[12] Schenkel, R., Suchanek, F., Kasneci, G.: Yawn: A semantically annotated
wikipedia xml corpus (2007),
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.140.5501

[13] Sigurbjörnsson, B., Kamps, J.: The effect of structured queries and selective in-
dexing on XML retrieval. In: Fuhr, N., Lalmas, M., Malik, S., Kazai, G. (eds.)
INEX 2005. LNCS, vol. 3977, pp. 104–118. Springer, Heidelberg (2006)

[14] Sigurbjörnsson, B., Kamps, J., de Rijke, M.: An Element-Based Approach to XML
Retrieval. In: INEX 2003 Workshop Proceedings, pp. 19–26 (2004)

[15] Sigurbjörnsson, B., Kamps, J., de Rijke, M.: Mixture models, overlap, and struc-
tural hints in XML element retrieval. In: Fuhr, N., Lalmas, M., Malik, S., Szlávik,
Z. (eds.) INEX 2004. LNCS, vol. 3493, pp. 196–210. Springer, Heidelberg (2005)

[16] Strohman, T., Metzler, D., Turtle, H., Croft, W.B.: Indri: a language-model based
search engine for complex queries. In: Proceedings of the International Conference
on Intelligent Analysis (2005)

[17] Vercoustre, A.-M., Pehcevski, J., Thom, J.A.: Using Wikipedia categories and
links in entity ranking. In: Focused Access to XML Documents, pp. 321–335 (2007)

http://doi.acm.org/10.1145/1571941.1572019
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.140.5501

Combining Page Scores for XML Book Retrieval

Ray R. Larson

School of Information
University of California, Berkeley

Berkeley, California, USA, 94720-4600
ray@ischool.berkeley.edu

Abstract. In the 2010 INEX Evaluation UC Berkeley participated only
in the Book track, and specifically the “Best Books to Reference” task
that seeks to produce a list of the “best books” for a topic. This year
we wanted to compare our best performing method from last year with
approaches that combine the scores obtained by ranking at the page level
to arrive at the ranking for a book. We tested a number of combinations
for this approach, and were able to obtain the top score for the “Best
Books” task.

1 Introduction

In our 2009 work on the INEX Book Track, we tried a variety of different
approaches for our Book Track runs, including the TREC2 logistic regression
probabilistic model as well as various fusion approaches including combining the
Okapi BM-25 algorithm with other approaches. But in most cases our previous
approaches used only full-book level indexes. We observed that most of the fusion
approaches that we had tried were not as effective as the TREC2 Logistic Re-
gression with Blind Feedback, so we took that as our baseline for this year, and
none of our approaches were as effective as those reported by some other groups.
After testing a number of approaches using book-level indexes and different fu-
sion weights, we found that this was still the case, and that these attempts often
led to poor matches being ranked highly. We decided instead to try some radical
simplification of the ranking process for books. This was driven by observations
from earlier INEX evaluations and from some of our digital library work that
often the books with highly ranked pages turned out to be more better choices
for the user than books with high overall ranking scores. Since we had generated
page-level indexes for all of the books (see below), we decided to try two simple
approaches. A probabilistic approach based on our logistic regression algorithm
(but without blind feedback), and a simple coordination-level match for pages.

In this paper we will first discuss the algorithms and operators used in our offi-
cial INEX 2010 Book Track runs. Then we will look at how these algorithms and
operators were used in combination with page-level indexes for our submissions,
and finally we will discuss possible directions for future research.

S. Geva et al. (Eds.): INEX 2010, LNCS 6932, pp. 154–163, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Combining Page Scores for XML Book Retrieval 155

2 The Retrieval Algorithms and Fusion Operators

This section largely duplicates parts of earlier INEX papers in describing the
probabilistic retrieval algorithms used for the Book track in INEX this year.
Although the algorithms are the same as those used in previous years for INEX
and in other evaluations (such as CLEF and NTCIR), including a blind rele-
vance feedback method used in combination with the TREC2 algorithm, we are
repeating the formal description here instead of refering to those earlier papers
alone. In addition we will discuss the simple methods used to combine the results
of searches of book page elements in the collections. All runs used our Cheshire
II XML/SGML search engine [9,8,7] which also supports a number of other algo-
rithms for distributed search and operators for merging result lists from ranked
or Boolean sub-queries.

2.1 TREC2 Logistic Regression Algorithm

Once again the primary algorithm used for our INEX baseline runs is based
on the Logistic Regression (LR) algorithm originally developed at Berkeley by
Cooper, et al. [5]. The version that we used for Adhoc tasks was the Cheshire
II implementation of the “TREC2” [4,3] that has provided good retrieval per-
formance earlier evaluations[9,10]. As originally formulated, the LR model of
probabilistic IR attempts to estimate the probability of relevance for each docu-
ment based on a set of statistics about a document collection and a set of queries
in combination with a set of weighting coefficients for those statistics. The statis-
tics to be used and the values of the coefficients are obtained from regression
analysis of a sample of a collection (or similar test collection) for some set of
queries where relevance and non-relevance has been determined. More formally,
given a particular query and a particular document in a collection P (R | Q, D)
is calculated and the documents or components are presented to the user ranked
in order of decreasing values of that probability. To avoid invalid probability
values, the usual calculation of P (R | Q, D) uses the “log odds” of relevance
given a set of S statistics derived from the query and database, such that:

log O(R|C, Q) = log
p(R|C, Q)

1 − p(R|C, Q)
= log

p(R|C, Q)
p(R|C, Q)

= c0 + c1 ∗ 1√|Qc| + 1

|Qc|∑
i=1

qtfi

ql + 35

+ c2 ∗ 1√|Qc| + 1

|Qc|∑
i=1

log
tfi

cl + 80

− c3 ∗ 1√|Qc| + 1

|Qc|∑
i=1

log
ctfi

Nt

+ c4 ∗ |Qc|
where C denotes a document component and Q a query, R is a relevance variable,
and

156 R.R. Larson

p(R|C, Q) is the probability that document component C is relevant to query
Q,

p(R|C, Q) the probability that document component C is not relevant to query
Q, (which is 1.0 - p(R|C, Q))

|Qc| is the number of matching terms between a document component and a
query,

qtfi is the within-query frequency of the ith matching term,
tfi is the within-document frequency of the ith matching term,
ctfi is the occurrence frequency in a collection of the ith matching term,
ql is query length (i.e., number of terms in a query like |Q| for non-feedback

situations),
cl is component length (i.e., number of terms in a component), and
Nt is collection length (i.e., number of terms in a test collection).
ck are the k coefficients obtained though the regression analysis.

Assuming that stopwords are removed during index creation, then ql, cl, and
Nt are the query length, document length, and collection length, respectively.
If the query terms are re-weighted (in feedback, for example), then qtfi is no
longer the original term frequency, but the new weight, and ql is the sum of
the new weight values for the query terms. Note that, unlike the document and
collection lengths, query length is the relative frequency without first taking the
log over the matching terms.

The coefficients were determined by fitting the logistic regression model speci-
fied in log O(R|C, Q) to TREC training data using a statistical software package.
The coefficients, ck, used for our official runs are the same as those described
by Chen[1]. These were: c0 = −3.51, c1 = 37.4, c2 = 0.330, c3 = 0.1937 and
c4 = 0.0929. Further details on the TREC2 version of the Logistic Regression
algorithm may be found in Cooper et al. [4].

2.2 Blind Relevance Feedback

It is well known that blind (also called pseudo) relevance feedback can substan-
tially improve retrieval effectiveness in tasks such as TREC and CLEF. (See
for example the papers of the groups who participated in the Ad Hoc tasks in
TREC-7 (Voorhees and Harman 1998)[11] and TREC-8 (Voorhees and Harman
1999)[12].)

Blind relevance feedback is typically performed in two stages. First, an initial
search using the original queries is performed, after which a number of terms are
selected from the top-ranked documents (which are presumed to be relevant).
The selected terms are weighted and then merged with the initial query to for-
mulate a new query. Finally the reweighted and expanded query is run against
the same collection to produce a final ranked list of documents. It was a simple
extension to adapt these document-level algorithms to document components
for INEX.

The TREC2 algorithm has been been combined with a blind feedback method
developed by Aitao Chen for cross-language retrieval in CLEF. Chen[2] presents

Combining Page Scores for XML Book Retrieval 157

a technique for incorporating blind relevance feedback into the logistic regression-
based document ranking framework. Several factors are important in using blind
relevance feedback. These are: determining the number of top ranked documents
that will be presumed relevant and from which new terms will be extracted, how
to rank the selected terms and determining the number of terms that should
be selected, how to assign weights to the selected terms. Many techniques have
been used for deciding the number of terms to be selected, the number of top-
ranked documents from which to extract terms, and ranking the terms. Harman
[6] provides a survey of relevance feedback techniques that have been used.

Obviously there are important choices to be made regarding the number of
top-ranked documents to consider, and the number of terms to extract from those
documents. We used the same default as last year, i.e., top 10 terms from 10 top-
ranked documents. The terms were chosen by extracting the document vectors
for each of the 10 and computing the Robertson and Sparck Jones term relevance
weight for each document. This weight is based on a contingency table where
the counts of 4 different conditions for combinations of (assumed) relevance
and whether or not the term is, or is not in a document. Table 1 shows this
contingency table.

Table 1. Contingency table for term relevance weighting

Relevant Not Relevant

In doc Rt Nt − Rt Nt

Not in doc R − Rt N − Nt − R + Rt N − Nt

R N − R N

The relevance weight is calculated using the assumption that the first 10
documents are relevant and all others are not. For each term in these documents
the following weight is calculated:

wt = log

Rt

R−Rt

Nt−Rt

N−Nt−R+Rt

(1)

The 10 terms (including those that appeared in the original query) with the
highest wt are selected and added to the original query terms. For the terms
not in the original query, the new “term frequency” (qtfi in main LR equation
above) is set to 0.5. Terms that were in the original query, but are not in the
top 10 terms are left with their original qtfi. For terms in the top 10 and in the
original query the new qtfi is set to 1.5 times the original qtfi for the query.
The new query is then processed using the same TREC2 LR algorithm as shown
above and the ranked results returned as the response for that topic.

2.3 Coordination Level Matching

Coordination level matching is the first simple step towards ranking results
beyond simple Boolean matches. Basic coordination level matching (CML) is

158 R.R. Larson

simply the number of terms in common between the query and the document
component or |Qc| as defined above. In the implementation that we use in the
Cheshire II system, the coordination level match (CLM) also takes into account
term frequency, thus it is simply:

CLMc =
|Qc|∑
i=1

tfi (2)

Where the variables are the defined the same as defined above. Obviously, with
this simple form, it is possible for terms that have very high frequency to domi-
nate. To combat this an additional filter removes all results that match on fewer
than 1/4 of the search terms.

2.4 Result Combination Operators

As we have also reported previously, the Cheshire II system used in this evalu-
ation provides a number of operators to combine the intermediate results of a
search from different components or indexes. With these operators we have avail-
able an entire spectrum of combination methods ranging from strict Boolean
operations to fuzzy Boolean and normalized score combinations for probabilis-
tic and Boolean results. These operators are the means available for performing
fusion operations between the results for different retrieval algorithms and the
search results from different components of a document.

However, our approach for the page-level searches done for this evaluation was
to simply sum the page-level results for each book. Thus, for the CLM runs, if
a particular query retrieved 10 pages from a given book, the final ranking score
would be the sum of the CLM values for each page. Although the runs using
the TREC2 logistic regression algorithm return estimates of the probability of
relevance for each page, we decided to treat these also as simple scores and sum
each matching page estimate for each book.

3 Database and Indexing Issues

The Book Track data used this year was the same as last year. In indexing we
attempted to use multiple elements or components that were identified in the
Books markup including the Tables of Contents and Indexes as well as the full
text of the book, since the goal of the “Best Books” task was to retrieve entire
books and not elements, the entire book was retrieved regardless of the matching
elements.

Table 2 lists the Book-level (/article) indexes created for the INEX Books
database and the document elements from which the contents of those indexes
were extracted.

Cheshire system permits parts of the document subtree to be treated as sepa-
rate documents with their own separate indexes. Tables 3 & 4 describe the XML
components created for the INEX Book track and the component-level indexes
that were created for them.

Combining Page Scores for XML Book Retrieval 159

Table 2. Book-Level Indexes for the INEX Book Track 2009-10

Name Description Contents Vector?

topic Full content //document Yes

toc Tables of Contents //section@label=”SEC TOC” No

index Back of Book Indexes //section@label=”SEC INDEX” No

Table 3. Components for INEX Book Track 2009-10

Name Description Contents

COMPONENT PAGE Pages //page

COMPONENT SECTION Sections //section

Table 3 shows the components and the paths used to define them. The first,
refered to as COMPONENT PAGE, is a component that consists of each identi-
fied page of the book, while COMPONENT SECTION identifies each section of
the books, permitting each individual section or page of a book to be retrieved
separately. Because most of the areas defined in the markup as “section”s are
actually paragraphs, we treat these as if they were paragraphs for the most part.

Table 4. Component Indexes for INEX Book Track 2009-10

Component
or Index Name Description Contents Vector?

COMPONENT SECTION

para words Section Words * (all) Yes

COMPONENT PAGES

page words Page Words * (all) Yes

Table 4 describes the XML component indexes created for the components
described in Table 3. These indexes make the individual sections (such as COM-
PONENT SECTION) of the INEX documents retrievable by their titles, or by
any terms occurring in the section. These are also proximity indexes, so phrase
searching is supported within the indexes.

We also have indexes created using the MARC data (book-level metadata)
made available, but these were not used this year.

3.1 Indexing the Books XML Database

Because the structure of the Books database was derived from the OCR of
the original paper books, it is primarily focused on the page organization and
layout and not on the more common structuring elements such as “chapters”
or “sections”. Because this emphasis on page layout goes all the way down to
the individual word and its position on the page, there is a very large amount

160 R.R. Larson

of markup for page with content. For this year’s original version of the Books
database, there are actually NO text nodes in the entire XML tree, the words
actually present on a page are represented as attributes of an empty word tag in
the XML. The entire document in XML form is typically multiple megabytes in
size. A separate version of the Books database was made available that converted
these empty tags back into text nodes for each line in the scanned text. This
provided a significant reduction in the size of database, and made indexing much
simpler. The primary index created for the full books was the “topic” index
containing the entire book content.

We also created page-level “documents” as we did last year. As noted above
the Cheshire system permits parts of the document subtree to be treated as sep-
arate documents with their own separate indexes. Thus, paragraph-level com-
ponents were extracted from the page-sized documents. Because unique object
(page) level identifiers are included in each object, and these identifiers are simple
extensions of the document (book) level identifier, we were able to use the page-
level identifier to determine where in a given book-level document a particular
page or paragraph occurs, and generate an appropriate XPath for it.

Indexes were created to allow searching of full page contents, and component
indexes for the full content of each of individual paragraphs on a page. Because
of the physical layout based structure used by the Books collection, paragraphs
split across pages are marked up (and therefore indexed) as two paragraphs.
Indexes were also created to permit searching by object id, allowing search for
specific individual pages, or ranges of pages.

The system problems encountered last year have been (temporarily) corrected
for this years submissions. Those problems were caused by the numbers of unique
terms exceeding the capacity of the integers used to store them in the indexes. For
this year, at least, moving to unsigned integers has provided a temporary fix for
the problem but we will need to rethink how statistical summary information is
handled in the future – perhaps moving to long integers, or even floating point
numbers and evaluating the tradeoffs between precision in the statistics and
index size (since moving to Longs could double index size).

4 INEX 2010 Book Track Runs

We submitted nine runs for the Book Search task of the Books track,
As Table 5 shows, a small number of variations of algorithms and search

elements were tried this year. The small number was largely due to some issues
in indexing (due to a bug in page indexes that took a lot of time to locate
and fix). With more that 16 million pages, response time was very good for the
basic search operations, but slowed dramatically whenever data from records
was needed.

In Table 5 the first column is the run name (all of our official submissions had
names beginning with “BOOKS10” which has been removed from the name), the
second column is a short description of the run. We used only the main “fact” el-
ement of the topics in all of our runs. The third column shows which algorithms

Combining Page Scores for XML Book Retrieval 161

Table 5. Berkeley Submissions for the INEX Book Track 2009

Name Description Algorithm Combined?

T2FB BASE BST Uses book-level topic index TREC2 NA
and blind feedback +BF

CLM PAGE SUM Uses page components and CLM Sum
page words index

CLM PAGE SUM 300 Uses page components and CLM Sum
page words index

T2 PAGE SUM 300 Uses page components and TREC2 Sum
page words index

Table 6. Evaluation results for the INEX 2010 Best Books task

Run ID MAP P@10 NDCG@10

p14-BOOKS2010 CLM PAGE SUM.trec 0.1507 0.2714 0.2017
p14-BOOKS2010 CLM PAGE SUM 300.trec 0.1640 0.2810 0.2156
p14-BOOKS2010 T2FB BASE BST.trec 0.3981 0.5048 0.5456
p14-BOOKS2010 T2 PAGE SUM 300.trec 0.5050 0.6667 0.6579
p6-inex10.book.fb.10.50.trec 0.3087 0.4286 0.3869
p6-inex10.book.trec 0.3286 0.4429 0.4151
p98-baseline 1.trec 0.4374 0.5810 0.5764
p98-baseline 1 wikifact.trec 0.4565 0.5905 0.5960
p98-baseline 2.trec 0.4806 0.6143 0.6302
p98-baseline 2 wikifact.trec 0.5044 0.6381 0.6500
p98-fact query 10wikibests.trec 0.4328 0.5714 0.5638
p98-fact query entropy.trec 0.4250 0.5476 0.5442
p98-fact query tfidfwiki.trec 0.3442 0.4667 0.4677
p98-fact query tfwiki.trec 0.4706 0.5571 0.5919
p98-fact stanford deps.trec 0.4573 0.5857 0.5976

where used for the run, TREC2 is the TREC2 Logistic regression algorithm de-
scribed above, “BF” means that blind relevance feedback was used in the run, and
CLM means that the CLM algorithm described above (2) was used.

Table 6 shows the official results for the Best Books task in the book retrieval
tasks. The first four lines of Table 6 show the results for our official submitted
runs described in Table 5 (as Mean Average Precision, Precision at 10, and Nor-
malized Discounted Cumulative Gain at 10, the official measures used for the
task). As these results show, the simplest methods are definitely not the best
methods in the best book retrieval task. Our runs using simple coordination level
matching both showed significantly worse results (note that the full result data
for each participant was not available, and so we could not calculate true statisti-
cal significance. They certainly appear to be considerably worse than any of the
other submitted runs). On the other hand, our baseline run (T2FB BASE BST),
appears in the middle range of the score distribution, and our test run using the
TREC 2 algorithm at the page level and simple summation of scores obtained
the best results of any official run.

162 R.R. Larson

5 Conclusions and Future Directions

The results of the Books track were only recently made available to participants,
but a few observations can be made about the runs. Our belief that the simple
CLM on pages might outperform the TREC2 approach on pages (as suggested
in our notebook paper) was wildly wrong, given how the CLM approaches were
outperformed by every other approach tried this year. Perhaps this can be seen
as an object lesson of the unreliability of “eyeballing” evaluation results in the
absence of actual result data. We have known for some time that the base TREC
2 algorithm usually provides fairly high precision (and usually good recall too
when combined with the blind feedback approach described above). This appears
to be the main factor for the success in the Best Books task, high precision search
at the page level, with book ranking scores based on a summation of page scores
for the books with highly ranked pages.

Of course, it is quite reasonable that the TREC2 algorithm outperforms the
CLM approach. The CLM ranking value, as noted above is purely concerned
with term occurrences in the text, while the TREC2 logistic regression algorithm
attempts to estimate the probability that a document component is relevant for
a given query. While a CLM value can be inflated by multiple occurrences of
any given term (even very common terms), the TREC2 approach averages the
contributions of the various terms, and therefore tends to favor pages with more
query terms with higher IDF values.

As noted by one reviewer, there is a question of why page-level search seems
to capture more appropriate information than document (or book-level) search. I
would suggest that this may be more an artifact of the types of questions/topics
than necessarily a characteristic of book searching. Most of the topics are actu-
ally framed as “factoid” types of questions, most of which can be answered in
one or a few pages, and which are unlikely to have full book-length treatments
(although some of the particular people, places, or events making up parts of the
questions might well have full books, which contain the pages that could answer
the questions).

Now that the relevance data for this task is available, we plan to test other ap-
proaches to merging page-level results, as well as other basic ranking algorithms
for the page search component, including, naturally, the use of blind feedback
at the page level. The reason that this latter was not included in the official
runs was that we underestimated the time it would take to build the vector files
needed for each page, and ran out of time to make the official deadline.

References

1. Chen, A.: Multilingual information retrieval using english and chinese queries.
In: Peters, C., Braschler, M., Gonzalo, J., Kluck, M. (eds.) CLEF 2001. LNCS,
vol. 2406, pp. 44–58. Springer, Heidelberg (2002)

2. Chen, A.: Cross-Language Retrieval Experiments at CLEF 2002. In: Peters, C.,
Braschler, M., Gonzalo, J. (eds.) CLEF 2002. LNCS, vol. 2785, pp. 28–48. Springer,
Heidelberg (2003)

Combining Page Scores for XML Book Retrieval 163

3. Chen, A., Gey, F.C.: Multilingual information retrieval using machine translation,
relevance feedback and decompounding. Information Retrieval 7, 149–182 (2004)

4. Cooper, W.S., Chen, A., Gey, F.C.: Full Text Retrieval based on Probabilistic
Equations with Coefficients fitted by Logistic Regression. In: Text Retrieval Con-
ference (TREC-2), pp. 57–66 (1994)

5. Cooper, W.S., Gey, F.C., Dabney, D.P.: Probabilistic retrieval based on staged
logistic regression. In: 15th Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval, Copenhagen, Denmark, June
21-24, pp. 198–210. ACM, New York (1992)

6. Harman, D.: Relevance feedback and other query modification techniques. In:
Frakes, W., Baeza-Yates, R. (eds.) Information Retrieval: Data Structures & Al-
gorithms, pp. 241–263. Prentice-Hall, Englewood Cliffs (1992)

7. Larson, R.R.: A logistic regression approach to distributed IR. In: SIGIR 2002:
Proceedings of the 25th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, Tampere, Finland, August 11-15, pp.
399–400. ACM, New York (2002)

8. Larson, R.R.: A fusion approach to XML structured document retrieval. Informa-
tion Retrieval 8, 601–629 (2005)

9. Larson, R.R.: Probabilistic retrieval, component fusion and blind feedback for XML
retrieval. In: Fuhr, N., Lalmas, M., Malik, S., Kazai, G. (eds.) INEX 2005. LNCS,
vol. 3977, pp. 225–239. Springer, Heidelberg (2006)

10. Larson, R.R.: Ranking and fusion approaches for XML book retrieval. In: Geva, S.,
Kamps, J., Trotman, A. (eds.) INEX 2009. LNCS, vol. 6203, pp. 179–189. Springer,
Heidelberg (2010)

11. Voorhees, E., Harman, D. (eds.): The Seventh Text Retrieval Conference (TREC-
7). NIST (1998)

12. Voorhees, E., Harman, D. (eds.): The Eighth Text Retrieval Conference (TREC-8).
NIST (1999)

OUC’s Participation in the 2010 INEX Book

Track

Michael Preminger and Ragnar Nordlie

Oslo University College

Abstract. In this article we describe the Oslo University College’s par-
ticipation in the INEX 2010 Book track. The OUC has submitted re-
trieval results for the ”prove it” task with traditional relevance detection
combined with some rudimental detection of confirmation. We call for
a broader discussion of a more meaning-oriented (semantics-aware) ap-
proach to retrieval in digitized books, with the ”prove it” task (classifi-
able as a simple semantics- aware retrieval activity) providing the INEX
milieu with a suitable context to start this discussion.

1 Introduction

In recent years large organizations like national libraries, as well as multinational
organizations like Microsoft and Google have been investing labor, time and
money in digitizing books. Beyond the preservation aspects of such digitization
endeavors, they call on finding ways to exploit the newly available materials,
and an important aspect of exploitation is book and passage retrieval.

The INEX Book Track[1], which has been running since 2007, is an effort
aiming to develop methods for retrieval in digitized books. One important aspect
here is to test the limits of traditional methods of retrieval, designed for retrieval
within ”documents” (such as news-wire), when applied to digitized books. One
wishes to compare these methods to book-specific retrieval methods.

One important mission of such retrieval is supporting the generation of new
knowledge based on existing knowledge. The generation of new knowledge is
closely related to access to – as well as faith in – existing knowledge. One im-
portant component of the latter is claims about facts. This year’s ”prove it”
task, may be seen as challenging the most fundamental aspect of generating new
knowledge, namely the establishment (or refutal) of factual claims encountered
during research.

On the surface, this may be seen as simple retrieval, but proving a fact is
more than finding relevant documents. This type of retrieval requires from a
passage to ”make a statement about” rather than ”be relevant to” a claim,
which traditional retrieval is about. The questions we pose here are:

– what is the difference between simply being relevant to a claim and expressing
support for a claim

– how do we modify traditional retrieval to reveal support or refutal of a claim?

S. Geva et al. (Eds.): INEX 2010, LNCS 6932, pp. 164–170, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

OUC’s Participation in the 2010 INEX Book Track 165

We see proving and denial of a statement as different tasks, both classifiable as
semantics-aware retrieval, suspecting that the latter is a more complicated task.
This paper attempts at applying some rudimentary techniques of detecting the
confirmation (proving) of a statement. The rest of the paper discusses these tasks
in the context of meaning-oriented retrieval in books.

2 Indexing and Retrieval Strategies

The point of departure of the strategies discussed here is that confirming or
refuting a statement is a simple action of speech that does not require from the
book (the context of the retrieved page) to be ABOUT the topic covering the
fact. This means that we do not need the index to be context-faithful (pages
need not be indexed in a relevant book context). It is more the formulation of
the statement in the book or page that matters. This is why we need to look
for words (or sequences of words) or sentences that indicate the stating of a
fact. A simple strategy is looking for the occurrence of words like ”is”, ”are”,
”have”, ”has” a.s.o, that, in combination with nouns from the query (or fact
formulation), indicate a possible act of confirming the fact in question.

Further focus may be achieved by detecting sentences that include (WH-)
question indicators or a question-mark and pruning these from the index, so
that pages that only match the query through such sentences are omitted or
weighed down during retrieval.

Against this background we were trying to construct runs that emphasized
pages that are confirmative in style. We attempted to divide the pages in the
collection into categories of how confirmative they are, and indexed them indi-
vidually (each page comprising a document). Occurrences of the words is, are,
was, were, have, has were counted in each page, and a ratio between this sum
and the total number of words in the page was calculated. Based on a sample of
the pages, three levels were defined, so that pages belonging to each of the levels
were assigned a tag, accordingly. It may be argued that a richer set of confir-
mation indicators could be applied. Our claim is that the selected words should
function as style indicators, not as content indicators (the content catered for by
the topic, i.e. the factual claim under scrutiny), and were therefore sufficient. A
larger collection could incur noise.

These tags then facilitated weighting pages differently (based on their pro-
portion of confirmatory words) when retrieving candidates of confirming pages.
Retrieval was performed using the Indri language model in the default mode,
weighting the confirmatory pages differently, as indicated above. As the primary
aim here is to try and compare traditional retrieval with ”prove it”, there was
no particular reason to divert from the default.

The 2010 tasks have been featuring a relatively large number of topics (83).
As a new method was employed for collecting relevance assessments, only 21 of
these queries were ready for evaluation at deadline time, and it is these queries
that are used for retrieval.

166 M. Preminger and R. Nordlie

3 Runs and Results

Based on the index that we were constructing, we weighted relevant pages on
two levels: pages that featured 1 percent or more confirmatory words, and pages
that featured 3 percents or more confirmatory words (the latter including the
former) were weighted double, quintuple (5x) and decuple (10x) the baseline.
Our baseline was normal, non-weighted retrieval, as we would do for finding
relevant pages. We were using the indri combine operation with no changes to
the default setting (regarding smoothing, a.s.o).

The analysis was carried out twice: once against the entire official qrel file
(meaning that all assessed book pages judged either confirming/refuting – or
merely relevant to – the statement-query are taken to be relevant (Figure 1).
The second analysis was done against a filtered version of the official qrel file,
featuring only the pages assessed as confirming/refuting (Figure 2).

The purpose was to see if the rate of confirmatory words can be used as a
”prove it” indicator, given that the relevance assessments properly reveal pages
that confirm the factual statement. Weighting retrieved pages that feature 1
percent or more confirmatory words does not seem to outperform the baseline
at any weighting level, at any region of the precision recall curve (Subfigures
1(a) and 2(a)). The reason for that may be that quite many pages belong to this
category. The weighting thus seems to hit somewhat randomly. An occurrence
rate of confirmatory words of one percent seems not to discriminate ”proving”
pages.

The results are more interesting when restricting the weighting to pages that
feature 3 percents or more confirmatory words. Here the results are different at
the low recall and the high recall regions. Directing our attention to the low
recall region first, we see in Figure 1(b) that both doubling the weight and, to a
lesser extent quintupling it, slightly outperform the the baseline. The effect is a
bit clearer when evaluating by pages assessed as confirming (Figure 2(b)). Here
also decupling the weight given to pages with 3 percent or more of confirmatory
words slightly outperforms the baseline.

No treatment seems to outperform the baseline in the higher recall regions.
Subject, of course, to a more thorough scrutiny of the result, this could indicate
that collecting many books that prove a statement is not likely to be better
supported by this approach than by traditional retrieval, whereas only finding
very few such books (early hits) might benefit from it. The reason for that may
be approached by looking at single relevant pages retrieved at the low and high
recall regions. This kind of treatment was beyond the scope of the present paper.
The value of pursuing it may be limited in light of the overall results.

Looking at the ”prove it” task in terms of traditional retrieval, the temporary
conclusion would be that the treatment experimented with here may be in the
right direction, and further pursuit of it has some potential of good retrieval,
particularly if it is the low recall region that is important (early hits). If the
purpose is collecting as many books as possible as evidence for a claim then the
approach does not seem as promising.

OUC’s Participation in the 2010 INEX Book Track 167

(a) Weighting relevant pages with 1 percent or more confirmatory words

(b) Weighting relevant pages with 3 percent or more confirmatory words

Fig. 1. Precision-recall curves for detecting relevant pages. Baseline marked by solid
lines in both subfigures.

168 M. Preminger and R. Nordlie

(a) Weighting relevant pages with 1 percent or more confirmatory words

(b) Weighting relevant pages with 3 percent or more confirmatory words

Fig. 2. Precision-recall curves for detecting confirming (proving) pages. Baseline
marked by solid lines in both subfigures.

OUC’s Participation in the 2010 INEX Book Track 169

4 Discussion

Utilizing digital books poses new challenges on information retrieval. The mere
size of the book text poses both storage, performance and content related chal-
lenges as compared to texts of more moderate size. But the challenges are even
greater if books are to be exploited not only for finding facts, but also to support
exploitation of knowledge, identifying and analyzing ideas, a.s.o.

For example, we suspect that confirming and refuting a factual statement, the
Book Track 2010 ”prove it” task, both belong to a class of activities that extend
the current scope of information retrieval. The notion of relevance is a well known
challenge in IR [2]. We suspect that the ”prove it” notion is by no means simpler.
Confirming a fact may have many facets, based on how complicated the fact is. A
fact like: The ten tribes forming the northern kingdom of Israel (aka the ten lost
tribes) disappeared after being driven to exile by the Assyrians, several hundreds
years before Christ (topic 2010003) may be confirmed on several levels. Should
all minor details be in place for the fact to be confirmed? What if the book states
that it was the Babylonians, rather than the Assyrians who sent the tribes into
exile, the rest of the details being in agreement with the statement: is the fact
then confirmed? Moreover, detecting the refutal of a statement is arguably a
totally different activity than detecting its confirmation. This poses challenges
not only to mere retrieval, but also to its evaluation, at all levels.

Even though such activities may be developed and refined using techniques
from e.g. Question Answering[3], we suspect that employing semantics-aware
retrieval [4,5], which is closely connected to the development of the Semantic
Web [6] would be a more viable (and powerful) path to follow.

Within the INEX Book track, the ”prove it” task can thus serve as a splen-
did start of a broader discussion around detecting meaning rather than only
matching strings. Many projects under way are already using ontologies to aid
in tagging texts of certain kinds (e.g. philosophical essays)[7] to indicate certain
meaning, with the aim of supporting the analysis of these texts. Is this a viable
task for the INEX Book track? Is it a viable path for information retrieval?

5 Conclusion

This article is an attempt to start a discussion about semantics-aware retrieval
in the context of the INEX book track. Proving of factual statements is discussed
in light of some rudimental retrieval experiments incorporating the detection of
confirmation (proving) of statement. We also discuss the task of proving state-
ment, raising the question whether it is classifiable as a semantics-aware retrieval
task.

170 M. Preminger and R. Nordlie

References

1. Kazai, G., Doucet, A., Koolen, M., Landoni, M.: Overview of the INEX 2009 book
track. In: Geva, S., Kamps, J., Trotman, A. (eds.) INEX 2009. LNCS, vol. 6203, pp.
145–159. Springer, Heidelberg (2010)

2. Mizzaro, S.: Relevance: The whole history. Journal of the American Society of In-
formation Science 48(9), 810–832 (1997)

3. Voorhees, E.M.: The trec question answering track. Natural Language Engineering 7,
361–378 (2001)

4. Finin, T., Mayfield, J., A.J.R.S.C, Fink, C.: Information retrieval and the semantic
web. In: Proc. 38th Int. Conf. on System Sciences, Digital Documents Track (The
Semantic Web: The Goal of Web Intelligence),

5. Mayfield, J., Finin, T.: Information retrieval on the semantic web: Integrating in-
ference and retrieval. In: SIGIR Workshop on the Semantic Web, Toronto,

6. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. In: Scientific American
(2001)

7. Zöllner-Weber, A.: Ontologies and logic reasoning as tools in humanities? DHQ:
Digital Humanities Quarterly 3(4) (2009)

S. Geva et al. (Eds.): INEX 2010, LNCS 6932, pp. 171–181, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Overview of the INEX 2010 Data Centric Track

Andrew Trotman1 and Qiuyue Wang2

1 Department of Computer Science
University of Otago

Dunedin
New Zealand

2 School of Information
Renmin University of China

Beijing
China

Abstract. The INEX 2010 Data Centric Track is discussed. A dump of IMDb
was used as the document collection, 28 topics were submitted, 36 runs were
submitted by 8 institutes, and 26 topics were assessed. Most runs (all except 2)
did not use the structure present in the topics; and consequently no
improvement is yet seen by search engines that do so.

1 Introduction

2010 sees the introduction of the Data Centric Track at INEX. The results of INEX
up-to and including 2009 showed that whole document retrieval was effective. This
result was, perhaps, a consequence of the IEEE and Wikipedia collections used in the
past. It is reasonable to assume that the Wikipedia will include a whole document
result to almost any ad hoc query.

In the Data Centric Track we ask: Can whole document retrieval approaches
outperform focused retrieval on highly structured document collection?

To answer this question a new highly structured collection was developed and
made available for download from the INEX website. That collection was a snapshot
of the IMDb taken early in 2010. Highly structured queries were solicited from
participants. Together with the assessments, these form the new INEX Data Centric
Collection.

Most of the runs submitted to the track did not use the structure present in the
topics. This is not surprising in a new track because participants are inclined to use
their existing systems on a new collection before making modifications to it.
Consequently the track has not yet seen improvements in precision from structure. It
is hoped that in future years participating groups will prefer to conduct experiments
using the structure present in the topics. The track has generated a topic set that can be
used for training.

2 The Task

In its first year, the track focused on ad hoc retrieval from XML data. An XML
document is typically modeled as a rooted, node-labeled tree. An answer to a keyword

172 A. Trotman and Q. Wang

query was defined as a set of closely related nodes that are collectively relevant to the
query. So each result could be specified as a collection of nodes from one or more
XML documents that are related and collectively cover the relevant information1. The
task was to return a ranked list of results estimated relevant to the user's information
need. The content of the collections of nodes was not permitted to overlap. This is
similar to the focused task in the ad hoc track, but using a data-centric XML
collection and allowing the construction of a result (i.e. a collection of nodes) from
different parts of a single document or even multiple documents.

3 INEX Data Centric Track Collection

3.1 Document Collection

The track used the IMDb data collection newly built from www.IMDb.com. It was
converted from the plain text files (April 10, 2010) published on the IMDb web site.
The plain text files were first loaded into a relational database by the Java Movie
Database system 2 . Then the relational data are published as XML documents
according to the DTDs. There are two kinds of objects in the IMDb data collection,
movies and persons involved in movies, e.g. actors/actresses, directors, producers and
so on. Each object is richly structured. For example, each movie has title, rating,
directors, actors, plot, keywords, genres, release dates, trivia, etc.; and each person
has name, birth date, biography, filmography, etc. Please refer to Appendix A and B
for the movie DTD and person DTD respectively.

Information about one movie or person is published in one XML file, thus each
generated XML file represents a single object, i.e. a movie or person. In total,
4,418,102 XML files were generated, including 1,594,513 movies, 1,872,492 actors3,
129,137 directors who did not act in any movies, 178,117 producers who did not
direct or act in any movies, and 643,843 other people involved in movies who did not
produce or direct nor act in any movies.

3.2 Topics

Each participating group was asked to create a set of candidate topics, representative
of a range of real user needs. Both Content Only (CO) and Content And Structure
(CAS) variants of the information need were requested. In total 30 topics were
submitted by 4 institutes (IRIT / SIG, Renmin University of China, Universidade
Federal do Amazonas, and Universitat Pompeu Fabra). From these a total of 28 topics
were selected based on uniqueness, preciseness, and being correctly formed. An
example topic (2010001) is given in Fig. 1:

1 However, as it is unclear how to evaluate this the standard INEX metrics were eventually

used.
2 http://www.jmdb.de/
3 21 of the actor files were empty and removed.

 Overview of the INEX 2010 Data Centric Track 173

 <topic id="2010001" ct_no="3">
 <title>Yimou Zhang 2010 2009</title>
 <castitle>//movie[about(.//director, "Yimou Zhang")
 and (about(.//releasedate, 2010) or about(.//releasedate, 2009))]</castitle>
 <description>I want to know the latest movies directed by Yimou Zhang.</description>
 <narrative>
 I am interested in all movies directed by Yimou Zhang,
 and I want to learn the latest movies he directed.
</narrative>
 </topic>

Fig. 1. INEX 2010 Data Centric Track Topic 2010001

4 Submission Format

The required submission format was a variant of the familiar TREC format used by
INEX, the so called TREC++ format. The following information was collected about
each run:

• The participant ID of the submitting institute,
• Whether the query was constructed automatically or manually from the

topic,
• Topic fields used (from: Title, CASTitle, Description, and Narrative),

A run was permitted to contain a maximum of 1000 results for each topic. A result
consisted of one or more nodes from a single or multiple XML documents. A node is
uniquely identified by its element path in the XML document tree. The standard
TREC format is extended with one additional field for specifying each result node:
<qid> Q0 <file> <rank> <rsv> <run_id> <column_7>

Here:

• the first column is the topic number.
• the second column is the query number within that topic (unused and should

always be Q0).
• the third column is the file name (without .xml) from which a result node is

retrieved.
• the fourth column is the rank of the result. Note that a result may consist of

one or more related nodes, so there can be multiple rows with the same rank
if these nodes belong to the same result.

• the fifth column shows the score that generated the ranking. This score must
be in descending (non-increasing) order and is important to include so that
assessment tools can handle tied scores (for a given run) in a uniform fashion
(the evaluation routines rank documents from these scores, not from ranks).
If you want the precise ranking that you submit to be evaluated, the scores
should reflect that ranking.

• the sixth column is called the "run tag" and should be a unique identifier
from within a participating group. It should also include a brief detail of the
method used. The run tags contained 12 or fewer letters and numbers, with
no punctuation.

174 A. Trotman and Q. Wang

• the seventh column gives the element path of the result node. Element paths
are given in XPath syntax. To be more precise, only fully specified paths are
allowed, as described by the following grammar:

Path ::= '/' ElementNode Path | '/' ElementNode | '/' AttributeNode
ElementNode ::= ElementName Index
AttributeNode ::= '@' AttributeName
Index ::= '[' integer ']'

For Example the path /article[1]/bdy[1]/sec[1]/p[1] identifies the element which

can be found if we start at the document root, select the first article element, then
within that, select the first body element, within which we select the first section
element, and finally within that element we select the first p element.

An example submission is:

1 Q0 9996 1 0.9999 I09UniXRun1 /article[1]/bdy[1]/sec[1]
1 Q0 9996 1 0.9999 I09UniXRun1 /article[1]/bdy[1]/sec[2]/p[1]
1 Q0 9888 1 0.9999 I09UniXRun1 /article[1]/bdy[1]/sec[3]
1 Q0 9997 2 0.9998 I09UniXRun1 /article[1]/bdy[1]/sec[2]
1 Q0 9989 3 0.9997 I09UniXRun1 /article[1]/bdy[1]/sec[3]/p[1]

Here there are three results. The first result contains the first section and first
paragraph of the second section from 9996.xml, and the third section from 9888.xml.
The second result only consists of the second section in 9997.xml, and the third result
consists of the first paragraph of the third section from 9989.xml.

5 Submitted Runs

Participants were permitted to submit up to 10 runs. Each run was permitted to
contain a maximum of 1000 results per topic, ordered by decreasing value of
relevance. Runs were permitted to use any fields of the topics, but only runs using
either the <title>, or <castitle>, or a combination of them were regarded as truly
automatic. The results of one run was contained in one submission file and so up to 10
files per group could be submitted.

In total 36 runs were submitted by 8 institutes. Those institutes were: Benemérita
Universidad Autónoma de Puebla, Indian Statistical Institute, Kasetsart University,
Peking University, Renmin University of China, Universidade Federal do Amazonas,
Universitat Pompeu Fabra, and the University of Otago. Only 29 runs were assessed
since other runs were submitted after the deadline. Of note is that more runs were
submitted than topics, and more institutes submitted runs than that submitted topics.
This suggests an increase in interest in the track throughout the year.

6 Assessment and Evaluation

Shlomo Geva ported the tool to work with the IMDb collection and in doing so
identified some problems with the document collection. The collection was,

 Overview of the INEX 2010 Data Centric Track 175

consequently, cleaned for use with the assessment tool. The new collection will most
likely be used in 2011, if the track continues.

Assessment was done by those groups that submitted runs. In total 26 of the 28
topics were assessed. Topics 2010003 and 20100013 were not assessed, all others
were. The evaluation results presented herein were computed using just the 26
assessed topics with the other 2 topics dropped from the runs.

Jaap Kamps used the (unmodified) INEX and TREC evaluation tools on the runs.
The TREC MAP metric was used to measure the performance of the runs at whole
document retrieval. The INEX thorough retrieval MAiP metric and the INEX
Relevant-in-Context MAgP T2I(300) metrics were used to measure Focused
Retrieval4. Although the run submission permitted the use of aggregated retrieval, it
has not yet become clear how to measure aggregation and so the track organisers
chose to fall-back to more traditional measures for 2010. Descriptions of the INEX
and TREC measures are not given herein as they are well known and described
elsewhere (see the ad hoc track overview paper pre-proceedings).

Fig. 2. Best runs measured with MAP

7 Results

The performance of the runs using the whole document based MAP metric are
presented in Fig. 2. The best run, SIGMACLOUD01 was submitted by Peking
University and performed substantially better than the next best run at all recall

4 See the ad hoc track overview paper (in this volume) for details on the metrics.

176 A. Trotman and Q. Wang

points. We note that this run used the description and narrative of the topic whereas
the other runs did not (formally it is not an INEX automatic run and must be
considered a manual run). The runs from Benemérita Universidad Autónoma de
Puebla used the castitle and all other runs used the title. That is, despite being data
centric, most runs did not use structure in ranking.

Fig. 3. Best runs measured with MAgP T2I(300)

Fig. 4. Best runs measured with MAiP

 Overview of the INEX 2010 Data Centric Track 177

From visual inspection, there is little difference between the next three runs. The
Otago run (that placed 3rd amongst the automatic runs) is a whole document run
generated from the title of the topic by using the BM25 ranking function trained on
the INEX 2009 document collection – it is equivalent to the ad hoc reference run. It
can be considered a baseline for performance.

When measured using the MAgP T2I(300) metric (see Fig. 3 the Otago reference-
like run performs best, however there is a cluster of 3 runs performing at about (from
visual inspection) the same level. When measured using MAiP (Fig. 4) the reference-
like run shows high early precision but quickly decreases. Of course, whole document
retrieval is not a good strategy for thorough retrieval because precisely 1 element is
returned per document. Those runs that exhibited overlap were not evaluated using
the MAgP metric.

8 Conclusions

The track has successfully produced a highly structured document collection
including structured documents (IMDb), structured queries, and assessments. The
participants of the track submitted runs and those runs were evaluated. Because most
runs did not use structured queries no claim can be made about the advantage of doing
so. This is expected to change in future years. The track was overly ambitions in
allowing result aggregation. No method of measuring the performance of aggregated
retrieval was developed for the track in 2010 and is left for future years.

Acknowledgements. Thanks are given to the participants who submitted the topics,
the run, and performed the assessment process. Special thanks go to Shlomo Geva for
porting the assessment tools, and to Jaap Kamps for performing the evaluation.
Finally, some of the contents of this paper was taken from the INEX web site which
was authored by many people – we thank each of those for their contribution to the
text in this paper. Qiuyue Wang is supported by the 863 High Tech. Project of China
under Grant No. 2009AA01Z149.

178 A. Trotman and Q. Wang

Appendix A: Movie DTD

<!ELEMENT movie (title, url, overview?, cast?, additional_details?, fun_stuff?)>
<!ATTLIST movie xmlns:xlink CDATA #FIXED "http://www.w3.org/1999/xlink">
<!ELEMENT title (#PCDATA)>
<!ELEMENT url (#PCDATA)>

<!ELEMENT overview (rating?, directors?, writers?, releasedates?, genres?, tagline?,
plot?, keywords?) >
<!ELEMENT rating (#PCDATA)>
<!ELEMENT directors (director+)>
<!ELEMENT director (#PCDATA)>
<!ELEMENT writers (writer+)>
<!ELEMENT writer (#PCDATA)>
<!ELEMENT releasedates (releasedate+)>
<!ELEMENT releasedate (#PCDATA)>
<!ELEMENT genres (genre+)>
<!ELEMENT genre (#PCDATA)>
<!ELEMENT tagline (#PCDATA)>
<!ELEMENT plot (#PCDATA)>
<!ELEMENT keywords (keyword+)>
<!ELEMENT keyword (#PCDATA)>

<!ELEMENT cast (actors?, composers?, editors?, cinematographers?, producers?,
production_designers?, costume_designers?, miscellaneous?)>
<!ELEMENT actors (actor+)>
<!ELEMENT actor (name, character?)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT character (#PCDATA)>
<!ELEMENT composers (composer+)>
<!ELEMENT composer (#PCDATA)>
<!ELEMENT editors (editor+)>
<!ELEMENT editor (#PCDATA)>
<!ELEMENT cinematographers (cinematographer+)>
<!ELEMENT cinematographer (#PCDATA)>
<!ELEMENT producers (producer+)>
<!ELEMENT producer (#PCDATA)>
<!ELEMENT production_designers (production_designer+)>
<!ELEMENT production_designer (#PCDATA)>
<!ELEMENT costume_designers (costume_designer+)>
<!ELEMENT costume_designer (#PCDATA)>
<!ELEMENT miscellaneous (person+)>
<!ELEMENT person (#PCDATA)>

<!ELEMENT additional_details
(aliases?,mpaa?,runtime?,countries?,languages?,colors?,certifications?,locations?,com
panies?,distributors?)>

 Overview of the INEX 2010 Data Centric Track 179

<!ELEMENT aliases (alias+)>
<!ELEMENT alias (#PCDATA)>
<!ELEMENT mpaa (#PCDATA)>
<!ELEMENT runtime (#PCDATA)>
<!ELEMENT countries (country+)>
<!ELEMENT country (#PCDATA)>
<!ELEMENT languages (language+)>
<!ELEMENT language (#PCDATA)>
<!ELEMENT colors (color+)>
<!ELEMENT color (#PCDATA)>
<!ELEMENT certifications (certification+)>
<!ELEMENT certification (#PCDATA)>
<!ELEMENT locations (location+)>
<!ELEMENT location (#PCDATA)>
<!ELEMENT companies (company+)>
<!ELEMENT company (#PCDATA)>
<!ELEMENT distributors (distributor+)>
<!ELEMENT distributor (#PCDATA)>

<!ELEMENT fun_stuff (trivias?,goofs?,quotes?,movielinks?)>
<!ELEMENT trivias (trivia+)>
<!ELEMENT trivia (#PCDATA)>
<!ELEMENT goofs (goof+)>
<!ELEMENT goof (#PCDATA)>
<!ELEMENT quotes (quote+)>
<!ELEMENT quote (#PCDATA)>
<!ELEMENT movielinks (movielink+)>
<!ELEMENT movielink (#PCDATA?, link, #PCDATA?)>
<!ELEMENT link (#PCDATA)>
<!ATTLIST link xlink:type CDATA #IMPLIED>
<!ATTLIST link xlink:href CDATA #IMPLIED>

180 A. Trotman and Q. Wang

Appendix B: Person DTD

<!ELEMENT person (name, overview?,filmography?, additional_details?)>
<!ELEMENT name (#PCDATA)>

<!ELEMENT overview (birth_name?, birth_date?, death_date?, height?, spouse*,
trademark*, biographies?, nicknames?, trivias?, personal_quotes?,
where_are_they_now?, alternate_names?, salaries?) >
<!ELEMENT birth_name (#PCDATA)>
<!ELEMENT birth_date (#PCDATA)>
<!ELEMENT death_date (#PCDATA)>
<!ELEMENT height (#PCDATA)>
<!ELEMENT spouse (#PCDATA)>
<!ELEMENT trademark (#PCDATA)>
<!ELEMENT biographies (biography+)>
<!ELEMENT biography (#PCDATA, by)>
<!ELEMENT by (#PCDATA)>
<!ELEMENT nicknames (name+)>
<!ELEMENT trivias (trivia+)>
<!ELEMENT trivia (#PCDATA)>
<!ELEMENT personal_quotes (quote+)>
<!ELEMENT quote (#PCDATA)>
<!ELEMENT where_are_they_now (where+)>
<!ELEMENT where (#PCDATA)>
<!ELEMENT alternate_names (name+)>
<!ELEMENT salaries (salary+)>
<!ELEMENT salary (#PCDATA)>

<!ELEMENT filmography (act?, direct?, write?, compose?, edit?, produce?,
production_design?, cinematograph?, costume_design?, miscellaneous?)>
<!ELEMENT act (movie+)>
<!ELEMENT direct (movie+)>
<!ELEMENT write (movie+)>
<!ELEMENT compose (movie+)>
<!ELEMENT edit (movie+)>
<!ELEMENT produce (movie+)>
<!ELEMENT production_design (movie+)>
<!ELEMENT cinematograph (movie+)>
<!ELEMENT costume_design (movie+)>
<!ELEMENT miscellaneous (movie+)>
<!ELEMENT movie (title, year, character?)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT year (#PCDATA)>
<!ELEMENT character (#PCDATA)>

<!ELEMENT additional_details (otherworks?, public_listings?)>
<!ELEMENT otherworks (otherwork+)>

 Overview of the INEX 2010 Data Centric Track 181

<!ELEMENT otherwork (#PCDATA)>
<!ELEMENT public_listings (interviews?, articles?, biography_prints?,
biographical_movies?, portrayed_ins?, magazine_cover_photos?, pictorials?)>
<!ELEMENT interviews (interview+)>
<!ELEMENT interview (#PCDATA)>
<!ELEMENT articles (article+)>
<!ELEMENT article (#PCDATA)>
<!ELEMENT biography_prints (print+)>
<!ELEMENT print (#PCDATA)>
<!ELEMENT biographical_movies (biographical_movie+)>
<!ELEMENT biographical_movie (#PCDATA)>
<!ELEMENT portrayed_ins (portrayed_in+)>
<!ELEMENT portrayed_in (#PCDATA)>
<!ELEMENT magazine_cover_photos (magazine+)>
<!ELEMENT magazine (#PCDATA)>
<!ELEMENT pictorials (pictorial+)>
<!ELEMENT pictorial (#PCDATA)>

DCU and ISI@INEX 2010: Adhoc and

Data-Centric Tracks

Debasis Ganguly1, Johannes Leveling1, Gareth J.F. Jones1

Sauparna Palchowdhury2, Sukomal Pal2, and Mandar Mitra2

1 CNGL, School of Computing, Dublin City University, Dublin, Ireland
2 CVPR Unit, Indian Statistical Institute, Kolkata, India

{dganguly,jleveling,gjones}@computing.dcu.ie,
sauparna.palchowdhury@gmail.com, {sukomal r,mandar}@isical.ac.in

Abstract. We describe the participation of Dublin City University
(DCU) and Indian Statistical Institute (ISI) in INEX 2010 for the Ad-
hoc and Data Centric tracks. The main contributions of this paper are:
i) a simplified version of Hierarchical Language Model (HLM), which in-
volves scoring XML elements with a combined probability of generating
the given query from itself and the top level articl node, is shown to out-
perform the baselines of LM and VSM scoring of XML elements; ii) the
Expectation Maximization (EM) feedback in LM is shown to be the most
effective on the domain specific collection of IMDB; iii) automated re-
moval of sentences indicating aspects of irrelevance from the narratives
of INEX ad hoc topics is shown to improve retrieval effectiveness.

1 Introduction

Traditional Information Retrieval systems return whole documents in response
to queries, but the challenge in XML retrieval is to return the most relevant parts
of XML documents which meet the given information need. Since INEX 2007 [1]
arbitrary passages are also permitted as retrievable units, besides XML elements.
A retrieved passage can be a sequence of textual content either from within an
element or spanning a range of elements. INEX 2010 saw the introduction of the
restricted versions of the “Focused” task which has been designed particularly
for displaying results on a mobile device with limited screen size. The Adhoc
track tasks comprises of the following tasks: a) the “Restricted Focused” task
which asks systems to return a ranked list of elements or passages to the user
restricted to at most 1000 characters per topic; b) the (un)restricted “Relevant
in Context” task which asks systems to return relevant elements or passages
grouped by article, a limit of at most 500 characters being imposed on the
restricted version; and c) the “Efficiency” task which expects systems to return
thorough article level runs. In addition, we participated in the new “Data Centric
track” which is similar to ad hoc retrieval of elements or passages on a domain
specific collection of IMDB movie pages. In INEX 2010 we submitted 9 ad hoc
focused runs, (3 for each Focused task) and 3 Thorough runs for the Ad Hoc
track. In addition we submitted 10 runs for the Data Centric task.

S. Geva et al. (Eds.): INEX 2010, LNCS 6932, pp. 182–193, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

DCU and ISI@INEX 2010: Adhoc and Data-Centric Tracks 183

The remainder of this paper is organized as follows: Section 2 elaborates on the
approaches to indexing and retrieval of whole documents followed by Section 3,
which describes the strategy for measuring the similarities of the individual
XML elements to the query. In Section 4 we propose a simplified version of
HLM for XML retrieval, which involves scoring an XML element with a linear
combination of the probability of generating the given query from itself and
its parent article. Using INEX 2009 topic set for training and 2010 topic set
for testing, we show that it outperforms the standard LM and VSM method of
scoring of XML elements. Section 5 explores the effectiveness of Blind Relevance
Feedback (BRF) on the domain specific collection of movie database. Section 6
describes the work of automatically identifying and removing negation from the
verbose ‘narrative’ sections of the INEX queries, and observing how retrieval
effectiveness improves. The entire topic (TDN) is treated as the query in this
experiment. Section 7 concludes the paper with directions for future work.

2 Document Retrieval

2.1 Preprocessing

Similar to INEX 2009, for extracting useful parts of documents, we shortlisted
about thirty tags that contain useful information: <p>, <p1>, <st>, <section>
etc. [2]. Documents were parsed using the libxml2 parser, and only the textual
portions included within the selected tags were used for indexing. Similarly, for
the topics, we considered only the title and description fields for indexing, and
discarded the inex-topic, castitle and narrative tags. No structural information
from either the queries or the documents was used.

The extracted portions of the documents were indexed using single terms
and a controlled vocabulary (or pre-defined set) of statistical phrases employ-
ing the SMART1 system. Words in the standard stop-word list included within
SMART were removed from both documents and queries. The default stemmer
implementation of SMART which is a variation of the Lovin’s stemmer [3] was
used. Frequently occurring word bi-grams (loosely referred to as phrases) were
also used as indexing units. We used the N-gram Statistics Package 2(NSP) on
the English Wikipedia text corpus and selected the 100,000 most frequent word
bi-grams as the list of candidate phrases.

2.2 Language Model (LM) Term Weighting

Our retrieval method is based on the Language Modeling approach proposed by
Hiemstra [4]. In this Subsection we summarize the Language Modeling method
to IR used by us for document retrieval. In LM based IR, a document d is ranked
by a linear combination of estimated probabilities P (q|d) of generating a query q
from the document d and P (ti) of generating the term from the collection. The

1 ftp://ftp.cs.cornell.edu/pub/smart/
2 http://www.d.umn.edu/∼tpederse/nsp.html

ftp://ftp.cs.cornell.edu/pub/smart/

184 D. Ganguly et al.

document is modelled to choose q = {t1, t2 . . . tn} as a sequence of independent
words as proposed by Hiemstra [4].

P (q|d) = P (d) log P (d)
n∏

i=1

λiP (ti|d) + (1 − λi)P (ti) (1)

log P (q|d) = log P (d) +
n∑

i=1

log(1 +
λi

1 − λi

P (ti|d)
P (ti)

) (2)

P (d) is the prior probability of relevance of a document d and it is typically
assumed that longer documents have higher probability of relevance. The term
weighting equation can be derived from Equation 1 by dividing it with (1 −
λi)P (ti) and taking logarithm on both sides to convert the product to summa-
tion. This trasnformation also ensures that the computed similarities between
documents and a given query are always positive. We index each query vector
q as qk = tf(tk) and each document vector d as dk = log(1 + P (tk|d)

P (tk)
λk

1−λk
), so

that the dot product d · q gives the likelihood of generating q from d and hence
can be used as the similarity score to rank the documents.

3 XML Element Retrieval

For the element-level retrieval, we adopted a 2-pass strategy. In the first pass,
we retrieved 1500 documents (since the thorough runs for INEX are required
to report at most 1500 documents per topic) for each query using the LM re-
trieval method as described in the previous section 2.2. In the second pass, these
documents were parsed using the libxml2 parser, and leaf nodes having textual
content were identified. The total set of such leaf-level textual elements obtained
from the 1500 top-ranked documents were then indexed and compared to the
query as before to obtain the final list of 1500 retrieved elements. The preprocess-
ing steps are similar to those as described in Section 2.1. The following section
provides the details of our proposed method of scoring XML elements.

3.1 Simplified Hierarchical Language Model

Motivation. The objective of the focused task is to retrieve short relevant
chunks of information. Scoring an XML element by its similarity with the query
may retrieve short XML elements such as a small paragraph or sub-sections with
a dense distribution of query terms in the top ranks. But there is an implicit
risk associated with the retrieval of short high scoring elements namely that
the text described in the short element might be a digression from the main
topic of the parent article. Thus it is unlikely that the retrieved text from the
XML element would serve any useful purpose to the searcher because it would
not have the necessary context information to do so. As an example consider
the artificial paragraph of text as shown in Fig. 1. Now let us imagine that
a searcher’s query is “top-10 IMDB movies actors”. Let us also imagine that
this paper has been converted into an XML formatted document and put into

DCU and ISI@INEX 2010: Adhoc and Data-Centric Tracks 185

We crawled the IMDB movie collection and categorized the

crawled IMDB data into categories such as movies , actors etc.

Movie reviews and ratings were also stored.

Fig. 1. An artificial paragraph of text to illustrate the implicit risk of out-of-context
retrieval with response to a query “top-10 IMDB movies actors”

the INEX document collection. The contents of the above paragraph thus could
be retrieved at a top rank because of its high similarity due to the presence
of three matching query terms as highlighted with boxes. But the searcher was
certainly not looking for a technical paragraph on indexing the IMDB collection.
This shows that the retrieval model for XML elements needs to be extended to
take into consideration the distribution of query terms in the parent articles in
addition to the element itself. If the query terms are too sparse in the parent
article, then it is more likely that the XML element itself is an out-of-context
paragraph e.g. the highlighted words in Fig. 1 are very sparsely distributed
throughout the rest of this documentm, which suggests that the shown artificial
paragraph is not a good candidate for retrieval.

It is also desirable to retrieve an element with a few query terms if the other
missing terms are abundant in the article. This is particularly helpful for assign-
ing high scores to elements (sections or paragraphs) which densely discusses a
single sub-topic (the sub-topic typically being one specific facet of the user in-
formation need) whereas the rest of the article throws light on the other general
facets hence providing the necessary context for the specific subtopic.

The Scoring Function. An extension of LM for Field Search named Field
Language Model (FLM) was proposed by Hiemstra [4] which involves scoring a
document according to the probability of generation of the query terms either
from the document itself as a whole, or from a particular field of it (e.g title) or
from the collection. We propose to assign a score to the constituent element itself
from the parent article evidence thus differing from FLM in the directionality of
assignment of the scores. We use Equation 3 to score an XML element e.

P (q|e) = log P (d)
n∏

i=1

μiP (ti|e) + λiP (ti|d) + (1 − λi − μi)P (ti) (3)

The parameter λi denotes the probability of choosing ti from the parent article
of the element e, whereas μi denotes the probability of choosing ti from the
element text. The residual event involves choosing ti from the collection. Thus
even if a query term ti is not present in the element a non zero probability of
generation is contributed to the product. Two levels of smoothing are employed
in this case.

Ogilvie and Callan developed the general HLM which involves two way prop-
agation of the LM element scores from the root to the individual leaf nodes
and vice-versa [6]. Our model is much simpler in the sense that we use only

186 D. Ganguly et al.

the current node and the top level article node for the score computation. We
call this method Simplified Hierarchical Language Model (SHLM) because we
restrict our smoothing choice to the root article element only in addition to the
collection. The SHLM equation can be further simplified by using λi = λ∧μi = μ
∀i = 1 . . . n. It can be seen that Equation 3 addresses the motivational require-
ments as described in the previous section in the following ways:

a) An element e1 which has a query term t only in itself but not anywhere
else in the top level article, scores lower than an element e2 which has the
term present both in itself and somewhere else in the article. Thus the model
favours elements with some pre-defined contextual information about the
query terms over individual snippets of information which do not have any
associated context.

b) An element with a few of the given query terms might is retrieved at a high
rank if the missing terms are abundant in the article.

The experimental evaluations of SHLM for adhoc XML retrieval are provided in
Section 4.2.

4 Adhoc Track Experiments and Results

4.1 Thorough Task

We trained our system using the INEX 2009 topic set. All the initial article
level runs were performed using LM retrieved as described in Equation 1. We
assign λi = λ ∀i = 1 . . . n and also assigned uniform prior probabilities to
the documents. After a series of experiments by varying λ we found that best
retrieval results are obtained with λ = 0.4 and henceforth we this setting for all
the article level LM runs reported in the paper. We officially submitted three
article level runs containing 15, 150 and 1500 documents as thorough runs. On
getting unexpectedly low retrieval precision, we conducted a posthoc analysis
after the INEX results were officially out. We found that there was a bug in
our retrieval control-flow where we used inverted lists constituted from the raw
document vectors instead of the LM weighted ones. The results for the thorough
runs, along with post-submission corrected versions are shown in Table 1.

Table 1. Official evaluation of the thorough runs

Run Id # docs retrieved Submitted Corrected

MAP MAiP MAP MAiP

ISI2010 thorough.1500 1500 0.0431 0.0846 0.1539 0.1750
ISI2010 thorough.150 150 0.0309 0.0826 0.1185 0.1421
ISI2010 thorough.15 15 0.0110 0.0714 0.0647 0.0930

DCU and ISI@INEX 2010: Adhoc and Data-Centric Tracks 187

4.2 Focused Task

We submitted 3 element level runs for the restricted focused task. The first two
subsections report the training of SHLM on the INEX 2009 topics and the last
section reports the official submissions under the restricted focused task.

Tuning SHLM. To test the effectiveness of SHLM (as outlined in Section 3.1)
for element retrieval, we run SHLM with different combinations of λ and μ
(simplifying Equation 3 by employing λi = λ ∧ μi = μ ∀i = 1 . . . n) on the
INEX 2009 training topics. A revisit of Equation 3 suggests that a higher value
of μ as compared to λ attaches too much importance on the presence of the
query terms. While this might be good for queries with highly correlated terms,
typically user queries are faceted, each term representing one such facet. It is
highly unlikely that a single section or paragraph would cover all the facets.
The more likely situation is that a small paragraph would cover one facet of the
user’s information need whereas the other facets are covered somewhere else in
the document. Our hypothesis is that a value of μ lower than λ ensures that we
lay emphasis on not retrieving out-of-context small elements and we do expect
better retrieval performance for the setting μ < λ.

Another critical issue to explore in the model of Equation 3 is the issue of
assigning prior probabilities to the elements. Singhal [7] analyzes the likelihood
of relevance against the length of TREC documents and reports that longer
documents have a higher probability of relevance. While this scheme of assigning
document prior probabilities proportional to their lengths suits the traditional
adhoc retrieval of documents (the retrieval units being whole documents) from
the news genre, for a more flexible retrieval scenario such as the Restricted
Focused INEX task where retrieval units can be arbitrary passages and shorter
passages are favoured over longer ones, it might be worth trying to assign prior
probabilities to elements inversely proportional to their lengths.

SHLM Results. As baseline we use standard LM scoring of the elements which
is a special case of SHLM obtained by setting λ = 0. To verify our hypothesis
that λ should be higher than μ, we ran two versions of SHLM one with λ < μ
and the other μ > λ. Table 2 reports the measured retrieval effectiveness of the
different cases and also shows the effect on precision for the three different modes
of element priors - i) uniform, ii) proportional and iii) inversely proportional
for the case μ < λ. Table 2 provides empirical evidence to the hypothesis that
elements when scored with contextual information from their parent article yield
better retrieval results. The first row of the table reports the case where elements
are LM weighted without any parent article information. It can be seen that the
first row yields the least iP [0.01] value. The table also justifies the hypothesis of
assigning μ < λ since iP [0.01] of the third and fifth rows are higher than that
of the second row.

Official Results. The “Restricted Focused” task required systems to return a
ranked list of elements or passages restricted to at most 1000 characters per topic.

188 D. Ganguly et al.

Table 2. SHLM for element retrieval for INEX 2009 topics

λ μ Element Prior Retrieval Effectiveness

probability iP[0.01] iP[0.05] iP[0.10] MAiP

0.0 0.15 Uniform 0.2639 0.1863 0.1335 0.0448
0.15 0.25 Uniform 0.4082 0.2648 0.1894 0.0566
0.25 0.15 Uniform 0.5256 0.3595 0.2700 0.0991
0.25 0.15 Shorter favored 0.3459 0.1682 0.0901 0.0314
0.25 0.15 Longer favored 0.4424 0.3582 0.2787 0.1064

The evaluation metric used was P@500 characters. Since this metric favours
retrieval runs with a high precision at low recall levels (recall is expected to be
low when only 1000 characters are retrieved), we use the settings as reported in
the third row of Table 2 i.e. with the settings (λ, μ) = (0.25, 0.15) with uniform
element prior probability. We perform SHLM element retrieval on i) our best
performing LM retrieved article level run (λ = 0.4) and ii) reference BM25 run
provided by the INEX organizers. To show that SHLM performs better than the
pivoted length normalized scoring which was our element level retrieval strategy
for INEX 2009 [2], we also submitted a run scoring the elements by Equation 4.

normalization = 1 +
slope

(1 − slope)
· #unique terms

pivot
(4)

Table 3 shows that the corrected SHLM based element retrieval on the reference
run yields the highest character-precision among our runs. We also see that the
best character precision we achieved ranks third considering the list of official
submissions (after LIP6-OWPCparentFo and DURF10SIXF).

SHLM clearly outperforms pivoted normalized element retrieval on the same
document level run showing that given the same document level run, it is more
effective than VSM based element retrieval. Table 3 also shows that SHLM
outputs a better element level run for a better input article run as evident from

Table 3. Official evaluation of the Focused runs

Run Id Methodology P@500 chars
submitted corrected

ISI2010 rfcs ref SHLM element retrieval on article
level reference run

0.2451 0.3755

ISI2010 rfcs flm SHLM element retrieval (μ < λ
and uniform prior of the elements)
on article level LM run

0.2151 0.2841

ISI2010 rfcs vsm Pivoted normalized element re-
trieval on article level LM run

0.1289 0.2343

LIP6-OWPCparentFo (Best run) 0.4125

DCU and ISI@INEX 2010: Adhoc and Data-Centric Tracks 189

the first and second rows (MAP of the reference run is higher than our LM based
article run).

5 Data Centric Track Experiments and Results

We indexed the IMDB collection using SMART in a similar way as outlined in
Section 2, the only difference being we did not use pre-extracted list of commonly
occuring bigrams for constructing the phrase index. Our Data Centric official
submissions also suffered from the same bug as had been the case with our Adhoc
submissions. In this section we report a set of refined results after carrying out
experiments with a corrected version.

Our approach in this track comprises of exploring the standard IR techniques
on a domain specific collection like the movie database. Our initial experiments
show that we get the optimal baseline MAP by using λ = 0.6. While performing
feedback experiments we found that a selection of query expansion terms by
the LM score [8] results in worse retrieval performance. Fig. 2a shows the effect
of query expansion with different settings for R (the number of pseudo-relevant
documents used) and t (the number of terms used for query expansion) on MAP.
We implemented the EM feedback in SMART as proposed by Hiemstra [4] where
each λi, associated with the query term ti, is modified aiming to maximize the
expectation of the LM term generation probability from the top ranked pseudo-
relevant documents as shown in Equation 5.

λp+1
i =

1
R

R∑
j=1

λp
i P (ti|Dj)

λ
(p)
i P (ti|Dj) + (1 − λ

(p)
i)P (ti)

(5)

We use only one iteration of the feedback step i.e. we calculate λ1
i s from the

initial λ0
i = λ for each i. We also tried out applying EM to an expanded query

with additional terms but we found out that it did not improve the MAP. The
results as shown in Figure 2b reveal that EM performs better than the LM term
based expansion as shown in Figure 2a. While doing a per-topic analysis of the
document retrieval for the IMDB collection, we made the following interesting
observation. Query 2010015 reads “May the force be with you” of which all are
stopwords except the word force. As a result the obtained MAP for this query
is 0. Interestingly, when the IMDB search is fed with the same query, it also
returns documents with the term force in it but not with all the other words
present which suggests that IMDB retrieval is also non-phrase based.

A characteristic of the IMDB collection is that the documents are grouped
into categories such as movies, actors etc. To find if relevance is biased towrads
one of the categories, we computed the percentage of relevant documents in each
of the categories from the article level manual assessments. We also computed
the percentage of retrieved documents in each of category. Fig. 3 shows that
relevance is heavily biased to the movie documents suggesting that the searchers
mostly seek movie pages in response to a submitted query. For the retrieved
set we find that movie pages are retrieved highest in number followed by actor
pages and so on. The relative ranks of the number of hits for the relevant and

190 D. Ganguly et al.

0.16
0.18
0.20
0.22
0.24
0.26
0.28
0.30
0.32
0.34

 5 10 15 20 25 30

M
A

P

t

R=5
R=10
R=15
R=20

No fdbk.

(a) LM score based query expansion

0.16
0.18
0.20
0.22
0.24
0.26
0.28
0.30
0.32
0.34

 5 10 15 20 25 30

M
A

P

R

EM fdbk.
No fdbk.

(b) EM

Fig. 2. Feedback effects on the IMDB collection

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

M
ovies

Directors

Producers

Actors

Other

Relevant
Retrieved

Fig. 3. Percentage of relevant and retrieved
documents in the different categories

retrieved categories are almost
the same with an exception for the
categories of producers and direc-
tors where producer pages have
the least number of hits in the rel-
evant set whereas this category is
not with least number of hits for
the retrieved set. Although rela-
tive ranks are similar, there is a
noticeable difference in the per-
centages between the two sets, es-
pecially in the categories movies
and actors which suggests that
adjusting the prior relevance P (d)
(Equation 1) not according to the length of a document but according to its cat-
egory could be a way to improve on the retrieval effectiveness. This would help
to reduce the percentage gaps in the relevant and retrieved sets.

6 Using Negative Information Present in Verbose Queries

Motivation. It is easier for a user to formulate a complex information need
in natural language rather than using terse keyword queries. The INEX topics
have a detailed narrative (N) section that reinforces the information expressed
in the title (T) and description (D) fields. Notably, in the narrative section, the
topic creator specifies what he is not looking for.

One such INEX query is shown in Table 4. The emphasized sentence of N is the
negative information. To support our claim that such negative information can
introduce a query drift towards non-relevant documents, we report a comparison
of retrieval results, using queries processed using manual and automatic methods.
Results show that the modified queries, with negation removed, yield higher
retrieval effectiveness.

DCU and ISI@INEX 2010: Adhoc and Data-Centric Tracks 191

Table 4. INEX 2009 Topic No. 80 with negative information

<topic id=“2009080” ct no=“268”>
<title>international game show formats</title>
<description>I want to know about all the game show formats that have adaptations
in different countries.</description>
<narrative> Any content describing game show formats with international adapta-
tions are relevant. National game shows and articles about the players and producers
are not interesting.
</narrative>
<topic>

Table 5. Classifier performance

Test set Training set # of training sentences Accuracy

2008 2007 589 90.4%
2009 2008 679 89.1%
2010 2009 516 93.8%

Approach. Our unmodified set of queries is Q. From Q we create two new
sets. The first one, P , consists of only those queries in Q which have negation,
and, with these negative sentences or phrases removed. (P , stands for ‘positive’
in the context of this experiment). The second set, PM (‘positive’, ‘machine’-
processed set), is similar, but negation was now automatically identified using
a Maximum Entropy Classifier (Stanford Classifier) 3, and removed. In Table 6
the cardinalities of P and PM differ because the classifier does not identify all
the negative phrases and sentences with full accuracy. Some queries in Q, which
have negation, and can be found in P , may not make it to PM . We did retrieval
runs using Q, P and PM and noted the change in MAP (Refer to [9] for more
deatils). The classifier performed well with accuracies around 90% (Table 5).

Retrieval Results. We used the SMART retrieval system to index the docu-
ment collection using pivoted document length normalized VSM (Equation 4),
and the initial retrieval run was followed by a BRF run employing Rocchio feed-
back. For feedback we used the most frequent 20 terms and 5 phrases occurring
in the top 20 pseudo-relevant documents setting (α, β, γ) = (4, 4, 2). Table 6 that
the positive sets show an improvement in all cases.

Of particular interest is the PM results; the P results are included only to
refer to the maximum relative gain in performance that is achievable. Although,
as expected, the relative gains for the PM set is lower as compared to the P set,
the differences between the two relative gains are not too big, which shows that
the automated process does well.

The Wilcoxon test verifies that the differences in the relative gains of Q and
P are statistically significant, corroborating the fact that removal of negation
3 http://nlp.stanford.edu/software/classifier.shtml

http://nlp.stanford.edu/software/classifier.shtml

192 D. Ganguly et al.

Table 6. Comparison of performance of the manually processed (P) and automatically
processed (PM) positive query sets

Topic Manually processed Automatically processed

Set |P| MAPQ MAPP change |PM| MAPQ MAPPM change

INEX 2008 44 0.2706 0.2818 4.1% 31 0.2638 0.2748 4.2%
INEX 2009 36 0.2424 0.2561 5.7% 30 0.2573 0.2581 0.3%
INEX 2010 26 0.3025 0.3204 6.0% 20 0.2922 0.2983 2.1%

Table 7. MAP values for retrieval using increasing query size

INEX year T TD Δ (%) TDN Δ′ (%) trend (Δ, Δ′ ≥ 5%)

2008 0.2756 0.2815 2.14 0.2998 8.78 − ↑
2009 0.2613 0.2612 -0.03 0.2547 -2.52 − −
2010 0.2408 0.2406 -0.08 0.2641 9.67 − ↑

improves performance. Also, a test of significance between P and PM shows that
their difference is statistically insignificant showing that the automated process
is as good as the manual one.

One must note that our baseline comprises retrieval runs over the set Q where
the queries are of maximum length. The queries in P and PM , are shorter. It is
expected that the retrieval effectiveness will improve with an increase in query
size for the bag-of-words approach. We needed this to be empirically verified to
rule out the possibility of an improvement in the retrieval effectiveness due to
query length shortening.

Three retrieval runs were done using T, TD and TDN. The results shown
in Table 7 shows that there is a positive correlation between the MAP and
query length. This eliminates the possibility of an improvement in MAP due to
a negative correlation between query length and MAP for INEX topics. We also
observe that the results for the 2009 set degrades across T, TD and TDN.

7 Conclusions and Future Work

Through our participation in the adhoc track of INEX 2010, we wanted to explore
an extension of LM for IR which we call SHLM as a new element retrieval
strategy. Trial experiments on INEX 2009 topics show that it outperforms the
baseline LM element retrieval of the elements. Official restricted focused runs
show that SHLM element retrieval outperforms the pivoted normalized VSM
element retrieval. Also our corrected official focused runs ranks third among the
submitted runs. The concept of SHLM can be extended to arbitrary passages by
defining a series of fixed length window-subwindow structures.

For the data-centric track, we have shown that LM retrieval works well on
a domain specific collection such as the movie database. We also show that
query expansion using terms selected by LM scores do not improve retrieval

DCU and ISI@INEX 2010: Adhoc and Data-Centric Tracks 193

effectiveness whereas the EM feedback does well on this collection. We report a
bias of relevance towards the movie and actor categories which suggests a possible
future work of assigning higher prior probabilities of relevance for documents in
these categories to help improve MAP.

Using the ad hoc track topics, we show that it is possible to automate the
process of removing negative sentences and phrases and this improves retrieval
effectiveness. Future work may involve detection of sub-sentence level negation
patterns and handling complex negation phrases so as to prevent loss of key-
words.

Acknowledgments. This research is supported by the Science Foundation
Ireland (Grant 07/CE/I1142) as part of the Centre for Next Generation
Localisation (CNGL) project.

References

1. Kamps, J., Geva, S., Trotman, A., Woodley, A., Koolen, M.: Overview of the INEX
2008 ad hoc track. In: Geva, S., Kamps, J., Trotman, A. (eds.) INEX 2008. LNCS,
vol. 5631, pp. 1–28. Springer, Heidelberg (2009)

2. Pal, S., Mitra, M., Ganguly, D.: Parameter tuning in pivoted normalization for XML
retrieval: ISI@INEX09 adhoc focused task. In: Geva, S., Kamps, J., Trotman, A.
(eds.) INEX 2009. LNCS, vol. 6203, pp. 112–121. Springer, Heidelberg (2010)

3. Lovins, J.B.: Development of a stemming algorithm. Mechanical Translation and
Computational Linguistics 11, 22–31 (1968)

4. Hiemstra, D.: Using language models for information retrieval. PhD thesis, Univer-
sity of Twente (2001)

5. Sigurbjrnsson, B., Kamps, J., de Rijke, M.: An element-based approach to xml
retrieval. In: INEX 2003 Workshop Proceedings (2004)

6. Ogilvie, P., Callan, J.: Hierarchical language models for XML component retrieval.
In: Fuhr, N., Lalmas, M., Malik, S., Szlávik, Z. (eds.) INEX 2004. LNCS, vol. 3493,
pp. 224–237. Springer, Heidelberg (2005)

7. Singhal, A.: Term Weighting Revisited. PhD thesis, Cornell University (1996)
8. Ponte, J.M.: A language modeling approach to information retrieval. PhD thesis,

University of Massachusetts (1998)
9. Palchowdhury, S., Pal, S., Mitra, M.: Using negative information in search. In: Proc.

2011 Second International Conference on Emerging Applications of Information
Technology (EAIT 2011), pp. 53–56 (2011)

Automatically Generating Structured Queries in XML
Keyword Search

Felipe da C. Hummel1, Altigran S. da Silva1,
Mirella M. Moro2, and Alberto H.F. Laender2

1 Departamento de Ciência da Computação
Universidade Federal do Amazonas

Manaus, Brazil
{fch,alti}@dcc.ufam.edu.br

2 Departamento de Ciência da Computação
Universidade Federal de Minas Gerais

Belo Horizonte, Brazil
{mirella,laender}@dcc.ufmg.br

Abstract. In this paper, we present a novel method for automatically deriving
structured XML queries from keyword-based queries and show how it was ap-
plied to the experimental tasks proposed for the INEX 2010 data-centric track.
In our method, called StruX, users specify a schema-independent unstructured
keyword-based query and it automatically generates a top-k ranking of schema-
aware queries based on a target XML database. Then, one of the top ranked
structured queries can be selected, automatically or by a user, to be executed
by an XML query engine. The generated structured queries are XPath expres-
sions consisting of an entity path (e.g., dblp/article) and predicates (e.g.,
/dblp/article[author="john" and title="xml"]). We use the
concept of entity, commonly adopted in the XML keyword search literature, to
define suitable root nodes for the query results. Also, StruX uses IR techniques
to determine in which elements a term is more likely to occur.

Keywords: XML, Keyword Search, XPath, Entities.

1 Introduction

Specifying queries through keywords is currently very common. Specially in the con-
text of search engines on the World Wide Web, users with different levels of computer
skills are familiar with keyword-based search. As a consequence, such a concept has
been exploited outside the scope of the Web. For example, in relational databases, sev-
eral methods [2, 10, 1, 8, 3, 21] have been proposed. Considering the vast number of ap-
plications that use such databases, it is clear why there is so much interest in adopting
such an approach to develop more intuitive interfaces for querying in this environment.

Likewise, recently, there has been an increasing interest in the field of keyword-based
search over XML documents, given the growth and consolidation of such a standard.
Many techniques employ the concept of Lowest Common Ancestor (LCA) [7] with
variations to specific requirements, including Meaningful LCA (MLCA) [17], Smallest

S. Geva et al. (Eds.): INEX 2010, LNCS 6932, pp. 194–205, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Automatically Generating Structured Queries in XML Keyword Search 195

LCA (SLCA) [24], Valuable LCA (VLCA) [14], XSeek [18] and Multiway-SLCA [23].
Another structure-related concept, Minimum Connecting Trees [9], has led to a different
approach to the problem. All of these methods aim at finding, inside the XML docu-
ment, subtrees in which each query term occurs at least once in one of its leafs, and then
return the root node of the subtrees as a query result. Specifically, LCA-based methods
make restrictions on the choice of the root node. Notice that, for one-term queries, such
methods tend to return a single-element subtree, a query result not desired in general.

Furthermore, after an initial indexing phase, they disregard the source XML docu-
ment, as any query will be answered considering its own indexes only. This behavior
may not be suitable in a dynamic environment in which data is frequently updated
or when XML data is stored in a DBMS. Considering such an environment, it be-
comes relevant to develop XML keyword search methods that can easily cope with
data stored and managed by a DBMS. For instance, as current XML-aware DBMS can
perform XQuery and XPath queries in an efficient way, one could use that to abstract the
frequent updates and storage of XML data.

This paper presents a novel method for keyword search over XML data based on a
fresh perspective. Specifically, our method, called StruX1, combines the intuitiveness
of keyword-based queries with the expressiveness of XML query languages (such as
XPath). Given a user keyword query, StruXis able to construct a set of XPath expres-
sions that maps all possible interpretations of the user intention to a corresponding
structured query. Furthermore, it assigns each XPath expression a score that measures
its likelihood of representing the most appropriate interpretation of the user query. Then,
a system can submit one or more of such queries to a DBMS and retrieve the results.
Like in [21], the process of automatically transforming an unstructured keyword-based
query into a ranked set of XPath queries is called query structuring.

This paper is organized as follows. Section 2 summarizes related work. Section 3
presents an overview of background concepts and introduces StruX. Section 4 describes
how StruX was applied to the experimental tasks proposed in INEX 2010 data-centric
track. Section 5 discusses the experimental results, and Section 6 concludes the paper.

2 Related Work

The basic principle behind StruX is similar to LABRADOR [21], which efficiently
publishes relational databases on the Web by using a simple text box query interface.
Other similar systems for searching over relational data include SUITS [6] and SPARKS
[19]. Our proposal is different from those for two reasons: it works for a different type
of data (XML instead of relational) and does not need any interaction with the user after
she has specified a set of keywords. Thus, this section focuses on XML keyword search.

Using keywords to query XML databases has been extensively studied. Current work
tackles keyword-based query processing by modeling XML documents as labeled trees,
considers that the desired answer is a meaningful part of the XML document and re-
trieves nodes of the XML graph that contain the query terms. In [11] and [24] the au-
thors suggest that trees of smaller size bear higher importance. Following such an idea,

1 The name StruX is derived from the latin verb form struxi, which means to structure or build
things.

196 F. da C. Hummel et al.

Algorithm 1. StruX Processing
1: procedure StruX(Input: unstructured query U , schema tree T)
2: segs ← GenerateSegments(U)
3: combs ← GenerateCombinations(segs)
4: for each combination c in combs do
5: cands ← GenerateCandidates(c)
6: for each candidate d in cands do
7: rank ← CalculateScores(d, S.root)
8: localRank.add(rank) � sorted add

9: globalRank.add(localRank) � sorted add

10: for i from 1 to k do
11: topK ranks ← GenerateXPath(globalRank[i])

12: StructuredQuery ← topK xpaths[0] � the top query

XSEarch [5] adopts an intuitive concept of meaningfully related sets of nodes based on
the relationship of the nodes with its ancestors on the graph. XSEarch also extends the
pure keyword-based search approach by allowing the user to specify labels (element
tags) and keyword-labels in the query. In a similar direction, XRANK [7] employs an
adaptation of Google’s PageRank [22] to XML documents for computing a ranking
score for the answer trees. A distinct approach is XSeek [18], in which query process-
ing relies on the notion of entities inferred from DTDs. StruX shares a similar view with
XSeek in this regard, but the latter does not generate queries.

In [12], the authors propose the concept of mapping probability, which captures the
likelihood of mapping keywords from a query to a related XML element. This mapping
probability serves as weight to combine language models learned from each element.
Such method does not generate structured queries, as StruXdoes. Instead, it uses the
structural knowledge to refine a retrieval model.

There are also other methods that go beyond simple keyword-based search. NaLIX
[16] is a natural language system for querying XML in which the queries are adjusted
by interacting with the user until they can be parsed by the system. Then, it generates
an XQuery expression by using Schema-Free XQuery [17], which is an XQuery exten-
sion that provides support for unstructured or partially unstructured queries. Another
approach, called EASE, considers keyword search over unstructured, semi-structured
and structured data [15]. Specifically, EASE builds a schema graph with data graph
indexes. It also provides a novel ranking algorithm for improving the search results. Fi-
nally, LCARANK [4] combines both SLCA and XRank for keyword-based search over
XML streams. Although these approaches work on XML keyword-based queries, their
goals are slightly different from our work, since they consider broader perspectives (i.e.,
natural language, graph-oriented data and XML streams).

3 StruX

This section presents StruX, our method for generating structured XML queries from
an unstructured keyword-based query. First, it gives an overview of StruX and then it
details each of its steps.

Automatically Generating Structured Queries in XML Keyword Search 197

,
,

,

,

,
,

Fig. 1. Example of StruX steps

3.1 Overview

Algorithm 1 describes StruX general steps. Next, we describe each step using an ex-
ample shown in Fig. 1. Given an unstructured keyword-based query as input (Fig. 1a),
StruX first splits the input sequence of keywords into segments (Fig. 1b) and then gener-
ates combinations of these segments (Fig. 1c) to obtain possible semantic interpretations
of the input unstructured query. This process assumes that each keyword-based query is
an unstructured query U composed of a sequence of n terms, i.e., U = {t1, t2, ..., tn}.
This assumption is based on the intuition that the user provides keywords in a certain
order. For example, a keyword query “John Clark Greg Austin” is probably intended to
represent the interest in two persons named “John Clark” and “Greg Austin”, respec-
tively. But we cannot say the same for the query “John Austin Greg Clark”. Although
both queries have the same terms, the order in which they are specified may be used
to describe a different intention. Also, this intuition helps StruX dealing with possible
ambiguous keywords.

The next step labels segment combinations with element names from the target XML
database, forming sets of element-segment pairs (Fig. 1d), or candidate predicates.
Once these candidate predicates have been formed, StruX finds adequate entities for
each candidate (Fig. 1e). In fact, StruX relies on the concept of entity [18, 20] in order
to intuitively represent real-world objects. For this task, it uses a few simple heuristics.

For instance, consider an element y that has multiple sub-elements x, then y is con-
sidered an entity. This can be observed by looking at the document schema (or by
traversing the actual document) and verifying that x can occur multiple times within
an instance of element y. For example, considering the DTD specification of author
as “<!ELEMENT author (book*, curriculum)>”, book is a possible entity,
while curriculum, according to this heuristic, is not.

In addition, we extend the concept of entity by adding another constraint that avoids
very specific queries: an element x must have at least one direct descendant to be

198 F. da C. Hummel et al.

considered an entity. For example, if book is defined as an element with two sub-
elements like “<!ELEMENT book (title, pages)>”, then it is an entity.

StruX identifies the elements in which the keywords are more likely to occur. It then
computes scores for candidate structured queries. Such scores are needed to determine
which XML query represents more accurately the user’s intention. Finally, one or more
top ranked structured queries are evaluated, returning the results to the users.

The final result of StruX is a query expressed in XPath2, which specifies patterns
of selection predicates on multiple elements that have some specified tree structure re-
lationship. Hence, XML queries are usually formed by (tree) path expressions. Those
expressions define a series of XML elements (labels) in which every two elements are
related to each other (for example, through a parent-child relationship). Although other
methods consider recursive schemas, we do not, since this kind of schema is not com-
monly found on the Web [13]. Also, notice that, in this paper, elements are always
identified by their complete path to the document root, not only by their tag label.

3.2 Input Transformation

The first step executed by StruX (Algorithm 1, line 2) splits the input sequence of key-
words into segments that represent possible interpretations of the query. A segment
is a subsequence Sij of terms from an unstructured query U, where Sij contains the
keywords from i to j. For example, considering the query U in Fig. 1a, the generated
segments are shown in Fig. 1b. Notice that, following the intuition discussed in Sec-
tion 3.1, we assume that users tend to specify related keywords in sequence. This in-
tuition is captured by the segments. Therefore, sets of tokens that are not in sequence
such as “John” and “XML” are not considered.

For each segment Sij , StruX retrieves all elements in which all segment keywords
appear at least once within a single leaf node. Segments that retrieve no elements are
called not viable and are discarded from the structuring process. For example, the seg-
ment S23 =“Smith XML” would be considered not viable if the database includes
no leaf having both “Smith” and “XML”. In order to evaluate the likelihood of a seg-
ment Sij occurring within an element n, StruX uses a function called Segment-Element
Affinity (SEA), which is defined by Equation 1:

SEA(n, Sij) =
j∑

k=i

TF-IEF(n, tk), (1)

where, TF-IEF(n, tk) measures the relevance of a keyword tk for an element type n
in the XML database. Such a function is similar to TF-IAF [21], which defines the
relevance of a keyword with respect to the values of an attribute in a relational ta-
ble. Nonetheless, StruX adapts the concept of “relational attributes” to “XML element
type”. This new measure is defined by Equation 2:

TF-IEF(n, tk) = TF (n, tk) × IEF (tk), (2)

where each frequency is calculated by Equations 3 and 4, respectively.

2 http://www.w3.org/TR/xpath.html

Automatically Generating Structured Queries in XML Keyword Search 199

TF (n, tk) =
log(1 + fnk)
log(1 + m)

(3) IEF (tk) = log

(
1 +

e

ek

)
(4)

where fnk is the number of occurrences of keyword tk as element type n, m is the total
number of distinct terms that occur in n, e gives the total number of distinct element
types in the XML document, and ek is the total number of element types in which the
term k occurs.

Equation 1 evaluates every segment no matter its number of keywords. Note that
a segment with two (or more) keywords is intuitively more selective than a segment
with a single keyword. For example, S13 (from Fig. 1b) is more selective than segments
S11, S22 and S33. Hence, we consider such heuristic and propose an advanced version
for function SEA in Equation 5, called Weighted SEA (WSEA), in which the number of
keywords is used to favor more selective segments.

WSEA(n, Sij) = (1 + j − i) ×
j∑

k=i

TF-IEF(n, tk) (5)

For representing all possible semantic interpretations of an unstructured query, StruX
defines all possible combinations for a set of segments (Algorithm 1, line 3). Moreover,
given a combination Ci, a keyword can belong to only one segment. For example, Fig.
1c illustrates some of the combinations for the segments in Fig. 1b.

For each segment combination Ci, StruX generates all possible sets of element-
segment pairs (Algorithm 1, line 5). For example, using combination C5 = {“John
Smith”, “XML”}, StruX obtains the sets of element-segment pairs illustrated in Fig.
1d, in which each set of pairs Di is called a candidate predicate, or simply candidate.
Note that 〈procs/title〉 in D4 is different from 〈article/title〉 in D5 as StruX identi-
fies elements by their complete path to the root. At the end of the input transformation
procedure, the set of candidates is able to represent every possible interpretation of the
user’s unstructured query. It is now necessary to determine which interpretation is more
suitable to represent the original user’s intention.

3.3 Candidate Predicate Selection

Once the candidates have been defined, StruX needs to find adequate entities for each
candidate (Algorithm 1, lines 7 and 8). This is accomplished by using the recursive
function presented in Algorithm 2. This function, called CalculateScores, performs a
postorder traversal of the schema tree (which is given as input to Algorithm 1). During
the traversal, the scores are propagated in a bottom-up fashion.

The propagation constant α (Algorithm 2, line 8) determines the percentage of a
child’s score that is assimilated by its parent score (bottom-up propagation). As a result,
Algorithm 2 produces a rank that is then added to a local rank of entities for each
candidate. All local ranks are merged into a sorted global rank (Algorithm 1, line 9).

Each entry in the rank is a structured query, containing a score, an entity element
(structural constraint) and a candidate Di (value-based predicates). The score of a struc-
tured query tries to measure how well it represents the user’s original intention while

200 F. da C. Hummel et al.

Algorithm 2. CalculateScores Function
1: function CALCULATESCORES(d,node) � Input d: candidate, node: node from the XML

database
2: for each child h in node.children do
3: CalculateScores(d, h)

4: for each element-segment e in c do
5: if e.element = node.element then
6: node.score ← node.score + e.score

7: for each child h in node.children do
8: node.score ← node.score + (α ∗ h.score)

9: if node.score > 0 AND node.isEntity() then
10: Rank.add(root)

writing her query. By doing so, is its possible to determine which interpretations of the
keyword-based query are more suitable according to the underlying database.

Next, a structured query can be trivially translated to XPath. Specifically, for each
top-k structured query, StruX generates an XPath query statement based on the corre-
sponding entity and the candidate predicate, as illustrated in Fig. 1e.

One important final note is that we chose to transform the keyword-based queries
to XPath query statements for the language simplicity. However, StruX may also be
extended in order to consider other XML query languages, such as XQuery.

3.4 Keywords Matching Element Names

So far, we have only discussed how our method addresses matches between keywords
and the content of XML elements. Indeed, in StruX we regard such a match as the main
evidence to be considered when evaluating the relevance of a structured query. However,
to handle cases in which keywords match element labels, we use a very simple strategy:
we boost the likelihood of all structured queries in which this is observed by adding a
constant α to its score value.

3.5 Indexing

In order to build a structured query from user-provided keywords, StruX relies on an
index of terms. This index is defined based on the target database. Specifically, each
term is associated with an inverted list containing the occurrences of this term in the
elements of the database. Such an association allows the query structuring process to
evaluate where a term is more likely to occur within some element. Each term occur-
rence in an element contains a list of leaves (each one is assigned with a leaf id) in
which the term occurs. Hence, our method can determine if two or more keywords are
likely to occur in a same leaf node.

4 Experimental Setup

Following the INEX 2010 experimental protocol, we employed StruX to process the
tasks on the data-centric track that considered the IMDB datasets. The execution was
organized in runs, each one consisting in processing all topics under a certain setup.

Automatically Generating Structured Queries in XML Keyword Search 201

Table 1. Description of the runs used in the experiments

Run Structured Queries used Target Datasets Name
1 top-5 "movies" ufam2010Run1
2 top-10 "movies" ufam2010Run2
3 top-5 "movies", "actors" ufam2010Run3
4 top-5 all except "other" ufam2010Run4
5 top-5 all ufam2010Run5
6 top-10 all ufam2010Run6

Specifically, given a topic T , we first generated an unstructured query UT for this
topic. Next, UT was given as input to StruX, producing a list of structured queries
ST

1 , ST
2 , . . . , ST

n as a result, being each ST
i associated with a likelihood score, calcu-

lated as described in Section 3.3. Then, we executed the top-K structured queries over
the IMDB datasets. We used runs with different types of target documents to assess
how the redundancy and ambiguity between entities in the datasets affect StruX (e.g.,
“Steven Spielberg” may appear in many parts of a movie document and also on person
documents as director, producer or actor). The complete description of the runs is pre-
sented in Table 1. In the following, we discuss details regarding the generation and the
processing of the runs.

Dealing with Entities. As we have already explained, StruX aims at generating struc-
tured queries that return single entities found in a collection of entities. In the IMDB
datasets, every document root, such as <movie> and <person>, is intuitively an
entity. However, StruX inherently considers a root element as not suitable to be an
entity. To overcome this, we extended StruX to consider two virtual root nodes: (i)
<movies> that has all <movie> elements as its descendants; and (ii) <persons>
with all <person> elements as descendants. With such an extension, <movie> and
<person> elements can now be considered entities.

Generating Queries from Topics. For each given topic from the data-centric track, we
generated a keyword-based query to be used as input for StruX. In order to do so, we
took the <title> element of the topic and applied a few transformations. This step is
fully automated and aims mostly at dealing with topics specified using natural language
expressions, such as “romance movies by Richard Gere or George Clooney”, “Movies
Klaus Kinski actor movies good rating”, “Dogme movies”. Specifically, we applied the
following transformations:

i) simple stemming of plural terms, e.g.: movies → movie, actors → actor;
ii) removal of stop-words, e.g: by, and, to, of;

iii) disregard of terms indicating advanced search operators, such as “or”;
iv) removal of terms preceded by “−”, indicating exclusion of terms from the answers.

Fig. 2 illustrates a complete example of the whole process, including: the <title>
field of a topic, the corresponding keyword-based query and a path expression gener-
ated from it. This particular path expression corresponds to the top-1 structured query

202 F. da C. Hummel et al.

Topic: <title> true story drugs +addiction -dealer </title>
KB Query: true story drug addiction

Path Expression: /movie[overview/plot, "true story drug addiction"]
Result: <movie>

<title>Happy Valley (2008)</title>
<url>...</url>
<overview>
...
<plot> ... The real-life true story, Happy Valley
... that have been dramatically affected by
prescription drug abuse leading to street drug abuse
and addiction</plot>
...
</movie>

INEX Format: 2010012 Q0 1162293 1 2.6145622730255127 ufam2010Run1
/movie[1]

Fig. 2. Example of the steps involved in processing an INEX data-centric topic with StruX

generated by StruX. The result obtained from applying this path expression over the
IMDB dataset is also presented in the figure in two formats: as an XML sub-tree, and
using the INEX output format. Next, we detail how this result was obtained.

Processing Structured Queries. The final result for a given run is obtained by pro-
cessing the top-k structured queries against the target IMDB datasets. This could be
performed by using some native XML DBMS such as eXists-db3. However, for our
experiments, we developed a simple XPath matcher, which is used to match a docu-
ment against a structured query. By doing so, we could directly output the results in the
INEX result submission format, instead of having to transform the output provided by
the DBMS. Fig. 2 illustrates the result for one of the topics using both formats.

Regarding the scores of the results, as the final answers for the structured queries
are produced by an external system (in our case a simple XPath matcher), there are no
relevance scores directly associated to them. Thus, we simply assigned to the result the
same score StruX has generated for the structured query from which it was obtained.
Nonetheless, a single ranking of results is generated for all top-k structured queries. In
this ranking, results from the top-1 query occupy the topmost positions, followed by the
results from the top-2 query and so on.

5 Experimental Results

In this section, we present the results obtained in the INEX 2010 experiments.
Regarding the focused retrieval evaluation, ufam2010Run2 was the best run among

all, with MAiP value of 0.1965. As detailed in Section 4, this run returned structured
queries targeting only movies documents.

3 http://exist.sourceforge.net/

Automatically Generating Structured Queries in XML Keyword Search 203

(a)

(b)

Fig. 3. Focused Retrieval – MAiP Metric (a) and Document Retrieval – MAP Metric (b) Results

Notice that ufam2010Run2 uses top-10 structured queries, while ufam2010Run1
(fourth best run) uses only top-5 structured queries. This illustrates that considering
more structured queries does not affect the quality of the results. On the contrary, it can
even improve it. This happens because many of the generated top-10 structured queries
are often not feasible, i.e., they do not retrieve any results but, on the other hand, they
do not harm the final results.

Regarding the document retrieval metric, our best run was, again, ufam2010Run2,
who achieved the seventh best MAP value among all runs. It was followed by runs
ufam2010Run1 and ufam2010Run6, with no significant difference between them. Runs
ufam2010Run3, ufam2010Run4 and ufam2010Run5 achieved the same MAP values,
meaning that adding other target document types beyond movie and actor did not affect

204 F. da C. Hummel et al.

the overall precision. Also, resembling the focused retrieval metric, the two runs with
top-10 structured queries performed better than their counterparts with top-5 queries.

6 Conclusions

We presented a novel method called StruX for keyword-based search over XML data. In
summary, StruX combines the intuitiveness of keyword-based queries with the expres-
siveness of XML query languages. Given a user keyword-based query, StruX is able to
construct a set of XPath expressions that maps all possible interpretations of the user
intention to a corresponding structured query. We used StruX to perform the tasks pro-
posed in the INEX 2010 data-centric track for IMDB datasets. The results demonstrated
that query structuring is feasible and that our method is quite effective.

As future work, we plan to optimize even further our method. Specifically, we need
to improve StruX for handling very large datasets. We also want to study other heuristics
for improving the set of the structured queries generated. This should be accomplished
by ranking the XML fragments to ensure that results closer to the original user’s inten-
tion are presented first. Finally, we want to perform experiments with different Segment-
Element Affinity (SEA) functions using other Information Retrieval techniques.

Acknowledgements. This work was partially supported by projects InWeb, Amanajé
and MINGroup (CNPq grants no. 573871/2008-6, 47.9541/2008-6 and 575553/
2008-1), and by the authors’ scholarships and individual grants from CNPq, CAPES,
FAPEAM and FAPEMIG.

References

1. Aditya, B., Bhalotia, G., Chakrabarti, S., Hulgeri, A., Nakhe, C., Parag, P., Sudarshan, S.:
BANKS: Browsing and Keyword Searching in Relational Databases. In: Proceedings of the
28th International Conference on Very Large Data Bases, pp. 1083–1086 (2002)

2. Agrawal, S., Chaudhuri, S., Das, G.: DBXplorer: A System for Keyword-Based Search over
Relational Databases. In: Proceedings of the 18th International Conference on Data Engi-
neering, pp. 5–16 (2002)

3. Balmin, A., Hristidis, V., Papakonstantinou, Y.: ObjectRank: Authority-Based Keyword
Search in Databases. In: Proceedings of the Thirtieth International Conference on Very Large
Data Bases, pp. 564–575 (2004)

4. Barros, E.G., Moro, M.M., Laender, A.H.F.: An Evaluation Study of Search Algorithms for
XML Streams. Journal of Information and Data Management 1(3), 487–502 (2010)

5. Cohen, S., Mamou, J., Kanza, Y., Sagiv, Y.: XSEarch: A Semantic Search Engine for XML.
In: Proceedings of the 29th International Conference on Very Large Data Bases, pp. 45–56
(2003)

6. Demidova, E., Zhou, X., Zenz, G., Nejdl, W.: SUITS: Faceted User Interface for Construct-
ing Structured Queries from Keywords. In: Proceedings of the International Conference on
Database Systems for Advanced Applications, pp. 772–775 (2009)

7. Guo, L., Shao, F., Botev, C., Shanmugasundaram, J.: XRANK: Ranked Keyword Search over
XML Documents. In: Proceedings of the 2003 ACM SIGMOD International Conference on
Management of Data, pp. 16–27 (2003)

Automatically Generating Structured Queries in XML Keyword Search 205

8. Hristidis, V., Gravano, L., Papakonstantinou, Y.: Efficient IR-style Keyword Search over Re-
lational Databases. In: Proceedings of the 29th International Conference on Very Large Data
Bases, pp. 850–861 (2003)

9. Hristidis, V., Koudas, N., Papakonstantinou, Y., Srivastava, D.: Keyword Proximity Search in
XML Trees. IEEE Transactions on Knowledge and Data Engineering 18(4), 525–539 (2006)

10. Hristidis, V., Papakonstantinou, Y.: DISCOVER: Keyword Search in Relational Databases.
In: Proceedings of 28th International Conference on Very Large Data Bases, pp. 670–681
(2002)

11. Hristidis, V., Papakonstantinou, Y., Balmin, A.: Keyword Proximity Search on XML Graphs.
In: Proceedings of the 19th International Conference on Data Engineering, pp. 367–378
(2003)

12. Kim, J., Xue, X., Croft, W.: A probabilistic retrieval model for semistructured data. Advances
in Information Retrieval, pp. 228–239 (2009)

13. Laender, A.H.F., Moro, M.M., Nascimento, C., Martins, P.: An X-ray on Web-Available
XML Schemas. SIGMOD Record 38(1), 37–42 (2009)

14. Li, G., Feng, J., Wang, J., Zhou, L.: Effective Keyword Search for Valuable LCAs over
XML Documents. In: Proceedings of the Sixteenth ACM Conference on Information and
Knowledge Management, pp. 31–40 (2007)

15. Li, G., Feng, J., Wang, J., Zhou, L.: An Effective and Versatile Keyword Search Engine on
Heterogenous Data Sources. Proceedings of the VLDB Endowment 1(2), 1452–1455 (2008)

16. Li, Y., Yang, H., Jagadish, H.V.: NaLIX: an Interactive Natural Language Interface for Query-
ing XML. In: Proceedings of the ACM SIGMOD International Conference on Management
of Data, pp. 900–902 (2005)

17. Li, Y., Yu, C., Jagadish, H.V.: Schema-Free XQuery. In: Proceedings of the Thirtieth Inter-
national Conference on Very Large Data Bases, pp. 72–83 (2004)

18. Liu, Z., Chen, Y.: Identifying Meaningful Return Information for XML Keyword Search. In:
Proceedings of the ACM SIGMOD International Conference on Management of Data, pp.
329–340 (2007)

19. Luo, Y., Wang, W., Lin, X.: SPARK: A Keyword Search Engine on Relational Databases.
In: Proceedings of the 24th International Conference on Data Engineering, pp. 1552–1555
(2008)

20. Mesquita, F., Barbosa, D., Cortez, E., da Silva, A.S.: FleDEx: Flexible Data Exchange. In:
Proceedings of the 9th ACM International Workshop on Web Information and Data Manage-
ment, pp. 25–32 (2007)

21. Mesquita, F., da Silva, A.S., de Moura, E.S., Calado, P., Laender, A.H.F.: LABRADOR: Effi-
ciently publishing relational databases on the web by using keyword-based query interfaces.
Information Process Management 43(4), 983–1004 (2007)

22. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank Citation Ranking: Bringing
Order to the Web. Technical report, Stanford Digital Library Technologies Project (1998)

23. Sun, C., Chan, C.Y., Goenka, A.K.: Multiway SLCA-based keyword search in XML data.
In: Proceedings of the 16th International Conference on World Wide Web, pp. 1043–1052
(2007)

24. Xu, Y., Papakonstantinou, Y.: Efficient Keyword Search for Smallest LCAs in XML
Databases. In: Proceedings of the 2005 ACM SIGMOD International Conference on Man-
agement of Data, pp. 527–538 (2005)

UPF at INEX 2010:

Towards Query-Type Based Focused Retrieval

Georgina Ramı́rez

Universitat Pompeu Fabra, Barcelona, Spain
georgina.ramirez@upf.edu

Abstract. This paper describes our participation at INEX 2010. We
participated in two different tracks: ad-hoc and data-centric. We first
propose a classification of INEX topics and analyze several characteris-
tics of the relevance assessments from INEX 2009 for each of the topic
classes. The goal of our study is to investigate whether there are dif-
ferences in relevance judgements between topic classes in order to use
this information at retrieval time. We also present the experiments we
performed on the INEX 2010 data. In the ad-hoc track we study the
performance effects of changing the article order (fetching phase) while
in the data-centric track we experiment with the use of different indices
and retrievable element types. Our main finding is that indexing uniquely
movie documents leads to much better performance than indexing the
complete collection.

Keywords: XML, focused retrieval, INEX, query-based retrieval, query
classification.

1 Introduction

Retrieval tasks such as XML retrieval, where focused access to relevant infor-
mation is provided, allow users to perform very focused searches and pose re-
strictions on the type of information being requested (e.g., I want references or
experimental results). This is one of the reasons why several query languages and
interfaces have been designed—to allow users to explicitly express more complex
needs. However, these tools are not always available and users often specify in
their keyword queries not only what they are looking for but also the type and
the specificity of the information they are searching for. Thus, the number and
variety of topic types that XML retrieval introduces differ from those of tradi-
tional document retrieval, where the task is to return whole documents.

In this paper we propose a classification of XML retrieval topics based on three
different dimensions: 1) the type of information sought (general or restricted), 2)
the specificity of the topic (generic or specific), and 3) the complexity of the topic
(simple or compound). Once a classification is defined, it can be used in multiple
ways. Our goal is to use it to perform specific retrieval strategies for each of the
topic classes. A classification can also help to provide a more balanced benchmark
topic-set, avoiding to reward retrieval systems that perform well solely on the
most popular topic type.

S. Geva et al. (Eds.): INEX 2010, LNCS 6932, pp. 206–218, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

UPF at INEX 2010: Towards Query-Type Based Focused Retrieval 207

We analyze several characteristics of the relevant judgements from INEX 2009
for each of the topic classes defined in our classification. The aim of the study
is to investigate whether the differences between topic classes could be used to
decide on specific retrieval strategies for each of the topic types, a first step
towards query-type based focused retrieval.

We also describe the experiments performed on the INEX 2010 data for two
different tracks: ad-hoc and data-centric. Our experiments for the ad-hoc track
study the performance effects of changing the article order (fetching phase) while
in the data-centric track we experiment with the use of different indices and
retrievable element types.

The rest of the paper is organized as follows: In Section 2 we present our INEX
topic classification and explain the dimensions used. The analysis performed on
INEX 2009 data is described in Section 3. Section 4 presents the results of our
experiments for both tracks: ad-hoc and data-centric. Finally, we discuss the
main contributions and future work in Section 5.

2 INEX Topic Classification

In this section we propose a classification of INEX topics. We extend our previous
work on classification of INEX information needs [2] with a new dimension: the
type of information sought.

2.1 Dimensions

Our classification uses the following three dimensions: 1) the type of informa-
tion sought (general or restricted), 2) the specificity of the topic (generic or
specific), and 3) the complexity of the topic (simple or compound). Topics that
are restricted regarding the type of information sought can be further divided
according to the type of restriction (topical or structural).

Type of Information Sought. In an XML retrieval scenario, where focused
access to relevant information is provided, users can pose restrictions on the type
of information being searched for (e.g., I want images or results).

We classify topics into General and Restricted requests. General requests
are those that ask for any type of information about a topic, without restric-
tions. Note that the topic might be very specific but the type of information
the user wants to see is generic (any type of information about it). Restricted
requests are those in which some type of constraint on the type of information
being sought is specified. This constraint can be topical (e.g., I want exercises
or experiment results) or structural (e.g., I want references or images). In other
words, the restrictions can specify which part of the content has to be returned,
e.g., “I like to know the speed capacity of vehicles” (not any other information
on vehicles) or the type of object that it is returned, e.g., “I like too see images
of sunflowers” (not any other information/object about sunflowers). Note that
General requests are those that are typically used in web search and document
retrieval, where the task is to return whole documents or web pages.

208 G. Ramı́rez

Complexity. In the complexity dimension, two categories are used: Simple and
Compound. Simple requests are those that ask for information about just
one topic or aspect of a topic (i.e., mono-faceted requests). While Compound
requests are those that ask for information about several topics or aspects
of the same topic (i.e., multifaceted requests) or want information about the
relationship between two topics (e.g. technique A in the field of B or information
about A for B).

Specificity. In the specificity dimension, we classify requests into Specific and
Generic, depending on the topical broadness of the information being searched
for. In other words, General requests are those that ask for information about
a broad topic, while Specific requests are those that ask for information about
a narrow topic. Note that here we talk about the information being searched for
and not about the type of information being searched for.

While the specificity and the complexity of the request are dimensions that
have already been used to classify standard IR requests [5], the type of informa-
tion sought is specific to focused retrieval.

Notice also the difference between restricting a topic (e.g., classical movies)
and restricting the type of information sought (e.g., pictures of movies). The
first one would be specific while the second one would be structurally restricted.

We hypothesize that the characteristics of the relevant information between
the classes of each dimension differ. If these differences exist, XML retrieval sys-
tems should use this information in order to optimize their retrieval performance
by using specific retrieval strategies for each of the topic classes.

2.2 Data Classification

The INEX ad-hoc topics are created by the participants following precise in-
structions. Candidate topics contain a short CO (keyword) query, an optional
structured CAS query, a phrase title, a one line description of the search request,
and a narrative with details of the topic of request and the task context in which
the information need arose. An example of an INEX topic with all its fields can
be seen in Table 1. We used the description field of the topics to classify the
INEX 2009 topics into different classes. If needed, we used the narrative field
from the topic to clarify. All 68 topics were classified by two different volunteers.
Table 2 shows the resulting topic classes, the number of topics belonging to each
class and gives an example for each of them. We also investigate how intuitive the
dimensions and categories used in our classification are. We do so by analyzing
the level of agreement between volunteers. Table 3 shows the agreement on each
of the dimensions between the two volunteers. We can see that the agreements
on the first two dimensions are rather high, suggesting that these dimensions
are quite intuitive and objective. However, the specificity dimension has a very
low agreement percentage and it is probably too subjective to be used in a real
setting.

UPF at INEX 2010: Towards Query-Type Based Focused Retrieval 209

Table 1. Example of INEX topic

Topic ID 2009011

Title olive oil health benefit

CAS query //food[about(., olive oil) and about(., health benefit)]

Phrase title “olive oil” “health benefit”

Description Find information about what sort of health benefit olive oil has

Narrative I’m a health/beauty buff. I recently learned that olive oil is “good
for you”. What are the specific health/beauty benefits for consum-
ing olive oil? Any article that mentions health benefits of olive oil is
fine, EXCEPT those in which the claim is based on either unpop-
ular/obscure or unscientific methods. So for example, if XXX diet
recommends consuming olive oil then it’s irrelevant. Note that since
Mediterranean diet is not a weight-loss fat diet, but the traditional
Mediterranean ways of eating, an article describing the health bene-
fits of olive oil in this setting is relevant. Anything outside of health
benefit is irrelevant, how olive oil is produced, the different grades
of olive oil etc.

3 Relevance Assessments Analysis

In this section we investigate whether the characteristics of the relevance judge-
ments differ between the different topic classes described above. Having in mind
that for some classes the number of topics is generally too low to draw statis-
tically significant conclusions, we analyze INEX 2009 relevance judgements and
look at the relevance characteristics of each of the topic classes. We analyze the
following characteristics: 1) the number of relevant documents, 2) the density of
the relevant documents, and 3) the number and size of the relevant fragments.

Table 2. Number of INEX 2009 topics belonging to each of the topic classes and
example of topic description for each of them

Dimension Class Num. Example

Type of
information
sought

General 64 Information about Nobel prize.

Restricted
(structurally)

2 Explain “mean average precision” and “recipro-
cal rank” with images or plots. Provide ref-
erences in proceedings and journals.

Restricted
(topically)

2 I want to know vehicles and its speed capacity

Complexity Simple 46 Information about classical movies

Compound 22 Find information about applications of bayesian
networks in the field of bioinformatics

Specificity Generic 13 I want to find some information about IBM
computer

Specific 55 Find information on causes of vitiligo and treat-
ment for it

210 G. Ramı́rez

Table 3. Agreement between the two volunteers that classified the topics

Type of information sought Complexity Specificity

94% 85 % 46%

Number of Relevant Documents. By number of relevant documents we re-
fer to the number of unique documents in the collection that contain relevant
information given a topic, even if the fraction of relevant information is small.
Figure 1 (upper part) shows the average number of documents containing rele-
vant information for each of the topic classes. We can clearly see that restricted
requests tend to find much less relevant documents than the general ones. On
average, there are 18 relevant documents for the restricted topics and 75 for the
general ones (13 and 56.5 when looking at the median). Although the difference
is not that big for the other dimensions, we see that compound requests tend to
find less relevant documents than simple ones (51 vs. 81 on average and 26 vs.
58 when looking at the median). Specific topics are also satisfied with a smaller
number of documents than generic ones (65 vs. 100 on average and 48 vs. 65
when looking at the median).

These tendencies are not surprising, it seems reasonable that the more com-
plex, restricted, and specific a topic is, the more difficult is to find information
that satisfies it.

Density. We also analyze how densely relevant are the documents that contain
relevant information. According to recent work [6], focused search works better

Fig. 1. Average number of documents containing relevant information (top) and aver-
age density of those documents (bottom)

UPF at INEX 2010: Towards Query-Type Based Focused Retrieval 211

on sparsely dense documents. We define density of a document as the percentage
of relevant text contained in that document (i.e., ratio of relevant text to all text).
Text size is given by the number of characters.

Figure 1 (bottom part) shows the average density of the documents containing
relevant information for each of the topic classes. We can see that documents
that contain relevant information for the restricted topics tend to be sparsely
dense. On average, 18% of the text in a document is relevant for the restricted
topics while that is 44% for the general ones (19% and 38% when looking at the
median). Focused retrieval seems to be more desirable for restricted topics.

Regarding the other dimensions, we see that there is not much difference in
terms of density between the compound and simple topics. In both cases, doc-
uments are quite dense on average. The difference is bigger in the specificity
dimension. While generic topics tend to be answered with highly dense docu-
ments (on average 48% and median 59%), specific topics tend to be answered
with less dense documents (41% on average and median 34%).

Number and Size of Relevant Fragments. To see how the relevant informa-
tion is distributed within an article, we look at the number and size of relevant
fragments, the fragments that contain the relevant information. Figure 2 shows
this information for each of the topic classes. While there are not big differ-
ences in the number of relevant fragments between the restricted topics (average
2, median 2) and the general topics (average 1.7, median 1.5), the fragments
for the restricted topics tend to be much smaller (see Figure 2 bottom part).
On average, relevant fragments for the restricted topics are 540 characters long

Fig. 2. Number and average size of relevant fragments

212 G. Ramı́rez

(median 512) while the average length for the general topics is 2668 (median
1644).

This is not the case for the other two dimensions where the number and
average size of the relevant fragments are very similar between classes. We can
see that, in general, a very small number of very long fragments are assessed as
relevant, not the best scenario for focused retrieval.

We also look at two characteristics of the topic itself: 1) the number of query
terms and 2) the type of CAS query. If there are differences between topic classes,
these characteristics can help to automatically classify topics.

Number of Query Terms. By number of query terms we refer to the number
of terms in the title field of the topic after removing stop-words. Figure 3 (upper
part) shows the average number of query terms for each of the topic classes.
Restricted topics tend to be long, they have an average of 6.5 terms per topic
(median 6) while the average number of query terms for the general ones is 3.7
(median 4). The difference can be explained from the fact that restricted requests
specify not only what the users are searching for but also the type of information
they would like to see. We can see a similar pattern for the specificity dimension.
While generic topics are expressed, on average, with a very small number of
query terms (2.5, median 2), specific topics tend to be longer (average 4, median
4). We can also see that there are not big differences regarding the number of
query terms between simple and compound topics (complexity dimension).

Fig. 3. Average number of query terms and percentages of CAS query types

UPF at INEX 2010: Towards Query-Type Based Focused Retrieval 213

Table 4. CAS query patterns

Pattern Meaning

//article[about(.,X)] Return articles about topic X

//*[about(.,X)] Return any type of element about topic X

//A[about(.,X)] Return element types A about topic X
(where A can be any element type except
article)

//article[about(.//A,X)] Return articles that contain an element
type A about topic X

//article[about(.,X)]//A[about(.,Y)] Return element types A about topic Y that
are contained in articles about topic X.

Type of CAS Query. We also analyze which types of CAS query are associated
with each of the topic classes. We used five different CAS patterns to classify all
topics (see Table 4). Figure 3 (bottom part) shows the percentage of CAS queries
of each pattern for each of the topic classes. We can see some differences. While
restricted topics tend to be specified with longer and more specific CAS queries,
the majority of the general ones use the most generic form of CAS query1. More
surprising is that a big portion of the simple and generic topics use the more
specific CAS queries. In general terms however, it is difficult to associate any of
the CAS query pattern to a specific topic class.

4 Experiments

This section describes the setup and discusses the results of the experiments
carried out for the ad-hoc and the data-centric tracks of INEX 2010. For all our
experiments we have used the Indri Search Engine [1]. Indri uses a retrieval model
based on a combination of language modeling and inference network retrieval
frameworks. We have used linear smoothing and varying lambda value. Topics
and documents have been pre-processed using the porter stemmer [3] and the
smart stop-word list [4].

4.1 Ad-Hoc Track Experiments

For the ad-hoc track experiments we have used the Indri search engine [1] with
linear smoothing and lambda 0.45. The lambda value has been set to 0.45 after
training on the INEX Wikipedia 2009 collection. The only indexed fields are
articles, sections, and paragraphs, meaning that only these element types can
be explicitly retrieved. We study the importance of the fetching phase, i.e., the
performance effects of changing the article order.

1 Note that topics that were submitted without a CAS query were assigned the most
generic one: //article[about(.,X)].

214 G. Ramı́rez

Relevant in Context. The aim of the Relevant in Context Task is to first
identify relevant articles (the fetching phase), and then to identify the relevant
results within the fetched articles (the browsing phase). As mentioned above,
we experiment with the performance effects of the fetching phase. For that, we
use the same baseline run and reorder its articles in three different ways. Our
baseline is a paragraph run (retrieving only paragraphs) grouped by article.
The final article order is given by 1) our own article run order (retrieving only
articles), 2) the reference run order, 3) the baseline run order (i.e., the article
where the most relevant paragraph appears, followed by the article were the
second most relevant paragraph appears, etc.).

Our original submissions were not valid due to a bug in our code and could
not be evaluated. The results of the un-official runs (after fixing) are shown
in Table 5. We can see that changing the article order affects considerably the
performance of the run. The reference run article order outperforms the other
two. Paragraphs are not good indicators of article relevance. Ranking articles by
their most relevant paragraph performs the worst.

Table 5. Un-official results for the relevant in context runs. The number in parentheses
indicates the estimated run position in the official ranking.

run name MAgP (est. position)

UPFpLM45coRC1 0.1109 (34)
UPFpLM45coRC2 0.1571 (9)
UPFpLM45coRC3 0.0763 (39)

Restricted Relevant in Context. The Restricted Relevant in Context Task
is a variant of the Relevant in Context task, where only 500 characters per article
are allowed to be retrieved. Overlapping results are not permitted. For this task,
we have followed a similar approach to the one of our Relevant in Context runs.
This time however, our baseline is a section run (retrieving only sections) and a
second post-processing step is made in order to return only 500 characters per
article. That is, per article we return the most relevant sections until the 500th
character is reached. As in the previous task, the final article order is given by 1)
our own article run order (retrieving only articles), 2) the reference run order, 3)
the baseline run order (i.e., the article where the most relevant section appears,
followed by the article were the second most relevant section appears, etc.).

As in the previous task, our original submissions were not valid due to a bug
in our code and could not be evaluated. The results of the un-official runs (after
fixing) are shown in Table 6.

We see similar performances as in the previous task; the reference run article
order outperforms the other two. In absolute numbers paragraph runs seem to
outperform section runs. However, the lower performance of the section runs
could be due to the task restrictions. When looking at the relative position of
the runs regarding the other groups, the three runs performed relatively well
(top 15-20).

UPF at INEX 2010: Towards Query-Type Based Focused Retrieval 215

Table 6. Unofficial results for the restricted relevant in context runs. The number in
parentheses indicates the estimated run position in the official ranking.

run name MAgP (est. position)

UPFpLM45coRRC1 0.0894 (15)
UPFpLM45coRRC2 0.1210 (13)
UPFpLM45coRRC3 0.0633 (17)

Table 7. Official results for the restricted focused runs. The number in parentheses
indicates the run position in the official ranking.

run name char prec (position)

UPFpLM45coRF1 0.2984 (19)
UPFpLM45coRF2 0.3066 (15)
UPFpLM45coRF3 0.1156 (30)

Table 8. Official runs for the data-centric track

run name index retrievable elements lambda

UPFL15Tall all no restriction 0.15
UPFL45Tall all no restriction 0.45
UPFL15Tmovie all movie 0.15
UPFL45Tmovie all movie 0.45
UPFL15TMI movies no restriction 0.15
UPFL15TMImov movies movie 0.15

Table 9. Official results for the data-centric track. The number in parentheses indicates
the run position in the official ranking.

run name MAgP MAiP Document Retrieval

UPFL15Tall - 0.1486 (7) 0.2961 (6)
UPFL45Tall - 0.1338 (11) 0.2822 (8)
UPFL15Tmovie - 0.0770 (20) 0.1983 (16)
UPFL45Tmovie - 0.0410 (24) 0.1578 (20)
UPFL15TMI 0.2459 (2) 0.1809 (2) 0.3687 (3)
UPFL15TMImov 0.2434 (3) 0.1762 (3) 0.3542 (4)

Restricted Focused. The Restricted Focused task aims at giving a quick
overview of the relevant information in the whole of Wikipedia. Results are
restricted to max. 1,000 characters per topic. For this task, we return a single
paragraph per article (the most relevant) until we reach the 1,000 characters
per topic. The assumption is that users prefer to see an overview based on the
largest number of articles rather than seeing several relevant paragraphs of the
same article. Our three official runs are again based on different article order as
in the previous tasks; The final article order is given by 1) our own article run
order (retrieving only articles), 2) the reference run order, 3) the baseline run
order (i.e., the article where the most relevant paragraph appears, followed by
the article were the second most relevant paragraph appears, etc.).

216 G. Ramı́rez

MAgP

MAiP

MAP

Fig. 4. Official evaluation graphs for the data-centric track

UPF at INEX 2010: Towards Query-Type Based Focused Retrieval 217

The results of these runs are shown in Table 7. As in the other tasks, we
can see that the article order is an important factor on the overall result of the
run. There is a big difference in terms of performance from our article order
and the reference run order and our paragraph run order. Paragraphs are not
good estimators of the total relevance of an article. In other words, a relevant
paragraph does not imply that the article is relevant to the same degree.

4.2 Data-Centric Track Experiments

For our data-centric track experiments we used the Indri search engine [1] with
linear smoothing and two different lambdas, 0.45 and 0.15. Since this is a new col-
lection and we did not have training data to optimize lambda, we experimented
with two different values that have been successfully used in other collections.
We also experimented with the use of two different indices (indexing all the col-
lection vs. indexing only movies) and by restricting the type of elements to be
retrieved (no restriction vs. movie elements)2.

Table 8 shows the parameters used for each of our official runs and Table 9 the
official results. Our best performing runs are the ones that use the movie index,
indicating that for this specific topic set the use of other types of documents
introduces noise. We also see that lambda 0.15 always performs better than
lambda 0.45, indicating that it is better to give less emphasis to the collection
statistics. Figure 4 show the official graphs. In general terms we can see that
using the movie index (our best runs) leads to high precision at early recall
levels while, not surprisingly, it does not manage to do so at middle and/or
high recall levels (MAiP and MAP graphs). This is because a large part of the
collection is not indexed, which makes it difficult, if not impossible, to have a
high overall recall.

5 Discussion and Conclusions

This paper described our participation at INEX 2010. We presented a classi-
fication of INEX topics and an analysis of the characteristics of the relevance
assessments for each of the topic classes. The goal of our study was to investigate
whether there are differences in relevance judgements between topic classes in
order to use them for retrieval. We have seen, for instance, that restricted topics
have a small set of relevant documents which are sparsely dense and relevant
information is contained in small fragments of documents. Although some of the
analyzed relevance characteristics differ between classes, it is not clear whether
this information could be used for retrieval. More data needs to be analyzed in
order to see whether these differences are statistically significant.

The classification presented is based on three different dimensions (type of
information sought, complexity, and specificity), generic enough to be used in

2 Note that movie elements can have very different forms: from a complete movie
document to a movie element within a list of movies played by an actor.

218 G. Ramı́rez

other focused retrieval scenarios. Our goal is to use it to perform different re-
trieval strategies for each of the topic classes. A classification can also help to
provide a more balanced benchmark topic-set, avoiding to reward retrieval sys-
tems that perform well solely on the most popular topic type. We note that not
all the dimensions are objective enough to be easily used. The specificity of a
topic is a subjective matter and it might not be easy to apply in real settings.

As future work we plan to investigate whether it is beneficial to use different
retrieval strategies for the different topic types.

We reported on our experiments for INEX 2010, in the ad-hoc and data-centric
tracks. In the ad-hoc track we studied the performance effects of changing the
article order (fetching phase) while in the data-centric track, we experimented
with the use of different indices and retrievable element types. Our results on
the ad-hoc track confirm that article order is a very important factor on the
overall performance of the systems. In all of our experiments, the article order
of the reference run outperforms the other runs. In the data-centric track, our
main finding is that indexing only the movie documents leads to much better
performance than indexing the complete collection.

Acknowledgments. This work has been supported by the Spanish Ministry
of Science and Education under the HIPERGRAPH project and the Juan de la
Cierva Program.

References

1. Strohman, T., Metzler, D., Turtle, H., Croft, W.B.: Indri: a language model based
search engine for complex queries. In: Proceedings of the International Conference
on Intelligent Analysis (2005)

2. Ramı́rez Camps, G.: Structural Features in XML Retrieval. PhD thesis, University
of Amsterdam (2007)

3. Porter, M.F.: An algorithm for suffix stripping. Program 14(3), 130–137 (1980)
4. Salton, G.: The SMART Retrieval System Experiments in Automatic Document

Processing. Prentice-Hall, Inc., Upper Saddle River (1971)
5. Ingwersen, P., Järvelin, K.: The Turn: Integration of Information Seeking and Re-

trieval in Context. The Information Retrieval Series, vol. 18. Springer, Heidelberg
(2005)

6. Arvola, P., Kekalainen, J., Junkkari, M.: Focused Access to Sparsely and Densely
Relevant Documents. In: Proceedings of SIGIR 2010 (2010)

BUAP: A First Approach to the Data-Centric

Track of INEX 2010�

Darnes Vilariño, David Pinto, Carlos Balderas, Mireya Tovar, and Saul León

Facultad de Ciencias de la Computación
Benemérita Universidad Autónoma de Puebla, México

{darnes,dpinto,mtovar}@cs.buap.mx, charlie kanon@hotmail.com,

saul.ls@live.com

Abstract. In this paper we present the results of the evaluation of an
information retrieval system constructed in the Faculty of Computer
Science, BUAP. This system was used in the Data-Centric track of the
Initiative for the Evaluation of XML retrieval (INEX 2010). This track
is focused on the extensive use of a very rich structure of the documents
beyond the content. We have considered topics (queries) in two variants:
Content Only (CO) and Content And Structure (CAS) of the information
need. The obtained results are shown and compared with those presented
by other teams in the competition.

1 Introduction

Current approaches proposed for keyword search on XML data can be catego-
rized into two broad classes: one for document-centric XML, where the structure
is simple and long text fields predominate; the other for Data-Centric XML,
where the structure is very rich and carries important information about ob-
jects and their relationships [1]. In previous years, INEX focused on comparing
different retrieval approaches for document-centric XML, while most research
work on Data-Centric XML retrieval cannot make use of such a standard eval-
uation methodology. The new Data-Centric track proposed at INEX 2010 aims
to provide a common forum for researchers or users to compare different re-
trieval techniques on Data-Centric XML, thus promoting the research work in
this field [2].

Compared to traditional information retrieval, where whole documents are
usually indexed and retrieved as single complete units, information retrieval
from XML documents creates additional retrieval challenges.

Until recently, the need for accessing the XML content has been addressed difer-
ently by the database (DB) and the information retrieval (IR) research communi-
ties. The DB community has focussed on developing query languages and eficient
evaluation algorithms used primarily for Data-Centric XML documents. On the
other hand, the IR community has focussed on document-centric XML documents
� This work has been partially supported by the CONACYT project #106625, VIEP

VIAD-ING11-I, as well as by the PROMEP/103.5/09/4213 grant.

S. Geva et al. (Eds.): INEX 2010, LNCS 6932, pp. 219–226, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

220 D. Vilariño et al.

by developing and evaluating techniques for ranked element retrieval. Recent re-
search trends show that each community is willing to adopt the well-established
techniques developed by the other to efectively retrieve XML content [3].

The Data-Centric track uses the IMDB data collection newly built from the fol-
lowing website: http://www.imdb.com. It consists of information about more than
1,590,000 movies and people involved in movies, e.g. actors/actresses, directors,
producers and so on. Each document is richly structured. For example, each movie
has title, rating, directors, actors, plot, keywords, genres, release dates, trivia, etc.;
and each person has name, birth date, biography, filmography, and so on.

The Data-Centric track aims to investigate techniques for finding information
by using queries considering content and structure. Participating groups have
contributed to topic development and evaluation, which will then allow them
to compare the effectiveness of their XML retrieval techniques for the Data-
Centric task. This will lead to the development of a test collection that will
allow participating groups to undertake future comparative experiments.

2 Description of the System

In this section we describe how we have indexed the corpus provided by the
task organizers. Moreover, we present the algorithms developed for tackling the
problem of searching information based on structure and content.

The original XML file has been previously processed in order to eliminate
stopwords and punctuation symbols. Moreover, we have transformed the original
hierarchical structure given by XML tags to a similar representation which may
be easily analyzed by our parser.

For the presented approach we have used an inverted index tree in order to
store the XML templates of the corpus. The posting list contains the reference
of the document (document ID) and the frequency of the indexed term in the
given context (according to the XML tag).

With respect to the dictionary of the inverted index, we have considered to
include both, the term and the XML tag (the last one in the hierarchy). In
Figure 1, we show an example of the inverted index (pay special attention to
the dictionary). The aim was to be able to find the correct position of each
term in the XML hierarchy and, therefore, to be able to retrieve those parts of
the XML file containing the correct answer of a given query. In this way, the
inverted index allows to store the same term which occurs in different contexts.
We assumed that the last XML tag would be enough for identifying the full path
in which the term occurs, however, it would be better to use all the hierarchy in
the dictionary. Further experiments would verify this issue.

In the following subsection we present the algorithms developed for indexing
and searching information based on content and structure.

2.1 Data Processing

Before describing the indexing techniques used, we first describe the way we have
processed the data provided for the competition. We have cleaned the XML files

BUAP: A First Approach to the Data-Centric Track of INEX 2010 221

title hannibal 40 : 981731:1 994171:1 78811:1 [...] 1161611:1 [...]

character lecter 440 : 959641:1 959947:1 1161611:1 969446:1 [...]

name hopkins 3068 : 1154469:1 1154769:2 1154810:1 [...] 1161611:1 [...]

name anthony 31873 : 943773:1 [...] 944137:2 1161611:1 1224420:3 [...]

director scott 4771 : 1157203:1 1157761:1 1157773:1 [...] 1161611:1 [...]

director ridley 62 : 1289515:1 1011543:1 1011932:1 [...] 1161611:1 [...]

writer harris 2114 : 1120749:1 1121040:1 1121294:1 [...] 1161611:1 [...]

writer thomas 7333 : 115985:1 115986:1 [...] 1161611:1 1161616:2 [...]

: :

Fig. 1. Example of the type of inverted index used in the experiments

in order to obtain an easy way of identifying the XML tag for each data. For this
purpose, as we previously mentioned, we have traduced the original hierarchical
structure given by XML tags to a similar representation which may be easily ana-
lyzed by our parser. Thereafter, we have created five different inverted indexes,
for the each one of the following categories: actors, directors, movies, producers
and others. The inverted index was created as mentioned in the previous section.

Once the dataset was indexed we may be able to respond to a given query.
In this case, we have also processed the query by identifying the corresponding
logical operators (AND, OR). Let us consider the query presented in Figure 2,
which is then traduced to the sentence shown in Figure 3. The first column is
the topic or query ID; the second column is the number associated to the ct no
tag; the third column indicates the number of different categories that will be
processed, in this case, we are considering only one category: movies.

In the competition we submitted two runs. The first one uses the complete
data of each record (word n-gram), whereas the second approach considered
to split the data, that corresponds to each content, into unigrams, with the
goal of being more specific in the search process. However, as will be seen in
the experimental results section, both approaches perform similar. An example
topic showing the second approach is given in Figure 4, whereas its traduced
version is given in Figure 5.

In order to obtain the list of candidate documents for each topic, we have
calculated the similarity score between the topic and each corpus document as
shown in Eq. (1) [4], which was implemented as presented in Algorithm 1.

222 D. Vilariño et al.

<topic id="2010001" ct_no="3">

<title>Yimou Zhang 2010 2009</title>

<castitle>//movie[about(.//director, "Yimou Zhang") and

(about(.//releasedate, 2010) or

about(.//releasedate, 2009))]

</castitle>

<description>I want to know the latest movies directed by Yimou Zhang.

</description>

<narrative>I am interested in all movies directed by Yimou Zhang, and

I want to learn the latest movies he directed.

</narrative>

</topic>

Fig. 2. An example of a given query (topic)

2010001 3 1 //movie//director yimou zhang and //movie//releasedate 2010

or //movie//releasedate 2009

Fig. 3. Representation of the topic

<topic id="2010025" ct_no="19">

<title>tom hanks steven spielberg</title>

<castitle>//movie[about(., tom hanks steven spielberg)]</castitle>

<description>movies where both tom hanks and steven spielberg worked

together

</description>

<narrative>The user wants all movies where Tom Hanks and Steven

Spielberg have worked together (as actors, producers,

directors or writers). A relevant movie is a movie

where both have worked together.

</narrative>

</topic>

Fig. 4. An example of another topic

2010025 19 1 //movie tom and //movie hanks and //movie steven and

//movie spielberg

Fig. 5. The representation of a topic by splitting the data

SIM(q, d) =
∑

ck∈B

∑
cl∈B

CR(ck, cl)
∑
t∈V

weight(q, t, ck)
weight(d, t, cl)√∑

c∈B,t∈V weight(d, t, c)2

(1)
where the CR function is calculated as shown in Eq. (2), V is the vocabulary
of non-structural terms; B is the set of all XML contexts; and weight(q, t, c)
and weight(d, t, c) are the weights of term t in XML context c in query q and
document d, respectively (as shown in Eq. (3)).

BUAP: A First Approach to the Data-Centric Track of INEX 2010 223

CR(cq, cd) =

{
1+|cq|
1+|cd| if cq matches cd

0 otherwise
(2)

where cq and cd are the number of nodes in the query path and document path.

weight(d, t, c) = idft ∗ wft,d (3)

where idft is the inverse document frequency of term t, and wft,d is the frequency
ot term t in document d.

Algorithm 1. Scoring of documents given a topic q

Input: q, B, V , N : Number of documents, normalizer
Output: score
for n = 1 to N do1

score[n] = 02

foreach 〈cq , t〉 ∈ q do3

wq = weight(q, t, cq)4

foreach c ∈ B do5

if CR(cq, c) > 0 then6

postings = GetPostings(c, t)7

foreach posting ∈ postings do8

x = CR(cq, c) ∗ wq ∗ PostingWeight(posting)9

score[docID(posting)]+ = x10

end11

end12

end13

end14

end15

for n = 1 to N do16

score[n] = score[n]/normalizer[n]17

end18

return score19

2.2 Experimental Results

We have evaluated 25 topics with the corpus provided by the competition orga-
nizers. This dataset is made up of 1,594,513 movies, 1,872,492 actors, 129,137
directors, 178,117 producers and, finally, 643,843 files categorized as others.

As it was mentioned before, we submitted two runs which we have named:
“FCC-BUAP-R1” and “FCC-BUAP-R2”. The former uses the complete data of
each record (n-gram), whereas the latter split the words contained in the query
by unigrams. The obtained results, when evaluating the task as focused retrieval
(MAgP measure) are presented in Table 1 and in Figure 6.

As may be seen, we have obtained a low performance, which we consider is
derived of the fact of using only one tag for identifying each indexed term. We

224 D. Vilariño et al.

Table 1. Evaluation measured as focused retrieval (MAgP)

MAgP Institute Run

1 0.24910409 University of Otago OTAGO-2010-DC-BM25
2 0.24585548 Universitat Pompeu Fabra UPFL15TMI
3 0.24337897 Universitat Pompeu Fabra UPFL15TMImov
4 0.18113477 Kasetsart University NULL
5 0.15617634 University of Otago OTAGO-2010-DC-DIVERGENCE
6 0.06517544 INDIAN STATISTICAL INSTITUTE ISI fdbk em 10
7 0.0587039 INDIAN STATISTICAL INSTITUTE ISI nofdbk article .4.-1
8 0.04490731 INDIAN STATISTICAL INSTITUTE ISI nofdbk article .4.0
9 0.04426635 INDIAN STATISTICAL INSTITUTE ISI fdbk 10
10 0.04091211 B. Univ. Autonoma de Puebla FCC-BUAP-R1
11 0.04037697 B. Univ. Autonoma de Puebla FCC-BUAP-R2
12 0.03788804 INDIAN STATISTICAL INSTITUTE ISI nofdbk article .6.0
13 0.03407941 INDIAN STATISTICAL INSTITUTE ISI nofdbk article .4.1
14 0.02931703 INDIAN STATISTICAL INSTITUTE ISI nofdbk article .2.0

Fig. 6. Evaluation measured as focused retrieval (MAgP)

BUAP: A First Approach to the Data-Centric Track of INEX 2010 225

assumed that the last XML tag in each context would be enough for identifying
the complete path in which the term occurs, however, it would be better to
use the complete hierarchy in the dictionary. Once the gold standard is being
released, we are considering to carry out more experiments in order to verify this
issue.

The evaluation of the different runs at the competition, measured as document
retrieval, may be found in Table 2.

Table 2. Evaluation measured as document retrieval (whole document retrieval)

MAP Institute Run

1 0.5046 SEECS, Peking University NULL
2 0.5046 SEECS, Peking University NULL
3 0.3687 Universitat Pompeu Fabra UPFL15TMI
4 0.3542 Universitat Pompeu Fabra UPFL15TMImov
5 0.3397 University of Otago OTAGO-2010-DC-BM25
6 0.2961 Universitat Pompeu Fabra UPFL15Tall
7 0.2829 Universidade Federal do Amazonas ufam2010Run2
8 0.2822 Universitat Pompeu Fabra UPFL45Tall
9 0.2537 Universidade Federal do Amazonas ufam2010Run1
10 0.2512 Universidade Federal do Amazonas ufam2010Run5
11 0.2263 Universidade Federal do Amazonas ufam2010Run3
12 0.2263 Universidade Federal do Amazonas ufam2010Run4
13 0.2263 Universidade Federal do Amazonas ufam2010Run5
14 0.2103 University of Otago OTAGO-2010-DC-DIVERGENCE
15 0.2044 Kasetsart University NULL
16 0.1983 Universitat Pompeu Fabra UPFL15Tmovie
17 0.1807 INDIAN STATISTICAL INSTITUTE ISI elts.0
18 0.18 INDIAN STATISTICAL INSTITUTE ISI elts.1
19 0.1783 INDIAN STATISTICAL INSTITUTE ISI elts.-1
20 0.1578 Universitat Pompeu Fabra UPFL45Tmovie
21 0.1126 INDIAN STATISTICAL INSTITUTE ISI fdbk em 10
22 0.0888 INDIAN STATISTICAL INSTITUTE ISI nofdbk article .4.-1
23 0.0674 INDIAN STATISTICAL INSTITUTE ISI nofdbk article .4.0
24 0.0672 INDIAN STATISTICAL INSTITUTE ISI fdbk 10
25 0.0602 B. Univ. Autonoma de Puebla FCC-BUAP-R2
26 0.0581 INDIAN STATISTICAL INSTITUTE ISI nofdbk article .6.0
27 0.0544 B. Univ. Autonoma de Puebla FCC-BUAP-R1
28 0.0507 INDIAN STATISTICAL INSTITUTE ISI nofdbk article .4.1
29 0.0424 INDIAN STATISTICAL INSTITUTE ISI nofdbk article .2.0

3 Conclusions

In this paper we have presented details about the implementation of an infor-
mation retrieval system which was used to evaluate the task of focused retrieval
of XML documents, in particular, in the Data-Centric track of the Initiative for
the Evaluation of XML retrieval (INEX 2010).

226 D. Vilariño et al.

We presented an indexing method based on an inverted index with XML
tags embedded. For each category (movies, actors, producers, directors and oth-
ers), we constructed an independent inverted index. The dictionary of the index
considered both, the category and the indexed term which we assumed to be
sufficient to correctly identify the specific part of the XML file associated to the
topic.

Based on the low scores obtained, we may conclude that a more detailed
description in the dictionary (including more tags of the XML hierarchy) is
needed in order to improve the precision of the information retrieval system
presented.

References

1. Wang, Q., Li, Q., Wang, S., Du, X.: Exploiting semantic tags in XML retrieval. In:
Geva, S., Kamps, J., Trotman, A. (eds.) INEX 2009. LNCS, vol. 6203, pp. 133–144.
Springer, Heidelberg (2010)

2. Wang, Q., Trotman, A.: Task description of INEX 2010 Data-Centric track. In:
Proc. of INEX 2010 (2010)

3. Amer-Yahia, S., Curtmola, E., Deutsch, A.: Flexible and efficient XML search with
complex full-text predicates. In: Proceedings of the 2006 ACM SIGMOD Interna-
tional Conference on Management of Data, pp. 575–586. ACM, New York (2006)

4. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval.
Cambridge University Press, Cambridge (2009)

S. Geva et al. (Eds.): INEX 2010, LNCS 6932, pp. 227–235, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Overview of the INEX 2010 Interactive Track

Nils Pharo1, Thomas Beckers2, Ragnar Nordlie1, and Norbert Fuhr2

1 Faculty of Journalism, Library and Information Science, Oslo University College, Norway
nils.pharo@jbi.hio.no, ragnar.nordlie@jbi.hio.no

2 Department of Computer Science and Applied Cognitive Science,
University of Duisburg-Essen, Germany

tbeckers@is.inf.uni-due.de, norbert.fuhr@uni-due.de

Abstract. In the paper we present the organization of the INEX 2010
interactive track. For the 2010 experiments the iTrack has gathered data on user
search behavior in a collection consisting of book metadata taken from the
online bookstore Amazon and the social cataloguing application LibraryThing.
The collected data represents traditional bibliographic metadata, user-generated
tags and reviews and promotional texts and reviews from publishers and
professional reviewers. In this year’s experiments we designed two search task
categories, which were set to represent two different stages of work task
processes. In addition we let the users create a task of their own, which is used
as a control task. In the paper we describe the methods used for data collection
and the tasks performed by the participants.

1 Introduction

The INEX interactive track (iTrack) is a cooperative research effort run as part of the
INEX Initiative for the Evaluation of XML retrieval [1]. The overall goal of INEX is
to experiment with the potential of using XML to retrieve relevant parts of
documents. In recent years, this has been done through the provision of a test
collection of XML-marked Wikipedia articles. The main body of work within the
INEX community has been the development and testing of retrieval algorithms.
Interactive information retrieval (IIR) [2] aims at investigating the relationship
between end users of information retrieval systems and the systems they use. This aim
is approached partly through the development and testing of interactive features in the
IR systems and partly through research on user behavior in IR systems. In the INEX
iTrack the focus over the years has been on how end users react to and exploit the
potential of IR systems that facilitate the access to parts of documents in addition to
the full documents.

The INEX interactive track was run for the first time in 2004, in the first two years
the collection consisted of journal articles from IEEE computer science journals [3,
4]. In 2006/7 [5] and 2008 [6] the Wikipedia corpus was used. In 2009 [7] the iTrack
switched to a collection consisting of book metadata compiled from the bookstore
Amazon and the social cataloguing application LibraryThing.

228 N. Pharo et al.

Throughout the years the design of the iTrack experiments has been quite similar:

• a common subject recruiting procedure
• a common set of user tasks and data collection instruments such as interview

guides and questionnaires
• a common logging procedure for user/system interaction
• an understanding that collected data should be made available to all

participants for analysis

In this way the participating institutions have gained access to a rich and
comparable set of data on user background and user behavior, with a relatively small
investment of time and effort. The data collected has been subjected to both
qualitative and quantitative analysis, resulting in a number of papers and conference
presentations ([8], [9], [10], [11], [12], [13], [14], [15]).

In 2009, it was felt that although the "common effort" quality of the previous years
was valuable and still held potential as an efficient way of collecting user behavior
data, the Wikipedia collection had exhausted its potential as a source for studies of
user interaction with XML-coded documents. It was therefore decided to base the
experiments on a new data collection with richer structure and more semantic markup
than had previously been available. The collection was based on a crawl of 2.7
million records from the book database of the online bookseller Amazon.com,
consolidated with corresponding bibliographic records from the cooperative book
cataloguing tool LibraryThing. A sub-set of the same collection was used in this
year’s experiments, with a change to a new IR system, of which two alternative
versions were made available (a more specific description of the system and
collection is given below). The records present book descriptions on a number of
levels: formalized author, title and publisher data; subject descriptions and user tags;
book cover images; full text reviews and content descriptions. New this year is that
more emphasis is given to the distinction between publisher data and user-generated
data. The two systems differ in that it is not possible to query the reviews nor the
book abstracts in one of the two versions. The database was chosen with the intention
to enable investigation of research questions concerning, for instance

• What is the basis for judgments on relevance in a richly structured and
diverse material? What fields / how much descriptive text do users make use
of / chose to see to be able to judge relevance?

• How do users understand and make use of structure (e.g. representing
different levels of description, from highly formalized bibliographic data to
free text with varying degrees of authority) in their search development?

• How do users construct and change their queries during search (sources of
terms, use and understanding of tags, query development strategies ..)?

• How do users’ search strategies differ at different stages of their work task
processes?

2 Tasks

For the 2010 iTrack the experiment was designed with two categories of tasks
constructed by the track organizers, from each of which the searchers were instructed

 Overview of the INEX 2010 Interactive Track 229

to select one of three alternative search topics. In addition the searchers were invited
to perform one semi-self-generated task, which would function as a control task. The
two task categories were designed to be presented in contexts that reflect two different
stages of a work task process [16]. The theory underlying our choice of tasks is that
searchers at an early stage in the process will be in a more explorative and problem-
oriented mode, whereas at a later stage they will be focused towards more specific
data collection.

The first set of tasks was designed to let searchers use a broad selection of
metadata, in particular combining topical searches with the use of review data. The
tasks were thus designed to inspire users to create “polyrepresentative” [17] search
strategies, i.e. to use explorative search strategies, which should give us data on query
development, metadata type preference and navigation patterns.

At the second stage we have attempted to simulate searchers that are in a rather
mechanistic data gathering mode. The tasks have also been designed to focus on non-
topical characteristics of the books. Information should typically be found in
publisher's texts and possibly in user-provided tags.

The self-selected task was intended to function as a “control” task for comparison
with the performance of two others.

The task groups are introduced in the following way:

Task Group 1: The Explorative Tasks

You are at an early stage of working on an assignment, and have decided to start
exploring the literature of your topic. Your initial idea has led to one of the following
three research needs:

1. Find trustworthy books discussing the conspiracy theories which developed
after the 9/11 terrorist attacks in New York.

2. Find controversial books discussing the climate change and whether it is
man-made or not.

3. Find highly acclaimed novels that treat issues related to racial discrimination.

Task Group 2: The Data Gathering Tasks

You are in a data gathering stage of an assignment and need to collect a series of
books for further analysis. This has led to one of the following three research needs:

4. Find novels that won the Nobel Prize during the 1990's.
5. Find bestseller crime novels by female authors.
6. Find biographies on athletes active in the 1990's.

The Semi Self-selected Task

7. Try to find books about a specific topic or of a certain type, but do not look
for a specific title you already know.

230 N. Pharo et al.

3 Participating Groups

3 research groups participated in this year’s track: Oslo University College,
University of Duisburg-Essen, and University of Glasgow. Data from a total of 147
sessions performed by 49 test subjects were collected from October 2010 to January
2011. The participation was compensated for some participant with a EUR 12
Amazon voucher.

4 Research Design

4.1 Search System

The experiments were conducted on a Java-based retrieval system built within the
ezDL framework1, which resides on a server at and is maintained by the University of
Duisburg-Essen. The collection was indexed with Apache Solr 1.4, which is based on
Apache Lucene. Lucene applies a variation of the vector space retrieval model. The
basis of the search system is similar to the interfaces used for previous iTracks, but
the interface has been modified extensively to accommodate the new data set, and a
set of new functionalities have been developed. Two versions (A and B) were
developed for the experiments.

Fig. 1. The search system interface

1 http://ezdl.de, http://www.is.inf.uni-due.de/projects/ezdl/

 Overview of the INEX 2010 Interactive Track 231

Figure 1 shows the interface of the system (A version). The main features available
to the user are:

• The query interface provides a Google-like query field as well as
additional query fields for title, author, year, abstract and reviews. When a
search term is entered, the searcher can choose if he wants to search also
in the reviews.

• The system can order the search results according to “relevance” (which
books the system considers to be most relevant to your search terms),
“year” (publication year of the book), or “average rating” (in the cases
where quality ratings from readers were available).

• The system will show results twenty titles at a time, with features to assist
in moving further forwards or backwards in the result list.

• A double click on an item in the result list will show the book details in
the “Details” window.

• If the book has been reviewed, the reviews can be seen by clicking the
“Reviews” tab at the bottom of this window. Each review shows the title,
the rating, the date and the helpfulness rating. A simple click on a review
extends the review by the full review text

• The users are instructed to determine the relevance of any examined book,
as “Relevant”, “Partially relevant” or “Not relevant”, by clicking markers
at the bottom of the screen. Any book decided to constitute part of the
answer to the search task can be moved to a result basket by clicking the
“Add to basket” button next to the relevance buttons.

• A “Query history” button in the right of the screen displays the query
terms used so far in the current search session. A single click sets a query
to the search tool. A double-click also executes this query

• A line of yellow dots above an item in the result list is used to indicate the
system’s estimate of how closely related to the query the item is
considered to be.

• Query terms are highlighted in the result list and the detail tool.

The B version of the search system did not allow the user to search in reviews or
abstracts, i.e. no query fields for abstract and reviews were available to the user.

4.2 Document Corpus

The collection contains metadata of 2 780 300 English-language books. The data has
been crawled from the online bookstore Amazon and the social cataloging web site
LibraryThing in February and March 2009 by the University of Duisburg-Essen. The
MySQL database containing the crawled data has a size of about 190 GB.. Several
millions of customer reviews were crawled. For this year’s run of the track we
cleaned up the data by removing all records that do not have an image of the book
cover. This was thought to be a good heuristic for removing records that only have
very sparse data. After the clean-up, metadata from approximately 1.5 million books
remained in the database.

The records present book descriptions on a number of levels: formalized author,
title and other bibliographic data; controlled subject descriptions and user-provided

232 N. Pharo et al.

content-descriptive tags; book cover images; full text reviews and publisher-supplied
content descriptions. The following listing shows what items has been crawled from
either Amazon or LibraryThing:

Amazon
ISBN, title, binding, label, list price, number of pages, publisher, dimensions, reading
level, release date, publication date, edition, Dewey classification, title page images,
creators, similar products, height, width, length, weight, reviews (rating, author
id, total votes, helpful votes, date, summary, content) editorial reviews (source,
content).

LibraryThing
Tags (including occurrence frequency), blurbs, dedications, epigraphs, first words,
last words, quotations, series, awards, browse nodes, characters, places, subjects.

4.3 Online Questionnaires

During the course of the experiment, the system presented the searchers with online
questionnaires to support the analysis of the log data. The searchers were given a pre-
experiment questionnaire, with demographic questions such as searchers’ age,
education and experience in information searching in general and in searching and
buying books online. Each search task was preceded with a pre-task questionnaire,
which concerned searchers’ perceptions of the difficulty of the search task, their
familiarity with the topic etc. After each task, the searcher was asked to fill out a post-
task questionnaire. The intention of the post-task questionnaire was to learn about the
searchers’ use of and their opinion on various features of the search system, in
relation to the just completed task. Each experiment sessions were closed with a post-
experiment questionnaire, which elicited the searchers’ general opinion of the search
system.

4.4 Relevance Assessments

The searchers were instructed to indicate the relevance of the items in the result
list, using a three-part relevance scale of “relevant”, “partly relevant” and “not
relevant”.

4.5 “Shopping” Basket

To simulate the purchase of relevant books the system provides a shopping basket
feature in which searchers were asked to add books they would have purchased for
solving the task. Books can be added and removed from the basket.

4.6 Logging

All search sessions were logged and saved to a database. The logs register and time
stamp the events in the session and the actions performed by the searcher, as well as
the responses from the system.

 Overview of the INEX 2010 Interactive Track 233

5 Experimental Procedure

The experimental procedure for each searcher is outlined below.

1. When recruiting searchers for the experiment, the experimenter gives the
searchers the instructions for the self-selected task.

2. Experimenter briefs the searcher, and explains format of study. The searcher
reads and signs the Consent Form.

3. The experimenter logs the searchers into the system. This presents the
searcher with the task assignments and the questionnaire. The experimenter
hands out and explains the User guidelines document. It is important to take
good time to demonstrate and explain how the system works. A tutorial of
the system with a training task is provided.

4. The experimenter answers questions from user.
5. The searcher selects his/her tasks from each of the two categories. In

addition the self-selected task is input into the appropriate form. Tasks are
rotated by the system, thus any of the three tasks may be the first to be
solved by the searcher.

6. The searcher answers the Pre-experiment questionnaire provided by the
system.

7. The searcher answers the Pre-task questionnaire provided by the system.
8. The task is started by clicking the link to the IR system. Each task has a

duration of 15 minutes, at which point the system will tell the user time has
run out. The IR system is closed by clicking the “End task” button.

9. The searcher answers the Post-task questionnaire provided by the system.
10. Steps 6-9 repeated for the two other tasks.
11. The searcher answers the Post-experiment questionnaire provided by the

system.
12. At the end of the evaluation session the user presses the “Finish” button in

the evaluation/questionnaire system to store his data into the database.

6 Results and Future Plans

Table 1 shows the distribution of systems and tasks. As can be seen very few
searchers chose task 4 (Nobel Prize winning novels), the other tasks were fairly
evenly distributed. For some unknown reason one searcher performed two tasks in
system A and one task in system B, although our distribution system was
programmed to allocate three system B task for this user. This explains the system
distribution being slightly skewed.

We are currently analyzing our data, which will be presented in forthcoming
conference and journal papers. A primary focus of the analysis will be searchers’
choice of sources of information for the completion of the tasks. Amongst the issues
that we plan to look at is the effect of searchers’ topic knowledge and the influence of
task types.

234 N. Pharo et al.

Table 1. Distribution of systems and tasks

Task
1 2 3 4 5 6 7 Total

A 14 10 2 6 8 11 26 77 System

B 11 10 2 13 5 6 23 70

Total 25 20 4 19 13 17 49 147

References

[1] Malik, S., Trotman, A., Lalmas, M., Fuhr, N.: Overview of INEX 2006. In: Fuhr, N.,
Lalmas, M., Trotman, A. (eds.) INEX 2006. LNCS, vol. 4518, pp. 1–11. Springer,
Heidelberg (2007)

[2] Ruthven, I.: Interactive Information Retrieval. Annual Review of Information Science and
Technology 42, 43–91 (2008)

[3] Tombros, A., Larsen, B., Malik, S.: The Interactive Track at INEX 2004. In: Fuhr, N.,
Lalmas, M., Malik, S., Szlávik, Z. (eds.) INEX 2004. LNCS, vol. 3493, pp. 410–423.
Springer, Heidelberg (2005)

[4] Larsen, B., Malik, S., Tombros, A.: The Interactive Track at INEX 2005. In: Fuhr, N.,
Lalmas, M., Malik, S., Kazai, G. (eds.) INEX 2005. LNCS, vol. 3977, pp. 398–410.
Springer, Heidelberg (2006)

[5] Malik, S., Tombros, A., Larsen, B.: The Interactive Track at INEX 2006. In: Fuhr, N.,
Lalmas, M., Trotman, A. (eds.) INEX 2006. LNCS, vol. 4518, pp. 387–399. Springer,
Heidelberg (2007)

[6] Pharo, N., Nordlie, R., Fachry, K.N.: Overview of the INEX 2008 Interactive Track. In:
Geva, S., Kamps, J., Trotman, A. (eds.) INEX 2008. LNCS, vol. 5631, pp. 300–313.
Springer, Heidelberg (2009)

[7] Pharo, N., Nordlie, R., Fuhr, N., Beckers, T., Fachry, K.N.: Overview of the INEX 2009
Interactive Track. In: Geva, S., Kamps, J., Trotman, A. (eds.) INEX 2009. LNCS,
vol. 6203, pp. 303–311. Springer, Heidelberg (2010)

[8] Pharo, N., Nordlie, R.: Context Matters: An Analysis of Assessments of XML Documents.
In: Crestani, F., Ruthven, I. (eds.) CoLIS 2005. LNCS, vol. 3507, pp. 238–248. Springer,
Heidelberg (2005)

[9] Hammer-Aebi, B., Christensen, K. W., Lund, H., Larsen, B.: Users, structured documents
and overlap: interactive searching of elements and the influence of context on search
behaviour. In: Ruthven, I. et al. (eds.) Proceedings of Information Interaction in Context :
International Symposium on Information Interaction in Context : IIIiX 2006, Copenhagen,
Denmark, October 18-20, pp. 80-94, Royal School of Library and Information Science
(2006)

[10] Pehcevski, J.: Relevance in XML retrieval: the user perspective. In: Trotman, A., Geva, S.
(eds.) Proceedings of the SIGIR 2006 Workshop on XML Element Retrieval
Methodology: Held in Seattle, Washington, USA, August 10, pp. 35–42. Department of
Computer Science, University of Otago, Dunedin, New Zealand (2006)

 Overview of the INEX 2010 Interactive Track 235

[11] Malik, S., Klas, C.-P., Fuhr, N., Larsen, B., Tombros, A.: Designing a user interface for
interactive retrieval of structured documents: lessons learned from the INEX interactive
track? In: Gonzalo, J., Thanos, C., Verdejo, M.F., Carrasco, R.C. (eds.) ECDL 2006.
LNCS, vol. 4172, pp. 291–302. Springer, Heidelberg (2006)

[12] Kim, H., Son, H.: Users Interaction with the Hierarchically Structured Presentation in
XML Document Retrieval. In: Fuhr, N., Lalmas, M., Malik, S., Kazai, G. (eds.) INEX
2005. LNCS, vol. 3977, pp. 422–431. Springer, Heidelberg (2006)

[13] Kazai, G., Trotman, A.: Users’ perspectives on the Usefulness of Structure for XML
Information Retrieval. In: Dominich, S., Kiss, F. (eds.) Proceedings of the 1st
International Conference on the Theory of Information Retrieval, pp. 247–260.
Foundation for Information Society, Budapest (2007)

[14] Larsen, B., Malik, S., Tombros, A.: A Comparison of Interactive and Ad-Hoc Relevance
Assessments. In: Fuhr, N., Kamps, J., Lalmas, M., Trotman, A. (eds.) INEX 2007. LNCS,
vol. 4862, pp. 348–358. Springer, Heidelberg (2008)

[15] Pharo, N.: The effect of granularity and order in XML element retrieval. Information
Processing and Management 44(5), 1732–1740 (2008)

[16] Kuhlthau, C.C.: Seeking meaning: a process approach to library and information services,
2nd edn. Libraries Unlimited, Westport (2004)

[17] Larsen, B., Ingwersen, P., Kekäläinen, J.: The Polyrepresentation continuum in IR. In:
Ruthven, I., et al. (eds.) Information Interaction in Context: International Symposium on
Information Interaction in Context, IIiX 2006, pp. 148–162. ACM Press, New York
(2006)

[18] Fuhr, N., Klas, C.-P., Schaefer, A., Mutschke, P.: Daffodil: An integrated desktop for
supporting high-level search activities in federated digital libraries. In: Agosti, M.,
Thanos, C. (eds.) ECDL 2002. LNCS, vol. 2458, pp. 597–612. Springer, Heidelberg
(2002)

Using Eye-Tracking for the Evaluation of

Interactive Information Retrieval

Thomas Beckers and Dennis Korbar

Universität Duisburg-Essen
Department of Computer Science and Applied Cognitive Science

Information Engineering
Duisburg, Germany

{tbeckers,korbar}@is.inf.uni-due.de

Abstract. In this paper we present the INEX 2010 Interactive Track
experiments that have been performed with eye-tracking in addition to
the other collected data (system logs and questionnaires). We present
our tool AOILog for recording Areas of Interest (AOI) data for dynamic
user interfaces. Finally, we show how these eye-tracking and AOI data
could be used for further analysis of the user interaction with the search
system.

1 Introduction

In this year’s run of the Interactive Track (iTrack) we wanted to investigate how
users interact with an integrated interactive search system. The working tasks
do not only rely on the classical topic aspect but also on other aspects such as
book reviews or structure information. In addition to the standard experiments
(see [1] for more detailed explanations of the experiment design and the data
collection) in the 2010 run of the iTrack, we additionally used an eye-tracking
system to record the user’s gaze data while interacting with the search system.

Our main research goals are to check the assumptions of interactive IR models
and to find out how users interact with an integrated search system.

2 System Description

The search system (see Figure 1) was developed at the University of Duisburg-
Essen. It is based on the digital library system ezDL1. Pharo et al. provide a
more detailed explanation (see [1]).

The search tool offers a Google-like search field as well as advanced search
fields for title, author, year, abstract and reviews (depends on the system version,
see [1]). A combo box allows the user to search also in reviews with the Google-
like search field. Below this query panel the user can select fields for the sorting
of the results. Furthermore, the user can choose the display style of the result

1 Live system: http://www.ezdl.de/
Developer site: http://www.is.inf.uni-due.de/projects/ezdl/

S. Geva et al. (Eds.): INEX 2010, LNCS 6932, pp. 236–240, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.ezdl.de/
http://www.is.inf.uni-due.de/projects/ezdl/

Using Eye-Tracking for the Evaluation of Interactive Information Retrieval 237

list. The lower half of the search tool contains the result list and the result page
navigation buttons.

A double-click on a result item shows book details in the detail tool. Users
can indicate the relevance of an examined book as either relevant, partially rel-
evant, or not relevant, by clicking markers at the bottom of the tool. A second
tab shows reviews of the selected book. Initially the title, author, rating, date
and the utility rating of the review is shown. By clicking on a review, the actual
review text is added to the review.

Users can mark any book as part of the answer to the search task by moving
it to the basket tool. This can be performed either via drag-and-drop or by
clicking the add to basket button next to the relevance buttons.

A history of performed search queries is provided by the query history tool.
Finally, the task tool shows the current working task.

Fig. 1. The search system interface (blue boxes: tools mentioned in the description in
section 2)

3 Eye-Tracking for Interactive Information Retrieval
Systems

In addition to the questionnaires and system log data we also used an eye-
tracking system2 to record the user’s eye gaze data.

The search system provides a multi-panel layout that presents a lot of infor-
mation to the user. The user does not need to explicitly interact with the system
2 SMI RED: http://www.smivision.com/en/gaze-and-eye-tracking-systems/

products/red-red250-red-500.html

http://www.smivision.com/en/gaze-and-eye-tracking-systems/products/red-red250-red-500.html
http://www.smivision.com/en/gaze-and-eye-tracking-systems/products/red-red250-red-500.html

238 T. Beckers and D. Korbar

to get certain information. Thus, system logs and questionnaires are not suffi-
cient since they can only capture explicit interaction of the user with the search
system (e.g. clicking on a button or selecting a tab).

For analysing the eye-tracking data, the user interface of the system (see
Figure 1) was divided into so called Areas of Interests (AOIs) (see Figure 2).
AOIs define larger and logically connected gaze areas. These areas are used to
capture not only fixations, but also more peripheral perceptions. Since some of
the tools in the search system are on top of other tools and the position of user
interface components changes dynamically, it is necessary to record the visibility
information of tools to create dynamic AOIs automatically. The manual creation
of AOIs would take too much time, thus it is generally not applicable in practice,
especially when trying to analyze very dynamic components.

Biedert et al. capture gaze data for elements in HTML pages to provide gaze-
aware text in web browsers [2]. For the ezDL desktop client a browser-based
solution would not be applicable. We developed a framework called AOILog
which automatically keeps track of position, visibility and size of registered Java
Swing components, thus enabling us to consider even small and very dynamic
areas of interest, such as result items in a scrollable list widget. Also included in
the AOILog framework is a small converter application which will convert our
AOI XML format into the proprietary SMI AOI format. This will enable us to
use the recorded data in the statistical analysis software BeGaze which is part
of SMI’s software suite. In order to use our framework with eye tracking devices
by other manufacturers, one only has to implement an appropriate converter,
the logging functionality on Java Swing based applications can be used out of
the box.

Figure 2 shows the AOIs of the search interface. We defined the following
AOIs:
– tools (search, details, task, query history)
– query panel and query fields
– search controls and result scrolling
– result list
– parts of the details
– reviews and review sorting

With these dynamic AOIs it will be possible for future analyses to investigate
the use of tools and book details as well as reviews in general by the users.

4 A Model for Interactive Information Retrieval

In 2010 we started a new project called HIIR (Highly Interactive Information
Retrieval)3 aiming to create an interactive information retrieval system based
on efficient retrieval algorithms combined with a theoretic model for interac-
tive IR, the IIR-PRP (Interactive Information Retrieval Probability Ranking
Principle)[3]. The IIR-PRP tries to offer decision lists and information based on

3 http://www.is.inf.uni-due.de/projects/hiir/index.html.en

http://www.is.inf.uni-due.de/projects/hiir/index.html.en

Using Eye-Tracking for the Evaluation of Interactive Information Retrieval 239

Fig. 2. Areas of Interest (screenshot from BeGaze analysis software)

a cost/benefit ratio. The basic idea is that users move from situation to situa-
tion. In every situation a list of choices is presented to the user, s/he then decides
about each of these choices sequentially. Upon the first positive decision the user
will move to a new situation.

In order to use the IIR-PRP as a model to implement interactive IR systems,
its assumptions have to be confirmed. Furthermore we will have to measure
some of its constants in order to be able to apply the model’s ranking method.
As we stated above, the IIR-PRP tries to sort available choices by use of a
cost/benefit ratio. In order to apply the model to interactive IR systems we
first have to measure the user’s effort for evaluating certain types of choices.
By use of traditional evaluation methods, we would not be able to measure the
time a user spends on evaluating a certain choice as there are always multiple
choices available. By logging the time between two choices we would not be
able to determine how much of this time has been spend to evaluate each of
the available choices. Using an eye-tracker in conjunction with the AOI logging
framework described above will enable us to measure the time a user spends on
evaluating the offered choices. We will be able to measure exactly how much
time a user spends gazing upon a certain available choice.

Its implementation in the current INEX 2010 iTrack search system will pro-
vide us with a first indication about the validity of the IIR-PRP’s assumption
concerning user behaviour while scanning a list of choices. In addition we might
be able to determine if there is a connection between a result item’s textual
length and the effort to evaluate that item. We will also try to analyze the effort
to evaluate other objects provided by the search system (e.g. review items). This

240 T. Beckers and D. Korbar

might enable us to create a first measurement to calculate the expected effort
for a given choice.

5 User Study @ iTrack 2010

For the 2010 run of the iTrack we recruited 24 participants for experiments
with the additional eye-tracking support. The participation was compensated
with an Amazon 12 EUR voucher. The experiments have been performed in our
eye-tracking laboratory from November 2010 until December 2010. We plan to
perform the analysis of the experiments later this year.

6 Conclusion and Outlook

We presented how eye-tracking data can be used for evaluation of interactive
information retrieval systems.

We plan to analyze the collected data (questionnaires, system logs and eye-
tracking data) to find out how users interact with interactive search systems.
Our framework AOILog will be extended and included into ezDL. Furthermore
it is planned to develop tools to make the analysis of the eye-tracking data and
the linkage to the system logs easier.

References

1. Pharo, N., Beckers, T., Nordlie, R., Fuhr, N.: The INEX 2010 Interactive Track:
An overview. In: Geva, S., et al. (eds.) INEX 2010. LNCS, vol. 6932, pp. 227–235.
Springer, Heidelberg (2010)

2. Biedert, R., Buscher, G., Schwarz, S., Möller, M., Dengel, A., Lottermann, T.: The
Text 2.0 framework - writing web-based gaze-controlled realtime applications quickly
and easily. In: Proceedings of the International Workshop on Eye Gaze in Intelligent
Human Machine Interaction, EGIHMI (2010)

3. Fuhr, N.: A probability ranking principle for interactive information retrieval. In-
formation Retrieval 11(3), 251–265 (2008)

S. Geva et al. (Eds.): INEX 2010, LNCS 6932, pp. 241–249, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Overview of the INEX 2010 Link the Wiki Track

Andrew Trotman1, David Alexander1, and Shlomo Geva2

1 Department of Computer Science
University of Otago

Dunedin
New Zealand

2 Faculty of Science and Technology
Queensland University of Technology

Brisbane, Australia

Abstract. The INEX 2010 Link-the-Wiki track examined link-discovery in the
Te Ara collection, a previously unlinked document collection. Te Ara is
structured more a digital cultural history than as a set of entities. With no links
and no automatic entity identification, previous Link-the-Wiki algorithms could
not be used. Assessment was also necessarily manual. In total 29 runs were
submitted by 2 institutes. 70 topics were assessed, but only 52 had relevant
target documents and only 45 had relevant links in the pool. This suggests that
the pool was not diverse enough. The best performing run had a MAP of less
than 0.1 suggesting that the algorithms tested in 2010 were not very effective.

1 Introduction and Motivation

Keeping a rich hypermedia document collection such as the Wikipedia up-to-date is
problematic. Each time a new document is added new links from that document into
the collection are needed (and vice versa). Each time a document is deleted links to
that document must be deleted. If a document changes then the links must be updated.
This served as the motivation for the Link-the-Wiki track in 2007.

Deletion of a document is a simple maintenance problem – simply remove link
from documents that refer to the document being deleted. Update is analogous to
deletion then reinsertion. Consequently the entire link-the-wiki problem can be
examined from the perspective of document insertion. In fact, this is the approach
taken by the track from 2007-2009. Choose a set of documents from within the
collection; remove them from the collection; then measure the efficacy of automatic
link discovery algorithms on those documents as if each were a new addition to the
collection. These topic-documents were referred to as orphans.

As early as 2007 two effective algorithms were seen, Geva’s algorithm [1] and
Itakura’s algorithm [2].

Geva’s algorithm builds an index of titles of documents in the collection and
searches for those titles in the topic-document. The algorithm is effective in the
Wikipedia because Wikipedia documents are about entities and their names are
essentially canonical and if they appear in the text they are probably accurate.

242 A. Trotman, D. Alexander, and S. Geva

Itakura’s algorithm builds an index of links in the collection and orders these on
the proportion of times the anchor-text seen as a link to the number of times it is seen
as a phrase anywhere in the collection. This is essentially the strength of the anchor-
text as an anchor and the most likely target. The algorithms has proven problematic to
implement –several implementations were seen at INEX 2009 but Trotman’s 2008
implementation remains the highest performing [3].

In 2007 the performance of algorithms was measured against the links that were in
the collection before the document was orphaned. This was the same approach taken
by others (for example Milne & Witten [5]). Results from evaluation in this way show
extremely high performance. Otago, for example, achieved a MAP score of 0.734.
Milne & Witten [5] see similar such scores using their machine learning approach.

In 2008 and 2009 TREC-style manual assessment was performed. Runs were
pooled and manually assessed (to completion) for accuracy. As a twist on the
experiment the links present in the Wikipedia itself were added to the pools. The
evaluation showed that Geva’s algorithm, Itakura’s algorithm and the Wikipedia were
performing comparably and that MAP scores in previous years had been inflated by
non-relevant links present in Wikipedia articles. It is not known which links those are
or why there are there, but it has been speculated that the links might themselves be
put in by bots using similar algorithms to those of Milne & Witten, Geva, and Itakira.

During the running of the track the organizers became aware of an alternative link
discovery scenario. The New Zealand Ministry for Culture and Heritage has an
encyclopedia-like collection (Te Ara) that when complete “will be a comprehensive
guide to the country’s peoples, natural environment, history, culture, economy,
institutions and society”. It does not contain links between articles.

Linking Te Ara is more complex than linking the Wikipedia for many reasons. The
articles are often digital narratives and in being so do not represent entities – the
controlled vocabulary of the Wikipedia is not present. Geva’s title-matching
algorithm is unlikely to be effective. There are no links in the collection and so the
machine learning algorithms of Milne & Witten[5] and of Itakura & Clarke [2] can’t
be used.

2 Te Ara Test Set

The document collection used in 2010 was the 2010 dump of Te Ara. It is a single
48MB XML file consisting of 36,715 documents. The task was to link each and every
document. As such the topic set was the document collection itself.

After runs were submitted a set of documents were chosen for manual assessment.
First, the collection was ordered on the number of links in each document. This was
then divided into 10 deciles. Finally, one work-set was built by randomly selecting
one document from each decile. Seven such (non-ovelapping) work sets were
assessed to completion resulting in a total of 70 assessed documents.

3 Runs

In total 29 runs were submitted by 2 institutes. QUT submitted 5 runs and Otago
submitted 24 runs.

 Overview of the INEX 2010 Link the Wiki Track 243

3.1 Submission Format

Results were submitted in the 2009 Link-the-Wiki Te Ara format, except that certain
elements and attributes were made optional:

• The root element, <inexltw-submission>, had attributes for the participant's
numeric ID, the run ID and the task (LTeAra).

• The <details> element give information about the machine on which the results
were produced, and how long it took to produce them. This element was optional.

• The <description> gave an explanation of the linking algorithm.
• The <collections> element contained a list of document collections used in the run.
• Each topic was in a <topic> element which contained an <anchor> element for

each anchor-text.
• One or more <tobep> elements, within each <anchor> element, gave the offset and

the target document ID for the link. If the offset was specified, the target document
ID was optional because the offsets were relative to the single XML file containing
the collection. If no offset was specified it was assumed to be the start of the
document.

• Each topic could contain up-to 50 anchors, and each anchor could contain up-to 5
BEPs (each in different target documents).

Example
An example of a submission is:
<inexltw-submission participant-id="12"
 run-id="Otago_LTeAraA2B_01"
 task="LTeAra">
 <details>
 <machine>
 <cpu>Intel Celeron</cpu>
 <speed>1.06GHz</speed>
 <cores>1</cores>
 <hyperthreads>1</hyperthreads>
 <memory>128MB</memory>
 </machine>
 <time>3.04 seconds</time>
 </details>
 <description>
 Describe the approach here, NOT in the run-id.
 </description>
 <collections>
 <collection>TeAra_2010_Collection</collection>
 </collections>
 <topic file="9638" name="Matariki - Maori New Year">
 <outgoing>

244 A. Trotman, D. Alexander, and S. Geva

 <anchor offset="7445748" length="8" name="balloons">
 <tobep offset="7952293">10151</tobep>
 <tobep offset="10553520">12991</tobep>
 <tobep offset="11686141">14270</tobep>
 <tobep offset="8016276">10208</tobep>
 <tobep offset="7226359">9363</tobep>
 </anchor>
 </outgoing>
 </topic>
</inexltw-submission>

DTD
The DTD for the submission format was:
<!ELEMENT inexltw-submission (details, description,
collections, topic+)>
<!ATTLIST inexltw-submission
 participant-id CDATA #REQUIRED
 run-id CDATA #REQUIRED
 task (LTAra_A2B) #REQUIRED>

<!ELEMENT details (machine|time)>

<!ELEMENT machine
(cpu|speed|cores|hyperthreads|memory)>
<!ELEMENT cpu (#PCDATA)>
<!ELEMENT speed (#PCDATA)>
<!ELEMENT cores (#PCDATA)>
<!ELEMENT hyperthreads (#PCDATA)>
<!ELEMENT memory (#PCDATA)>

<!ELEMENT time (#PCDATA)>

<!ELEMENT description (#PCDATA)>

<!ELEMENT collections (collection+)>
<!ELEMENT collection (#PCDATA)>

<!ELEMENT topic (outgoing|anchor+)>
<!ATTLIST topic
 file CDATA #REQUIRED
 name CDATA #IMPLIED>

 Overview of the INEX 2010 Link the Wiki Track 245

<!ELEMENT outgoing (anchor+)>
<!ELEMENT anchor (tobep+)>
<!ATTLIST anchor
 name CDATA #IMPLIED
 offset CDATA #REQUIRED
 length CDATA #REQUIRED>

<!ELEMENT tobep (#PCDATA)>
<!ATTLIST tobep
 offset CDATA #REQUIRED>

4 Assessment Tool

A new cross-platform assessment tool was written in C/C++ using SQLite and GTK+.
This tool was written in an effort to reduce the assessment time and this increase in
the number of topics that could be assessed in a “reasonable” period of time. Of
course, the assessment of “incoming” links was not necessary in 2010 as the entire
collection was linked.

A screenshot of the 2010 assessment tools is shown in Figure 1. Brief assessing
instructions are given in the top window. On the left is source document with the
current anchor highlighted in yellow. On the right at top is the list of links from the
pool with assessed-relevant links marked in green and assessed-non-relevant links

Fig. 1. 2010 Link-the-Wiki assessment tool

246 A. Trotman, D. Alexander, and S. Geva

marked in red (un-assessed had a white background). On the right at the bottom is the
target document with the best-entry-point (BEP) marked in yellow.

Several changes were made to the assessment method. First, the assessor is shown
the target document (and BEP). If this was not relevant then all anchors to that
document must be non-relevant. This made it possible to assess several links in one
click. If the target document was relevant then the assessor was shown all anchors for
that document and asked to assess which were relevant. In this way the assessor was
simply choosing whether the given anchor was an accurate way to link the two
documents.

The 2010 assessment tool does not ask the assessor to choose a BEP in the case
were the document is relevant but the BEP was badly placed. There were several
reasons for this decision, the strongest of which was that the results from the INEX ad
hoc track BEP experiments show that BEPs are usually at (or very close to) the start
of the given document (311.5 characters in 2009 [4]); but also because the pool was
(supposed to be) assessed to completion and so the usefulness of the BEP could be
determined by the assessor.

5 Metrics

As is the informal convention at INEX, the metrics for the Link-the-Wiki track in
2010 were not published before the runs were submitted. As is also the informal
convention, the metric changed in 2010.

In a Link-the-Wiki run it is possible (and correct) to identify more than one anchor
targeting the same document. It is also possible and correct to identify more than one
target per anchor. Consequently metrics based on recall (such as un-interpolated
Mean Average Precision (MAP)) are meaningless. If there is only one relevant target
document, but the link-discovery algorithm identifies two different anchors for that
target then what is the recall? Exactly this happens in this very document, the
reference to Itakura’s algorithm and to the paper by Itakura & Clarke are different
anchors for the same document. This also happens in the submitted runs. The runs
were, consequently, de-duplicated by taking on the highest ranking instance of a
target for a given topic and ignoring other instances of the target.

The relevance of each target was then determined using the manual assessments.
Then the score for each position in the results list was 1 if any target for that anchor
was relevant and 0 otherwise. Mean un-interpolated Average Precision is then
computed from this.

This approach gives a highly optimistic evaluation because the run has 5 trials at
each point in the results list and if any one trial is correct the run scores a relevant hit.
It is also optimistic because the anchor and BEP are not considered (if multiple BEPs
are seen in the assessments then if any-one is relevant the document is relevant). It
also guarantees that recall cannot exceed 1.

 Overview of the INEX 2010 Link the Wiki Track 247

6 Results

In total 70 topics were assessed. 18 of these had no relevant target documents in the
pool. The mean number of relevant targets per topic was 8.8 and the mean number of
non-relevant targets per topic was 274.6. Topic 2919 had the most relevant targets
(97). Figure 2 shows the distribution of the number of relevant targets documents per
topic (solid line) and the number of relevant anchor-target pairs in the pool (dotted)
ordered from most relevant targets to least. In some cases the number of relevant
targets far exceeds the number of relevant links (for example, topic 25591 has 27
relevant targets but only one relevant anchor-target pair was in the pool). In cases
where the number of relevant anchor-target pairs exceeds the number of relevant
target documents (such as topic 15765) the assessor has identified more than one
anchor as relevant to the same target document (in this case 66 relevant links to 62
relevant documents). On average there are 5.5 relevant links per document and only
11 topics have more 10 relevant links in them.

Figure 3 shows the performance of all the runs submitted to the track. The best
Otago run was Otago_LTeAraA2B_11 with a MAP of 0.0906. The best QUT run was
QUT_LTeAraA2B_DH3 with a MAP of 0.0863. In the figure the MAP of each run is
shown in brackets after the run name. As can be seen, the performance of the runs is
not comparable to the high scores seen in the link-the-wiki track in previous years.
Early precision is low and drops quickly – recall also that the evaluation is overly
optimistic because the anchors are not evaluated (it is equivalent to previous year’s
file-to-file evaluation) and that the score at each point in the results list is the best of
the 5 possible targets seen there.

Fig. 2. Relevant targets per topic

248 A. Trotman, D. Alexander, and S. Geva

Fig. 3. Precision / Recall of all submitted runs

7 Conclusions and Further Work

The INEX 2010 Link-the-Wiki track changed document collection from the
Wikipedia to Te Ara. Te Ara is a far more difficult document collection because there
are no prior links (so Itakura’s algorithms cannot be used), and the document titles are
not canonical entity names (so Geva’s algorithm cannot be used). As a consequence
of the increased difficulty the number of groups participating dropped to just two
(Otago and QUT).

In total 70 topics were manually assessed, but of those the assessors found only 52
with relevant target documents and only 45 with relevant links in the pool. This
suggests that both the pool was not diverse enough and that the algorithms tested were
not effective enough. This is echoed in the evaluation where the best scoring
optimistic MAP is less than 0.1 and the runs perform poorly at all recall points.

 Overview of the INEX 2010 Link the Wiki Track 249

Further work on Link-the-Wiki has already started at NTCIR with the crosslink
track. That track is using a multi-lingual dump of the Wikipedia to examine
algorithms that discover links from orphans in one language to targets in another
language. This interested in further link-discovery research are referred to NTCIR.

References

[1] Geva, S.: GPX: Ad-Hoc Queries and Automated Link Discovery in the Wikipedia. In:
Focused Access to XML Documents, pp. 404–416. Springer, Heidelberg (2007)

[2] Itakura, K.Y., Clarke, C.L.: University of Waterloo at INEX2007: Adhoc and Link-the-
Wiki Tracks. In: Focused Access to XML Document, pp. 417–425. Springer, Heidelberg
(2007)

[3] Jenkinson, D., Leung, K.-C., Trotman, A.: Wikisearching and Wikilinking. In: Advances
in Focused Retrieval, pp. 374–388. Springer, Heidelberg (2009)

[4] Kamps, J., Geva, S., Trotman, A.: Analysis of the INEX 2009 ad hoc track results. In:
Geva, S., Kamps, J., Trotman, A. (eds.) INEX 2009. LNCS, vol. 6203, pp. 26–48.
Springer, Heidelberg (2010)

[5] Milne, D., Witten, I.H.: Learning to link with wikipedia. In: Proceeding of the 17th ACM
Conference on Information and Knowledge Management, pp. 509–518. ACM, Napa
Valley (2008)

University of Otago at INEX 2010

Xiang-Fei Jia, David Alexander, Vaughn Wood, and Andrew Trotman

Computer Science, University of Otago, Dunedin, New Zealand

Abstract. In this paper, we describe University of Otago’s participation
in Ad Hoc, Link-the-Wiki Tracks, Efficiency and Data Centric Tracks of
INEX 2010. In the Link-the-Wiki Track, we show that the simpler rele-
vance summation method works better for producing Best Entry Points
(BEP). In the Ad Hoc Track, we discusses the effect of various stemming
algorithms. In the Efficiency Track, we compare three query pruning al-
gorithms and discusses other efficiency related issues. Finally in the Data
Centric Track, we compare the BM25 and Divergence ranking functions.

1 Introduction

In INEX 2010, University of Otago participated in the Ah Hoc, Link-the-Wiki
Tracks, the Efficiency and Data Centric Tracks. In the Link-the-Wiki Track, we
talk about how our linking algorithm works using the Te Ara collection and the
newly developed assessment tool. In the Ad Hoc Track, we show the performance
of our stemming algorithm using Genetic Algorithms and how it performs against
other stemming algorithms. In the Efficiency Track, we discusses the performance
of our three pruning algorithms; The first is the original topk (originally described
in INEX 2009), an improved version of the topk and the heapk. Finally in the
Data Centric Track, we compare the BM25 and Divergence ranking functions.

In Section 2, related work is discussed. Section 3 explains how our search
engine works. Section 4, 5, 6 and 7 talk about how we performed in the corre-
sponding Tracks. The last section provides the conclusion and future work.

2 Related Work

2.1 The Link-the-Wiki Track

The aim of the INEX Link-the-Wiki track is to develop and evaluate link rec-
ommendation algorithms for large hypertext corpora.

Before 2009, Wikipedia was the only corpus used in the Link-the-Wiki track;
the task was to link related Wikipedia documents to each other, with or without
providing specific anchor locations in the source documents. In 2009, the Te Ara
Encyclopedia of New Zealand was used alongside Wikipedia, and tasks included
producing links within each of the two corpora, and linking articles in one corpus
to articles in the other.

Work has been done on the topic of hypertext link recommendation by a
number of people both within the INEX Link-the-Wiki track and outside of

S. Geva et al. (Eds.): INEX 2010, LNCS 6932, pp. 250–268, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

University of Otago at INEX 2010 251

it. It is difficult to compare INEX-assessed algorithms with non-INEX-assessed
algorithms because the assessment methodology plays a large part in the results,
so this section will focus on algorithms from within INEX.

For Wikipedia, the two most successful link-recommendation algorithms are
due to Kelly Itakura [1] and Shlomo Geva [2].

Itakura’s algorithm chooses anchors in a new document by calculating the
probability (γ) that each phrase, if found in the already-linked part of the corpus,
would be an anchor. If γ exceeds a certain threshold (which may be based on the
length of the document), the phrase is used as an anchor. The target for the link
is chosen to be the most common target for that anchor among existing links.
The formula for γ for a given phrase P is:

γ =
number of occurrences of P in the corpus as a link

number of occurrences of P in the corpus altogether

Geva’s algorithm simply searches for occurrences of document titles in the
text of the orphan document. If such an occurrence is found, it is used as an
anchor. The target of the link is the document whose title was found.

2.2 The Ad Hoc Track

In the Ad Hoc Track, we compare the performance of our stemming algorithm
using Genetic Algorithms with other stemming algorithms.

The S Stripper consists of three rules. These rules are given in Table 1. It uses
only the first matching rule. It has improved MAP on previous INEX Ad Hoc
collections, from 2006-2009. This serves as a baseline for stemmer performance,
and is an example of a weak stemmer (It does not conflate many terms).

Table 1. S Stripper rules. The first suffix matched on the left is replaced by the suffix
on the right.

ies → y
es →
s →

The Porter stemmer [3] has improved some runs for our search engine on
previous INEX collections. It serves as an example of a strong stemmer. We use
it here as a baseline for comparing stemmer performance.

People have found ways to learn to expand queries using thesauruses genera-
tion or statistical methods. Jones [4] used clustering methods for query expan-
sion. We have been unable to find any mention of symbolic learning used for
stemming.

A similar method for improving stemming by using term similarity informa-
tion from the corpus was used by Xu and Croft [5]. Their work uses the Expected
Mutual Information Measure. Instead we have used Pointwise Mutual Informa-
tion and the Jaccard Index. These were chosen as the best out of a larger group
of measures.

252 X.-F. Jia et al.

2.3 The Efficiency Track

The following discussion of the related work is taken from our published paper
in ADCS 2010 [6].

Disk I/O involves reading query terms from a dictionary (a vocabulary of all
terms in the collection) and the corresponding postings lists for the terms. The
dictionary has a small size and can be loaded into memory at start-up. However,
due to their large size, postings are usually compressed and stored on disk.
A number of compression algorithms have been developed and compared [7,8].
Another way of reducing disk I/O is caching, either at application level or system
level [9,10]. Since the advent of 64-bit machines with vast amounts of memory,
it has become feasible to load both the dictionary and the compressed postings
into main memory, thus eliminating all disk I/O. Reading both dictionary and
postings lists into memory is the approach taken in our search engine.

The processing (decompression and similarity ranking) of postings and subse-
quent sorting of accumulators can be computationally expensive, especially when
queries contain frequent terms. Processing of these frequent terms not only takes
time, but also has little impact on the final ranking results. Postings pruning at
query time is a method to eliminate unnecessary processing of postings and thus
reduce the number of non-zero accumulators to be sorted. A number of pruning
methods have been developed and proved to be efficient and effective
[11,12,13,14,15,16]. In our previous work [16], the topk pruning algorithm partially
sorts the static array of accumulators using an optimised version of quick sort [17]
and statically prunes postings. In this paper, we present an improved topk pruning
algorithm and an new pruning algorithm based on heap data structure.

Traditionally, term postings are stored in pairs of <document number, term
frequency> pairs. However, postings should be impact ordered so that most
important postings can be processed first and the less important ones can be
pruned using pruning methods [18,14,15]. One approach is to store postings
in order of term frequency and documents with the same term frequency are
grouped together [18,14]. Each group stores the term frequency at the beginning
of the group followed by the compressed differences of the document numbers.
The format of a postings list for a term is a list of the groups in descending
order of term frequencies. Another approach is to pre-compute similarity val-
ues and use these pre-computed impact values to group documents instead of
term frequencies [15]. Pre-computed impact values are positive real numbers.
In order to better compress these numbers, they are quantised into whole num-
bers [19,15]. Three forms of quantisation method have been proposed (Left.Geom,
Uniform.Geom, Right.Geom) and each of the methods can better preserve certain
range of the original numbers [15]. In our search engine, we use pre-computed
BM25 impact values to group documents and the differences of document num-
bers in each group are compressed using Variable Byte Coding by default. We
choose to use the Uniform.Geom quantisation method for transformation of the
impact values, because the Uniform.Geom quantisation method preserves the
original distribution of the numbers, thus no decoding is required at query time.
Each impact value is quantised into an 8-bit whole number.

University of Otago at INEX 2010 253

Since only partial postings are processed in query pruning, there is no need to
decompress the whole postings lists. Skipping [12] and blocking [20] allow pseudo-
random access into encoded postings lists and only decompress the needed parts.
Further research work [21,22] represent postings in fixed number of bits, thus
allowing full random access. Our search engine partially decompress postings
list based on the worst case of the static pruning. Since we know the parameter
value of the static pruning and the biggest size of an uncompressed impact value
(1 byte), we can add these together to find the cut point for decompression.
We can simply hold decompression after that number of postings have been
decompressed.

3 System Overview

3.1 Indexer

Memory management is a challenge for fast indexing. Efficient management of
memory can substantially reduce indexing time. Our search engine has a memory
management layer above the operating system. The layer pre-allocates large
chunks of memory. When the search engine requires memory, the requests are
served from the pre-allocated pool, instead of calling system memory allocation
functions. The sacrifice is that some portion of pre-allocated memory might be
wasted. The memory layer is used both in indexing and in query evaluation. As
shown previously in [16], only a very small portion of memory is actually wasted.

The indexer uses hashing with a collision binary tree for maintaining terms.
We tried several hashing functions including Hsieh’s super fast hashing function.
By default, the indexer uses a very simple hashing function, which only hashes
the first four characters of a term and its length by referencing a pre-defined
look-up table. A simple hashing function has less computational cost, but causes
more collisions. Collisions are handled by a simple unbalanced binary tree. We
will examine the advantages of various hashing and chaining algorithms in future
work.

Postings lists can vary substantially in length. The indexer uses various sizes
of memory blocks chained together. The initial block size is 8 bytes and the
re-size factor is 1.5 for the subsequent blocks.

The indexer supports either storing term frequencies or pre-computed impact
values. A modified BM25 is used for pre-computing the impact values. This
variant does not result in negative IDF values and is defined thus:

RSVd =
∑
t∈q

log

(
N

dft

)
· (k1 + 1) tftd

k1

(
(1 − b) + b ×

(
Ld

Lavg

))
+ tftd

here, N is the total number of documents, and dft and tftd are the number of
documents containing the term t and the frequency of the term in document
d, and Ld and Lavg are the length of document d and the average length of
all documents. The empirical parameters k1 and b have been set to 0.9 and 0.4
respectively by training on the previous INEX Wikipedia collection.

254 X.-F. Jia et al.

In order to reduce the size of the inverted file, we always use 1 byte to store
term frequencies and pre-computed impact values. This limits to a maximum
value of 255. Term frequencies which have values larger than 255 are simply
truncated. Truncating term frequencies could have an impact on long documents.
But we assume long documents are rare in a collection and terms with high
frequencies in a document are more likely to be common words. Pre-computed
impact values are transformed using the Uniform.Geom quantisation method.

As shown in Figure 1, the index file has five levels of structure. In the top
level, original documents in compressed format can be stored. Storing original
documents is optional, but is required for focused retrieval.

Fig. 1. The index structures

Instead of using the pair of <document number, term frequency> for post-
ings, we group documents with the same term frequency (or the impact value)
together and store the term frequency (or the impact value) at the beginning
of each group. By grouping and impacting order documents according to term
frequencies (or impact values), during query evaluation we can easily process
documents with potential high impacts first and prune the less important doc-
uments at the end of the postings list. The difference of document ids in each
group are then stored in increasing order and each group ends with a zero.
Postings are compressed with Variable Byte coding.

The dictionary of terms is split into two parts. Terms with the same prefix
are grouped together in a term block. The common prefix (only the first four
characters) is stored in the first level of the dictionary and the remaining are
stored in the term block in the second level. The number of terms in the block is

University of Otago at INEX 2010 255

stored at the beginning of the block. The term block also stores the statistics for
the terms, including collection frequency, document frequency, offset to locate
the postings list, the length of the postings list stored on disk, the uncompressed
length of the postings list, and the position to locate the term suffix which is
stored at the end of the term block.

At the very end of the index file, the small footer stores the location of the
first level dictionary and other values for the management of the index.

3.2 Query Evaluation

At start-up, only the the first-level dictionary is loaded into memory by de-
fault. To process a query term, two disk reads have to be issued; The first reads
the second-level dictionary. Then the offset in that structure is used to locate
postings. The search engine also supports a command line option which allows
loading the whole index into memory, thus totally eliminating I/O at query time.

An array is used to store the accumulators. We used fixed point arithmetic
on the accumulators because it is faster than the floating point.

For last year INEX, we developed the topk algorithm for fast sorting of the
accumulators. It uses a special version of quick sort [17] which partially sorts
the accumulators. A command line option (lower-k) is used to specify how many
top documents to return.

Instead of explicit sorting of all the accumulators, we have developed an im-
proved version of topk. During query evaluation, it keeps track of the current top
documents and the minimum partial similarity score among the top documents.
The improved topk uses an array of pointers to keep track of top documents.
Two operations are required to maintain the top documents, i.e. update and in-
sert. If a document is in the top documents and gets updated to a new score,
the improved topk simply does nothing. If a document is not in the top k and
gets updated to a new score which is larger than the minimum score, the docu-
ment needs to be inserted into the topk. The insert operation is accomplished by
two linear scans of the array of pointers; (1) the first scan locates the document
which has the minimum score and swap the minimum document with the newly
updated document, (2) the second finds the current minimum similarity score.

Based on the topk algorithm, we have further developed a new algorithm called
heapk. It uses a minimum heap to keep track of the top documents. Instead of
using the minimum similarity score, heapk uses bit strings to define if a document
is among the top k. The heap structure is only built once which is when the
number of top slots are fully filled. If a document is in the heap and gets updated
to a new score, heapk first linearly scans the array to locate the document in
the heap and then partially updates the structure. If a document is not in the
heap and the newly updated score is larger than the minimum score (the first
pointer) in the heap, heapk partially inserts the document into the heap.

The upper-K command line option is used for static pruning of postings. It
specifies a value, which is the number of postings to be processed. Since only
part of the postings lists is processed, there is no need to decompress the whole
list. Our search engine partially decompress postings lists based on the worst

256 X.-F. Jia et al.

cast. Since we know the parameter value of upper-K and the biggest size of an
uncompressed impact value (1 byte), we can add these together to find the cut
point for decompression.

4 The Link-the-Wiki Track

In this year’s Link-the-Wiki track, the only corpus used was the Te Ara Ency-
clopedia of New Zealand. Wikipedia was abandoned as a corpus because it had
become too easy for algorithms to score highly according to the metrics used by
INEX. This is believed to be because of characteristics of Wikipedia that Te Ara
does not possess. Te Ara is therefore of interest because it presents challenges
that Wikipedia does not.

It is also of interest because its maintainers (New Zealand’s Ministry of Cul-
ture and Heritage) have asked for links to be incorporated into the official, public
version of their encyclopedia. This is an opportunity for these linking algorithms
to be tested in a real-world application.

Our participation in the Link-the-Wiki track is detailed in the rest of this
section. First, the differences between Wikipedia and Te Ara are outlined, as
well as the possible ways to develop linking algorithms for Te Ara. Then, our
own linking algorithm is explained, and its assessment results given. Finally, our
contribution to the Link-the-Wiki assessment process is explained.

4.1 Differences between Wikipedia and Te Ara

The most important difference between Wikipedia and Te Ara is that Te Ara
has no existing links. The Link-the-Wiki Track has always been to take a single
“orphan” (a document whose incoming and outgoing links have been removed)
and produce appropriate links to and from it, using the remainder of the corpus
(including any links that do not involve the orphan) as input if desired. This
meant that algorithms could statistically analyse the anchors and targets of the
existing links in the corpus, using that information to decide what kind of links
would be appropriate for the orphan document. Itakura’s algorithm (described
in Section 2) is an example of one that does so, and it has been consistently
successful on Wikipedia.

In Te Ara this is not possible. The problem is not merely the lack of links,
but that the encyclopedia was not written with links in mind. In any body of
writing there are a number of different ways to refer to a given topic, but in a
hypertext corpus such as Wikipedia, writers tend to use existing article titles as
“canonical names” to refer to the topics of those articles. The absence of this in
Te Ara renders an approach such as Geva’s algorithm less effective.

Wikipedia and Te Ara are also organised in very different ways. Te Ara is
primarily a record of New Zealand history, and the discussion of any given topic
may be spread among several articles, each of which may discuss other topics as
well. This is especially true of topics that are relevant to both the indigenous and
colonial inhabitants of New Zealand; and also topics that have been relevant over
a long period of time. In Wikipedia, even such wide-ranging topics are typically
centred around a single article.

University of Otago at INEX 2010 257

4.2 Adapting to the Differences in Te Ara

Without the possibility of using previous years’ best-performing algorithms di-
rectly on Te Ara, we were left with two options: we could either find a way
to “map” Wikipedia documents to their closest Te Ara counterparts, and then
translate Wikipedia links into Te Ara links; or we could devise a new linking
algorithm that did not rely on existing links at all.

We chose the latter option because, as discussed above, Te Ara is organised
very differently from Wikipedia, and finding a suitable mapping would have been
difficult. The algorithm we used is described below.

4.3 Algorithm

The main premise behind our linking algorithm is that Te Ara documents are
less “to-the-point” than Wikipedia documents (that is, a single Te Ara article
tends to touch on numerous related topics in order to “tell a story” of some sort),
and therefore it is important to take into account the immediate context of a
candidate anchor or entry-point, as well as the more general content of the two
documents being linked.

Three sets of files were created and indexed using our search engine (described
in Section 3). In the first, each document was contained within a separate file.
In the second, each section of each document was contained within a separate
file. The third was the same, but only included the section headings rather
than the body text of each section. In this way, we were able to vary the level of
target-document context that was taken into account when searching for possible
entry-points for a given link.

Within each source document, candidate anchors were generated. Every maxi-
mal sequence of consecutive words containing no stopwords or punctuation marks
was considered as a candidate anchor. The purpose of this was to avoid using
large portions of sentences as anchors merely because all the words appear in
the target document.

For each candidate anchor, various levels of context around the anchor (doc-
ument, paragraph, sentence, and clause) were extracted from the source docu-
ment. Each anchor context, as well as the anchor text itself, was used to query
for possible targets against whichever one of the three target file-sets provided
the level of context closest in size to the source context. If a particular document
(or section) appeared in the query results for the anchor text itself, and for at
least one of the chosen contexts, it was used as a target for that anchor. The
target was given a relevance score, which was a weighted average of the relevance
scores given by BM25 for each of the different contexts’ queries, based on our
estimate of their importance.

24 runs were produced by varying the following 4 parameters:

– Full-document anchor context Whether or not the entire source document of
an anchor was used as one of its contexts. If not, the largest level of context
was the paragraph containing the anchor.

258 X.-F. Jia et al.

– Relevance summation method How the total relevance score for a link was
added up. In one method, the relevance scores for a target, queried from all
levels of context and from the anchor itself, were simply averaged using the
predetermined weights. In the other method, the values averaged were the
squared differences between the relevance scores for each context and from
the anchor. The rationale for the second method was that if a target was
much more relevant to the anchor context than the anchor, then a nearby
anchor would probably be better than the current one.

– Relevance score contribution Whether all of the weights for the anchor con-
texts were non-zero, or just the weight for the largest context. When a con-
text has a weight of zero, it still contributes to the choice of targets for an
anchor, but not to their scores.

– Target contexts Which target contexts the anchor texts themselves were di-
rectly queried against (headings, sections or both).

4.4 Results

This section details the results of assessing the 24 runs described in Section 4.3.
Figure 2 shows the mean average precisions for the BEPs produced by each

run. Precision/Recall graphs are included in the track overview paper.
All the full document contexts runs outperformed the paragraph context runs.

This result suggests that context is important when predicting links for Te Ara,
and a generalisation of the result that context matters in Focused Retrieval in
general.

The difference squared method for summation always worked better than the
sum method, and the single relevance context worked best (in that order). This
suggests that although context is important in identifying links, the best link to
use is determined by using just one context.

The best target context to use is the heading, followed by heading and sec-
tion, then just section. This results suggests that headings are important for
identifying targets – something that was show to be the case with the Wikipedia
link-the-wiki.

4.5 Assessment Tool

Apart from submitting runs to Link-the-Wiki, we also took over the task of
maintaining the assessment tool.

Improvements have been made to the assessment tool every year. However,
it is crucial to the quality of our results that the manual assessment process is
made as easy as possible — it is difficult for assessors to produce reliable results
if they cannot understand what they are being asked, if they do not have readily
available all the information that they need to make an assessment, if they need
to perform unnecessarily repetitive tasks to make assessments, or if the tool
responds too slowly. Therefore, we decided to make further improvements.

We rewrote the assessment tool from scratch in C++ using the cross-platform
GUI library GTK+, with SQLite databases for storing assessment information.

University of Otago at INEX 2010 259

Run Context Summation Contribution Element MAP
1 Article Diff Single Heading 0.0906
2 Article Diff Single Both 0.0906
3 Article Diff Single Section 0.0868
4 Article Diff Average Heading 0.0868
5 Article Diff Average Both 0.0863
6 Article Diff Average Section 0.0768
7 Article Sum Single Heading 0.0767
8 Article Sum Single Both 0.0703
9 Article Sum Single Section 0.0700
10 Article Sum Average Heading 0.0481
11 Article Sum Average Both 0.0481
12 Article Sum Average Section 0.0136
13 Paragraph Diff Single Heading 0.0136
14 Paragraph Diff Single Both 0.0102
15 Paragraph Diff Single Section 0.0102
16 Paragraph Diff Average Heading 0.0102
17 Paragraph Diff Average Both 0.0102
18 Paragraph Sum Average Section 0.0102
19 Paragraph Sum Single Heading 0.0102
20 Paragraph Sum Single Both 0.0102
21 Paragraph Sum Single Section 0.0102
22 Paragraph Sum Average Heading 0.0102
23 Paragraph Sum Average Both 0.0102
24 Paragraph Sum Average Section 0.0102

Fig. 2. Results of the Otago runs in INEX 2010 Link-the-Wiki

This has resulted in a tool that responds to the user’s requests quickly, even for
large documents containing many links to be assessed.

We also made some changes to the layout of the GUI. The previous GUI only
showed information about one target document at a time, whereas the new one
shows a list of the titles of all target documents to be assessed, and shows the
contents of the selected target document. Rather than having every link assessed,
as was done previously, we only ask the assessor to assess links whose BEPs they
have deemed relevant (the assumption being that an anchor cannot be relevant
if its BEP is not). Figure 3 shows a screenshot of the new GUI.

As well as improving the quality of assessments in 2010, we hope that our
changes to the assessment tool will reveal further areas for improvement in 2011.
Our assessment tool collects usage statistics, the analysis of which should help
us improve the tool.

Even before analysing these statistics we have been able to identify one pos-
sible area for improvement. It became clear while doing the assessment that the
process would have been greatly sped up if “hints” had been provided to the
assessor about whether a target was likely to be relevant. As the assessment for
a particular topic progressed, the assessor could build up a list of “relevant” and

260 X.-F. Jia et al.

Fig. 3. An annotated screenshot of the 2010 assessment tool

“non-relevant” words for that topic, which would be highlighted whenever they
appeared in a candidate target document, just as the Ah Hoc tool does. The as-
sessor could ignore this if necessary, but it would help in many cases. However,
it would be very important to use such a feature carefully so as not to bias the
assessment process.

5 The Ad Hoc Track

5.1 Learning Stemmers

We previously learnt suffix rewriting stemmers using Genetic Algorithms. The
stemmer referred to as the Otago Stemmer is one created part way through this
work. Here we use it to address one problem with using assessments to learn
recall enhancing methods like stemming. Pooled collections rely on the result
lists of the participants to restrict the list of documents to assess. When we later
try to learn a recall enhancing method, finding documents which were not found
by any participant cannot be rewarded by increases in Mean Average Precision.
The goal of submitting runs with the Otago stemmer is to compare performance
with the baselines where we can add documents to the pool.

The rules of the Otago stemmer are shown in Table 2. Each rule of the stemmer
uses a measure condition to ensure the length of the word is sufficient for a suffix
to exist. This is taken from the Porter stemmer, and is an attempt to count the
number of syllables. The measure of the word must be greater than or equal to
the value for the rule. As an efficiency measure, any word to be stemmed must be
longer than 3 characters. It also partitions the rules into sections. Only the first

University of Otago at INEX 2010 261

Table 2. The Otago Stemmer. Rule sections are separated by lines.

Measure Match this Replace with this
0 shi
2 ej
4 ngen
1 i dops
4 nes sy
0 ics e
0 ii sr
0 ito ng
4 rs tie
0 q
4 al
3 in ar
0 ice s
3 ic
4 rs tie
1 s
1 f uow
0 f uow
0 q
1 s
2 que sy
0 sl anu
2 e
1 f
3 ague dz
0 ean

successful rule in a section is used. This was learnt on the INEX 2008 Wikipedia
collection.

5.2 Refining Stemmers

We sought to improve the sets of terms that stemmers conflate. Additional terms
found by the stemmer are only conflated if they are similar enough to the query
term. We found a threshold value for several measures using an adaptive grid
search on the INEX 2008 Wikipedia collection. Pointwise Mutual Information
(PMI) and the Jaccard Index were found to aid performance, and we submitted
runs using them to improve the Otago stemmer.

For both measures we used the term occurrences in documents as the proba-
bility distributions or sets to compare. For PMI, a threshold of 1.43 was found
to give the best improvement. Only terms with similarity scores greater or equal
to this were conflated. The PMI for two distributions x and y:

PMI(x, y) = log
P (x, y)

P (x)P (y)

262 X.-F. Jia et al.

The Jaccard Index used a parameter of 0.00023 and is given between two sets
of documents A and B by:

J(A, B) =
A ∩ B

A ∪ B

5.3 Experimental Results

For the INEX 2010 Ad Hoc track we submitted 7 runs. Their performance is given
in Table 3. These runs are combinations of stemmers and stemmer refinement.

The best run uses just the S Stripper. We find the Otago stemmer provides
decent performance, and Porter to hurt performance a lot. Our baseline of no
stemming occurs between the Otago and Porter stemmers.

Using PMI to improve the Otago stemmer proved successful. The Jaccard
index on the same was less so. On the S stripper the Jaccard Index was found
to harm performance excessively.

We forgot to submit one run, the PMI used on the S stripper. This run has
been performed locally and gives a slight decrease in performance to just using
the S stripper.

Table 3. Stemming runs

Rank MAP Run Name Features
47 0.3012 v_sstem S Stripper
54 0.2935 v_otago_w_pmi Otago Stemmer with PMI refinement
58 0.2898 v_ostem_w_jts Otago Stemmer with Jaccard Index refinement
59 0.2894 v_otago_stem_1 Otago Stemmer
61 0.2789 v_no_stem No Stemming
74 0.2556 v_porter Porter Stemmer

105 0.1102 v_sstem_w_jts S Stripper with Jaccard Index refinement

6 The Efficiency Track

6.1 Experiments

We conducted our experiments on a system with dual quad-core Intel Xeon
E5410 2.3 GHz, DDR2 PC5300 8 GB main memory, Seagate 7200 RPM 500 GB
hard drive, and running Linux with kernel version 2.6.30.

We conducted three sets of experiments, one for each of the topk, improved
topk, and heapk algorithms. For the sets of experiments on the original topk, we
used the same settings as our experiments conduced in INEX 2009. We want to
compare the performance of the original topk with our improved topk and heapk
algorithms.

The collection used in the INEX 2010 Efficiency Track is the INEX 2009
Wikipedia collection [23].

University of Otago at INEX 2010 263

Table 4. (a) Summary of INEX 2009 Wikipedia Collection using term frequencies as
impact values and without stemming. (b) Summary of INEX 2009 Wikipedia Collection
using pre-computed BM25 as impact values and S-Striping for stemming.

(a)

Collection Size 50.7 GB
Documents 2666190

Avg Document Length 880 words
Unique Words 11437080
Total Worlds 2347132312
Postings Size 1.2 GB

Dictionary Size 399 MB

(b)

Collection Size 50.7 GB
Documents 2666190

Avg Document Length 880 words
Unique Words 11186163
Total Worlds 2347132312
Postings Size 1.5 GB

Dictionary Size 390 MB

The collection was indexed twice, one for the original topk and one for im-
proved topk and heapk. For the original topk, term frequencies were used as
impact values, no words were stopped and stemming was not used. For the im-
proved topk and heapk, pre-computed BM25 similarity scores were used as impact
values and S-String stemming was used. Table 4a and 4b show the summary of
the document collection and statistics for the index file.

The Efficiency Track used 107 topics in INEX Ad Hoc 2010. Only title was
used for each topic. All topics allow focused, thorough and article query evalua-
tions. For the Efficiency Track, we only evaluated the topics for article Content-
Only. During query evaluation, the terms for each topic were sorted in order of
the maximum impact values of the terms.

For the sets of experiments on the improved topk and heapk, the whole index
was loaded into memory, thus no I/O was involved at query evaluation time. For
the original topk, only first-level dictionary was loaded into memory at start-up.

For the three sets of experiments, we specified lower-k parameter with k =
15, 150 and 1500 as required by the Efficiency Track. For each iteration of the
lower-k, we specified the upper-K of 10, 100, 1 000, 10 000, 100 000, 1 000 000. In
total we submitted 54 runs. The lists of run IDs and the associated lower-k and
upper-K values are shown in Table 5. Officially we submitted the wrong runs
for the heapk. The runs has been corrected and are used in this paper and the
MAiP measures are generated using the official assessment tools.

6.2 Results

This section talks about the evaluation and performance of our three sets of the
runs, obtained from the official Efficiency Track (except for the heapk).

Figure 4 shows the MAiP measures for the original topk, improved topk and
heapk. When upper-K has values of 150 and 1500, MAiP measures are much
better than the upper-K 15. In terms of lower-k, MAiP measures approach con-
stant at a value of 10 000. The best runs are 09topk-18 with a value of 0.2151,
10topk-18 with a value of 0.2304 and 10heapk-18 with a value of 0.2267 for the
three algorithms respectively.

264 X.-F. Jia et al.

Table 5. The lists of run IDs and the associated lower-k and upper-K values

Lower-k Upper-K Original Topk Improved Topk Heapk
15 10 09topk-1 10topk-1 10heapk-1
15 100 09topk-2 10topk-2 10heapk-2
15 1000 09topk-3 10topk-3 10heapk-3
15 10000 09topk-4 10topk-4 10heapk-4
15 100000 09topk-5 10topk-5 10heapk-5
15 1000000 09topk-6 10topk-6 10heapk-6
150 10 09topk-7 10topk-7 10heapk-7
150 100 09topk-8 10topk-8 10heapk-8
150 1000 09topk-9 10topk-9 10heapk-9
150 10000 09topk-10 10topk-10 10heapk-10
150 100000 09topk-11 10topk-11 10heapk-11
150 1000000 09topk-12 10topk-12 10heapk-12
1500 10 09topk-13 10topk-13 10heapk-13
1500 100 09topk-14 10topk-14 10heapk-14
1500 1000 09topk-15 10topk-15 10heapk-15
1500 10000 09topk-16 10topk-16 10heapk-16
1500 100000 09topk-17 10topk-17 10heapk-17
1500 1000000 09topk-18 10topk-18 10heapk-18

The MAiP measures are about the same for the improved topk and heapk.
The subtle differences are when documents have the same similarity scores and
the order of these documents can be different between the improved topk and
heapk.

The MAiP measures of the original topk are quite different from the other two
algorithms. Using term frequencies as impact values have better MAiP measures
when the values of lower-k and upper-K are small while pre-computed BM25
impact values have better MAiP measures when upper-K has a value larger
than 10 000.

To have a better picture of the time cost for the three sets of the runs, we
plotted the total evaluation times (including both CPU and I/O times) of all
runs in Figure 5. The total times of both the improved topk and heapk are simply
the CPU costs since the index was load into memory.

For the original topk, the total times were dominated by the I/O times. Re-
gardless of the values used for lower-k and upper-K, the same number of postings
were retrieved from disk, thus causing all runs to have the same amount of disk
I/O.

We also plotted the CPU times of the original topk since we want to compare
it with the other algorithms in terms of CPU cost. The differences of the CPU
times between the original topk and the other two algorithms are the times taken
for decompression of the postings lists and sorting of the accumulators. First,
partial decompression was used in improved topk and heapk while the original
topk did not. Second, the original topk used a special version of quick sort to

University of Otago at INEX 2010 265

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●
●

15
 −

 1
0

15
 −

 1
00

15
 −

 1
00

0

15
 −

 1
0

00
0

15
 −

 1
00

 0
00

15
 −

 1
 0

00
 0

00

15
0

−
10

15
0

−
10

0

15
0

−
10

00

15
0

−
10

 0
00

15
0

−
10

0
00

0

15
0

−
1

00
0

00
0

15
00

 −
 1

0

15
00

 −
 1

00

15
00

 −
 1

00
0

15
00

 −
 1

0
00

0

15
00

 −
 1

00
 0

00

15
00

 −
 1

 0
00

 0
00

0
0

.0
5

0
.1

0
.1

5
0

.2
0

.2
5

M
A

iP
● 09topk

10topk

10heapk

Fig. 4. MAiP measures for the original topk, improved topk and heapk

● ● ●
●

●

●

● ● ●
●

●

●

● ● ●
●

●

●

15
 −

 1
0

15
 −

 1
00

15
 −

 1
00

0

15
 −

 1
0

00
0

15
 −

 1
00

 0
00

15
 −

 1
 0

00
 0

00

15
0

−
10

15
0

−
10

0

15
0

−
10

00

15
0

−
10

 0
00

15
0

−
10

0
00

0

15
0

−
1

00
0

00
0

15
00

 −
 1

0

15
00

 −
 1

00

15
00

 −
 1

00
0

15
00

 −
 1

0
00

0

15
00

 −
 1

00
 0

00

15
00

 −
 1

 0
00

 0
00

1
0

0
2

1
0

0
4

1
0

0
6

1
0

0
8

1
0

0
1

0
1

0
0

1
2

1
0

0

M
ill

is
e

c
o

n
d

s ● 09topk (total time)

09topk (CPU Time Only)

10topk

10heapk

Fig. 5. Efficiency comparison

266 X.-F. Jia et al.

partially sort all accumulators while the improved topk and heapk only keep
track of the top documents only the final top documents got sorted.

For the original topk, the value of lower-k has no effect on the CPU cost, and
values of 10 000 or above for upper-K causes more CPU usage.

For the improved topk, it performs the best when lower-k has a value of 15
and 150. However, for the set of the runs where the value of lower-k is 1500, the
performance of the improved topk grows exponentially. This is caused by the
linearly scans of the array of pointers to insert a new document into the top k.

For the runs when lower-k has a value of 15 and 150, the heapk has a small
overhead compared with the improved topk, especially when upper-K has a large
value. Well, the heapk performs the best when both lower-k and upper-K have
large values.

7 The Data Centric Track

The collection used in the INEX 2010 Efficiency Track is the 2010 IMDB collec-
tion. The collection was indexed twice. The first index used pre-computed BM25
similarity scores as the impact values and the second used pre-computer Diver-
gence similarity scores [24] as the impact values. For both indexes, no words
were stopped and S-String stemming was used. Table 6 shows the results. With
the ranking shown as (position / total runs), the results suggest that BM25 is a
better ranking function than Divergence from Randomness for this collection, it
consistently performed better regardless of the measure. They also suggest that
BM25 whole document ranking is effective with our best run consistently in the
top 6 regardless of how it is measured. We believe that, as is already the case
in the ad hoc track, BM25 document ranking should be used as a baseline in
future years in the document centric track.

Table 6. Effectiveness measure for the Data Centric Track

Run ID MAgP MAiP MAP
DC-BM25 0.2491 (#1/14) 0.1550 (#6/29) 0.3397 (#5/29)

DC-DIVERGENCE 0.1561 (#5/14) 0.1011 (#3/29) 0.2103 (#14/29)

8 Conclusion and Future Work

8.1 The Link-the-Wiki Track

We have generated a number of runs for Te Ara. Given the inapplicability of
Itakura and Geva’s algorithms to Te Ara (see Section 4.1), we believe that this
year’s results are a step in the right direction towards a successful solution of
what is still an unsolved problem: link recommendation in a corpus that has no
existing links.

University of Otago at INEX 2010 267

8.2 The Ad Hoc Track

We find that the S stripper is hard to beat. However it is possible to use machine
learning to create a good stemmer. Furthermore such stemmers seem amenable
to improvement using collection statistics. Of those PMI is a good measure to
use. It was also found to be the best locally. This also confirms previous findings
that Porter can have a variable effect on performance. Improvement using term
similarity can also harm performance. We had seen this before when finding the
parameters to use, so perhaps that might have been the consequence for the
Jaccard Index. Of course, this refinement can only prevent terms from being
stemmed together, so using it on such a weak stemmer would be expected to not
do so well.

8.3 The Efficiency Track

We compared three of our query pruning algorithms. The original topk uses
a special version of quick sort to sort all accumulators and return the top k
documents. Instead of explicitly sorting all accumulators, the improved topk
keeps tracks of the current top k documents and finally the top k documents
are sorted and returned. Based on the improved topk, we have developed heapk
which essentially is a minimum heap structure. The heapk algorithm has small
overhead compared with the improved topk when the values of lower-k and
upper-K are small. However, the heapk outperforms the improve topk for large
values of lower-k and upper-K.

References

1. Huang, D., Xu, Y., Trotman, A., Geva, S.: Overview of inex 2007 link the wiki
track. In: Fuhr, N., Kamps, J., Lalmas, M., Trotman, A. (eds.) INEX 2007. LNCS,
vol. 4862, pp. 373–387. Springer, Heidelberg (2008)

2. Geva, S.: Gpx: Ad-hoc queries and automated link discovery in the wikipedia. In:
Fuhr, N., Kamps, J., Lalmas, M., Trotman, A. (eds.) INEX 2007. LNCS, vol. 4862,
pp. 404–416. Springer, Heidelberg (2008)

3. Porter, M.: An algorithm for suffix stripping. Program 14(3), 130–137 (1980)
4. Spärck Jones, K.: Automatic Keyword Classification for Information Retrieval.

Archon Books (1971)
5. Xu, J., Croft, W.B.: Corpus-based stemming using cooccurrence of word variants.

ACM Trans. Inf. Syst. 16(1), 61–81 (1998)
6. Jia, X.F., Trotman, A., O’Keefe, R.: Efficient accumulator initialisation. In: Pro-

ceedings of the 15th Australasian Document Computing Symposium (ADCS 2010),
Melbourne, Australia (2010)

7. Trotman, A.: Compressing inverted files. Inf. Retr. 6(1), 5–19 (2003)
8. Anh, V.N., Moffat, A.: Inverted index compression using word-aligned binary codes.

Inf. Retr. 8(1), 151–166 (2005)
9. Baeza-Yates, R., Gionis, A., Junqueira, F., Murdock, V., Plachouras, V., Silvestri,

F.: The impact of caching on search engines. In: SIGIR 2007: Proceedings of the
30th Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, pp. 183–190. ACM, New York (2007)

268 X.-F. Jia et al.

10. Jia, X.F., Trotman, A., O’Keefe, R., Huang, Z.: Application-specific disk I/O op-
timisation for a search engine. In: PDCAT 2008: Proceedings of the 2008 Ninth
International Conference on Parallel and Distributed Computing, Applications and
Technologies, pp. 399–404. IEEE Computer Society, Washington, DC (2008)

11. Buckley, C., Lewit, A.F.: Optimization of inverted vector searches, pp. 97–110
(1985)

12. Moffat, A., Zobel, J.: Self-indexing inverted files for fast text retrieval. ACM Trans.
Inf. Syst. 14(4), 349–379 (1996)

13. Tsegay, Y., Turpin, A., Zobel, J.: Dynamic index pruning for effective caching, pp.
987–990 (2007)

14. Persin, M., Zobel, J., Sacks-Davis, R.: Filtered document retrieval with frequency-
sorted indexes. J. Am. Soc. Inf. Sci. 47(10), 749–764 (1996)

15. Anh, V.N., de Kretser, O., Moffat, A.: Vector-space ranking with effective early
termination, pp. 35–42 (2001)

16. Trotman, A., Jia, X.F., Geva, S.: Fast and effective focused retrieval. In: Geva, S.,
Kamps, J., Trotman, A. (eds.) INEX 2009. LNCS, vol. 6203, pp. 229–241. Springer,
Heidelberg (2010)

17. Bentley, J.L., Mcilroy, M.D.: Engineering a sort function (1993)
18. Persin, M.: Document filtering for fast ranking, pp. 339–348 (1994)
19. Moffat, A., Zobel, J., Sacks-Davis, R.: Memory efficient ranking. Inf. Process. Man-

age. 30(6), 733–744 (1994)
20. Moffat, A., Zobel, J., Klein, S.T.: Improved inverted file processing for large text

databases, pp. 162–171 (1995)
21. Anh, V.N., Moffat, A.: Random access compressed inverted files. In: Australian

Computer Science Comm.: Proc. 9th Australasian Database Conf. ADC, vol. 20(2),
pp. 1–12 (February 1998)

22. Anh, V.N., Moffat, A.: Compressed inverted files with reduced decoding overheads,
pp. 290–297 (1998)

23. Schenkel, R., Suchanek, F., Kasneci, G.: YAWN: A semantically annotated
wikipedia xml corpus (March 2007)

24. Amati, G., Van Rijsbergen, C.J.: Probabilistic models of information retrieval
based on measuring the divergence from randomness. ACM Trans. Inf. Syst. 20(4),
357–389 (2002)

Overview of the INEX 2010 Question Answering

Track (QA@INEX)

Eric SanJuan1, Patrice Bellot1, Véronique Moriceau2, and Xavier Tannier2

1 LIA, Université d’Avignon et des Pays de Vaucluse (France)
{patrice.bellot,eric.sanjuan}@univ-avignon.fr

2 LIMSI-CNRS, University Paris-Sud 11 (France)
{moriceau,xtannier}@limsi.fr

Abstract. The INEX Question Answering track (QA@INEX) aims to
evaluate a complex question-answering task using the Wikipedia. The set
of questions is composed of factoid, precise questions that expect short
answers, as well as more complex questions that can be answered by
several sentences or by an aggregation of texts from different documents.

Long answers have been evaluated based on Kullback Leibler (KL)
divergence between n-gram distributions. This allowed summarization
systems to participate. Most of them generated a readable extract of
sentences from top ranked documents by a state-of-the-art document re-
trieval engine. Participants also tested several methods of question dis-
ambiguation.

Evaluation has been carried out on a pool of real questions from
OverBlog and Yahoo! Answers. Results tend to show that the baseline-
restricted focused IR system minimizes KL divergence but misses read-
ability meanwhile summarization systems tend to use longer and stand-
alone sentences thus improving readability but increasing KL divergence.

1 Introduction

The INEX QA 2009-2010 track [1] aimed to compare the performance of QA,
XML/passage retrieval and automatic summarization systems on special XML
enriched dumps of the Wikipedia : the 2008 annotated Wikipedia [2] used in the
INEX ad-hoc track in 2009 and 2010.

Two types of questions were considered. The first type was factual questions
which require a single precise answer to be found in the corpus if it exists. The
second type consisted of more complex questions whose answers required a multi-
document aggregation of passages with a maximum of 500 words exclusively.

Like for the 2010 ad-hoc restricted focus task, systems had to make a selection
of the most relevant information, the maximal length of the abstract being fixed.
Therefore focused IR systems could just return their top ranked passages mean-
while automatic summarization systems need to be combined with a document
IR engine. The main difference between the QA long type answer task and the
ad-hoc restricted focus one is that in QA, readability of answers[3] is as impor-
tant as the informative content. Both need to be evaluated. Therefore answers

S. Geva et al. (Eds.): INEX 2010, LNCS 6932, pp. 269–281, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

270 E. SanJuan et al.

cannot be any passage of the corpus, but at least well formed sentences. As a
consequence, informative content of answers cannot be evaluated using standard
IR measures since QA and automatic summarization systems do not try to find
all relevant passages, but to select those that could provide a comprehensive an-
swer. Several metrics have been defined and experimented with at DUC [4] and
TAC workshops [5]. Among them, Kullback-Leibler (KL) and Jenssen-Shanon
(JS) divergences have been used [6] to evaluate the informativeness of short sum-
maries based on a bunch of highly relevant documents. In this edition we used
the KL one to evaluate the informative content of the long answers by comparing
their n-gram distributions with those from 4 highly relevant Wikipedia pages.

In 2009 a set of encyclopedic questions about ad-hoc topics was released[1].
The idea was that informativeness of answers of encyclopedic questions could be
evaluated based on the ad-hoc qrels[7]. This year, a set of “real” questions from
Over-Blog1 website logs not necessarily meant for the Wikipedia was proposed.
A state of the art IR engine powered by Indri was also made available to partic-
ipants. It allowed the participation of seven summarization systems for the first
time at INEX. These systems only considered long type answers and have been
evaluated on the 2010 subset. Only two standard QA systems participated to the
factual question sub-track. Therefore most of QA@INEX 2010 results are about
summarization systems versus a state of the art restricted focused IR system.

The rest of the paper is organized as follows. First, the focused IR system used
as baseline is introduced in Section 2. It is described in (§2.1) and evaluated in
(§2.2). Section 3 details the collection of questions (§3.1-3.3) and available ref-
erence texts for assessments (§3.5). Section 4 explains the final choice of metrics
used for the evaluation of the informativeness of long answers after several ex-
periments. Results are reported in Section 5. Finally, Section 6 discusses our
findings and draws perspectives for next year edition.

2 Baseline System: Restricted Focused IR System

Several on-line resources have been made available to facilitate participation and
experiment the metrics. These resources available via a unique web interface at
http://termwatch.es/Term2IR included:

1. a document index powered by Indri,
2. a sentence and Part of Speech tagger powered by the TreeTagger,
3. a summarization and Multi-Word Term extractor powered by TermWatch,
4. a tool for automatic evaluation of summary informativeness powered by

FRESA,
5. links to document source on the TopX web interface.

2.1 Features

The system allows to test on the INEX 2009 ad-hoc corpus the combination of
a simple IR passage retrieval system (Indri Language Model) with a baseline
summarization system (a fast approximation of Lexrank).
1 http://www.over-blog.com/

Overview of the INEX 2010 Question Answering Track (QA@INEX) 271

Different outputs are available. The default is a selection of relevant sentences
with a link towards the source document in TopX. Sentences have been selected
following approximated LexRank scores among the 20 top ranked passages re-
turned by Indri using a Language Model over INEX 2008 corpus. Multiword
terms extracted by shallow parsing are also highlighted.

A second possible output gives a baseline summary with less than 500 words,
made of the top ranked sentences. The Kullback-Leibler divergence between
distributions of n-grams in the summary and in the passages retrieved by Indri
are also shown. They are computed using the FRESA package. It is also possible
to test any summary against this baseline.

Finally, the passages retrieved by Indri are available, in several formats: raw
results in native INEX XML format, raw text, POS tagged text with TreeTagger.

Questions and queries can be submitted in plain text or in Indri language.
The following XML tags have been indexed and can be used in the query: b, bdy,
category, causal agent, country, entry, group, image, it, list, location, p, person,
physical entity, sec, software, table, title. These are examples of correct queries:

– Who is Charlie in the chocolate factory?
– #1(Miles davis) #1(Charles Mingus) collaboration
– #1(Charles Mingus).p, #combine[p](Charles Mingus)

2.2 Evaluation on the 2010 Restricted Focus Ad-Hoc Task

Let us first give some details on this restricted focus system.
As stated before it starts by retrieving n documents using an Indri language

model. These sentences are then segmented into sentences using shallow parsing.
Finally sentences are ranked using a fast approximation of LexRank. Basically,
we only consider sentences that are at distance two from the query in the in-
tersection graph of sentences. These are sentences that share at least one term
with the query, or with another sentence that shares it. The selected sentences
are then ranked by entropy.

We evaluated this baseline system on the Ad-hoc restricted focused task, by
setting n = 100. We then retrieve for each sentence all passages in which the
same word sequence appears, with possible insertions. We return the first 1000
characters.

The precision/recall function of this system starts high compared to other
participant runs. It gets among automatic runs, the third char precision (0.3434)
and the best iP[0.01] with a value of 0.15 (0.1822 for the best manual run).

3 Sets of Questions and References

A total set of 345 questions has been made available. There are four categories
of questions:

1. factual and related to 2009 ad-hoc topics (151),
2. complex and related to 2009 ad-hoc topics (85),

272 E. SanJuan et al.

3. factual from Over-Blog logs (44),
4. complex from Over-Blog logs (70)

This year evaluation has been carried out on the fourth category. Answers for
the first category are available. A run is also available for categories 1 and 3.
Informativeness of answers to questions in category 3 can be partially evaluated
based on qrel from ad-hoc 2009 INEX track.

3.1 Encyclopedic vs. General Questions

236 questions are related to 2009 INEX ad-hoc topics. Most of the remaining
questions come from a sample of the log files from the search engine on Over-
Blog. These are real questions submitted to their website by visitors looking for
answers among the blogs hosted on their website. We have selected a subset of
these questions such that there exists at least a partial answer in the Wikipedia
2008. Then we have mixed these questions with others from Yahoo! Answers
website2.

We considered three different types of questions: short single, short multiple
and long.

3.2 Short Type Questions

Those labeled short single or short multiple are 195 and both require short an-
swers, i.e. passages of a maximum of 50 words (strings of alphanumeric characters
without spaces or punctuations) together with an offset indicating the position
of the answer.

Short single questions should have a single correct answer, e.g. question 216:
Who is the last olympic champion in sabre? whereas multiple type questions
will admit multiple answers (question 209: What are the main cloud computing
service providers?).

For both short types, participants had to give their results as a ranked list
of maximum 10 passages from the corpus together with an offset indicating the
position of the answer. Passages had to be self-contained to decide if the answer
is correct or not.

Besides, we collected manually answers for the first category (factual and re-
lated to 2009 ad-hoc topics) in the Wikipedia INEX collection. These answers
will be made available as a development set for 2011 campaign. Moreover, a
sample run is available for all factual questions. This run has been produced
by FIDJI, an open-domain QA system for French and English [8]. This system
combines syntactic information with traditional QA techniques such as named
entity recognition and term weighting in order to validate answers through dif-
ferent documents. Question analysis in FIDJI turns the question into a declara-
tive sentence. It also aims to identify the syntactic dependencies, the expected
type(s) of the answer (named entity type) and the question type (factoid, defi-
nition, complex, list questions).
2 http://answers.yahoo.com/

Overview of the INEX 2010 Question Answering Track (QA@INEX) 273

3.3 Long Type Questions

Long type questions require long answers up to 500 words that must be self-
contained summaries made of passages extracted from the INEX 2009 corpus.
Are considered as words any sequence of letters and digits. An example of a long
type question is (#196): What sort of health benefit has olive oil? There can
be questions of both short and long types, for example a question like Who was
Alfred Nobel? can be answered by “a chemist” or by a short biography. However,
most of the selected long type questions are not associated with obvious name
entities and require at least one sentence to be answered.

3.4 Format Submission

The submission format has been simplified to follow INEX TREC ad-hoc format:

<qid> Q0 <file> <rank> <rsv> <run_id> <column_7> <column_8> <column_9>

where:

– the first column is the topic number.
– the second column currently unused and should always be Q0.
– the third column is the file name (without .xml) from which a result is

retrieved, which is identical to the ¡id¿ of the Wikipedia document.
– the fourth column is the rank the result is retrieved, and fifth column shows

the score (integer or floating point) that generated the ranking.
– the sixth column is called the ”run tag” and should be a unique identifier

for the group AND for the method used.

The remaining three columns depend on the question type (short or long) and
on the chosen format (text passage or offset).

For textual content, raw text is given without XML tags and without format-
ting characters. The resulting word sequence has to appear in the file indicated
in the third field. This is an example of such output:

1 Q0 3005204 1 0.9999 I10Run1 The Alfred [...] societies.
1 Q0 3005204 2 0.9998 I10Run1 The prize [...] Engineers.
1 Q0 3005204 3 0.9997 I10Run1 It has [...] similar spellings.

An Offset Length format (FOL) can also be used. In this format, passages are
given as offset and length calculated in characters with respect to the textual
content (ignoring all tags) of the XML file. File offsets start counting from 0
(zero). Previous example would be the following in FOL format:

1 Q0 3005204 1 0.9999 I10Run1 256 230
1 Q0 3005204 2 0.9998 I10Run1 488 118
1 Q0 3005204 3 0.9997 I10Run1 609 109

This would mean that results are from article 3005204. The first passage starts
at the 256th character (so 257 characters beyond the first character), and has a
length of 230 characters.

In the case of short type questions, we use an extra field that indicates the
position of the answer in the passage. This position is given by counting the
number of words before the detected answer.

274 E. SanJuan et al.

3.5 Reference Texts

For each question we have selected four highly relevant Wikipedia pages from
which we have extracted the most relevant sections. Questions for which there
were too few relevant passages were not submitted to participants. These pas-
sages that were not publicly available have been then used as reference text to
evaluate long type answers using KL divergence.

4 Evaluation of Long Answers

Only long answer evaluation is presented. As short answer runs come from orga-
nizers’ systems, we decided not to evaluate them but they will be made available
for future participants.

The informative content of the long type answers are evaluated by comparing
the several n-gram distributions in participant extracts and in a set of relevant
passages selected manually by organizers. We followed the experiment in [6] done
on TAC 2008 automatic summarization evaluation data. This allows to evaluate
directly summaries based on a selection of relevant passages.

Given a set R of relevant passages and a text T , let us denote by pX(w)
the probability of finding an n-gram w from the Wikipedia in X ∈ {R, T }.
We use standard Dirichlet smoothing with default μ = 2500 to estimate these
probabilities over the whole corpus. Word distributions are usually compared
using one of these functions:

– Kullback Leibler (KL) divergence:

KL(pT , pR) =
∑

w∈R∪T

pT (w) × log2

pT (w)
pR(w)

– Jensen Shannon (JS) divergence:

JS(pT , pR) =
1
2
(KL(pT , pT∪R) + KL(pR, pT∪R))

In [6], the metric that obtained best correlation scores with ROUGE semi-
automatic evaluations of abstracts used in DUC and TAC was JS. However,
we have observed that JS is too sensitive to abstract size; therefore we finally
used KL divergence to evaluate informative content reference texts or passages.

We used the FRESA package3 to compute both KL and JS divergences be-
tween n-grams (1 ≤ n ≤ 4). This package also allows to consider skip n-grams.

Evaluating informative content without evaluating readability does not make
sense. It clearly appears that if readability is not considered then the best sum-
marizer would be the random summarizer on n-grams which certainly minimizes
KL divergence but produces incomprehensible texts.

The readability and coherence are evaluated according to “the last point of
interest” in the answer which is the counterpart of the “best entry point” in
3 http://lia.univ-avignon.fr/fileadmin/axes/TALNE/Ressources.html

Overview of the INEX 2010 Question Answering Track (QA@INEX) 275

Table 1. Cumulative KL divergence for best runs per participant

ID Specificity unigrams bigrams 4 skip grams average readability

98 Focused IR 1599.29 2207.56 2212.49 2006.45 1/5
92 MWT expansion 1617.35 2226.61 2231.56 2025.17 2/5
860 System combination 1617.6 2227.37 2232.43 2025.8 3/5
857 Question reformulation 1621.14 2234.57 2239.85 2031.85 3/5
855 Semantic expansion 1625.76 2235.21 2240.35 2033.77 3/5
943 Long sentences 1642.93 2252.28 2257.22 2050.81 4/5
557 JS minimization 1631.29 2237.61 2242.83 2037.24 3/5

INEX ad-hoc task. It requires a human evaluation by organizers and participants
where the assessor indicates where he misses the point of the answers because
of highly incoherent grammatical structures, unsolved anaphora, or redundant
passages.

5 Results

We received runs for long type questions from seven participants. All of these
participants generate summaries by sentence extraction. This helps readability
even if it does not ensure general coherence. Extracts made of long sentences
without anaphora are often more coherent but have higher KL scores. To retrieve
documents, all participants used the IR engine powered by Indri, available at
track resources webpage4.

Table 1 shows results based on KL divergence on long-type questions from
OverBlog logs. The cumulative divergence is the sum of KL scores between
participant extracts and selected pages.

As expected, baseline-restricted focused IR system (98) minimizes KL diver-
gence but the resulting readability is poor. Meanwhile the system (943) having
best readability favors long sentences and gets highest divergence figures. The
most sophisticated summary approach is the Cortex system (860) which reaches
a compromise between KL divergence and readability.

But query formulation to retrieve documents looks also important, the ap-
proach based on query enrichment with related MultiWord Terms (92) auto-
matically extracted from top ranked documents, gets similar divergence scores.
Meanwhile this is a system slightly adapted from the focused IR system used in
previous INEX 2008 and 2009 ad-hoc track [9,10].

Surprisingly sentence JS minimization (557) does not seem to minimize over-
all KL divergence. This system ranks sentences in decreasing order according to
their JS divergence with the query and the retrieved documents.

Only score differences between the baseline and the other systems are signifi-
cant, as shown in Table 2.

4 http://qa.termwatch.es/

276 E. SanJuan et al.

Table 2. Probabilities of signed t-tests over KL divergence scores

ID 92 860 857 855 943 557

98 * 0.0400 * 0.0149 ** 0.0028 * 0.0172 **** 0.0005 *** 0.0000
92 0.3777 0.1037 0.2304 0.0821 0.0529
860 0.1722 0.4442 0.1497 0.1104
857 0.2794 0.5047 0.1788
943 0.1798 0.1013
557 0.1857

The standard deviation among systems KL divergences varies. The ten ques-
tion minimizing standard deviation and, therefore, getting most similar answers
among systems are:

2010044 What happened to the president of Rwanda death?
2010107 What are the symptoms of a tick bite?
2010096 How to make rebellious teenager obey you?
2010066 How much sadness is normal breakup?
2010062 How much is a typical sushi meal in japan?
2010083 What are the Refugee Camps in DRC?
2010046 How to get Aljazera sports?
2010047 How to be a chef consultant?
2010005 Why did Ronaldinho signed for Barcelona?
2010049 Where can I find gold sequined Christain Louboutin shoes?

All these questions contain at least one named entity that refers to a Wikipedia
page. Therefore, the systems mostly built their answer based on the textual
content of this page and KL divergence is not accurate enough to discriminate
among them.

On the contrary, the 10 following questions are the top ten that maximized
standard deviation and have the greatest impact in the ranking of the systems:

2010093 Why is strategy so important today?
2010114 What is epigenetics and how does it affect the DNA/genes in all of

our cells?
2010009 What does ruddy complexion mean?
2010066 What do nice breasts look like?
2010022 How to get over soul shock?
2010092 How to have better sex with your partner?
2010080 How to be physically attractive and classy?
2010014 Why is it so difficult to move an mpeg into imovie?
2010010 What do male plants look like?
2010075 WHAT IS A DUAL XD ENGINE?

Clearly, these questions are not encyclopedic ones and do not refer to particu-
lar Wikipedia pages. Meanwhile partial answers exist in the Wikipedia but they
are spread among several articles.

Overview of the INEX 2010 Question Answering Track (QA@INEX) 277

Figure 1 shows the KL divergence values for 4-skip n-grams over the most dis-
criminative questions. It can be observed that cumulative KL divergence varies
along questions. These variations reveal the gaps between reference documents
and textual content extracted by participant systems.

Fig. 1. KL divergence per system over the most discriminative questions

Figure 2 shows the same values but scaled in order to reveal main differences
between systems.

6 Plans for Next QA Track 2011 Edition

In 2011, we will keep on addressing real-world focused information needs formu-
lated as natural language questions using special XML annotated dumps of the
Wikipedia, but we will mix questions requiring long answers and those not.

6.1 Merging Short and Long Answer Task

Contrary to long answer task, we had too few participant teams interested in
short answer evaluation in 2010. We think that this is mainly due to the fact
that this task required too many modifications to traditionalINEX participant
systems.

To avoid this problem, we plan to make the task more manageable for ques-
tions where short answers are expected.

Consequently, potential short answers will be tagged in the collection and
considered as traditional XML retrieval units. The provided collection will thus
be enriched with named entity annotations. These entities are generally the most

278 E. SanJuan et al.

Fig. 2. scaled KL divergence per system over the most discriminative questions

Overview of the INEX 2010 Question Answering Track (QA@INEX) 279

relevant for short answers. However, the type of entities (persons, locations,
organizations, etc.) will not be provided.

Moreover, the information concerning the short/long type of expected answers
will be removed from the input question format. Given a question, the decision
whether the answer should be rather short or long is then left to the system.

Concerning the evaluation, many different answers can be considered as rele-
vant, and a manual assessment is necessary. As a short answer is now an XML
tag, the global methodology should not differ from long answer task.

Finally, by restricting output to XML elements and not any passage, we shall
improve readability. Indeed, we have observed that a significant number of read-
ability issues were due to incorrect sentence segmentation or mixed document
structure elements like lists, tables and titles.

6.2 Towards Contextualization of Questions

In 2011, we shall build and make available a new dump of the Wikipedia adapted
for QA where only document structure, sentences and named entities will be
annotated. For each question, participants will have to guess the context category
(for example, ”expert”, ”pupil”, ”journalist”...), provide a context as a query
oriented readable summary and a list of possible answers. Summary and answers
will be made of XML elements from Wikipedia dump. Real questions will be
selected from OverBlog 5 website logs and Twitter.6 Participants system will
have to fisrt detect the research context. Then, they shall adapt their strategy
to select document nodes that match the query, by computing, for example,
complexity or readability measures, expertise level scores or genre.

The assumption is that context could improve the performances of Informa-
tion Retrieval Systems. Modelling context in IR is considered as a long-term
challenge by the community [11]. It is defined as the combination of retrieval
technologies and knowledge on the context of the query and the user in a single
model to provide the most suitable response compared to an information need.
The contextual aspect refers to tacit or explicit knowledge concerning the inten-
tions of users, the environment of users and the system itself. Modelling context
is not an end in itself. The system must be able to decide the most adequate
technologies compared to a given context, i.e.: to adapt the searching methods
to the context. Of course, the user does not provide the system with the knowl-
edge on the context of the required search. Classical IR approaches suppose a
common objective which is topic relevance of top ranked documents. Opposite
to this, approaches investigated by [12] allow to integrate scores orthogonal to
the relevance score such as complexity. Document complexity must be matched
to both users capability and level of specialisation in the target knowledge area.
Different measures of difficulty can be incorporated to the relevance scores.

5 http://en.over-blog.com
6 This track relates to Contextual Information Retrieval and will be supported by the

French National Research Agency ANR via the project CAAS (Contextual Analysis
and Adaptive Search - ANR 2010 CORD 001 02).

280 E. SanJuan et al.

The international community in information retrieval is indeed interested in
research in contextual information retrieval since few years. The group IRiX (In-
formation Retrieval in Context), proposed by Pr. Rijsbergen organizes an annual
workshop on this topic since 2004. In the framework of the 6th PRCD (Euro-
pean commission), the network of excellence DELOS (Network of Excellence on
Digital Libraries7) is interested in the access to information for users of various
categories: individuals, specialists or population. Project PENG (Personalized
News Content Programming8) is interested in defining an environment for pro-
gramming and modelling the contents which makes it possible to offer interactive
and personalized tools for multimedia information access to specialists or simple
users.

7 Conclusion

In 2010 we provided a reusable resource for QA evaluation based on INEX ad-
hoc 2009-2010 wikipedia document collection, including an original evaluation
approach and software implementation.

In 2011 we will try to deal with two types of challenges. The first challenge
is defining the query features that could help in predicting the query type and
extracting it automatically from the query formulation or from the environment
of the user. The second challenge is to be able to help the system to disambiguate
the users expectation and use it for answering the queries.

References

1. Moriceau, V., SanJuan, E., Tannier, X., Bellot, P.: Overview of the 2009 qa track:
Towards a common task for qa, focused ir and automatic summarization systems.
In: [7], pp. 355–365 (2009)

2. Schenkel, R., Suchanek, F.M., Kasneci, G.: Yawn: A semantically annotated
wikipedia xml corpus. In: Kemper, A., Schöning, H., Rose, T., Jarke, M., Seidl, T.,
Quix, C., Brochhaus, C. (eds.) BTW. LNI, vol. 103, pp. 277–291 GI (2007)

3. Pitler, E., Louis, A., Nenkova, A.: Automatic evaluation of linguistic quality in
multi-document summarization. In: ACL, pp. 544–554 (2010)

4. Nenkova, A., Passonneau, R.: Evaluating content selection in summarization: The
pyramid method. In: Proceedings of HLT-NAACL, vol. 2004 (2004)

5. Dang, H.: Overview of the TAC 2008 Opinion Question Answering and Summa-
rization Tasks. In: Proc. of the First Text Analysis Conference (2008)

6. Louis, A., Nenkova, A.: Performance confidence estimation for automatic summa-
rization. In: EACL, The Association for Computer Linguistics, pp. 541–548 (2009)

7. Geva, S., Kamps, J., Trotman, A. (eds.): Focused Retrieval and Evaluation, 8th In-
ternational Workshop of the Initiative for the Evaluation of XML Retrieval, INEX
2009, Brisbane, Australia, December 7-9, LNCS, vol. 6203. Springer, Heidelberg
(2010) (Revised and selected papers)

7 http://www.delos.info/
8 http://www.peng-project.org/

Overview of the INEX 2010 Question Answering Track (QA@INEX) 281

8. Moriceau, V., Tannier, X.: FIDJI: Using Syntax for Validating Answers in Multi-
ple Documents. Information Retrieval, Special Issue on Focused Information Re-
trieval 13, 507–533 (2010)

9. SanJuan, E., Ibekwe-Sanjuan, F.: Combining language models with nlp and inter-
active query expansion. In: [7], pp. 122–132

10. Ibekwe-Sanjuan, F., SanJuan, E.: Use of multiword terms and query expansion for
interactive information retrieval. In: Geva, S., Kamps, J., Trotman, A. (eds.) INEX
2008. LNCS, vol. 5631, pp. 54–64. Springer, Heidelberg (2009)

11. Allan, J., Aslam, J., Belkin, N.J., Buckley, C., Callan, J.P., Croft, W.B., Dumais,
S.T., Fuhr, N., Harman, D., Harper, D.J., Hiemstra, D., Hofmann, T., Hovy, E.H.,
Kraaij, W., Lafferty, J.D., Lavrenko, V., Lewis, D.D., Liddy, L., Manmatha, R.,
McCallum, A., Ponte, J.M., Prager, J.M., Radev, D.R., Resnik, P., Robertson, S.E.,
Rosenfeld, R., Roukos, S., Sanderson, M., Schwartz, R.M., Singhal, A., Smeaton,
A.F., Turtle, H.R., Voorhees, E.M., Weischedel, R.M., Xu, J., Zhai, C.: Challenges
in Information retrieval and language modeling: report of a workshop held at the
center for intelligent information retrieval, university of massachusetts amherst.
SIGIR Forum 37(1), 31–47 (2002)

12. Gao, J., Qi, H., Xia, X., Nie, J.Y.: Linear discriminant model for information
retrieval, pp. 290–297. ACM, New York (2005)

The GIL Summarizers: Experiments in the

Track QA@INEX’10

Edmundo-Pavel Soriano-Morales, Alfonso Medina-Urrea,
Gerardo Sierra Mart́ınez, and Carlos-Francisco Méndez-Cruz

Instituto de Ingenieŕıa
Universidad Nacional Autónoma de México, Mexico

{esorianom,amedinau,gsierram,cmendezc}@iingen.unam.mx

http://www.iling.unam.mx

Abstract. In this paper we briefly describe two summarizers:
ResúmeME and GIL-UNAM-3. Both are used to extract utterances from
a set of documents retrieved by means of synonym modified queries.
That is, we modify each query by obtaining from the WordNet database
word synonyms for each of its words. The queries are provided by the
QA@INEX 2010 task. The results of the experiments are evaluated
automatically by means of the FRESA system.

Keywords: INEX, Automatic summarization system, Question-
Answering system, WordNet synonyms, ResúmeME, GIL-UNAM-3 sum-
marizer, FRESA system.

1 Introduction

A wide variety of text extraction techniques for summarizing documents exists
(see, for instance, [3,11]). Our experience with summarization systems has in-
cluded mainly word information content, sentence or utterance position, and
standard deviation of utterance position measurements ([2,4,5]). In this paper,
we explore the implementation of two of our summarization systems: ResúmeME
and GIL-UNAM-3. In order to conduct the experiments, these summarizers rely
on a) query enrichment by means of word synonyms and b) token occurrence
in both the query and the document summarized. Both systems, ResúmeME
and GIL-UNAM-3, are evaluated in the context of the question-answering track
of the INEX 2010 task,1 which provides questions either with short answers or
with complex answers dealing with one or more utterances, possibly very long
ones. Our summarizers are proposed as tools for dealing with experiments on
this second challenge.

The corpus used contains all English texts of Wikipedia. The idea is to retrieve
relevant documents by means of synonym enriched queries. The documents are
retrieved by the search engine INDRI.2 Then, by using separately ResúmeME
1 http://www.inex.otago.ac.nz/
2 http://www.lemurproject.org/indri/

S. Geva et al. (Eds.): INEX 2010, LNCS 6932, pp. 282–289, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.iling.unam.mx
http://www.inex.otago.ac.nz/
http://www.lemurproject.org/indri/

The GIL Summarizers: Experiments in the Track QA@INEX’10 283

and the GIL-UNAM-3 summarizer, we provide answers which are extracts from
these retrieved documents. Each extract has no more than 500 words. We then
evaluate the answers automatically by means of the FRESA system ([6,8,9]).

The organization of this paper is as follows: in Section 2 the system ResúmeME
is described; in Section 3 we give details on the GIL-UNAM-3 summarizer; in
Section 4 we present the algorithm used in order to modify queries; the experi-
mental settings and results are presented in Section 5; and, finally, in Section 6,
we briefly present our conclusions and future work.

2 The ResúmeME Summarizer

ResúmeME is a single-document extractive summarization system. Several un-
supervised statistical measurements are used to identify relevant utterances from
source text. As expected, each of them is assigned with a score: hence utterances
with highest score are going to be part of the final summary. This score was cal-
culated by means of two measures: TF-IDF and S-I. The latter is a combination
of information content and standard deviation. For each word of an utterance
the two measurements are calculated. Consequently, the score of an utterance is
based on an average of word weights. Formally, the score of an utterance is:

score(utterance) =
scoreTF−IDF (utterance) + scoreS−I(utterance)

2
Afterwards, the system chooses as many utterances with highest score as the

ratio compression value allows. They are presented in the final extract in the
same order as they appear in the source text. The final utterance score is cal-
culated by means of a smoothed average of utterance words. This average gives
higher value to long utterances. The subjacent idea is that long utterances con-
tain more information. Let n be the total number of words in an utterance. The
total utterance score is defined as:

scoreTF−IDF =
∑n

t=1 TF − IDFt,e × n

log n

The S-I measurement combines word information content and standard deviation
of word position as a measurement of text dispersion. This weight assigns a higher
score to words with higher information content (higher standard deviation means
words occur dispersed). The subjacent idea is that the most relevant words are
the least frequent and most dispersed in a text.

Let E be the set of utterances in the source text and T the set of words in
the same text. If e ε E and t ε T , the S-I weight of a word is defined as:

weightS−I(t) =
st + I(t)

2

284 E.-P. Soriano-Morales et al.

where st is the standard deviation of the positions of t and I(t) is the information
content of t.

3 The GIL-UNAM-3 Summarizer

The GIL-UNAM-3 summarizer is an utterance extraction system for single-
documents. The method proposed deals with two key aspects: a document
representation scheme and an utterance weighting procedure. The former is
accomplished by vector representation and the latter by means of a greedy opti-
mization algorithm. The summary is build by concatenating utterances exhibit-
ing the highest weightings according to the algorithm. In order to accomplish
this, the GIL-UNAM-3 summarizer is composed of the following stages: docu-
ment transformation to vector representation, calculation of utterance weight-
ings, and summary generation.

In the first stage, a stemmer and a stop-list, both tailor-made for the English
language, are used in order to filter the document tokens so that same-root forms
are conflated and function words are eliminated.

In the second stage, the optimization algorithm is applied to build a matrix
and to estimate utterance weightings. These weightings are calculated by means
of the following two values:

1. Cosine measurements of the angles related between each utterance vector
and the modified query vector. These values are normalized to fall in the
interval [0,1].

2. Normalized word frequencies in both the document and the modified query
(also in [0,1]).

Furthermore, each utterance weighting is simply the arithmetic mean of both
of these values calculated for each utterance, which is also a value in the inter-
val [0,1].

In the last stage, the relevant utterances, those with the highest weightings,
are extracted and concatenated in order to build the summary.

4 Query Modification

Query expansion is a general technique in the information retrieval field for gen-
erating alternative queries (query enrichment). For our experiments, we used it
to replace terms in the original query with synonyms, in order to take advantage
of additional information from the documents. Furthermore, in information ex-
traction the most common query expansion approach is accomplished by means
of thesaurus. Here we use WordNet3, a common resource for these purposes, for
obtaining lexical relations based in sets of synonyms (synsets).

3 http://wordnet.princeton.edu/

http://wordnet.princeton.edu/

The GIL Summarizers: Experiments in the Track QA@INEX’10 285

Thus, to modify the queries, all content words in the original query were
replaced by those synonyms found in the synsets of the lexical database WordNet.
In fact, since reliance on WordNet for obtaining synonyms is questionable, we
are actually dealing with candidate synonyms rather than real synonyms.

The algorithm for replacing each word of the question with the first different
word found in the synsets obtained from WordNet was implemented with Python
2.7,4 using the Natural Language Toolkit (NLTK)5 suite of libraries. This allows
fast tokenization and easy access to the WordNet database.

The steps of the algorithm are:

1. For each query:

(a) Tokenize the original query via regular expressions keeping the order of
appearance of each token.

(b) Remove all tokens that contain non alphabetic characters. Also remove
tokens contained in a stoplist.

(c) For each remaining token:
i. Search in WordNet the token and keep the first different word found

in the synsets. this word will be the new token to be exchanged with
the original one.

(d) Replace the old tokens from the original query with the new ones, keeping
the same order of appearance.

This can be also described in pseudocode:

Input: List of original queries OQ
Output: List of modified queries MQ
foreach originalquery ∈ OQ do

OriginalTokens ← Tokenize(originalquery) ;
NotFunctional ← RemoveFunctionalTokens(OriginalTokens);
foreach token ∈ NotFunctional do

Synonym ← GetSynonymFromWordNet(token);
NewTokens += Synonym;

end
ModifiedQuery ← ReplaceTokens(OriginalTokens, NewTokens);
NewQueries += ModifiedQuery;

end
OQ ← NewQueries;
return OQ;

Algorithm 1. ModifyOriginalQueries(OQ)

The most interesting method, GetSynonymFromWordNet, is described
also:

4 http://www.python.org/about/
5 http://www.nltk.org/

http://www.python.org/about/
http://www.nltk.org/

286 E.-P. Soriano-Morales et al.

Input: token T
Output: synonym S
Result ← LookupWordInWordNet(T);
S ← T ;
if Result is not empty then

foreach synset ∈ Result do
foreach word ∈ synset do

if word �= T then
S ← word;
return S;

end
end

end
else

return S;

Algorithm 2. GetSynonymFromWordNet(T)

5 Experiments Settings and Results

As mentioned above, in order to evaluate the performance of both, the ResúmeME
and GIL-UNAM-3 summarizers, applied on the QA@INEX corpus, we used the
FRESA system, which does not rely on human produced summaries or human
validation. The results of the experiments can be observed in Tables 1, 2, 3 and
4. Values represent divergence of the summaries with respect to the original doc-
uments. Tables 1 and 2 refer to the experiment with ResúmeME, whereas Tables
3 and 4 exhibit results of the GIL-UNAM-3 summarizer.

Table 1. FRESA results for modified query number 2009071 using the ResúmeMe
summarizer

Distribution type unigram bigram with 2-gap Average

Baseline summary 14.46978 22.27342 22.19415 19.64579

Empty baseline 19.32973 27.98158 27.87586 25.06239

Random unigram 11.94329 20.80448 20.57957 17.77578

Random 5-gram 10.777 18.08401 18.30523 15.72208

Submitted summary 16.94064 25.61087 25.5306 22.69404

Both tables for the first experiment show similar tendencies. Also, both tables
for the second one exhibit the best results.

It is interesting to notice, on the one hand, that random summaries (unigram
and 5-gram) exhibit smaller divergence values than the summaries generated by
both our summarizers. However, these summaries are unintelligible (given their
randomness).

The GIL Summarizers: Experiments in the Track QA@INEX’10 287

Table 2. FRESA results for modified query number 2010062 using the ResúmeMe
summarizer

Distribution type unigram bigram with 2-gap Average

Baseline summary 16.49457 23.52351 23.6694 21.22916

Empty baseline 21.63229 29.20944 29.34705 26.72959

Random unigram 14.95259 22.61202 22.68446 20.08302

Random 5-gram 13.75724 20.61196 21.02727 18.46549

Submitted summary 20.21189 27.79291 27.92865 25.31115

Table 3. FRESA results for modified query number 2009071 using the GIL-UNAM-3
summarizer

Distribution type unigram bigram with 2-gap Average

Baseline summary 14.46978 22.27342 22.19415 19.64579

Empty baseline 19.32973 27.98158 27.87586 25.06239

Random unigram 11.94329 20.80448 20.57957 17.77578

Random 5-gram 10.777 18.08401 18.30523 15.72208

Submitted summary 13.92082 21.7732 21.7724 19.15548

On the other hand, the divergence values for the summarizers differ with re-
spect to the baseline. Namely, while the ResúmeME system exhibited a higher
divergence than this baseline, the GIL-UNAM-3 summarizer showed a slightly
lower one. Specifically, it can be observed that all divergence values of the sum-
maries generated by ResúmeME are greater than the values of the baseline, but
smaller than those of the empty baseline summaries (which consist of the words
in the original documents not included in our summaries). Contrastingly, it can
be observed that all divergence values of the summaries generated by the GIL-
UNAM-3 summarizer are somehow smaller than the values of the baseline and
noticeably smaller than those of the empty baseline summaries.

Finally, it is important to mention that the ResúmeME summarizer is tailor
made for short texts of around 10 pages and the test documents for this experi-
ment are significantly longer. This is relevant because the minimum percentage
of reduction for ResúmeME is 10%, which generates extracts considerably longer

Table 4. FRESA results for modified query number 2010062 using the GIL-UNAM-3
summarizer

Distribution type unigram bigram with 2-gap Average

Baseline summary 16.4946 23.52351 23.6694 21.22916

Empty baseline 21.6323 29.20944 29.34705 26.72959

Random unigram 14.9526 22.61202 22.68446 20.08302

Random 5-gram 13.7572 20.61196 21.02727 18.46549

Submitted summary 16.1715 23.47908 23.62243 21.091

288 E.-P. Soriano-Morales et al.

than the required ones. Thus, we applied ResúmeME iteratively to each docu-
ment until it generated an extract of the required size. Perhaps, this accounts
for the poor performance of this summarizer with respect to the performance of
the GIL-UNAM-3 summarizer.

6 Conclusions

In this brief paper, we have presented experiments on the document sets made
available during the Initiative for the Evaluation of XML Retrieval (INEX)
20106, in particular on the QA@INEX 2010 Task (QA@INEX) http://www.
inex.otago.ac.nz/tracks/qa/qa.asp. We have described both, the ResúmeME
system and the GIL-UNAM-3 summarizer, which extract utterances from sets
of documents retrieved by means of synonym modified queries. That is, we ob-
tain from the WordNet database word synonyms for each word of the query.
The systems apply several utterance selection metrics in order to extract those
most likely to summarize a document; namely, TF-IDF, a combination of in-
formation content and standard deviation of utterance position, normalized co-
sine measurements and normalized word frequencies. As mentioned before, the
queries are provided by the QA@INEX 2010 task. The results of the experiments
are evaluated automatically by means of the FRESA system. Interestingly, our
summarizers exhibit somehow different result tendencies. On the one hand, the
one based on TF-IDF and a combination of information content and standard
deviation of utterance position (ResúmeME) performs not as well as the base-
line (although, it performs better than the empty one). On the other one, the
one based on normalized cosine measurements and normalized word frequencies
(GIL-UNAM-3) performs somehow better than the baselines.

Many adjustments can be made to these experiments. For instance, as future
work, it would be interesting to modify the queries by adding synonyms, rather
than replacing the query words by them, like it was done here.

References

1. Boudin, F., Torres Moreno, J.M.: NEO-CORTEX: A performant user-oriented
multi-document summarization system. In: Gelbukh, A. (ed.) CICLing 2007.
LNCS, vol. 4394, pp. 551–562. Springer, Heidelberg (2007)

2. Vasques, G., Ximena, M.: Sistema de resumen extractivo automático. In: Facultad
de Ingenieŕıa, UNAM, Mexico (2010)

3. Mani, I., Maybury, M.T.: Automatic Text Summarization. The MIT Press, Cam-
bridge (1999)

4. Medina, U., Alfonso: De la palabra gráfica al texto: sobre la extracción de enun-
ciados para el resumen automático. In: Vázquez Laslop, M.E., Zimmermann, K.,
Segovia, F. (eds.) De la lengua por sólo la extrañeza: estudios de lexicoloǵıa, norma
lingǘıstica, historia y literatura en homenaje a Luis Fernando Lara, El Colegio de
México, Mexico (forthcoming)

6 http://www.inex.otago.ac.nz/

http://www.inex.otago.ac.nz/tracks/qa/qa.asp
http://www.inex.otago.ac.nz/tracks/qa/qa.asp
http://www.inex.otago.ac.nz/

The GIL Summarizers: Experiments in the Track QA@INEX’10 289

5. Méndez, C., Carlos, F., Medina, U., Alfonso: Extractive Summarization Based on
Word Information and Sentence Position. In: Gelbukh, A. (ed.) CICLing 2005.
LNCS, vol. Alfonso, pp. 653–656. Springer, Heidelberg (2005)

6. Saggion, H., Torres-Moreno, J.M., da Cunha, I., SanJuan, E., Velásquez-Morales,
P.: Multilingual Summarization Evaluation without Human Models. In: Proceed-
ings of the 23rd International Conference on Computational Linguistics COLING
2010, Beijing (2010)

7. Torres Moreno, J.M., St-Onge, P.L., Gagnon, M., El-Béze, M., Bellot, P.: Auto-
matic Summarization System coupled with a Question-Answering System (QAAS),
CoRR (2009)

8. Torres-Moreno, J.M., Saggion, H., da Cunha, I., SanJuan, E.: Summary Evaluation
with and without References. Polibits Research Journal on Computer Science and
Computer Engineering and Applications 42 (2010)

9. Torres-Moreno, J.M., Saggion, H., da Cunha, I., Velázquez-Morales, P., SanJuan,
E.: Évaluation automatique de résumés avec et sans référence. In: 17e Conférence
sur le Traitement Automatique des Langues Naturelles. TALN, Montreal (2010)

10. Torres-Moreno, J.M., Velázquez-Morales, P., Jean-Guy, M.: Cortex: un algorithme
pour la condensation automatique des textes. In: La Cognition Entre Individu et
Société ARCo 2001, Lyon (2001)

11. Weiss, S.M., Indurkhya, N., Zhang, T., Damerau, F.: Text Mining Predictive Meth-
ods for Analizing Unstructured Information. Springer, Heidelberg (2005)

The Cortex Automatic Summarization System

at the QA@INEX Track 2010

Juan-Manuel Torres-Moreno1,2 and Michel Gagnon2

1 Université d’Avignon et des Pays de Vaucluse - LIA
339, chemin des Meinajariès, Agroparc BP 91228, 84911 Avignon Cedex 9 France

2 École Polytechnique de Montréal - Département de génie informatique
CP 6079 Succ. Centre Ville H3C 3A7 Montréal (Québec), Canada

juan-manuel.torres@univ-avignon.fr, michel.gagnon@polymtl.ca

http://www.lia.univ-avignon.fr

Abstract. The Cortex system is constructed of several different sen-
tence selection metrics and a decision module. Our experiments have
shown that the Cortex decision on the metrics always scores better than
each system alone. In the INEX@QA 2010 task of Long Questions, Cor-
tex strategy system obtained very good results in the automatic evalua-
tions FRESA.

Keywords: INEX, Automatic summarization system, Question-
Answering system, Cortex.

1 Introduction

Automatic summarization is indispensable to cope with ever increasing volumes
of valuable information. An abstract is by far the most concrete and most rec-
ognized kind of text condensation [1]. We adopted a simpler method, usually
called extraction, that allow to generate summaries by extraction of pertinence
sentences [2,3]. Essentially, extracting aims at producing a shorter version of
the text by selecting the most relevant sentences of the original text, which we
juxtapose without any modification. The vector space model [4,5] has been used
in information extraction, information retrieval, question-answering, and it may
also be used in text summarization. Cortex1 is an automatic summarization
system, recently developed [6] which combines several statistical methods with
an optimal decision algorithm, to choose the most relevant sentences.

An open domain Question-Answering system (QA) has to precisely answer a
question expressed in natural language. QA systems are confronted with a fine
and difficult task because they are expected to supply specific information and
not whole documents. At present there exists a strong demand for this kind of
text processing systems on the Internet. A QA system comprises, a priori, the
following stages [7]:

1 COndensés et Résumés de TEXte (Text Condensation and Summarization).

S. Geva et al. (Eds.): INEX 2010, LNCS 6932, pp. 290–294, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.lia.univ-avignon.fr

The Cortex Automatic Summarization System at the QA@INEX Track 2010 291

– Transform the questions into queries, then associate them to a set of docu-
ments;

– Filter and sort these documents to calculate various degrees of similarity;
– Identify the sentences which might contain the answers, then extract text

fragments from them that constitute the answers. In this phase an analysis
using Named Entities (NE) is essential to find the expected answers.

Most research efforts in summarization emphasize generic summarization
[8,9,10]. User query terms are commonly used in information retrieval tasks.
However, there are few papers in literature that propose to employ this approach
in summarization systems [11,12,13]. In the systems described in [11], a learning
approach is used (performed). A document set is used to train a classifier that
estimates the probability that a given sentence is included in the extract. In [12],
several features (document title, location of a sentence in the document, cluster
of significant words and occurrence of terms present in the query) are applied
to score the sentences. In [13] learning and feature approaches are combined
in a two-step system: a training system and a generator system. Score features
include short length sentence, sentence position in the document, sentence po-
sition in the paragraph, and tf.idf metrics. Our generic summarization system
includes a set of eleven independent metrics combined by a Decision Algorithm.
Query-based summaries can be generated by our system using a modification of
the scoring method. In both cases, no training phase is necessary in our system.

This paper is organized as follows. In Section 2 we explain the methodology of
our work. Experimental settings and results are presented in Section 3. Section
4 exposes the conclusions of the paper and the future work.

2 The CORTEX System

Cortex (COndensation et Résumés de Textes) [14,15] is a single-document ex-
tract summarization system using an optimal decision algorithm that combines
several metrics. These metrics result from processing statistical and informa-
tional algorithms on the document vector space representation.

The INEX 2010 Query Task evaluation is a real-world complex question
(called long query) answering, in which the answer is a summary constructed
from a set of relevant documents. The documents are parsed to create a corpus
composed of the query and the the multi-document retrieved by Indri.

The idea is to represent the text in an appropriate vectorial space and apply
numeric treatments to it. In order to reduce complexity, a preprocessing is per-
formed to the question and the document: words are filtered, lemmatized and
stemmed.

The Cortex system uses 11 metrics (see [16] for a detailed description of these
metrics) to evaluate the sentence’s relevance.

– The frequency of words (F).
– The overlap between the words of the question (R).
– The entropy the words (E).

292 J.-M. Torres-Moreno and M. Gagnon

– The shape of text (Z).
– The angle between question and document vectors (A).
– The sum of Hamming weights of words per segment times the number of

different words in a sentence.
– The sum of Hamming weights of the words multiplied by word frequencies.
– ...

The system scores each sentence with a decision algorithm that relies on
the normalized metrics. Before combining the votes of the metrics, these are
partitionned into two sets: one set contains every metric λi > 0.5, while the
other set contains every metric λi < 0.5 (values equal to 0.5 are ignored). We
then calculate two values α and β, which give the sum of distances (positive for
α and negative for β) to the threshold 0.5 (the number of metrics is Γ , which is
11 in our experiment):

α =
Γ∑

i=1

(λi − 0.5); λi > 0.5

β =
Γ∑

i=1

(0.5 − λi); λi < 0.5

The value given to each sentence is calculated with:

if(α > β)
then Scorecortex(s, q) = 0.5 + α/Γ
else Scorecortex(s, q) = 0.5 − β/Γ

In addition to this score, two other measures are used: the question-document
similarity and the topic-sentence overlap. The Cortex system is applied to each
document of a topic set and the summary is generated by concatenating higher
score sentences.

The specific similarity measure [17] between the question and the corpus al-
lows us to re-scale the sentence scores according to the relevance of the document
from which they are extracted. This measure is the normalized scalar product
of the tf.idf vectorial representations of the document and the question q. Let
d = (d1 . . . dn) and q = (q1 . . . qn) be the vectors representing the document and
the question, respectively. The definition of the measure is:

Similarity(q, d) =
∑n

i=1 diqi√∑n
i=1 di

2 +
∑n

i=1 qi
2

The last measure, the topic-sentence overlap, assigns a higher ranking for the
sentences containing question words and makes selected sentences more relevant.
The overlap is defined as the normalized cardinality of the intersection between
the uestion word set T and the sentence word set S.

Overlap(T, S) =
card(S ∩ T)

card(T)

The Cortex Automatic Summarization System at the QA@INEX Track 2010 293

The final score of a sentence s from a document d and a question q is the
following:

Score = α1 Scorecortex(s, q) + α2 Overlap(s, q) + α3 Similarity(d, q)
where

∑
i αi = 1

3 Experiments Settings and Results

In this study, we used the document sets made available during the Initiative for
the Evaluation of XML retrieval (INEX) 20102, in particular on the INEX 2010
QA Track (QA@INEX) http://www.inex.otago.ac.nz/tracks/qa/qa.asp.

To evaluate the efficacity of Cortex on INEX@QA corpus, we used the FRESA
package3.

INEX queries. No pre-processing or modification was applied on queries set.
Cortex used the query as a title of a big document retrieved by Indri. Table 1
shows an example of the results obtained by Cortex system using 50 documents
as input. The query that the summary should answer in this case was the number
2010111:

What is considered a beautiful body shape?.
This table presents Cortex results in comparison with an the INEX baseline

(Baseline summary), and three baselines, that is, summaries including random
n-grams (Random unigram) and 5-grams (Random 5-gram) and empty baseline.
We observe that our system is always better than Baseline summary and empty
baseline.

Table 1. Example of Cortex Summarization results

Summary type 1-gram 2-gram SU4-gram FRESA average

Baseline summary 26.679 34.108 34.218 31.668
Empty baseline 31.715 39.452 39.534 36.901
Random unigram 25.063 32.822 32.852 30.246
Random 5-gram 23.168 30.644 30.838 28.217
Cortex summary 26.421 33.935 34.030 31.462

4 Conclusions

We have presented the Cortex summarization system that is based on the fusion
process of several different sentence selection metrics. The decision algorithm
obtains good scores on INEX-2010, indicating that the decision process is a
good strategy for preventing overfitting on the training corpus. In the INEX-
2010 corpus, Cortex system obtained very good results in the automatic FRESA
evaluations.
2 http://www.inex.otago.ac.nz/
3 FRESA package is disponible at web site: http://lia.univ-avignon.fr/

fileadmin/axes/TALNE/downloads/index_fresa.html

http://www.inex.otago.ac.nz/tracks/qa/qa.asp
http://www.inex.otago.ac.nz/
http://lia.univ-avignon.fr/fileadmin/axes/TALNE/downloads/index_fresa.html
http://lia.univ-avignon.fr/fileadmin/axes/TALNE/downloads/index_fresa.html

294 J.-M. Torres-Moreno and M. Gagnon

References

1. ANSI. American National Standard for Writing Abstracts. Technical report, Amer-
ican National Standards Institute, Inc., New York, NY (ANSI Z39.14.1979) (1979)

2. Luhn, H.P.: The Automatic Creation of Literature Abstracts. IBM Journal of Re-
search and Development 2(2), 159 (1958)

3. Edmundson, H.P.: New Methods in Automatic Extracting. Journal of the ACM
(JACM) 16(2), 264–285 (1969)

4. Salton, G.: The SMART Retrieval System - Experiments un Automatic Document
Processing, Englewood Cliffs (1971)

5. Salton, G., McGill, M.: Introduction to Modern Information Retrieval. McGraw-
Hill, New York (1983)

6. Torres-Moreno, J.M., Velazquez-Morales, P., Meunier, J.-G.: Condensés automa-
tiques de textes. Lexicometrica. L’analyse de données textuelles: De l’enquête aux
corpus littéraires, Special (2004), www.cavi.univ-paris3.fr/lexicometrica

7. Jacquemin, C., Zweigenbaum, P.: Traitement automatique des langues pour
l’accès au contenu des documents. Le Document en Sciences du Traitement de
l’information 4, 71–109 (2000)

8. Abracos, J., Lopes, G.P.: Statistical Methods for Retrieving Most Significant Para-
graphs in Newspaper Articles. In: Mani, I., Maybury, M.T. (eds.) ACL/EACL
1997-WS, Madrid, Spain, July 11 (1997)

9. Teufel, S., Moens, M.: Sentence Extraction as a Classification Task. In: Mani, I.,
Maybury, M.T. (eds.) ACL/EACL 1997-WS, Madrid, Spain (1997)

10. Hovy, E., Lin, C.Y.: Automated Text Summarization in SUMMARIST. In: Mani,
I., Maybury, M.T. (eds.) Advances in Automatic Text Summarization, pp. 81–94.
The MIT Press, Cambridge (1999)

11. Kupiec, J., Pedersen, J.O., Chen, F.: A Trainable Document Summarizer. In: Pro-
ceedings of the 18th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, pp. 68–73 (1995)

12. Tombros, A., Sanderson, M., Gray, P.: Advantages of Query Biased Summaries
in Information Retrieval. In: Hovy, E., Radev, D.R. (eds.) AAAI1998-S, Stanford,
California, USA, March 23-25, pp. 34–43. The AAAI Press, Menlo Park (1998)

13. Schlesinger, J.D., Backer, D.J., Donway, R.L.: Using Document Features and Sta-
tistical Modeling to Improve Query-Based Summarization. In: DUC 2001, New
Orleans, LA (2001)

14. Torres-Moreno, J.M., Velazquez-Moralez, P., Meunier, J.: CORTEX, un algorithme
pour la condensation automatique de textes. In: ARCo, vol. 2, p. 365 (2005)

15. Torres-Moreno, J.M., St-Onge, P.-L., Gagnon, M., El-Bèze, M., Bellot, P.: Au-
tomatic summarization system coupled with a question-answering system (qaas).
CoRR, abs/0905.2990 (2009)

16. Torres-Moreno, J.M., Velazquez-Morales, P., Meunier, J.G.: Condensés de textes
par des méthodes numériques. JADT 2, 723–734 (2002)

17. Salton, G.: Automatic text processing, 9th edn. Addison-Wesley Longman Pub-
lishing Co. Inc., Amsterdam (1989)

www.cavi.univ-paris3.fr/lexicometrica

The REG Summarization System with Question

Reformulation at QA@INEX Track 2010

Jorge Vivaldi1, Iria da Cunha1, and Javier Ramı́rez2

1 Instituto Universitario de Lingǘıstica Aplicada - UPF
Barcelona

2 Universidad Autónoma Metropolitana-Azcapotzalco
Mexico

{iria.dacunha,jorge.vivaldi}@upf.edu,jararo@correo.azc.uam.mx

http://www.iula.upf.edu

Abstract. In this paper we present REG, a graph approach to study
a fundamental problem of Natural Language Processing: the automatic
summarization of documents. The algorithm models a document as a
graph, to obtain weighted sentences. We applied this approach to the
INEX@QA 2010 task (question-answering). To do it, we have extracted
the terms and name entities from the queries, in order to obtain a list
of terms and name entities related with the main topic of the question.
Using this strategy, REG obtained good results regarding performance
(measured with the automatic evaluation system FRESA) and readabil-
ity (measured with human evaluation), being one of the seven best sys-
tems into the task.

Keywords: INEX, Automatic Summarization System, Question-
Answering System, REG.

1 Introduction

Nowadays automatic summarization is a very prominent research topic. We can
define summary as “a condensed version of a source document having a recog-
nizable genre and a very specific purpose: to give the reader an exact and concise
idea of the contents of the source” (Saggion and Lapalme, 2002: 497). Summaries
can be divided into “extracts”, if they contain the most important sentences ex-
tracted from the original text (ex. Edmunson, 1969; Nanba and Okumura, 2000;
Gaizauskas et al., 2001; Lal and Reger, 2002; Torres-Moreno et al., 2002) and
“abstracts”, if these sentences are re-written or paraphrased, generating a new
text (ex. Ono et al., 1994; Paice, 1990; Radev, 1999). Most of the automatic
summarization systems are extractive. These systems are useful in several do-
mains: medical (ex. Johnson et al., 2002 Afantenos et al., 2005; da Cunha et
al., 2007; Vivaldi et al., 2010), legal (ex. Farzindar et al., 2004), journalistic (ex.
Abracos and Lopes, 1997; Fuentes et al., 2004), etc.

One of the tasks where these extractive summarization systems could help is
question-answering. The objective of the INEX@QA 2010 track is to evaluate

S. Geva et al. (Eds.): INEX 2010, LNCS 6932, pp. 295–302, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.iula.upf.edu

296 J. Vivaldi, I. da Cunha, and J. Ramı́rez

a difficult question-answering task, where questions are very precise (expecting
short answers) or very complex (expecting long answers, including several sen-
tences). In this second task is where automatic summarization systems could
help. The used corpus in this track contains all the texts included into the En-
glish Wikipedia. The expected answers are automatic summaries of less than 500
words exclusively made of aggregated passages extracted from the Wikipedia cor-
pus. The evaluation of the answers will be automatic, using the automatic evalu-
ation system FRESA (Torres-Moreno et al., 2010a, 2010b, Saggion et al., 2010),
and manual (evaluating syntactic incoherence, unsolved anaphora, redundancy,
etc.). To carry out this task, we have decided to use REG (Torres-Moreno and
Ramı́rez, 2010; Torres-Moreno et al., 2010), an automatic summarization system
based on graphs. We have performed some expansions of the official INEX@QA
2010 queries, detecting the terms and name entities they contain, in order to
obtain a list of terms related with the main topic of all the questions.

This paper is organized as follows. In Section 2 we show REG, the summa-
rization system we have used for our experiments. In Section 3 we explain how
we have carried out the terms and name entities extraction of the queries. In
Section 4 we present the experimental settings and results. Finally, in Section 5,
we expose some conclusions.

2 The REG System

REG (Torres-Moreno and Ramı́rez, 2010; Torres-Moreno et al. 2010) is an En-
hanced Graph summarizer (REG) for extract summarization, using a graph ap-
proach. The strategy of this system has two main stages: a) to carry out an ad-
equate representation of the document and b) to give a weight to each sentence
of the document. In the first stage, the system makes a vectorial representation
of the document. In the second stage, the system uses a greedy optimization
algorithm. The summary generation is done with the concatenation of the most
relevant sentences (previously scored in the optimization stage).

REG algorithm contains three modules. The first one carries out the vectorial
transformation of the text with filtering, lemmatization/stemming and normal-
ization processes. The second one applies the greedy algorithm and calculates
the adjacency matrix. We obtain the score of the sentences directly from the
algorithm. Therefore, sentences with more score will be selected as the most
relevant. Finally, the third module generates the summary, selecting and con-
catenating the relevant sentences. The first and second modules use CORTEX
(Torres-Moreno et al., 2002), a system that carries out an unsupervised extrac-
tion of the relevant sentences of a document using several numerical measures
and a decision algorithm.

The complexity of REG algorithm is O(n2). Nevertheless, there is a limitation,
because it includes a fast classification algorithm which can be used only for short
instances; this is the reason it is not very efficient for long texts.

The REG System at QA@INEX Track 2010 297

3 Terms and Name Entity Extraction

The starting point of this work is to consider that the terms or name entities
included into the queries are representative of the main subject of these queries.
If this assumption is true, the results obtained by a search engine would be
optimized if we give it as input the list of terms or name entities of the queries,
instead the complete queries.

The first procedure for obtaining the query terms has been to found the main
topic of the questions. This has been obtained by finding the terms candidate
and the name entitites present in every query. On the one hand, terms are usually
defined as lexical units to designate concepts in a domain. The notion of term
that we have adopted in this work is based on the “Communicative Theory of
Terminology” (Cabré, 1999): a term is a lexical unit (single/multiple word) that
designates a concept in a given specialized domain. This means that terms have
a designative function and, obviously not all the words in a language have such
function. To detect which are the words that in a given text have this designative
function is the main task of term detector/extractors (see Cabré et al. (2001)
for a review of this subject). The detection of these units is a complex task
mainly because terms adopt, with a few exceptions, all word formation rules in
a given language (Pearson, 1998; Sager, 1999). Also, as mentioned in the term
definition itself, it is necessary to confirm that a given lexical unit belong to
the domain of interest. Due to the difficulties to verify this condition it is usual
to refer the results obtained by an extractor as term candidates instead of just
“terms”. Some terminological extractors are described in Barrón-Cedeño et al.
(2009), Wong et al. (2008), Sclano et al. (2007), Vivaldi and Rodŕıguez (2001a,
2001b), Vivaldi (2001) or Bourigault and Jacquemin (1999), among others.

In this context we have used the basic procedure for obtaining term candidates
in the field of term extraction. Such candidates are typically obtained by using
the morphosyntactic terminological patterns for any given language (see Cabré et
al., 2001; Pazienza et al., 2005), English in this case. As the queries do not belong
to any specific domain it is not possible determine the termhood of the retrieved
candidates. We consider termhood as it has been defined in Kageura and Umino
(1996): “the degree that a linguistic unit is related to domain-specific concepts”.

On the other hand, the main objective of name entity recognition systems
is to found automatically some units into texts. These units can be names of
persons, names of organizations, locations, etc. Some works about this subjects
are Jun’ichi and Kentaro (2007), Leong and Tou (2002) or Volk and Clematide
(2001), among many others.

As we have seen, nowadays several term extraction systems and name entity
recognition systems exist for English. Nevertheless, their performances are not
still perfect, so if we employ these systems in our work, their mistakes and
the mistakes of the system we present here would be mixed. Moreover, term
extractors are usually designed for a specialized domain, as medicine, economics,
law, etc, but the topics of the queries provided by INEX@QA 2010 are several,
that is, they do not correspond to an unique domain. As the INEX@QA 2010
organizers state (SanJuan et al., 2010: 2):

298 J. Vivaldi, I. da Cunha, and J. Ramı́rez

“Long type questions require long answers up to 500 words that must be self-
contained summaries made of passages extracted from the INEX 2009 corpus.
Among the 150 long type questions, 80 are related to 2009 ad-hoc topics and
the remaining 70 come from Nomao and Yahoo! Answers”.

These facts, the performance of term and name entity extractors, and the
diversity of domains of the queries, made us to carry out the term and name
entity extraction not using a specific term extraction tool but just using a POS
tagger. In practice, we mainly extract nominal sentences. Doing the task in this
way, we are sure that the results we obtain are precise and we can evaluate our
system properly.

Considering that questions are very short, only a few candidates are obtained
by such procedure; therefore, they have a high probability to be the main topic
of the question.

For example, for the query “How does GLSL unify vertex and fragment pro-
cessing in a single instruction set?”, we consider that the terms “glsl”, “vertex
processing”, “fragment processing” and “single instruction set” are useful to find
the right answer. But for the query “Who is Eiffel?”, there are not any term,
only the name entity “Eiffel?”.

4 Experiments Settings and Results

In this study, we used the document sets made available during the Initiative for
the Evaluation of XML retrieval (INEX) 20101, in particular on the INEX 2010
QA Track (QA@INEX). These sets of documents where provided by the search
engine Indri.2 REG has produced multidocument summaries using sets of 30, 40
and 50 of the documents provided by Indri using all the queries of the track.

To evaluate the efficiency of REG over the INEX@QA corpus, we have used
the FRESA package. This evaluation framework (FRESA –FRamework for Eval-
uating Summaries Automatically-) includes document-based summary evaluation
measures based on probabilities distribution, specifically, the Kullback Leibler
(KL) divergence and the Jensen Shannon (JS) divergence.As in the ROUGE pack-
age (Lin, 2004), FRESA supports different n-grams and skip n-grams probability
distributions. The FRESA environment has been used in the evaluation of sum-
maries produced in several European languages (English, French, Spanish and
Catalan), and it integrates filtering and lemmatization in the treatment of sum-
maries and documents. FRESA is available in the following link:
http://lia.univ-avignon.fr/fileadmin/axes/TALNE/Ressources.html.

Table 1 shows an example of the results obtained by REG using 50 documents
as input. The query that the summary should answer in this case was the num-
ber 2009006 (“What are the similarities and differences between mean average
precision and reciprocal rank used in Information Retrieval?”). The extracted

1 http://www.inex.otago.ac.nz/
2 Indri is a search engine from the Lemur project, a cooperative work between the Uni-

versity of Massachusetts and Carnegie Mellon University in order to build language
modelling information retrieval tools: http://www.lemurproject.org/indri/

http://lia.univ-avignon.fr/fileadmin/axes/TALNE/Ressources.html
http://www.inex.otago.ac.nz/
http://www.lemurproject.org/indri/

The REG System at QA@INEX Track 2010 299

Table 1. Example of REG results using 50 documents as input

Distribution type unigram bigram with 2-gap Average

Baseline summary 22.64989 31.70850 32.07926 28.81255
Random unigram 18.18043 28.25213 28.44528 24.95928
Random 5-gram 17.47178 26.33253 27.03882 23.61437
Submitted summary 22.77755 32.06325 32.53706 29.12595

terms for this query were: “similarities”, “differences”, “mean average precision”,
“reciprocal rank” and “information retrieval”. This table presents REG results
in comparison with an intelligent baseline (Baseline summary), and two simple
baselines, that is, summaries including random n-grams (Random unigram) and
5-grams (Random 5-gram). We observe that our system is always better than
these two simple baselines, but in comparison with the first one the performance
is variable.

Readability and coherence evaluation required human evaluation. Humans
evaluated the correctness of the answers detecting incoherent grammatical struc-
tures, unsolved anaphora or redundant passages. For more information about the
human evaluation methodology that INEX@QA 2010 organizers used, see San-
Juan et al. (2010).

Table 2 includes the final results of the task. There were nearly 100 partic-
ipants into the INEX@QA 2010 task, using different approaches. Our system
(number 857) is one of the best seven systems. It obtains 2031.85 average per-
formance and average readability. Regarding performance, it is the fourth best
system and, regarding readability, its results are similar to four other systems.
The best performance was obtained by the system 98 (2006.45), based on fo-
cused Information Retrieval (IR), but it obtains a bad readability (the worst
readability into the evaluation). The best system regarding readability was the
943, but it was the worst regarding average performance (2050.81).

We consider that the results obtained by our system are positive: neither
performance nor readability are bad. Moreover, results on both categories (per-
formance and readability) are good. We think that the fact our system is able
to maintain a good level in both categories means that our system is robust.

Table 2. Evaluation results for the seven best participants into the INEX@QA 2010
task: Cumulative KL divergence

ID method unigrams bigrams 4 skip grams average readability

943 long sentences 1642.93 2252.28 2257.22 2050.81 good
857 question reformulation 1621.14 2234.57 2239.85 2031.85 average
98 focused IR 1599.29 2207.56 2212.49 2006.45 bad
92 MWT expansion 1617.35 2226.61 2231.56 2025.17 average
860 system combination 1617.6 2227.37 2232.43 2025.8 average
855 semantic expansion 1625.76 2235.21 2240.35 2033.77 average
557 JS minimization 1631.29 2237.61 2242.83 2037.24 average

300 J. Vivaldi, I. da Cunha, and J. Ramı́rez

5 Conclusions

We have presented the REG summarization system, an extractive summarization
algorithm that models a document as a graph, to obtain weighted sentences. We
applied this approach to the INEX@QA 2010 task, extracting the terms and
the name entities from the queries, in order to obtain a list of terms and name
entities related with the main topic of the question.

We consider that, over the INEX-2010 corpus, REG obtained good results in
the automatic evaluations. The experiments have shown that the performance
and readability of our system are very good, in comparison to the other partic-
ipants in the INEX@QA 2010 task: it is the fourth best system. Neither per-
formance nor readability are bad, and we consider that this fact confirms the
robustness of the system.

We think that the main problem of our methodology it that some queries are
long and they have several terms or name entities we could extract, but there
are some queries that are very short and the extraction is not possible or very
limited. As future work, we would like to include more semantic aspects to solve
this problem. Eventually, we may use Wikipedia for selecting the most relevant
nominal sentences found in the question. In this way, some nominal sentences
may be no used in the query, improving the results obtained from the search
engine. In the case of very short questions, the query may be expanded using
information obtained from this resource.

We would like to use in the future another similar but more efficient algorithm
(like merge sort or heapsort, with complexity O(nlgn); see Cormen et al., 2005),
before the greedy algorithm, when the sentences ranking is performed.

References

1. Abracos, J., Lopes, G.: Statistical methods for retrieving most significant para-
graphs in newspaper articles. In: Proceedings of the ACL/EACL 1997 Workshop
on Intelligent Scalable Text Summarization, Madrid, pp. 51–57 (1997)

2. Afantenos, S., Karkaletsis, V., Stamatopoulos, P.: Summarization of medical doc-
uments: A survey. Artificial Intelligence in Medicine 33(2), 157–177 (2005)

3. Barrón-Cedeño, A., Sierra, G., Drouin, P., Ananiadou, S.: An Improved Automatic
Term Recognition Method for Spanish. In: Gelbukh, A. (ed.) CICLing 2009. LNCS,
vol. 5449, pp. 125–136. Springer, Heidelberg (2009)

4. Bourigault, D., Jacquemin, C.: Term Extraction + Term Clustering: an integrated
platform for computer-aided terminology. In: Proceedings of EACL, pp. 15–22
(1999)

5. Cabré, M.T.: La terminoloǵıa. Representación y comunicación. IULA-UPF,
Barcelona (1999)

6. Cabré, M.T., Estopà, R., Vivaldi, J.: Automatic term detection: a review of cur-
rent systems. In: Bourigault, D., Jacquemin, C., L’Homme, M.C. (eds.) Recent
Advances in Computational Terminology, pp. 53–87. John Benjamins, Amsterdam
(2001)

7. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms,
2nd edn. The MIT Press, Cambridge (2005)

The REG System at QA@INEX Track 2010 301

8. da Cunha, I., Wanner, L., Cabré, M.T.: Summarization of specialized discourse:
The case of medical articles in Spanish. Terminology 13(2), 249–286 (2007)

9. Edmunson, H.P.: New Methods in Automatic Extraction. Journal of the Associa-
tion for Computing Machinery 16, 264–285 (1969)

10. Farzindar, A., Lapalme, G., Desclés, J.-P.: Résumé de textes juridiques par identi-
fication de leur structure thématique. Traitement Automatique des Langues 45(1),
39–64 (2004)

11. Fuentes, M., Gonzalez, E., Rodriguez, H.: Resumidor de noticies en catala del
projecte Hermes. In: Proceedings of II Congrés d’Enginyeria en Llengua Catalana
(CELC 2004), Andorra, pp. 102–102 (2004)

12. Gaizauskas, R., Herring, P., Oakes, M., Beaulieu, M., Willett, P., Fowkes, H., Jon-
sson, A.: Intelligent access to text: Integrating information extraction technology
into text browsers. In: Proceedings of the Human Language Technology Confer-
ence, San Diego, pp. 189–193 (2001)

13. Johnson, D.B., Zou, Q., Dionisio, J.D., Liu, V.Z., Chu, W.W.: Modeling medi-
cal content for automated summarization. Annals of the New York Academy of
Sciences 980, 247–258 (2002)

14. Jun’ichi, K., Kentaro, T.: Exploiting Wikipedia as External Knowledge for Name
Entity Recognition. In: Joint Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Language Learning, pp. 698–707
(2007)

15. Kageura, K., Umino, B.: Methods of automatic term recognition: A review. Ter-
minology 3(2), 259–289 (1996)

16. Lal, P., Reger, S.: Extract-based Summarization with Simplication. In: Proceed-
ings of the 2nd Document Understanding Conference at the 40th Meeting of the
Association for Computational Linguistics, pp. 90–96 (2002)

17. Leong Chieu, H., Tou Ng, H.: Named entity recognition: a maximum entropy ap-
proach using global information. In: Proceedings of the 19th International Confer-
ence on Computational Linguistics, pp. 1-7 (2002)

18. Lin, C.-Y.: ROUGE: A Package for Automatic Evaluation of Summaries. In: Pro-
ceedings of Text Summarization Branches Out: ACL 2004 Workshop, pp. 74–81
(2004)

19. Nanba, H., Okumura, M.: Producing More Readable Extracts by Revising Them.
In: Proceedings of the 18th International Conference on Computational Linguistics
(COLING 2000), Saarbrucken, pp. 1071–1075 (2000)

20. Ono, K., Sumita, K., Miike, S.: Abstract generation based on rhetorical struc-
ture extraction. In: Proceedings of the International Conference on Computational
Linguistics, Kyoto, pp. 344–348 (1994)

21. Paice, C.D.: Constructing literature abstracts by computer: Techniques and
prospects. Information Processing and Management 26, 171–186 (1990)

22. Pazienza, M.T., Pennacchiotti, M., Zanzotto, F.M.: Terminology Extraction: An
Analysis of Linguistic and Statistical Approaches. In: Studies in Fuzziness and Soft
Computing, vol. 185, pp. 255–279 (2005)

23. Pearson, J.: Terms in context. John Benjamin, Amsterdam (1998)
24. Radev, D.: Language Reuse and Regeneration: Generating Natural Language Sum-

maries from Multiple On-Line Sources. New York, Columbia University [PhD The-
sis] (1999)

25. Sager, J.C.: In search of a foundation: Towards a theory of terms. Terminology 5(1),
41–57 (1999)

26. Saggion, H., Lapalme, G.: Generating Indicative-Informative Summaries with Su-
mUM. Computational Linguistics 28(4), 497–526 (2002)

302 J. Vivaldi, I. da Cunha, and J. Ramı́rez

27. Saggion, H., Torres-Moreno, J.-M., da Cunha, I., SanJuan, E., Velázquez-Morales,
P., SanJuan, E.: Multilingual Summarization Evaluation without Human Models.
In: Proceedings of the 23rd International Conference on Computational Linguistics
(COLING 2010), Pekin (2010)

28. SanJuan, E., Bellot, P., Moriceau, V., Tannier, X.: Overview of the 2010 QA Track:
Preliminary results. In: Geva, S., et al. (eds.) INEX 2010. LNCS, vol. 6932, pp.
269–281. Springer, Heidelberg (2010)

29. Sclano, F., Velardi, P.: Termextractor: a web application to learn the shared ter-
minology of emergent web communities. In: Proceedings of the 3rd International
Conference on Interoperability for Enterprise Software and Applications, pp. 287–
298 (2007)

30. Torres-Moreno, J.-M., Saggion, H., da Cunha, I., SanJuan, E., Velázquez-Morales,
P., SanJuan, E.: Summary Evaluation With and Without References. Polibitis:
Research Journal on Computer Science and Computer Engineering with Applica-
tions 42 (2010a)

31. Torres-Moreno, J.-M., Saggion, H., da Cunha, I., Velázquez-Morales, P., SanJuan,
E.: Ealuation automatique de résumés avec et sans référence. In: Proceedings of the
17e Conférence sur le Traitement Automatique des Langues Naturelles (TALN),
Université de Montréal et Ecole Polytechnique de Montréal, Montreal Canada
(2010)

32. Torres-Moreno, J-M., Ramı́rez, J.: REG: un algorithme glouton appliqué au résumé
automatique de texte. In: JADT 2010, Roma, Italia (2010)

33. Torres-Moreno, J-M., Ramı́rez, J.: Un resumeur a base de graphes, indépendant
de la langue. In: Proceedings of the International Workshop African HLT 2010,
Djibouti (2010)

34. Torres-Moreno, J.M., Velázquez-Morales, P., Meunier, J.G.: Condensés de textes
par des méthodes numériques. In: Proceedings of the 6th International Conference
on the Statistical Analysis of Textual Data (JADT), St. Malo, pp. 723–734 (2002)

35. Vivaldi, J., da Cunha, I., Torres-Moreno, J.M., Velázquez, P.: Automatic Sum-
marization Using Terminological and Semantic Resources. In: En Actas del 7th
International Conference on Language Resources and Evaluation (LREC 2010),
Valletta, Malta (2010)

36. Vivaldi, J.: Extracción de candidatos a término mediante combinación de estrate-
gias heterogéneas. Ph.D. thesis, Universitat Politcnica de Catalunya, Barcelona
(2001)

37. Vivaldi, J., Rodŕıguez, H.: Improving term extraction by combining different tech-
niques. Terminology 7(1), 31–47 (2001a)

38. Vivaldi, J., Màrquez, L., Rodŕıguez, H.: Improving term extraction by system com-
bination using boosting. In: Flach, P.A., De Raedt, L. (eds.) ECML 2001. LNCS
(LNAI), vol. 2167, pp. 515–526. Springer, Heidelberg (2001b)

39. Volk, M., Clematide, S.: Learn-filter-apply-forget. Mixed approaches to name entity
recognition. In: Proceedings of the 6th International Workshop on Applications of
Natural Language for Informations Systems, Madrid, Spain (2001)

40. Won, W., Liu, W., Bennamoun, M.: Determination of Unithood and Termhood for
Term Recognition. In: Song, M., Wu, Y. (eds.) Handbook of Research on Text and
Web Mining Technologies. IGI Global (2008)

Overview of the INEX 2010 Focused Relevance

Feedback Track

Timothy Chappell1 and Shlomo Geva2

1 Queensland University of Technology
t.chappell@student.qut.edu.au

2 Queensland University of Technology
s.geva@qut.edu.au

Abstract. The INEX 2010 Focused Relevance Feedback track offered
a refined approach to the evaluation of Focused Relevance Feedback al-
gorithms through simulated exhaustive user feedback. As in traditional
approaches we simulated a user-in-the loop by re-using the assessments
of ad-hoc retrieval obtained from real users who assess focused ad-hoc
retrieval submissions.

The evaluation was extended in several ways: the use of exhaustive
relevance feedback over entire runs; the evaluation of focused retrieval
where both the retrieval results and the feedback are focused; the evalua-
tion was performed over a closed set of documents and complete focused
assessments; the evaluation was performed over executable implementa-
tions of relevance feedback algorithms; and finally, the entire evaluation
platform is reusable.

We present the evaluation methodology, its implementation, and ex-
perimental results obtained for nine submissions from three participating
organisations.

1 Introduction

This paper presents an overview of the INEX 2010 Focused Relevance Feedback
track. The purpose behind the track is to evaluate the performance of focused
relevance feedback plugins in comparison to each other against unknown data.
The data used for this track is the document collection and the assessments col-
lected for the INEX 2010 Ad Hoc track. Organisations participated in the track
by submitting their algorithms in the form of dynamic libraries implementing a
ranking function capable of receiving relevance information from the evaluation
platform and acting on it to improve the quality of future results. The interface
also allows the algorithms to provide back more detailed information, such as
the section or sections within a document that it believes are most relevant,
enabling focused results to be returned.

The result of running the algorithms against a set of topics is a set of relevance
assessments, which can then be scored against the same assessments used to
provide feedback to the algorithms. The result is a reflection of how well the
algorithms were able to learn from the relevance information they were given.

S. Geva et al. (Eds.): INEX 2010, LNCS 6932, pp. 303–312, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

304 T. Chappell and S. Geva

2 Focused Relevance Feedback

The relevance feedback approach that is the focus of this track is a modified
form of traditional approaches to relevance feedback, which typically involved
nominating whole documents as either relevant or not relevant. The end user
would typically be presented with a list of documents which they would mark as
relevant or not relevant before returning this input to the system which would
search the remainder of the collection for similar documents and present them
to the user.

Due to a fundamental paradigm change in how people use computers since
these early approaches to relevance feedback, a more interactive feedback loop
where the user continues to provide relevance information as they go through
the results is now possible. We adopted a refined approach to the evaluation
of relevance feedback algorithms through simulated exhaustive incremental user
feedback. The approach extends evaluation in several ways relative to traditional
evaluation. First, it facilitates the evaluation of retrieval where both the retrieval
results and the feedback are focused. This means that both the search results
and the feedback are specified as passages, or as XML elements, in documents
- rather than as whole documents. Second, the evaluation is performed over a
closed set of documents and assessments, and hence the evaluation is exhaustive,
reliable and less dependent on the specific search engine in use. By reusing the
relatively small topic assessment pools, having only several hundred documents
per topic, the search engine quality can largely be taken out of the equation.
Third, the evaluation is performed over executable implementations of relevance
feedback algorithms rather than being performed over result submissions. Fi-
nally, the entire evaluation platform is reusable and over time can be used to
measure progress in focused relevance feedback in an independent, reproducible,
verifiable, uniform, and methodologically sound manner.

3 Evaluation

The Focused Relevance Feedback track is concerned with the simulation of a
user interacting with an information retrieval system, searching for a number
of different topics. The quality of the results this user receives is then used to
evaluate the relevance feedback approach.

The INEX Ad-Hoc track, which evaluates ranking algorithms, makes use of
user-collected assessments on which portions of documents are relevant to users
searching for particular topics. These assessments are perfect, not just for the
evaluation of the rankings produced by the algorithms, but also for providing
Focused Relevance Feedback algorithms with the relevance information they
need.

As such, a Focused Relevance Feedback algorithm can be mechanically evalu-
ated without a need of a real user by simulating one, looking up the appropriate
assessments for each document received from the algorithm and sending back
the relevant passages.

Overview of the INEX 2010 Focused Relevance Feedback Track 305

To be able to accurately evaluate and compare the performance of different
focused relevance feedback algorithms, it is necessary that the algorithms not be
trained on the exact relevance assessments they are to receive in the evaluation.
After all, a search engine isn’t going to know in advance what the user is looking
for. For this reason, it becomes necessary to evaluate an algorithm with data
that was not available at the time the algorithm is written. Unlike in the Ad-Hoc
track, the relevance submissions used to evaluate the plugins are also required for
input to the plugins, so there is no way to provide participating organisations
with enough information for them to provide submissions without potentially
gaining an unrealistic advantage.

There are at least two potential ways of rectifying this. One is to require
the submission of the algorithms a certain amount of time (for example, one
hour) after the assessments for the Ad Hoc track were made available. This
approach, however, is flawed as it allows very little margin for error and that it
will unfairly advantage organisations that happen to be based in the right time
zones, depending on when the assessments are released. In addition, it allows the
relevance feedback algorithm to look ahead at relevance results it has not yet
received in order to artificially improve the quality of the ranking. These factors
make it unsuitable for the running of the track.

The other approach, and the one used in the Focused Relevance Feedback
track, is to have the participating organisations submit the algorithms them-
selves, rather than just the results. The algorithms were submitted as dynamic
libraries written in Java, chosen for its cross-platform efficiency. The dynamic
libraries were then linked into an evaluation platform which simulated a user
searching for a number of different topics, providing relevance results on each
document given. The order in which the documents were submitted to the plat-
form was then used to return a ranking, which could be evaluated like the results
of any ranking algorithm.

4 Task

4.1 Overview

Participants were asked to create one or more Relevance Feedback Modules
intended to rank a collection of documents with a query while incrementally
responding to explicit user feedback on the relevance of the results presented to
the user. These Relevance Feedback Modules were implemented as dynamically
linkable modules that implement a standard defined interface. The Evaluation
Platform interacts with the Relevance Feedback Modules directly, simulating a
user search session. The Evaluation Platform instantiates a Relevance Feedback
Module object and provides it with a set of XML documents and a query.

The Relevance Feedback Module responds by ranking the documents (with-
out feedback) and returning the ranking to the Evaluation Platform. This is so
that the difference in quality between the rankings before and after feedback can
be compared to determine the extent of the effect the relevance feedback has on
the results. The Evaluation Platform is then asked for the next most relevant

306 T. Chappell and S. Geva

document in the collection (that has not yet been presented to the user). On
subsequent calls the Evaluation Platform passes relevance feedback (in the form
of passage offsets and lengths) about the last document presented by the Rele-
vance Feedback Module. This feedback is taken from the qrels of the respective
topic, as provided by the Ad-Hoc track assessors. The simulated user feedback
may then be used by the Relevance Feedback Module to re-rank the remaining
unseen documents and return the next most relevant document. The Evalua-
tion Platform makes repeated calls to the Relevance Feedback Module until all
relevant documents in the collection have been returned.

The Evaluation Platform retains the presentation order of documents as gen-
erated by the Relevance Feedback Module. This order can then be evaluated as
a submission to the ad-hoc track in the usual manner and with the standard
retrieval evaluation metrics. It is expected that an effective dynamic relevance
feedback method will produce a higher score than a static ranking method (i.e.
the initial baseline rank ordering). Evaluation is performed over all topics and
systems are ranked by the averaged performance over the entire set of topics,
using standard INEX and TREC metrics. Each topic consists of a set of doc-
uments (the topic pool) and a complete and exhaustive set of manual focused
assessments against a query. Hence, we effectively have a ”classical” Cranfield ex-
periment over each topic pool as a small collection with complete assessments for
a single query. The small collection size allows participants without an efficient
implementation of a search engine to handle the task without the complexities
of scale that the full collection presents.

4.2 Submission Format

Participating organisations submitted JAR files that implemented the following
specification:

package rf;

public interface RFInterface {
public Integer[] first(String[] documentList, String query);
public Integer next();
public String getFOL();
public String getXPath();
public void relevant(Integer offset, Integer length,

String Xpath, String relevantText);
}

In the call to first, the algorithm is given the set of documents and the query
used to rank them and must return an initial ranking of the documents. The
purpose of this is to quantify the improvement gained from providing the rele-
vance assessments to the Relevance Feedback Module. The Evaluation Platform
then calls next to request the next document from the algorithm, making a call
to relevant to provide feedback on any relevant passages in the document. The
optional methods getFOL and getXPath, if implemented, allow the Relevance

Overview of the INEX 2010 Focused Relevance Feedback Track 307

Feedback Module to provide more focused results to the Evaluation Platform in
order to gain better results from the focused evaluation. None of the submitted
algorithms implemented these methods, however.

A subset of 10 topics that assessments were created for in the Ad-Hoc track
were selected to evaluate the topics. These topics were chosen by taking the first
10 topics that were manually assessed during the assessment stage of the Ad Hoc
track. Between them these topics covered a total of 7488 documents (with some
overlap), of which 1421 were marked as relevant (containing at least one passage
marked as relevant.) On average, in the relevant documents 36.43% of the text
was marked as relevant, with the shortest relevant passage being 29 characters
long.

Each Relevance Feedback Module receives a call to first for each topic, but
is not otherwise reinitialised, giving the module opportunity to implement some
form of learning to rank approach. It is difficult to tell if any of the submissions
made use of this.

5 Results

5.1 Submissions

Three groups submitted a total of nine Relevance Feedback Modules to the
INEX 2010 Relevance Feedback track. While this submission pool is small, it
was to be expected given that this is the first time the track has been run. QUT
resubmitted the reference Relevance Feedback Module. The Indian Statistical
Institute (ISI) submitted three modules and Peking University submitted five.

To provide a starting point for participating organisations, a reference Rele-
vance Feedback Module, both in source and binary form, was provided by QUT.
This reference module used the ranking engine Lucene[2] as a base for a modified
Rocchio[3] approach. The approach used was to provide the document collec-
tion to Lucene for indexing, then construct search queries based on the original
query but with terms added from those selections of text nominated as relevant.
A scrolling character buffer of constant size was used, with old data rolling off
as new selections of relevant text were added to the buffer, and popular terms
(ranked by term frequency) added to the search query. The highest ranked doc-
ument not yet returned is then presented to the Evaluation Platform and this
cycle continues until the collection is exhausted. The reference algorithm does
not provide focused results and as such does not implement the getFOL or getX-
Path methods.

The Indian Statistical Institute (ISI) submitted a relevance feedback algo-
rithm that was designed around finding non-overlapping word windows in the
relevant passages and modifying the query to include these terms.

Peking University submitted an algorithm that used a Rocchio-based algo-
rithm revised to include negative feedback and criterion weight adjustments.

308 T. Chappell and S. Geva

Table 1. Average precision and R-precision for submitted modules

Run Organisation Average Precision R-Precision

Reference QUT 0.4827 0.5095
1367 ISI 0.3770 0.3845
1366 ISI 0.3617 0.3503
1365 ISI 0.3445 0.3307
1368 Peking 0.2275 0.2171
1373 Peking 0.2210 0.2015
1369 Peking 0.2196 0.2015
1371 Peking 0.2185 0.2015
1370 Peking 0.2177 0.1962

Fig. 1. Recall-precision comparison of Relevance Feedback Modules

Table 2. Average precision and R-precision for submitted modules, before and after
feedback

Without feedback With feedback

Run Organisation Average R-Precision Average R-Precision

Reference QUT 0.2796 0.3240 0.4827 0.5095
1367 ISI 0.2771 0.2718 0.3770 0.3845
1366 ISI 0.2771 0.2718 0.3617 0.3503
1365 ISI 0.2768 0.2718 0.3445 0.3307
1368 Peking 0.2286 0.2031 0.2275 0.2171
1373 Peking 0.2231 0.2158 0.2210 0.2015
1369 Peking 0.2231 0.2158 0.2196 0.2015
1371 Peking 0.2292 0.2159 0.2185 0.2015
1370 Peking 0.2292 0.2159 0.2177 0.1962

Overview of the INEX 2010 Focused Relevance Feedback Track 309

Fig. 2. Recall-precision comparison for track submissions

310 T. Chappell and S. Geva

Fig. 3. Recall-precision comparison for track submissions

Overview of the INEX 2010 Focused Relevance Feedback Track 311

Fig. 4. Recall-precision comparison for track submissions

312 T. Chappell and S. Geva

5.2 Evaluation

The Relevance Feedback Modules submitted by participating organisations were
run through the Evaluation Platform. As none of the submitted Relevance Feed-
back Modules returned focused results, trec eval [1] was used to evaluate the
results.

The two measures used in this evaluation are average precision and R-precision.
R-precision is calculated as the precision (number of relevant documents) after R
documents have been seen, where R is the number of relevant documents in the
collection. Average precision is calculated from the sum of the precision at each
recall point (a point where a certain fraction of the documents in the collection
have been seen) divided by the number of recall points.

To see how the different Relevance Feedback Modules compared over the entire
evaluation, a recall-precision curve can be plotted to show how they stack up.
These recall-precision curves were created with trec eval and consist of precision
values at 11 points from 0.0 to 1.0 recall. The precision value used is the highest
precision within that recall point.

The ranking results returned by the Relevance Feedback Modules show how
each module would have ranked the documents if feedback was not available.
This information can then be used to show how use of feedback changes the
results from each algorithm:

The results can also be compared on a recall-precision curve to show how the
use of feedback data changed the results of each algorithm.

6 Conclusion

We have presented the Focused Relevance Feedback track at INEX 2010. Despite
the limited pool of participating organisations, the track has provided a good
starting point for further work in this area and it is hoped that the Focused
Relevance Feedback track will be more successful at INEX 2011. While the INEX
Ad Hoc track—used as the source of assessment data for the Focused Relevance
Feedback track—will not be running in INEX 2011, there is plenty of assessment
data that has not so far been used and as such future runs of this track will use
assessments from previous runs of the Ad Hoc track.

Acknowledgements. We would like to thank all the participating organisa-
tions for their contributions and hard work.

References

1. Buckley, C.: The trec eval IR evaluation package (2004) (Retrieved January 1, 2005)
2. Goetz, B.: The Lucene search engine: Powerful, flexible, and free. Javaworld (2002),

http://www.javaworld.com/javaworld/jw-09-2000/jw-0915-lucene.html
3. Rocchio, J.J.: Relevance feedback in information retrieval. In: Salton, G. (ed.)

The SMART Retrieval System: Experiments in Automatic Document Processing.
Prentice-Hall Series in Automatic Computation, vol. 14, pp. 313–323. Prentice-Hall,
Englewood Cliffs (1971)

http://www.javaworld.com/javaworld/jw-09-2000/jw-0915-lucene.html

Exploring Accumulative Query Expansion for

Relevance Feedback

Debasis Ganguly, Johannes Leveling, and Gareth J.F. Jones

CNGL, School of Computing, Dublin City University, Dublin 9, Ireland
{dganguly,jleveling,gjones}@computing.dcu.ie

Abstract. For the participation of Dublin City University (DCU) in
the Relevance Feedback (RF) track of INEX 2010, we investigated the
relation between the length of relevant text passages and the number
of RF terms. In our experiments, relevant passages are segmented into
non-overlapping windows of fixed length which are sorted by similarity
with the query. In each retrieval iteration, we extend the current query
with the most frequent terms extracted from these word windows. The
number of feedback terms corresponds to a constant number, a number
proportional to the length of relevant passages, and a number inversely
proportional to the length of relevant passages, respectively. Retrieval
experiments show a significant increase in MAP for INEX 2008 training
data and improved precisions at early recall levels for the 2010 topics as
compared to the baseline Rocchio feedback.

1 Introduction

Query expansion (QE) is a popular technique to improve information retrieval
effectiveness by extending the original query. The Relevance Feedback (RF) track
at INEX 2010 attempts to simulate user interaction by communicating true rele-
vance information between a Controller module, with access to the qrels file and
simulates RF from a user, and a Feedback module. This allows re-ranking results
by changing the set of retrieved documents in every retrieval iteration. In the
RF track, the incremental reporting of relevant text segments from full docu-
ments allows the development of a feedback algorithm choosing feedback terms
in different ways, compared to standard Blind Relevance Feedback (BRF). The
exchange of relevance information between user and system denotes a retrieval
iteration and can be repeated multiple times for the same query. In each it-
eration, the feedback algorithm or its parameters can be adapted to improve
retrieval performance.

In this paper, we investigate the relationship between the length of relevant
passages and the number of feedback terms. We explore three variants of se-
lecting the number of feedback terms depending on the length of relevant test
segments: i) choosing a constant number of feedback terms, ii) choosing a number
directly proportional to the lengths of the relevant segments, and iii) choosing a
number inversely proportional to the lengths of the relevant segments. All three
approaches can be justified in their own way. One might want to choose more

S. Geva et al. (Eds.): INEX 2010, LNCS 6932, pp. 313–318, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

314 D. Ganguly, J. Leveling, and G.J.F. Jones

terms from a smaller relevant segment in the hope that it has less or no noisy
terms. It might be more effective to choose more terms from larger relevant seg-
ments on the assumption that the likelihood of finding useful expansion terms
increases with the the length of a relevant section. Finally, the length of a rele-
vant passage may be unrelated to the best number of feedback terms so that a
constant number of feedback terms is the best choice.

The rest of this paper is organized as follows: Section 2 describes the motiva-
tion of the RF experiments and related work, our RF algorithm is introduced in
Section 3, Section 4 reports our results in the RF track and analyzes the results
and we conclude the paper with directions for future work in Section 5.

2 Related Work

One of the problems of BRF is that all terms which meet the selection criterion
for feedback terms are used for QE. This includes terms which are not related to
the query, for example semantically unrelated, but highly frequent terms from
long (pseudo-)relevant documents or text segments.1 A number of experiments
using small text passages instead of full documents for BRF have been conducted
[1,2,3,4,5]. One assumption behind using small passages is that long documents
can contain a wider range of discourse and noisy terms would be added to the
original query, which can result in a topic shift. A wide range of discourse in long
documents means that the relevant portion of such a document may be quite
small and feedback terms should be extracted from relevant portions only. An-
other assumption behind these approaches is that even non-relevant documents
can contain passages with useful feedback terms [6].

In contrast, our experiments for the RF track at INEX 2010 aim at investi-
gating if true relevant text passages also contain noise so that a segmentation
into smaller textual units (in this case: word windows) will improve IR effec-
tiveness. The motivation behind our method is the assumption that even large
true relevant text passages contain harmful terms for QE. Furthermore, the RF
track provides the opportunity to explore how to use true relevant passages
for QE.

LCA [7] involves decomposing the feedback documents into fixed length word
windows to overcome the problem of choosing terms from unrelated portions of
a long document. The word windows are ranked by a score which depends on
the co-occurrence of a word with the query term. Similar to LCA, we presume
that terms in close proximity to query terms are good candidates for QE. In
our RF method, we select feedback terms from word windows which are max-
imally similar to the query, the similarity being measured by Lucene’s default
similarity which is a variant of tf · idf, thus achieving the same effect of filter-
ing out potentially irrelevant parts of a longer document as in LCA. A major
difference with respect to LCA is that we do not compute term co-occurrences
explicitly.
1 We employ the term segment in its most general sense, denoting sentences, para-

graphs, and other small text units such as word windows.

Exploring Accumulative Query Expansion for Relevance Feedback 315

3 System Setup

In contrast to other evaluation tracks in IR, submissions to the RF track comprise
of an implemented software module (a JAVA .jar file). We submitted 3 RF
modules for the RF track at INEX 2010. As a baseline, we use standard Rocchio
feedback [8], which was packaged as a default feedback module implementation
by the INEX organizers. We use the Lucene API2 for indexing and retrieval.
The RF track simulates a user highlighting relevant passages if any for each
document presented to him. The feedback module re-ranks the initial results
based on relevance information.

The Term Selection Algorithm. We propose the following basic algorithm
for RF. Three variations of this algorithm are realized by choosing the terms ti
in different ways (Step 6 of the algorithm).

1. For the ith request of the next document to return, repeat Steps 2-7.
2. Let R be the accumulated string of relevant passages from the last document

returned.
3. Tokenize the string R into words and break it up into fixed length windows

of m words after applying stopword removal and stemming.
4. Let tf(ti) be the term frequency of the ith term in the window and idf(ti)

the inverse document frequency of ti.
For each window w = (w1, . . . wn), where wi = tf(ti)

1
2 log idf(ti), compute

the cosine similarity of w with q = (q1, . . . qn), where qi = tf(ti).
5. Rank all windows w by similarity score and choose top p windows.
6. Extract the most frequent T terms from these windows and add them to the

query. The three variants for choosing T terms are as follows:
– RFconst: T = t, where t is a constant ∀i.
– RFinvrsl: T = (Li−ri)

Li
t, where t is a constant, Li is the length of the ith

document and ri is the length of the relevant section of the ith document.
– RFrsl: T = ri

Li
t, with t, Li and ri defined as before.

7. Re-retrieve with the expanded query and return the topmost similar docu-
ment not returned previously.

The first variant (RFconst) chooses a constant number of terms regardless of the
segment length. For RFinvrsl and RFrsl the number of terms added is inversely
and directly proportional to the length of the relevant section, which corre-
sponds to choosing a greater number of terms from shorter relevant segments,
and choosing a smaller number of terms from shorter segments, respectively.

The default Rocchio feedback implementation serves as a baseline with pa-
rameters (α, β, γ) = (1, 0.75, 0) to weight original terms, positive, and negative
feedback terms. The Rocchio feedback uses T = 20 terms for query expansion.

Two major differences between the baseline module and our implementation
are: a) the baseline method adds expansion terms to the original query at each
iteration, whereas we add expansion terms for the ith iteration obtained during
2 http://www.apache.org/dyn/closer.cgi/lucene/java/

http://www.apache.org/dyn/closer.cgi/lucene/java/

316 D. Ganguly, J. Leveling, and G.J.F. Jones

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.00 0.20 0.40 0.60 0.80 1.00

P
re

ci
si

on

Recall

Rocchio
const
invrsl

rsl
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.00 0.20 0.40 0.60 0.80 1.00

P
re

ci
si

on

Recall

Rocchio
const
invrsl

rsl

Fig. 1. Interpolated Precision-Recall graphs for INEX 2008 (left) and 2010 data (right)

the (i−1)th iteration; b) the step-size of the incremental feedback for the baseline
method is 5, i.e. it expands the original query after every 5 iterations whereas our
method uses a step-size of 1, i.e. we update the query after every iteration. Thus,
our query expansion accumulates terms at every retrieval iteration in contrast
to the baseline method, which generates a new query in each iteration. This is
in contrast to the “save nothing” strategy [9] which was shown to be ineffective
for incremental feedback.

Training the System. The parameters as outlined in the feedback algorithm
are the window length m, the number p of most similar windows to restrict
the expansion terms to, and the variable T , which represents the number of
feedback terms. After conducting a range of experiments on INEX 2008 topic
set we chose the optimal settings of (m, p, T) = (30, 10, 5). The results of these
training experiments with the above settings are outlined in Table 1. Wilcoxon
tests on the 11 point precision-recall curves reveal that the improvements for the
three proposed methods over RFRocchio are statistically significant.

4 Results and Analysis

For our official submission to the RF track, we used the optimal parameters
obtained from INEX 2008 training topics. The graphs of Figure 1 show the doc-
ument level interpolated precision-recall curves for the four approaches on INEX
2008 and 2010 topics. The graphs of Figure 2 show the interpolated geometric
means of per-topic precision values measured at 11-point recall levels on 2008
and 2010 data. The left graph of Figure 1 reveals some interesting characteristics
of the two feedback methods RFrsl and RFinvrsl. While it can be seen that RFrsl
yields low precision for lower levels of recall, it outperforms RFinvrsl for higher
levels of recall which suggests that it might be worth trying a combination of the
above two techniques as a part of our future work. The right graph of Figure 1
suggests that RFRocchio starts off with a better precision and outperforms the
focused methods until a recall level of 80% is reached. For the focused methods,
although the initial retrieval precision (precision at less than 10% recall level) is

Exploring Accumulative Query Expansion for Relevance Feedback 317

Table 1. Results for Relevance Feedback on INEX 2008 training topics

Methodology Evaluation Metric

MAP GMAP MAiP

No feedback 0.3610 0.3087 0.3952
RFRocchio 0.4744 0.4292 0.5011
RFconst 0.5366 0.4687 0.5519
RFinvrsl 0.5442 0.4805 0.5611
RFrsl 0.5307 0.4596 0.5477

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.00 0.20 0.40 0.60 0.80 1.00

P
re

ci
si

on

Recall

Rocchio
const
invrsl

rsl

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.00 0.20 0.40 0.60 0.80 1.00

P
re

ci
si

on

Recall

Rocchio
const
invrsl

rsl

Fig. 2. RIC curves for INEX 2008 (left) and INEX 2010 data (right)

lower, precision picks-up steadily and does not suffer from a steep down-hill as
observed for the Rocchio method. For the RIC metric, we see a different trend
for the INEX 2010 topics. The focused methods have a higher precision (thus
suggesting that it is more appropriate for precision oriented retrieval tasks such
as the focused task) at recall levels of less than 20% after which the Rocchio
feedback outperforms each of them.

The fact that the focused RF methods are outperformed by the Rocchio feed-
back as measured by the standard document level retrieval metric MAP, leads to
the question of what changes in the characteristics of the topics and the relevant
set, if any, from 2008 to 2010, caused this trend reversal. The corresponding
answers should explain the differences in the training results and the official
submissions. A possibility is that the average length of relevant passages (av-
erage being computed by accumulating the number of relevant characters per
document averaged over the number of topics) for the INEX 2010 topic set is
higher (453.6 characters) as compared to INEX 2008 (409.9 characters), which
means that further reducing the length of relevant passages may be required.
This suggests using smaller values for the number of windows, e.g. decreasing p,
could possibly improve results.

318 D. Ganguly, J. Leveling, and G.J.F. Jones

5 Conclusions and Future Work

For our participation in the RF track at INEX 2010, we implemented a new
feedback method which selects feedback terms from maximally similar word
windows extracted from reported relevant text passages.

The proposed method significantly outperforms the baseline Rocchio feedback
method on the INEX 2008 training data and yields better precision at early recall
levels when measured with the RIC metric, but does not show improvement for
the INEX 2010 data when evaluated with MAP.

Future work includes optimizing feedback parameters m and p keeping in mind
that the average length of relevant segments is higher for INEX 2010 topics. In
addition based on the observation from INEX-2010 results that Rocchio gives
better precision at early recall levels and our method gives better precision at
higher recall levels, we plan to explore a combination of feedback strategies, i.e.
selecting or switching the feedback strategies at some retrieval iteration.

Acknowledgments. This research is supported by the Science Foundation Ire-
land (Grant 07/CE/I1142) as part of the Centre for Next Generation Localisa-
tion (CNGL) project.

References

1. Callan, J.P.: Passage-level evidence in document retrieval. In: SIGIR 1994, pp. 302–
310. ACM/Springer (1994)

2. Allan, J.: Relevance feedback with too much data. In: SIGIR 1995, pp. 337–343.
ACM Press, New York (1995)

3. Ganguly, D., Leveling, J., Jones, G.J.F.: Exploring sentence level query expansion
in the language model. In: Proceedings of ICON 2010, pp. 18–27 (2010)

4. Murdock, V.: Aspects of Sentence Retrieval. PhD thesis, University of Massachusetts
- Amherst (2006)

5. Losada, D.E.: Statistical query expansion for sentence retrieval and its effects on
weak and strong queries. Inf. Retr. 13, 485–506 (2010)

6. Wilkinson, R.: Effective retrieval of structured documents. In: SIGIR 1994, pp. 311–
317. Springer-Verlag Inc., New York (1994)

7. Xu, J., Croft, W.B.: Query expansion using local and global document analysis. In:
SIGIR 1996, pp. 4–11. ACM, New York (1996)

8. Rocchio, J.J.: Relevance feedback in information retrieval. In: The SMART retrieval
system – Experiments in automatic document processing, pp. 313–323. Prentice-
Hall, Englewood Cliffs (1971)

9. Allan, J.: Incremental relevance feedback for information filtering. In: SIGIR 1996,
pp. 270–278. ACM, NY (1996)

Combining Strategies for XML Retrieval

Ning Gao1, Zhi-Hong Deng1�2��, Jia-Jian Jiang1, Sheng-Long Lv1, and Hang Yu1

1 Key Laboratory of Machine Perception (Ministry of Education),
School of Electronic Engineering and Computer Science, Peking University

2 The State Key Lab of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing 100190, China
����������	
����������������������
�����

�
���
�����������		����������

Abstract. This paper describes Peking University’s approaches to the Ad Hoc,
Data Centric and Relevance Feedback track. In Ad Hoc track, results for four
tasks were submitted, EÆciency, Restricted Focused, Relevance In Context and
Restricted Relevance In Context. To evaluate the relevance between documents
and a given query, multiple strategies, such as Two-Step retrieval, MAXLCA
query results, BM25, distribution measurements and learn-to-optimize method
are combined to form a more e�ective search engine. In Data Centric track, to
gain a set of closely related nodes that are collectively relevant to a given key-
word query, we promote three factors, correlation, explicitnesses and distinctive-
ness. In Relevance Feedback track, to obtain useful information from feedbacks,
our implementation employs two techniques, a revised Rocchio algorithm and
criterion weight adjustment.

Keywords: INEX, Ad Hoc, Data Centric, Relevance Feedback.

1 Introduction

INEX Ad Hoc Track [1] aims at evaluating performance in retrieving relevant results
(e.g. XML elements or documents) to a certain query. In Ad Hoc 2010, four di�erent
tasks are addressed: (1) EÆciency task requires a thorough run to estimate the relevance
of documents components. (2)Relevant in Context task requires a ranked list of non-
overlap XML elements or passages grouped by their corresponding parent articles. (3)
Restricted Focused task limits results (elements or passages) ranked in relevance order
up to a maximal length of 1,000 characters per topic. (4) Restricted Relevant in Context
tasks requires a ranked list of elements or passages. And for each element a ranked list
result covers its relevant material, at most 500 characters for each result document.

Initially we only consider the e�ectiveness of retrieval, regardless of the eÆciency
and restricted length. Five di�erent querying strategies, BM25 [2], Two-Step retrieval,
Maximal Lowest Common Ancestor (MAXLCA)[3] query results, distribution mea-
surements and learn-to-optimize method, are combined to form a more eÆcient search
engine. Detailed definitions of these technologies is introduced in section 2. The thor-
ough retrieval results are submitted to eÆciency task. Furthermore, the results for other

� The corresponding author.

S. Geva et al. (Eds.): INEX 2010, LNCS 6932, pp. 319–331, 2011.
c� Springer-Verlag Berlin Heidelberg 2011

320 N. Gao et al.

three tasks are all obtained based on thorough run task. In Restricted Focused task,
each topic limits the answers up to a maximal length of 1,000 characters. Hence, we
only return the result elements with top relevance-length ratio, in which relevance score
for each results are computed by the aforementioned combined strategies module. For
Relevance in Context task, the process scans the thorough runs and integrates the el-
ements belonging to the same document. The orders for these integrated elements in
ranked list are determined by the elements with maximal relevance score in each set. To
obtain the results of Restricted Relevance in Context task, each result in the Relevance
in Context is pruned to maximal 500 characters. Similar to the Restricted Focused task,
only passages with top relevance-length ratio are retrieved.

Data Centric track is to provide a common forum for researchers or users to compare
di�erent retrieval techniques on data-centric XML documents, whose structure is plen-
tiful and carries important information about objects and their relationships. In order to
generate a good snippet [4] of an XML document, it is critical to pick up the most de-
scriptive or representative attributes together with their values. In this paper, we present
three main principles to judge the importance of attributes:(1) whether the attribute is
distinguishable or not; (2)whether the attribute is explicit or implicit; (3)whether the
attribute describes the entity directly or indirectly.

Relevance feedback[1] is a new track in INEX 2010. IR system with relevance feed-
back permits interactivities between the users and the system. Users provide relevance
(irrelevance) information of search result to IR system, which is utilized by IR sys-
tem to return more e�ective results. Relevance feedback track in INEX2010 simulates
a single user searching for a particular query in an IR system that supports relevance
feedback. The user highlights relevant passages of text and provides this feedback to
the IR system. The IR system re-ranks the remainder of the unseen result list to provide
more relevant results to the user. The Relevance Feedback track mainly focuses on the
improvement of search result before and after implementing relevance feedback. Con-
sequently, our team pay more attention to acquiring more information through feedback
rather than optimizing results as what we did in Ad hoc track.

In section 2, we explicitly introduce the five strategies used in Ad Hoc track and re-
veal the corresponding evaluation results. Section 3 describes our work on Data Centric
track. In section 4, the methods applied for Relevance Feedback track are presented.

2 Ad Hoc Track

Figure 1 describes the framework of our search engine. The Inverted Index of the Data
Collection is initially processed in the background. Afterwards, when a user submits a
Query to the Interface, the search engine first retrieves the relevant documents. Based
on the definition of MAXimal Lowest Common Ancestor (MAXLCA) and All Com-
mon Ancestor (ACA) query results, the relevant elements are extracted from the relevant
documents. Furthermore, we use the ranking model BM25 to rank these extracted disor-
dered element results, the output of the processing on a Ranked List. To further improve
the e�ect of the ranking module, the top several results in the Ranked List are re-ranked
by Distribution Measurements. In Distribution Measurements, there are four criterions
based on the distribution of keywords that are taken into consideration, explicitly in-
troduced in section 4. The weights of these four criterions in the re-ranking function

Combining Strategies for XML Retrieval 321

Fig. 1. System Framework

are trained by a Learning to Optimize method. Finally, the Re-ranked Results are re-
turned to the user as searching Results. In the search engine, five di�erent strategies are
used, Two-Step search, MAXLCA query results, BM25, Distribution Measurements
and Learn to Optimize method.

– Two-Step Retrieval: Di�erent from HTML, the retrievable unit for the INEX fo-
cused task is XML elements rather than the whole document text. Therefore, the
core idea of Two-Step retrieval is splitting the searching process into two steps. The
first level starts from the traditional article retrieval. Then taking the top returned
relevant articles as querying database, the second layer further processes extracting
the relevant elements. Finally, the extracted elements are ranked and returned in a
result list form. In INEX 2009, one of the most e�ective search engines proposed
by Queensland used Two-Step as retrieval strategy[19].

– BM25: Based on various research and comparative experiments, BM25 is con-
firmed to be an e�ective ranking method. It takes both text and structure informa-
tion into consideration. Additionally, evaluation results of Ad Hoc Track show that
BM25 performs better than some other frequently cited ranking models, such as
tf*idf [5] etc. Motivated by BM25’s excellent performance, we implant it into the
search engine as a basic ranking method.

In the remainder of the section, we apply other three technologies in the search en-
gine. MAXLCA and ACA defines which elements are relevant and to be returned as re-
sults. Distribution measurements are re-ranking criterions used to evaluate the relevance
between elements and queries according to the distribution of the keyword matches.
Learn-to-optimize method is devised to tune the weights of di�erent ranking methods
in the final decision.

2.1 Maximal Lowest Common Ancestor (MAXLCA)

Due to the fact that the returned results of XML retrieval are elements, an adaptive
XML search engine should define which elements in the XML tree are relevant and
to be retrieved. Several approaches have been proposed for identifying relevant results,
such as XRANK [6], SLCA [7] and XSeek [8] and so on. In this paper, our definition
of query results are called MAXLCA. Furthermore, we compare it with another widely
used definition of query results, naming All Common Ancestor (ACA).

322 N. Gao et al.

Fig. 2. Sample XML Tree

– ACA: In an XML tree, the nodes containing all matches of keywords are returned
as relevant results. For example, there is a submitted query �XML retrieval, Jack�
and an XML tree presented as figure 2, in which the matches of keywords have been
marked. Node 0 and 0.1 contains all the three matches in the tree, so that these two
nodes should be returned.

– MAXLCA: In an XML tree, the lowest node that contains all matches of keywords
is defined as a query result. For example, within the nodes containing all matches
of keywords in XML tree, 0.1 is the lowest one. Therefore, node 0.1 is the unique
query result.

2.2 Distribution Measurements

By observing a large amount of over 2000 query-result pairs, we discover that the dis-
tribution of the keyword matches in results plays a crucial role in picturing the theme of
the passage. Moreover, four detailed statistical characteristics based on distribution are
considered, which present advantage capability on distinguishing relevant and irrelevant
passages.

– Distance Among Keywords (DAK). Zhao etc. considers the proximity of query
terms in [20]. Here in this paper the minimum distance among the keywords is
calculated. The closer the matches of keywords, the more relevant an element is.

– Distance Among Keyword Classes (DAKC). Xu and Croft discuss term cluster-
ing in [21]. In this paper, the matches of a certain keyword in passages are firstly
clustered into several subsets. The closer the keywords subsets are, the more rele-
vant this passage is.

Combining Strategies for XML Retrieval 323

– Degree of Integration Among Keywords (DIAK). The passage with higher de-
gree of integration is considered as more concentrating on one certain theme and
should be given a higher priority in the returned list.

– Quantity Variance of Keywords (QVK). The passages whose numbers of di�er-
ent keywords vary significantly should be penalized.

2.3 Learn to Optimize the Parameters

Nerual Network method in machine learning is introduced to tune the weights of the
four features in distribution measurements. The Wiki English collection, queries and
assessments of INEX 2009 Ad Hoc track are used as training samples.

In training, there is a set of query Q � �q1� q2� ���� qm� extracted from the INEX
2009 Ad Hoc track. Each query qi is associated with a list of candidate elements
Ei � (e1

i � e
2
i � ���� e

n(i)
i), where e j

i denotes the the j-th candidate element to query qi and
n(i) is the size of Ei. The candidate elements are defined as MAXLCA or ACA ele-
ments. Moreover, each candidate elements list Ei is associated with a ground-truth list
Gi � (g1

i � g
2
i � ���� g

n(i)
i), indicating the relevance score of each elements in Ei. Given that

the wiki collection only contains information of whether or not the passages in a docu-
ment is relevant, the F-measure [22] is applied to evaluate the ground truth score. Given
a query qi, the ground-truth score of the j-th candidate element is defined as follows:

precision �
relevant � irrelevant

relevant
(1)

recall �
relevant

REL
(2)

g j
i �

(1 � 0�12) � precision � recall

0�12 � precision � recall
(3)

In the formula, relevant is the length of relevant contents highlighted by user in e,
while irrelevant stands for the length of irrelevant parts. REL indicates the total length
of relevant contents in the data collection. The general bias parameter is set as 0.1,
denoting that the weight of precision is ten times as much as recall.

Furthermore, for each query qi, we use the distribution criterions defined in section
2.2 to get the predicted relevant scores of each candidate element, recorded in Ri �

(r1
i r2

i � ���� r
n(i)
i). In formula (4), S DAK , S DAKC , S DIAK and S QVK are the predicted scores

for element j according to distance among keywords, distance among keyword classes,
degree of integration among keywords and quantity variance of keywords respectively.

r j
i � �S DAK � �S DAKC � �S DIAK � ÆS QVK (4)

Then each ground truth score list Gi and predicted score list Ri form a “instance”. The
loss function L is defined as the Euclidean distance between standard results lists Di and
search results lists Ri. In each training epoch, the four criterions were used to compute
the predicted score Ri. Then the learning module replaced the current weights with the
new weights tuned according to the derivative of the loss between Gi and Ri. Finally
the process stops either when reaching the limit cycle index or the parameters do not
change. Precise descriptions see [9].

324 N. Gao et al.

2.4 Comparison Results

According to (1) two-step strategy or simple element retrieval; (2) ACA results or
MAXLCA results; (3) BM25, Distribution or BM25�Distribution, there should be 12
kinds of combination methods altogether. However, due to some previous experiments,
we only submit 5 di�erent combinations which are predicted as e�ective to Ad Hoc
track, illustrated in table 1.

Table 1. Results Submitted to Ad Hoc Track

MAXLCA ACA Two-Step BM25 Distribution
AcaBM25 � �

MaxBM25 � �

RefMaxDis � � �

RefMaxBM25 � � �

RefMaxBM25Dis � � � �

Figure 3,4,5 illustrate the evaluation results of EÆciency task, Relevance In Context
task and Restricted Relevance In Context task respectively under measure as focused
retrieval. For Restricted Focused task, since we only submitted the RefMaxBM25Dis
results, there is no useful and convincing comparison results that can be shown. How-
ever, as can be concluded from the other three tasks:

– Two-Step search performs better than simple element search. According to tradition
ranking methods, such as BM25 and tf*idf, the elements with high (tf � passage
length) ratio are marked as high relevance, emphasizing on small fragments even
if they are extracted from irrelevant documents. Two-Step strategy eliminates such
bias, since the candidate elements are all extracted from documents predicted to be
relevant.

– MAXLCA performs better on wiki collection than ACA. Though according to our
experiments on the data collection of INEX2010 and INEX2009, the MAXLCA
results perform better than ACA results, we still support the definition of ACA for
its apparently high flexibility. On the other hand, the definition of MAXLCA is only
suitable for short documents, such as web pages.

– Rather than completely abandoning BM25, distribution measurement is suitable for
improving the performance and modifying the drawbacks of it. Our approach orig-
inally aims at modifying the disadvantage parts of BM25, since it has been proved
e�ective by many searching systems in INEX. The distribution measurement is a
re-ranking method, where each standards only focuses on one single point. Accord-
ingly, we use a learning method to learn the optimal weights of these standards for a
certain data collection and only in this way, the final re-ranking method are actually
determined by the data collection.

– The method using Two-Step as retrieving strategy, MAXLCA as query results,
BM25 and distribution measurement as ranking functions shows the best perfor-
mance.

Combining Strategies for XML Retrieval 325

Fig. 3. Evaluation Results of EÆciency Task

Fig. 4. Evaluation Results of Relevance in Context Task

Fig. 5. Evaluation Results of Restricted Relevance in Context Task

326 N. Gao et al.

Fig. 6. IMDB data segment

3 Data Centric Track

In XML keyword search, there are quite numbers of results returned, only by the snippet
of each result can the users judge whether it meets the search intention. Therefore, it
is important to generate a good snippet for each result. [8][10] pointed that a good
XML result snippet should be a self-contained information unit of a bounded size that
e�ectively summarizes the query result and di�erentiates itself from the others.

3.1 Related Work

[10] [11] pointed out that a good XML result snippet should be a self-contained infor-
mation unit of a bounded size that e�ectively summarizes the query result and di�er-
entiates itself from the others. Meanwhile the authors have also accomplished a snippet
generation system called eXtract [4]. The size limitation of a snippet requires the search
engine to extract the most important information (information here refers to attributes of
an entity) from the result document, thus the main problem is to define the importance
of attributes.

3.2 Extracting the Most Representative Attributes

In this paper, we use a semantic model MRepA (Most Representative Attribute)[12] to
evaluate the importance of an attribute to its corresponding entity. Further, three main
principles are proposed to judge the importance of attributes, presented as, (1)whether
the attribute is distinguishable or not; (2)whether the attribute is explicit or implicit;
(3)whether the attribute describes the entity directly or indirectly.

3.2.1 Correlation between Entities and Attributes
To evaluate whether an attribute describes an entity directly, we analyze the position
between the attribute and the entity in an XML document tree. In this section we de-
fine the entity-attribute path and use the number of entities on the path to measure the
correlation between an attribute and its corresponding entity.

Combining Strategies for XML Retrieval 327

Definition 1. An entity-attribute path is a set of nodes which are on the path from an
entity to its attribute(including the entity and the attribute).

Definition 2. We define the correlation between entity e and attribute a R(e, a) as
follows

R(e� a) � klength(e�a) �

n�

i�1

1
mi

(5)

Where n � length(e� a) refers to the number of entities between entity e and attribute a,
and mi refers to the number of the entities of i-th category in the path. k is a parameter
set less than 1.

For example, in figure 4, suppose that there are 10 movie nodes, the entity-attribute path
from node person to title Forrest Gump is �person, filmography, act, movie, title�. There
are two entities person and movie on the path. The number of person is 1, while the
number of the movie is 10.

3.2.2 Explicitnesses of Attributes
In XML keyword search, the length of the value of an attribute is usually associated
with the explicitness of the attribute. Long text tends to be more descriptive but less
explicit, while short text tends to be more explicit and clear. Thus we use the length (or
the number of words) of the text to judge the explicitness of an attribute roughly.

Definition 3. We judge the explicitness of an attribute by the complicacy (length) of its
value, and we denote the explicitness of attribute a as E(a).

3.2.3 Distinctiveness of Attributes
A distinguishable attribute should match the following two conditions, (1) the attribute
appears in all of the entities; (2) the values of the attribute are di�erent in di�erent
entities. Due to the possibility that two di�erent person share the same name, in this
section we promote the formula to calculate how much an attribute meets the demands.

Definition 4. We use distinctiveness of attributes to evaluate the distinguish ability of
the attributes.

Wa � exp(pa) � H(a) (6)

H(a) � �

n�

i�1

p(ai) � log[p(ai)] (7)

In the above formulas, Wa is the distinctiveness of attribute a. pa refers to the percentage
of the correlative entities where attribute a appears. H(a) is the entropy of attribute a,
which estimates the variety intensity of attribute a.

328 N. Gao et al.

3.2.4 MRepA Model
In MRepA model, we take the above three factors into consideration. Given a keyword
query, we firstly return a set of entities as results, and then pick up the top-k most
important attributes of each entity into the snippet.

Definition 5. The importance of an attribute a to an entity e S(e,a) is defined as follows

S (e� a) � Wa � E(a)R(e�a) (8)

3.2.5 Comparison Results
In Data Centric track, there are three assessments, TREC MAP metric, INEX thorough
retrieval MAiP metric and INEX Relevant-in-Context MAgP T2I(300). In MAP metric,
our results perform the best, using the description and narrative of the topics as extra
information. However, poor responses are got under MAiP and MAgP metric.

Table 2. Results Submitted to Data Centric Track

MAP MAgP MAiP
MRepA 0.5046 NA 0.0157

4 Relevance Feedback Track

In relevance feedback track, we employs two techniques, a revised Rocchio algorithm
and criterion weight adjustment. In section 4.1, we briefly introduce Rocchio algorithm
[13]. In section 4.2 the revised algorithm is proposed. We discuss the adjustment of the
criterion weights in section 4.3.

4.1 Rocchio Algorithm

Rocchio algorithm operates on vector space model, in which a document is represented
by a vector of n weights such as d � (t1� t2� t3� t4� ���� tn). Where n is the number of unique
terms in document collections and ti is the weight of the i-th term in document d. The
keyword query is also presented as a vector.

The general idea of Rocchio algorithm is that the initial query may not express the
purpose of a IR system user completely and e�ectively. Rocchio algorithm’s goal is
to define an optimal query that maximize the di�erence between the average vector of
the relevant documents and the average vector of the irrelevant documents. To achieve
this, Rocchio algorithm adds new query terms and re-weight query terms in the query
vector, making it more discriminative in choosing relevant documents from documents
collection. The following formula shows the basic Rocchio algorithm

Qt � �Q0 � �
1
n1

n1�

i�0

Ri � �
1
n2

n2�

i�0

S i (9)

where Q0 is the initial query vector and Qt is the revised query vector, n1 is the number
of relevant documents and n2 is the number of irrelevant documents, R(i) is the vector of

Combining Strategies for XML Retrieval 329

a relevant document, S i is a irrelevant document vector, and �, �, � control the influence
of each part.

After modification, the terms only appear in relevant document get a high positive
weight and those only in irrelevant documents get a high negative weight, while the
terms get relatively low weight if they appear in both relevant and irrelevant documents
and have less discriminative power.

Some researchers have modified and extended the formula such as assigning di�erent
weight to original query terms[14] and added query terms or make constraints of num-
ber of documents used in the modification[15]. There are some other feedback meth-
ods based on probabilistic model and language model. The feedback method in classi-
cal probabilistic models is to select expanded terms primarily based on Robertson and
Sparck-Jones Weight[16]. In language model, Zhai et al[17] estimate a model for all rel-
evant documents together and expand original query model with it. There are also many
other methods directly estimating a relevance model with relevance document[18].

4.2 Revised Rocchio Algorithm

Due to the fact that relevant information about each part of a relevant document is
accessible in INEX2010 we divided a document into several paragraphs(we use ”� p �”
and ”� �p �” to identify paragraphs) and represent each paragraph as a vector in our
implementation. We treat a paragraph as a document in the searching process and give
each paragraph a score. We also assign a weight to each paragraph according to its
length. The score of a document is the weighted sum of its paragraphs’ scores. In our
implementation, we define query expansion formula as

Qt � Q0 �
1
n

n�

i�0

Pi (10)

Where Pi donates the vector of term weights calculated from a paragraph. For term t j

in Pi, we define its weight as follows

wj �

�������������

scorePi if Pi is a relevant paragraph in relevant document

0 � scorePi�t j if scorePi is a paragraph in irrelevant document

0 otherwise

(11)

Where scorePi denotes the score of paragraph Pi , and scorePi�t j denotes the score of
paragraph after removing all t j from it.

Here we use an example to illustrate why we compute Pi like this. In INEX2009, the
first topic of Ad hoc track is Noble Prize. A user queries this for preparing a presentation
about the Nobel Prize. Therefore, he or she wants to collect information about Nobel
Prize as much as possible. Assume that there is a document with a simple paragraph
as a section title, Ig Nobel Prize. Apparently, the paragraph is not relevant because the
Ig Nobel Prize is an American parody of the Nobel Prizes organized by the scientific
humor magazine Annals of Improbable Research. However, the score of this paragraph
is relatively high because it only contains three words and two of them are keywords.
Intuitively, we can figure out that the term Ig is a bad word for this topic since it turns

330 N. Gao et al.

a high-score paragraph to a irrelevant one. In addition, term Nobel or Prize has no
contribution to the irrelevance of this paragraph. However, if we use the formula in
section 4.1, no di�erence between Ig and Nobel is reflected in the values of Ri or S i.
While in the revised model, the weights of Ig and Nobel are significantly di�erent. In
the revised model, we focus on the contribution of a term to relevance or irrelevance of
the paragraph it belongs to.

4.3 Criterion Weight Adjustment

To calculate score of a paragraph, we make three criterions, the frequency entropy, the
mixing entropy and the weighted term distance between paragraph vector and query
vector. The frequency entropy scales di�erence of terms’ appearance frequency. It as-
signs a high score if all keywords appear the same number of times in a paragraph. The
mixing entropy scales the alternation of keywords. It assigns low score to a paragraph
if it talks about one of the keyword at beginning while talks about another keyword at
the end without a mixture of them. Each criterion makes contrition to the final score of
a paragraph.

However, it is hard decide which criterion is of greater importance to a specific topic.
So we try to get this information from the feedback data. In the searching process, we
keep the score history of every criterion and every keyword. When updating the criterion
weights, the discriminative power of each criterion and each keyword are computed.
The discriminative power is computed as follows

DP �
(r � 	ir)2

d2
r � d2

ir

(12)

Where 	r is the mean contribution of this criterion or keyword to relevant paragraphs
and 	ir is the mean contribution of this criterion or keyword to irrelevant paragraphs. dr

is the standard deviation of contribution of this criterion or keyword to relevant para-
graphs and dir is the standard deviation of contribution of this criterion or keyword to
relevant paragraphs. High DP value means strong discriminative power in current topic,
so we raise its weight to let it make bigger contribution to scoring paragraph. While low
DP value indicates a criterion of keyword that is not suitable for the current topic.

For example, in our experiment, in the topic Nobel Prize, these two keywords are
assigned the same criterion weight 0.5. However after all the document are returned,
the criterion weight of Nobel is raised to 0.89 but the Prize is only 0.11. This is under-
standable. Prize is relatively a more widely used word because there are a lot of prizes
such as Fields Medal Prize, Turing Prize.

Acknowledgments. This work was supported by the National High-Tech Research and
Development Plan of China under Grant No.2009AA01Z136.

References

1. 	���������������������������

2. Carmel, D., Maarek, Y.S., Mandelbrod, M., et al.: Searching XML documents via XML
fragments. In: SIGIR 2003, pp. 151–158 (2003)

http://www.inex.otago.ac.nz/

Combining Strategies for XML Retrieval 331

3. Gao, N., Deng, Z.H., Jiang, J.J., Xiang, Y.Q., Yu, H.: MAXLCA A Semantic XML Search
Model Using Keywords. Technical Report

4. Huang, Y., Liu, Z., Chen, Y.: eXtract: A Snippet Generation System for XML Search. In:
VLDB 2008, pp. 1392–1395 (2008)

5. Theobald, M., Schenkel, R., Wiekum, G.: An EÆcient and Versatile Query Engine for TopX
Search. In: VLDB 2005, pp. 625–636 (2005)

6. Guo, L., Shao, F., Botev, C., Shanmugasundaram, J.: XRANK: Ranked Keyword Search over
XML Documents. In: SIGMOD 2003, pp. 16–27 (2003)

7. Xu, Y., Papakonstantinou, Y.: EÆcient Keyword Search for Smallest LCAs in XML
Databases. In: SIGMOD 2005, pp. 537–538 (2005)

8. Liu, Z., Chen, Y.: Identifying Meaningful Return Information for XML Keyword Search. In:
SIGMOD 2007, pp. 329–340 (2007)

9. Gao, N., Deng, Z.H., Yu, H., Jiang, J.J.: ListOPT: A Learning to Optimize Method for XML
Ranking. In: PAKDD 2010 (2010)

10. Liu, Z., Chen, Y.: Identifying Meaningful Return Information for XML Keyword Search. In:
SIGMOD 2007, pp. 329–340 (2007)

11. Huang, Y., Liu, Z.Y., Chen, Y.: eXtract: A Snippet Generation System for XML Search. In:
VLDB 2008, pp. 1392–1395 (2008)

12. Jiang, J., Deng, Z.H., Gao, N., Lv, S.L., Yu, H.: MRepA: Extracting the Most Representative
Attributes in XML Keyword Search. Technical Report

13. Ruthven, I., Lalmas, M.: A survey on the use of relevance feedback for information access
systems. The Knowledge Engineering Review 18(2), 95–145 (2003)

14. Ide, E.: New experiments in relevance feedback. In: Salton, G. (ed.) The SMART Retrieval
System Experiments in Automatic Document Processing, ch. 16, pp. 337–354 (1971)

15. Ide, E., Salton, G.: Interactive search strategies and dynamic file organization in information
retrieval. In: Salton, G. (ed.) The SMART Retrieval System - Experiments in Automatic
Document Processing, ch.18, pp. 373–393 (1971)

16. Robertson, S.E., Jones, K.S.: Relevance weighting of search terms. Journal of the American
Society of Information Science 27(3), 129–146 (1976)

17. Zhai, C., La�erty, J.D.: Model-basedfeedback in the language modeling approach toinfor-
mation retrieval. In: CIKM 2001, pp. 403–410 (2001)

18. Lavrenko, V., Bruce Croft, W.: Relevance-basedlanguage models. In: SIGIR 2001, pp. 120–
127 (2001)

19. Geva, S., Kamps, J., Lethonen, M., Schenkel, R., Thom, J.A., Trotman, A.: Overview of the
INEX 2009 ad hoc track. In: Geva, S., Kamps, J., Trotman, A. (eds.) INEX 2009. LNCS,
vol. 6203, pp. 4–25. Springer, Heidelberg (2010)

20. Zhao, J., Yun, Y.: A proximity language model for information retrieval. In: SIGIR 2009, pp.
291–298 (2009)

21. Xu, J., Croft, W.B.: Improving the e�ectiveness of information retrieval with local context
analysis. In: TOIS 2000, pp. 79–112 (2000)

22. van Rijsbergen, C.J.: Information Retireval. Butterworths, London (1979)

Overview of the INEX 2010 Web Service

Discovery Track�

James A. Thom1 and Chen Wu2

1 RMIT University, Melbourne, Australia
james.thom@rmit.edu.au

2 University of Western Australia, Perth, Australia
chen.wu@uwa.edu.au

Abstract. The Web Service Discovery track aims to investigate
techniques for discovery of Web services based on searching service de-
scriptions provided in Web Services Description Language (WSDL). Par-
ticipating groups contributed to topic development and to the evaluation,
which allows them to compare the effectiveness of their XML retrieval
techniques for the discovery of Web services. This has lead to the ini-
tial development of a test collection that will allow future comparative
experiments.

Keywords: Web Service discovery, WSDL.

1 Introduction

An efficient and effective Web services discovery mechanism is important in many
computing paradigms including Pervasive Computing, Service-Oriented Com-
puting, and the most recent Cloud Computing, in which Web services constitute
the chief building blocks. The Web Service Discovery track aims to investigate
techniques for discovery of Web services based on searching service descriptions
provided in Web Services Description Language (WSDL).

There were five active groups participating in the task in 2010, and they
contributed to providing topics, submitting runs and assessing results.

2 WSDL Collection

The Web Service Discovery track used a collection of WSDL documents. These
WSDL documents were directly crawled from real-world public Web services
indexed by the Google search engine. The test collection was pre-processed so
that only valid WSDL1.1-compliant descriptions are retained for XML-based
retrieval.

The original dataset for track contained 1987 separate documents, however
after some duplicates were removed, a revised version of the dataset was released
containing 1738 documents (original document numbering was retained).
� This work was done while the second author was at Curtin University in Perth.

S. Geva et al. (Eds.): INEX 2010, LNCS 6932, pp. 332–335, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Overview of the INEX 2010 Web Service Discovery Track 333

3 Topics

The participating groups were asked to create a set of candidate topics, rep-
resentative of a range of realistic web service discovery needs. The submitted
topics were in the same format as the ad hoc track. A sample topic is shown in
Fig. 1. Out of the 31 topics submitted by five groups, 25 topics were selected for
the track in 2010.

<topic id="2010023" ct_no="30">

<title>airline flights</title>

<castitle>//*[about(., airline flights)]</castitle>

<description>Given an airline flight number I would like

to find details of the flight.</description>

<narrative>A service for any airline that can provide

the status of airline flights is relevant.</narrative>

</topic>

Fig. 1. Sample topic

4 Submissions

The submission format was the same as the ad hoc track, submission were al-
lowed in one of three formats:

– XML elements using XPath syntax
– passages in File-Offset-Length (FOL) format
– ranges of elements (for backward compatibility with previous INEX formats)

However all groups only submitted document level runs and had difficulty fol-
lowing the submission format, so some formatting corrections were required.

Five groups submitted a total of 15 runs, although all runs were used to
contribute documents into the pool for each topic, three runs were excluded
from the final evaluation as they included more serious errors (such as duplicate
answers).

5 Assessment

The pooling of documents from the submitted included approximately 100 re-
sults for each topic. As the XML structure was important for assessing whether
a document (or parts of a document), the INEX evaluation tool for the ad hoc
track was used but the WSDL documents’ XML markup was displayed along
the content of the elements. In some cases, there was little or no text content
in the XML elements, so having the XML markup was essential in assessing the
relevance. Of the 25 topics, only 20 were assessed.

334 J.A. Thom and C. Wu

6 Evaluation and Results

Since only document level runs were submitted, evaluation was only performed
for document retrieval using Mean Average Precision as calculated by trec_eval.
The results for the 12 valid runs are shown in Table 1, with the 11 point average
precision shown in Fig. 2.

Table 1. Mean Average Precision for all runs

map Institute Run

1 0.3469 Kasetsart University Kas I138BM25ESS010
2 0.3239 RMIT University RMIT10WS
3 0.2946 Hasso-Plattner-Institut HPI2010
4 0.2798 Kasetsart University Kas I138ANYSS025
5 0.2798 Kasetsart University Kas I138ANYBM25SS015
6 0.2348 Queensland University of Technology QUT BM25WordNetComposition
7 0.2233 Queensland University of Technology QUT BM25WordNet
8 0.2042 Queensland University of Technology QUT BM25WordNetCompositionWordNet
9 0.1451 Benemrita Universidad Autnoma de Puebla BUAPFCCWSD01
10 0.1268 Queensland University of Technology QUT Wikipedia
11 0.1095 Queensland University of Technology QUT WikipediaComposition
12 0.0937 Queensland University of Technology QUT WikipediaCompositionWordNet

Fig. 2. Performance of 10 best Web Service Discovery runs

7 Conclusion

Now that the basics are in place for this track, we hope to get more groups
participating in 2011.

Long term goal of track is given a description of a workflow (e.g. in YAWL)
representing a scientific or business process, find web services that can meet the
steps within the process.

Overview of the INEX 2010 Web Service Discovery Track 335

Specific plans for 2011 include the following.

– Improving the collection by modifying the existing documents by extract-
ing smaller documents from the WSDL documents to represent individual
operations which will make assessments easier, and possibly adding more
documents, including newer documents (e.g. more WSDL 2 documents)

– Requiring topics to be a sequence/graph of queries for a service rather than
isolated information needs, which will allow two tasks: (i) document/passage
retrieval (similar to 2010 but hopefully explore passage retrieval) of ser-
vice components, and (ii) combining operations to meet service requirements
(new).

Acknowledgements. This track would not been possible without the support
of the INEX organisers in providing software support, as it makes extensive use
of the existing INEX infrastructure.

S. Geva et al. (Eds.): INEX 2010, LNCS 6932, pp. 336–346, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Semantics-Based Web Service Discovery Using
Information Retrieval Techniques

Jun Hou, Jinglan Zhang, Richi Nayak, and Aishwarya Bose

Faculty of Science and Technology, Queensland University of Technology
jun.hou@student.qut.edu.au,

{jinglan.zhang,r.nayak,a.bose}@qut.edu.au

Abstract. This paper demonstrates an experimental study that examines the ac-
curacy of various information retrieval techniques for Web service discovery.
The main goal of this research is to evaluate algorithms for semantic web
service discovery. The evaluation is comprehensively benchmarked using more
than 1,700 real-world WSDL documents from INEX 2010 Web Service
Discovery Track dataset. For automatic search, we successfully use Latent
Semantic Analysis and BM25 to perform Web service discovery. Moreover, we
provide linking analysis which automatically links possible atomic Web
services to meet the complex requirements of users. Our fusion engine
recommends a final result to users. Our experiments show that linking analysis
can improve the overall performance of Web service discovery. We also find
that keyword-based search can quickly return results but it has limitation of
understanding users’ goals.

Keywords: Web service discovery, Semantics, Latent Semantic Analysis,
Linking Analysis.

1 Introduction

With the popularity of Service Oriented Architecture (SOA), many enterprises offer
their distributed Web services as interfaces for their core business systems. Web
services are embracing unprecedented attention from the computer world. Web services
can be discovered by matchmaking requirements of service requesters with providers.
Web service discovery plays a key role in finding appropriate Web services. Although a
number of Web services are provided by different organizations, there are still no
standards for Web service design and provision. Many Web services have the same or
similar functionalities but they are described in various ways. It is a challenging task to
discover accurate Web services in accordance with users’ requirements.

Web Service Description Language (WSDL), the standard description language,
and Universal Description Discovery and Integration (UDDI) for advertising Web
services, are introduced to discover and invoke Web services. Web services requesters
and providers then communicate with each other by SOAP message, a XML format
communication language based on HTTP. The WSDL and UDDI search mechanism
utilizes syntactic search based on keywords because it can return a large number of

 Semantics-Based Web Service Discovery Using Information Retrieval Techniques 337

Web services in a relatively short time. However, exact keyword match may miss
actually relevant services and semantic search is proposed to enhance the search
accuracy. In addition, since different organizations design services in enclosed
circumstances, atomic Web services cannot satisfy different users’ requirements [13].
One service can invoke other services to achieve goals with complicated
requirements. Therefore, a set of Web services need to be composed to fulfill given
tasks.

Two methods are used in this paper, namely Latent Semantic Analysis (LSA)
supported by Wikipedia corpus and BM25 supported by WordNet. Wikipedia corpus
is used to create Latent Semantic Kernel, while WordNet is introduced to improve the
search performance of BM25. On top of that, we propose a linking analysis, which
can automatically compose possible atomic Web services to conduct user-preferred
tasks. In the fusion engine, a new result with atomic and composite Web services is
recommended to users.

2 Related Work

This section summarizes some previous work in Semantic Web service discovery.
Due to the lack of semantics in WSDL, many semantic Web service description

languages such as OWL-S, WSMO and WSDL-S have emerged to explicitly annotate
WSDL with semantic information. OWL-S and WSMO demonstrate Web services
semantics at a distinct level [12]. OWL-S is more concentrated on the “Upper ontol-
ogy” (not domain-specific ontology) for describing Web services [3]. Compared to
OWL-S, WSMO is more focused on producing a reference implementation of an
execution environment, the Web Service modeling execution environment and speci-
fying mediators [13]. Mediators are not the significant consideration in OWL-S con-
ceptual and implementation [17]. However, the discovery mechanism in WSMX is
based on keyword and simple semantic description [17]. Compared to OWL-S,
WSDL-S has several advantages over OWL-S. First, details of both the semantics and
operations can be described in WSDL. In addition, the semantic domain models are
detailed externally, which offers Web service developers an opportunity to select the
preferred ontology language. On top of that, the existing tool can be updated rela-
tively easy. The objectives of WSDL-S are to be of compatibility with OWL-S with
emphasizes on a more lightweight and incremental approach [14]. Although more
lightweight and flexible (supporting different ontologies) ontology languages are
emerging, there is still no standard ontology and the maintenance cost is very high
with low scalability.

Many researchers make use of traditional Information Retrieval techniques. They
parse WSDL documents into bags of words and create a term-document matrix. Then
Webs services are ranked by Term Frequency–Inverse Document Frequency (TF-
IDF) according to the term frequency of search query in each document. A binning &
merging-based Latent Semantic Kernel [2] is proposed to enhance the semantics of
LSA. The experiment result shows that the LSA approach can be acceptable both in
scalability and complexity [19]. A method using surface parsing of sentences to add
structural relations [4] are proposed to improve the performance on single sentences

338 J. Hou et al.

in LSA. However, there still are some issues related to LSA. The pre-process
including stop word removal and stemming reduces common terms and outliers, it
also breaks WSDL structure at the same time. Nayak & Iryadi [15] and Hao & Zhang
[7] propose Schema matching approaches in WSDL-based Web service discovery.
Such approaches try to find not only text but also structure information for comparing
WSDL documents. To effectively investigate semantics in text, a Wikipedia-based
structural relationship-enhanced concept thesaurus [8] is introduced. This approach
concentrates on improving the semantic relationships between important terms by
applying text clustering. Above approaches are only keyword-based and simple
keywords may not represent the preference of users very well. Users’ selection of
services is highly impacted by non-functionality such as response time, price,
throughout, availability, reliability etc.

Researchers are devoted to dig more semantic information from current Web re-
sources. Ding, Lei, Jia, Bin, & Lun [5] propose a discovery method based on Tag.
Tags are widely used in images, bookmarks, blogs and videos to annotate the content
of them. This approach suffers the same problem of above ontology languages. It is
limited by the scope of comment on Web services and the variety between different
comment styles. Semantic Web Services Clustering (SWSC) [16] makes use of pre-
conditions and effects from OWL-S to improve the accuracy of Web service discov-
ery. Using translation tools, more context information such as preconditions and
effects after invocation can be collected thereby increasing the consistency of Web
service discovery. In this method, hidden Web services can be discovered and be
attached to similar groups before conducting search. However, scalability is still a
problem.

3 Discovery Approach

We propose a novel three-phase approach for Web service discovery. Figure 1 shows
an overview of this methodology. In the semantic analysis phase, there are two
methods used to retrieve atomic Web services, namely Latent Semantic Analysis
(LSA) supported by Wikipedia corpus and BM25 supported by WordNet. Before
applying those approaches, standard text pre-processing is performed to parse WSDL
documents into bags of words. During this stage, stop word removal and stemming
have been executed.

3.1 Pre-processing

Stop word removal aims to reduce words which act poorly as index terms. For exam-
ple, those words can be “a”, “the”, “and” etc. An external stop word list is introduced
to filter out those words to perform data analysis.

Stemming is a process to replace words with their root or stem forms by removing
affixes (suffixes or prefixes). Words such as “computing”, “computer” and
“computed” will be replaced by the word “compute”. This process reduces not only
the variety of words also the computation cost. The Porter Stemming Algorithm [18]
is used to strip suffix.

 Semantics-Based Web Service Discovery Using Information Retrieval Techniques 339

Fig. 1. Overview of Web Service Discovery Methodology

3.2 Semantic Analysis

Latent Semantic Analysis (LSA)
Figure 2 shows the overview of Latent Semantic Analysis (LSA). In LSA, the
semantic kernel is used to find semantic similarity between Web services and users’
queries. The semantic kernel is constructed from a general-purpose dataset. The
wikipedia dataset [2] is chosen because it is not domain-specific and covers various
topics. Figure 2 shows the overview of LSA in phase I.

To start, each pre-processed WSDL document is then encoded as a vector.
Components of the vector are terms in the WSDL document. Each vector component
reflects the importance by TF-IDF. The user query is also converted to a vector which
is compared with the vector of a WSDL document. The similarity between the user
query (Q) and the Web service document (W) is represented by the cosine value of
two vectors. Equation 1 shows how to calculate the similarity between Q and W. Sim Q, W Cos Q, W (1)

However, we use semantic kernel (K) here to enhance the semantics between Q
and W. The Q and W is replaced with Q K and K W respectively. Equation 2 shows
the improved equation with semantic kernel. Sim Q, W Cos Q, W (2)

Finally, the top-k Web services are returned to users (k is set to 25).

340 J. Hou et al.

Fig. 2. Overview of LSA

BM25
BM25 is a bag-of-words retrieval algorithm that ranks documents based on the query
terms appearing in each document. To increase the amount of query terms, WordNet
is introduced to incorporate with BM25. WordNet is a general ontology, which can
boost semantics from users’ queries. Figure 3 shows the overview of using BM25 in
phase I.

Fig. 3. Overview of BM25

After pre-processing, WSDL documents (W) are computed with users’ queries (Q)
for similarity. Equation 3 shows the major equation of BM25. Score Q, W ∑ IDF q ,

, | | (3)

 Semantics-Based Web Service Discovery Using Information Retrieval Techniques 341

f , is q s term frequency in the WSDL document W. |W| is the length of the
WSDL document and avgdl is the average document length in the text collection.
Equation 4 shows the details of IDF q . IDF q log . . (4)

N represents the total number of WSDL documents in the collection and n is
the number of WSDL documents containing q .

Same as LSA, the top-k Web services are returned to users (k is set to 25).

3.3 Linking Analysis

Web services are retrieved based on the query of a user. However, one Web service
may not meet the requirement of the query of a user. For example, the query from a
user is “weather by postcode” and the actual Web service is “weather by location”.
Obviously, the Web service needs to corporate with another Web service such as
“postcode to location”. Linking analysis aims to link possible Web services to satisfy
the requirements of users. Figure 4 shows the overview of linking analysis.

Fig. 4. Overview of Linking Analysis

In linking analysis, we use top 25 results from LSA or BM25 instead of directly
linking Web services in the collection. In a WSDL document, the <PortType> tag
consists of sets of <Operation> tags, which contain the description of invocable
functions. We consider that Web services can be linked together if one Web service’s

342 J. Hou et al.

output parameters match another one’s input parameters in parameter name,
parameter amount and data type. That information of input and output parameters is
extracted for linking analysis. During the extraction, non-topic words such as “result”
and “response” are filtered out.

Once we get parameter names, they are decomposed into tokens. For instance,
“ChangePowerUnit” is split into “Change”, “Power” and “Unit” from each capital
letter. If two parameter tokens are exactly same, we consider it as best match. How-
ever, there are parameters having tokens such as “car” and “vehicle” and they
semantically can be linked. Therefore, we calculate the similarity between input and
output parameters to semantically link two Web services. Equation 5 shows how to
compute the similarity of two parameters. Sim P , P , (5) Sum sim W , W is the sum of the similarity between tokens in parameterP and P . N represents the total number of parameter tokens in P and P . n is the minimum
of the number of parameter tokens in P and P . For example, if P has 2 tokens and P has 3 tokens, n will be 2 and N will be 5. If Sim P , P is greater than 0.98, we
consider that the two parameters can be linked (linkable parameters). Furthermore, we
use another factor, link strength, to decide if the two Web services can be linked. Link
strength demonstrates the compatibility of two Web services by the number of
linkable parameters. Equation 6 shows how to calculate the link strength. Link Strength (6) N is the total number of linkable parameters and N is the number of input
parameters of one Web service. Once we have the link strength, functions of Web
services are converted to a graph where nodes representing functions are connected
with each other by link strength. Afterwards, we use Floyd Warshall algorithm [6] to
calculate the shortest path from each method to all other methods. We define
composition strength as the average of link strength of a composition. All
compositions are ordered by composition strength. Each composition is treated as a
new Web service and compared with users’ queries for similarity by LSA.

3.4 System Integration

The main purpose of integration is to integrate the results from composition of Web
services with the atomic ones from LSA or BM25. The most important task is to
decide which result appears in the final list. Generally, composition result has a
higher accuracy than an atomic one. In addition, if a Web service is the component
of a composition, it will not appear in the final result. Therefore, we select all
compositions to the final result and then add atomic results to form top 20
recommendations. Figure 5 shows the overview of System Integration.

 Semantics-Based Web Service Discovery Using Information Retrieval Techniques 343

Fig. 5. Overview of System Integration

4 Data Set

The document collection is provided by the INEX 2010 organizing committee. The
dataset [11] contains over 1,700 documents in the format of WSDL 1.1, which are
directly crawled from real-world public Web services indexed by the Google
search engine.

5 Evaluation

There are 25 topics from different domains. User queries are created by
competition participants to ensure the variety. Figure 6 demonstrates the precision
& recall curve under the query term “map”.

In Figure 6, we have four runs with the initial QUT and the best of them is
QUT_BM25WordNetCompositon. In the BM25WordNetComposition run, we use
BM25 supported by WordNet and the linking analysis. This submission outperforms
BM25WordNet, which only applies BM25 supported by WordNet. It suggests that the
linking analysis improves the accuracy of Web service discovery. The submission
QUT_Wikipedia is created using LSA and it does not perform very well. One reason
may be that the query term, “map”, is simple and LSA cannot find semantic services.
Another reason might be that the semantic services found by LSA are not closely
relevant to the query term.

344 J. Hou et al.

Fig. 6. INEX Web Service Discovery Results [10]

As we can see from Figure 6, the run Kas_I138BM25ESS010 (from Kasetsart
University) has the highest precision when recall is less than 0.6. According to the
result released from INEX, Kas_I138BM25ESS010 has the highest score, which is
0.3469 [10] with the query term “map”. Kasetsart University makes use of pre-
processing techniques to boost search accuracy [9]. In our method, we only use simple
pre-processing techniques due to time-constraint. Our approach can be improved by
applying sophisticated pre-processing techniques. Our linking analysis is proposed
under the situation of multiple query items. For example, if a user types “weather by
postcode”, a combination of services “weather by city” and “city to postcode” will be
retrieved. As a result, it almost has no effect with the simple query “map”. We believe
our algorithm will have better performance for more complicated multiple term
queries, especially for queries that can only be satisfied with the linking of multiple
atomic services.

Figure 6 has also shown that even by utilizing sophisticated pre-processing
techniques, the score is only 0.3469, which means there are still a lot of irrelevant
retrievals. That is because textual information occupies only a small part of the overall
size of WSDL documents so it is not sufficient enough to answer service queries on the
single basis of query terms [1]. Moreover, WSDL documents describe the interfaces of
Web services in an abstract way. The small size of textual information makes it
relatively difficult to understand what the service offers. For example, sometimes, the
service having a service name “map” in the service name tag may provide the map of a
hospital or the map of a city. Keyword-based search with simple query term may not
be suitable enough to answer users’ queries.

 Semantics-Based Web Service Discovery Using Information Retrieval Techniques 345

6 Conclusions and Future Work

The experiment result shows that both the Latent Semantic Analysis and BM25
boosted by WordNet approaches work for web service discovery. BM25 outperforms
the Latent Semantic Analysis approach. Link analysis automatically composes Web
services to fulfill complex tasks. Unfortunately this cannot be demonstrated by
simple queries that can be satisfied by atomic services.

In this paper, Web services are converted to bags of words and then compared with
users’ queries for similarity. However, we find that WSDL documents are not like
normal documents having high richness of terms. More decomposition rules are
needed to deal with abbreviation and artificial names when parsing WSDL documents.
Furthermore, WSDL describes services in an abstract way sometimes just a single term
in one tag. The single term cannot describe the function very well and investigating
semantics by single words may cause more false negatives by misunderstanding the
service functionality. In addition, discovering web services by considering only query
terms is overly simple because Web services are involved in more complex business
scenarios. Service choreography and service orchestration are considered when
deploying and invoking Web services. Web services contain more business
relationships than normal documents, especially during invocation. Non-functional
parameters such as response time, price, throughout, availability, reliability etc have
become significant factors on selecting services. As a result, more practical situations
need to be investigated to effectively retrieve and select Web services.

References

1. Al-Masri, E., Mahmoud, Q.H.: Identifying Client Goals for Web Service Discovery. In:
2009 IEEE International Conference on Services Computing, Bangalore, India, pp. 202–
209 (2009)

2. Bose, A., Nayak, R., Bruza, P.: Improving Web Service Discovery by Using Semantic
Models. In: 9th International Conference on Web Information Systems Engineering,
Auckland, New Zealand, pp. 366–380 (2008)

3. Burstein, M.H., McDermott, D.V.: Ontology Translation for Interoperability among
Semantic Web Services. AI Magazine 26, 71–82 (2005)

4. Dennis, S.: Handbook of Latent Semantic Analysis, Mahwah, N.J (2007)
5. Ding, Z., Lei, D., Jia, Y., Bin, Z., Lun, A.: A Web Service Discovery Method Based on

Tag. In: 2010 International Conference on Complex, Intelligent and Software Intensive
Systems, Krakow, Poland, pp. 404–408 (2010)

6. Floyd, R.W.: Algorithm 97: Shortest Path. Communications of the ACM 5, 345 (1962)
7. Hao, Y., Zhang, Y.: Web Services Discovery Based on Schema Matching. In: 13th

Australasian Conference on Computer Science, Ballarat, Australia, pp. 107–113 (2007)
8. Hu, J., Fang, L., Cao, Y., Zeng, H.-J., Li, H., Yang, Q., et al.: Enhancing Text Clustering

by Leveraging Wikipedia Semantics. In: 31st Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, Singapore, pp. 179–
186 (2008)

9. INEX Workshop Pre-proceedings (2010),
http://inex.otago.ac.nz/data/publications.asp

346 J. Hou et al.

10. INEX Web Service Discovery Results,
http://goanna.cs.rmit.edu.au/~jat/INEX2010_WS_results.html

11. INEX Web Service Track (2010), http://www.inex.otago.ac.nz/tracks/
webservices/webservices.asp

12. Lara, R., Roman, D., Polleres, A., Fensel, D.: A Conceptual Comparison of WSMO and
OWL-S. In: Zhang, L.-J., Jeckle, M. (eds.) Web Services, pp. 254–269. Springer,
Heidelberg (2004)

13. Li, Q., Liu, A., Liu, H., Lin, B., Huang, L., Gu, N.: Web Services Provision: Solutions,
Challenges and Opportunities (invited paper). In: 3rd International Conference on
Ubiquitous Information Management and Communication, Suwon, Korea, pp. 80–87
(2009)

14. Martin, D., Burstein, M., McDermott, D., McIlraith, S., Paolucci, M., Sycara, K., et al.:
Bringing Semantics to Web Services with OWL-S. World Wide Web 10, 243–277 (2007)

15. Nayak, R., Iryadi, W.: XML Schema Clustering with Semantic and Hierarchical Similarity
Measures. Knowledge-Based Systems 20, 336–349 (2007)

16. Nayak, R., Lee, B.: Web Service Discovery with Additional Semantics and Clustering. In:
9th IEEE/WIC/ACM International Conference on Web Intelligence, Fremont, USA, pp.
555–558 (2007)

17. Shafiq, O., Moran, M., Cimpian, E., Mocan, A., Zaremba, M., Fensel, D.: Investigating
Semantic Web Service Execution Environments: A Comparison between WSMX and
OWL-S Tools. In: 2nd International Conference on Internet and Web Applications and
Services, Morne, Mauritius, pp. 31–36 (2007)

18. Van Rijsbergen, C.J., Robertson, S.E., Porter, M.F.: New Models in Probabilistic
Information Retrieval. British Library, London (1980)

19. Wu, C., Potdar, V., Chang, E.: Latent Semantic Analysis - The Dynamics of Semantics
Web Services Discovery. In: Advances in Web semantics I: Ontologies, Web Services and
Applied Semantic Web, pp. 346–373. Springer, Heidelberg (2009)

The BUAP Participation at the Web Service

Discovery Track of INEX 2010�

Maŕıa Josefa Somodevilla, Beatriz Beltrán, David Pinto,
Darnes Vilariño, and José Cruz Aaron

Faculty of Computer Science
Benemérita Universidad Autónoma de Puebla, México
{mariasg,bbeltran,dpinto,darnes}@cs.buap.mx

Abstract. A first approach for web services discovering based on tech-
niques from Information Retrieval (IR), Natural Language Processing
(NLP) and XML Retrieval was developed in order to use texts contained
in WSDL files. It calculates the degree of similarity between words and
their relative importance to support the task of web services discovering.
The first algorithm uses the information contained in the WSDL (Web
Service Description Language) specifications and clusters web services
based on their similarity. A second approach based on a information re-
trieval system that index terms by using an inverted index structure was
also used. Both algorithms are applied in order to evaluate 25 topics in
a set of 1947 real web services (all of them provided by INEX).

1 Introduction

The Service Oriented Architecture (SOA)1 was developed based on the concept
of a wide mesh of collaborating services, published and available for invocation.
Web services are the set of protocols by which services are published, discove-
red, and used in a technology independent, standard form. As the number of
web services repositories grows and the number of available services expands,
finding the web service that one needs has become a key task within the invo-
cation process. Web service discovery is concerned with locating web services
that match a set of functional and non-functional criteria [1]. The Web Services
Description Language (WSDL) 2 is the most basic mechanism used to describe
web services. This leads many current discovery approaches to focus on locating
web services based on their functional description.

An efficient and effective Web services discovery mechanism is important in
many computing paradigms including Pervasive Computing, Service-Oriented

� This work has been partially supported by projects: CONACYT #106625, VIEP
#SOGJ-ING11-I, #BEMB-ING11-I, as well as by the PROMEP/103.5/09/4213
grant.

1 http://opengroup.org/projects/soa/doc.tpl?gdid=10632
2 http://www.w3.org/TR/wsdl.html

S. Geva et al. (Eds.): INEX 2010, LNCS 6932, pp. 347–350, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

348 M.J. Somodevilla et al.

Computing, and the most recent Cloud Computing, in which Web services cons-
titute the chief building blocks. The Web Service Discovery track aims to in-
vestigate techniques for discovery of Web services based on searching service
descriptions provided in Web Services Description Language (WSDL) . Par-
ticipating groups will contribute to topic development and evaluation, which
will then allow them to compare the effectiveness of their XML retrieval tech-
niques for the discovery of Web services. This will lead to the development of a
test collection that will allow participating groups to undertake future compara-
tive experiments. The rest of this paper is devoted to explain the two different
approaches submitted to the competition, as well as the dataset used in the
experiments.

2 Description of the Presented Approaches

Two algorithms based on Clustering and Information Retrieval in order to find
the most appropiate web service (WSDL file) to a given topic were developed.

The description of the approach that uses a clustering method follows.

1. Tag removal: A corpus was built with the content of the XML tags for each
document, in addition to the attribute values of the labels.

2. Parsing WSDL: Stopwords and punctuation symbols were removed from the
corpus.

3. Tokenization: The Maximum Matching Algorithm (MMA) algorithm was
applied [2], using a list of 53,000 English words which split them into tokens
(i.e. GetAllitems as Get All Items).

4. Re-parsing WSDL: Stopwords and punctuation symbols were removed from
the corpus again due to the MMA decomposition.

5. Word stemming: The Porter stemming algorithm was applied to the corpus.
6. K-means algorithm: K=2 was used; the distance criterion NGD is presented

in Eq. (1), and the convergence criterion is that the centroid words are at
least twice in different iterations.

7. Content word recognition: Thereafter, we removed the words of the cluster
with minimal elements (i.e. service, SOA, array and data).

8. Services corpus creation: A second corpus was constructed with the services
of each XML file; again we used the MMA algorithm, we eliminate stopwords,
and finally we applied the Porter algorithm.

9. Query answering: Using the two corpus constructed, a query can be answered
by applying Eq. (2), and then sorting the results from lowest to highest.

NGD(x, y) =
max {logf(x), logf(y)} − logf(x, y)

logM − min {logf(x), logf(y)} (1)

O(Si, Sj) = 0.5 ∗ S′(Si, Sj) + 0.5 ∗ S′′(Si, Sj) (2)

where:

S′(Si, Sj) =

∑
a∈Si

∑
b∈Sj

Sim(a, b)

|Si||Sj | (3)

The BUAP Participation at the Web Service Discovery Track of INEX 2010 349

S′′(Si, Sj) = 1 − NGD(Si, Sj) (4)

Following we describe the approach that uses information retrieval for finding
the corresponding web services files that satisfies the user needs.

The implementation based on NLP uses an inverted index for storing all the
terms detected in the WSDL files. For the case of function names, we have also
used the MMA algorithm. Each term is used as the dictionary entry in the data
structure, and one posting list is attached to each dictionary entry. Finally, given
a query, we may calculate the intersection between pairs of posting lists (p1 and
p2) as shown in the Algorithm 1 (taken from [3]).

Algorithm 1. Intersection of two posting lists
Input: Posting lists p1 and p2

Output: Relevant documents D1, D2, · · ·
answer = 〈〉1

while p1! = NIL and p2! =NIL do2

if docID(p1) = docID(p2) then3

ADD(answer, docID(p1));4

p1 = next(p1);5

p2 = next(p2);6

else7

if docID(p1) < docID(p2) then8

p1 = next(p1)9

else10

p2 = next(p2)11

end12

end13

end14

return answer15

3 Experimental Results

In Figure 1 we may see the interpolated precision, whereas in Table 1 we show the
mean average precision obtained by the teams at the competition. The clustering-
based approach obtained a low performance, and, therefore, we will discard the
use of this technique in future experiments. With respect to the other approach,
we did not obtained an official evaluation due to a format problem with our out-
put file. However, a preliminar evaluation (using our own evaluation tools) show
a very good performance. In summary, we consider that the use of techniques
of information retrieval obtains the best performance in this kind of task, when
the correct features are extracted from wsdl files.

350 M.J. Somodevilla et al.

Fig. 1. Interpolated precision at standard recall levels

Table 1. Results at the INEX Web Service Discovery Track

Num map Institute Run
1 0.3469 Kasetsart University Kas I138BM25ESS010
2 0.3239 RMIT University RMIT10WS
3 0.2946 Hasso-Plattner-Institut HPI2010
4 0.2798 Kasetsart University Kas I138ANYSS025
5 0.2798 Kasetsart University Kas I138ANYBM25SS015
6 0.2348 Queensland Univ. of Technology QUT BM25WordNetComposition
7 0.2233 Queensland Univ. of Technology QUT BM25WordNet
8 0.2042 Queensland Univ. of Technology QUT BM25WordNetCompWordNet
9 0.1451 B. Univ. Automa de Puebla BUAPFCCWSD01
10 0.1268 Queensland Univ. of Technology QUT Wikipedia
11 0.1095 Queensland Univ. of Technology QUT WikipediaComposition
12 0.0937 Queensland Univ. of Technology QUT WikipediaCompositionWordNet

4 Conclusions

We have presented details about the implemented approaches for tackling the
problem of webservice discovery. Two different approaches were implemented,
one based on clustering and the second on information retrieval techniques. In
general we may see that the second approach behaves better than the one based
on clustering.

References

1. Dan, A., Davis, D., Kearney, R., Keller, A., King, R., Kuebler, D., Ludwig, H., Polan,
M., Spreitzer, M., Youssef, A.: Web services on demand: Wsla-driven automated
management. IBM Systems Journal 43(1), 136–158 (2004)

2. Guodong, Z.: A chunking strategy towards unknown word detection in chinese word
segmentation. In: Dale, R., Wong, K.-F., Su, J., Kwong, O.Y. (eds.) IJCNLP 2005.
LNCS (LNAI), vol. 3651, pp. 530–541. Springer, Heidelberg (2005)

3. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval.
Cambridge University Press, Cambridge (2009)

S. Geva et al. (Eds.): INEX 2010, LNCS 6932, pp. 351–362, 2011.
© Springer-Verlag Berlin Heidelberg 2011

XML Retrieval More Efficient Using Double Scoring
Scheme

Tanakorn Wichaiwong and Chuleerat Jaruskulchai

Department of Computer Science,
Faculty of Science, Kasetsart University,

Bangkok Thailand
{g5184041,fscichj}@ku.ac.th

Abstract. This is the first year of Kasetsart University's participation in INEX.
We participated in three tracks: the Ad Hoc, the Data Centric, and the Web
Service Discovery tracks. In the Ad hoc and Data Centric tracks, the BM25F
function has performed well in the past evaluations. However, there is an issue
that needs more attention; what is the weight for each field? Previously, the
weights are given manually to the fields. In general, many experts feel that
uncontrolled selected fields. We proposed an unsupervised implementation of
the BM25F scoring function, which we call the Double Scoring function. This
scoring function assigns the weight for each field by an extended indexing
scheme that handles the tuned weight parameter for each selected field. In the
Web Service Discovery track, the standard tokens cannot be utilised directly by
IR models, and need to be converted to natural language before indexing. We
applied the Capitalization function to solve the tokenisation issue.

Keywords: XML Retrieval, Information Retrieval, Indexing Units, Ranking
Schemes.

1 Introduction

The widespread use of Extensible Markup Language (XML) [1] documents in digital
libraries has led to the development of information retrieval (IR) methods specifically
designed for XML collections. Most traditional IR systems are limited to whole
document retrieval; however, since XML documents separate content and structure,
XML-IR systems are able to retrieve only the relevant portions of the documents.
Therefore, users who utilise an XML-IR system could potentially receive highly
relevant and precise material.

In the Initiative for the Evaluation of XML Retrieval (INEX) [2] reports, the
BM25F function has performed well in past evaluations. However, there is an issue
that needs more attention: what is the weight for each field? Previously, the weights
were obtained manually, tuning to the fields that affect the cost, the time pre-
processing complexity and the heterogeneity of collections. Furthermore, these steps
require training data and an evaluation set for parameter tuning, and difficulty often
arises when evaluating new collections. Therefore, we have developed automatic
methods to assign the weight for each field with an extended indices scheme.

352 T. Wichaiwong and C. Jaruskulchai

This paper is organised as follows: Section 2 reviews related works, and Section 3
explains the implementation of our system. Section 4 presents the experiment.
Conclusions and recommendations for further work are provided in Section 5.

2 Related Works

Prior work found in [3, 4, 5] presents the BM25F as the fielded version of the BM25
scoring function. Compared to the classical BM25, improvements have been
discovered of up to 65% as measured by nxCG on the INEX-IEEE collection, with a
different task where overlap is allowed. Authors of [7] applied the BM25F to INEX-
Wikipedia’s collection; on each element, they constructed two fields, one for “title”
and another for “body”. The title field consists of a concatenation of an article title
and any section titles. The body field contains another context. In the INEX-2009
reports [8], the results showed the best ranking, with an iP [0.01] of 0.6333.

2.1 BM25F Function Overview

Robertson et al. [3, 4, 5, 6] presented the BM25F as the fielded version of the BM25
scoring function, which is considered to be composed of several document fields with
possibly different degrees of importance, called selected fields. Using the BM25F
scheme, an element's score is computed as follows: 25 , , (1)

Note that;

BM25F(e) measures the relevance of element e to a query q.
q is a set of query terms.
Xe,t is a weighted normalised term frequency.
K is a common tuning parameter for BM25.
Wt is the inverse document frequency weight of a term t.

The weighted normalised term frequency is obtained by first performing length
normalisation, on the term frequency We,f,t of a term t of a field f in an element e,

, , , ,1 , 1
(2)

Note that:

Bf is a parameter to tune.
le,f is a length of a field f in an element e.
lf is the average length of elements in the whole collection multiplied the normalised
term frequency We,f,t by a field weight Wf ,

, , , (3)

 XML Retrieval More Efficient Using Double Scoring Scheme 353

3 XML Retrieval Model

3.1 Inverted File Definition

The Zettair search engine has good performance in [9], but this engine only supports
the document level. We have to convert the element level to the document level by
the absolute XPath [10], with context replacement to the <DOCNO> tag in the Zettair
TREC format; our system is then able to use the best features of Zettair [11]. When
we replace all tags to <DOCNO> by the absolute XPath, then leaf-only indexing is
closest to traditional IR because each XML node is a bag of words itself and can be
scored as an ordinary plain text document. Then we calculate the leaf element score
for its context using BM25. For instance, take a document named x1.

<?xml version="1.0"?>
<article id= “1”>
 <title>xml</title>
 <body>xml

 <section>

<title>xml</title>

<p>information</p>

<p>retrieval</p>
 </section>
 </body>
</article>

Fig 1. Example of an XML Element Tree

Fig. 1 depicts an example, the XML element tree of x1. We can build an index
using the absolute XPath expression to identify the leaf node that has the text
contained within the document, relative to the document and its parents, as shown in
Table 1.

Table 1. Example of an Inverted File

Term Inverted List

xml
x1/article[1]/title[1], x1/article[1]/body[1],
x1/article[1]/body[1]/section[1]/title[1]

1 x1/article[1]/@id[1]

Information x1/article[1]/body[1]/section[1]/p[1]

retrieval x1/article[1]/body[1]/section[1]/p[2]

article

title body

section

title p p

xml

xml information retrieval

xml

id

1

354 T. Wichaiwong and C. Jaruskulchai

Finally, the term position identifies the ordinal position of the term within the
XPath context. The next step is data preprocessing for the Zettair search engine
application, and then we convert XPath into TREC format as follows:

<DOC><DOCNO>x1/article[1]/title[1]</DOCNO>xml</DOC>
<DOC><DOCNO>x1/article[1]/@id[1]</DOCNO>1</DOC>
<DOC><DOCNO>x1/article[1]/body[1]</DOCNO>xml</DOC>
<DOC><DOCNO>x1/article[1]/body[1]/section[1]/title[1]</DOCNO>xml</DOC>
<DOC><DOCNO>x1/article[1]/body[1]/section[1]/p[1]</DOCNO>information</DOC>
<DOC><DOCNO>x1/article[1]/body[1]/section[1]/p[2]</DOCNO>retrieval</DOC>

3.2 The Leaf Node Scoring Function

Leaf-only indexing is closest to traditional information retrieval because each XML
node is a bag of words and can be scored as an ordinary text document, after that we
calculate the leaf element score using BM25 as follows: , 11

 log 0.50.5

(4)

Note that:

LeafScore(e, Q) measures the relevance of element e in the leaf-node index to a query
Q.
Wt is the inverse element frequency weight of term t.
tfe is the frequency of term t occurring in element e.
len(e) is the length of element e.
avel is the average length of elements in the whole collection.
N is the total number of an element in the collection.
et is the total element of a term t occurrence.
k1 and b are used to balance the weight of term frequency and element length.

3.3 Double Scoring Function

In previous reports [5], the authors raise the issue of the field weight Wf of the BM25F
function (3). Because all of the weights need to be tuned for each selected field, this
issue contributes to the document’s weight in BM25F. In this report, the authors show
that the tuning values for Wf are all integers, and they tuned Wf {atl, abs st} from {1,
1, 1} to {x, x, x}, using increments of 1. The result shows that the values of {2356, 4,
22} for Wf get the highest average precision score. In the same way, the report [7]
shows the tuning values for Wf , and the authors tuned Wf {title, body} from {1, 1} to
{x, x} using increments of 0.1. The result shows that the values of {4.0, 1.2} for Wf
get the highest result on iP[0.01].

Our assumption of using the content at the document level has unfairness for all
elements. For instance, the content in the “article[1]/body[1]/section[1]” element that

 XML Retrieval More Efficient Using Double Scoring Scheme 355

has not reflected to the “article[1]/title[1]” element with respect to the absolute XPath,
and it has to reflect to their descendants are follows:

 article[1]/body[1]/section[1]/title[1]
 article[1]/body[1]/section[1]/p[1]
 article[1]/body[1]/section[1]/p[2]

We have developed an automatic method to assign the weight for each field by an
extended indices scheme, namely the Double Scoring function. This function is based
on extending new indices to store all of the selected fields. The selected indexing is
closest to traditional information retrieval, where each XML node is a bag of words by
itself and can be scored as an ordinary plain text document; then we calculate the
Selected Weight (SW) indices using the BM25 scoring function. After this step, we
can compute an element’s final score, as follows:

For each swList in SWRelList
 swListWeight Score(swList);
 For each leafList in LeafNodeRelList
 leafListWeight Score(leafList);
 If leafList.StartWith(swList) Then

leafListWeight leafListWeight
* swListWeight;

 Else
 leafListWeight leafListWeigh;
 End If
 End For
 End For

Fig. 2. Details on the Double Scoring Algorithm

3.4 Double Scoring on BM25 (BM25W)

From function (3), we can see that the linear combination of weighted field
frequencies is used instead of the original term frequency in selected fields. We
assume that this method could be applied to all of the elements that we propose for
SW indices. Our basic view is that an element is to be treated like a document.

Suppose that we have n selected fields in a given collection C. Given a field weight
Wf of each element n in the selected fields, this contributes to a given weight in the
SW indices, which we call Wnf . Then these indices can be captured in the weight for
each selected field in the ordinary text document. Next, we calculate the SW using the
BM25 scoring functions. For each weight Wf of the function of BM25F (3), we
applied Wnf for each relevance list of SW, then we captured the element score using: ,

, 11 (5)

356 T. Wichaiwong and C. Jaruskulchai

Note that:

Wnf is the field weight for each selected field in the Selected Weight indices.
SW(e, Q) measures the relevance of element e in the Selected Weight indices to a
query Q.

Given a query Q, we run the query in parallel on each index (Selected Weight and
Leaf-Node indices in Figure 2) and then integrate the Double Scoring by using the
weight from SWRelList of SW indices applied to each LeafNodeRelList result set from
the Leaf-Node indices. The weighting for each element in each LeafNodeRelList
result set is a linear combination of SWRelList when the prefix of the result set is the
same as the SWRelList path, as shown in Figure 2. Then the new score for each
LeafNodeRelList list can compute BM25W, as follows: 25 , , , (6)

Note that;

BM25W(e, Q) measures the relevance of element e to a query Q.
For the initial step, we consider a simplified XML data model but disregard any

kind of Meta mark-up, including comments, links in the form of XLink or ID/IDRef,
and attributes. Referring to an example of an XML element tree, we classify tag by
manual, and then we can build new indices, as follows.

SW Indices;
x1/article[1]/title[1]: “xml”
x1/article[1]/body[1]: “xml”
x1/article[1]/body[1]/section[1]/title[1]: “xml”
Leaf-Node Indices;
x1/article[1]/body[1]/section[1]/p[1]: “information”
x1/article[1]/body[1]/section[1]/p[2]: “retrieval”

3.5 Score Sharing Function

In previous reports [12], we compute the scores of all elements in the collection that
contain query terms. We must consider the scores of elements by accounting for their
relevant descendents. The scores of retrieved elements are now shared between leaf
nodes and their parents in the document’s XML tree according to the following
scheme: 25 , (7)

Note that:

PNode is a current parent node.
β is a tuning parameter.

If {0 – 1}, then the preference is given to the leaf node over the parents.
Otherwise, the preference should be given to the parents.

n is the distance between the current parent node and the leaf node.

 XML Retrieval More Efficient Using Double Scoring Scheme 357

4 Experiment Setup

In this section, we present and discuss the results that were obtained on INEX
collections. We also present the results of an empirical sensitivity analysis of various
β parameters, performed with the Wikipedia collection. This experiment was done on
an Intel Pentium i5 4 * 2.79 GHz with a memory of 6 GB, Microsoft Windows 7
Ultimate 64-bit Operating System and using Microsoft Visual C#.NET 2008 for the
development system.

4.1 INEX Collections

The INEX document collections are the following: On the Ad hoc track, the
collection is the Wikipedia XML Corpus of the English Wikipedia in early 2009 [13],
which contain 2,666,190 articles and a total size of 50.7 GB.

1. On the Data Centric track, Information about one movie or person is published
in one XML file [14]; thus, each generated XML file represents a single object, i.e., a
movie or a person. In total, about 4,418,102 XML files were generated, including
1,594,513 movies, 1,872,492 actors, 129,137 directors who did not act in any movies,
178,117 producers who did not direct or act in any movies, and 643,843 other people
involved in movies that did not produce or direct or act in any movies, and the total
size is 1.40 GB.

2. On the Web Service Discovery track, this track will use a collection of WSDL
documents. These WSDL documents were directly taken from real-world public Web
services indexed by the Google search engine. The test collection was pre-processed
so that only valid WSDL1.1-compliant descriptions are retained for XML-based
retrieval that contains 1,987 articles.

At first, the system parses all of the structures of each XML document with an XML
parser and parses all of the selective nodes of each XML document. After that, our
system uses the Leaf-Only indexing scheme in experiments.

4.2 Ad Hoc Track

In this section, we tuned parameters using INEX-2008 Ad hoc track evaluation scripts
were distributed by the INEX organisers. Our tuning approach was such that the sum
of all relevance scores was maximised as shown the total number of leaf nodes is 2,500
and the β parameter is set to 0.10, which is used to compute the sharing score. We have
used the value of K1 = 1.80 and B = 0.40 to evaluate the sensitivity of the element
length in BM25 on both indices. For selected fields, we classify elements manually,
including “article”, “name”, “caption”, “title”, “body”, “st”, “sec”, and “ss”.

We submitted three runs; I138BM25ESS010, I138BM25ESS015 and I138BM
25ESS020. Our results showed that I138BM25ESS010 ranked 78th with MAiP at
0.1296, I138BM25ESS015 ranked 87th with MAiP at 0.1132, and our other run
I138BM25ESS020 ranked 91st with MAiP at 0.1057. Table 2 and Figure 3 depict the
measurement for Focused Retrieval.

358 T. Wichaiwong and C. Jaruskulchai

Table 2. The Effectiveness of the Focused Task on INEX-Wikipedia

RUN ID Β iP[0.00] iP[0.01] iP[0.05] iP[0.10] MAiP

I138BM25ESS010 0.10 0.4299 0.4053 0.3695 0.3271 0.1296

I138BM25ESS015 0.15 0.4596 0.4394 0.3735 0.3254 0.1132

I138BM25ESS020 0.20 0.4960 0.4532 0.3589 0.2765 0.1057

Fig. 3. INEX-2010 Ad hoc Result on Focused Retrieval

4.3 Data Centric Track

On the Data Centric track, we have used the values K1 = 1.80 and B = 0.40 to
evaluate the sensitivity of the element length of BM25 on both indices. The total
number of leaf nodes is 2,500 and the β parameter is set to 0.60, which is used to
compute the sharing score at this point of β parameters, after we analysed this
collection. We found that all of the content had quite a few data, and then we turned
to the document level as the better answer for the user.

Table 3. The Effectiveness of Data Centric

RUN ID β iP[0.00] iP[0.01] iP[0.05] iP[0.10] MAiP

I138BM25ESS060 0.60 0.5821 0.5113 0.3244 0.2719 0.1211

 XML Retrieval More Efficient Using Double Scoring Scheme 359

Fig. 4. INEX-2010 Data Centric Result on Focused Retrieval

We submitted only one run; our result showed that I138BM25ESS060 ranked 4th
with MAgP at 0.1811 and ranked 12th with MAiP at 0.1211. Table 3 and Fig. 4 depict
the measurement of Focused Retrieval on the Data Centric track.

4.4 Web Service Discovery Track

On the Web Service Discovery track, standard tokens cannot be utilised directly due
to various reasons such as sublanguage patterns and programming conventions.
Therefore, these tokens need to be converted to natural languages before being
indexed using IR models.

The Capitalization Styles in [15] utilised three types of capitalisation styles: first,
UpperCamelCase (Pascal), whereby the first letter is the identifier and the first letters
of each subsequent concatenated word are capitalised, such as the BackColor DataSet;
second, lowerCamelCase (Camel), which means that the first letter of an identifier is
lowercase and the first letter of each subsequent concatenated word is capitalised,
such as backColor, dataset; and last, UpperCase (Upper), in which all of the letters in
the identifier are capitalised, such as BACKCOLOR, DATASET. Almost all of the
web service methods have already utilised the form of CamelCase, such as naming
conventions in several programming languages. For instance, take a part of a
document name 0001.wsdl as follows.

In Figure 5, for example, applying the Capitalisation function [16] for the
“msdGetXsdBase64BinData” and then applying the above function gives the result
“msd”, “Get”, “Xsd”, “Base64”, “Bin” and “Data”. We applied this function to solve
the tokenisation issue for both elements and attributes, and then we used the More

360 T. Wichaiwong and C. Jaruskulchai

Fig. 5. The Example of WDSL

Fig. 6. INEX-2010 Web Service Discovery Result

 XML Retrieval More Efficient Using Double Scoring Scheme 361

Efficient XML Information Retrieval (MEXIR) [17], an XML information retrieval
system that uses MySQL [18] and Sphinx [19].

We submitted three runs: Kas_I138BM25ESS010 using the Sphinx mode BM25
and Kas_I138ANYBM25SS015 and Kas_I138ANYSS025 using Sphinx mode ANY,
as shown in Fig. 5. Our results showed that Kas_I138BM25ESS010 ranked 1st with
MAgP at 0.3469, Kas_I138ANYBM25SS015 ranked 4th with MAgP at 0.2798 and
our other run I138ANYSS025 ranked 5th with MAgP at 0.2798, as shown in Fig. 6.

5 Conclusions

Due to the ever-increasing information available electronically, the amount of
information is growing rapidly in size and requires efficient and effective indexing
and retrieval methods. Structured retrieval breaks away from the traditional retrieval
unit and aims to implement focused retrieval. This focused retrieval strategy aims to
return document components, i.e., XML elements, instead of whole documents in
response to a user query.

In this paper, we report experimental results of our approach using the Double
Scoring function base on the BM25 model for the retrieval of large-scale XML
collections. This strategy can process by using only common parameters on BM25 by
extending new indices to store all of the selected fields in order to reduce the amount
of parameter-tuned weights for each selected field. In addition, we applied the
Capitalization function to solve the tokenisation issue on the web service discovery track.

In our future work, we plan to: 1) extend Anchor text to study the sensitivity of the
BM25W scoring function, 2) study the sensitivity of the evaluation to the k1 and b
parameters for each index, and 3) show how to make inferences regarding structural
aspects based on CAS queries.

References

1. Extensible Markup Language (XML) 1.1 (Second Edition),
http://www.w3.org/TR/xml11/

2. INitiative for the Evaluation of XML Retrieval (INEX),
http://www.inex.otago.ac.nz/

3. Craswell, N., Zaragoza, H., Robertson, S.: Microsoft Cambridge at TREC 14: Enterprise
track. In: Proceedings of the TREC 14 (2005)

4. Robertson, S., Zaragoza, H., Taylor, M.: Simple BM25 extension to multiple weighted
fields. In: Proceedings of CIKM, pp. 42–49 (2004)

5. Lu, W., Robertson, S., MacFarlane, A.: Field-Weighted XML Retrieval Based on BM25.
In: Fuhr, N., Lalmas, M., Malik, S., Kazai, G. (eds.) INEX 2005. LNCS, vol. 3977, pp.
161–171. Springer, Heidelberg (2006)

6. Itakura, K.Y., Clarke, C.L.A.: A Framework for BM25F-based XML Retrieval. In: SIGIR
2010, pp. 843–844 (2010)

7. Itakura, K.Y., Clarke, C.L.A.: University of Waterloo at INEX 2009: Ad Hoc, Book,
Entity Ranking, and Link-the-Wiki Tracks. In: Geva, S., Kamps, J., Trotman, A. (eds.)
INEX 2009. LNCS, vol. 6203, pp. 331–341. Springer, Heidelberg (2010)

362 T. Wichaiwong and C. Jaruskulchai

8. Geva, S., Kamps, J., Lethonen, M., Schenkel, R., Thom, J.A., Trotman, A.: Overview of
the INEX 2009 Ad Hoc Track. In: Geva, S., Kamps, J., Trotman, A. (eds.) INEX 2009.
LNCS, vol. 6203, pp. 4–25. Springer, Heidelberg (2010)

9. Middleton, C., Baeza-Yates, R.: A Comparison of Open Source Search Engines (2009),
http://wrg.upf.edu/WRG/dctos/Middleton-Baeza.pdf

10. XML Path Language (XPath) Version 1.0., http://www.w3.org/TR/xpath
11. Zettair. The Zettair search engine (2009),

http://www.seg.rmit.edu.au/zettair/
12. Wichaiwong, T., Jaruskulchai, C.: A Simple Approach to Optimize XML Retrieval. In:

The 6th International Conference on Next Generation Web Services Practices, Goa, India,
November 23-25 (2010)

13. Schenkel, R., Suchanek, F., Kasneci, G.: YAWN: A semantically annotated Wikipedia
XML corpus. In: 12. GI-Fachtagung fÄur Datenbanksysteme in Business, Technologie
und Web, pp. 277–291 (2007)

14. Information courtesy of The Internet Movie Database, http://www.imdb.com
15. 3Suns, CamelCase, http://everything2.com/e2node/CamelCase
16. Wichaiwong, T., Jaruskulchai, C.: A Simple Approach to Optimize Text Compression’s

Performance. In: The 4th International Conference on Next Generation Web Services
Practices, Seoul, Korea, October 20-22 (2008)

17. Wichaiwong, T., Jaruskulchai, C.: MEXIR: An Implementation of High-Speed and High-
Precision XML Information Retrieval. In: The 3rd International Conference on Machine
Learning and Computing, Singapore, February 26-28 (2011)

18. MySQL Full-Text Search Functions, http://dev.mysql.com/
19. Sphinx Open Source Search Server, http://www.sphinxsearch.com/

Overview of the INEX 2010 XML Mining Track:

Clustering and Classification of XML Documents

Christopher M. De Vries1, Richi Nayak1, Sangeetha Kutty1, Shlomo Geva1,
and Andrea Tagarelli2

1 Faculty of Science and Technology,
Queensland University of Technology, Brisbane, Australia

2 University of Calabria, Italy
chris@de-vries.id.au, {r.nayak,s.kutty,s.geva}@qut.edu.au,

tagarelli@deis.unical.it

Abstract. This report explains the objectives, datasets and evaluation
criteria of both the clustering and classification tasks set in the INEX
2010 XML Mining track. The report also describes the approaches and
results obtained by participants.

Keywords: XML document mining, INEX, Wikipedia, Structure, Con-
tent, Clustering, Classification.

1 Introduction

The XML Document Mining track was launched for exploring two main ideas: (1)
identifying key problems and new challenges of the emerging field of mining semi-
structured documents, and (2) studying and assessing the potential of Machine
Learning (ML) techniques for dealing with generic ML tasks in the structured
domain, i.e., classification and clustering of semi-structured documents. This
track has run for six editions during INEX 2005, 2006, 2007, 2008, 2009 and
2010. The first five editions have been summarized in [1,2,3,4] and we focus here
on the 2010 edition.

INEX 2010 included two tasks in the XML Mining track: (1) unsupervised
clustering task and (2) semi-supervised classification task where documents are
organized in a graph. The clustering task requires the participants to group the
documents into clusters without any knowledge of category labels using an unsu-
pervised learning algorithm. On the other hand, the classification task requires
the participants to label the documents in the dataset into known categories
using a supervised learning algorithm and a training set. This report gives the
details of clustering and classification tasks.

2 Corpus

Working with XML documents is a particularly challenging task for ML and
IR. XML documents are defined by their logical structure and content. The

S. Geva et al. (Eds.): INEX 2010, LNCS 6932, pp. 363–376, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

364 C.M. De Vries et al.

current Wikipedia collection contains structure as (1) document structure such
as sections, titles and tables, (2) semantic structure as entities mined by YAWN,
and (3) navigation structure as document to document links. In 2008 and 2009
the classification task focused on exploiting the link structure of the Wikipedia
and continues to do so this year. The clustering task has continued in the same
manner as previous years and uses any available content or structure.

A 146,225 document subset of the INEX XML Wikipedia collection was used
as a data set for the clustering and classification tasks. The subset is determined
by the reference run used for the ad hoc track. The reference run contains the
1500 highest ranked documents for each of the queries in the ad hoc track.
The queries were searched using an implementation of Okapi BM25 in the ANT
search engine. Using the reference run reduced the collection from 2,666,190 to
146,225 documents. This is a new approach for selecting the XML Mining subset.
In previous years it was selected by choosing documents from Wikipedia portals.

The clustering evaluation uses ad hoc relevance judgements for evaluation and
most of the relevant documents are contained in the subset. Table 1 contains
details of documents relevant to queries missing from the subset. The reference
run contains approximately 90 percent of the relevant documents.

Table 1. Relevant Documents Missing from the XML Mining Subset

Topic Relevant Missing Topic Relevant Missing

2010003 231 24 (10.39%) 2010035 16 3 (18.75%)
2010004 124 29 (23.39%) 2010036 94 0 (0.00%)
2010006 151 20 (13.26%) 2010037 11 0 (0.00%)
2010007 49 6 (12.24%) 2010038 433 8 (1.85%)
2010010 251 6 (2.39%) 2010039 138 0 (0.00%)
2010014 64 7 (10.94%) 2010040 60 3 (5.00%)
2010016 506 72 (14.23%) 2010041 35 0 (0.00%)
2010017 5 0 (0.00%) 2010043 130 11 (8.46%)
2010018 34 0 (0.00%) 2010045 159 60 (37.74%)
2010019 6 0 (0.00%) 2010046 53 0 (0.00%)
2010020 34 0 (0.00%) 2010047 18 0 (0.00%)
2010021 203 28 (13.79%) 2010048 72 11 (15.28%)
2010023 115 31 (26.96%) 2010049 42 6 (14.29%)
2010025 19 0 (0.00%) 2010050 147 5 (3.40%)
2010026 54 5 (9.26%) 2010054 292 42 (14.38%)
2010027 77 4 of (5.19%) 2010056 269 37 (13.75%)
2010030 80 32 (40.00%) 2010057 74 0 (0.00%)
2010031 18 1 (5.56%) 2010061 13 0 (0.00%)
2010032 23 2 (8.70%) 2010068 222 2 (0.90%)
2010033 134 16 (11.94%) 2010069 358 82 (22.91%)
2010034 115 9 (7.83%)

Total 5451 587 (10.77%)

Overview of the INEX 2010 XML Mining Track 365

3 Categories

In previous years, document categories have been selected using Wikipedia por-
tals where each portal becomes a category. The drawback of this approach is that
it only finds categories for documents related to portals. Last year the categories
used for clustering evaluation were produced by YAWN that creates categories
based on entities found from the YAGO ontology. These categories are very fine
grained and narrow and were found not to be particularly useful.

A new approach for extracting categories was taken this year. The Wikipedia
categories listed for each document are very similar to the YAGO categories as
YAGO contains entities based on Wikipedia information. Both the Wikipedia
and YAGO categories are noisy and very fine grained. However, the Wikipedia
categories exist in a category graph where there are 24 high level topical cate-
gories called the “main topic classifications” 1. Unfortunately, the category graph
is not a hierarchy and contains cycles. Many of the paths from a document to the
main topic classifications do not make sense. Additionally, users who add cat-
egories to Wikipedia pages often attach them to fine grained categories in the
graph. They may not realize what links the internal structure of the graph con-
tains when choosing particular categories. The category graph can be changed
over time also changing the original intent of the author. Therefore, categories
were extracted by finding the shortest paths through the graph between a doc-
ument and any of the main topic classifications. This is motivated by Occam’s
Razor where the simplest explanation is often the correct one. Figure 1 illustrates
the Wikipedia category graphs and highlights a hypothetical shortest category
path for the document Hydrogen.

For INEX 2010 the category graph from the 22nd of June 2010 Wikipedia
dump was used. The graph consists of Wikipedia pages with the “Category:”
prefix such as “Category:Science”. The graph is extracted by finding links be-
tween category pages. Generally speaking, a category page links to another cat-
egory page that is broader in scope. Wikipedia pages indicate their categories
by linking to a category page.

Figure 2 lists the algorithm used to extract the categories. The INEX 2010
categories were extracted where only the 2 broadest levels of categories were
extracted (t = 2). Only categories containing more than 3000 documents were
used. This approach extracts multiple categories for a document resulting in a
multi-label set of documents for INEX 2010. Note that paths that contain the
“Category:Hidden” category were not used. Table 2 lists the categories that were
extracted.

In Figure 2, P is the set of Wikipedia pages (articles) to find categories for. C
is the set of Categories in the Wikipedia. M the set of categories in the main topic
classifications. G = (V, E) is the Wikipedia category graph consisting of a set of
vertices V and edges E where the vertices consist of pages P and categories C.
Where P ⊂ V , C ⊂ V , M ⊂ V and M ⊂ C. Moreover, t is a parameter indicating
the broadest t levels to consider as categories; if t is 1 then only the main topic

1 http://en.wikipedia.org/wiki/Category:Main_topic_classifications

http://en.wikipedia.org/wiki/Category:Main_topic_classifications

366 C.M. De Vries et al.

Fig. 1. Complicated and Noisy Wikipedia Category Graph

classifications are considered; if t is 2 then the main topic classifications and any
categories 1 edge away in the graph are considered and so on.

Note that a path is a sequence of graph vertices visited from page p ∈ P
to main topic m ∈ M . For example, Hydrogen → Category:Elements → Cate-
gory:Chemistry → Category:Science, is the hypothetical path for the Wikipedia
document Hydrogen.

The category extraction process could be enhanced in the future using fre-
quent pattern mining to find interesting repeated sequences in the shortest paths.
Other graph algorithms such as the Minimum Spanning Tree algorithm could be
used to simplify the graph. The browsable category tree starting at the “main
topic classifications” appears to have processed the category graph as well. Using
this post-processed graph could also improve the categories.

ExtractCategories(G, M, P, t)

1 E = a map from page p ∈ P to a list of categories for p
2 for p ∈ P
3 S = the set of shortest paths between p and any category in M
4 for s ∈ S
5 if path s does not contain Category:Hidden
6 B = the set of last t vertices in path s
7 for b ∈ B
8 append b to list E[p]
9 return E

Fig. 2. Algorithm to Extract Categories from the Wikipedia

Overview of the INEX 2010 XML Mining Track 367

Table 2. XML Mining Categories

Category Documents Category Documents

People 48186 Agriculture 5975
Society 34912 Education 4367
Culture 27986 Companies 4314
Geography 22747 Biology 4309
Politics 18519 Recreation 4276
Humanities 14738 Environment 4216
Countries 13966 Musical culture 4195
Arts 11979 Geography stubs 4052
History 10821 Information 3919
Business 10249 American musicians 3845
Applied sciences 9278 Language 3764
Life 9018 Literature 3660
Technology 8920 Belief 3412
Entertainment 8887 Creative works 3395
Nature 7400 Human geography 3370
Science 7311 Places 3202
Computing 6835 Law 3156
Health 6329 Cultural history 3117

4 Clustering Task

The task was to utilize unsupervised machine learning techniques to group the
documents into clusters. Participants were asked to submit multiple clustering
solutions containing 50, 100, 200, 500 and 1000 clusters. The categories extracted
contained 36 categories due to only using categories with greater than 3000
documents. This choice was arbitrary and the decision for cluster sizes was made
based on the number of documents in the collection before the categories were
extracted. As there are not really 36 “true” categories, a direct comparison of
36 clusters with 36 categories is not necessary. The number of categories in
a document collection is extremely subjective. Measuring how the categories
behave over multiple cluster sizes indicates the quality of clusters and the trend
can be visualized.

4.1 Clustering Evaluation Measures

The clustering solutions are evaluated by two means. Firstly, we utilize the
categories-to-clusters evaluation which assumes that the categorization of the
documents in a sample is known (i.e., each document has known category la-
bels). Any clustering of these documents can be evaluated with respect to this
predefined categorization. It is important to note that the category labels are
not used in the process of clustering, but only for the purpose of evaluation of
the clustering results.

368 C.M. De Vries et al.

The standard measures of Purity, Entropy, NMI and F1 are used to determine
the quality of clusters with regard to the categories. Negentropy [5] is also used. It
measures the same system property as Entropy but it is normalized and inverted
so scores fall between 0 and 1 where 0 is the worst and 1 is the best. The
evaluation measures the mapping of categories-to-clusters where the categories
are multi-label but the clusters are not. A document can have multiple categories
but documents can only belong to one cluster. Each measure is defined to deal
with a multi-label ground truth.

Purity. The standard criterion of purity is used to determine the quality of clus-
ters by measuring the extent to which each cluster contains documents primarily
from one category. The simplicity and the popularity of this measure means that
it has been used as the only evaluation measure for the clustering task in the
INEX 2006 and INEX 2009. In general, the larger the value of purity, the better
the clustering solution.

Let ω = {w1, w2, . . . , wK}, denote the set of clusters for the dataset D and
ξ = {c1, c2, . . . , cJ} represent the set of categories. The purity of a cluster wk is
defined as:

P (wk) =
maxj|wk ∩ cj |

|wk| (1)

where wk is the set of documents in cluster wk and cj is the set of documents
that occurs in category cj . The numerator indicates the number of documents
in cluster k that occurs most in category j and the denominator is the number
of documents in the cluster wk.

The purity of the clustering solution ω can be calculated based on micro-
purity and macro-purity. Micro-purity of the clustering solution ω is obtained
as a weighted sum of individual cluster purity. Macro-purity is the unweighted
arithmetic mean based on the total number of categories [5].

Micro-Purity(ω, ξ) =

∑K
k=0 P (wk) ∗ |wk|∑K

k=0 |wk ∩ cj |
(2)

Macro-Purity(ω, ξ) =

∑K
k=0 P (wk)

J
(3)

Entropy. It is used to measure the distribution of the documents on various
categories. Given a particular cluster ωk of size nk, the entropy of this cluster is
defined to be:

E(ωk) = − 1
log J

J∑
i=1

nj
k

nk
log

nj
k

nk
(4)

where J is the number of categories in the dataset, and nj
k is the number of

documents of the jth category that were assigned to the kth cluster [6]. The

Overview of the INEX 2010 XML Mining Track 369

clustering solution can then be measured by the sum of the individual cluster
entropies weighted according to the clustering size as defined below:

Entropy =
K∑

k=1

nk

K
E(ωk) (5)

It is scaled from 0 to 1. A perfect clustering solution will have an entropy value
of 0.

F1-measure. Another standard measure that is used to evaluate the clustering
solution is the F1-measure. It helps to calculate not only the number of docu-
ments that are correctly classified together in a cluster but also the number of
documents that are misclassified from the cluster.

In order to calculate the F1-measure, three types of decisions are used. Among
them there are two types of correct decisions: True Positives (TP) and True Neg-
atives (TN). A TP decision assigns two similar documents to the same cluster; a
TN decision assigns two dissimilar documents to different clusters. On the other
hand, a False Positive (FP) is an error decision that assigns two dissimilar doc-
uments to the same cluster [7]. Though there is another error decision, FN, that
assigns two similar documents to different clusters, it is not used in calculating
F1-measure.

Using the TP, TN and FP decisions, the precision and the recall for the micro-
F1 are defined as:

precisionmicro-F1 =

∑J
j=1 TPj∑J

j=1 TPj + FPj

(6)

recallmicro-F1 =

∑J
j=1 TPj∑J

j=1 TPj + TNj

(7)

The precision and the recall for the macro-F1 are defined as

precisionmacro-F1 =

∑J
j=1

TPj

TPj+FPj

J
(8)

recallmacro-F1 =

∑J
j=1

TPj

TPj+TNj

J
(9)

where TPj is the number of documents in category cj that exists in cluster wk,
TPj is the number of documents that is not in category cj but that exists in
cluster wk and TNj is the number of documents that is in category cj but does
not exist in cluster wk.

F1 can now be defined as:

F1 =
2 × precision × recall

precision + recall
(10)

Micro-F1 =
2 × precisionmicro-F1 × recallmicro-F1

precisionmicro-F1 + recallmicro-F1
(11)

370 C.M. De Vries et al.

Macro-F1 =
2 × precisionmacro-F1 × recallmacro-F1

precisionmacro-F1 + recallmacro-F1
(12)

Normalized Mutual Information (NMI). Another evaluation measure is
the Normalized Mutual Information (NMI) which helps to identify the trade-off
between the quality of the clusters against the number of clusters [7].

NMI [7] is defined as,

NMI(ω, ξ) =
I(ω; ξ)

[H(ω) + H(C)]/2
(13)

I(ω; ξ) =

∑
k

∑
j P (wk ∩ cj)log

P (wk∩cj)
P (wk)P (cj)∑

k

∑
j

|wk∩cj|
N log

N |wk∩cj |
|wk||cj |

(14)

where P (wk), P (cj) and P (wk ∩ cj) indicate the probabilities of a document in
cluster wk, category cj and in both wk and cj .

H(ω) is the measure of uncertainty given by,

H(ω) =
−∑

k(P (wk)logP (wk))

−∑
k

|wk|
N log |wk|

N

(15)

Collection Selection Evaluation Using NCCG Measure
This evaluation measure was used in evaluating the INEX 2009 dataset [4] and
is based on Van Rijsbergen’s clustering hypothesis. Van Rijsbergen and his co-
workers [8] conducted intensive study on the use of the clustering hypothesis
test on information retrieval, which states that documents which are similar
to each other may be expected to be relevant to the same requests; dissimilar
documents, conversely, are unlikely to be relevant to the same requests. If the
hypothesis holds true, then relevant documents will appear in a small number
of clusters and the document clustering solution can be evaluated by measuring
the spread of relevant documents for the given set of queries.

To test this hypothesis on a real-life dataset, the INEX 2009 dataset, the
clustering task was evaluated by determining the quality of clusters relative
to the optimal collection selection [4]. Collection selection involves splitting a
collection into subsets and recommending which subset needs to be searched for
a given query. This allows a search engine to search fewer documents, resulting
in improved runtime performance over searching the entire collection.

The evaluation of collection selection was conducted using the manual query
assessments for a given set of queries from the INEX 2009 Ad Hoc track [4].
The manual query assessment is called the relevance judgment in Information
Retrieval (IR) and has been used to evaluate ad hoc retrieval of documents.
It involves defining a query based on the information need, a search engine
returning results for the query and humans judging whether the results returned
by the search engine are relevant to the information need.

Better clustering solutions in this context will tend to (on average) group
together relevant results for (previously unseen) ad hoc queries. Real ad hoc

Overview of the INEX 2010 XML Mining Track 371

retrieval queries and their manual assessment results are utilised in this evalua-
tion. This approach evaluates the clustering solutions relative to a very specific
objective – clustering a large document collection in an optimal manner in order
to satisfy queries while minimising the search space. The metric used for evalu-
ating the collection selection is called the Normalized Cumulative Cluster gain
(NCCG) [4].

The NCCG is used to calculate the score of the best possible collection se-
lection according to a given clustering solution of n number of clusters. The
score is better when the query result set contains more cohesive clusters. The
Cumulative Gain of a Cluster (CCG) is calculated by counting the number of
documents of the cluster that appear in the relevant set returned for a topic by
manual assessors.

CCG(c, t) =
n∑

i=1

(Reli) (16)

For a clustering solution for a given topic, a (sorted) vector CG is created
representing each cluster by its CCG value. Clusters containing no relevant doc-
uments are represented by a value of zero. The cumulated gain for the vector CG
is calculated, which is then normalized on the ideal gain vector. Each clustering
solution c is scored for how well it has split the relevant set into clusters using
CCG for the topic t.

SplitScore(t, c) =

|CG|∑ cumsum(CG)

nr2
(17)

where nr = Number of relevant documents in the returned result set for the
topic t.

A scenario with worst possible split is assumed to place each relevant doc-
ument in a distinct cluster. Let CG1 be a vector that contains the cumulative
gain of every cluster with each document.

MinSplitScore(t, c) =

|CG1|∑ cumsum(CG1)

nr2
(18)

The normalized cluster cumulative gain (nCCG) for a given topic t and a
clustering solution c is given by,

nCCG(t, c) =
SplitScore(t, c) − MinSplitScore(t, c)

1 − MinSplitScore(t, c)
(19)

The mean and the standard deviation of the nCCG score over all the topics
for a clustering solution are then calculated.

Mean(nCCG(c)) =

∑n
t=0 nCCG(t, c)

Total Number of topics
(20)

Std Dev (nCCG(c)) =

∑n
t=0 [nCCG(t, c) − Mean(nCCG(c))]2

Total Number of topics
(21)

372 C.M. De Vries et al.

The NCCG value varies from 0 to 1. A larger value of NCCG for a given clustering
solution is better, since it represents the fact that an increased number of relevant
documents are clustered together in comparison to a smaller number of relevant
documents. Further details of this metric can be found in [4].

Divergence from Random. Most measures of cluster quality can be tricked
by changing the number of clusters or documents in the submission. The Purity
and Entropy measures can be fooled if each document is placed in its own cluster.
Every cluster becomes pure because it only contains one document. The NCCG
measure can be fooled by creating one cluster with all the documents except for
every other cluster containing one document. The NCCG measure orders clusters
by the number of relevant documents they contain. A large cluster containing
most documents will almost always be ranked first. Therefore, almost all relevant
documents will exist in one cluster, achieving the highest score possible.

Any measure that can be tricked by creating a pathological clustering solution
can be adjusted for by subtracting a cluster solution from a uniform randomly
generated solution with the same number of clusters with the same number of
documents in each cluster. Apart from how documents are assigned to clusters,
the random baseline appears the same as the real solution. Therefore, each solu-
tion needs a uniform random baseline to be generated. This is done by shuffling
the document IDs uniformly randomly and splitting them into clusters the same
size as the solution being measured. The score for the uniform random solution
is subtracted from the matching solution being measured. The graphs and tables
in the following section contain the results for all metrics where this approach
was taken.

The submissions this year from BUAP contained several large clusters and
many other small clusters. This tricked the NCCG metric into giving arbitrarily
high scores. When the scores are subtracted from a uniform random baseline
with the same properties they performed no better than a randomly generated
solution. This can be seen in Figure 7.

4.2 Clustering Participants, Submissions and Evaluations

The clustering tasks had submissions from three participants from Peking Uni-
versity, BUAP and Queensland University of Technology. The submissions la-
beled Random are a random solution that does not use any information about
the documents. A cluster for each document is chosen uniformly at random
from one of the k clusters required. Figures 4 to 7 graph the best performing
submissions from each participant for Purity, Negentropy, NMI and NCCG. The
divergence from random for each metric is also graphed. Figure 3 contains the
legend for all these graphs.

The full details of the results are listed in tables in a separate document
available from http://de-vries.id.au/inex10/full_results.pdf. The ta-
bles have been broken into sections matching the required numbers of clusters 50,
100, 200, 500 and 1000. Some submissions were outside the 5 percent tolerance
of number of clusters. These form separate groups in the tables.

http://de-vries.id.au/inex10/full_results.pdf
http://de-vries.id.au/inex10/full_results.pdf

Overview of the INEX 2010 XML Mining Track 373

Fig. 3. Legend

The group from Peking University [9] made a submission based on the struc-
tured link vector model (SLVM). It incorporated document structure, links and
content. This year they focused on the preprocessing step for document struc-
ture and links. They modified two popular clustering algorithms, AHC clustering
algorithm and K-means algorithm, to work with this model.

The group from BUAP [10] proposed an iterative clustering method for group-
ing the Wikipedia documents. The recursive clustering process iteratively brings
together subsets of the complete collection by using two different clustering meth-
ods: k-star and k-means. In each iteration, they select representative items for
each group which are then used for the next stage of clustering.

The group from the Queensland University of Technology used a 1024 bit
document signature representation generated by quantizing random indexing or
random projections of TF-IDF vectors. The k-means algorithm was modified to
cluster binary strings of data using the hamming distance, including a different
approach to calculating means of binary vectors.

5 Classification Task

The goal of the classification task was to utilize supervised or semi-supervised
machine learning techniques to predict categories of documents from a set of
known categories described in Section 3. The training set of documents contained
17 percent of the collection where each category had at least 20 percent of the
category labels available.

Clusters

M
ic

ro
 P

ur
ity

0.35

0.40

0.45

0.50

0.55

0.60

200 400 600 800 1000
Clusters

M
ic

ro
 P

ur
ity

 D
iv

er
ge

nc
e

0.00

0.05

0.10

0.15

0.20

0.25

200 400 600 800 1000

Fig. 4. Micro Purity

374 C.M. De Vries et al.

Clusters

M
ic

ro
 N

eg
en

tr
op

y

0.10

0.15

0.20

0.25

200 400 600 800 1000
Clusters

M
ic

ro
 N

eg
en

tr
op

y
D

iv
er

ge
nc

e

0.00

0.05

0.10

0.15

200 400 600 800 1000

Fig. 5. Micro Negentropy

Clusters

N
M

I

0.05

0.10

0.15

200 400 600 800 1000
Clusters

N
M

I D
iv

er
ge

nc
e

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

200 400 600 800 1000

Fig. 6. NMI

Clusters

N
C

C
G

0.2

0.4

0.6

0.8

200 400 600 800 1000
Clusters

N
C

C
G

 D
iv

er
ge

nc
e

0.0

0.1

0.2

0.3

0.4

0.5

0.6

200 400 600 800 1000

Fig. 7. NCCG

Overview of the INEX 2010 XML Mining Track 375

5.1 Classification Evaluation Measures

Classification is evaluated using Type I and II errors made by classifiers. Each
category is transformed into a binary classification problem. One category is
evaluated at a time using all documents. The scores are calculated based on
the Type I and II errors and then micro and macro averaged. Micro averaging
weights the average by the category size and macro averaging does not. Table 3
defines the Type I and II errors for a category.

Table 3. Type I and II Classification Errors

In Category Not in Category

Predicted in Category True Positive (tp) False Positive (fp)

Predicted not in Category False Negative (fn) True Negative (tn)

The F1, Precision and Recall scores are calculated as described in Equations
22 to 24. F1 is the harmonic mean of precision and recall.

F1 =
2 × tp

2 × tp + fn + fp
(22)

Precision =
tp

tp + fp
(23)

Recall =
tp

tp + fn
(24)

5.2 Classification Participants, Submissions and Evaluations

Two groups from Peking University and the Queensland University of Technol-
ogy (QUT) made submissions for the classification task. The results are listed
in Table 4.

Table 4. Classification Results

F1 Precision Recall
Submission Micro Macro Micro Macro Micro Macro

QUT BM25 SVM 0.536 0.473 0.562 0.527 0.523 0.440
Peking tree1 sim3 linkTxt 0 0.460 0.380 0.553 0.525 0.436 0.334
Peking tree2 sim3 linkTxt N 0.518 0.446 0.436 0.359 0.652 0.614
Peking tree2 sim2 linkTxt 0 0.452 0.371 0.562 0.536 0.423 0.321
Peking tree1 sim1 linkTxt 0 0.399 0.314 0.582 0.570 0.363 0.252
Peking tree1 sim3 linkTxt 67 0.508 0.435 0.422 0.345 0.653 0.612
Peking tree2 sim2 0.521 0.452 0.480 0.414 0.574 0.510
Peking tree1 sim3 0.518 0.444 0.443 0.368 0.635 0.582
Peking tree1 sim3 linkTxt N 0.517 0.444 0.432 0.356 0.656 0.613
Peking tree1 sim2 linkTxt N 0.521 0.454 0.456 0.389 0.615 0.559

376 C.M. De Vries et al.

The group from Peking University [9] made a submission based on the the
structured link vector model (SLVM). It incorporated document structure, links
and content. This year they focused on the preprocessing step for document
structure and links.

The group from QUT made a submission using content only to provide a
baseline approach. Documents were represented in the bag of words vector space
model using the BM25 weighting for each term where the tuning parameters
K1 = 2 and b = 0.75. A Support Vector Machine (SVM) was used to classify
each document by treating each category as a binary classification problem.

6 Conclusion

The XML Mining track in INEX 2010 brought together researchers from Infor-
mation Retrieval, Data Mining, Machine Learning and XML fields. The clus-
tering task allowed participants to evaluate clustering methods against a real
use case and with significant volumes of data. The task was designed to facili-
tate participation with minimal effort by providing not only raw data, but also
pre-processed data which can be easily used by existing clustering software. The
classification task allowed participants to explore algorithmic, theoretical and
practical issues regarding the classification of interdependent XML documents.

References

1. Denoyer, L., Gallinari, P., Vercoustre, A.-M.: Report on the XML mining track at
INEX 2005 and INEX 2006. In: Fuhr, N., Lalmas, M., Trotman, A. (eds.) INEX
2006. LNCS, vol. 4518, pp. 432–443. Springer, Heidelberg (2007)

2. Denoyer, L., Gallinari, P.: Report on the XML mining track at INEX 2007 cate-
gorization and clustering of XML documents. In: ACM SIGIR Forum, vol. 42, pp.
22–28. ACM, New York (2007)

3. Denoyer, L., Gallinari, P.: Overview of the INEX 2008 XML mining track. In:
Geva, S., Kamps, J., Trotman, A. (eds.) INEX 2008. LNCS, vol. 5631, pp. 401–
411. Springer, Heidelberg (2009)

4. Nayak, R., De Vries, C.M., Kutty, S., Geva, S., Denoyer, L., Gallinari, P.: Overview
of the INEX 2009 XML mining track: Clustering and classification of XML docu-
ments. In: Geva, S., Kamps, J., Trotman, A. (eds.) INEX 2009. LNCS, vol. 6203,
pp. 366–378. Springer, Heidelberg (2010)

5. De Vries, C.M., Geva, S.: Document clustering with K-tree. In: Geva, S., Kamps, J.,
Trotman, A. (eds.) INEX 2008. LNCS, vol. 5631, pp. 420–431. Springer, Heidelberg
(2009)

6. Zhao, Y., Karypis, G.: Criterion functions for document clustering: experiments
and analysis. Technical Report Technical Report 01-40, Department of Computer
Science (November 2001)

7. Manning, C.D., Raghavan, P., Scütze, H.: Introduction to Information Retrieval.
Cambridge University Press, NY (2008)

8. Rijsbergen, C.J.v.: Information Retrieval. Butterworths, London (1979)
9. Wang, S., Liang, F., Yang, J.: PKU at INEX 2010 XML mining track. In: Geva, S.,

et al. (eds.) INEX 2010. LNCS, vol. 6932, pp. 383–395. Springer, Heidelberg (2010)
10. Tovar, M., Cruz, A., Vázquez, B., Pinto, D., Vilariño, D.: An iterative clustering

method for the XML-mining task of the INEX 2010. In: Geva, S., et al. (eds.)
INEX 2010. LNCS, vol. 6932, pp. 377–382. Springer, Heidelberg (2010)

An Iterative Clustering Method for the

XML-Mining Task of the INEX 2010�

Mireya Tovar1,4, Adrián Cruz2,4, Blanca Vázquez3,4,
David Pinto1, Darnes Vilariño1, and Azucena Montes4

1 Benemérita Universidad Autónoma de Puebla, México
2 Instituto Tecnológico de Cerro Azul, México

3 Instituto Tecnológico de Tuxtla Gutiérrez, México
4 Centro Nacional de Investigación y Desarrollo Tecnológico, México
{mtovar,dpinto,darnes}@cs.buap.mx, abadrector@gmail.com,

blanca tec@hotmail.com, amr@cenidet.edu.mx

Abstract. In this paper we propose two iterative clustering methods for
grouping Wikipedia documents of a given huge collection into clusters.
The recursive method clusters iteratively subsets of the complete col-
lection. In each iteration, we select representative items for each group,
which are then used for the next stage of clustering.

The presented approaches are scalable algorithms which may be used
with huge collections that in other way (for instance, using the classic
clustering methods) would be computationally expensive of being clus-
tered. The obtained results outperformed the random baseline presented
in the INEX 2010 clustering task of the XML-Mining track.

1 Introduction

The INEX 2010 clustering task was presented with the purpose of being an
evaluation forum for providing a platform for measuring the performance of
clustering methods over a real-world and high-volume Wikipedia collection.

Clustering analysis refers to the partitioning of a data set into subsets (clus-
ters), so that the data in each subset (ideally) share some common trait, often
proximity, according to some defined distance measure [1,2,3].

Clustering methods are usually classified with respect to their underlying
algorithmic approaches. Hierarchical, iterative (or partitional) and density-based
are some possible categories belonging to that taxonomy.

In this paper we report the obtained results when two different approaches
for clustering the INEX2010 collection were used. The description of both ap-
proaches are given in the following section.

2 Description of the Two Approaches

In order to be able to cluster high volumes of data, we have approached two
clustering techniques by partitioning the complete document collection.
� This work has been partially supported by the CONACYT project #106625, VIEP

#PIAD-ING11-I, as well as by the PROMEP/103.5/09/4213 grant.

S. Geva et al. (Eds.): INEX 2010, LNCS 6932, pp. 377–382, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

378 M. Tovar et al.

The first approach consider two main modules: the K-biX and the K-biN.
The K-biX clustering method receives as input a similarity matrix sorted

in a non-increasing order. Thereafter, it brings together all those items whose
similarity value is greater than a given threshold (in this particular case, we have
used the average of the similarity matrix). The procedure of K-biX is given in
Algorithm 1.

Algorithm 1: Algorithm K-biX used for clustering the INEX 2010
Input: A n × n similarity matrix ϕ(di, dj) sorted in a non-increasing order, a

threshold ε
Output: A set of clusters C1, C2, ...
D = {d1, d2, ...};1

REG = (|D|2 − |D|)/2;2

loop = 1;3

while (loop ≤ REG) and (ϕ(di, dj) ≥ ε) do4

if (|di| > |dj |) then5

tmp = di; di = dj ; dj = tmp;6

if (di ∈ rel and dj ∈ rel) then7

fusiondi = {di, dj};8

reldi = {di}; reldj = {di};9

else if (di ∈ rel) and(dj ∈ rel) then10

fusionreldi
= fusionreldi

∪ {dj};11

reldj = {di};12

else if dj ∈ rel and (di ∈ rel) then13

fusionreldj
= fusionreldj

∪ {di};14

reldi = {dj};15

loop = loop + 1;16

cluster = 1;17

foreach dx ∈ fusion do18

first d representative(fusiondx);19

Ccluster = fusiondx ;20

cluster = cluster + 1;21

foreach dx ∈ |D| do22

if dx ∈ rel then23

Ccluster = {dx};24

cluster = cluster + 1;25

return C1, C2, ...26

K-biX is unable to find a fixed number of clusters; instead, it tries to discover
the optimal number of clusters. Therefore, we have executed an additional clus-
tering method in order to fix the number of clusters to exactly those required in
the competition (50, 100, 200, 500 and 1000).

On the other hand, the K-biN clustering method considers the clustering with
a fixed number of clusters. This number depends of criteria given in advance, and

An Iterative Clustering Method for the XML-Mining Task of the INEX 2010 379

Algorithm 2: Algorithm K-biN used for clustering the INEX 2010
Input: A n × n similarity matrix ϕ(di, dj) sorted in a non-increasing order, n

number of clusters
Output: A set of clusters C1, C2, ...Cn

D = {d1, d2, ...};1

REG = (|D|2 − |D|)/2;2

gs = n + 1;3

cn = 0;4

loop = 1;5

while (loop ≤ REG) and (gs > n) do6

if (|di| > |dj |) then7

tmp = di; di = dj ; dj = tmp;8

if (di ∈ rel and dj ∈ rel) then9

fusiondi = {di, dj};10

reldi = {di}; reldj = {di};11

cn = cn + 2;12

else if (di ∈ rel) and(dj ∈ rel) then13

fusionreldi
= fusionreldi

∪ {dj};14

reldj = {di};15

cn = cn + 1;16

else if dj ∈ rel and (di ∈ rel) then17

fusionreldj
= fusionreldj

∪ {di};18

reldi = {dj};19

cn = cn + 1;20

if |D| − n ≥ cn then21

f = 0;22

cd = 0;23

foreach dx ∈ fusion do f = f + 1;24

foreach dx ∈ |D| do25

if dx ∈ rel then cd = cd + 1;26

gs = f + cd;27

loop = loop + 1;28

cluster = 1;29

foreach dx ∈ fusion do30

first d representative(fusiondx);31

Ccluster = fusiondx ;32

cluster = cluster + 1;33

foreach dx ∈ D do34

if dx ∈ rel then35

Ccluster = {dx};36

cluster = cluster + 1;37

return C1, C2, ..., Cn38

380 M. Tovar et al.

Algorithm 3: Algorithm used for clustering the INEX 2010 with K-Means
Input: A corpus D, n number of clusters (50, 100, 200, 500 or 1000)
Output: A set of clusters C1, C2, ...Cn

Represent each document according to TF-IDF;1

Split D into m subsets Di made of |D|
m

documents;2

foreach Di ⊂ D such as Di = {di,1, di,2, di,3, ..., di,
|D|
m

} do3

Calculate the similirity matrix Mi of Di by using the cosine measure;4

Apply the K-Means clustering method to Mi in order to obtain k clusters;5

({Ci,1, Ci,2, ..., Ci,k});6

end7

Loop = 1;8

while (Loop ≤ MAX ITERATIONS) do9

Select a random representative document di,j for each cluster Ci,j obtained;10

Let D′ be the set of documents di,j ;11

Calculate the similiraty matrix M ′
i of D′

i by using the cosine measure;12

Apply the K-Means clustering method to M ′
i in order to obtain n clusters13

({C′
i,1, C

′
i,2, ..., C

′
i,n});

Let Ci,j = Ci,j ∪ Ci,j′ , where di, j ∈ C′
i,r and di,j′ ∈ C′

i,r with 1 ≤ r ≤ k and14

j <> j′;
Loop = Loop + 1;15

end16

return C1, C2, ...Cn17

the similarity degree among the documents processed. The Algorithm 2 presents
the K-biN method.

2.1 The K-Means Based Clustering Approach

The second approach has used the widely known K-Means algorithm, which
assigns each object to the cluster whose center is nearest. The center is the
average of all the points of the cluster. The rationale of the K-Means clustering
method is shown in ([3]). The main advantage of this algorithm is its simplicity
and speed which allows it to run on large datasets. Its disadvantage is that it does
not yield the same result with each run, since the resulting clusters depend on the
initial random assignments. The proposed approach is depicted in Algorithm 3.

The clustering methods aforementioned assume that a matrix that represents
the similarity degree among all the documents of the collection is given in ad-
vance. For this purpose, we construct this matrix by using the cosine similarity
measure over a vectorial representation of each document [4].

The obtained results are presented and discussed in the following section.

3 Experimental Results

The experiments were carried out on the clustering task of the INEX 2010,
which evaluated unsupervised machine learning solutions against the ground

An Iterative Clustering Method for the XML-Mining Task of the INEX 2010 381

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0 100 200 300 400 500 600 700 800 900 1000

M
ea

su
re

 m
ac

ro
−

pu
ri

ty

Groups

random
pekin_uni

qut_devries
buap_A

buap_M

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0 100 200 300 400 500 600 700 800 900 1000

M
ea

su
re

 m
ic

ro
−

pu
ri

ty

Groups

random
pekin_uni

qut_devries
buap_A

buap_M

a) Macro purity b) Micro purity

 2.5

 3

 3.5

 4

 4.5

 5

 0 100 200 300 400 500 600 700 800 900 1000

M
ea

su
re

 m
ac

ro
−

en
tr

op
y

Groups

random
pekin_uni

qut_devries
buap_A

buap_M

 3.4

 3.6

 3.8

 4

 4.2

 4.4

 4.6

 4.8

 0 100 200 300 400 500 600 700 800 900 1000

M
ea

su
re

 m
ic

ro
−

en
tr

op
y

Groups

random
pekin_uni

qut_devries
buap_A

buap_M

c) Macro entropy d) Micro entropy

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0 100 200 300 400 500 600 700 800 900 1000

M
ea

su
re

 m
ac

ro
−

ne
ge

nt
ro

py

Groups

random
pekin_uni

qut_devries
buap_A

buap_M

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0 100 200 300 400 500 600 700 800 900 1000

M
ea

su
re

 m
ic

ro
−

ne
ge

nt
ro

py

Groups

random
pekin_uni

qut_devries
buap_A

buap_M

e) Macro negentropy f) Micro negentropy

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 100 200 300 400 500 600 700 800 900 1000

M
ea

su
re

 m
ac

ro
−

f1

Groups

random
pekin_uni

qut_devries
buap_A

buap_M

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0 100 200 300 400 500 600 700 800 900 1000

M
ea

su
re

 m
ic

ro
−

f1

Groups

random
pekin_uni

qut_devries
buap_A

buap_M

g) Macro f1 h) Micro f1

Fig. 1. Evaluations of the runs with Purity, Entropy, negentropy and f1 (macro and
micro) at the INEX 2010 clustering task

382 M. Tovar et al.

truth categories by using standard evaluation criteria such as Purity, Entropy,
Negentropy and F-score (f1).

The evaluation is performed by using 146,225 documents that have been pre-
processed in order to provide various representations of these documents such as,
vector space representation of terms, frequent bi-grams, XML tags, trees, links
and named entities. In this paper, we have used unigrams and frequent bigrams
(original terms and stemmed terms). The obtained results are shown in Figure 1.

In general, it can be noticed that the presented approaches performs slightly
better than the random assignment. Our thought is that we have not sufficiently
iterated the algorithm in order to converge to an optimal clustering. We are
considering to repeat the experiments with the gold standard in hand in order
to analyze these hypotheses.

4 Conclusions

A recursive method based on the K-biX/K-biN and K-Means clustering methods
has been proposed in this paper. The aim of the two presented approaches was
to allow high scalability of the clustering algorithms. Traditional clustering of
huge volumes of data requires to calculate a two dimensional similarity matrix.
A process which needs quadratic time complexity with respect to the number
of documents. The lower the dimensionality of the similarity matrix, the faster
the clustering algorithm will be executed. However, the performance of both
approaches were not as expected, because it just slightly improved a baseline
made up of a random assignment. We would like to analyze this behavior when
the gold standard is released by the task organizers.

References

1. MacKay, D.J.C.: Information Theory, Inference and Learning Algorithms. Cam-
bridge University Press, Cambridge (2003)

2. Mirkin, B.G.: Mathematical Classification and Clustering. Springer, Heidelberg
(1996)

3. MacQueen, J.B.: Some methods for classification and analysis of multivariate obser-
vations. In: Proc. of the 5th Berkeley Symposium on Mathematical Statistics and
Probability, pp. 281–297. University of California Press, Berkeley (1967)

4. Salton, G., Wong, A., Yang, C.: A vector space model for automatic indexing. Com-
munications of the ACM 18(11), 613–620 (1975)

S. Geva et al. (Eds.): INEX 2010, LNCS 6932, pp. 383–395, 2011.
© Springer-Verlag Berlin Heidelberg 2011

PKU at INEX 2010 XML Mining Track

Songlin Wang, Feng Liang, and Jianwu Yang∗

Institute of Computer Sci. & Tech., Peking University,
Beijing 100871, China

{Wangsonglin,liangfeng,yangjianwu}@icst.pku.edu.cn

Abstract. This paper presents our participation in the INEX 2010 XML Mining
track. Our classification and clustering solutions for XML documents have used
both the structure and content information, where the frequent subtrees as
structural units are used for content extraction from the XML document. In
addition, we used the WordNet and the link information for better performance,
and applied the structured link vector model for classification.

Keywords: XML Document, Classification, Clustering, Frequent Subtree,
Structured Link Vector Model (SLVM).

1 Introduction

The two tasks in INEX 2010’s XML mining track are categorization and clustering.
The clustering task is an unsupervised process through which all the documents can
be classified into clusters and the problem is to find meaningful clusters without any
prior information. The categorization task is a supervised task for which, given a set
of categories, a training set of reclassified documents is provided. Using this training
set, the task keep on learning the categories description in order to be able to classify
a new document into one or more categories. And in this XML mining tack, the
corpus is a subset of the Wikipedia corpus with 144,625 documents that belong to 36
categories resulting in a multi-label classification task.

In this paper, the documents are represented according to the structured link vector
model (SLVM) [1], which was extended from the conventional vector space model
(VSM) [2], and used the closed frequent subtrees as structural units. More precisely,
we focus on the preprocessing step, particularly on the feature selection, frequent
subtrees selection, and the process of link information, and these steps can be
essential for improving the performance of the categorization and clustering.

Moreover, the content information (the text of the documents), the structural
information (the XML structure of the documents) and the links between the
documents can be used for this task. We need to extract text from a subset of terms
that can be used to represent the documents in view of their categorization efficiently.
In this year, a file with a list of links between XML documents has been given, and
we will show that how those links add relevant information for the categorization of
documents.

∗ Corresponding author.

384 S. Wang, F. Liang, and J. Yang

This paper is organized as follows. In section 2, document representation is
discussed. In section 3, we show some parameters tuning in the corpus of INEX
2009 and INEX2010. Section 4 describes the approach taken to the classification task
and the associated results. In section 5, we review the clustering task and discuss
the results. The paper ends with a discussion of future research and conclusion in
section 6.

2 System Overview

2.1 Document Model for Categorization (SLVM)

The Vector space model (VSM) [2] has been widely used for representing
text documents as vectors which contain terms weights. Given a collection D
of documents, a document d of D is represented by a vector d d , , d , , d , … … d , , where d , is the weight of the term t in the
document d . SLVM is extended from VSM. The basic idea is to extract structure
units from XML documents, then to extract content information from each structure
units. The content information of each structure units is regarded as a VSM model.
Every XML document is modeled as a matrix in SLVM [1].

So, the document d can be represented by a document feature matrix , d d , d , d … … d (1)

d d , , d , , d , … … d , (2)

Where m is the number of unit of document d , and d , is the weight of the term t
in the unit d of document d . SLVM combines both structure information and
content information. In order to calculate the weight of the terms, TFIDF and BM25
formula can be used.

2.2 BM25 Formula

Our system is based on the BM25 weights function [3]. BM25 q, d TF , IDF (3)

TF q, d ,, (4)

IDF q log 0.50.5 (5)

With:
- , : the frequency of term q in article d.
-N: the number of articles in the collection.

 PKU at INEX 2010 XML Mining Track 385

-n (q): the number of articles containing the term q.

- : the ratio between the length of articles d and the average article length.

-k and b: the classical BM25 parameters.

Parameter k is able to control the term frequency saturation. Parameter b allows

setting the importance of .

2.3 Chi-Square Feature Selection

The main idea of the feature selection is to choose a subset of input variables by
eliminating features with little or no predictive information, and the feature selection
can significantly improve the comprehensibility of the classifier models. The Chi-
square test is a commonly used method, which evaluates the features individually by
measuring their chi-square statistic with respect to the classes.

3 Parameters Tuning

We have used both INEX2010 and INEX2009 collection of XML Mining Track for
this experiment. As the collection of INEX2010 has been described above, the
collection of INEX2009 is composed of about 54,889 XML documents of the
Wikipedia XML Corpus, and this subset of Wikipedia represents 39 categories, each
corresponding to one subject or topic. The training set with the category annotations
is composed of 11,028 elements, which is about 20% of the whole collection. On the
training set, the average the number of category per document is 1.46 and 9809
documents belong to only one category.

First we list all the features encountered in the documents of the collection, where
about one million features are built for all of the documents. Then the chi-square test
has been used to select the features, and we find that about 2,000 features for each
categorization can acquire a good value.

The INEX 2009 tuning results are shown in table1, where all the value with the
BM25 have been improved, so that our system is based on the BM25 weights function
for this year task.

Table 1. The result of BM25(INEX2010)

 Ma_acc Mi_acc Ma_roc Mi_roc Ma_prf Mi_prf Map

TFIDF 0.966 0.953 0.855 0.863 0.496 0.543 0.709

BM25 0.967 0.952 0.932 0.933 0.537 0.579 0.745

386 S. Wang, F. Liang, and J. Yang

3.1 Pruning the Tree

In this paper, we utilize the frequent subtrees as structural units to extract the content
information from the XML documents, and a series of pre-processing have been done
for the subtrees.

As the last year, we use the closed frequent subtrees as structural units. The
documents of INEX2009 and INEX2010 is more complex than the collection of ever
before, so we employ some pruning strategies for mining closed frequent subtrees and
use the chi-square test to select a part of subtrees as useful structure. We obtain the
document of INEX2009 vectors at three different pruning levels, 0, 1/3, and 1/2,
which yield a better performance for almost all the evaluation measures, and
INEX2010 has five as shown in table 3.

Table 2 presents the effectiveness comparison of classification structures at various
pruning levels of INEX2009, while used no more than 40,000 features Table 3
presents the effectiveness comparison of classification structures at various pruning
levels of INEX2010, 80,000 features for all categories, as concede that calculation of
the similarity between the words is very slowly, we have not used the information of
WordNet in this part.

Table 2. The results of pruning the document tree (2009)

Prune Ma_acc Mi_acc Ma_roc Mi_roc Ma_prf Mi_prf Map

0 0.956 0.940 0.879 0.861 0.428 0.438 0.606

1/3 0.961 0.944 0.896 0.872 0.464 0.465 0.626

1/2 0.961 0.942 0.876 0.873 0.447 0.475 0.633

Table 3. The results of pruning the document tree (2010)

 Prune Mi_p Ma_p Mi_r Ma_r Mi_f Ma_f

Split_0 0% 0.453 0.39 0.632 0.55 0.524 0.454

Split_3 35% 0.458 0.409 0.635 0.555 0.534 0.466

Split_5 47% 0.467 0.407 0.639 0.558 0.535 0.467

Split_10 58% 0.474 0.412 0.635 0.560 0.539 0.472

Split_20 68% 0.454 0.392 0.633 0.557 0.525 0.457

In addition, we find that the average of subtrees for each XML document has
increased, which is useful for the classification, when some pruning strategies are
used for mining closed frequent subtrees.

 PKU at INEX 2010 XML Mining Track 387

3.2 WordNet

In some documents, there are only a few words, which can’t express the information
of the categories completely. So we use the WordNet to extend the information of the
documents.

Given the closed frequent subtrees T t , t , t … t , the features W w , w , w … w , and two documents D , D that contain the tree t of T, and
suppose their parts of the t are D w , w , w … w and D w , w , w … w .

The similarity between the t parts of the documents D and D is given as:

S w w,
 (6)

After using the WordNet, we can get the similarity matrix between the words, and
the similarity between the t parts of the documents given as:

S S w w (7)

Where S is the similarity between the word w and w .

Given the similarity matrix between the words, we can change the D as follow:

D w S , w S , w S … w
S

(8)

When D w′′ , w′′ , w′′ … w′′ have all features of W w , w , w … w , this method

is equal to (7). However, no document can contain all of the selected features, and in
this way we can increase the feature number of the document, especially the words
that don’t appear in the collection, which is important to some small documents for
classification and clustering, it equal to use the similarity matrix between the words to
do smoothing. For example, when the features of D don’t contain word A, but it

contains word B and word C, which the similarity with A is greater than 0, then we
can use S S to smoothing the weight of word A in D .

Definition. S means the similarity between the two words w and w ,
if S , where γ is the parameter of similarity, w and w are synonym, we
can merge the word w and w together.

3.3 Using the Link Information to Improve the Result

In this section, we show that the classification accuracy can be improved based on
word features and out-linked features. And the XML documents of INEX can provide

388 S. Wang, F. Liang, and J. Yang

much richer information to classifiers for classification. Links between the documents
can be used for this task. In this year a file with a list of links between XML
documents has been given, and we will show that those links add relevant information
for the categorization of documents. As how to use the link information, we have tried
three ways:

3.3.1 Change the Document Structural
After a series of pre-processing for the documents, we can change the documents in
the following format:

<article>
 <content_information> ……</ content _information>
 <frq_subtrees>……</frq_subtrees>
</article>

In the above table, the text of the document is included by the tag of

“<content_information>”, “<frq_subtrees>” tag contain sthe frequent subtrees of the
document, which is the XML structure of the documents. As well, in order to join the
link information of the document, we should add another tag, which is named
“<link_informatiom>”, and the table can be changed as follow:

<article>
 <content_information> ……</ content _information>
 <frq_subtrees>……</frq_subtrees>
 <link_information>……</link_information>
</article>

3.3.2 Change the Vector of the Document
The closed frequent subtrees T t , t , t … t , and a given documentD, which contain
the tree t of T, and suppose the part of the t is D w , w , w … w (9)

Where m is the total number of features appearing in the tree t part of the document
collection, w′ is the weight of term i in document D and 0 w′ 1. Hence, if w′ 0 ,it means that word i exist in the tree t part of the document D. Therefore,
document D will be represented by a vector of features D w , w , w … w , l , l , l … l (10)

Where n is the total number of links appear in the tree t part of the document, l is
the weight of link l in document D and 0 l 1. Hence, if l 0 ,it means that
link l exists in the tree t part of the document D.

 PKU at INEX 2010 XML Mining Track 389

3.3.3 Using the Link for Tuning
Build SVM model base on the link information, get the correlativity between the
documents and categories, and improve the correlativity of documents and categories
that calculate form the text information: | | 1 | (11)

Where | is the final correlativity between the document d and the category c; | is the correlativity between the document d and the category c by using the
link information only; and | is the correlativity between the document d and
the category c by using the text information only; parameter allows setting the
importance of | .

In this experiment, we use 80000 features for the text content, and use BM25 for
the text representation. The SVM based text classification results are listed in Table 4
and 5. In the following tables, we can notice that, out-linked features work very well
in the experiment, and this simply means that adding in out-link features can improve
the performance of classification.

Table 4. The result of using the link for tuning (2009)

 Ma_acc Mi_acc Ma_roc Mi_roc Ma_prf Mi_prf Map

α=0 0.967 0.952 0.932 0.932 0.537 0.579 0.746

Using link for
tuning

0.968 0.956 0.912 0.916 0.570 0.608 0.780

Table 5. The result of using the link for tuning (2010)

 Prune Mi_p Ma_p Mi_r Ma_r Mi_f Ma_f

Split_10 58% 0.474 0.412 0.635 0.560 0.539 0.472

Split_10_tuning 58% 0.491 0.433 0.644 0.572 0.554 0.490

3.4 Other Tuning

In addition to the above methods, we also made some other optimization, for
example smoothing IDF value in the formula of BM25, normalized the vector of the
units in the document, and in particular the result of normalized the matrix of
the documents performance better, so using this case, we pruning the trees of
documents and using the out-link information, and the we get our result in the table 6,
as follow.

390 S. Wang, F. Liang, and J. Yang

Table 6. The result of using the link for tuning

runs idf Norm Mi_p Ma_p Mi_r Ma_r Mi_f Ma_f
 log N 0.473 0.414 0.646 0.566 0.544 0.476
 1+log N 0.476 0.416 0.641 0.563 0.543 0.476
 1+ log(f-v)/v N 0.474 0.414 0.636 0.559 0.541 0.473
 1+log Y 0.528 0.485 0.647 0.572 0.578 0.521

Result_link_
tuning

1+log Y 0.543 0.499 0.656 0.583 0.591 0.535

3.5 Compare the Results

Table 7. Compare the result with INEX 2009

Team Micro F1 Macro F2 APR

University of Wollongong+ 51.2 47.9 68
University of Peking+ 51.8 48 70.2

XEROX Research center+ 60 57.1 67.8
University of Saint Etienne+ 56.4 53 68.5

University of Granada+ 26.2 25.3 72.9
Our result* 60.9 57.1 78.0

+ Result of INEX09; * The wordNet is not used.

Table 8. Compare the result with INEX 2010

Team Run Mi_p Ma_p Mi_r Ma_r Mi_f Ma_f
Peking T1_S3_linkN+ 0.432 0.356 0.656 0.613 0.517 0.444

 T1_S1_link0+ 0.582 0.570 0.363 0.252 0.400 0.320
Qut Inex10_sub+ 0.561 0.527 0.523 0.440 0.536 0.473

 Our result* 0.543 0.499 0.656 0.583 0.591 0.535

+ Result of INEX2010; * The wordNet is not used.

4 The Clustering Methods

AHC Clustering Algorithm and K-means Algorithm are two popular clustering
algorithms in statistics and machine learning, but these methods do not work well in
the massive data sets. So we modify these algorithms, considering the structure of the
document and the massive data set. We have approached the simple countering
technique based on batch of the complete document collection; the process followed
is present in Figure 1.

Another algorithm is based on AHC Clustering Algorithm, and the process of the
Local AHC Clustering Algorithm is present as Figure 2.

 PKU at INEX 2010 XML Mining Track 391

• Given
• X: a set of N vectors
• K:desired number of clusters
• Begin

• Select K random seeds s , s , … … , s from X
• Each time load part of the documents, and computer the distance
between the document and clusters
• Do

• Do all of the document
• Load a batch of documents
• Assign each document to cluster which is the minimal
distance, and calculate the cluster for next time.

• End_do
• Calculate the clusters and the distance between the clusters
and document.

• End_do (if the gap of distance between two consecutive cycles
exceeds the given threshold.)
• Load the documents and assign each document to clusters.
• Print_result.

• Done

Fig. 1. An algorithm for clustering

• Let D be the whole complete document collection, split D into subset D
containing 1000 documents, and for each D , we do the follow process, after we
combine the result ,then continue, until the number of clusters meet our
requirement:

• Given:
• Subsets D and a threshold τ
• Calculate similarity matrix M
• Do (if max element in M > threshold τ)

• Find the max element of M: m , and constructs a cluster C made up of the document d and d , it marks these
documents as assigned.

• Do all unassigned document d
• If m , τ

• add d to cluster C and mark d assigned
• End_if

• End_do
• Update row i and column j, set m , m , avg m , ,
where d C .
• Update row c and column c, set m , m , 1,
where d C .

• End_do

Fig. 2. The Local AHC Clustering Algorithm

392 S. Wang, F. Liang, and J. Yang

• Given:
• The list of xml documents D
• Calculate similarity matrix M
• While (Loop < MAX_Loop)

• Split D into subsets D containing 1000XML documents
• For all D of D do

• Apply the Local AHC Clustering Algorithm to discover
k clusters C ,

• End for
• If(Loop>1) then

• Merge C , C , U C , ′ where C , U C , ′ 1

• End if
• Select a representative centroid R for each cluster
• Let D be the set of representative centroid R
• Loop = Loop + 1

• End while
• Output the set of clusters C

Fig. 3. Simple algorithm for clustering

Experimental results and analysis of these clustering algorithms will be showed in
section 5.

5 INEX 2010 Results

We present in this section the official results obtained by our system during INEX
2010 on the new INEX 2010 collection, we submitted 9 runs, and all of our submit
results are based on the BM25, reference run given by the INEX organizers.

5.1 System Settings

Most of the settings given in section 3 have been reused for our INEX 2010 runs,
except:

- BM25 parameters k = 2.0 and b = 0.75；
- For each category, we set the frequent tree number is 10, and the threshold of

support is 200;
-To improve the result of classification, we used the link information, and we set

0.40 and 0.46, which is obtained from tuning in section 3;
-The threshold for each category, we tuning from the training set, and we get three

groups.

 PKU at INEX 2010 XML Mining Track 393

5.2 Results

Table 9 present the official results of classification:

Table 9. The results of classification

Team Run Mi_p Ma_p Mi_r Ma_r Mi_t

Peking T1_S3_link0 0.553 0.525 0.436 0.334 0.931

 T1_S3_link67 0.422 0.345 0.653 0.612 0.874

 T1_S3 0.433 0.368 0.635 0.582 0.886

 T1_S3_linkN 0.432 0.356 0.656 0.613 0.878

 T1_S2_linkN 0.456 0.389 0.615 0.559 0.893

 T1_S1_link0 0.582 0.570 0.363 0.252 0.934

 T2_S2_link0 0.562 0.536 0.422 0.321 0.934

 T2_S2 0.48. 0.414 0.574 0.510 0.910

 T2_S3_linkN 0.436 0.359 0.652 0.614 0.882

Qut Inex10_sub 0.561 0.527 0.523 0.440 0.932

Team Run Ma_t Mi_a Ma_a Mi_f Ma_f

Peking T1_S3_link0 0.974 0.891 0.942 0.518 0.446

 T1_S3_link67 0.928 0.860 0.914 0.508 0.435

 T1_S3 0.936 0.869 0.920 0.518 0.444

 T1_S3_linkN 0.931 0.864 0.917 0.517 0.444

 T1_S2_linkN 0.944 0.873 0.926 0.522 0.454

 T1_S1_link0 0.980 0.888 0.943 0.400 0.320

 T2_S2_link0 0.976 0.892 0.943 0.452 0.372

 T2_S2 0.954 0.883 0.932 0.521 0.452

 T2_S3_linkN 0.933 0.886 0.918 0.518 0.446

Qut Inex10_sub 0.970 0.896 0.944 0.536 0.473

Firstly, for all of the runs , we use 80,000 features for all categories, and frequent
subtrees have selected two groups: one is T1, in which the trees can be a subtree of
another; another is T2, in which the frequent subtree cannot be a subtree of another.
We also use different thresholds for each category, S1, S2, S3. And we use the link
information to improve the result of the castigation, the run 1, 2, 4,5,6,7 and 9 have
used, but the run 3 and 8 have not. In addition, in order to save time, we just use the
WordNet to calculate the similarity matrix between the words that selected form
INEX2009 collection, so there is a certain deviation between the words.

Secondly, from the result table, we can obtain some conclusions. The threshold of
each category has played an important roe, and the results including the information
are not as good as last year. We suspect that this might be caused by the fact that we
tuned the parameters in the collection of INEX 2009, which were not suitable in this

394 S. Wang, F. Liang, and J. Yang

year’s data. For this year, the number of categories that each document belonging to is
more than for last year, and the standard evaluation of classification has changed,
thus, future experiments should do this parameters adjustment. In the part of frequent
subtrees we use two extreme cases, T1 and T2, and the result are not so much
difference as we expected, though they have a different effect on the INEX2009 data
set, so this part needs to do further research experiments. Tables 10 present the
official results of clustering.

Table 10. The results of clustering

 Runs Mi_p Ma_e Mi_e Ma_n Mi_n

Pek Result_1000_4 0.531 3.89 3.89 0.202 0.219

 Result_500_4 0.518 3.99 3.97 0.201 0.218

 Result_200_4 0.467 4.00 4.05 0.314 0.212

 result502_0.15 0.364 4.36 4.52 0.133 0.118

 Result_100_4 0.481 4.06 4.10 0.212 0.206

 result_0.18_1004 0.336 4.38 4.48 0.118 0.119

 Result_50_4 0.463 4.11 4.18 0.203 0.191

 Result_100_3 0.483 4.07 4.11 0.209 0.204

 Result_200_2 0.501 4.01 4.00 0.213 0.213

 Runs Ma_f1 Mi_f1 Nmi M_NC
CG

S_NCC
G

Pek Result_1000_4 0.072 0.150 0.093 0.524 0.220

 Result_500_4 0.063 0.140 0.088 0.584 0.235

 Result_200_4 0.056 0.130 0.084 0.661 0.219

 result502_0.15 0.019 0.053 0.020 0.391 0.221

 Result_100_4 0.048 0.120 0.082 0.741 0.193

 result_0.18_1004 0.022 0.060 0.024 0.290 0.169

 Result_50_4 0.038 0.101 0.075 0.185 0.157

 Result_100_3 0.040 0.119 0.081 0.745 0.190

 Result_200_2 0.057 0.132 0.085 0.662 0.212

In table 10, the runs 4 and 6 we use the Local AHC Clustering Algorithm, and the

rest we used k-means based on batch of the complete document collection.

6 Conclusions

In this paper, we applied SLVM to XML documents classification and clustering, and
we used the frequent subtrees as structural units, both the structure and content
information have been used, especially the information of link, which performance
well, and in order to extend the information of features, we used the WordNet to
smooth the weight of the words in the documents.

 PKU at INEX 2010 XML Mining Track 395

It is not so easy to reuse setting of parameters tuned on the different collection. In
the experiments of INEX2009, we show that using link information can improve the
result of classification by 2%, but the results in part 5 that we presented are not good,
so we experiment more deeply on 2010 collection. Furthermore, Information provided
by the inlinks (links received by one file) is also useful, a symmetric procedure can be
defined with inlinks instead, and being tested. If the inlinks could be available, that
information could result in a better performance. Some of those experiments will
probably be included in the final version of this paper although, as we exposed in the
introduction, we not consider that approach to be very realistic.

Acknowledgment. The work reported in this paper was supported by the National
Natural science Foundation of China Grant 60642001 and 60875033.

References

1. Yang, J., Chen, X.: Chen, X.: A semi_structured document model for text mining. Journal
of computer science and Technology 17(5), 603–610 (2002)

2. Salton, G., McGill, M.: Introduction to Modern information Retrieval. McGraw-Hill, New
York (1983)

3. Robertson, S.E., Spark Jones, K.: Relevance weighting of search terms. JASIST 27(3),
129–146 (1976)

4. Chi, Y., Nijssen, S., Muntz, R.R., Kok, J.N.: Frequent Subtree Mining – An Overview.
Fundamenta Information (2005)

5. Chi, Y., Yang, Y., Xia, Y., Muntz, R.R.: CMTreeMiner: Mining Both Closed and Maximal
Frequent Subtrees. In: The Eighth Pacific Asia Conference on Knowledge Discover and
Data Mining (2004)

6. Xie, W., Manmadov, M., Yearwood, J.: Using Links to Aid Web Classification. In: ICIS
(2007) 0-7695-2841-4/07

7. Yang, J., Zhang, F.: XML Document Classification using Extended VSM. In: Pre-
Proceedings of the Sixth Workshop of Initiative for the Evaluation of XML Retrieval,
Dagstuhl, Germany (2007)

8. Berry, M.: Survey of Text Mining: Clustering. Springer, Heidelberg (2003)
9. Joachims, T.: Text Categorization with Support Vector Machines: Learning with Many

Relevant Features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398,
Springer, Heidelberg (1998)

10. Yang, J., Wang, S.: Extended VSM for XML document classification using frequent
subtrees. In: Geva, S., Kamps, J., Trotman, A. (eds.) INEX 2009. LNCS, vol. 6203, pp.
441–448. Springer, Heidelberg (2010)

11. Shin, K., Han, S.Y.: Fast clustering algorithm for information organization. Proc. of the
CICLing 2003 Conference. In: Gelbukh, A. (ed.) CICLing 2003. LNCS, vol. 2588, pp.
619–622. Springer, Heidelberg (2003)

Author Index

Aaron, José Cruz 347
Alexander, David 241, 250
Arvola, Paavo 1, 33

Balderas, Carlos 219
Beckers, Thomas 227, 236
Beigbeder, Michel 44
Bellot, Patrice 118, 269
Beltrán, Beatriz 347
Bose, Aishwarya 336
Boudin, Florian 118
Buffoni, David 54

Chappell, Timothy 303
Cherukuri, Ramakrisha 63
Crouch, Carolyn J. 63
Crouch, Donald B. 63
Cruz, Adrián 377

da C. Hummel, Felipe 194
da Cunha, Iria 295
da Silva, Altigran S. 194
Deng, Zhi-Hong 319
Deveaud, Romain 118
De Vries, Christopher M. 363
Doucet, Antoine 98

Fuhr, Norbert 227

Gagnon, Michel 290
Gallinari, Patrick 54
Ganguly, Debasis 182, 313
Gao, Ning 319
Géry, Mathias 44
Geva, Shlomo 1, 241, 303, 363
Giguet, Emmanuel 128

Hatano, Kenji 71
Hou, Jun 336

Jaruskulchai, Chuleerat 351
Jia, Xiang-Fei 250
Jiang, Jia-Jian 319
Jones, Gareth J.F. 182, 313

Kamps, Jaap 1, 98, 140
Kazai, Gabriella 98
Keyaki, Atsushi 71
Koolen, Marijn 98, 140
Korbar, Dennis 236
Kutty, Sangeetha 363

Laender, Alberto H.F. 194
Landoni, Monica 98
Largeron, Christine 44
Larson, Ray R. 154
Lehtonen, Miro 82
León, Saul 219
Leveling, Johannes 182, 313
Li, Rongmei 89
Liang, Feng 383
Lucas, Nadine 128
Lv, Sheng-Long 319

Mahule, Abhijeet 63
Medina-Urrea, Alfonso 282
Méndez-Cruz, Carlos-Francisco 282
Mitra, Mandar 182
Miyazaki, Jun 71
Montes, Azucena 377
Moriceau, Veronique 269
Moro, Mirella M. 194

Nayak, Richi 336, 363
Nordlie, Ragnar 164, 227

Pal, Sukomal 182
Palchowdhury, Sauparna 182
Pharo, Nils 227
Pinto, David 219, 347, 377
Preminger, Michael 164

Ramı́rez, Georgina 206
Ramı́rez, Javier 295

SanJuan, Eric 269
Schenkel, Ralf 1
Seck, Howard 44
Sierra Mart́ınez, Gerardo 282
Somodevilla, Maŕıa Josefa 347
Soriano-Morales, Edmundo-Pavel 282

398 Author Index

Tagarelli, Andrea 363
Tannier, Xavier 269
Thom, James A. 332
Torres-Moreno, Juan-Manuel 290
Tovar, Mireya 219, 377
Trotman, Andrew 1, 171, 241, 250

Usunier, Nicolas 54

Vadlamudi, Sandeep 63
Vainio, Johanna 1, 33
van der Weide, Theo 89
Vázquez, Blanca 377

Vilariño, Darnes 219, 347, 377
Vivaldi, Jorge 295

Wang, Qiuyue 171
Wang, Songlin 383
Wichaiwong, Tanakorn 351
Wood, Vaughn 250
Wu, Chen 332

Yang, Jianwu 383
Yu, Hang 319

Zhang, Jinglan 336

	Title
	Preface
	Organization
	Table of Contents
	Ad Hoc Track
	Overview of the INEX 2010 Ad Hoc Track
	Introduction
	Ad Hoc Retrieval Track
	Tasks
	Submission Format
	Evaluation Measures

	Ad Hoc Test Collection
	Corpus
	Topics
	Judgments
	Questionnaires

	Ad Hoc Retrieval Results
	Participation
	Relevant in Context Task
	Restricted Relevant in Context Task
	Restricted Focused Task
	Efficiency Task
	Significance Tests

	Analysis of Reading Effort
	Relevant in Context

	Analysis of Article Retrieval
	Article Retrieval: Relevance Judgments

	Discussion and Conclusions
	References

	The Potential Benefit of Focused Retrieval in Relevant-in-Context Task
	Introduction
	Metrics and Results
	Cumulating the Localizing Effort
	Results

	Analysis Based on Three Document Retrieval Scenarios
	Discussion and Conclusions
	References

	ENSM-SE and UJM at INEX 2010: Scoring with Proximity and Tag Weights
	Introduction
	Influence Functions
	Structure, Elements and Logical Elements
	Influence Function of a Term to a Position
	Influence Function of a Query to a Position
	Score of an Element

	Weighting Tags and Modulating Influence Function Shapes
	Weighting Tags
	Modulating Influence Function Shapes

	Experiments
	Building Runs
	Results

	Conclusion
	References

	LIP6 at INEX’10: OWPC for Ad Hoc Track
	Introduction
	Learning Base
	Basic Features
	Context Features

	OWPC, Our Learning to Rank Model
	Learning Step
	Ranking Prediction

	Experiments – Results
	Efficiency/thorough Task
	Restricted Focused Task

	Conclusion
	References

	A Useful Method for Producing Competitive Ad Hoc Task Results
	Introduction
	Dynamic Element Retrieval and the Ad Hoc Tasks
	Producing the Element Set
	Producing Task-Specific Output
	Early Results

	Experiments and Results
	Thorough Task
	Focused Task
	Relevant-in-Context Task

	Analysis and Observations
	References

	Relaxed Global Term Weights for XML Element Search
	Introduction
	XML Element Search Techniques and Related Studies
	An Expansion from Document Search to Element Search
	Existing Methods of Calculating Global Weights
	Relaxing Restriction of Document Structure in a Query

	Classification of Similar Path Expressions
	Inverse Combination Frequency
	Inverse Aggregated-Path Frequency
	Inverse Set Frequency

	Experiments
	Experiments for Integrating Path Expressions
	Analyzing the Number of XML Elements in Classes
	Evaluation on Search Accuracies

	Conclusion
	References

	Searching the Wikipedia with Public Online Search Engines
	Introduction
	Related Work
	Running Online Search Engines
	Google
	Bing
	Yahoo!
	Wikisearch

	From Result Pages to Run Submissions
	Restricted Focused
	Restricted Relevant in Context
	Summary

	Results
	Conclusion
	References

	Extended Language Models for XML Element Retrieval
	Introduction
	Pre-processing and Indexing
	Query Formulation
	Retrieval Models and Strategies
	Full Document Retrieval
	Snippet Retrieval

	Results
	Runs
	Measured as Document Retrieval
	Measured as Snippet Retrieval
	Analysis

	Conclusion
	References

	Book Track
	Overview of the INEX 2010 Book Track: Scaling Up the Evaluation Using Crowdsourcing
	Introduction
	Participating Organizations
	Summary of Participants' Approaches

	The Book Corpus
	Search Tasks
	Best Books to Reference (BB) Task
	Prove It (PI) Task

	Test Topics for the Search Tasks
	INEX Topics
	Crowdsourced Topics
	Topic Selection

	Relevance Assessments
	Gathering Relevance Labels from INEX Participants
	Crowdsourcing Relevance Labels
	Collected Relevance Data
	Analysis of Crowdsourced Relevance Labels
	Official Qrels

	Evaluation Measures and Results for the Search Tasks
	Best Books Task Evaluation
	Prove It Task Evaluation

	The Structure Extraction (SE) Task
	The Active Reading Task (ART)
	Conclusions and Plans
	References

	LIA at INEX 2010 Book Track
	Introduction
	Word Hyphenation Correction
	Best Books for Reference
	Retrieval Model
	Baselines
	Contextual Query Expansion Using Wikipedia
	Using the Stanford Parser
	Applying the Book Track's Contextual Query Expansion to the Ad Hoc Track

	Results
	Conclusions
	References

	The Book Structure Extraction Competition with the Resurgence Software for Part and Chapter Detection at Caen University
	Introduction
	Our Book Structure Extraction Method
	Challenges
	Strategy
	Calibrating the System
	Experiment
	Results

	Discussion
	Reflections on the Experiment
	Reflections on Evaluation Measures

	Proposals
	Conclusion
	References

	Focus and Element Length for Book and Wikipedia Retrieval
	Introduction
	Ad Hoc Track
	Indexing
	Category Evidence
	Runs
	Thorough Evaluation
	Focused Task
	Relevant in Context Task
	Restricted Relevant in Context Task

	Book Track
	Prove It Run Analysis
	Best Book Results
	Prove It Results

	Conclusion
	Bibliography

	Combining Page Scores for XML Book Retrieval
	Introduction
	The Retrieval Algorithms and Fusion Operators
	TREC2 Logistic Regression Algorithm
	Blind Relevance Feedback
	Coordination Level Matching
	Result Combination Operators

	Database and Indexing Issues
	Indexing the Books XML Database

	INEX 2010 Book Track Runs
	Conclusions and Future Directions
	References

	OUC’s Participation in the 2010 INEX Book Track
	Introduction
	Indexing and Retrieval Strategies
	Runs and Results
	Discussion
	Conclusion
	References

	Data Centric Track
	Overview of the INEX 2010 Data Centric Track
	Introduction
	The Task
	INEX Data Centric Track Collection
	Document Collection
	Topics

	Submission Format
	Submitted Runs
	Assessment and Evaluation
	Results
	Conclusions

	DCU and ISI@INEX 2010: Adhoc and Data-Centric Tracks
	Introduction
	Document Retrieval
	Preprocessing
	Language Model (LM) Term Weighting

	XML Element Retrieval
	Simplified Hierarchical Language Model

	Adhoc Track Experiments and Results
	Thorough Task
	Focused Task

	Data Centric Track Experiments and Results
	Using Negative Information Present in Verbose Queries
	Conclusions and Future Work
	References

	Automatically Generating Structured Queries in XML Keyword Search
	Introduction
	Related Work
	StruX
	Overview
	Input Transformation
	Candidate Predicate Selection
	Keywords Matching Element Names
	Indexing

	Experimental Setup
	Experimental Results
	Conclusions
	References

	UPF at INEX 2010: Towards Query-Type Based Focused Retrieval
	Introduction
	INEX Topic Classification
	Dimensions
	Data Classification

	Relevance Assessments Analysis
	Experiments
	Ad-Hoc Track Experiments
	Data-Centric Track Experiments

	Discussion and Conclusions
	References

	BUAP: A First Approach to the Data-Centric Track of INEX 2010
	Introduction
	Description of the System
	Data Processing
	Experimental Results

	Conclusions
	References

	Interactive Track
	Overview of the INEX 2010 Interactive Track
	Introduction
	Tasks
	Participating Groups
	Research Design
	Search System
	Document Corpus
	Online Questionnaires
	Relevance Assessments
	“Shopping” Basket
	Logging

	Experimental Procedure
	Results and Future Plans
	References

	Using Eye-Tracking for the Evaluation of Interactive Information Retrieval
	Introduction
	System Description
	Eye-Tracking for Interactive Information Retrieval Systems
	A Model for Interactive Information Retrieval
	User Study @ iTrack 2010
	Conclusion and Outlook
	References

	Link the Wiki Track
	Overview of the INEX 2010 Link the Wiki Track
	Introduction and Motivation
	Te Ara Test Set
	Runs
	Submission Format

	Assessment Tool
	Metrics
	Results
	Conclusions and Further Work
	References

	University of Otago at INEX 2010
	Introduction
	Related Work
	The Link-the-Wiki Track
	The Ad Hoc Track
	The Efficiency Track

	System Overview
	Indexer
	Query Evaluation

	The Link-the-Wiki Track
	Differences between Wikipedia and Te Ara
	Adapting to the Differences in Te Ara
	Algorithm
	Results
	Assessment Tool

	The Ad Hoc Track
	Learning Stemmers
	Refining Stemmers
	Experimental Results

	The Efficiency Track
	Experiments
	Results

	The Data Centric Track
	Conclusion and Future Work
	The Link-the-Wiki Track
	The Ad Hoc Track
	The Efficiency Track

	References

	Question Answering Track
	Overview of the INEX 2010 Question Answering Track (QA@INEX)
	Introduction
	Baseline System: Restricted Focused IR System
	Features
	Evaluation on the 2010 Restricted Focus Ad-Hoc Task

	Sets of Questions and References
	Encyclopedic vs. General Questions
	Short Type Questions
	Long Type Questions
	Format Submission
	Reference Texts

	Evaluation of Long Answers
	Results
	Plans for Next QA Track 2011 Edition
	Merging Short and Long Answer Task
	Towards Contextualization of Questions

	Conclusion
	References

	The GIL Summarizers: Experiments in the Track QA@INEX’10
	Introduction
	The ResúmeME Summarizer
	The GIL-UNAM-3 Summarizer
	Query Modification
	Experiments Settings and Results
	Conclusions
	References

	The Cortex Automatic Summarization System at the QA@INEX Track 2010
	Introduction
	The CORTEX System
	Experiments Settings and Results
	Conclusions
	References

	The REG Summarization System with Question Reformulation at QA@INEX Track 2010
	Introduction
	The REG System
	Terms and Name Entity Extraction
	Experiments Settings and Results
	Conclusions
	References

	Relevance Feedback Track
	Overview of the INEX 2010 Focused Relevance Feedback Track
	Introduction
	Focused Relevance Feedback
	Evaluation
	Task
	Overview
	Submission Format

	Results
	Submissions
	Evaluation

	Conclusion
	References

	Exploring Accumulative Query Expansion for Relevance Feedback
	Introduction
	Related Work
	System Setup
	Results and Analysis
	Conclusions and Future Work
	References

	Combining Strategies for XML Retrieval
	Introduction
	Ad Hoc Track
	Maximal Lowest Common Ancestor (MAXLCA)
	Distribution Measurements
	Learn to Optimize the Parameters
	Comparison Results

	Data Centric Track
	Related Work
	Extracting the Most Representative Attributes

	Relevance Feedback Track
	Rocchio Algorithm
	Revised Rocchio Algorithm
	Criterion Weight Adjustment

	References

	Web Service Discovery Track
	Overview of the INEX 2010 Web Service Discovery Track
	Introduction
	WSDL Collection
	Topics
	Submissions
	Assessment
	Evaluation and Results
	Conclusion

	Semantics-Based Web Service Discovery Using Information Retrieval Techniques
	Introduction
	Related Work
	Discovery Approach
	Pre-processing
	Semantic Analysis
	Linking Analysis
	System Integration

	Data Set
	Evaluation
	Conclusions and Future Work
	References

	The BUAP Participation at the Web Service Discovery Track of INEX 2010
	Introduction
	Description of the Presented Approaches
	Experimental Results
	Conclusions
	References

	XML Retrieval More Efficient Using Double Scoring Scheme
	Introduction
	Related Works
	BM25F Function Overview

	XML Retrieval Model
	Inverted File Definition
	The Leaf Node Scoring Function
	Double Scoring Function
	Double Scoring on BM25 (BM25W)
	Score Sharing Function

	Experiment Setup
	INEX Collections
	Ad Hoc Track
	Data Centric Track
	Web Service Discovery Track

	Conclusions
	References

	XML Mining Track
	Overview of the INEX 2010 XML Mining Track: Clustering and Classification of XML Documents
	Introduction
	Corpus
	Categories
	Clustering Task
	Clustering Evaluation Measures
	Clustering Participants, Submissions and Evaluations

	Classification Task
	Classification Evaluation Measures
	Classification Participants, Submissions and Evaluations

	Conclusion
	References

	An Iterative Clustering Method for the XML-Mining Task of the INEX 2010
	Introduction
	Description of the Two Approaches
	The K-Means Based Clustering Approach

	Experimental Results
	Conclusions
	References

	PKU at INEX 2010 XML Mining Track
	Introduction
	System Overview
	Document Model for Categorization (SLVM)
	BM25 Formula
	Chi-Square Feature Selection

	Parameters Tuning
	Pruning the Tree
	WordNet
	Using the Link Information to Improve the Result
	Other Tuning

	The Clustering Methods
	INEX 2010 Results
	System Settings
	Results

	Conclusions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

