

Lecture Notes in Computer Science 6885
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Vladimir P. Gerdt Wolfram Koepf
Ernst W. Mayr Evgenii V. Vorozhtsov (Eds.)

Computer Algebra
in Scientific
Computing

13th International Workshop, CASC 2011
Kassel, Germany, September 5-9, 2011
Proceedings

13

Volume Editors

Vladimir P. Gerdt
Joint Institute for Nuclear Research (JINR)
Laboratory of Information Technologies (LIT)
141980 Dubna, Russia
E-mail: gerdt@jinr.ru

Wolfram Koepf
Universität Kassel, Institut für Mathematik
Heinrich-Plett-Straße 40, 34132 Kassel, Germany
E-mail: koepf@mathematik.uni-kassel.de

Ernst W. Mayr
Technische Universität München, Institut für Informatik
Lehrstuhl für Effiziente Algorithmen
Boltzmannstraße 3, 85748 Garching, Germany
E-mail: mayr@in.tum.de

Evgenii V. Vorozhtsov
Russian Academy of Sciences, Institute of Theoretical and Applied Mechanics
Novosibirsk, 630090, Russia
E-mail: vorozh@itam.nsc.ru

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-23567-2 e-ISBN 978-3-642-23568-9
DOI 10.1007/978-3-642-23568-9
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011934868

CR Subject Classification (1998): I.1, G.2, I.3.5, F.2, G.1, F.2.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2011

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

It is hard to imagine the present-day progress in computer algebra and its ap-
plications to scientific computing without the numerous contributions of the
German specialists in this area. In particular, research in the area of computer
algebra and its applications has been actively conducted at the Institute of Math-
ematics of the University of Kassel (www.mathematik.uni-kassel.de) during the
past 20 years. Thus, the educational use of computer algebra systems has been
promoted via two book series for a calculus course by Wolfram Koepf and for
a course on “Mathematics for Engineers” by Walter Strampp in the 1990s. Re-
search topics vary from power series and summation (Wolfram Koepf), cryptog-
raphy (Hans-Georg Rück), PDEs and commutative algebra (Werner Seiler), to
integrable systems and symmetry (Walter Strampp). Numerous PhD and habil-
itation theses in the areas of non-commutative polynomial algorithms, algebraic
algorithms for q-special functions, Fourier series, PDEs, differential Galois the-
ory, polycyclic groups, number fields, and Tamagawa numbers have been devel-
oped by the Computational Mathematics group.

As spokesperson of the German computer algebra working group Fachgruppe
Computeralgebra (www.fachgruppe-computeralgebra.de), Wolfram Koepf has
organized several conferences in Kassel to give young academics the opportunity
to present their research. The Computeralgebra Rundbrief, the biannual maga-
zine of the Fachgruppe, has been edited for the last decade by Markus Wessler
from Kassel. And for some years now, Werner Seiler and Wolfram Koepf have
been offering special computer algebra courses for gifted high school students.
Therefore, it should not surprising at all that CASC 2011, the 13th Workshop
on Computer Algebra in Scientific Computing, took place in Kassel.

The twelve earlier CASC conferences, CASC 1998, CASC 1999, CASC 2000,
CASC 2001, CASC 2002, CASC 2003, CASC 2004, CASC 2005, CASC 2006,
CASC 2007, CASC 2009, and CASC 2010 were held, respectively, in St. Pe-
tersburg (Russia), in Munich (Germany), in Samarkand (Uzbekistan), in Kon-
stanz (Germany), in Yalta (Ukraine), in Passau (Germany), in St. Petersburg
(Russia), in Kalamata (Greece), in Chişinău (Moldova), in Bonn (Germany), in
Kobe (Japan), and in Tsakhkadzor (Armenia), and they all proved to be very
successful.

This volume contains twenty six full papers submitted to the workshop by the
participants and accepted by the Program Committee after a thorough reviewing
process, and two extended abstracts of the invited talks.

One of the traditional topics of the CASC workshops, which is a corner-
stone of symbolic algebraic computation, polynomial algebra, is represented by
contributions devoted to the development of object-oriented computer algebra
software for the modeling of algebraic structures as typed objects, the methods
of deciding whether a multivariate polynomial is regular (i.e., not a zero divisor)
modulo regular differential chains, generation of a new involutive division by

VI Preface

antigraded monomial ordering, construction of irreducible polynomials over fi-
nite fields, divide-and-conquer algorithms for univariate polynomial arithmetic,
and contributions to polynomial computations in non-commutative algebras.

Two papers deal with matrix algorithms: the knowledge-based automatic
generation of partitioned matrix expressions and acceleration of the inversion of
triangular Toeplitz matrices.

Several papers are devoted to the investigation with the aid of computer
algebra of various topics related to the ordinary differential equations (ODEs):
solution of boundary-value problems for ODEs with the aid of Maple, equilibrium
and bifurcation analysis of the systems of autonomous ODEs, the determination
of all Laurent-series solutions of a linear ODE system, investigation of a 2D
system of ODEs by studying its polynomial ideals, finding a region of attraction
to an equilibrium of a nonlinear ODE system.

One topic which is especially important for applications in scientific comput-
ing is the development of symbolic-numerical algorithms. This topic is repre-
sented by three papers. The first of them shows how one can apply a specialized
symbolic-numeric cylindrical algebraic decomposition for computing the exact
optimal value function. Another paper deals with the symbolic-numerical solu-
tion of the 2D Schrödinger equation to study the quantum tunneling problem for
a coupled pair of ions. The third paper presents symbolic-numeric stability anal-
ysis of satellite dynamics under the influence of gravitational and aerodynamic
forces.

Several papers deal with the application of symbolic computations in applied
problems of physics, mechanics, social science, and engineering: the handling
of complex nonlinear analog circuits with the aid of the Mathematica toolbox
Analog Insydes 2011, the determination of the Hilbert-space metric rendering
a given Hamiltonian self-adjoint in quantum mechanics, beams line design for
solving the problems in the design of particle beam accelerators, modeling of
convection in porous media in polar coordinates, the stability investigation of
equilibrium position in the four-body problem of celestial mechanics, application
of CAS GAP in quantum physics, the analysis of decision-making and coalition
formation in social and political life using the CAS RelView, the application of
CAS Mathematica for obtaining invariant manifolds of Lagrange systems, the use
of quantifier elimination for studying some systems arising in the life sciences.

Our particular thanks are due to the CASC 2011 local Organizing Committee
in Kassel, i.e., W.M. Seiler (University of Kassel), who has ably handled all the
local arrangements in Kassel. Furthermore, we want to thank all the members
of the Program Committee for their invaluable work. And last but not least we
are extremely grateful to W. Meixner for his extensive help in the preparation
of the camera-ready manuscript for this volume.

July 2011 V.P. Gerdt
W. Koepf

E.W. Mayr
E.V. Vorozhtsov

Organization

CASC 2011 was organized jointly by the Department of Informatics at the Tech-
nische Universität München, Germany, and the Institute for Mathematics at
Kassel, Germany.

Workshop General Chairs

Vladimir P. Gerdt JINR, Dubna
Ernst W. Mayr TU, München

Program Committee Chairs

Wolfram Koepf (Kassel, Co-chair)
Evgenii V. Vorozhtsov (Novosibirsk, Co-chair)

Program Committee

Sergei Abramov (Moscow)
Alkis Akritas (Volos)
Hans-Joachim Bungartz (Munich)
Andreas Dolzmann (Saarbrücken)
Victor F. Edneral (Moscow)
Ioannis Z. Emiris (Athens)
Jaime Gutierrez (Santander)
Richard Liska (Prague)
Marc Moreno Maza (London, Ontario)
Alexander Prokopenya (Brest, BLR)

Eugenio Roanes-Lozano (Madrid)
Valery Romanovski (Maribor)
Markus Rosenkranz (Canterbury)
Mohab Safey El Din (Paris)
Yosuke Sato (Tokyo)
Werner M. Seiler (Kassel)
Doru Stefanescu (Bucharest)
Stephen M. Watt (W. Ontario, CAN)
Andreas Weber (Bonn)
Eva Zerz (Aachen)

Local Organization

Werner M. Seiler (Kassel)

Website

http://wwwmayr.in.tum.de/CASC2011

Table of Contents

A Recurrent Method for Constructing Irreducible Polynomials over
Finite Fields . 1

Sergey Abrahamyan and Melsik Kyureghyan

Higher-Order Linear Differential Systems with Truncated Coefficients . . . 10
S.A. Abramov, M.A. Barkatou, and E. Pflügel

Topology of Families of Implicit Algebraic Surfaces Depending on a
Parameter . 25

Juan Gerardo Alcázar

A Modular Approach for Beam Lines Design . 37
Serge N. Andrianov

Computations on Simple Games Using RelView . 49
Rudolf Berghammer, Agnieszka Rusinowska, and Harrie de Swart

On the Regularity Property of Differential Polynomials Modulo Regular
Differential Chains . 61

François Boulier, François Lemaire, and Alexandre Sedoglavic

Chemical Reaction Systems, Computer Algebra and Systems Biology
(Invited Talk) . 73

François Boulier, François Lemaire, Michel Petitot, and
Alexandre Sedoglavic

On the Stability of Equilibrium Positions in the Circular Restricted
Four-Body Problem . 88

Dzmitry A. Budzko and Alexander N. Prokopenya

Semi-algebraic Description of the Equilibria of Dynamical Systems 101
Changbo Chen and Marc Moreno Maza

Normal Forms of Two p: –q Resonant Polynomial Vector Fields 126
Victor Edneral and Valery G. Romanovski

On Muldowney’s Criteria for Polynomial Vector Fields with
Constraints . 135

Hassan Errami, Werner M. Seiler, Thomas Sturm, and
Andreas Weber

Knowledge-Based Automatic Generation of Partitioned Matrix
Expressions . 144

Diego Fabregat-Traver and Paolo Bientinesi

X Table of Contents

Involutive Division Generated by an Antigraded Monomial Ordering . . . 158
Vladimir P. Gerdt and Yuri A. Blinkov

Symbolic-Numerical Algorithms to Solve the Quantum Tunneling
Problem for a Coupled Pair of Ions . 175

A.A. Gusev, S.I. Vinitsky, O. Chuluunbaatar, V.P. Gerdt, and
V.A. Rostovtsev

Symbolic-Numeric Investigation of the Aerodynamic Forces Influence
on Satellite Dynamics . 192

Sergey A. Gutnik

Practical Divide-and-Conquer Algorithms for Polynomial Arithmetic . . . 200
William Hart and Andrew Novocin

Fast and Robust Symbolic Model Order Reduction with Analog
Insydes . 215

Matthias Hauser, Christian Salzig, and Alexander Dreyer

On Invariant Manifolds of Lagrange Systems . 226
Valentin Irtegov and Tatyana Titorenko

Construction of Explicit Optimal Value Functions by a
Symbolic-Numeric Cylindrical Algebraic Decomposition 239

Hidenao Iwane, Akifumi Kira, and Hirokazu Anai

Convection in a Porous Medium and Mimetic Scheme in Polar
Coordinates . 251

Bülent Karasözen, Anastasia Trofimova, and Vyacheslav Tsybulin

Computations in Finite Groups and Quantum Physics 263
Vladimir V. Kornyak

Regular and Singular Boundary Problems in Maple 280
Anja Korporal, Georg Regensburger, and Markus Rosenkranz

Algebraic Structures as Typed Objects . 294
Heinz Kredel and Raphael Jolly

On Two-Generated Non-commutative Algebras Subject to the Affine
Relation . 309

Viktor Levandovskyy, Christoph Koutschan, and Oleksandr Motsak

Acceleration of the Inversion of Triangular Toeplitz Matrices and
Polynomial Division . 321

Brian J. Murphy

Computing a Basin of Attraction to a Target Region by Solving
Bilinear Semi-Definite Problems . 333

Zhikun She and Bai Xue

Table of Contents XI

Symbolic-Numeric Solution of Ill-Conditioned Polynomial Systems
(Survey Talk Overview) (Invited Talk) . 345

Agnes Szanto

Symbolic-Manipulation Constructions of Hilbert-Space Metrics in
Quantum Mechanics . 348

Miloslav Znojil

Author Index . 359

A Recurrent Method for Constructing

Irreducible Polynomials over Finite Fields

Sergey Abrahamyan1 and Melsik Kyureghyan2

1 Institute of Informatics and Automation Problems,
P. Sevak street 1, Yerevan 0014, Armenia

serj.abrahamyan@gmail.com
2 Institute of Informatics and Automation Problems,

P. Sevak street 1, Yerevan 0014, Armenia
melsik@ipia.sci.am

Abstract. In this paper we consider irreducibility of the polynomial

composition of the form (xp − x + δ2)
n P

(
xp−x+δ1
xp−x+δ2

)
over Fq under

certain conditions. Furthermore, a computationally simple and explicit
method of constructing recursive sequences of irreducible polynomials of
degree npk (k = 1, 2, 3, · · ·) over Fq is given.

Keywords: finite field, recurrent method, polynomial composition.

1 Introduction

The subject of irreducible polynomials over a finite field along with numerous
construction techniques has been of considerable interest in recent years. Such
polynomials have important applications, e.g. in construction of devices for the
arithmetic in finite fields and in applications to coding theory and cryptogra-
phy [7,9]. It is of interest, both from theoretical and practical point of view,
and has been the topic of an active line of research to construct sequences of
irreducible polynomials of increasing degree over the base field Fq. An effective
method for generating classes of such polynomials over finite fields is considered
to be the polynomial composition method. The problem of irreducibility of poly-
nomial composition has been studied in literature by several authors including
Varshamov [13], Cohen [1], Kyuregyan [2]-[5], Meyn [10], Wan [14], who have
approached this problem from different aspects.

Let Fq be a finite field of order q = ps, where p is a prime and s is a natural
number; xp −x+ δ1 and xp −x+ δ2 be relatively prime polynomials over Fq and
P (x) =

∑n
i=0 cix

i is an irreducible polynomial of degree n over Fq; Fqn denotes
a finite extension field over Fq.

The question of interest in this work is to examine the irreducibility of the
polynomial composition

F (x) = (xp − x + δ2)
n
P

(
xp − x + δ1

xp − x + δ2

)
=

n∑
i=0

ci (xp − x + δ1)
i·(xp − x + δ2)

n−i

over Fq under the condition of non-zero trace.

V.P. Gerdt et al. (Eds.): CASC 2011, LNCS 6885, pp. 1–9, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

2 S. Abrahamyan and M. Kyureghyan

Based on this irreducibility result we have proposed a recurrent construction
in section 4 that basically employs trace computing techniques. The proposed
method allows some explicit and computationally easy construction of irreducible
polynomials of increasing degree over base field Fq starting from an irreducible
polynomial satisfying conditions in Theorem 3. Some auxiliary results on irre-
ducibility of polynomials over finite fields associated with trace are considered
in [15,16,11,12].

Theoretical computations show that the expense of constructing an irreducible
polynomial of degree npk from a given irreducible polynomial of degree npk−1

by the proposed method is O
(
n2p2k−1log npk

)
.

2 Preliminaries

In the present section, we consider some standard preliminary results on irre-
ducibility of polynomials.

The following theorem due to Cohen [8] establishes the conditions under which
the composition construction of polynomials F (x) = gn(x)P

(
f(x)/g(x)

)
is irre-

ducible.

Theorem 1 (Theorem 3.7, [8]). Let f(x), g(x) ∈ Fq[x] be relatively prime
polynomials and let P (x) ∈ Fq[x] be an irreducible polynomial of degree n. Then
the composition

F (x) = gn(x)P
(
f(x)/g(x)

)
is irreducible over Fq if and only if f(x)−αg(x) is irreducible over Fqn for some
root α ∈ Fqn of P (x).

Definition 1. For α ∈ Fqn the trace TrFqn/Fq
(α) of α over Fq is defined by

TrFqn /Fq
(α) = α + αq + · · ·αqn−2

+ αqn−1
.

For convenience, we denote TrFqn /Fq
= Trqn/q.

Proposition 1 ([6], Theorem 3.78). Let α ∈ Fq and let p be the characteristic
of Fq. Then the trinomial xp − x − α is irreducible in Fq[x] if and only if it has
no root in Fq.

Proposition 2 ([6], Corollary 3.79). With the notation of Proposition 1, the
trinomial xp − x − α is irreducible in Fq[x] if and only if TrFq(α) �= 0.

With these preliminaries we state a theorem in the next section that yields
irreducible polynomials of degree pn over Fq.

3 Irreducibility of the Polynomial Composition

In this section, we shall obtain some result on the irreducibility of the compo-
sition of irreducible polynomials F (x) = gn(x)P

(
f(x)/g(x)

)
under condition of

non-zero trace.

A Recurrent Method for Constructing Irreducible Polynomials 3

Theorem 2. Let P (x) =
∑n

i=0 cix
i be an irreducible polynomial of degree n

over Fq and let xp − x + δ1 and xp − x + δ2 be relatively prime polynomials in
Fq[x]. Then

F (x) = (xp − x + δ2)
nP

(
xp − x + δ1

xp − x + δ2

)
is an irreducible polynomial of degree pn over Fq if and only if

Trq/p

(
(δ2 − δ1)

P ′(1)
P (1)

− δ2n

)
�= 0.

Proof. Irreducibility of P (x) over Fq implies that it can be represented over Fqn

as

P (x) = a

n−1∏
u=0

(
x − αqu

)
, a ∈ Fq (1)

where α is a root of P (x). By substituting xp−x+δ1
xp−x+δ2

for x in (1) and multiplying
its both sides by (xp − x + δ2)

n we obtain

F (x) = (xp − x + δ2)
n
P

(
xp − x + δ1

xp − x + δ2

)
=a

n−1∏
u=0

(
(xp−x + δ1) −αqu

(xp−x + δ2)
)

= a

n−1∏
u=0

((
1 − αqu

)
xp −

(
1 − αqu

)
x +

(
δ1 − αqu

δ2

))
=

= a

n−1∏
u=0

(
1 − αqu

)(
xp − x +

δ1 − αqu

δ2

1 − αqu

)
=

= a(1 − α)
qn−1
q−1

n−1∏
u=0

(
xp − x +

δ1 − αqu

δ2

1 − αqu

)
.

By Theorem 1 F (x) is irreducible over Fq if and only if the polynomial
(xp − x + δ1) − α (xp − x + δ2) or equivalently the polynomial xp − x + δ1−αδ2

1−α

is irreducible over Fqn . On the other hand, the polynomial xp − x − δ1−αδ2
α−1 is

irreducible over Fqn if and only if Trqn/p

(
δ1−αδ2

α−1

)
�= 0 by Proposition 2.

To calculate the trace we shall make use of the basic algebraic properties of
trace. Then it can be written as follows:

Trqn/p

(
δ1 − αδ2

α − 1

)
= Trq/p

(
Trqn/q

(
δ1 − αδ2

α − 1

))
= Trq/p

(
Trqn/q

(
δ1

α − 1
− αδ2 + δ2 − δ2

α − 1

))
= Trq/p

(
(δ1 − δ2)Trqn/q

(
1

α − 1

)
− δ2n

)
. (2)

4 S. Abrahamyan and M. Kyureghyan

Thus, to calculate the trace Trqn/p

(
δ1−αδ2

α−1

)
we first need to calculate the value

of trace Trqn/q

(
1

α−1

)
. To do this we introduce the following notation:

P (x + 1) =
n∑

i=0

ci (x + 1)i =
n∑

i=0

dix
i = D(x).

Because α is a root of P (x), (α − 1) will be a root of D(x), and, therefore, 1
α−1

will be a root of its reciprocal polynomial D∗(x)1. Hence

Trqn/q

(
1

α − 1

)
= −d1

d0
.

Compute the coefficients d1 and d0

d0 = D(0) =
n∑

i=0

ci = P (1)

d1 = D′(0) = P ′ (x + 1)
∣∣∣
x=0

=
n∑

i=1

i ci = P ′(1).

Consequently,

Trqn/q

(
1

α − 1

)
= −P ′(1)

P (1)
.

Substitution of the latter formula in expression (2) gives

Trqn/p

(
δ1 − αδ2

α − 1

)
= Trq/p

(
(δ2 − δ1)

P ′(1)
P (1)

− δ2n

)
.

This yields that F (x) is irreducible of degree np over Fq if and only if

Trq/p

(
(δ2 − δ1)

P ′(1)
P (1) − δ2n

)
is non-zero. ��

4 Recurrent Method

Using the results obtained above and those in section 2 we shall describe a
method that allows recursive sequences of irreducible polynomials of degree
npk (k = 1, 2, 3, · · ·) over Fq. The construction technique used to generate irre-
ducible polynomials of degree npk from a given irreducible polynomial of degree
npk−1 over Fq is based on computations of trace.

Theorem 3. Let P (x) =
∑n

i=0 cix
i be an irreducible polynomial of degree n

over Fq and let xp − x + δ1 and xp − x + δ2 be relatively prime polynomials in
Fp[x]. Define

1 Recall that for a polynomial F (x) of degree n, its monic reciprocal is defined by
F ∗(x) = 1

F (0)
xnF (1/x).

A Recurrent Method for Constructing Irreducible Polynomials 5

F0(x) = P (x)

Fk(x) = (xp − x + δ2)nk−1Fk−1

(
xp − x + δ1

xp − x + δ2

)
, (3)

where nk = npk denotes the degree of Fk(x). Suppose

Trq/p

(
(δ2 − δ1)

P ′(1)
P (1)

− δ2n

)
�=0 Trq/p

⎛⎝ (δ1 − δ2)P ′
(

δ1
δ2

)
−δ2nP

(
δ1
δ2

)
P
(

δ1
δ2

)
⎞⎠ �=0. (4)

Then Fk(x) is an irreducible polynomial of degree npk for every k ≥ 1 over Fq.

Proof. Our proof is by induction. For k = 1 we have that F1(x) is an np degree
irreducible polynomial over Fq by the given condition (4) (see also Theorem 2).
Consider the step k = 2. According to Theorem 2 F2(x) is irreducible if and only
if

Trq/p

(
(δ2 − δ1)

F ′
1(1)

F1(1)
− npδ2

)
= (δ2 − δ1)Trq/p

(
F ′

1(1)
F1(1)

)
�= 0. (5)

To show that F2(x) is irreducible it suffices to show that Trq/p

(
F ′

1(1)
F1(1)

)
�= 0.

To this aim we compute the values of F1(x) and F ′
1(x) at point 1.

Since by (3)

F1(x) =
n∑

i=0

ci (xp − x + δ1)
i (xp − x + δ2)

(n−i)
, (6)

then

F1(1) =
n∑

i=0

ci δi
1 δ

(n−i)
2 = δn

2 P

(
δ1

δ2

)
. (7)

Grouping the terms in (6) and computing its first derivative we obtain

F ′
1(x) =

=

(
cn (xp−x+δ1)

n+
n−1∑
i=1

ci(xp−x+δ1)
i(xp−x+δ2)

n−i + c0 (xp−x +δ2)
n

)′

= −ncn (xp − x + δ1)
n−1 − nc0 (xp − x + δ2)

n−1 +

+
n−1∑
i=1

ci

[
−i (xp − x + δ1)

i−1 (xp − x + δ2)
n−i −

− (n − i) (xp − x + δ1)
i (xp − x + δ2)

n−i−1
]

and removing the expression (xp−x+δ1)
i−1 (xp−x+δ2)

n−1−i out of the square
brackets we have

6 S. Abrahamyan and M. Kyureghyan

F ′
1(x) =

− ncn (xp − x + δ1)
n−1 − nc0 (xp − x + δ2)

n−1

−
n−1∑
i=1

ci [nxp − nx + nδ1 − i(δ1 − δ2)] (xp − x + δ1)
i−1 (xp − x + δ2)

n−i−1

(splitting the latter sum into two sums we get)

= (δ1 − δ2)
n−1∑
i=1

i ci (xp − x + δ1)
i−1 (xp − x + δ2)

n−i−1 − ncn (xp − x + δ1)
n−1

− n

n−1∑
i=1

ci (xp − x + δ1)
i (xp − x + δ2)

n−i−1 − nc0 (xp − x + δ2)
n−1

.

Next we compute the derivative of F1(x) at the point x = 1

F ′
1(1) =

− ncnδn−1
1 − nc0δ

n−1
2 + (δ1 − δ2)

n−1∑
i=1

i ci δi−1
1 δn−i−1

2 − n

n−1∑
i=1

ci δi
1δ

n−i−1
2

= −ncnδn−1
1 − nc0δ

n−1
2 + (δ1 − δ2) δn−2

2

n−1∑
i=1

i ci

(
δ1

δ2

)i−1

− nδn−1
2

n−1∑
i=1

ci

(
δ1

δ2

)i

since
∑n

i=0 ci

(
δ1
δ2

)i

=
∑n−1

i=1 ci

(
δ1
δ2

)i

− cn

(
δ1
δ2

)n

− c0 and∑n
i=1 ici

(
δ1
δ2

)i−1

=
∑n−1

i=1 ici

(
δ1
δ2

)i

− ncn

(
δ1
δ2

)n−1

we get

F ′
1(1) =

− ncnδn−1
1 + (δ1 − δ2) δn−2

2

n∑
i=1

i ci

(
δ1

δ2

)i−1

− ncn (δ1 − δ2) δn−2
2

(
δ1

δ2

)n−1

− nδn−1
2

n∑
i=0

ci

(
δ1

δ2

)i

+ nδn−1
2 cn

(
δ1

δ2

)n

= −ncnδn−1
1 − ncn

(
δ1

δ2

)n

+ ncnδn−1
1 + ncn

(
δ1

δ2

)n

+ (δ1 − δ2) δn−2
2 P ′

(
δ1

δ2

)
− nδn−1

2 P

(
δ1

δ2

)
= δn−2

2

(
(δ1 − δ2)P ′

(
δ1

δ2

)
− nδ2P

(
δ1

δ2

))
. (8)

Substituting (7) and (8) in expression (5) we obtain

Trq/p

(
F ′

1(1)
F1(1)

)
=

1
δ2
2

Trq/p

⎛⎝(δ1 − δ2)P ′
(

δ1
δ2

)
− nδ2P

(
δ1
δ2

)
P
(

δ1
δ2

)
⎞⎠

which is not equal to 0 because of condition (4).

A Recurrent Method for Constructing Irreducible Polynomials 7

Now suppose that Fk(x) is irreducible over Fq by induction. We prove that
Fk+1(x) is also irreducible over Fq, or equivalently

Trq/p

(
F ′

k(1)
Fk(1)

)
�= 0. (9)

From the assumption above on the irreducibility of Fk(x) over Fq it follows that

Trq/p

(
F ′

k−1(1)
Fk−1(1)

)
�= 0. (10)

We compute Fk(1) and F ′
k(1) as in the case for k = 2.

Let Fk−1(x) =
∑nk−1

i=0 c
(k−1)
i xi. By (3)

Fk(x) =
nk−1∑
i=0

c
(k−1)
i (xp − x + δ1)

i (xp − x + δ2)
(nk−1−i) (11)

and at the point x = 1

Fk(1) =
nk−1∑
i=0

c
(k−1)
i δi

1δ
(nk−1−i)
2

= δnk−1
2

nk−1∑
i=0

c
(k−1)
i

(
δ1

δ2

)i

= δnk−1
2 Fk−1

(
δ1

δ2

)
, for k > 1.

It is easy to see from (11) that

Fk−1

(
δ1

δ2

)
= Fk−1(1).

Hence
Fk(1) = δnk−1

2 Fk−1(1), k ≥ 2 (12)
Now we compute the first derivative of F ′

k(x)

F ′
k(x) =

(
c(k−1)
nk−1

(xp − x + δ1)
nk−1 +

+
nk−1−1∑

i=1

c
(k−1)
i (xp−x+δ1)

i (xp−x+δ2)
nk−1−i + c

(k−1)
0 (xp + δ1)

nk−1

)′

=
nk−1−1∑

i=1

c
(k−1)
i

[
−i (xp − x + δ1)

i−1 (xp − x + δ2)
nk−1−i −

− (nk−1 − i) (xp − x + δ2)
nk−1−i−1 (xp − x + δ1)

i
]

=

= −
nk−1−1∑

i=1

c
(k−1)
i [iδ2 − iδ1] (xp − x + δ1)

i−1 (xp − x + δ2)
nk−1−1

= (δ1 − δ2)
nk−1−1∑

i=1

i c
(k−1)
i (xp − x + δ1)

i−1 (xp − x + δ2)
nk−1−i−1

and at the point x = 1

8 S. Abrahamyan and M. Kyureghyan

F ′
k(1) = (δ1 − δ2)

nk−1−1∑
i=1

i c
(k−1)
i δ

(i−1)
1 δ

(nk−1−i)−1
2

= (δ1 − δ2) δnk−1
2

nk−1−1∑
i=1

i c
(k−1)
i

(
δ1

δ2

)i−1

= (δ1 − δ2) δ
nk−1
2 F ′

k−1

(
δ1

δ2

)
, k > 2.

Obviously,

F ′
k−1

(
δ1

δ2

)
= F ′

k−1(1), k > 2.

Hence
F ′

k(1) = (δ1 − δ2) δnk−1
2 F ′

k−1(1), k > 2. (13)

Substituting (12) and (13) in (9) we get

Trq/p

(
F ′

k(1)
Fk(1)

)
= Trq/p

(
(δ1 − δ2) δnk−1

2 F ′
k−1(1)

δnk−1
2 Fk−1(1)

)
= (δ1 − δ2)Trq/p

(
F ′

k−1(1)
Fk−1(1)

)
which is non zero by (10). ��

The complexity of the method we have described is evaluated in the terms of
the number of necessary elementary operations. Theoretical computations show
that the complexity of constructing an irreducible polynomial of degree npk from
a given irreducible polynomial of degree npk−1 with the above-given method is,
thus, O

(
n2p2k−1lognpk

)
elementary operations.

Acknowledgments. The authors wish to thank the anonymous referees for
many helpful suggestions and corrections that allowed to improve the presenta-
tion of the paper.

This study was supported by the grant (’GRASP-10-05’) of the National
Academy of Sciences of RA, the National Foundation of Science and Advanced
Technologies (RA) and Civilian Research and Development Foundation (US).

References

1. Cohen, S.: On irreducible polynomials of certain types in finite fields. Proc.
Cambridge Philos. Soc. 66, 335–344 (1969)

2. Kyuregyan, M.: Recurrent methods for constructing irreducible polynomials over
Fq of odd characteristics. Finite Fields Appl. 9, 39–58 (2003)

3. Kyuregyan, M.: Iterated constructions of irreducible polynomials over finite fields
with linearly independent roots. Finite Fields Appl. 10, 323–431 (2004)

4. Kyuregyan, M.: Recurrent methods for constructing irreducible polynomials over
Fq of odd characteristics II. Finite Fields Appl. 12, 357–378 (2006)

5. Kyuregyan,M., Kyuregyan, G.: Irreducible Compositions of Polynomials over Finite
Fields, Design, Codes and Cryptography (2010), doi:10.1007/s10623-010-9478-5

A Recurrent Method for Constructing Irreducible Polynomials 9

6. Lidl, R., Niederreiter, H.: Finite Fields. Cambridge University Press, Cambridge
(1987)

7. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-
Holland, New York (1977)

8. Menezes, A., Blake, I.F., Gao, X., Mullin, R.C., Vanstone, S.A., Yaghoobian, T.:
Applications of Finite Fields. Kluwer Academic Publishers, Boston (1993)

9. Menezes, A., Van Oorschoot, P., Vanstone, S.: Handbook of Applied Cryptography.
CRC Press, Boca Raton (1997)

10. Meyn, H.: On the construction of irreducible self-reciprocal polynomials over finite
fields. Appl. Algebrain Eng. Commun. Comput. 1, 43–53 (1990)

11. Moisio, M.: Kloosterman sums, elliptic curves, and irreducible polynomials with
prescribed trace and norm, arXiv:0706.2112v5 [math.NT] (November 21, 2007);
Comment: 21 pages; revised version with somewhat more clearer proofs; to appear
in Acta Arithmetica

12. Ree, R.: Proof of a conjecture of S. Chowla. J. Number Theory 3, 210–212 (1971)
13. Varshamov, R.: A general method of synthesizing irreducible polynomials over

Galois fields. Soviet Math. Dokl. 29, 334–336 (1984)
14. Wan, D.: Generators and irreducible polynomials over finite fields. Math.

Comp. 219, 1195–1212 (1997)
15. Yucas, J.L.: Irreducible polynomials over finite fields with prescribed

trace/prescribed constant term. Finite Fields and Their Applications 12, 211–221
(2006)

16. Yucas, J.L.: Generalized reciprocals, factors of Dickson polynomials and generalized
cyclotomic polynomials over finite fields. Finite Fields and Their Applications 13(3),
492–515 (2007)

Higher-Order Linear Differential Systems with

Truncated Coefficients

S.A. Abramov1,�, M.A. Barkatou2, and E. Pflügel3

1 Computing Centre of the Russian Academy of Sciences,
Vavilova, 40, Moscow 119333, Russia

sergeyabramov@mail.ru
2 Institut XLIM, Département Mathématiques et Informatique, Université de

Limoges ; CNRS, 123, Av. A. Thomas, 87060 Limoges cedex, France
moulay.barkatou@unilim.fr

3 Faculty of CISM, Kingston University, Penrhyn Road, Kingston upon
Thames, Surrey KT1 2EE, United Kingdom

E.Pfluegel@kingston.ac.uk

Abstract. We consider the following problem: given a linear differen-
tial system with formal Laurent series coefficients, we want to decide
whether the system has non-zero Laurent series solutions, and find all
such solutions if they exist. Let us also assume we need only a given
positive integer number l of initial terms of these series solutions. How
many initial terms of the coefficients of the original system should we
use to construct what we need?

Supposing that the series coefficients of the original systems are rep-
resented algorithmically, we show that these questions are undecidable
in general. However, they are decidable in the scalar case and in the case
when we know in advance that a given system has an invertible leading
matrix. We use our results in order to improve some functionality of the
Maple [17] package ISOLDE [11].

1 Introduction

Linear differential systems with variable (e.g. power series) matrix coefficients
appear in many areas of mathematics. Laurent series solutions of such systems
form a building block for other types of solutions, and more generally, algorithms
for finding Laurent series solutions may be a part of various computer algebra
algorithms (see e.g. [1,6]).

Let a linear differential system with formal Laurent series coefficients be given.
First of all, we want to decide whether or not the given system has non-zero
Laurent series solutions. Suppose that such solutions exist, and we need only
a given positive integer number l of initial terms of each of them. Then the
following question arises: how many initial terms of the coefficients of the original
system should we use to find what we need? Is it possible to compute at least
� Supported by RFBR grant 10-01-00249-a.

V.P. Gerdt et al. (Eds.): CASC 2011, LNCS 6885, pp. 10–24, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Higher-Order Linear Differential Systems with Truncated Coefficients 11

an upper bound for the number of such terms? If we have such bound, then
we can truncate the series involved into the original system before finding the
truncated solutions. Such truncation leads to a system whose matrix coefficients
are polynomials. In many cases it is much easier to work with such kind of
systems than with systems with series matrix coefficients.

Let k be a field of characteristic 0. We denote by k[[x]] the ring of formal
power series with coefficients in k and k((x)) = k[[x]][x−1] its quotient field. If
i ∈ Z, u ∈ k((x)) then the notation [xi]u is used for the coefficient of xi in u. For
a nonzero element u =

∑
uix

i of k((x)) we denote by valx u the x−adic valuation
of u defined by valx u = min {i such that ui �= 0}. By convention valx 0 = ∞. For
M(x) ∈ Matm(k((x))) we define valx M(x) as the minimum of the valuations of
the entries of M(x).

We shall write θ for x d
dx and consider differential systems of the form

Ar(x)θry + Ar−1(x)θr−1y + · · · + A0(x)y = 0 (1)

where y = (y1, y2, . . . , ym)T is a column vector of unknown functions of x. For
the coefficient matrices

A0(x), A1(x), . . . , Ar(x) (2)

we have Ai(x) ∈ Matm(k[[x]]), A0(x), Ar(x) are non-zero and mini{valx (Ai)} =
0.

Let a system S be of the form (1) and define the l-truncation S〈l〉 which is
obtained by omitting all the terms of degree larger than or equal to l in the
coefficients of S.

In this paper, we are concerned with two problems:

Problem 1 (Existence Problem). Given a system S of the form (1), decide whether
or not this system has a solution in k((x))m \ {0}.

Problem 2 (Truncation Problem). Given a system S of the form (1),

1. Decide whether or not there exists a non-negative integer sequence (al)1≤l<∞
such that for any e ∈ Z, l ∈ Z

+ and column vectors ce, ce+1, . . . , ce+l−1 ∈
km, the system S possesses a solution y(x) ∈ k((x))m of the form

y(x) = cex
e + ce+1x

e+1 + . . . + ce+l−1x
e+l−1 + O(xe+l),

iff the system S〈al〉 possesses a solution ỹ(x) ∈ k((x))m such that

ỹ(x) − y(x) = O(xe+l).

2. If such sequences (al) exist, then find at least one of them.

We suppose that the entries of the matrices (2) are represented algorithmically:
for any entry u(x) an algorithm Ξu (a procedure, terminating in finitely many
steps) such that u(x) =

∑∞
i=0 Ξu(i)xi is given. This is factually a model of

computation. Our results can be represented without using this model (skipping
the undecidability questions then), see Remark 1.

12 S.A. Abramov, M.A. Barkatou, and E. Pflügel

We will show that the existence and truncation problems are algorithmically
undecidable in the general case (Section 3.2). However, both problems can be
solved algorithmically for scalar equations (Section 2), and for first order systems
(Section 3.2.1). The problems are also solvable for systems of the form (1) with
a leading matrix invertible in Matm(k((x))) (Section 3.2). Note that we are
not able to check algorithmically whether or not a given matrix is invertible.
However, if we know in advance that the matrix Ar(x) in a given system of
the form (1) is invertible and the matrix A0(x) is non-zero then our algorithm
completely solves the existence and truncation problems.

The output of our algorithm for the scalar case can be represented as an
integer d ≥ −1 such that

– a solution of S in k((x)) \ {0} exists iff d ≥ 0,
– if d ≥ 0 then a solution of the truncation problem for S is represented by

the sequence
al = max{d, l} (l = 1, 2, . . .). (3)

It follows from (3) that if in the scalar case the truncation problem has a solution
then a sequence (al) can be taken such that al = l for all l large enough. In the
case of system the situation can be more complicated. However, when systems
have invertible leading matrices, we can organise our algorithm in such a way
that the output is again an integer d ≥ −1 such that

– a solution of S in k((x))m \ {0} exists iff d ≥ 0,
– if d ≥ 0 then a solution of the truncation problem for S is represented by

the sequence
al = d + l (l = 1, 2, . . .). (4)

A sequence (al) giving a slightly more accurate bound is proposed as well.

At the end of Section 3, we mention another problem that can also be solved
using the results of this paper.

To our knowledge, finding sequences (al) for the types of systems considered
in this paper does not seem to have been done elsewhere in the literature.

2 The Case of Scalar Equations

If m = 1 in the system (1), then this system is a scalar equation. In this particular
case, both the existence and truncation problem have an algorithmic solution.
The crucial point is that for any such equation we can determine algorithmically
the indicial polynomial [12, Ch. IV, § 8] IS(λ) ∈ k[λ] \ {0} such that

(a) if y(x) ∈ k((x))m is a nonzero solution of S then IS(valx y(x)) = 0, and
(b) if e∗ is the maximal integer root of IS(λ) then S has a solution y(x) ∈ k((x))m

of valuation e∗.

Higher-Order Linear Differential Systems with Truncated Coefficients 13

The indicial polynomial can be constructed algorithmically, and computer alge-
bra methods for computing its integer roots exist. Supposing in the scalar case
that mini valx Ai(x) = 0 it is sufficient to know only the coefficients [x0]A0(x),
[x0]A1(x), . . . , [x0]Ar(x) for this construction.

Proposition 1. Let m = 1 in S of the form (1). Let IS(λ) be the indicial
polynomial of the scalar equation S. In this case

(i) If IS(λ) has no integer root, then S has no solution in k((x)) \ {0}.
(ii) Otherwise a solution of the truncation problem is given by the sequence

al = max{e∗ − e∗ + 1, l} (l = 1, 2, . . .), (5)

where e∗, e
∗ are the minimal and maximal integer roots of IS(λ), respectively.

Proof. (i) Follows from the property (a) of the indicial equation.
(ii) For an arbitrary solution y(x) ∈ k((x))\{0} we have valx y(x) = e, where e

is an integer root of IS(x). Let a solution have the form cex
e+ce+1x

e+1+. . . Then
for any l > 0 the coefficients ce, ce+1, . . . , ce+l satisfy a relation al,0ce+al,1ce+1+
. . . + al,lce+l = 0 where al,l = IS(e + l) and the constants al,0, al,1, . . . , al,l can
be computed from

[xi]Aj(x) (i = 0, 1, . . . , l, j = 0, 1, . . . , r). (6)

Thus, if l > e∗ − e then ce+l is defined uniquely by ce, ce+1, . . . , ce+l−1, and the
values (6) define all the values [e]y(x), [e+1]y(x), . . . , [e+ l]y(x) for all belonging
to k((x)) solutions of S (the Frobenius method [12, Ch. IV, § 8]). Observe that
the values (6) coincide for S and S〈l〉. The claim follows. ��

The output of the algorithm can be represented in the form of an integer d ≥ −1
as was explained in the end of Section 1: if IS(λ) has no integer root then we set
d = −1; and d = e∗ − e∗ + 1 otherwise.

Note that this algorithm needs only [x0]A0(x), [x0]A1(x), . . . , [x0]Ar(x) for
computing this d.

Example 1. Let k = Q, and S be the scalar equation

(1 − x)θ2y + (−2 + 4x)θy + (−x + 2x2 + 2x3 + 2x4 + . . .) y = 0,

which has solutions f(x) = 1 − x, and g(x) = x2 − x3. The indicial polynomial
is λ2 − 2λ, its roots are 0 and 2, thus d = e∗ − e∗ + 1 = 3, a1 = a2 = a3 = 3.
For finding three terms of each of series solutions we construct S〈3〉

(1 − x)θ2y + (−2 + 4x)θy + (−x + 2x2)y = 0.

The latter equation has two independent solutions:

−1 + x + 0 · x2 − x3 − 1
4
x4 + O(x5), −x2 + x3 + 0 · x4 + O(x5).

14 S.A. Abramov, M.A. Barkatou, and E. Pflügel

We get three wanted terms of solutions of S:

−1 + x + 0 · x2, −x2 + x3 + 0 · x4.

These polynomials coincide with exact solutions of S. Note that we cannot take
S〈2〉 for computing two first terms of each of solutions of S, since S〈2〉 is

(1 − x)θ2y + (−2 + 4x)θy − xy = 0,

and the space of Laurent solutions of this equation has dimension 1. We get the
solution −x2 +x3 + 1

4x4 +O(x5) which gives us two first terms of g(x), but we do
not obtain the corresponding truncation of f(x). This confirms that the sequence
(3) is a correct solution of the truncation problem, while the sequence al = l,
l = 1, 2, . . ., is not in general.

Concerning finding integer roots of polynomials over k we can remark the fol-
lowing. If k = Q then the algorithm is well known. It is also known that if k0

is a field of characteristic 0 such that an algorithm for finding integer roots of
a polynomials over k0 is given then one can find integer roots of polynomials
over any simple extension (algebraic or transcendental) of k0. This can be used
recursively.

3 The System Case

As we mentioned in Section 1 we will show that the existence and truncation
problems are algorithmically undecidable in the general system case. We will
first introduce some auxiliary facts and notions.

3.1 Undecidability in the General Case

Many algorithmic problems related to systems are undecidable. To prove this
for some of such problems we will use the undecidability of one specific known
problem.

We will call a signal any algorithm Ω computing for each i = 0, 1, . . . a value
Ω(i) belonging to {0, 1} and such that

– Ω(0) = 1,
– if Ω(i) = 0 for some i ≥ 1 then Ω(i + 1) = 0.

A signal Ω is infinite if Ω(i) = 1 for all i ≥ 0 and finite otherwise.
We will use the following fact:

The problem of recognizing whether or not a given signal is finite is undecidable.

This is a consequence of classical Turing’s result on undecidability of the problem
of terminating of an algorithm [16].

Higher-Order Linear Differential Systems with Truncated Coefficients 15

Using this fact we can prove that the problem of recognizing whether or not
a given non-zero square matrix with entries in k((x)) is invertible over the field
k((x)). Indeed, let k = Q, and Ω be an arbitrary signal. The matrix(

1 − x 1
1

∑∞
i=0 Ω(i)xi

)
(7)

is invertible iff the signal Ω is finite.
If Ω is a signal and s(x) = s0 +s1x+s2x

2 + . . . ∈ k[[x]] then we set Ω ∗s(x) =
Ω(0)s0 + Ω(1)s1x + Ω(2)s2x

2 + . . .; given a system S of the form (1), we can
replace any entry s(x) of the matrix coefficients of S by Ω ∗ s(x), the obtained
new system will be denoted Ω ∗ S.

Proposition 2. (i) The algorithmic problem of recognizing whether or not a
given system of the form (1) has a solution in k((x))m \ {0} is undecidable.

(ii) There exist systems of the form (1) for which the truncation problem
has no solution (no sequence (ai) exists); the algorithmic problem of recognizing
whether or not the truncation problem for a given system of the form (1) has a
solution (a sequence (ai)) is undecidable.

Proof. (i) Let S be the system

A(x)xθy + A(x)y = 0 (8)

where A(x) is the matrix (7). Then the system Ω∗S has a solution in k((x))2\{0}
iff the signal Ω is infinite. Indeed, if the matrix (7) is invertible then the system is

equivalent to
(

x 0
0 x

)
θy+

(
1 0
0 1

)
y = 0 which has no non-zero solution in k((x))2.

But if (7) is not invertible then the system has solutions in k((x))m\{0} since the

system
(

x 0
0 x

)
θy +

(
1 0
0 1

)
y =

(
s1

s2

)
with s1(x), s2(x) ∈ k((x)) has a solution

in k((x))2 \ {0} if at least one of the series s1(x), s2(x) is non-zero.
(ii) It follows from the proof of (i) that no sequence (ai) exists for the system

S of the form (8). However, if Ω is a finite signal then any sequence (al) can be
used for the system Ω∗S because neither Ω∗S nor its truncations have solutions
in k((x)) \ {0}. So for the system Ω ∗ S a sequence (al) exists iff Ω is finite. ��

Remark 1. As it was mentioned in the Introduction, our results can be formu-
lated without a special supposition on the form of series representation. It follows
from the proof of Proposition 2 that for some systems of the form (1) no sequence
(al) exists. In Section 3.2 we will show that if the leading matrix is invertible in
Matm(k((x))), then after a finite number of steps we can recognize whether or
not this system has a solution in k((x))m \ {0}. If the answer is affirmative then
there is a guarantee that a sequence (al) exists and can be presented.

3.2 Some Particular Decidable Cases

We will now show that in some particular cases the existence and truncation
problems are decidable.

16 S.A. Abramov, M.A. Barkatou, and E. Pflügel

3.2.1 First Order Systems
In this section, we consider first order systems of the form

θy = A(x)y, (9)

where A(x) ∈ Matm(k((x))). We will show that the existence and truncations
problems are decidable for systems of this form. Our approach is based on the
concept of simple systems [3] (which is related to the notion of super-irreducible
forms of linear differential systems [13]).

A system θy = A(x)y can always be rewritten as a system of the form

D(x)θy = N(x)y (10)

where D(x), N(x) ∈ Matm(k[[x]]) with min{valx D(x), valx N(x)} = 0.
For this take N(x) = D(x)A(x) and D(x) = diag(xα1 , xα2 , . . . , xαm) where

αi = max{0,−valx Ai.(x)}, here Ai.(x) denotes the ith row of the matrix A(x).

Now consider a general system S of the form (10) with coefficients D(x) =∑∞
i=0 Dix

i, N(x) =
∑∞

0 Nix
i. With S we associate the following polynomial in

λ

IS(λ) = det(D0λ − N0). (11)

If this polynomial IS(λ) is non-zero then we shall say that the system S is
simple and refer to the polynomial IS(λ) as the indicial polynomial of S as in [7,
Definition 2.1]. By extension, a system of the form (9) will be called simple if
the corresponding system (10) is simple.

The following result shows that for simple systems, the existence and trunca-
tion problems can be solved very similarly as in the scalar case.

Proposition 3. Given a simple system of the form (10) with indicial polynomial
IS(λ) given by (11), we have

(i) If IS(λ) has no integer root, then S has no solution in k((x)) \ {0}.
(ii) Otherwise a solution of the truncation problem is given by the sequence

al = max{e∗ − e∗ + 1, l} (l = 1, 2, . . .), (12)

where e∗ and e∗ are the minimal and maximal integer roots of IS(λ), respectively.

Proof. (i) The statements of this proposition follow from the results in [7]. The
algorithm presented therein computes regular formal solutions (i.e. in particular,
Laurent series solutions) by finding successive terms. The equation that deter-
mines a coefficient of the monomial xj (j ≥ 0), part of a solution y = xe

∑
yjx

j

(y0 �= 0), is
((e + j)D0 − N0) yj = −bj (13)

where b0 = 0 and

bj = ((e + j − 1)D1 − N1) yj−1 + · · · + (eDj − Nj)y0. (j ≥ 1)

Higher-Order Linear Differential Systems with Truncated Coefficients 17

Putting j = 0, we see why the nonzero polynomial IS(λ) = det(λD0 −N0) plays
a similar role as the indicial polynomial in the scalar case (see Section 2): We
have IS(valxy) = 0 so the existence of integer roots of IS is a necessary condition
for the existence of solutions in k((x))m \ {0}.

(ii) Let xe
∑

yjx
j be a solution of D〈al〉(x)θy = N 〈al〉(x) where al = max{e∗−

e∗+1, l}. This means that equations (13) are satisfied for j = 0, 1, . . . , l. In order
to extend this to a solution of the untruncated system, we need to compute the
coefficient yj for j > l, we note that the matrix (e+ j)D0−N0 is invertible since
e + j > e + l ≥ e∗. This means that we can determine yj uniquely. ��

Example 2. Let k = Q and S be the first-order system

θy =
(

0 x3

0 −3

)
y

which has as a basis of solutions

y1(x) =
(

1
0

)
y2(x) =

(
ln (x)
x−3

)
.

Hence the space of solution of S in k((x))2 has dimension 1. This system is

simple: it is already in the form (10) with D(x) = I2 and N(x) =
(

0 x3

0 −3

)
. Its

indicial polynomial is

IS(λ) =
∣∣∣∣ λ 0

0 λ + 3

∣∣∣∣ = λ(λ + 3).

The roots of IS(λ) are −3 and 0, thus d = e∗ − e∗ + 1 = 4, a1 = a2 = a3 = 4.
For l = 1, 2, 3 the l-truncation of S is

θy =
(

0 0
0 −3

)
y.

The latter system has two independent solutions in k((x))2:

ỹ1(x) =
(

1
0

)
ỹ2(x) =

(
0

x−3

)
.

This confirms that the sequence (12) is a correct solution of the truncation prob-
lem, while the sequence al = l, l = 1, 2, . . ., is not in general.

Remark 2. The results in Proposition 3 are valid for more general class of
systems, namely simple systems of higher order [4], [5]. Recall that a system S
of the form (1) is simple if the matrix polynomial defined by

LS(λ) = Ar(0)λr + Ar−1(0)λr−1 + · · · + A0(0),

is regular, i.e., det(LS(λ)) �≡ 0. For a simple system S we define its indicial
polynomial as IS(λ) = det(LS(λ)).

18 S.A. Abramov, M.A. Barkatou, and E. Pflügel

Having clarified the situation if a system is simple, we now solve Problem 1 and
Problem 2 for the case of a general first order system of the form (9). Define the
span of an invertible matrix T (x) ∈ Matm(k((x))) by

σ(T (x)) = −valx T (x) − valx T−1(x).

We need the following well-known technical lemma, which has been stated in
[14], see also its use in [15].

Lemma 1. ([14]) Let A(x), T (x) ∈ Matm(k((x))) with T (x) invertible and let
Ã(x) = T−1(x)(A(x)T (x) − θ(T (x))). Then the coefficient Ãj depends only on
the Ai with i ≤ j + σ(T (x)).

Proposition 4. Consider a system θy = A(x)y of the form (9), and let q =
max{0,−valx A(x)}.

(i) There exists an algorithm, using only the first mq terms of the entries of
xqA(x), that computes an invertible matrix T (x) ∈ Matm(k[x]) with detT (x) =
cxν for some nonzero constant c ∈ k and some nonnegative integer ν, with span
σ(T (x)) ≤ (m − 1) q such that the substitution y = T (x)z yields a system

θz = B(x)z, (14)

which is simple. Let Ĩ(λ) denote the indicial polynomial of the corresponding
simple system.

(ii) If Ĩ(λ) has no integer root then (9) has no solution in k((x))m \ {0}.
(iii) Otherwise a solution of the truncation problem (for the input system (9)),

is given by the sequence

al = mq + max{e∗ − e∗ + 1, l + (m − 1)q}, (l = 1, 2, . . .) (15)

where e∗, e
∗ are the minimal and maximal integer roots of Ĩ(λ), respectively.

Proof. (i) The algorithm from [13] computes the so-called super-irreducible form
of a given system (9). It was shown in [3] that if a system has the super-irreducible
form then it can be written as a simple system. The algorithm from [13] needs
at the most (m− 1)q reduction steps (see, for example, the proof of Proposition
2.2 in [10]). At each step, a transformation matrix with span 1 is computed.
Overall, this shows the estimate on the span of T (x).

(ii) Compute an invertible matrix T (x) ∈ Matm(k[x]) such that the matrix

B(x) = T−1(x)A(x)T (x) − T−1(x)θT (x)

defines the system (14). Write (14) as a simple system D(x)θz = N(x)z, and let
Ĩ(λ) = det(N0 − λD0) be its indicial polynomial. If Ĩ(λ) does not have integer
roots, the simple system does not have any solutions in k((x))m \{0}. Hence the
original system (9) cannot have solutions of this form either.

(iii) In order to solve the truncation problem for the input system, note that
due to the relationship y = T (x)z between solutions y of the input system and

Higher-Order Linear Differential Systems with Truncated Coefficients 19

z of the simple system, we have to compute at the most l + σ(T (x)) terms of
z, if we need l terms of y. Using Proposition 3 to first solve the truncation
problem for the simple system D(x)θz = N(x)z, we obtain ãl = max{e∗ −
e∗ + 1, l + σ(T (x))}. It then remains to show how many terms of the input
system are required in order to ensure that we have ãl terms of the simple
system. This can be seen as follows: for any j ≥ 0, the coefficients Dj and Nj

of the simple system depend on the coefficients B0, . . . , Bq(B)−1+j of the matrix
B(x), due to the construction of D(x). Here, q(B) = max (0,−valx (B(x)). Using
Lemma 1, the coefficient Bq(B)−1+j depends only on the coefficients Ai with
i ≤ j + q(B) − 1 + σ(T (x)) of A(x). The proof is completed by the fact that
σ(T (x)) ≤ (m− 1)q for the transformation matrix T (x) computed by the super-
reduction algorithm as shown in (i), and that q(B) ≤ q. ��

Example 3. Let k = Q, q be a positive integer and S be the first-order system

θy = A(x)y where A(x) =
(

x4 x3−q

−xq+5 − 4xq+1 −x4 + (q − 3)

)
,

which has as a basis of solutions

y1(x) =
(

1
−xq+1

)
y2(x) =

(
ln (x)

−xq+1 ln (x) − xq−3

)
.

Hence the space of solution of S in k((x))2 has dimension 1. This system S is

not simple. Let T (x) =
(

1 0
0 xq

)
of span q. Then the substitution y = T (x)z

yields the equivalent system

θz = B(x)z where B(x) =
(

x4 x3

−x5 − 4x −x4 − 3

)
.

The latter system is simple, and its indicial polynomial is

Ĩ(λ) =
∣∣∣∣λ 0
0 λ + 3

∣∣∣∣ = λ(λ + 3).

The roots of Ĩ(λ) are −3 and 0, thus e∗ − e∗ + 1 = 4, a1 = a2 = a3 = 2q + 4
and al = 2q + l for l ≥ 4. Take, for example, q = 3. Then for l = 4, 5, 6, 7 the
l-truncation of S is

θy =
(

0 1
0 0

)
y.

The latter system has one independent solution in k((x))2, namely
(

1
0

)
.

3.2.2 Extension to Higher Order Systems
The results from the previous section can be easily extended to a system of the
form

θry = −Ur−1(x)θr−1y − · · · − U0(x)y (16)

20 S.A. Abramov, M.A. Barkatou, and E. Pflügel

where U0(x), . . . , Ur−1(x) ∈ Matm(k((x))). The idea is that there exists a linear
first order system θY (x) = U(x)Y (x) with companion block matrix U(x) that
corresponds to (16). This matrix belongs to Matn(k((x))), n = rm:

U(x) =

⎛⎜⎜⎝
0 Im . . . 0
.
0 0 . . . Im

−U0(x) −U1(x) . . . −Ur−1(x)

⎞⎟⎟⎠ . (17)

Applying Proposition 4 to system θY (x) = U(x)Y (x) we obtain the following
proposition:

Proposition 5. Let q = max {0,−valx Ur−1(x), . . . ,−valx U0(x)}. There exists
an algorithm, that uses only the first rmq terms (i.e., terms of degree less than
rmq) of the matrices xqU0(x), . . . , xqUr−1(x), and computes a nonzero polyno-
mial Ĩ(λ) such that:

– if Ĩ(λ) has no integer root then (16) has no solution in k((x))m \ {0},
– otherwise a solution of the truncation problem is given by the sequence

al = rmq + max{e∗ − e∗ + 1, l + (rm − 1)q} (l = 1, 2, . . .) , (18)

where e∗, e
∗ are the minimal and maximal integer roots of Ĩ(λ), respectively.

3.2.3 Systems with Invertible Leading Matrices
Let the leading matrix of a system S of the form (1) be invertible. In this case
S can be rewritten as the system S̄ of the form

θry = −A−1
r (x)Ar−1(x)θr−1y − · · · − A−1

r (x)A0(x)y. (19)

Let
γ = min

i
valx

(
A−1

r (x)Ai(x)
)
, (20)

and q = max{−γ, 0}. The question to be answered is: given a non-negative
integer v, how many first terms of the entries of S do we need to compute v first
terms of

xqA−1
r (x)Ar−1(x), xqA−1

r (x)Ar−2(x), . . . , xqA−1
r (x)A0(x)? (21)

Before answering this question we formulate a few facts related to the operations
which we use to transform S to S̄. As before, we suppose that all power series
are represented algorithmically.

(A) Let it be known in advance that amongst the given series

s1(x), s2(x), . . . , sp(x) ∈ k[[x]], p ≥ 1,

there is at least one non-zero. Then we can compute

ν = min
i

valx si(x).

To do this we consider the series s1(x), s2(x), . . . , sp(x) “in parallel”: we generate
algorithmically the sequence

Higher-Order Linear Differential Systems with Truncated Coefficients 21

[x0]s1(x), . . . , [x0]sp(x), [x1]s1(x), . . . , [x1]sp(x), . . .

until we find i such that [xi]sj(x) �= 0 for some 1 ≤ j ≤ p. Then ν = i.
(B) Let it be known in advance that among given matrices

M1(x), M2(x), . . . , Mp(x) ∈ Mat(k[[x]]), p ≥ 1,

there is at least one non-zero. Then we can compute mini valx Mi(x). To do this
we consider the entries of all the matrices “in parallel” (as in (A)).

(C) Let it be known in advance that a matrix M(x) ∈ Mat(k[[x]]) is invertible.
We can compute valx detM(x), using valx detM(x) + 1 initial entries of the
matrix M . We can also compute valx M−1(x) which is equal to the difference
of the minimum of the valuation of all co-factors of M(x) and valx detM(x).
This difference is non-positive, thus, we use valx det M(x) + 1 initial terms of
the entries of the matrix M(x).

Every time when below in (A′), (B′), (C′) and in Proposition 6 we tell about
the first w terms (where w is a positive integer) of entries of some matrices
belonging to k[[x]], we have in mind the terms of degree less than w.

We get from (A), (B), (C) the following.

(A′) We use valx detAr(x) + 1 first terms of the entries of the matrix Ar(x)
to compute valx det Ar(x) and valx A−1

r (x).
(B′) We use no more than valx detAr(x) + γ + 1 first terms of the entries of

the matrices A0(x), A1(x), . . . , Ar(x) to compute γ (see (20)).
(C′) We use no more than valx det Ar(x) + γ + v first terms of the entries of

the matrices A0(x), A1(x), . . . , Ar(x) to compute the first v terms of (21).

This and Proposition 5 imply the following statement related to systems of
the form (1) with invertible Ar(x).

Proposition 6. Let γ be as in (20) and q = max{−γ, 0}. There exists an algo-
rithm, that uses only the first

rmq + γ + valx detAr(x) + 1

terms of the entries of the matrices A0(x), A1(x), . . . , Ar(x), and computes a
nonzero polynomial Ĩ(λ) such that:

– if Ĩ(λ) has no integer root then (1) has no solution in k((x))m \ {0},
– otherwise a solution of the truncation problem is given by the sequence

al = rmq+γ+valx detAr(x)+max{e∗−e∗+1, l+(rm−1)q} (l = 1, 2, . . .),
(22)

where e∗, e
∗ are the minimal and maximal integer roots of Ĩ(λ), respectively.

Finally we can formulate a consequence of the latter proposition:

Proposition 7. For a given system S of the form (1) with invertible Ar(x) we
can compute algorithmically an integer d ≥ −1 such that

22 S.A. Abramov, M.A. Barkatou, and E. Pflügel

– a solution of S in k((x))m \ {0} exists iff d ≥ 0,
– if d ≥ 0 then a solution of the truncation problem for S is represented by the

sequence al = d + l, l = 1, 2, . . .

Proof. Indeed, we set d = −1 if the polynomial Ĩ(λ) has no integer root and
d = 2rmq − q + γ + valx detAr(x) + e∗ − e∗ + 1 otherwise, where q, γ, ĨS(λ),
e∗, e∗ are as in Proposition 6. ��

The following example shows that unlike the scalar case in the case of system
we cannot in general take a sequence (al) such that al = l at least for all l large
enough.

Example 4. Consider the system xθy = A(x)y where

A(x) =
(

0 1
x2u(x) 0

)
,

u(x) = x + x2 + x3 + . . ., y =
(

y1

y2

)
. It is easy to show that y1 satisfies the

equation
θ2y1 + θy1 − u(x)y1 = 0. (23)

For the latter equation the sequence bl = l, l = 1, 2, . . ., is a solution of the
truncation problem. For any other solution (b′l) of this problem we will have
b′l ≥ bl, l = 1, 2, Note that l-truncation of the original system xθy = A(x)y
induces (l− 2)-truncation of (23). However, the sequence cl = l− 2, l = 1, 2, . . .,
is not a solution of the truncation problem for (23). Thus, a sequence (al) which
is a solution of the truncated problem for the original system must be such that
al ≥ l +2, l = 1, 2, . . . If we replace in the original system x2 by x2q with integer
q > 1, then we will obtain al ≥ l + 2q, l = 1, 2, . . .

Our results can be also used for solving the following problem. Suppose that
for a system S of the form (1) only a finite number of terms of the entries of
A0(x), A1(x), . . . , Ar(x) is known. So we know not the system S itself but the
system S〈v〉 for some non-negative integer v. Suppose that we also know that
Ar(x) is invertible and that S has solutions in k((x))m \{0}. How many terms of
these solutions can be determined from the given “approximate” system S〈v〉?
Some non-trivial lower bound can be obtained from Propositions 1, 5, and 6.

4 Implementation

We have used the results obtained in this paper to improve some functionality
contained in the Maple package ISOLDE [11]. The RegularSolutions function
computes formal regular solutions of first order linear functional systems such as
systems of linear differential, difference, and q-difference equations. In particular,
it can be used for computing truncated Laurent series solutions of first order
linear differential systems.

Higher-Order Linear Differential Systems with Truncated Coefficients 23

The old implementation used the sequence al = l and did hence not always
compute the accurate space of truncated Laurent series solutions, as the following
example shows:

> A := linalg[matrix](2,2,[1,x^1,x^2*sin(x),3/x]);

A :=

[
1 x

x2 sin (x) 3 x−1

]
> L := LocalLinearDifferentialSystem(A,x,0);

L := L1

> RegularSolutions(L,x,2);

[[[C 1 + x C 1, 0], {}]]
Here, for l = 2, the function returns only one truncated Laurent series. We have
added the new option ‘allSolutions’ which ensures that a complete basis of the
regular solutions space is computed, by taking into account formula (15). The
sequence is then a1 = a2 = 3 and al = l for l ≥ 3, since the indicial polynomial
of the system has roots 0 and 3. The output is then
> RegularSolutions(L,x,2,‘allSolutions’);

[[[C 1 + x C 1, x
3 C 2], {}]]

This new feature will be available in the upcoming new release of ISOLDE.

5 Conclusion

In this paper, we have investigated the existence and truncation problem for
higher-order linear differential systems. We have shown that they are undecid-
able in the general case but they can be solved in the case of the system’s leading
matrix being invertible. In the decidable cases, this means that we can reduce
the problem of finding Laurent series solutions of systems with power series coef-
ficients to that of finding the same type of solutions for systems with polynomial
coefficients. A number of methods exist to do this task efficiently (e.g., [1,6]).

The mathematical techniques we employ in this paper use the algebra of
polynomials and matrices, and we give explicit formulae for finding al for a
given l. An implementation of our results can be done easily in any computer
algebra system, as demonstrated in the previous section for the Maple package
ISOLDE, and this equally applies to the implementations of the algorithms from
[1,6]. We hope that this paper hence also makes a practical contribution to the
scientific computing community, wishing to use computer algebra for handling
systems of linear differential equations.

From our work, new questions arise. For example, can we solve the existence
and truncation problem when we know in advance that the equations of a given
system are independent over k((x))[θ] while the leading matrix is not invert-
ible? Can our results be extended to more general classes of equations, such as
difference and q-difference systems? We will continue to investigate this line of
enquiry.

24 S.A. Abramov, M.A. Barkatou, and E. Pflügel

References

1. Abramov, S., Bronstein, M., Khmelnov, D.: On regular and logarithmic solutions
of ordinary linear differential systems. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov,
E.V. (eds.) CASC 2005. LNCS, vol. 3718, pp. 1–12. Springer, Heidelberg (2005)

2. Barkatou, M.A.: A rational version of Moser’s Algorithm. In: ISSAC 1995 Proceed-
ings, pp. 297–302. ACM Press, New York (1995)

3. Barkatou, M.A.: On rational solutions of systems of linear differential equations.
J. Symbolic Computation 28, 547–567 (1999)

4. Barkatou, M.A., Cluzeau, T., El Bacha, C.: Algorithms for regular solutions of
higher-order linear differential systems. In: Johnson, J.R., Park, H., Kaltofen, E.
(eds.) ISSAC 2009 Proceedings, pp. 7–14. ACM Press, New York (2009)

5. Barkatou, M.A., Cluzeau, T., El Bacha, C.: Simple forms of higher-order linear dif-
ferential systems and their applications to computing regular solutions. J. Symbolic
Computation 46, 633–658 (2011)

6. Barkatou, M.A., El Bacha, C., Pflügel, E.: Simultaneously row- and column-
reduced higher-order linear differential systems. In: Koepf, W. (ed.) ISSAC 2010
Proceedings, pp. 45–52. ACM Press, New York (2010)

7. Barkatou, M.A., Pflügel, E.: An algorithm computing the regular formal solutions
of a system of linear differential equations. J. Symbolic Computation 28, 569–588
(1999)

8. Barkatou, M.A., Pflügel, E.: On the equivalence problem of linear differential sys-
tems and its application for factoring completely reducible systems. In: Gloor, O.
(ed.) ISSAC 1998 Proceedings, pp. 268–275. ACM Press, New York (1998)

9. Barkatou, M.A., Pflügel, E.: Computing super-irreducible forms of systems of linear
differential equations via Moser-reduction: A new approach. In: Dongming, W.
(ed.) ISSAC 2007 Proceedings, pp. 1–8. ACM Press, New York (2007)

10. Barkatou, M.A., Pflügel, E.: On the Moser- and super-reduction algorithms of
systems of linear differential equations and their complexity. J. Symbolic Compu-
tation 44, 1017–1036 (2009)

11. Barkatou, M.A., Pflügel, E.: The ISOLDE package. A SourceForge Open Source
project (2006), http://isolde.sourceforge.net

12. Coddington, E., Levinson, N.: Theory of Ordinary Differential Equations. McGraw-
Hill, New York (1955)

13. Hilali, A., Wazner, A.: Formes super–irréductibles des systèmes différentiels
linéaires. Numer. Math. 50, 429–449 (1987)

14. Lutz, D.A., Schäfke, R.: On the identification and stability of formal invariants for
singular differential equations. Linear Algebra and Its Applications 72, 1–46 (1985)

15. Pflügel, E.: Effective formal reduction of linear differential systems. Applicable
Algebra in Engineering, Communication and Computation 10, 153–187 (2000)

16. Turing, A.: On computable numbers, with an application to the Entscheidungs-
problem. Proceedings of the London Mathematical Society, Series 2 42, 230–265
(1936)

17. Maple online help: http://www.maplesoft.com/support/help/

http://isolde.sourceforge.net
http://www.maplesoft.com/support/help/

Topology of Families of Implicit Algebraic

Surfaces Depending on a Parameter

Juan Gerardo Alcázar�

Departamento de Matemáticas, Universidad de Alcalá, E-28871 Madrid, Spain

Abstract. Given a family of algebraic surfaces, implicitly defined, de-
pending on a parameter t, here we provide an algorithm for computing
the different shapes arising in the family. The algorithm decomposes the
real line into finitely many pieces (points and intervals) so that over
each interval the shape is invariant, in the sense that the topology of
the family can be described by means of the same simplicial complex.
As a consequence, by applying known algorithms ([1], [6], [7], [11]) the
different shapes in the family can be computed. The algorithm is due to
a generalization of the ideas in [2] to the surface case.

1 Introduction

Families of surfaces depending on parameters are common in the context of
CAGD. Examples like offset surfaces (where the parameter is the offsetting dis-
tance), canal or tubular surfaces (where the parameter is the “thickness” of the
“tube”) are well-known; other examples include surfaces with shape parameters,
that are chosen in order to produce results with certain topological features.
Now in this paper we consider a problem involving families of algebraic surfaces
depending on one parameter. More precisely, we address the following question:
given a family of algebraic surfaces depending on a parameter, implicitly defined
by a real polynomial F (x, y, z, t) (where t is the parameter), how can we de-
termine the different shapes arising in the family? In our case, for “shape” we
understand a simplicial complex topologically describing the surface (i.e. isotopic
to it). We do not address here the problem of computing this simplicial complex;
for this purpose we refer to existing papers in the literature ([1], [5], [6], [7], [11]).
Otherwise, our problem here is the decomposition of the parameter space (R, in
this case) into finitely many pieces which are either points or intervals, such that
over each piece, the topology of the surface is invariant. The main ingredient is
the notion of delineability, used also in [5], [8], among others, for computing a
triangulation of a semi-algebraic set in arbitrary dimension. However, the case
of varieties depending on parameters, which is our main concern here and our
contribution, is apparently not discussed in these references.

The ideas in the paper essentially correspond to the generalization of the
results in [2], where an algorithm for computing the different shapes arising in
� Supported by the Spanish “ Ministerio de Ciencia e Innovacion” under the Project
MTM2008-04699-C03-01.

V.P. Gerdt et al. (Eds.): CASC 2011, LNCS 6885, pp. 25–36, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

26 J.G. Alcázar

a family of implicit algebraic curves is provided, to the surface case. The ideas
in that paper have already been applied in papers like [3] or [4]: in the first
one, an algorithm for computing the different shapes arising in a one parameter
family of rational curves is provided; in the second one, the results in [2] are
used for algorithmically determining certain topological features of an algebraic
surface. So, we believe that the ideas here could be applied in a similar way
to algorithmically solve, in appropriate cases, similar questions on families of
rational surfaces, or implicit hypersurfaces.

We also want to mention that the ideas in the paper could be seen from the
point of view of Cylindrical Algebraic Decomposition. In particular, the polyno-
mial in the main result of the paper (namely, Theorem 1) coincides with Brown’s
projection set (see [8]) of the polynomial F (x, y, z, t), whenever F fulfills the hy-
potheses in Section 2. However, since C.A.D. is usually presented in the context
of quantifier elimination, the connection of this theory with our problem is, in
our opinion, not obvious (although, perhaps, expectable). Hence, a contribution
of this paper is to make this connection clearer.

We have structured the paper in four sections. The main result in the paper is
provided in Section 2, together with the necessary hypotheses and some examples
of application. The proof of this result is provided in Section 3. The paper ends
with a brief section on open questions.

2 Statement of the Main Result

In order to state the main result of the paper, we need to introduce some notation
and hypotheses, first. So, let F ∈ R[x, y, z, t] be a polynomial in the variables
x, y, z, t. Moreover, we assume that the following hypotheses hold:

(i) F = F (x, y, z, t) is square-free, and it explicitly depends on the variable z
(otherwise the problem is reducible to that in [2]). Under this hypothesis,
and denoting the derivative of F with respect to the variable z as Fz , it
holds that the resultant Resz(F, Fz) does not identically vanish: indeed,
since F depends on z, Fz is not identically 0. Then if Resz(F, Fz) = 0
we deduce that F, Fz have some common factor depending on z. But this
implies that F is not square-free, which cannot happen by hypothesis.

(ii) The leading coefficient of F w.r.t. z does not depend on x, y. Notice that
this hypothesis can always be achieved by applying a linear change of co-
ordinates of the type

X = x, Y = y + αz, Z = x + βy + γz

(iii) The leading coefficient of Resz(F, Fz) does not depend on x. Observe that
for a fixed t, H(x, y, t) = Resz(F, Fz) is the projection onto the xy-plane
of the space curve defined by F (x, y, z, t), Fz(x, y, t, z). As a consequence,
any rotation

X = ax + by, Y = −bx + ay, Z = z

Topology of Families of Implicit Algebraic Surfaces 27

applied on the variety V (F, Fz) causes H(x, y, t) to be rotated in the same
way. Since almost all planar rotations transform H(x, y, t) so that
lcoeffy(H(x, y, t)) does not depend on y, we have that almost all the above
rotations transform F in the desired way.

As a result, we have that the above hypotheses can be fulfilled by applying
a linear change of coordinates; since this does not change the topology of the
family members, in the sequel we will assume the above hypotheses hold. Now
regarding t as a real parameter, for different instances of t0 ∈ R we have different
surfaces St0 , implicitly defined by F (x, y, z, t0). So, we will say that F defines a
family of algebraic surfaces depending on the parameter t. We consider also the
following polynomials; here,

√
· stands for the square-free part of a polynomial,

and Dw(G) represents the resultant Resw(G, Gw):

M(x, y, t) =
√

Dz(F); N(x, t) =
√

Dy(M); R(t) = Dx(N)

By the above reasonings Dz(F) is not identically zero, and hence M �= 0; how-
ever, N or R might be identically 0. So, first we consider the case when N, R �= 0.
The special cases N = 0, R = 0 will be considered later (see Subsection 2.1). In
this situation, we define

A := {t ∈ R|R(t) = 0}
That is, A is the set of real roots of R(t). Then, we have the following result.

Theorem 1. Let ti, ti+1 ∈ R satisfy (ti, ti+1) ∩ A = ∅. Then, the shapes of
Sti , Sti+1 are the same (in the sense that there is a simplicial complex describing
both the shapes of Sti , Sti+1).

Hence, Theorem 1 implies that the only values of the parameter where the shape
of the surfaces in the family may change, are those in A. This way, the elements
of A induce a finite partition of the real line so that each element of the partition
(which is either a real interval, or a real number) gives rise to a same shape in
the family. The proof of this theorem is provided in the next section. Notice that
the decomposition of the parameter space that arises from the application of
Theorem 1 is not necessarily optimal, in the sense that it can happen that the
topology of the family stays invariant when t crosses an element of A.

Remark 1. If the degree of F is O(n), then in the worst case the degrees of
M(x, y, d), N(x, d) and R(d) are O(n2), O(n4), and O(n16), respectively. If F is
sparse, then the discriminants Dz(F), Dy(M), Dx(N) are typically non-square-
free, and therefore after taking out multiple factors, the degree is generally re-
duced. Nevertheless, it is clear that as the degree of F grows, the practical
application of Theorem 1 encounters more difficulties. So, at the moment the al-
gorithm is useful in practice just for small degrees, generally with spare inputs.

Example. Let us consider the family of quartics defined by

(x2 − 1)2 + (y2 − 1)2 + (z2 − 1)2 = d2

28 J.G. Alcázar

In this case, one may check that A = {−
√

3,−
√

2,−1, 0, 1,
√

2,
√

3} (the whole
computation, in the Maple 13 system, takes 0.297 seconds). By symmetry, it
is enough to consider the behavior for d ≥ 0. In this sense, we distinguish the
following cases: (I) d = 0; (II) d ∈ (0, 1); (III) d = 1; (IV) d ∈ (1,

√
2); (V)

d =
√

2; (VI) d ∈ (
√

2,
√

3); (VII) d =
√

3; (VIII) d >
√

3. Pictures corresponding
to these cases are shown in Figure 1; (I), (II), (III) are shown from left to right
in the first row; (IV), (V) are also shown from left to right in the second row;
furthermore, the right-most picture in the second row corresponds to a view of
the interior part in the case (V); finally, in the last row pictures corresponding
to the interior part of the surface in (VI), (VII) and (VIII) are provided (in all
these cases the exterior part coincides with that of (V), and changes occur only
within the surface).

Other Examples. We provide a table with other examples. In this table, we
provide (from left to right): a brief description of the family; the total degree of
the implicit equation of the family; the number of terms of this equation; the
time consumed by the computation; and the size of the set A (i.e. the number
of elements of A). In all the cases, we have used an Intel Core 2 Duo processor
with speeds revving up to 1.83 GHz and operating system Windows XP, and an
implementation running on the Computer Algebra System Maple 13.

Table 1. Other Examples

Example Description Degree n.terms time Size

1 Family of Cubics 3 5 0.218 3

2 Offset to Circular Cone 6 19 0.406 1

3 Offset to Ellipsoid 8 60 2.313 13

4 Offset to Two-Sheeted Hyperb. 8 60 3.328 3

5 Offset to One-Sheeted Hyperb. 6 19 0.391 1

6 Canal Surface around a Circle 4 15 0.297 3

7 Family of Quintics 5 6 5.047 8

8 Family of Septics 7 5 0.250 3

9 Family of Sextics 6 6 2531.671 47

10 Offset to Paraboloid 6 41 0.484 3

The timing in Example 9 illustrates the complexity of the computations in
the cases when the degrees of the intermediate polynomials are not significantly
reduced when taking out multiple factors.

2.1 Special Cases

We consider the following special cases: (1) N �= 0, R = 0; (2) N = 0. One may
see that in the first case, the only possibility is that N(x, t) does not explicitly
depend on x. Thus, denoting B = {t ∈ R|N(t) = 0}, the following result holds:

Topology of Families of Implicit Algebraic Surfaces 29

Fig. 1. The family (x2 − 1)2 + (y2 − 1)2 + (z2 − 1)2 = d2. From the first row to the
last one, and from left to right, we have: (first row) cases d = 0, d ∈ (0, 1), d = 1;
(second row) cases d ∈ (1,

√
2), d =

√
2 (outer part), d =

√
2 (inside); (third row) cases

d ∈ (
√
2,
√
3) (inside), d =

√
3 (inside), d >

√
3 (inside).

30 J.G. Alcázar

Theorem 2. Assume that N �= 0 but R = 0, and let ti, ti+1 ∈ R satisfy that
(ti, ti+1) ∩ B = ∅. Then, the shapes of Sti , Sti+1 are the same (in the sense that
there is a simplicial complex describing both the shapes of Sti , Sti+1).

In the second case, we deduce that M = M(x, t). In this situation, if M = M(t)
then we set C = {t ∈ R|M(t) = 0}, otherwise we set C={t ∈ R|Dx(M)(t)=0}.
In any case, the following result holds.

Theorem 3. Assume that N = 0, and let ti, ti+1 ∈ R satisfy that (ti, ti+1) ∩
C = ∅. Then, the shapes of Sti , Sti+1 are the same (in the sense that there is a
simplicial complex describing both the shapes of Sti , Sti+1).

3 Proof of the Main Result

In the sequel, we will prove Theorem 1; the proofs of Theorem 2 and Theorem
3 are analogous and in fact simpler, and are omitted here. For this purpose, we
write

A = {a1, . . . , an}
where a1 < · · · < an; furthermore, we denote a0 = −∞, an+1 = ∞. Then, our
goal is to prove that for t ∈ (ai, ai+1), where i = 0, . . . , n, all the surfaces of the
family can be described by the same simplicial complex; hence, that the shape
of the family is invariant along (ai, ai+1).

Now the key of this proof is the notion of delineability. The reader may see
[10] for further reading on this notion, or revise Section 3 in [2], for a brief review
on it. Here we will simply recall the following formal definition:

Definition 1. Let x̆ denote the (r − 1)-tuple (x1, . . . , xr−1). An r-variate poly-
nomial f(x̆, xr) over the reals is said to be (analytic) delineable on a submanifold
T of Rr−1, if it holds that:

1. the portion of the real variety of f that lies in the cylinder T × R over T
consists of the union of the function graphs of some k ≥ 0 analytic functions
ϑ1 < · · · < ϑk from T into R,

2. there exist positive integers m1, . . . , mk such that for every a ∈ T , the multi-
plicity of the root ϑi(a) of f(a, xr) (considered as a polynomial in xr alone)
is mi.

Furthermore, the ϑi in the condition 1 of the definition above are called real root
functions (or simply real roots) of f on T .

Intuitively speaking, if a polynomial G(x, y) is delineable on a subset T ⊂ R,
this means that over that subset, the real part of the curve defined by G consists
of the union of finitely many non-intersecting curves, which correspond to the
analytic functions ϑi of Definition 1. Similarly, if F (x, y, z) is delineable on a
subset R ⊂ R2, this implies that the real part of the surface defined by F over
this subset is the union of finitely many non-intersecting surfaces, corresponding
to the ϑi. A sufficient condition for a polynomial to be delineable over a given
subset is provided in Theorem 2 of [10], pp. 246. By using this result, one can
prove (see Section 4 of [2] for more details) that:

Topology of Families of Implicit Algebraic Surfaces 31

(1) For i = 0, . . . , n, the polynomial N(x, t) is delineable over Ii = (ai, ai+1).
The real roots of N over Ii are represented as X1,i, . . . , Xr,i; also, we write
X0,i = −∞, Xr,i = ∞. Moreover, the graphs of these functions are de-
noted as X1,i, . . . ,Xr,i. Observe that these are 1-dimensional subsets of R2.
Furthermore, for k = 0, . . . , r we also denote

Sk,i = {(x, t) ∈ R2|Xk,i(t) < x < Xk+1,i(t), ai < t < ai+1}

These are 2-dimensional subsets of R2 (in fact, regions of the plane lying in
between two consecutive Xj,i’s, with t ∈ Ii)

(2) For j = 1, . . . , r, the polynomial M(x, y, t) is delineable over Xj,i. The real
roots of M(x, y, t) over Xj,i are denoted as Y1,j , . . . , Y�,j; the graphs of these
functions are denoted Y1,j , . . . ,Y�,j. Observe that these are 1-dimensional
subsets of R3.

(3) For k = 0, . . . , r, the polynomial M(x, y, t) is delineable over Sk,i. The real
roots of M(x, y, t) over Sk,i are denoted as V1,k, . . . , Vs,k; the graphs of these
functions are denoted V1,k, . . . ,Vs,k. These are 2-dimensional subsets of R3.

Figure 2 illustrates the above functions. Also in [2] it is shown that the Vq,k’s
and the Yp,j ’s “join properly”, in the sense that there exists just one Yp,j in the
topological closure of each Vq,k (see Lemma 12 in [2]); in other words, that the
situation suggested in Figure 2, right, is topologically correct.

In our case, we need to prove also the following result. In this sense, we need
to introduce the following notation: given Vq,k, Vq+1,k, real roots of M(x, y, t)
over Sk,i, let

Tq,k = {(x, y, t) ∈ R3|Vq,k(x, t) < y < Vq+1,k(x, t), (x, t) ∈ Sk,i}

Then the following lemma, which is proven in a similar way to Theorem 7 in
[2], holds. In the proof of the result we will use the notions of degree-invariance

t

ai+1ai

t

x

X1,i

t

x

y

V0,1 V0,2

V1,1 V1,2

Y1,1X1,i

Ii

Ii

Fig. 2. Real Roots of Certain Functions

32 J.G. Alcázar

and order-invariance, introduced in [10]; the reader can also find them in [2] (see
Definition 2 therein).

Lemma 1. The following statements are true:

(1) F is delineable over each Tq,k.
(2) F is delineable over each Yp,j.
(3) F is delineable over each Vq,k.

Proof. The proof of (1) is analogous to that of statement (i), Theorem 7 in
[2]. So, let us see (2), (3). For this purpose, let us check the conditions in the
sufficient condition for delineability. Now by hypothesis lcoeffz(F) depends only
on the variable t, i.e. lcoeffz(F) = h(t); moreover, by elementary properties
of resultants h(t) divides R(t). So, whenever t ∈ (ai, ai+1) we have that R(t)
does not vanish, and therefore h(t) does not vanish, either. As a consequence,
F is degree-invariant along each Yp,j , and along each Vq,k. On the other hand,
M =

√
Dz(F) is order invariant both over each Yp,j and over each Vq,k, because

of Theorem 2 in [10]. Now let us see that H := Dz(F) is also order invariant
on each Yp,j and on each Vq,k. For this purpose, let M = M1 · · ·Ms, where the
Mi’s are different and relatively prime, and let H = Mm1

1 · · ·Mms
s . We focus on

Yp,j , first. Now let us see that Yp,j must be fully contained in one of the Mi’s.
Indeed, if the order of M at any point of Yp,j is 1 then Yp,j does not contain any
singular point of M , and therefore it must be fully contained in one of the Mi’s.
Otherwise, Yp,j consists of singular points of M , and therefore it is contained in
(see Exercise 11, p. 464 in [9])

Sing(M1) ∪ · · · ∪ Sing(Ms) ∪ (M1 ∩ M2) ∪ · · · ∪ (Ms−1 ∩ Ms)

(where Sing(Mi) denotes the singular locus of Mi). Now assume by contradiction
that Yp,j has some points that belong to some Mi and other points that belong to
some other M�, �= i, and not to Mi. So, Yp,j has points in Sing(Mi), Sing(M�)
and (Mi ∩ M�); moreover, these three sets do not coincide. Since Yp,j is the
image of a connected subset, namely Xj,i, trough an analytic function, namely
Yp,j , it follows that Yp,j is also connected. Now if Sing(Mi), Sing(M�), (Mi∩M�)
project onto the same Xj,i, since these sets do not coincide and the real roots of
M over Xj,i are non-intersecting, we would deduce that Yp,j is not connected,
which cannot happen. Then they must project onto different Xj,i’s; but this is
again a contradiction because by definition Yp,j projects just onto one Xj,i. So,
let us assume w.l.o.g. that Yp,j is included in the zero set of, say, M1. In that
case, if the order of M at any point of Yp,j is α, it is easy to see that the order
of H at any point of Yp,j is α · m1. So, H is order invariant on Yp,j . Now let
us consider Vq,k. Notice that Vq,k is a two-dimensional subset of R3, and the
singular locus of M is at most 1-dimensional. Hence, since M is order invariant
over Vq,k then its order at any point of Vq,k must be 1 (because almost all points
in Vq,k are non-singular). As a consequence, Vq,k must be completely contained
in the zero-set of one of the Mi’s (otherwise it would contain singular points and
the order of M would be greater than 1 at those points). So if Vq,k is contained
in the zero-set of Mi, the order of H on Vq,k is mi.

Topology of Families of Implicit Algebraic Surfaces 33

Now we can introduce the following functions:

– Let S1,q, . . . , Sβ,q be the real roots of F over Tq,k; let S1,q, . . . ,Sβ,q be the
graphs of these functions.

– Let T1,j, . . . , Tγ,j be the real roots of F over Yp,j ; let T1,j , . . . , Tγ,j be the
graphs of these functions.

– Let W1,k, . . . , Wμ,k be the real roots of F over Vq,k; let W1,k, . . . ,Wμ,k be
the graphs of these functions.

Although the images of the above functions lie in R4, let us try to visualize the
intersections of their graphs with the hyperplane {t = t0}. For this purpose, first
we show, in Fig. 3, the intersection of Figure 2 with t = t0; then, in Fig. 4, we
show the intersections of the Sa,q’s, the Tb,j ’s and the Wc,k’s with t = t0. In
the case of Fig. 4, we have that St0 is homeomorphic to a cone. Furthermore,
in Fig. 4 we just have one Tb,j , which is responsible for the vertex of the cone,
two Wc,k’s, responsible for the two intersecting lines of the cone marked in thick
line, and four Sa,q’s responsible for the surface of the cone (with the exception
of the vertex and the two intersecting lines).

t

ai+1ai

t

x

t

x

y

V0,1 V0,2

V1,1 V1,2

Y1,1

X1,i

t = t0

t = t0

t = t0

Fig. 3. Intersection of Fig. 2 with {t = t0}

Moreover we also have the following result, which shows that the Sa,q’s, the
Tb,j ’s and the Wc,k’s “join properly”, in the sense that the adjacencies between
them are kept invariant for t ∈ (ai, ai+1). The proof of this result is analogous to
Phase 2 in [2] (see pp. 684-686). In this proof we will need the following subsets.
First, Cyl(Yp,j) is the cylinder over Yp,j , i.e. Cyl(Yp,j) = Yp,j × R; moreover,
given [ta, tb] ⊂ Ii, we denote Z = {(x, y, z, t)|t ∈ [ta, tb]}; finally,

T �
i = Cyl(Yp,j) ∩ Z ∩Wc,k,

where Wc,k stands for the topological closure of Wc,k. Similarly,

T̃i = Cyl(Vq,k) ∩ Z ∩ Sa,q

34 J.G. Alcázar

x

y

z

Fig. 4. The surface St0

Then the following lemma holds.

Lemma 2. Let Sk,i be fixed, let the Vq,k’s be the real roots of M over Sk,i, and
let the Yp,j’s be the real roots of M over Xk,i. Then the following statements are
true:

(i) For each Wc,k, real root of F over Vq,k (resp. Vq+1,k), there is just one Tb,j,
real root of F over Yp,j , such that Tb,j ⊂ Wc,k.

(ii) For each Sa,q, real root of F over Tq,k (resp. Tq+1,k), there is just one Wc,k,
real root of F over Vq,k (resp. Vq+1,k), such that Wc,k ⊂ Sa,q.

Proof. In order to prove (i), proceed as in Phase 2 of [2] (see pp. 684-686), with
two modifications: one must use the set h�

n = Vq,k(hn) instead of hn, where hn

is the set defined in the proof of Lemma 10 of [2], and one must also use the
set T �

i (see above) instead of the set Ti introduced in Phase 2 of [2]. In order
to prove (ii), the strategy is the same but now the modifications are as follows:

h̃n = {(x, y, t) ∈ R3|(x, t) ∈ Sk,i, Vq,k(x, t) − 1
n

< y < Vq,k(x, t)} plays the role

of hn, and T̃i (see above) plays the role of the set Ti.

Remark 2. A result analogous to Lemma 2 can be proven for the real roots of
M over Xk+1,i, instead of Xk,i.

Now let us provide a construction for the surface of the family corresponding
to t = t0 ∈ (ai, ai+1). For this purpose, by using the analytic functions that we
have introduced, a cylindrical algebraic decomposition of St0 can be obtained.
Afterwards, in order to prove Theorem 1 we will show that this decomposition
is topologically the same for any t0 ∈ (ai, ai+1). So, let t0 ∈ (ai, ai+1); we first
need a description of the zero set of M(x, y, t0) (which is an algebraic curve).
This is done by using the functions Xa,i’s, Yb,j ’s and Vc,k’s introduced at the
beginning of the section (see also Fig.3):

– Let X1,i(t0), . . . , Xr,i(t0). These numbers are the x-coordinates of the critical
points of M(x, y, t0) (see Lemma 14 in [2]). We can also say that this numbers
correspond to the intersections

Topology of Families of Implicit Algebraic Surfaces 35

X1,i ∩ {t = t0}, . . . ,Xr,i ∩ {t = t0}

– Let j be fixed. Then for j = 1, . . . , r, Y1,j(Xj,i(t0), t0), . . . , Y�,j(Xj,i(t0), t0)
are the y-coordinates of the points of M(x, y, t0) belonging to the critical
(vertical) line x = Xj,i(t0). We can also say that these numbers correspond
to the intersections

Y1,j ∩ {t = t0}, . . . ,Y�,j ∩ {t = t0}

– The branches of M(x, y, t0) with Xj,i(t0) < x < Xj+1,i(t0) are the intersec-
tions

V1,k ∩ {t = t0}, . . . ,Vs,k ∩ {t = t0}

Hence, let us provide a description of St0 . For this purpose, we need first the
following observation.

Lemma 3. Let t0 ∈ (ai, ai+1). The xy-projection of the singular locus of St0 is
contained in the zero-set of M(x, y, t0).

Proof. Since t0 ∈ (ai, ai+1), it follows that lcoeffz(F) does not vanish at t = t0
(because otherwise by elementary properties of the resultant, R(t0) = 0). Hence,
the resultant H(x, y, t) = Resz(F, Fz) specializes well at t = t0 (see Lemma 4.3.1
in [12]). Since the singular locus of St0 is contained in the variety defined by
F (x, y, z, t0), Fz(x, y, z, t0), the result follows.

Then we are ready to show how a cylindrical algebraic decomposition of St0 can
be computed; for this purpose, one proceeds as follows:

– 0-dimensional and 1-dimensional parts: here we provide a decomposition of
the part of the surface projecting onto M(x, y, t0)). According to Lemma
3, this subset of St0 contains the singular locus of St0 . Hence, a cylindrical
algebraic decomposition of it can be obtained in the following way:
• (0-dimensional part) For j = 1, . . . , r, compute the intersections of T1,j ,

. . . , Tγ,j with {t = t0}
• (1-dimensional part) For k = 0, . . . , r, compute the intersections of W1,k,

. . . , Wμ,k with {t = t0}.
– 2-dimensional part: For q = 0, . . . , s, compute the intersections of S1,q, . . . ,

Sβ,q with {t = t0}.

We refer to the above decomposition as Sup. Finally, we can prove Theorem 1.

Proof of Theorem 1: By definition, the real roots of a polynomial over a
certain subset are non-intersecting. So, the number of intersections of the Sa,q’s,
the Tb,j ’s and the Wc,k’s with {t = t0} is invariant for t0 ∈ (ai, ai+1). Moreover,
since the Sa,q’s are non-intersecting, the relative positions of the intersections of
the Sa,q’s with {t = t0} are invariant for t ∈ (ai, ai+1); similarly for the Tb,j ’s
and the Wc,k’s. Moreover, from Lemma 2 we deduce that the adjacencies of these
intersections are also invariant for t ∈ (ai, ai+1). Hence, the above decomposition
Sup is topologically invariant for t ∈ (ai, ai+1). Therefore, one can associate with
it a simplicial complex which is the same for every t ∈ (ai, ai+1).

36 J.G. Alcázar

4 Open Questions

The generalization of the main result here to one-parameter families of algebraic
hypersurfaces of arbitrary dimension seems plausible, but at the moment we are
unaware of a complete, formal proof. This generalization, and also the general-
ization to families with an arbitrary number of parameters, is therefore left here
as an open problem.

References

1. Alberti, L., Mourrain, B., Tecourt, J.P.: Isotopic Triangulation of a Real Algebraic
Surface. Journal of Symbolic Computation 44(9), 1291–1310 (2009)

2. Alcazar, J.G., Schicho, J., Sendra, R.: A Delineability-based Method for Computing
Critical Sets of Algebraic Surfaces. Journal of Symbolic Computation 42, 678–691
(2007)

3. Alcazar, J.G.: Applications of Level Curves to Some Problems on Algebraic Sur-
faces. In: Lambán, L., Romero, A., Rubio, J. (eds.) Contribuciones Cient́ıficas en
honor de Mirian Andrés Gómez, pp. 105–122. Univ. La Rioja (2010)

4. Alcazar, J.G.: On the Different Shapes Arising in a Family of Rational Curves
Depending on a Parameter. Computer Aided Geometric Design 27(2), 162–178
(2009)

5. Basu, S., Pollack, R., Roy, M.F.: Algorithms in Real Algebraic Geometry. Springer,
Heidelberg (2003)

6. Berberich, E., Sagraloff, M.: A generic and flexible framework for the geometri-
cal and topological analysis of (algebraic) surfaces. Computer Aided Geometric
Design 26(6), 627–647 (2009)

7. Berberich, E., Kerber, M., Sagraloff, M.: An Efficient Algorithm for the Stratifi-
cation and Triangulation of Algebraic Surfaces. Computational Geometry: Theory
and Applications 43(3), 257–278 (2009); Special Issue on 24th Annual Symposium
on Computational Geometry

8. Brown, C.W.: Improved Projection for Cylindrical Algebraic Decomposition. Jour-
nal of Symbolic Computation 32(5), 447–465 (2001)

9. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties and Algorithms. Springer, Heidel-
berg (1992)

10. MacCallum, S.: An Improved Projection Operation for Cylindrical Algebraic De-
composition. In: Caviness, B.F., Johnson, J.R. (eds.) Quantifier Elimination and
Cylindrical Algebraic Decomposition, pp. 242–268. Springer, Heidelberg (1998)

11. Mourrain, B., Tecourt, J.P.: Isotopic Meshing of a Real Algebraic Surface, Rapport
de recherche, n 5508. Unite de Recherche INRIA Sophia Antipolis (2005)

12. Winkler, F.: Polynomial Algorithms in Computer Algebra. Springer Verlag, ACM
Press (1996)

A Modular Approach for Beam Lines Design

Serge N. Andrianov

Faculty of Applied Mathematics and Control Processes,
Saint Petersburg State University,

198504, Saint Petersburg, Russian Federation
sandrianov@yandex.ru

Abstract. We discuss advantages of numerical simulation based on sym-
bolic presentations of beam line dynamical models. In some previous pa-
pers, some of these features were discussed. In this paper, we demonstrate
how the symbolic presentation of necessary information can provide an
in-depth study of different features of complex systems. For this pur-
pose, we suggest a modular principle for all levels of the modeling and
optimization procedures. This principle is based on so-called LEGO ob-
jects, which have both symbolic and numerical representation. For beam
line design, it is necessary to support three types of similar objects. The
first of them contains all necessary objects for beam line components
description, the second contains all objects which correspond to particle
beam models, and the third contains all objects corresponding to a trans-
fer map (“a beam propagator”). In the suggested approach, the beam
propagator is presented as a set of two-dimensional matrices describing
different kinds of beam or beam line properties up to some approximation
order. These matrices can be computed both in symbolic and numerical
forms up to the necessary approximation order of the nonlinear effects.
An example of practical application is demonstrated.

Keywords: Symbolic algebra, LEGO object, Lie algebraic methods,
beam physics.

1 Introduction

Computational tools play a very important role in the design and operation of
modern accelerators. The corresponding environment ensures the fulfillment of
necessary computational procedures oriented both for beam lines design (on the
development stage) and for accelerator system control (at the operation stage,
for example, using EPICS1). During the design stage, the computer programs
are plainly used to match the lattice design (select beam optics, compensate
for the different effects, and analyze the stability of a beam and so on). In

1 EPICS is a set of Open Source software tools, libraries and applications developed
collaboratively and used worldwide to create distributed soft real-time control sys-
tems for scientific instruments such as a particle accelerators, telescopes, and other
large scientific experiments. http://www.aps.anl.gov/epics/

V.P. Gerdt et al. (Eds.): CASC 2011, LNCS 6885, pp. 37–48, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

38 S.N. Andrianov

commissioning and operation, these codes are used to build realistic accelerator
models and control the correct beam behavior.

The LEGO concept (named by analogy to the well known children’s game) –
one of corresponding approaches for necessary environment design is proposed
by J. Irwin with coauthors [1]. The concept is based on modular presentation for
beam line structure description. For every module (LEGO module), they used
numerical methods for corresponding integration of particles motion equations
and some set of additional operations. In this paper, we consider the approach
based on LEGO objects for all levels of the modeling process: from an initial
design stage up to searching for optimal variants of required structures. The
hierarchy of LEGO element classes suggested in [1] is maintained on the whole.
But here we change some principles for presentation and computation of the
corresponding LEGO objects. The mathematical core of this approach is based
on the so-called matrix presentation for Lie algebraic tools. In general case, these
problems can be described in terms of Lie algebraic methods (the most full de-
scription of these tools can be found in [2], see also [3,4]). According to this
approach we have to constrain an evolution operator (propagator) in the form of
a sequence of propagators describing partial propagators appropriate to a “time”
step or another of an evolution sequence process. From algebraic point of view,
one should consider a one-parameter Lie group based on some Lie algebra. The
mathematical background for this well-known approach allows us performing
necessary theoretical and practical manipulations successfully. In some previous
works (see, e.g., [5]–[10]), the author considered the procedures, which are nec-
essary for an evolution operator (propagator) evaluation according to the LEGO
concept. In these works, both symbolic and numerical aspects of required calcu-
lations are considered. This approach allows the researcher to study an evolution
of the phase manifold describing objects under study. Especially it is necessary
to mention that the suggested approach can also be applied for problems of cos-
mic dynamics and molecular dynamics. Indeed, in all similar problems, we have
to study an evolution of a family of objects (they are considered as “particles”).

2 Matrix Presentation for LEGO Objects

In our approach, we describe the possibility of describing both the beam propa-
gator and beam properties in terms of two-dimensional matrices. Here we have
to particularize the following two problems.

The first problem is connected with presentation forms for the beam propa-
gator – beam propagator presentation, and the second problem is related to the
forms of particle beam description. It is obvious that the corresponding presen-
tations have to match with each other.

2.1 The Basic Concepts – The Ordinary Differential Equations

In this paper, we consider two forms of time evolution equations [9]. The first
type is based on the traditional form of ordinary differential equations

A Modular Approach for Beam Line Design 39

dX
dt

= F(X, t) =
∞∑

k=0

P1k(t)X[k], (1)

where F = (F1, . . . , Fn)T is a vector function, which generates a vector field

LF = FT(X, t)
∂

∂X
.

The operator LF is a Lie operator, and there is an expansion

LF =
∞∑

k=0

(
X[k]

)T

(P1k)T(t)
∂

∂X
=

∞∑
k=0

LFk
(t),

where X[k] is the Kronecker power for the vector X, Pk is a matrix function with
the matrix size n×

(
n
k

)
and

LFk
=
(
X[k]

)T (
P1k(t)

)T ∂

∂X
, LF0 = Id, Fk(X, t) = P1k(t)X[k]. (2)

One can check the equality LFk
◦Xl = Pl

kX
[k+l−1], where Pl

k is a
(
n
l

)
×
(

n
k+l−1

)
matrix. Let A be an n ×m matrix, then one can define a l-multiple Kronecker
sum A⊕l according to the following rule:

A⊕l = A⊕(l−1) ⊗ En + E[(l−1)]
n ⊗ A, A⊕0 = O, E[0]

n = 1,

where En is the identity matrix. We can formulate the next theorem. In the book
[9], one can find the following propositions.

Theorem 1 [9] The matrix Pl
k for the operator LFk

in the space of homogeneous
polynomials of lth order X[l] has the form

Pl
k =

(
P1k

)⊕l
.

Lemma 1 [9] For any vector X (dimX = n), we have

1
(k − 1)!

∂k−1

(∂XT)k−1
X[k] = X⊕k,

where X⊕k is a
(
n
k

)
× n(k−1) matrix.

2.2 The Basic Concepts – The Hamiltonian Formalism

It is known that a wide class of physical systems are governed by Hamiltonian
systems. In this case, for the right-hand side of eq. (1), we have

F(X, t) = J
∂H(X, t)

∂X
, (3)

40 S.N. Andrianov

where H(X, t) is a Hamiltonian function (a Hamiltonian) for the dynamical
system under study, J is a symplectic matrix and dimX = 2n. It is not difficult
to note that the infinitesimal operator (Lie operator) for eq. (1) can be written
as

LF =
(

J
∂H(X, t)

∂X

)T
∂

∂X
= − [H, ◦] = −

n∑
k=1

(
∂H
∂Qk

∂

∂Pk
− ∂H

∂Pk

∂

∂Qk

)
.

Let us present the Hamiltonian H as a series

H(X, t) =
∞∑

k=0

HT
k (t)X[k],

then we can write

F(H(X, t)) = J0
∂H
∂X

= J

∞∑
k=2

∂HT
k (t)X[k]

∂X
,

from where according to [9] we have

F(H(X, t)) = J0

∞∑
k=2

(
E2n ⊗HT

k

) ∂X[k]

∂X
.

From eq. (2) and above propositions, one can write

F(X, t) = F(H(X, t)) =
∞∑

k=2

P1k(t)(H)X[k],

where

P1k(t) = J0

(
E2n ⊗HT

k+1

)
colon

((
E1
)⊕(k+1)

, . . . ,
(
E2n

)⊕(k+1)
)

, k ≥ 1, (4)

where Ei are the unit vectors (Ei
k = δik), and E2n is the 2n × 2n identity

matrix. The above described formulae allow us to compute the matrices P1k for
both forms of beam motion equations: in the form of ODE’s and in the form of
Hamiltonian equations. Just these matrices generate the LEGO objects of the
first type enabling a description of the desired beam line.

2.3 Particle Beam Presentation

There are several approaches for beam manifold description. There are three of
them, which are interesting for our purpose.

Phase Manifold Envelope Equations. In some beam physics problems, it is
useful to know the “time evolution” for boundaries of a set occupied by beam
particles. Let the boundary be described by the following vector equation

G0(X) = G(X, t = 0) = 0, dimG0 = 2n.

A Modular Approach for Beam Line Design 41

In the case of more popular representation using elliptical manifold, we have
n = 1 and G0(X) = XTA0X− 1, where, for example, the matrix S0 = A−1

0 is an
envelope matrix. This matrix can be defined from different point of view. For ex-
ample, using statistical description (the corresponding manifold is considered as
a point manifold). In this case, we use the term root-mean-square envelope (see,
for example, [2]). In the case of representation (2.3) we can write the following
expansion

G0(X) =
∞∑

k=0

Gk
0X

[k].

The matrices A0 and Gk
0 , k ≥ 0 describe the form of an initial phase manifold

(for t = 0) in linear and nonlinear approximations.

The Phase Distribution Function Description. The second type is based
on a phase distribution function f0(X) determining the distribution of particles
in the initial manifold M0. The function f0(X) can be written as

f0(X) =
∞∑

k=0

(
Fk

0

)T
X[k]. (5)

In (5), the vectors (the column matrices) Fk
0 , k ≥ 0 describe the initial particle

distribution on the initial manifold M0.

The Pointwise Description. As the third type of description of particles
ensembles here we consider the matrix MN

0 =
{
X1

0,X
2
0, . . . ,X

N
0

}
, where N is

the number of particles occupied in the initial phase manifold.
In all these cases, the following matrix objects are considered as LEGO objects

for the initial phase manifold: 1) the matrices A0 or Gk
0 ; 2) the column matrices

Fk
0 and the matrix MN

0 .
It is obvious that for practical problems we have to cut off the corresponding

sets. For the first two types, the truncation procedure is connected with our
knowledge about control electromagnetic field. For the third case, the number
of ”points“ N is limited by computational limitation.

3 The Time Evolution of LEGO Objects

In this section, we consider the new class of LEGO objects describing the time
evolution of our objects under study – a set of charged particles forming the
beam. For this purpose, we use the matrix formalism for Lie algebraic tools
suggested in [5]. This approach is based on constructive formulae for special
matrices R1k, which present the new class of LEGO objects. In the case of the
particle motion equations in the usual form of ODE’s (see eqs. (1)), the desired
solution can be written in the form [5]

X(t) =
∞∑

k=0

R1k(t|t0)X[k]
0 , (6)

42 S.N. Andrianov

where matrices R1k(t|t0) accumulate the influence of all aberration effects (aber-
rations) in the kth order of the solution expansion in (6). For ODE’s the corre-
sponding formulae for evaluation of these matrices can be written in the following
form of the matrix equations

dRjk(t|t0)
dt

=
∞∑

i=0

Pji(t)Rik(t|t0), Pij = P1(j−i+1)P(i−1)(j−1), (7)

with the following initial data

Rkk(t0|t0) = E
[k]
2n, Rjk(t0|t0) = O, ∀ j, k. (8)

Here it is necessary to mention that in the case of piecewise presentation for
the problem time interval [t0, t] =

⋃
k=1,m [tk−1, tk] (where tm = t) there is a

concatenation formula

Rik(τ |t0) =
k∑

j=i

Rij(τ |t1)Rjk(t1|t0), ∀ τ ∈ [t0, t], and Rkk =
(
R11

)[k]
.

The solution of eqs. (7) and (8) can be founded (up to necessary truncation
order) both in the numerical and symbolic modes. In the case of numerical com-
putation, some of numerical methods of ODE’s solution (for example, the most
popular Runge–Kutta methods) are used. In the symbolic mode, the different
types of formulae can be used, see [9]. In the case of usual form of differential
equations, the following simplest presentation can be used

Rik(t|t0) =
k∑

j=i+1

t∫
t0

Rii(t|τ)PijRjk(τ |t0)dτ. (9)

In the case of Hamiltonian motion equation, we can evaluate the matrices Pij

for Hamiltonian equations (see eq. (4)) and then integrate according to (9). For
some applications it is useful to know the matrices Tik(t0|t) generated by the
inverse map T =M−1. These matrices can be evaluated using the generalized
Gauss algorithm [9].

The second approach is based on the Lie map presentation for the correspond-
ing Hamiltonian equations. According to this approach we write

X(t) =M(t|t0) ◦X0,

whereM(t|t0) is the Lie operator (see [2]) for eq. (3). Thus, we have the following
operator equation

dM(t|t0)
dt

= LH ◦M(t|t0), (10)

where LH = − (∂H/∂X)T J0∂/∂X.

A Modular Approach for Beam Line Design 43

Using the matrix formalism tools (see details in [5] and [9]) we can write

M(t|t0) ◦X0 =
∞∑

k=1

M1k(t|t0)X[k]
0 .

The algorithm for the matrix M1k(t|t0) evaluation is described in detail in the
book [9]. For necessary evaluations one can use some of factorization formulae
(for example, the well known Dragt–Finn factorization [11]). LetM≤k denote the
following Lie mapM≤k =Mk ◦ · · ·◦M2◦M1 andMk(t|t0) = expLGk(t|t0) and
vector functions Gk can be evaluated according to the Dragt–Finn factorization
and [9]. Then, for example, we can write

M≤3 ◦X = M11

(
X +

3∑
m=2

∞∑
k=1

Pk1
m

k!
X[k(m−1)+1]+

+
∞∑
l=1

∞∑
k=1

1
k!l!

Pkl
2 P

l (k+1)
3 X[2l+k+1]

)
,

where

Pk l
m =

k∏
j=1

G⊕((j−1)(m−1)+l)
m , Gk = GkX[k].

So, we can write the following truncated formulae for M12 and M13:

M≤2 ◦X ≈M11
(
X + P11

2 X[2]
)

= M11X + M12X[2], M12 = M11 P11
2 ,

M≤3 ◦X ≈M11

(
X + P11

2 X[2] +
(

P11
3 +

1
2!

P21
2

)
X[3]

)
=

= M11X + M12X[2] + M13X[3].

M13 = M11

(
P11

3 +
1
2!

P21
2

)
.

The above described approach gives us the new LEGO objects – the matrices
R1k (for usual ODE’s) or M1k (for Hamiltonian differential equations) up to
necessary truncation order. The corresponding symbolic computation can be
evaluated up to necessary order of truncation (now some formulae up to fifth
order for several types of control elements, such as dipoles, quadrupoles, and so
on are calculated).

4 Auxiliary LEGO Objects

In the previous sections, we have described the basic classes of LEGO objects
and their mathematical presentation in the matrix formalism. But often it is

44 S.N. Andrianov

necessary to define some additional class of LEGO objects for introducing some
additional demands to models. In this section, we describe (as an example of
similar objects) the matrices describing nonlinear aberrations up to some order
K.

The first class of matrix LEGO objects consists of some auxiliary matrices
needed for our computational procedures. For example, “inverse” variants T1k

(and Tik, i ≤ k) for matrices R1k M1k are often used. These matrices are eval-
uated in a symbolic mode (using generalized Gauss’s algorithm) and kept in
abstract forms, which are integrated to a special data base for control elements
of different nature.

The second class of “abstract” matrices is composed of matrices Q1k, where
M1k(t|t0) = M11(t|t0)Q1k(t|t0). The elements of these matrices are evaluated to
provide the symplecticity condition.

Indeed, the transfer maps generated by Hamiltonian systems obey the sym-
plectic condition, which can be in the following form

M∗(s|s0)J0M(s|s0) = J0, ∀ s ≥ s0, (11)

where J0 =
(

O E

−E O

)
is the so-called canonical symplectic matrix, and M denotes

the Jacobian matrix:

M(s|s0) =
∂

∂XT
0

(
M(s|s0) ◦X0

)
,

The condition (11) is disturbed when we use a truncated propagator MN

instead of full propagatorM. Several symplectic integration methods have been
proposed in the literature (see, for example, [13]–[15]).

In the matrix form, the action of the truncated mapMN up to the Nth order
of nonlinearities obeys the following equation

MN (t|t0) ◦X0 =
N∑

k=1

M1k(t|t0)X[k]
0 . (12)

In contrast to full series, the symplectic condition (11) applied to a truncated
map MN will be broken. Using the matrices Q1k we can write that eq. (12) in
the form up to the Nth order of nonlinearities obeys the following equation

MN (s|s0) ◦X0 = M11(s|s0)QN(s|s0) = M11(s|s0)
N∑

k=1

Q1k(s|s0)X
[k]
0 . (13)

Using eq. (9) we can write

R1k(s|s0) = R11(s|s0)
k∑

j=2

s∫
s0

(
Rii(τ |s0)

)−1
Pij(τ)Rjk(τ |s0)dτ. (14)

A Modular Approach for Beam Line Design 45

Using eqs. (13) and (14) one can evaluate

Q1k(s|s0) =
k∑

j=2

s∫
s0

(
Rii(τ |s0)

)−1
Pij(τ)Rjk(τ |s0)dτ,

As the matrix M11(s|s0) satisfies corresponding symplecticity(
M11

)T
(s|s0)J0M11(s|s0) = J0, ∀ s ≥ s0,

then (11) constrains some conditions on elements of the matrices Q1k. In works
[7]–[10], the necessary transformations are demonstrated. As an example let us
consider one dimensional motion equations with second-order nonlinearities

X(t) = M11X0 + M12X[2]
0 = M11

(
X0 + Q12X[2]

0

)
, dimX = 2.

The symplectic condition leads to linear algebraic homogeneous equations for
matrix elements of Q12 = {qij}i=1,4,j=1,10:

Q12 =

⎡⎢⎢⎢⎢⎢⎣
q11 q12 q13 q14 q15 q16 q17 q18 q19 q110

q21 q22 q23 q15 q25 q17 q27 q19/2 2 q110 q210

q31 q32 q33 −2 q11 −2 q21 −q12 −q22 q14/2 −q15 q25/2

q32/2 2 q33 q43 −q12 −q22 q32/2 2 q33 q43 −q12 −q22

⎤⎥⎥⎥⎥⎥⎦ . (15)

Similar formulas can be obtained for any order of nonlinearities N and dimen-
sion of the phase vector X. It should be noted that similar relations decrease
the computational costs. Indeed in the case of dim X = 4 for 40 elements of
Q12 we obtain 24 restrictions, and for 80 elements for Q13 – 60 restrictions of
type (15). The analogous matrices can be calculated in symbolic forms for other
aberration orders, can be kept in a special data base, and used according to
the LEGO object paradigm. We also note that the corresponding conditions are
right for all control elements.

Numerical integration algorithms play an essential role in problems of long-
term beam evolution, stability of similar process, nonlinear non-integrable
Hamiltonian systems, and so on. Unfortunately, standard numerical integration
methods are not symplectic, and this violation of the symplectic condition (11)
can lead to some false effects, for example, spurious chaotic, dissipative behavior
and so on.

There is a set of numerical methods preserving some qualitative structure,
which adheres to the dynamical system under study. These schemes will be
noted as conservative integration schemes. It is necessary to distinguish two
similar types of integration schemes.

The first type of beam propagator evaluation is based on the universal ex-
ponential identities or relations among Lie algebra because these maps have all
requested properties. But its numerical realization loses these properties, and

46 S.N. Andrianov

it is necessary to restore desired properties for a numerical variant of this map
too. In this case, the second approach is used, which is based on the universal
schemes such as different symplectic variants for traditional numerical integra-
tion schemes (see, for example, works by J.M. San-Serna [12] and others).

So we have two approaches for map evaluations. The first is based on sym-
bolic presentation for M1k, which can be found for some restricted models for
functional s-dependence of matrices P1k(s). This set of models is defined by func-
tions family, for which there are symbolic solutions appropriate for fringe field
distribution. Among them the most familiar is the class of piecewise constant
functions. The symbolic presentation for aberration matrices M1k permits one
to realize a parametrical investigation of the beam propagator. This feature is
especially useful for optimization problems (see, for example, [16]). The second
approach is based on numerical solution of differential equations for aberration
matrices, which can be evaluated for arbitrary forms of fringe fields in the control
elements. Here we lose not only the flexibility symbolic-specific, but possibility
to keep corresponding solutions in data knowledge as LEGO objects.

5 Computational Experiments – Mass-to-Charge Ratio
Separator Design Problem

The LEGO object paradigm (shortly described above) was applied to some beam
physics problems and demonstrated enough flexibility and effectiveness. In this
paper, we consider the problem of mass-separator design with high solid angle.
The described approach allows a researcher to form an extensible sequence of
approximating models for beam systems under study.

Let us formulate basic demands made on mass-to-charge ratio m/q separator
systems.

1. To provide the transport of an initial set of particles beams, which corre-
sponds to a separate sort of particles (in our case – with different mass-to-
charge ratio. This requirement corresponds to aperture restrictions and is
closely connected with the so-called luminosity of the facility.

2. To provide the focusing procedure for each of beams having the same mass-to-
charge ratio. This condition leads us to improved particle beam registration.

3. To provide sufficient separation of beams with different m/q. The require-
ment corresponds to high quality separation of beam fractions with different
m/q.

With the help of a special software (here we used the so-called modular pro-
gramming technique) a researcher can design the system under study on a “vir-
tual work board” for a designer (see fig. 1).

This designer’s board allows us to determine all necessary parameters for
beam line under study. Every visual element of this virtual builder corresponds
to some LEGO objects. At the next step, the beam line designer evaluates the
full propagator in the linear approximation according to

R11(stot|s0) = R11(sN |sN−1) · . . . ·R11(s2|s1) ·R11(s1|s0).

A Modular Approach for Beam Line Design 47

Fig. 1. A screen-shot of designer’s “virtual work board”

(a) Dependence of distance be-
tween electrical and magnetic
dipoles d2 from initial solenoid
magnetic field Bs1 and their
length Ls

(b) Dependence of distance between
electrical and magnetic dipoles d2

from second solenoid magnetic field
Bs1 and reduced gradients of the
central quadrupole ω

Fig. 2. Examples of 3D Maple-images for a high solid angle mass-separator

Here every matrix R11(sk+1|sk) correlates with the corresponding beam control
elements as provided by the beam line. At the next steps, the designer inves-
tigates proposed variants. All described analytical calculations were realized in
different computer algebra codes (such as Maxima, Maple or Mathematica). This
permits to select more appropriate codes for problems under study. The partic-
ular attention is paid there to visualization problems. Just usage of 2D- and 3D-
representation (including animate forms) of computing results (see, for example,
Fig. 2) allows the designer to study a great number of variants of the correspond-
ing beam line structure and to select the more appropriate variants of structure
[9]. These graphical examples and their animating variants demonstrate the ef-

48 S.N. Andrianov

fectiveness of the above-described LEGO paradigm based on symbolic objects
and corresponding manipulation procedures. This approach permits to realize
the design of the solenoids-based mass-separator [9] with high resolution.
Acknowledgements. This work has been supported in part by Saint Peters-
burg State University – Subject Plan 9.0.111.2009 (Russian Federation). The
author would like to thank prof. N.S. Edamenko for several enjoyable discus-
sions. The author also thanks his postgraduate students in the Faculty of Applied
Mathematics and Control Processes Saint Petersburg State University for several
effective contribution to our collaboration. Their theoretical and programming
skills for practical realization help us to achieve very interesting results.

References

1. Cai, Y., Donald, M., Irwin, J., Yan, J.: LEGO: A Modular Accelerator Design
Code. SLAC-PUB-7642 (August 1997)

2. Dragt, A.J.: Lie Methods for Nonlinear Dynamics with Applications to Ac-
celerator Physics, p. 1805. University of Maryland, College Park (2011),
www.physics.umd.edu/dsat/

3. Dragt, A.J.: Lectures on nonlinear orbit dynamics. In: AIP Conf. Proc., vol. (87),
pp. 147–313 (1987)

4. Dragt, A.J.: Lie Algebraic Treatment of Linear and Nonlinear Beam Dynamics. In:
Annual Review of Nuclear and Particle Science, vol. 38, pp. 455–496 (1988)

5. Andrianov, S.N.: The explicit form for Lie transformations. In: Proc. Fifth Eu-
ropean Particle Accelerator Conference EPAC 1996, SITGES (Barcelona, Spain),
pp. 998–1000. Barselona (1996)

6. Andrianov, S.N.: Matrix representation of the Lie algebraic methods for design of
nonlinear beam lines. In: AIP Conf. Proc., N.Y, vol. (391), pp. 355–360 (1997)

7. Andrianov, S.N.: Symbolic computation of approximate symmetries for ordinary
differential equations. Mathematics and Computers in Simulation 57(3-5), 147–154
(2001)

8. Andrianov, S.N.: Lego-Technology Approach for Beam Line Design. In: Proc.
EPAC 2002, Paris, France, pp. 1667–1669 (2002)

9. Andrianov, S.N.: Dynamical Modeling of Control Systems for Particle Beams.
SPbSU, Saint Petersburg (2004) (in Russian)

10. Andrianov, S.N.: A role of symbolic computations in beam physics. In: Gerdt, V.P.,
Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2010. LNCS, vol. 6244, pp.
19–30. Springer, Heidelberg (2010)

11. Dragt, A.J., Finn, J.M.: Lie series and invariant functions for analytic symplectic
maps. J. Math. Phys. 17(12), 2215–2227 (1976)

12. Sanz-Serna, J.M.: Symplectic integrators for Hamiltonian problems: an overview.
Acta Numerica 1, 243–286 (1992)

13. Ruth, R.D.: A canonical integration technique. IEEE Trans. Nucl. Sci. 30, 2669
(1983)

14. Yoshida, H.: Construction of higher order symplectic integrators. Phys. Lett. A
150, 262 (1990)

15. Forest, E.: Canonical integrators as tracking codes. In: AIP Conf. Proc., vol. 184,
pp. 1106–1136. American Institute of Physics, New York (1989)

16. Andrianov, S., Edamenko, N., Podzivalov, E.: Some problems of global optimiza-
tion for beam lines. In: Proc. PHYSCON 2009, Catania, Italy, September 1-4
(2009), http://lib.physcon.ru/download/p1998.pdf

www.physics.umd.edu/dsat/

Computations on Simple Games Using RelView

Rudolf Berghammer1, Agnieszka Rusinowska2, and Harrie de Swart3

1 Institut für Informatik, Universität Kiel, 24098 Kiel, Germany
2 Centre d’Economie de la Sorbonne, CNRS – Université Paris I, 75647 Paris, France
3 Department of Philosophy, Tilburg University, 5000 LE Tilburg, The Netherlands

Abstract. Simple games are a powerful tool to analyze decision-making
and coalition formation in social and political life. In this paper we
present relational models of simple games and develop relational algo-
rithms for solving some game-theoretic basic problems. The algorithms
immediately can be transformed into the language of the Computer Al-
gebra system RelView and, therefore, the system can be used to solve
the problems and to visualize the results of the computations.

1 Introduction

In game theory (starting with [12]) a distinction is made between non-cooperative
games and cooperative games. In non-cooperative games each player (agent,
party etc.) must decide individually, while in cooperative games players are al-
lowed to act jointly and to decide within a group what strategy will be followed.

Cooperative games (see e.g. [13, 14] for an introduction) are a very useful tool
for modeling the cooperation of players and for measuring the outcome caused
by this. Simple games (also called 0/1-games) are a special class of cooperative
games. Here the numerical payoff of a coalition (a set of players) is either 1 or
0. Hence, only two classes of coalitions are possible. The winning ones (their
payoff is 1) take all and the losing ones (with payoff 0) receive nothing. This
kind of games is very important, e.g., in social choice theory, for the comparison
and measurement of influence and power of agents in decision-making processes
and for the analysis of social and political situations. In respect of the latter
application domain we refer to [8, 9, 16, 18], for example.

As demonstrated, for instance, in [10, 15], a lot of important problems on
simple games are known to be intractable in terms of complexity theory. In the
recent years we successfully have combined relation algebra (cf. [17]) and the
BDD-based specific purpose Computer Algebra system RelView (cf. [4, 5]) for
the formation of coalitions and alliances and to measure the strength of agents in
social and political networks. See [6, 7] for details. In [3] this approach is extended
to the solution of some standard problems on simple games like the detection
of some key players, the test of some fundamental properties of simple games,
and the computation of some power indices. All relation-algebraic solutions of
[3] and, hence, also the corresponding RelView-programs, base on the so-called
relational vector-model of simple games. An alternative model, called relational

V.P. Gerdt et al. (Eds.): CASC 2011, LNCS 6885, pp. 49–60, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

50 R. Berghammer, A. Rusinowska, and H. de Swart

membership-model, is only used to facilitate the input of the RelView-programs
and to visualize their computed results.

The present paper is a continuation of [3]. Besides the vector-model and the
membership-model we study a third relational model of simple games, viz. the
seat-distribution-model of the important sub-class of voting games. We also
show how some standard problems on simple games can be solved using the
membership-model instead of the vector-model. There are situations where the
membership-model is more appropriate than the vector-model. Because Rel-
View has a very efficient BDD implementation of relations, the tool is able to
deal with non-trivial simple games that, for instance, appear in practical political
life. In addition, the tool has visualization facilities which are not easily found in
other software tools and which are most helpful for fully comprehending difficult
concepts and for understanding and testing the programs. We will demonstrate
the visualization of results by an example from the present practical political
life, viz. the game that models the German parliament after the 2009 election.

2 Relational Preliminaries

We denote the set (type) of all relations with source X and target Y (i.e., the
powerset 2X×Y) by [X↔Y] and write R : X↔Y instead of R ∈ [X↔Y].
If X and Y are finite sets, then we may consider R also as a Boolean matrix.
This interpretation is well suited for many purposes and Boolean matrices are
also used as one of the graphical representations of relations within RelView.
Therefore, in this paper we often use Boolean matrix terminology and notation.
In particular, we speak of rows, columns and components/entries of relations
and write Rx,y instead of 〈x, y〉 ∈ R or xR y. We will employ the following basic
operations on relations: R (complement), R ∪ S (union), R ∩ S (intersection),
RT (transposition) and RS (composition). Furthermore, we will use the special
relations O (empty relation), L (universal relation) and I (identity relation). Here
we overload the symbols, i.e., avoid the binding of types to them.

By syq(R, S) = RT S ∩ R TS the symmetric quotient of R : X↔Y and
S : X↔Z is defined. The type of syq(R, S) is [Y ↔Z], and transforming its
definition into a component-wise notation, we have for all y ∈ Y and z ∈ Z that
syq(R, S)y,z iff for all x ∈ X it holds Rx,y iff Sx,z.

A vector is a relation v with the specific set 1 := {⊥} as target. Since in
vx,⊥ the second index ⊥ is irrelevant, we write in the following vx instead of
vx,⊥. Vectors correspond to Boolean column vectors. We say that v : X↔1
describes the subset Y of X if for all x ∈ X we have x ∈ Y iff vx. In such a
case inj(v) : Y ↔X denotes the embedding-relation of Y into X . This means
that for all y ∈ Y and x ∈ X we have inj(v)y,x iff y = x. To model sets we
also will use the relation-level equivalents of the set-theoretic symbol “∈”, i.e.,
membership-relations E : X↔ 2X defined by Ex,Y iff x ∈ Y , for all x ∈ X and
Y ∈ 2X . A combination of embedding-relations and membership-relations allows
a column-wise enumeration of a subset of a powerset. If v : 2X↔1 describes a
subset S of 2X in the sense defined above, then for all x ∈ X and Y ∈ S we

Computations on Simple Games Using RelView 51

have (E inj(v)T)x,Y iff x ∈ Y . Using Boolean matrix terminology this means that
the elements of S are described precisely by the columns of E inj(v)T : X↔S.

A non-empty vector v : X↔1 is a point if vvT ⊆ I. This means that it
describes a singleton subset of X or an element from X if we identify a singleton
set with the only element it contains. In the Boolean matrix model, hence, a point
p : X↔1 is a Boolean column vector in which exactly one entry (component)
is 1. If it describes x ∈ X , then for all y ∈ X it holds py iff x = y.

For a direct product X × Y there are the projections which decompose a
pair u = 〈u1, u2〉 into its first component u1 and its second component u2.
Within relation algebra it is very useful to consider instead of projections the
corresponding projection relations π : X×Y ↔X and ρ : X×Y ↔Y such that,
given any u ∈ X×Y , it holds πu,x iff u1 = x and ρu,y iff u2 = y. Projection
relations enable us to describe the well-known pairing operation of functional
programming relation-algebraically as follows: For given relations R : Z↔X
and S : Z↔Y we define their pairing (frequently also called fork or tupling)
[R, S] : Z↔X×Y by [R, S] := RπT∩SρT. Then for all z ∈ Z and pairs u ∈ X×Y
a simple reflection shows that [R, S]z,u iff Rz,u1 and Sz,u2 .

We also will employ a function rel (in the usual mathematical sense) which
establishes a Boolean lattice isomorphism between the types [X×Y ↔1] and
[X↔Y]. It is defined by rel(v) = πT(ρ ∩ vLT) for all vectors v : X×Y ↔1,
where π : X×Y ↔X and ρ : X×Y ↔Y are the projection relations of X × Y
and L is a universal vector of type [Y ↔1]. Using a component-wise notation,
the definition says that for all x ∈ X and y ∈ Y we have v〈x,y〉 iff rel(v)x,y.

3 The Computer Algebra System RelView

RelView (see [1, 5] is a specific purpose Computer Algebra system for the visu-
alization and manipulation of relations. In it all data are represented as relations,
which the tool visualizes in different ways. It offers several algorithms for pretty-
printing a relation for which source and target coincide as a directed graph.
Alternatively, an arbitrary relation may be displayed as a Boolean matrix which
is very useful for visual editing and also for discovering structural properties that
are not evident from a graphical presentation. Because RelView often works
on (very) large data, it uses a very efficient implementation of relations based on
reduced ordered binary decision diagrams (see [11]). E.g., a membership-relation
E : X↔ 2X requires O(|X |) BDD-vertices only. Besides it, we will also use a vec-
tor cardfilter(Q) : 2X↔1 that describes the subset {Y ∈ 2X | |Y | < Q} of 2X .
Its BDD-implementation requires O(|X |2) vertices.

The main purpose of RelView is the evaluation of relation-algebraic expres-
sions. These are constructed from the relations of its workspace using pre-defined
operations and tests and user-defined functions and programs. A RelView-
program is much like a function procedure in Modula 2, except that it only
uses relations as data type. It starts with a head line containing the program
name and the formal parameters. Then the declaration of the local relational
domains, functions and variables follows. Declarations of product domains allow

52 R. Berghammer, A. Rusinowska, and H. de Swart

to introduce projection relations and pairings. The main part of a program is the
body, a while-program over relations. As a program computes a value, it con-
tains a return-clause, which is a relation-algebraic expression whose value after
the execution of the body is the result. For instance, the RelView-programs
corresponding to the definition of rel(v) in Sect. 2 looks as follows:

rel(v,S)

DECL XY = PROD(S*S^,S^*S);

pi, rho, L

BEG pi = p-1(XY); rho = p-2(XY); L = L1n(rho)^

RETURN pi^*(rho & v*L^)

END.

In this program the declarations introduce XY as name for the direct product
X ×Y and three variables pi, rho and L. Since polymorphism is not part of the
present version of RelView, the type [X↔Y] is made available via a second
argument S of this type. Using the product domain XY, in the body the projection
relations π : X×Y ↔X and ρ : X×Y ↔Y and the universal vector L : Y ↔1
are computed and stored in pi, rho and L, respectively. The return-clause is a
direct translation of the definition of rel(v) into RelView-code.

4 Relational Models of Simple Games

A cooperative game is a pair (N, f), where N = {1, . . . , n} is the set of players
and f : 2N → R is the game’s characteristic function. A subset C of N is
called a coalition and f(C) represents its payoff. The game (N, f) is simple if
f(C) ∈ {0, 1} for all C ∈ 2N . In this case, a coalition C with f(C) = 1 is winning
and one with f(C) = 0 is losing. A function from 2N into {0, 1} can be seen as
a vector of type [2N↔1] such that the function maps C ∈ 2N to 1 iff the entry
of the vector in the row corresponding to C is 1. Hence, the above definition
immediately leads to a first relational model of simple games.

Definition 4.1. Given a simple game (N, f), a vector v : 2N↔1 is called its
relational vector-model if for all C ∈ 2N it holds f(C) = 1 iff vC .

The vector-model v : 2N↔1 of a simple game (N, f) describes the set W of the
game’s winning coalitions as subset of 2N in the sense of Sect. 2. Characteristic
functions are not the only possibility do define simple games. Another natural
way to introduce them is to use pairs (N,W) with N = {1, . . . , n} again as set
of players and W as subset of 2N that specifies the set of winning coalitions. If
we enumerate the set W via the columns of a relation as described in Sect. 2,
we obtain another relational model of simple games.

Definition 4.2. Let (N, f) be a simple game andW denote the set of its winning
coalitions. Then M : N↔W is called the game’s relational membership-model
if for all k ∈ N and C ∈ W it holds Mk,C iff k ∈ W.

Computations on Simple Games Using RelView 53

Since the columns of the membership-model enumerate the set of winning coali-
tions, with regard to the use of RelView this model is in particular appropriate
for input and output purposes. Which coalitions are winning can hardly be seen
from the vector-model. Concerning the efficiency of algorithms. experiments with
RelView have shown that in the case of a high percentage of winning coalitions
typically the vector-model is superior and for games with smaller sets of winning
coalitions prevalently the membership-model wins.

From Sect. 2 we already know how to get the membership-model from the
vector-model. This transformation is described again in the “⇒”-part of the
following theorem. In its “⇐”-part it is shown how to obtain the vector-model
back from the membership-model. For a proof of this implication, see [3].

Theorem 4.1. Let (N, f) be a simple game with setW of winning coalitions and
E : N↔ 2N be a membership-relation. If v : 2N↔1 is the game’s vector-model,
then its membership-model is M := E inj(v)T : N↔W , and if M : N↔W is the
game’s membership-model, then its vector-model is v := syq(E, M)L : 2N↔1.

Assume (N, f) to be a simple game and let w1, . . . , wn, Q be natural numbers. In
this context, Q is called the quota and wk is called the weight of player k. Then
the linear list [Q; w1, . . . , wn] constitutes a weighted realization of the game if for
all coalitions C ∈ 2N it holds that C is winning iff

∑
k∈C wk ≥ Q. A simple game

is called a weighted voting game or a weighted majority game if it has a weighted
realization. This type of simple games plays a prominent role if game theory is
used to model and analyze real political situations. See [8, 9], for example.

To obtain a specification of weighted voting games within relation algebra,
the players are interpreted as the parties of a parliament and the weights as the
number of the parliament seats the parties hold, i.e., in the very same way as in
real political life. This leads to the following seat-distribution-model.

Definition 4.3. If (N, f) is a weighted voting game with the weighted realization
[Q; w1, . . . , wn], a relation D : S↔N models the game’s seat-distribution if it
is a mapping (in terms of relation algebra this may be specified by DTD ⊆ I and
DL = L; cf. [17]), and for all k ∈ N it holds wk = |{s ∈ S | Ds,k}|.

In the concrete case of real political parties and parliaments, for all s ∈ S and
k ∈ N the relationship Ds,k (or D(s) = k in conventional notation) is interpreted
as “seat s is owned by party k”. I.e., the weight of a party equals the number of
its seats. In Theorem 4.2 we show how to obtain from the seat-distribution-model
the vector-model and, hence, via Theorem 4.1 also the membership model.

Theorem 4.2. Assume (N, f) to be a weighted voting game with the weighted
realization [Q; w1, . . . , wn] and let the mapping D : S↔N model its seat-dist-
ribution. If E : N↔ 2N and E′ : S↔ 2S are membership-relations, then the
vector-model of the game is v := syq(DE, E′) cardfilter(Q) : 2N↔1.

Proof. Let c abbreviate cardfilter(Q). From the component-wise descriptions of
c and of symmetric quotients (see Sect. 3 and 2) we get for all C ∈ 2N that

54 R. Berghammer, A. Rusinowska, and H. de Swart

vC ⇔ (syq(DE, E′) c)C

⇔ ∃X ∈ 2S : syq(DE, E′)C,X ∧ c X

⇔ ∃X ∈ 2S : syq(DE, E′)C,X ∧ |X | ≥ Q

⇔ ∃X ∈ 2S : (∀ s ∈ S : (DE)s,C ↔ E′
s,X) ∧ |X | ≥ Q

⇔ ∃X ∈ 2S : (∀ s ∈ S : (∃ k ∈ N : Ds,k ∧ Ek,C)↔ E′
s,X) ∧ |X | ≥ Q

⇔ ∃X ∈ 2S : (∀ s ∈ S : (∃ k ∈ N : Ds,k ∧ k ∈ C)↔ s ∈ X) ∧ |X | ≥ Q

⇔ ∃X ∈ 2S : X = {s ∈ S | ∃ k ∈ C : Ds,k} ∧ |X | ≥ Q

⇔ ∃X ∈ 2S : X =
⋃

k∈C{s ∈ S | Ds,k} ∧ |X | ≥ Q

⇔ |
⋃

k∈C{s ∈ S | Ds,k}| ≥ Q

⇔
∑

k∈C |{s ∈ S | Ds,k}| ≥ Q

⇔
∑

k∈C wk ≥ Q. �
If the weights are small, then it is easy to obtain the seat-distribution relation D
of a weighted voting game using RelView’s facilities for interactively construct-
ing relations on the system’s screen using command buttons and the mouse. In
the case of larger weights such a procedure may become cumbersome. Here it
is advantageous to employ the ASCII file-format of RelView in order to load
a relation W into the system that consists of the pairs 〈1, w1〉, . . . , 〈n, wn〉 and
then to apply a simple RelView-program that transforms W into D.

In practical political live the number of winning coalitions of a simple game
that models a certain situation can grow rapidly with the number of players.
Therefore, in the following example we deal with a rather small game.

Example 4.1. We consider a weighted voting game with five players, that mod-
els the parliament of Germany (the German Bundestag) after the September
2009 election. Its weighted realization is [312; 239, 146, 93, 76, 68], with 312 as
quota (for absolute majority; the number of seats of the present German parlia-
ment is 622) and then the numbers of seats of the five parties. These are, from
left to right, labeled with 1, 2, 3, 4 and 5 and correspond (in the same order) to
the parties CDU/CSU, SPD, FDP, Die Linke and Bündnis 90 / Die Grünen. All
data are taken from the official web site www.bundeswahlleiter.de.

Depicted by RelView, the membership-model M : N↔W of this game looks
as follows; in this Boolean 5 × 16 matrix a black square means a 1-entry and a
white square means a 0-entry. The row labels of M denote the players.

E.g., column 1 represents the coalition consisting of SPD, FDP and Die Linke and
column 5 represents the coalition of CDU/CSU and FDP that forms the present
German government. If we transform M into the vector-model vector v : 2N↔1,
we obtain in RelView a Boolean 32× 1 matrix in which exactly 16 entries are
1. The following two pictures show the membership-relation E : N↔ 2N and,
below it, the transpose of v, that is, the row vector vT : 1↔ 2N .

Computations on Simple Games Using RelView 55

The 32 columns of E describe all coalitions. A comparison of the pictures (here
the transposition of v is adequate) shows that the 1-entries of the vector-model
precisely designate the columns of E that belong to the membership-model.

5 Three Applications Concerning Power of Players

As already mentioned in the introduction, simple games are very useful for the
comparison and measurement of power in decision-making processes. In this
section we consider three different possibilities to describe power and show how
they can be specified using relation algebra and the membership-model. We also
demonstrate how RelView can used to evaluate the relation-algebraic specifi-
cations. Our starting point is the following notion, first introduced in [12].

Definition 5.1. A winning coalition of a simple game is minimal winning if
every proper subset is losing.

In the following theorem we show how to specify the set W� of all minimal win-
ning coalitions as a subset of the set W of all winning ones via a vector of type
[W↔1]. An immediate consequence is the column-wise enumeration of W�.

Theorem 5.1. If M : N↔W is the membership-model of a simple game, then

m := (I ∩ M TM)L : W↔1 describes the minimal winning coalitions W� as
subset of W and M� := M inj(m)T : N↔W� column-wisely enumerates W�.

Proof. In the specification of the vector m the type of L is [W↔1] and the type
of I is [W↔W]. Now, we obtain for all C ∈ W that

mC ⇔ ((I ∩ M TM)L)C

⇔ ¬∃D ∈ W : I C,D ∧ (M TM)C,D ∧ LD

⇔ ¬∃D ∈ W : C �= D ∧ (M TM)C,D

⇔ ¬∃D ∈ W : C �= D ∧ ¬∃ i ∈ N : M i,C ∧Mi,D

⇔ ¬∃D ∈ W : C �= D ∧ ∀ i ∈ N : Mi,D →Mi,C

⇔ ¬∃D ∈ W : C �= D ∧ ∀ i ∈ N : i ∈ D → i ∈ C
⇔ ¬∃D ∈ W : D ⊂ C.

This shows that m describes W� as subset of W . The second claim follows from
the fact that for all players k ∈ N and minimal winning coalitions C ∈ M� we
have (due to the component-wise description of embedding-relations in Sect. 2)

M�
k,C ⇔ (M inj(m)T)k,C

⇔ ∃D ∈ W : Mk,D ∧ inj(m)C,D

⇔ ∃D ∈ W : k ∈ D ∧ C = D
⇔ k ∈ C. �

56 R. Berghammer, A. Rusinowska, and H. de Swart

When investigating the power of players, one possibility is to identify some key
players having different strength and then to classify the set of players accord-
ingly. In this paper we consider the following key players.

Definition 5.2. Player k of a simple game is a dictator if {k} is the only
minimal winning coalition, a veto player if it belongs to all minimal winning
coalitions, and a dummy player if it does not belong to any minimal winning
coalition.

A dictator is the most powerful player of a simple game. He can enforce any
decision without help of the other players. There exists at most one dictator. A
veto player is needed to win, but he cannot win on his own. If, however, any
coalition that contains this player is winning, then he is a dictator. Finally, a
dummy player is a player without any power. Next, we present relation-algebraic
specifications of these key players.

Theorem 5.2. Let the relation M� : N↔W� be as in Theorem 5.1 If we define
a := syq(I, M�) I L : N↔ 1, b := M� L : N↔ 1 and c := M�L : N↔1, then
for all players k ∈ N it holds that it is a dictator iff ak, a veto player iff bk, and
a dummy player iff ck.

Proof. Notice, that in the specification of a besides L : W�↔1 two different
identity relations appear, viz. I : N↔N in syq(I, M�) and I : W�↔W� in I L .
Now, the first claim follows from the calculation

ak ⇔ (syq(I, M�) I L)k

⇔ ∃C ∈ W� : syq(I, M�)k,C ∧ (I L)C

⇔ ∃C ∈ W� : (∀ i ∈ N : Ii,k ↔M�
i,C) ∧ ¬∃D ∈ W� : I C,D ∧ LD

⇔ ∃C ∈ W� : (∀ i ∈ N : i = k ↔ i ∈ C) ∧ ¬∃D ∈ W� : C �= D
⇔ ∃C ∈ W� : C = {k} ∧ ¬∃D ∈ W� : C �= D
⇔ k is a dictator

that uses the component-wise description of symmetric quotients given in Sect.
2. The relation L in the specification of b has type [W�↔1], too, and

bk ⇔ (M� L)k

⇔ ¬∃C ∈ W� : ¬M�
k,C ∧ LC

⇔ ∀C ∈ W� : M�
k,C

⇔ ∀C ∈ W� : k ∈ C
⇔ k is a veto player

is a proof of the second claim. The third claim can be shown in a similar way. �
We have translated the relation-algebraic specifications given in the last two
theorems into RelView-code. Then we have applied the RelView-programs
to the relations of the game of Example 4.1. Here are the results.

Example 5.1. For the parliament of Germany RelView computed the re-
sults given in the following pictures. The two leftmost pictures show again the
membership-model and, below it, the transpose of the vector m :W↔1.

Computations on Simple Games Using RelView 57

The four 1-entries of the row vector mT : 1↔W precisely designate those rows
of M which represent minimal winning coalitions. If we assemble these four rows
in form of a new matrix, we obtain the column-wise enumeration M� : N↔W�

given in the next picture as Boolean 5×4 matrix. The remaining three vectors of
type [N↔1] describe, from left to right, the sets of dictators, veto players and
dummy players, respectively. Hence, in the present German parliament there
exists neither a dictator nor a veto player. But there is a dummy player, viz.
Bündnis 90 /Die Grünen.

Another means for measuring power is the desirability relation. It directly com-
pares two players with regard to the strength of forming winning coalitions.

Definition 5.3. Let (N, f) be a simple game with W as set of winning coali-
tions. Then j ∈ N is at least as desirable as i ∈ N , denoted by i �D j, if for all
C ∈ 2N from i, j /∈ C and C ∪ {i} ∈ W it follows C ∪ {j} ∈ W.

In words i �D j says that if i can form a winning coalition with some further
players, then j can do either. The desirability relation �D is a pre-order on the
players. With its help a lot of problems on simple games easily can be solved.
E.g., �D is linear iff the game is swap-robust, which means that a one-for-one
exchange of players between two winning coalitions leaves at least one of them
winning. Next, we show how to specify i �D j by means of relation algebra.

Theorem 5.3. Let M : N↔W be the membership model of a simple game and
assume the players i, j ∈ N to be described by the points p, q : N↔1, respecti-
vely. If E : N↔ 2N is a membership-relation, then i �D j is equivalent to the
inclusion ETp ∩ ETq ∩ syq(E ∪ pL, M)L ⊆ syq(E ∪ qL, M)L.

Proof. Since the point p describes player i, we have for all C ∈ 2N that

(ETp)C ⇔ ¬∃ k ∈ N : Ek,C ∧ pk ⇔ ¬∃ k ∈ N : k ∈ C ∧ k = i ⇔ i /∈ C

(for the second step, see Sect. 2) and also that (the L in pL has type [1↔ 2N]
and the L composed from the right to the symmetric quotient has type [W↔1])

(syq(E ∪ pL, M)L)C ⇔ ∃D ∈ W : syq(E ∪ pL, M)C,D ∧ LD

⇔ ∃D ∈ W : ∀ k ∈ N : (Ek,C ∨ pk)↔Mk,D

⇔ ∃D ∈ W : ∀ k ∈ N : (k ∈ C ∨ k = i)↔ k ∈ D
⇔ ∃D ∈ W : C ∪ {i} = D
⇔ C ∪ {i} ∈ W .

The latter derivation employs the component-wise description of symmetric quo-
tients given in Sect. 2. In the same way for all C ∈ 2N we get the equivalence of

58 R. Berghammer, A. Rusinowska, and H. de Swart

(ETq)C and j /∈ C and of (syq(E ∪ qL, M)L)C and C ∪ {j} ∈ W from the fact
that the point q describes player j. Using the just shown equivalences in

i �D j ⇔ ∀C ∈ 2N : i /∈ C ∧ j /∈ C ∧C ∪ {i} ∈ W → C ∪ {j} ∈ W
⇔ ∀C ∈ 2N : (ETp ∩ ETq ∩ syq(E ∪ pL, M)L)C → (syq(E ∪ qL, M)L)C

⇔ ETp ∩ ETq ∩ syq(E ∪ pL, M)L ⊆ syq(E ∪ qL, M)L,

we obtain the claimed result. �

As a consequence we get the desirability relation �D : N↔N as the union of
all compositions pqT, where p and q range over all points from [N↔1] such
that the right-hand side of Theorem 5.3 holds. This algorithm easily can be
implemented in RelView via two nested loops. From �D two further relations
on players are derived, viz. the more desirability relation ≺D as intersection of
�D and the complement of its transpose, and the equal desirability relation ≡D

as intersection of �D and its transpose.

Example 5.2. Let us consider again the simple game introduced in Example
4.1. The following pictures show, from left to right, the relations �D, ≺D and
≡D as computed by RelView:

Even though the players 2, 3 and 4 have different weights, they are equally
desirable. Such players are also called symmetric.

Indices are a third means to measure power. A well-established index goes back
to [2]. Under the assumption that all coalitions are equally likely and that each
player votes ‘yes’ or ‘no’ with probability 1

2 , the power of k is defined as the
probability that k is decisive for the outcome. If all indices are normalized in
such a way that their sum equals to 1, this leads to the following specification.

Definition 5.4. Let (N, f) be a simple game with set of winning coalitions W.
Then the pair 〈k, C〉 ∈ N × W is called a swing if k ∈ C and C \ {k} /∈ W.
The Banzhaf power index of k ∈ N is defined as ηk

η , where ηk is the number of
swings with first component k and η is the number of all swings.

If we have a relation B : N↔W at hand that precisely contains the swings of a
simple game, then ηk equals the number of 1-entries of row k of B and η equals
the total number of 1-entries of B. The next theorem presents a relation-algebraic
specification of this relation.

Theorem 5.4. Assume M : N↔W to be the membership model of a simple
game. If we define B := M ∩ rel(syq([I , M], M)L) : N↔W , then for all k ∈ N
and C ∈ W the pair 〈k, C〉 is a swing iff Bk,C .

Proof. Notice that in the definition of B the relations I and L have the types
[N↔N] and [W↔1], respectively. We start the proof with

Computations on Simple Games Using RelView 59

(syq([I , M], M)L)〈k,C〉 ⇔ ∃D ∈ W : syq([I , M], M)〈k,C〉,D ∧ LD

⇔ ∃D ∈ W : ∀ i ∈ N : [I , M]i,〈k,C〉 ↔Mi,D

⇔ ∃D ∈ W : ∀ i ∈ N : (I i,k ∧Mi,C)↔Mi,D

⇔ ∃D ∈ W : ∀ i ∈ N : (i �= k ∧ i ∈ C)↔ i ∈ D
⇔ ∃D ∈ W : C \ {k} = D
⇔ C \ {k} ∈ W ,

using the component-wise descriptions of symmetric quotients and pairings given
in Sect. 2. If we combine this result with the component-wise description of the
function rel given in Sect. 2, too, we can complete the proof by

Bk,c ⇔ (M ∩ rel(syq([I , M], M)L))k,C

⇔ Mk,C ∧ ¬rel(syq([I , M], M)L)k,C

⇔ k ∈ C ∧ ¬(syq([I , M], M)L)〈k,C〉
⇔ k ∈ C ∧C \ {k} /∈ W
⇔ 〈k, C〉 is a swing . �

If the RelView tool depicts B as a Boolean matrix in the relation-window, then
in the window’s status bar the number of 1-entries of B is shown. Furthermore,
it is able to mark the rows and columns of B for explanatory purposes. So far, we
have only shown the possibility to attach consecutive row and column numbers
to relations. But also the numbers of 1-entries can be attached as labels. This
immediately allows to compute Banzhaf power indices using the tool.

Example 5.3. The following picture shows the relation-window of RelView,
where the swing-relation B : N↔W for the parliament of Germany is depicted.

From the message [24 entries] at the bottom of this window and the second
components of the row labels we obtain the following Banzhaf power indices:
CDU/CSU 12

24 , SPD 4
24 , FDP 4

24 , Die Linke 4
24 and Bündnis 90 /Die Grünen 0

24 .

6 Conclusions

In spite of the fact that RelView implements relations very efficiently, due of
its general approach it cannot compete with special algorithms tailored for hard
game-theoretic problems. Such algorithms even can tackle games like the US
Federal System game with 537 players. We believe that the real attraction of
RelView lies in its flexibility: New types and properties of games are intro-
duced all the time and RelView proved to be ideal for experimenting with new

60 R. Berghammer, A. Rusinowska, and H. de Swart

concepts while avoiding unnecessary overhead. By now, systematic experiments
are accepted as means for obtaining new scientific insights and results, and tools
for this purpose become increasingly important as one proceeds in investigations.

In those cases where the present RelView tool is not effective, all hope is
not lost. By our experiments we have noticed that in many cases the BDDs
of the results are relatively small. This led to the insight that BDDs are an
excellent means for solving efficiently game-theoretic problems, especially if they
are manipulable in full generality and not only indirectly via the language of
RelView. Consequently, the current direction in the development of RelView
is to make it more extensible by expanding its interface in such a way that it
is possible to outsource program logic into plug-ins. By specific game-theoretic
plug-ins we hope to be able to treat successfully in the future also large problems.

References

[1] http://www.informatik.uni-kiel.de/~relview.shtml
[2] Banzhaf, J.F.: Weighted voting doesn’t work: A mathematical analysis. Rutgers

Law Review 19, 317–343 (1965)
[3] Berghammer, R., Bolus, S., Rusinowska, A., de Swart, H.: A relation-algebraic

approach to simple games. Europ. J. Operat. Res. 210, 68–80 (2011)
[4] Berghammer, R., Braßel, B.: Computing and visualizing closure objects using

relation algebra and relView. In: Gerdt, V.P., Mayr, E.W., Vorozhtsov, E.V.
(eds.) CASC 2009. LNCS, vol. 5743, pp. 29–44. Springer, Heidelberg (2009)

[5] Berghammer, R., Neumann, F.: RelView – An OBDD-Based Computer Algebra
System for Relations. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V., et al.
(eds.) CASC 2005. LNCS, vol. 3718, pp. 40–51. Springer, Heidelberg (2005)

[6] Berghammer, R., Rusinowska, A., de Swart, H.: Applying relational algebra and
RelView to coalition formation. Europ. J. Operat. Res. 178, 530–542 (2007)

[7] Berghammer, R., Rusinowska, A., de Swart, H.: An interdisciplinary approach to
coalition formation. Europ. J. Operat. Res. 195, 487–496 (2009)

[8] van Deemen, A.: Dominant players and minimum size coalitions. Europ. J. Polit.
Res. 17, 313–332 (1989)

[9] van Deemen, A.: Coalition formation in centralized policy games. J. Theoret.
Polit. 3, 139–161 (1991)

[10] Elkind, E., Goldberg, L.A., Goldberg, P.W., Wooldridge, M.: On the computa-
tional complexity of weighted voting games. Ann. Math. Artif. Intell. 56, 109–131
(2009)

[11] Leoniuk, B.: ROBDD-basierte Implementierung von Relationen und relationalen
Operationen mit Anwendungen. Diss., Univ. Kiel (2001)

[12] von Neumann, J., Morgenstern, O.: Theory of games and economic behaviour.
Princeton University Press, Princeton (1944)

[13] Peleg, B., Sudhölter, P.: Introduction to the theory of cooperative games. Springer,
Heidelberg (2003)

[14] Peters, H.: Game theory: A Multi-leveled approach. Springer, Heidelberg (2008)
[15] Prasad, K., Kelly, J.S.: NP-completeness of some problems concerning voting

games. Int. J. Game Theory 19, 1–9 (1990)
[16] van Roozendaal, P.: Centre parties and coalition cabinet formations: a game the-

oretic approach. Europ. J. Polit. Res. 18, 325–348 (1990)
[17] Schmidt, G., Ströhlein, T.: Relations and graphs. Springer, Heidelberg (1993)
[18] Taylor, A.D.: Mathematics and politics. Springer, Heidelberg (1995)

http://www.informatik.uni-kiel.de/~relview.shtml

On the Regularity Property of Differential

Polynomials Modulo Regular Differential
Chains�

François Boulier1, François Lemaire1, and Alexandre Sedoglavic1

Université Lille I, LIFL, 59655 Villeneuve d’Ascq, France
Francois.Boulier@univ-lille1.fr,

{Francois.Lemaire,Alexandre.Sedoglavic}@lifl.fr

Abstract. This paper provides an algorithm which computes the nor-
mal form of a rational differential fraction modulo a regular differential
chain if, and only if, this normal form exists. A regularity test for polyno-
mials modulo regular chains is revisited in the nondifferential setting and
lifted to differential algebra. A new characterization of regular chains is
provided.

1 Introduction

This paper is concerned by methods for deciding whether a polynomial f (mul-
tivariate, over a field, say, Q) is regular (i.e. not a zerodivisor) modulo a polyno-
mial ideal defined by a regular chain C, which is a set of polynomials. For casual
readers, this regularity property may seem quite exotic, compared to (say) the
membership property to polynomial ideals. It is however very important and is
pretty much related to the problem of computing the solutions of the system
of polynomial equations C = 0. For instance, if f is proved to be a zerodivisor,
then a factorization of some element of C is exhibited, which permits to split
the set of equations to be solved, into two simpler sets. Moreover, as we shall
see, regularity testing is strongly related to the problem of computing normal
forms of polynomials modulo the ideal defined by the regular chain C, which
are canonical representatives of the residue class ring defined by C. These com-
ments are stated in the nondifferential case, for simplicity. However, they all have
a counterpart for polynomial differential equations, i.e. in differential algebra.

Normal forms have many applications. In differential algebra, they make it
easier to compute power series solutions, as pointed out in [2]. In both non-
differential and differential algebra, they permit to search linear dependencies
between rational fractions modulo regular chains, by searching linear dependen-
cies between their normal forms, modulo “nothing” (one of the key ideas of [10],

� This work has benefited from the support of the French ANR (decision number ANR-
2010-BLAN-0109-03). It benefited also of many exchanges with Markus Rosenkranz
and Georg Regensburger.

V.P. Gerdt et al. (Eds.): CASC 2011, LNCS 6885, pp. 61–72, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

62 F. Boulier, F. Lemaire, and A. Sedoglavic

developed in the differential case in [3]). The very same principle, applied on the
derivatives of rational differential fractions, may help to find first integrals.

The motivation for this paper comes from very fruitful remarks of a few re-
viewers of [2]. In that paper, a normal form algorithm is given for rational differ-
ential fractions modulo regular differential chains [2, Figure 2, Algorithm NF].
This normal form algorithm ultimately relies on an algorithm for computing the
inverse of a nondifferential polynomial, modulo the ideal defined by a nondiffer-
ential regular chain. However, the algorithm provided in [2] may fail to compute
the inverse, even if the inverse does exist [2, last comments of section 4]. A few
reviewers of [2] then asked if it is possible to provide a complete algorithm, based
on regular chains related methods1, for computing normal forms if, and only if,
these normal forms exist. In this paper, we provide the following results:

1. a complete normal form algorithm (Figure 1 and Theorem 4) ;
2. a revisited algorithmic characterization of the polynomials which are regular

modulo the ideal defined by a nondifferential regular chain (Theorem 1) and
its generalization in differential algebra (Theorem 3) ;

3. a new characterization of regular chains (Theorem 2).

The first result is an answer to the reviewers request. The second one improves
former results of [18] and [8] in the nondifferential setting. It completes the proof
of [14, Theorem 2.4] and extends this theorem in differential algebra. The third
one permits to generalize [14, Theorem 2.4] and [1, Theorem 6.1].

2 Basics of Differential Algebra

The reference books are [16] and [13]. A differential ring R is a ring endowed
with finitely many, say m, abstract derivations δ1, . . . , δm i.e. unary operations
which satisfy the following axioms, for each derivation δ:

δ(a + b) = δ(a) + δ(b), δ(a b) = δ(a) b + aδ(b), (∀ a, b ∈ R)

and which are assumed to commute pairwise. This paper is mostly concerned
with a differential polynomial ring R in n differential indeterminates u1, . . . , un

with coefficients in a commutative differential field K of characteristic zero, say
K = Q. Letting U = {u1, . . . , un}, one denotes R = K{U}, following Ritt
and Kolchin. The set of derivations generates a commutative monoid w.r.t. the
composition operation. It is denoted:

Θ = {δa1
1 · · · δam

m | a1, . . . , am ∈ N}

where N stands for the set of the nonnegative integers. The elements of Θ are
the derivation operators. The monoid Θ acts multiplicatively on U , giving the
infinite set ΘU of the derivatives.
1 Observe that, in principle, each required inverse could be easily obtained by using
Rabinowitsch’s trick and by running the Buchberger algorithm. However, Gröbner
bases are not regular chains related methods. Moreover, the method could be costly.

On the Regularity Property of Differential Polynomials 63

If A is a finite subset of R, one denotes (A) the smallest ideal containing A
w.r.t. the inclusion relation and [A] the smallest differential ideal containing A.
Let A be an ideal and S = {s1, . . . , st} be a finite subset of R, not containing
zero. Then

A : S∞ = {p ∈ R | ∃ a1, . . . , at ∈ N, sa1
1 · · · sat

t p ∈ A}

is called the saturation of A by the multiplicative family generated by S. The
saturation of a (differential) ideal is a (differential) ideal [13, chapter I, Corollary
to Lemma 1].

Fix a ranking, i.e. a total ordering over ΘU satisfying some properties [13,
chapter I, section 8]. Consider some differential polynomial p /∈ K. The highest
derivative v w.r.t. the ranking such that deg(p, v) > 0 is called the leading
derivative of p. It is denoted ld p. The leading coefficient of p w.r.t. v is called
the initial of p. The differential polynomial ∂p/∂v is called the separant of p. If
C is a finite subset of R \ K then IC denotes its set of initials, SC denotes its
set of separants and HC = IC ∪ SC .

A differential polynomial q is said to be partially reduced w.r.t. p if it does not
depend on any proper derivative of the leading derivative v of p. It is said to be
reduced w.r.t. p if it is partially reduced w.r.t. p and deg(q, v) < deg(p, v). A set
of differential polynomials of R \K is said to be autoreduced if its elements are
pairwise reduced. Autoreduced sets are necessarily finite [13, chapter I, section 9].
To each autoreduced set C, one may associate the set L = ldC of the leading
derivatives of C and the set N = ΘU \ ΘL of the derivatives which are not
derivatives of any element of L (the derivatives “under the stairs” defined by C).

The following definition is borrowed from [2, Definition 3.1].

Definition 1. The set C = {c1, . . . , cn} is a regular differential chain if it sat-
isfies the following conditions:

a the elements of C are pairwise partially reduced and have distinct leading
derivatives ;

b for each 2 ≤ k ≤ n, the initial ik of ck is regular in K[N ∪ L]/(c1, . . . , ck−1) :
(i1 · · · ik−1)∞ ;

c for each 1 ≤ k ≤ n, the separant sk of ck is regular in K[N ∪ L]/(c1, . . . , ck) :
(i1 · · · ik)∞ ;

d for any pair {ck, c�} of elements of C, whose leading derivatives θku and θ�u
are derivatives of some same differential indeterminate u, the Δ-polynomial

Δ(ck, c�) = s�
θk�

θk
ck − sk

θk�

θ�
c� ,

where θk� denotes the least common multiple of θk and θ�, is reduced to zero
by C, using Ritt’s reduction algorithm [13, chapter I, section 9].

Triangularity plus condition b is the regular chain condition of [1]. Autoreduced
regular differential chains are the same objects as Ritt characteristic sets. See
[2, Proposition 3.2].

64 F. Boulier, F. Lemaire, and A. Sedoglavic

3 The Normal Form of a Rational Differential Fraction

All the results of this section are borrowed from [2]. Let C be a regular differential
chain of R, defining a differential ideal A = [C] : H∞

C . Let L = ldC and N =
ΘU \ΘL. The normal form of a rational differential fraction is introduced in [2,
Definition 5.1 and Proposition 5.2], recalled below.

Definition 2. Let a/b be a rational differential fraction, with b regular mod-
ulo A. A normal form of a/b modulo C is any rational differential fraction f/g
such that

1 f is reduced with respect to C ;
2 g belongs to K[N] (and is thus regular modulo A),
3 a/b and f/g are equivalent modulo A (in the sense that a g − b f ∈ A).

Proposition 1. Let a/b be a rational differential fraction, with b regular mod-
ulo A. The normal form f/g of a/b exists and is unique. In particular,

4 a belongs to A if and only if its normal form is zero ;
5 f/g is a canonical representative of the residue class of a/b in the total fraction

ring of R/A.

Moreover,

6 each irreducible factor of g divides the denominator of an inverse of b, or of
some initial or separant of C .

Recall that the normal form algorithm relies on the computation of inverses of
differential polynomials, defined below.

Definition 3. Let f be a nonzero differential polynomial of R. An inverse of f
is any fraction p/q of nonzero differential polynomials such that p ∈ K[N ∪ L]
and q ∈ K[N] and f p ≡ q mod A.

4 On the Regularity Property of Polynomials

Though this section only addresses algebraic (i.e. nondifferential) questions, we
state it with the terminology of the differential algebra. Consider a triangular
set C in the polynomial ring S = K[N ∪ L]. The ideal defined by C, in S, is
B = (C):I∞C . Assume that C = {c1, . . . , cn}, that the leading derivative (leading
variable) of ck is xk and that x1 < · · · < xn. It is possible to define the iterated
resultant of any polynomial f w.r.t. C as follows. See [18, Definition 5.2] or [19,
Definition 1.2]. See [8, Definition 4] or [15, Definition 1] for a close definition.
See [7] for a definition in a more general setting.

res(f, C) = res(· · · res(f, cn, xn), . . . , c1, x1) (1)

where res(f, ck, xk) denotes the usual resultant of f and ck w.r.t. xk. The next
lemma is borrowed from [18, Lemma 5.2]. Together with the two following ones,
it prepares the proof of Theorem 1.

On the Regularity Property of Differential Polynomials 65

Lemma 1. Let f be any polynomial. There exist polynomials p, q1, . . . , qn such
that

p f = q1 c1 + q2 c2 + · · ·+ qn cn + res(f, C) . (2)

Proof. By [17, section 5.8, identity (5.21)], there exist two polynomials pn and gn

such that

pn f = gn cn + res(f, cn, xn) . (3)

There exist two polynomials pn−1 and gn−1 such that

pn−1 res(f, cn, xn) = gn−1 cn−1 + res(res(f, cn, xn), cn−1, xn−1) (4)

hence such that

pn−1 pn f = pn−1 gn cn + gn−1 cn−1 + res(res(f, cn, xn), cn−1, xn−1) . (5)

Continuing, we obtain (2).

The two following lemmas are easy.

Lemma 2. Let f, g be two polynomials. Then res(f g, C) = res(f, C) res(g, C).

Proof. By induction on the number n of elements of C. If n = 1 then the lemma
is the well-known multiplicativity property of resultants. See [9, section 3.1, ex-
ercises 3, 8 and 10] or [7, page 349]. If n > 1, assume inductively that the lemma
holds for Cn−1 = {c1, . . . , cn−1}. Then res(f g, C) = res(res(f g, cn, xn), Cn−1).
Then, by the induction hypothesis and the multiplicativity property of resul-
tants, res(f g, C) is equal to res(res(f, cn, xn), Cn−1) res(res(g, cn, xn), Cn−1),
which, in turn, is equal to res(f, C) res(g, C).

Lemma 3. Let 2 ≤ k < n be an index and f be any polynomial such that
deg(f, x�) = 0, for k < ≤ n. There exists a positive integer m such that
res(f, C) = res(f, Ck)m.

Proof. It is an easy consequence of Lemma 2 and of the fact that, if deg(f, x) = 0
and deg(g, x) > 0 then res(f, g, x) = fdeg(g, x).

In the sequel, a polynomial f ∈ S is said to be regular modulo B (recall B = (C):
I∞C) if it is a regular element of the ring S/B. Regular elements and zerodivisors
of a ring are defined as in [21, chapter I, § 5].

Theorem 1. Assume C is a regular chain. A polynomial f is regular modulo B
if, and only if, res(f, C) �= 0. Together with the iterated resultant q = res(f, C),
one can compute a polynomial p such that

p f = q mod B

If f is a zerodivisor modulo B then q = 0, else p/q is an inverse of f modulo B.

66 F. Boulier, F. Lemaire, and A. Sedoglavic

Proof. The triangularity of C ensures that res(f, C) ∈ K[N]. Thus, if the first
part of the Theorem is proved, the second one follows immediately by Lemma 1.

In order to prove the first part of the Theorem, we first show that we can
reduce our problem to the zerodimensional case2. Denote S0 = K(N)[L], and
B0 = (C) : I∞C in the ring S0. By [5, Theorem 1.6], the multiplicative family
of the nonzero elements of K[N], is regular modulo B. Thus the ring S0/B0

is a subring of the total ring of fractions of S/B [21, chapter IV, § 9]. Thus, f
is regular modulo B in S if, and only if, f/1 is regular modulo B0 in S0 [21,
chapter I, § 19, Corollary 1].

Assume C is a regular chain in S. Then it is a zerodimensional regular chain
in S0. By [8, Lemma 4], an element f/1 is regular modulo B0 in S0 if, and only
if, res(f, C) �= 0. Therefore, a polynomial f is regular modulo B if, and only if,
res(f, C) �= 0.

The next three lemmas prepare Theorem 2, which gives a necessary and sufficient
condition that a triangular set C needs to satisfy in order to be a regular chain.
Thus, recall that C is only supposed to be a triangular set.

Lemma 4. Assume B is proper. Let f be any polynomial. If res(f, C) �= 0
then f is regular modulo B.

Proof. Let p be any associated prime ideal of B (such a p exists for B is proper).
Take Formula (2) modulo p. The triangularity of C implies that res(f, C) ∈
K[N]. By [5, Theorem 1.6] and the hypothesis, res(f, C) �= 0 mod p. Since the
elements of C are zero modulo p, the polynomial f is nonzero modulo p, i.e. is
regular modulo B by [21, chapter IV, § 6, Corollary 3].

The following lemma is new.

Lemma 5. Assume B is proper. Assume that, for any polynomial f which is
regular modulo B, we have res(f, C) �= 0. Then C is a regular chain.

Proof. The initials of the elements of C = {c1, . . . , cn} are regular modulo B by
[21, chapter IV, § 6, Corollary 3, and § 10, Theorem 17] and the fact that B is
proper. Thus, by assumption, for each 1 ≤ k ≤ n, we have res(ik, C) �= 0, where
ik denotes the initial of ck. Thus, by Lemma 3 and the fact that deg(ik, x�) = 0
for k ≤ ≤ n, we have res(ik, Ck−1) �= 0, where Ck−1 = {c1, . . . , ck−1}. Then,
by Lemma 4, the initial ik is regular modulo (Ck−1) : I∞Ck−1

. Thus C is a regular
chain.

The following lemma is part of [8, Theorem 1].

Lemma 6. Let h denote the product of the initials of the elements c2, . . . , cn

of C. If res(h, C) �= 0 then C is a regular chain.

Proof. Denote Ck = {c1, . . . , ck}, for 1 ≤ k ≤ n. By Lemma 2, Lemma 3 and
the hypothesis, res(ik, Ck−1) �= 0, for all 2 ≤ k ≤ n. The ideal (C1) : I∞C1

is

2 We are actually proving a very close variant of [5, Theorem 1.1].

On the Regularity Property of Differential Polynomials 67

proper. By Lemma 4, and the fact that res(i2, C1) �= 0, the initial i2 is regular
modulo (C1) : I∞C1

. The set C2 is thus a regular chain and (C2) : I∞C2
is proper.

By Lemma 4, and the fact that res(i3, C2) �= 0, the initial i3 is regular modulo
(C2) : I∞C2

. Continuing, one concludes that C is a regular chain.

In the following theorem, the implication 2⇒ 1 is new. The equivalence between
the other points is a consequence of [8, Theorem 1] and [14, Theorem 2.4].

Theorem 2. Let C be a triangular set. The three following properties are
equivalent.

1. C is a regular chain ;
2. a polynomial f is regular modulo B if, and only if, res(f, C) �= 0 ;
3. res(h, C) �= 0, where h denotes the product of the initials of the elements

c2, . . . , cn of C.

Proof. The implication 1 ⇒ 2 is a corollary to Theorem 1. The implication
2⇒ 1: since res(1, C) �= 0 for any triangular set C, Property 2 implies that B is
proper ; the implication is thus a corollary to Lemma 5. The implication 3⇒ 1
is Lemma 6. The implication 2⇒ 3: Property 2 implies that B is proper ; thus h
is regular modulo B by [21, chapter IV, § 6, Corollary 3, and § 10, Theorem 17].
Thus res(h, C) �= 0.

Comparison of Theorem 1 with other works. Inspecting the proof of Lemma 6,
we see that Property 3 is equivalent to [19, Definition 1.3 (normal ascending
chains)], which refers to [20], i.e. that res(ik, C) �= 0 for 2 ≤ k ≤ n, where ik
denotes the initial of ck. Therefore, normal ascending chains and regular chains
are exactly the same objects.

An algorithm for computing the inverse of a polynomial modulo a regular
chain can be found in [15, Algorithm 3]. This algorithm relies on the hypothesis
that the polynomial to be inverted is regular modulo the ideal defined by the
chain. It relies on a different method (linear system solving) and is not proved.

Another algorithm for computing the inverse of a polynomial modulo a regular
chain can be found in [6, Algorithm Invert]. It is based on a Gröbner basis
computation. It is based on Kalkbrener’s definition of regular chains [12] and
thus computes an inverse of a polynomial modulo the intersection of all the
prime ideals which contain the ideal defined by the chain, which have dimension
|N | and do not meet the multiplicative family M generated by the nonzero
elements of K[N], i.e. modulo the radical of the ideal defined by the regular
chain. However, [6] misses [5, Theorem 1.6] which implies that B has the same
set of associated prime ideals as its radical, hence that the computed inverse also
is an inverse modulo B.

Theorem 1 enhances [8, Lemma 4] which is stated in the zerodimensional case
only, and does not provide the inverse computation.

Theorem 1 enhances also [18, Proposition 5.3]. Indeed, this Proposition states
that res(f, C) �= 0 if, and only if, the polynomial f does not annihilate on any
“regular zero” of C, where “regular zeros” are defined as generic zeros of the

68 F. Boulier, F. Lemaire, and A. Sedoglavic

associated prime ideals of B which have dimension |N | and do not meet the
multiplicative family M generated by the nonzero elements of K[N] (see [18,
Definition 5.1]). However, [18] misses [5, Theorem 1.6] which states that this
property is held by all the associated prime ideals of B. See the comments on
[6, Algorithm Invert].

The fact that a polynomial f is regular modulo B if, and only if, res(f, C) �= 0
is already stated in [14, Theorem 2.4]. However, the proof of that Theorem just
refers to [8] and [18] and thus misses the use of [5, Theorem 1.6].

Relationship between Theorem 1 and [5, Theorem 1.6]. Theorem 1 implies “eas-
ily” [5, Theorem 1.6] in the particular case of regular chains, i.e. that the asso-
ciated prime ideals of B have dimension |N | and do not meet the multiplicative
family M generated by the nonzero elements of K[N]. This remark is interest-
ing for [5, Theorem 1.6] is one of the most difficult results of the regular chains
theory. See [5]. It stresses, moreover, the strong relationship between the two
theorems.

Proof. The regular chain C is a triangular set. Thus, for any nonzero f ∈ K[N]
the iterated resultant res(f, C) also is a nonzero element of K[N]. Thus, by
Theorem 1, for any associated prime ideal p of B, we have p ∩M = ∅ whence
dim p ≥ |N |. Since the initials of the element of C do not lie in p, the deriva-
tives x1, . . . , xn are algebraically dependent over N modulo p and dim p ≤ |N |.
Therefore, dim p = |N |.

Observe that Theorem 1 does not hold for general triangular sets, while [5,
Theorem 1.6] does. This claim is easily proved by an example. Take f = x − 1
and C = {x2 − 1, (x − 1) y2 − 2} with x < y. The set C is triangular but
is not a regular chain, for the initial x − 1 of the second element of C is not
regular modulo the ideal defined by the first element. The ideal B is generated
by {x + 1, y2 + 1}. It is prime, hence equal to its unique associated prime, if we
assume K = Q. The polynomial f is regular modulo B. However, res(f, C) = 0.

Computational comment. For computational purposes, it is desirable to avoid
computing the resultant with respect to xk of polynomials which do not both
depend on xk, as in [8, Definition 4] and [15, Definition 1]. The iterated resultant
is then defined as follows:

res(f, C) = res(· · · res(f, cn, xn), . . . , c1, x1) , (6)

where res(f, ck, xk) is equal to res(f, ck, xk) if deg(f, xk) > 0 else is equal to f .
Lemma 1 still holds with this definition of iterated resultants. By Lemma 2 and
Lemma 3, the vanishing conditions of the iterated resultant res(f, C) are the
same with Formula (1) as with Formula (6). Therefore, Theorems 1 and 2 also
hold with Formula (6).

Computation of algebraic inverses and normal forms. Consider the triangular
set C = {(x − 1) (x − 2), y2 − 1} for the ordering y > x. Since the initials are

On the Regularity Property of Differential Polynomials 69

equal to 1, it is a regular chain. Consider the polynomial f = (x− 1) y +(x− 2).
We have p f = −1 = res(f, C), where p = (−y x + y + x − 2) (2 x − 3). Thus f
is regular modulo the ideal B = (C) : I∞C . Its inverse is −p modulo B. Observe
that the function [2, Inverse] would have failed to compute the inverse of f ,
since it would have tried to invert the initial x − 1 of f modulo B, which is a
zerodivisor modulo B, before computing the remainder of y2 − 1 by f in the
algorithm provided in [2, Figure 5]. Therefore, NF(1/f, C) succeeds with the
new algorithm, given in Figure 1, while it fails with the old one, because of the
inverse computation of f , w.r.t. C.

5 On the Regularity Property of Differential Polynomials

In this section, C denotes a regular differential chain of the differential poly-
nomial ring R, defining a differential ideal A = [C] : H∞

C . Let L = ldC and
N = ΘU \ΘL.

The following Theorem provides an algorithm for deciding if a differential
polynomial is regular modulo a differential ideal defined by a regular differential
chain, and, if it is, for computing an inverse of it.

Theorem 3. Let f be any differential polynomial, r be its partial remainder
w.r.t. C and h a product of initials and separants of C such that h f = r mod A.
Together with the iterated resultant q = res(r, C), it is possible to compute a
polynomial p such that

p r = q mod (C) : I∞C

If f is a zerodivisor modulo A then q = 0, else h p/q is an inverse of f modulo A.

Proof. The key arguments are the following: on the one hand, by [4, Corollary 4
to Theorem 3], a differential polynomial is regular modulo A if, and only if, its
partial remainder with respect to C is regular modulo B = (C) : H∞

C ; on the
other hand, B = (C) : I∞C by [11, Lemma 6.1].

If f is a zerodivisor modulo A, then r is a zerodivisor modulo B and q = 0 by
Theorem 1. Assume f is regular modulo A. Then r is regular modulo B and q
is a nonzero element of K[N] by Theorem 1. Since B ⊂ A, we have h p f = q
mod A. Thus h p/q is an inverse of f modulo A.

A complete algorithm for computing the normal form of a rational differential
fraction is presented in Figure 1. This algorithm is obtained from [2, The NF
function, Figure 2] by udpating the method applied for computing inverses.

Theorem 4. Let a/b be a rational differential fraction and C be a regular dif-
ferential chain. If b is a zerodivisor modulo A, then NF(a/b, C) raises an error,
else NF(a/b, C) returns the normal form of a/b modulo C.

Proof. The Theorem is simply a restatement of [2, Proposition 5.3], taking into
account the fact that inverses are computed using a method (Theorem 3) which
succeeds if, and only if, the polynomial to be inverted is invertible.

70 F. Boulier, F. Lemaire, and A. Sedoglavic

Comment. The algorithm presented in Figure 1 has a drawback with respect to
[2, The NF function, Figure 2]: if the denominator of the rational fraction is a
zerodivisor, the algorithm does not exhibit a factorization of some element of C.
This drawback may be easily overcome if one computes resultants by means of
pseudoremainder sequences.

function NF(a/b, C)
Parameters

a/b is a rational differential fraction such that a, b ∈ R.
C is a regular differential chain, defining a differential ideal A.

Result
if b is regular modulo A, then the normal form of a/b modulo A, else an error

begin
Regularity test and inverse computation of the denominator
Apply Theorem 3 over b:

if b is a zerodivisor modulo A then
error ”the denominator is a zerodivisor modulo A”

end if
Denote pb/qb an inverse of b modulo A

Inverse computation of the separants (they are necessarily regular)
Apply Theorem 1 over each separant si of C = {c1, . . . , cn} and

denote pi/qi an inverse of si modulo A

(fn+2, gn+2) := (pb a, qb)
Using Ritt’s partial reduction algorithm, compute d1, . . . , dn ∈ N and

rn+1 ∈ K[N ∪ L] such that sd1
1 · · · sdn

n fn+2 ≡ rn+1 mod A

fn+1 := pd1
1 · · · pdn

n rn+1

gn+1 := qd1
1 · · · qdn

n gn+2

Denote xi = ld ci (1 ≤ i ≤ n) and assume xn > · · · > x1

for � from n to 1 by −1 do
r� := prem(f�+1, c�, x�)
Let i� denote the initial of c�

Let d� ∈ N be such that ıd�
� f�+1 ≡ r� mod (c�)

Inverse computation of an initial (it is necessarily regular)
Apply Theorem 1 over i� and denote p�/q� an inverse of i� modulo A

f� := pd�
� r�

g� := q
d�
� g�+1

end do
return f1/g1

the rational fraction may be reduced by means of a gcd computation
of multivariate polynomials over the field K
end

Fig. 1. The NF function

On the Regularity Property of Differential Polynomials 71

References

[1] Aubry, P., Lazard, D., Maza, M.M.: On the Theories of Triangular Sets. Journal
of Symbolic Computation 28, 105–124 (1999)

[2] Boulier, F., Lemaire, F.: A Normal Form Algorithm for Regular Differential
Chains. Mathematics in Computer Science 4(2), 185–201 (2010),
doi:10.1007/s11786-010-0060-3

[3] Boulier, F.: Efficient computation of regular differential systems by change
of rankings using Kähler differentials. Technical report, Université Lille I,
59655, Villeneuve d’Ascq, France, Ref. LIFL 1999–14, presented at the MEGA
(2000), conference (November 1999),
http://hal.archives-ouvertes.fr/hal-00139738

[4] Boulier, F., Lazard, D., Ollivier, F., Petitot, M.: Computing representations for
radicals of finitely generated differential ideals. Applicable Algebra in Engineering,
Communication and Computing 20(1), 73–121 (2009); (1997 Tech. rep. IT306 of
the LIFL)

[5] Boulier, F., Lemaire, F., Maza, M.M.: Well known theorems on triangular systems
and the D5 principle. In: Proceedings of Transgressive Computing 2006, Granada,
Spain, pp. 79–91 (2006), http://hal.archives-ouvertes.fr/hal-00137158

[6] Bouziane, D., Rody, A.K., Maârouf, H.: Unmixed–Dimensional Decomposition of a
Finitely Generated Perfect Differential Ideal. Journal of Symbolic Computation 31,
631–649 (2001)

[7] Busé, L., Mourrain, B.: Explicit factors of some iterated resultants and discrimi-
nants. Mathematics of Computation 78, 345–386 (2009)

[8] Chen, C., Golubitsky, O., Lemaire, F., Maza, M.M., Pan, W.: Comprehensive
Triangular Decomposition. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.)
CASC 2007. LNCS, vol. 4770, pp. 73–101. Springer, Heidelberg (2007)

[9] Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry, 2nd edn. Graduate
Texts in Mathematics, vol. 185. Springer, New York (2005)

[10] Faugère, J.-C., Gianni, P., Lazard, D., Mora, T.: Efficient computation of Gröbner
bases by change of orderings. Journal of Symbolic Computation 16, 329–344
(1993)

[11] Hubert, É.: Factorization free decomposition algorithms in differential algebra.
Journal of Symbolic Computation 29(4,5), 641–662 (2000)

[12] Kalkbrener, M.: A Generalized Euclidean Algorithm for Computing Triangular
Representations of Algebraic Varieties. Journal of Symbolic Computation 15,
143–167 (1993)

[13] Kolchin, E.R.: Differential Algebra and Algebraic Groups. Academic Press, New
York (1973)

[14] Lemaire, F., Maza, M.M., Pan, W., Xie, Y.: When does (T) equal sat(T)? In:
Proceedings of thee International Symposium on Symbolic and Algebraic Compu-
tation, pp. 207–214. ACM Press, New York (2008)

[15] Li, B., Wang, D.: An Algorithm for Transforming Regular Chain into Normal
Chain. In: Kapur, D. (ed.) ASCM 2007. LNCS (LNAI), vol. 5081, pp. 236–245.
Springer, Heidelberg (2008)

[16] Ritt, J.F.: Differential Algebra. Dover Publications Inc., New York (1950)
[17] van der Waerden, B.L.: Algebra, 7th edn. Springer, Berlin (1966)

http://hal.archives-ouvertes.fr/hal-00139738
http://hal.archives-ouvertes.fr/hal-00137158

72 F. Boulier, F. Lemaire, and A. Sedoglavic

[18] Wang, D.: Computing Triangular Systems and Regular Systems. Journal of
Symbolic Computation 30, 221–236 (2000)

[19] Yang, L., Hou, X., Xia, B.: A complete algorithm for automated discovering
of a class of inequality-type theorems. Science in China Series F: Information
Sciences 44(1), 33–49 (2001)

[20] Yang, L., Zhang, J., Hou, X.: An Efficient Decomposition Algorithm for Geometry
Theorem Proving Without Factorization. In: Proceedings of ASCM, pp. 33–41
(1995)

[21] Zariski, O., Samuel, P.: Commutative Algebra. In: Commutative Algebra. Graduate
Texts in Mathematics, Van Nostrand, New York, vol. 28,29. Springer, Heidelberg
(1958)

Chemical Reaction Systems, Computer Algebra

and Systems Biology�

(Invited Talk)

François Boulier, François Lemaire, Michel Petitot, and Alexandre Sedoglavic

Université Lille I, LIFL, 59655 Villeneuve d’Ascq, France

1 Introduction

In this invited paper, we survey some of the results obtained in the computer
algebra team of Lille, in the domain of systems biology. So far, we have mostly
focused on models (systems of equations) arising from generalized chemical re-
action systems. Eight years ago, our team was involved in a joint project, with
physicists and biologists, on the modeling problem of the circadian clock of the
green algae Ostreococcus tauri. This cooperation led us to different algorithms
dedicated to the reduction problem of the deterministic models of chemical re-
action systems. More recently, we have been working more tightly with another
team of our lab, the BioComputing group, interested by the stochastic dynam-
ics of chemical reaction systems. This cooperation led us to efficient algorithms
for building the ODE systems which define the statistical moments associated
to these dynamics. Most of these algorithms were implemented in the MAPLE
computer algebra software. We have chosen to present them through the corre-
sponding MAPLE packages.

Chemical reaction systems provide a general setting for modeling in biology.
More generally, chemical kinetics may be viewed as a prototype of nonlinear
science, as pointed out in [33, chapter 1].

The reaction A −−−−→ B describes the transformation of a species A into a
different species B. Species A is the reactant of the reaction. Species B is the
product. One often endows a reaction with a symbol k, which parametrizes the
speed of the transformation. The reaction is then denoted A

k−−−−→ B. The reac-
tion A −−−−→ ∅ describes the transformation of species A into a species which is
not part of the model. This sort of reaction often occurs when one models biolog-
ical phenomenons but one usually does not encounter it in chemistry, since it is
not equilibrated. Symmetrically, the reaction ∅ −−−−→ B describes the entry, in
the model, of a species B, from outside the model. A more complicated reaction
is A + B −−−−→ C. It is interpreted as follows: when a molecule of A encounters
a molecule of B, both may react and form a molecule of a third species C. Last,
one sometimes encounters reactions denoted A+B −−−−→←−−−− C. Some authors con-
sider it as a single revertible reaction. We view it as a pair of two reactions. The
� This work has benefited from the support of the French ANR (decision number
ANR-2010-BLAN-0109-03).

V.P. Gerdt et al. (Eds.): CASC 2011, LNCS 6885, pp. 73–87, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

74 François Boulier et al.

right to the left reaction may be described as follows: every molecule of C may
break itself and yield two molecules: one of species A and one of species B.

A chemical reaction system is a set of chemical reactions. Here are two exam-
ples. The first one is a classics of chemistry lectures: it is the simplest example
of an enzymatic reaction. It describes the transformation of a substrate S into a
product P , in the presence of some enzyme E. An intermediate complex ES is
formed:

E + S
k1−−−−→←−−−−

k−1

ES k2−−−−→ E + P . (1)

The second example, adapted from [27, Syst. (7.19)], models a two-species
oscillator:

∅
a−−−−→ A , A

k1−−−−→ ∅ , 2 A + B
k2−−−−→ 3 A , ∅

b−−−−→ B . (2)

In order to build systems of equations, i.e. mathematical models of chemical
reaction systems, one needs more precise assumptions. There are at least two
families of models: the deterministic and the stochastic ones.

2 Deterministic Modeling

There are different ways to associate a precise deterministic dynamics to a chem-
ical reaction system. In this paper, we focus on the mass-action dynamics. The
parameters of the reactions are called kinetic constants. To each species A, one
associates a function A(t) which represents the concentration of the species. The
evolution of each concentration is given by an ordinary differential equation, in
which kinetic constants appear as parameters. The system of ordinary differen-
tial equations built using the mass-action law, from a chemical reaction system,
is called the natural deterministic model of the system. It is given by the following
formula:

dX

dt
= N · V

where X is the column vector of the concentrations, N is the stoichiometry
matrix, and V is the column vector of the laws. The law of a reaction is obtained
by multiplying the kinetic constant by the product of the concentrations of
the reactants. The stoichiometry matrix involves one row per species and one
column per reaction. Its coefficient, row r and column c, is equal to the number
of molecules of species r produced by the reaction c. This number is equal to the
number of occurences of species r as a product, minus the number of occurences
of species r as a reactant. On System (2), we have

X =
(

A(t)
B(t)

)
, N =

(
1 −1 1 0
0 0 −1 1

)
, V =

⎛⎜⎜⎝
a

k1 A(t)
k2 A(t)2 B(t)

b

⎞⎟⎟⎠ .

Chemical Reaction Systems, Computer Algebra and Systems Biology 75

Natural deterministic models of chemical reaction systems were intensively stud-
ied. Many informations can be read in the stoichiometry matrix alone: the
nullspace of its transpose provides linear conservation laws. System (2) does
not have any, while computing a basis of this nullspace for System (1) yields the
two laws:

− E(t) + S(t) + P (t) = cst1 , E(t) + ES(t) = cst2 . (3)

A striking property of chemical reaction systems is a very simple necessary and
sufficient condition for a system of polynomial ODE to be the natural determin-
istic model of a chemical reaction system: it is necessary and sufficient that, in
the right hand side of the ODE which describes the evolution of any concen-
tration A(t), there does not exist any monomial which is both free of A(t) and
endowed with a minus sign [33, section 4.7.1]. Another striking, but much more
difficult result is the zero deficiency theorem of Feinberg, Horn and Jackson [14],
which gives a sufficient condition for a system to admit a unique steady state
with strictly positive coordinates. This sufficient condition, which can be formu-
lated in the setting of the graph theory, can be implemented very easily. This
theorem was much studied, recently, from different points of views. See [8, 15]
and the references therein.

The size of natural deterministic models becomes so large, on all but the
simplest examples, that it forbids any further analysis. The computer algebra
team of Lille has focused on the problem of reducing models. We make use
of two types of reduction: a reduction method which permits to approximate
the natural deterministic model, under some simplifying assumptions ; and a
reduction method, which permits to reduce the number of parameters, and to
separate parameters which have an effect on the coordinates and the stabilities
of the steady points, from the ones which have an effect on their stabilities only.

2.1 Approximating Models

The approximation method implements the well-known quasi-steady state ap-
proximation technique. See [20] for a general presentation and [30, 39] for more
chemically oriented texts. Our contribution [4] consisted in formulating it, in the
context of chemical reaction systems, as the result of a differential elimination
process [3]. In this section, we present it over System (1), by showing how to
obtain the famous Henri, Michaelis and Menten formula [18, 25]

dS

dt
(t) = −Vmax S(t)

K + S(t)
(4)

where Vmax and K are two parameters which can be expressed from the kinetic
constants of the chemical reaction system. See [29] for a closely related work.
Our algorithm was successfully applied over a more complicated model [5, 6],
featuring two genes, arising from the modeling problem of the circadian clock of
the green algae Ostreococcus tauri [12].

76 François Boulier et al.

Computation using DifferentialAlgebra. Our method relies on the assump-
tion that the chemical reactions are split into two sets: the set of the fast re-
actions, and the set of the slow ones. In the case of the Henri, Michaelis and
Menten reduction, the revertible reaction is supposed to be fast, compared to
the third one: k1, k−1 � k2. One starts by building the natural deterministic
model.

> with (LinearAlgebra):
> X := <E(t), S(t), ES(t), P(t)>:
> V := <k[1]*E(t)*S(t), k[-1]*ES(t), k[2]*ES(t)>:
> N := <<-1, -1, 1, 0> | <1, 1, -1, 0> | <1, 0, -1, 1>>:
> X, N, V;

[E(t)] [-1 1 1]
[] [] [k[1] E(t) S(t)]
[S(t)] [-1 1 0] []
[], [], [k[-1] ES(t)]
[ES(t)] [1 -1 -1] []
[] [] [k[2] ES(t)]
[P(t)] [0 0 1]

Then, in the vector V , one replaces the laws corresponding to the fast reactions
by two unknown laws F1(t) and F−1(t). Denote W this new vector. The ap-
proximated system is obtained by enlarging the ODE system dX/dt = N ·W ,
with the equation k1 E(t)S(t) = k−1 E(t)S(t), which gives the algebraic variety
where the fast reactions would be equilibrated, if the slow reactions did not exist.

> W := <F[1](t), F[-1](t), k[2]*ES(t)>:
> equilibre := 0 = k[1]*E(t)*S(t) - k[-1]*ES(t):
> redsys := map (diff, X, t) = N . W:
> redsys := [seq (lhs (redsys) [i] = rhs (redsys) [i],

i = 1 .. Dimension (X)), equilibre];
d

redsys := [-- E(t) = -F[1](t) + F[-1](t) + k[2] ES(t),
dt

d
-- S(t) = -F[1](t) + F[-1](t),
dt

d
-- ES(t) = F[1](t) - F[-1](t) - k[2] ES(t),
dt

d
-- P(t) = k[2] ES(t), 0 = k[1] E(t) S(t) - k[-1] ES(t)]
dt

Chemical Reaction Systems, Computer Algebra and Systems Biology 77

This differential-algebraic equation can now be simplified, by means of a differ-
ential elimination software, such as the DifferentialAlgebra package or the recent
[1]. With the DifferentialAlgebra package, the output involves three cases. We
only give the equation which expresses the evolution of S(t), in the general case.

> with (DifferentialAlgebra):
> Field := field (generators = [k[1],k[-1],k[2]]);

Field := field(generators = [k[1], k[-1], k[2]])

> R := DifferentialRing
(blocks = [[F[1],F[-1]], [ES,E,P,S], [k[1](),k[-1](),k[2]()]],
derivations = [t]);

R := differential_ring

> ideal := RosenfeldGroebner (redsys, basefield = Field, R):
ideal := [regular_differential_chain, regular_differential_chain,

regular_differential_chain]

> Equations (ideal[1], solved, leader=diff(S(t),t));
2 2

d E(t) S(t) k[1] k[2] + E(t) S(t) k[1] k[-1] k[2]
[-- S(t) = - ---]
dt 2

E(t) k[1] k[-1] + S(t) k[1] k[-1] + k[-1]

This equation is not yet the Henri, Michaelis and Menten formula, since some
minor hypotheses are missing: one still needs to take conservation laws (3) and
some initial values into account. Last, one needs to rename K = k1/k−1 and
Vmax = k2 E(0) and to neglect some monomial K E(0), assuming S(0)� E(0).
Here is a sequence of computations, which takes these hypotheses into account
and leads to the sought formula.

> conservation_laws :=
[E(t) + ES(t) = E0 + ES0,
S(t) + ES(t) + P(t) = S0 + ES0 + P0]:

> hypotheses := [P0 = 0, ES0 = 0, op (conservation_laws)]:
> R := DifferentialRing (

blocks = [[F[1],F[-1]], [ES,E,P,S],
[ES0(),E0(),P0(),S0()], [k[1](),k[-1](),k[2]()]],

derivations = [t]):
> ideal := RosenfeldGroebner ([op(redsys), op(hypotheses)],

R, basefield = Field):
> formula := Equations (ideal[1], solved, leader = diff (S(t),t)):
> formula := subs (k[-1]=K*k[1], formula):
> formula := normal (formula):
> formula := algsubs (k[2]*E0=Vmax, formula):

78 François Boulier et al.

> formula := normal (subs (K*E0=0, formula));

d Vmax S(t)
formula := [-- S(t) = - ---------]

dt S(t) + K

Computation using MABSys. The same computation can also be performed
by the dedicated MABSys package [23, 24], which relies on the MAPLE Regu-
larChains [21] and ELPS [36] packages. The MABSys package gathers as input
a chemical reaction system. Each reaction can be defined as fast or slow. The
package permits to obtain directly the stoichiometry matrix, the vector of the
laws, the system of the equilibria, the conservation laws that can be read from
the stoichiometry matrix and the natural deterministic model.

> with(MABSys):
> R1 := NewReaction (E+S, C, MassActionLaw(k1), fast=true):
> R2 := NewReaction (C, E+S, MassActionLaw(km1), fast=true):
> R3 := NewReaction (C, E+P, MassActionLaw(k2)):
> RS := [R1,R2,R3]:

> ConservationLaws(RS);
[C + P + S - C_0 - P_0 - S_0, C + E - C_0 - E_0]

> sys := ReactionSystem2ODEs(RS, [E,S,C,P]);

sys :=

d
[-- E(t) = -k1 E(t) S(t) + km1 C(t) + k2 C(t),
t

d
-- S(t) = -k1 E(t) S(t) + km1 C(t),
dt

d d
-- C(t) = k1 E(t) S(t) - km1 C(t) - k2 C(t), -- P(t) = k2 C(t)]
dt dt

The package provides a function that performs the quasi-steady state approxi-
mation using the information provided by the fast boolean.

> output := ModelReduce(RS, [E,C,P,S], useConservationLaws=true):
> red_sys := output[1][1]:
> red_sys := subs (C_0=0, P_0=0, red_sys):
> red_sys[4];

Chemical Reaction Systems, Computer Algebra and Systems Biology 79

d E_0 k2 k1 S(t) (k1 S(t) + km1)
-- S(t) = - ---
dt 2 2 2

k1 S(t) + 2 S(t) km1 k1 + km1 k1 E_0 + km1

It also provides a function that permits to reduce the number of parameters of the
system. Over this example, the parameter k1 is removed, using the assumption
that it is strictly positive. The change of coordinates is provided, following the
syntax: “new parameter = rational function of the old parameters”.

> output := InvariantizeByScalings(red_sys,[k1],[km1,k2,E,C,P,S]):
> red_sys2 := output[1]:
> red_sys2[4];

d S(t) k2 E_0 (S(t) + km1)
-- S(t) = - -----------------------------------
dt 2 2

S(t) + 2 km1 S(t) + E_0 km1 + km1

> output[2];
km1

[km1 = ---]
k1

Other functions, which are still prototypes, hence not yet integrated in MABSys,
permit to perform the final approximation which yields the Henri, Michaelis and
Menten formula.

2.2 Reducing and Reparametrizing Models

This section, in which we give some more details on the method which permitted
us to remove the k1 parameter, is much inspired from [38, chapter 2] and [22].
The goal consists in reducing and reparametrizing an initial model into a reduced
one (the initial model possibly comes from the quasi-steady state approximation
method). The reduced model is equivalent to the initial one, by an invertible
change of coordinates, which preserves the most important properties: the pos-
itive steady points of the initial model are in bijection with the positive steady
points of the reduced one, the initial model presents an oscillating behaviour if,
and only if, the reduced model does, and so on.

The computed changes of coordinates are given by Lie symmetries of the
initial system of the simplest type: they are restricted to scalings. Moreover, the
method distinguishes the parameters which are supposed to be strictly positive
(dividing by them is allowed) from the ones which are only supposed to be
nonnegative (dividing by them is forbidden). The computations of the scalings
is performed by the ELPS package. It is important to point out that this package
computes, in general, a restricted set of the scalings of the input system, in order
to preserve a worst case polynomial complexity [35].

80 François Boulier et al.

The method is illustrated over System (2), whose natural deterministic model
[27, Eqs. (7.20)] depends on two variables and four parameters.

> ODS := [
> diff(A(t),t) = a - k1 * A(t) + k2 * A(t)^2 * B(t),
> diff(B(t),t) = b - k2*A(t)^2*B(t)
>];

d 2
ODS := [-- A(t) = a - k1 A(t) + k2 A(t) B(t),

dt

d 2
-- B(t) = b - k2 A(t) B(t)]
dt

The four parameters are supposed to be strictly positive. The steady points of
the natural deterministic model are the zeros of non differential system obtained
by equating to zero, the right hand sides of the model equations. The steady
points obviously depend on the four parameters.

The reduction step. It makes use of the scalings of the natural deterministic
model. These scalings can be described by the two following changes of coordi-
nates. The first one depends on a parameter ν1. The second one depends on a
parameter ν2.

(t, A, B, k1, k2, a, b) −→
(

t, A ν1, B ν1, k1,
k2

ν2
1

, a ν1, b ν1

)
.

(t, A, B, k1, k2, a, b) −→
(

t

ν2
2

, A ν2, B ν2, k1 ν2
2 , k2, a ν3

2 , b ν3
2

)
.

Assuming that the four parameters are strictly positive, these scalings permit to
rewrite the natural deterministic model in a new coordinate set. The new system
depends on two parameters instead of four. The change of coordinates is given
using the syntax: “new variables = rational fractions of the old ones”.

> out := InvariantizeByScalings (ODS, [a,b,k1,k2]):
> ODS_reduced := out[1];
ODS_reduced :=

d 2 d 2
[-- A(t) = 1 - A(t) + k2 A(t) B(t), -- B(t) = b - k2 A(t) B(t)]
dt dt

> Change_of_coordinates := out[2];

Chemical Reaction Systems, Computer Algebra and Systems Biology 81

Change_of_coordinates :=
2

k2 a A k1 B k1
[b = b/a, k2 = -----, t = t k1, A = ----, B = ----]

3 a a
k1

The reparametrization step. It makes use of the scalings of the system which
gives the steady points of ODS reduced. These scalings can be described by the
following change of coordinates, which depends on a parameter ν3.

(A, B, k2, b) −→
(

A, B ν3,
k2

ν3
, b

)
.

The key idea is now very simple: apply these scalings, not on the system which
gives the steady points of ODS reduced, but on ODS reduced itself. In the result-
ing system, the parameter k2 is still present. However, it has no control anymore
on the location of the steady points: it can only control their stabilities.

> out := SemiRectifySteadyPoints (ODS_reduced, [b,k2,A,B], []):
> Reparamatrized_system := out[1][1];
Reparamatrized_system :=

d 2 d 2
[-- A(t) = 1 - A(t) + A(t) B(t), -- B(t) = (b - A(t) B(t)) k2]
dt dt

> Change_of_coordinates := out[1][3];
Change_of_coordinates := [B = k2 B]

3 Stochastic Modeling

The dynamics of chemical reaction systems can also be studied with a stochastic
point of view. The parameters of the reactions are stochastic constants, which
are probabilities that reactions occur per unit of time [17, page 2342]. To each
species A, one associates a random variable A(t) which counts the number of
molecules of A. In a celebrated paper [17], Gillespie provided a numerical simu-
lation algorithm, based on a strong rigorous analysis, under some assumptions ;
the main one being that the chemically reacting system keeps being well-stirred
over the time.

In the context of biological modeling, Gillespie’s main assumption is very
unlikely. However, the analysis of the stochastic behaviour of chemical reaction
systems is a very important counterpart of the deterministic analysis. In a living
cell, some molecules may occur in a very little number: if one views a gene, in
the “active” state, as a chemical species, the number of molecules is zero or
one, and handling this number as a real valued concentration is contestable.

82 François Boulier et al.

In such cases, it is known that there exist many different stochastic behaviours
which are, at least, difficult to reproduce by a deterministic model. See [19, page
454]. Moreover, stochastic simulations may reproduce the surprising effects of
the “noise” on the models, as pointed out in [41] and the references therein.

It is well-known that the evolution, over the time t, of the moments (mean,
variance, covariance) of the random variable associated to each species may be
described by a system of ordinary differential equations, at least for chemical
systems the reactions of which do not involve more than one reactant [31, 32].
For more general systems, the differential system is, in general, infinite, and
approximating it by a finite ODE system, by performing a so-called moment
closure, is a difficult problem [16, 37]. In this area, our contribution [40] consisted
in showing how to build these ODE systems by using Weyl algebra methods.
The use of Weyl algebra led us to a few algorithmic improvements (reducing
expressions swells and taking advantage of linear conservation laws at an early
stage of the formula generation process).

4 Analysis of Statistical Moments

Before proceeding, one needs to associate a precise stochastic dynamics to a
chemical reaction system. This can be achieved using stochastic Petri nets1,
endowed with their standard temporisation [40] ; or by relying on the Gillespie’s
stochastic simulation algorithm.

Define the state ν of a given chemical reaction system as a vector of non-
negative integers (one coordinate per chemical species, each coordinate being a
number of molecules) ; πν(t) as the probability that the chemical reaction system
be in the state ν at time t ; and the probability generating function

φ(t, z) =
∑
ν≥0

πν(t) zν , (5)

where zν stands for zν1
1 zν2

2 · · · zνn
n (one “symbol” zi per chemical species). Given

any chemical reaction system, it is possible to compute a general equation for φ
[33, Eq. (5.60)] as follows. To each reaction

α1 A1 + α2 A2 + · · ·+ αn An
c−−−−→ β1 A1 + β2 A2 + · · ·+ βn An ,

associate the differential operator

c

α!
(
zβ − zα

) (∂

∂ z

)α

· (6)

The very same operator can be denoted using Euler operators θi = zi ∂/∂ zi

instead of partial derivatives
c

α!
(
zβ−α − 1

)
θα , (7)

1 According to some sources, cited on the Wikipedia, Petri nets were invented by Carl
Adam Petri to model chemical reaction systems at the age of 13.

Chemical Reaction Systems, Computer Algebra and Systems Biology 83

where θα denotes the product of the θ
αi

i = θi (θi−1) · · · (θi−αi+1). Define H as
the sum of the differential operators (6), or (7), for all reactions of the considered
chemical reaction system. The general equation for φ is:

∂

∂ t
φ(t, z) = H φ(t, z) . (8)

With partial derivatives, the differential operator H , for System (2), is

a (zA − 1) + k1 (1− zA)
∂

∂ zA

+
k2

2
(
z3

A − z2
A zB

) ∂3

∂ z2
A ∂ zB

+ b (zB − 1) .

With Euler operators, the differential operator H , for System (1), is

k1

(
zES

zE zS
− 1

)
θE θS + k−1

(
zE zS

zES
− 1

)
θES + k2

(
zE zP

zES
− 1

)
θES .

By differentiating the probability generating function (5) and evaluating it at
z1 = z2 = · · · = zn = 1, one gets formulae which bind φ and the moments of
the random variables which count the numbers of molecules. A mere evaluation
yields: φ(t, z) |z=1= 1. Differentiating (5) with respect to any zi and evaluating
at z = 1 provides the expected value of the number of molecules of the chemical
species associated to zi.

These ideas are illustrated using a prototype software available at [34], on Sys-
tem (1). Variables are numbered, with the convention (E, S, ES , P) = (1, 4, 2, 3).
The differential operator H is displayed using Euler operators.

> cr1 := ChemicalReaction (E+S = ES, k[1], ""):
> cr2 := ChemicalReaction (ES = E+S, k[-1], ""):
> cr3 := ChemicalReaction (ES = E+P, k[2], ""):
> CRS := ChemicalSystem (cr1,cr2,cr3):
> HSyst := HamiltonianSystem (CRS, z, theta, x(t));

HSyst := hamiltonian_system

> map (numero, [E,S,ES,P], HSyst);
[1, 4, 2, 3]

> H := Hamiltonian (HSyst);
/ z[2] \

H := k[1] |--------- - 1| theta[1] theta[4]
\z[1] z[4] /

/z[1] z[4] \
+ k[-1] |--------- - 1| theta[2]

\ z[2] /

/z[1] z[3] \
+ k[2] |--------- - 1| theta[2]

\ z[2] /

84 François Boulier et al.

The next command permits to generate an ODE system for the expected val-
ues and the covariances of the random variables which count the molecules
of E, S, ES and P (the variable x1(t) is the expected value of the random
variable which counts the molecules of the enzyme E ; the variable x1,4(t) is the
covariance of the random variables which count, respectively, the molecules of
the enzyme E and the product P). Since some reactions of System (1) involve
two reactants, the ODE system is infinite. The function truncates it. The pa-
rameter iv receives some information on initial values, for a further numerical
integration.

> ODEs := mean_equations (HSyst, ’iv’);

d
ODEs := [-- x[1](t) = -%2 + (k[-1] + k[2]) x[2](t) - %1,

dt

d
-- x[2](t) = %2 + (-k[-1] - k[2]) x[2](t) + %1,
dt

d
-- x[3](t) = k[2] x[2](t),
dt

d d
-- x[4](t) = -%2 + k[-1] x[2](t) - %1, -- x[1,1](t) = ...
dt dt

%1 := k[1] x[1, 4](t)

%2 := k[1] x[4](t) x[1](t)

5 Conclusion

Beyond the improvements of the underlying theories, a lot of improvements can
be brought to the software. Since this paper is software oriented, let us focus
on that single issue. First, our packages could certainly be polished and merged.
Second, they miss very important tools dedicated to the solving problem of
polynomial systems in the field of the real numbers, such as [7, 10, 11, 26, 42].
See [28] for a recent study of the sizes of the problems that can be investigated
using some of the best available such tools. However, even the nice integrated
MAPLE package that we could foresee would miss two features: sort of a model
checking functionality, which would permit to the practitioner to query models,
as [2, 13] do ; and a user interface of the same quality as that of, say, Cytoscape
[9]. These two missing features, which are both user interface related, may seem
a bit irrelevant to the traditional audience of a computer algebra conference.

Chemical Reaction Systems, Computer Algebra and Systems Biology 85

The need for them is however pretty obvious for any lecturer, teaching symbolic
techniques close to ours, among other systems biology approaches.

References

[1] Bächler, T., Gerdt, V., Lange-Hegermann, M., Robertz, D.: Thomas Decompo-
sition of Algebraic and Differential Systems. In: Gerdt, V.P., Koepf, W., Mayr,
E.W., Vorozhtsov, E.V. (eds.) CASC 2010. LNCS, vol. 6244, pp. 31–54. Springer,
Heidelberg (2010)

[2] Batt, G., Page, M., Cantone, I., Goessler, G., Monteiro, P., de Jong, H.: Efficient
parameter search for qualitative models of regulatory networks using symbolic
model checking. In: ECCB, vol. 26, pp. i603–i610 (2010)

[3] Boulier, F., Lazard, D., Ollivier, F., Petitot, M.: Computing representations for
radicals of finitely generated differential ideals. Applicable Algebra in Engineering,
Communication and Computing 20(1), 73–121 (2009); (1997 Tech. rep. IT306 of
the LIFL)

[4] Boulier, F., Lefranc, M., Lemaire, F., Morant, P.-E.: Model Reduction of Chemical
Reaction Systems using Elimination. Presented at the International Conference
MACIS 2007 (2007), http://hal.archives-ouvertes.fr/hal-00184558

[5] Boulier, F., Lefranc, M., Lemaire, F., Morant, P.-E.: Applying a Rigorous Quasi-
Steady State Approximation Method for Proving the Absence of Oscillations in
Models of Genetic Circuits. In: Horimoto, K., Regensburger, G., Rosenkranz, M.,
Yoshida, H. (eds.) AB 2008. LNCS, vol. 5147, pp. 56–64. Springer, Heidelberg
(2008)

[6] Boulier, F., Lefranc, M., Lemaire, F., Morant, P.-E., Ürgüplü, A.: On Proving the
Absence of Oscillations in Models of Genetic Circuits. In: Anai, H., Horimoto,
K., Kutsia, T. (eds.) AB 2007. LNCS, vol. 4545, pp. 66–80. Springer, Heidelberg
(2007), http://hal.archives-ouvertes.fr/hal-00139667

[7] Brown, C.W.: QEPCAD B: a program for computing with semi-algebraic sets
using CADs. SIGSAM Bulletin 37(4), 97–108 (2003),
http://www.cs.usna.edu/~qepcad/B/QEPCAD.html

[8] Chaves, M., Sontag, E.D.: State-Estimators for Chemical Reaction Networks of
Feinberg-Horn-Jackson Zero Deficiency Type. European Journal Control 8, 343–
359 (2002)

[9] The Cytoscape Consortium. Cytoscape: An Open Source Platform for Complex
Network Analysis and Visualization (2001-2010), http://www.cytoscape.org

[10] Dolzmann, A., Sturm, T.: Redlog: computer algebra meets computer logic.
SIGSAM Bulletin 31(2), 2–9 (1997)

[11] El Din, M.S.: RAGLib: A library for real solving polynomial systems of equations
and inequalities (2007), http://www-salsa.lip6.fr/~safey/RAGLib

[12] Derelle, É., et al.: Genome Analysis of the smallest free-living eukaryote Ostreo-
coccus tauri unveils many unique features. Proceedings of the National Academy
of Science of the USA 103(31) (August 2006)

[13] Fages, F., Soliman, S., Chabrier-Rivier, N.: Modelling and querying interaction
networks in the biochemical abstract machine BIOCHAM. Journal of Biological
Physics and Chemistry 4, 64–73 (2004)

[14] Feinberg, M.: The Existence and Uniqueness of Steady States for a Classe of
Chemical Reaction Networks. Arch. Rational Mech. Anal. 132, 311–370 (1995)

http://hal.archives-ouvertes.fr/hal-00184558
http://hal.archives-ouvertes.fr/hal-00139667
http://www.cs.usna.edu/~qepcad/B/QEPCAD.html
http://www.cytoscape.org
http://www-salsa.lip6.fr/~safey/RAGLib

86 François Boulier et al.

[15] Gatermann, K., Eiswirth, M., Sensse, A.: Toric ideals and graph theory to analyze
Hopf bifurcations in mass action systems. Journal of Symbolic Computation 40(6),
1361–1382 (2005)

[16] Gillespie, C.S.: Moment-closure approximations for mass-action models. Systems
Biology, IET 3(1) (2009)

[17] Gillespie, D.T.: Exact Stochastic Simulation of Coupled Chemical Reactions. Jour-
nal of Physical Chemistry 81(25), 2340–2361 (1977)

[18] Henri, V.: Lois générales de l’Action des Diastases. Hermann, Paris (1903)
[19] Kœrn, M., Elston, T.C., Blake, W.J., Collins, J.J.: Stochasticity in gene expres-

sion: from theories to phenotypes. Nature 6, 451–464 (2005)
[20] Kokotovic, P., Khalil, H.K., O’Reilly, J.: Singular Perturbation Methods in Con-

trol: Analysis and Design. Classics in Applied Mathematics, vol. 25. SIAM,
Philadelphia (1999)

[21] Lemaire, F., Maza, M.M., Xie, Y.: The RegularChains library in MAPLE 10. In:
Kotsireas, I.S. (ed.) The MAPLE Conference, pp. 355–368 (2005)

[22] Lemaire, F., Ürgüplü, A.: A method for semi-rectifying algebraic and differential
systems using scaling type Lie point symmetries with linear algebra. In: Proceed-
ings of ISSAC 2010, München, Germany, pp. 85–92 (August 2010)

[23] Lemaire, F., Ürgüplü, A.: Mabsys: Modeling and analysis of biological systems.
In: Horimoto, K., Nakatsui, M., Popov, N. (eds.) Proceedings of Algebraic and
Numeric Biology 2010, Castle of Hagenberg, Austria (August 2010)

[24] Lemaire, F., Ürgüplü, A.: The MABSys MAPLE package (2010),
http://www.lifl.fr/~lemaire/MABSys

[25] Michaelis, L., Menten, M.: Die kinetik der invertinwirkung. Biochemische
Zeitschrift 49, 333–369 (1973), Partial translation in english on
http://web.lemoyne.edu/~giunta/menten.html

[26] Moroz, G., Rouillier, F.: DV: Un logiciel de classification des solutions réelles d’un
système paramétré (2009),
http://www-spiral.lip6.fr/~moroz/fr/software.html

[27] Murray, J.D.: Mathematical Biology I. An Introduction, 3rd edn. Interdisciplinary
Applied Mathematics, vol. 17. Springer, Heidelberg (2002)

[28] Niu, W.: Qualitative Analysis of Biological Systems Using Algebraic Methods.
PhD thesis, Université Paris VI, Paris (June 2011)

[29] Nöthen, A.L.: Quasistationarität und Fast-Invariante Mengen Gewönlicher Differ-
entialgleichungen. PhD thesis, Rheinisch-Westfälischen Technischen Hochschule
(2008)

[30] Othmer, H.G.: Analysis of Complex Reaction Networks in Signal Transduction,
Gene Control and Metabolism (2006),
http://www.ricam.oeaw.ac.at/publications/download/

summerschool/LectureNotes Othmer.pdf

[31] Paulsson, J.: Models of stochastic gene expression. Physics of Life Reviews 2,
157–175 (2005)

[32] Paulsson, J., Elf, J.: Stochastic Modeling of Intracellular Kinetics. In: Szallasi,
Z., Stelling, J., Periwal, V. (eds.) System Modeling in Cellular Biology: From
Concepts to Nuts and Bolts, pp. 149–175. The MIT Press, Cambridge (2006)

[33] Érdi, P., Tóth, J.: Mathematical models of chemical reactions: theory and applica-
tions of deterministic and stochastic models. Princeton University Press, Princeton
(1989)

[34] Petitot, M.: The MAGNUS MAPLE software (2010),
http://www.lifl.fr/~petitot/recherche/exposes/ANB2010

http://www.lifl.fr/~lemaire/MABSys
http://web.lemoyne.edu/~giunta/menten.html
http://www-spiral.lip6.fr/~moroz/fr/software.html
http://www.ricam.oeaw.ac.at/publications/download/summerschool/LectureNotes_Othmer.pdf
http://www.ricam.oeaw.ac.at/publications/download/summerschool/LectureNotes_Othmer.pdf
http://www.lifl.fr/~petitot/recherche/exposes/ANB2010

Chemical Reaction Systems, Computer Algebra and Systems Biology 87

[35] Sedoglavic, A.: Reduction of Algebraic Parametric Systems by Rectification of
Their Affine Expanded Lie Symmetries. In: Anai, H., Horimoto, K., Kutsia, T.
(eds.) AB 2007. LNCS, vol. 4545, pp. 277–291. Springer, Heidelberg (2007)

[36] Sedoglavic, A., Ürgüplü, A.: Expanded Lie Point Symmetry, MAPLE package
(2007), http://www.lifl.fr/~sedoglav/Software

[37] Singh, A., Hespanha, J.P.: Lognormal Moment Closures for Biochemical Reac-
tions. In: Proceedings of the 45th IEEE Conference on Decision and Control, pp.
2063–2068 (2006)

[38] Ürgüplü, A.: Contribution to Symbolic Effective Qualitative Analysis of Dynami-
cal Systems; Application to Biochemical Reaction Networks. PhD thesis, Univer-
sity Lille I, Lille, France (2010)

[39] Van Breusegem, V., Bastin, G.: Reduced order dynamical modelling of reaction
systems: a singular perturbation approach. In: Proceedings of the 30th IEEE Con-
ference on Decision and Control, Brighton, England, pp. 1049–1054 (December
1991)

[40] Vidal, S., Petitot, M., Boulier, F., Lemaire, F., Kuttler, C.: Models of Stochastic
Gene Expression and Weyl Algebra. In: Horimoto, K., Nakatsui, M., Popov, N.
(eds.) Proceedings of Algebraic and Numeric Biology 2010, Castle of Hagenberg,
Austria, pp. 50–67 (August 2010)

[41] Vilar, J.M.G., Kueh, H.Y., Barkai, N., Leibler, S.: Mechanisms of noise-resistance
in genetic oscillators. Proceedings of the National Academy of Science of the
USA 99(9), 5988–5992 (2002)

[42] Xia, B.: DISCOVERER: A tool for solving semi-algebraic systems. ACMCommun.
Comput. Algebra 41, 102–103 (2007)

http://www.lifl.fr/~sedoglav/Software

On the Stability of Equilibrium Positions

in the Circular Restricted Four-Body Problem

Dzmitry A. Budzko1 and Alexander N. Prokopenya2,3

1 Brest State University,
Kosmonavtov bul. 21, 224016, Brest, Belarus

master booblik@tut.by
2 Collegium Mazovia in Siedlce

ul. Sokolowska 161, 08-110, Siedlce, Poland
3 Brest State Technical University,

Moskowskaya str. 267, 224017 Brest, Belarus
prokopenya@brest.by

Abstract. We consider the stability of equilibrium positions in the pla-
nar circular restricted four-body problem formulated on the basis of
Lagrange’s triangular solution of the three-body problem. The stabil-
ity problem is solved in a strict nonlinear formulation on the basis of
Arnold–Moser and Markeev theorems. Peculiar properties of the Hamil-
tonian normalization are discussed, and the influence of the third and
fourth order resonances on stability of the equilibrium positions has been
analyzed.

1 Introduction

The restricted many-body problem is a well-known model of celestial mechanics
(see, for example, [1,2,3]), and equilibrium positions (or relative equilibrium
positions) are its simple solutions which can be found in analytical form. As the
stable equilibrium positions are highly interesting for applications, the stability
problem has been attracting attention of most contributors to celestial mechanics
during the past two hundred years. Finally, stability of equilibrium positions
in the simplest case of the restricted three-body problem has been completely
investigated (see [2]), and some general methods for studying the stability of the
Hamiltonian systems have been developed [4,5,6]. However, application of these
methods involves very bulky symbolic calculations which can be reasonably done
only with computers and modern software such as the computer algebra system
Mathematica [7], for example. Besides, stability analysis of more complicated
dynamical systems requires improvement of available computing technique and
designing new efficient algorithms of calculation, and this stimulates further
investigations in this field.

The circular restricted four-body problem considered in the present paper is
formulated similarly to the famous restricted three-body problem [1]. Three point
particles P0, P1, P2 having masses m0, m1, m2, respectively, move uniformly
on circular Keplerian orbits about their common center of mass. The particles

V.P. Gerdt et al. (Eds.): CASC 2011, LNCS 6885, pp. 88–100, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

On the Stability of Equilibrium Positions 89

are situated at the vertices of the equilateral triangle at any instant of time, and
the corresponding exact solution of the general three-body problem is known as
the Lagrange triangle. The fourth particle P3 of negligible mass moves in the
gravitational field of the primaries P0, P1, P2, and the problem is to describe
its motion. In our previous papers (see, for example, [8,9]) it was shown that
the problem has eight equilibrium solutions but only three of them may be
stable. We have determined the domains of their linear stability in the plane
of the system parameters and proved that the three solutions are stable in the
Liapunov sense for the majority of the parameters values from the domains of
linear stability. But it turned out that for some values of the system parameters,
the conditions of Arnold’s theorem [4] are not fulfilled, and an analysis of the fifth
and higher order terms in the Hamiltonian expansion is required for the entire
solution of the stability problem. The main purpose of the present paper is to
accomplish investigation of the stability of equilibrium solutions in the planar
circular restricted four-body problem and to demonstrate the most important
and useful algorithms for solving similar problems.

The paper is organized as follows. In Section 2, we describe equilibrium solu-
tions and analyze their linear stability. Then we discuss the algorithm for nor-
malization of the third order term in the Hamiltonian expansion (Section 3) and
analyze stability of the equilibrium solutions under the third order resonance.
In Section 4, we normalize the fourth order term of the Hamiltonian and apply
theorems of Arnold and Markeev. And finally, in Section 5 we discuss stability
of equilibrium solutions in the case when Arnold’s theorem can not be applied.

2 Equilibrium Solutions and Their Linear Stability

In the rotating reference frame, where the particles P0, P1, P2 rest in the xOy
plane at the points (0, 0), (1, 0), (1/2,

√
3/2), respectively, the Hamiltonian func-

tion of the system can be written in the form [9]

H =
1
2
(
p2

x + p2
y

)
− xpy + ypx +

1
1 + μ1 + μ2

((
μ1 +

μ2

2

)
x +

μ2

√
3

2
y −

− 1√
x2 + y2

− μ1√
(x − 1)2 + y2

− 2μ2√
(2x− 1)2 + (2y −

√
3)2

⎞⎠ , (1)

where x, px and y, py are two pairs of canonically conjugate coordinate and
momentum, and two mass parameters are given by

μ1 = m1/m0 , μ2 = m2/m0 .

Using the Hamiltonian (1), one can easily write the equations of motion of
the particle P3 and show that its equilibrium coordinates are determined by the
system of two algebraic equations which can be represented in the form

(y−x
√

3)
(

1
(x2 + y2)3/2

− 1
)

= μ1(y +
√

3(x− 1))
(

1
((x−1)2 + y2)3/2

− 1
)

,

90 D.A. Budzko and A.N. Prokopenya

μ2 = −
2y
(
1− (x2 + y2)−3/2

)
(y +

√
3(x− 1))

(
1− ((x − 1/2)2 + (y −

√
3/2)2)−3/2

) . (2)

Each equation of system (2) determines a curve in the xOy plane, which can
be easily visualized with the Mathematica built-in function ContourP lot, for
example. So geometrically any equilibrium position of the particle P3 corresponds
to the point of intersection of two curves (Fig. 1).

�1.5 �1.0 �0.5 0.0 0.5 1.0 1.5 2.0

�1.5

�1.0

�0.5

0.0

0.5

1.0

1.5

2.0

x

y

P0 P1

P2

S1

S2

S3

S4

S5

S6

S7

S8

L1 L2L3

L4

L5

Fig. 1. Eight equilibrium positions S1, . . . , S8 for μ1 = 0.25, μ2 = 0.17

Note that for any given μ1 > 0, the solid line in Fig. 1 determined by the
first equation of system (2), is fixed and it always passes through the points P0,
P1, P2, and (1/2,−

√
3/2). In case of μ2 = 0, the dashed line determined by the

second equation of system (2) degenerates into the line y = 0 and the circle
x2 + y2 = 1. Hence, system (2) has three roots at the Ox axis and two roots at
the points P2 and (1/2,−

√
3/2), and these five roots correspond to the libration

points L1, L2, L3 and L4, L5 in the three-body problem (see [1], [2]). Increasing
the value of μ2, one can observe that the three equilibrium points located at the
Ox axis when μ2 = 0, as well as the equilibrium point (1/2,−

√
3/2), gradually

move in the xOy plane along the solid line (the points S5 – S8 in Fig. 1). The
point x = 1/2, y =

√
3/2 generates four new equilibrium positions (the points

S1 – S4 in Fig. 1), one by each branch of the solid line outgoing the point P2.

On the Stability of Equilibrium Positions 91

Thus, graphical analysis shows that there are eight roots of system (2) for small
values of parameters μ1, μ2.

To localize each equilibrium position for any given values of parameters μ1,
μ2, we have to find all solutions of equations (2). As these algebraic equations are
nonlinear it is very difficult, if possible at all, to find their solutions in analytical
form. In such a case it is natural to look for numerical solutions using the built-
in Mathematica function FindRoot, for example. However, implementing any
numerical method, we have to specify a starting point or zero approximation for
every root, and the result depends substantially on the starting point because
system (2) has several solutions. So it is not sufficient to choose the starting
point somewhere in the domain, where the point S1 is located, for example, to
be sure that the function FindRoot will obtain the solution in the same domain
as the result. One can assert only that if the starting point is chosen close enough
to the corresponding equilibrium position then the function FindRoot will find
it surely because solutions of the system (2) depend on parameters μ1 and μ2

continuously.
Note that for a given value of μ1 and small values of μ2, the roots of system

(2) can be found in the form of a power series as

x = x0 + x1μ
k
2 + x2μ

2k
2 + . . . , y = y0 + y1μ

k
2 + y2μ

2k
2 + . . . , (3)

where the zero approximation (x0, y0) is determined by equations (2) under
μ2 = 0. The corresponding algorithm of calculation and its implementation with
Mathematica is described in [10]. This approach makes it possible to separate
anyone of the eight equilibrium points S1, . . . , S8 and to investigate its position
and stability depending on the parameters μ1, μ2.

Denoting an equilibrium position of the particle P3 in the xOy plane by
(x0, y0), we can expand the Hamiltonian (1) in the Taylor series in the neigh-
borhood of equilibrium point and represent it in the form

H = H2 + H3 + H4 + . . . , (4)

where Hk is the kth order homogeneous polynomial with respect to canonical
variables x, y, px, py. Note that zero-order term H0 in (4) has been omitted as
a constant, which doesn’t influence the equations of motion, and the first-order
term H1 is equal to zero owing to equations determining equilibrium positions.
Therefore, the first non-zero term in the expansion (4) is a quadratic one that is

H2 =
1
2
(
p2

x + p2
y

)
− pyx + pxy + h20x

2 + h11xy + h02y
2. (5)

The corresponding expressions for coefficients h20, h11, and h02 are easily found
(see [8,9]).

One can readily check that the linearized equations of motion determined by
the quadratic part H2 of the Hamiltonian (5) form the fourth-order linear sys-
tem of differential equations with constant coefficients. Characteristic exponents
λ1, ..., λ4 for such a system can be easily found (see [8]) and are represented in
the form

λ1,2 = ±iσ1, λ3,4 = ±iσ2, (6)

92 D.A. Budzko and A.N. Prokopenya

where the frequencies σ1, σ2 are given by

σ1,2 =
(

1 + h20 + h02 ±
√

h2
20 + h2

02 + h2
11 − 2h20h02 + 4h20 + 4h02

)1/2

. (7)

Note that the Lagrange triangle may be stable only if parameters μ1, μ2 satisfy
the condition (see [1])

27(μ1 + μ2 + μ1μ2) < (1 + μ1 + μ2)2. (8)

So it makes sense to analyze stability of equilibrium solutions in the restricted
four-body problem only in the domain determined by inequality (8). Analysis of
the frequencies (7) in this domain for all eight equilibrium positions (see Fig. 1)
has shown [8] that for the points S2, S3, S5, S6, S8 at least one frequency has
an imaginary part for any values of parameters μ1 and μ2. Therefore, these five
equilibrium positions are unstable. Equilibrium points S1, S4 and S7 are stable
in linear approximation if parameters μ1, μ2 are smaller than their values on
the stability boundaries which are determined from the condition σ1 = σ2. The
corresponding curve for the equilibrium point S1 is shown as the dashed curve
in the μ1Oμ2 plane in Fig. 2.

0.005 0.010 0.015 0.020
Μ1

0.01

0.02

0.03

0.04

Μ2

Σ1� Σ2

2Σ1� 3Σ2

Σ1� 2Σ2

Σ1� 3Σ2

Σ1� 4Σ2

Σ1� 5Σ2

J

f � 0

Fig. 2. Stability domain and resonance curves for equilibrium position S1

3 Normalization of the Third-Order Term H3

It is well known that the stability problem for the Hamiltonian system of differ-
ential equations belongs to the critical case, in Liapunov’s sense [11], and it can
be resolved only in a strict nonlinear formulation. The most general approach

On the Stability of Equilibrium Positions 93

to studying such systems is the Poincaré method of normal forms that was used
successfully in solving many problems of nonlinear mechanics (see [6]). According
to this method we have to construct the canonical transformation that reduces
the Hamiltonian function to the Birkhoff normal form [12] when the equations
of motion can be solved. First step in constructing such transformation is the
normalization of the quadratic part H2 in the Hamiltonian expansion (4), and
we do this applying an algorithm proposed in [2] and described in detail in [13].
Doing necessary symbolic calculations, we obtain the second order term H2 in
the form

H2 =
1
2
(
σ1(p2

1 + q2
1)− σ2(p2

2 + q2
2)
)

, (9)

where p1, q1 and p2, q2 are two pairs of new canonically conjugated variables.
It should be emphasized that the quadratic form (9) is neither positive nor

negative definite function and, hence, one cannot conclude on stability or in-
stability of equilibrium solutions using the principle of linearized stability [11].
Therefore, the stability problem can be solved only in a strict nonlinear formu-
lation. Note also that the stability analysis of the equilibrium positions S1, S4,
S7 is done in a similar way. So we’ll analyze only the stability of the point S1 in
detail.

To normalize the third-order term H3 in the Hamiltonian (4) we use the
method of constructing the real-valued canonical transformation of Birkhoff’s
type described in [14]. It should be noted that, in contrast to [14], the system
under consideration has two parameters μ1 and μ2, and due to this reason the
calculations are much more bulky and difficult (see [9]). After realization of the
first canonical transformation normalizing the quadratic part H2, the third-order
term H3 takes the form

H3 =
∑

i+j+k+l=3

h
(3)
ijklq

i
1q

j
2p

k
1p

l
2 . (10)

The corresponding expressions for h
(3)
ijkl are quite bulky, so we do not write them

here. And we would like to find such canonical transformation that the third
order term H3 in expansion (4) was eliminated. Generating function for such
transformation can be sought in the form

S(p̃1, p̃2, q1, q2) = q1p̃1 + q2p̃2 +
∑

i+j+k+l=3

s
(3)
ijklq

i
1q

j
2p̃

k
1 p̃l

2 , (11)

where coefficients s
(3)
ijkl are to be found. Then new momenta p̃1, p̃2 and coordi-

nates q̃1, q̃2 are determined by the following relationships

q̃1 =
∂S

∂p̃1
, q̃2 =

∂S

∂p̃2
, p1 =

∂S

∂q1
, p2 =

∂S

∂q2
. (12)

Note that these relationships can be considered as equations with respect to the
old canonical variables q1, q2, p1, p2. On substituting (11) into (12) and solving
these equations, we find q1, q2, p1, p2 in the form of second-degree polynomials

94 D.A. Budzko and A.N. Prokopenya

in new canonical variables q̃1, q̃2, p̃1, p̃2. Then we substitute the corresponding
expressions into (9), (10) and expand the Hamiltonian H = H2 + H3 into the
Taylor series in powers of q̃1, q̃2, p̃1, p̃2. The expression obtained is again repre-
sented as a sum of homogeneous polynomials H̃k (k = 2, 3, ...) with respect to
canonical variables q̃1, q̃2, p̃1, p̃2. One can readily check that the second-order
term H̃2 preserves the form (9), while the third-order term H̃3 is a sum of twenty
terms of the form

h̃
(3)
ijkl q̃

i
1q̃

j
2p̃

k
1 p̃

l
2 (i + j + k + l = 3) (13)

with new coefficients h̃
(3)
ijkl which are expressed as linear functions of old co-

efficients h
(3)
ijkl and unknown coefficients s

(3)
ijkl of the generating function (11).

Obviously, the third-order term H̃3 would be eliminated if all the coefficients
h̃

(3)
ijkl in (13) were equal to zero. Therefore, we can try to solve the system of

twenty equations of the form h̃
(3)
ijkl = 0 and to find the coefficients s

(3)
ijkl of the

corresponding canonical transformation (12).
Analysis of the coefficients h̃

(3)
ijkl shows that in fact we have five independent

subsystems for determination of the coefficients s
(3)
ijkl. As all these subsystems are

solved similarly, we consider only one of them that is formed by three coefficients
of p̃1p̃

2
2, p̃1q̃

2
2 , q̃1q̃2p̃2 in the expression for H̃3. It determines the coefficients s

(3)
0111,

s
(3)
1002, s

(3)
1200 and is given by

h̃
(3)
0012 = h

(3)
0012 + s

(3)
1002σ1 − s

(3)
0111σ2 ,

h̃
(3)
0210 = h

(3)
0210 + s

(3)
1200σ1 + s

(3)
0111σ2 ,

h̃
(3)
1101 = h

(3)
1101 − s

(3)
0111σ1 + 2s

(3)
1002σ2 − 2s

(3)
1200σ2 . (14)

Note that coefficients s
(3)
0111, s

(3)
1002, and s

(3)
1200 appear only in the expressions for

h̃
(3)
ijkl given in (14) and so they are completely determined by this system. It

has a unique solution for any values of h̃
(3)
ijkl if its determinant being equal to

σ1(4σ2
2−σ2

1) is not zero. In such a case, we can set h̃
(3)
0012 = h̃

(3)
0210 = h̃

(3)
1101 = 0 and

find the corresponding coefficients s
(3)
0111, s

(3)
1002, and s

(3)
1200. Therefore, if σ1 �= 0

and the conditions
σ1 ± 2σ2 �= 0 (15)

are fulfilled three terms (13) with coefficients h̃
(3)
0012, h̃

(3)
0210, and h̃

(3)
1101 are elimi-

nated in H̃3 by means of the canonical transformation (12).
An analysis of the rest of coefficients h̃

(3)
ijkl shows that if σ2 �= 0 and the

conditions
2σ1 ± σ2 �= 0 (16)

are fulfilled, in addition to (15), all the coefficients s
(3)
ijkl of the canonical trans-

formation (12) are found in a unique way. In this case, we can set h̃
(3)
ijkl = 0

On the Stability of Equilibrium Positions 95

and find the canonical transformation such that the third-order term H̃3 in the
Hamiltonian (4) vanishes.

Note that conditions (15) and (16) mean an absence of the third-order reso-
nances of frequencies in the system (see [6]). Analyzing frequencies (7), we obtain
that for linearly stable equilibrium point S1 there exist such values of param-
eters μ1, μ2, for which the condition of third-order resonance σ1 − 2σ2 = 0 is
fulfilled (see Fig. 2). Thus, for the points (μ1, μ2) in the μ1Oμ2 plane located on
the corresponding resonance curve the condition (15) is not fulfilled and, hence,
system (14) does not have a solution in case of h̃

(3)
ijkl = 0. Due to the same reason

the coefficients h̃
(3)
1002, h̃

(3)
1200, h̃

(3)
0111 can not be eliminated under the third-order

resonance, as well. It means that the corresponding six resonance terms in H̃3

cannot be eliminated.
Nevertheless, we can require the following conditions to be fulfilled

h̃
(3)
0012 =

B1

2
√

2
, h̃

(3)
0210 = − B1

2
√

2
, h̃

(3)
1101 = −B1√

2
, (17)

h̃
(3)
0111 =

B2√
2
, h̃

(3)
1002 =

B2

2
√

2
, h̃

(3)
1200 = − B2

2
√

2
, (18)

where B1, B2 are some constants. Solving the systems of equations (17), (18), we
obtain the corresponding coefficients s

(3)
ijkl of the canonical transformation (12)

and find the constants B1 and B2 as

B1 =
1√
2
(h(3)

0012 − h
(3)
0210 − h

(3)
1101), B2 =

1√
2
(h(3)

0111 + h
(3)
1002 − h

(3)
1200). (19)

Then the Hamiltonian (4) takes a form

H̃ =
1
2
σ1

(
q̃2
1 + p̃2

1

)
− 1

2
σ2

(
q̃2
2 + p̃2

2

)
+

B1

2
√

2

(
p̃1p̃

2
2 − p̃1q̃

2
2 − 2q̃1q̃2p̃2

)
+

+
B2

2
√

2

(
q̃1p̃

2
2 − q̃1q̃

2
2 + 2q̃2p̃1p̃2

)
+ H̃4 + (20)

Using the standard canonical transformation

q̃1 =
√

2τ1 sin(ϕ1 + α) , p̃1 =
√

2τ1 cos(ϕ1 + α) ,

q̃2 =
√

2τ2 sin ϕ2 , p̃2 =
√

2τ2 cosϕ2 , (21)

where parameter α is determined by the relationships

cosα =
B1

B
, sin α =

B2

B
, B =

√
B2

1 + B2
2 ,

we rewrite the Hamiltonian (20) as

H̃ = σ1τ1 − σ2τ2 + Bτ2
√

τ1 cos(ϕ1 + 2ϕ2) + H̃4(ϕ1, ϕ2, τ1, τ2) + (22)

96 D.A. Budzko and A.N. Prokopenya

We have done numerical analysis of parameter B for the equilibrium point
S1 under the third-order resonance and shown that it is not equal to zero for
all points (μ1, μ2) belonging to the resonance curve. Therefore, applying Mar-
keev’s theorem [6], we can conclude that the equilibrium point S1 in the circular
restricted four-body problem, formulated on the basis of Lagrange’s triangular
solutions, is unstable under third-order resonance of the form σ1 = 2σ2.

4 Normalizing the Fourth-Order Term H4

Let us assume that the condition σ1 �= 2σ2 is fulfilled, and there is no resonance
in the system up to the third order inclusively. Then after normalization of the
second and third order terms we obtain the Hamiltonian (4) in the form

H̃ = H̃2 + H̃4 + . . . , (23)

where the second-order term

H̃2 =
1
2
(
σ1(p̃2

1 + q̃2
1)− σ2(p̃2

2 + q̃2
2)
)

(24)

has the normal form, the third-order term H̃3 is absent, and the fourth-order
term H̃4 may be written as

H̃4 =
∑

i+j+k+l=4

h̃
(4)
ijkl q̃

i
1q̃

j
2p̃

k
1 p̃l

2 . (25)

The sum (25) contains 35 terms but coefficients h̃
(4)
ijkl are quite cumbersome, and

we do not write them here. Again we look for the function

S(p∗1, p
∗
2, q̃1, q̃2) = q̃1p

∗
1 + q̃2p

∗
2 +

∑
i+j+k+l=4

s
(4)
ijkl q̃

i
1q̃

j
2p

∗k
1 p∗l

2 , (26)

generating the canonical transformation reducing the fourth-order term H̃4 to
the simplest form. New momenta p∗1, p

∗
2 and coordinates q∗1 , q∗2 are determined

by the relationships

q∗1 =
∂S

∂p∗1
, q∗2 =

∂S

∂p∗2
, p̃1 =

∂S

∂q̃1
, p̃2 =

∂S

∂q̃2
. (27)

Resolving (27) with respect to the old canonical variables q̃1, q̃2, p̃1, p̃2 in the
neighborhood of the point q∗1 = q∗2 = p∗1 = p∗2 = 0 and substituting the solution
into (23), we expand the Hamiltonian H̃ in the Taylor series in powers of q∗1 ,
q∗2 , p∗1, p∗2. Obviously, the second-order term H∗

2 in this expansion again has the
form (24), the third-order term H∗

3 is absent, and the fourth-order term H∗
4 is a

sum of 35 terms of the form

h
∗(4)
ijkl q

∗i
1 q∗j

2 p∗k
1 p∗l

2 (i + j + k + l = 4) ,

On the Stability of Equilibrium Positions 97

where new coefficients h
∗(4)
ijkl are linear functions of unknown coefficients s

(4)
ijkl

determining the generating function (26).
An analysis of the coefficients h

∗(4)
ijkl shows that they are again divided into

several independent groups, and each group forms a system of equations deter-
mining some coefficients s

(4)
ijkl. If the following conditions

σ1 �= 0, σ2 �= 0, σ1 ± σ2 �= 0, σ1 ± 3σ2 �= 0, 3σ1 ± σ2 �= 0 , (28)

are fulfilled we can solve the equations h
∗(4)
ijkl = 0 and find coefficients s

(4)
ijkl of

the canonical transformation (27) eliminating the corresponding terms in (25).
Nevertheless, there are ten terms in the expansion (25) which can not be elimi-
nated. They can be only simplified in such a way that the fourth-order term H̃4

takes the form

H∗
4 =

1
4
(
c20(p∗21 + q∗21)2 + c11(p∗21 + q∗21)(p∗22 + q∗22) + c02(p∗22 + q∗22)2

)
.

Then, using the standard canonical transformation

q∗1 =
√

2τ1 sinϕ1 , p∗1 =
√

2τ1 cosϕ1 ,

q∗2 =
√

2τ2 sinϕ2 , p∗2 =
√

2τ2 cosϕ2 , (29)

we rewrite the Hamiltonian (23) as

H = σ1τ1 − σ2τ2 + c20τ
2
1 + c11τ1τ2 + c02τ

2
2 + H∗

5 (ϕ1, ϕ2, τ1, τ2) + (30)

Recall that Arnold’s theorem [4] states that in the case of absence of reso-
nances up to the fourth order inclusively (conditions (15),(16),(28)) equilibrium
solutions are stable if

f = c20σ
2
2 + c11σ1σ2 + c02σ

2
1 �= 0 . (31)

Numerical analysis of parameter f shows that for equilibrium point S1, there
exist such values of parameters μ1, μ2, for which f = 0 (see Fig. 2). For such μ1,
μ2 the fifth- and higher-order terms in the expansion of the Hamiltonian (4) need
to be analyzed to conclude on stability or instability of equilibrium solution.

Besides, there is a curve in the μ1Oμ2 plane, where the condition of fourth-
order resonance of the form σ1 = 3σ2 is fulfilled. In this case, eight additional
terms appear in the expression for H∗

4 because the following coefficients h
∗(4)
ijkl do

not vanish and are expressed via two parameters A1, A2

h
∗(4)
0013 = −1

3
h
∗(4)
0211 = −1

3
h
∗(4)
1102 = h

∗(4)
1300 =

A1

4
,

h
∗(4)
1003 =

1
3
h
∗(4)
0112 = −1

3
h
∗(4)
1201 = −h

∗(4)
0310 =

A2

4
. (32)

Parameters A1, A2 are obtained as the solutions of system (32) and are given by

A1 =
1
2
(h̃(4)

0013 − h̃
(4)
0211 − h̃

(4)
1102 + h̃

(4)
1300),

98 D.A. Budzko and A.N. Prokopenya

A2 =
1
2
(h̃(4)

0112 − h̃
(4)
0310 + h̃

(4)
1003 − h̃

(4)
1201).

As a result, the Hamiltonian (23) is reduced to the form

H∗ =
3σ2

2
(
p∗21 + q∗21

)
− σ2

2
(
p∗22 + q∗22

)
+

+
1
4
(
c20(p∗21 + q∗21)2 + c11(p∗21 + q∗21)(p∗22 + q∗22) + c02(p∗22 + q∗22)2

)
+

+
A1

4
(
p∗1p

∗3
2 − 3q∗22 p∗1p

∗
2 − 3q∗1q∗2p∗22 + q∗1q∗32

)
+

+
A2

4
(
q∗1p∗32 − 3q∗1q∗22 p∗2 + 3q∗2p

∗
1p

∗2
2 − p∗1q

∗3
2

)
. (33)

Then doing the transformation (21), relating to the canonical variables q∗1 , q∗2 ,
p∗1, p∗2, we rewrite the Hamiltonian (33) as

H = 3σ2τ1 − σ2τ2 + c20τ
2
1 + c11τ1τ2 + c02τ

2
2 +

+τ2

√
τ1τ2(A2

1 + A2
2) cos(ϕ1 + 3ϕ2) + H∗

5 (ϕ1, ϕ2, τ1, τ2) +

According to the theorem of Markeev [2], stability of the equilibrium solutions
under the fourth-order resonance depends on the values of c20 + 3c11 + 9c02 and
3
√

3(A2
1 + A2

2). Our calculations show that in case of equilibrium point S1, the
inequality

c20 + 3c11 + 9c02 > 3
√

3(A2
1 + A2

2)

takes place if for μ2 > 0.001178 and the point (μ1, μ2) belongs to the curve
σ1 = 3σ2 in Fig. 2. Therefore, on the basis of the Arnold and Markeev theorems
we can conclude that the equilibrium position S1 is stable in Liapunov’s sense
for any values of parameters μ1, μ2 from the domain of its linear stability in
the μ1Oμ2 plane, except for the curves σ1 = 2σ2, f = 0 and part of the curve
σ1 = 3σ2 below the point J in Fig. 2.

5 Stability Analysis in the Case of f = 0

Let us consider the points (μ1, μ2) belonging to the curve f = c20σ
2
2 + c11σ1σ2 +

c02σ
2
1 = 0 in the plane μ1Oμ2. For the corresponding values of parameters μ1, μ2,

the Arnold’s theorem can not be applied, and the analysis of the fifth- and
higher-order terms in the Hamiltonian expansion (4) is required. Note that these
terms are normalized similarly to the cases of normalization of H3 and H4. To
normalize the fifth-order term, for example, we have to look for the generating
function of the corresponding canonical transformation in the form of the fifth-
order polynomial. Analyzing coefficients h

(5)
ijkl in the expression for H5, one can

show that in the absence of resonances up to the fifth order inclusively there exist
such coefficients of the generating function that the term H5 in the Hamiltonian
(4) vanishes.

On the Stability of Equilibrium Positions 99

Similar analysis of the sixth-order term H6 in the Hamiltonian (4) shows that
it can not be entirely eliminated but in the absence of resonances up to the sixth
order inclusively there exists a canonical transformation reducing it to the form

H6 = c30τ
3
1 + c21τ

2
1 τ2 + c12τ1τ

2
2 + c03τ

3
2 . (34)

Then we can verify the condition

d = c30σ
3
2 + c21σ

2
2σ1 + c12σ2σ

2
1 + c03σ

3
1 �= 0 (35)

at the points (μ1, μ2), where f = c20σ
2
2 + c11σ1σ2 + c02σ

2
1 = 0. Our calculation

has shown that condition (35) is fulfilled for all points at the curve f = 0, except
for the point (0.00679, 0.000271), where this curve crosses the resonance curve
σ1 = 3σ2 (these curves are shown in larger scale in Fig. 3). According to the
Markeev theorem [2], it means that the equilibrium point S1 is stable for all
points of the curve f = 0, except for the points, where this curve crosses the
resonance curves shown in Fig. 3.

Remind that for μ2 < 0.001178, the equilibrium point S1 is unstable owing to
fourth-order resonance. Therefore, it is unstable at the point (0.00679, 0.000271),
as well. At the points (0.00398, 0.000105), (0.00264, 0.000065) in the plane μ1Oμ2,
where the curve f = 0 crosses the resonance curves σ1 = 4σ2 and σ1 = 5σ2, con-
ditions of the Markeev theorem are not fulfilled, and the stability problem for
the corresponding values of parameters μ1, μ2 is still open.

0.002 0.004 0.006 0.008
Μ1

0.0002

0.0004

0.0006

0.0008

0.0010

Μ2

f � 0

Σ1� 3Σ2Σ1� 4Σ2Σ1� 5Σ2

Fig. 3. Points of intersection of the curve f = 0 and the resonance curves

6 Conclusion

In the present paper, we have completely studied the stability of the equilib-
rium point S1 in the planar circular restricted four-body problem formulated
on the basis of the Lagrange triangular solution of the three-body problem. We

100 D.A. Budzko and A.N. Prokopenya

proved that this equilibrium point is stable in Liapunov’s sense for any values
of parameters μ1, μ2 from the domain of its linear stability in the μ1Oμ2 plane,
except for the resonance curve σ1 = 2σ2 and a part of the resonance curve
σ1 = 3σ2 shown in Fig. 2. Besides, the stability problem is not solved for two
points (0.00398, 0.000105), (0.00264, 0.000065) in the μ1Oμ2 plane, where the
curve f = 0 crosses the resonance curves σ1 = 4σ2 and σ1 = 5σ2.

Note that all numerical and symbolic calculations and visualization of the
obtained results have been done with the computer algebra system Mathematica.
And all the calculations can be easily repeated for other equilibrium points.

References

1. Szebehely, V.: Theory of Orbits. The Restricted Problem of Three Bodies. Aca-
demic Press, New York (1967)

2. Markeev, A.P.: Libration Points in Celestial Mechanics and Cosmodynamics.
Nauka, Moscow (1978) (in Russian)

3. Whipple, A.L., Szebehely, V.: The restricted problem of n + ν bodies. Celestial
Mechanics 32, 137–144 (1984)

4. Arnold, V.I.: Small denominators and problems of stability of motion in classical
and celestial mechanics. Uspekhi Math. Nauk. 18(6), 91–192 (1963) (in Russian)

5. Moser, J.: Lectures on the Hamiltonian Systems. Mir, Moscow (1973) (in Russian)
6. Markeev, A.P.: Stability of the Hamiltonian systems. In: Matrosov, V.M.,

Rumyantsev, V.V., Karapetyan, A.V. (eds.) Nonlinear Mechanics, pp. 114–130.
Fizmatlit, Moscow (2001) (in Russian)

7. Wolfram, S.: The Mathematica Book, 4th edn. Wolfram Media/Cambridge Uni-
versity Press (1999)

8. Budzko, D.A.: Linear stability analysis of equilibrium solutions of restricted planar
four-body problem. In: Gadomski, L., et al. (eds.) Computer Algebra Systems in
Teaching and Research. Evolution, Control and Stability of Dynamical Systems,
pp. 28–36. The College of Finance and Management, Siedlce (2009)

9. Budzko, D.A., Prokopenya, A.N.: Stability analysis of equilibrium solutions in
the planar circular restricted four-body problem. In: Gadomski, L., et al. (eds.)
Computer Algebra Systems in Teaching and Research. Differential Equations, Dy-
namical Systems and Celestial Mechanics, pp. 141–159. Wydawnictwo Collegium
Mazovia, Siedlce (2011)

10. Budzko, D.A., Prokopenya, A.N.: Symbolic-numerical analysis of equilibrium so-
lutions in a restricted four-body problem. Programming and Computer Soft-
ware 36(2), 68–74 (2010)

11. Liapunov, A.M.: General Problem about the Stability of Motion. Gostekhizdat,
Moscow (1950) (in Russian)

12. Birkhoff, G.D.: Dynamical Systems. GITTL, Moscow (1941) (in Russian)
13. Budzko, D.A., Prokopenya, A.N., Weil, J.A.: Quadratic normalization of the Hamil-

tonian in restricted four-body problem. Vestnik BrSTU. Physics, Mathematics,
Informatics (5), 82–85 (2009) (in Russian)

14. Gadomski, L., Grebenikov, E.A., Prokopenya, A.N.: Studying the stability of equi-
librium solutions in the planar circular restricted four-body problem. Nonlinear
Oscillations 10(1), 66–82 (2007)

Semi-algebraic Description of the Equilibria

of Dynamical Systems

Changbo Chen and Marc Moreno Maza

The University of Western Ontario, London N6A 1M8, Canada

Abstract. We study continuous dynamical systems defined by auto-
nomous ordinary differential equations, themselves given by parametric
rational functions. For such systems, we provide semi-algebraic descrip-
tions of their hyperbolic and non-hyperbolic equilibria, their asymptot-
ically stable hyperbolic equilibria, their Hopf bifurcations. To this end,
we revisit various criteria on sign conditions for the roots of a real para-
metric univariate polynomial. In addition, we introduce the notion of
comprehensive triangular decomposition of a semi-algebraic system and
demonstrate that it is well adapted for our study.

1 Introduction

The study of polynomial dynamical systems by means of symbolic computation
is one of the most popular application of computer algebra. Equilibria, limit
cycles, center manifolds, normal forms and bifurcation analysis are the main
notions used in the study of dynamical systems [30, 4, 21, 33]. These objects
can be manipulated by a variety of symbolic methods [11, 9, 10, 39, 13, 34, 27, 23,
24, 35, 19, 17, 16, 22, 36, 5, 31]. Among these notions, those which have received
the greatest attention by the computer algebra community are equilibria and
bifurcation analysis. Studying them for polynomial dynamical systems typically
consists of: (1) setting up a (parametric) semi-algebraic system S, (2) extracting
from S a particular information.

The aim of this paper is twofold. Our first objective is to revisit the results
that are practically useful for conducting equilibrium and bifurcation by means
of symbolic computation. These results are gathered in Sections 2 and 3. They
are generally stated in terms of the coefficients of a univariate polynomial and
translate into semi-algebraic systems. A prototype of such results is the Routh-
Hurwitz’s criterion. While many of these criteria appear in the literature (for
instance in [23, 24]) we also provide some new criteria, like Theorem 9, as well
as new interpretation of classical results, like Theorem 13.

Our second objective is to exhibit tools that are well adapted for solving
the semi-algebraic systems implementing the above mentioned results. Typical
problems on parametric dynamical systems (see Problems 1, 2, 3) require to de-
compose the parameter space into connected semi-algebraic sets above which the
qualitative behavior of the dynamical system is essentially constant. Taking also
into consideration the fact that certain degenerated behaviors have no practical

V.P. Gerdt et al. (Eds.): CASC 2011, LNCS 6885, pp. 101–125, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

102 C. Chen and M.M. Maza

interest, we introduce, in Section 4, the notion of a comprehensive triangular de-
composition of a parametric semi-algebraic system, together with an algorithm
for computing it. This work extends some of our previous papers [6, 8].

This paper attempts to be as self-contained and comprehensive as possible.
While this is not a survey paper (as it contains new theorems and algorithms) a
fair amount of classical results are recalled for the reader’s convenience. In addi-
tion, we provide in Appendix A a complete process for analyzing the bistability
of a biological model with the tools presented in this paper.

We dedicate the rest of this introduction to identify problems arising in
the study of dynamical systems which are eligible to solutions based on semi-
algebraic system solving. Some of these problems, namely Problems 1, 2, 3, are
directly formulated in terms of dynamical systems. For a sake of clarity, the
other problems, namely Problems 4 and 5, are stated in terms of conditions
on the roots of a parametric univariate polynomial, which is meant to be the
characteristic polynomial of the Jacobian matrix of the dynamical system under
study.

We consider continuous dynamical systems defined by autonomous ordinary
differential system of the following shape:⎧⎪⎪⎪⎨⎪⎪⎪⎩

ẏ1 = F1(u1, . . . , ud, y1, . . . , ym),
ẏ2 = F2(u1, . . . , ud, y1, . . . , ym),
...

...
˙ym = Fm(u1, . . . , ud, y1, . . . , ym).

(1)

where F1, . . . , Fm are polynomials of Q[u1, . . . , ud, y1, . . . , ym]. The variables u =
(u1, . . . , ud) are considered as parameters and the variables y = (y1, . . . , ym) are
seen as unknowns. In addition, we have yi = yi(t) and ẏi = dyi/dt while the
parameters u1, . . . , ud are independent of the derivation variable t. In the sequel,
we simply write (1) as

ẏ = F (u,y) (2)

where F (u,y) = (F1(u,y), . . . , Fm(u,y)) is called the vector field of the system.
For any given parameter value u ∈ Rd, one may notice that any y ∈ Rm such

that F1(u, y) = · · · = Fm(u, y) = 0 holds, is a constant solution of System (1),
which is called an equilibrium (or a steady state, or a fixed point). We are inter-
ested in the following problem regarding the equilibria of the given dynamical
system.

Problem 1. For a fixed parameter value u (or in absence of parameters) deter-
mine the number of equilibria of (1) and compute each of them (for instance, by
means of isolation intervals). In presence of parameters, partition the parameter
space into connected semi-algebraic sets, such that above each of them, the num-
ber of equilibria is constant and each equilibrium is a continuous function of the
parameters.

Problems 1 is a particular instance of the solving of semi-algebraic systems. Sec-
tion 4 is dedicated to this more general question, with a view toward Problem 1.

Semi-algebraic Description of the Equilibria of Dynamical Systems 103

We consider now a fixed parameter value u and a particular equilibrium y
of System (1) at u. An important problem concerning the equilibrium y is to
analyze its stability. We say y is stable if any solution of System (1) starting
out close to y remains close to it. We say y is asymptotically stable if y is stable
and if the solutions of System (1) starting out close to y become arbitrary close
to it. If y is not stable, it is said to be unstable. The above discussion leads
to enhance Problem 1 into the following ones, which deals with the number of
asymptotically stable equilibria of System (1) depending or not on parameters.

Problem 2. For a fixed parameter value u (or in absence of parameters) deter-
mine the number of asymptotically stable hyperbolic equilibria of (1) and compute
each of them. In presence of parameters, partition the parameter space into con-
nected semi-algebraic sets, such that above each of them, the number of asymp-
totically stable hyperbolic equilibria is constant and each of these equilibria is a
continuous function of the parameters.

The study of the system near the particular equilibrium y is usually done using
the linear system

ẏ = J(u, y)(y − y), (3)

where J is the Jacobian matrix of F :

J =

⎛⎜⎜⎜⎜⎝
∂F1
∂y1

∂F1
∂y2
· · · ∂F1

∂ym
∂F2
∂y1

∂F2
∂y2
· · · ∂F2

∂ym

...
...

...
∂Fm

∂y1

∂Fm

∂y2
· · · ∂Fm

∂ym

⎞⎟⎟⎟⎟⎠
We denote by

f(λ) = a0λ
m + a1λ

m−1 + a2λ
m−2 + · · ·+ am−1λ + am,

where a0 = 1, the characteristic polynomial of J . If the matrix J(u, y) has no
eigenvalues with zero real parts, that is, if f(u, y, λ) has no roots with zero
real parts, then y is called a hyperbolic equilibrium at u; otherwise y is a non-
hyperbolic equilibrium at u. In [32], Hartman and Grobman proved the following
result: if y is a hyperbolic equilibrium, then near y, the phase portrait of the
dynamical system (1) is topologically equivalent to that of the linearized dynam-
ical system (3). The results imply that, for a hyperbolic equilibrium y, the phase
flow of (1) is asymptotically stable near y if and only if the phase flow of (3) is
asymptotically stable near y. Therefore, using standard results on linear differ-
ential systems [1], the phase flow of (1) is asymptotically stable near y if and
only if all the complex roots of f(u, y, λ) have negative real parts. This reduces
Problem 2 to the following problem.

Problem 2’. For a univariate polynomial f(x) ∈ R[x], determine whether all
the complex roots of f(x) have negative real parts or not.

In the above analysis, we assume the equilibrium y is hyperbolic, so a natural
question is how to determine whether y is hyperbolic or not. In other words, we
want to solve the following problem:

104 C. Chen and M.M. Maza

Problem 3. For a fixed parameter value u, determine whether each equilibrium
of (1) is hyperbolic or not. In presence of parameters, partition the parameter
space into connected semi-algebraic sets, such that above each of them, an equi-
librium is always either hyperbolic or non-hyperbolic.

This problem is equivalent to determine whether all the complex roots of the
characteristic polynomial f(u, y, λ) have nonzero real parts, which leads to the
following general problem.

Problem 3’. For a univariate polynomial f(x) ∈ R[x], determine whether f(x)
has complex roots with zero real parts or not.

When y is a non-hyperbolic equilibrium of (1), if the characteristic polynomial
f(u, y, λ) has at least one complex root with positive real part, then y is an un-
stable equilibrium. Otherwise, the stability of y depends also on the higher order
terms of the Taylor expansion of F near the point y. In this situation, one usually
needs to apply the Centre Manifold Theorem [3] to reduce the original system
to a low dimensional dynamical system defined on a centre manifold and further
simplify it by computing its normal form. Finally, the normal form can be further
reduced by removing terms that do not affect the stability of the equilibrium.
Therefore, the first step towards stability analysis of non-hyperbolic equilibria
of (1) is to determine when the characteristic polynomial has at least one com-
plex root with positive real part or, equivalently, determine when f(u, y, λ) has
only complex roots with non-positive real parts, which leads to the following
problem.

Problem 4. For a univariate polynomial f(x) with parametric coefficients, de-
termine whether f(x) has at least one complex root with positive real part. Equiv-
alently, given two integers k1 and k2, determine whether f(x) has zero as a root
of multiplicity k1 and k2 pairs of purely imaginary roots while all the other com-
plex roots have negative real parts.

Whennon-hyperbolic equilibria arepresent, anothermore interestingphenomenon
is the appearance of bifurcation. For the dynamical system (1), a bifurcation oc-
curs at a parameter α0 if there are parameter values α1 arbitrarily close to
α0 with dynamics topologically non-equivalent to those at α0. For example, the
number or stability of equilibria or periodic orbits of (1) may change with pertur-
bations of u from α0. For a general dynamical system, such as (1), a systematic
study is difficult. However, given an equilibrium y of (1) at u, necessary condi-
tions for bifurcation can be obtained as follows. If a bifurcation of an equilibrium
occurs near (u, y), then either or both conditions below are met:

– the characteristic polynomial f has zero as a root of multiplicity k, for some
k > 0,

– the characteristic polynomial f has k pairs of purely imaginary roots, for
some k > 0.

Semi-algebraic Description of the Equilibria of Dynamical Systems 105

Therefore, the last problem we want to answer in this paper is as follows:

Problem 5. Given non-negative integers k1, k2 and a polynomial f(x) with
parametric coefficients, determine whether f(x) has zero as a root of multiplic-
ity k1 and k2 pairs of purely imaginary roots while no other roots have zero real
parts.

A particular case of the above problem is (k1, k2) = (0, 1). In this case, thus if the
characteristic polynomial f(u, y, λ) has a pair of purely imaginary roots and no
other roots with zero real part, the limit cycle bifurcation that may occur at (u, y)
is called a Hopf bifurcation. Such bifurcation has attracted the interest of many
authors. In [20], the authors presented sufficient conditions for the appearance
of Hopf bifurcations. In [23], the authors give sufficient and necessary conditions
on Hopf bifurcations by further demanding that all the other eigenvalues have
negative real roots, which is convenient for applying Centre Manifold Theory in
order to reduce the dimension of dynamical systems. In [24], the authors present
a framework for solving Problem 5.

2 On the Complex Roots of a Univariate Polynomial

As we have seen in the previous section, many problems related to dynamical sys-
tems reduce to studying the complex roots of a univariate polynomial with real
coefficients. In particular, Problems 2’, 3’, 4 and 5 will be completely answered
in the present section.

This section is firmly rooted in the papers [23, 24]. With respect to [23, 24]
our main contribution in this section is Theorem 9, from which the main result
of [23] (that is, Theorem 3.6 in [23] and Corollary 3 in this section), dedicated
to Hopf bifurcation, can easily be derived. Theorem 9 provides two equivalent
conditions for a polynomial with real coefficients to have only complex roots
with non-positive real parts.

The proof of the first condition relies on several results of [23, 24], which are
reviewed hereafter for the reader’s convenience. To prove the second condition,
we introduce Corollary 2 and Theorem 7. It should be pointed out that to deduce
Corollary 3 from Theorem 9, this second condition is really needed. We also
correct the error of sign difference in Theorem 3.1 of [23](Theorem 1 in [24]) and
revise it as Theorem 5 hereafter.

Let f(x) ∈ R[x] be a polynomial of degree m, and let us write

f(x) = a0x
m + a1x

m−1 + · · ·+ am.

After recalling the definition and standard properties (Lemma 1, Theorems 1, 3, 2,
4) of Hurwitz determinants, we discuss their relations with subresultant sequences
in Section 2.2 and their use in the study of symmetric roots in Section 2.3.

Definition 1 (Hurwitz matrix). We call Hurwitz matrix of f the m × m
matrix H = (Hμν) defined by Hμν = a2ν−μ for ν = 1, . . . , m and μ = 1, . . . , m,

106 C. Chen and M.M. Maza

with the convention that ai = 0 holds as soon as i < 0 or i > m holds. For
i = 1, . . . , m, we denote by Δi the leading principal minors of H, which are
called the Hurwitz determinants of H:

Δ1 = a1, Δ2 =
∣∣∣∣a1 a3

a0 a2

∣∣∣∣ , . . . , Δm =

∣∣∣∣∣∣∣∣∣∣∣

a1 a3 a5 · · · · · ·
a0 a2 a4 · · · · · ·
0 a1 a3 a5 · · ·
0 a0 a2 a4 · · ·

. . .

∣∣∣∣∣∣∣∣∣∣∣
.

It is easy to see that we have Δm = amΔm−1.

The following criterion provides a sufficient and necessary condition for a poly-
nomial f to have only roots with negative real parts, which is therefore an answer
to Problem 1.

Theorem 1 (Routh-Hurwitz’s criterion [15]). The real parts of all the zeros
of f(λ) are negative if and only if Δ1 > 0, Δ2 > 0, . . . , Δm−1 > 0, am > 0.

There is also another famous criterion equivalent to the above one, which is
called Liénard-Chipart’s Criterion.

Theorem 2 (Liénard-Chipart’s criterion [15]). The real parts of all the
zeros of f(λ) are negative if and only if we have:

(1) If m is odd, then all the below inequalities hold:

am > 0, a2 > 0, a4 > 0, . . . , am−1 > 0, Δ2 > 0, Δ4 > 0, . . . , Δm−1 > 0.

(2) If m is even, then all the below inequalities hold:

am > 0, a1 > 0, a3 > 0, . . . , am−1 > 0, Δ1 > 0, Δ3 > 0, . . . , Δm−1 > 0.

2.1 Hurwitz Determinants and Stability of Hyperbolic Equilibria of
Dynamical System

In this section, for a fixed parameter value u ∈ Rd, let y ∈ Rm be an equilibrium
of dynamical system (1).

Lemma 1 (Orlando’s formula [14]). Let λi, i = 1, . . . , m, be the eigenvalues
of J(u, y) and Δm−1 be the (m− 1)-th Hurwitz determinant of its characteristic
polynomial. Then we have:

Δm−1 = (−1)
1
2 m(m−1)

∏
1≤i<j≤m

(λi + λj).

Corollary 1 (Hyperbolic equilibrium criterion). The following three prop-
erties hold.

Semi-algebraic Description of the Equilibria of Dynamical Systems 107

(1) J(u, y) have no zero eigenvalues if and only if |J(u, y)| = (−1)mam �= 0.
(2) If Δm−1 �= 0, then J(u, y) has no pure imaginary eigenvalues.
(3) If Δm = amΔm−1 �= 0, then y is a hyperbolic equilibrium.

Proof. Property (1) is clear. Property (2) is an immediate consequence of Or-
lando’s Formula. Property (3) follows from |J(u, y)| = λ1λ2 · · ·λm.

Remark 1. Necessary and sufficient conditions for J(u, y) to have no pure
imaginary eigenvalues (resp. y to be hyperbolic equilibrium) will be provided in
Section 2.3.

Theorem 3 (Lyapunov’s first method on stability [28]). The following
properties hold.

(i) If J(u, y) has at least one eigenvalue with positive real parts, then y is un-
stable.

(ii) Assume that y is a hyperbolic equilibrium. If all the eigenvalues of J(u, y)
have negative real parts, then y is asymptotically stable.

Theorem 4 (Stability criterion for hyperbolic equilibria). Let y be an
equilibrium of System (1), we have:

(1) y is an asymptotically stable hyperbolic equilibrium if and only if

Δ1 > 0, Δ2 > 0, . . . , Δm−1 > 0, am > 0.

(2) If y is hyperbolic, then y is unstable if and only if there exists some i, 1 ≤
i ≤ n, such that Δi ≤ 0.

Proof. Directly by Theorem 3 and Routh-Hurwitz Criterion.

2.2 Hurwitz Determinants and Subresultant Sequences

Let A be a commutative ring with identity and let p ≤ q be two positive integers.
Let M be a p× q matrix with coefficients in A. Let Mi be the square submatrix
of M consisting of the first p − 1 columns of M and the ith column of M , for
i = p · · · q. Let detMi be the determinant of Mi. We denote by dpol(M) the
element of A[y], called the determinant polynomial of M , given by

det Mpy
q−p + det Mp+1y

q−p−1 + · · ·+ detMq.

Let f1(y), . . . , fp(y) be a set of polynomials of A[y]. Let

q = 1 + max(deg f1(y), . . . , deg fp(y)).

The matrix M of f1, . . . , fp is defined by Mij = coeff(fi, y
q−j).

Let f = amym + · · · + a0, g = bnyn + · · · + b0 be two polynomials of A[y]
with positive degrees m and n. Let λ = min(m, n). Denote by lc(f) and lc(g)
respectively the leading coefficient of f and g w.r.t. y. For any 0 ≤ i < λ, let

108 C. Chen and M.M. Maza

M be the matrix of the polynomials yn−1−if, . . . , yf, f, ym−1−ig, . . . , yg, g. We
define the ith subresultant of f and g, denoted by Si(f, g, y) as

Si(f, g, y) = dpol(yn−1−if, . . . , yf, f, ym−1−ig, . . . , yg, g)
= dpol(M).

Note that Si(f, g, y) is a polynomial in A[y] with degree at most i. Let si(f, g, y) =
coeff(Si(f, g, y), yi) and call it the principle subresultant coefficient of Si(f, g, y).
If m ≥ n, we define Sλ(f, g, y) = g, Sλ+1(f, g, y) = f , sλ = lc(g) and sλ+1 =
lc(f). If m < n, we define Sλ = f , Sλ+1 = g, sλ = lc(f) and sλ+1 = lc(g).

Let A = Q[a0, . . . , am] and f ∈ A[x] = a0x
m+a1x

m−1+ · · ·+am−1x+am be a
polynomial of degree m. We write f(x) = f1(x2)+xf2(x2). If m = 2+1, we have
f1(y) = a1y

�+a3y
�−1+· · ·+a2�+1 and f2(y) = a0y

�+a2y
�−1+· · ·+a2�. If m = 2,

we have f1(y) = a0y
�+a2y

�−1+· · ·+a2� and f2(y) = a1y
�−1+a3y

�−2+· · ·+a2�−1.

Theorem 5. Let Δ1, Δ2, . . . , Δm be the Hurwitz determinants sequence of f .
Then the following conclusion holds:

(i) If m = 2+1, we have Δm−1−2i = Δ2�−2i = (−1)
(�−i)(�−i−1)

2 si(f1, , f2, , y)
hold, for i = 0, 1, . . . , − 1.

(ii) If m = 2, we have Δm−1−2i = Δ2�−1−2i = (−1)
(�−i)(�−i−1)

2 si(f1, , f2, −
1, y), for i = 0, 1, . . . , − 1.

(iii) If m = 2 + 1, for i = 0, 1, . . . , , we have

Δm−2i = Δ2�+1−2i = (−1)
(�−i)(�−i+1)

2 si(f1, , yf2, + 1, y)
= (−1)

3(�−i)(�−i+1)
2 si(yf2, + 1, f1, , y).

(iv) If m = 2, we have Δm−2i = Δ2�−2i = (−1)
(�−i)(�−i+1)

2 si(f1, , yf2, , y)
hold, for i = 0, 1, . . . , − 1.

Proof. Here, we only prove (i) holds and leave the other cases for exercise.
When m = 2 + 1, we have f1(y) = a1y

� + a3y
�−1 · · · + am, f2(y) = a0y

� +
a2y

�−1 · · · + am−1. So the Sylvester matrix M formed by the coefficients of f1

and f2 is an 2× 2 matrix of the form:

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 a3 a5 · · · am

a1 a3 a5 · · · am

.
a1 a3 a5 · · · am

a0 a2 a4 · · · am−1

a0 a2 a4 · · · am−1

. . .
. . .

. . .
a0 a2 a4 · · · am−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4)

Semi-algebraic Description of the Equilibria of Dynamical Systems 109

On the other hand, the Hurwitz matrix H of f is an (2+1)× (2+1) matrix
whose elements are arranged like this:

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 a3 a5 · · · am

a0 a2 a4 · · · am−1

a1 a3 a5 · · · am

a0 a2 a4 · · · am−1

· · · · · ·
a1 a3 a5 · · · am

a0 a2 a4 · · · am−1

a1 a3 · · · am−2 am

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5)

Let H∗ be the sub-matrix composed by the first 2 rows and 2 columns of
H . We denote by H2i the sub-matrix of H∗, formed by the first 2i rows and 2i
columns, for i = 1, 2, . . . , . We denote by Mi the sub-matrix of M , formed by
deleting the last i rows composed by the coefficients of f1(y) and the last i rows
composed by the coefficients of f2(y) and then deleting the last 2i columns for
i = 0, 1, . . . , − 1. Then it’s easy to see that if we make the odd rows of H2�−2i

“float up” one by one, we finally get the matrix Mi. So the number of row
exchanges for H2�−2i is: 0+1+2+ · · ·+(− i− 1) = (�−i)(�−i−1)

2 . Therefore, we

have Δ2�−2i = |H2�−2i| = (−1)
(�−i)(�−i−1)

2 |Mi| = (−1)
(�−i)(�−i−1)

2 si(f1, , f2, , y),
for i = 0, 1, . . . , − 1.

Remark 2. This theorem is a corrected version of Theorem 1 in [24], where the
sign differences between Δi and si are wrong.

2.3 Hurwitz Determinants and Symmetric Roots

The following result is taken from [23]. Corollary 2 is a direct consequence.

Lemma 2 ([23]). Given a univariate polynomial f(x) = a0x
m+a1x

m−1+· · ·+
am of R[x], where a0 �= 0. We write f(x) into the form: f(x) = f1(x2)+xf2(x2).
Then f(x) has a pair of symmetric zeros z and −z in C if and only if z2 is a
common zero of f1(y) and f2(y).

Corollary 2. Assume that am �= 0, then f(x) has a pair of symmetric zeros z
and −z in C if and only if z2 is a common zero of f1(y) and yf2(y).

Theorem 6 ([23]). Let f(x) = a0x
m+a1x

m−1+· · ·+am ∈ R[x] be a polynomial
of degree m. Then f(x) has exactly k pairs of symmetric roots zi and −zi in C

if and only if Δm−1 = 0, . . . , Δm−2k+1 = 0, Δm−2k−1 �= 0.

Theorem 7. Notation as above, if am �= 0, then f has exactly k pairs of sym-
metric roots zi and −zi if and only if Δm = 0, . . . , Δm−2k+2 = 0, Δm−2k �= 0.

Proof. If am �= 0, by Corollary 2, the number of symmetric roots, counted with
multiplicities, of the polynomial f is equal to the number of common roots,

110 C. Chen and M.M. Maza

counted with multiplicities, of the two polynomials f1(y) and yf2(y). According
to the elementary properties of subresultant sequences the polynomials f1(y)
and f2(y) have k common roots if and only if

s0(f1, yf2, y) = 0, . . . , sk−1(f1, yf2, y) = 0, sk(f1, yf2, y) �= 0.

So by Theorem 5 and specialization property of subresultants [29, 7], f has
exactly k pairs of symmetric roots if and only if Δm = 0, . . . , Δm−2k+2 =
0, Δm−2k �= 0.

Lemma 3 ([23]). Let f(x) ∈ R[x] be a polynomial of degree m and z1, . . . , zk

be arbitrary complex numbers. Let f∗(x) = f(x)(x2 − z2
1) · · · (x2 − z2

k). If Δ∗
i is

the Hurwitz determinants of order i of the polynomial f∗(x), then Δi = Δ∗
i , for

i = 1, . . . , m. Similarly, let f∗(x) = f(x)xk, then we also have Δi = Δ∗
i hold.

Theorem 8. The polynomial f(x) has zero as root of multiplicity k and all the
other roots in the left half-plane if and only if am−k+1 = · · · = am = 0 and
Δ1 > 0, Δ2 > 0, . . . , Δm−k > 0.

Proof. It follows directly from Routh-Hurwitz criterion and Lemma 3.

Theorem 9. Let f(x) ∈ R[x] be a polynomial of degree m and f(x) = a0x
m +

a1x
m−1 + · · · + am = f1(x2) + xf2(x2). Let Δ1, Δ2, . . . , Δm be the Hurwitz de-

terminants sequence of f . Then the following statements are equivalent:

(i) f(x) has k pairs of pure imaginary roots and all the other roots are in the
left half-plane.

(ii) Sk(f1, f2, y) has k negative real roots and Δm−1 = Δm−3 = · · · =
Δm−2k+1 = 0, Δm−2k > 0, Δm−2k−1 > 0, . . . , Δ1 > 0.

(iii) Sk(f1, yf2, y) has k negative real roots and am �= 0, Δm = Δm−2 = · · · =
Δm−2k+2 = 0, Δm−2k > 0, Δm−2k−1 > 0, . . . , Δ1 > 0.

Proof. “(i) ⇒ (ii)”. Assume that f(x) has k pairs of pure imaginary roots and
all the other roots are in the left half-plane. Let ±iω1, . . . ,±iωk be the k pairs of
pure imaginary roots, then we can write f(x) as f(x) = f∗(x)(x2 +ω2

1) · · · (x2 +
ω2

k), where ω2
1 > 0, . . . , ω2

k > 0 and f∗(x) has only roots in the left half-plane.
By Routh-Hurwitz criterion, we know that Δ∗

1 > 0, Δ∗
2 > 0, . . . , Δ∗

m−2k > 0.
According to the Lemma 3, we know that Δ∗

i = Δi. Therefore, we have Δm−2k >
0, Δm−2k−1 > 0, . . . , Δ1 > 0 hold.

Moreover, by assumption we know the k pairs of pure imaginary roots are
the only symmetric roots of f(x), which implies Δm−1 = Δm−3 = · · · =
Δm−2k+1 = 0, Δm−2k−1 �= 0. Therefore, by Theorem 5 we have s0(f1, f2, y) =
0, . . . , sk−1(f1, f2, y) = 0, sk(f1, f2, y) �= 0, which implies that Sk(f1, f2, y) =
gcd(f1, f2, y). On the other hand, since ±iω1, . . . ,±iωk are the symmetric roots
of f(x), by Lemma 2, −ω2

1, . . . ,−ω2
k are the common roots of f1(y) and f2(y),

that is, they are the real roots of Sk(f1, f2, y). Therefore Sk(f1, f2, y) has k
negative real roots.

Semi-algebraic Description of the Equilibria of Dynamical Systems 111

“(ii)⇒ (i)” By the assumption, we have Δm−1 = Δm−3 = · · · = Δm−2k+1 =
0, Δm−2k−1 �= 0, which implies that

s0(f1, f2, y) = s1(f1, f2, y) = · · · = sk−1(f1, f2, y) = 0, sk(f1, f2, y) �= 0.

Therefore the degree of Sk(f1, f2, y) is k and Sk(f1, f2, y) = gcd(f1, f2, y). Since
Sk(f1, f2, y) has k negative real roots, we know that f1(y) and f2(y) has k
common negative real roots and no other common roots. So by Lemma 2, f(x)
has exactly k pairs of pure imaginary roots and no other symmetric roots. Let us
write f(x) = f∗(x)(x2 + ω2

1) · · · (x2 + ω2
k), according to Δm−2k > 0, Δm−2k−1 >

0, . . . , Δ1 > 0 and Lemma 3, we know that all the roots of f∗(x) are in the left
half-plane. Therefore f(x) has k pairs of pure imaginary eigenvalues and all the
other roots are in the left half-plane.

The proof of equivalence of (i) and (iii) are similar. The only difference is that
during the proof we need to use Theorem 7 instead of Theorem 6 and Corollary 2
instead of Lemma 2.

By the above theorem, we get the following corollary, which is the main theorem
on Hopf bifurcation in [23, 24].

Corollary 3 (Theorem 4 [24]). Let f(x) ∈ R[x] be a degree m polynomial
and write f(x) = a0x

m + a1x
m−1 + · · · + am = f1(x2) + xf2(x2) with a0 > 0.

Let Δ1, Δ2, . . . , Δm be the Hurwitz determinants sequence of f . Then f(x) has
a pair of distinct roots, iω and −iω, on the imaginary and all the other roots in
the left half-plane if and only if am > 0, Δm−1 = 0, Δm−2 > 0, . . . , Δ1 > 0.

Proof. By the equivalence of (i) and (iii) in Theorem 9, we only need to prove
that am > 0, Δm−1 = 0, Δm−2 > 0, . . . , Δ1 > 0 if and only if S1(f1, yf2, y)
has one negative real root and am �= 0, Δm = 0, Δm−2 > 0, . . . , Δ1 > 0. By
Theorem 5, we have S1(f1, yf2, y) = (−1)

�(�−1)
2 (Δm−2y + amΔm−3).

“ ⇒ ” Since am > 0, Δm−1 = 0, we have am �= 0 and Δm = amΔm−1 = 0.
Moreover, as am > 0 and Δm−2 > 0, Δm−3 > 0, we know that S1(f1, yf2, y) has
one negative real root.

“⇐ ” Since S1(f1, yf2, y) has one negative real root and Δm−2 > 0, Δm−3 >
0, we have −Δm−2amΔm−3 < 0, which implies that am > 0. Moreover, by
Δm = 0, we have Δm−1 = 0.

Combining the result of Theorem 8 and Theorem 9, we get the answer to Prob-
lem 4. The answer to Problem 5 was first briefly mentioned in [24], which we
summarize as the following Theorem.

Theorem 10. Let f(x) = a0x
m +a1x

m−1 + · · ·+am be a univariate polynomial
of R[x]. Then f(x) has a root 0 of multiplicity k1 and has k2 pairs of pure imag-
inary roots while no other roots have zero real parts if and only if the following
holds:

– The coefficients of f(x) satisfy am = · · · = am−k1+1 = 0, am−k1 �= 0.

112 C. Chen and M.M. Maza

– Denote a0x
m−k1 + a1x

m−k1−1 + · · ·+ am−k1 = f1(x2)+ xf2(x2). Then there
exists an integer k ≥ k2 such that Sk(f1, f2, y) has k2 negative real roots and

Δm−k1−1 = Δm−k1−3 = · · · = Δm−k1−2k+1 = 0, Δm−k1−2k−1 �= 0.

Proof. It directly follows from Lemma 2, Lemma 3 and Theorem 6.

Remark 3. In the above theorem, if both k1 = 0 and k2 = 0, then we get an
answer to Problem 3′. If k1 = 0 and k2 = 1, then we get the necessary and
sufficient condition on Hopf bifurcation.

The reader may notice that in [23, 24] there is also a theorem to provide
sufficient and necessary conditions on Hopf bifurcation. More precisely, it is
Theorem 3.5 in [23] and Theorem 3 in [24]. However, we find that (also noticed
by the author) the condition provided there is only a sufficient condition.

In Theorem 10, we need to determine when a univariate polynomial Sk of degree
k with parametric coefficients has k2, 0 < k2 ≤ k, negative real zeros. This prob-
lem can be reduced to an exhaustive case discussion on the signs of polynomials
whose variables are the coefficients of Sk, by Sturm-Habicht sequence [18] or
negative root discriminant sequence [37].

In Theorem 9, rather we want to determine when all the complex roots of
a univariate polynomial with parametric real coefficients are real and negative.
In the rest of this section, we provide a relatively simple answer by virtue of
Descartes criterion and discriminant sequence [37, 38].

Lemma 4 (Descartes criterion). Let f(x) ∈ R[x] be a polynomial of degree
n. Let ν be the number of sign variations of its coefficients sequence. Then there
exists m ≥ 0 such that the number of positive real roots of f(x) equals ν − 2m.

Corollary 4. Let f(x) = a0x
n + · · ·+ an−1x + an be a polynomial of degree n.

If f(x) has n negative real roots, then we have aiai+1 > 0 for all 0 ≤ i ≤ n− 1.

Proof. Since f(x) has n negative real roots, f(−x) has n positive real roots.
By Descartes criterion, we have ai �= 0. On the other hand, since f(x) has no
positive real roots, we know that ai have the same sign. Done.

Definition 2 (Discrimination matrix). Given a polynomial with general sym-
bolic coefficients, f(x) = a0x

n + a1x
n−1 + · · ·+ an, the following 2n× 2n matrix

in terms of the coefficients,⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0 a1 a2 · · · an

0 na0 (n− 1)a1 · · · an−1

0 a0 a1 · · · an−1 an

0 0 na0 · · · 2an−2 an−1

· · · · · ·
· · · · · ·
a0 a1 a2 · · · an

0 na0 (n− 1)a1 · · · an−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Semi-algebraic Description of the Equilibria of Dynamical Systems 113

is called the discrimination matrix of f(x), and denoted by Discr(f). By dk or
dk(f) denote the determinant of the submatrix of Discr(f), formed by the first
k rows and the first k columns for k = 1, 2, . . . , 2n.

Definition 3 (Discriminant sequence). Let Dk = d2k, k = 1, . . . , n. We call
the sequence [D1, D2, . . . , Dn] the discriminant sequence of f(x), and denote it
by DiscrList(f). The last term Dn is just the discriminant of f .

Definition 4 (Sign list). We call the list [sign(A1), sign(A2), . . . , sign(An)]
the sign list of a given sequence A1, A2, . . . , An, where

sign(Ai) =

⎧⎨⎩
1, Ai > 0
0, Ai = 0
−1, Ai < 0

Definition 5 (Revised sign list). Given a sign list [s1, s2, . . . , sn], we con-
struct a new list [t1, t2, . . . , tn] as follows: (which is called the revised sign list)

– If [si, si+1, . . . , si+j] is a section of the given list, where si �= 0, si+1 = · · · =
si+j−1 = 0, si+j �= 0, then, we replace the subsection [si+1, . . . , si+j−1] by
the first j − 1 terms of [−si,−si, si, si,−si,−si, si, si, . . .].

– Otherwise, let tk = sk, i.e. no changes for other terms.

Theorem 11. Given a polynomial f(x) = a0x
n+a1x

n−1+· · ·+an, where a0 �= 0
of R[x]. If the number of sign changes of the revised sign list of D1, D2, . . . , Dn

is ν, the number of non-vanishing members of the revised sign list is l, then
we have: the number of distinct real roots of f(x) equals l − 2ν; the number of
distinct pairs of conjugate imaginary roots of f(x) is ν.

Example 1. Let f = (x−1)(x2+1), whose discriminant sequence is [3,−4,−16].
The sign list of it is: [1,−1, 1]. Its revised is the same to the sign list. So the
number of distinct real roots of f is 3− 2 = 1.

Theorem 12. Let f(x) ∈ R[x] be a polynomial of degree n and [D1, D2, . . . , Dn]
be its discriminant sequence. Then f(x) has n negative real roots if and only if
all its coefficients have the same nonzero sign and there exists k, 1 ≤ k ≤ n,
such that ∀i ≤ k, Di > 0 and for other i, we have Di = 0.

Proof. “ ⇒ ” By Corollary 4, we know that all the coefficients of f(x) have
the same nonzero sign. On the other hand, since f(x) has no imaginary real
roots, the revised sign list of [D1, D2, . . . , Dn] has no sign changes according to
Theorem 11. By the rule on constructing the revised sign list, we conclude that
there exists k, 1 ≤ k ≤ n, such that ∀i ≤ k, Di > 0 and for all i > k, Di = 0.

“ ⇐ ” If there exists k, 1 ≤ k ≤ n, such that ∀i ≤ k, Di > 0 and for other i,
we have Di = 0. Then the revised sign list will look like this: [1, . . . , 1, 0, . . . , 0]
Therefore, the number of sign changes is 0. So f(x) have no imaginary roots.
Moreover, since the coefficients sequence of f(x) has 0 sign variations, we know
immediately that f(x) has n negative real roots by Descartes Criterion.

114 C. Chen and M.M. Maza

3 Stability of Hyperbolic Equilibria in View of
Bifurcation

In Section 2, we discussed the stability of a hyperbolic equilibria for a fixed
parameter value. In this section, we study the stability of a hyperbolic equilibria
under variation of parameters.

Definition 6 ([25]). Let us consider a dynamical system that depends on pa-
rameters. The appearance of a topologically nonequivalent phase portrait under
variation of parameters is called a bifurcation.

Lemma 5 ([25]). Given two hyperbolic equilibria of dynamical system (1),
the phase portraits of system (1) near them are locally topologically equivalent if
and only if at the two equilibria the Jacobian matrix J has the same number of
eigenvalues with negative (positive) real parts.

Theorem 13 (Boundary crossing theorem). Given a parameter value α0

of the dynamical system (1) and let β0 be a hyperbolic equilibrium of system (1) at
the parameter α0. Then there exists a continuous function y(u) defined in a small
neighbourhood O(α0) of α0 satisfying F (u, y(u)) = 0, y(α0) = β0. Moreover, the
defining domain O(α0) of y(u) can be extended as long as Δm(u, y(u)) �= 0. In
addition, inside the extended domain, there will be no bifurcation. In particular,
the stability of y(u) remains the same in the extended domain.

Proof. Since β0 is a hyperbolic equilibrium of system (1), we have Δm(α0, β0) =
(−1)mΔm−1(α0, β0)Det(J)(α0, β0) �= 0. Since Det(J)(α0, β0) �= 0, by the im-
plicit function Theorem, we know that in a neighbourhood of α0, there is one
and only one continuous function y(u) defined by F (u, y(u)) = 0 such that
y(α0) = β0. Moreover, we can extend the domain of the function y(u) if only
Det(J)(u, y(u)) �= 0. On the other hand, the real parts of the eigenvalues of
J(u, y(u)) will not become zero, which implies that the number of the eigenval-
ues of J(u, y(u)) with negative real parts and positive real parts will remain the
same, respectively. By Lemma 5, the phase portraits will remain locally topolog-
ically equivalent. Therefore, the stability will not change if only Δn(u, y(u)) �= 0.

Remark 4. In 1929, Frazer and Duncan published a paper entitled “On the
Criteria for the Stability of Small Motions” [12]. In that paper, the authors
presented a theorem with the same name as above one, where they pointed out
that when the system passes from a region of stability to the border of stability,
Δn changes from positive to zero. Here by the language of bifurcation, we see
that a dynamical system will keep structurally stable if only the parameter does
not cross the boundary described by Δn = 0.

4 Comprehensive Triangular Decomposition of
Parametric Semi-algebraic Systems

In this section, we introduce the notion of a comprehensive triangular decom-
position of a parametric semi-algebraic system. Its purpose serves our needs in

Semi-algebraic Description of the Equilibria of Dynamical Systems 115

the study of parametric polynomial dynamical systems: solving the parametric
semi-algebraic systems that arise from the results of Sections 2 and 3.

We start with some necessary notations. For the related concepts, the reader
may refer to [6, 8, 2]. Let k is a field of characteristic zero and let K be its
algebraic closure. Let d, m, n be positive integers such that we have n = d + m
and d, m ≥ 1. Let x = x1 < · · · < xn be ordered variables, which are divided into
two groups x1 < · · · < xd and xd+1 < · · · < xn. We rename xi as ui for 1 ≤ i ≤ d
and see u = u1, . . . , ud as parameters. We rename xi as yi−d for d + 1 ≤ i ≤ n
and see y = y1, . . . , ym as unknowns.

In this paper, we use “Z” to denote the zero set of a polynomial system,
involving equations and inequations, in Kn and “ZR” to denote the zero set of a
semi-algebraic system in Rn. For a polynomial system S and point u, we denote
by S(u) the specialized (or evaluated) system at u.

Let p be a non-constant polynomial of k[x]. Denote by sep(p) the separant
(that is the derivative of p w.r.t. its main variable) of p. Let T be a regular
chain of k[u,y]. Denote respectively by mvar(T), hT , sep(T) and W (T) the set
of main variables of T , the product of initials of polynomials in T , the product
of all sep(p) for p ∈ T and the quasi-component of T . Let p ∈ k[u,y]. Denote
by res(p, T) the iterated resultant of p w.r.t. T . Denote by ∅ the empty regular
chain.

In section 4.1, we introduce the concept of a disjoint squarefree comprehensive
triangular decomposition (DSCTD) of a parametric constructible system cs of
k[u,y], which extends the notion of a CTD of an algebraic variety V of k[u,y],
introduced in [6]. We also present an algorithm for computing this new type of
decomposition.

In section 4.2, we introduce the concept of a comprehensive triangular decom-
position of a parametric semi-algebraic system (RCTD) S of k[u,y]. Moreover,
we show that RCTD can be easily computed by combining DSCTD with our
previous work on computing CAD via triangular decompositions [8].

4.1 Disjoint Squarefree Comprehensive Triangular Decomposition

Definition 7. Let R := [T, h] be a squarefree regular system of k[u,y]. Let
u ∈ Kd. We say that R specializes well at u if R(u) is a squarefree regular
system of K[y] and hT (u) �= 0. Let R = {R1, . . . , Re} be a finite set of regular
systems of k[u,y]. We say that R specializes disjointly well at u, if: (i) each
R ∈ R specializes well at u and (ii) the zero sets of Ri(u) in Kn are pairwise
disjoint.

Denote by πu the canonical projection onto the parameter space. Let ·∪ denote
the disjoint union of two sets. Let cs be a constructible set of Kn. Following the
results of [6], we assume that cs is given as the union of the zero sets of finitely
many regular systems in k[u,y]. In this section, we always assume that cs is
represented by such a set of regular systems.

Definition 8. Let cs be a constructible set of Kn. A DSCTD of cs is a pair
(C, (RC , C ∈ C)), where C is a finite partition of πu(cs) into nonempty

116 C. Chen and M.M. Maza

constructible sets, and, for each C ∈ C, RC is a finite set of regular systems
of k[u,y] such that for each point u ∈ C the following conditions hold:

(i) RC specializes disjointly well at u;
(ii) we have cs(u) = ·∪R∈RC Z(R(u))

Let R := [T, h] be a squarefree regular system of k[u,y]. Let Tu (resp. Ty) denote
the set of polynomials in T whose main variables belong to u (resp. y). Define
ry = res(h · sep(Ty), Ty). Let Wu(Tu) be the quasi-component of Tu in Kd.

Let p ∈ k[u,y]. Denote by coeffs(p,y) the set of coefficients of p w.r.t. the
variables y. Let V u(coeffs(p,y)) be the algebraic variety of coeffs(p,y) in Kd.

Definition 9. We call defining set of the squarefree regular system R := [T, h]
the set denoted by Du(R) and defined by Du(R) := Wu(Tu) \ V u(coeffs(ry,y)).

Lemma 6. Let R := [T, h] be a squarefree regular system of k[u,y]. Let u ∈ Kd.
Then R specializes well at u if and only if u ∈ Du(R).

Proof. Its proof is based on the specialization properties of subresultants and it
is similar to the proof of Proposition 4 of [6].

Algorithm 1 computes a DSCTD of a constructible set. The proof of its termina-
tion and correctness is similar to that of the algorithm CTD in [6]. We also refer
to [6] for the specifications of the subroutines MPD, SMPD and Intersect called
in Algorithm 1.

The implementation of theDSCTDalgorithm is available in theRegularChains
library since Maple13. It sits inside the ParametricSystemTool module and is

Algorithm 1. DSCTD(cs)
Input: A constructible set cs of k[u, y].
Output: A DSCTD of cs.
let R be the set of regular systems representing cs1

R := MPD(R); R′ := { }2

while R �= { } do3

let R := [T, h] ∈ R; R := R \ {R}4

R′ := R′ ∪ {R}5

G := coeffs(res(sep(Ty)h, Ty),y)6

R := R ∪ MPD(Intersect(G, R))7

R := R′; C := { }8

for R ∈ R do9

C := C ∪ {Du(R)}10

C := SMPD(C)11

for C ∈ C do12

let RC be the set of regular systems R ∈ R with C ⊆ Du(R)13

return (C, (RC , C ∈ C))14

Semi-algebraic Description of the Equilibria of Dynamical Systems 117

implemented as the command ComprehensiveTriangularize with option the
‘disjoint’=‘yes’.

Let cs be a constructible set of Kn. Often, we only need to partition the
parameter space into constructible sets such that above each of them:

1. either cs has no solutions;
2. or cs has infinitely many solutions;
3. or cs has a constant number of solutions and such that the solutions are

continuous functions of the parameters.
A precise definition of this idea is stated in Definition 10.

Definition 10. Let cs be a constructible set of Kn. A weak DSCTD (WDSCTD)
of cs is a pair (C, (TC , C ∈ C)), where

– C is a finite partition of Kd into nonempty constructible sets,
– for each C ∈ C, TC is a finite set of regular chains of k[u,y] such that:

(i) either TC is empty, which means that cs(u) is empty for each u ∈ C
(ii) or TC = {∅}, which means that cs(u) is infinite for each u ∈ C;

(iii) or each T ∈ TC satisfies mvar(T) = y and for each u ∈ C, TC specializes
disjointly well at u and cs(u) = ·∪T∈TC Z(T (u)).

Algorithm 2 computes a WDSCTD of cs. It is not difficult to prove the termina-
tion and correctness of this algorithm.

Algorithm 2. WDSCTD(cs)
Input: A constructible set cs of k[u, y].
Output: A WDSCTD of cs.
let R be the set of regular systems representing cs1

let R0 (resp. R1) be the set of regular systems [T, h] in R such that2

y ⊆ mvar(T) (resp. y �⊆ mvar(T))
let (C, (RC , C ∈ C)) be a DSCTD of R03

let E1 be the projection of the constructible set R1 on Kd
4

D := { }5

if E1 is not empty then6

D := E1; TD := {∅}; D := D ∪ {D}7

for C ∈ C do8

C := Difference(C, E1)9

if C is not empty then10

D := C; TD := {Ty | [T, h] ∈ RC}; D := D ∪ {D}11

D := Difference(Kn,∪D∈DD)12

if D is not empty then13

D := D ∪ {D}; TD := { }14

return (D, (TD, D ∈ D))15

118 C. Chen and M.M. Maza

4.2 Comprehensive Triangular Decomposition of a Parametric
Semi-1lgebraic System

Let F = {f1, . . . , fs}, P = {p1, . . . , pr} be two finite sets of polynomials of
Q[u,y]. We denote by [F, P>] the basic semi-algebraic system {f1 = 0, . . . , fs =
0, p1 > 0, . . . , pr > 0}. Its zero set in Rn, denoted by ZR(F, P>), is called a basic
semi-algebraic set. It is well known that any semi-algebraic set is a finite union
of basic semi-algebraic sets of Q[u,y]. The set cs := {(u, y) ∈ Cn | f1(u, y) =
0, . . . , fs(u, y) = 0, p1(u, y) �= 0, . . . , pr(u, y) �= 0} is called the associated con-
structible set of ZR(F, P>).

In this section, we introduce the concept of the comprehensive triangular
decomposition of a parametric basic semi-algebraic system and propose an algo-
rithm to compute it.

Definition 11. Let R := [T, P] be a squarefree regular system of Q[u,y]. We
call the pair A := [T, P>] a squarefree semi-algebraic system (SFSAS). The sys-
tem R is called the associated regular system of A.

Definition 12. Let S be a basic semi-algebraic set of Q[u,y]. Let cs be the
associated constructible set of S. A comprehensive triangular decomposition of
S is a pair (C, (AC , C ∈ C)), where
– C is a finite partition of Rd into nonempty semi-algebraic sets,
– for each C ∈ C, AC is a finite set of SFSASes of Q[u,y] such that:

(i) either AC is empty, which means that S(u) is empty for each u ∈ C;
(ii) or AC = {[∅, { }]}, which implies that cs(u) is infinite for each u ∈ C;

(iii) or C is a connected semi-algebraic set, each A = [T, P>] ∈ AC satisfies
mvar(T) = y and for each u ∈ C we have:
• the associated regular systems of AC specializes disjointly well at u,
• for each A ∈ AC , ZR(A(u)) is not empty,
• S(u) = ·∪A∈AC ZR(A(u)).

Next, we provide an algorithm for computing a CTD of a basic semi-algebraic set.
It relies on a subroutine for decomposing real constructible sets into connected
cylindrically arranged cells of Rd. The subroutine can be easily described via the
subroutines MPD, MakeCylindrical and MakeSemiAlgebraic in paper [8].
Calling sequence. CAD(C)
Input. C := {C1, . . . , Ce} is a set of pairwise disjoint constructible sets of Cn

given by polynomials in Q[x] such that Cn = ∪e
i=1Ci.

Output. A CAD E of Rn such that for each element C of C, the set C ∩ Rn is a
union of some cells in E .
Step (1). For 1 ≤ i ≤ e, apply operation MPD to the family of regular systems
representing Ci, so as to obtain another familyRi of regular systems representing
Ci and whose zero sets are pairwise disjoint.
Step (2). Let R := ∪e

i=1Ri. Call algorithm MakeCylindrical(R, n), to compute a
cylindrical decomposition D of Kn such that the zero set of each regular system
in R is a union of some cells in D.

Semi-algebraic Description of the Equilibria of Dynamical Systems 119

Step (3). Call algorithm MakeSemiAlgebraic to compute a CAD E of Rn such that,
for each element D of D, the set D ∩ Rn is a union of some cells in E .

Algorithm 3. CTD(S)
Input: A basic semi-algebraic set S := [F, P>] of k[u, y].
Output: A CTD of S .
let cs be associated constructible set of S1

let (C, (TC , C ∈ C)) be a WDSCTD of cs2

D := CAD(C)3

for each C ∈ C, for each D ∈ D such that D ⊆ C, let TD = TC4

E := { }5

for D ∈ D do6

if TD = { } then7

E := D; AE := { }; E := E ∪ {E}8

else if TD = {∅} then9

E := D; AE := {[∅, { }]}; E := E ∪ {E}10

else11

let s be a sample point of D12

E := D; E := E ∪ {E}13

AE := { }14

for T ∈ TD do15

A := [Ty, P>]16

if A(s) has real solutions then17

AE := AE ∪ {A}18

return (E , (AE, E ∈ E))19

5 Conclusion

Based on the notion of a comprehensive triangular decomposition (CTD) pre-
sented in the last section, we have obtained a framework for analyzing the sta-
bility of the equilibria and compute the bifurcations of polynomial dynamical
systems. Indeed, we can completely solve the problems introduced in Section 1.

Let us first have a look at Problem 1. Let F (u,x) be the right hand side
polynomial equations of the dynamical system (1). It is usually required that
u and x are both positive. Let P (u,x) be the corresponding set of positive
inequality constraints. Let (C, (AC , C ∈ C)) be a CTD of S = [F, P>]. In the
practice of dynamical systems, only the cells above which S has finitely many
complex solutions are interesting. This fact has motivated our definition of the
CTD of a semi-algebraic system. Let C ∈ C be a cell above which S has finitely
many complex solutions, one of them at least being real, that is, a cell of type
(iii) in Definition 12. The set C is a connected semi-algebraic subsets of Rd,
above which AC is a finite set of SFSASes whose solutions are disjoint graphs
of continuous functions above C; moreover the union of the graphs of these
functions is exactly C ∩ ZR(S). Therefore, Problem 1 is solved.

120 C. Chen and M.M. Maza

Next, we look at Problem 2. A first and direct approach consists of computing
a CTD of the system S augmented with the inequalities Δi > 0, 1 ≤ i ≤ m,
where the Δi are the Hurwitz determinants, see Definition 1. A second ap-
proach consists of computing a CTD of the system S augmented with the in-
equality Δm > 0 only and then apply the Boundary Crossing Theorem, that is
Theorem 13.

Similarly, for each of the three other problems on bifurcation, we will first
produce a semi-algebraic system by means of results in Section 2 and then apply
CTD to solve it.

References

1. Arnold, V.I.: Ordinary Differential Equations. Springer, Heidelberg (1992)
2. Chen, C., Davenport, J.H., May, J., Moreno Maza, M., Xia, B., Xiao, R.: Trian-

gular decomposition of semi-algebraic systems. In: Watt, S.M. (ed.) Proceedings
ISSAC 2010, pp. 187–194 (2010)

3. Carr, J.: Applications of Centre Manifold Theory. Springer, Heidelberg (1981)
4. Carr, J.: Applications of Centre Manifold Theory. Springer, Heidelberg (1981)
5. Chen, C.: Algebraic analysis of stability for biological systems and the implemeta-

tion of a software pakage. Master’s thesis, Peking University (2006) (in Chinese)
6. Chen, C., Golubitsky, O., Lemaire, F., Maza, M.M., Pan, W.: Comprehensive Tri-

angular Decomposition. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.)
CASC 2007. LNCS, vol. 4770, pp. 73–101. Springer, Heidelberg (2007)

7. Chen, C., Moreno Maza, M.: Algorithms for computing triangular decompositions
of polynomial systems. In: CoRR, abs/1104.0689 (2011)

8. Chen, C., Moreno Maza, M., Xia, B., Yang, L.: Computing cylindrical algebraic
decomposition via triangular decomposition. In: ISSAC 2009, pp. 95–102 (2009)

9. Chen, G., Dora, J.D.: Rational normal form for dynamical systems by Carleman
linearization. In: Dooley, S. (ed.) Proc. 1999 International Symposium on Symbolic
and Algebraic Computation (ISSAC), pp. 165–172. ACM Press, New York (1999)

10. Chen, G., Dora, J.D.: An algorithm for computing a new normal form for dynamical
systems. Journal of Symbolic Computation 29(3), 393–418 (2000)

11. Chen, G., Dora, J.D., Stolovitch, L.: Nilpotent normal form via Carleman lineariza-
tion (for systems of ordinary differential equations). In: Watt, S. (ed.) Proc. 1991
International Symposium on Symbolic and Algebraic Computation (ISSAC), pp.
281–288. ACM Press, New York (1991)

12. Frazer, R.A., Duncan, W.J.: On the criteria for the stability of small motions.
Proceedings of the Royal Society of London. Series A, Containing Papers of a
Mathematical and Physical Character 124(795), 642–654 (1929)

13. Freire, E., Gamero, E., Ponce, E., Garćıa Franquelo, L.: An algorithm for symbolic
computation of center manifolds. In: Proc. of ISAAC 1988, pp. 218–230. Springer,
London (1989)

14. Fuller, A.T.: Conditions for a matrix to have only characteristic roots with negative
real parts. Journal of Mathematical Analysis and Applications 23, 71–98 (1968)

15. Gantmacher, F.R.: The Theory of Matrices. Chelsea Publishing Company, New
York (1959)

16. Gatermann, K., Eiswirtha, M., Sensse, A.: Toric ideals and graph theory to analyze
Hopf bifurcations in mass action systems. Journal of Symbolic Computation 40(6),
1361–1382 (2005)

Semi-algebraic Description of the Equilibria of Dynamical Systems 121

17. Gatermann, K., Hosten, S.: Computational algebra for bifurcation theory. Journal
of Symbolic Computation 40(4-5), 1180–1207 (2005)

18. Gonzalez, L., Lombardi, H., Recio, T., Roy, M.-F.: Sturm-habicht sequence. In:
ISSAC 1989: Proceedings of the ACM-SIGSAM 1989 International Symposium on
Symbolic and Algebraic Computation, pp. 136–146. ACM, New York (1989)

19. Guckenheimer, J., Myers, M., Sturmfels, B.: Computing Hopf bifurcations I. SIAM
J. Num. Anal. 34(1), 1–21 (1997)

20. Guckenheimer, J., Myers, M., Sturmfels, B.: Computing hopf bifurcations i. SIAM
J. Numer. Anal. 34(1), 1–21 (1997)

21. Hale, J., Koçak, H.: Dynamics and Bifurcations. Springer, Heidelberg (1991)

22. Hong, H., Liska, R., Steinberg, S.: Testing stability by quantifier elimination. Jour-
nal of Symbolic Computation 24(2), 161–187 (1997)

23. El Kahoui, M., Weber, A.: Deciding hopf bifurcations by quantifier elimination in
a software-component architecture. J. Symb. Comput. 30(2), 161–179 (2000)

24. El Kahoui, M., Weber, A.: Symbolic equilibrium point analysis in parameterized
polynomial vector fields. In: Ganzha, V., Mayr, E., Vorozhtsov, E. (eds.) Computer
Algebra in Scientific Computing (CASC 2002), pp. 71–83 (2002)

25. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory. Springer, Heidelberg
(1998)

26. Laurent, M.: Prion diseases and the “protein only” hypothesis: a theoretical dy-
namic study. Biochem. J. 318, 35–39 (1996)

27. Liu, X., Corless, R.M., Geddes, K.O.: Computation of center manifolds. Technical
Report TR-00-15, Ontario Research Centre for Computer Algebra, 12 pages (2000),
http://www.orcca.on.ca/TechReports

28. Miller, R.K., Michel, A.N.: Ordinary Differential Equations. Academic Press, Lon-
don (1982)

29. Mishra, B.: Algorithmic Algebra. Springer, New York (1993)

30. Nayfeh, A.H.: Method of Normal Forms. Wiley Series in Nonlinear Sciences. John
Wiley & Sons, New York (1993)

31. Niu, W., Wang, D.M.: Algebraic approaches to stability analysis of biological sys-
tems. Mathematics in Computer Science 1, 507–539 (2008)

32. Perko, L.: Differential Equations and Dynamical Systems. Springer-Verlag New
York, Inc., New York (1991)

33. Schaeffer, D.G., Golubitsky, M.: Singularities and Groups in Bifurcation Theory,
vol. 1. Springer, Heidelberg (1984)

34. Vallier, L.: An algorithm for the computation of normal forms and invariant man-
ifolds. In: Proc. of ISSAC 1993, pp. 225–233. ACM Press, New York (1993)

35. Wang, D.M., Zheng, Z.M.: Differential Equations with Symbolic Computation.
Birkhäuser Verlag, Basel (2005)

36. Wang, D., Xia, B.: Stability analysis of biological systems with real solution classfi-
cation. In: Kauers, M. (ed.) Proc. 2005 International Symposium on Symbolic and
Algebraic Computation (ISSAC), pp. 354–361. ACM Press, New York (2005)

37. Yang, L.: Recent advances on determining the number of real roots of parametric
polynomials. J. Symb. Comput. 28(1-2), 225–242 (1999)

38. Yang, L., Hou, X., Xia, B.: A complete algorithm for automated discovering of a
class of inequality-type theorems. Science in China, Series F 44(6), 33–49 (2001)

39. Yu, P., Yuan, Y.: An efficient method for computing the simplest normal forms of
vector fields. Int. J. Bifurcations & Chaos 13(1), 19–46 (2003)

http://www.orcca.on.ca/TechReports

122 C. Chen and M.M. Maza

A Example

In this section we present a complete process for analyzing the stability of a
biochemistry network by means of the tools presented in this paper.

A.1 The Description of the Model

In [26], Laurent proposed a model for the dynamics of diseases of the central
nervous system caused by prions, such as scrapie in sheep and goat, and “mad
cow disease” or Creutzfeldt-Jacob disease in humans. The model is based on the
protein-only hypothesis, which assumes that infection can be spread by partic-
ular proteins (prions) that can exist in two isomeric forms. The normal form
PrPC is harmless, while the infectious form PrPSC catalyzes a transformation
from the normal form to itself. A natural question is whether a small amount of
PrPSC cause prion disease.

The generic kinetic scheme of prion diseases is illustrated as follows:

↓ 1

PrPC 3−→ PrPSC
4−→ Aggregates.

↓ 2

Denote by
[
PrPC

]
and

[
PrPSC

]
be respectively the concentrations of PrPC

and PrPSC . Let νi be the rate of Step i for i = 1, . . . , 4. In the above diagram,
Step 1 corresponds to the synthesis of native PrPC , which is considered in the
present analysis as a zero-order kinetic process, that is ν1 = k1 for some constant
k1. Output reactions (Steps 2 and 4, which correspond to the degradation of
native PrPC and to the formation of aggregates respectively) are taken as first-
order rate equations: ν2 = k2

[
PrPC

]
, ν4 = k4

[
PrPSC

]
. Step 3 corresponds to

the transformation from PrPC to PrPSC , which is a nonlinear process

ν3 =
[
PrPC

] a
(
1 + b

[
PrPSC

]n)
1 + c [PrPSC]n

.

Hence we can describe the model by the following differential equations:

d
[
PrPC

]
dt

= ν1 − ν2 − ν3

d
[
PrPSC

]
dt

= ν3 − ν4

To simplify notation, we set x =
[
PrPC

]
, y =

[
PrPSC

]
. The model is therefore

described by the dynamical system:

dx

dt
= k1 − k2x− ax

(1 + byn)
1 + cyn

dy

dt
= ax

(1 + byn)
1 + cyn

− k4y

Semi-algebraic Description of the Equilibria of Dynamical Systems 123

where experiments suggest to set b = 2, c = 1/20, n = 4, a = 1/10, k4 = 50 and
k1 = 800. Now we have:

{
dx
dt = f1
dy
dt = f2

with

{
f1 = 16000+800y4−20k2x−k2xy4−2x−4xy4

20+y4

f2 = 2(x+2xy4−500y−25y5)
20+y4

. (6)

Recall that a constant solution of the above differential equations is called an
equilibrium, that is a point (x, y) ∈ R2 at which the right hand side equations
vanish. By Routh-Hurwitz criterion (x, y) is asymptotically stable if

Δ1 = −(
∂f1

∂x
+

∂f2

∂y
) > 0 and a2 =

∂f1

∂x
· ∂f2

∂y
− ∂f1

∂y
· ∂f2

∂x
> 0.

In system (6), let p1 and p2 be respectively the numerators of f1 and f2. The
parametric semi-algebraic sets S1 : {p1 = p2 = 0, k2 > 0} and S2 : {p1 =
p2 = 0, k2 > 0, Δ1 > 0, a2 > 0} encode respectively the equilibria and the
asymptotically stable hyperbolic equilibria of System (6).

A.2 Studying the Equilibria with CTD

Firstly, we compute a CTD of S1. Let

R1 = 100000k8
2 + 1250000k7

2 + 5410000k6
2 + 8921000k5

2 − 9161219950k4
2

− 5038824999k3
2 − 1665203348k2

2 − 882897744k2 + 1099528405056.

The polynomial R1 has four real roots, two of them are positive. We denote
them by 0 < α1 < α2. Then the real line R is partitioned into 6 connected cells:
k2 ≤ 0, 0 < k2 < α1, k2 = α1, α1 < k2 < α2, k2 = α2 and k2 > α2. For the first
cell, namely k2 ≤ 0, there is no associated SFSAS, which implies that S has no
real solutions. The second, fourth and sixth cells are associated with the same
SFSAS, which is

A1 :=

⎧⎨⎩
(2y4 + 1)x− 25y5 − 500y = 0

(k2 + 4)y5 − 64y4 + (2 + 20k2)y − 32 = 0
k2 > 0.

The third and fifth cells are associated with the SFSAS A2, which will not be
displayed here due to its size. For each of the sixth cells, we can compute a
sample point and substitute it into the corresponding SFSAS. Then we obtain the
number of real solutions above the six cells, which are respectively 0, 1, 2, 3, 2, 1.
To summarize, we have the following conclusion.

Conclusion 1. Assume k2 > 0. If R1 > 0, then System (6) has 1 equilibrium;
if R1 = 0, then System (6) has 2 equilibria; if R2 < 0, then System (6) has 3
equilibria.

124 C. Chen and M.M. Maza

Similarly, we can also compute a CTD of S2 and then count the number of
asymptotically stable hyperbolic equilibria above each cell. Let R2 be the fol-
lowing polynomial.

R2 = 10004737927168k9
2 + 624166300700672k8

2 + 7000539052537600k7
2

+ 45135589467012800k6
2 − 840351411856453750k5

2− 50098004352248446875k4
2

− 27388168989455000000k3
2− 8675209266696000000k2

2

+ 102960917356800000000k2 + 5932546064102400000000.

The following conclusion summarizes the conditions for the stability and bifur-
cation of System (6).

Conclusion 2. Assume k2 > 0. If R1 > 0 (Figures 1 and 3), then the system
has one hyperbolic equilibrium, which is asymptotically stable; if R1 < 0 and
R2 �= 0 (Figure 2), then the system has three hyperbolic equilibria, two of which
are asymptotically stable, the other one being unstable; if R1 = 0 or R2 = 0 hold,
the system experiences a bifurcation.

Fig. 1. Fig. 2. Fig. 3.

Remark 5. This generalizes the illustrated results of Fig.1(c) in [26], where
only concrete values of k2 are given to make sure that system (6) is bistable. By
symbolic methods presented here, we can give the precise condition.

A.3 Explanation of the Experimental Results

From these figures, we also observe that, in Figure 1, the concentration of
PrPSC (y-coordinate) finally becomes low and thus the system enters a harm-
less state. Conversely, in Figure 3 the concentration of PrPSC goes high and
thus the systems enters a pathogenic state. In Figure 2, the system exhibits
bistability, the initial concentrations of PrPSC determines whether the final
state pathogenic or not. We thus deduce the following facts, as stated in
paper [26]:

Semi-algebraic Description of the Equilibria of Dynamical Systems 125

– The turnover rate k2 determines whether it is possible for a pathogenic state
to occur.

– As an answer to our question, a small amount of PrPSC does not lead to a
pathogenic state when k2 is large enough.

– Compounds that inhibit addition of PrPSC can be seen as a possible therapy
against prion diseases. However, compounds that increase the turnover rate
k2 would be the best therapeutic strategy against prion diseases.

Normal Forms of Two p : −q Resonant

Polynomial Vector Fields

Victor Edneral1 and Valery G. Romanovski2,3

1 Skobeltsyn Institute of Nuclear Physics
of Lomonosov Moscow State University

Leninskie Gory 1, Moscow, 119991, Russia
edneral@theory.sinp.msu.ru

2 CAMTP - Center for Applied Mathematics and Theoretical Physics
University of Maribor, Krekova 2, Maribor SI-2000, Slovenia

3 Faculty of Natural Science and Mathematics, University of Maribor
Koroška cesta 160, SI-2000 Maribor, Slovenia

valery.romanovsky@uni-mb.si

Abstract. We investigate a property of normal forms of p : −q resonant
vector fields, which is related to isochronicity. The problem is reduced to
studying polynomial ideals and their varieties which is performed using
tools of computational algebra.

Keywords: planar differential equations, isochronicity, linearizability,
normal forms, polynomial ideals, computational algebra.

1 Introduction

Consider a two-dimensional system of differential equations of the form

ẋ =− y + a0x + P (x, y),
ẏ = x + a0y + Q(x, y),

(1)

where P and Q are analytic functions whose series expansions start with at least
quadratic terms. The origin is a strong focus when a0 �= 0, a weak focus or a
center when a0 = 0. If the origin is a center, and the period of all solutions close
to the origin is the same, then the singular point is called an isochronous center.
The problem of isochronous center has been studied by many authors (see, e.g.
[2,3,6,7,18] and references therein).

The notion of isochronicity can be generalized to the case when the singularity
at the origin of (1) is of the focus type. A natural generalization proposed in
[16] and widely used (see, e.g. [2,19] and references therein) is as follows.

Definition 1. It is said that the singular point O at the origin of (1) (which
is either a center or a focus) is isochronous if there is a polar ray L = ϕ0 such
that the minimal time required for each trajectory started at L sufficiently close
to O to return to L is the same and equal to 2π.

V.P. Gerdt et al. (Eds.): CASC 2011, LNCS 6885, pp. 126–134, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Normal Forms of Two p : −q Resonant Polynomial Vector Fields 127

Some examples of isochronous foci in the sense of this definition for system (1)
with P and Q being homogeneous polynomials are given by Rudenok [19]. Other
definitions of an isochronous singular point which is not necessarily a center are
given in [1,11].

A difficult problem arises how to determine isochronous systems inside a given
family of polynomial systems. To our knowledge there are no regular methods to
perform this task even for the case when P and Q are quadratic polynomials. We
will limit our consideration to the case of polynomial systems (1) with a0 = 0,
that is

ẋ =− y + P (x, y),
ẏ = x + Q(x, y).

(2)

The problem of isochronicity for system (2) has common features with the prob-
lem of distinguishing between a center and a focus. System (2) can be trans-
formed to the normal form

u̇ =− v +
∑
j≥1

(aju− bjv)(u2 + v2)j ,

v̇ = u +
∑
j≥1

(bju + ajv)(u2 + v2)j .
(3)

It is well known (see, e.g. [2,4,18]) that if in the normal form ai = 0 for all
i = 1, 2, . . . , then the system has a center at the origin, otherwise the origin
is a focus. The normalizing transformation is not unique, however, the first
non-zero coefficient ai of the normal form does not depend on a choice of the
normalizing transformation. When we are interested in determining isochronous
systems within family (2), we use the fact that the condition b1 = b2 = · · · =
0 determines isochronous systems (the coefficients bk are called the azimuthal
coefficients). However, by a surprising recent results of [1], the coefficients bi of
normal forms can depend on the choice of the normalizing transformation in such
a way that if in the normal form there is a coefficient bi different from zero it does
not mean yet that the system is non-isochronous. This is a principal difference
from the case of the center-focus problem. Thus, the problem of determining
isochronous systems within a given family (2) appears to be more difficult than
the problem of distinguishing between a center and a focus.

Since in the case of isochronicity we do not know a priori which normalizing
transformation produces the normal form with all azimuthal coefficients bi equal
to zero, in this paper we will study normalization by means of the so-called
distinguished transformations [4], that is the transformations where all resonant
coefficients are chosen to be equal to zero. Computing a normal form is a highly
laborious procedure. To simplify computations of a normal form of (2) it is
convenient to complexify the real system by setting x1 = x + iy, x2 = x − iy.
Then we obtain the system

ẋ1 = ix1 + X1(x1, x2)
ẋ2 = −ix2 + X2(x1, x2)

, X2(x1, x̄1) = X1(x1, x̄1) . (4)

128 V. Edneral and V.G. Romanovski

A natural generalization of (4) is the system

ẋ1 = px1 + X1(x1, x2)
ẋ2 = −qx2 + X2(x1, x2),

(5)

where X1 and X2 are polynomials without constant and linear terms. The notion
of the generalized isochronous center for system (5) was introduced in [20]. The
generalized isochronicity of (5) is equivalent to the linearizability of the system.

In this paper, we study transformations of a 1:-2 resonant system (5) by
means of distinguished normalizing substitutions in the case when X1 and X2

are homogeneous polynomials of degree 2 and of a 1:-3 resonant system with
X1 and X2 being homogeneous cubic polynomials. The problem of our interest
is an interrelation of the linearizability of system (5) and the vanishing of the
”generalized” azimuthal coefficients of (5). It is shown that for two polynomial
families mentioned above, the vanishing of ”generalized” azimuthal coefficients
yields linearizations of the systems.

2 Preliminaries

Applying the normalizing transformation

x1 =y1 +
∑

j+k≥2; j,k≥0

h
(j,k)
1 yj

1y
k
2 ,

x2 =y2 +
∑

j+k≥2; j,k≥0

h
(j,k)
2 yj

1y
k
2 ,

(6)

we reduce (5) to the normal form

ẏ1 = y1(p + Y1(y
q
1y

p
2)),

ẏ2 =− y2(q − Y2(y
q
1y

p
2)),

(7)

where

Y1(y1, y2) =
∞∑

j=1

Y
(qj,pj)
1 (yq

1y
p
2)j and Y2(y1, y2) =

∞∑
j=1

Y
(qj,pj)
2 (yq

1y
p
2)j , (8)

(see, e.g. [18, Chapter 3] for more details on the normalizing procedure and the
correspondence between normal forms of real systems and their complexifica-
tions).

We define
G = qY1 + pY2, H = qY1 − pY2, (9)

w = yq
1y

p
2 and write

G(w) =
∞∑

k=1

Gkwk and H(w) =
∞∑

k=1

Hkwk.

Normal Forms of Two p : −q Resonant Polynomial Vector Fields 129

Note that if G(w) ≡ 0 then the normalizing transformation is convergent, and
the system admits an analytical first integral of the form Ψ = xqyp + h.o.t. (see,
e.g. [18] for details). In this case, the singular point at the origin of (5) is called
a center. If G ≡ 0, and H ≡ 0 for some normalizing transformation, then the
normal form is linear for any normalizing transformation (see, e.g. [4], [5], [18,
Theorem 4.2.2]), and the system is called linearizable. The coefficients Hk of
the function H(w) can be regarded as the ”generalized” azimuthal coefficients
of system (5).

The resonant coefficients in normalizing transformations can be chosen arbi-
trarily yielding infinitely many normalizing transformations and normal forms.
Among them of a particular importance is the distinguished transformation [4]
(when the resonance coefficients are chosen to be equal to zero), since usu-
ally such transformations are used for performing a normalization. A normal
form computed by means of a distinguished transformation is called the distin-
guished normal form. Generalizing the notion of d-isochronicity introduced in
[13] for systems of the form (4) to systems of the form (5) we give the following
definition.

Definition 2. We say that the origin is a d-isochronous singular point for (5)
if the distinguished normalizing substitution (6) transforms the system to the
normal form (7) with H ≡ 0. The ideal H = 〈H1, H2, . . .〉 generated by the
coefficients Hk of the function H is called the d-isochronicity ideal of the system
(5).

The notion of d-isochronicity is a generalization of the notion of isochronicity
since in the case when p = q = i and (5) is a complexification of (2) the d-
isochronous singular point of (5) corresponds to the isochronous singular point
of (2) (see [13] for more details).

3 D-isochronicity of Two Systems

The study of d-isochronicity involves very laborious computations. The two sys-
tems which we treat below appear to be the simplest non-trivial systems with
p �= q where it is possible to compute sufficiently many terms of normal forms
to answer the question of d-isochronicity.

First we consider the complex quadratic system

ẋ = x(1 − a10x− a01y − a−12x
−1y2),

ẏ = −y(2− b01y − b10x− b2,−1y
−1x2).

(10)

The center problem for system (10) has been solved in [9], and the linearizability
problem has been solved in [7].

Theorem 1. System (10) has a d-isochronous singular point at the origin if
and only if it is linearizable.

Proof. We have computed the distinguished normal form of (10) up to order 16
using the package described in [8] and found

130 V. Edneral and V.G. Romanovski

Y
(2,1)
1 = −(10a01a10b10 + 10a01b

2
10 + 10a2

01b2,−1+
+4a10a−12b2,−1 + 5a01b01b2,−1 + 12a−12b10b2,−1)/20,

Y
(2,1)
2 = (−10a10b01b10 + 20a01b

2
10 + 10b01b

2
10 + 10a2

01b2,−1−
−4a10a−12b2,−1 + 15a01b01b2,−1 + 5b2

01b2,−1 + 23a−12b10b2,−1)/20.

The other polynomials become too long, so we do not write them here, however,
the interested reader can compute them using available computational facilities.

Then, we define

H1 = 2Y
(2,1)
1 − Y

(2,1)
2 , . . . , H5 = 2Y

(10,5)
1 − Y

(10,5)
2 ,

G1 = 2Y
(2,1)
1 + Y

(2,1)
2 , G2 = 2Y

(4,2)
1 + Y

(4,2)
2 , G5 = 2Y

(10,5)
1 + Y

(10,5)
2 .

We tried to find the irreducible decomposition of the variety of the ideal

H5 = 〈H1, . . . , H5〉

using the routine minAssGTZ of Singular [17] which computes the minimal
associate primes of a polynomial ideal using the algorithm of [10], but we were
unable to complete the calculations working in the field of characteristic 0 and
even in the field of the finite characteristic 32003. However, it turns out, poly-
nomials G1, . . . , G5 vanish on the variety of the ideal H5. To see this we use the
radical membership test. Indeed, computing in the field of characteristic 32003
the reduced Groebner bases of the ideals 〈1−wGk,H5〉 (k = 1, 2, 3, 4, 5) we obtain
in each case {1}. Thus, if H1 = · · · = H5 = 0 then G1 = · · · = G5 = 0. However,
V(〈G1, . . . , G5〉) is the center variety of (10) ([9]). Thus, if H1 = · · · = H5 = 0
then G ≡ 0 yielding that the distinguished transformation to the normal form
is convergent, and the system has a center at the origin. Although we cannot
compute the minimal associate primes of the ideal H5, it turns out, we can
compute the primes of the ideal I = 〈G1, . . . , G5,H5〉, which defines the same
variety. Using the routine minAssGTZ [17] of SINGULAR [12], which finds the
minimal associated primes of a polynomial ideal by means of the the method of
[10] and performing the computations in the field of characteristic 32002 we find
that the primes are:

Q̃1 = 〈a10−2b10, b
2
10+16001b01b2,−1− a01b2,−1, a01b10−16001a−12b2,−1, b01a01 +

2a2
01 + b10a−12〉;

Q̃2 =〈b01 + a01, a10 − 7996b10, b
2
10 + 2743a01b2,−1, a01b10 + 1279a−12b2,−1, a

2
01 −

12811b10a−12〉;
Q̃3 = 〈b01 − 3999a01, a10 + b10, b

2
10 − 5999a01b2,−1, a01b10 − 4a−12b2,−1, a

2
01 +

15364b10a−12〉;
Q̃4 = 〈b01 + 4a01, a10 − 7999b10, b

2
10 − 2a01b2,−1, a01b10 − 6401a−12b2,−1, a

2
01 +

12801b10a−12〉;
Q̃5 = 〈a−12, a01, b01〉;
Q̃6 = 〈a−12, b10, b01 + 2a01〉;
Q̃7 = 〈a−12, b01 − 10667a01, a10 + 3b10, b

2
10 − 10668a01b2,−1〉;

Normal Forms of Two p : −q Resonant Polynomial Vector Fields 131

Q̃8 = 〈a−12, a01, a10b10 − b2
10 + 16001b01b2,−1〉;

Q̃9 = 〈b2,−1, a01, b01, a10 + 2b10〉;
Q̃10 = 〈b2,−1, a01, b01, a10 − 2b10〉;
Q̃11 = 〈b2,−1, a−12, b01 + a01, a10 + b10〉;
Q̃12 = 〈b2,−1, a01, a10 − b10〉;
Q̃13 = 〈b2,−1, b10〉.

Then, using the rational reconstruction algorithm of [21], we obtain the fol-
lowing ideals:

(1) Q1 = 〈a10 − 2b10, b
2
10 − a01b2,−1 − 1

2b01b2,−1, a01b10 + 1
2a−12b2,−1, 2a2

01 +
a01b01 + a−12b10〉;

(2) Q2 = 〈a01 + b01, a10 + 19
4 b10, b

2
10 − 4

35a01b2,−1, a01b10 − 28
25a−12b2,−1, a

2
01 −

49
5 a−12b10〉;

(3) Q3 = 〈118 a01 + b01, a10 + b10, b
2
10 + 25

16a01b2,−1, a01b10 − 4a−12b2,−1, a
2
01 +

64
25a−12b10〉;

(4) Q4 = 〈4a01 + b01, a10 + 7
4b10, b

2
10 − 2a01b2,−1, a01b10 − 2

5a−12b2,−1, a
2
01 −

1
5a−12b10〉;

(5) Q5 = 〈a−12, a01, b01〉;
(6) Q6 = 〈a−12, b10, 2a01 + b01〉;
(7) Q7 = 〈a−12,

2
3a01 + b01, a10 + 3b10, b

2
10 − 1

3a01b2,−1〉;
(8) Q8 = 〈a−12, a01, a10b10 − b2

10 − 1
2b01b2,−1〉;

(9) Q9 = 〈b2,−1, a01, b01, a10 + 2b10〉;
(10) Q10 = 〈b2,−1, a01, b01, a10 − 2b10〉;
(11) Q11 = 〈b2,−1, a−12, a01 + b01, a10 + b10〉;
(12) Q12 = 〈b2,−1, a01, a10 − b10〉;
(13) Q13 = 〈b2,−1, b10〉.

Since the modular computations have been applied we have to check the correct-
ness of the obtained result. To this end, working now in the field of characteristic
0, with intersect of Singular we compute Q = ∩13

k=1Qk. Then, computing the
reduced Groebner bases we check that 〈1 − wis, Q〉 = 〈1〉 for each polynomial
is from I and 〈1 − wqm, I〉 = 〈1〉 for all polynomials qm in Q. This means that
V(I) = ∪s

i=1V(Qi) = V(Q).
The ideals Q1, . . . , Q13 give the linearizability conditions obtained in [7].

Therefore, the corresponding systems are linearizable, that is there are normaliz-
ing substitutions that linearize the systems. Then, by Theorem 4.2.2 of [18] the
distinguished normalizing transformations linearize the corresponding systems
as well. �

We consider also the system with homogeneous cubic nonlinearities

ẋ = x(1 − a20x
2 − a11xy − a02y

2 − a−13x
−1y3),

ẏ = −y(3− b3,−1x
3y−1 − b20x

2 − b11xy − b02y
2).

(11)

The center problem for (11) was solved in [14] and the linearizability problem
in [15].

132 V. Edneral and V.G. Romanovski

For system (11) we were able to compute normal form only for the order
17 which give 4 pairs of the coefficients of the normal form. However, it is not
sufficient to study the d-isochronicity of the system, so we consider a subfamily
of (11) setting a−13 = b3,−1 = 0. Then we were able to compute normal form
for the order 25 which give 6 pairs of the coefficients.

Theorem 2. System (11) with a−13 = b3,−1 = 0 has a d-isochronous singular
point at the origin if and only if it is linearizable.

Proof. The first two pairs of the resonant coefficients is

Y
(3,1)
1 = −(a11a20 + a11b20)/2,

Y
(3,1)
2 = (−a20b11 + 2a11b20 + b11b20)/2,

Y
(6,2)
1 = (6a2

11a
2
20 + 3a11a

2
20b11 − 6a2

11a20b20 + 4a02a
2
20b20−

− 6a11a20b11b20 − 6a2
11b

2
20 − 3a11b11b202 − 4a02b

3
20)/24,

Y
(6,2)
2 = (−3a11a

2
20b11 + 6a2

11a20b20 + 8a2
20b02b20 + 6a11a20b11b20+

+ 12a2
11b

2
20 − 12a02a20b

2
20 − 12a20b02b

2
20 + 15a11b11b

2
20+

+ 12a02b
3
20 + 4b02b

3
20)/24

and the other polynomials are too long to be presented here. Similarly as before,
we define

H1 = 3Y
(3,1)
1 − Y

(3,1)
2 , . . . , H6 = 3Y

(18,6)
1 − Y

(18,6)
2 .

Let
H6 = 〈H1, . . . , H6〉.

Again, we are unable to compute minimal associate primes working in the field
of rational numbers, however, calculations in the field of the prime characteristic
32003 yield the following minimal associate primes:

(1) Q1 = 〈b20, a20〉;
(2) Q2 = 〈a02 + b02, a11 + b11, a20 + b20〉;
(3) Q3 = 〈a11, a20 − b20〉;
(4) Q4 = 〈= b02, b11, a02, a11〉;
(5) Q5 = 〈b11, b20, a11〉;
(6) Q6 = 〈b11, a02, a11, a20 + 16001b20〉.

Using the algorithm of [21] we find that 16001 ≡ −1/2 mod32003. Therefore,
in the ring of polynomials over the field of rational numbers the ideal Q6 cor-
responds to the ideal Q̃6 = 〈b11, a02, a11, a20 − 1

2 b20〉. It is not difficult to check
that √

H6 = Q1 ∩ · · · ∩Q5 ∩ Q̃6. (12)

Indeed, working in the field of characteristic zero with the routine intersect of
Singular we first compute the ideal Q = Q1∩ · · · ∩Q5∩ Q̃6. Then, we check that
for any polynomial h ∈ H6 the reduced Groebner basis of 〈1 − wh, Q〉 is {1}

Normal Forms of Two p : −q Resonant Polynomial Vector Fields 133

and for any polynomial q ∈ Q the reduced Groebner basis of 〈1−wq,H6〉 is {1}
as well. Therefore, according to the radical membership test, the equality (12)
is correct, that is Q1, . . . , Q5, Q̃6 are the minimal associate primes of H6 in the
ring Q[a20, a11, . . . , b11, b02].

We now observe that zero sets of each of the ideals Q1, . . . , Q5, Q̃6 give par-
ticular cases of conditions of Theorem 2 of [15]. Therefore, by the theorem, the
corresponding systems are linearizable. �

4 Concluding Remarks

We have studied two polynomial systems and found that for them the d-isochro-
nicity is equivalent to the linearizability. Thus, a question which arises naturally
is whether it is true that for polynomial systems (5) with p �= q d-isochronicity is
equivalent to linearizability? It is shown in [13] that in the case p = q the answer
to this question is negative. Namely, it is shown in [13] that for the quadratic
system (5) with p = q = 1 the d-isochronicity is equivalent to the linearizability,
however, for the system with homogeneous cubic nonlinearities these properties
are not equivalent. It appears the first step to answering the question posed
above would be the study of d-isochronicity of system (11) with a−13 and b3,−1

different from zero. However, it requires developing more efficient algorithms and
program packages for computing normal forms.

Acknowledgments. The first author was supported by the Russian Founda-
tion for Basic Research (project 11-01-00023-a) and the grants of the Presi-
dent of the Russian Federation for Support of the Leading Scientific Schools
NSh.-3159.2010.2 and NSh.-41422010.2. The second author acknowledges the
support by the Slovenian Research Agency and by the Transnational Access Pro-
gramme at RISC-Linz of the European Commission Framework 6 Programme
for Integrated Infrastructures Initiatives under the project SCIEnce (contract
no. 026133).

References

1. Algaba, A., Reyes, M.: Characterizing isochronous points and computing
isochronous sections. J. Math. Anal. Appl. 355, 564–576 (2009)

2. Amel’kin, V.V., Lukashevich, N.A., Sadovskii, A.P.: Nonlinear Oscillations in Sec-
ond Order Systems. Belarusian State University, Minsk (1982) (in Russian)

3. Bardet, M., Boussaada, I., Chouikha, A.R., Strelcyn, J.-M.: Isochronicity condi-
tions for some planar polynomial systems II. Bull. Sci. Math. 135, 230–249 (2011)

4. Bibikov, Y.N.: Local Theory of Nonlinear Analytic Ordinary Differential Equations.
Lecture Notes in Mathematics, vol. 702. Springer, New York (1979)

5. Bruno, A.D.: Local Methods in Nonlinear Differential Equations. Nauka, Moscow
(1979) (in Russian); Springer, Berlin (1989)

6. Chavarriga, J., Sabatini, M.: A survey of isochronous centers. Qual. Theory Dyn.
Syst. 1, 1–70 (1999)

134 V. Edneral and V.G. Romanovski

7. Christopher, C., Mardešić, P., Rousseau, C.: Normalizable, integrable, and lin-
earizable saddle points for complex quadratic systems in C2. J. Dynam. Control
Systems 9, 311–363 (2003)

8. Edneral, V.F.: On algorithm of the normal form building. In: Ganzha, V.G., Mayr,
E.W., Vorozhtsov, E.V. (eds.) CASC 2007. LNCS, vol. 4770, pp. 134–142. Springer,
Heidelberg (2007)

9. Fronville, A., Sadovski, A.P., Zoladek, H.: Solution of the 1 : −2 resonant center
problem in the quadratic case. Fund. Math. 157, 191–207 (1998)

10. Gianni, P., Trager, B., Zacharias, G.: Gröbner bases and primary decomposition
of polynomials. J. Symbolic Comput. 6, 146–167 (1988)

11. Giné, J., Grau, M.: Characterization of isochronous foci for planar analytic differ-
ential systems. Proc. Roy. Soc. Edinburgh Sect. A 135(5), 985–998 (2005)

12. Greuel, G.M., Pfister, G., Schönemann, H.: Singular 3.0 A computer algebra sys-
tem for polynomial computations. Centre for Computer Algebra. University of
Kaiserslautern (2005), http://www.singular.uni-kl.de

13. Han, M., Romanovski, V.G.: Isochronicity and normal forms of polynomial systems
of ODEs. Submitted to Journal of Symbolic Computation

14. Hu, Z., Romanovski, V.G., Shafer, D.S.: 1:-3 resonant centers on image with homo-
geneous cubic nonlinearities. Computers & Mathematics with Applications 56(8),
1927–1940 (2008)

15. Kadyrsizova, Z., Romanovski, V.: Linearizability of 1:-3 resonant system with ho-
mogeneous cubic nonlinearities. In: International Symposium on Symbolic and Al-
gebraic Computation (ISSAC 2008), Hagenberg, Austria, July 20-23, pp. 255–260.
The Association for Computing Machinery, New York (2008)

16. Kukles, I.S., Piskunov, N.S.: On the isochronism of oscillations for conservative
and nonconservative systems. Dokl. Akad. Nauk. SSSR 17(9), 467–470 (1937)

17. Pfister, G., Decker, W., Schönemann, H., Laplagne, S.: primdec.lib. A Singular 3.0
library for computing primary decomposition and radical of ideals (2005)

18. Romanovski, V.G., Shafer, D.S.: The Center and Cyclicity Problems: a Computa-
tional Algebra Approach. Birkhäuser Boston, Inc., Boston (2009)

19. Rudenok, A.E.: Strong isochronicity of a center and a focus of systems with homo-
geneous nonlinearities. Differ. Uravn. 45(2), 154–161 (2009) (in Russian); transla-
tion in Differ. Equ. 45(2), 159–167 (2009)

20. Wang, Q.L., Liu, Y.R.: Generalized isochronous centers for complex systems. Acta
Math. Sin. (Engl. Ser.) 26(9), 1779–1792 (2010)

21. Wang, P.S., Guy, M.J.T., Davenport, J.H.: P-adic reconstruction of rational num-
bers. ACM SIGSAM Bull. 16(2), 2–3 (1982)

http://www.singular.uni-kl.de

On Muldowney’s Criteria for Polynomial Vector

Fields with Constraints

Hassan Errami1, Werner M. Seiler2, Thomas Sturm3, and Andreas Weber1

1 Institut für Informatik II, Universität Bonn, Friedrich-Ebert-Allee 144,
53113 Bonn, Germany

{errami,weber}@cs.uni-bonn.de
2 Institut für Mathematik, Universität Kassel, Heinrich-Plett-Straße 40

34132 Kassel, Germany
seiler@mathematik.uni-kassel.de

3 Max-Planck-Institut für Informatik , RG 1: Automation of Logic, 66123
Saarbrücken, Germany

sturm@mpi-inf.mpg.de

Abstract. We study Muldowney’s extension of the classical Bendixson-
Dulac criterion for excluding periodic orbits to higher dimensions for
polynomial vector fields. Using the formulation of Muldowney’s sufficient
criteria for excluding periodic orbits of the parameterized vector field on
a convex set as a quantifier elimination problem over the ordered field
of the reals we provide case studies of some systems arising in the life
sciences. We discuss the use of simple conservation constraints and the
use of parametric constraints for describing simple convex polytopes on
which periodic orbits can be excluded by Muldowney’s criteria.

1 Introduction and Preliminaries

In the study of ordinary differential equations the analysis of periodic trajectories
is seen as an important goal in addition to describing the dynamics around fixed
points. However, already for two-dimensional polynomial systems this question
is related to Hilbert’s 16th problem, which is still unsolved [1].

For the two-dimensional case the Bendixson-Dulac criterion gives a suffi-
cient condition for the non-existence of periodic orbits. This criterion is pa-
rameterized by a Dulac function, and various techniques have been proposed to
construct Dulac functions, which range form algebraic constructions for spe-
cial systems to techniques involving the solution of certain partial differential
equations [2,3,4,5,6].

For the higher-dimensional case there are extensions of the criterion of
Bendixson-Dulac that also allow the use of Dulac functions [7]. However, lit-
tle work seems to have been done to construct Dulac functions in the higher
dimensional cases—except for addressing it as a problem [8,9].

Moreover, the common case of algebraic constraints in the simple form of con-
servation constraints have been used in ad hoc form by many authors—mainly to
reduce 3D systems to 2D systems to be able to use the classical Bendixson-Dulac
criterion—but have not been discussed in a more general setting.

V.P. Gerdt et al. (Eds.): CASC 2011, LNCS 6885, pp. 135–143, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

136 H. Errami et al.

In case studies of some systems arising in the life sciences we discuss the use
of simple conservation constraints in a first line of investigation.

On the example of classical SIRS epidemiological model we show that even
in this rather simple case different algorithmic strategies to use conservation
constraints might lead to non-conclusive results for some, whereas others lead to
conclusive results. Thus the fact that Muldowney’s criteria are not coordinate
independent pose an algorithmic problem.

In a second line of investigation we discuss the use of parametric constraints
for describing simple convex polytopes on which periodic orbits can be excluded
by Muldowney’s criteria. We will show that for a 3-dimensional model of viral
dynamics [10], for which Muldwowney’s criteria cannot exclude the existence
of periodic orbits on the entire positive real octant, there is a cuboid on which
periodic orbits can be excluded.

1.1 The Bendixson-Dulac Criterion for 2-Dimensional Vector Fields

Consider an autonomous planar vector field

dx

dt
= F (x, y),

dy

dt
= G(x, y), (x, y) ∈ R2.

Bendixson in 1901 [11] was the first to give a criterion yielding sufficient
conditions for excluding oscillations. Dulac in 1937 [12] was able to generalize
the result of Bendixson as follows:

Theorem 1 (Bendixson-Dulac criterion). Let B(x, y) be a scalar continu-
ously differentiable function defined on a simply connected region D ⊂ R2 with
no holes in it. If ∂(BF)

∂x + ∂(BG)
∂y is not identically zero and does not change sign

in D, then there are no periodic orbits lying entirely in D.

For a modern proof we refer to [13, Theorem 1.8.2].
A common class of Dulac functions uses B(x, y) = e(U(x,y)), see e.g. [3].

By the chain rule the exponential function can be factored out yielding
eU
(

∂U
∂x F + ∂U

∂y G + ∂F
∂x + ∂G

∂y

)
. Hence, if F, G, ∂U

∂x , and ∂U
∂y are rational func-

tions, the Bendixson-Dulac criterion remains in the realm of the ordered field of
the reals.

1.2 Muldowney’s Extensions of the Bendixson-Dulac Criterion to
Higher Dimensions

The algorithmic criteria discussed in the following can be seen as generalizations
of the Bendixson-Dulac criterion for 2-dimensional vector fields to arbitrary di-
mensions.

The following theorem was proved by Muldowney [7, Theorem 4.1]: Suppose
that one of the inequalities

μ

(
∂f [2]

∂x

)
< 0, μ

(
−∂f [2]

∂x

)
< 0 (1)

On Muldowney’s Criteria for Polynomial Vector Fields with Constraints 137

holds for all x ∈ Rn. Then the autonomous system with vector field f : Rn −→
Rn has no nonconstant periodic solutions. Here μ is some Lozinskĭı norm and
f [2] is one of the “compound matrices” of the Jacobian of the vector field f
defined in [7]. As is also shown in [7] the criterion given in [7, Theorem 4.1] also
holds when x ∈ C, where C ⊆ Rn is open and convex.

Remark. When n = 2, ∂f [2]/∂x = Trace∂f/∂x = divf , so that [7, Theorem 4.1]
basically yield the results of Bendixson, i.e. the criterion of Muldowney can be
seen as a generalization of the criterion of Bendixson from the planar case to
arbitrary dimensions.

According to [7, (2.2)], the following expressions may be used as μ
(
∂f [2]/∂x

)
in

[7, Theorem 4.1], if the underlying norms for μ are the 1-norm, ∞-norm, and
2-norm respectively:

max
{

∂fr

∂xr
+

∂fs

∂xs
+
∑

q �=r,s

∣∣∣∣ ∂fq

∂xr

∣∣∣∣+ ∣∣∣∣∂fq

∂xs

∣∣∣∣ : r, s = 1, . . . , n, r �= s

}
, (2)

max
{

∂fr

∂xr
+

∂fs

∂xs
+
∑

q �=r,s

∣∣∣∣ ∂fr

∂xq

∣∣∣∣+ ∣∣∣∣ ∂fs

∂xq

∣∣∣∣ : r, s = 1, . . . , n, r �= s

}
. (3)

λ1 + λ2, (4)

where λ1, λ2 are the two largest eigenvalues of (∂f∗/∂x + ∂f/∂x) /2.
Thus for a formula Γ over the reals defining an open convex subset C of Rn

and an autonomous polynomial vector field f : Rn → Rn a first-order formula
ϕ over the ordered field of the reals defines a sufficient condition such that the
vector field defined by f has no non-constant periodic solution on C. As usual
with real quantifier elimination we use the language of ordered rings. In addition,
we admit function symbols for the maximum and for the absolute values, which
are both definable.

Specifically, for the criterion involving the 1-norm we obtain

ϕ1 ≡ ∀x1∀x2 · · · ∀xn

(
Γ =⇒ (5)

max
{

∂fr

∂xr
+

∂fs

∂xs
+
∑

q �=r,s

∣∣∣∣ ∂fq

∂xr

∣∣∣∣+ ∣∣∣∣ ∂fq

∂xs

∣∣∣∣ : r, s = 1, . . . , n, r �= s

}
< 0

)
,

and for the criterion involving the ∞-norm we obtain

ϕ∞ ≡ ∀x1∀x2 · · · ∀xn

(
Γ =⇒ (6)

max
{

∂fr

∂xr
+

∂fs

∂xs
+
∑

q �=r,s

∣∣∣∣ ∂fr

∂xq

∣∣∣∣+ ∣∣∣∣ ∂fs

∂xq

∣∣∣∣ : r, s = 1, . . . , n, r �= s

}
< 0

)
.

In [8] the problem of efficient automatic resolution of maxima and absolute
values is addressed and computation examples are given. If all variables and

138 H. Errami et al.

parameters are known to be positive, the technique of positive quantifier elimi-
nation [14,15] can be used, which was first used to solve semi-algebraic criteria
for the existence of Hopf bifurcation fixed points [16,17] arising in the context
of chemistry and algebraic biology [18,19,20,21].

Extending Muldowney’s criteria with Dulac functions. Although a sim-
ple generalization of the Dulac criterion to higher dimensions does not seem to
hold in the general setting [7], for positive functions 0 < r ∈ C1(Rn −→ R) one
can replace f by rf in [7, Theorem 4.1], cf. (1). The rather simple proof is given
in [7, Remark (d)].

If B = eU is used as a Dulac test function then by the chain rule the exponen-
tial function can be factored out also for Muldowney’s criteria and the criterion
remains in the realm of the ordered field of the reals, if all partial derivatives of
U are rational functions.

Using conservation constraints. Any algebraic constraints on the vector field
can be transferred into the first-order formula over the ordered field of the reals
expressing Muldowney’s criteria. Simple conservation constraints stating that
the sum of certain state variables is constant—conditions that are commonly
found in chemical reaction systems or in epidemiological models—will not induce
a failure of the degree limited virtual substitution methods [22] for quantifier
elimination, if these were successful on the unconstrained system.

Nevertheless, an elimination of a variable by the others in a conservation con-
strained will reduce the dimension of the system and thus change Muldowney’s
criteria instead of adding another equality to Muldowney’s criteria on the origi-
nal system. We will report on the results of some systematic tests on the simple
SIRS system in Sect. 2.1.

Parametric specification of a convex subset. The first-order formula γ
specifying the convex subset on which a proof for the non-existence of periodic
orbits is sought by Muldowney’s criteria can very well contain parameters, too.
The quantifier elimination procedure automatically yields conditions on the pa-
rameters that are exact with respect to Muldowney’s criteria—potentially not
mentioning input parameters if no constraint on any of them is necessary.

In Sect. 2.3 we will use this technique using simple parametric cuboids in a
case, for which the Muldowney criteria do not give a conclusive answer on the
entire positive real octant, but the specification of a 3-dimensional parametric
cuboid shows that only a parametric restriction on one variable is necessary.

2 Case Studies

2.1 The SIRS Epidemiological Model

We consider the widely used SIRS epidemiological model, a parameterized for-
mally 3-dimensional system of ordinary differential equations, cf. (7–9). The
systems is widely used and well studied [23,24,25,26,27]. So we will not provide

On Muldowney’s Criteria for Polynomial Vector Fields with Constraints 139

new insights into the structure of the system, but it is well suited as a test object
for our algorithmic methods.

To account for the lost of immunity, the classical susceptible (S), infected (I)
and recovered (R) model is adjusted by allowing a fraction of the recovered indi-
viduals R to move back into the susceptible pool S at a rate γ. This susceptible,
infected, recovered and susceptible (SIRS) model is expressed as

d

dt
S (t) = μ (S (t) + I (t) + R (t))− μ S (t)− β S (t) I (t) + γ R (t) (7)

d

dt
I (t) = β S (t) I (t)− (μ + ν) I (t) (8)

d

dt
R (t) = ν I (t)− (μ + γ)R (t) (9)

where ν is the rate of loss of infectiousness and the total population size N
remains constant (i.e. S + I + R = N is constant). The parameter μ represents
both, the birth and mortality rates. Assuming that birth and mortality rates are
equal is justified on the grounds that the annual infection rate is considerably
higher than the population growth. The parameter β is the transmission rate of
the infection.

Using ad-hoc reductions to 2D-models. In the literature, reductions to 2D
models using S + I + R = N and replacing a suitable variable are commonly
used. However, the question, which variable to choose is never addressed. In the
following we give results for all possibilities showing that even for this simple
example the results strongly differ. In all cases we use the scaling N = 1.

Eliminating R by R = 1− (I +S). In this case the criterion using the Dulac test
function 1 returned the non-conclusive true as answer for ¬ϕ. However, using
the Dulac function 1

I(t) the conclusive false as answer for ¬ϕ was found within
some milliseconds of computation time by redlog.

Eliminating I by I = 1 − (S + R). Also in this case the criterion using the
Dulac test function 1 returned the non-conclusive true as answer for ¬ϕ. We also
obtained the the non-conclusive true as answer for ¬ϕ when using the following
Dulac test functions:

1
R(t)S(t)
1

S(t)
1

R(t)

R(t)
S(t)

Moreover, the computations using redlog did not come up with answers within
60 sec of computation time for several other Dulac test functions.

So using this elimination we did not come up with a conclusive answer by the
Muldowney criteria.

140 H. Errami et al.

Eliminating S by S = 1 − (I + R). In this case the criterion using the Dulac
function 1 returned β − γ − 2μ − ν > 0 as answer for ¬ϕ. Using the Dulac
function 1

I(t) returned the conclusive false, as was the case for the Dulac function
1

I(t)R(t) ; for the Dulac function 1
R(t) the criterion returned β−μ− ν > 0. As the

conclusive false was found for some Dulac function, we thus have proved that
the SIRS system does not have periodic orbits on the positive real octant.

2.2 Computations on the 3D Model

Unconstrained model. For the 3D-SIRS model not using any conservation con-
straint the criterion using the Dulac test function 1 returned the non-conclusive
true as answer for ¬ϕ. For all other Dulac tests functions we used we either
obtained the non-conclusive true as answer for ¬ϕ, or redlog could not come
up with a result within 60 sec of computation time.

Using the constraint S + I +R = 1. When adding the equation S + I +R = 1 to
the input formula for the Muldowney criterion, we obtained for the Dulac test
function the following formula as result for ¬ϕ:

2.3 A Model of Viral Dynamics

The following example is discussed in more depth in [8]. It consists of a simple
mathematical model for the population dynamics of the human immunodeffi-
ciency type 1 virus (HIV-1) investigated in [10]. There a three-component model
is described involving uninfected CD4 + T-cells, infected such cells and free
viruses, whose densities at time t are denoted by x(t), y(t), v(t), respectively.

d

dt
x (t) = s − μ x (t)− kx (t) y (t)

d

dt
y (t) = kx (t) y (t)− α y (t)

d

dt
x (t) = s − μ x (t)− β x (t) v (t)

d

dt
y (t) = β x (t) v (t)− α y (t)

d

dt
v (t) = cy (t)− γ v (t)

Fig. 1. The 2D- and 3D-Tuckwell-Wan examples

In [10] a simplified two-component model employed by Bonhoeffer et al. [28]
is investigated analytically. In [10] using the general Bendixson-Dulac criteria
for 2D-vector fields with an ad hoc Dulac function B(x, y) = 1/y it is shown
that there are no periodic solutions for the system for positive parameter values
and positive values of the state variables, i.e. the biologically relevant ones.

Remark. By “ad hoc” Dulac function we mean that the authors provide this
function only and show that it is a Dulac function, but no other functions. No
explanations or hints are given to the reader how this function was obtained.

On Muldowney’s Criteria for Polynomial Vector Fields with Constraints 141

In Table 1 the results for various low-degree rational and polynomial Dulac
test functions are summarized. Notice that computation times for generating the
formulas are negligible for these examples. Note that for ¬ϕ the answer false
gives the conclusive proof on the non-existence of periodic orbits on the positive
cone.

As can be seen from the computation times given in Table 1 the quantifier
elimination problems are not too hard. When performing tests with Qepcad b
[29] we could also solve all of these quantifier elimination problems in less than
one second of computation time.

Table 1. Computation Results for the 2D-Tuckwall-Wan example (cf. Fig. 1) on the
full positive octant

The computation times are the ones for the positive quantifier elimination in redlog.

Tuckwell-Wan Used Dulac test function
2D model 1 1

x
1
y

1
xy

1
x+y

x y xy

Comp. Time [sec] 0.07 0.07 0.02 0.02 0.07 0.09 0.07 0.07
Result (¬ϕ) pc pc false false pc pc pc pc

Here pc is the positivity condition on the parameters.

For the 3D-Tuckwell-Wan Model we tried several Dulac test functions but
could not exclude the existence of a periodic orbit on R+3 for any of them.
When specifying the parametric cube (0, ux) × (0, uy) × (0, uv) by adding the
conditions x(t) < ux, y(t) < uy, and v(t) < uv for new parameters ux > 0,
uy > 0, and uv > 0—cf. Sect. 1.2—and using the trivial Dulac function 1—we
obtain the following first-order formula for ¬ϕ using Muldowney’s criterion for
the 1-norm (displayed in slightly hand edited form for better readability):

∃v1∃v2∃v3 : 0 < v1 ∧ 0 < v2 ∧ 0 < v3 ∧ 0 < uv ∧ 0 < ux ∧ 0 < uy ∧
0 < c ∧ 0 < μ ∧ 0 < s ∧ 0 < α ∧ 0 < β ∧ 0 < γ ∧

v1 < uv ∧ v2 < ux ∧ v3 < uy ∧
0 ≤ max(−γ − α + |βv2|,−μ− βv1 − α + |c|,−γ − μ− βv1 + |βv2|+ |βv1|)

This quantifier elimination problem can also be solved “by hand” rather eas-
ily, and accordingly in less than 0.1 sec of computation time we obtain by the
positive quantifier elimination procedure of redlog the following quantifier-free
equivalent for ϕ:

min
(

α + γ

β
,
μ + γ

β

)
≥ ux ∧ α + μ ≥ c (10)

For better readability we have provided in (10) a slightly hand-edited version of
the result formula.

142 H. Errami et al.

Notice that there is no dependency on uy and uv, i. e. we have given a proof
that the parametric 3D-Tuckwall-Wan does not have periodic orbits on

(0, ux)× (0,∞)× (0,∞)

provided ux (and α, μ, γ, β) fulfills the condition given in (10).

Acknowledgement. This research was supported in part by Deutsche
Forschungsgemeinschaft within SPP 1489.

References

1. Ilyashenko, Y.: Centennial history of Hilbert’s 16th Problem. Bull. Am. Math. Soc.,
New Ser. 39(3), 301–354 (2002)

2. Osuna, O., Villaseñor, G.: On the Dulac functions. Qualitative Theory of Dynam-
ical Systems, 1–7 (2011)

3. Cherkas, L., Grin, A.: On a Dulac function for the Kukles system. Differential
Equations 46, 818–826 (2010)

4. Cherkas, L.: Quadratic systems with maximum number of limit cycles. Differential
Equations 45, 1440–1450 (2009), doi: 10.1134/S0012266109100061.

5. Cherkas, L.A., Grin, A.: Algebraic aspects of finding a Dulac function for polyno-
mial autonomous systems on the plane. Differential Equations 37, 411–417 (2001)

6. Cherkas, L.A.: Dulac function for polynomial autonomous systems on a plane.
Differential Equations 33, 692–701 (1997)

7. Muldowney, J.S.: Compound matrices and ordinary differential equations. Rocky
Mt. J. Math. 20(4), 857–872 (1990)

8. Weber, A., Sturm, T., Abdel-Rahman, E.O.: Algorithmic global criteria for exclud-
ing oscillations. Bulletin of Mathematical Biology 73(4), 899–917 (2011)

9. Weber, A., Sturm, T., Seiler, W.M., Abdel-Rahman, E.O.: Parametric qualitative
analysis of ordinary differential equations: Computer algebra methods for excluding
oscillations (Extended abstract) (Invited talk). In: Gerdt, V.P., Koepf, W., Mayr,
E.W., Vorozhtsov, E.V. (eds.) CASC 2010. LNCS, vol. 6244, pp. 267–279. Springer,
Heidelberg (2010)

10. Tuckwell, H.C., Wan, F.Y.M.: On the behavior of solutions in viral dynamical
models. BioSystems 73(3), 157–161 (2004)

11. Bendixson, I.: Sur les curbes définiés par des équations différentielles. Acta
Math. 24, 1–88 (1901)

12. Dulac, H.: Recherche des cycles limites. CR Acad. Sci. Paris 204, 1703–1706 (1937)
13. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and

Bifurcations of Vector Fields. Applied Mathematical Sciences, vol. 42. Springer,
Heidelberg (1983)

14. Sturm, T., Weber, A.: Investigating generic methods to solve hopf bifurcation prob-
lems in algebraic biology. In: Horimoto, K., Regensburger, G., Rosenkranz, M.,
Yoshida, H. (eds.) AB 2008. LNCS, vol. 5147, pp. 200–215. Springer, Heidelberg
(2008)

15. Sturm, T., Weber, A., Abdel-Rahman, E.O., El Kahoui, M.: Investigating algebraic
and logical algorithms to solve Hopf bifurcation problems in algebraic biology.
Mathematics in Computer Science 2(3), 493–515 (2009); Special issue on ‘Symbolic
Computation in Biology’

On Muldowney’s Criteria for Polynomial Vector Fields with Constraints 143

16. El Kahoui, M., Weber, A.: Deciding Hopf bifurcations by quantifier elimination
in a software-component architecture. Journal of Symbolic Computation 30(2),
161–179 (2000)

17. Weber, A.: Quantifier elimination on real closed fields and differential equations.
In: Löwe, B. (ed.) Algebra, Logic, Set Theory – Festschrift für Ulrich Felgner zum
65, Geburtstag. Studies in Logic, vol. 4, pp. 291–315. College Publications (2007)

18. Boulier, F., Lefranc, M., Lemaire, F., Morant, P.E.: Applying a rigorous quasi-
steady state approximation method for proving the absence of oscillations in models
of genetic circuits. In: Horimoto, K., Regensburger, G., Rosenkranz, M., Yoshida,
H. (eds.) AB 2008. LNCS, vol. 5147, pp. 56–64. Springer, Heidelberg (2008)

19. Boulier, F., Lefranc, M., Lemaire, F., Morant, P.E., Ürgüplü, A.: On proving the
absence of oscillations in models of genetic circuits. In: Anai, H., Horimoto, K.,
Kutsia, T. (eds.) Ab 2007. LNCS, vol. 4545, pp. 66–80. Springer, Heidelberg (2007)

20. Gatermann, K., Eiswirth, M., Sensse, A.: Toric ideals and graph theory to analyze
Hopf bifurcations in mass action systems. Journal of Symbolic Computation 40(6),
1361–1382 (2005)

21. Niu, W., Wang, D.: Algebraic approaches to stability analysis of biological systems.
Mathematics in Computer Science 1(3), 507–539 (2008)

22. Weispfenning, V.: Quantifier elimination for real algebra—the quadratic case and
beyond. Applicable Algebra in Engineering Communication and Computing 8(2),
85–101 (1997)

23. Lin, X.D., van den Driessche, P.: A threshold result for an epidemiological model.
Journal of Mathematical Biology 30(6), 647–654 (1992)

24. Hadeler, K.P., van den Driessche, P.: Backward bifurcation in epidemic control.
Mathematical Biosciences 146(1), 15–35 (1997)

25. Weber, A., Weber, M., Milligan, P.: Modeling epidemics caused by respiratory
syncytial virus (RSV). Mathematical Biosciences 172(2), 95–113 (2001)

26. Brown, C.W., El Kahoui, M., Novotni, D., Weber, A.: Algorithmic methods
for investigating equilibria in epidemic modeling. Journal of Symbolic Compu-
tation 41(11), 1157–1173 (2006); Special Issue on the Occasion of Volker Weispfen-
ning’s 60th Birthday

27. Ponciano, J.M., Capistrán, M.A.: First principles modeling of nonlinear incidence
rates in seasonal epidemics. PLoS Computational Biology 7(2), e1001079 (2011)

28. Bonhoeffer, S., Coffin, J.M., Nowak, M.A.: Human immunodeficiency virus drug
therapy and virus load. The Journal of Virology 71(4), 3275 (1997)

29. Brown, C.W.: QEPCAD B: A system for computing with semi-algebraic sets via
cylindrical algebraic decomposition. ACM SIGSAM Bulletin 38(1), 23–24 (2004)

Knowledge-Based Automatic Generation

of Partitioned Matrix Expressions

Diego Fabregat-Traver and Paolo Bientinesi

AICES, RWTH Aachen, Germany
{fabregat,pauldj}@aices.rwth-aachen.de

Abstract. In a series of papers it has been shown that for many lin-
ear algebra operations it is possible to generate families of algorithms
by following a systematic procedure. Although powerful, such a method-
ology involves complex algebraic manipulation, symbolic computations
and pattern matching, making the generation a process challenging to be
performed by hand. We aim for a fully automated system that from the
sole description of a target operation creates multiple algorithms without
any human intervention. Our approach consists of three main stages. The
first stage yields the core object for the entire process, the Partitioned
Matrix Expression (PME), which establishes how the target problem
may be decomposed in terms of simpler sub-problems. In the second
stage the PME is inspected to identify predicates, the Loop-Invariants,
to be used to set up the skeleton of a family of proofs of correctness. In
the third and last stage the actual algorithms are constructed so that
each of them satisfies its corresponding proof of correctness. In this pa-
per we focus on the first stage of the process, the automatic generation
of Partitioned Matrix Expressions. In particular, we discuss the steps
leading to a PME and the knowledge necessary for a symbolic system to
perform such steps. We also introduce Cl1ck, a prototype system written
in Mathematica that generates PMEs automatically.

1 Introduction

In the context of the Formal Linear Algebra Methods Environment (FLAME)
project [1], a methodology for the systematic derivation of algorithms for matrix
operations has been developed and demonstrated. The approach has been suc-
cessfully applied to all the operations included in the BLAS [2] and RECSY [3,4]
libraries and to many included in the LAPACK [5] library. In general, the
methodology applies to any operation that can be expressed in a “divide and
conquer” fashion. As opposed to the concept of “Autotuning”, which indicates
the automatic tuning of a given algorithm [6,7,8], the word derivation refers to
the actual generation of both algorithms and routines to solve a given target
equation [9]. The remarkable results achieved using this methodology are the
subject of a series of publications. a) For many standard operations, e.g. the
Cholesky and the LU factorizations, all the previously known algorithms were
systematically discovered, unifying them under a common root [10]. b) For more

V.P. Gerdt et al. (Eds.): CASC 2011, LNCS 6885, pp. 144–157, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Knowledge-Based Automatic Generation of Partitioned Matrix Expressions 145

Fig. 1. The three main stages in the process of derivation of algorithms

involved operations like the Sylvester equation and the reduction of a general-
ized eigenproblem to standard form, the generated family of algorithms included
new and better performing ones [11,12]. c) A related methodology for system-
atic analysis of round-off errors yielded bounds tighter than those previously
known [13].

Although successful, the approach presents some limitations. The algorithms
are generated through complex symbolic computations, steps often too compli-
cated to be carried out by hand. Motivated by these difficulties, we aim for
a symbolic system that, given as input the description of a matrix equation
Eq, applies the steps dictated by the FLAME methodology to derive a family
of algorithms to solve Eq. As shown in Fig. 1, the procedure consists of three
successive stages—PME Generation, Loop-Invariant Identification, Algorithm
Derivation—and is entirely determined by the mathematical description of the
input operation.

In the first stage, the Partitioned Matrix Expression (PME) for the input
operation is obtained. A PME is a decomposition of the original problem into
simpler sub-problems in a “divide and conquer” fashion, exposing the computa-
tion to be performed in each part of the output matrices. An example is shown
in Box 1. The second stage of the process deals with the identification of Boolean
predicates, the Loop-Invariants, that describe the intermediate state of compu-
tation for the sought-after algorithms. Loop-invariants can be extracted from the
PME, and are at the heart of the automation of the third stage. In the third and
last stage of the methodology, each loop-invariant is used to set up a proof of
correctness around which the algorithm is finally built. Notice that the objective
is not proving the correctness of a given algorithm; vice-versa, the loop-invariant
is chosen before the algorithm is built. Indeed, the algorithm is constructed to
satisfy a given proof of correctness, i.e., to possess the chosen loop-invariant.

(
XT = Ω(LTL, U, CT)

XB = Ω(LBR, U, CB − LBLXT)

)

Box 1. Partitioned Matrix Expression for the triangular Sylvester equation

This paper centers around the first stage of the derivation process, the gen-
eration of PMEs. To this end we introduce a formalism to input into the system
the minimum amount of knowledge about the operation required by a system to

146 D. Fabregat-Traver and P. Bientinesi

Fig. 2. Steps for the automatic generation of PMEs

perform all the subsequent stages automatically. We then describe the process
for transforming an input equation into PMEs. As Fig. 2 shows, such process in-
volves three steps: 1) the partitioning of the operands in the equation, 2) matrix
arithmetic involving the partitioned operands, and 3) a sequence of iterations,
each consisting of algebraic manipulation and pattern matching. We demon-
strate that the process can indeed be automated through Cl1ck1, a symbolic
system written in Mathematica [14] that performs all the steps for the PME
generation.

The paper is organized as follows. In Sect. 2 we categorize the input needed by
a symbolic system. Partitionings of the operands and inheritance of properties
are discussed in Sect. 3, while in Sect. 4 we describe how to use partitionings to
obtain PMEs. We draw conclusion in Sect. 5.

2 Input to the System

Our first concern is to establish how a target operation should be formally de-
scribed. Since we are aiming for a fully-automated system, i.e., without any
human intervention, we need a formalism to unequivocally describe a target
equation. We choose the language traditionally used to reason about program
correctness: equations shall be specified by means of the predicates Precondition
(Ppre) and Postcondition (Ppost) [15]. The precondition enumerates the operands
that appear in the equation and describes their properties, while the postcondi-
tion specifies the equation to be solved.

The Cholesky factorization will serve as an example: given a symmetric pos-
itive definite (SPD) matrix A, the goal is to find a lower triangular matrix L
such that LLT = A. Box 2 contains the predicates Ppre and Ppost relative to the
Cholesky factorization; the notation L = Γ (A) indicates that L is the Cholesky
factor of A.

Even though such a definition is unambiguous, it does not include all the in-
formation needed by a symbolic system to fully automate the derivation process.
In Sect. 2.1 we discuss how a system expands its knowledge by “learning of” new
equations, and in Sect. 3 we overview the ground knowledge that a system must
possess relative to matrix partitioning and inheritance of properties.

1 The name Cl1ck epitomizes the idea that the effort a user has to make to obtain
algorithms consists in just one click.

Knowledge-Based Automatic Generation of Partitioned Matrix Expressions 147

L = Γ (A) ≡

⎧⎪⎪⎨⎪⎪⎩
Ppre : {Unknown(L) ∧ LowerTriangular(L) ∧

Known(A) ∧ SPD(A)}

Ppost : {LLT = A}

Box 2. Formal description for the Cholesky factorization

2.1 Pattern Learning

We refer to the pair of predicates (Ppre and Ppost) in Box 2 as the pattern that
identifies the Cholesky factorization. Such a pattern establishes that matrices L
and A are one the Cholesky factor of the other provided that the constraints
in the precondition are satisfied, and L and A are related as dictated in the
postcondition (LLT = A). For instance, in the expression

XXT = A−BC,

in order to determine whether X = Γ (A − BC), the following facts need to be
asserted: i) X is an unknown lower triangular matrix; ii) the expression A−BC
is a known quantity (A, B and C are known); iii) the matrix A−BC is symmetric
positive definite.

The strategy for decomposing an equation in terms of simpler problems greatly
relies on pattern matching. In the next section we describe how matrix equa-
tions can be rewritten in terms of sub-matrices, resulting in expressions seem-
ingly more complicated than the initial formulation. Such expressions are thus
inspected to find segments corresponding to known patterns.

Initially, Cl1ck only knows the patterns for a basic set of operations: addi-
tion, multiplication, inversion, and transposition of matrices, vectors and scalars.
This information is hard-coded. More complex patterns are instead discovered
during the process of PME generation. For instance, the first time the PME
for the Cholesky factorization is generated, Cl1ck learns and stores the pattern
specified by Box 2. Thanks to such patterns it will then be possible to identify
that a Cholesky factorization may be decomposed into a combination of triangu-
lar systems and simpler Cholesky factorizations. As Cl1ck’s pattern knowledge
increases, also does its capability of tackling complex operations.

3 Partitioning and Inheritance

In this section we illustrate the first step towards the PME generation: the par-
titioning of the operands (Fig. 2). To this end we introduce a set of rules to
partition and combine operands and to assert properties of expressions involv-
ing sub-operands. The application of these rules to the postcondition yields a
predicate called partitioned postcondition. Due to constraints imposed by both
the structure of the input operands and the postcondition, only few partitioning
rules will be admissible.

148 D. Fabregat-Traver and P. Bientinesi

3.1 Operands Partitioning and Direct Inheritance

As shown in Box 3, a generic matrix A can be partitioned in four different ways.
The 1 × 1 rule (Box 3(d)) is special as it does not affect the operand; we refer
to it as the identity. For a vector, only the 2 × 1 and 1 × 1 rules apply, while
for scalars only the identity is admissible. When referring to any of the parts
resulting from a non-identity rule, we use the terms sub-matrix or sub-operand,
and for 2× 2 partitionings we also use the term quadrant.

Am×n →
(

ATL ATR

ABL ABR

)
where ATL is k1 × k2

(a) 2× 2 rule

Am×n →
(

AT

AB

)
where AT is k1 × n

(b) 2× 1 rule

Am×n →
(
AL AR

)
where AL is m × k2

(c) 1× 2 rule

Am×n →
(
A
)

where A is m × n

(d) 1× 1 (identity) rule

Box 3. Rules for partitioning a generic matrix operand A. We use the subscript
letters T , B, L, and R for Top, Bottom, Left, and Right, respectively.

The inheritance of properties plays an important role in subsequent stages
of the algorithm generation process. Thus, when the operands have a special
structure, it is beneficial to choose partitioning rules that respect the structure.
For a symmetric matrix, for instance, it is convenient to create sub-matrices
that exhibit the same property. The 1 × 2 and 2 × 1 rules break the structure
of a symmetric matrix, as neither of the two sub-matrices inherit the symmetry.
Therefore, we only allow 1× 1 or 2 × 2 partitionings, with the extra constraint
that the TL quadrant has to be square.

Box 4 illustrates the admissible partitionings for symmetric matrices. On the
left, the identity rule is applied and the operand remains unchanged. On the right
instead, a constrained 2×2 rule is applied, so that some of the resulting quadrants
inherit properties. Both MTL and MBR are square and symmetric, and MBL =
MT

TR (or vice versa MTR = MT
BL). Each matrix type allows specific partitioning

rules and inheritance of properties; for triangular, diagonal, symmetric, and SPD
matrices a library of admissible partitioning rules is incorporated into Cl1ck.

3.2 Theorem-Aware Inheritance

Although frequent, direct inheritance of properties is only the simplest form of
inheritance. Here we expose a more complex situation. Let A be an SPD matrix.
Because of symmetry, the only admissible partitioning rules are the ones listed

Knowledge-Based Automatic Generation of Partitioned Matrix Expressions 149

Mm×m →
(
M
)

where M is m × m
or

Mm×m →
(

MTL MT
BL

MBL MBR

)
where MTL is k × k

Box 4. Partitioning rules for structured matrices

in Box 4; applying the 2× 2 rule, we obtain

Am×m →
(

ATL AT
BL

ABL ABR

)
where ATL is k × k

, (1)

and both ATL and ABR are symmetric. More properties about the quadrants
of A can be stated. For example, it is well known that if A is SPD, then every
principal sub-matrix of A is also SPD. As a consequence, the quadrants ATL and
ABR inherit the SPD property. Moreover, it can be proved that given a 2 × 2
partitioning of an SPD matrix as in (1), the following matrices (known as Schur
complements) are also symmetric positive definite:

i) ATL −AT
BLA−1

BRABL,

ii) ABR −ABLA−1
TLAT

BL.

The knowledge emerging from this theorem is hard-coded into Cl1ck. In
Sect. 4 it will become apparent how this information is essential for the genera-
tion of PMEs.

3.3 Combining the Partitionings

The admissible rules are now applied to rewrite the postcondition. Since in gen-
eral each operand can be decomposed in multiple ways, not one, but many parti-
tioned postconditions are created. As an example, in the Cholesky factorization
(Box 2) both the 1 × 1 and 2 × 2 rules are viable for both L and A, leading to
four different rewrite sets (Tab. 1).

It is apparent that some of the expressions in the fourth column of Tab. 1
are not algebraically well defined. The rules in the second and third rows lead
to ill-defined partitioned postconditions, thus they should be discarded. Despite
leading to a well defined expression, the first row of the table should be discarded
too, as the goal is a Partitioned Matrix Expression and it leads to an expression
in which none of the operands has been partitioned. In light of these additional
restrictions, the only viable set of rules for the Cholesky factorization is the one
given in the last row of Tab. 1.

In summary, partitioning rules must satisfy both the constraints due to the
nature of the individual operands, and those due to the operators appearing in
the postcondition. In the next section we detail the algorithm used by Cl1ck to
generate only the viable sets of partitioning rules.

150 D. Fabregat-Traver and P. Bientinesi

Table 1. Application of the different combinations of partitioning rules to the post-
condition

L A Partitioned Postcondition

1 L → (L) A → (A) (L) (L)T = (A)

2 L → (L) A →
(

AT L AT
BL

ABL ABR

)
(L) (L)T =

(
AT L AT

BL

ABL ABR

)

3 L →
(

LTL 0

LBL LBR

)
A → (A)

(
LTL 0

LBL LBR

) (
LT

TL LT
BL

0 LT
BR

)
= (A)

4 L →
(

LTL 0

LBL LBR

)
A →

(
AT L AT

BL

ABL ABR

) (
LTL 0

LBL LBR

) (
LT

TL LT
BL

0 LT
BR

)
=

(
AT L AT

BL

ABL ABR

)

3.4 Automation

We show how Cl1ck performs the partitioning process automatically. The naive
approach would be to exhaustively search among all the rules applied to all
the operands, leading to a search space of exponential size in the number of
operands. Instead, Cl1ck utilizes an algorithm that traverses once the tree that
represents the postcondition in prefix notation and yields only the viable sets of
partitioning rules. The input to the algorithm is the predicates Ppre and Ppost for
a target operation. As an example we look at the triangular Sylvester equation
LX + XU = C, defined using our formalism as in Box 5.

X = Ω(L, U,C) ≡

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Ppre : {Known(L) ∧ LowerTriangular(L)∧
Known(U) ∧ UpperTriangular(U)∧
Known(C) ∧ Unknown(X)}

Ppost : {LX + XU = C}.

Box 5. Formal description for the triangular Sylvester equation

First, the algorithm transforms the postcondition to prefix notation (Fig. 3)
and collects the name and the dimensionality of each operand. A list of disjoint
sets, one per dimension of the operands is then created. This initial list for the
Sylvester equation is [{Lr}, {Lc}, {Ur}, {Uc}, {Cr}, {Cc}, {Xr}, {Xc}] , where r
and c stand for rows and columns respectively. The algorithm traverses the tree,
in a post-order fashion, to determine if and which dimensions are bound together.
Two dimensions are bound to one another if the partitioning of one implies the
partitioning of the other. If two dimensions are found to be bound, then their

Knowledge-Based Automatic Generation of Partitioned Matrix Expressions 151

Fig. 3. Tree representation of the equation LX + XU = C

corresponding sets are merged together. As the algorithm moves from the leaves
to the root of the tree, it keeps track of the dimensions of the operands’ subtrees.

The algorithm starts by visiting the node corresponding to the operand L.
There it establishes that, since L is lower triangular, the identity and the 2× 2
partitioning rules are the only admissible ones. Thus, the rows and the columns of
L are bound together, and the list becomes [{Lr, Lc}, {Ur}, {Uc}, {Cr}, {Cc},
{Xr}, {Xc}] . The next node to be visited is that of the operand X . Since
X has no specific structure, its analysis causes no bindings. Then, the node
corresponding to the ∗ operator is analyzed. The dimensions of L and X have
to agree according to the matrix product, therefore, a binding between Lc and
Xr is imposed: [{Lr, Lc, Xr}, {Ur}, {Uc}, {Cr}, {Cc}, {Xc}] . At this stage the
dimensions of the product LX are also determined to be Lr ×Xc.

The procedure continues by analyzing the subtree corresponding to the prod-
uct XU . Again, the lack of a specific structure in X does not cause any bind-
ing and the algorithm follows with the study of the node for the operand
U . The triangularity of U imposes a binding between Ur and Uc leading to
[{Lr, Lc, Xr}, {Ur, Uc}, {Cr}, {Cc}, {Xc}] . Then, the node for the ∗ operator is
analyzed, and a binding between Xc and Ur is found: [{Lr, Lc, Xr}, {Ur, Uc, Xc},
{Cr}, {Cc}] . The dimensions of the product XU are determined to be Xr×Uc.

The next node to be considered is the corresponding to the + operator. It
imposes a binding between the rows and the columns of the products LX and
XU , i.e., between Lr and Xr, and between Xc and Uc. Since each of these
pairs of dimensions already belong to the same set, no modifications are made
to the list. The algorithm establishes that the dimensions of the + node are
Lr × Uc. Next, the node associated to the operand C is analyzed. Since C has
no particular structure, its analysis does not cause any modification. The last
node to be processed is the equality operator =. This node binds the rows of C
to those of L (Cr, Lr) and the columns of C to those of U (Cc, Uc). The final
list consists of two separate groups of dimensions:

[{Lr, Lc, Xr, Cr}, {Ur, Uc, Xc, Cc}] .

Having created g groups of bound dimensions, the algorithm generates 2g

combinations of rules (the dimensions within each group being either partitioned
or not), resulting in a family of partioned postconditions, one per combination.
In practice, since the combination including solely identity rules does not lead to
a PME, only 2g − 1 combinations are acceptable. In our example the algorithm

152 D. Fabregat-Traver and P. Bientinesi

Table 2. Viable combinations of partitioning rules for the Sylvester equation

L U C X

1 (L)

(
UT L UT R

0 UBR

) (
CL CR

) (
XL XR

)

2

(
LTL 0

LBL LBR

)
(U)

(
CT

CB

) (
XT

XB

)

3

(
LTL 0

LBL LBR

) (
UT L UT R

0 UBR

) (
CTL CT R

CBL CBR

) (
XT L XT R

XBL XBR

)

found two groups of bound dimensions, therefore three possible combinations of
rules are generated: 1) only the dimensions in the second group are partitioned,
2) only the dimensions in the first group are partitioned, or 3) all dimensions
are partitioned. The resulting partitionings are listed in Tab. 2.

This very same process is used to find the bound dimensions of every target
operation and, accordingly, only each and every viable combination of partition-
ing rules is generated.

4 Matrix Arithmetic and Pattern Matching

This section covers the second and third steps in the PME generation stage
(Fig. 2). Within the Matrix Arithmetic step, symbolic arithmetic is performed
and the = operator is distributed over the partitions, originating multiple equa-
tions. In (2) we display the result of these actions for the Cholesky factorization,
where the symbol � means that the equation in the top-right quadrant is the
transpose of the bottom-left one.
(

LTL 0

LBL LBR

)(
LT

TL LT
BL

0 LT
BR

)
=

(
AT L AT

BL

ABL ABR

)
⇒
(

LTLLT
TL = AT L �

LBLLT
TL = ABL LBLLT

BL + LBRLT
BR = ABR

)

The Pattern Matching step delivers the sought-after PME. Success of this
process is dependent on the ability to identify expressions with known structure
and properties. In order to facilitate pattern matching, we force equations to be
in their canonical form. We state that an equation is in canonical form if a) its
left-hand side only consists of those terms that contain at least one unknown
object, and b) its right-hand side only consists of those terms that solely contain
known objects.

This last step carries out an iterative process comprising three separate ac-
tions: 1) structural pattern matching: equations are matched against known pat-
terns; 2) once a known pattern is matched, the unknown operands are flagged
as known and the equation becomes a tautology; 3) algebraic manipulation: the
remaining equations are rearranged in canonical form. We clarify the iterative

Knowledge-Based Automatic Generation of Partitioned Matrix Expressions 153

process by illustrating, action by action, how Cl1ck works through the Cho-
lesky factorization. The first iteration is depicted in Box 6, in which the top-left
formula displays the initial state. In all the next expressions, green and red are
used to highlight the known and unknown operands, respectively.

Structural pattern matching: All the equations in Box 6(a) are in canonical
form. Through pattern matching, the top-left quadrant is the only one for which
a match is found. Cl1ck identifies the equation as a Cholesky factorization
(Box 6(b)), since the pattern in Box 2 is satisfied: the system recognizes that i)
LTL is lower triangular; ii) ATL is SPD; and iii) the structure of the equation
matches the one in the postcondition (LLT = A).

Exposing new available operands: Having matched the top-left equation,
Cl1ck turns the unknown operand LTL into LTL, and propagates the infor-
mation to all the other quadrants (Box 6(c)). As a result, the top-left equation
becomes a tautology.

Algebraic manipulation: All the remaining equations are still in canonical
form, thus no operation takes place (Box 6(d)).

⎛
⎝ LTLLT

TL = ATL �

LBLLT
TL = ABL LBLLT

BL + LBRLT
BR = ABR

⎞
⎠

(a) Initial state.

⎛
⎜⎝

LTL = Γ (ATL) �

LBLLT
TL = ABL LBLLT

BL + LBRLT
BR = ABR

⎞
⎟⎠

(b) Top-left equation is identified as a Cho-
lesky sub-problem.

⎛
⎜⎜⎜⎝

LTL = Γ (ATL) �

LBL L
T
TL = ABL LBLLT

BL+LBRLT
BR =ABR

⎞
⎟⎟⎟⎠

(c) LTL becomes a known operand for the
rest of equations.

⎛
⎝ LTL = Γ (ATL) �

LBLLT
TL = ABL LBLLT

BL + LBRLT
BR = ABR

⎞
⎠

(d) There is no need for algebraic manipu-
lation.

Box 6. First iteration towards the PME generation

In this first iteration, one unknown operand, LTL, has become known, and
one equation has turned into a tautology. The knowledge encoded in such a
tautology is of importance for a subsequent iteration. The second iteration is
shown in Box 7.

Structural pattern matching: Box 7(a) reproduces the final state from the
previous iteration. Among the two outstanding equations, the bottom-left one
is identified (Box 7(b)), as it matches the pattern of a triangular system of
equations with multiple right-hand sides (trsm). The pattern for a trsm is

{XLT = B ∧ Output(X) ∧ Input(L) ∧ LowerTriangular(L) ∧ Input(B)}.

For the sake of brevity, we assume that Cl1ck had learned such pattern from a
previous derivation; in practice, in case the system does not know the pattern, a
nested task of PME generation would be initiated, yielding the required pattern.

154 D. Fabregat-Traver and P. Bientinesi

Exposing new available operands: Once the trsm is identified, the output
operand LBL becomes available and turns to green in the bottom-right quadrant
(Box 7(c)).

Algebraic manipulation: The bottom-right equation is not in canonical form
anymore: the product LBLLT

BL, now a known quantity, does not lay in the right-
hand side. A simple manipulation brings the equation back to canonical form
(Box 7(d)).

⎛
⎝ LTL = Γ (ATL) �

LBLLT
TL = ABL LBLLT

BL + LBRLT
BR = ABR

⎞
⎠

(a) Initial state.

⎛
⎜⎝

LTL = Γ (ATL) �

LBL = ABLL
−T
TL

LBLLT
BL + LBRLT

BR = ABR

⎞
⎟⎠

(b) Bottom-left equation is identified as a
triangular system of equations.

⎛
⎜⎜⎝

LTL = Γ (ATL) �

LBL = ABLL
−T
TL

LBL L
T
BL + LBRLT

BR = ABR

⎞
⎟⎟⎠

(c) LBL becomes a known operand.

⎛
⎝ LTL = Γ (ATL) �

LBL = ABLL
−T
TL

LBRLT
BR = ABR − LBLLT

BL

⎞
⎠

(d) State after the algebraic manipulation.

Box 7. Second iteration towards the PME generation

The process continues until all the equations are turned into tautologies. The
third and final iteration for the Cholesky factorization is shown in Box 8, where
the top formula replicates the final state from the previous iteration.

Structural pattern matching: Only one equation, the bottom-right one, re-
mains unprocessed. At a first glance, one might recognize a Cholesky factoriza-
tion, but the corresponding pattern in Box 2 requires A to be SPD. The question
is whether the expression ABR−LBLLT

BL represents an SPD matrix. In order to
answer the question, Cl1ck applies rewrite rules and symbolic simplifications.

In Sect. 3.2 we explained that the following quantities are known to be SPD:
ATL, ABR, ATL − AT

BLA−1
BRABL, and ABR − ABLA−1

TLAT
BL. In order to de-

termine whether ABR − LBLLT
BL is equivalent to any of these expressions,

Cl1ck makes use of the knowledge acquired throughout the previous iterations.
Specifically, in the first two iterations it was discovered that LTLLT

TL = ATL,
and LBL = ABLL−T

TL . Using these tautologies as rewrite rules, the expres-
sion ABR − LBLLT

BL is manipulated. First, the equality LBL = ABLL−T
TL is

used to replace the instances of LBL, yielding ABR − ABLL−T
TLL−1

TLAT
BL, and

equivalently, ABR − ABL(LTLLT
TL)−1AT

BL. Then, by virtue of the tautology
LTLLT

TL = ATL, LTLLT
TL is replaced by ATL, yielding ABR − ABLA−1

TLAT
BL.

Now, this expression is known to be SPD. Thanks to these manipulations, Cl1ck
successfully associates the bottom right equation with the pattern for a Cholesky
factorization.

Knowledge-Based Automatic Generation of Partitioned Matrix Expressions 155

Exposing new available operands: Once the expression in the bottom-right
quadrant is identified, the system exposes the quantity LBR as known. Since
no equation is left, the process completes and the PME—formed by the three
tautologies—is returned as output.

⎛
⎝ LTL = Γ (ATL) �

LBL = ABLL
−T
TL

LBRLT
BR = ABR − LBLLT

BL

⎞
⎠

(a) Initial state.

⎛
⎜⎝

LTL = Γ (ATL) �

LBL = ABLL
−T
TL

LBR = Γ (ABR − LBLLT
BL)

⎞
⎟⎠

(b) Bottom-right equation is identified as
a Cholesky factorization.

⎛
⎜⎝

LTL = Γ (ATL) �

LBL = ABLL
−T
TL

LBR = Γ (ABR − LBLLT
BL)

⎞
⎟⎠

(c) LBR becomes a known operand.

⎛
⎝ LTL = Γ (ATL) �

LBL = ABLL
−T
TL

LBR = Γ (ABR − LBLLT
BL)

⎞
⎠

(d) Final PME.

Box 8. Final iteration towards the PME generation

By means of the described process, PMEs for a target equation are automat-
ically generated. The PME for the Cholesky factorization is given in Box 9.

⎛⎝ LTL = Γ (ATL) �

LBL = ABLL−T
TL LBR = Γ (ABR − LBLLT

BL)

⎞⎠
Box 9. Partitioned Matrix Expression for the Cholesky factorization

5 Conclusions

The work we presented sets the ground for the development of a symbolic system
that, from the sole description of an operation, generates algorithms automat-
ically. The core of our methodology stands in the PME. A PME encapsulates
the information about the target operation in a way that facilitates the subse-
quent identification of loop-invariants. The loop-invariants then lead to the final
algorithms through a technique based on program correctness. In this paper we
introduce a symbolic system, Cl1ck, that automates the generation of PMEs.

In order to generate PMEs, Cl1ck first identifies how the operands in the
operation may be partitioned. Instead of a brute force approach of exponential
complexity, Cl1ck utilizes a tree-based algorithm that yields only the viable sets
of partitioning rules. Through a process of pattern matching, each such set leads
to a distinct PME. The key in the PME generation is Cl1ck’s ability to identify
known patterns. Initially, Cl1ck only recognizes elementary structures, but its
knowledge expands by automatically learning the patterns associated with the

156 D. Fabregat-Traver and P. Bientinesi

operations it tackles. Thanks to this augmenting internal knowledge, the system
may generate PMEs for increasingly complex operations.

To illustrate Cl1ck, we discussed the Cholesky factorization and, partially
(due to space constraints), the Sylvester equation. Despite the fact that such
operations differ in multiple ways—number and properties of the operands, num-
ber of valid sets of partitioning rules, number of PMEs—the steps performed by
Cl1ck leading to the PMEs are exactly the same. As future work, we plan to
add support for higher dimensional objects and the derivative operator.

Acknowledgements. The authors gratefully acknowledge the support received
from the Deutsche Forschungsgemeinschaft (German Research Association)
through grant GSC 111.

References

1. FLAME Project: FLAME Online Reference,
http://z.cs.utexas.edu/wiki/flame.wiki/

2. Dongarra, J.J., Du Croz, J., Hammarling, S., Duff, I.S.: A set of level 3 basic linear
algebra subprograms. ACM Trans. Math. Softw. 16, 1–17 (1990)

3. Jonsson, I., K̊agström, B.: Recursive blocked algorithms for solving triangular
systems—part i: one-sided and coupled sylvester-type matrix equations. ACM
Transactions on Mathematical Software 28(4), 392–415 (2002)

4. Jonsson, I., K̊agström, B.: Recursive blocked algorithms for solving triangular
systems—part ii: Two-sided and generalized sylvester and lyapunov matrix equa-
tions. ACM Transactions on Mathematical Software 28(4), 416–435 (2002)

5. Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du
Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK
Users’ Guide, 3rd edn. Society for Industrial and Applied Mathematics, Philadel-
phia (1999)

6. Whaley, R.C., Dongarra, J.: Automatically tuned linear algebra software. In: Su-
perComputing 1998: High Performance Networking and Computing (1998)

7. Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proceed-
ings of the IEEE 93(2), 216–231 (2005); Special issue on “Program Generation,
Optimization, and Platform Adaptation”

8. Püschel, M., Moura, J.M.F., Johnson, J., Padua, D., Veloso, M., Singer, B., Xiong,
J., Franchetti, F., Gacic, A., Voronenko, Y., Chen, K., Johnson, R.W., Rizzolo, N.:
SPIRAL: Code generation for DSP transforms. Proceedings of the IEEE 93(2), 232–
275 (2005); special issue on “Program Generation, Optimization, and Adaptation”

9. Bientinesi, P., Gunnels, J.A., Myers, M.E., Quintana-Ort́ı, E.S., van de Geijn,
R.A.: The science of deriving dense linear algebra algorithms. ACM Transactions
on Mathematical Software 31(1), 1–26 (2005)

10. Bientinesi, P., Quintana-Ort́ı, E.S., van de Geijn, R.: FLAME lab: A farewell to
indices. FLAME Working Note #11. Technical Report TR-2003-11, The University
of Texas at Austin, Department of Computer Sciences (April 2003)

11. Quintana-Ort́ı, E.S., van de Geijn, R.A.: Formal derivation of algorithms: The
triangular Sylvester equation. ACM Transactions on Mathematical Software 29(2),
218–243 (2003)

http://z.cs.utexas.edu/wiki/flame.wiki/

Knowledge-Based Automatic Generation of Partitioned Matrix Expressions 157

12. Poulson, J., van de Geijn, R., Bennighof, J.: Parallel algorithms for reducing the
generalized hermitian-definite eigenvalue problem. FLAME Working Note #56.
Technical Report TR-11-05, The University of Texas at Austin, Department of
Computer Sciences (February 2011)

13. Bientinesi, P., van de Geijn, R.: A goal-oriented and modular approach to stability
analysis. SIAM Journal on Matrix Analysis and Applications (to appear, 2011)

14. Wolfram Research: Mathematica Reference Guide,
http://reference.wolfram.com/mathematica/

15. Gries, D., Schneider, F.B.: A Logical Approach to Discrete Math. Texts and
Monographs in Computer Science. Springer, Heidelberg (1992)

http://reference.wolfram.com/mathematica/

Involutive Division Generated by an Antigraded

Monomial Ordering

Vladimir P. Gerdt1 and Yuri A. Blinkov2

1 Laboratory of Information Technologies, Joint Institute for Nuclear Research,
141980 Dubna, Russia

gerdt@.jinr.ru
2 Department of Mathematics and Mechanics, Saratov State University

410012 Saratov, Russia
BlinkovUA@info.sgu.ru

Abstract. In the present paper we consider a class of involutive mono-
mial divisions pairwise constructed by the partition of variables into mul-
tiplicative and nonmultiplicative generated by a total monomial ordering.
If this ordering is admissible or the inverse of an admissible ordering, then
the involutive division generated possesses all algorithmically important
properties such as continuity, constructivity, and noetherianity. Among
all such divisions, we single out those generated by antigraded monomial
orderings. We demonstrate, by example of the antigraded lexicographic
ordering, that the divisions of this class are heuristically better than
the classical Janet division. The last division is pairwise generated by
the pure lexicographic ordering and up to now has been considered as
computationally best.

1 Introduction

The notion of involutive monomial division introduced first in our paper [1] and
then somewhat modified by Apel [2] is a cornerstone of the theory of involutive
bases and their algorithmic construction. The basic idea behind this notion goes
back to Janet [3] and consists in a proper partition of the variables for every
element in a finite monomial set into the two subsets called multiplicative and
nonmultiplicative. Given a polynomial set and an admissible monomial order,
the partition of variables is defined in terms of the leading monomial set.

Each partition generates a restricted monomial division [4] called involutive
if it is defined for an arbitrary monomial set and satisfies certain axioms [1], or
if it is admissible for the given monomial set in accordance with [2].

In an involutive algorithm, the nonmultiplicative variables of a polynomial are
used for its prolongation, that is, for the multiplication by these variables. The
multiplicative variables of other polynomials in the set are used for reduction of
the prolonged polynomial. An involutive basis is a polynomial set such that all
its nonmultiplicative prolongations are multiplicatively reducible to zero.

In Apel’s approach [2], an involutive division is algorithmically constructed for
a polynomial set, and it is checked whether the set is involutive. If this is not the

V.P. Gerdt et al. (Eds.): CASC 2011, LNCS 6885, pp. 158–174, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Involutive Division Generated by an Antigraded Monomial Ordering 159

case the set is enlarged with an irreducible nonmultiplicative prolongation, and
the process is iterated. Though such an approach allows to construct an optimal
involutive division at every iteration, the completion algorithm is much less
efficient than ours [4]. This is because constructing and optimizing an involutive
division all over again at every iteration step is computationally costly, and one
cannot properly use the “history” of completion. In our case, if the underlying
division is good enough, e.g., Janet or Pommaret division [1], the partition of
variables is changed rather smoothly from iteration to iteration, and one can
effectively accelerate the computational process by using data of the iterations
which have been performed.

If an involutive algorithm terminates it outputs an involutive basis which is a
Gröbner basis of special structure determined by properties of underlying invo-
lutive division. In our approach, a reduced Gröbner basis is always a well defined
subset of the involutive basis and can be extracted from the latter without any
extra computation [4]. In so doing, just this Gröbner redundancy makes struc-
tural and combinatorial information on the ideals and modules more accessible
via involutive bases than via reduced Gröbner ones. Thus, involutive bases based
on Pommaret division turned out to be a useful tool in commutative algebra and
formal theory of differential equations as was discovered by Seiler [5].

Our implementation of the Janet division algorithm [4] in GINV [6] 1, revealed
its computational superiority over the fastest implementations of Buchberger’s
algorithm, e.g. in Singular [8], for most of benchmarks (see the Web page [9])
taken from [10] and other sources.

Apart from the three classical divisions generated by the partitions of variables
have been used for completion of partial differential equations to involution and
called in [1] after Thomas, Janet, and Pommaret, many other involutive divi-
sions were found [11,12,13,14,15]. All of them are defined for arbitrary monomial
sets [1] and, except a few special examples constructed by Semenov [13], possess
such algorithmically important properties as continuity and constructivity [1].

However, in spite of intensive theoretical research and numerous computer
experiments with different new divisions, none of them could compete algo-
rithmically with Janet division. The last is specified by a permutation on the
variables, and for n variables there are n! different Janet divisions. A very few
examples are known (cf. [15]) when a minimal Janet monomial basis is larger,
for all possible permutations on the variables, than that for another division.

In the given paper we consider involutive divisions which are pairwise gen-
erated by total monomial orderings and single out a subclass of such divisions
from the class of ≺ −divisions constructed by Semenov [13] and studied in [15].
In the cited papers symbol ≺ denotes an admissible monomial ordering. Our
subclass contains divisions generated by antigraded monomial orderings. They
are ≺ −divisions where ≺ is the inverse of an antigraded order.

We present results of computational experiments with one of such divisions
generated by the antigraded lexicographic ordering �alex (cf. [16]) and called

1 GINV is now under development in collaboration with Technical University (RWTH)
Aachen [7].

160 V.P. Gerdt and Y.A. Blinkov

�alex-division. Our experimentation shows that in the vast majority of cases
�alex-monomial bases are more compact than Janet bases. In addition, cardinal-
ity of the �alex-bases under permutations on the variables varies substantially
less than that for Janet bases.

These properties of the �alex-division open new prospects in speeding-up com-
putation of involutive bases and reduced Gröbner bases by the involutive algo-
rithms.

2 Preliminaries

Hereafter we use the following notations combined, for compactness, in tabular
form

X set of variables X = {x1, . . . , xn}
K coefficient field
K[X] commutative polynomial ring over K in X
M monoid of all power products in K[X]
U, V, W finite subsets of M or lists of elements in M
u, v, w elements in M
|U | cardinality of U
deg(u) total degree of u
degi(u) degree of u in the variable xi

lcm(u, v) least common multiple of u and v
F, G, Q finite subsets of K[X] or lists of elements in K[X]
f, g, h elements in K[X]
〈F 〉 ideal in K[X] generated by F
� total monomial ordering
lm(f) leading monomial of f
lm(F) set or list of leading monomials in F
� admissible monomial ordering
�lex lexicographic monomial ordering
�alex antigraded lexicographic monomial ordering
�grlex graded lexicographic monomial ordering
L involutive monomial division
J Janet division
P Pommaret division
L(u, U) monoid of L-multiplicative variables for u ∈ U
NML(u, U) set of L-nonmultiplicative variables for u ∈ U
NFL(f, F) L-normal form of f modulo F
CL(U) L-cone of U
u | v divisibility relation on M (’u divides v’)
u |L v L-divisibility relation on U ×M (’u ∈ U L-divides v ∈ M’)
Ū involutive completion of U

We shall consider a commutative multivariate polynomial ring K[X] over a field
K in variables X = {x1, . . . , xn}. Involutive divisions are defined on the monoid

Involutive Division Generated by an Antigraded Monomial Ordering 161

M of monomials, i.e., power products, of K[X]. For generality, in the input
monomial or polynomial data for the algorithms of Section 4, we allow repetition
of elements. In this case, we speak of lists, that is sequences of elements rather
than of sets (cf. [17]).

Now we give the definitions of involutive division and involutive bases and
refer a reader to [1] for more definitions and proofs (see also [4] and book [5]).

Definition 1. An involutive division L is defined on M if for any nonempty
set U ⊂ M and for any u ∈ U a subset ML(u, U) ⊆ X is defined that generates
submonoid L(u, U) ⊂ M of power products in ML(u, U) and the following holds

1. v ∈ U ∧ uL(u, U) ∩ vL(v, U) �= ∅ =⇒ u ∈ vL(v, U) ∨ v ∈ uL(u, U) ,
2. v ∈ U ∧ v ∈ uL(u, U) =⇒ L(v, U) ⊆ L(u, U) (transitivity) ,
3. u ∈ V ∧ V ⊆ U =⇒ L(u, U) ⊆ L(u, V) (filter axiom) .

Variables in ML(u, U) are L-multiplicative for u and those in NML(u, U) =
X \ML(u, U) are L-nonmultiplicative. If w ∈ uL(u, U), then u is L-(involutive)
divisor of w (denotation: u |L w).

In the literature (see, for example, [13]–[15]) the first two axiomatic properties
of involutive division in Definition 1 are often called static since they apply to a
certain monomial set whereas the last property is called filter axiom and deals
with behavior of involutive division under enlargement of the set. In Apel’s
approach [2], the filter axiom is not used. Instead, the underlying admissibil-
ity concept for a partition of the variables, that for the fixed monomial set is
equivalent to the axioms 1-2, forces to perform an appropriate repartition of the
variables to provide its admissibility for the enlarged set.

Definition 2. (Janet division) Given a permutation σ ∈ Sn, for each 1 ≤ i ≤ n
divide U ∈ M into groups labeled by non-negative integers d1, . . . , di

[d1, . . . , di] = { u ∈ U | dj = degσ(j)(u), 1 ≤ j ≤ i }.

Variable xσ(1) is multiplicative for u ∈ U if degσ(1)(u) = max{degσ(1)(v) | v ∈
U}. For i > 1 xσ(i) is multiplicative for u ∈ [d1, . . . , di−1] when

degσ(i)(u) = max{degσ(i)(v) | v ∈ [d1, . . . , di−1]}.

Definition 3. (Pommaret division) Given a permutation σ ∈ Sn, for the mono-
mial v = xd1

σ(1) · · ·x
dk−1

σ(k−1)x
dk

σ(k) with dk > 0 variables xσ(j), j ≥ k are multiplica-
tive. For v = 1 all the variables are multiplicative.

Remark 1. Though there are n! different Janet divisions and the same number
of Pommaret divisions, in our previous papers we always considered Janet and
Pommaret partitions of the variables for the identical permutation whereas Janet
himself [3] (see also Seiler [5]) partitioned the variables in accordance with the
reverse permutation

σ =
(

1 2 . . . n
n n − 1 . . . 1

)
.

162 V.P. Gerdt and Y.A. Blinkov

Definition 4. The set C(U) = ∪u∈U uM ⊂ M is the cone generated by a set
U ⊂ M, and the set CL(U) = ∪u∈U uL(u, U) ⊂ M is the L−(involutive) cone
of U . A finite set Ū ⊇ U ⊂ M is the L−completion of U if C(U) = CL(Ū).
Under the equality

CL(U) = C(U) (1)

set U is L-complete or L-involutive. If every finite set U admits L−completion,
then the involutive division L is noetherian.

Remark 2. Given an admissible monomial ordering �, that is, the ordering such
that {

(∀u ∈ M \ {1}) [u � 1] ,
(∀u, v, w ∈ M) [u � v ⇐⇒ u · w � v · w] ,

L-normal form of a polynomial g ∈ K[X] modulo a finite polynomial set F ⊂
K[X] and L-autoreduction of F are defined exactly as in Gröbner bases the-
ory [18] with the only distinction: every f ∈ F is allowed to be multiplied by
the power products from L(lm(f), lm(F)) where lm(f) and lm(F) denote, re-
spectively, the leading monomial of f and the set of the leading monomials in
F .

Definition 5. Given an involutive division L and an admissible ordering � a
finite L-autoreduced subset G ⊂ K[X] is an L−(involutive) basis of ideal I = 〈G〉
if

(∀f ∈ I) (∃ g ∈ G) [lm(g) |L lm(f)] . (2)

Proposition 1. If a division L is continuous [1], then conditions (1) and (2)
are respectively equivalent to

(∀u ∈ U) (∀x ∈ NML(u, U)) [u · x ∈ CL(U)] . (3)

and

(∀f ∈ G) (∀xi ∈ NML(lm(f), lm(G))) [NFL(xi · f, G) = 0] . (4)

NFL in (4) denotes here the L-normal form.

Definition 6. A monomial L-basis Ū of 〈U〉 is minimal if for any other L-basis
Ū1, the inclusion Ū ⊆ Ū1 holds. A polynomial L-basis G is minimal if lm(G) is
a minimal L-basis of the initial ideal of 〈G〉.
Proposition 2. If a continuous division L is constructive [1], then an ideal in
K[X] having a (finite) L-basis, has also a minimal L-basis. Given an ideal and
an ordering, there is a unique monic minimal L basis.

Remark 3. Since an involutive division is a restricted monomial division, condi-
tion (2) implies that an involutive basis is a Gröbner basis, which is generally
redundant in the Gröbner sense.

Proposition 3. The Janet and Pommaret divisions of Definitions 3 and 2 are
continuous and constructive. The Janet division is noetherian whereas the Pom-
maret division is not.

Involutive Division Generated by an Antigraded Monomial Ordering 163

3 Pair Divisions Generated by Total Monomial Orderings

All involutive divisions known from the literature that satisfy Axioms 1-3 in
Definition 1 possess the pair property in accordance with its definition given
in [11]:

Definition 7. An involutive division L is pairwise if for any finite set U ⊂ M
with cardinality |U | ≥ 2 the set of its L-nonmultiplicative satisfies

(∀u ∈ U) [NML(u, U) =
⋃

v∈U\{u}
NML(u, {u, v})]. (5)

The pair property was further studied by Semenov [13,14].
Formula (5) provides a regular procedure for construction of a pairwise divi-

sion L. In doing so, it makes sense, from the computational point of view, to
take into account the following remark.

Remark 4. The computational cost of checking involutivity of a monomial or a
polynomial basis with respect to a continuous division is determined by a number
of nonmultiplicative prolongations to be examined in (3) or in (4), respectively.
Hence, with respect to the involutivity checking, the quality of an involutive
division specified for a monomial set is characterized by the total number of
nonmultiplicative prolongations it generates for the set. Proposition 6 of Section
4 makes this fact more explicit. In the next section, we shall see that the above
characterization is also relevant to computation of polynomial involutive bases.

Consider now a set {u, v} ⊂ M of two monomials and partition the variables
for these monomials to satisfy the static Axiom 1 in Definition 1. In doing that
it is useful to distinguish two alternatives:

1. Monomials u and v are comparable with respect to the partial (i.e., reflexive,
antisymmetric and transitive) order induced by the conventional divisibility
relation denoted by the vertical bar ’|’. In other words, either u | v or v | u.
In this case Axiom 1 holds true for the set {u, v} if all variables in X are
specified as L-multiplicative for both monomials.

2. Monomials u and v are incomparable with respect to the partial order
induced, i.e., neither u | v nor v | u. In this case, at least one of the
variables in X and at least for one of the monomials in {u, v} must be
L−nonmultiplicative. Otherwise, the least common multiple of monomial
u, v denoted by lcm(u, v) would have both monomials as L-divisors, which
violates Axiom 1. It is sufficient and computationally optimal to assign just
one variable as nonmultiplicative to one of the monomials in the pair.

A natural, uniform, and rather optimal recipe to make such assignment is to
fix a permutation σ of the variables, a total monomial order � on M and to
proceed as follows

NML(u, {u, v}) :=

{
if u � v or (u � v ∧ v | u) then ∅
else {xσ(i)}, i = min{j | degσ(j)(u) < degσ(j)(v)} .

(6)

164 V.P. Gerdt and Y.A. Blinkov

Theorem 1. The pair assignment specified in (6), together with formula (5)2

yields an involutive division.

Proof. Let a pair {u, v} of monomials satisfy u � v. Then if u | v, then
there are none variables occurring in u have degree higher than those in v,
and NML(u, {u, v}) = NML(v, {u, v}) = ∅. Otherwise rule (6) will specify a
nonmultiplicative variable for u. If u � v and v | u then the same reasoning
is applicable to v. Therefore, partition (6) of variables satisfies static Axiom 1
in Definition 1 for any subset in an arbitrary monomial set U ⊂ M containing
a pair of monomials. The union of nonmultiplicative variables in 6 preserves,
obviously, the validity of Axiom 1 and satisfies also the filter axiom.

It remains to prove that the transitivity condition (Axiom 2) in Definition 1,
which is trivially satisfied for a set of two elements, is also preserved for a bigger
set U . Without loss of generality we can omit σ in (5), that is fix it as the
identical permutation.

Let a triple {u1, u2, u3} ⊂ U be such that u2∈u1L(u1, U) and u3 ∈ u2L(u2, U).
It is clear that u1 � u2 � u3. Indeed, the condition u1 � u2 and u1 | u2

together with (5) would imply the existence of xi ∈ NML(u1, U) such that
degi(u2) > degi(u1) what contradicts to L-divisibility of u2 by u1.

Assume that u3 �∈ u1L(u1, U). In this case u3 = u1 ·v ·w where v, w ∈ M\{1},
u2 = u1 · v, u3 = u2 · w, and there is the variable xi of lowest index i such that
xi | w and xi ∈ NML(u1, U). From the pairwise construction (5)-(6) it follows

(∃u0 ∈ U) [u0 � u1 ∧ ∃i = min{j | degj(u1) < degj(u0)}] .

Since u0 � u2 = u1 · v and xi ∈ ML(u2, U), the monomial v can contain only
variables xk with k < i and such that degk(u0) = degk(u1) + degk(v). But the
last equality implies that the lowest index variable in v is nonmultiplicative for
u1 what contradicts u2 ∈ u1L(u1, U). �

If the ordering � in (6) is admissible, then the transitivity property is im-
mediately provided by (6) since in this case any monomial set is obviously L-
autoreduced. In the case when � is the inverse of an admissible ordering � the
correctness proof for procedure (5)–(6) was given in [15] where the generated
division is called ≺-division. The above theorem shows the correctness of (5)-(6)
in generating an involutive division for arbitrary total order �.

The constructed pairwise division is admissible for (U, �) in the sense by
Apel [2]. It is easy to see (cf. [13]) that the Janet division in Definition 2 is
obtained this way when � is the pure lexicographical ordering, which we shall
denote by �lex, and such that

xσ(1) �lex xσ(2) �lex · · · �lex xσ(n) .

If � is an admissible monomial ordering �, then (5)–(6) generates the �-division
introduced by Semenov and investigated in [13]–[15], together with another di-
vision (≺-division) generated by the inverse of �.
2 In [13]-[15] the construction of involutive division by formula (5) is called pairwise

closure of involutive 2-partition.

Involutive Division Generated by an Antigraded Monomial Ordering 165

Now we specialize � in (5)–(6) to two different orderings which we shall compare
with the Janet division.

Definition 8. [16] The graded lexicographic monomial order �grlex is defined
as follows:

u �grlex v ⇐⇒ deg(u) > deg(v) ∨ deg(u) = deg(v) ∧ u �lex v . (7)

Similarly, the antigraded monomial order �alex is defined as follows:

u �alex v ⇐⇒ deg(u) < deg(v) ∨ deg(u) = deg(v) ∧ u �lex v . (8)

Remark 5. Unlike �grlex that is admissible, �alex is not. The last belongs to the
family of local orderings (see [16,17]).

Definition 9. The involutive division defined by (5)-(6) for the �grlex-and �alex-
ordering will be called �grlex-and �alex-division, respectively.

Proposition 4. The division generated by a total ordering � is noetherian. If �
is admissible ordering or the inverse of an admissible ordering, then the division
it generates is continuous and constructive.

Proof. To prove noetherianity we consider Thomas division [1] denoted by T
with the partition of variables xi ∈ MT (u, U) ⇐⇒ degi(u) = max{ degi(v) | v ∈
U }. Given a finite set U ⊂ M, its T -completion ŪT is given by

ŪT = {v ∈ 〈U〉 | degi(v) ≤ max{degi(u) | u ∈ U}, 1 ≤ i ≤ n} .

It is easy to see that the monomial set ŪT is also involutive for the division
generated by an arbitrary total order � in accordance to (5)-(6).

The cases of admissible � and its inverse were analyzed by Semenov and
Zyuzikov [15] who proved continuity and constructivity of the generated
divisions. �

Corollary 1. The �grlex-and �alex-divisions are continuous, constructive, and
noetherian.

Proof. The ordering �alex is the inverse of the following admissible monomial
ordering which we call graded antilexicographic and denote by �galex :

u �galex v ⇐⇒ deg(u) > deg(v) ∨ deg(u) = deg(v) ∧ u ≺lex v . �

Example 1. The following table shows the partition of variables for the mono-
mial set U = {x2

1x3, x1x2, x2x3, x
2
3} into multiplicative (M) and nonmultiplica-

tive (NM) for the identical permutation of indices and for divisions: Janet,
Pommaret, �grlex and �alex.

166 V.P. Gerdt and Y.A. Blinkov

Table 1. Partition of variables for U = {x2
1x3, x1x2, x1x3, x

2
3}

Element Involutive division
in U Janet Pommaret �grlex �alex

M NM M NM M NM M NM

x2
1x3 x1, x2, x3 − x3 x1, x2 x1, x2, x3 − x1 x2, x3

x1x2 x2, x3 x1 x2, x3 x1 x2, x3 x1 x1, x2, x3 −
x1x3 x3 x1, x2 x3 x1, x2 x3 x1, x2 x1, x3 x2

x2
3 x2, x3 x1 x3 x1, x2 x3 x1, x2 x2, x3 x1

¿From Table 1 one can see that the given set U is not �alex-autoreduced, since
x1x3 |�alex x2

1x3. For the other three divisions U is involutively autoreduced. As
we already noticed in our comments that follow the proof of Theorem 1, for
a division generated pairwise by an admissible ordering, any set of (distinct)
monomials is involutively autoreduced. In the example under consideration this
concerns Janet and �grlex-divisions. Though U is also P-(Pommaret) autore-
duced, generally it is not always the case �grlex.

On the other hand, the involutive division that is pairwise generated by an
antigraded total ordering �, that is, such ordering which satisfies [16]

deg(u) < deg(v) =⇒ u � v , (9)

with respect to autoreduction, is similar to Pommaret division. The following
theorem clarifies this point.

Theorem 2. Let � be a total monomial ordering satisfying (9), L be the invo-
lutive division generated by (5)–(6) for some permutation σ and U ⊂ M be a
finite monomial set or list. Then for the set V generated by L−autoreduction of
U , that is, V = AutoreduceL(U), the inclusion holds

V ⊆ Ū (10)

where Ū is the minimal L−basis of the monomial ideal 〈U〉 generated by U .

Proof. We show first that

(∀u ∈ U) (∀x ∈ NML(u, U)) [u · x ∈ vL(v, U) \ {v} =⇒ v � u] (11)

Let u · xσ(i) = v · w where w ∈ L(v, U) and deg(w) ≥ 1. If deg(w) ≥ 2, then
the implication (11) is a trivial consequence of (9). Consider now the case when
w = xσ(j). Obviously, i �= j and, hence,

i = min{k | degσ(k)(u) < degσ(k)(v)}, j = min{k | degσ(k)(v) < degσ(k)(u)} .

In accordance with (6), u � v would imply xσ(j) ∈ NML(v, U). Therefore, u � v.
Assume that (10) does not hold. Partition V into subsets V1 and V2 where

V1 = V \ Ū �= ∅ and V2 = V ∩ Ū . Since 〈V2〉 = 〈V 〉, we have

(∀v ∈ V1) (∃u ∈ V2) (∃x ∈ NML(u, V)) [u · x ∈ V1 ∧ u · x | v] .

Involutive Division Generated by an Antigraded Monomial Ordering 167

Consider now the set of all nonmultiplicative prolongations of the elements in
V2 such that these prolongations belong to V1 and choose among them the pro-
longation u1 · xi1 with the maximal u1 w.r.t. �:

u1 = max
�

{ u ∈ V2 | ∃x ∈ NML(u, V), u · x ∈ V1 } .

It is clear that (∀v ∈ V1) [u1 � v]. On the other hand,

u1 · xi1 �∈ V2 ⊂ Ū =⇒ (∃u2 ∈ V2) (w ∈ L(u2, V2) [u1 · xi1 = u2 · w]

and u2 � u1. In accordance with (5)–(6) the elements in V1 cannot generate
nonmultiplicative variables for u2. Therefore, w ∈ L(u2, V) and V is not L-
autoreduced, a contradiction. �
As an immediate consequence of inclusion (10) we have the following result:

Corollary 2. If U is an L-basis of 〈U〉 where L is an involutive division pairwise
generated by an antigraded monomial ordering, then the L-autoreduction of U
yields the minimal L-basis of 〈U〉.
Remark 6. With respect to this property of the �-division generated by an anti-
graded ordering � it is similar to a globally defined involutive division [1]. For
the last the partition of variables for a monomial is determined by the mono-
mial itself irrespective of the other monomials in a set. Obviously, this implies
inclusion (10). Pommaret division is an example of such globally defined one.
An important consequence of this similarity is that for a �-division L, as well
as for a globally defined division, an involutive algorithm augmented with L-
autoreduction outputs a minimal L-basis. Such algorithms are considered, for
example, in our first paper of [1] and also in [5].

4 Heuristical Superiority of �alex-division over Janet
Division

In this section we consider algorithmic completion of monomial and polynomial
sets to involution. We present here some results of our computational exper-
iments on the monomial completion done with �alex-division and with Janet
division. For these experiments we selected the �alex-division as a representa-
tive of the class of divisions pairwise generated by an antigraded total monomial
ordering. In some of our computational experiments the �grlex-division was also
used as a representative of the class generated by graded total monomial or-
dering. To perform computations we used Python, which serves as a scripting
language for our GINV system written in C++ [6].

The monomial and polynomial completion algorithms presented below (for
a more efficient version of the polynomial completion algorithm see [4]) output
minimal involutive bases and are correct for an arbitrary constructive involutive
division L. Each of the algorithms terminates if and only if an L-basis is finite for
a given input. The last is a monomial set for the monomial completion or a poly-
nomial set together with an admissible monomial ordering for the polynomial
completion. Termination always holds when L is noetherian.

168 V.P. Gerdt and Y.A. Blinkov

Algorithm. InvolutiveMonomialBasis (U,L)

Input: U , a finite set or list of monomials in M; L, an involutive division
Output: Ū , a minimal L-basis of 〈U〉
1: choose u ∈ U without proper divisors in U \ {u}
2: W := {u}; V := {U \ {u} ∪ { u · x | x ∈ NML(u, W) }
3: while V �= ∅ do
4: choose v ∈ V without proper divisors in V \ {v}
5: V := V \ {v}
6: if v �∈ CL(W) then
7: W := W ∪ {v}; V := V ∪ { u · x | u ∈ W, x ∈ NML(u, W) }
8: fi
9: od

10: return Ū := W

The while-loop 3-9 in algorithm InvolutiveMonomialBasis shows that,
given an input monomial set U , the computational efficiency of the completion
is fully determined by the number of L-nonmultiplicative prolongations analyzed
in step 6. Thus, generally, that involutive division which leads to a smaller to-
tal number of nonmultiplicative prolongations to be processed in the course of
monomial completion is more attractive from the computational point of view.
This is also true for the polynomial case.

Algorithm. InvolutivePolynomialBasis (F,≺,L)

Input: F , a finite set or list of polynomials in K[X] \ {0}; ≺, an admissible
ordering; L, an involutive division

Output: G, a minimal involutive basis of 〈F 〉
1: choose f ∈ F without proper divisors of lm(f) in lm(F) \ {lm(f)}
2: G := {f}; Q := F \ G
3: do
4: h := 0
5: while Q �= ∅ and h = 0 do
6: choose p ∈ Q without proper divisors of lm(p) in lm(Q) \ {lm(p)}
7: Q := Q \ {p}; h := NFL(p, G)
8: od
9: if h �= 0 then

10: for all {g ∈ G | lm(h) | lm(g)} do
11: Q := Q ∪ {g}; G := G \ {g}
12: od
13: G := G ∪ {h}; Q := Q ∪ { g · x | g ∈ G, x ∈ NML(lm(g), lm(G)) }
14: fi
15: od while Q �= ∅
16: return G

Involutive Division Generated by an Antigraded Monomial Ordering 169

The number of L-normal forms evaluated in algorithm InvolutivePolynomi-
alBasis at step 7 is determined by the total number of L-nonmultiplicative
prolongations processed. In doing so, the normal form computation is the most
costly step of the algorithm as well as in any algorithmic construction of Gröbner
bases (cf. [18]).

Suppose we have two involutive divisions L1 and L2 and perform the monomial
or polynomial completion for both divisions with the same input data, with the
identical initialization steps 1-2 and with the same selection strategy of steps
4 and 6, respectively. Assume that at any run of the while-loop 3-9 in the
monomial algorithm or at any run of the do while-loop 3-15 in the polynomial
algorithm the relation

(∀v ∈ V) [NML1(v, W) ⊆ NML2(v, W)] (12)

or, respectively,

(∀g ∈ G) [NML1(lm(g), lm(G)) ⊆ NML2(lm(g), lm(G))] (13)

holds. If at least for one element v or q in the intermediate basis the inclusion
(12) or (13) is proper, then for the given input data L1 is computationally more
efficient than L2 (cf. [2]).

In addition, (12) and (13) imply the inequalities |Ū1| ≤ |Ū2| and |Ḡ1| ≤ |Ḡ2|
for the output cardinalities where the subscripts 1 and 2 stay for L1 and L2,
respectively.

J -(Janet) and P-(Pommaret) divisions give an important example when in-
clusions (12) and (13) hold, and when the former division is computationally
more efficient than the latter. Example 1 illustrates this fact.

Proposition 5. [1] If a monomial set U is P-autoreduced, then

(∀u ∈ U) [NMJ (u, U) ⊆ NMP(u, U)] . (14)

As it can be easily seen, in the algorithms InvolutiveMonomialBasis and
InvolutivePolynomialBasis, the intermediate sets U and G, respectively, are
L-autoreduced at every step of completion.

Remark 7. Whenever a P-basis exists (finite) it is also a minimal J -basis [19].
However, computation of the P-basis is more efficient via J -division due to the
inclusion (14) that is proper for most of the intermediate data.

Definition 10. Given an involutive division L and a monomial set U , the
total number of L-nonmultiplicative variables for the elements in U , that is,∑

u∈U |NML(u, U)| will be called the L-size of U and denoted by L(U).

The L-size L(Ū) of the output in algorithm InvolutiveMonomialBasis gives
the number of nonmultiplicative prolongations processed in the course of com-
pletion to Ū . To clarify this, denote by U0 the monomial basis of 〈U〉 reduced in
the Gröbner sense.

170 V.P. Gerdt and Y.A. Blinkov

Proposition 6. Let algorithm InvolutiveMonomialBasis take a monomial
set U as an input and let Ū be the output for a noetherian and constructive
involutive division L. Then Ū is produced from U by running the while-loop in
the algorithm exactly L(Ū)+ |U \Ū |−1 times provided repeated nonmultiplicative
prolongations are avoided.

Proof. Since L is constructive, the minimal involutive completion Ū of U is
unique by Proposition 2. In addition to U0 the input set U may contain some
prolongations of U0. Initially, the monomial set V contains |U |−1 elements of the
input set and the nonmultiplicative prolongations of the element u selected at
step 2. In the while-loop all nonmultiplicative prolongations of the intermediate
set W are collected in V and examined at step 6. If the input set contains some
nonmultiplicative prolongations of the elements in W they will be examined at
a certain stage of the algorithm. All other elements in U \ {u} whose number is
given by |U \ Ū | − 1 will also be processed in the loop. When the intermediate
set W is enlarged at step 7 with element v, for every monomial that has been
inserted in W the number of its nonmultiplicative prolongations may only be
increased by the filter axiom in Definition 1. If this is the case, then the additional
prolongations as well as those for v will be treated at a later run of the loop. �

Remark 8. Avoidance of repeated prolongations in the monomial or polynomial
algorithms can be easily achieved by keeping for every element in the interme-
diate basis those of its nonmultiplicative variables for which the prolongations
have been treated at step 6 or 7, respectively (see [4]).

We have performed computational experiments to analyze the behavior of the
monomial completion for �alex- and Janet divisions for different choices of the
permutation σ on the variables which specifies these divisions in accordance to
Definitions 2 and 9. In our experimentation, the input monomial sets had been
randomly generated. The experimentation explicitly shows that the cardinality
of the output monomial basis and its variation under a permutation on the
variables are strongly correlated with the involutive size of the output basis.

Experimentally, we observed that nearly always �alex-division yields a more
compact basis than Janet division and, in addition, its variation under permu-
tation on the variables is substantially less for the former division than for the
latter one. The following example illustrates this experimental fact.

Example 2. U = { x1x2x
2
3x5, x2x3x

2
4, x4x5 }

– Janet: (6, (3, 2)), (10, (4, 3)), (17, (5, 4)), (2, (5, 5)), (7, (6, 5)), (4, (6, 6)),
(4, (7, 7)), (7, (7, 8)), (4, (8, 8)), (21, (8, 9)), (6, (8, 10)), (3, (9, 10)), (17,
(9, 11)), (2, (10, 12)), (2, (10, 13)), (4, (11, 14)), (1, (11, 15)), (3, (12, 16)) ,∑

σ |Ū | = 855,
∑

σ Jσ(Ū) = 930 .
– �alex: (120, (3, 2)) ,∑

σ |Ū | = 360,
∑

σ �alexσ
(Ū) = 240 .

Here U is the input monomial set, and for each of both divisions we show the
sequence of outputs for 5! = 120 permutations. Every element in the sequence

Involutive Division Generated by an Antigraded Monomial Ordering 171

has the structure (i, (j, k)) where i the number of cases obtained with the output
basis Ū of cardinality j and of involutive size k. For each division, we also show
the total sum of cardinalities of the output bases and of their involutive sizes. In
this example for �alex-division both |Ū | = 3 and L(Ū) = 2 are invariants under
action of σ ∈ S5, and the output basis is appreciably more compact than that
for Janet division. For the last division, |Ū | varies from 3 to 16 and J (Ū) from
2 to 14.

We spent a lot of time to find monomial sets when �alex-division on average,
taking into account all permutations on the variables, produces less compact
basis than Janet division. One such set is as follows.

Example 3. U = { x2
1x2x

2
3, x

2
2x3x

2
4, x

2
3x4x

2
5, x1x2x3x4x5, x

2
1x

2
4x5 }

– Janet: (4, (16, 24)), (6, (17, 26)), (4, (18, 28)), (2, (18, 30)), (2, (19, 29)),
(12, (19, 30)), (2, (19, 32)), (2, (20, 30)), (12, (20, 32)), (4, (20, 35)), (12,
(21, 34)), (4, (21, 37)), (4, (22, 37)), (12, (23, 37)), (2, (23, 38)), (2, (23, 44)),
(2, (24, 39)), (6, (24, 42)), (2, (24, 46)), (2, (25, 41)), (6, (25, 43)), (2, (28,
50)), (4, (28, 51)), (2, (29, 52)), (4, (30, 54)), (4, (33, 61)) ,∑

σ |Ū | = 2648,
∑

σ Jσ(Ū) = 4482 .
– �alex: (6, (18, 31)), (18, (19, 33)), (34, (21, 38)), (12, (22, 41)), (6, (23, 42)),

(18, (23, 45)), (2, (24, 46)), (6, (25, 49)), (8, (26, 50)), (2, (26, 53)), (2, (27,
53)), (2, (27, 54)), (4, (28, 57)) ,∑

σ |Ū | = 2658,
∑

σ �alexσ (Ū) = 4432 .

The typical situation is shown in Figure 1. The integer nearby a sector shows
|Ū | and its area is proportional to the total number of outputs of this cardinality.
Sector 19-50 accumulates sets with cardinality varying from 19 to 50.

Fig. 1. U = {x2
1x

2
2x5, x

2
2x3x5, x2x4, x

2
3, x3x4x

2
5 }

172 V.P. Gerdt and Y.A. Blinkov

Table 2. Statistical data for monomial completion

n = |U | 3 4 5 6 7 8 9 10 11 12

Sample size 117 114 113 238 250 209 171 145 115 28

Janet
Sample mean |Ū | 3.8 8.3 16.5 32.0 73.9 173.9 376.6 817.4 1984.1 4653.9

Standard deviation 1.0 3.9 9.6 18.7 54.2 151.1 308.5 636.5 1629.4 3268.0

Standard error 0.1 0.4 0.9 1.2 3.4 10.5 23.6 52.9 151.9 617.6

�alex

Sample mean |Ū | 3.2 5.5 9.1 14.4 34.5 78.3 150.9 406.4 771.6 1452.8

Standard deviation 0.5 2.7 6.5 11.5 34.7 100.4 201.1 462.3 1065.3 1605.5

Standard error 0.0 0.3 0.6 0.7 2.2 6.9 15.4 38.4 99.3 303.4

�grlex

Sample mean |Ū | 4.6 12.4 29.2 67.8 171.4 404.6 896.5 2188.6 5412.1 11509.5

Standard deviation 1.7 8.7 18.9 42.4 104.2 303.2 714.4 1462.3 4241.0 7224.1

Standard error 0.2 0.8 1.8 2.7 6.6 21.0 54.6 121.4 395.5 1365.2

Fig. 2. Plotting the data of Table 2

An example of another type of computational experiments is presented in Table 2
and plotted in Figure 2. Here we randomly generated a reduced (in the Gröbner
sense) monomial set U with n variables of cardinality |U | = n and such that the
exponents in every u ∈ U range from 1 to n. For each such randomly generated
set U we computed its minimal involutive completion Ū . In Table 2 we show,
for Janet division, for �alex-division and also for �grlex-division the number of

Involutive Division Generated by an Antigraded Monomial Ordering 173

samples generated for every 3 ≤ n ≤ 12, the sample mean |Ū |, the standard
deviation, and the standard error.

5 Conclusion and Future Work

Our experimentation clearly shows that �alex-division is very attractive for in-
volutive algorithms than the Janet division. Computational superiority of �alex-
division over Janet division is expressed not only in a smaller number of non-
multplicative prolongations (number of involutive normal forms evaluated) to be
examined but also in the higher stability under permutation of the variables. The
last is also very important, since a priori it is not clear what particular division
from the factorially many possible ones (n! for n variables) is computationally
better for a given problem. At the same time, Janet division is computationally
better than any other division generated by an admissible monomial ordering.
Our experiments with the �grlex-division confirm that.

It should be emphasized that differential completion is especially sensitive to
the number of prolongations treated. In this case even a single extra prolongation
may increase computational costs significantly. This was recently revealed with
Thomas decomposition of nonlinear systems of partial differential equations into
involutive subsystems [20] applied to practical problems. For this reason the
�alex-division has particular attractivity for differential systems.

In practice, to make the involutive algorithms based on �alex-division com-
putationally faster than the Janet division algorithms [4], one has to design
appropriate data structures for the new division. Janet division admits special
binary trees – Janet trees — as data structures providing fast search for the invo-
lutive divisor and fast partitioning updates for the variables in the intermediate
basis after insertion of a new element into the basis (see [4] and the references
therein). We shall look for good data structures for �alex-division. Another re-
search direction is to take into account the “history” of completion in order to
further decrease the number of nonmultiplicative prolongations processed in a
completion algorithm.

Acknowledgements. The research presented in this paper was partially sup-
ported by grant 10-01-00200 from the Russian Foundation for Basic Research
and by grant 3810.2010.2 from the Ministry of Education and Science of the
Russian Federation. The authors are grateful to anonymous referees for their
helpful remarks and suggestions.

References

1. Gerdt, V.P., Blinkov, Y.A.: Involutive bases of polynomial ideals. Mathematics
and Computers in Simulation 45, 519–542 (1998); Minimal involutive bases, ibid,
543–560

2. Apel, J.: The theory of involutive divisions and an application to Hilbert function
computations. J. Symbolic Computation 25, 683–704 (1998)

174 V.P. Gerdt and Y.A. Blinkov

3. Janet, M.: Leçons sur les Systèmes d’Equations aux Dérivées Partielles. Cahiers
Scientifiques, IV, Gauthier-Villars, Paris (1929)

4. Gerdt, V.P.: Involutive algorithms for computing Gröbner bases. In: Computational
Commutative and Non-Commutative Algebraic Geometry, pp. 199–225. IOS Press,
Amsterdam (2005)

5. Seiler, W.M.: Involution: The formal theory of differential equations and its ap-
plications in computer algebra. In: Algorithms and Computation in Mathematics,
vol. 24. Springer, Heidelberg (2010)

6. Gerdt, V.P., Blinkov, Y. A.: Specialized computer algebra system GINV. Program-
ming and Computer Software 34(2), 112–123 (2008)

7. http://wwwb.math.rwth-aachen.de/Janet/

8. Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 3-1-2 - A com-
puter algebra system for polynomial computations (2010),
http://www.singular.uni-kl.de

9. http://cag.jinr.ru/wiki/

10. http://www.symbolicdata.org/

11. Gerdt, V.P.: Involutive division technique: some generalizations and optimizations.
J. Math. Sciences 108(6), 1034–1051 (2002)

12. Chen, Y.-F., Gao, X.-S.: Involutive directions and new involutive divisions. Com-
puters and Mathematics with Applications 41, 945–956 (2001)

13. Semenov, A.S.: On connection between constructive involutive divisions and mono-
mial orderings. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2006.
LNCS, vol. 4194, pp. 261–278. Springer, Heidelberg (2006)

14. Semenov, A.S.: Constructivity of involutive divisions. Programming and Computer
Software 32(2), 96–102 (2007)

15. Semenov, A.S., Zyuzikov, P.A.: Involutive divisions and monomial orderings. Pro-
gramming and Computer Software 33(3), 139–146 (2007); Involutive divisions and
monomial orderings: Part II. Ibid 34(2), 107–111 (2008)

16. Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry, 2nd edn. Graduate Texts
in Mathematics, vol. 185. Springer, New York (2005)

17. Greul, G.-M., Pfister, G.: A Singular Introduction to Commutative Algebra.
Springer, Berlin (2007)

18. Becker, T., Weispfenning, V.: Gröbner Bases. A Computational Approach to Com-
mutative Algebra. Graduate Texts in Mathematics, vol. 141. Springer, New York
(1993)

19. Gerdt, V.P.: On the relation between Pommaret and Janet bases. In: Computer
Algebra in Scientific Computing / CASC 2000, pp. 167–181. Springer, Berlin (2000)

20. Bächler, T., Gerdt, V.P., Lange-Hegermann, M., Robertz, D.: Thomas decompo-
sition of algebraic and differential systems. In: Gerdt, V.P., Koepf, W., Mayr,
E.W., Vorozhtsov, E.V. (eds.) CASC 2010. LNCS, vol. 6244, pp. 31–54. Springer,
Heidelberg (2010)

http://wwwb.math.rwth-aachen.de/Janet/
http://www.singular.uni-kl.de
http://cag.jinr.ru/wiki/
http://www.symbolicdata.org/

Symbolic-Numerical Algorithms to Solve

the Quantum Tunneling Problem
for a Coupled Pair of Ions

A.A. Gusev, S.I. Vinitsky, O. Chuluunbaatar,
V.P. Gerdt, and V.A. Rostovtsev

Joint Institute for Nuclear Research, Dubna, Russia
{gooseff,chuka,gerdt,rost}@jinr.ru, vinitsky@theor.jinr.ru

Abstract. Symbolic-numerical algorithms for solving a boundary value
problem (BVP) for the 2D Schrödinger equation with homogeneous third
type boundary conditions to study the quantum tunneling model of a
coupled pair of nonidentical ions are described. The Kantorovich reduc-
tion of the above problem with non-symmetric long-range potentials to
the BVPs for sets of the second order ordinary differential equations
(ODEs) is given by expanding solution over the one-parametric set of
basis functions. Symbolic algorithms for evaluation of asymptotics of the
basis functions, effective potentials, and linear independent solutions of
the ODEs in the form of inverse power series of independent variable at
large values are given by using appropriate etalon equations. Benchmark
calculation of quantum tunneling problem of coupled pair of identical
ions through Coulomb-like barrier is presented.

1 Introduction

Quantum mechanical treatment on the basis of adiabatic description of penetra-
tion through a two-dimensional fission barrier has been studied for a long period
of time [1,2]. Current interest is stimulated by the prominent papers in which the
model of quantum tunneling problem of coupled pair of ions through truncated
Coulomb barrier were investigated for identical mass and charges of ions [3,4].
Study of quantum tunneling problem for a coupled pair of ions with distinct
mass and charges for their penetration through a nontruncated Coulomb barrier
is an important problem.

The aim of this paper is to develop a symbolic-numerical algorithm (SNA)
for solving the 2D boundary value problem (BVP) with homogeneous third type
boundary conditions to analyze the above problem. In the framework of Kan-
torovich method (KM) [5], we search for a solution by means of expansion over
the solution to the one-parametric eigenvalue problem calculated by program
ODPEVP [6]. This way the BVP is reduced to a set of second order differential
equations (ODEs) on the whole axis with homogeneous third type boundary
conditions of general type. The main task here is to formulate these boundary
conditions which are not invariant under reflection with respect to the x-axis.

V.P. Gerdt et al. (Eds.): CASC 2011, LNCS 6885, pp. 175–191, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

176 A.A. Gusev et al.

This is because the conventionally used symmetric conditions are applicable only
for identical particles. To apply the finite element method (FEM) to solving the
BVP on a finite interval we need not only the adaptation of KANTBP 2.0 code
[7], but also the elaboration of new symbolic algorithms to evaluate coefficients
of the asymptotic expansion of both effective potential and solution to ODEs.
These coefficients are needed to match evaluated asymptotic solutions with nu-
merical ones at boundary points and extract the required matrix of transmission
and the reflections amplitudes from numerical solutions.

In this paper, we present algorithms for calculation of the asymptotic ex-
pansions for solution to the eigenvalue problem with a long-range potential of
general type. These asymptotic expansions are applied to evaluate the effective
potentials of ODEs. The next step is to design a new algorithm for evaluation
of the asymptotic expansion of linear independent solutions to ODEs. This dis-
tingue algorithm is substantially different from the previously elaborated one
[8]. Instead of applying an expansion over the solution to an etalon equation, we
propose to use an appropriate etalon equation with a long-range potential in the
form of the inverse power series that provides a more economical and universal
way to generate relevant recurrence relations and the corresponding FORTRAN
subroutines.

The paper is organized as follows. In Section 2, the problem statement is done.
In Section 3, the BVP is formulated for ODEs. Here the symbolic algorithms
for the evaluation of asymptotic expansions of solutions to parametric BVP,
for calculation of the corresponding integrals, and for the asymptotic expansion
of linear independent solutions to ODEs together with their implementation in
Maple are described. Section 4 is devoted to the benchmark calculation of the
penetration coefficients for tunneling of the identical ions through long-range
Coulomb like barriers. In Conclusion, we summarize the results and discuss the
future applications of our SNAs.

2 Problem Statement

Wave function Ψ(x, y) of model of heavy ion pair connected with oscillator poten-
tial scattering in the center mass coordinate system through Coulomb barriers
satisfies the two-dimensional (2D) Schrödinger equation [3]:{

− ∂2

∂y2
− ∂2

∂x2
+ x2 + 2(U1(x1) + U2(x2) − E)

}
Ψ(x, y) = 0, (1)

where x1 = s2y + s1x, x2 = s2y − s3x are variables in the laboratory coordinate
system, parameters s2 =

√
m1m2

M , s1 = m2
M , s3 = m1

M are defined via masses of
ions m1 and m2 and total mass M = m1 + m2 and reduced mass μ = m1m2

M in

the oscillator units of length xosc =
√

�

μω and energy Eosc = �ω (ω is oscillator
frequency). We choose barrier potential Ui(xi) of ions labelled by i = 1, 2 with
charges Ẑi > 0 in the form of the truncated Coulomb potential cut off on small
0 < x̄min < 1 and large x̄max > 1 distances from origin,

Symbolic-Numerical Algorithms to Solve the Quantum Tunneling Problem 177

Ui (xi)=

{
Ẑi

x̄min
− Ẑi

x̄max
, |xi|≤ x̄min;

Ẑi

|xi|
− Ẑi

x̄max
,
|xi|>x̄min

|xi|≤ x̄max
; 0, |xi|>x̄max

}
, (2)

or the Coulomb-like potentials that depend on the integer parameter s ≥ 2 and
truncation parameter x̄min > 0 and defined as

Ui (xi) = Ẑi(|xi|s + x̄s
min)−1/s . (3)

In both cases, the sum of barrier potential functions U(x, y) = U1 (x1)+ U2 (x2)
has asymptotic form

U(x, y) → σy
Z12

y
+ O(y−3), y → ±∞, (4)

where σy = 1 if y > 0 and σy = −1 if y < 0; Z12 = 0 for Eq. (2) and Z12 =
(Ẑ1 + Ẑ2)/s2 for Eq. (3).

The asymptotic boundary conditions for the solution Ψ(y, x)={Ψio(y, x)}No

io=1

with direction v =→ can be written in the obvious form

Ψio(y → −∞, x) → B
(0)
io

(x)
exp

(
ı
(
pioy − σy

Z12
pio

ln(2pio |y|)
))

√
pio

+
No∑
j=1

B
(0)
j (x)

exp
(
−ı
(
pjy − σy

Z12
pj

ln(2pj |y|)
))

√
pj

Rjio ,

Ψio(y → +∞, x) →
No∑
j=1

B
(0)
j (x)

exp
(
ı
(
pjy − σy

Z12
pj

ln(2pj |y|)
))

√
pj

Tjio , (5)

Ψio(y, x → ±∞) → 0.

Here No is the number of open channels at fixed energy 2E = p2 + ε
(0)
io

> 0,

Tjio and Rjio are unknown transition and reflections amplitudes, B
(0)
j (x) are the

basis functions of oscillator with energy ε
(0)
j = 2n + 1 at n ≥ 0, j = n + 1{

− ∂2

∂x2
+ x2 − ε

(0)
j

}
B

(0)
j (x) = 0,

∫ +∞

−∞
B

(0)
j (x)B(0)

j′ (x)dx = δjj′ . (6)

3 Formulation of BVP for a Set of the Kantorovich ODEs

We construct a desired solution of the BVP in the form of Kantorovich’s
expansion:

Ψi′(x, y) =
N∑

j=1

Bj(x; y)χji′ (y). (7)

178 A.A. Gusev et al.

The basis functions Bj(x; y) of the fast variable x and the potential curves Ei(y)
that depend continuously on the slow variable y as a parameter are chosen as
solutions of the BVPs for the equation on grid Ωx{xmin(y), xmax(y)}{

− d2

dx2
+ x2 + 2U(x, y) − εj(y)

}
Bj(x; y) = 0, (8)

which are subject to the boundary, normalization, and orthogonality conditions

Bj(xmin(y); y) = Bj(xmax(y); y) = 0, 〈Bi|Bj〉=
xmax(y)∫

xmin(y)

Bi(x; y)Bj(x; y)dx=δij .(9)

By substituting (7) into (1)–(5) and by taking average over (9), we obtain the
BVP for a set of N coupled ODEs that describes the slow subsystem for the
partial solutions χ(i′)(y) = (χ(i′)

1 , ..., χ
(i′)
N)T :

{H − 2E I} χ(i′)(y) = 0, H=−I
d2

dy2
+V(y) + Q(y)

d

dy
+

dQ(y)
dy

. (10)

Here I is the unit matrix, V(y) and Q(y) are the effective potential N × N
matrices:

Vij(y)=εj(y)δij +Hij(y), Hij(y) =

xmax(y)∫
xmin(y)

∂Bi(x; y)
∂y

∂Bj(x; y)
∂y

dx, (11)

Qij(y) = −
xmax(y)∫

xmin(y)

Bi(x; y)
∂Bj(x; y)

∂y
dx.

that is calculated numerically by means of program ODPEVP [6]. The boundary
conditions at y = ymin � −1 and y = ymax � 1 are given by

dΦ(y)
dy

∣∣∣∣
y=ymin

= R(ymin)Φ(ymin),
dΦ(y)

dy

∣∣∣∣
y=ymax

= R(ymax)Φ(ymax), (12)

where R(y) is an unknown N × N nonsymmetric matrix-function, Φ(y) =
{χ(io)(y)}No

io=1 is the required N × No matrix solution, and No is the number of
open channels, No = max2E≥εj j ≤ N that is calculated numerically by means
of the program KANTBP 3.0. It is a modified version of the program KANTBP
2.0 [7] including matching asymptotic solutions evaluated in the next sections
with numerical ones at boundary points y = ymin � −1 and y = ymax � 1 in
(12).

The matrix solution Φv(y) = Φ(y) that describes the incidence of the par-
ticle and its scattering, having the asymptotic form “incident wave + outgoing
waves”, is

Symbolic-Numerical Algorithms to Solve the Quantum Tunneling Problem 179

Φv(y → ±∞) =

⎧⎪⎪⎨⎪⎪⎩
{

X(+)(y)Tv, y > 0,

X(+)(y) + X(−)(y)Rv, y < 0,
v =→,{

X(−)(y) + X(+)(y)Rv, y > 0,

X(−)(y)Tv, y < 0,
v =←,

(13)

with Rv and Tv being the reflection and transmission No × No matrices, v
denotes the initial direction of the particle motion along the y-axis. Here the
leading term of the asymptotic rectangle-matrix functions X(±)(y) has the form

X
(±)
jio

(y) → p
−1/2
j exp

(
±ı

(
pjy − σy

Z12

pj
ln(2pj|y|)

))
δjio , (14)

pio =
√

2E − εio , j = 1, . . . , N, io = 1, . . . , No.

The matrix solution Φv(y, E) is normalized so that∫ ∞

−∞
Φ†

v′(y, E′)Φv(y, E)dy = 2πδ(E′ − E)δv′vIoo, (15)

where Ioo is the identity No × No matrix.
Suppose that a set of linear independent regular square-solutions Φreg

v (y) =
{χ(i′)

reg (y)}N
i′=1 for a problem under consideration with components χ

(i′)
reg (y) =

(χreg
1i′ (y), . . . , χreg

Ni′(y))T is known at y > 0, v =→ or y < 0, v =←, i.e.,

Φreg
→ (y) = X̃(+)(y), y > 0, Φreg

← (y) = X̃(−)(y), y < 0.

X̃
(±)
jio

(y) = X
(±)
jio

(y), j = 1, . . . , N, io = 1, . . . , No. (16)

In a case of some channels are closed, we must use additional leading terms of
regular asymptotic functions correspondingly at z > 0 and z < 0

X̃
(±)
jic

(y) → q
−1/2
j exp

(
∓
(

qjy + σy
Z12

qj
ln(2qj|y|)

))
δjic , (17)

qic =
√

εic − 2E, j = 1, . . . , N, ic = No + 1, . . . , N.

In this case, the required part of R→(y) at y = ymax > 0 and R→(y) matrix
y = ymin < 0 can be found via the known set of linear independent regular
solutions Φreg

v (y)

Rv(y) =
dΦreg

v (y)
dy

(Φreg
v (y))−1 . (18)

These matrix-functions Rv(y) by dimension of N × N are used for calculating
numerical solutions Φh

v (y) of BVP (10)–(12).
By using Φh

→(ymax) and R→(y) numerically calculated with KANTBP 3.0,
we obtain the following matrix equations for the reflection R→ and transmission
T→ matrices

180 A.A. Gusev et al.

Y(−)
→ (ymin)R→ = −Y(+)

→ (ymin), X(+)(ymax)T→ = Φh
→(ymax), (19)

Y(±)
→ (y) =

dX(±)(y)
dy

−R→(y)X(±)(y).

Note that, when some channels are closed, the Y(±)
← (y) and X(−)(y) are rectan-

gular N × No matrices. The reflection R→ and transmission T→ matrices are
evaluated in terms of the pseudoinverse matrices of Y(−)

→ (ymin) and X(+)(ymax)

R→ = −
((

Y(−)
→ (ymin)

)T

Y(−)
→ (ymin)

)−1 (
Y(−)

→ (ymin)
)T

Y(+)
→ (ymin), (20)

T→ =
((

X(+)(ymax)
)T

X(+)(ymax)
)−1 (

X(+)(ymax)
)T

Φh
→(ymax).

Having Φh
←(ymin) and R←(y) numerically calculated with KANTBP 3.0, we

obtain the following matrix equations for the reflection R← and transmission
T← matrices:

Y(+)
← (ymax)R← = −Y(−)

← (ymax), X(−)(ymin)T← = Φh
←(ymin), (21)

Y(±)
← (y) =

dX(±)(y)
dy

−R←(y)X(±)(y).

Therefore, using the pseudoinverse matrices of Y(+)
← (y) and X(−)(y), we obtain

the following formulae:

R← = −
((

Y(+)
← (ymax)

)T

Y(+)
← (ymax)

)−1 (
Y(+)

← (ymax)
)T

Y(−)
← (ymax),(22)

T← =
((

X(−)(ymin)
)T

X(−)(ymin)
)−1 (

X(−)(ymin)
)T

Φh
←(ymin).

Let us now rewrite Eq. (13) in the matrix form at y± → ±∞(
Φ→(y+) Φ←(y+)
Φ→(y−) Φ←(y−)

)
=
(

0 X(−)(y+)
X(+)(y−) 0

)
+
(

0 X(+)(y+)
X(−)(y−) 0

)
S, (23)

where the symmetric and unitary scattering matrix S is composed of the trans-
mission and reflection matrices from (20) and (22)

S =
(

R→ T←
T→ R←

)
, SS† = S†S = I. (24)

In addition, it should be noted that the functions X(±)(y) satisfy relations

Wr(Q(y);X(∓)(y),X(±)(y)) = ±2ıIoo, Wr(Q(y);X(±)(y),X(±)(y)) = 0, (25)

Symbolic-Numerical Algorithms to Solve the Quantum Tunneling Problem 181

where Wr(•;a(y),b(y)) is a generalized Wronskian with a long derivative defined
as

Wr(•;a(y),b(y)) = aT (y)
(

db(y)
dy

− •b(y)
)

−
(

da(y)
dy

− •a(y)
)T

b(y). (26)

Remark 1. This Wronskian will be used below to estimate a desirable precision
of the above expansion as well as the symmetry and unitarity properties of the
scattering matrix S in (24).

Algorithm 1. Evaluating Effective Potential Asymptotics

Input. We evaluate the asymptotics of effective potentials (11) at large |y| via
the asymptotics of solutions to the eigenvalue problem (8), (9) at |y/x| � 1,

(
d2

dx2
+ x2 + 2U(x, y) − εj(y)

)
Bj(x; y) = 0,

xmax(y)∫
xmin(y)

Bi(x; y)Bj(x; y)dx=δij .(27)

with the Coulomb-like potential

2U(x, y) = 2Ẑ1/
s
√

(s2y + s1x)s + x̄s
min + 2Ẑ2/

s
√

(s2y − s3x)s + x̄s
min. (28)

At step 1 we find Bj(x; y) and εj(y) as a series expansion with j = n + 1

Bj(x; y) =
kmax∑
k=0

B
(k)
n (x)
yk

, εj(y) =
kmax∑
k=0

ε
(k)
n

yk
. (29)

Substituting (29) to (27) and equating coefficients of the same powers of y, we
arrive at a system of recurrence differential equations for evaluating coefficients
B

(k)
n (x) and ε

(k)
n , k = 1, . . . , kmax:

L(n)B(k)
n (x) = f (k)

n (x), L(n) = − d2

dx2
− (2n + 1)+x2, (30)

with the initial data ε
(0)
n = 2n+1 and with B

(0)
n (x) as the known solution of the

problem

�L(n)B(0)
n (x) = 0,

∫ +∞

−∞
B(0)

n (x)B(0)
n′ (x)dx = δnn′ . (31)

In Eqs. (30), the right-hand sides f
(k)
n (x) are defined by relations

f (k)
n (x) =

k∑
p=1

(U (p)(x) − ε(p)
n)B(k−p)(x),

182 A.A. Gusev et al.

Table 1. Values of the partial sums (41) for Vjj ≡ Vjj(y) from (11) depending on
kmax for s1 = s2 = s3 = 1/2, x̄min = 0.1, s = 8, Ẑ1 = Ẑ2 = 1, y = ymatch

2 = 12.5. The
last row contains the corresponding numerical values (n.v.).

kmax V11 V22 V33 V44 V55 V66

0 1.000000000 3.000000000 5.000000000 7.000000000 9.000000000 11.00000000
1 1.640000000 3.640000000 5.640000000 7.640000000 9.640000000 11.64000000
2 1.640000000 3.640000000 5.640000000 7.640000000 9.640000000 11.64000000
3 1.642048000 3.646144000 5.650240000 7.654336000 9.658432000 11.66252800
4 1.642048000 3.646144000 5.650240000 7.654336000 9.658432000 11.66252800
5 1.642067661 3.646242304 5.650495590 7.654827520 9.659238093 11.66372731
6 1.642065564 3.646236013 5.650485105 7.654812840 9.659219218 11.66370424
7 1.642065878 3.646238215 5.650492969 7.654832658 9.659259798 11.66377691
8 1.642065798 3.646237812 5.650491922 7.654830645 9.659256497 11.66377199
9 1.642065809 3.646237888 5.650492232 7.654831584 9.659258797 11.66377684

10 1.642065806 3.646237868 5.650492158 7.654831394 9.659258408 11.66377614
11 1.642065807 3.646237871 5.650492174 7.654831450 9.659258560 11.66377650
12 1.642065807 3.646237870 5.650492169 7.654831434 9.659258520 11.66377642

nv 1.642065807 3.646237871 5.650492170 7.654831437 9.659258529 11.66377644

where the coefficients U (j)(x) are determined by Taylor expansion of (28) at
large y

2U(x, y) =
kmax∑
k=1

U (k)(x)
yk

, (32)

U (1)(x) = σy2(Ẑ1 + Ẑ2)/s2, U (2)(x) = σy2x(Ẑ1s1 − Ẑ2s3)/s2
2,

U (3)(x) = σy2x2(Ẑ1s
2
1 + Ẑ2s

2
3)/s3

2, U (4)(x) = σy2x3(Ẑ1s
3
1 − Ẑ2s

3
3)/s4

2,

U (5)(x) = σy2x4(Ẑ1s
4
1 + Ẑ2s

4
3)/s5

2, U (6)(x) = σy2x5(Ẑ1s
5
1 − Ẑ2s

5
3)/s6

2,

U (7)(x) = σy2x6(Ẑ1s
6
1 + Ẑ2s

6
3)/s7

2, U (8)(x) = σy2x7(Ẑ1s
7
1 − Ẑ2s

7
3)/s8

2,

U (9)(x) = σy2x8(Ẑ1s
8
1 + Ẑ2s

8
3)/s9

2 − σyx̄8
min(Ẑ1 + Ẑ2)/(4s9

2),

U (10)(x) = σy2x9(Ẑ1s
9
1 − Ẑ2s

9
3)/s10

2 − σy9xx̄8
min(Ẑ1 − Ẑ2)/(8s10

2).

The orthogonality and normalization conditions follow from (27) and (29)

I
(k)
jj′ =

k∑
l=0

∫ ∞

−∞
B(l)

nl
(x)B(k−l)

nr
(x)dx = δk0δnlnr (33)

where nl = j − 1, nr = j′ − 1.
We find the asymptotics of matrix elements Hjj′ (y) and Qjj′ (y) from (11) in

the form of expansions

Qjj′ (y) =
kmax∑
k=1

Q
(k)
jj′

yk
, Hjj′ (y) =

kmax∑
k=2

H
(k)
jj′

yk
. (34)

Symbolic-Numerical Algorithms to Solve the Quantum Tunneling Problem 183

Table 2. The same as in Table 1, but for Qjj′ ≡ Qjj′(y) at j �= j′

kmax Q13, 10
−4 Q15, 10

−6 Q24, 10
−4 Q26, 10

−6 Q35, 10
−4 Q46, 10

−4

3 0.00000000 0.000000 0.00000000 0.000000 0.00000000 0.00000000
4 1.73778562 0.000000 3.00993299 0.000000 4.25668806 5.49536066
5 1.73778562 0.000000 3.00993299 0.000000 4.25668806 5.49536066
6 1.79339476 1.605297 3.17046275 3.589554 4.57452077 6.02291528
7 1.78627679 1.605297 3.15813407 3.589554 4.55708537 6.00040628
8 1.78814526 1.713173 3.16568539 3.927259 4.57691814 6.04176657
9 1.78761568 1.705283 3.16415663 3.909616 4.57389135 6.03674256

10 1.78771659 1.711496 3.16457995 3.934625 4.57519301 6.03996585
11 1.78768515 1.710423 3.16444912 3.931266 4.57484597 6.03923893
12 1.78769198 1.710818 3.16447978 3.933127 4.57494688 6.03951537

nv 1.78769041 1.710734 3.16447143 3.932815 4.57491909 6.03944626

Here the coefficients Q
(k)
jj′ and H

(k)
jj′ are defined by the relations

Q
(k)
jj′ = −

k−1∑
l=0

∫ +∞

−∞
B(l)

nl
(x)Q̂B(k−1−l)

nr
(x)dx, Q̂B(l)

nl
(x) = lB(l)

nl
(x),

H
(k)
jj′ =

k−2∑
l=0

∫ +∞

−∞
Q̂B(l)

nl
(x)Q̂B(k−2−l)

nr
(x)dx. (35)

At step 2, we construct B
(k)
n (x) as the expansion with unknown coefficients b

(k)
n;s

B(k)
n (x) =

M(k)∑
s=−M(k)

b(k)
n;sB

(0)
n+s(y). (36)

Here B
(0)
v (x) are solutions to (31) in terms of the Hermite polynomials [9]

B(0)
v (x) =

Hv(x) exp(−x2/2)
4
√

π
√

2v
√

v!
.

By means of the well-known recurrence relation for Hermite polynomials Hv(x)
we obtain the recurrence relations for basis functions B

(0)
v (x):

xB(0)
v (x) = +

√
v + 1√

2
B

(0)
v+1(x) +

√
v√
2
B

(0)
v−1(x),

L(n)B(0)
n+s(x) ≡

(
− d2

dx2
− (2n + 1)+x2

)
B

(0)
n+s(x) = 2sB

(0)
n+s(x). (37)

From (30), (32), and (37) we have the needed value of M(k) = 2k+1 in expansion
(36) to provide calculation of nonzero terms only.

Substituting (36) to (30), taking into account (37), and equating coefficients of
the identical powers of y, we arrive at a set of recurrence relations for evaluation
of coefficients E

(k)
n and b

(k)
n;s

184 A.A. Gusev et al.

2sb(k)
n;s = f (k)

n;s , I
(k)
jj′ =

k∑
l=0

2k+1∑
s=−2k−1

b(l)
nl;s

b
(k−l)
nr;s+nl−nr

= δk0δnlnr , (38)

with initial data ε
(0)
n = 2n + 1 and b

(0)
n;s = δs0.

The corresponding coefficients Q
(k)
jj′ and H

(k)
jj′ in (35) have the following

explicit form:

Q
(k)
jj+t(y) = −

k−1∑
k′=0

min(k−1,k−1−k′−t)∑
s=max(−k+1,k′−k+1−t)

(k − 1 − k′)b(k′)
n;n+sb

(k−1−k′)
n+t;n+s ,

H
(k)
jj+t(y) =

k−2∑
k′=0

min(k−2,k−2−k′−t)∑
s=max(−k+2,k′−k+2−t)

k′(k − 2 − k′)b(k′)
n;n+sb

(k−2−k′)
n+t;n+s . (39)

At step 3, we evaluate sequentially the solutions b
(k)
n;s and ε

(k)
n to the set of

recurrence relations (38) for each kth order (k = 1, . . . , kmax):

f
(k)
n;0 = 0 → ε(k)

n ; b
(k)
n;s�=0 = f (k)

n;s/(s); I(k)
ii = δk0 → b

(k)
n;0. (40)

At step 4, we substitute coefficients b
(k)
n;s calculated in (40) into the expres-

sions for the matrix elements (34), (39) evaluated at step 2 and taking into
account coefficients ε

(k)
j calculated in (40). In doing so we produce the output

containing the matrix elements as a series expansion of inverse powers of y for
k = 0, 1, . . . , kmax at j, j′ = 1, . . . , N (ε(k<0)

j = H
(k<2)
jj′ = Q

(k<1)
jj′ = 0):

εj(y) =
kmax∑
k=0

ε
(k)
j

yk
, Hjj′ (y) =

kmax∑
k=2

H
(k)
jj′

yk
, Qjj′ (y) =

kmax∑
k=1

Q
(k)
jj′

yk
. (41)

The above described calculation was performed by the algorithm implemented
in MAPLE up to kmax = 12. For example, the explicit expression of the desirable
nonzero coefficients ε

(k)
j , H

(k)
ij = H

(k)
ji and Q

(k)
ij = −Q

(k)
ji reads as (j = n + 1):

ε
(0)
j = (2n + 1), ε

(1)
j = σy

2(Ẑ2 + Ẑ1)
s2

, ε
(3)
j = σy

(2n + 1)(Ẑ2s
2
3 + Ẑ1s

2
1)

s3
2

,

ε
(4)
j = − (Ẑ2s3 − Ẑ1s1)2

s4
2

, ε
(5)
j = σy

3(2n2 + 2n + 1)(Ẑ2s
4
3 + Ẑ1s

4
1)

2s5
2

,

Q
(5)
jj−3 = −σy

√
n − 2

√
n − 1

√
2
√

n(Ẑ2s
3
3 − Ẑ1s

3
1)

3s4
2

, (42)

Q
(4)
jj−2 = −σy

3
√

n − 1
√

n(Ẑ2s
2
3 + Ẑ1s

2
1)

4s3
2

,

Symbolic-Numerical Algorithms to Solve the Quantum Tunneling Problem 185

Table 3. The same as in Table 1, but for Hjj′ ≡ Hjj′(y) at j �= j′

kmax H13, 10
−10 H15, 10

−8 H24, 10
−9 H26, 10

−6 H35, 10
−9 H46, 10

−8

8 0.000 -7.3972 0.000 -1.65406 0.000 0.0000
9 0.000 -7.3972 0.000 -1.65406 0.000 0.0000

10 0.683 -8.1862 1.972 -1.90107 4.463 0.8643
11 0.683 -8.1256 1.972 -1.88752 4.463 0.8643
12 0.780 -8.1839 2.347 -1.91203 5.488 1.0969

nv 0.782 -8.1763 2.376 -1.91042 5.608 1.1334

Q
(3)
jj−1 = −σy

√
2
√

n(−Ẑ1s1 + Ẑ2s3)
s2
2

, Q
(5)
jj−1 = −σy

3
√

2n
√

n(Ẑ2s
3
3 − Ẑ1s

3
1)

s4
2

,

H
(7)
jj−3 = −3

√
2
√

n
√

n − 1
√

n − 2(Ẑ2s
2
3 + Ẑ1s

2
1)(−Ẑ1s1 + Ẑ2s3)

2s5
2

,

H
(6)
jj−2 = −2

√
n
√

n − 1(Ẑ2s3 − Ẑ1s1)2

s4
2

,

H
(7)
jj−1 =

3n
√

2
√

n(Ẑ2s
2
3 + Ẑ1s

2
1)(Ẑ2s3 − Ẑ1s1)

2s5
2

,

H
(6)
jj =

2(2n + 1)(Ẑ2s3 − Ẑ1s1)2

s4
2

.

Remark 2. In the case of Ẑ1 = Ẑ2, s1 = s3 (i.e., for equal masses and charges),
the set of equations (10) has even and odd parity solutions that are calculated
separately: for the even solutions n = 2j−2 and for the odd solutions n = 2j−1.
In this case, the above coefficients which contain terms like (−Ẑ1s1+Ẑ2s3) vanish
when they have no terms (Ẑ1s1 + Ẑ2s3).

Algorithm 2. Evaluation of the Asymptotic Solutions

Input. We calculate the asymptotic solution to the set of N ODEs at large
values of the independent variable |y| � 1[

− 1
yd−1

d

dy
yd−1 d

dy
+ εi(y) + Hii(y) − 2E

]
χii′(y) (43)

=
N∑

j=1,j �=i

[
−Qij(y)

d

dy
− 1

yd−1

d

dy
yd−1Qij(y) − Hij(y)

]
χji′ (y).

Here d ≥ 1 is the dimension of configuration space of a general scattering problem
[7] while in the considered case (10), we put d = 1 and calculate asymptotic
solution on two intervals −∞ < y ≤ ymin and ymax ≤ y < ∞. We suppose that

186 A.A. Gusev et al.

coefficients of Eqs. (43) are present in the general form (41) and, in particular,
in the form (42).

Step 1. We construct the solution to Eqs. (43) in the form:

χji′ (y) =
(

φji′ (y) + ψji′ (y)
d

dy

)
Ri′ (y), (44)

where φji′ (y) and ψji′ (y) are unknown functions, Ri′(y) is known function. We
choose Ri′(y) as solutions of the auxiliary problem treated like etalon equation
(Z(k<1)

i′ = Z
(k>k′

max)
i′ = 0):⎡⎣− 1

yd−1

d

dy
yd−1 d

dy
+

k′
max∑

k=1

Z
(k)
i′

yk
− p2

i′

⎤⎦Ri′(y) = 0. (45)

Remark 3. If Z
(k≥3)
i′ = 0 then solutions to the last equation are presented via hy-

pergeometric functions, exponential, trigonometric, Bessel, Coulomb functions,
etc. For example, if the leading terms of the asymptotic solutions are given by
formula

Ri′ (y) =
1√

pi′yd−1
exp

(
±ı

(
pi′y − Z

(1)
i′

2pi′
ln(2pi′ |y|)

))
, (46)

the coefficient Z
(2)
i′ of potential in the etalon equation (45) has the form:

Z
(2)
i′ = − (d − 3)(d − 1)

4
± ı

Z
(1)
i′

pi′
− (Z(1)

i′)2

p2
i′

. (47)

Step 2. At this step, we compute the coefficients φi′ (y) and ψi′(y) of the ex-
pansion (44) in the form of series by inverse powers of y (φ(k′<0)

ji′ =ψ
(k′<0)
ji′ =0):

φji′ (y) = φ
(0)
ji′ +

kmax∑
k′=1

φ
(k′)
ji′

yk′ , ψji′ (y) = ψ
(0)
ji′ +

kmax∑
k′=1

ψ
(k′)
ji′

yk′ . (48)

After substitution of (44),(48) into (43) with the use of Eq. (45), we arrive at
the set of recurrence relations at k′ ≤ kmax:(

ε
(0)
i −2E+p2

i′
)

φ
(k′)
ii′ +

(
ε
(1)
i − Z

(1)

i′

)
φ

(k′−1)

ii′ − 2p2
i′(k

′ − 1)ψ
(k′−1)

ii′ = −f
(k′)
ii′ , (49)(

ε
(0)
i − 2E + p2

i′
)

ψ
(k′)
ii′ + 2(k′ − 1)φ

(k′−1)
ii′ +

(
ε
(1)
i − Z

(1)
i′

)
ψ

(k′−1)
ii′ = −g

(k′)
ii′ ,

where the right-hand sides f
(k)
ii′ and g

(k)
ii′ are defined by relations

f
(k′)
ii′ = −(k′ − 2)(k′ − d)φ(k′−2)

ii′ +
k′∑

k=2

(
V

(k)
ii − Z

(k)
i′

)
φ

(k′−k)
ii′

Symbolic-Numerical Algorithms to Solve the Quantum Tunneling Problem 187

+
k′∑

k=1

(
Z

(k)
i′ (2k′ − 2 − k)ψ(k′−k−1)

ii′ +
N∑

j=1,j �=i

(k′∑
k′′=1

2Q
(k)
ij Z

(k′′)
i′ ψ

(k′−k−k′′)
ji′

−2p2
i′Q

(k)
ij ψ

(k′−k)
ji′ + Q

(k)
ij (−2k′ + k + d + 1)φ(k′−k−1)

ji′ + V
(k)
ij φ

(k′−k)
ji′

))
; (50)

g
(k)
ii′ = −(k′ − 1)(k′ − 3 + d)ψ(k′−2)

ii′ +
k′∑

k=2

(
V

(k)
ii − Z

(k)
i′

)
ψ

(k′−k)
ii′

+
N∑

j=1,j �=i

k′∑
k=1

(
2Q

(k)
ij φ

(k′−k)
ji′ − Q

(k)
ij (2k′ + d − 3 − k)ψ(k′−k−1)

ji′ + V
(k)
ij ψ

(k′−k)
ji′

)
with initial conditions p2

i′ = 2E − ε
(0)
i′ , φ

(0)
ii′ = δii′ , ψ

(0)
ii′ = 0, at i′ = io run the

open channels io = 1, ..., No and pi′ = ıqi′ , qi′ > 0, q2
i′ = ε

(0)
i′ − 2E at i′ = ic run

the closed channels ic = No + 1, ..., N that follow from (14) and (17). Also from
Eq. (49) at k′ = 1 and i = i′,(

ε
(1)
i′ − Z

(1)
i′

)
φ

(0)
i′i′ = 0,

(
ε
(1)
i′ − Z

(1)
i′

)
ψ

(0)
i′i′ = 0, (51)

we obtain condition Z
(1)
i′ = ε

(1)
i′ .

Step 3. Here we perform calculation of the coefficients φ
(k′)
ii′ and ψ

(k′)
ii′ by a step–

by–step procedure of solving Eqs. (49) for 2E �= ε
(0)
i′ , i �= i′ and k′ = 2, . . . , kmax:

φ
(k′)
ii′ =

[
ε
(0)
i − ε

(0)
i′

]−1 [
−f

(k′)
ii′ −

(
ε
(1)
i − Z

(1)
i′

)
φ

(k′−1)
ii′ + 2p2

i′(k
′ − 1)ψ(k′−1)

ii′

]
,

ψ
(k′)
ii′ =

[
ε
(0)
i − ε

(0)
i′

]−1 [
−g

(k′)
ii′ − 2(k′ − 1)φ(k′−1)

ii′ −
(
ε
(1)
i − Z

(1)
i′

)
ψ

(k′−1)
ii′

]
,

φ
(k′−1)
i′i′ = − [2(k′ − 1)]−1

g
(k)
i′i′ , (52)

ψ
(k′−1)
i′i′ =

[
2(k′ − 1)

(
2E − ε

(0)
i′

)]−1

f
(k)
i′i′ .

The above described algorithm has been implemented in MAPLE and FOR-
TRAN to calculate the desirable φ

(k′)
ii′ and ψ

(k′)
ii′ in the output up to kmax −1 =

11 order.
Remark 4. The choice of appropriate values ymin and ymax for the constructed
expansions of the linearly independent solutions for pio > 0 is controlled by the
fulfillment of the Wronskian condition (26)

yd−1Wr(Q(y); χ∗(y), χ(y)) = ±2ıIoo (53)

up to the prescribed precision εWr.
As a result, Algorithms 1 and 2 generate required asymptotic solution (5) up

to the order O(|y|−kmax) at |y|/|x| � 1 that reduce the BVP (1) from plane R2

ψas
i′ (x, y)=

N∑
j=1

kmax∑
k=0

y−k

M(k)∑
s=min(1−j,−M(k))

B
(0)
j−1+s(x)b(k)

j−1;s

(
φ

(k−p)
ji′ + ψ

(k−p)
ji′

d

dy

)
Ri′(y)(54)

to a finite domain Ωxy = [Ωx{xmin, xmax} × Ωy{ymin, ymax}].

188 A.A. Gusev et al.

4 Benchmark Calculation of Penetration Coefficient

As a benchmark calculation we consider the BVPs (1)–(6) that model the quan-
tum tunneling problem for a coupled pair of identical ions with the following val-
ues of parameters: x̄max = 5 for Eq. (2) and s = 8 for Eq. (3), s1 = s2 = s3 = 1/2,
x̄min = 0.1, Ẑ1 = Ẑ2 = 0.5 and Ẑ1 = Ẑ2 = 1 in oscillator units. For given number
N of ODES (10), the values xmin and xmax of grid Ωx{xmin, xmax} are chosen
in the region |x| > x0 =

√
2N + 1 where the Hermite polynomial [9] (or of

wave function in a general case) has none zeros. These values are computed with
prescribed precision eps > 0 from the condition

exp
(∫ x

x0

dx
√

x2 − x2
0

)
≤ eps,

which in the given case leads to inequality

exp
(
−x

√
x2 − x2

0/2
)(

x +
√

x2 − x2
0

)x2
0/2

x
−x2

0/2
0 ≤ eps. (55)

To find an approximate solution, at the first step we choose the initial approx-
imation xmax = x0, after that it is increased with step equal 1 until (55) is
satisfied. Values ymin < xmin and ymax > xmax were chosen from the condition
that potential (2) or (3) is negligible on the interval xmin < x < xmax.

The matching points ymatch
1 and ymatch

2 of the numerical (11) and asymptotic
(41) effective potential were calculated as follows:

ymatch
1 = min{yE

1 , yQ
1 , yH

1 }, ymatch
2 = max{yE

2 , yQ
2 , yH

2 },

yE
t = σy

kmax

√
|E(kmax)

N |
eps

, yQ
t = σy

kmax

√
|Q(kmax)

NN−1|
eps

, yH
t = σy

kmax

√
|H(kmax)

NN |
eps

,

since |E(kmax)
j | < |E(kmax)

N |, |Q(kmax)
jj′ | < |Q(kmax)

NN−1|, |H(kmax)
jj′ | < |H(kmax)

NN |. So, the
values ymin and ymax are chosen from the inequalities ymin < ymatch

1 < xmin and
ymax > ymatch

2 > xmax taking into account. This gives

ymin = min

⎡⎣ymatch
1 , min

j

⎛⎝− kmax

√
|φ(kmax)

jio
|

eps

⎞⎠ , min
j

⎛⎝− kmax

√
|ψ(kmax)

jio
|

eps

⎞⎠⎤⎦ ,

ymax = max

⎡⎣ymatch
2 , max

j

⎛⎝ kmax

√
|φ(kmax)

jio
|

eps

⎞⎠ , max
j

⎛⎝ kmax

√
|ψ(kmax)

jio
|

eps

⎞⎠⎤⎦ . (56)

In the considered examples, we used the grids Ωx{xmin, xmax} = {−10(768)10}
and Ωy{ymin, ymax} = {−125(200)−25(100)−6(200)6(100)25(200)125}with the
Lagrange elements of the order p = 4 between the nodes. In the above grids Ωx

and Ωy, the number of grid elements is shown in the parentheses.

Symbolic-Numerical Algorithms to Solve the Quantum Tunneling Problem 189

To illustrate Remark 2 by an example, we can point out the lines for kmax = 3
(containing only zero values) in Table 2. Other zero values in Tables 2 and 3
point out different leading terms in the inverse power series expansion of matrix
elements between various eigenfunctions. The numerical values of effective po-
tentials calculated by ODPEVP [6] with a given precision eps of order of 10−10 in
the last line of the Tables 1, 2 and 3 are in a good agreement with the asymptotic
values from (41) in the matching points y = ymatch

t .
In the calculation of solutions, we used the etalon equation (45) at d = 1 with

the two sets of parameters taken in the first case as in Remark 3 and in second
case as k′

max = 1, Z
(1)
i′ = 2σyZ12, that corresponds to the known solutions on

the open channels

R±
io

(pio , y) = p
−1/2
io

{
(G0(pio , +y) ± ıF0(pio , +y)) exp(∓ıσio)/2, y > 0,
(G0(pio ,−y) ∓ ıF0(pio ,−y)) exp(±ıσio)/2, y < 0,

(57)

and on the closed channels

Ric(qic , y) = q
−1/2
ic

t exp(−t/2)U(1 + Z12/qic , 2, t), t = 2qic |y|. (58)

Here F0(pio , y) and G0(pio , y) are regular and irregular continuum zero order
Coulomb functions; σio = argΓ (1 + ıZ12/pio) is the Coulomb phase shift [9];
and U(a, b, c) is the confluent hypergeometric function of second kind.

Remark 5. In the numerical calculation, the exponential small factor exp(−t/2)
in Ric(qic , y) and its first derivative was neglected since this factor is canceled
during evaluation of R(y) matrix in Eq. (18).

Required reflection R→ and transmission T→ matrixes calculated by formulas
(20) via matrix of logarithmic derivatives R→(y) and solution Φh

→(ymax) calcu-
lated numerically on the above grid Ωy{ymin, ymax} by means of the program
KANTBP 3.0, including matching in the boundary points ymin and ymax of (12)
with asymptotic solution evaluated in first case has the error of order 0.1% in
comparison with a more accurate result obtained with asymptotic solution eval-
uated in the second case.

According to Remarks 1 and 4, the Wronskian condition depends on the num-
ber N of ODEs, on the value of threshold energy, on the type of etalon equation,
etc. At the boundary points ymin and ymax of the above grid Ωy{ymin, ymax}, the
absolute values εWr of components of difference between the calculated Wron-
skian and its theoretical value (53) are less then 10−11.

The total probabilities T ≡ T11 =
∑No

j=1 |T1j|2 of penetration through Trun-
cated Coulomb (2) and Coulomb-like (3) potential barriers are shown in Fig. 1.
The first of them is in a good agrement with results obtained by solving the BVP
(1), (2), (5), and (6) in the 2D domain using Numerov method in papers [3,4].
These pictures illustrate the important peculiarity that a more realistic nontrun-
cated Coulomb-like barrier having a more wide than truncated one, leads to a
set of the probability maximums having a bigger half-width. It can be used for
verification of the models and quantum transparency effect.

190 A.A. Gusev et al.

3 5 7 9 11 13 15 17 19 21 23
0.0

0.2

0.4

0.6

0.8

1.0 Z1=Z2=0.5
m1=1
m2=1
xmin=0.1
xmax=5T

2E
3 5 7 9 11 13 15 17 19 21 23

0.0

0.2

0.4

0.6

0.8

1.0
Z1=Z2=1
m1=1
m2=1
xmin=0.1
xmax=5T

2E

3 5 7 9 11 13 15 17 19 21 23
0.0

0.2

0.4

0.6

0.8

1.0 Z1=Z2=0.5
m1=1
m2=1
xmin=0.1

T

2E
3 5 7 9 11 13 15 17 19 21 23

0.0

0.2

0.4

0.6

0.8

1.0

T

2E

Z1=Z2=1
m1=1
m2=1
xmin=0.1

Fig. 1. The total probabilities T ≡ T11 =
∑No

j=1 |T1j |2 of penetration through Trun-
cated Coulomb (2) at xmax = 5 (upper panel), and Coulomb-like (3) (lower panel),
potential barriers: xmin = 0.1, m1 = m2 = 1, left panel: Ẑ1 = Ẑ2 = 0.5, right panel:
Ẑ1 = Ẑ2 = 1.

5 Conclusion

The BVP for the 2D Schrödinger equation with long-range potentials from the
2D plane is reduced to sets of the BVPs for the ODEs in a finite 2D domain
with help of the presented symbolic algorithms for evaluation of asymptotics
of solutions and effective potentials of the ODEs. The BVPs for the resulting
system of equations containing effective potentials, which are calculated by pro-
gram ODPEVP [6], are solved by the new version of program KANTBP 2.0
using high-order precision approximations of the FEM [7]. The computational
efficiency of the SNAs proposed is demonstrated by the benchmark calculation
of quantum transmittance of long-range barriers for composite particles. The
further development of the SNAs and software for solving the BVPs of the
Schrödinger equation with long-range potentials can serve as a useful tool to
study quantum transparency effects not only in heavy ion physics but also in
quantum chemistry [11] and atomic physics [12].

Authors thank Profs. F.M. Pen’kov and P.M. Krassovitskiy for useful discus-
sion. This work was done within the framework of the Protocols No. 4028-3-10/12
of collaboration between JINR and INP (Almaty) in dynamics of few-body sys-
tems and quantum transparency of barriers for structure particles and ions. The
work was supported partially by RFBR (grants 10-01-00200 and 11-01-00523).

Symbolic-Numerical Algorithms to Solve the Quantum Tunneling Problem 191

References

1. Hofmann, H.: Quantum mechanical treatment of the penetration through a two-
dimensional fission barrier. Nucl. Phys. A 224, 116–139 (1974)

2. Hagino, K., Rowley, N., Kruppa, A.T.: A program for coupled-channel calcula-
tions with all order couplings for heavy-ion fusion reactions. Comput. Phys. Com-
mun. 123, 143–152 (1999)

3. Pen’kov, F.M.: Metastable states of a coupled pair on a repulsive barrier. Phys.
Rev. A 62, 044701-1-4 (2000)

4. Pen’kov, F.M.: Quantum Transmittance of Barriers for Composite Particles.
JETP 91, 698–705 (2000)

5. Kantorovich, L.V., Krylov, V.I.: Approximate Methods of Higher Analysis. Wiley,
New York (1964)

6. Chuluunbaatar, O., Gusev, A.A., Vinitsky, S.I., Abrashkevich, A.G.: ODPEVP: A
program for computing eigenvalues and eigenfunctions and their first derivatives
with respect to the parameter of the parametric self-adjoined Sturm–Liouville prob-
lem. Comput. Phys. Commun. 180, 1358–1375 (2009)

7. Chuluunbaatar, O., Gusev, A.A., Vinitsky, S.I., Abrashkevich, A.G.: KANTBP
2. 0: New version of a program for computing energy levels, reaction matrix and
radial wave functions in the coupled-channel hyperspherical adiabatic approach.
Comput. Phys. Commun. 179, 685–693 (2008)

8. Chuluunbaatar, O., Gusev, A., Gerdt, V., Kaschiev, M., Rostovtsev, V., Samoylov,
V., Tupikova, T., Vinitsky, S.: A Symbolic-numerical algorithm for solving the
eigenvalue problem for a hydrogen atom in the magnetic field: cylindrical coordi-
nates. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2007. LNCS,
vol. 4770, pp. 118–133. Springer, Heidelberg (2007)

9. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New
York (1965)

10. Barnett, A.R., Feng, D.H., Steed, J.W., Goldfarb, L.J.B.: Coulomb wave functions
for all real η and ρ. Comput. Phys. Comm. 8, 377–395 (1974)

11. Goodvin, G.L., Shegelski, M.R.A.: Three-dimensional tunneling of a diatomic
molecule incident upon a potential barrier. Phys. Rev. A 72, 042713-1-7 (2005)

12. Giannakeas, P., Melezhik, V.S., Schmelcher, P.: D-wave confinement-induced
resonances in harmonic waveguides. arXiv:1102.5686v1 (2011)

Symbolic-Numeric Investigation of the

Aerodynamic Forces Influence on Satellite
Dynamics

Sergey A. Gutnik

Moscow State Institute of International Relations (University) 76, Prospekt
Vernadskogo, Moscow, 119454, Russia

s.gutnik@inno.mgimo.ru

Abstract. An approach for symbolic-numeric stability analysis of equi-
librium orientations of a satellite in a circular orbit under the influence
of gravitational and aerodynamic forces is considered. The stationary
motions of a satellite are governed by a system of nonlinear algebraic
equations. A computer algebra method based on an algorithm for the
construction of a Groebner basis and the resultant concept is proposed
for determining all equilibrium orientations of a satellite with a given
aerodynamic torque and given principal central moments of inertia. It
is shown that equilibrium orientations are determined by real solutions
of algebraic equation of the twelfth degree. Evolution of domains with
a fixed number of equilibria is investigated in detail. The stability anal-
ysis of equilibria is performed on the basis of Lyapunov theorem. The
equilibrium orientations and their stability are analyzed numerically.

1 Introduction

Celestial mechanics is one of the most popular fields where symbolic compu-
tations are necessary to do very bulky calculations for solving many significant
problems. In astrodynamics, successful application of computer algebra methods
is a rare occasion in scientific papers. In this work, an example of symbolic–
numeric investigation of satellite’s dynamics under the influence of gravitational
and aerodynamic torques is presented. It is a well known result that a satellite
with different moments of inertia in the central Newtonian force field in a circu-
lar orbit has 24 equilibrium orientations [1]. However, at altitudes from 250 up
to 500 km, rotational motion of a satellite is subjected to aerodynamic torque
too. Therefore, it is necessary to study the joint action of gravitational and aero-
dynamic torques and, in particular, to analyze all possible satellite’s equilibria
in a circular orbit. Such solutions are used in practical space technology in the
design of passive control systems of satellites.

This problem is considered in many papers. The basic problems of satellite’s
dynamics with an aerodynamic attitude control system have been presented in
[1]. In [2], [3], and [4] all equilibrium orientations were found in some special
cases, when the center of pressure is located on a satellite’s principal central axis

V.P. Gerdt et al. (Eds.): CASC 2011, LNCS 6885, pp. 192–199, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Symbolic-Numeric Investigation of the Aerodynamic Forces 193

of inertia and on a satellite’s principal central plane of inertia. The effect of the
atmosphere on a satellite is reduced to the drag force applied to the center of
pressure and directed against velocity of the satellite’s center of mass relative to
the air. The center of pressure is assumed to be at a fixed point in the satellite
body.

In the present work, the problem of determining the classes of equilibrium
orientations for general values of aerodynamic torque is considered. The equi-
librium orientations are determined by real roots of the system of nonlinear
algebraic equations. The investigation of equilibria was possible due to applica-
tion of Computer Algebra Groebner basis and resultant methods. Evolution of
domains with a fixed number of equilibria is investigated numerically in depen-
dence of four dimensionless system parameters. Sufficient conditions for stability
of all equilibrium orientations are obtained using generalized integral of energy.

2 Equations of Motion

Consider the motion of a satellite subjected to gravitational and aerodynamic
torques in a circular orbit. We assume that 1) the gravity field of the Earth is
central and Newtonian, 2) the satellite is a triaxial rigid body, 3) the effect of
atmosphere on a satellite is reduced to the drag force applied at the center of
pressure and directed against the velocity of the satellite’s center of mass relative
to the air, and the center of pressure is fixed in the satellite body. To write the
equations of motion we introduce two right-handed Cartesian coordinate systems
with origin in the satellite’s center of mass O. OXY Z is the orbital reference
frame. The axis OZ is directed along the radius vector from the Earth center
of mass to the satellite’s center of mass, the axis OX is in the direction of a
satellite’s orbital motion. Oxyz is the satellite’s body reference frame; Ox, Oy,
Oz are the principal central axes of inertia of a satellite. The orientation of the
satellite’s body reference frame Oxyz with respect to the orbital reference frame
is determined by means of the Euler angles ψ (precession), ϑ (nutation), and
ϕ (spin). The direction cosines in transformation matrix between the frames
OXY Z and Oxyz have the form:

a11 = cos(x, X) = cosψ cosϕ − sinψ cosϑ sin ϕ,

a12 = cos(y, X) = − cosψ sinϕ − sin ψ cosϑ cosϕ,

a13 = cos(z, X) = sin ψ sinϑ,

a21 = cos(x, Y) = sin ψ cosϕ + cosψ cosϑ sinϕ,

a22 = cos(y, Y) = − sinψ sinϕ + cosψ cosϑ cosϕ, (1)
a23 = cos(z, Y) = − cosψ sinϑ,

a31 = cos(x, Z) = sin ϑ sin ϕ,

a32 = cos(y, Z) = sinϑ cosϕ,

a33 = cos(z, Z) = cosϑ.

Then equations of the satellite’s attitude motion can be written in the Euler
form [1], [2]:

194 S.A. Gutnik

Aṗ + (C − B)qr − 3ω2
0(C − B)a32a33 = h̃2a13 − h̃3a12,

Bq̇ + (A − C)rp − 3ω2
0(A − C)a31a33 = h̃3a11 − h̃1a13, (2)

Cṙ + (B − A)pq − 3ω2
0(B − A)a31a32 = h̃1a13 − h̃3a11,

p = ψ̇a31 + ϑ̇ cosϕ + ω0a21,

q = ψ̇a32 + ϑ̇ sinϕ + ω0a22, (3)
r = ψ̇a33 + ϑ̇ + ω0a23.

Here p, q, r are the projections of the satellite’s angular velocity onto the axes
Ox, Oy, Oz; A, B, C are the principal central moments of inertia of the satellite;
ω0 is the angular velocity of the orbital motion of the satellite’s center of mass.
h̃1 = −apQ, h̃2 = −bpQ, h̃3 = −cpQ, Q is the atmospheric drug force acting on
a satellite; ap, bp, cp are the coordinates of the center of pressure of a satellite
in the reference frame Oxyz. The dot designates differentiation with respect to
time t.

Equations (2) along with (3) form a closed system of equations of motion of
the satellite, for which the Jacobi Integral is valid

H =
1
2
(Ap̄2 + Bq̄2 + Cr̄2) +

3
2
ω2

0 [(A − C)a2
31 + (B − C)a2

32] +

+
1
2
ω2

0 [(B − A)a2
21 + (B − C)a2

23] − (h̃1a11 + h̃2a12 + h̃3a13), (4)

where p̄ = p − ω0a21, q̄ = q − ω0a22, r̄ = r − ω0a23.

3 Equilibrium Orientations of a Satellite

Putting in (2) and (3) ψ = const, ϑ = const, ϕ = const and introducing the
notation h̃i = ω2

0h̄i(i = 1, 2, 3), we obtain the equations

(C − B)(a22a23 − 3a32a33) = h̄2a13 − h̄3a12,

(A − C)(a21a23 − 3a31a33) = h̄3a11 − h̄1a13, (5)
(B − A)(a21a22 − 3a31a32) = h̄1a12 − h̄2a11,

which allow us to determine the satellite’s equilibria in the orbital reference
frame.

Let A �= B �= C. Substituting the expressions for the direction cosines from
(1) in terms of Euler angels into Eqs. (5), we obtain three equations with three
unknowns ψ, ϑ, ϕ. The second procedure for closing Eqs. (5) is to add the
following six orthogonality conditions for the direction cosines:

ai1aj1 + ai2aj2 + ai3aj3 = δij (6)

Symbolic-Numeric Investigation of the Aerodynamic Forces 195

where δij is the Kronecker delta and (i, j = 1, 2, 3). Equations (5) and (6) form
a closed system with respect to the direction cosines, which also specifies the
equilibrium solutions of a satellite. We state the following problem for the system
of equations (5), (6): determine all nine direction cosines, i.e., to find all the
equilibrium orientations of the satellite when A, B, C, h̄1, h̄2, and h̄3 are given.
The problem has been solved only for some specific cases when the center of
pressure is located on a satellite’s principal central axis of inertia Ox, when
h̄1 �= 0, h̄2 = h̄3 = 0 [2], [3] and when the pressure center locates in the satellite’s
principal central plane of inertia Oxz of the frame Oxyz and h̄1 �= 0, h̄2 = 0,
h̄3 �= 0 [4]. In the case h̄1 = h̄2 = h̄3 = 0, it has been proved that the system (5),
(6) has 24 solutions describing the equilibrium orientations of a satellite-rigid
body [1].

Here we consider the general case of the problem of defining the equilibria of
a satellite when h̄1 �= 0, h̄2 �= 0, h̄3 �= 0. A Computer Algebra approach to define
all the equilibrium orientations of a satellite will be used. Projecting Eqs. (5)
onto the axis of the orbiting frame OXY Z, we get the algebraic system, using
the method given in [5]

Aa21a31 + Ba22a32 + Ca23a33 = 0,

Aa11a21 + Ba12a22 + Ca13a23 − (h̄1a21 + h̄2a22 + h̄3a23) = 0, (7)
3(Aa11a31 + Ba12a32 + Ca13a33) + h̄1a31 + h̄2a32 + h̄3a33 = 0.

A solution of the system (6), (7) can be obtained using an algorithm for the con-
struction of Groebner bases [6]. The method of Groebner bases is used to solve
systems of nonlinear algebraic equations. It comprises an algorithmic procedure
for reducing the problem involving polynomials of several variables to investiga-
tion of a polynomial of one variable. Using the computer algebra system Maple
[7] Groebner[gbasis] package with tdeg option, we calculate the Groebner basis
of the system (6), (7) of nine polynomials with nine variables aij (i, j = 1, 2, 3)
under the ordering on the total power of the variables. In the list of variables
in the Maple Groebner package we use nine direction cosines, and in the list of
polynomials, we include the polynomials from the left-hand sides fi (i = 1, 2, ...9)
of the algebraic equations (6), (7):

map(factor,Groebner[gbasis]([f1,f2,f3, ... f9],tdeg(a11, a12, a13, ... a33))).
Here we write down the polynomials in the Groebner basis that depend only
on the variables a31, a32, a33

9[(B − C)2a2
32a

2
33 + (C − A)2a2

31a
2
33 + (A − B)2a2

31a
2
32] =

= (h̄1a31 + h̄2a32 + h̄3a33)2(a2
31 + a2

32 + a2
33),

3(B − C)(C − A)(A − B)a31a32a33 − [h̄1(B − C)a32a33 + (8)
+h̄2(C − A)a31a33 + h̄3(A − B)a31a32](h̄1a31 + h̄2a32 + h̄3a33) = 0,

a2
31 + a2

32 + a2
33 = 1.

196 S.A. Gutnik

Introducing the new variables x = a31/a32, y = a33/a32, hi = h̄i/(B − C),
ν = (B − A)/(B − C), we deduce two equations for determining of x and y.

a0y
2 + a1y + a2 = 0,

b0y
4 + b1y

3 + b2y
2 + b3y + b4 = 0, (9)

where

a0 = h3(h2(1 − ν)x − h1),
a1 = ν(3(1 − ν) + h2

3)x + (h1x + h2)(h2(1 − ν)x − h1),
a2 = νh3(h1x + h2)x,

b0 = h2
3,

b1 = 2h3(h1x + h2),
b2 = (h1x + h2)2 + h2

3(1 + x2) − 9 − 9(1 − v)2x2,

b3 = 2h3(h1x + h2)(1 + x2),
b4 = (h1x + h2)2(1 + x2) − 9ν2x2.

Invoking the resultant concept we eliminate the variable y from the equations
(9). Expanding the determinant of the resultant matrix of Eqs.(9), with the help
of Maple symbolic matrix function, we obtain a twelfth degree algebraic equation
in x:

p0x
12 + p1x

11 + p2x
10 + p3x

9 + p4x
8 + p5x

7 +
+ p6x

6 + p7x
5 + p8x

4 + p9x
3 + p10x

2 + p11x + p12 = 0, (10)

the coefficients of which depend in a rather complicated way on the parameters
ν, h1, h2, h3

p0 = (1 − ν)6p12, p1 = −(1 − ν)5p11, . . . (11)
p11 = 2h3

1h
3
2(2(1 − ν)h2

2 − 2h2
1 − νh2

3 − 3ν(1 − ν)), p12 = −h4
1h

4
2.

By the definition of the resultant, to every root x of Eq.(10) there corresponds a
common root y of the system (9). It can easily be shown that to every real root
x of Eq.(10) there correspond 2 solutions for (5), (6). Since the number of real
roots of Eq.(10) does not exceed 12, the satellite in a circular orbit can have at
most 24 equilibria in the orbiting reference frame.

Using Eq.(10), (11) we can determine numerically all the relative equilibrium
orientations of the satellite and analyze their stability. We have analyzed numer-
ically dependence of the number of real solutions of Eq.(10) on the parameters,
using factorization method. For a fixed values of ν and h3, the number of real
roots was determined at the nodes of a uniform grid in the plane (h1, h2). We
have used the values of ν = 0.2, ν = 0.4, ν = 0.6, ν = 0.8 (|ν| < 1).

In the present work, we have implemented the bifurcation values of the pa-
rameters h1 and h3, corresponding to the qualitative change of domains with a
fixed number of equilibria, which were defined in [4] for the special case when

Symbolic-Numeric Investigation of the Aerodynamic Forces 197

h̄1 �= 0, h̄2 = 0, h̄3 �= 0. In [4] all the equilibrium solutions are determined by
real roots of the algebraic equations of fourth degree and bifurcation values of
parameters h1 and h3 when the number of real roots changes were found ana-
lytically: |h1| = 1, |h3| = 1, |h1| = 3, |h3| = 3, |h1| = 6, |h3| = 6. For this special
case in the intervals |h1| < 1, |h3| < 1 – 24, 20, and 16 equilibria exist; in the
next intervals 1 < |h1| < 3, 1 < |h3| < 3 – 16, 12, and 8 equilibria exist and
in the intervals |h1| > 6, |h3| > 6 only 8 equilibria exist. We have used these
bifurcation values of h1 and h3 when h2 = 0 for our numerical calculations. For
the first interval when |h3| < 1 we define numerically the evolution of domains
with 24, 20, and 16 equilibria. We have used a small step of the parameter h3

(h3 = 0.1, 0.15, 0.25, 0.35, 0.5, 0.75, 0.8, 0.9) because for |h3| < 1 there are small
domains with a fixed number of real roots of Eq.(10). For example, at h3 = 0.1
(ν = 0.2) when the parameter values |h1| < 0.2 and |h2| < 0.2 there is domain
of existence of 24 equlibria (12 real roots). For the intervals 0.2 < |h1| < 0.5
and 0.2 < |h2| < 0.6 – 20 equlibria exist (10 real roots). For the next intervals
0.5 < |h1| < 0.7 and 0.6 < |h2| < 0.7, there is domain of existence of 16 equlibria
(8 real roots). For 0.7 < |h1| < 2 and 0.7 < |h2| < 2.5 – 12 equlibria exist (6 real
roots), and for |h1| > 2 and |h2| > 2.5 only 8 equlibria exist (4 real roots). At
h3 = 0.25 (ν = 0.2) when the parameter values |h1| < 0.2 and |h2| < 0.2 there
is domain of existence of 24 equlibria. For the intervals 0.2 < |h1| < 0.3 and
0.2 < |h2| < 0.45 – 20 equlibria exist. For the next intervals 0.3 < |h1| < 0.8 and
0.45 < |h2| < 0.6 there is domain of existence of 16 equlibria. For 0.8 < |h1| < 1.6
and 0.6 < |h2| < 2.2 – 12 equlibria exist, and for |h1| > 1.6 and |h2| > 2.2 only
8 equlibria exist. Analysis of the numerical results for |h3| < 1 shows that five
domains with the 24, 20, 16, 12, and 8 equilibria exist in the plane (h1, h2) for
the intervals 0 < |h3| ≤ 0.8. When we cross the bifurcation value h3 = 0.8
domain with the 24 equilibria vanish and in the intervals 0.8 < |h3| < 1 only
four domains with 20, 16, 12, and 8 equilibria exist. The value |h3| = 1 is also
bifurcation as in the special case. When we cross the bifurcation value h3 = 1
the domain with 20 equilibria vanishes. In the interval 1 < |h3| < 3, only three
domains with the 16, 12, and 8 equilibria exist. The value |h3| = 3 is bifurcation,
as in the special case. When we cross the bifurcation value h3 = 3 the domain
with 16 equilibria vanishes. In the interval 3 < |h3| < 6, only two domains with
12 and 8 equilibria exist. When the values of parameter |h3| of the aerodynamic
torque are more than 6, the satellite has only 8 equilibrium orientations, which
correspond to four real roots of Eq.(10).

4 Stability Analysis of Equilibria

To investigate the stability of equilibrium solutions ψ = ψ0 = const, ϑ = ϑ0 =
const, ϕ = ϕ0 = const satisfying Equations (5), we can use the the Jacobi

Integral of energy (4) as the Lyapunov function. After replacement ψ → ψ +ψ0,
ϑ → ϑ + ϑ0, ϕ → ϕ + ϕ0 where ψ, ϑ, ϕ are small deviations from the satellite’s
equilibrium ψ0, ϑ0, ϕ0, the energy integral takes the form

198 S.A. Gutnik

H =
1
2
(Ap̄2 + Bq̄2 + Cr̄2) +

1
2
(B − C)(A11ψ

2 + A22ϑ
2 + A33ϕ

2 +

+ 2A12ψϑ + 2A13ψϕ + 2A23ϑϕ) + O3(ψ, ϑ, ϕ) = const, (12)

where coefficients Aij depend on the parameters ν, h1, h2, h3, ψ, ϑ, ϕ in the form

A11 = ν(a2
11 − a2

21) + (a2
13 − a2

23) + h1a11 + h2a12 + h3a13,

A22 = (3 + cos2 ψ0)(1 − ν sin2 ϕ0) cos 2ϑ0 − 1
4
ν sin 2ψ0 cosϑ0 sin 2ϕ0 −

− (h1 cosϑ0 sinϕ0 + h2 cosϑ0 cosϕ0 − h3 sin ϑ0) sin ψ0,

A33 = ν((a2
22 − a2

21) − 3(a2
32 − a2

31)) + h1a11 + h2a12, (13)

A12 = −1
2

sin 2ψ0 sin 2ϑ0 + ν(a11a23 + a13a21) sin ϕ0 −

− (h1a31 + h2a32 + h3a33) cosψ0,

A13 = ν(a12a22 + a12a21) + h1a22 − h2a21,

A23 = −3
2
ν sin 2ϑ0 sin 2ϕ0 + ν(a21 cosϕ0 + a22 sin ϕ0)a23 −

− (h1 cosϕ0 − h2 sin ϕ0)a13.

It follows from Lyapunov theorem that the equilibrium solution is stable if the
quadratic form (12),(13) is positive definite, i.e., the following inequalities take
place:

A11 > 0, B > C,

A11 A22 − A2
12 > 0, (14)

A11 A22A33 + 2A12A23A13 − A11A
2
23 − A22A

2
13 − A33A

2
12 > 0.

Substituting the expressions for Aij from (13) for the corresponding equilibrium
solution into (14), we obtain the conditions for stability of this solution. Using
integral (12),(13), we have analyzed numerically stability conditions (14) for
the equilibrium solutions. Analysis of the numerical results shows that stable
equilibrium orientations of a satellite exist even for large aerodynamic torque
when |hi| ≥ 6.0 (i = 1, 2, 3). For such values of aerodynamic torque only eight
equilibria exist, and two of them are stable. At 0 < |hi| < 6.0 (i = 1, 2, 3) both
four and two stable equilibria exist.

5 Conclusion

In this work, the attitude motion of a satellite under the action of gravitational
and aerodynamic torques in a circular orbit has been investigated. The main
attention was given to determination of a satellite equilibrium orientation in the
orbital reference frame and to analysis of their stability. The symbolic-numeric
method of determination of all the satellite equilibria is suggested in general

Symbolic-Numeric Investigation of the Aerodynamic Forces 199

case (h̄1 �= 0, h̄2 �= 0, h̄3 �= 0). The symbolic computation system Maple is ap-
plied to reduce the satellite stationary motion system of nine algebraic equations
with nine variables to a single algebraic equation of the twelfth degree with one
variable, using the Groebner package for the construction of a Groebner basis
and the resultant approach. It was shown that the equilibrium orientations are
determined by real roots of single algebraic equation of the twelfth degree. Using
this result of symbolic calculations we conclude that the satellite subjected to
gravitational and aerodynamic torques can have no more than 24 equilibrium
orientations in a circular orbit. The evolution of domains with a fixed number
of equilibrium orientations was investigated numerically in the plane of two pa-
rameters (h1, h2) at a different values of parameters ν and h3. Some general
bifurcation values of h3 corresponding to the qualitative change of domains with
a fixed number of equilibria were determined. On the basis of numerical calcu-
lation, we can conclude that the number of satellite’s isolated equilibria is no
less than 8. Using the Lyapunov theorem, the sufficient conditions of stability of
the equilibrium orientations are investigated numerically at different values of
aerodynamic parameters. Analysis of the numerical simulation shows that the
number of stable equilibria is no less than two. All the calculations considered
here were implemented with the computer algebra system Maple. The results of
the study can be used at the stage of preliminary design of the satellite with
aerodynamic control system.

References

1. Sarychev, V.A.: Problems of orientation of satellites. Itogi Nauki i Tekhniki. Ser.
”Space Research”, vol. 11. VINITI, Moscow (1978)

2. Sarychev, V.A., Mirer, S.A.: Relative equilibria of a satellite subjected to gravita-
tional and aerodynamic torques. Cele. Mech. Dyn. Astron. 76(1), 55–68 (2000)

3. Sarychev, V.A., Mirer, S.A., Degtyarev, A.A., Duarte, E.K.: Investigation of equi-
libria of a satellite subjected to gravitational and aerodynamic torques. Cele. Mech.
Dyn. Astron. 97, 267–287 (2007)

4. Sarychev, V.A., Mirer, S.A., Degtyarev, A.A.: Equilibria of a satellite subjected to
gravitational and aerodynamic torques with pressure center in a principal plane of
inertia. Cele. Mech. Dyn. Astron. 100, 301–318 (2008)

5. Sarychev, V.A., Gutnik, S.A.: Relative equilibria of a gyrostat satellite. Cosmic
Research 22, 323–326 (1984)

6. Buchberger, B.: A theoretical basis for the reduction of polynomials to canonical
forms. SIGSAM Bulletin 10(3), 19–29 (1976)

7. Char, B.W., Geddes, K.O., Gonnet, G.H., Monagan, M.B., Watt, S.M.: Maple
Reference Manual. Watcom Publications Limited, Waterloo (1992)

Practical Divide-and-Conquer Algorithms for

Polynomial Arithmetic

William Hart1,� and Andrew Novocin2,��

1 University of Warwick, Mathematics Institute, Coventry CV4 7AL, UK
W.B.Hart@warwick.ac.uk

http://maths.warwick.ac.uk/~masfaw
2 LIP/INRIA/ENS, 46 allée d’Italie, F-69364 Lyon Cedex 07, France

Andrew.Novocin@ens-lyon.fr

http://andy.novocin.com/pro

Abstract. We investigate two practical divide-and-conquer style algo-
rithms for univariate polynomial arithmetic. First we revisit an algorithm
originally described by Brent and Kung for composition of power series,
showing that it can be applied practically to composition of polynomials
in Z[x] given in the standard monomial basis. We offer a complexity anal-
ysis, showing that it is asymptotically fast, avoiding coefficient explosion
in Z[x]. Secondly we provide an improvement to Mulders’ polynomial
division algorithm. We show that it is particularly efficient compared
with the multimodular algorithm. The algorithms are straightforward to
implement and available in the open source FLINT C library. We offer
a practical comparison of our implementations with various computer
algebra systems.

Introduction

Univariate integer polynomials are important basic objects for computer algebra
systems. In this paper we investigate two algorithms for univariate polynomial
arithmetic over Z. In particular, we study divide-and-conquer style algorithms
for composition and division of polynomials.

Given two polynomials f, g ∈ Z[x] the polynomial composition problem is to
compute f(g(x)) ∈ Z[x]. Standard approaches include Horner’s method [10],
ranged Horner’s method (which we describe in section 1.1), algorithms for com-
position of polynomials in a Bernstein basis (see [2]), and algorithms based on
point evaluation followed by coefficient interpolation (see [13]).

Given f, g ∈ Z[x] the division problem is to find polynomials q, r ∈ Z[x] such
that f = gq + r where the deg(r) <= deg(f), but the coefficients of terms of r
whose degree is at least deg(g) are reduced modulo the leading coefficient of g.

Standard approaches to the division problem are the naive O(n2) “school-
book” method, a divide-and-conquer approach based on the middle product and
� Author was supported by EPSRC Grant number EP/G004870/1.

�� Author was partially supported by ANR project LaRedA.

V.P. Gerdt et al. (Eds.): CASC 2011, LNCS 6885, pp. 200–214, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Practical Divide-and-Conquer Algorithms for Polynomial Arithmetic 201

a multimodular approach (see for example Victor Shoup’s NTL [14] which em-
ploys the latter approach). The approach we present has the advantage of being
simpler to implement than the middle product approach with comparable per-
formance but much better performance than the “school-book” or multimodular
approaches in real-world cases.

Some important applications include: i) exact division, i.e. where r = 0, ii)
division by g with leading coefficient ±1, iii) divisibility testing, i.e. to test if
f = gq for some q ∈ Z[x], with the algorithm returning false if (and as soon as)
a non-zero coefficient is detected in the remainder r and iv) a basecase for power
series division (with normalised divisor).

1 Polynomial Composition

We begin with a divide-and-conquer approach to polynomial composition.

Our Contribution. We present and analyze the divide-and-conquer technique
of Brent and Kung [5], originally a component of a power series composition
algorithm, applied instead to the composition of two polynomials f, g ∈ Z[x]
given in the standard monomial basis. We give a theoretical complexity bound
which is softly optimal in the size of the output and show that the algorithm is
highly practical.

Problem Statement:

Given: f = anxn + an−1x
n−1 + · · · + a0 and g = bmxm + · · · + b0 in Z[x].

Find: a full expansion of h = f(g(x))

Assumptions: In our analysis we assume the use of fast arithmetic (see [1]),
which is available in FLINT [9]. Also, only for the simplicity of bit-complexity
analysis, we will assume throughout that coefficients of f and g are of O(m) bits,
where m is the degree of g, the inner polynomial in the composition f(g). We
note that the algorithm still works when the coefficients are larger, but depending
on the implementation of the fast polynomial arithmetic, the bit complexity
will go up by some factor which is a quasilinear expression in the size of the
coefficients.

The algorithm is simple to implement and works in the standard monomial
basis. We will show that the algorithm performs well in practice by provid-
ing timings against the MAGMA computer algebra system [6]. We also pro-
vide a theoretical complexity analysis showing that, in the worst case, the al-
gorithm uses O(nm log(n) log(nm)) operations in Z and has a bit-complexity of
O(n2m2 log(nm)).

Assuming that h = f(g) does not have special structure (i.e. h is dense with
few cancellations) then this output has O(nm) coefficients each with bit-length
O(nm). Simply writing down the output requires O(n2m2) CPU-operations
making our theoretical bound optimal, up to a factor O(log(mn)).

202 W. Hart and A. Novocin

Related Works. The presented algorithm is an application of the divide-and-
conquer technique of Brent and Kung [5], originally developed as a component
of an algorithm for composition of power series. In the original application
the bit complexity was not considered, however we show that the algorithm
is asymptotically fast for polynomial composition in Z[x]. The algorithm was
rediscovered while implementing the number theory library FLINT [9], and we
are grateful to Joris van der Hoeven for pointing out its first occurrence in the
literature.

In [11] an algorithm is presented which is asymptotically fast for composition
of polynomials in a Bernstein basis. However for polynomials presented in the
usual monomial basis one must first perform a conversion to Bernstein basis to
make use of this algorithm.

Conversion of orthogonal polynomials can be done in time O(n log2 n log log n),
assuming the use of Fast Fourier Transform techniques (see [3]), however
Bernstein bases are not orthogonal.

A standard method for converting from a Bernstein basis to a monomial
basis involves computing a difference table, which costs O(n2) operations for a
polynomial of length n (degree n − 1) in the Bernstein basis (see [4, Sect.2.8]).
Thus to convert the eventual solution from Bernstein basis to monomial basis in
our case will cost O((mn)2) operations, each of which involves a subtraction of
quantities of O(mn) bits. Thus the total bit complexity of the conversion alone
is already significantly greater than that of our algorithm.

A different method is given in [13, Prob 3.4.2]. In this method, K = 2k is
computed such that mn + 1 ≤ K < 2mn + 2. If possible compute ω, a primitive
Kth root of unity, and the K = 2k points, ωi for all i = 0, . . . , K − 1. Evaluate
h = f(g) at those K points (using fast arithmetic) and interpolate the coefficients
of h. If a Kth root of unity is unavailable then use K other values for evaluation.
Pan suggests that this method uses O(nm[log(n)+log(m)+log2(n)]) operations
in Z when roots of unity are available and O(nm[log2(nm)]) operations in Z

otherwise.
In order to apply Pan’s method to polynomials in Z[x] one may work in a ring

Z/pZ where p = 22K + 1. There are then sufficiently many roots of unity, and
moreover, the coefficients of f(g(x)) may be identified by their values (mod p).

Interpolation of h is performed using the inverse FFT. To evaluate f(g(x)) at
the roots of unity, Pan first evaluates g(x) at the roots of unity using the FFT.
This gives K values at which f(x) must then be evaluated.

The Moenck-Borodin algorithm (see Algorithm 3.1.5 of [13]) evaluates f(x)
of degree n at n arbitrary points in O(n log2 n) operations. If the points are
w1, w2, . . . , wn, one first reduces f(x) mod (x − w1)(x − w2) · · · (x − wn). One
then splits this product into two balanced halves and reduces mod each half
separately. This process is repeated recursively until one has the reduction of
f(x) modulo each of the factors (x − wi).

Of the O(n log2 n) operations there are O(n log n) multiplications. Each can
be performed in our case using fast arithmetic in O(mn log mn) bit operations
(up to higher order log factors).

Practical Divide-and-Conquer Algorithms for Polynomial Arithmetic 203

As we have O(mn) roots of unity to evaluate at, not n, we must perform
this whole operation O(m) times. Thus the bit complexity of Pan’s algorithm
is O((mn)2 log n logmn), which exceeds that of our algorithm by a factor of
log n.

Road Map. In section 1.1 we present Horner’s method and Ranged Horner’s
method along with a complexity analysis. In section 1.2 we present the algorithm
itself. In subsection 1.2 we provide a worst-case asymptotic complexity analysis.
Finally, in section 1.3 we provide practical timings of our FLINT implementation
and a comparison with MAGMA’s polynomial composition algorithm.

Notations and Notes: Given two polynomials of length n, with coefficients
of n bits, the Schönhage and Strassen Algorithm (SSA) for multiplying polyno-
mials has a bit complexity of O(n2 log(n) log log n) (for more see [7, Sect.8.3]).
We will ignore log log n factors throughout the paper. Various standard tricks
allow us to multiply polynomials of degree n with coefficients of m bits in time
O(mn log(mn)) using SSA (again ignoring lower order log factors). For each algo-
rithm we given both the bit-complexity model cost and the number of operations
in Z.

1.1 Horner’s Method

In this section we apply Horner’s algorithm for evaluating a polynomial f at a
point p, to the problem of polynomial composition.

Horner’s Evaluation Algorithm
Given: f = anxn + an−1x

n−1 + · · · + a0 in Z[x], p in Z.
Find: ans := f(p) in Z

1. ans := an

2. For i = n − 1 down to i = 0 do:
(a) ans := ans · p + ai

3. Return ans

This algorithm computes anpn +an−1p
n−1 + · · ·+a0 using n multiplications and

n additions. When the point p is a polynomial g, n polynomial multiplications
and n polynomial additions are performed.

Ranged Horner Composition. We will need a variant of this approach which
we call Ranged Horner’s algorithm for polynomial composition. We restrict the
algorithm to use only l coefficients of f , from ai to ai+�−1, and replace p by a
polynomial g. If one chooses i = 0 and � = n + 1 then this algorithm returns a
complete expansion of h = f(g). The algorithm is always a direct application of
Horner’s method to the degree �−1 polynomial F := ai+�−1x

�−1+· · ·+ai+1x+ ai.

204 W. Hart and A. Novocin

Algorithm 1. Ranged Horner Compose

Input: f, g ∈ Z[x], i, a starting index, and � the length of the ranged
composition.

Output: An expansion of F (g) := ai+�−1g
�−1 + · · · + ai+1g + ai, where F is f

divided by xi without remainder then reduced modulo x�, a shifted truncation of
f .

1. ans := ai+�−1

2. For j = � − 2 down to j = 0 do:
(a) ans := ans · g
(b) ans := ans + ai+j

3. Return ans

Bit-Complexity. We will now outline the bit-complexity analysis of Ranged
Horner Composition.

Theorem 1. Algorithm 1 terminates after O(�2m log (�m)) operations in Z with
a bit-complexity bound of O(�3m2 log (�m)) CPU operations.

Proof. Let us analyze the cost of the kth loop where k = 1, . . . , � − 1. First we
compute the degree and coefficient size of ans in the kth loop.

Lemma 1. At the beginning of the kth loop of step 2 in Algorithm 1 we have
the degree of ans = (k − 1)m and ‖ ans ‖∞≤ 2O(km+(k−1) log(m+1)).

Proof. The degree of ans begins at 0 and increases by m in each loop giving
degree (k − 1)m at the beginning of the kth loop.

Now for an arbitrary loop let’s suppose that ‖ ans ‖∞≤ 2x and ans = cNxN +
· · ·+ c0 where N is the current degree of ans. Recall that g = bmxm + · · · b0 and
‖ g ‖∞≤ 2m. The product ans · g can be written as

s=N+m∑
s=0

xs[
∑

{0≤i≤N,0≤j≤m|s=i+j}
(ci · bj)].

In this form it can be seen that the largest coefficients of ans · g are the sum
of m + 1 numbers of norm ≤ 2m+x. Thus after this loop the coefficients are
boundable by 2x+m+log2(m+1). So the size of the coefficients of ans begin at
m-bits and increase by m + log2(m + 1) finishing the proof of the lemma.

Now using fast polynomial multiplication the bit complexity of loop k is
O(k2m(m + log(m) log(km)) and uses O(km log(km)) operations in Z. Sum-
ming this over k = 1, . . . , � − 1 gives a bit-complexity of O(�3m2 log(�m)) and
O(�2m log(�m)) operations in Z.

Practical Divide-and-Conquer Algorithms for Polynomial Arithmetic 205

1.2 Divide and Conquer Algorithm

In this section we describe the main algorithm for polynomial composition. First
we divide f of degree n into k1 := �(n + 1)/� sub-polynomials of length � for
some experimentally derived (and small) value of � such that:

f := f0 + f1 · x� + f2 · x2� + · · · + fk1−1 · x(k1−1)�.

In the first iteration of the algorithm we compute the k1 compositions, h1,i :=
fi(g) for 0 ≤ i < ki using (Ranged) Horner’s method and we also compute
g�. In the ith iteration we start with g2i−2� and compute the ki := �(ki−1)/2
polynomials: hi,j := hi−1,2j + g2i−2� · hi−1,2j+1 then compute g2i−1�. Thus in
iteration i our target polynomial h = f(g) can be written:

hi,0 + hi,1 · (g2i−1�) + hi,2 · (g2i−1�)2 + · · · + hi,ki−1 · (g2i−1�)ki−1.

In each iteration the number of polynomials is halved while the length of the
polynomials we work with is doubled. We experimentally determined that a value
of � = 4 works well in practice.

Algorithm 2. Polynomial Composition Algorithm
Input: f, g ∈ Z[x]
Output: An expansion of h := f(g)

1. let � := 4, i := 1, and ki := �n+1
�

2. for j = 0, . . . , ki − 1
(a) compute hi,j := Algorithm 1(f, g, j�, �)

3. compute G := g�.
4. while (ki > 1) do:

(a) ki+1 := �ki/2 ;
(b) for j = 0, . . . , ki+1 − 1 do:

i. hi+1,j := hi,2j + hi,2j+1 · G.
ii. clear hi,2j and hi,2j+1

(c) if ki+1 > 1 then G := G2

(d) i := i + 1
5. return h := hi,0

Complexity Analysis

Theorem 2. Algorithm 2 terminates after O(nm log(n) log(mn)) operations in
Z with a bit-complexity bound of O(n2m2 log(nm)) CPU operations.

Proof. Although we chose � = 4 we will make this proof using any constant
value of �. The cost of step 2 is that of �(n + 1)/� calls to Algorithm 1 using �
coefficients. Thus theorem 1 tells us that step 2 costs O(nm log(m)) operations
in Z with bit complexity bound O(nm2 log(m)).

206 W. Hart and A. Novocin

Step 3 involves a constant number of multiplications (or repeated squarings)
of g. By using the same logic as the proof of lemma 1 these multiplications are
of polynomials with degree O(m) and coefficients of O(m + log(m)) bits, this
gives O(m log(m)) operations in Z and bit complexity bound of O(m2 log(m))
for step 3.

In the ith loop of step 4 creating the hi+1,j involves ki+1 polynomial multi-
plications each of degree O(2i−2m�) polynomials with coefficients bounded of
O(2i−1m�) bits (and ki+1 polynomial additions).
This will cost O(ki+12im log(2im)) operations in Z with bit-complexity bound
O(ki+122im2 log(2im)). The cost of the ith iteration of step 4c involves squaring
a polynomial of degree m�2i−1 and whose coefficients are smaller than m�2i.
The cost of this is O(m2i log(m2i)) operations in Z and O(m222i log(2im)) bit
operations. It can be shown without much difficulty that ki ≤ (n + 1)/(� ·
2i−1) + 1. To sum these costs over the O(log(n)) iterations of step 4 gives
O(
∑log(n)

i=1 ki+12im[i + log(m)]) which is O(nm[log(n)2 + log(n) log(m)]) opera-
tions in Z and a bit-complexity bound of O(

∑log(n)
i=1 22im2[i + log(m)]) which

is O(m2n ·
∑log(n)

i=1 [2ii + 2i log(m)]). It is trivial to show via induction that∑k
i=1 2ii = 2 + 2k+1(k − 1). This gives the bit-complexity bound as

O(m2n[n log(n) + n log(m)]) proving the theorem.

1.3 Practical Timings

In this section we present a timing comparison of the main algorithm as imple-
mented in FLINT and MAGMA’s polynomial composition algorithm. These tests
are provided as evidence that our algorithm is indeed practical. These timings
are measured in seconds and were made on a 2400MHz AMD Quad-core Opteron
processor, using gcc version 4.4.1 with the -O2 optimization flag, although the
processes only utilized one of the four cores. Each composition performed is of a
polynomial, f , of length n with randomized coefficients of bit-length ≤ m, and a
polynomial, g, of degree m with randomized coefficients of bit-length ≤ m and
returns an expansion of h = f(g).

We also compared these timings with the function

(mn)2 ln(mn)/(.95 · 109).

Table 1. Divide-and-conquer polynomial composition in FLINT

n\m 20 40 80 160 320 640 1280

20 .0009 .0038 .016 .077 0.41 1.96 8.9
40 .0036 .015 .071 0.40 2.0 9.4
80 0.02 .072 .412 2.09 9.63
160 0.072 0.415 2.1 9.7
320 0.44 2.1 9.7
640 2.05 9.64
1280 9.46

Practical Divide-and-Conquer Algorithms for Polynomial Arithmetic 207

Table 2. Polynomial composition in Magma

n\m 20 40 80 160 320 640 1280

20 .006 .053 .160 .630 2.55 12.47 64.0
40 .04 .32 1.09 4.67 21.7 110
80 .47 2.0 8.52 38.0 196.4
160 3.6 15 70 360
320 28 133 659
640 238 1267
1280 2380

In this case the function accurately models the given timings, in all cases, up
to a factor which varied between 0.71 and 1.29. This model matches our bit-
complexity bound given in Theorem 2.

We compared the MAGMA timings with the function

n3m2 ln(mn)/(2.94 · 109).

This function accurately models the given timings, in all cases, up to a fac-
tor which varied between 0.54 and 1.46. This model matches our estimate for
Horner’s method given by Theorem 1 in the case when � = n.

2 Divide and Conquer Division

In his paper [12], Mulders describes recursive divide-and-conquer type algorithms
for the short product of polynomials (returning only the low degree terms of the
product) and the opposite short product (returning only the higher degree terms).

Suppose two polynomials of length at least N are multiplied, but one only
wishes to compute the terms of the product of degree less than N . We will denote
such a short product by SM(N).

A basic algorithm for computing SM(N) is to compute a full N × N product
using a standard polynomial multiplication algorithm and discard the unwanted
terms. But this is often wasteful. For example, the Karatsuba algorithm breaks
the full product up into three half sized products, but in two of the half sized
products, one again doesn’t require all the terms.

This leads naturally to a recursive Karatsuba-type algorithm where a short
product SM(N) is replaced by one full product with polynomials of half the size,
FM(N/2), and two short products SM(N/2). At the bottom of the recursion,
below some cutoff, the short products are computed using classical multiplica-
tion, computing only the required terms.

Mulders’ algorithm for the short product, denoted SMβ(N) for some param-
eter 1

2 ≤ β ≤ 1, is a generalisation of this technique, also breaking the short
product up into three multiplications. But this time there is a full βN × βN
product FM(βN) and two short products SMβ((1−β)N). The Karatsuba-type
algorithm above, is the special case β = 1

2 .

208 W. Hart and A. Novocin

In general, the recursion for Mulders’ algorithm can be expressed:

SMβ(N) = FM(βN) + 2SMβ((1 − β)N). (1)

This is completely general in that the full multiplications FM(βN) can be
performed using any algorithm for ordinary polynomial multiplication.

When the full products are computed using Karatsuba multiplication, Mulders
derives the optimal value β = 0.694 for his algorithm.

In their paper [8], Hanrot and Zimmermann give a slight variant of Mulders
algorithm in which the original product is split into a full k × k product and
two short (N − k) × (N − k) products, where the cutoff k now depends on N .
Their method gives a significant improvement over Mulders’ original fixed cutoff
k = βN .

Mulders, In section 7 of his paper, gives a brief description of a recursive
divide-and-conquer technique for performing what he calls short division, namely
division of a polynomial of length at most 2n − 1 by a polynomial of length n
without computing a remainder. This algorithm is faster than a long division,
in which one computes a quotient and remainder, and is based on the same
principle as his short multiplication algorithm.

Mulders’ short division algorithm reduces the problem recursively to one long
division, one short multiplication and one short division. As with his short mul-
tiplication algorithm, Mulders uses a fixed cutoff, not depending on the length
of the polynomials.

Mulders reported that the optimal cutoff for his algorithm was very nearly
β = 1/2 and that there was little practical benefit in introducing a different
cutoff.

In this paper we describe a variant of Mulders’ algorithm which uses a vari-
able cutoff in the manner of Hanrot and Zimmerman. In addition, instead of
computing a remainder directly, we compute only the product of the quotient
and divisor (from which the remainder is easily obtained by subtraction from
the dividend). We show that this simple variant of Mulders’ algorithm has very
good performance in practice whilst remaining simple to implement. We call this
algorithm Mulders’ algorithm for simplicity.

We also give a slightly faster variant of this algorithm in which we replace the
full division in Mulders recursion with a third recursive algorithm which returns
only a short product of divisor and quotient. We optimistically call this half full
division.

We provide details of timing experiments below, performed with our imple-
mentation of these algorithms. Our implementation is included in the FLINT
(Fast Library for Number Theory) package.

We compare an implementation Mulders’ algorithm, with parameter β = 1
2 ,

with our improved algorithm (with the same parameter). We then show that
if the parameter is allowed to vary with the size of the polynomials, a further
improvement is possible on some architectures. The optimal parameter can then
often be quite far from β = 1/2.

Practical Divide-and-Conquer Algorithms for Polynomial Arithmetic 209

We compare our short division implementation with the implementations of
polynomial division in the packages NTL [14] and Magma [6].

2.1 Description of the Short Division Algorithm

We assume throughout the following that we have available an algorithm
Mul(f, g) for computing a full product of polynomials. We also require the
classical algorithms for long and short division, Div(f, g) and Div short(f, g)
respectively, returning a quotient q and remainder r (or in the case of short
division, just the quotient) such that f = gq + r.

We also require that we have available algorithms for computing the following
short products:

Algorithm 2.11. Mul short(f, g, n)
Input: Polynomials f =

∑n1
i=0 aix

i and g =
∑n2

j=0 bjx
j and a non-negative

integer n.
Output: The low n terms of the product of f and g, i.e.

∑n−1
k=0 ckxk where

ck =
∑

i+j=k aibj .

Algorithm 2.12. Mul short opp(f, g, n)
Input: As for Mul short.
Output: All terms of the product of f and g except the first n, i.e.

∑n1+n2−1
k=n ckxk

where ck =
∑

i+j=k aibj, if n1 + n2 − 1 ≥ n and 0 otherwise.

Firstly we describe the basic divide-and-conquer type algorithm for doing a
long division. However we do not return the remainder r, but the product of
the divisor and quotient, qg, from which the remainder can be computed as
r = f − gq.

In all of the algorithms below, we always reduce to the case where deg(f) is
m− 1 and deg(g) is n− 1 with m = 2n− 1, so that the quotient also has degree
n − 1. In the case where m > 2n − 1 we can truncate f to length 2n − 1, do a
division with remainder reducing the problem to one with a shorter dividend.
When m < 2n− 1 the quotient will have length l = m−n + 1 and only depends
on the leading 2l − 1 terms of f and the leading l terms of g. We can compute
this using a short division and multiply out and subtract to obtain the remainder
r = f − gq.

Algorithm 2.13. Divide conquer div(f, g)

Input: Polynomials f =
∑m−1

i=0 aix
i and g =

∑n−1
j=0 bjx

j

Output: The quotient q and the full product gq.

1. If n < Cutoff return Div(f, g)
2. If m �= 2n − 1 reduce to the case m = 2n − 1
3. n1 := �n/2 , n2 := n − n1

4. Let b1, b2 be such that g = b1x
n2 + b2 with deg b2 < n2

210 W. Hart and A. Novocin

5. Let b3, b4 be such that g = b3x
n1 + b4 with deg b4 < n1

6. Let a1, a2, a3 be such that f = a1x
n2+n−1 + a2x

n−1 + a3 with deg a2 < n2,
deg a3 < n − 1

7. (q1, b1q1) :=Divide conquer div(a1x
n1−1, b1)

8. bq1 := b1q1x
n2+ Mul(b2, q1) (††)

9. t := a1x
2n2−1 + a2x

n2−1 − bq1 div xn1−n2

10. t′ := t mod x2n2−1

11. (q2, b3q2) := Divide conquer div(t′, b3) (*)
12. bq2 := b3q2x

n1+ Mul(b4, q2) (**)
13. Return q := q1x

n2 + q2, qg := bq3x
n1 + bq4 (†)

It is easy to turn this algorithm into an algorithm for short division, returning
the quotient q only.

Algorithm 2.14. Divide conquer div short(f, g)
Input: As for Divide conquer div.
Output: The quotient q of f and g.

In Divide conquer div(f, g) replace the call to Divide conquer div at (*)
by a call to the function Divide conquer div short, remove the line (**),
replace Div with Div short, replace Mul(b2, q1) at (††) with
Mul short opp(b2, q1, n1 − 1) and return only the quotient q at (†). �

This is our first variant of Mulders’ short division algorithm (with β = 1
2).

We now describe an improved version of this algorithm.
From now on, we assume that we have available an algorithm for classical di-

vision which only returns the lowest n−1 terms of the product of the divisor and
quotient. We call it Div classical half full(f, g) since it returns about half
of the product that our long division returns. The ordinary classical algorithm
for long division can be modified in an obvious way to return this half product.

With this algorithm available we are now able to introduce an algorithm which
we call half full division. As for the half full classical algorithm, this recursive
algorithm performs the same operation as a full division, but only returns the
lowest n − 1 terms of the product of the divisor and quotient.

At the bottom of the recursion, this algorithm does classical half full division
which has fewer operations than a full long division.

We will use this algorithm instead of a full division in our improved version
of Mulders’ division algorithm, thus achieving a faster short division.

Algorithm 2.15. Half full div(f, g)
Input: As for Divide conquer div short.
Output: The quotient q and the low n − 1 terms of the product gq.

1. If m �= 2n − 1 reduce to the case m = 2n − 1
2. If n < Cutoff return Div classical half full(f, g)
3. Let n1 = �n/2 , n2 = n − n1

4. Let b1, b2 be such that g = b1x
n2 + b2 with deg b2 < n2

Practical Divide-and-Conquer Algorithms for Polynomial Arithmetic 211

5. Let b3, b4 be such that g = b3x
n1 + b4 with deg b4 < n1

6. Let a1, a2, a3 be such that f = a1x
n2+n−1 + a2x

n−1 + a3 with deg a2 < n2,
deg a3 < n − 1

7. (q1, b1q1) := Half full div(a1x
n1−1, b1)

8. bq1 := b1q1x
n2+ Mul(b2, q1)

9. t := a1x
2n2−1 + a2x

n2−1 − bq1 div xn1−n2

10. t′ := t mod x2n2−1

11. (q2, b3q2) := Half full div(t′, b3)
12. bq2 := b3q2x

n1+ Mul(b4, q2)
13. Return q := q1x

n2 + q2, qg := bq3x
n1 + bq4

Finally we are able to describe our improved version of Mulders’ short division
algorithm. As in Mulders’ paper we allow the algorithm to split the inputs into
unequal parts, however as per Hanrot and Zimmerman, we will allow the cutoff
to vary with the length of the input polynomial g. For this purpose we define a
parameter k = k(n) whose optimal value will be determined experimentally.

Algorithm 2.16. Divide conquer div short improved(f, g)
Input: As for Divide conquer div short.
Output: The quotient q of f and g.

1. If n < Cutoff return Div short(f, g)
2. If m �= 2n − 1 reduce to the case m = 2n − 1
3. Let n1 = �n/2 + k(n), n2 = n − n1

4. Let b1, b2 be such that g = b1x
n2 + b2 with deg b2 < n2

5. Let b3, b4 be such that g = b3x
n1 + b4 with deg b4 < n1

6. Let a1, a2, a3 be such that f = a1x
n2+n−1 + a2x

n−1 + a3 with deg a2 < n2,
deg a3 < n − 1

7. (q1, b1q1) := Half full div(a1x
n1−1, b1)

8. bq1 := b1q1x
n2+ Mul short opp(b2, q1, n1 − 1)

9. t := a1x
2n2−1 + a2x

n2−1 − bq1 div xn1−n2

10. t′ := t mod x2n2−1

11. q2 := Divide conquer div short improved(t′, b3)
12. Return q := q1x

n2 + q2

2.2 Mulders’ vs Divide-conquer-div-short-improved

We began our timing experiments by comparing times for our first variant of
Mulders’ division algorithm and the improved short division algorithm with
k(n) = 0.

Unless otherwise noted, all our division timings and comparisons in this paper
were performed on a 2.4GHz AMD Opteron Server. Each computation was (au-
tomatically) repeated many times and the lowest timing was recorded in each
case.

Given a length n (degree n−1) and a number of bits b we let f be a polynomial
of length 2n − 1 with uniformly random coefficients of 2b bits and g be a poly-
nomial of length n with uniformly random coefficients of b bits. We computed
the short division of f and g using both algorithms.

212 W. Hart and A. Novocin

Table 3. Comparison of simple and improved Mulders’ variants

n\b 8 16 32 64

64 90.6μs 92.6μs 106μs 123μs
128 266μs 276μs 300μs 346μs
256 758μs 763μs 854μs 964μs
512 2.43ms 2.32ms 2.82ms 3.01ms

n\b 8 16 32 64

64 87.4μs 90.0μs 100μs 117μs
128 243μs 256μs 278μs 328μs
256 714μs 752μs 788μs 975μs
512 1.98ms 1.96ms 2.50ms 2.81ms

Table 4. Short division in Magma and FLINT

n\b 8 16 32 64 128 256 512 1024 2048 4096 8192

32 32.6μs 70.8μs 99.4μs 101μs 124μs 155μs 259μs 574μs 1.62ms 4.58ms 14.0ms
29.0μs 30.0μs 33.4μs 39.4μs 49.1μs 70.8μs 113μs 237μs 597μs 1.60ms 4.63ms

64 162μs 260μs 353μs 394μs 460μs 573μs 960μs 2.20ms 6.59ms 20.0ms 60.0ms
87.4μs 90.0μs 100μs 117μs 150μs 239μs 375μs 741μs 1.80ms 4.80ms 13.7ms

128 767μs 1.03ms 1.36ms 1.45ms 1.78ms 2.28ms 3.90ms 9.33ms 25.5ms 77.5ms
243μs 256μs 278μs 328μs 433μs 711μs 1.12ms 2.21ms 5.27ms 13.4ms

256 3.67ms 4.33ms 5.58ms 6.04ms 7.50ms 10.3ms 16.7ms 37.5ms 107ms
714μs 752μs 788μs 975μs 1.31ms 1.98ms 3.07ms 6.18ms 13.7ms

512 16.0ms 17.5ms 23.3ms 25.5ms 30.0ms 40.0ms 64.0ms 153ms
1.98ms 1.96ms 2.50ms 2.81ms 3.67ms 5.60ms 8.80ms 16.6ms

Table 5. Exact division in NTL, Magma and FLINT

n\b 8 16 32 64 128 256 512 1024 2048 4096 8192

32 43.0μs 43.8μs 49.8μs 76.6μs 145μs 294μs 684μs 1.93ms 5.87ms 20.1ms 73.3ms
23.2μs 49.1μs 82.5μs 92.8μs 106μs 139μs 237μs 533μs 1.57ms 4.59ms 14.0ms
29.1μs 29.0μs 32.0μs 34.8μs 46.3μs 68.0μs 106μs 227μs 558μs 1.57ms 4.57ms

64 104μs 105μs 116μs 176μs 323μs 646μs 1.48ms 4.00ms 12.1ms 40.9ms 148ms
81.1μs 180μs 294μs 340μs 370μs 510μs 905μs 2.10ms 6.12ms 18.3ms 57.5ms
83.3μs 84.4μs 88.1μs 98.5μs 136μs 231μs 360μs 721μs 1.73ms 4.56ms 13.3ms

128 284μs 285μs 306μs 461μs 785μs 1.53ms 3.37ms 8.76ms 28.1ms 84.7ms
310μs 668μs 1.17ms 1.30ms 1.46ms 2.00ms 3.54ms 8.24ms 25.0ms 70.0ms
211μs 212μs 228μs 262μs 376μs 688μs 1.06ms 2.12ms 4.98ms 12.5ms

256 838μs 839μs 880μs 1.33ms 2.11ms 4.00ms 8.35ms 20.6ms 57.8ms
1.19ms 2.66ms 4.50ms 5.17ms 5.92ms 8.00ms 14.7ms 32.9ms 97.5ms
502μs 512μs 553μs 661μs 982μs 1.87ms 2.93ms 5.71ms 13.5ms

512 1.71ms 1.71ms 1.80ms 2.68ms 4.26ms 8.33ms 17.0ms 43.4ms
4.67ms 10.7ms 18.3ms 20.0ms 23.9ms 32.2ms 57.5ms 133ms
1.18ms 1.19ms 1.31ms 1.63ms 2.50ms 5.00ms 7.77ms 15.9ms

Our timings showed that the improved algorithm was marginally faster (up to
23% but on average much less). The biggest improvements are where n is large
and b is small. In the interests of space we omit all but the timings in this range.
Timings for the improved algorithm are shown on the right and those for the
original on the left.

A second timing experiment we performed was to adjust the value of k(n) in
the improved short division algorithm. Whether or not this had an effect proved

Practical Divide-and-Conquer Algorithms for Polynomial Arithmetic 213

to be highly architecture sensitive. On a 1.8GHz AMD K8 machine we found
that if n is the length of g then for 20 < n ≤ 100 the value of k(n) should be
about n/5 and for n ≤ 20 the value of k(n) should be n/4.

However, on a 2.4GHz AMD K10 machine, a value of k(n) = 0 was roughly
optimal for all sizes.

2.3 Comparison with other Implementations

The most important comparison for the purposes of this paper is the comparison
between our variant of Mulders’ algorithm and the polynomial division available
in other packages. For this purpose we compare with the best open source and
the best proprietary packages we are aware of. In the former case we compare
with NTL v5.5.2 and in the latter case with Magma v2.16-7.

Whilst we do not know the algorithm used by Magma, we know that NTL
uses a multimodular approach, performing the division using multiple primes
then recombining with the Chinese Remainder Algorithm. It leverages highly
optimised functions for division over Z/pZ.

Our first comparison is made using random polynomials of lengths 2n−1 and
n respectively, as described in the previous section. This tests the most general
case for our algorithm. NTL does not offer inexact division over Z, thus the first
comparison is with Magma only (the top row in each case).

Finally we compare NTL, Magma and our improved divide-and-conquer algo-
rithm (timing rows in that order) on exact divisions. Here we construct polyno-
mials f, g with the given lengths n and uniformly random coefficients with the
given number of bits b and perform the division h/g where h = f ∗ g.

3 Conclusions

We have provided efficient divide-and-conquer style algorithms for the composi-
tion and division of univariate polynomials over Z.

In the former case, we show that the algorithm is asymptotically fast with
respect to bit complexity, effectively handling coefficient explosion.

In the latter case we have provided two easy to implement variants of Mul-
ders’ algorithm and shown that, at least on modern computers, the divide-and-
conquer approach deserves a closer look, often outperforming other commonly
used methods.

References

1. Bernstein, D.: Multiprecision Multiplication for Mathematicians. In:
Accepted by Advances in Applied Mathematics (2001), find at
http://cr.yp.to/papers.html#m3

2. de Boor, C.: B-Form Basics. Geometric Modeling: Algorithms and New Trends,
pp. 131–148. SIAM, Philadelphia (1987)

http://cr.yp.to/papers.html#m3

214 W. Hart and A. Novocin

3. Bostan, A., Salvy, B.: Fast conversion algorithms for orthogonal polynomials
(preprint)

4. Prautzsch, H., Boehm, W., Paluszny, M.: Bézier and B-Spline Techniques. Springer,
Heidelberg (2002)

5. Brent, R., Kung, H.T.: O((n log n)3/2) Algorithms for composition and reversion of
power series. In: Brent, R., Kung, H.T. (eds.) Analytic Computational Complexity,
pp. 217–225. Academic Press, New York (1975)

6. Cannon, J.J., Bosma, W. (eds.): Handbook of Magma Functions, 2.17th edn.
(2010), http://magma.maths.usyd.edu.au/magma

7. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University
Press, Cambridge (1999)

8. Hanrot, G., Zimmermann, P.: A long note on Mulder’s short product. Journal of
Symbolic Computation 37(3), 391–401 (2004)

9. Hart, W.: Fast Library for Number Theory: an introduction. In: Fukuda, K., van
der Hoeven, J., Joswig, M., Takayama, N. (eds.) ICMS 2010. LNCS, vol. 6327, pp.
88–91. Springer, Heidelberg (2010), http://www.flintlib.org

10. Knuth, D.: The Art of Computer Programming, volume 2: Seminumerical Algo-
rithms, 3rd edn., pp. 486–488. Addison-Wesley, Reading (1997)

11. Liu, W., Mann, S.: An analysis of polynomial composition algorithms, University
of Waterloo Research Report CS-95-24 (1995)

12. Mulders, T.: On Short Multiplications and Divisions. In: AAECC, vol. 11, pp.
69–88 (2000)

13. Pan, V.: Structured matrices and polynomials: unified superfast algorithms, p. 81.
Springer, Heidelberg (2001)

14. Shoup, V.: NTL: A Library for doing Number Theory, open-source library,
http://shoup.net/ntl/

http://magma.maths.usyd.edu.au/magma
http://www.flintlib.org
http://shoup.net/ntl/

Fast and Robust Symbolic Model Order

Reduction with Analog Insydes

Matthias Hauser, Christian Salzig, and Alexander Dreyer

Fraunhofer Institute for Industrial Mathematics (ITWM),
Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany

www.itwm.fraunhofer.de/analog-insydes

Abstract. Nowadays analog circuits become more and more complex.
The growing number of devices hinder to understand the full behavior of
these and new methods are required to support the design. This paper
presents two new methods for handling complex nonlinear analog cir-
cuits which are available in the new release Analog Insydes 2011, the
Mathematica toolbox for symbolic modeling, analysis and reduction of
analog circuits. The transient symbolic model order reduction allows the
approximation of behavioral models keeping static and dynamic proper-
ties. The new solving algorithm for symbolic equation systems based on
sequential equations accelerates the simulation of the reference system as
well as the verification of the reduced models. Furthermore, it increases
the robustness of the solver permitting analyzes of significantly larger
symbolic systems. As example, a voltage controller circuit is reduced
using the introduced methods.

1 Introduction

Modern analog circuits consist of a growing number of elements and their de-
sign processes require many time-consuming simulations to determine whether
the circuit characteristics fulfill the specifications or not. Often, an additional
analysis of the circuits is needed to identify reasons for unexpected effects. The
analysis of such a large circuit is rather difficult since the corresponding describ-
ing system of equations has a large number of terms, so that the characteristic
parts of the behavioral model cannot be seen easily.

To support the design process, we have realized methods for symbolic model
order reduction of behavioral models in the software Analog Insydes [Web],
which is a toolbox of the computer algebra platform Mathematica. The Fraun-
hofer ITWM developed this addon whose new release Analog Insydes 2011
includes the methods presented in the following paragraphs.

Reducing a system of equations to its most important terms leads to a system
of decreased size that approximates the behavior of the original system. After
this step, accelerated simulations can be executed and deeper insights into the
system behavior can be generated.

Due to its interfaces to different simulators, Analog Insydes can import
netlists and simulation data as well as to export behavioral models and simu-
lation data. Thus, Analog Insydes generates reduced behavioral models that

V.P. Gerdt et al. (Eds.): CASC 2011, LNCS 6885, pp. 215–225, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

216 M. Hauser et al.

Fig. 1. Analog Insydes work flow

can be simulated by several simulators using common description languages like
VHDL-AMS (see Fig. 1).

2 Symbolic Model Order Reduction

Starting with the netlist, the model parameters, and the operating point of an
analog circuit Analog Insydes uses symbolic device models to generate the
corresponding symbolic differential-algebraic system of equations (DAE):

f(ẋ, x, t) = 0 (1)

Here, f : Rn × Rn × R → Rn denotes a model function, x : R → Rn the state
vector, and t the time. Note that each equation is formulated as a sum of terms
that are variables, parameters or linear and nonlinear expressions of them. To
reduce this DAE the user has to specify additional conditions for fixing desired
properties of the reduced model: the design point, the operating point, the mode
(AC, DC or transient), and the input sources of the reduced model. Additionally
a custom maximal error limit has to be set to guarantee a good approximation
of the original system.

In the following lines we give a short description of the idea of the model order
reduction (see Fig. 2):

Symbolic Model Order Reduction 217

Fig. 2. Workflow of a symbolic model reduction in Analog Insydes

First the algorithm calculates reference data of the original system (1). It
will be used to verify the reduced system during the reduction process to check
the occuring error. The reference consists of the simulation result of the system:
in DC mode it is a list of DC operating points, in transient mode it is a list of
transient curves depending on different input sources [Wichmann04].

In the next step a ranking of the terms of the circuit equations is performed.
Here, the influence of the cancelation of single terms on the output behavior of
the system is determined. This leads to an estimation which terms can be deleted
without violating the predefined error limit. After removing one term from the
original system the difference between the solution of the remaining ¨reduced¨
system and the reference is estimated. To determine the difference the user can
choose between various error functions. This error is taken as ranking value.

Next, a clustering of the ranking result follows. All terms with similar rank-
ing values are collected in clusters of terms to increase the efficiency of the
following model reduction.

During the reduction step the procedure cancels the cluster of the smallest
ranking values from the original system (1) and verifies the resulting system. If
the resulting error crosses the pre-defined error limit the reduction is undone
and sub-clusters are tested successively. Otherwise the reduction is kept and
the next cluster with the smallest ranking values is taken. After testing all clus-
ters, a reduced behavioral model is obtained which approximates the behavior of

218 M. Hauser et al.

the original system within the given error-bounds. Note that analogous to the
ranking step, many error functions can be used to determine the error made by
canceling a cluster of terms in the reduction step.

2.1 Transient Symbolic Model Order Reduction

For approximating static systems we may only use the values of the system
variables (like currents or voltages) in different operating points as circuit char-
acteristics. To get insights in the transient behavior this is not sufficient. To
keep much more of the dynamic circuit characteristics the introduced model
order reduction method has to be extended for transient systems.

The transient model order reduction yields a reduced model that approximates
certain static and dynamic behaviors of the original system. Here, the state
variables, like the values of currents and voltages as well as the dynamic behavior
of these (e. g. rise or reaction times) can be taken as circuit characteristics that
are approximated.

Both, ranking and reduction step, have to verify the reduced system. They
compare the resulting system behavior to the reference from the first step of the
model reduction workflow. To rate the difference of characteristics between the
reduced and the original system we had to design special error functions.

To compare just state variables it is sufficient to apply standard distance
measures to the difference of solution curves. Denote the reference curve as ref,
the solution curve of the reduced system as red, the distance can be defined in
the p-norm as

||ref − red||p =
(∫ tend

t0

|ref(t) − red(t)|p dt

)1/p

(2)

where p ∈ N and ref and red are defined in the interval [t0, tend].
Using the maximum norm we get

||ref − red||max = max
t∈[t0,tend]

|ref(t) − red(t)| . (3)

Comparing dynamic circuit characteristics requires special error functions.
For example, if the time a circuit needs to react on a unit step input is

important, we use the function

error(ref , red) = |T (ref) − T (red)| , (4)

where the function T outputs the smallest time t∗ for that holds that the output
lies in the interval [1 − ε, 1 + ε] for ε ∈ R and all times t ≥ t∗ (see Fig. 3).

In mathematical notation:

T (s) = min{ t̂ | s(t) ∈ [1 − ε, 1 + ε] ∀ t ≥ t̂} (5)

for an output function s : R → R.

Symbolic Model Order Reduction 219

Fig. 3. Output of a circuit current from a step input

To analyze these effects, full transient and therefore really time consuming
simulations are needed. Since the reference and reduction step contain a lot of
these transient simulations, we introduce a new idea for saving simulation time.

Therefore, we can use a simplified simulation function to approximate the
original solution in the ranking step. Due to the fact that the final error is
checked in the reduction step at the end of the model order reduction method
the pre-defined error limit is not exceeded anyway. However, the errors resulting
from this simplified simulation function in the ranking step have an effect on the
production of the clusters and thus on the choice which terms can be canceled
without violating the error limit.

3 Numerical Advantages due to Sequential Equations

Considering the introduced model reduction workflow it is evident that simula-
tion results of the system are needed frequently. Here in the reference and final
reduction step many simulations are made to get this data. For simulating more
quickly we present a new method of sequential equations. Let us assume that we
can split the state variable x : R → Rn into

xseq = (xseq1 , . . . , xseqnseq
) ∈ Rnseq , (6)

xsim = (xsim1 , . . . , xsimnsim
) ∈ Rnsim

with n = nseq + nsim and define

xi
seq = (xseq1 , . . . , xseqi) ∈ Ri

220 M. Hauser et al.

for all i ∈ {1, . . . , nseq}. Furthermore, assume that we can divide the system
of equations (1) into sequential equations fseqi and the remaining simultaneous
equations fsim such that the following holds

fseqi(ẋi−1
seq , ẋsim, xi

seq , xsim, t) =
xseqi − gseqi(ẋi−1

seq , ẋsim, xi−1
seq , xsim, t) = 0 (7)

where

gseqi : Ri−1 × Rnsim × Ri−1 × Rnsim × R → R

for all i ∈ {1, . . . , nseq}. Then it holds for the remaining simultaneous equations
that

fsim(ẋseq , ẋsim, xseq , xsim, t) = 0 (8)

with

fsim : Rnseq × Rnsim × Rnseq × Rnsim × R → Rnsim .

Note that there can be more than one sequential block in the full system of
equations [Platte06]. It is worth mentioning that the partition of equation (6)
has to be chosen that equation (7) is fulfilled. In our application area of analog
circuit analysis this is not the restriction at all, but this comes naturally from
the structure of circuit equations.

In the case, that the equations contain derivatives of sequential variables, these
are substituted by auxiliary variables. The latter are defined by a corresponding
finite difference equation based on the integration method used in the numerical
step. These additional equations are put to the simultaneous equation set.

Consider the following example equations:

x1 − x2
5 = 0 (9)

x2 −
(
ẋ4 +

x1

2

)
= 0 (10)

x3 −
(

x2

x2
1 + 1

)
= 0 (11)

√
x4 + x4 · x1 · x5 + ẋ5 − sin(t) = 0 (12)
x5 · ex1+x4 − 4(x3

5 · x4 − x2) = 0 (13)

Here, the equations (9, 10, 11), and the corresponding variables x1, . . . , x3 fulfill
the sequential form (7). Thus they are called sequential. The remaining equations
(12, 13) and the variables x4, x5 are then defined as simultaneous.

Using this, we can insert now the equations (9, 10, 11) repeatedly into the re-
maining equations (12, 13) until the two equations depend only on the
simultaneous variables x4, x5:

√
x4 + x4 · x3

5 + ẋ5 − sin(t) = 0
x5 · ex2

5+x4 − 4(x3
5 · x4 − ẋ4 − x2

5
2) = 0

(14)

Symbolic Model Order Reduction 221

This means that we have to solve this system for two variables and recover the
variables x1, . . . , x3 by using the equations (9, 10, 11) and the solution of the
resulting system of equations (14). Summarizing, we have to do the following:

1. insert the sequential equations (7) into the simultaneous ones (8) until they
depend only on the simultaneous variables xsim,

2. solve the resulting equations for the simultaneous variables xsim (which also
yields its derivations ẋsim),

3. compute the values for the sequential variables xseq using the values of the si-
multaneous variables xsim computed before and the sequential equations (7).

We only have to simulate the nsim × nsim system of equations to solve the full
system (1). Note that the number of entries of the ¨reduced¨ jacobian (n2

sim) is
much smaller than the number of entries of the original one (n2) which results in
a much faster simulation of the system. Furthermore, we achieve a significantly
better convergence of the simulation algorithms due to the decreased size of
the dynamical part. Using the idea of sequential equations one can simulate
industrial-sized systems.

4 Example

As industrial relevant example of an analog electronic circuit a voltage controller
consisting of 14 MOSFETs, one resistor and one capacitance is taken. For simu-
lating, the voltage controller circuit is connected to a testbench consisting of an
input source, supply sources, and one RC-load.

After loading the netlist and model parameters to Analog Insydes a tran-
sient nonlinear symbolic system of equations of order 404 is generated (Fig. 5).
Note that the corresponding circuit equations of size 404 × 404 have only 372
sequential equations. Thus the system which is solved internally consisting of
the simultaneous equations is just of size 32 × 32 which leads to a stable and
fast numerical simulation. Simulating the system takes 8.715s using a C-based
simulator that uses the idea of sequential equations (see Sect. 3).

To accelerate the simulation and to delete all unimportant parts of the system
of equations the symbolic model order reduction of Analog Insydes is run. The
voltage controlling characteristic of the circuit shall be preserved. That means,
that the output voltage Vout equals zero if the input voltage Vin exceeds a limit
Vlim. Otherwise the output voltage is larger than zero.

In mathematical notation:

if Vin < Vlim

then Vout = 2.81V

else Vout = 0V

To obtain this behavior, we take a ramp, that crosses the voltage limit Vlim

where the voltage controller switches its state, as input voltage. As error func-
tions the maximum norm (3), the L2-norm (2) and a self-defined error function

222 M. Hauser et al.

3
3

Vlim Vout

Vdd

3

3

Iref

Vin

Fig. 4. Schematics of the voltage controller circuit

Equations : 404 �100 ��

Variables : 404 �100 ��

Derivative terms : 23 �100 ��

Sums in levels : �2517 �100 ��, 985 �100 ���

Simulation time : 8.715027 s �100 ��

Fig. 5. Data of the full system of the voltage controller

(4) are taken. Note that here the function T returns the time t∗ where the voltage
controller switches the state, i. e. where the output function jumps from 2.81V
to 0V.

Fig. 6, 7 and 8 show the data of the resulting reduced systems. The order of
these systems is reduced to 48%–50% of the original value and the number of
terms in level 0 to 27%–31%. The resulting simulation time is then 2.48s–2.65s,
which is about 30% of the simulation time of the original system.

An easily interpretable result is that the procedure reduces the number of
derivatives occuring in the system of equations from 23 to 2 or 3, respectively.
Thereby, only those derivatives which correspond to the voltages of the capaci-
tances of the voltage controller and the testbench are kept. Thus all derivatives
used to model the MOSFETs (BSIM3v3, e. g. instrinsic charges) are deleted
since the effect of these on the system behavior in this setting is too small.
Here Analog Insydes enhances the insight into the system behavior thanks to
the symbolic modeling of the behavioral model and the symbolic approximation
methods.

Figure 9 shows the output behavior of the reference and the reduced systems
based on the three error functions (red.max = maximum norm, red.L2 =L2-norm,
red.t* = self-defined switching time error function).

Symbolic Model Order Reduction 223

Equations : 202 �50 ��

Variables : 202 �50 ��

Derivative terms : 3 �13 ��

Sums in levels : �771 �30.6 ��, 773 �78.5 ���

Simulation time : 2.656573 s �30.5 ��

Fig. 6. Data of the reduced system using the max norm

Equations : 198 �49 ��

Variables : 198 �49 ��

Derivative terms : 2 �8.7 ��

Sums in levels : �710 �28.2 ��, 730 �74.1 ���

Simulation time : 2.617357 s �30 ��

Fig. 7. Data of the reduced system using the L2-norm

Equations : 195 �48.3 ��

Variables : 195 �48.3 ��

Derivative terms : 2 �8.7 ��

Sums in levels : �696 �27.6 ��, 717 �72.8 ���

Variables : 195

Simulation time : 2.480027 �28.45 ��

Fig. 8. Data of the reduced system using the self-defined switching time error function

The output of the reduced system of size 202 corresponding to the maximums
norm is very similar to the simulation result of the original system. Note that
if the output of the reduced system red would jump from ”on” (2.81V) to ”off”
(0V) a little bit later than the reference ref, the resulting error |ref(·) − red(·)|
between the two output curves is large at this jump time. That means that the
maximum error function (3) would lead to a large error that implies that this
reduction is not allowed although there is only a small time delay in the jump
time. To avoid these problems we used the second error function (L2-norm).

The system reduced with respect to the L2-norm is smaller than the previous
ones (198 equations, especially only 2 derivative terms). Considering again Fig. 9
shows that the freedom, the L2-norm implies, was utilized. Although the descent
of the output curve is more steep, the qualitative behavior of the system output
is kept. To ensure that only the qualitative behavior of the original system is
reproduced it is sufficient to use the third error function. It guarantees that the
time point of state switching of the voltage controller is approximated and leads
to a further reduction. The resulting model is of size 195 × 195.

224 M. Hauser et al.

0.045 0.050 0.055 0.060

t
�s�

0.5

1.0

1.5

2.0

2.5

Vout
�V�

red. t�

red. L2

red. max

reference

Fig. 9. Plot of the output of the original and the reduced systems

5 Conclusion

This contribution presented methods of the new release Analog Insydes 2011,
the toolbox of Mathematica for modeling, analysis and reduction of analog
circuits. The main focus laid on the extension of symbolic model order reduction
methods to transient systems. The generated reduced transient systems keep
static and dynamic circuit characteristics. This results in faster simulations and
increased insights into the system behavior which supports the design of modern
analog circuits.

Furthermore, accelerated and more robust simulations needed for complex
error estimation tasks can be achieved by the idea of sequential equations. The
introduced methods have been demonstrated on an example circuit to highlight
the benefit of their usage and show the effect of different error functions.

References

[Ciccazzo08] Ciccazzo, A., Halfmann, T., Marotta, A., Rinaudo, S., Venturi, A.: In-
troduction of Symbolic Simplified Expressions in Circuit Optimization.
In: Minisymposium: Optimization and Model Order Reduction in Cir-
cuit Design, The European Consortium For Mathematics In Industry
(ECMI 2008), University College London, UK (2008)

Symbolic Model Order Reduction 225

[Halfmann08] Halfmann, T., Broz, J., Knoth, C., Platte, D., Rotter, P.: Generation
of efficient behavioral models using model compilation and model re-
duction techniques. In: Proc. Xth International Workshop on Symbolic
and Numerical Methods, Modeling and Applications to Circuit Design
(SMACD 2008), Erfurt (2008)

[Platte06] Platte, D., Sommer, R., Broz, J., Dreyer, A., Halfmann, T., Barke, E.:
Automatische nichtlineare Verhaltensmodellgenerierung mit sequen-
tieller Gleichungsstruktur. In: 9. ITG/GMM-Fachtagung Analog 2006:
Entwicklung von Analogschaltungen mit CAE-Methoden (ANALOG
2006), Dresden (2006)

[Platte08] Platte, D.: Simulation Efficiency of Analog Behavioral Models - Anal-
yses and Improvements, Dissertation, Cuvillier Verlag Göttingen (July
2008)

[Salzig10] Salzig, C., Hauser, M.: Design of robust electronic circuits for yield op-
timization. In: XIth International Workshop on Symbolic and Numer-
ical Methods, Modeling and Applications to Circuit Design (SM2ACD
2010), Tunis-Gammarth, Tunesia (October 2010)

[Web] Analog Insydes ”the INtelligent SYmbolic DEsign System for analog
circuits”, the Mathematica toolbox for design, analysis and reduction
of analog circuits, http://www.analog-insydes.com

[Wichmann04] Wichmann, T.: ”Symbolische Reduktionsverfahren für nichtlineare
DAE-Systeme”. PHD Fraunhofer ITWM, Kaiserslautern (2004)

http://www.analog-insydes.com

On Invariant Manifolds of Lagrange Systems

Valentin Irtegov and Tatyana Titorenko

Institute for System Dynamics and Control Theory SB RAS,
134, Lermontov str., Irkutsk, 664033, Russia

irteg@icc.ru

Abstract. This paper is a continuation of the previous work [1]. In the
present paper we propose a new approach for obtaining and qualitative
analysis of invariant manifolds of Lagrange systems, which possess cyclic
first integrals. The main idea consists in the use of “extended” charac-
teristic functions. The proposed approach is demonstrated by examples
of concrete mechanical systems. The computer algebra system (CAS)
“Mathematica” is applied for computations.

1 Introduction

A series of mechanical problems, for example, such as finding stationary sets
and analysing their stability by the Routh–Lyapunov method, investigation of
bifurcations and so on, is reduced to algebraic problems. The latter allows one
to apply effectively the computer algebra methods and tools in solving these
problems.

This paper considers the problem of obtaining invariant manifolds (IMs) for
nonlinear conservative Lagrange systems with cyclic coordinates, which by means
of the Legendre transformation are reduced to the Routh systems. The resulted
Routh systems are smaller in dimension than the corresponding Lagrange sys-
tems. We propose a new approach for deriving and analysing IMs of such systems.
This approach is based on the use of the “extended” Routh functions. The lat-
ter reduces the above problem to an algebraic problem of finding an unknown
function depending on positional coordinates.

We demonstrate our technique by examples of analysis of concrete mechanical
systems. One of the Lagrange systems under consideration has, in our opinion,
interesting properties. It can be reduced to the linear Routh system by the Leg-
endre transformation. The second example concerns the Clebsh–Tisserand–Brun
problem. In this case, the Routh function is a nonlinear one. Such a choice of
examples allows one to demonstrate some possibilities of the technique proposed
and to reveal its specificities.

We used the computer algebra tools for performing direct computations and
for conducting some computational experiments.

2 The Case of the Linear Routh System

In [1], a special class of the nonlinear conservative Lagrange systems with cyclic
first integrals has been found. These systems are reduced to the linear Routh

V.P. Gerdt et al. (Eds.): CASC 2011, LNCS 6885, pp. 226–238, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

On Invariant Manifolds of Lagrange Systems 227

systems of the general type (see [1]) by means of the Legendre transformation.
Let us consider such a system to demonstrate our approach.

We shall consider the Lagrange system with one cyclic q1 and two positional
coordinates q2, q3

2L =
1

(n1 + (a1q2 + b1q3)2)
q̇2
1 + a0q̇

2
2 + c0q̇

2
3 − (bq2

2 + cq2
3). (1)

This system admits the first integral

∂L

∂q̇1
=

1
(n1 + (a1q2 + b1q3)2)

q̇1 = p = const. (2)

Here a0, a1, b, b1, c, c0, c1, n1 are some constants.
Let us construct the Routh function

R = L− pq̇1 =
1
2
[a0q̇

2
2 + c0q̇

2
3 − (bq2

2 + cq2
3) − p2(n1 + (a1q2 + b1q3)2)]

corresponding to L. This function is quadratic in the velocities and the coordi-
nates.

Next we construct the “extended” Routh function. To this end, we add the
full derivative of a function f(q2, q3) to R

R̃ = R + p (
∂f

∂q2
q̇2 +

∂f

∂q3
q̇3),

where f(q2, q3) is some unknown function, which should be determined.
The Lagrangian corresponding to R̃ can easily be reconstructed [1]. It writes

2L̃ = a0q̇
2
2 + c0q̇

2
3 +

1
(n1 + (a1q2 + b1q3)2)

[q̇1 +
∂f

∂q2
q̇2 +

∂f

∂q3
q̇3]2

−(bq2
2 + cq2

3). (3)

Comparing the above expressions for R̃ and for L̃ enables us to do the following
conclusion.

Statement. Adding the full derivative of a function f(q2, q3) multiplied by p
(where p is the constant of the cyclic integral) to the function R is equivalent
to adding the same derivative to the cyclic velocity of the function L, which
corresponds to R.

The Routh equations, which are the same for R and R̃, have the form

d

dt

(∂R
∂q̇2

)
− ∂R

∂q2
= a0q̈2 + a1p

2(a1q2 + b1q3) + bq2 = 0,

d

dt

(∂R
∂q̇3

)
− ∂R

∂q3
= c0q̈3 + b1p

2(a1q2 + b1q3) + cq3 = 0. (4)

Let us state the problem to find the invariant manifolds of equations (4) with
the aid of the “extended” function R̃.

228 V. Irtegov and T. Titorenko

For this purpose, according to the Routh–Lyapunov method we write down
the stationary conditions R̃ with respect to the phase variables

∂R̃

∂q̇2
= a0q̇2 + p

∂f

∂q2
= 0,

∂R̃

∂q̇3
= c0q̇3 + p

∂f

∂q3
= 0,

∂R̃

∂q2
= p (

∂2f

∂q2
2

q̇2 +
∂2f

∂q2∂q3
q̇3) − bq2 − p2a1(a1q2 + b1q3) = 0,

∂R̃

∂q3
= p (

∂2f

∂q2∂q3
q̇2 +

∂2f

∂q2
3

q̇3) − cq3 − p2b1(a1q2 + b1q3) = 0. (5)

The solutions of equations (5) allow one to determine both the stationary so-
lutions and the IMs of differential equations (4), which correspond to the “ex-
tended” Routh function R̃. We take interest in the IMs. To this end, we have to
consider the cases when equations (5) are dependent.

Let us eliminate the velocities from last two equations (5) with the aid of the
first two equations. As a result, we have the following conditions of degeneration
for system (5)

∂R̂

∂q2
= −p2(

1
a0

∂2f

∂q2
2

∂f

∂q2
+

1
c0

∂2f

∂q2∂q3

∂f

∂q3
+ a1(a1q2 + b1q3)) − bq2 = 0,

∂R̂

∂q3
= −p2(

1
a0

∂2f

∂q2∂q3

∂f

∂q2
+

1
c0

∂2f

∂q2
3

∂f

∂q3
+ b1(a1q2 + b1q3)) − cq3 = 0. (6)

Here R̂ is the function R̃, in which the generalized velocities are eliminated with
the aid of equations (5).

The obtained conditions can be considered as partial differential equations for
finding the function f(q2, q3). It can be easily shown that these equations are
also the partial derivatives of the Hamilton function (corresponding to the Routh
function R), in which the generalized impulses are replaced by the derivatives
of the function f(q2, q3) with respect to the generalized coordinates. Having
denoted this function by Ĥ , we can write equations (6) as follows

∂Ĥ

∂q2
= p2

(1
a0

∂2f

∂q2
2

∂f

∂q2
+

1
c0

∂2f

∂q2∂q3

∂f

∂q3
+ a1(a1q2 + b1q3)

)
+ bq2 = 0,

∂Ĥ

∂q3
= p2

(1
a0

∂2f

∂q2∂q3

∂f

∂q2
+

1
c0

∂2f

∂q2
3

∂f

∂q3
+ b1(a1q2 + b1q3)

)
+ cq3 = 0. (7)

Such a PDE system, which can be used here to find the function f(q2, q3), is
usually called the Hamilton–Jacobi system [2]. System (7) is equivalent to the
Hamilton–Jacobi equation, which, in the given case, writes

2Ĥ
(
q2, q3,

∂f

∂q2
,
∂f

∂q3

)
= p2

[1
a0

(∂f

∂q2

)2

+
1
c0

(∂f

∂q3

)2

+ (a1q2 + b1q3)2
]

−(bq2
2 + cq2

3) = 0. (8)

On Invariant Manifolds of Lagrange Systems 229

By direct computation we can show that the quadratic form

2f(q2, q3) = c1q
2
2 + 2c2q2q3 + c3q

2
3 (9)

is one of solutions of equations (7) (and also (8)) for the defined values of
constants c1, c2, c3.

Substitute the derivatives of quadratic form (9) into equations (7) (or (8))
and equate the coefficients of the generalized coordinates q2, q3 in the obtained
expressions to zero. As a result, we have the system of the quadratic equations(

c1
a0

)2

+
(

c2√
a0c0

)2

= −a2
1p

2 + b

a0p2
,

(
c2√
a0c0

)2

+
(
c3
c0

)2

= −b21p
2 + c

c0p2
,

c2√
a0c0

(
c1
a0

+
c3
c0

)
= − b1a1√

a0c0
.

for finding c1, c2, and c3.
Under the following denotations

c1
a0

= x,
c3
c0

= z,
c2√
a0c0

= y, −a2
1p

2 + b

a0p2
= A, −b21p

2 + c

c0p2
= B, − b1a1√

a0c0
= D,

the latter system writes

x2 + y2 = A, y2 + z2 = B, y(x + z) = D. (10)

Equations (10) are reduced by means of the Gröbner bases method to the fol-
lowing system of equations

[(A−B)2 + 4D2]z4+ [2(A− 3B)D2− 2(A−B)2B]z2+ [(B −A)B + D2]2 = 0,
2D[(B−A)B + D2]y + [(A−B)2+ 4D2]z3+ [(A−5B)D2− (A−B)2B]z = 0,
2D2[(B−A)B + D2]x− [4(B−A)D2− (A−B)3]z3− [(A−B)3B − (A− 3B)
×(A−B)D2 + 2D4]z = 0,

which has four solutions

x = ± (A + Ā)
(A + B + 2Ā)

, y = ± D

(A + B + 2Ā)
, z = ± (B + Ā)

(A + B + 2Ā)
;

x = ± (A− Ā)
(A + B − 2Ā)

, y = ± D

(A + B − 2Ā)
, z = ± (B − Ā)

(A + B − 2Ā)
.

Here Ā =
√
AB −D2.

By IMs definition, it can easily be verified that first two stationary equations
(5) – for each found set of values c1, c2, c3 – define the invariant manifolds of
Routh equations (4). These IMs can be “lifted up” into the phase space of
Lagrange system (1). For this purpose, it is necessary to add the corresponding
cyclic integral to the IMs equations.

Analogously, the manifolds, which were obtained for the Routh equations,
can be “lifted up” into the phase space of Lagrange system (3). In this case, the
unknowns c1, c2, c3 of the Lagrange function should be replaced by the corre-
sponding found values. Here the cyclic integral corresponding to the function L̃
should be added to the IMs equations.

230 V. Irtegov and T. Titorenko

2.1 Investigation of Stability of the Invariant Manifolds

The “extended” Routh functions, which assume a stationary value on the IMs
obtained with the aid of above technique, can be used as Lyapunov’s functions
for the investigation of stability of these IMs by the Routh–Lyapunov method.

To this end, let us write down the equations of one of the found IMs in terms
of the initial parameters

√
a0q̇2 +

[
(
√
c0(a2

1p
2 + b) −√

a0ρ)q2 +
√
c0a1b1p

2q3

]
σ = 0,

√
c0q̇3 +

[√
a0a1b1p

2q2 + (
√
a0(b21p

2 + c) −√
c0ρ)q3

]
σ = 0,

where

ρ =
√
bc + p2(ca2

1 + bb21), σ = [2
√
a0c0ρ− c0(a2

1p
2 + b) − a0(b21p

2 + c)]−1/2.

The equations of the perturbed motion, which have been derived in the neigh-
borhood of the IM, are

ẏ1 =
[
(c0(a2

1p
2 + b) −√

a0c0ρ)y1 + a0a1b1p
2y2

]
(a0c0)−1/2 σ,

ẏ2 =
[
c0a1b1p

2y1 + (a0(b21p
2 + c) −√

a0c0ρ)y2

]
(a0c0)−1/2 σ.

Here y1, y2 are deviations of the perturbed solution from the unperturbed one.
In the deviations y1, y2 the “extended” Routh function writes

2ΔR̃ =
y2
1

a0
+

y2
2

c0
− p2n1.

Having computed the derivative of the latter expression due to the equations of
the perturbed motion, we have

d

dt
ΔR̃ = Ω

[
c
3/2
0

(√
c0(a2

1p
2 + b) −√

a0ρ
)
y2
1 + 2a0c0a1b1y1y2 + a

3/2
0

(√
a0(b21p

2

+c) −√
c0ρ)

)
y2
2

]
,

where Ω = [a3
0c

3
0(2

√
a0c0ρ− ca0 − bc0 − p2(a0b

2
1 + c0a

2
1))]−1/2.

The following conditions a0 > 0, c0 > 0 hold by virtue of the positive kinetic
energy of the system under consideration. Hence, the function ΔR̃ + p2n1 is
the positive definite one. Its derivative dΔR̃/dt is negative definite when the
following conditions

a1 �= 0, b1 �= 0, p �= 0, b + b21 p
2 < 0, c +

a2
1 b p

2

b + b21 p
2
< 0

hold. Consequently, the invariant manifold under investigation is asymptotically
stable under above conditions and for the defined values of p.

On Invariant Manifolds of Lagrange Systems 231

2.2 On Lagrange Systems with n > 2 Positional Coordinates

Now, let us discuss an efficiency of our technique for the n-dimensional Lagrange
systems of above type.

We have conducted a series of computational experiments for the Lagrange
systems with one cyclic and n = 3, . . . , 10 positional coordinates. We can assert
that the problem of finding the IMs for the Lagrange systems with n > 2 posi-
tional coordinates can be reduced (as well as the case when n = 2) to solving the
system of algebraic quadratic equations of type (10). The complexity consists
in solving these equations, the number of which depends on the number of the

system positional coordinates. The number of such equations is n+
(

2
n

)
, where(

2
n

)
is a binomial coefficient.

Let us consider in support of the above reasoning the Lagrange system with
one cyclic q1 and three positional q2, q3, q4 coordinates

2L =
q̇2
1

n1 + (a1q2 + b1q3 + c1q4)2
+ a0q̇

2
2 + c0q̇

2
3 + b0q̇

2
4 − (bq2

2 + cq2
3 + aq2

4). (11)

In this case, the cyclic integral, the Routh function and the “extended” Routh
function write

∂L

∂q̇1
=

q̇1
n1 + (a1q2 + b1q3 + c1q4)2

= p = const, (12)

2R = L− pq̇1 = a0q̇
2
2 + c0q̇

2
3 + b0q̇

2
4 − (bq2

2 + cq2
3 + aq2

4) − p2(n1 + (a1q2

+b1q3 + c1q4)2), (13)

R̃ = R + p (
∂f

∂q2
q̇2 +

∂f

∂q3
q̇3 +

∂f

∂q4
q̇4), (14)

respectively. Here a0, a1, b, b0, b1, c, c0, c1, n1 are some constants.
The Lagrangian corresponding to R̃ has the form

2L̃ = a0q̇
2
2 + c0q̇

2
3 + b0q̇

2
4 +

1
(n1 + (a1q2 + b1q3 + c1q4)2)

[q̇1 +
∂f

∂q2
q̇2 +

∂f

∂q3
q̇3

+
∂f

∂q4
q̇4]2 − (bq2

2 + cq2
3 + aq2

4). (15)

Also as above, we shall look for the unknown function f(q2, q3, q4) in the form

2f(q2, q3, q4) = d1q
2
2 + d2q

2
3 + d3q

2
4 + d4q2q3 + d5q2q4 + d6q3q4, (16)

where di are some constants, which should be determined.
Write down the stationary conditions R̃ with respect to the phase variables

∂R̃

∂q̇2
= a0q̇2 + p

∂f

∂q2
= 0,

∂R̃

∂q̇3
= c0q̇3 + p

∂f

∂q3
= 0,

∂R̃

∂q̇4
= b0q̇4 + p

∂f

∂q4
= 0,

232 V. Irtegov and T. Titorenko

∂R̃

∂q2
= p (

∂2f

∂q2
2

q̇2 +
∂2f

∂q2∂q3
q̇3 +

∂2f

∂q2∂q4
q̇4) − bq2 − p2a1(a1q2 + b1q3 + c1q4) = 0,

∂R̃

∂q3
= p (

∂2f

∂q2∂q3
q̇2 +

∂2f

∂q2
3

q̇3 +
∂2f

∂q3∂q4
q̇4) − cq3 − p2b1(a1q2 + b1q3 + c1q4) = 0,

∂R̃

∂q4
= p (

∂2f

∂q2∂q4
q̇2 +

∂2f

∂q3∂q4
q̇3 +

∂2f

∂q2
4

q̇4) − aq4 − p2c1(a1q2 + b1q3

+c1q4) = 0 (17)

and require that the obtained equations be dependent. To this end, we eliminate
the velocities from the last three equations with the aid of the first three equa-
tions. As a result, we have the following conditions of degeneration for system
(17)

∂R̂

∂q2
= −p2(

1
a0

∂2f

∂q2
2

∂f

∂q2
+

1
c0

∂2f

∂q2∂q3

∂f

∂q3
+

1
b0

∂2f

∂q2∂q4

∂f

∂q4

+a1(a1q2 + b1q3 + c1q4)) − bq2 = 0,

∂R̂

∂q3
= −p2(

1
a0

∂2f

∂q2∂q3

∂f

∂q2
+

1
c0

∂2f

∂q2
3

∂f

∂q3
+

1
b0

∂2f

∂q3∂q4

∂f

∂q4

+b1(a1q2 + b1q3 + c1q4)) − cq3 = 0,

∂R̂

∂q4
= −p2(

1
a0

∂2f

∂q2∂q4

∂f

∂q2
+

1
c0

∂2f

∂q3∂q4

∂f

∂q3
+

1
b0

∂2f

∂q2
4

∂f

∂q4

+c1(a1q2 + b1q3 + c1q4)) − aq4 = 0. (18)

Also as above, we can consider the latter system as a PDE system for finding
the function f(q2, q3, q4).

Having substituted the derivatives of quadratic form (16) into equations (18)
and equated the coefficients of the generalized coordinates q2, q3, q4 in the ob-
tained expressions to zero, we have a system of quadratic equations for finding
the unknowns di. This system under following denotations

d1

a0
= x1,

d2

c0
= y1,

d3

b0
= z1,

d4√
a0c0

= x2,
d5√
a0b0

= z2,
d6√
b0c0

= y2,
a1b1√
a0c0

= A1,

b1c1√
b0c0

= B1,
a1c1√
a0b0

= C1,
b + a2

1p
2

a0p2
= A2,

c + b21p
2

c0p2
= B2,

a + c21p
2

b0p2
= C2 (19)

writes

x1x2 + x2y1 + y2z2 + A1 = 0, x2
2 + y2

1 + y2
2 + B2 = 0,

y1y2 + y2z1 + x2z2 + B1 = 0, x2
1 + x2

2 + z2
2 + A2 = 0,

x2y2 + x1z2 + z1z2 + C1 = 0, y2
2 + z2

1 + z2
2 + C2 = 0. (20)

Thus, in the case under consideration, the problem of finding the IMs, which cor-
respond to the stationary values of Routh function R̃ (14), is reduced to solving

On Invariant Manifolds of Lagrange Systems 233

the system of six algebraic quadratic equations with six variables x1, x2, x3, y1,
y2, y3.

Using the Gröbner bases method, we have found the solutions of equations
(20) under some conditions imposed on the problem parameters. These solutions
in the initial parameters write

d1 = −
√−a0�1√

3p
, d2 = ±

c0
√
�1�2

3
√

2a0 a1p2
, d3 = ±

b0
√
�1�2

3
√

2a0 a1p2
, d4 = −

√−c0�1√
3a0p

,

d5 = −
√
−b0�1√
3a0p

, d6 = ∓
√
b0c0�1�2

3
√

2a0a1p2
, b =

2c0�1�2

9a0a2
1p

2
, c =

2b0�1�2

9a0a2
1p

2
,

c1 =
√
b0�1

3
√
a0a1p2

, b1 =
√
c0�1

3
√
a0a1p2

.

Here �1 = b + a2
1p

2, �2 = b− 2a2
1p

2.
By IMs definition it can easily be verified that first three stationary equations

(17) – for each found set of values di – define the invariant manifolds of the
Routh equations corresponding to Routh functions R (13) and R̃ (14). These
invariant manifolds can be “lifted up” into the phase space of Lagrange system
(11). For this purpose, it is necessary to add relation (12) (the cyclic integral)
to the IMs equations.

Likewise, the manifolds, which were obtained for the Routh equations, can
be “lifted up” into the phase space of Lagrange system (15). In this case, the
unknowns di of the Lagrange function should be replaced by the corresponding
found values. Here the cyclic integral corresponding to the function L̃ should be
added to the IMs equations.

The above example gives an insight on the computational complexity of the
technique proposed. In the case of the Lagrange systems with n > 2 positional
coordinates, we managed to find particular solutions for the equations of type
(20) only.

3 The Case of the Nonlinear Routh System

Let us consider the Clebsh–Tisserand–Brun problem [3], [4]. In this case, the dif-
ferential equations – under corresponding interpretation of the problem variables
– describe both the motion of a rigid body in an ideal fluid (Clebsh’s problem)
and the motion of a rigid body with a fixed point in a potential force field of
a special type (the Tisserand–Brun problem). The Lagrangian of this system in
the Euler angles θ, ϕ, ψ writes

2L = C(ϕ̇ + cos θψ̇)2 + A(sinϕ sin θψ̇ + cosϕ θ̇)2 + B(cosϕ sin θψ̇

− sinϕ θ̇)2 − μσ, (21)

where A,B,C are the inertial moments, μ is a constant of the force field, � =
A sin2 ϕ + B cos2 ϕ, σ = C cos2 θ + sin2 θ�.

234 V. Irtegov and T. Titorenko

The system assumes the cyclic integral
1
2
(A−B) sin 2ϕ sin θ θ̇ + C cos θϕ̇ + σψ̇ = p = const. (22)

Let us state the problem to find the invariant manifolds of Lagrange system (21).
For this purpose, we shall use the above approach.

According to the approach, we construct the Routh function

R = L− pψ̇ =
1
2
C(1 − C

C + � tan2 θ
)ϕ̇2+

Cpϕ̇

C cos θ + � sin θ tan θ
+

1
4σ

[2(A−B)

p sin 2ϕ sin θ θ̇ − (A−B)C sin 2ϕ sin 2θ ϕ̇ θ̇ + 2(C cos2 θ(A cos2 ϕ+ B sin2 ϕ)

+AB sin2 θ) θ̇2 − 2p2] − μσ

2
corresponding to L, and the “extended” Routh function

R̃ = R + mf(θ) θ̇, (m = const)

where f(Θ) = dS(Θ)/dΘ, S(Θ) is some smooth function.
In the given case, we add to R the full derivative of a function S(θ) depending

on one variable only. Here f(θ) = dS(Θ)/dΘ is an unknown function, which
should be determined.

Next write down the stationary conditions R̃ with respect to the phase
variables

∂R̃

∂ϕ̇
= (1 − C

C + � tan2 θ
)ϕ̇− (A−B) sin 2ϕ sin 2θ

4σ
θ̇ +

p

C cos θ + � sin θ tan θ

= 0,

∂R̃

∂θ̇
=

1
4σ

[
4(C cos2 θ(A cos2 ϕ + B sin2 ϕ) + AB sin2 θ)θ̇ − (A−B)C sin 2ϕ

× sin 2θϕ̇ + 2(A−B)p sin 2ϕ sin θ
]

+ mf(θ) = 0,

∂R̃

∂ϕ
=

(A−B)C2 sin 2ϕ tan2 θ

2(C + � tan2 θ)2
ϕ̇2 − (A−B)Cp sin 2ϕ sin θ tan θ

(C cos θ + � sin θ tan θ)2
ϕ̇

+
(A−B)

4σ

[
C((A −B) sin2 2ϕ sin2 θ − 2σ cos 2ϕ) sin 2θ ϕ̇θ̇ − 2 sin 2ϕ

×(C cos2 θ + A sin2 θ)(C cos2 θ + B sin2 θ) θ̇2 + 2p sin θ(2σ cos 2ϕ

−(A−B) sin2 2ϕ sin2 θ) θ̇
]

+
1
2
(A−B)(

p2

σ2
− μ) sin 2ϕ sin2 θ = 0,

∂R̃

∂θ
=

C2� sec2 θ tan θ

(C + � tan2 θ)2
ϕ̇2 +

Cp ((C − �) sin θ − � sec θ tan θ)ϕ̇
(C cos θ + � sin θ tan θ)2

+
(A−B)

8σ2

×
[
4C sin 2ϕ(� sin2 θ − C cos2 θ)ϕ̇θ̇ − (A−B)C sin2 2ϕ sin 2θθ̇2

−4p cos θ sin 2ϕ((�− 2C) sin2 θ − C cos2 θ)θ̇
]

+
(μσ2 − p2)(C − �) sin 2θ

2σ2

+mθ̇f ′(θ) = 0. (23)

On Invariant Manifolds of Lagrange Systems 235

and require the dependence of these equations.
To this end, we find the expressions

ϕ̇ = −cot θ[p ((A−B) cos 2ϕ + A + B) csc θ + (A− B)mf(θ) sin 2ϕ]
2AB

,

θ̇ =
m((A −B) cos 2ϕ− (A + B))f(θ) − (A−B)p csc θ sin 2ϕ

2AB
(24)

for ϕ̇, θ̇ from the first two equations (23) and substitute these expressions into
the last two equations. As a result, we have[

(ABμ(4 cos 2θ − cos 4θ) − 3ABμ + 8p2) csc2 θ − 8m2f2(θ)
]
tan 2ϕ

−16mp csc θ f(θ) = 0,

2m2[(A−B) cos 2ϕ− (A + B)]f(θ)f ′(θ) − 2(A−B)mp csc θ sin 2ϕf ′(θ)
+2(A−B)mp cot θ csc θ sin 2ϕf(θ) + 2p2(A + B + (A−B) cos 2ϕ) cot θ csc2 θ

+ABμ(2C + (A−B) cos 2ϕ− (A + B)) sin 2θ = 0. (25)

First equation (25) enables us to find the relation

tan 2ϕ = − 2mp csc θf(θ)
m2f2(θ) − p2 csc2 θ + ABμ sin2 θ

(26)

between the variables ϕ and θ.
Eliminate the variable ϕ from 2nd equation (25) with the aid of the above

relation. The resulted equation can be considered as a differential equation with
respect to f(θ). After its integration, we have

2(A−B)
√

4m2p2 csc2 θf2(θ) + (m2f2(θ) − p2 csc2 θ + ABμ sin2 θ)2 − 2(A + B)

×m2f2(θ) + AB(A + B − 2C)μ cos 2θ − 2(A + B)p2 cot2 θ + 8C1 = 0, (27)

where C1 is a constant of integration. We can use equation (27) for finding the
function f(Θ).

Now we investigate the compatibility of equations (24), (26). To this end,
eliminate the variable ϕ from equations (24) by relation (26). As a result, we
have two equations with respect to θ̇, θ

θ̇ =
mf(θ)[(A−B)(p2 csc2 θ + m2f2(θ) + ABμ sin2 θ) − (A + B)ρ1]

2ABρ1
,

mp cos θ
ρ2

[
f(θ)(p2 csc2 θ + m2f2(θ) + 3ABμ sin2 θ) + (p2 csc2 θ + m2f2(θ)

−ABμ sin2 θ)f ′(θ)
]
θ̇ = −p cot θ csc θ

2ABρ

[
(A + B)ρ

−(A−B)(p2 csc2 θ + m2f2(θ) −ABμ sin2 θ)
]
.

236 V. Irtegov and T. Titorenko

Here ρ1 =
√

4m2p2 csc2 θf2(θ) + (m2f2(θ) − p2 csc2 θ + ABμ sin2 θ)2,
ρ2 = p2(p2 csc2 θ + 2m2f2(θ) − 2ABμ sin2 θ) + (m2f2(θ) + ABμ sin2 θ)2.

Having eliminated the variable θ̇ from the 2nd equation by the first one (here
f ′(θ) can be found from (27)), we obtain the following compatibility condition
of the equations under investigation

μp cos θ
[
C(p2 csc2 θ + m2f2(θ) −ABCμ sin2 θ

−(A−B)
√

4m2p2 csc2 θf(θ)2 + (m2f2(θ) − p2 csc2 θ + ABμ sin2 θ)2
]

= 0. (28)

The latter equation can also be used for finding the function f(Θ).
Thus, we have: when conditions (27), (28) hold the expressions (24), (26) are

a solution of the stationary equations.
Equations (27), (28) are compatible when the following conditions

(i) C = A + B, C1 =
(A + B)(ABμ− 2p2)

8AB
; (ii) p = 0; (iii) μ = 0

hold. Let us consider these conditions in detail.
(i) In this case, equations (27), (28) are reduced to the equation

(A−B)
√

4m2p2 csc2 θf2(θ) + (m2f2(θ) − p2 csc2 θ + ABμ sin2 θ)2 + (A + B)

×(p2 csc2 θ + m2f2(θ) − ABμ sin2 θ) = 0,

which has four solutions

f(θ) = ±
csc θ[(A −B)

√
μ sin2 θ + η]

2m
, f(θ) = ±

csc θ[(A−B)
√
μ sin2 θ − η]

2m
.

Here η =
√

(A + B)2μ sin4 θ − 4p2.
Having substituted the above values for f(θ) into equations (24), (26), we

have obtained the following solutions

θ̇ = ±
csc θ

√
(A + B)2μ sin4 θ − 4p2

A + B
,

ϕ = ±1
2

arctan
2p√

(A + B)2μ sin4 θ − 4p2

(29)

of stationary equations (23).
By IMs definition it can easily be verified that expressions (29) define the

invariant manifolds of the Routh equations, which are the same for R and R̃.
In the initial phase space, the following invariant manifolds

θ̇ = ±
csc θ

√
(A + B)2μ sin4 θ − 4p2

A + B
, ψ̇ =

2p csc2 θ

A + B
,

ϕ = ±1
2

arctan
2p√

(A + B)2μ sin4 θ − 4p2

On Invariant Manifolds of Lagrange Systems 237

correspond to the found IMs. These IMs were obtained by addition of cyclic
integral (22) (after the substitution of corresponding values θ̇, ϕ̇, ϕ (29) into this
integral) to equations (29).

(ii) In this case, equation (28) turns into an identity, and equation (27) writes

4m2f2(θ) −A[μ((A −B) + 2(B − C) cos 2θ) + 8C1] = 0.

The latter equation has two solutions

f(θ) = ±
√
A[μ((A −B) + 2(B − C) cos 2θ) + 8C1]

2m
.

Having substituted the values for f(θ) into (24), (26), we have the following
solutions

θ̇ = ±
√
μ((A−B) + 2(B − C) cos 2θ) + 8C1

2
√
A

, ϕ = 0 (30)

of stationary equations (23).
By IMs definition it can easily be verified that expressions (30) define the

invariant manifolds of the Routh equations.
In the initial phase space, the following invariant manifolds

θ̇ =

√
μ((A −B) + 2(B − C) cos 2θ) + 8C1

2
√
A

, ψ̇ = 0, ϕ = 0;

θ̇ = −
√
μ((A−B) + 2(B − C) cos 2θ) + 8C1

2
√
A

, ψ̇ = 0, ϕ = 0 (31)

correspond to the found IMs. These IMs were obtained by addition of cyclic
integral (22) (after the substitution of corresponding values θ̇, ϕ̇, ϕ (30) into this
integral) to equations (30).

When C1 = (2B − A − 2C)μ/8 equations (31) with respect to θ̇ are reduced
to the equations

θ̇ =

√
(B − C)μ cos θ√

A
and θ̇ = −

√
(B − C)μ cos θ√

A
, respectively.

These equations can be integrated in the elementary functions

θ = arctan
[
tanh

(1
2

(√(B − C)μ t√
A

+ C2

))]
,

where C2 is a constant of integration.
Thus, we have obtained the family of solutions

θ = arctan
[
tanh

(1
2

(√(B − C)μ t√
A

+ C2

))]
, ψ = const, ϕ = 0,

238 V. Irtegov and T. Titorenko

which belongs to IMs (31) and satisfies the differential equations of Lagrange
system (21).

(iii) When μ = 0 the initial problem is reduced to the problem of the motion of
a rigid body with a fixed point in Euler’s case. Analysis of invariant manifolds, in
this case, is similar to the above analysis of the Clebsh–Tisserand–Brun problem.
The present paper does not discuss this case.

4 Conclusion

We have discussed a new approach for finding and qualitative analysis of in-
variant manifolds of nonlinear conservative Lagrange systems with cyclic co-
ordinates, which by means of the Legendre transformation are reduced to the
Routh systems. The proposed approach is based on the use of the “extended”
Routh functions. The cases of both linear and nonlinear Routh systems have
been considered for demonstrating the possibilities of the approach. A link of
the considered technique with the Hamilton–Jacobi method has been revealed.
It was also shown that the IMs obtained for the Routh equations with the help
of our technique can be “lifted up” into the phase spaces of the corresponding
Lagrange systems.

References

1. Irtegov, V.D., Titorenko, T.N.: On Reduction of Lagrange Systems. In: Gerdt, V.P.,
Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2010. LNCS, vol. 6244, pp.
123–133. Springer, Heidelberg (2010)

2. Gelfand, I.M., Fomin, S.V.: Variational Calculus. GIF-ML, Moscow (1961)
3. Stekloff, V.A.: Remarque sur un problème de Clebsch sur le mouvement d‘un corps

solide dans un liquide indefini et sur le problème de M. Brun. Comptes Rend.
VCXXXV, 526–528 (1902)

4. Appel, P.: Traité de Mécanique Rationnelle, vol. 2. Gauthier–Villars, Paris (1953)

Construction of Explicit Optimal Value

Functions by a Symbolic-Numeric Cylindrical
Algebraic Decomposition

Hidenao Iwane1, Akifumi Kira2, and Hirokazu Anai1,2

1 IT System Laboratories, Fujitsu Laboratories Ltd.
Kamikodanaka 4-1-1, Nakahara-ku, Kawasaki 211-8588, Japan

iwane@jp.fujitsu.com
2 Graduate School of Mathematics, Kyushu University

744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
a-kira@math.kyushu-u.ac.jp, h.anai@kyudai.jp

Abstract. Recently parametric treatment of constraint solving and op-
timization problems has received considerable attention in science and
engineering. In this paper we show an efficient and systematic algorithm
for parametric programming, i.e. computing exact optimal value func-
tions, based on a specialized symbolic-numeric cylindrical algebraic de-
composition. We also present some practical application examples from
system and control theory.

1 Introduction

Parametric approach to constraint solving and optimization problems has signif-
icant impact on many engineering applications. In recent years multi-parametric
programming has received considerable attention in engineering and industry
(see [19,20]). In particular, several special classes of multi-parametric optimiza-
tion problems have been intensively studied together with the associated control
problems such as model predictive control and process system engineering, see
[13,4,12] for details.

Parametric optimization (parametric programming) is one of the key method-
ologies to analyze the effect of variations and uncertainty in system and control
problems. The standard approach to parametric optimization problems is based
on the sensitivity analysis theory, which provides solutions in the neighborhood
of the nominal value of the varying parameters, see [6,14] for sensitivity analysis
theory for optimization problems. This has been a main tool for solving multi-
parametric programming problems, that is computing a complete map of the
optimal solution in the space of varying parameters [10,20,19].

The algorithms based on the sensitivity analysis theory have been proposed
for several important classes of multi-parametric optimization problems [19,10].
The algorithm for a linear case first finds an initial point to perform the lineariza-
tion and achieves linearization. It is known that some classes of multi-parametric

V.P. Gerdt et al. (Eds.): CASC 2011, LNCS 6885, pp. 239–250, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

240 H. Iwane, A. Kira, and H. Anai

quadratic programming can be solved by reducing to the linear cases. The al-
gorithm for multi-parametric convex nonlinear programming provides approx-
imated optimal value functions and requires to execute iterative procedure at
each step until a prescribed tolerance is satisfied. Through a systematic partition
procedure of the parameter space, the algorithms enable us to get a complete
map of the optimal solution as a conditional piecewise linear function of the
parameters. Each piecewise linear function is derived from first-order estimation
of the analytical nonlinear optimal function. For multi-parametric nonconvex
nonlinear programming problems a branch and bound approach is usually em-
ployed. Its main idea is to construct convex parametric underestimators and
overestimators of the objective function and then continue branch and bound
until the difference between the underestimators and the overestimators, called
global parametric gap, is within a certain given tolerance.

It has been observed that there exist significant gaps between obtained ap-
proximated optimal value functions derived by using the above mentioned (nu-
merical) approaches and exact ones for multi-parametric nonlinear programming
(even for convex cases). Moreover, for nonconvex cases construction of overes-
timators is a critical part in branch and bound approach and it is not done
in a unified way. In fact there are several ways of constructing overestimators
and they have different features in terms of three attributes: ease of obtaining,
tightness, and function description (linear/nonlinear). These facts motivate us
to develop an effective algorithm to construct exact solutions in a systematic
way. The issues does need to be addressed.

Whilst a parameter space approach to robust control design using parametric
optimization accomplished by a symbolic method “quantifier elimination (QE)”
has been proposed (see [7] for QE). It has been successfully applied to prac-
tical control design applications, see for examples [11,15,21]. Moreover, some
other approaches to utilize parametric optimization effectively in the context of
bilevel/hieratical optimization are presented for control design problems [2,18].
QE-based methods have some remarkable efficacy in solving parametric pro-
gramming problems since they can obtain exact feasible objective/parameter re-
gions even for nonconvex and nonlinear cases. An algorithm for multi-parametric
programming based on quantifier elimination is proposed in [1] and parametric
optimization by cylindrical algebraic decomposition (CAD) is presented in [13].
These methods are indeed effective, however they have a bad computational
complexity since they just utilizes QE/CAD as it is.

In this paper, because of this situation, we present an efficient algorithm for
solving parametric optimization problem based on a specialized cylindrical alge-
braic decomposition using symbolic-numeric computation. The proposed method
provides us exact optimal value functions even for nonlinear and also noncon-
vex problems. We have implemented all the algorithms proposed in this paper
on Maple as a part of SyNRAC [21]. We show some computational examples
including simple illustrative examples and a practical example from dynamic
programming in order to demonstrate the effectiveness of our approach.

Construction of Explicit Optimal Value Functions 241

The rest of the paper is organized as follows: Section 2 is devoted to explain
parametric optimization problems. In Section 3 we show our solution approach
for solving a parametric optimization problem based on a specialized cylindrical
algebraic decomposition which uses symbolic-numeric computation. Some com-
putational examples are presented in Section 4. Concluding remarks and future
direction are discussed in Section 5.

2 Parametric Optimization

A typical parametric optimization problem is given as follows:

Minimize/Maximize f(x,θ)
subject to θ ∈ T ,x ∈ Pθ,

(1)

where T ⊆ Rm and Pθ ⊆ Rn represent the feasible parameter space and the
decision space, respectively. f(x,θ) is a parametric nonlinear R-valued function.
The objective is to minimize (or maximize) f with respect to x for any value
of given parameter θ in T , in other words, the solution of the problem (1) is
derived as a function of the parameter θ.

In this paper, we restrict our attention to the case where f is given as a
polynomial function, and T and Pθ are given as semi-algebraic (possibly empty)
sets. Since maximization of f is equivalent to minimization of the negative of f
that is also polynomial, we focus on minimization without loss of generality. Let
T ′ (⊆ T) be the set of all parameters such that Pθ �= ∅, then, for any θ ∈ T ′,
we define

fopt(θ) := inf
x∈Pθ

f(x,θ), θ ∈ T ′.

The function fopt is called the optimal value function. Our goal is to find an
explicit (exact) expression of the optimal value function.

2.1 Symbolic Approach to Parametric Optimization

We briefly explain how we can solve the parametric optimization problem (1) by
using quantifier elimination.

If we assume that the infimum fopt(θ) is attained as a minimum for every
θ ∈ T ′, then we can construct a first-order formula ψopt with a free variable y
that is true at y = y0 if and only if y0 = fopt(θ):

ψopt = ∃x(y = f(x,θ) ∧ θ ∈ T ∧ x ∈ Pθ ∧ (∀x′(x′ ∈ Pθ → y ≤ f(x′,θ)))).

By eliminating x from ψopt we obtain a quantifier-free formula ξopt(θ, y), which
expresses the optimal value function.

Next we consider the feasible objective region which includes the information
of the optimal value function. We can construct a first-order formula with a free
variable y that is true at y = y0 if and only if y0 is in the feasible objective
region:

ψfeasible(y,θ) = ∃x(y = f(x,θ) ∧ θ ∈ T ∧ x ∈ Pθ). (2)

242 H. Iwane, A. Kira, and H. Anai

By eliminating x from ψfeasible we obtain a quantifier-free formula ξfeasible(θ, y).
Then yopt = fopt(θ) is an infimum value for θ in the feasible objective region.
Obviously ψfeasible is easier to solve than ψopt by using QE.

3 Solution Approach Based on Cylindrical Algebraic
Decomposition

In this section we show our special cylindrical algebraic decomposition algorithm
for parametric optimization problems.

3.1 Cylindrical Algebraic Decomposition and Quantifier Elimination

Quantifier elimination (QE) is a powerful tool to resolve non-convex and parame-
tric optimization problems exactly. Cylindrical algebraic decomposition (CAD),
introduced by George E. Collins [8], is a general-purpose symbolic method aiming
for QE. We briefly sketch the basic idea of CAD. Assume that we are given a
prenex formula ψ with q free variables x1, . . . , xq and (r− q) quantified variables
xq+1, . . . , xr

ψ(x1, . . . , xq) ≡ Qq+1xq+1 . . .Qrxr ϕ(x1, . . . , xr),

where Qj ∈ {∃, ∀} and ϕ is a quantifier-free formula. We can assume, by trans-
posing terms if necessary, each atomic formula in ϕ is represented in the form
f ρ 0, where f is a polynomial with rational coefficients on x1, . . . , xr and ρ ∈ {≤
, <,=, �=}. Let F ⊆ Q[x1, . . . , xr] be the set of polynomials appearing in ϕ as the
left hand sides of atomic formulas. A subset C ⊆ Rr is said to be sign-invariant
for F if every polynomial in F has a constant sign on all points in C. Then ψ(S)
is either “true” or “false” for all S ∈ C.

Suppose we have a finite sequence D1, . . . ,Dr for F which has the following
properties:

1. Each Di is a partition of Ri into finitely many connected semi-algebraic sets
called cells.

2. Di−1, 1 < i ≤ r, consists exactly of the projections of all cells in Di along
the coordinate of the i-th variable in (x1, . . . , xr). For each cell C ∈ Di−1 we
can determine its preimage P (C) ⊆ Di under the projection.

3. Each cell C ∈ Dr is sign-invariant for F . Moreover for each cell C ∈ Dr we
are given a sample point S ∈ C in such a form that we can determine the
sign of f(S) for each f ∈ F and thus evaluate ϕ(S).

Then the partition Dr of Rr for F is called an F -invariant cylindrical algebraic
decomposition of Rr. A CAD algorithm computes such a sequence D1, . . . ,Dr

and it consists of three phases; the projection phase, the base phase, and the
lifting phase.

Projection phase: We first construct from F ⊆ Q[x1,. . ., xr] a new finite
set F ′ ⊆ Q[x1, . . .,xr−1] that satisfies a special condition called “delineability”,

Construction of Explicit Optimal Value Functions 243

where the order of the real roots of all polynomials in F as univariate polynomials
in xr does not change above each connected cell in Dr−1.

The step constructing F ′ from F is called a projection and denoted by F ′ :=
Proj(F, xr). We call polynomials in F ′ projection polynomials and their irre-
ducible factors projection factors. Iterative application of the Proj operator
leads to a finite sequence

Fr, . . . , F1, where Fr := F, Fi := Proj(Fi+1, xi+1)

for 1 ≤ i < r. The Proj operator, in general, computes certain coefficients,
discriminants, and resultants derived from polynomials in Fi+1 and their higher
derivatives by regarding those as univariate polynomials in xi+1. The final set
F1 consists of univariate polynomials in x1.

Base phase: Then we construct a partition D1 of the real line R1 into finitely
many intervals that are sign-invariant for F1. This step is called the base phase,
achieved by isolating the real zeros of the univariate polynomials in F1.

Lifting phase: The partitions Di of Ri for 2 ≤ i ≤ r are computed recursively:
The roots of all polynomials in Fi as univariate polynomials in xi are delineated
above each connected cell C ∈ Di−1. Thus we can cut the cylinder above C into
finitely many connected semi-algebraic sets (cells) called stack. This is done by
real root isolation of the univariate polynomials derived through specializing the
polynomials in Fi by a sample point of C. Then Di is a collection of all such
cells obtained from all cylinders above the cells of Di−1.

A finite sequence D1, . . . ,Dr for F has a tree structure: The first level of nodes
under the root of the tree corresponds to the cells in D1. The second level of
nodes stands for the cells in D2, i.e., the cylinders over the cells of R1. The leaves
represent the cells of Dr, i.e., a CAD of Rr. A sample point of each cell is stored
in its corresponding node or leaf. At each level of the tree there are a number
of projection polynomials Fi whose signs define a cell when evaluated over a
sample point.

3.2 Parametric Optimization by a Specialized CAD

A feasible objective region of a given parametric optimization problem can be
expressed by a first-order formula (2). Since yopt = fopt(θ) is the infimum value,
we can obtain fopt(θ) from ψfeasible. A strategy is to first construct a CAD of
the feasible objective region, then for each stack over a cell of the parameter
space, pick the highest sections which is lower than or equal to the true cells.
Our spacial CAD algorithm is more efficient than to the above strategy because
we can avoid lifting more cells.

Then we explain our special CAD algorithm which computes directly an op-
timal value function from (2). In order to compute the optimal value function
for parameters θ, the variable order of CAD is set to be (θ, y,x). Our algorithm
is based on a partial CAD algorithm [9] and the only difference is evaluation of
truth value of cells. Let C ⊆ T ⊆ Rm be a cell and S ∈ Rm be a sample point for
C. The children of C are denoted by c1, . . ., ck and the (m+1)-st coordinates of

244 H. Iwane, A. Kira, and H. Anai

their sample points are denoted by y1, . . . , yk ∈ R. When yp is the infimum value
of the feasible objective region for θ, p is an even integer and p is less than or
equal to j such that ξfeasible(S, yj) is true. We can avoid lifting cells from these
properties.

– If the truth value of ci for ψfeasible is true then we can set the truth value
of cj to false for all j = i + 1, . . . , k.

– If ci is a sector cell, i.e., i is an odd integer, and its truth value for ψfeasible

is true, then we can set the truth value of ci and ci−1 to false and true,
respectively. Note that from the first property the truth value of ci−1 is reset
to false when ci−1 is not the infimum value.

The following algorithm utilizes the ideas discussed above:

Algorithm: a special CAD for solving a parametric optimization problem.

Input : parametric optimization problem:

Minimize f(x,θ)
subject to ϕ(x,θ)

Output: optimal value function

〈1〉 [Formulation] ψ(x, y,θ) = ∃x(y = f(x,θ) ∧ ϕ(x,θ)).
〈2〉 [Projection] Compute the projection factors.
〈3〉 [Initialization] Initialize a list L as the cells of D1.
〈4〉 [Choice] If L is empty, go to step 〈9〉, otherwise, choose a cell ci from L.
〈5〉 [Optimal Value] If the truth value of ci is undetermined, go to step 〈6〉. If

the truth value is true and its dimension is m + 1 then for all cell cj within
same stack such that j > i the truth value of cj is set to be false, and if ci is
a sector cell then the truth value of ci is set to be false and the truth value
of ci−1 is set to be true. Go to step 〈4〉.

〈6〉 [Stack Construction] Construct a stack over ci and from a sample point for
each child cell. Insert all of the children in L.

〈7〉 [Trial Evaluation] Try to determine the truth value of ψ for the children of
ci by using a partial CAD approach.

〈8〉 [Propagation] Determine the truth value of as ancestors of ci as possible by
using a partial CAD approach and insert all of the cell determined truth
value in this step in L.

〈9〉 [Solution Formula Construction] Construct a quantifier-free formula from
the CAD.

We have implemented our proposed method combined with a symbolic-numeric
CAD approach [16,17] as a part of SyNRAC [21].

4 Computational Examples

Here we show computational results for some example problems. We solved all
the QE problems in the examples by using SyNRAC on a PC with Intel(R)
Core(TM) i3 CPU U330 1.20 GHz and 2.92 GByte of memory and timing data
are all given in second (CPU-time).

Construction of Explicit Optimal Value Functions 245

4.1 Illustrative Examples

Example 1: First consider the following nonlinear parametric optimization
problem [17]:

Minimize g(x1, x2, θ) ≡ 45θ2 + 80θx1 + 120θ + x2 − 43x2
1 − 70x1x2 − 78x2

2

subject to θ ≥ x1 + x2, x1 ≥ 0, x2 ≥ 0,
15θ ≥ 10x1 + 19x2 + 1000000.

This can be recast as the following first-order formula:

∃x1∃x2 (y = g(x1, x2, θ) ∧ θ ≥ x1 + x2 ∧ x1 ≥ 0 ∧ x2 ≥ 0∧
15θ ≥ 10x1 + 19x2 + 1000000). (3)

By performing QE for (3) we obtain the quantifier-free formula ξfeasible(θ1, θ2, y).
Actually by using SyNRAC for the QE computation we obtain

ξfeasible(θ, y) ≡ (3θ ≥ 20000∧ 4y ≤ 273θ2 + 1960480θ− 17200000000∧
y ≥ 45θ2 + 120θ) ∨ (312y ≤ 14040θ2 + 37440θ + 1∧
361y ≥ −1305θ2 + 234043605θ− 780001900000∧
2340θ ≥ 15600019)∨ (43y ≤ 3535θ2 + 5160θ ≤ 0∧
312y ≥ 14040θ2 + 37440θ + 1 ∧ 49θ ≥ 860000)

in 7.54 seconds and 50,393 cells appears during the QE computation. The feasible
region ξfeasible(θ, y) corresponds to the gray part in Figure 1.

Fig. 1. Feasible region ξfeasible(θ, y)

By using our proposed method we can obtain the following optimal value
function:

ξopt(θ, y) ≡ (20000
3 ≤ θ ≤ 7800019

1170 ∧ y = 45θ2 + 120θ)∨
(θ ≥ 7800019

1170 ∧ 361y = −1305θ2 + 234043605θ− 780001900000),

246 H. Iwane, A. Kira, and H. Anai

in 3.51 seconds. Our method is much faster than the conventional QE approach
and we observe that the number of occurring cells is greatly reduced to 17,777.

Example 2: Next we consider the following nonlinear parametric optimization
problem [19, p. 31]:

Minimize f(x1, x2) ≡ x3
1 + 2x2

1 − 5x1 + 2x2
2 − 3x2 − 6

subject to 2x1 + x2 ≤ 2.5 + θ1,
0.5x1 + x2 ≤ 1.5 + θ2,
x1 ≥ 0, x2 ≥ 0, 0 ≤ θ1 ≤ 0.25, 0 ≤ θ2 ≤ 0.25.

This problem can be formulated as the following first-order formula:

∃x1∃x2 (y = f(x1, x2) ∧ 2x1 + x2 ≤ 2.5 + θ1∧
0.5x1 + x2 ≤ 1.5 + θ2∧
x1 ≥ 0 ∧ x2 ≥ 0 ∧ 0 ≤ θ1 ≤ 0.25 ∧ 0 ≤ θ2 ≤ 0.25).

(4)

By performing QE for (4) we obtain the quantifier-free formula ξfeasible(θ1, θ2, y).
By using SyNRAC for the QE computation we obtain

ξfeasible(θ1, θ2, y) ≡ 1728y2 + 11056y− 47349 ≤ 0 ∧ y ≤ 2θ2
2 + 3θ2 − 6 ∧

0 ≤ θ1 ≤ 1
4 ∧ 0 ≤ θ2 ≤ 1

4 ,

in 86.03 seconds and the number of cells occurring in the QE computation is
325,613. By using our proposed method we can obtain the following optimal
value function:

ξopt(θ1, θ2, y) ≡ 1728y2+11056y−47349 = 0∧y ≤ −6∧0 ≤ θ1 ≤ 1
4
∧0 ≤ θ2 ≤ 1

4
,

in 7.69 seconds. The number of cells occurring in the QE computation decreases
to 35,825.

4.2 Dynamic Programming

Dynamic programming (DP), proposed by Bellman [3], is widely used in many
optimization problems as a technique for breaking down a large problem into
a sequence of much smaller problems. Especially, it works well for multi-stage
decision problems that are generally considered to be a representation of real-
world situations where a sequence of decisions are made to minimize the total
sum of stage-wise costs. A typical N -stage decision problem of a deterministic
case has the following structure: If the process is in state xn ∈ Xn at stage n,
and decision un ∈ Un(xn) is chosen, where Un(x) represents the set of all feasible
decisions in state x at stage n, then we incur a cost cn(xn, un), and the process
goes deterministically to the next state xn+1 = fn(xn, un) ∈ Xn+1. Hence, the
problem is formulated as follows:

P(x0)
Minimize

∑N−1
n=0 cn(xn, un) + cN(xN)

subject to xn+1 = fn(xn, un), n = 0, 1, . . . , N−1
un ∈ Un(xn), n = 0, 1, . . . , N−1 .

Construction of Explicit Optimal Value Functions 247

Now, we assume that P(x0) has at least one optimal solution for each x0 (e.g.,
cases obeying Weierstrass’ Theorem), and let v0(x) be the optimal value of P(x)
for any initial state x, then we can get the optimal value function v0(x) by
recursively computing the following DP equation backward through time:

vN (x) = cN (x), x ∈ XN (5a)

vn(x) = min
u∈Un(x)

{
cn(x, u) + vn+1(fn(x, u))

}
, x ∈ Xn, n = 0, . . . , N−1 . (5b)

In each step of the iteration, we thus have to solve the parametric optimization
problem, specified by the right-hand side of (5b), consisting of a single decision
variable. However, though the dynamic programming proves the validity of this
functional equation, an answer to the question whether the equation is tractable
at all, and/or what techniques will be required to solve it, will depend entirely
on the properties of the functions {cn} and {fn}. For this reason, DP computer
codes have restricted their attention to problems with finite solution sets, and it
is usually the case that problems with continuous decision variables have to be
solved numerically, based on discrete approximation. At this point, we attempt
to support the dynamic programming procedure, for continuous problems, with
our special CAD algorithm. This collaboration scheme leads a successful solution
for a wide class of problems described as polynomials.

To illustrate how the special CAD algorithm, in conjunction with dynamic
programming, solves the multi-stage decision problems, we take the optimal
temperature control problem, adopted from Bertsekas [5] and Pistikopoulos et
al. [19], for example. Pistikopoulos et al. [19] pointed out that constraints (6e)
and (6f), additionally inserted, impede a successful solution of the DP equation.

Minimize J =
∑2

n=0 u
2
n + 100(x3 − 1500)2 (6a)

subject to x1 = 0.55x0 + 0.45u0, (6b)
x2 = 0.60x1 + 0.40u1, (6c)
x3 = 0.65x2 + 0.35u2, (6d)
200 ≤ x1 ≤ 400, (6e)
500 ≤ x2 ≤ 1000, (6f)
0 ≤ u0, u1, u2 ≤ 3000 . (6g)

A certain material is passed through a sequence of three ovens in a kiln (see
Figure 2). We denote

x0: initial temperature of the material,
xn, n = 1, 2, 3: temperature of the material at the exit of oven n,
un−1, n = 1, 2, 3: prevailing temperature in oven n,

and their heat transfer phenomena are assumed as in (6b)-(6d). Additionally, to
make a good product, we respect the path constraints (6e) and (6f). Our goal is
to get the final temperature close to a given target T = 1500, while expending
relatively little energy. Hence the objective function is formulated as in (6a).

248 H. Iwane, A. Kira, and H. Anai

Fig. 2. Schematic diagram of the ceramic kiln

Of course, we may apply the special CAD algorithm directly to this prob-
lem. However, the computation of QE on this problem did not terminate in an
hour. By using the collaboration scheme, we can effectively reduce the volume
of computation required to solve the problem. At first, the initial condition for
the dynamic programming equation is given by

v3(x3) = 100(x3 − 1500)2 (−∞ < x3 < ∞) . (7)

For the next-to-last stage, we have

P2(x2)
Minimize u2

2 + v3(x3)
subject to x3 = 0.65x2 + 0.35u2, 0 ≤ u2 ≤ 3000 ,

where v3(x3) is given by (7). We minimize the objective function with respect to
u2 for each x2 in [500, 1000]. Applying the special CAD to this problem yields

v2(x2) =

{
169
4 x2

2 − 58500x2 + 29250000 (500 ≤ x2 ≤ 51000
91)

169
53 x2

2 − 780000
53 x2 + 900000000

53 (51000
91 < x2 ≤ 1000) ,

and hence we obtain the optimal control law for the last oven as follows:

u∗
2 = π∗

2(x2) =

{
3000 (500 ≤ x2 ≤ 51000

91)
− 91

53x2 + 210000
53 (51000

91 < x2 ≤ 1000) .

Next, we consider the parametric problem at stage n = 1 below, to evaluate
v1(x1) for each x1 in [200, 400], using v2 obtained in the previous step.

P1(x1)
Minimize u2

1 + v2(x2)
subject to x2 = 0.60x1 + 0.40u1, 0 ≤ u1 ≤ 3000,

500 ≤ x2 ≤ 1000 .

Similarly, applying the special CAD algorithm to this subproblem, we obtain

v1(x1) =
507
667

x2
1 −

3900000
667

x1 +
7500000000

667
,

u∗
1 = −338

667
x1 +

1300000
667

.

Construction of Explicit Optimal Value Functions 249

Finally, we determine the value of v0(x0) for each x0 in R.

P0(x0)
Minimize u2

0 + v1(x1)
subject to x1 = 0.55x0 + 0.45u0, 0 ≤ u0 ≤ 3000,

200 ≤ x1 ≤ 400 .

Applying the special CAD algorithm again, we arrive at

v0(x0) =

⎧⎪⎨⎪⎩
121
81 x0

2 − 88000
81 x0 + 556634680000

54027 (− 23000
11 ≤ x0 ≤ − 4818830

7337)
61347
307867x0

2 − 858000000
307867 x0 + 3000000000000

307867 (− 4818830
7337 < x0 ≤ − 1740160

7337)
121
81 x0

2 − 176000
81 x0 + 530398720000

54027 (− 1740160
7337 < x0 ≤ 8000

11) ,

u∗
0 = π∗

0(x0) =

⎧⎪⎨⎪⎩
− 11

9 x0 + 4000
9 (− 23000

11 ≤ x0 ≤ − 4818830
7337)

− 50193
307867x0 + 351000000

307867 (− 4818830
7337 < x0 ≤ − 1740160

7337)
− 11

9 x0 + 8000
9 (− 1740160

7337 < x0 ≤ 8000
11) .

This completes the solution of the problem. We obtained the desired exact opti-
mal value function and the exact optimal control policy for the three ovens. The
computation time for each iteration is less than one second.

5 Conclusion

We have presented an efficient and systematic algorithm for constructing ex-
act optimal value functions of parametric optimizations based on a specialized
symbolic-numeric cylindrical algebraic decomposition. The effectiveness of our
approach is demonstrated by computational examples from some applications.

As the example from dynamic programming in this paper indicates, the com-
bined use of our symbolic-numeric method with exploiting the structure of prob-
lems is a promising direction for reducing the total amount of computation.

Acknowledgements. This work was partially supported by Grant-in-Aid for
Scientific Research (B) No. 21340025, Grant-in-Aid for JSPS Fellows No.
09J05487 and Global COE Program “Math-for-Industry” (Kyushu University).

References

1. Anai, H.: A symbolic-numeric approach to multi-parametric programming for con-
trol design. In: Proc. ICROS-SICE International Conference 2009, pp. 3525–3530
(2009)

2. Anai, H., Hara, S., Kanno, M., Yokoyama, K.: Parametric polynomial spectral
factorization using the sum of roots and its application to a control design problem.
J. Symb. Comput. 44(7), 703–725 (2009)

3. Bellman, R.: Dynamic Programming. Princeton Univ. Press, Princeton (1957)
4. Bemporad, A., Morari, M., Dua, V., Pistikopoulos, E.N.: The explicit linear

quadratic regulator for constrained systems. Automatica 38(1), 3–20 (2002)

250 H. Iwane, A. Kira, and H. Anai

5. Bertsekas, D.: Dynamic Programming and Optimal Control, 3rd edn. Athena Sci-
entific, Belmont (2005)

6. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems.
Springer, Heidelberg (2000)

7. Caviness, B., Johnson, J. (eds.): Quantifier Elimination and Cylindrical Algebraic
Decomposition. Texts and monographs in symbolic computation. Springer, Heidel-
berg (1998)

8. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic
decomposition. In: Becvar, J. (ed.) MFCS 1975. LNCS, vol. 32. Springer, Heidelberg
(1975)

9. Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier
elimination. Journal of Symbolic Computation 12(3), 299–328 (1991)

10. Domingueza, L.F., Narcisoa, D.A., Pistikopoulos, E.N.: Recent advances in mul-
tiparametric nonlinear programming. Computers & Chemical Engineering 34(5),
707–716 (2010); (Selected Paper of Symposium ESCAPE 19, June 14-17, 2009,
Krakow, Poland)

11. Dorato, P., Yang, W., Abdallah, C.: Robust multi-objective feedback design by
quantifier elimination. J. Symb. Comput. 24(2), 153–159 (1997)

12. Dua, P., Kouramas, K., Dua, V., Pistikopoulos, E.: MPC on a chip – recent ad-
vances on the application of multi-parametric model-based control. Computers &
Chemical Engineering 32(4-5), 754–765 (2008)

13. Fotiou, I.A., Rostalski, P., Parrilo, P.A., Morari, M.: Parametric optimization and
optimal control using algebraic geometry methods. International Journal of Con-
trol 79(11), 1340–1358 (2006)

14. Fiacco, A.V.: Introduction to Sensitivity and Stability Analysis in Nonlinear Pro-
gramming. Academic Press, London (1983)

15. Hyodo, N., Hong, M., Yanami, H., Hara, S., Anai, H.: Solving and visualizing
nonlinear parametric constraints in control based on quantifier elimination. Appl.
Algebra Eng. Commun. Comput. 18(6), 497–512 (2007)

16. Iwane, H., Yanami, H., Anai, H., Yokoyama, K.: An effective implementation of
a symbolic-numeric cylindrical algebraic decomposition for quantifier elimination.
In: Proceedings of the 2009 International Workshop on Symbolic-Numeric Com-
putation, vol. 1, pp. 55–64 (2009)

17. Iwane, H., Yanami, H., Anai, H.: An effective implementation of a symbolic-numeric
cylindrical algebraic decomposition for optimization problems. In: Proceedings of
the 2011 International Workshop on Symbolic-Numeric Computation (2011)

18. Kanno, M., Yokoyama, K., Anai, H., Hara, S.: Parametric optimization in control
using the sum of roots for parametric polynomial spectral factorization. In: Wang,
D. (ed.) ISSAC, pp. 211–218. ACM, New York (2007)

19. Pistikopoulos, E., Georgiadis, M., Dua, V. (eds.): Multi-parametric programming:
theory, algorithms, and applications, vol. 1. Wiley-VCH, Chichester (2007)

20. Pistikopoulos, E., Georgiadis, M., Dua, V. (eds.): Multi-parametric model-based
control: theory and applications, vol. 2. Wiley-VCH, Chichester (2007)

21. Yanami, H., Anai, H.: The Maple package SyNRAC and its application to robust
control design. Future Generation Comp. Syst. 23(5), 721–726 (2007)

Convection in a Porous Medium and Mimetic

Scheme in Polar Coordinates

Bülent Karasözen1, Anastasia Trofimova2, and Vyacheslav Tsybulin2

1 Department of Mathematics & Institute of Applied Mathematics,
Middle East Technical University, Ankara, Turkey

bulent@metu.edu.tr
2 Southern Federal University, Rostov-on-Don, Russia

trofimova.anastasia@gmail.com, tsybulin@math.rsu.ru

Abstract. Analytical investigation of natural convection of the incom-
pressible fluid in the porous media based on the Darcy hypothesis
(Lapwood convection) gives intriguing branching off of one-parameter
family of convective patterns. This scenario may be suppressed in com-
putations when governing equations are approximated by schemes which
do not preserve the cosymmetry property. We consider the problem in
polar coordinates and construct a mimetic finite-difference scheme us-
ing computer algebra tools. The family of steady states is computed
and it is demonstrated that this family disappears under non-mimetic
approximation.

Introduction

Interest in fluid convection in a porous medium is driven by different appli-
cations in geophysics and energetics [1]. Because many studies are based on
direct simulation the numerical schemes must be robust and it should inherit
the key properties of underlying equations (in particular, conservation laws). The
mimetic finite-difference methods that provide the fundamental identities of vec-
tor calculus have been successfully employed [2]. Inheritance of continuous and
discrete symmetries of the underlying system is also important requirement for
the numerical scheme. Among these properties, cosymmetry [3] plays an impor-
tant role in Darcy or Lapwood convection. D. Lyubimov [4] found the branching
off a family of steady states from the state of rest and V. Yudovich [3] explained
this phenomenon using cosymmetry theory. It should be noted that the members
of cosymmetric family of steady convective patterns have different spectrum of
stability whenever in the symmetry situation all members of the family have the
identical spectra. Numerical studies for families of steady states in Darcy con-
vection were carried out only for the case of rectangular enclosures and cartesian
coordinates, see [5] and references here.

We derive a mimetic scheme to compute the family of steady convective fluid
patterns in annular enclosure filled with a porous medium. Equations for stream
function and temperature in the polar coordinates is discretized by the finite-
difference method. Special attention is given to the approximation of the Ja-
cobian as well as the buoyancy terms. This point was supported by computer

V.P. Gerdt et al. (Eds.): CASC 2011, LNCS 6885, pp. 251–262, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

252 B. Karasözen, A. Trofimova, and V. Tsybulin

algebra system Maple both for manipulation with nonlinear terms and realiza-
tion of free parameters method. Derived scheme preserves the cosymmetry and
discrete symmetry of the problem.

The paper is organized as follows. The governing equations in polar coordi-
nates are presented in Section 1 and emphasizing the importance of the cosym-
metry property of the problem. In Section 2, the mimetic finite difference scheme
is developed. The numerical results given in Section 3 demonstrate the existence
of the continuous family of steady states in an annular enclosures. Destruction
of the family of steady states was observed in case of non-conservative schemes.

1 Governing Equations and the Cosymmetry

We consider an incompressible fluid which saturates the porous medium in a
annular enclosure D = [R1, R2]× [Φ1, Φ2] heating from below. The temperature
on the boundary is given by a linear function of the height.

The planar problem of Darcy convection in polar coordinates (r, ϕ) is governed
by dimensionless equations:

∂tθ = Δθ + G(ψ) − J(θ, ψ) ≡ F1(θ, ψ), (1)

0 = Δψ − λG(θ) ≡ F2(θ, ψ), Δ = ∂2
r +

1
r
∂r +

1
r2

∂2
ϕ, (2)

where the Jacobian operator J(θ, ψ) and the term G(θ) are given:

J(θ, ψ) =
1
r

[
∂r(θ ∂ϕ ψ) − ∂ϕ(θ ∂r ψ)

]
, (3)

G(θ) =
1
r

[
∂ϕ(cosϕθ) + ∂r(r sinϕθ)

]
. (4)

The dependent variables ψ(r, ϕ, t) and θ(r, ϕ, t) denote, respectively, the stream
function and the perturbations of temperature from a linear conductive profile.
The Rayleigh number is given by λ = gβl2Kδθ/νχ, here g is acceleration due
to gravity, β is the thermal expansion coefficient, ν is the kinematic viscosity, K
is the permeability coefficient, χ is the thermal diffusivity of the fluid, l is the
length parameter.

The boundary conditions are:

θ = 0, ψ = 0, on ∂D. (5)

The initial condition is only defined for the temperature, θ(r, ϕ, 0) = θ0(r, ϕ),
because the stream function can be expressed from (2) and (5).

Equations (1)–(5) impose the equilibrium θ = ψ = 0 (state of rest), which
remains stable while λ < λcr. It was shown in [3] that the first critical value λcr

has multiplicity of two for any domain D and onset of the family of steady states
occurs when λ passes λcr. This is a consequence of the linear cosymmetry that
exists for the system (1)–(5). It is easy to check that the pair (ψ,−θ) means

Convection in a Porous Medium and Mimetic Scheme in Polar Coordinates 253

the cosymmetry and its orthogonality to the right-hand sides of (1)–(2). We
multiply (1) by ψ and (2) by −θ, sum them and integrate over the domain D.
Then using Greens formula, integration by parts and taking into account the
boundary conditions (5) we obtain∫

D

[
F1(θ, ψ)ψ − F2(θ, ψ)θ

]
rdrdϕ = 0. (6)

We stress that the identity (6) holds because the Jacobian and the buoyancy
term obey the following equalities

IJψ =
∫
D

J(θ, ψ)ψ rdrdϕ = 0, (7)

IGθ =
∫
D

G(θ)θ rdrdϕ = 0. (8)

It should be noted that the finite-difference approximation of the Jacobian
must preserve the finite-dimensional analog of (7) and this is directly connected
with cosymmetry conservation. It is desirable also to require that the Jacobian
approximation nullifies the discrete analog of the integral

IJθ =
∫
D

J(θ, ψ)θ rdrdϕ = 0, (9)

and preserve the skew-symmetry of the Jacobian J(θ,−ψ) = −J(ψ, θ).
The problem has a discrete symmetry if Φ2 = 2π − Φ1, then the equations

(1)–(2) are invariant with respect to the transformation

Rϕ : {ϕ, θ, ψ} �→ {2π − ϕ, θ,−ψ}. (10)

2 Finite–Difference Scheme

Mimetic non-staggered and staggered finite-difference schemes on uniform and
nonuniform rectangular grids were derived in [6–8] for preserving the cosymmetry
in the case of rectangular domain. We derive here finite-difference scheme in polar
coordinates that preserves the cosymmetry of the problem. The equations (1)–
(5) are discretized using uniform grids: ri = R1 + ihr, i = 1 . . . n, ϕj = Φ1 + jhϕ,
j = 1 . . .m, hr = (R2 −R1)/(n + 1), hϕ = (Φ2 − Φ1)/(m + 1) The temperature
θ and the stream function ψ are denoted at the nodes (ri, ϕj) as θi,j and ψi,j .
We introduce then the staggered grids: ri−1/2 = R1 +(i−1/2)hr, i = 1 . . . n+1,
ϕj−1/2 = Φ1 + (j − 1/2)hϕ, j = 1 . . .m + 1.

The discretized boundary conditions are formulated as follows (i = 0, n + 1,
j = 0, . . . ,m + 1 or i = 1, . . . , n, j = 0,m + 1):

θi,j = 0, ψi,j = 0.

254 B. Karasözen, A. Trofimova, and V. Tsybulin

We construct the approximation of the problem applying the two-node differ-
ence and averaging operators for integer and half-integer values of i and j

(δ1θ)i−1/2,j =
θi,j − θi−1,j

hr
, (δ2θ)i,j−1/2 =

θi,j − θi,j−1

hϕ
(11)

(δ1
0θ)i−1/2,j =

θi,j + θi−1,j

2
, (δ2

0θ)i,j−1/2 =
θi,j + θi,j−1

2
. (12)

Then we derive the operators on three-node stencils D1 = δ1
0δ1, D2 = δ2

0δ2
and the discrete analog of Laplacian:

Δhθi,j =
[
1
r
δ1(rδ1θ) +

1
r2

δ2δ2θ

]
i,j

. (13)

To approximate the Jacobian J we need in the averaging and difference operators
on a four-point stencil: d0 = δ1

0δ
2
0 , d1 = δ2

0δ1, d2 = δ1
0δ2.

2.1 Approximation of the Buoyancy Term

The approximation of buoyancy term Gi,j is specific in the case of polar
coordinates. It must satisfy the discrete analog of the condition (8):

ĨGθ ≡
n∑

i=1

m∑
j=1

Gi,j θi,j rihrhϕ = 0. (14)

When the difference operators D1, D2 are directly applied to approximation
of the buoyancy term (4), the resulting scheme does not conserve cosymmetry.
Therefore we constructed the conservative scheme, which satisfies in addition to
the preservation of ’buoyancy’ condition (8).

The buoyancy term (4) can be rewritten as:

G(θ) =
1
r

(
cosϕ∂ϕθ + r sinϕ∂rθ

)
. (15)

The finite-difference analogue of G(θ) is constructed as a linear combination of
approximations (15) and (4). Thus, the resulting approximation of the buoyancy
term can be written as:

G(θ) |(ri,ϕj)≈ Gi,j(θ) = νG
(1)
i,j + (1 − ν)G(2)

i,j , (16)

G
(1)
i,j =

[cosϕD2θ + r sinϕD1θ]i,j
ri

, G
(2)
i,j =

[D2(cosϕθ) + D1(r sinϕθ)]i,j
ri

.

By substituting (16) to ĨGθ (14) and using computer algebra system Maple,
the discrete form of (14) is obtained:

ĨGθ = (
1
2
− ν)

n∑
i=1

m∑
j=1

θi,j [θi+1,j(ri+1 − ri)hϕ sinϕj + (17)

+ θi,j+1hr(cosϕj+1 − cosϕj)] .

Convection in a Porous Medium and Mimetic Scheme in Polar Coordinates 255

Thus, only ν = 1/2 provides the mimetic approximation of buoyancy term (16).
Here Maple was employed schematically in the following manner. We

introduce operators

> D1:=f -> ((i,j)->(f[i+1,j]-f[i-1,j])/2/h[r]);
> D2:=f -> ((i,j)->(f[i,j+1]-f[i,j-1])/2/h[phi]);

take a coarse grid and form the boundary conditions

> n[r]:=2; n[phi]:=1;
> bc_psi:=seq(seq(psi[i,j]=0,i=0..n[r]+1),j=[0,n[phi]+1]),
> seq(seq(psi[i,j]=0,j=1..n[phi]),i=[0,n[r]+1]);
> bc_theta:=subs(psi=theta,[bc_psi])[];
> bc:=bc_psi,bc_theta:

and evaluate the sum

> S:=0: for i to n[r] do for j to n[phi] do
> G1:=(cos(phi[j])*D2(psi)(i,j)+r[i]*sin(phi[j])*D1(psi)(i,j))/r[i];
> G2:=((cos(phi[j+1])*psi[i,j+1]-cos(phi[j-1])*psi[i,j-1])/2/h[phi]
> +sin(phi[j])*(r[i+1]*psi[i+1,j]-r[i-1]*psi[i-1,j])/2/h[r])/r[i];
> S:=S+(nu*G1+(1-nu)*G2) *psi[i,j] *r[i]*h[r]*h[phi];
> od; od;
> factor(subs(bc,S));

1
2

sin(φ1)ψ2,1ψ1,1hφ(r1 − r2)(2ν − 1)

After the prompt ν is entered we check it on a finer grid.

2.2 Approximation of the Jacobian

The key point in preservation of cosymmetry in the discretized problem is ap-
proximation of the Jacobian [6]. The application of system Maple to derive this
was given in [7]. We follow here this method. The approximation of the Jacobian
must supply the fulfillment of discrete analogues of (7) and (9):

ĨJψ =
n∑

i=1

m∑
j=1

Ji,j ψi,j rihrhϕ = 0, ĨJθ =
n∑

i=1

m∑
j=1

Ji,j θi,j rihrhϕ = 0. (18)

Let write the analogue of Arakawa formula [9] in polar coordinates with the free
parameter α:

J(θ, ψ) |(ri,ϕj)≈ Ji,j(θ, ψ) = αJ
(1)
i,j + (1 − α)J

(2)
i,j , (19)

J
(1)
i,j =

1

ri
[D1(θD2ψ) − D2(θD1ψ)]i,j , J

(2)
i,j =

1

ri
[d1(d0θd2ψ) − d2(d0θd1ψ)]i,j .

256 B. Karasözen, A. Trofimova, and V. Tsybulin

The first condition in (18) is satisfied for any values of α. It was checked by
direct substitution of (19) to (18) and reorganization of terms using computer
algebra system Maple analogically [7].

ĨJθ =
3α− 1

4

n∑
i=1

m∑
j=1

ψi,jΓi,j ,

Γi,j = [θi,j−1(θi−1,j−1 − θi+1,j−1) + θi+1,j(θi+1,j−1 − θi+1,j+1)+
+θi,j+1(θi+1,j+1 − θi−1,j+1) + θi−1,j(θi−1,j+1 − θi−1,j−1)] .

Thus we find that only α = 1/3 supplies the inheritance the Jacobian properties
(7) and (9) through the finite-difference approximation (19). It is simply to check
that a formulae (19) preserves the skew-symmetry of the Jacobian and correct
treating of discrete symmetries.

2.3 Computation of the Family of Steady States

Using discrete operators (11)–(13), (16), (19) we derive the discretized form of
governing equations (1) and (2):

∂tθi,j = Δhθi,j + Gi,j(ψ) − Ji,j(θ, ψ), 0 = Δhψi,j − λGi,j(θ). (20)

Let introduce two vectors of nodal values (the temperature and the stream func-
tion):

Θ = (θ11, θ12, . . . , θij , θi,j+1, . . . , θnm), Ψ = (ψ11, ψ12, . . . , ψij , ψi,j+1, . . . , ψnm).

Then the resulting system of ordinary differential equations may be writhen as:

Θ̇ = AΘ + BΨ − F (Θ,Ψ), 0 = AΨ − λBΘ, (21)

where A is the diagonal matrix corresponding to the approximation of the Lapla-
cian Δh and matrix B corresponds to the operator G. The nonlinear vector-
function F (Θ,Ψ) corresponds to some finite-difference approximation of the
Jacobian. One can express Ψ from second equation (21) and substitute it to
the first one. To study nonsteady convective regimes or to check convergence
to a steady pattern we apply the direct approach and integrate the system of
ordinary differential equations using the fourth order Runge–Kutta method.

To compute a family of steady states we apply the technique based on the
cosymmetric version of the implicit function theorem [3]. First realization of
this method was given in [10] for the system of ordinary differential equations
derived via Galerkin approach. We applied here the technique which was derived
for finite-difference method [6]. When λ is slightly larger than λcr the state of rest
θ = ψ = 0 lost stability and the family of stable steady states is branched off [3].
Starting from the vicinity of unstable zero equilibrium we integrate the ordinary
differential equations (21) up to a point θ0 close to some stable equilibrium on
the family. Then we correct the point θ0 by the Newton method. To predict
the next point on the family we determine the kernel of the linearization matrix
(Jacobi matrix) at the point θ0 and use the Adams-Bashforth method. This
procedure is repeated to obtain the entire family.

Convection in a Porous Medium and Mimetic Scheme in Polar Coordinates 257

3 Numerical Results

We present here numerical results for convective regimes in the trapezoidal en-
closure and semi–ring. In both cases the equilibrium θ = ψ = 0 is stable when
λ < λcr. At the λ > λcr the continuous family of steady convective regimes
emerges. The stability spectrum of each state contains the zero eigenvalue, which
corresponds to neutral direction along family.

Computer experiment in MATLAB consists of computation of the family of
the steady states and its continuation under increasing Rayleigh number. Our
goal was to find instability on the family and study the number of arcs of insta-
bility. To present the results we use Nusselt numbers defined as:

Nuh =

Φ2∫
Φ1

∂θ

∂r
r

∣∣∣∣
r=R1

dϕ, Nuv =

R2∫
R1

1
r

∂θ

∂ϕ

∣∣∣∣
ϕ=ϕ∗

dr, ϕ∗ =
Φ1 + Φ2

2
,

where Nuh corresponds to the integral value of the heat flux defined for the
centered vertical section. The value Nuv may be considered as a cumulative
heat flux through the outer cylinder of the annular enclosure.

−0.4 0 0.4

−2.2

−1.6

−1

−0.4

λ=200

λ=250

λ=290

λ=310

 Nu
v

 Nu
h

Fig. 1. The transformation of the families of the stationary regimes when Rayleigh
number increases λ; trapezoidal enclosure, unsteady regimes are marked by stars

258 B. Karasözen, A. Trofimova, and V. Tsybulin

3.1 Cosymmetric Family of Steady States for Trapezoidal Enclosure

Firstly we consider the trapezoidal enclosure D1 = [R1, R2] × [Φ1, Φ2], R1 = 1,
R2 = 2, Φ1 = 11π/12, Φ2 = 2π − Φ1. This domain is close to the rectangle
and validation was provided by comparison with results [6]. It should be noted
given problem has no boundary layers and this allows to use rather crude grids.
Computation on different grids displays that the grid with 16 × 24 internal
nodes provides rather good accuracy for λcr and we employed mainly this grid
for further computation. Such a choice is important because we made a lot of
computations to find the family of steady states for each Rayleigh value and
continue the family up to instability on it. Each computation includes Newton
iterations with calculation of right-hand side and the Jacobi matrix.

So, in the case of the trapezoidal enclosure D1, the family of steady states is
branched off at λcr ≈ 105. With the growth of the Rayleigh number λ, the radial
heat flux increases and the form of the family is changed. Fig. 1 demonstrates
the evolution of the family of steady states. At λ > 300 the instability on the
family is detected in three places simultaneously. Zones of instability are marked
by stars in Fig. 1.

Generally, the family consists of stationary patterns with two convective cells
or one main and two auxiliary convective cells. It demonstrates Fig. 2 where
we present streamlines, isotherms and spectra for some convective patterns.
Rayleigh number λ = 200 is rather far from λcr but all states are stable.
It was established by computation of stability spectra and checked by direct

1 2 3 4

−300−150 0
−200

0

200

Re σ

Im σ

−300−150 0
Re σ

−300−150 0
Re σ

−300−150 0
Re σ

Fig. 2. Streamlines, isotherms and spectrum of steady states from the family; λ = 200,
trapezoidal enclosure

Convection in a Porous Medium and Mimetic Scheme in Polar Coordinates 259

computation of transient behavior under different initial perturbations. The
presence of zero eigenvalue (10−7) in the spectra indicates that this convective
structure belong to the one–parameter family of steady states. Moreover, the
spectra distribution is different along the family. It should be noted that discrete
symmetry Rϕ becomes apparent in that the family include regimes transient each
other at the action discrete symmetry (10).

3.2 Cosymmetric Family of Steady States for Semi–ring

We found more variety in convective flows in the case of the domain D2 =
[1, 2]× [π/2, 3π/2]. Patterns with several convective cells through the azimuthal
coordinate require more nodes in this direction. The results show that even
the coarse grid with 16 × 48 internal nodes provides sufficient accuracy for
computations of convective patterns.

1 2 3

4 5 6

7 8 9

Fig. 3. Streamlines of the stationary regimes from the family; λ = 80, semi–ring

The family of steady states is branched off at λcr ≈ 42 and the instability on
the family is detected at the Rayleigh number λ > 94. The character of instability
is monotonic, and with increasing of λ the arcs of instability grow. Figure 3
presents streamlines for steady states belonging to the family computed at the
Rayleigh number λ = 80. Depending on the initial data, patterns consisting from
2 to 6 convective cells. Due to discrete symmetry of the problem Rϕ the family
contains the pair of states which may be obtained applying of transformation of
discrete symmetry (10). For example, one can compare regimes 1 and 9, 2 and
8, 3 and 7, 4 and 6 in Fig. 3.

Stability analysis of the spectrum shows that the convective states 1 and 3
are unstable. The zero eigenvalue in the spectrum of each state indicates that

260 B. Karasözen, A. Trofimova, and V. Tsybulin

the convective structures are belonging to the one–parameter family, whereas
the occurrence of positive eigenvalues indicates instability of these regimes.

3.3 Preservation of Cosymmetry

Now we present the numerical results about destruction of the family of steady
states under non-mimetic approximation. To preserve cosymmetry in discrete
analogue of the underlying system it is very important to use correct approxi-
mation of the Jacobian and the buoyancy term. We consider impact of parameter
α (see formulae (19) for the approximation of the Jacobian) on the size of the
family of steady states as well as parameter ν (see formulae (16)) on the destruc-
tion of the family.

Firstly, we consider approximations preserving cosymmetry property. Fig. 4
gives the families computed for different values of α with the Rayleigh number
λ = 200 for the case of the trapezoidal enclosure D1. We note that α = 0
and α = 1 corresponds to approximation of the Jacobian with J (2) and J (1)

respectively and Arakawa approximation corresponds to the value α = 1/3.

−0.4 0 0.4

−2

−1.4

−0.8

−0.2

Nu
v

Nu
h

α=1
α=2/3
α=1/3
α=0

Fig. 4. Family of steady states for different values of α; λ = 200, trapezoidal enclosure

It was shown in Section 3 that the cosymmetry property (7) is preserved for
any value of α, but only the Arakawa approximation provides conservation of im-
portant characteristics of the Lapwood convection problem like skew–symmetry
and nullification of the gyroscopic force (9). Fig. 4 illustrates that for α < 1/3
the size of the family is overestimated and for α > 1/3 the size of the family
is underestimated. When the Rayleigh number λ decreases, the family collapses
to a point with some delay for α < 1/3 (and earlier for α > 1/3) than for the
correct approximation with α = 1/3.

Now we present results with non-mimetic approximation of buoyancy term
(16). In the case of trapezoidal enclosure and λ = 200 we found that the family

Convection in a Porous Medium and Mimetic Scheme in Polar Coordinates 261

−0.4 0 0.4

−1.6

−1.2

−0.8

−0.4
1

2

3
4

5

Nu
v

Nu
h

50 100

−1.6

−1.2

−0.8

−0.4

t

Nu
h

Fig. 5. Family of steady states and convergence from different initial points (circles)
to the isolated stationary states (stars); λ = 200, trapezoidal enclosure

of steady states is destroyed and only two isolated stationary states exist. The
evolution from different initial points is presented in Fig. 5 in the case of the
approximation of buoyancy term with ν = 1. In Section 2, the expression (17)
displays that the discrete analog of the identity (8) doesn’t conserve when ν �=
1/2. But it implies cosymmetry destruction and disappearing of the family of
steady states. On the left part of Fig. 5 one can see the results of computer
experiment at ν = 1. We took a number of starting points (marked by circles)
on the family (closed curve) and carried out the computations up to convergence.
It can be seen that only two regimes (points marked by stars) are realized. On
the right part of Fig. 5 the transient behavior of the Nusselt number Nuh is
given. It should be noted that convergence to the isolated steady state may take
a long time.

4 Summary

The computer algebra systems provide powerful tools for the derivation of nu-
merical schemes with desirable properties [11, 12]. In the case of cosymmetric
problem the strong nonuniqueness of solutions is a new challenge [3]. The contin-
uous family of steady state patterns was established for the Lapwood convection.
To reproduce this effect we derived mimetic numerical scheme with special ap-
proximations of the Jacobian and the buoyancy term. Computer algebra system
Maple was used to combine nonlinear terms and the method of free parameters.
It was shown that a non-mimetic scheme can destroy the family of steady states.

Results of computation of the families of steady states for two annular do-
mains are given. Non-uniform stability spectra was found for convective patterns
belonging to the family of steady states. The continuation of the family up to
the appearance of unstable states is done and the scenario with simultaneous
instability at three points was detected. So, these families do not result from
the symmetry, this is due to the cosymmetrical effect. In this work, we have

262 B. Karasözen, A. Trofimova, and V. Tsybulin

considered the two-dimensional case by neglecting the variations of the flows
on the axial coordinate. The consideration of three dimensional convection in
cylindrical domains would be the next problem. It is also of interest to study the
coexistence of planar flows and three-dimensional patterns.

Acknowledgements. A.T. and V.T. were supported by Russian Ministry for
Education and Research, (2.1.1/6095) and Russian Foundation for Basic Research
(11-01-00708).

References

1. Nield, D.A., Bejan, A.: Convection in porous media. Springer, New York (2006)
2. Margolin, L., Shashkov, M.: Finite volume methods and the equations of finite

scale: A mimetic approach. Int. J. Numer. Meth. Fluids 56, 991–1002 (2008)
3. Yudovich, V.I.: Cosymmetry, degeneracy of the solutions of operator equations,

and the onset of filtrational convection. Math. Notes 49, 540–545 (1991)
4. Lyubimov, D.V.: On the convective flows in the porous medium heated from below.

J. Appl. Mech. Techn. Phys. 16, 257–261 (1975)
5. Tsybulin, V.G., Nemtsev, A.D., Karasözen, B.: A mimetic finite-difference scheme

for convection of multicomponent fluid in a porous medium. In: Gerdt, V.P., Mayr,
E.W., Vorozhtsov, E.V. (eds.) CASC 2009. LNCS, vol. 5743, pp. 322–333. Springer,
Heidelberg (2009)

6. Karasözen, B., Tsybulin, V.G.: Finite-difference approximation and cosymmetry
conservation in filtration convection problem. Phys. Letters A 262, 321–329 (1999)

7. Karasözen, B., Tsybulin, V.G.: Conservative finite difference schemes for cosym-
metric systems. In: Proc. 4th Conf. on Computer Algebra in Scientific Computing,
pp. 363–375. Springer, Heidelberg (2001)

8. Karasözen, B., Tsybulin, V.G.: Cosymmetry preserving finite-difference methods
for equations of convection in a porous medium. Appl. Num. Math. 55, 69–82
(2005)

9. Arakawa, A.: Computational design for long-term numerical integration of the
equations of fluid motion: two-dimensional incompressible flow. J. Comp. Phys. 1,
119–143 (1966)

10. Govorukhin, V.N.: Numerical simulation of the loss of stability for secondary steady
regimes in the Darcy plane-convection problem. Doklady Akademii Nauk. 363, 806–
808 (1998)

11. Ganzha, V.G., Vorozhtsov, E.V.: Numerical Solutions for Partial Differential Equa-
tions. Problem Solving Using Mathematica. CRC Press, Boca Raton (1996)

12. Gerdt, V.P., Blinkov, Y.A.: Involution and Difference Schemes for the Navier–
Stokes Equations. In: Gerdt, V.P., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC
2009. LNCS, vol. 5743, pp. 94–105. Springer, Heidelberg (2009)

Computations in Finite Groups and Quantum

Physics

Vladimir V. Kornyak

Laboratory of Information Technologies
Joint Institute for Nuclear Research

141980 Dubna, Russia
kornyak@jinr.ru

Abstract. Mathematical core of quantum mechanics is the theory of
unitary representations of symmetries of physical systems. We argue
that quantum behavior is a natural result of extraction of “observable”
information about systems containing “unobservable” elements in their
descriptions. Since our aim is physics where the choice between finite
and infinite descriptions can not have any empirical consequences, we
consider the problem in the finite background. Besides, there are many
indications from observations — from the lepton mixing data, for ex-
ample — that finite groups underly phenomena in particle physics at
the deep level. The “finite” approach allows to reduce any quantum dy-
namics to the simple permutation dynamics and, thus, to express quan-
tum observables in terms of permutation invariants of symmetry groups
and their integer characteristics such as sizes of conjugate classes, sizes
of group orbits, class coefficients, and dimensions of representations.
Our study has been accompanied by computations with finite groups,
their representations and invariants. We have used both our C imple-
mentation of algorithms for working with groups and computer algebra
system GAP.

1 Introduction

Symmetry is the leading mathematical principle in quantum mechanics: only
systems containing indistinguishable particles demonstrate quantum behavior
— any violation of identity of particles destroys quantum interferences.

Mathematical description of any system uses arbitrarily chosen marks for
registration and identification elements of the system. Elements of systems with
symmetries are decomposed into “homogeneous” sets — group orbits. Only such
relations and statements (they are called invariants) have objective meaning as
are not dependent on relabeling elements lying on the same group orbit. An
example of such invariant is the number of elements of a group orbit. To fix an
element of a group orbit is possible only with respect to some additional system
which appears as “coordinate system”, or “observer”, or “measuring device”. For
example, no objective meaning can be attached to electric potentials ϕ and ψ or
to points of space, denoted (marked) as vectors a and b. But the combinations

V.P. Gerdt et al. (Eds.): CASC 2011, LNCS 6885, pp. 263–279, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

264 V.V. Kornyak

denoted as ψ−ϕ or b− a (in more general group notation ϕ−1ψ and a−1b) are
meaningful. These are examples of typical situations where observable objects or
relations are group invariants depending on pairs of elements related to observed
system and to observer.

The question of “whether the real world is discrete or continuous” or even “fi-
nite or infinite” is entirely metaphysical, since neither empirical observations nor
logical arguments can validate one of the two adoptions — this is a matter of be-
lief or taste. Since the choice between finite (discrete) and infinite (continuous)
descriptions can not have any empirical consequences — “physics is indepen-
dent of metaphysics” — we can boldly take advantage of “finite” consideration
without any risk to destroy the physical content of a problem.

In this paper, we consider finite quantum mechanics from constructive, al-
gorithmic point of view. Using the fact that any representation of finite group
can be embedded into a permutation representation, we show that any quantum
dynamics can be reduced to permutations, and quantum observables can be ex-
pressed in terms of permutation invariants. Note that the interpretational issues
like “wavefunction collapse”, “many-worlds”, “many-minds” etc. disappear in
the finite background. We discuss also experimental evidences of fundamental
role of finite symmetry groups in particle physics.

2 Dynamical Systems and Quantum Evolution

Let us consider dynamical system with the finite set of (classical) states
Ω = {ω1, . . . , ωN} in the discrete time t ∈ T , where T = Z or T = [0, 1, . . . , T].
We assume that a finite symmetry group G = {g1, . . . , gM} ≤ Sym (Ω) acts
on the set of states.

Classical evolution (trajectory) of the dynamical system is a sequence of
states evolving in time . . . , ωt−1, ωt, ωt+1, . . . ∈ ΩT .

For reasons that will be clear later, we define quantum evolution as a
sequence of permutations . . . pt−1, pt, pt+1 . . . ∈ GT , pt ∈ G.

In most physical problems, the whole set of states Ω has a special structure
of a set of functions Ω = ΣX on some space X with values in some set of
local states Σ. In dynamical systems with such structure of the set of states
nontrivial gauge structures — used in physical theories for description of forces
— arise naturally. We assume that the space is a finite set X =

{
x1, . . . , x|X|

}
possessing nontrivial group of space symmetries F =

{
f1, . . . , f|F|

}
≤ Sym (X).

The local states form a finite set Σ =
{
σ1, . . . , σ|Σ|

}
provided with the group

of internal symmetries Γ =
{
γ1, . . . , γ|Γ |

}
≤ Sym (Σ). To combine the space

F and internal Γ groups into the symmetry group G of the whole set of states
Ω = ΣX we use the following equivalence class of split extensions

1 → ΓX → G → F → 1, (1)

where ΓX is the group of Γ -valued functions on the space X. This is a natural
generalization of constructions used in physical theories. Explicit formulas for

Finite Groups and Quantum Physics 265

group operations in G expressed in terms of operations in F and Γ are given in
[1,2] — we do not need them here.

The most popular and intuitive approach to quantization — particularly
well suited for dynamical systems with space — is Feynman’s path integral:
the amplitude of quantum transition from initial to final state is computed by
summing up the amplitudes along all possible classical trajectories connecting
these states. As is well known, Feynman’s approach is equivalent to the tradi-
tional matrix formulation of quantum mechanics where the evolution of a sys-
tem from an initial to a final state is described by an evolution matrix U :
|ψ0〉 → |ψT 〉 = U |ψ0〉. The evolution matrix of a quantum dynamical system
can be represented as the product of matrices corresponding to elementary time
steps: U = UT←T−1 · · ·Ut←t−1 · · ·U1←0. In fact, it can be shown by straightfor-
ward examination that Feynman’s quantization rules — “multiply subsequent
events” and “sum up alternative histories” — is simply a rephrasing of the ma-
trix multiplication rule. For the sake of uniformity of consideration we adopt the
evolution matrix approach throughout this paper.

Quantum mechanical evolution matrices are unitary operators acting in Hil-
bert spaces of (quantum) state vectors (called also “wave functions”, “ampli-
tudes” etc.). Quantum mechanical particles are associated with unitary represen-
tations of certain groups. These representations are called “singlets”, “doublets”,
and so on, in accordance with their dimensions. Multidimensional representations
describe the spin. A quantum mechanical experiment is reduced to comparison
of the system state vector ψ with some sample state vector φ provided by a
“measuring apparatus”. According to the Born rule, the probability to observe
the coincidence of the states is equal to |〈φ | ψ〉|2/ (〈φ | φ〉 〈ψ | ψ〉).

3 Groups, Numbers and Representations

All transitive actions of a finite group G = {g1,. . ., gM} on finite sets Ω =
{ω1,. . ., ωN} can easily be described [3]. Any such set is in one-to-one corre-
spondence with right H\G (or left G/H) cosets of some subgroup H ≤ G. The
set Ω is called a homogeneous space of the group G (G-space). Action of G on Ω
is faithful, if the subgroup H does not contain normal subgroups of G. We can
write action in the form of permutations

π(g) =
(
ωi

ωig

)
∼
(
Ha

Hag

)
, g, a ∈ G, i = 1, . . . ,N.

Maximal transitive set Ω is the set of all elements of the group G itself, i.e., the
set of cosets of the trivial subgroup H = {1}. The corresponding action is called
regular and can be represented by the permutations

Π(g) =
(

gi

gig

)
, i = 1, . . . ,M. (2)

To introduce a “quantitative” (“statistical”) description, let us assign to the
elements of the set Ω numerical “weights” from some suitable number system

266 V.V. Kornyak

N containing at least zero and unity. This allows to rewrite permutations by
matrices — this is called permutation representation:

π(g) → ρ(g) =
(
ρ(g)ij

)
, where ρ(g)ij = δωig,ωj ; i, j = 1, . . . ,N. (3)

Here δα,β is the Kronecker delta on Ω.
The cycle type of a permutation is array of multiplicities of lengths of cycles in

decomposition of the permutation into disjoint cycles. The cycle type is usually
denoted by 1k12k2 · · ·nkn , where ki is the number of cycles of the length i in the
permutation. The characteristic polynomial of permutation matrix (3) can be
written immediately from the cycle type of the corresponding permutation π(g):

χρ(g) (λ) = det (ρ(g) − λI) = (λ− 1)k1
(
λ2 − 1

)k2 · · · (λn − 1)kn . (4)

The matrix form of permutations (2) representing the regular action

Π(g) → P(g) =
(
P(g)ij

)
, P(g)ij = δeig,ej , i, j = 1, . . . ,M (5)

is called the regular representation — this is a special case of (3).
For the sake of freedom of algebraic manipulations, one assumes usually that

N is an algebraically closed field — a standard choice is the field of complex
numbers C. If N is a field, then the set Ω can be treated as a basis of linear
vector space H = Span (ω1, · · · , ωN).

The field C is excessively large — most of its elements are non-constructive.
What is really needed can be constructed as follows. As is clear from (4), all
eigenvalues of permutation matrices are E th roots of unity, where E is the
exponent of the group G — the least common multiple of orders of the group
elements. The E th roots of unity can be expressed in terms of Pth roots, where
P is some divisor of E called conductor. As a first step, we combine the roots
of unity with natural numbers N = {0, 1, . . .} to construct the set NP = N [r] of
polynomials of the form n1+n2r+· · ·+nPrP−1, where nk ∈ N; r is primitive Pth
root of unity, i.e. period of r is equal exactly to P . For intuitive perception one
could bear in mind the symbolics r = e2πi/P for the primitive root, but we will
never use this representation. The following algebraic definitions are sufficient
for all computations

1. Multiplication: rk × rm = rk+m mod P ,
2. Complex conjugation: rk = rP−k.

If P = 1, then N1 is the semi-ring of natural numbers N.
If P ≥ 2, then negative integer numbers can be introduced via the definition

(−1) =
p−1∑
k=1

r
P
p k, where p is any factor of P . So we obtain the ring of integers Z.

If P ≥ 3, then the set NP is a commutative ring embeddable into the field of
complex numbers C. This is the ring of cyclotomic integers : NP = Z [r] / 〈ΦP (r)〉.
Here ΦP (r) is the Pth cyclotomic polynomial — the product of the binomials
r − ζ, where ζ runs over all primitive Pth roots of unity.

Finite Groups and Quantum Physics 267

The ring NP is sufficient for almost all computations with finite quantum
models. For simplicity of linear algebra we extend the ring NP to the Pth cyclo-
tomic field QP = Q [r] / 〈ΦP (r)〉. When computing matrices of unitary repre-
sentations square roots of dimensions of representations arise as normalization
factors. Since square roots of integers are always cyclotomic integers we can treat
all irrationalities arising in computations — roots of unity and square roots of
dimensions — as belonging to a ring of cyclotomic integers Nn with some n
(usually n > P). We can also construct a minimal abelian number field F con-
taining a given set of irrationalities. It is a subfield of the cyclotomic field Qn.
The term abelian means here that F is an extension with abelian Galois group.
The command Field(gens) in the computer algebra system GAP [4] returns
the smallest field that contains all elements from the list gens. As to the finite
quantum systems discussed in this paper, the roots of unity and other irrational-
ities are only intermediate entities in description of quantum behavior — they
disappear in the final “observables”.

Any linear representation of a finite group is equivalent to unitary, since one
can always construct invariant inner product from an arbitrary one by “averaging
over the group”. Starting from, e.g., the standard inner product in K-dimensional
Hilbert space H

(φ | ψ) ≡
K∑

i=1

φiψi (6)

we can come via the averaging to the invariant inner product :

〈φ | ψ〉 ≡ 1
|G|

∑
g∈G

(U(g)φ | U (g)ψ) . (7)

Here U is a representation of a group G in the space H.
An important transformation of group elements — an analog of change of

coordinates in physics — is the conjugation: a−1ga → g′, g, g′ ∈ G, a ∈ Aut (G).
Conjugation by an element of the group itself, i.e., if a ∈ G, is called an inner
automorphism. The equivalence classes with respect to the inner automorphisms
are called conjugacy classes. The starting point in study of representations of a
group is its decomposition into conjugacy classes

G = K1 �K2 � · · · �Km.

The group multiplication induces multiplication on the classes. The product
of Ki and Kj is the multiset of all possible products ab, a ∈ Ki, b ∈ Kj ,
decomposed into classes. This multiplication is obviously commutative, since ab
and ba belong to the same class: ab ∼ a−1 (ab)a = ba. Thus, the multiplication
table for classes is given by

KiKj = KjKi =
m∑

k=1

cijkKk. (8)

The natural integers cijk — multiplicities of classes in the multisets — are called
class coefficients.

268 V.V. Kornyak

This is a short list of main properties of linear representations of finite groups:

1. Any irreducible representation is contained in the regular representation.
More specifically, there exists matrix T transforming simultaneously all ma-
trices (5) to the form

T−1P(g)T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D1(g)

d2

⎧⎪⎨⎪⎩
D2(g)

. . .
D2(g)

. . .

dm

⎧⎪⎨⎪⎩
Dm(g)

. . .
Dm(g)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (9)

and any irreducible representation is one of Dj ’s. The numbers of non-
equivalent irreducible representation and conjugacy classes coincide. The
number dj is the dimension of the irreducible component Dj and simulta-
neously the multiplicity of its occurrence in the regular representation. It
is clear from (9) that for the dimensions of irreducible representations the
following relation holds: d2

1 + d2
2 + · · · + d2

m = |G| = M. The dimensions of
irreducible representations divide the group order: dj | M.

2. Any irreducible representation Dj is determined uniquely by its character
χj defined as the trace of the representation matrix: χj (g) = TrDj (g). This
is a function on the conjugacy classes since χj (g) = χj

(
a−1ga

)
. Obviously,

χj (1) = dj .
3. A compact form of recording all irreducible representations is the character

table. The columns of this table are numbered by the conjugacy classes, while
its rows contain values of characters of non-equivalent representation:

K1 K2 · · · Km

χ1 1 1 · · · 1
χ2 χ2 (K1) = d2 χ2 (K2) · · · χ2 (Km)
...

...
...

...
χm χm (K1) = dm χm (K2) · · · χm (Km)

.

By convention, the 1st column corresponds to the identity class, and the 1st
row contains the trivial representation.

4 Finite Quantum Systems

In quantum mechanics all possible states of every physical system are repre-
sented by vectors ψ in a Hilbert space H. It is assumed that vectors ψ and
ψ′ describe identical states if they are proportional through a complex factor:

Finite Groups and Quantum Physics 269

ψ′ = λψ, λ ∈ C. Evolution of the system from any initial state ψ0 into the cor-
responding final state ψT is described by an unitary operator U : |ψT 〉 = U |ψ0〉.
The unitarity means that U belongs to the automorphism group of the Hilbert
space: U ∈ Aut (H). One may regard Aut (H) as a faithful representation of re-
spective abstract group G. In the continuous time the dynamics can be expressed
by the Schrödinger equation

i
d
dt

|ψ〉 = H |ψ〉

in terms of the local Hermitian operator H called the Hamiltonian or energy
operator. If H is independent of time, then the relation U = e−iHT holds.

A finite quantum system is formulated in exactly the same way. The only
difference is that now the group G is a finite group of order M having unitary
representation U in K-dimensional Hilbert space HK over some abelian num-
ber field F instead of C. All possible evolution operators form the finite set
{U1, . . . , UM} of unitary matrices from U.

Since the matrices Uj are non-singular, one can always introduce Hamiltonians

by the formula Hj = i lnUj ≡
p−1∑
k=0

λkU
k
j , where p is period of Uj , λk’s are some

coefficients1; but there is no need to do so.
More generally, hermitian operators A describing observables in quantum for-

malism can be written as elements of the group algebra representation:

A =
M∑

k=1

αkUk.

Finite groups — unless they are many-component direct products — can be
often generated by a small number of elements. For example, all simple and all
symmetric groups are generated by two elements. The algorithm restoring the
whole group from ng generators is very simple. It is reduced to ng (M − ng − 1)
group multiplications. So the finite quantum models are well suited for computer
algebra methods.

4.1 Reducing Quantum Dynamics to Permutations

It follows from decomposition (9) that any K-dimensional representation U can
be extended to an N-dimensional representation Ũ in a Hilbert space HN, in
such a way that the representation Ũ corresponds to the permutation action of
the group G on some N-element set of entities Ω = {ω1, . . . , ωN}. It is clear that
N ≥ K.

1 Note that the logarithmic function being essentially a construction from continuous
mathematics introduces into the λk’s a non-algebraic element — namely, π — ex-
pressed by infinite sum of elements from F . In other words, the λk’s are elements of
a transcendental extension of F .

270 V.V. Kornyak

The case when N is strictly greater than K is most interesting. Clearly, the
additional “hidden parameters” — appearing in this case due to increase of the
number of states (dimension of space) — in no way can affect the data relating
to the space HK since both HK and its complement in HN are invariant subspaces
of the extended space HN. Thus, any quantum problem in K-dimensional Hilbert
space can be reformulated in terms of permutations of N things.

From the algorithmic point of view, manipulations with permutations are
much more efficient than the linear algebra operations with matrices. Of course,
degrees of permutations N might be much larger than dimensions of matrices
K. However, the very possibility to reduce quantum dynamics to permutations is
much more important conceptually than the algorithmic issues.

4.2 Connection with Observation: The Born Rule

In quantum mechanics, the link between mathematical description and exper-
iment is provided by the Born rule, stating that the probability to observe a
quantum system being in the state ψ by apparatus tuned to the state φ is ex-
pressed by the number

P(φ, ψ) =
|〈φ | ψ〉|2

〈φ | φ〉 〈ψ | ψ〉 . (10)

This expression can be rewritten in a form including the pair “system–apparatus”
in more symmetric way

P(φ, ψ) =
|〈φ | ψ〉|2

|〈φ | ψ〉|2 + ‖φ ∧ ψ‖2 .

Here φ ∧ ψ is exterior (Grassmann) product of the vectors φ and ψ, which is
the K(K − 1)/2-dimensional vector with the components in the unitary basis
(φ ∧ ψ)ij = φiψj − φjψi and with the square of norm

‖φ ∧ ψ‖2 =
K−1∑
i=1

K∑
j=i

∣∣φiψj − φjψi
∣∣2 .

There are many philosophical speculations concerning the concept of probability
and its interpretation. However, what is really used in practice is the frequency
interpretation: the probability is the ratio of the number of favorable cases to
the total number of cases. In the case of finite sets there are no complications at
all: the probability is the rational number — the ratio of the number of singled
out elements of a set to the total number of elements of the set.

It can be shown that if data about states of a system and apparatus are rep-
resented in the permutation basis by natural numbers, then formula (10) gives
rational numbers in the invariant subspaces of the permutation representation
also, in spite of possible presence of cyclotomics and square roots in the inter-
mediate computations.

Finite Groups and Quantum Physics 271

Let us consider permutation action of the group G = {g1, . . . , gM} on the set of
entities Ω = {ω1, . . . , ωN}. We will describe the (quantum) states of the system
and apparatus in the permutation representation by the vectors

|n〉 =

⎛⎜⎝n1

...
nN

⎞⎟⎠ and |m〉 =

⎛⎜⎝m1

...
mN

⎞⎟⎠ , (11)

respectively. It is natural to assume that ni and mi are natural numbers, in-
terpreting them as the “multiplicities of occurrences” of the element ωi in the
system and apparatus states, respectively. In other words, the vectors |n〉 and
|m〉 are elements of N-dimensional module HN over the semi-ring N. Permuta-
tion action of G on Ω is equivalent to matrix representation of G in the module
HN. We can turn the module HN into the Hilbert space HN by extending the
semi-ring N to an abelian number field F compatible with the structure of G.

Of course, due to the symmetry the numbers ni and mi are not observable.
Only their invariant combinations are observable. Since the standard inner prod-
uct defined in (6) is invariant for the permutation representation, in accordance
with the Born rule we have

P(m,n) =
(
∑

i mini)
2∑

i mi
2
∑

i ni
2
. (12)

It is clear that for non-vanishing natural vectors |n〉 and |m〉 expression (12)
is a rational number strictly greater than zero. This means, in particular, that
it is impossible to observe destructive quantum interference here. However, the
destructive interference of the vectors with natural components can be observed
in the proper invariant subspaces of the permutation representation.

5 Example: Group of Permutations of Three Things

S3 is the smallest non-commutative group providing a non-trivial quantum be-
havior. Nevertheless, S3 has important applications in the lepton sector of flavor
physics. The group consists of six elements having the following representation
by permutations

g1 = (), g2 = (2, 3), g3 = (1, 3), g4 = (1, 2), g5 = (1, 2, 3), g6 = (1, 3, 2) . (13)

The group can be generated by many pairs of its elements. Let us choose, for
instance, g2 and g6 as generators. S3 decomposes into three conjugacy classes

K1 = {g1} , K2 = {g2, g3, g4} , K3 = {g5, g6} (14)

with the following multiplication table

K1Kj = Kj, K2
2 = 3K1 + 3K3, K2K3 = 2K2, K2

3 = 2K1 + K3.

272 V.V. Kornyak

The group S3 has the following character table

K1 K2 K3

χ1 1 1 1
χ2 1 -1 1
χ3 2 0 -1

. (15)

Matrices of permutation representation of generators are

P2 =

⎛⎝1 · ·
· · 1
· 1 ·

⎞⎠ and P6 =

⎛⎝ · · 1
1 · ·
· 1 ·

⎞⎠ . (16)

The eigenvalues of P2 and P6 are (1, 1,−1) and
(
1, r, r2

)
, respectively; r is a

primitive third root of unity with cyclotomic polynomial Φ3 (r) = 1 + r + r2.
Since any permutation representation contains one-dimensional invariant sub-

space with the basis vector (1, . . . , 1)T, the only possible structure of decompo-
sition of permutation representation into irreducible parts is the following

Ũj =
(

1 0
0 Uj

)
, j = 1, . . . , 6, (17)

where the matrices 1 and Uj correspond to one-dimensional trivial (character
χ1) and two-dimensional faithful (character χ3) representations, respectively.

To construct decomposition (17) we should determine matrices Uj and T such
that Ũj = T−1PjT. In addition we impose unitarity on all the matrices. Clearly,
it suffices to perform the procedure only for matrices of generators. There are
different ways to construct decomposition (17).

If we start with the diagonalization of P6, we come to the following2

U1 =
(

1 0
0 1

)
, U2 =

(
0 r2

r 0

)
, U3 =

(
0 r
r2 0

)
,

(18)

U4 =
(

0 1
1 0

)
, U5 =

(
r2 0
0 r

)
, U6 =

(
r 0
0 r2

)
.

2 Note the peculiarity of representation (18) — its matrices are very similar to matrices
of permutations: there is exactly one non-zero entry in each column and in each row.
But in contrast to permutation matrices in which any non-zero entry is unity, non-
zeros in (18) are roots of unity. This is because S3 is one of the so-called monomial
groups [5] for which all irreducible representations can be constructed as induced
from one-dimensional representations of their subgroups — choosing diagonal form
for U6 is just equivalent to inducing (18) from representation of cyclic subgroup
Z3 ≤ S3. Most groups, at least of small orders, are just monomial. For example, it
can be checked with the help of GAP that the total number of all non-isomorphic
groups of order < 384 is equal to 67424, but only 249 of them are non-monomial.
The minimal non-monomial group is the 24-element group SL (2, 3) of 2×2 matrices
in the characteristic 3 with unit determinants.

Finite Groups and Quantum Physics 273

The transformation matrix (up to inessential degrees of freedom for its entries)
takes the following form

T =
1√
3

⎛⎝1 1 r2

1 r2 1
1 r r

⎞⎠ , T−1 =
1√
3

⎛⎝1 1 1
1 r r2

r 1 r2

⎞⎠ . (19)

Otherwise, the diagonalization of P2 leads to another second component of de-
composition (17) (we present here only the generator matrices)

U ′
2 =

(
1 0
0 −1

)
, U ′

6 =

(
− 1

2

√
3

2

−
√

3
2 − 1

2

)
.

The transformation matrix in this case takes the form

T′ =

⎛⎜⎝ 1√
3

√
2
3 0

1√
3

− 1√
6
− 1√

2
1√
3

− 1√
6

1√
2

⎞⎟⎠ , T′−1 =

⎛⎜⎝
1√
3

1√
3

1√
3√

2
3 − 1√

6
− 1√

6

0 − 1√
2

1√
2

⎞⎟⎠ . (20)

The matrix T′ is known in particle physics under the names Harrison-Perkins-
Scott or tribimaximal mixing matrix. It is used to description of neutrino oscil-
lation data.

The information about “quantum behavior” is encoded, in fact, in transfor-
mation matrices like (19) or (20).

Let |n〉 =

⎛⎝n1

n2

n3

⎞⎠ and |m〉 =

⎛⎝m1

m2

m3

⎞⎠ be system and apparatus state vectors in

the “permutation” basis. Transformation of these vectors from the permutation
to “quantum” basis with the help of, say, (19) leades to

∣∣∣ψ̃〉 = T−1 |n〉 =
1√
3

⎛⎝ n1 + n2 + n3

n1 + n2r + n3r
2

n1r + n2 + n3r
2

⎞⎠ ,

∣∣∣φ̃〉 = T−1 |m〉 =
1√
3

⎛⎝ m1 + m2 + m3

m1 + m2r + m3r
2

m1r + m2 + m3r
2

⎞⎠ .

Projections of the vectors onto two-dimensional invariant subspace are:

|ψ〉 =
1√
3

(
n1 + n2r + n3r

2

n1r + n2 + n3r
2

)
, |φ〉 =

1√
3

(
m1 + m2r + m3r

2

m1r + m2 + m3r
2

)
. (21)

The same manipulation with matrix (20) leads to

|ψ′〉 =

(
n1

√
2
3 − n2

1√
6
− n3

1√
6

−n2
1√
2

+ n3
1√
2

)
, |φ′〉 =

(
m1

√
2
3 −m2

1√
6
−m3

1√
6

−m2
1√
2

+ m3
1√
2

)
. (22)

274 V.V. Kornyak

Constituents of Born’s probability (10) for the two-dimensional subsystem —
clearly, the same in both cases (21) and (22) — are

〈ψ |ψ〉 = Q3 (n, n) − 1
3
L3 (n)2 , (23)

〈φ |φ〉 = Q3 (m,m) − 1
3
L3 (m)2 , (24)

|〈φ |ψ〉|2 =
(

Q3 (m,n) − 1
3
L3 (m) L3 (n)

)2

, (25)

where LN (n) =
N∑

i=1

ni and QN (m,n) =
N∑

i=1

mini are linear and quadratic per-

mutation invariants, respectively.
Note that:

1. Expressions (23)–(25) consist of the invariants of permutation representa-
tion. This is a manifestation of fundamental role of permutations in quantum
description.

2. Expressions (23) and (24) are always positive rational numbers for |n〉 and
|m〉 with different components.

3. Conditions for destructive quantum interference — vanishing Born’s proba-
bility — are determined by the equation

3 (m1n1 + m2n2 + m3n3) − (m1 + m2 + m3) (n1 + n2 + n3) = 0.

This equation has infinitely many solutions in natural numbers. An example

of such a solution is: |n〉 =

⎛⎝1
1
2

⎞⎠ , |m〉 =

⎛⎝1
3
2

⎞⎠.

Thus, we have obtained essential features of quantum behavior from “permu-
tation dynamics” and “natural” interpretation (11) of quantum amplitude by a
simple transition to invariant subspaces.

Recall once more that any permutation representation contains the trivial
one-dimensional subrepresentation and, hence, has (N − 1)-dimensional invariant
subspace. The inner product in this subspace can be expressed in terms of the
permutation invariants by the formula

〈φ |ψ〉 = QN (m,n) − 1
N

LN (m) LN (n) .

The identity QN (n, n) − 1
N

LN (n)2 ≡ 1
N2

N∑
i=1

(LN (n) − Nni)
2 shows explicitly

that 〈ψ |ψ〉 > 0 for |n〉 with different components ni. This inner product does
not contain irrationalities for natural |n〉 and |m〉. This is not the case for other

Finite Groups and Quantum Physics 275

invariant subspaces. Nevertheless irrationalities disappear in the squared mod-
ulus of the inner product |〈φ |ψ〉|2. To give a simple illustration let us consider
the cyclic group Z3. Its three-dimensional permutation representation decom-
poses into three one-dimensional irreducible components. E.g., for the generator
g = (1, 2, 3) of Z3 we have

P =

⎛⎝ · 1 ·
· · 1
1 · ·

⎞⎠ −→ Ũ =

⎛⎝ 1 0 0
0 r 0
0 0 r2

⎞⎠ , r is a primitive third root of unity.

The inner product in one-dimensional subspace corresponding to the eigenvalue,

say r, contains irrationalities: 〈φ |ψ〉 =
1
3
(
Q3 (m,n) + rC(m,n) + r2C′(m,n)

)
,

but |〈φ |ψ〉|2 =
1
9

(Q3 (m,m)− C(m,m)) (Q3 (n, n)− C(n, n)) is free of them.

The invariants C(m,n) = m1n3 +m2n1 +m3n2 and C′(m,n) = m1n2 +m2n3 +
m3n1 are specific for the group Z3 in contrast to LN (n) and QN (m,n) that are
common to all permutation groups.

6 Finite Symmetry Groups in Particle Physics

At present, all observations concerning fundamental particles [6] are compatible
with the Standard Model (SM). The SM is a gauge theory with the group of
internal (gauge) symmetries Γ = SU (3)×SU (2)×U (1). In the context of Grand
Unified Theory (GUT) Γ is assumed to be a subgroup of some larger (simple)
group. With respect to space-time symmetries, the elementary particles are di-
vided into two classes: bosons, responsible for physical forces (roughly speaking,
they are elements of the gauge group) and fermions, usually treated as particles
of matter. The fermions of the SM are divided into three generations of quarks
and leptons as follows (antiparticles are omitted for brevity):

Generations
1 2 3

Up-quarks
Down-quarks

Up u
Down d

Charm c
Strange s

Top t
Bottom b

Charged leptons
Neutrinos

Electron e−

Electron neutrino νe

Muon μ−

Muon neutrino νμ

Tau τ−

Tau neutrino ντ

Between generations particles differ only by their mass and quantum property
called flavor. The flavor changing transitions — taking place in such phenomena
as weak decays of quarks and neutrino oscillations — are described by 3×3 uni-
tary mixing matrices. The outputs of experiments allow to calculate magnitudes
of elements of these matrices.

In the case of quarks (“in the quark sector”), the mixing matrix describ-
ing transitions between up- and down-type quarks is the Cabibbo–Kobayashi–
Maskawa (CKM) matrix

276 V.V. Kornyak

VCKM =

⎛⎝Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎞⎠ ,

where |Vαβ |2 represents the probability that the quark (of flavor) β decays into a
quark α. The current experimental data rounded to three significant digits are:⎛⎝|Vud| |Vus| |Vub|

|Vcd| |Vcs| |Vcb|
|Vtd| |Vts| |Vtb|

⎞⎠ =

⎛⎝0.974 0.225 0.004
0.225 0.974 0.041
0.009 0.040 0.999

⎞⎠ .

More precise values can be found in [6].
In the lepton sector weak interaction processes are described by the Ponte-

corvo–Maki–Nakagawa–Sakata (PMNS) mixing matrix

UPMNS =

⎛⎝Ue1 Ue2 Ue3

Uμ1 Uμ2 Uμ3

Uτ1 Uτ2 Uτ3

⎞⎠ .

Here indices e, μ, τ correspond to neutrino flavors — this means that the neu-
trinos νe, νμ, ντ are produced with e+, μ+, τ+ (or produce e−, μ−, τ−), respec-
tively, in weak processes. The indices 1, 2, 3 correspond to the mass eigenstates,
i.e., neutrinos ν1, ν2, ν3 with definite masses m1,m2,m3. Numerous experiments
with solar, atmospheric, reactor, and accelerator neutrinos indicate the existence
of discrete symmetries that can not be deduced from the SM. The phenomeno-
logical pattern is the following [7]:

1. νμ and ντ flavors are presented with equal weights in all three mass
eigenstates ν1, ν2, ν3 (this is called “bi-maximal mixing”):
|Uμi|2 = |Uτi|2, i = 1, 2, 3;

2. all three flavors are presented equally in ν2 (“trimaximal mixing”):
|Ue2|2 = |Uμ2|2 = |Uτ2|2;

3. νe is absent in ν3: |Uμ3|2 = 0.

These relations together with the normalization condition for probabilities allow
to determine moduli-squared of all matrix elements:

(
|Uli|2

)
=

⎛⎜⎜⎝
2
3

1
3 0

1
6

1
3

1
2

1
6

1
3

1
2

⎞⎟⎟⎠ . (26)

A particular form of unitary matrix satisfying data (26) was suggested by Har-
rison, Perkins, and Scott in [8]:

UTB =

⎛⎜⎜⎜⎜⎝
√

2
3

1√
3

0

− 1√
6

1√
3

− 1√
2

− 1√
6

1√
3

1√
2

⎞⎟⎟⎟⎟⎠ . (27)

Finite Groups and Quantum Physics 277

This so-called tribimaximal (TB) mixing matrix coincides — up to the trivial
permutation of two columns corresponding to the renaming ν1 � ν2 of states
— with transformation matrix (20) decomposing the natural permutation rep-
resentation of the group S3 into irreducible components. This means that we
can identify the flavor basis with the representation basis of permutations of
three things, and the mass basis is a basis of irreducible decomposition of this
representation. In [9] Harrison and Scott study in detail connections of the neu-
trino mass matrix with the character table and class algebra of the group S3. At
present, much effort is devoted to the construction and study of models based
on finite flavor symmetries (for recent reviews, see, for example, [10,11]). The
most popular groups for constructing such models are:

– T = A4 — the tetrahedral group;
– T′ — the double covering of A4;
– O = S4 — the octahedral group;
– I = A5 — the icosahedral group;
– DN — the dihedral groups (N even);
– QN — the quaternionic groups (4 divides N);
– Σ

(
2N2

)
— the groups in this series have the structure (ZN × ZN) � Z2;

– Δ
(
3N2

)
— the structure (ZN × ZN) � Z3;

– Σ
(
3N3

)
— the structure (ZN × ZN × ZN) � Z3;

– Δ
(
6N2

)
— the structure (ZN × ZN) � S3.

As to the quark sector, observations do not give such sharp picture as in the
lepton case. In [12] the D14 symmetry was suggested for explanation of the
value of the Cabibbo angle (one of the parameters of the CKM matrix), but
without any connection with the leptonic symmetries. The natural attempts
to find discrete symmetries unifying leptons and quarks still remain not very
successful, though there are some encouraging observations, for example, the
quark-lepton complementarity (QLC) — observation that the sum of quark and
lepton mixing angles is equal approximately to π/4.

The origin of finite symmetries among fundamental particles is unclear. There
are different attempts to explain — sometimes looking a bit complicated and
artificial, for example, these symmetries are treated as symmetries of manifolds
arising at compactification of a higher dimensional theory to four spacetime
dimensions [13]. The idea that symmeties at the most fundamental level are
per se finite looks more attractive in our opinion. In this approach, unitary
groups used in physical theories can be treated simply as repositories of all
finite groups having faithful representation of corresponding dimensions: U (n)
contains all finite groups with faithful n-dimensional representations. Of course,
due to redundancy of the field C, U (n) is not a minimal group with this property.

Such small groups as S3, A4, etc. are most likely only remnants of large
combinations of more fundamental finite symmetries that are expected to ex-
ist at the GUT scale. Unfortunately the GUT scale (1016 GeV) being close to
the Planck scale (1019 GeV) is out of reach of experiments (the most powerful

278 V.V. Kornyak

colliders to date can provide only about 104 GeV). Thus, the only practical way
is to construct models, study them by the computational group theory methods,
and compare consequences of these models with available experimental data.

7 Conclusion

“Finite” analysis shows that quantum behavior is a manifestation of indistin-
guishability of objects, i.e., fundamental impossibility to trace the identity of
homogeneous objects in the process of their evolution.

Only “statistical” statements about numbers of certain invariant combina-
tions of elements may have objective significance. These statements can be
expressed in terms of group invariants and natural numbers characterizing
symmetry groups, such as dimensions of its representations, class coefficients
etc.

Any quantum mechanical problem can be reduced to permutations since per-
mutation representations contain all other representations. This — together with
natural interpretation of quantum amplitudes as vectors of “multiplicities of oc-
curences” of underlying permuted entities — makes quantum mechanical prob-
lems constructive and particularly suitable for their study by computer algebra
and computational group theory methods.

The models based on finite groups are now extensively studied in particle
physics, since there are strong observational evidences of finite symmetries in
fundamental physical processes.

Acknowledgment. The work was supported by the grants 01-01-00200 from the
Russian Foundation for Basic Research and 3810.2010.2 from the Ministry of
Education and Science of the Russian Federation.

References

1. Kornyak, V.V.: Quantization in discrete dynamical systems. J. Math. Sci. 168(3),
390–397 (2010)

2. Kornyak, V.V.: Structural and symmetry analysis of discrete dynamical systems.
In: Cellular Automata, pp. 1–45. Nova Science Publishers Inc., New York (2010),
http://arxiv.org/abs/1006.1754

3. Hall Jr., M.: The Theory of Groups. Macmillan, New York (1959)

4. http://www.gap-system.org/

5. Kirillov, A.A.: Elements of the Theory of Representations. Springer, Heidelberg
(1976)

6. Nakamura, K., et al.: (Particle Data Group): The review of particle physics. J.
Phys. G 37, 075021, 1–1422 (2010)

7. Smirnov, A.Y.: Discrete Symmetries and Models of Flavor Mixing, p. 14 (2011);
arXiv:1103.3461

8. Harrison, P.F., Perkins, D.H., Scott, W.G.: Tri-bimaximal mixing and the neutrino
oscillation data. Phys. Lett. B 530, 167 (2002); arXiv: hep-ph/0202074

http://arxiv.org/abs/1006.1754
http://www.gap-system.org/

Finite Groups and Quantum Physics 279

9. Harrison, P.F., Scott, W.G.: Permutation symmetry, Tri-bimaximal neutrino mix-
ing and the S3 group characters. Phys. Lett. B 557, 76 (2003); arXiv: hep-
ph/0302025

10. Ishimori, H., Kobayashi, T., Ohki, H., Okada, H., Shimizu, Y., Tanimoto, M.:
Non-abelian discrete symmetries in particle physics. Prog. Theor. Phys. Suppl.
183, 1–173 (2010); arXiv:1003.3552

11. Ludl, P.O.: Systematic Analysis of Finite Family Symmetry Groups and Their
Application to the Lepton Sector, arXiv:0907.5587

12. Blum, A., Hagedorn, C.: The Cabibbo Angle in a Supersymmetric D14 Model.
Nucl. Phys. B 821, 327–353 (2009)

13. Altarelli, G., Feruglio, F.: Discrete flavor symmetries and models of neutrino mix-
ing. Rev. Mod. Phys. 82(3), 2701–2729 (2010)

Regular and Singular Boundary Problems

in Maple

Anja Korporal1,�, Georg Regensburger2,��, and Markus Rosenkranz3

1 Johann Radon Institute for Computational and Applied Mathematics,
Austrian Academy of Sciences, Altenberger Str. 69, 4040 Linz, Austria

2 INRIA Saclay – Île de France, Project DISCO, L2S,
Supélec, 91192 Gif-sur-Yvette Cedex, France

3 University of Kent,
Cornwallis Building, Canterbury, Kent CT2 7NF, United Kingdom

Abstract. We describe a new Maple package for treating boundary
problems for linear ordinary differential equations, allowing two-/multi-
point as well as Stieltjes boundary conditions. For expressing differential
operators, boundary conditions, and Green’s operators, we employ the
algebra of integro-differential operators. The operations implemented for
regular boundary problems include computing Green’s operators as well
as composing and factoring boundary problems. Our symbolic approach
to singular boundary problems is new; it provides algorithms for com-
puting compatibility conditions and generalized Green’s operators.

Keywords: Linear boundary problem, Singular Boundary Problem,
Generalized Green’s operator, Green’s function, Integro-Differential
Operator, Ordinary Differential Equation.

1 Introduction

Although boundary problems clearly play an important role in applications and
in Scientific Computing, there is no systematic support for solving them symbol-
ically in current computer algebra systems. In this paper, we describe a Maple
package with algorithms for regular as well as singular boundary problems for lin-
ear ordinary differential equations (LODEs). While a first version of the package
with functions for regular boundary problems was presented in [1], the methods
and the implementation for singular problems are new. A prototype implemen-
tation for regular boundary problems in the TH∃OREM∀ system was described
in [2] as part of a general symbolic framework for boundary problems, including
also some first steps towards linear partial differential equations (LPDEs).

� Partially supported by the RISC PhD scholarship program of the government of
Upper Austria

�� Supported by the Austrian Science Fund (FWF): J 3030-N18.

V.P. Gerdt et al. (Eds.): CASC 2011, LNCS 6885, pp. 280–293, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Regular and Singular Boundary Problems in Maple 281

In Section 2, we recall the algebra of integro-differential operators providing
the algebraic structure for computing with boundary problems. We describe its
implementation in Maple, where we use a normal form approach in contrast
to [2]. In Section 3, we outline our symbolic approach for solving boundary
problems. For an analytic treatment of boundary problems for LODEs, see for
example [3,4] or [5] for further applications. The functions we present include
the computation of Green’s operators and Green’s functions as well as the fac-
torization of boundary problems.

We introduce generalized boundary problems in Section 4 and develop an
algorithm for computing generalized Green’s operators. The main step of the
algorithm is to determine compatibility conditions for arbitrary boundary prob-
lems in an algebraic setting; the special case of two-point boundary problems of
second order is discussed in [6, Lecture 34]. For singular boundary problems and
generalized or modified Green’s functions in Analysis, we refer for example to [4]
and [7], and in the context of generalized inverses to [8, Sect. 9.4], [9], and [10,
Sect. H].

The Maple package IntDiffOp is available with an example worksheet at
http://www.risc.jku.at/people/akorpora/index.html.

2 Integro-Differential Operators

We first recall the definition of integro-differential algebras and operators, see
[11] and [12] for further details. For the similar notion of differential Rota-Baxter
algebras, we refer to [13]. As a motivating example, consider the algebra F =
C∞(R) with the usual derivation and the integral operator

�
: f �→

∫ x

a
f(ξ) dξ for

a fixed a ∈ R. The essential algebraic identities satisfied by the derivation and the
integral operator are the Leibniz rule, the Fundamental Theorem of Calculus,
and Integration by Parts. Note also that f(a) = f −

�
f ′, so the evaluation

ea : f �→ f(a) at the initialization point a of the integral can also be expressed
in terms of the derivation and integral.

We call (F , ∂,
�
) an integro-differential algebra if (F , ∂) is a commutative

differential algebra over a commutative ring K and
�

is a K-linear right inverse
(section) of ∂ = ′, meaning (

�
f)′ = f , such that the differential Baxter axiom

(
�
f ′)(

�
g′) +

�
(fg)′ = (

�
f ′)g + f(

�
g′)

holds. We call e = 1−
�
◦∂ the evaluation of F . We say that an integro-differential

algebra over a field K is ordinary if Ker(∂) = K. For an ordinary integro-
differential algebra, the evaluation can be interpreted as a multiplicative linear
functional (character) e : F → K. This allows treating initial value problems,
but for doing boundary problems we need additional characters ϕ : F → K (in
the above example, evaluations ec : f �→ f(c) at various points c ∈ R).

Let (F , ∂,
�
) be an ordinary integro-differential algebra over a field K and

let Φ ⊆ F∗ be a set of multiplicative linear functionals ϕ : F → K including e.
The integro-differential operators FΦ[∂,

�
] are defined in [11] as the K-algebra

http://www.risc.jku.at/people/akorpora/index.html

282 A. Korporal, G. Regensburger, and M. Rosenkranz

Table 1. Rewrite Rules for Integro-Differential Operators

fg → f · g ∂f → f∂ + f ′ �
f
�
→ (

�
f)

�
−

�
(
�
f)

ϕψ → ψ ∂ϕ → 0
�
f∂ → f −

�
f ′ − e(f) e

ϕf → ϕ(f) ϕ ∂
�
→ 1

�
fϕ → (

�
f) ϕ

generated by the symbols ∂ and
�
, the “functions” f ∈ F and the “functionals”

ϕ ∈ Φ, modulo the Noetherian and confluent rewrite system of Table 1.
The representation of integro-differential operators in our Maple implemen-

tation is based on the fact that every integro-differential operator has a unique
normal form as a sum of a differential, integral, and boundary operator. The
normal forms of differential operators are as usual

∑
fi∂

i, integral operators
can be written uniquely (up to bilinearity) as sums of terms of the form f

�
g,

and the normal forms of boundary operators are given by∑
ϕ∈Φ

(∑
i∈N

fi,ϕϕ∂
i +

∑
j∈N

gj,ϕϕ
�
hj,ϕ

)
, (1)

with only finitely nonzero summands. Stieltjes boundary conditions are boundary
operators where fi,ϕ = aϕ,i ∈ K and gj,ϕ = 1. They act on F as linear functionals
in the dual space F∗. See [14] for Stieltjes boundary conditions in Analysis.

From Table 1 formulas can be derived for expressing the product of integro-
differential operators directly in terms of normal forms; see [15] for the case
Φ = {e}. Implementing these formulas leads to faster computations since we
need not reduce in each step. In our package, we use for the underlying “integro-
differential algebra” all the smooth functions in one variable representable in
Maple, together with the usual derivation and the integral operator

�
=

� x

0 ,
both computed by Maple . We take as characters Φ = {ec | c ∈ R}.

We created data types for the different kinds of operator, representing integro-
differential operators as triples intdiffop(a, b, c), where a is a differential oper-
ator, b an integral operator and c a boundary operator. Differential operators are
represented as lists diffop(f0, f1, . . .) and integral operators as lists of pairs of
the form intop(intterm(f1, g1), intterm(f2, g2), . . .). In order to have a unique
representation for integral operators, one would need a basis of the underlying
integro-differential algebra and use only basis elements for the gi. In our imple-
mentation, we use the following heuristic approach: We split sums in the gi and
move scalar factors to the coefficients fi.

Due to (1), a boundary operator boundop contains a list of evaluations at dif-
ferent points. Each evaluation evop is a triple containing the evaluation point, the
local part

∑
fi,ϕϕ∂

i and the global part
∑

gj,ϕϕ
�
hj,ϕ. Hence we use the expres-

sion boundop(evop(c, evdiffop(f0, . . .), evintop(evintterm(g1, h1), . . .), . . .) for
the representation of boundary operators.

In the following example, we first enter some operators of different types. For
displaying the operators, we use D for ∂, A for

�
and E[c] for the evaluation ec.

Regular and Singular Boundary Problems in Maple 283

> T := DIFFOP(0,0,1);

T := D2

> G := INTOP(INTTERM(1,1));

G := A

> B := BOUNDOP(EVOP(1, EVDIFFOP(1), EVINTOP(EVINTTERM(1,1))));

B := E[1] + ((E[1]) . A)

Now we show how to add and multiply integro-differential operators and how
to apply them to a function f ∈ F .

> ApplyOperator(G, f(x));

� x

0
f(x)dx

> MultiplyOperator(G,G);

(x . A) − (A . x)

> MultiplyOperator(T,G,G);

1

> S := AddOperator(T, G, B);

S := D2 + A + E[1] + ((E[1]) . A)

> ApplyOperator(S, f(x));

d2

dx2 f(x) +
� x

0
f(x)dx + f(1) +

� 1

0
f(x)dx

3 Regular Boundary Problems in Maple

In this section, we demonstrate how to compute with regular boundary problems
in our Maple package. For an integro-differential algebraF , a boundary problem
is given by a monic differential operator T = ∂n + cn−1∂

n−1 + · · · + c1∂ + c0
and boundary conditions β1, . . . , βm. Given a forcing function f ∈ F , we want
to find u ∈ F such that

Tu = f,
β1u = · · · = βnu = 0. (2)

A boundary problem is called regular if for each f ∈ F there is exactly one u ∈ F
satisfying (2). We want to solve a boundary problem not only for a fixed f but
to compute the Green’s operator mapping each forcing function f to its unique
solution u. In other words, we solve a whole family of inhomogeneous differential
equations, parameterized by a “symbolic” right-hand side f . We restrict our-
selves to homogeneous conditions because the general solution is then obtained
by adding a particular solution satisfying the inhomogeneous conditions.

284 A. Korporal, G. Regensburger, and M. Rosenkranz

For convenience, we shortly recall the abstract linear algebra setting for bound-
ary problems over a vector space F as described in [16]. For U ≤ F we define
the orthogonal as U⊥ = {β ∈ F∗ : β(u) = 0 for all u ∈ U} ≤ F∗. Similarly,
for B ≤ F∗, we define B⊥ = {v ∈ F : β(v) = 0 for all β ∈ B} ≤ F . A sub-
space U (resp. B) is orthogonally closed if U = U⊥⊥ (resp. B = B⊥⊥). Every
subspace U ≤ F is orthogonally closed and every finite dimensional subspace
B ≤ F∗ is orthogonally closed. For a linear map T : F → G between vector
spaces, the transpose map T ∗ : G∗ → F∗ is defined by γ �→ γ ◦ T . The image of
an orthogonally closed space under the transpose map is orthogonally closed.

A boundary problem is given by a pair (T,B), where T is a surjective linear
map and B ≤ F∗ is an orthogonally closed subspace of the dual space. We call
u ∈ F a solution of (T,B) for a given f ∈ F if Tu = f and u ∈ B⊥. A boundary
problem is regular if for each f there exists a unique solution u. The Green’s
operator of a regular problem maps each f to its unique solution u. We also
write (T,B)−1 for the Green’s operator. A boundary problem is regular iff B⊥

is a complement of KerT so that F = KerT � B⊥ as a direct sum.
For F = C∞[a, b], a monic differential operator T is always surjective and

dim KerT = n < ∞. Moreover, variation of constants can be used to compute
a distinguished right inverse: If T has order n and u1, . . . , un is a fundamental
system for it, the fundamental right inverse is given by

T� =
n∑

i=1

ui

�
d−1di, (3)

where d is the determinant of the Wronskian matrix W for (u1, . . . , un) and di

the determinant of the matrix Wi obtained from W by replacing the i-th column
by the n-th unit vector. Equation (3) is valid in arbitrary integro-differential al-
gebras provided the n-th order operator T has a fundamental system (u1, . . . , un)
with invertible Wronskian matrix; see [11] or [12]. This will be assumed from now
on, together with the condition dimB < ∞ appropriate for LODEs.

Regularity of a boundary problem (T,B) can be tested algorithmically as
follows. If (u1, . . . , un) is a basis for KerT and (β1, . . . , βm) for B, we have a
regular problem iff the evaluation matrix

β(u) =

⎛⎜⎝β1(u1) . . . β1(un)
...

. . .
...

βm(u1) . . . βm(un)

⎞⎟⎠ (4)

is regular; see [16, Cor. A.17] or [17, p. 184] for the special case of two-point
boundary conditions. Of course this implies m = n, but we will consider more
general types of boundary problems in Section 4 where this is no longer the case.
It will also be convenient to use the notation (4) for arbitrary u1, . . . , un ∈ F
and boundary conditions β1, . . . , βm.

The algorithm for computing the Green’s operator is described in detail in
[11]; see also [2]. The main steps consist in computing the fundamental right
inverse T� ∈ F [∂,

�
] from a given fundamental system as in (3) and the projector

Regular and Singular Boundary Problems in Maple 285

P ∈ F [∂,
�
] onto KerT along B⊥. Then the Green’s operator is then computed

as G = (1 − P)T�.
For a boundary problem we need to enter a monic differential operator T

and a list of boundary conditions (b1, . . . , bm) as described in Section 2 in the
form bp(T, bc(b1, . . . , bm)). We use the Maple function dsolve for computing a
fundamental system of T . As an example, we compute the Green’s operator for
the simplest two-point boundary problem u′′ = f , u(0) = u(1) = 0. From the
Green’s operator for two-point boundary problems, we can extract the Green’s
function [18], which is usually used in Analysis to represent the Green’s operator.

> T := DIFFOP(0,0,1):

> b1 := BOUNDOP(EVOP(0, EVDIFFOP(1), EVINTOP())):

> b2 := BOUNDOP(EVOP(1, EVDIFFOP(1), EVINTOP())):

> Bp := BP(T, BC(b1, b2));

Bp := BP(D2, BC(E[0], E[1]))

> IsRegular(Bp);
true

> GreensOperator(Bp);

(x . A) − (A . x) − ((x E[1]) . A) + ((x E[1]) . A . x)

> GreensFunction(%);

{
−ξ + xξ 0 <= ξ and ξ <= x and x <= 1

−x + xξ 0 <= x and x <= ξ and ξ <= 1

For simplifying boundary problems, we can apply factorizations into lower
order problems along given factorizations of the differential operators. Further
details and proofs of the following results can be found in [16] and [11]. The
composition of two boundary problems (T1,B1) and (T2,B2) is defined as

(T1,B1) ◦ (T2,B2) = (T1T2, T
∗
2 (B1) + B2). (5)

The composition (T1,B1) ◦ (T2,B2) of two regular boundary problems is regular
with Green’s operator

((T1,B1) ◦ (T2,B2))−1 = (T2,B2)−1(T1,B1)−1. (6)

Given a regular boundary problem (T,B), every factorization T = T1T2 can be
lifted to a factorization (T,B) = (T1,B1) ◦ (T2,B2), where (T1,B1) and (T2,B2)
are regular and B2 ≤ B. For factorizing a differential operator, we use the func-
tion DFactor in the Maple package DEtools. As an easy example, we show
how to factor the boundary problem from above; more examples for solving and
factoring boundary problems can be found in our example worksheet.

286 A. Korporal, G. Regensburger, and M. Rosenkranz

> Bp := BP(T, BC(b1, b2));

Bp := BP(D2, BC(E[0], E[1]))

> f1, f2 := FactorBoundaryProblem(Bp);

f1, f2 := BP(D, BC(E[1] . A)), BP(D, BC(E[0]))

4 Singular Boundary Problems

For illustrating the main issues with singular boundary problems, we consider
the boundary problem

u′′ = f,
u′(0) = u′(1) = 0; (7)

see for example [4, Page 215] or [18, Section 3.5] from a Symbolic Computation
perspective. This problem is singular since it is not solvable for all f ∈ F . It can
easily be seen that if u′′ = f , then f has to fulfill the compatibility condition
u′(1) =

∫ 1

0 f(ξ) dξ = 0. Moreover, uniqueness fails as well: If a solution u ∈ F
exists, then also u + c solves the problem for all c ∈ R.

Our goal here is to generalize the symbolic approach of the previous section
to problems of the kind (7). Since we want to compute generalized Green’s op-
erators, we cannot give up uniqueness of solutions—but we no longer require
existence. Of course, uniqueness of solutions can always be achieved by impos-
ing additional boundary conditions. On the other hand, adding too many condi-
tions introduces new compatibility conditions, which we want to avoid (see after
Lemma 1 for the precise statement). For the boundary problem (7), we can add
for example the condition u(1) = 0 and consider the problem

u′′ = f,
u′(0) = u′(1) = u(1) = 0. (8)

This does not introduce any new compatibility conditions as we will see later
(see before Lemma 2).

A boundary problem has at most one solution for each forcing function f iff
B⊥ ∩KerT = {0}. We see that for (7) we have B⊥ ∩KerT = R while in (8) the
intersection is {0}. The regularity test for boundary problems in terms of the
evaluation matrix (4) can be generalized from the setting in Section 3.

Lemma 1. Let U = [u1, . . . , un] ≤ F and B = [β1, . . . , βm] ≤ F∗ with βi and
uj linearly independent. Then U ∩ B⊥ = {0} iff the evaluation matrix β(u) has
full column rank.

Proof. Let bj denote the columns of β(u). The evaluation matrix has deficient
column rank iff there exists a linear combination

∑n
j=1 λjbj = 0 with at least one

λj �= 0. This is the case iff there exist a nonzero u =
∑n

j=1 λjuj ∈ U ∩ B⊥
1 . ��

Regular and Singular Boundary Problems in Maple 287

As mentioned for the example (8), singular boundary problems typically impose
compatibility conditions on the admissible forcing functions. We can now make
this precise: Clearly, a function f is admissible iff it is of the form Tu for a func-
tion u that satisfies the boundary conditions from B, so the space of admissible
functions is T (B⊥). The compatibility conditions provide an implicit description
of this space, comprising all those linear functionals that annihilate T (B⊥). In
other words, the compatibility conditions are the subspace T (B⊥)⊥ of F∗. This
also makes precise what we mean by adding boundary conditions without im-
posing additional compatibility conditions: We enlarge B to B̃ so as to ensure
B̃⊥ ∩ KerT = {0} despite retaining T (B⊥) = T (B̃⊥).

For tackling the problem of existence, we modify the forcing function. In the
example (8), this looks as follows: Since a solution exists only for forcing functions
that fulfill

∫ 1

0
f(ξ) dξ = 0, we consider the problem

u′′ = f −
∫ 1

0 f(ξ) dξ,
u′(0) = u′(1) = u(1) = 0,

(9)

which now always has a unique solution. For those f that fulfill the compatibility
condition, problem (8) remains unchanged.

The general idea is that we project an arbitrary forcing function into the space
of admissible functions. But this involves choosing those “exceptional functions”
that we want to filter out. Even in the simple example (8), we might as well
project f to f− 1

2x
� 1

0
f(ξ) dξ instead of f−

� 1

0
f(ξ) dξ. In the second case, we have

filtered out the constant functions, in the first case the linear-homogeneous ones.
The space E of exceptional functions can be any complement of the space T (B⊥)
of admissible functions, like E = [1] or E = [x] in this example.

Definition 1. A generalized boundary problem is given by a triple (T,B, E),
where (T,B) is a boundary problem and E ≤ F . A generalized boundary problem
is called regular if

B⊥ ∩ KerT = {0} and F = T (B⊥) � E .

The generalized Green’s operator maps each forcing function f to the unique
solution of the boundary problem

Tu = Qf,
β1u = . . . = βmu = 0,

where B = [β1, . . . , βm] and Q is the projector onto T (B⊥) along E. We also
write (T,B, E)−1 for the Green’s operator.

If (T,B, E) is regular, the restriction T |B⊥ : B⊥ → T (B⊥) is bijective. So the
generalized Green’s operator is given by

G = T |−1
B⊥Q. (10)

We begin with computing the projector Q. For this we derive first an explicit
description of the space of compatibility conditions.

288 A. Korporal, G. Regensburger, and M. Rosenkranz

Proposition 1. Let (T,B, E) be a generalized boundary problem and let G be
any right inverse of T . Then we have

T (B⊥)⊥ = G∗(B ∩ (KerT)⊥). (11)

Moreover, dim T (B⊥)⊥ = dim E for any complement E with F = T (B⊥) � E.

Proof. With [16, Prop. A.6], we see that T (B⊥)⊥ = (T ∗)−1(B). Since T is sur-
jective, T ∗ is injective, and for any right inverse G of T , G∗ is a left inverse of
T ∗. Hence (T ∗)−1(B) = G∗(B ∩ ImT ∗) by [16, Prop. A.13]. Again by [16, Prop.
A.6], we have ImT ∗ = (KerT)⊥, and hence T (B⊥)⊥ = G∗(B ∩ (KerT)⊥).

Since dimB < ∞, by the first statement also dim T (B⊥)⊥ < ∞. But T (B⊥)
is orthogonally closed; see for example [16, Section A.1]. Therefore we obtain

dimT (B⊥)⊥ = codimT (B⊥)⊥⊥ = codimT (B⊥),

and the statement follows immediately from [16, Prop. A.14]. ��

Note that s = dim E = codimT (B⊥) counts the number of (linearly independent)
compatibility conditions. Equation (11) is the key for an algorithmic description
of the projector Q onto T (B⊥) along E . The space E is given as part of the
problem description, and it can be specified by a basis (w1, . . . , ws). Since the
other space T (B⊥) has finite codimension s, it can be specified in terms of s
linearly independent compatibility conditions, and Equation (11) can be used
to compute these in terms of T and B. For that we just have to determine a
basis of B ∩ (KerT)⊥ and then apply any right inverse G of T , for example the
fundamental right inverse T� defined in Section 3.

For determining a basis of B ∩ (KerT)⊥ we first compute the kernel of the
transpose of the evaluation matrix β(u), where (u1, . . . , un) is any basis of KerT
and (β1, . . . , βm) any basis of B. If w = (w1, . . . , wm)t ∈ Kerβ(u)t, then

wt(β1, . . . , βm)t =
m∑

i=1

wiβi ∈ B ∩ (KerT)⊥,

hence a basis of B ∩ (KerT)⊥ can be obtained by computing the products
(vt

1(β1, . . . , βm)t, . . . , vt
k(β1, . . . , βm)t), where (v1, . . . , vk) is a basis of Kerβ(u)t.

Using Proposition 1, we can now verify that the compatibility conditions of
the boundary problems (7) and (8) are the same. In both cases we have T = ∂2,
so we can choose the fundamental right inverse

� �
= x

�
−

�
x and (1, x) as a

basis of KerT . The evaluation matrices are given by

β(u) =
(

0 1
0 1

)
and β(u) =

⎛⎝0 1
0 1
1 1

⎞⎠ .

In the first case, a basis of β(u)t is given by ((−1, 1)t), hence (E1∂ − E0∂) is a
basis of B∩(KerT)⊥. In the second case, a basis of β(u)t is given by ((−1, 1, 0)t)

Regular and Singular Boundary Problems in Maple 289

and the basis of B ∩ (KerT)⊥ is again (E1∂ − E0∂). Multiplying this basis by
the right inverse of T , we get as a basis for the compatibility conditions

(E1∂ − E0∂) · (x
�
−

�
x) = E1(x∂ + 1)

�
− E0(x∂ + 1)

�
− E1∂

�
x + E0∂

�
x

= E1x + E1

�
− E0x− E0

�
− E1x + E0x = E1

�
=

� 1

0
,

which agrees with our heuristic considerations after (7).
We can now compute the projector Q just as the kernel projector P for stan-

dard boundary problems (mentioned in Section 3). If (κ1, . . . , κs) is a basis for
the compatibility conditions T (B⊥)⊥ and (w1, . . . , ws) a basis for E , then the
corresponding evaluation matrix κ(w) is regular by Lemma 1, which can be ap-
plied to F = T (B⊥) � E = T (B⊥)⊥⊥ � E since T (B⊥) is orthogonally closed.
Hence we can compute the projector Q onto T (B⊥) along E as

Q = 1 −
s∑

i=1

wiκ̃i,

where (κ̃1, . . . , κ̃s)t = κ(w)−1 · (κ1, . . . , κs)t; see for example [16, Lemma A.1].
The final step for computing the generalized Green’s operator (10) is to find

the inverse function T |−1
B⊥ . In the regular case, we started with an arbitrary right

inverse of T and multiplied with a projection onto B⊥ along KerT . But this step
cannot be generalized to our setting. Our approach is to embed the generalized
problem into a standard one in the following sense.

First note that the evaluation matrix of a regular generalized boundary prob-
lem has full column rank by Lemma 1, so it has a left inverse.

Lemma 2. Let (T,B, E) be a regular generalized boundary problem. Let β(u)− be
a left inverse of β(u) and (β̃1, . . . , β̃n)t = β(u)−(β1, . . . , βm)t. Then the boundary
problem (T, B̃) is regular, where B̃ ≤ B is spanned by β̃1, . . . , β̃n.

The proof of the statement is obvious, since the evaluation matrix β̃(u) is given
by β(u)−β(u) = 1n. Hence the problem (T, B̃) is regular. In our package, we
always choose the Moore-Penrose pseudoinverse as a left inverse β(u)− of the
evaluation matrix β(u). The generalized boundary problem (8) for example em-
beds into the standard boundary problem

u′′ = f,
u′(0) + u′(1) − 2 u(1) = u′(0) + u′(1) = 0. (12)

The Green’s operator for this regular problem according to Section 3 is given
by x

�
−

�
x− 1

2 (x+ 1) +
� 1

0
x. The next proposition tells us how to compute the

generalized Green’ s operator from it.

Proposition 2. Let (T,B, E) be a regular generalized boundary problem and let
(T, B̃) be a regular boundary problem with B̃ ≤ B. Then

(T,B, E)−1 = (T, B̃)−1 Q,

where Q is the projector onto T (B⊥) along E.

290 A. Korporal, G. Regensburger, and M. Rosenkranz

Proof. Since B̃ ≤ B, we have B⊥ ≤ B̃⊥. Hence the maps T |−1
B⊥ and G̃ = (T, B̃)−1

coincide on B⊥. Since T |B⊥ : B⊥ → T (B⊥) is a bijection, we can compute the
restriction T |−1

B⊥ by first applying a projector onto T (B⊥) and then G̃. Hence
T |−1

B⊥ = G̃Q, where Q is again the projection onto T (B⊥) along E . Hence the
generalized Green’s operator is given by G = T |−1

B⊥Q = G̃Q2 = G̃Q. ��
Applying the previous proposition to Example (8) leads to the generalized Green’s
operator x

�
−

�
x− 1

2 (x2 + 1)
� 1

0 +
� 1

0x. For a more involved example illustrating
the Maple functions in our package, we refer to the Appendix.

5 Outlook

We are currently investigating in how far the composition of boundary prob-
lems (5) can be extended to generalized boundary problems such that an analog
of the “reverse order law” (6) holds. We can see in the example below (13) that
for such a generalization, we also have to modify the second component with
the boundary conditions. The question under which conditions a reverse order
law holds for different classes of generalized inverses—not necessarily related
to integro-differential operators—is extensively studied in the literature, see for
example [19] and the references therein.

The search for generalized composition laws is intimately connected with the
question of “embedding” a singular boundary problem into a regular problem
of higher order. For example in [18], the Green’s operator G of the generalized
boundary problem (∂2, [E0∂,E1∂,

� 1

0
], [1]) can be factored as G = G̃◦∂ where G̃

is the standard Green’s operator of the boundary problem (∂3, [E0∂,E1∂,
� 1

0]).
Hence G̃ = G ◦

� x

0 and, assuming (6) for the composition, also

(∂3, [E0∂,E1∂,
� 1

0
], [0]) = (∂, [E0], [0]) ◦ (∂2, [E0∂,E1∂,

� 1

0
], [1]), (13)

since
� x

0 is the Green’s operator of the boundary problem (∂, [E0]). The singular
second-order problem is thus embedded into a regular third-order one.

Multi-point boundary problems can also be treated by our method, yielding a
suitable Green’s operator just as in the classical two-point setting. Generalizing
the extraction procedure for Green’s functions is future work, see [20] for an
analytic description of Green’s functions for multi-point boundary problems.

Going from LODEs to LPDEs, more drastic changes are necessary since geom-
etry enters the picture. For example, the Green’s operator of the inhomogeneous
wave equation uxx − utt = f with homogeneous Dirichlet data on the x-axis in-
tegrates f over a certain triangle whose tip is at (x, t). In terms of the operator
algebra, this means one must incorporate the chain and substitution rule along
with explicit operators encoding change of variables. A first approach along these
lines, for the very simple case of linear coordinate changes, was presented in [2]
and is currently being refined. Studying singular boundary problems for LPDEs
from a symbolic point of view is also very interesting; see for example [21] for a
Gröbner bases approach to compute the (hierarchy of) compatibility conditions
for elliptic boundary problems. It would be tempting to combine the tools of
involutive systems used there with the setting of operator rings used here.

Regular and Singular Boundary Problems in Maple 291

References

1. Korporal, A., Regensburger, G., Rosenkranz, M.: A Maple package for integro-
differential operators and boundary problems. ACM Commun. Comput. Alge-
bra 44(3), 120–122 (2010); Also presented as a poster at ISSAC 2010

2. Rosenkranz, M., Regensburger, G., Tec, L., Buchberger, B.: A symbolic frame-
work for operations on linear boundary problems. In: Gerdt, V.P., Mayr, E.W.,
Vorozhtsov, E.V. (eds.) CASC 2009. LNCS, vol. 5743, pp. 269–283. Springer, Hei-
delberg (2009)

3. Coddington, E.A., Levinson, N.: Theory of ordinary differential equations.
McGraw-Hill Book Company, Inc., New York (1955)

4. Stakgold, I.: Green’s functions and boundary value problems. John Wiley & Sons,
New York (1979)

5. Duffy, D.G.: Green’s functions with applications. Studies in Advanced Mathemat-
ics. Chapman & Hall/CRC, Boca Raton, FL (2001)

6. Agarwal, R.P., O’Regan, D.: An introduction to ordinary differential equations.
Universitext. Springer, New York (2008)

7. Loud, W.S.: Some examples of generalized Green’s functions and generalized
Green’s matrices. SIAM Rev. 12, 194–210 (1970)

8. Ben-Israel, A., Greville, T.N.E.: Generalized inverses, 2nd edn. Springer, New York
(2003)

9. Boichuk, A.A., Samoilenko, A.M.: Generalized inverse operators and Fredholm
boundary-value problems. VSP, Utrecht (2004)

10. Nashed, M.Z., Rall, L.B.: Annotated bibliography on generalized inverses and
applications. In: Generalized Inverses and Applications, pp. 771–1041. Academic
Press, New York (1976)

11. Rosenkranz, M., Regensburger, G.: Solving and factoring boundary problems for
linear ordinary differential equations in differential algebras. J. Symbolic Com-
put. 43(8), 515–544 (2008)

12. Rosenkranz, M., Regensburger, G., Tec, L., Buchberger, B.: Symbolic analysis for
boundary problems: From rewriting to parametrized Gröbner bases. In: Langer,
U., Paule, P. (eds.) Numerical and Symbolic Scientific Computing: Progress and
Prospects. Springer, Wien (to appear, 2011)

13. Guo, L., Keigher, W.: On differential Rota-Baxter algebras. J. Pure Appl. Alge-
bra 212(3), 522–540 (2008)

14. Brown, R.C., Krall, A.M.: Ordinary differential operators under Stieltjes boundary
conditions. Trans. Amer. Math. Soc. 198, 73–92 (1974)

15. Regensburger, G., Rosenkranz, M., Middeke, J.: A skew polynomial approach to
integro-differential operators. In: May, J.P. (ed.) Proceedings of ISSAC 2009, pp.
287–294. ACM, New York (2009)

16. Regensburger, G., Rosenkranz, M.: An algebraic foundation for factoring linear
boundary problems. Ann. Mat. Pura Appl. (4) 188(1), 123–151 (2009)

17. Kamke, E.: Differentialgleichungen. Lösungsmethoden und Lösungen. Teil I:
Gewöhnliche Differentialgleichungen. Akademische Verlagsgesellschaft, Leipzig
(1967)

18. Rosenkranz, M.: A new symbolic method for solving linear two-point boundary
value problems on the level of operators. J. Symbolic Comput. 39(2), 171–199
(2005)

19. Djordjević, D.S.: Further results on the reverse order law for generalized inverses.
SIAM J. Matrix Anal. Appl. 29(4), 1242–1246 (2007)

292 A. Korporal, G. Regensburger, and M. Rosenkranz

20. Agarwal, R.P.: Boundary value problems for higher order differential equations.
World Scientific Publishing Co. Inc., Teaneck (1986)

21. Krupchyk, K., Tuomela, J.: The Shapiro-Lopatinskij condition for elliptic boundary
value problems. LMS Journal of Computation and Mathematics 9, 287–329 (2006)

A Example

Now we will give a detailed example for computations with generalized boundary
problems. We introduced a new datatype gbp(T, bc(b1, . . . , bm), es(f1, . . . , fk)),
where T and (b1, . . . , bm) again are a differential operator and boundary con-
ditions and (f1, . . . , fm) is a basis of the exceptional space. We added the new
procedures CompatibilityConditions, IsComplement and Projector, which will
be explained later and extended the procedures GreensOperator and IsRegular.
The first one now also computes the Green’s Operator for a generalized bound-
ary problem and the second one tests the condition KerT ∩ B⊥ = {0} also for
generalized boundary problems.

We consider the more complicated example

u′′′′ + u′′ = f
u′(0) = u′′(0) = u′′(π) = u′′′(0) = u′′′(π) = 0. (14)

We enter the boundary problem stated above and compute a fundamental system
for the differential operator T = D4 + D2.

> T := DIFFOP(0, 0, 1, 0, 1):

> b[1] := BOUNDOP(EVOP(0, EVDIFFOP(0, 1), EVINTOP())):

> b[2] := BOUNDOP(EVOP(0, EVDIFFOP(0, 0, 1), EVINTOP())):

> b[3] := BOUNDOP(EVOP(0, EVDIFFOP(0, 0, 0, 1), EVINTOP())):

> b[4] := BOUNDOP(EVOP(Pi, EVDIFFOP(0, 0, 1), EVINTOP())):

> b[5] := BOUNDOP(EVOP(Pi, EVDIFFOP(0, 0, 0, 1), EVINTOP())):

> Bp := BP(T, BC(b[1],b[2],b[3],b[4],b[5])):

> fs := FundamentalSystem(T);

[x, sin(x), cos(x), 1]

Now we add another boundary condition b[6] in order to achieve uniqueness of
solutions. This can be checked by considering the column rank of the evaluation
matrix. We further verify that the compatibility conditions of both problems are
the same.

Regular and Singular Boundary Problems in Maple 293

> b[6] := BOUNDOP(EVOP(Pi, ZEROEDOP, EVINTOP(EVINTTERM(1,1)))):

> BpA := BP(T, BC(b[1],b[2],b[3],b[4],b[5],b[6])):

> IsRegular(BpA);

true

> CompatibilityConditions(Bp);

BC((E[Pi] . A . (sin(x)), (E[Pi]) . A . (cos(x)))

> CompatibilityConditions(BpA);

BC((E[Pi] . A . (sin(x)), (E[Pi]) . A . (cos(x)))

Now we enter a generalized boundary problem and check that our choice [1, x]
as exceptional space is a complement of T (B⊥). Then we compute the projector
Q onto T (B⊥) and the Green’s operator for the generalized boundary problem
(T, [b[1], b[2], b[3], b[4], b[5], b[6]], [1, x]),

> gBp := GBP(T, BC(b[1],b[2],b[3],b[4],b[5],b[6]), ES(1,x)):

> IsComplement(gBp);

true

> Q := Projector(gBp):

Q := 1 − 1

2
((E[Pi]) . A . (sin(x))) +

((
−Pi

4
+

x

2

)
. (E[Pi]) . A . (cos(x)

)

> G := GreensOperator(gBp):

Finally we verify that the Green’s operator G fulfills the equation TG = Q and
the six boundary conditions.

> simplify(SubtractOperator(MultiplyOperator(T, G), Q))

0

> seq(simplify(MultiplyOperator(b[i], G)), i=1..6);

0, 0, 0, 0, 0, 0

Algebraic Structures as Typed Objects

Heinz Kredel1 and Raphael Jolly2

1 IT-Center, University of Mannheim, Germany
2 Databeans, Paris, France

kredel@rz.uni-mannheim.de, raphael.jolly@free.fr

Abstract. Following the research direction of strongly typed, generic,
object oriented computer algebra software, we examine the modeling
of algebraic structures as typed objects in this paper. We discuss the
design and implementation of algebraic and transcendental extension
fields together with the modeling of real algebraic and complex alge-
braic extension fields. We will show that the modeling of the relation
between algebraic and real algebraic extension fields using the delega-
tion design concept has advantages over the modeling as sub-types using
sub-class implementation. We further present a summary of design prob-
lems, which we have encountered so far with our implementation in Java
and present possible solutions in Scala.

1 Introduction

We proposed a software architecture for computer algebra systems which builds
on other software projects as much as possible in [1] . Only the parts specific to
computer algebra are then to be implemented. We identified three major parts
for computer algebra software.

– run-time infrastructure with memory management and parallelism,
– statically typed object oriented algorithm libraries,
– dynamic interactive scripting interpreters.

In this paper we elaborate on the second point: the research area of strongly
typed, generic, object oriented computer algebra systems, namely the modeling
of algebraic structures as typed objects. A prominent part of algebra deals with
the study of field extensions. To make use of extension fields in computers we
need to restrict ourselves to effective constructions which can be performed on
a computer. Such fields are named computable fields.

Given some base fields, especially the prime fields, like rational numbers or
modular integers (computing modulo a prime number), we will examine the
design and implementation of algebraic and transcendental extension fields. Al-
gebraic extension fields can be constructed as modular univariate polynomials
(computing modulo an irreducible polynomial) and are as such computable fields.
Transcendental extension fields can be constructed as (multivariate) polynomial
fractions (also called rational functions) and as we can efficiently compute mul-
tivariate polynomial greatest common divisors to remove common factors, these

V.P. Gerdt et al. (Eds.): CASC 2011, LNCS 6885, pp. 294–308, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Algebraic Structures as Typed Objects 295

fields are also computable. Sub-fields of algebraic extension fields, like real al-
gebraic and complex algebraic extension fields are also of great importance and
are also computable fields. The design and the implementation of these field ex-
tensions together with the modeling of the relation between algebraic and real
algebraic extension fields is the topic of this paper.

When trying to implement our research agenda in a given programming lan-
guage (Java) – in contrast of inventing a suitable language [2] – some design
problems will eventually remain. We give a summary of such remaining design
problems or implementation trade-offs and show how to solve them in Scala [3].

1.1 Related Work

The related work published on type systems for computer algebra or abstract
data type (ADT) approaches to computer algebra has been summarized in [1].
Type-safe design considerations in computer algebra are mostly centered around
the axiom computer algebra system and are described, e.g. starting with [4,2].
In application areas like constructive algebraic topology there exists strong de-
mand for type-safe algorithms. For example the Kenzo system takes an object
oriented approach with strong run-time type system [5]. The system handles
‘chain complexes’, which consist of algebraic structures together with mappings
between them. Also for constructions in the formal theory of differential equa-
tions there is demand for object oriented software, see e.g. [6]. MuPAD has a
simple object oriented layer for algebraic structures and so called categories, see
[7]. DoCon has support for field extension towers in a Haskell package [8]. Us-
ing a suitable existing programming language has restrictions compared to the
Axiom approach [2]. However, there are also benefits: we do not have to invent
and improve memory management, parallel computing and networking support
[9] and can ride on the advantages of computer science in this area [10]. Further
related work is mentioned in the paper as required.

1.2 Outline

In Section 2 we discuss the design and implementation of algebraic and transcen-
dental extension fields together with the modeling of real algebraic and complex
algebraic extension fields. Section 3 presents a summary of design problems of our
typed object-oriented approach when using Java as implementation language and
presents possible solutions in Scala. Finally Section 4 draws some conclusions.

2 Algebraic Structures as Typed Objects

In this section we first give an introduction into the object oriented type systems.
For more details see our earlier articles [1,11,12,13]. Then we discuss the design
and implementation of algebraic and transcendental extension fields together
with the modeling of real algebraic and complex algebraic extension fields. The
constructed extension fields can be used in other algorithms on polynomials with

296 H. Kredel and R. Jolly

coefficients from such fields, for example in (parallel) Gröbner base or greatest
common divisor computations. Other algorithms like polynomial factorization
will however require an implemented case for such fields. Due to space limita-
tions we will not discuss performance, but will give some hints on computing
times and possible improvements. We will also not be able to discuss mappings
of elements between the various extension rings and fields, as for example eval-
uation homomorphisms between polynomial rings. Currently all such mappings
and their application have to be coded explicitly, but some automatic mapping
construction and convenient coercion would be desirable, at least in scripting
interpreters (for a special case see Subsection 3.2).

2.1 Ring Elements and Ring Factories

The basic building blocks of the type system consists of the interfaces RingElem
and RingFactory and the classes which implement them, see figure 1. RingElem
defines the methods which we expect to be available on all ring elements, for
example multiply(), isZERO() or isUnit() with the obvious meanings. The
construction of ring elements is done by factories, modeled after the abstract
factory creational design pattern [14]. The factory RingFactory defines the con-
struction methods for elements, for example getONE() to create the one element
from the ring, parse() to create an element from a string representation or
query methods such as isAssociative().

C
«interface»
RingElem

C : RingFactory
GenPolynomialRing

C
«interface»
RingFactory

C : RingElem
GenPolynomial

Fig. 1. Basic types

The polynomial class GenPolynomialwith type parameter C for the coefficient
type implements the RingElem interface and specifies that coefficients must be
of type RingElem. In addition to the methods mandated by the interface, the
GenPolynomial implements the methods like leadingMonomial() or degree().
Polynomials are to be created with a polynomial factory GenPolynomialRing.
In addition to the ring factory methods it defines for example methods to create
random polynomials. The constructor for GenPolynomialRing takes parameters
for a factory for the coefficients, the number of variables, the names for the
variables and a term order object TermOrder. The relation between the factory of

Algebraic Structures as Typed Objects 297

the coefficients and the polynomial ring factory is modeled after the (constructor)
dependency injection pattern and implements the inversion of control principle.

Figure 1 shows dependency arrows from the factories to the element interfaces
as factories create the respective elements. The modeling of the constructors
is not shown as it is not denotable in Java. The constructors of ring elements
implement an opposite dependency : each constructor takes a corresponding ring
factory as parameter. It is only indirectly enforced since the RingElem interface
specifies a method factory() to obtain the corresponding factory.

The factory methods are not static (which is apparent from the modeling as an
interface) since a ring factory might depend on other rings or specific parameters.
In case of a polynomial factory it depends on a factory for the coefficients and at
least the number of variables of the polynomial ring. By this modeling the types
of elements of algebraic structures are not simply denoted in the program text
but have to be created as programming objects (by instantiating the respective
classes). Type denotations show up explicitly in Java program code and are
mostly inferred in Scala via type resolution.

For example a polynomial w2 − 2 ∈ Q[w] can be constructed by first con-
structing an object for the ring Q[w] and then reading and constructing the
polynomial w2 − 2 with the factory method parse().

BigRational rf = new BigRational(1); // here element = factory

GenPolynomialRing<BigRational> pf

= new GenPolynomialRing<BigRational>(rf,new String[]{ "w" });

GenPolynomial<BigRational> a = pf.parse("w^2 - 2");

This example is continued in Subsection 2.3.

2.2 Algorithms and Factories

Our implemented algorithms are in fact meta-algorithms or functors. They do
not only compute elements of algebraic structures but simultaneously construct
the required algebraic structures during the computation. So several imple-
mented methods map pairs of algebraic structures together with some elements
to other algebraic structures and elements. For example Hensel lifting is an al-
gorithm which maps

((Z[x], a), (Zp[x], (a1, ..., ar)), (N, k)) �→ (Zpk [x], (b1, ..., br)).

With the meaning (a ∈ Z[x], (a1, ..., ar) ∈ Zp[x]r, k ∈ N) �→ (b1, ..., br) ∈ Zpk [x]r .
Using type annotations it would read

(a : Z[x], (a1, ..., ar) : Zp[x]r, k : N) �→ (b1, ..., br) : Zpk [x]r.

It is important to understand that Zpk [x] is an object constructed during the
computation. The type annotation hides this fact. Note, the rings Zp and Zpk are
not distinguished by a Java type. To correctly model this as distinct types needs
the concept of dependent types which is not available in Java 6 but is available
in Scala, see Subsection 3.2.

298 H. Kredel and R. Jolly

2.3 Algebraic and Transcendental Field Extensions

In this subsection we discuss the typed object oriented modeling of algebraic
extension rings / fields, see figure 2. In slight abuse of number theoretic termi-
nology we call elements of algebraic extensions algebraic numbers. The modeling
of real and complex algebraic numbers is discussed in the next subsection (2.4).
The construction of quotient fields of polynomial rings is not discussed further
as it does not present new modeling challenges. For an introduction to algebraic
fields and more references see Subsection 2.1 in [15].

Algebraic numbers are elements of some algebraic extension field L of a field
K. If L is generated by a single element α we write L = K(α). L being an
algebraic extension then means that there exists a polynomial f ∈ K[x] such
that f(α) = 0 in L. If we can compute in K, the field L can be represented
as L = K[x]/(f) and we can compute also in L. This representation is slightly
ambiguous as it is not specified which conjugate of α is meant. With this rep-
resentation L can be implemented as the residue class ring of K[x] modulo
the defining monic minimal polynomial f ∈ K[x]. It is implemented by class
AlgebraicNumberRing which implements the interface RingFactory as men-
tioned before. Elements of this ring are implemented by class AlgebraicNumber
implementing the interface RingElem. The constructor for AlgebraicNumber-
Ring requires the defining polynomial to be provided. The name ‘ring’ is chosen,
because the defining polynomial might not be irreducible. The constructor for
AlgebraicNumber elements requires the corresponding algebraic number factory
and an element a ∈ K[x], which represents a(α) ∈ K(α).

The construction of algebraic extension fields works uniformly for all fields K.
For example it could be Zp, Q, another algebraic extension K(β) or a transcen-
dental extension K(y). Transcendental extensions are implemented by classes
QuotientRing with elements Quotient from package edu.jas.ufd. By this de-
sign we can implement arbitrary towers of field extensions of some base field Zp

or the rational numbers Q. For example, we can construct

Q(
√

2)(x)(
√
x) or Zp(x)[y].

The latter denotes a polynomial ring over an infinite field of finite characteristic.
For example the construction of the first field can be done step by step as in the
following sequence.

Q �→1 Q[w] �→2 Q[w]/(w2−2) �→3 (Q[w]/(w2−2))(x)
�→4 (Q[w]/(w2−2))(x)[wx] �→5 (Q[w]/(w2−2))(x)[wx]/(wx2−x)

Step 1 constructs a polynomial ring over the rational numbers, step 2 constructs
an algebraic number ring with polynomial w2 − 2 to represent Q(

√
2). Step 3

constructs a polynomial ring in x and the quotient field of it, Step 4 constructs
a polynomial ring for the ring from step 3 and finally step 5 constructs an alge-
braic number ring with polynomial wx2 − x to represent Q(

√
2)(x)(

√
x). These

steps can be followed exactly in the programming language with the construc-
tion of objects from the classes GenPolynomialRing, AlgebraicNumberRing and

Algebraic Structures as Typed Objects 299

0..1

0..1

+ring

0..1

+ring

0..1

+ring

+number

C
AlgebraicNumber

+ ring : AlgebraicNumberRing<C>
+ val : GenPolynomial<C>

C
«interface»
RingElem

C
RealAlgebraicRing

+ algebraic : AlgebraicNumberRing<C>
+ root : Interval<C>
+ engine : RealRootsSturm<C>

C
ComplexAlgebraicNumber

+ number : AlgebraicNumber<Complex<C>>
+ ring : ComplexAlgebraicRing<C>

C
RealAlgebraicNumber

+ number : AlgebraicNumber<C>
+ ring : RealAlgebraicRing<C>

C
ComplexAlgebraicRing

+ algebraic : AlgebraicNumberRing<Complex<C>>
+ root : Rectangle<C>
+ engine : ComplexRootsSturm<C>

C
AlgebraicNumberRing

+ ring : GenPolynomialRing<C>
+ modul : GenPolynomial<C>

C
«interface»
RingFactory

Fig. 2. Algebraic Number classes

QuotientRing. Again, the construction is explicit and we can therefore build any
such field extension towers as desired.

In the example, an element of Q(
√

2)(x)(
√
x) is denoted as

AlgebraicNumber<Quotient<AlgebraicNumber<BigRational>>> elem;

When creating elements of these rings it is first necessary to construct the
corresponding algebraic structures as programming objects in the same sequence
as above. A sequence to create a factory for elem could be as follows.

... // see above

GenPolynomial<BigRational> a = pf.parse("w^2 - 2");

AlgebraicNumberRing<BigRational> af

= new AlgebraicNumberRing<BigRational>(a);

String[] vx = new String[]{ "x" };

GenPolynomialRing<AlgebraicNumber<BigRational>> tf

= new GenPolynomialRing<AlgebraicNumber<BigRational>>(af,vx);

QuotientRing<AlgebraicNumber<BigRational>> qf

= new QuotientRing<AlgebraicNumber<BigRational>>(tf);

String[] vw = new String[]{ "wx" };

GenPolynomialRing<Quotient<AlgebraicNumber<BigRational>>> qaf

= new GenPolynomialRing<Quotient<AlgebraicNumber<BigRational>>>(qf,vw);

300 H. Kredel and R. Jolly

GenPolynomial<Quotient<AlgebraicNumber<BigRational>>> b

= qaf.parse("wx^2 - x");

AlgebraicNumberRing<Quotient<AlgebraicNumber<BigRational>>> fac

= new AlgebraicNumberRing<Quotient<AlgebraicNumber<BigRational>>>(b);

The first field extension Q(
√

2) is constructed as object in af as algebraic
number ring. Then the transcendental extension Q(

√
2)(x) is constructed as

quotient field in object qf. And the last extension Q(
√

2)(x)(
√
x) is constructed

again as algebraic number field in object fac. Then it is possible to construct
elements from this field, e.g. elem = fac.parse("wx + x^5");

The construction process looks tedious and contains a lot of ‘boiler plate’ type
denotations. However, the construction is very precise, it is type safe and explicit!
So every type and semantics of algebraic structures can be precisely constructed,
an important advantage for the engineering of mathematical software libraries.
Note, the type denotations are minimized in Scala through its type resolution
capabilities, see Subsection 3.2.

Recall, that in Java the type information is ‘erased’ in the byte code and so it is
not accessible at run-time. So using Java and (Java based) Scala classes in Jython
[16] or JRuby [17] scripting interpreters access the raw objects and we have only
run-time type safety, see Subsection 2.5. In any case the construction of algebraic
structures is the same and so the construction of elements of such structures is
run-time type safe, as the corresponding factories must be constructed explicitly.

The construction process can be shortened by a class implementing the builder
pattern [14] to make it easier as follows.

RingFactory fac = ExtensionFieldBuilder

.baseField(new BigRational(1))

.algebraicExtension("w", "w^2 - 2")

.transcendentExtension("x")

.algebraicExtension("wx", "wx^2 - x")

.build();

There are several algorithms which can work with such field towers. For exam-
ple in [1] we have shown that one can factor polynomials with coefficients from
the ring Q(

√
2)(x)(

√
x). Primitive elements for multiple algebraic extensions

can be computed by methods primitiveElement() from class PolyUtilApp.
Moreover, residue class rings modulo multivariate (prime) ideals can be used as
extension rings. Note, the build() method is a perfect place to implement struc-
tural optimizations and simplifications of the field tower. For example moving
algebraic extensions to the “bottom” of the tower and moving transcendental
extensions to the “top” of the field tower, or replacing some algebraic extensions
by primitive elements, or replacing the tower by a single multivariate residue
class ring represented by a Gröbner base. Also type specialization techniques
could be implemented in this method, see [18].

2.4 Real Algebraic Numbers and Complex Algebraic Numbers

Real algebraic numbers g(α) are elements of a real algebraic field extension
L = K(α) over a field K, for α ∈ R. They are represented as polynomials

Algebraic Structures as Typed Objects 301

g ∈ K[x] modulo a defining polynomial f ∈ K[x] for the algebraic field exten-
sion together with an isolating interval I = [l, r] ⊆ R for a specific real root
α ∈ I of f . The rationale for real algebraic numbers as programming objects
is the ability to represent results of polynomial and ideal root finding algo-
rithms precisely and not as unstructured isolating intervals, as it is done by
contemporary commercial computer algebra systems. Note, K(α) is a sub-field
of E = K[x]/(f). So one would like to implement K(α) as a sub-type of E via
the sub-class implementation scheme.

However, to avoid the problem of type erasure for sub-classes with interfaces
we model the relation according to the delegation concept, a compositional design
concept [14]. That is, we do not model real and complex algebraic numbers as
sub-classes of algebraic numbers but use delegation to algebraic numbers and
algebraic number factories, see figure 2. The main advantages and disadvantages
of delegation versus the inheritance approach are discussed in Subsection 3.1.

The implementation is contained in class RealAlgebraicNumber with factory
class RealAlgebraicRing. The factory class contains an instance of the real root
computation engine, which is used to refine intervals as required. The real root
computation is contained in class RealRootsSturm for computation via Sturm
sequences. The class is a sub-class of RealRootAbstract. There exist faster
algorithms to compute isolating intervals than Sturm sequences, they will be
implemented in future releases (see Subsection 2.1 in [15]). This design allows
then the definition of polynomials with real algebraic coefficients

GenPolynomial<RealAlgebraicNumber<BigRational>>.

Moreover, for such polynomials we can also use real root isolation algorithms
and instantiate and use for example

RealRootsSturm<RealAlgebraicNumber<BigRational>>.

This is possible since we implemented method realSign() which is used
in the method signum() of a real algebraic number. BigRational and Real-
AlgebraicNumber implement the interface Rational which defines a method
getRational() to compute a rational approximation of the middle of the iso-
lating interval to a prescribed accuracy.

Multiple real algebraic field extensions, for example by the third root of 3 and
its square root and the fifth root of 2 Q(+ 3

√
3)(+

√
+ 3
√

3)(+ 5
√

2) using [1, 2] as
isolating intervals, can be constructed as follows.

fac = ExtensionFieldBuilder

.baseField(new BigRational())

.realAlgebraicExtension("q", "q^3 - 3","[1,2]")

.realAlgebraicExtension("w", "w^2 - q","[1,2]")

.realAlgebraicExtension("s", "s^5 - 2","[1,2]")

.build();

One possible implementation of complex algebraic numbers is similar to real
algebraic numbers but using a bounding box in the complex plane to uniquely
identify a specific complex algebraic number. Such a implementation uses the

302 H. Kredel and R. Jolly

complex root computation from classes ComplexRootsSturm which is a sub-
class of ComplexRootsAbstract. Unfortunately this representation of complex
algebraic numbers can not be used in a recursive setting since it is not possible
to obtain a real algebraic representation for the real or imaginary parts from
it. As a consequence ComplexRootsSturm<ComplexAlgebraicNumber<.>> can
not be implemented. An alternate representation is as real roots of the ideal
generated by the real and imaginary part of the given polynomial. That is,
after substitution of z �→ a + bi in the polynomial f(z), we have f(a, b) =
fr(a, b) + fi(a, b)i. Then we consider the real roots of the ideal generated by
fr(a, b) and fi(a, b). So a specific γk ∈ L = L′(i) with f(γk) = 0 is represented as
αk +βki ∈ L′(i) with fr(αk, βk) = 0 and fi(αk, βk) = 0 where L′ = K(α, β) with
real algebraic numbers α and β. All required algorithms are already implemented
in classes Ideal and PolyUtilApp in package edu.jas.application. So we
arrive at a representation as Complex<RealAlgebraicNumber<RealAlgebraic-
Number<.>>>which is suitable in the recursion, i.e. for complex root computation
of polynomials with coefficients from such rings1.

RootFactory

+ realAlgebraicNumbers(f : GenPolynomial<C>) : List<RealAlgebraicNumber<C>>
+ realAlgebraicNumbersField(f : GenPolynomial<C>) : List<RealAlgebraicNumber<C>>
+ complexAlgebraicNumbers(f : GenPolynomial<C>) : List<ComplexAlgebraicNumber<C>>
+ complexAlgebraicNumberComplex(f : GenPolynomial<Complex<C>>) : List<ComplexAlgebraicNumber<C>>

Fig. 3. Factory for algebraic numbers and fields

We conclude with the class RootFactory, see figure 3. It implements a functor
for creating real algebraic numbers for polynomial real roots and a functor for
creating complex algebraic numbers for polynomial complex roots. All functors
internally construct first the real algebraic number rings respectively the complex
algebraic number rings. The rings are accessible by the factory()method of the
RingElem interface and an approximation of the magnitude can be obtained via
the getRational() method. The respective methods realAlgebraicRoots()
and complexAlgebraicRoots() for zero dimensional ideals are at the moment
contained in class PolyUtilApp in package edu.jas.application.

For example we can compute real roots over the field fac using this root fac-
tory. Therefore we build a polynomial ring over fac in the variable, say y, parse
for example the polynomial y2 −

√
3
√

3 5
√

2 and compute its two real roots.

GenPolynomial elem = pfac.parse("y^2 - w s");

List<RealAlgebraicNumber> roots = RootFactory.realAlgebraicNumbers(elem);

The real root isolation needs 1.2 seconds and the approximation to 50 digits
needs a total of 5.2 seconds on an AMD running at 3 GHz and IcedTea6 JVM.
The decimal approximation (via getRational() from the roots) shows the two
real roots requested with 50 decimal digits as
1 According to the fundamental theorem of algebra, for a constructive version see the

Weierstraß-Durand-Kerner fixpoint method.

Algebraic Structures as Typed Objects 303

-1.1745272686769866126436905900619307101229226521299

1.1745272686769866126436905900619307101229226521299.

2.5 Algebraic Structures in Interactive Scripting Interpreters

The example Q(
√

2)(x)(
√
x) from Subsection 2.3 can be constructed in a script-

ing interpreter in the same way as in the Java example (when not using Exten-
sionFieldBuilder). The (Jython) methods AN() and RF() construct algebraic
respectively transcendental extensions and the PolyRing class represents a Gen-
PolynomialRing. The gens() method for a ring R returns a list of generators
as an R-algebra (including generators for coefficient rings represented in R).
The generators are constructed in the sequence defined by the extension tower
composition. QQ denotes the rational numbers.

Q = PolyRing(QQ(),"w2",PolyRing.lex);

[e,w2] = Q.gens();

root = w2**2 - 2;

Q2 = AN(root,field=True);

Qp = PolyRing(Q2,"x",PolyRing.lex);

Qr = RF(Qp);

Qwx = PolyRing(Qr,"wx",PolyRing.lex);

[ewx,wwx,ax,wx] = Qwx.gens();

rootx = wx**2 - ax;

Q2x = AN(rootx,field=True);

Finally a polynomial ring over this field extension can be constructed.
Yr = PolyRing(Q2x,"y",PolyRing.lex)

[e,w2,x,wx,y] = Yr.gens();

f = (y**2 - x) * (y**2 - 2); // = y**4 - (x + 2) * y**2 + 2 * x

Note, the variable x, set by the gens() method, correctly represents the gen-
erator x from ring Qp but as element of the polynomial ring Yr. There is a
source of confusion with the method gens() as all returned generators must
be listed in the assignment (and in the correct semantic sequence). So we also
see the unused variables e (1 in Yr), ewx (1 in Qwx), wwx (

√
2 in Qwx), ax (x

in Qwx) and w2 (
√

2 in Yr). These usability problems can be solved in Scala as
described in Subsection 3.2 or by an extension field builder for the scripting in-
terface. For example with EF(QQ()).extend("w2","w2^2 - 2").extend("x")
.extend("wx","wx^2 - x").build().

In the example we can then compute the factorization over the extension
fields (in 9.5 seconds on an AMD at 3 GHz, 5.7 seconds after JIT warm-up, also
IcedTea6 JVM) and this looks as expected, f = (y - wx) * (y - w2) *
(y + wx) * (y + w2).

Note, in scripting interpreters we only have run-time type safety, as the scripts
are not compiled and statically type checked.

3 Problems

In this section, we summarize some problems we have studied in the library
design and implementation. As we are using general purpose languages and not

304 H. Kredel and R. Jolly

developing our own like in Axiom [2], there will inevitably exist some design
problems which will have no satisfactory solution until said languages are made
to evolve, if ever.

3.1 Generic Types and Sub-classes

The first one can be demonstrated with the following JAS Java code defining
the classes for polynomials

class GenPolynomial<C extends RingElem<C>>

implements RingElem<GenPolynomial<C>> { ... }

and solvable polynomials

class GenSolvablePolynomial<C extends RingElem<C>>

extends GenPolynomial<C> { ... }

The intention of this sub-class definition2 is to be able to use algorithms
written for polynomials also for solvable polynomials. One would like to add
“implements RingElem<GenSolvablePolynomial<C>>” to the declaration of
GenSolvablePolynomial. However this will lead to two usages of the RingElem
interface with different type parameters. Due to the design of Java generics to
be compatible with existing non-generic code, the nested type parameters are
erased and the double interface usage would turn into a compile error.

The same problem occurs with classes AlgebraicNumberand RealAlgebraic-
Number that we have studied in Subsection 2.4. If the latter could be made a
subclass of the former, we could reuse algorithms, e.g. for primitive element com-
putation. However, then we could not have RealAlgebraicNumber<C extends
GcdRingElem<C>> to implement GcdRingElem<RealAlgebraicNumber<C>> but
only GcdRingElem<AlgebraicNumber<C>>. This means that we could build poly-
nomials over such a ring, but no further real algebraic number fields based on
it, because for example no getRational() method is provided by the interface
AlgebraicNumber<C>.

Thus we are conducted to resort to the delegation concept, which avoids the
above type-erasure problem, but forbids to use algorithms written specifically
for AlgebraicNumbers with RealAlgebraicNumbers.

A third solution, that we have investigated in ScAS, is to use neither delegation
nor subclassing, but instead to have both classes to inherit from a common,
abstract superclass3. That way, code reuse is made possible, and the problem of
knowing what class should be a subtype/subset of the other, is avoided.

3.2 Dependent Types

A second problem is that in order to parametrize the list of variables of a polyno-
mial or the module of integer residue classes, some dependent types are required
2 Which should be reversed to be mathematically right, the problem here being that

subclassing does not provide for subtyping in a rigorous sense, namely that of a
subset of possible values.

3 As explained in [13], Subsection 7.1 “Interfaces as types”, such abstract class is
roughly equivalent to a category in Axiom.

Algebraic Structures as Typed Objects 305

(see [13], Subsection 7.3 “Dependent types”). We have investigated if we could
use Scala’s dependent types [19] and found that it is possible. In the rest of the
subsection some familiarity with Scala is required.

The basic principle is illustrated below. Let us take modular integers for in-
stance. We need to define a type like Mod(7) which depends on the value 7. The
goal is to forbid arithmetic operations between integers with different moduli.
In the current state of the library this is not done:

object Ring {

trait Factory[T <: Ring[T]]

}

trait Ring[T <: Ring[T]] {

val factory: Ring.Factory[T]

def +(that: T): T

}

object Mod {

def apply(mod: Int) = new Factory(mod)

class Factory(val mod: Int) extends Ring.Factory[Mod] {

def apply(value: Int) = new Mod(this)(value%mod)

}

}

class Mod(val factory: Mod.Factory)(val value: Int)

extends Ring[Mod] {

def +(that: Mod) = factory(this.value+that.value)

override def toString = value.toString

}

A use case is given below.

val r = Mod(7)

r(4)+r(4) // 1

val s = Mod(2)

r(4)+s(1) // problem : this works

So we have found a new design, where we have replaced the type parameter
T by an abstract type member E, and now we can define the ring element as an
inner class of the ring factory, or, in other words, as a type which depends on
the factory.

trait Ring {

type E <: Element

trait Element {

def +(that: E): E

}

}

class Mod(val mod: Int) extends Ring {

type E = Element

class Element(val value: Int) extends super.Element {

def +(that: E) = apply(this.value+that.value)

override def toString = value.toString

}

306 H. Kredel and R. Jolly

def apply(value: Int) = new Element(value%mod)

}

A use case is given again below.

object r extends Mod(7)

r(4)+r(4) // 1

object s extends Mod(2)

r(4)+s(1) // type mismatch, as expected

In the case of polynomials we could have a dependent type which fulfills all
our requirements as follows:

class Polynomial[C <: Ring, P](val ring: C,

val variables: Array[String],

val ordering: Comparator[P]) {

type E // the type of the elements of the ring

}

When using Scala as a script interpreter [20], the design will moreover provide
a solution to the problem mentioned in Subsection 2.5 that each definition of
ring/extension field factory must redefine all generators in the factory tower. This
will be achieved through implicit conversion, with such factory declarations as
below, which will be able to “lift” values to the correct level in the ring/field
tower.

implicit r extends Mod(7)

implicit p extends Polynomial(r, Array("x"))

implicit q extends Polynomial(p, Array("y"))

// and so on

We intend to rewrite the whole ScAS library based on this new principle. It
will be the subject of a future publication.

3.3 Package Structure

Lastly, there is a question about whether several algorithm flavors (for e.g. gcd,
factorization and so on) could be implemented as polynomial (factory) sub-
classes as is currently investigated in ScAS, or should remain in distinct class
hierarchies as in JAS (see [13], Subsection 7.5 “Recursive types”).

4 Conclusions

We have discussed previously [1], how our typed object oriented approach with
the Java and Scala programming languages makes it possible to implement non-
trivial, type-safe algebraic structures which can be stacked and plugged together
in unprecedented ways. In this paper we examined the modeling of field ex-
tensions using ring / field factories which represent the corresponding algebraic
structures. All examples and the underlying mathematical algorithms from Sec-
tion 2 (together with almost all algorithms from [21]) have been implemented
and are available under a GPL license from a Git-repository at [11].

Algebraic Structures as Typed Objects 307

The construction process is very precise and explicit, so that no misinterpre-
tation of the algebraic structure is possible. However, it is tedious and contains a
lot of ‘boiler plate’ type denotations in case of Java as implementation language.
The type denotations can be minimized in the Scala implementation through its
type resolution capabilities. In scripting interpreters the type safety is only en-
forced at run-time due to the interpretative execution. But for the engineering of
reliable and comprehensive mathematical software libraries the precise construc-
tion and type-safe modeling of algebraic structures is an important advantage.
Compared to other computer algebra systems we can represent real roots not
only by simple isolating intervals but as elements of algebraic structures which
can be reused for further computations.

The design problems we encountered in Java can be resolved by modeling
using alternative ways and in more advanced object oriented programming lan-
guages like Scala. Dependent types and the coercion facility in Scala will need
further studies. Future work will include the implementation of faster algorithms
for root isolation and to improve the (recursive) complex root isolation and rep-
resentation.

Acknowledgments. We thank our colleagues Thomas Becker, Wolfgang K.
Seiler, Thomas Sturm, Axel Kramer, Jaime Gutierrez, Sherm Ostrowsky, Ted
Kosan and others for various discussions on the design of and the requirements
for JAS and ScAS. Thanks also to the referees for the insightful suggestions to
improve the paper.

References

1. Kredel, H., Jolly, R.: Generic, type-safe and object oriented computer algebra soft-
ware. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2010.
LNCS, vol. 6244, pp. 162–177. Springer, Heidelberg (2010)

2. Watt, S.: Aldor. In: Computer Algebra Handbook, pp. 265–270. Springer, Heidel-
berg (2003)

3. Odersky, M.: The Scala programming language. Technical report (2003-2011),
http://www.scala-lang.org/ (accessed June 2011)

4. Jenks, R., Sutor, R. (eds.): Axiom The Scientific Computation System. Springer,
Heidelberg (1992)

5. Rubio, J., Sergeraert, F.: Constructive algebraic topology. Bulletin des Sciences
Mathematiques 126(5), 389–412 (2002)

6. Calmet, J., Seiler, W.M.: Computer algebra and field theories. Mathematics and
Computers in Simulation 45, 33–37 (1998)

7. Drescher, K.: MuPAD multi processing algebra data tool - Axioms, Cate-
gories and Domains. Technical report, Manuscript available via Citeseer (1995),
http://www2.math.uni-paderborn.de/

8. Mechveliani, S.: DoCon - The Algebraic Domain Constructor. Technical report
(2007), http://botik.ru/pub/local/Mechveliani/docon/

9. Maza, M.M., Stephenson, B., Watt, S.M., Xie, Y.: Multiprocessed parallelism sup-
port in ALDOR on SMPs and multicores. In: PASCO, pp. 60–68 (2007)

http://www.scala-lang.org/
http://www2.math.uni-paderborn.de/
http://botik.ru/pub/local/Mechveliani/docon/

308 H. Kredel and R. Jolly

10. Taboada, G., Tourino, J., Doallo, R.: Java for high performance computing: As-
sessment of current research and practice. In: Proc. PPPJ 2009, pp. 30–39. ACM,
New York (2009)

11. Kredel, H.: The Java algebra system (JAS). Technical report (since 2000),
http://krum.rz.uni-mannheim.de/jas/

12. Kredel, H.: Evaluation of a java computer algebra system. In: Kapur, D. (ed.)
ASCM 2007. LNCS (LNAI), vol. 5081, pp. 121–138. Springer, Heidelberg (2008)

13. Kredel, H.: On a Java Computer Algebra System, its performance and applications.
Science of Computer Programming 70(2-3), 185–207 (2008)

14. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Addison-Wesley,
Reading (1995); Entwurfsmuster, Addison-Wesley, Deutsch (1996)

15. Grabmaier, J., Kaltofen, E., Weispfenning, V. (eds.): Computer Algebra Handbook.
Springer, Heidelberg (2003)

16. Jython Developers: Jython implementation of the high-level, dynamic, object-
oriented language Python written in 100% pure Java. Technical report (1997-2011),
http://www.jython.org/ (accessed June 2011)

17. JRuby Developers: JRuby a Java powered Ruby implementation. Technical report
(2003-2011), http://jruby.org/ (accessed June 2011)

18. Dragan, L., Watt, S.: Type specialization in aldor. In: Gerdt, V.P., Koepf, W.,
Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2010. LNCS, vol. 6244, pp. 73–84.
Springer, Heidelberg (2010)

19. Odersky, M., Cremet, V., Röckl, C., Zenger, M.: A nominal theory of objects with
dependent types. In: Cardelli, L. (ed.) ECOOP 2003. LNCS, vol. 2743, pp. 303–329.
Springer, Heidelberg (2003)

20. Jolly, R.: Object Scala found - a JSR223-compliant version of the Scala interpreter.
In: Scala Days 2011 (to appear, 2011)

21. Becker, T., Weispfenning, V.: Gröbner Bases - A Computational Approach to Com-
mutative Algebra. Graduate Texts in Mathematics. Springer, Heidelberg (1993)

http://krum.rz.uni-mannheim.de/jas/
http://www.jython.org/
http://jruby.org/

On Two-Generated Non-commutative Algebras

Subject to the Affine Relation

Viktor Levandovskyy1, Christoph Koutschan2, and Oleksandr Motsak3

1 Lehrstuhl D für Mathematik, RWTH Aachen, Germany
viktor.levandovskyy@math.rwth-aachen.de

2 RISC, Johannes Kepler University, Linz, Austria
Koutschan@risc.uni-linz.ac.at

3 TU Kaiserslautern, Germany
motsak@mathematik.uni-kl.de

Abstract. We consider algebras over a field K, generated by two vari-
ables x and y subject to the single relation yx = qxy + αx + βy + γ for
q ∈ K∗ and α, β, γ ∈ K. We prove, that among such algebras there are
precisely five isomorphism classes. The representatives of these classes,
which are ubiquitous operator algebras, are called model algebras. We
derive explicit multiplication formulas for ym · xn in terms of standard
monomials xiyj for many algebras of the considered type. Such formulas
are used in e. g. establishing formulas of binomial type and in an im-
plementation of non-commutative multiplication in a computer algebra
system. By using the formulas we also study centers and ring-theoretic
properties of the non-commutative model algebras.

In this paper we study non-commutative algebras in two generators obeying
single affine relation. Many operator algebras, coming from different areas of
natural sciences, are built from algebras in two generators, see Sect. 2.1 for
examples. One of generators, say x, often corresponds to the operator of the
multiplication with the function x. Another operator, say y, corresponds to a
linear operator, acting on functions in the variable x.

In the main Theorem we identify precisely five types of non-isomorphic al-
gebras, which we call model algebras, among them. Despite the fact that many
such algebras have been studied in the literature (see e. g. [3,6,2,1], many aspects
and properties are too scattered in the existing literature. Another point of this
note is to search systematically for closed form of multiplication formulas on
monomials. Such closed forms are needed, among other, in computer algebra,
where many sophisticated algorithms heavily rely on basic multiplication among
monomials. It is not enough to have such formulas just for model algebras, since
isomorphisms do not preserve monomials but turn them into polynomials. It
turned out, that there are still several cases, where we were not able to derive
closed formulas in terms of standard monomials. With our approach, however,
one is still able to derive formulas of certain type for them.

V.P. Gerdt et al. (Eds.): CASC 2011, LNCS 6885, pp. 309–320, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

310 V. Levandovskyy, C. Koutschan, and O. Motsak

1 Preliminaries

Let K be a field. Moreover, let A be an associative K-algebra and q ∈ K∗. We use
the following notations: [a, b]q := ab− q · ba is a q-commutator of a, b ∈ A. The
commutator or the Lie bracket is [a, b] := [a, b]1 = ab− ba. We also write [n] =
[n]q = qn−1

q−1 for the q-number, (a; q)n :=
∏n−1

k=0 (1 − aqk) for the q-Pochhammer

symbol, [n]k = (qn−k+1;q)k

(1−q)k for the q-falling factorial and
[
n
k

]
=
[
n
k

]
q

= [n]!
[n−k]![k]!

for the q-binomial coefficient. Note, that
[
n
k

]
= 0 for k > n.

Lemma 1. ∀a, b, c ∈ A and λ, μ ∈ K the following identities hold.

– [a, b]q = −q(ba− 1
qab) = −q[b, a]q−1 , [a, a]q = (1 − q)a2

– [a + λ, b]q = [a, b]q + λ(1 − q)b, [a, b + μ]q = [a, b]q + μ(1 − q)a
– [ab, c]q = a[b, c]q + q · [a, c]b = a[b, c] + [a, c]qb

In particular, [a, b] = −[b, a] and [ab, c] = a[b, c] + [a, c]b.

We study two-generated non-commutative K-algebras with affine relations

A(q, α, β, γ) := K〈x, y | yx = q · xy + αx + βy + γ〉

for q ∈ K∗ and α, β, γ ∈ K. The scalar q plays an important role and we distin-
guish two major cases. If q = 1, an algebra is of Lie type, that is it is isomorphic
to a factor-algebra of the universal enveloping algebra of a finite-dimensional Lie
algebra. If q �= 1, in the research of quantum algebras one distinguishes two situ-
ations (which lead to different behaviour of algebras): either q is transcendental
over some subfield k ⊂ K or q is a root of unity in K. Without assumptions on q
we will write K(q) in general (thus encompassing the case q ∈ K∗ as well), while
in the case q = 1 just K will be used. The following Lemma is well-known.

Lemma 2. A(q, α, β, γ) has {xayb | (a, b) ∈ N2
0} as a K(q)-basis.

2 Main Theorem and Applications

Theorem 1. A(q, α, β, γ) is isomorphic to one of the five model algebras:

1. the commutative algebra K[x, y],
2. the first Weyl algebra A1 = K〈x, d | dx = xd + 1〉 (the algebra of linear

differential operators with coefficients from K[x]),
3. the shift algebra S1 = K〈x, s | sx = xs+ s〉 (the universal enveloping algebra

of the non-abelian solvable two-dimensional Lie algebra; the algebra of linear
shift operators with coefficients from K[x]),

4. the q-commutative algebra Kq[x, y] := K(q)〈x, y | yx = q ·xy〉 (Manin’s quan-
tum plane; the algebra of linear q-shift operators with coeff’s from K(q)[x])

5. the first q-Weyl algebra A
(q)
1 = K(q)〈x, ∂ | ∂x = q · x∂ + 1〉 (the algebra of

linear q-differential operators with coefficients from K(q)[x]).

Moreover, the model algebras are pairwise non-isomorphic (see Prop. 3).

Title Suppressed Due to Excessive Length 311

In Tables 1 and 2 we write isomorphisms to model algebras and write formulas
for the multiplication in every concrete class of algebras. In some cases we also
write down the recurrence formulas for the coefficients in the expansion of ymxn

in terms of standard monomials xayb. For some algebras we put simpler formulas
for ymx and yxn as well as a part of our proof.

By writing not known yet in the table we mean, that up to now, no explicit
formula in terms of of standard monomials is known to us. However, by applying
an isomorphism (for instance, the one we give explicitly in the table) to the ex-
plicit multiplication formula of the corresponding model algebra (Algebra Class
in the table), we obtain a non-expanded formula for any algebra in the table.

Proof. While for some of the above cases the explicit formulas for ymxn are
rather simple (and therefore easily found), others are quite complicated and re-
quired some work. A good strategy for finding a general formula for ymxn is to
study the special cases yxn and ymx first. Once this is done, further multipli-
cations by y (and x, respectively) lead to the general formula. However, for the
most general commutation rules (e.g., yx = xy+αx+βy+γ), this strategy fails.

All the formulas for ymx, yxn, and ymxn have in common that they are easily
proved by induction. As an example, consider the algebra (1, 0, β, γ). We have
stated above that ymx = xym + mym−1(βy + γ). For m = 1 this reduces just
to the given commutation relation yx = xy + βy + γ. Now consider ym+1x =
y · (ymx) which by induction hypothesis is yxym + mym(βy + γ) = (xy + βy +
γ)ym + mym(βy + γ) which after collecting powers gives the desired formula
xym+1 + (m + 1)ym(βy + γ). Similarly, the general formula

ymxn =
1
βm

m∑
i=0

(
m

i

)
(−γ)m−i(x + iβ)n(βy + γ)i

can be shown (now we use induction on n). A straightforward calculation shows
that this formula for n = 1 reduces to the one given above for ymx. Thus it has
to be investigated what happens after multiplying another x from the right:

(βy + γ)ix =
i∑

j=0

(
i

j

)
(βy)jγi−jx =

i∑
j=0

(
i

j

)
βj
(
xyj + jyj−1(βy + γ)

)
γi−j

= x

i∑
j=0

(
i

j

)
βjyjγi−j + β

⎛⎝ i∑
j=0

(
i− 1
j − 1

)
i(βy)j−1γi−j

⎞⎠ (βy + γ)

= x(βy + γ)i + βi(βy + γ)i−1(βy + γ)
= (x + βi)(βy + γ)i

We have additionally checked the validity of the formulas above with our respec-
tive implementations in computer algebra systems Singular:Plural [5] and
Mathematica [4].

312 V. Levandovskyy, C. Koutschan, and O. Motsak

Table 1. Multiplication Formulas for Algebras of Lie Type

Algebra Type Relation Algebra Class

(1, 0, 0, 0) yx = xy Y X = XY

Isomorphism: X→ x , Y → y
ymxn = xnym

(1, α, 0, 0) yx = xy + αx Y X = XY + Y

Isomorphism: X→ −α−1y , Y → x

ymxn = xn(y + nα)m =
m∑

k=0

(
m

k

)
(nα)m−kxnyk,

Coeff. recurrence: Ck =
(k + 1)nα

m − k
Ck+1

(1, 0, β, 0) yx = xy + βy Y X = XY + Y

Isomorphism: X→ β−1x , Y → y

ymxn = (x + mβ)nym =
n∑

k=0

(
n

k

)
(mβ)n−kxkym,

Coeff. recurrence: Ck =
(k + 1)mβ

n − k
Ck+1

(1, α, β, 0) yx = xy + αx + βy Y X = XY + Y

Isomorphism: X→ −α−1y , Y → αx + βy

yxn =
1

β

(
(x + β)n(αx + βy) − αxn+1), ymx =

1

α

(
(αx + βy)(y + α)m − βym+1),

ymxn = not known yet

(1, 0, 0, γ) yx = xy + γ Y X = XY + 1

Isomorphism: X→ x , Y → γ−1y

yxn = xn−1(xy + nγ), ymx = (xy + mγ)ym−1,

ymxn =

n∑
k=0

(
m

k

)
nkγkxn−kym−k =

min{m,n}∑
k=0

m!n!γkxn−kym−k

k!(m − k)!(n − k)!
,

Coeff. recurrence: Ck =
(m − k + 1)(n − k + 1)γ

k
Ck−1

(1, α, 0, γ) yx = xy + αx + γ Y X = XY + Y

Isomorphism: X→ −α−1y , Y → αx + γ

yxn = xny + nxn−1(αx + γ), ymx =
1

α

(
(αx + γ)(y + α)m − γym),

ymxn =
1

αn

n∑
i=0

(
n

i

)
(−γ)n−i(αx + γ)i(y + iα)m

(1, 0, β, γ) yx = xy + βy + γ Y X = XY + Y

Isomorphism: X→ β−1x , Y → βy + γ

ymx = xym + mym−1(βy + γ), yxn =
1

β

(
(x + β)n(βy + γ) − γxn),

ymxn =
1

βm

m∑
i=0

(
m

i

)
(−γ)m−i(x + iβ)n(βy + γ)i

(1, α, β, γ) yx = xy + αx + βy + γ Y X = XY + Y

Isomorphism: X→ −α−1y , Y → αx + βy + γ
ymxn = not known yet

Title Suppressed Due to Excessive Length 313

Table 2. Multiplication Formulas for Quantum Algebras

Algebra Type Commutation Algebra Class

(q, 0, 0, 0) yx = qxy Y X = qXY

Isomorphism: X→ x , Y → y
ymxn = qmnxnym

(q, α, 0, 0) yx = qxy + αx Y X = qXY

Isomorphism: X→ x , Y → y − α(1 − q)−1

ymxn = xn(qny + [n]α)m

(q, 0, β, 0) yx = qxy + βy Y X = qXY

Isomorphism: X→ x − β(1 − q)−1 , Y → y
ymxn = (qmx + [m]β)nym

(q, α, β, 0) yx = qxy + αx + βy Y X = qXY

Isomorphism: X→ x − β(1 − q)−1 , Y → y − α(1 − q)−1

ymx = x(qy + α)m + β
m∑

k=1

ykαm−k
k−1∑
i=0

(
m − k + i

i

)
qi,

ymxn = not known yet

(q, 0, 0, γ) yx = qxy + γ Y X = qXY + 1

Isomorphism: X→ x , Y → γ−1y

ymxn =
n∑

k=0

[
m
k

]
[n]kq(n−k)(m−k)γkxn−kym−k.

(q, α, 0, γ) yx = qxy + αx + γ Y X = qXY + 1

Isomorphism: X→ γ−1x , Y → y − α(1 − q)−1

ymxn =
n∑

k=0

m−k∑
j=0

[
n
k

]
γk

(
α

1 − q

)m−j−k

cj,k,m,nxn−kyj ,

where cj,k,m,n =

m−j−k∑
i=0

(−1)i

(
m

i + j + k

)(
i + j

j

)
[i + j + k]kq(i+j)(n−k)

(q, 0, β, γ) yx = qxy + βy + γ Y X = qXY + 1

Isomorphism: X→ x − β(1 − q)−1 , Y → γ−1y

ymxn =

n∑
k=0

n−k∑
j=0

[
m
k

]
γk

(
β

1 − q

)n−j−k

cj,k,m,nxjym−k,

where cj,k,m,n =

n−j−k∑
i=0

(−1)i

(
n

i + j + k

)(
i + j

j

)
[i + j + k]kq(i+j)(m−k)

(q, α, β, γ) yx = qxy + αx + βy + γ Y X = qXY + 1

Isomorphism: X→ x − β(1 − q)−1 , Y → ((1 − q)y − α)(γ(1 − q) + αβ)−1

ymxn = not known yet

314 V. Levandovskyy, C. Koutschan, and O. Motsak

2.1 Operator Algebras and Model Algebras

Fix a constant c ∈ K∗. Then the c-shift operator acts as sc(f(x)) = f(x − c).
The corresponding c-shift algebra is K〈x, sc | sc ·x = x · sc − csc〉. For c = 1 one
recovers discrete shift operator. If c < 0 (resp. c > 0), sc is called an advance
operator (resp. a time-delay operator) in both discrete and continuous settings.
The corresponding algebras are of the type (1, 0, β = −c, 0) and thus they are
isomorphic to K〈X,Y | Y X = XY + Y 〉, the model shift algebra.

Let c = (c1, c2) for ci ∈ K∗. The c-difference operator acts as Δc(f(x)) =
f(x+c1)−f(x)

c2
. The corresponding c-difference algebra is

K〈x,Δc | Δc · x = x ·Δc + c1Δ + c1
c2
〉.

For c = (1, 1) one recovers discrete difference operator; for c = (�x,�x) the
first-order divided difference operator. The corresponding algebras are of the
type (1, 0, β = c1, γ = c1c

−1
2) and hence they are isomorphic to K〈X,Y | Y X =

XY + Y 〉, the model shift algebra.
Following Chyzak and Salvy [2], the q-dilation and q-shift operators give

rise to the same operator algebra, the q-commutative model algebra Kq[x, y].
Both continuous and discrete q-difference operators [2] give rise to the algebra
K(q)〈x, y | yx = qxy + (q − 1)x〉 of the type (q, α = q − 1, 0, 0). Hence it is
isomorphic to the q-commutative model algebra Kq[x, y].

Let c = (c1, c2) for ci ∈ K(q)∗ with qci �= 0. The c-q-differential operator acts
as Δ

(q)
c (f(x)) = f(qc1x)−f(x)

(qc2−1)x . The corresponding c-q-differential algebra is

K(q)〈x,Δ(q)
c | Δc · x = qc1x ·Δc + (qc1 − 1) · (qc2 − 1)−1〉.

For c = (1, 1) one recovers the q-differential operator Dq(f(x)) = f(qx)−f(x)
qx−x .

Otherwise, we use Table 2 and by sending x → X,Δ
(q)
c → Y := (qc2 − 1)(qc1 −

1)−1Δ
(q)
c we obtain the isomorphic algebra K(q)〈X,Y | Y X = qc1XY + 1〉. Let

q̃ = qc1 , then the subalgebra K(q̃)〈X,Y | Y X = q̃XY +1〉 of the previous algebra
is the first q̃-Weyl model algebra.

Consider the differentiation y = d
dt and the operator x(f(t)) := eλt · f(t) for

λ ∈ K∗. Then the algebra, generated by x, y has the relation yx = xy + λx and
it is isomorphic to the model shift algebra.

Of course, there are operators obeying relations, which are not affine. Consider
the integration operator I(f(x)) :=

∫ x

0
f(t)dt. Its relation with x reads as Ix =

xI − I2. Similarly, let x = t−1 and y = d
dt . Then the relation is yx = xy − x2.

Both algebras can be realized as G-algebras. It is interesting to study model
algebras for non-affine relations.

Remark 1. Note, that isomorphy of q-shift and q-commutative algebras does
not have an analogue in the classical situation, since for q = 1 the model shift
algebra is not isomorphic to the model commutative algebra. Thus the following
question arises: is there a quantum algebra (clearly, with non-affine relation),
which becomes shift model algebra in the limit q → 1?

Title Suppressed Due to Excessive Length 315

2.2 Binomial Theorems

Notation: in a noncommutative algebra A, for two elements a, b ∈ A\K, we define

[a + b]n :=
∑n

i=0

(
n
i

)
aibn−i. Respectively, we define [a + b]nq :=

n∑
i=0

[
n
i

]
q

aibn−i.

Then, if x, y commute, one expresses the binomial theorem as (x+y)n = [x+y]n.
Respectively, if yx = qxy, we obtain (x + y)n = [x + y]nq .

Using the formulas obtained above, we can provide formulas of binomial type,
which are important in applications. Among the variety of possible presentations
in such formulas we aim at those, which express (x + y)n in terms of standard
monomials xiyj.

In the free associative algebra K〈a, b〉, we can write (a + b)n =
∑

w∈〈a,b〉n
w,

that is w run through all words of length n in the free monoid 〈a, b〉. One defines
a misordering index [1] of w to be the number of operations, each of them
exchanges two neighbour non-equal letters, needed to move all a’s to the left
(thus finishing when a standard monomial has been achieved), starting from the
last letter in w. For example, the misordering index of a standard monomial
is 0, while the misordering index of bbbab is 3, since the sequence of exchange
operations is bbbab, bbabb, babbb, abbbb. We say also that bbbab converges to abbbb
here. It is known, that in any algebra A(q, α, β, γ) the leading monomial of a
polynomial ym ·xn is xnym. Hence, the coefficients of a standard monomial xayb

of degree a+b will appear from the multiplication, applied on every word, which
converges to xayb. And closed formulas for multiplication allow to perform this
task symbolically.

Lemma 3. Let A = A1 be the first Weyl algebra, where ∂x = x∂ + 1 holds.
Then the following binomial theorem takes place:

(x + d)n − [x + d]n =
n−2∑
k=0

n−k−2∑
j=0

(
n

j

)(
n− j

k

)
g(n− j − k)xkdj

where g(n) := (n− 1)!!, if n is even and 0 otherwise. Alternatively we can write

(x + d)n − [x + d]n =
∑

0≤k≤n−2

∑
0≤j≤n−k−2
n−j−k even

(
n

j

)(
n− j

k

)
(n− j − k − 1)!!xkdj

=
∑

0≤k≤n−2

∑
0≤j≤n−k−2
n−j−k even

n!
j!k!(n−j−k

2)!

(
1
2

)n−j−k
2

xkdj.

Lemma 4. For the shift algebra S1, where xs = sx + s holds, we obtain the
following binomial theorem:

(x + s)n = [x + s]n +
n−1∑
k=0

n−k−1∑
j=0

(
n

k

)
S(n− k, j)xksj

where S(n, k) denote the Stirling numbers of the second kind.

We omit the technical proofs for both Lemmas. They can be done by induction,
using the multiplication formulas.

316 V. Levandovskyy, C. Koutschan, and O. Motsak

3 Application in Computer Algebra Implementation

As described in [5], a general multiplication in a non-commutative G-algebra
boils down to the multiplication of ym · xn for a couple of variables x, y such
that xayb is a standard word. In general, the polynomial ym · xn involves other
variables as well, but the case, when x, y generate a subalgebra of the type
A(q, α, β, γ), appears often enough. Suppose from now on we are in such situa-
tion.

In [5] it has been proposed to address each pair of non-commuting and non-
q-commuting variables separately. To each such pair a matrix M is assigned,
such that Mij = yi ·xj is a polynomial, written in terms of standard monomials.
There is a general multiplication algorithm, which uses matrix entries of lower
degree in order to compute the higher degrees on demand.

There are several different strategies on the usage of the formulas for en-
hancing the polynomial multiplication. Of course, this problem barely has an
analogue in the commutative case. Initialization of non-commutative relation
between y and x saves the relation yx = q · xy + αx + βy + γ as a part of data
structure on the algebra, where the computations take place.

1. Faster computation, considerable memory usage: As proposed in [5],
the results of all required multiplications yi · xj and the intermediate multipli-
cations in lower degree will be saved. Due to the same principles applied for
the search of previously computed elements of lower degree, the multiplication
matrix will be filled with many elements. On the other hand, the intermedi-
ate elements will be reused intensively and this leads to fast arithmetics in the
algebra.

2. Saving memory, slower computation: All required multiplications yi ·xj

will be done according to the formulas, the results will not be saved for the
future use. Thus this way uses the least amount of memory, but can take much
longer, especially if many multiplications are requested repeatedly.

3. Mixing 1 and 2 and using formulas: Computing, by utilizing formulas,
the requested elements and storing them into the multiplication matrix elimi-
nates the need to compute and store intermediate elements from the approach
1. Storing the demanded elements increases the chances for the future reuse of
matrix entries. Still, there are more possibilities to develop strategies by mix-
ing both approaches and working with multiplication matrices dynamically, like
keeping (e. g. by periodic cleaning) higher degree part of the matrix sparse while
being as dense as possible in the lower degree part. But the question, how to de-
termine the value, which distinguishes high degree from low degree, is open. At
last, but not at least, we have experimented with counting the requests to each
matrix entry, thus having a metric for the usability of every single entry. This is
useful while following the strategy, which uses periodic cleaning of multiplication
matrices.

Experiments. Let us do experiments with the most general case: A =
A(q, α, β, γ), where q, α, β, γ are transcendental over the base field. As described

Title Suppressed Due to Excessive Length 317

above, in general the product ya · xb is computed (inductively) either as y ·
(ya−1 · xb) or as (ya · xb−1) · x. Let us consider the products yi · x and y · xi.
The determination of the computational method for these products can be made
during run-time by analyzing given q, α, β, γ. Both yi · x and y · xi are of the
same length (with 2(i + 1) terms), with the same leading term and of the same
internal byte-size. Counting the byte-size of both expressions for i = 1..10, 15, 20
we obtain 8, 21, 40, 65, 96, 133, 176, 225, 280, 341, 736, 1281. Indeed this sequence
coincides with octagonal numbers1 shifted by 1. Hence the byte-size s(i) of yi ·x
is 3i2 + 5i + 2.

Further on we look for some computation-specific patterns, for instance, dur-
ing the computation of a left Gröbner basis. We use the implementation of
slim Gröbner basis algorithm in Singular for highly resource-demanding and
tasks like the computation of Bernstein-Sato polynomials with two different algo-
rithms. With the latter algorithms one computes in the tensor product of model
algebras (Weyl and shift algebras), what suggests using formulas. By cashing
below we mean the use of the multiplication table for saving once computed
elements.

We experiment with the following strategies: 1. Using formulas and caching
2. Using formulas without caching the results 3. Caching the results, obtained
without formulas. The timings and maximal memory usage are collected in the
Table 3. Since we are interested in the efficiency of the caching, we count the
requests to compute every needed elementary product ya · xb as above in a sep-
arate computation. In the process of computation of Bernstein-Sato polynomial
of various Reiffen curves f(x, y) ∈ K[x, y], there is a complicated computation in
the tensor product of two Weyl algebras and K[s]. We count requests to compute
ymxn = xnym in Table 4 and the number of requests to compute ∂m

x xn in the first
Weyl algebra, where [∂x, x] = 1 holds, in Table 5. All the data is available online
from http://www.mathematik.uni-kl.de/∼motsak/ncSAtests. Timings and
memory are given in seconds resp. in Kb. The tests were run on a PC running
64 bit Arch Linux 2.6.38, having 16 GB RAM and Intel Core i7 CPU 860 at
2.80GHz (4 Cores/8 Threads).

We gain some speedup by using both caching and formulas. It can be enhanced
by optimizing the way of caching, especially for algebras with many variables.

4 Centers and Ring-Theoretic Properties of Model
Algebras

By using the formulas, we compute explicitly the centers of non-commutative
model algebras, depending on the ground field K. Recall, that for some f ∈ A
one defines the centralizer subalgebra C(f) = {a ∈ A | fa = af} ⊇ K[f].

Proposition 1. For the algebras of Lie type one has

• If char K = 0, Z(A1) = K and Z(S1) = K.

1 http://oeis.org/A000567

http://oeis.org/A000567

318 V. Levandovskyy, C. Koutschan, and O. Motsak

Table 3. Time and Memory Comparison for Different Multiplication Strategies

Name Cache + Formulas Formulas only Cache only
time memory time memory time memory

reiffen11-mod 8.04 9.912 8.14 11.999 7.97 9.912
reiffen45-3-ann 8525.40 518.262 8517.73 523.502 8547.37 518.261
reiffen45-6-ann 158.25 46.509 160.20 46.506 160.54 46.509
reiffen57-mod 36.16 11.422 39.28 11.415 36.41 11.422
reiffen59-mod 80.03 15.759 87.90 15.746 81.03 15.759
reiffen67-mod 216.81 45.369 261.30 45.361 222.15 45.369
reiffen68-mod 117.58 142.254 141.97 138.494 118.31 142.254
reiffen76-mod 389.54 99.026 630.48 99.026 389.42 99.026
reiffen86-mod 298.83 69.610 453.93 69.610 297.81 69.610

Table 4. Number of Requests for ymxn = xnym

n 1 2 3 4 5 6 7 8 9 10
m

1 23711 18629 17628 14796 8368 2899 2444 1315 296 186 32
2 8264 4952 4806 4947 2952 728 715 549 47 26 0
3 4900 3002 3233 3202 1577 286 277 237 18 9 0
4 2084 1230 1268 1189 585 104 82 60 6 3 0
5 215 155 118 131 127 59 48 37 2 1 0
6 62 45 30 30 26 6 3 0 0 0 0
7 19 14 9 9 8 2 1 0 0 0 0
8 3 2 1 1 1 0 0 0 0 0 0

Table 5. Number of Requests for ∂m
x xn = xn∂m

x + . . .

n 1 2 3 4 5 6 7 8 9 10 11
m

1 27345 22324 21914 20484 14636 5702 4076 3104 1515 1005 563 164
2 12627 10267 9799 9219 6910 2592 1888 1523 718 455 246 72
3 4271 3319 2904 2895 2544 942 763 691 300 181 90 26
4 1149 872 604 659 780 277 273 275 105 58 24 6
5 247 203 50 79 224 54 65 83 26 11 0 0

• If char K = p, Z(A1) = K[xp, ∂p] and Z(S1) = K[xp − x, sp].

For the quantum algebras one has

• If q is not a root of unity, Z(Kq[x, y]) = K(q) and Z(A(q)
1) = K(q).

• If q is a primitive root of unity of order p over K, Z(Kq[x, y]) = K(q)[xp, yp]
and Z(A(q)

1) = K(q)[xp, ∂p].

Title Suppressed Due to Excessive Length 319

Proof. Since all the proofs are similar, let us consider the q-Weyl algebra A
(q)
1 .

We compute the center as Z(A) = C(x) ∩ C(∂). Since A is a Z-graded algebra
(e. g. with deg x = −1, deg d = 1), C(x), C(∂) and Z(A) are Z-graded sub-
algebras. The 0-th graded part of A is K(q)[x∂]. For k ∈ Z+, the k-th graded
part of A is Ak = K(q)[x∂]∂k and A−k = K(q)[x∂]xk. By Thm. 1, we see
that ∂mx = qmx∂m +[m]q∂m−1 ∈ Am−1. Thus for f =

∑
α cα(x)∂α one has 0 =

fx−xf =
∑

α cα(x)(∂αx−x∂α). Note, that ∂αx−x∂α = (qα−1)x∂α+[α]q∂α−1

is graded. So, for all α (qα −1)x∂α +[α]q∂α−1 = 0 , that is qα = 1. Hence qp = 1
implies C(x) = K(q)[x, ∂p], C(∂) = K(q)[xp, ∂] and thus Z(A) = K(q)[xp, ∂p].

It is known, that over any field A(q, α, β, γ) is a G-algebra (or a PBW algebra)
[5,1]. Thus it is a Noetherian domain of Gel’fand-Kirillov dimension 2, which
is Cohen-Macaulay and Auslander-regular [1]. However, the global homological
dimension is between 1 and 2.

Proposition 2. gl. dimA(q, α, β, γ) = 1 if and only if char K = 0 and
A(q, α, β, γ) is isomorphic to the Weyl algebra.

Proof. Let A = A(q, α, β, γ). Because of Cohen-Macaulay property, gl. dimA = 2
if and only if there exist a module M of finite dimension over K(q). We look for
M = A/L for an ideal L ⊂ A. Over K[x, y] and Kq[x, y] all 1-dimensional mod-
ules are described by ideals 〈x − a, y − b〉 for a, b ∈ K(q). In the shift algebra
there are ideals 〈x− a, s〉 for a ∈ K while in the q-Weyl algebra these ideals are
〈x− a, y − ((1 − q)a)−1〉 for a ∈ K(q)∗.
Consider the case when A is the Weyl algebra. If charK = p > 0, from Prop. 1 fol-
lows, that Ip = 〈xp, ∂p〉 is a proper two-sided ideal and A/Ip is finite dimensional,
thus gl. dimA = 2. If charK = 0, it is known that A has no finite-dimensional
representations, hence gl. dimA = 1.

Lemma 5. For any field K, there are no nonzero K-algebra homomorphisms
from A1(K) to Kq[x, y] or to K[x, y].

Proof. Assume there is a homomorphism of K-algebras φ : A1(K) → Kq[x, y].
Thus there exists X = φ(x), D = φ(∂) ∈ Kq[x, y], such that DX − XD = 1.
Write D =

∑
α cαx

α1yα2 for cα ∈ K and N2
0 � α = (α1, α2). Analogously

X =
∑

β dβx
β1yβ2 . Then in Kq[x, y] one has DX − XD =

∑
α,β cαdβ(qβ1α2 −

qβ2α1)xα1+β1yα2+β2 and the coefficient by 1 = x0y0 vanishes. In the limit q → 1,
that is in K[x, y] we obtain DX−XD = 0. Hence the only homomorphism from
A1(K) to K[x, y] or to Kq[x, y] is 0.

Proposition 3. Five model algebras are pairwise non-isomorphic over any field.

Proof. Let char K = 0. From Prop. 1 we see that A1(K), S1(K), A(q)
1 (K) �∼=

K[x, y]. By Prop. 2 and Lemma 5 we conclude S1(K),Kq[x, y], A
(q)
1 (K) �∼= A1(K).

For any field K, A(q)
1 (K) �∼= Kq[x, y]: let U, V be affine subspaces of K2 of all

1-dimensional representations of both algebras in K. Then U, V are zero sets of
corresponding ideals I = 〈(1 − q)ab + 1〉 and J = 〈(1 − q)cd〉 = 〈c〉 ∩ 〈d〉, what

320 V. Levandovskyy, C. Koutschan, and O. Motsak

implies K[U] �∼= K[V]. Since the variety W ⊂ K2 of 1-dim. representations of S1

is W = {(a, b) | ba = ab+b} = {(a, 0) | a ∈ K} cannot be in bijection with either
U or V , S1 is not isomorphic to A

(q)
1 (K) or Kq[x, y]. Also K[x, y] with K2 as the

variety of 1-dim. representations is not isomorphic to other model algebras for
any K. Now, let char K = p. Then A1(K) has finite dimensional representations
since m = tr(1m×m) = tr(DX −XD) = 0 for a m ×m representation X,D of
A1(K). Hence p | m and the smallest irreducible representation is in dimension
p. Thus A1(K) cannot be isomorphic to other model algebras. The remaining
cases can be proved analogously.

Future work. includes the study of Ore localizations of model algebras, for
which no analog of the ”five models” theorem is not known yet. Linear (anti-)
endomorphisms of model algebras are of interest as well.

Acknowledgments. The authors are grateful to H. Schönemann and O. Yena
for discussions on the subject. We would like to thank anonymous referees for
valuable suggestions. The second author was supported by the Austrian Science
Fund (FWF): P20162-N18. The first and third authors are grateful to the SCI-
Ence project (Transnational access) at RISC for supporting their visits to RISC
and the usage of computational infrastructure at RISC.

References

1. Bueso, J., Gómez-Torrecillas, J., Verschoren, A.: Algorithmic methods in non-
commutative algebra. Applications to quantum groups. Kluwer Acad. Publ., Dor-
drecht (2003)

2. Chyzak, F., Salvy, B.: Non–commutative elimination in Ore algebras proves multi-
variate identities. J. Symbolic Computation 26(2), 187–227 (1998)

3. Dixmier, J.: Enveloping Algebras. AMS, Providence (1996)
4. Koutschan, C.: HolonomicFunctions (User’s Guide). Technical Report 10-01, RISC

Report Series, University of Linz, Austria (2010)
5. Levandovskyy, V., Schönemann, H.: Plural — a computer algebra system for non-

commutative polynomial algebras. In: Proc. ISSAC, pp. 176–183. ACM Press, New
York (2003)

6. McConnell, J., Robson, J.: Noncommutative Noetherian rings. AMS, Providence
(2001)

Acceleration of the Inversion of Triangular

Toeplitz Matrices and Polynomial Division�

Brian J. Murphy

Department of Mathematics and Computer Science
Lehman College of the City University of New York

Bronx, NY 10468 USA
brian.murphy@lehman.cuny.edu

Abstract. Computing the reciprocal of a polynomial in z modulo a
power zn is well known to be closely linked to polynomial division and
equivalent to the inversion of an n × n triangular Toeplitz matrix. The
degree k of the polynomial is precisely the bandwidth of the matrix, and
so the matrix is banded iff k � n. We employ the above equivalence
and some elementary but novel and nontrivial techniques to obtain mi-
nor yet noticeable acceleration of the solution of the cited fundamental
computational problems.

Keywords: Reciprocal of a polynomial modulo a power, Polynomial di-
vision, Triangular Toeplitz matrix inversion, Banded triangular Toeplitz
matrices.

1 Introduction

1.1 Our Subjects

Our goal is to accelerate direct computation of the inversion of a triangular
Toeplitz matrix as well as a banded triangular Toeplitz matrix. Triangular
Toeplitz matrices play a central role in the displacement representation of gen-
eral Toeplitz matrices, which is fundamental in the study of structured matrices
(see [1], [2], [3]). Banded triangular Toeplitz matrices have been employed for
preconditioning of computations with general Toeplitz matrices (see [4], [5]).

Perhaps even more important are the applications of our work to polynomial
division, which is fundamental for polynomial computations and is closely related
to the computation of the reciprocal of a polynomial u(z) modulo zn. The latter
task is equivalent to the inversion of an n×n triangular Toeplitz matrix U where
the degree k of the polynomial is precisely the bandwidth of the matrix (see [6],
[2], [3]). Namely, every solution algorithm for one of these two computational
tasks automatically computes the solution to the other one as well. Furthermore
the paper [6] selects three algorithms for reciprocals and three for inversion,
including the four most popular algorithms. Each of the six algorithms is well
known in its own right and has a natural derivation, distinct from the five others.
� Supported by PSC CUNY Awards 609 62400–0040 and 393 6327000–41.

V.P. Gerdt et al. (Eds.): CASC 2011, LNCS 6885, pp. 321–332, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

322 B.J. Murphy

The paper reveals, however, that each of the three polynomial versions computes
exactly the same auxiliary and output values as its matrix counterpart.

In spite of such an isomorphism, it can be useful to devise solution algorithms
by employing both polynomial and matrix representations for this problem. In
particular this turned out to be useful for us. Extensive coverage of algorithm
design employing links between various computations with polynomial and struc-
tured matrices can be found in [7], [2], and [3].

1.2 Previous Work

The inverse of a nonsingular triangular Toeplitz matrix maintains this structure
and can be computed by Gaussian elimination in O(n2) arithmetic operations
(ops). For the reciprocal modulo zn this algorithm essentially amounts to the
classical long polynomial division [6, Section 4]. The record fell to O(M(n)) ops
in [8] based on Newton’s iteration, where M(n) denotes the cost, in ops, of poly-
nomial multiplication modulo zn. Over the fields supporting Fast Fourier Trans-
form (FFT), this bound turns into O(n lg n). The transition to a matrix version
simplifies the derivation a bit (see [6, Section 4]), and a number of nontrivial
works yielded parallel acceleration (see [9], [10], [11], [12], and the references
therein), but the record sequential bound of O(M(n)) remains unbeaten since
1972. The Newton–Sieveking’s algorithm appeared virtually with no change in
various books and surveys (see, e.g., [13], [14], [2], [15]). Some minor improvement
in the implementation was proposed in [16], for which the cost of computation
is (1.6̄ + o(1))M(n) ops. Related work was done in [17], [18], [19], and [20]. Ad-
ditional progress was made in [21] taking advantage of wrapping properties of
convolution to devise an algorithm requiring (1.5 + o(1))M(n) ops and recently
in [22] a further improvement appears requiring (1.4̄ + o(1))M(n) ops. Each im-
provement served to lower the constant of proportionality, but the O(M(n)) ops
bound stands.

1.3 Our Progress

The complexity of the Newton–Sieveking’s algorithm in its implementation in
[16] is dominated by the cost of performing five FFTs at 2nth roots of unity
at each recursive stage. (We assume here and hereafter that n = 2i is an in-
teger power of two.) As with the others, our algorithm does not surpass the
asymptotic record bound from 1972, but building on the work in [16] accelerates
the process by roughly a factor of 10/9 by decreasing the number of FFTs at
each recursive stage to three at 4nth roots of unity where each FFT is short-
circuited [23] to compute only 3n of 4n entries. This yields an algorithm requiring
(1.5 + o(1))M(n) ops which is in the same class as the algorithm from [21], but
seemingly bested by the algorithm from [22]. We present this algorithm as an
alternative to these others for several reasons. With a bit of speculation we note
that implementation details may favor one over another under different circum-
stances. On massively parallel hardware the algorithm herein provides a more
step efficient approach while work efficiency is not significantly if at all impaired.

Acceleration of the Inversion of Triangular Toeplitz Matrices 323

Note that polynomial multiplication is not consistent in terms of the number of
ops required for its performance from one algorithm to another, so that the
M(n) component hides some small variations. The new algorithm is not difficult
to implement and finally, because it serves to seed another algorithm presented
herein that addresses the banded case.

In the case of banded input we yield additional acceleration. However, this ac-
celeration occurs incrementally as the stages unfold via four successive methods
that each serve to initialize the one that follows it. The algorithm begins in the
same manner as in the non-banded case so that the factor remains 10/9 until the
bandwidth is exhausted. For one stage thereafter it is 10/4.5 and then settles
at 10/3. That is, until a cross-over point is reached and the factor can again
be lowered. The final factor is 10/(2 + 2−i) where i is the number of iterations
applied with the previous factor.

The value of this limited progress is due foremost to the fundamental im-
portance of the problems, however our technique of algorithm design can be
of independent interest, as it exploits the duality between structured matrices
and polynomial computations. The method is mostly elementary but nontrivial,
particularly in the case of our algorithm for banded input.

1.4 Organization of Our Paper

We provide some definitions and basic facts and also link computation of polyno-
mial reciprocal to triangular Toeplitz inversion in the next section. We recall the
basic steps of the divide and conquer matrix version of the Newton–Sieveking’s
algorithm from [16] in section 3. We present our algorithm for triangular Toeplitz
inversion and then yield additional acceleration in the case of banded triangu-
lar Toeplitz input in section 4. We speculate on some implementation issues in
Section 5.

2 Preliminaries

2.1 Definitions and Basic Facts

– I is the n×n identity matrix and e1 is its 1st column, where n is understood
by context.

– 0 = (0)n
i=1 is the zero vector where n is understood by context.

– wrapn(v) = (wi)n
i=1 where m-vector v = (vi)m

i=1, vi = 0 for i > m and wi =∑m/n�
j=0 vi+jn.

– Fn(v) denotes the n-vector obtained by applying the discrete Fourier trans-
form (DFT) to n-vector wrapn(v) where v is a vector of arbitrary size.
Wn(u) denotes the n-vector obtained by applying the inverse DFT to n-
vector u. Fn(v) and Wn(u) can be computed in O(n lg n) ops via FFT and
inverse FFT (IFFT) respectively. Let m(n) be the number of ops required
to compute a DFT of order n via FFT. Fn(e1) = (1)n

i=1 is available without
computation.

324 B.J. Murphy

– u v = (uivi)n−1
i=0 is the element-wise product of two n-vectors u = (ui)n−1

i=0

and v = (vi)n−1
i=0 . Let v2 = v v.

– u ⊗ v = (ci)n1+n2−2
i=0 is the convolution of n1-vector u = (ui)n1−1

i=0 and n2-
vector v = (vi)n2−1

i=0 , where ci =
∑i

j=0 ujvi−j , for 0 ≤ i < n1+n2−1, ui = 0,
for i ≥ n1 and vi = 0, for i ≥ n2. It is well known [13] that u ⊗ v = v ⊗ u
and that Wn(Fn(u) ∗ Fn(v)) = wrapn(u⊗ v) = wrapn(u ⊗ wrapn(v)).

– (L,M) forms the 1 × 2 block matrix with the blocks L and M .
– T = (tij)

m,n
i,j=1 is a Toeplitz matrix if whenever defined entries ti+1,j+1 = tij .

– Z = (zij)n
i,j=1 denotes the n× n downshift matrix if zij = 1 where i = j + 1

and zij = 0 otherwise . Z0 = I. Z(v) =
∑n−1

i=0 viZ
i and ZT(v) =∑n−1

i=0 vi(ZT)i are n×n lower and upper triangular Toeplitz matrices respec-
tively defined by the n-vector v = (vi)n−1

i=0 , which is the first column of Z(v)
and the first row of ZT(v). Z−1(v) is a lower triangular Toeplitz matrix de-
fined by its first column v̄ = Z−1(v)e0. Note that (Z−1(v))T = (ZT(v))−1.

– A = Z(a), A−1 = Z(ā), B = Z(b) and B−1 = Z(b̄) where a = (ai)n
i=1,

ā = (āi)n
i=1, b = (bi)m

i=1, and b̄ = (b̄i)m
i=1, if ai = bi for all i ≤ min(n,m)

then āi = b̄i for all i ≤ min(n,m). Therefore, the choice to limit n = 2i to a
positive integer power of two leads to no loss of generality.

The algorithms presented herein explicitly invert lower triangular Toeplitz ma-
trices, but they apply equally to the upper triangular case since (Z−1(v))T =
(ZT(v))−1.

2.2 Polynomial Reciprocal and Triangular Toeplitz Inversion

Recall that Zn = 0 and the matrix polynomials Z(u) =
∑n−1

i=0 uiZ
i form the

algebra An of n×n lower triangular Toeplitz matrices isomorphic to the algebra
of polynomials u(z) =

∑n−1
i=0 uiz

i modulo zn with coefficient vector u. Such a
vector u is the first column of the matrix Z(u), which defines both this matrix
and the polynomial u(z). The trailing entries of the vectors are the leading
coefficients of the polynomial. If the polynomial has degree k, then all but the
first k + 1 of them vanish and the associated lower triangular Toeplitz matrix is
banded with the bandwidth k.

Clearly, a matrix Z(u) is nonsingular if and only if u0 �= 0. If Z(u)Z(v) = I
(that is if Z(v) = Z(u)−1), then v(z)u(z) = 1 mod zn and so Z(v) ∈ An.
This reveals the isomorphism of an n×n lower triangular Toeplitz inversion and
the computation of a reciprocal of a polynomial in z modulo zn, so that any
algorithm that solves one of the two problems also solves the other one.

2.3 Linking Toeplitz Matrix and Polynomial Computation

Another derivation of the isomorphic pair of equations

Z(u)Z(v) = I and v(z)u(z) = 1 mod zn

reduces one to the other, multiplication of pairs of polynomials and multiplica-
tion of a general Toeplitz matrix by a vector.

Acceleration of the Inversion of Triangular Toeplitz Matrices 325

Let us recall a simple but fundamental link between polynomials and Toeplitz
matrices [6], [3, Section 2.4].

Theorem 1. (Cf. [3, (2.4.3)].) The matrix equation⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u0 O
...

. . .
...

. . . u0

um
. . .

...
. . .

...
O um

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎝v0

...
vn

⎞⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p0

...

...
pm

...
pm+n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(1)

is equivalent to the polynomial equation(
m∑

i=0

uix
i

)(
n∑

i=0

vix
i

)
=

m+n∑
i=0

pix
i.

The theorem immediately reduces polynomial multiplication to Toeplitz matrix-
by-vector multiplication and vice versa [3, Section 2.4]. Furthermore set

p = (p0, . . . , pm+n)T = (1, 0, . . . , 0)T,

keep only the first n equations of the matrix and polynomial equations from the
theorem, and obtain that Z(u)Z(v) = I and u(z)v(z) = 1 mod zn. Again this
shows the equivalence of n × n lower triangular Toeplitz inversion and compu-
tation of the reciprocal of a polynomial in z modulo zn.

Theorem 1 demonstrates that⎛⎝ x1

Uv
x2

⎞⎠ = u ⊗ v

for (2n-1)-vector u and n-vector v where x1 and x2 are (n-1)-vectors and Uv is
the n-vector product of n× n Toeplitz matrix U and n-vector v depicted above
as the central n × n block of the matrix in (1) and whose first row and first
column is composed of (2n-1)-vector u. This is often used to compute Toeplitz-
matrix-by-vector products via FFT [3].

One can then see that ⎛⎝ x0

Uv
x2

⎞⎠ = w ⊗ v (2)

where w =
(
s
u

)
is a (2n)-vector defined by prefixing u with scalar s, x0 is an

n-vector, and u, U , v, and x2 are as defined for the previous equation.

326 B.J. Murphy

3 Divide-and-Conquer for Triangular Toeplitz Inversion

We begin with the basic reduction of our inversion problem to polynomial multi-
plication and the fast FFT-based convolution of the respective coefficient vectors.
The recursive block substitution algorithm in [16] relies on the matrix equation

T−1 =
(
A 0
C A

)−1

=
(

A−1 0
−A−1CA−1 A−1

)
. (3)

For notational convenience from here on, let T be a (2n) × (2n) triangular
Toeplitz matrix and recall that n = 2i for a positive integer i. C is an n × n
Toeplitz matrix, defined by the 2n − 1 entries in its first row and first column
or equivalently by the (2n − 1)st dimensional subvector c made up of the last
2n− 1 entries of the vector Te1. A is an n× n triangular Toeplitz matrix.

Because T−1 is lower triangular Toeplitz, this matrix equation reduces the
inversion problem of computing the vector t̄ = T−1e1 for input T to the same
task for half-size input A and two multiplications of half-size Toeplitz matrices
by vectors, that is of C by ā = A−1e1 and of A−1 by the product s = Cā.
Recursively one arrives at the solution in O(M(n)) ops. In spite of its distinct
derivation, the algorithm is isomorphic to the Newton–Sieveking’s algorithm for
computing polynomial reciprocal modulo a power, that is it shares all the input,
output and auxiliary computed values [6, Section 4].

From this point, the process in [16] essentially amounts to computation of the
first column y = Y e1 of the matrix Y = A−1CA−1 provided one has already
computed the vector ā and is carried out as two truncated convolutions via FFT.

The first one computes c ⊗ ā =

⎛⎝x1

s
x2

⎞⎠ via FFT as

(
x1 + x2

s

)
= W2n(F2n(c) F2n(ā)).

Then, after extracting s, the second computes

ā ⊗ s =
(
y
x

)
via FFT as

(
y
x

)
= W2n(F2n(ā) F2n(s)).

The task is completed by extracting y. F2n(ā) is computed only once so that
this requires 10m(n) + O(n) ops.

At this stage the algorithm in [16] has yielded its minor acceleration versus
the Newton–Sieveking’s algorithm, and here we obtain further speedup.

4 Our Speedup

4.1 Triangular Toeplitz Speedup

We write S = CA−1 and observe that

T

(
A−1

0

)
=
(
I
S

)
.

Acceleration of the Inversion of Triangular Toeplitz Matrices 327

We then write Y = A−1S and observe that(
A−1 0
0 A−1

)(
I
S

)
=
(
A−1

Y

)
,

so that

Y = (0, I)
(
A−1 0
0 A−1

)
T

(
A−1

0

)
.

To determine y = Y e1, the paper [16] computes the product A−1CA−1e1, but
we compute the product

(0, I)
(
A−1 0
0 A−1

)
T

(
A−1

0

)
e1

instead. As in [16], to realize our speedup, we reduce the computation to multipli-
cation of the associated polynomials or equivalently to computing convolutions
with the respective coefficient vectors, in this case t = Te1 and ā = A−1e1.
Whereas the paper [16] computes the convolution of the coefficient vectors c
and ā and requires an immediate truncation of the resulting vector before con-
volving it with ā, our method does not require truncation between convolution
operations. We compute the two successive convolutions

t ⊗ ā =

⎛⎝e1

s
x0

⎞⎠ =

⎛⎝ I
S
X0

⎞⎠ e1

and then

ā ⊗

⎛⎝e1

s
x0

⎞⎠ =

⎛⎜⎜⎝
ā
y
x1

x2

⎞⎟⎟⎠ =

⎛⎜⎜⎝
A−1

Y
X1

X2

⎞⎟⎟⎠ e1.

Taking advantage of the commutativity of convolution and computing the above
via FFT we have ⎛⎜⎜⎝

ā
y
x1

x2

⎞⎟⎟⎠ = W4n(F4n(t) F4n(ā)2) (4)

from which we extract y. Note that because we know ā a priori we can short-
circuit the FFTs [23] and process only the trailing three quarters of each vector
as mentioned in section 1.3.

Let us elaborate just a bit. Short-circuiting the FFTs for the above convo-
lutions is a fairly simple procedure that can be simplified further by slightly
modifying (4) as follows:⎛⎜⎜⎝

0
y
x1

x2

⎞⎟⎟⎠ = W4n(F4n(t) F4n(ā)2 − F4n(ā)) (5)

328 B.J. Murphy

Assume we rely on a radix-2 decimation in frequency FFT and radix-2 decima-
tion in time IFFT to compute (5). In stages one and two of the FFT the leading
n entries of the coefficient vector interact only with their corresponding entries
in the third and then second quarter of the coefficient vector respectively. There-
after, through to completion of computation of the FFT the leading n entries do
not interact with other entries of the coefficient vector. Clearly then we have no
need to compute the leading n entries of F4n(t) and F4n(ā) in order to compute
the trailing 3n entries of each. Furthermore, due to our zero padding, we need
not compute their values even in the first two stages, since the first stage will not
alter their values and the result from the second stage will not be needed. Now
let v = F4n(t) F4n(ā)2 − F4n(ā) and let 4nW4n(v) =

(
x1,x2,x3,x4

)T where
each of the xi is an n-vector. Let x(j)

i be the state of the entries corresponding
to xi, j stages prior to completion of the IFFT. This means, for example that if
all but the final two stages of an IFFT were applied to v the leading n entries of
the resulting vector would be x(2)

1 and that x(0)
i = xi. While j > 2, x(j)

1 has no
interaction with x(j)

i for i = 2, 3, 4. Clearly then all but the final two stages of
the IFFT can be carried out on the trailing 3n entries of v in the usual fashion,
while avoiding any work on its leading n entries. In fact, we can compute x(2)

2 ,
x(1)

3 , and x(1)
4 independent of x(j)

1 for all j. At this point we can work backwards
through the IFFT. For notational convenience we will assume that appropriate
action is taken to factor out twiddle factors as needed in each of the x(j)

i pre-
sented in the discussion that follows. Having computed x(1)

3 and knowing that
x1 = 0, we can compute x(1)

1 = x(0)
1 − x(1)

3 = −x(1)
3 . Once we have determined

x(1)
1 , we can compute x(2)

1 = x(1)
1 − x(2)

2 = −x(1)
3 − x(2)

2 . Having obtained x(2)
1 ,

the IFFT can proceed from where it left off and complete its final two stages.
However, because our goal is to determine x2/4n only, our task can be simplified
by computing x(1)

2 = −x(1)
3 − 2x(2)

2 followed by x2 = −x(1)
4 + x(1)

2 instead.
Clearly then computation of (5) requires 9m(n) + O(n) ops.

4.2 Further Speedup for Banded Triangular Toeplitz Matrices

Where T is banded with bandwidth k ≤ n, C in (3) is an upper triangular
Toeplitz matrix. In this case

t ⊗ ā =

⎛⎝e1

s
0

⎞⎠ and ā ⊗

⎛⎝e1

s
0

⎞⎠ =

⎛⎜⎜⎝
ā
y
x
0

⎞⎟⎟⎠ , so that

(
ā + x

y

)
= W2n(F2n(t) F2n(ā)2). (6)

Since ā+x is unknown prior to computation there will be no short-circuiting of
these FFTs, however, the order of these FFTs is half that encountered in (4) for

Acceleration of the Inversion of Triangular Toeplitz Matrices 329

the non-banded case. This is possible because wrapping these convolutions in (6)
preserves y so that we can still extract it. To obtain F2n(t) requires computation
of only one fourth of its components. The rest are already known courtesy of (4)
in the previous stage. Clearly then this computation requires 4.5m(n) + O(n)
ops.

Once the bandwidth of T is exhausted, one may apply (6) rather than (4)
at each stage thereafter. However, after a single application of (6) it becomes
possible to achieve further speedup by changing techniques again.

We already know that

T

(
A−1

0

)
e1 =

(
I
S

)
e1 =

(
e1

s

)
= wrap2n(t ⊗ ā),

where I and S are n × n matrices and so the resulting e1 and s are clearly
n-vectors. Because T is k-banded, only the first k elements of t can be non-zero.
It follows that only the first n + k − 1 elements of t ⊗ ā can be non-zero. Since
e1 accounts for the first n elements of t ⊗ ā, only the first k − 1 elements of s
can be non-zero. Of course, we only need the leading k − 1 potentially non-zero
components of s to compute the second convolution ā⊗s. Let h = 2�lg k� and we
can obtain those Fourier coefficients for s that we will need later while employing
a minimal amount of zero padding as follows:

F2h(s) = F2h(t⊗ ā − e1) = F2h(t) F2h(ā) − F2h(e1). (7)

Recall that F2h(e1) is composed exclusively of ones so that its use in the element-
wise subtraction above requires relatively little computational effort and note
that F2h(t) is known from the stage where (6) was applied. The only computa-
tions required then are to determine F2h(ā) and to apply the two element-wise
operations. The latter are dispensed with in O(h) ops and we can compute F2h(ā)
from ā in 2m(h) + O(n) ops. The O(n) term is the result of wrapping n-vector
ā into (2h)-vector wrap2h(ā) before applying the FFT. However, an alternative
method will provide us with F2h(ā) in only O(n) ops.

Relying for a moment on matrix representation, recall that once we have s,
we want to compute the product y = A−1s. Since only the first k−1 elements of
s can be non-zero, only the first k−1 columns of A−1 contribute to computation
of y = A−1s. With this in mind we partition A−1 into h×h blocks and multiply
each block in the first column of block matrix A−1 by the h dimensional sub-
vector of s made up of its first h entries, which contains all k−1 of its potentially
non-zero elements.

Again, we resort to the use of the coefficient vectors of the associated polyno-
mials. Let Toeplitz matrix A−1

i,j be the (i, j)th h× h block of block matrix A−1,
let h-vector ā0 = 0, let h-vectors āi = A−1

i,1e1, for i = 1, . . . , n/h, let (2h)-vectors

âi =
(
āi−1

āi

)
,

330 B.J. Murphy

for i = 1, . . . , n/h, then using (2),(
x
yi

)
= wrap2h(âi ⊗ s) = W2h(F2h(âi) F2h(s)), (8)

and y =

⎛⎜⎜⎜⎝
y1

y2

...
yn/h

⎞⎟⎟⎟⎠ .

Obviously, computing y via (7) and (8) is dependent on F2h(āi), for i=1, . . . , n/h.
We can compute each of the F2h(āi) given āi in 2m(h) ops. Note that F2h(āi),
for i = 1, . . . , n/2h will have already been computed in previous stages and can
be reused. Computing the n/2h remaining F2h(āi), for i = n/(2h + 1), . . . , n/h
will require m(n) −O(n) ops. Each of the IFFTs is computed in 2m(h) + O(h)
ops, so that all n/h IFFTs combined require 2m(n) + O(n) ops. Since

n/2h∑
i=1

F2h(â2i) = F2h(ā),

given the F2h(āi), we compute F2h(ā) in O(n) additional ops as promised above
and therefore obtain F2h(s) in O(n) ops. In this way we compute y via (7) and
(8) in 3m(n) + O(n) ops.

Once employed we can apply (7) and (8), as described in the previous para-
graph, to each stage thereafter. However, (7) and (8) can be exploited in another
manner to further lower the operation count once they have already been uti-
lized at least once as already described above. Rather than computing additional
F2h(āi) at each stage, we use only those F2h(āi) already computed during pre-
vious stages to determine the new yi.

Clearly, we will not have enough F2h(āi) to compute all of y in the manner
we did above. However each of the yi we can produce corresponds to one of the
āi of what would otherwise be the next stage in the recursion. This allows us to
extend ā with the new yi. Therefore, compute

F2h(ā′) = F2h(ā) + F2h

(∑(
yi

yi+1

))
summing over each consecutive pair of the newly generated yi. This entails
m(h) + O(h) ops. Thus we compute a new F2h(s) via (7) in m(h) + O(h) ops.
We utilize this F2h(s) in multiple computations, via (8), to produce the next
sequence of yi in the current stage without need to compute any new F2h(āi).
Instead we simply compute the results of the pairwise multiplication and IFFT
of (8) in 2m(h) + O(h) ops for each of the yi in the sequence. We repeat until
y has been determined. This requires (2 + 2−s)m(n) + O(n) ops, where s is the
number of stages in which we previously applied (7) and (8) via our first method.

Acceleration of the Inversion of Triangular Toeplitz Matrices 331

5 Some Potential Implementation Advantages

Our inversion algorithm based on (4) enjoys practical advantages over the algo-
rithm in [16], which stem from the commutativity of vector convolution. To begin
with, computing the square of a complex number requires less floating point op-
erations than general complex multiplication. From a hardware perspective note
that limiting the need to access memory is essential where the goal is high per-
formance of numerical software [24]. These complex squaring operations require
less working storage and can be applied to the elements of F2N (ā) as soon as
they are generated from their respective FFT operations, that is, while these
values still reside in the registers where they were initially produced, thereby
reducing the need for cache/memory access between operations.

The memory requirement of (7) with (8) nearly doubles with each iteration
when applied as first suggested, whereas the second method by which we propose
using (7) and (8) maintains a constant footprint. Therefore depending on the size
of the matrix and the memory hierarchy of the computational device in use, it
may be advantageous to transition from one method to the other before reaching
the optimal crossover point in terms of the number of ops required to complete
the inversion. For example, on a general purpose central processing unit this can
prevent cache misses by avoiding the need to store additional vector segments
that exceed the cache capacity. Another example would involve computation on
a graphics processing unit, a field which has evoked a great deal of interest from
researches lately. Here the memory is often partitioned so that it is expensive in
terms of latency to cross a partition. The above mentioned early transition can
help avoid the need to cross such boundaries.

Where the dimension of T is not a power of two and T is banded the last
stage in which we apply (8) can simply avoid computing those instances of (8)
that would otherwise result in extraneous elements and where T is not banded
additional short-circuiting may be possible.

The aforementioned implementation issues call for examination.

References

1. Kailath, T., Kung, S.Y., Morf, M.: Displacement Ranks of Matrices and Linear
Equations. Journal Math. Analysis and Appls. 68(2), 395–407 (1979)

2. Bini, D., Pan, V.Y.: Polynomial and Matrix Computations, Volume 1. Fundamental
Algorithms. Birkhäuser, Boston (1994)

3. Pan, V.Y.: Structured Matrices and Polynomials: Unified Superfast Algorithms.
Birkhäuser/Springer, Boston/New York (2001)

4. Chan, R.: Toeplitz preconditioners for Toeplitz systems with nonnegative generat-
ing functions. IMA J. Numer. Anal. 11, 333–345 (1991)

5. Lin, F.R., Ching, W.K.: Inverse Toeplitz preconditioners for Hermitian Toeplitz
systems. Numer. Linear Algebra Appl. 12, 221–229 (2005)

6. Bini, D., Pan, V.Y.: Polynomial Division and Its Computational Complexity. Jour-
nal of Complexity 2, 179–203 (1986)

7. Pan, V.Y.: Complexity of Computations with Matrices and Polynomials. SIAM
Review 34(2), 225–262 (1992)

332 B.J. Murphy

8. Sieveking, M.: An Algorithm for Division of Power Series. Computing 10, 153–156
(1972)

9. Bini, D.: Parallel Solution of Certain Toeplitz Linear Systemns. SIAM J. on Com-
puting 13(2), 268–276 (1984)

10. Bini, D., Pan, V.Y.: Improved Parallel Polynomial Division. SIAM J. on Com-
puting 22(3), 617–627 (1993); Proc. version in FOCS 1992, pp. 131–136. IEEE
Computer Society Press, Los Alamitos (1992)

11. Reif, J.H., Tate, S.R.: Optimum Size Division Circuits. SIAM J. on Comput-
ing 19(5), 912–925 (1990)

12. Pan, V.Y., Landowne, E., Sadikou, A.: Polynomial Division with a Remainder by
Means of Evaluation and Interpolation. Information Processing Letters 44, 149–153
(1992)

13. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Algorithms.
Addison-Wesley, Reading (1974)

14. Borodin, A.B., Munro, I.: Computational Complexity of Algebraic and Numeric
Problems. American Elsevier, New York (1975)

15. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra, 2nd edn. Cambridge
University Press, Cambridge (2003) (first edition, 1999)

16. Commenges, D., Monsion, M.: Fast inversion of triangular Toeplitz matrices. IEEE
Trans. Automat. Control AC-29, 250–251 (1984)

17. Bernstein, D.J.: Removing redundancy in high-precision Newton iteration (2004),
http://cr.yp.to/fastnewton.html#fastnewton-paper

18. van der Hoeven, J.: Newton’s method and FFT trading. Journal of Symbolic Com-
puting 45(8), 857–878 (2010)

19. Hanrot, G., Zimmermann, P.: Newton iteration revisited,
http://www.loria.fr/~zimmerma/papers/fastnewton.ps.gz

20. Schoenhage, A., Vetter, E.: A New Approach to Resultant Computations and Other
Algorithms with Exact Division. In: European Symposium on Algorithms, pp. 448–
459 (1994)

21. Schonhage, A.: Variations on computing reciprocals of power series. Inf. Process.
Lett. 74(1-2), 41–46 (2000)

22. Harvey, D.: aster algorithms for the square root and reciprocal of power series.
Math. Comp. 80, 387–394 (2011)

23. Murphy, B.: Short-circuited FFTs for computing paritally known convolutions
(2010), http://comet.lehman.cuny.edu/bmurphy/research/ScFFT.pdf

24. Dongarra, J., Hammarling, S., Sorensen, D.: Block reduction of matrices to con-
densed form for eigenvalue computations. J. Comp. Appl. Math. 27, 215 (1989)

http://cr.yp.to/fastnewton.html#fastnewton-paper
http://www.loria.fr/~zimmerma/papers/fastnewton.ps.gz
http://comet.lehman.cuny.edu/bmurphy/research/ScFFT.pdf

Computing a Basin of Attraction to a Target Region by
Solving Bilinear Semi-Definite Problems�

Zhikun She and Bai Xue

SKLSDE, LMIB and School of Mathematics and Systems Science, Beihang University, China
���������	
�����	����

Abstract. In this paper, we present a sum of squares programming based method
for computing a basin of attraction to a target region as large as possible by it-
eratively searching for Lyapunov-like functions. We start with the basic math-
ematical notions and show how attraction to a target region can be ensured by
Lyapunov-like functions. Then, we present an initial framework for getting an in-
creasing sequence of basins of attraction by iteratively computing Lyapunov-like
functions. This framework can be realized by solving bilinear semi-definite prob-
lems based on sums of squares decomposition. We implement our algorithm and
test it on some interesting examples. The computation results show the usefulness
of our method.

1 Introduction

Stability of a nonlinear continuous system of ordinary di�erential equations (ODE sys-
tem) is a very important subject in control design and pure theoretical analysis. Espe-
cially, for the classical theory of stability where Lyapunov stability is the most common
definition [7], finding a region of attraction to an equilibrium of an ODE system is of
significant importance in engineering and science [13,12]. Usually, there are two kinds
of methods aiming to estimate regions of attraction to an equilibrium.

One kind of methods is the Lyapunov based method [1,2,5,10,16,26,25] according
to the local stability theorem. Their key problem is to search for Lyapunov functions
which quantitatively prove local stability. In cases where the system is polynomial,
due to decidability of the theory of real-closed fields [27], for a given polynomial with
parametric coeÆcients, one can decide whether there are instantiations of these param-
eters resulting in a Lyapunov function [22]. In addition, a method that uses Gröbner
bases has also been used to choose the parameters in Lyapunov functions in an optimal
way [3]. Moreover, a method based on sum of squares (SOS) decomposition [14,15]
has appeared that can compute Lyapunov functions for some realistic examples.

The other kind of methods is the trajectory reversing based method [4,6,11,29] by
considering the topological property. For example, a backward integration technique is
used in [4] for estimating regions of asymptotic stability; a polynomial level-set method,
associated with an implicit time-stepping algorithm, is used in [29] for backwardly
advection of a small initial neighborhood of the equilibrium; a numerical level set

� This work was partly supported by NSFC-61003021, Beijing Nova Program and SKLSDE-
2011ZX-16.

V.P. Gerdt et al. (Eds.): CASC 2011, LNCS 6885, pp. 333–344, 2011.
c� Springer-Verlag Berlin Heidelberg 2011

334 Z. She and B. Xue

method is used in [6,11] to estimate a region of attraction by solving a time-dependent
Hamilton-Jacobi-Isaacs partial di�erential equation.

However, being based on the classical stability, all the above methods do not directly
allow reasoning about a basin of attraction to a target region [20], in which there may be
no equilibrium or there may be a limit cycle and an unstable equilibrium. Moreover, for
many realistic applications, trajectories are required to stay in the target region forever,
that is, practical stability [9] instead of classical stability is considered.

Theoretically, practical stability can be analyzed based on comparison princi-
ples [9,30,31]. However, these theories are in general unpractical, which has been
pointed out in [21]. Thus, a feasible approach [21] is presented to analyze practical sta-
bility of uncertain nonlinear systems described by a parameterized family of ordinary
di�erential equations with uncertain initial values. Recently, an interval based branch
and relax algorithm [20] is used to provide a basin of attraction to a target region of a
polynomial system by computing a Lyapunov-like function.

In this paper, we present a sum of squares programming based method for computing
a basin of attraction to a target region as large as possible by iteratively searching for
Lyapunov-like functions with sum of squares formula. We start with the basic math-
ematical notions used in this paper and show how attraction to a target region can be
ensured by Lyapunov-like functions. Then, we present an initial framework for getting
an increasing sequence of basins of attraction by iteratively computing Lyapunov-like
functions. This framework can be under-approximated based on sums of squares and
then realized by solving bilinear semi-definite problems.

We use the toolbox PENBMI [8] to implement our algorithm and test it on several in-
teresting examples. The computation results and computation times show the eÆciency
and usefulness of our method.

Note that, if every trajectory starting from the target region always stays in it, then
our method can be used for practical stability analysis. Moreover, assuming that the
target region is a region of attraction to an equilibrium, our method can be used to
produce a larger region of attraction.

2 Problem Formulation

In this section we will introduce the basic mathematical notions used in this paper and
show how attraction to a target region can be ensured by Lyapunov-like functions.

For an ordinary di�erential equation ẋ � f (x), where x � �n, we denote by x(�� x0) :
��0 � �

n its trajectory starting from x0, where ��0 � �t : t � 0�.
The following definition of stability that we will use allows us to explicitly specify a

target region and a basin of attraction:

Definition 1. [20] Given an ordinary di�erential equation ẋ � f (x) with sets U and
TR such that TR � U � �n, where U is an explicit parameter, the di�erential equation
is stable with respect to U and the target region TR if for every point x0 � U, the
trajectory x(�� x0) will

1. always stay in U (for all t � ��0� x(t� x0) � U),
2. and eventually reach TR (there is a t1 � ��0 such that x(t1� x0) � TR).

Computing a Basin of Attraction to a Target Region 335

Moreover, U is called as a basin of attraction to the target region TR.

In Definition 1, trajectories may enter and leave TR infinitely. Moreover, by allowing
an explicit parameter U, one can specify a desired basin of attraction. This helps us
to avoid situations, where a di�erential equation is stable, but the found Lyaunov-like
function only proves attraction with a tiny region. Further, by allowing a target region
instead of a single equilibrium point, the method can also be applied in cases where no
equilibrium exists (e.g., when we want to study attraction to a limit cycle).

Without loss of generality, we can assume that 0 � TR, where 0 may not be the
equilibrium. In order to ensure the above stability notion, we use the following adapted
notion of a Lyapunov-like function:

Definition 2. For a given di�erential equation ẋ � f (x) with sets TR and B such that
0 � TR and TR � B, where B is an explicit parameter, a continuously di�erential
function V(x) is called a Lyapunov-like function with respect to TR if and only if the
following constraints

1. 	x � �n [V(0) � 0
 [V(x) � 0 � x � 0]] 1 and
2. 	x � B

�
x � TR � d

dt V(x) � 0
�

hold. Here, � denotes an implication symbol, � denotes a biimplication symbol, and
d
dt V(x) denotes the time-derivative of V along f , that is, �V

�x
T

f (x).

Then a Lyapunov-like function V(x) ensures that sublevel sets of V in B are never
left and the target region TR is eventually reached. Here, given a closed set B and a
Lyapunov-like function V , we define a s-sublevel set of V in B to be �x � B : V(x)
s � t� t � minx��B V(x)�, where s � 0 and �B denotes the boundary of B, and denote
this s-sublevel set by VB

�s. Similarly, we can denote the set �x � B : V(x) � s� by VB
�s.

Theorem 1. Given an ordinary di�erential equation ẋ � f (x) with an open target
region TR and a closed set B such that TR � B, assume that V(x) is a Lyapunov-like
function with respect to TR. Then, for all the s-sublevel set VB

�s in B such that TR � VB
�s,

the di�erential equation is stable with respect to VB
�s and TR. Moreover, VB

�s is a basin
of attraction to the target region TR.

Proof. Since V(x) is a Lyapunov-like function with respect to TR, due to Definition 2,
	x � B[x � TR � d

dt V(x) � 0] holds.
Let B�

� �x � B : V(x) t� t � minx��B V(x)�. Clearly, VB
�s � B� � B. Since

TR � VB
�s, then every trajectory starting in VB

�s will not leave VB
�s at all, which can be

easily obtained by constructing a contradiction.
Moreover, since TR is an open set and B� � TR is closed, due to the continuity of

d
dt V(x), we know that d

dt V has a maximum � in B� � TR. Obviously, the maximum � is a
negative number.

Let x0 be an arbitrary, but fixed point in VB
�s. For proving the trajectory starting from

x0 will eventually enter TR, it is suÆcient to only consider the case x0 � VB
�s � TR.

1 We can prove Theorem 1 without this condition. However, with this condition, we can in
Section 3 compute a basin of attraction more conveniently. Otherwise, we need to compute a
basin of attraction in a optimal way [18], increasing the computational complexity [23,24].

336 Z. She and B. Xue

We assume that for all t � ��0, x(t� x0) � TR, and we derive a contradiction. Since
x(t� x0) � TR and VB

�s is never left, for all t � ��0, x(t� x0) � VB
�s � TR. Thus, for all

t � ��0, d
dt V(x(t� x0)) �, implying that V(x(t� x0)) �t � V(x0). Since � is negative,

this implies that as t goes to infinity, V(x(t� x0)) goes to minus infinity, contradicting to
the fact that V(x) � 0 in VB

�s � TR. Thus, there exists a t � ��0 such that x(t� x0) � TR.
Therefore, due to Definition 1, the di�erential equation is stable with respect to VB

�s
and TR. Moreover, VB

�s is a basin of attraction to the target region TR. ��
Note that without the requirement that the target region TR is open in Theorem 1,

trajectories may go arbitrarily close to TR but not enter TR for case that the boundary
of TR forms a limit cycle.

Does a Lyapunov-like function V(x) guarantee that every trajectory starting in VB
�s

will eventually stay in TR? No! The reason is that it will not prohibit a trajectory from
infinitely often entering TR, staying within TR for a period of time and then leaving TR
again. This intuition can be illustrated by a two-dimensional case in Fig. 1.

Fig. 1. An example with a cycle

However, with the assumption that every trajectory starting from TR always stays in
TR, then every trajectory starting in a basin of attraction VB

�s will eventually stay in TR,
which implies that the system is practically stable [9]. Moreover, assuming that TR is a
region of attraction to an equilibrium, we can obtain a larger region of attraction to the
equilibrium by iteratively computing Lyapunov-like functions.

3 Computing a Basin of Attraction

In our previous work [20], we have introduced an interval based branch-and-relax algo-
rithm to provide a basin of attraction to target region by computation of a Lyapunov-like
function. However, we cannot iteratively provide basin of attractions. In this section, we
will use a sum of squares programming based method to iteratively compute an increas-
ing sequence of basins of attraction by repeatedly computing Lyapunov-like functions.
In this way, we can obtain a basin of attraction as large as possible.

3.1 Framework of our Algorithm

Without loss of generality, we can assume that TR is defined by the set �x : p(x) � 0�
and 0 � TR, where p(x) is a polynomial.

Computing a Basin of Attraction to a Target Region 337

In addition, we suppose that V(x) is a Lyapunov-like function such that � � �x :
V(x) 1� is an initial basin of attraction to the target region TR.2

Starting from the initial basin of attraction �, we try to enlarge � by computing a
function V �(x) such that the following conditions holds

� � ��� (1)

f orallx � �n �V �(0) � 0
 �
V �(x) � 0 � x � 0

��
� and (2)

	x � ��

�
V(x) � 1 � d

dt
V �(x) � 0

�
� (3)

where ��
� �x : V �(x) 1�. Such an enlargement can be ensured by Proposition 1,

Proposition 1. Assume that V �(x) is a function such that Conditions (1), (2) and (3)
hold. Then, ��

� �x : V �(x) 1� is also a basin of attraction to TR.

Proof. Since Conditions (1), (2) and (3) hold, due to Definition 2, V �(x) is a Lyapunov-
like function with respect to the set �x : V(x) � 1�. From Condition (2) and Theorem 1,
�� is a basin of attraction to the set �x : V(x) � 1�. That is, every trajectory starting in
�� will always stay in �� and eventually enter the set �x : V(x) � 1�.

Since � is a basin of attraction to TR, every trajectory starting in � will enter TR
eventually. Thus, every trajectory starting in �� will always stay in �� and enter TR
eventually. According to Definition 1, �� is a basin of attraction to TR. ��

Hence, by iteratively computing Lyapunov-like functions satisfying Conditions (1),
(2) and (3), we can arrive at Algorithm 1 to compute a basin of attraction to TR as large
as possible as follows.

Algorithm 1. Computing a basin of attraction to TR
Input: a polynomial di�erential system ẋ � f (x) and a target region TR.
Output: a basin of attraction to TR.
1: compute an initial Lyapunov-like function V(x) such that � � �x : V(x) � 1� is an estimate

of basin of attraction to TR;
2: while a function V �(x) such that constraints (1), (2) and (3) hold is found do
3: V(x) :� V �(x) and � :� �x : V(x) � 1�;
4: end while
5: return � as a basin of attraction to TR.

3.2 Implementation Using Bilinear Semi-definite Programming

In this subsection, for a polynomial vector field, we will explain how to use the sum of
squares programming existing in the literature to implement Algorithm 1, such that we
can obtain a basin of attraction to the given target region TR as large as possible.

2 Suppose that V(x) is a Lyapunov-like function such that V B
�s is a basin of attraction to target

region. Letting V �(x) � V(x)�s, according to Definition 2 and Theorem 1, then V �(x) is also a
Lyapunov-like function and � � �x : V �(x) � 1� is a basin of attraction to target region. So,
this supposition is feasible.

338 Z. She and B. Xue

For this, we want to explain two things:

1. one is how to compute an initial Lyapunov-like function V(x) such that � � �x :
V(x) 1� is an estimate of basin of attraction to TR;

2. the other is how to find a function V �(x) such that Conditions (1), (2) and (3) hold.

Let �[x] be a polynomial ring over � and
�

be the set of sum of squares polynomials,
that is,

�
� �q � �[x]�q � �t

i�1 f 2
i � fi � �[x]�.

In addition, we assume that V and V � in Algorithm 1 are all sum of squares polyno-
mials of degree d, where d is an even parameter.

We will start with under-approximations of the conditions (1), (2) and (3) using sum
of squares formula, in the sense that the solution set of these under-approximations
is a subset of the original conditions. And then we explain how to solve these under-
approximations using bilinear semi-definite programming.

First, by introducing l(x) � h
�n

i�1 xd
i , we can under-approximate the condition (2)

using the condition that there is a h � 0 such that V �(x) � l(x) � � due to the following
proposition.

Proposition 2. For all V �

0(x) such that there is a h � 0 such that V �

0(x)� l(x) � �, V �

0(x)
is positive definite.

Second, we can under-approximate the condition (3) using the condition that there
exist m � 0 and s1(x)� s2(x)� s3(x) � � such that

�s1(x)(1 � V �(x)) � s2(x)(V(x) � 1) � s3(x)
d
dt

V �(x) � m �
�

�

which is ensured by the following proposition.

Proposition 3. For all V �

0(x) such that there exist m � 0 and s1(x)� s2(x)� s3(x) � �
such that �s1(x)(1 � V �

0(x)) � s2(x)(V(x) � 1) � s3(x) d
dt V

�

0(x) � m � �
, V �

0(x) satisfies
�x � �n : 1 � V �

0(x) � 0�V(x) � 1� � �x � �n : � d
dt V

�

0(x) � 0�.
Proof. Since �x � �n : 1 � V �

0(x) � 0�V(x) � 1� � �x � �n : d
dt V

�

0(x) � 0� is equivalent
to

�x � �n : 1 � V �

0(x) � 0�V(x) � 1 � 0�
d
dt

V �

0(x) � 0� � �� (4)

it is enough to prove that V �

0(x) makes Condition (4) hold.
Let q(x) � �s1(x)(1�V �

0(x))�s2(x)(V(x)�1)�s3(x) d
dt V

�

0(x)�m. Then q(x)� q(x)�m ��
. In addition, let f � (q(x) � m) � s1(x)(1 � V �

0(x)) � s2(x)(V(x) � 1) � s3(x) d
dt V

�

0(x).
Then, f � 0.

If there is an x0 � �x � �
n : 1 � V �

0(x) � 0�V(x) � 1 � 0� d
dt V

�

0(x) � 0�, then
f (x0) � m, contradicting f � 0. Thus, Condition (4) holds and we finish proving this
proposition. ��

Third, for under-approximating the condition (1), by introducing a small parameter
� � 0, 3 we first construct a new region �� � �x : V(x) 1 � ��. Further, we under-
approximately replace �� � �� by the condition that there exists s0(x) � � such that

�s0(x)(1 � � � V(x)) � (1 � V �(x)) �
�

�

3 The small positive parameter � can also be viewed as a stopping criterion for our iterative
algorithm.

Computing a Basin of Attraction to a Target Region 339

which is ensured by the following proposition.

Proposition 4. For all V �

0(x) such that there exists s0(x) � �
such that �s0(x)(1 � � �

V(x)) � (1 � V �(x)) � �
, V �

0(x) satisfies �x : V(x) 1 � �� � �x : V �

0(x) 1�, implying
that � � �� � ��.

Proof. Since �x : V(x) 1 � �� � �x : V �

0(x) 1� is equivalent to

�x � �n : 1 � � � V(x) � 0�V �

0(x) � 1 � 0� � �� (5)

it is enough to prove that V �

0(x) makes Condition (5) hold.
Let q(x) � �s0(x)(1 � � � V(x)) � (1 � V �(x)). Then q(x) � �

. In addition, let
g � V �

0(x)�1 and f � q(x)(V �

0(x)�1)� s0(x)(1� � �V(x))(V �

0(x)�1). Then f �g2 � 0.
If there is an x0 � �x � �n : 1� � �V(x) � 0�V �

0(x)�1 � 0�, then f (x0)�g2(x0) � 0,
contradicting f �g2 � 0. So, Condition (5) holds and we finish proving this proposition.

��
Combining the above under-approximations, it is straightforward to obtain that: if

there exist V �(x) � �, m � 0, h � 0 and s0(x)� s1(x)� s2(x)� s3(x) � � such that

V �(x) � h
n�

i�1

xd
i �

�
� (6)

� s0(x)(1 � � � V(x)) � (1 � V �(x)) �
�

� and (7)

� s1(x)(1 � V �(x)) � s2(x)(V(x) � 1) � s3(x)
d
dt

V �(x) � m �
�

(8)

hold, then the same V �(x) make the conditions (1), (2) and (3) hold.
It can be seen from the structure of Conditions (6)�(8) that finding V �(x) � �

,
m � 0, h � 0 and s0(x)� s1(x)� s2(x)� s3(x) � �

such that the conditions (6)�(8)
hold is a bilinear semi-definite programming problem. For simplicity, we denote this
problem as BSDP1. So, we can use the bilinear semi-definite programming tools, e.g.,
PENBMI [8], to get a feasible solution on m, h, s0(x), s1(x), s2(x) and V �(x). Due to
under-approximations, the computed V �(x) make the constraints (1), (2) and (3) hold.

Now, we try to compute an initial Lyapunov-like function V(x), which is also a sum
of squares polynomial of degree d, such that � � �x : V(x) 1� is a basin of attraction
to TR, defined by �x : p(x) � 0�.

After similar under-approximations, we try to compute V(x), m, h, s�0(x), s�1(x), s�2(x)
and s�3(x) such that

m � 0� h � 0� (9)

V(x)� s�0(x)� s�1(x)� s�2(x)� s�3(x) �
�

� (10)

V(x) � h
n�

i�1

xd
i �

�
� (11)

s�0(x)p(x) � (1 � V(x)) �
�

� and (12)

� s�1(x)(1 � V(x)) � s�2(x)p(x) � s�3(x)
d
dt

V(x) � m �
�

� (13)

340 Z. She and B. Xue

Clearly, this is also a problem of bilinear semi-definite programming, denoted as
BSDP2, and can be solved by PENBMI [8], which will return a feasible solution on
V(x), m, h, s�0(x), s�1(x), s�2(x) and s�3(x). Due to under-approximations, the computed
V(x) is a Lyapunov-like function such that � � �x : V(x) 1� is an estimate of basin
of attraction to TR.

4 Examples

In this section, five corresponding examples are presented and their corresponding
basins of attraction to target regions are obtained by computing Lyapunov-like func-
tions. Note that our implementation is based on the bilinear semi-definite problem
solver PENBMI [8].

Example 1. Consider the following well-known Van der Pol equation:
	

ẋ1 � �x2

ẋ2 � x1 � (1 � x2
1)x2

Clearly, it has an unstable limit cycle and the origin is a stable equilibrium. Moreover,
the biggest region of attraction to the origin is the region enclosed by the limit cycle.
However, the limit cycle cannot be explicitly represented and is usually visualized from
the numerical solution.

Let TR � �x : x2
1 � x2

2 � 0�01� and � � 0�001.

1. Letting d � 2, we get �2 � �x : 0�79405861286333x2
1 � 0�62862184963676x1x2 �

0�45911896150590x2
2 1� as a basin of attraction to TR, whose boundary is de-

picted by green color in Fig. 2.
2. Letting d � 6, we get �6 � �x : 0�000092646265x1x4

2 � 0�044231935525449x1x2 �

0�74507743769888� 10�3x2
1x2 � 0�36262391827106x4

2 � 0�15639138437193x6
2 �

0�19919008040546x2
1 � 0�16582352025455� 10�3x1x2

2 � 0�35041765992891x2
2 �

0�29996383177857� 10�3x3
1 � 0�00006355778238x3

2 � 0�14528153665491x3
1x2 �

0�76326071243990x2
1x2

2�0�47126582058381x1x3
2�0�41790303496728�10�3x4

1 x2�
0�35991027002498x4

1�0�00038881657835x3
1x2

2�0�44709824391353�10�3x2
1 x3

2�
0�23594343877042x5

1x2 � 0�44651553003767� 10�4x5
2 � 0�24310074159962x6

1 �

0�94103618864951x4
1x2

2 � 1�0352745194725x3
1x3

2 � 0�28135622596667� 10�3x5
1 �

1�0174067778764x2
1x4

2 � 0�45450941605253x1x5
2 1� as a basin of attraction to

TR, whose boundary is depicted by red color in Fig. 2.

Example 2. The following system comes from [1] and is also studied in [26]:
	

ẋ1 � �0�42x1 � 1�05x2 � 2�3x2
1 � 0�5x1x2 � x3

1
ẋ2 � 1�98x1 � x1x2

Let � � 0�001 and TR � �x : x2
1 � x2

2 0�01�. The basin of attraction to TR is
unbounded, but not �2.

Letting d � 6, we get �6 � �x : �0�045451724128868x1x2 � 2�17062562455x2
1x2 �

0�096773071723153x1x2
2�0�33969734015x2

2�0�885166369842x2
1�1�03307547539x3

1�

Computing a Basin of Attraction to a Target Region 341

Fig. 2. Basins of Attraction for Example 1
(black curve – �T R; green curve – ��2; red curve – ��6; blue curve – the limit cycle)

0�654218150175x3
2�1�71896808483x3

1x2�2�56750235247x2
1x2

2�0�04702636437x1x3
2�

1�090468414511x4
1x2�1�036336482374x3

1x2
2�1�3772219959x2

1x3
2�0�0634812976x1x4

2�
0�274100822457x5

1x2�0�24652334591x4
1x2

2�0�2300072821x3
1x3

2�0�27041132416x2
1x4

2�

1�3409958413730x4
1�0�40816098435769x4

2�0�9675630392x5
1�0�14501567813114x5

2�

0�25864379007912x6
1 � 0�056657925718930x6

2 � 0�022396371772690x1x5
2 1� as a

basin of attraction to TR, whose boundary is depicted by red color in Fig. 3.

Fig. 3. A Basin of Attraction for Example 2
(black curve – �T R; red curve – ��6; blue curves – trajectories)

Example 3. We consider the following system:

�������
ẋ1 � x2 � x3 � (1 � x2

1 � x2
2 � x2

3)(x1 � 2x1x3)
ẋ2 � �x1 � x3 � (1 � x2

1 � x2
2 � x2

3)x2

ẋ3 � x1 � x2 � (1 � x2
1 � x2

2 � x2
3)x3

Obviously, (0� 0� 0) and (1� 0� 1) are equilibria and for any arbitrary but fixed constant
c � (

�
3�
�

3), the intersection of x1 � x2 � x3 � c and x2
1 � x2

2 � x2
3 � 1 is a cycle.

Let TR � �x : x2
1 � x2

2 � x2
3 1�01�. Clearly, TR contain cycles. In addition, the basin

of attraction to TR is unbounded, but not all of �2.

342 Z. She and B. Xue

Let � � 0�001, d � 2, ds0 � 0� ds1 � 4� ds2 � 2� ds3 � 0. We get �2 � �x :
0�55660892919976x2

1�0�20677987929356x1x2�0�0470439488x1x3�0�25267039x2
2�

0�13411242278944x2x3 � 0�44554905459094x2
3 1� as a basin of attraction to TR,

whose boundary is depicted by green color in Fig. 4. Moreover, the intersection of �2

and the x1-x2 space is depicted in Fig. 5.

Fig. 4. A Basin of Attraction for Example 3
(green curve – ��2)

Fig. 5. Projection of a Basin of Attraction for Example 3
(black curve – boundary of the intersection of T R and the x1 � x2 space;
green curve – boundary of the intersection of �2 and the x1 � x2 space)

Note that all the above computations were performed on a Hasee notebook of Core II
Duo, 2.00 GHz with 2 GB RAM. The computation times, the degrees d, the individual
degrees for multipliers s0� s1� s2 and s3 (i.e., ds0 � ds1 � ds2� ds3), and the required iterative
steps for Algorithm 1 are listed as a summary in Table 1.

Note that our previous interval based branch-and-relax algorithm [20] can be used
to provide an initial basin of attraction to target region for our iterative computation in
Algorithm 1. However, all the methods for reasoning about classical stability do not
directly allow reasoning about a basin of attraction to a target region.

Computing a Basin of Attraction to a Target Region 343

Table 1. Computation Times and so on for bilinear semi-definite programming

Example d ds0 ds1 ds2 ds3 CPU time(s) iterative steps
1 2 2 2 0 0 7.094 5
1 6 2 4 2 0 1413.985 7
2 6 2 6 2 0 3061.438 6
3 2 0 4 2 0 517.64 14

5 Conclusion

In this paper, we present a sum of squares programming based approach for computing
a basin of attraction to a target region as large as possible by iteratively searching for
Lyapunov-like functions with sums of squares formula. Such a search can be realized
by solving bilinear semi-definite problems. We implement our algorithm and test it on
some interesting examples. The computation results show the usefulness of our method.

We will further optimize our algorithms and then generalize them for analyzing sta-
bility of hybrid systems [17,19,31].

Acknowledgement. The authors thank the developers of the toolbox PENBMI.

References

1. Chesi, G., Garulli, A., Tesi, A., Vicino, A.: LMI-based Computation of Optimal Quadaraic
Lyapunov Function for Odd Polynomial Systems. Int. J. Robust and Nonlinear Control 15,
35–49 (2005)

2. Chiang, H.D., Thorp, J.S.: Stability regions of nonlinear dynamical systems: A constructive
methodology. IEEE Transactions on Automatic Control 34(12), 1229–1241 (1989)

3. Forsman, K.: Construction of Lyapunov functions using Gröbner bases. In: Proceedings of
the 30th IEEE Conference on Decision and Control, pp. 798–799 (1991)

4. Genesio, R., Tartaglia, M., Vicino, A.: On the estimation of asymptotic stability regions: State
of the art and new proposals. IEEE Trans. on Automatic Control 30(8), 747–755 (1985)

5. Jarvis-Wloszek, Z.: Lyapunov based analysis and controller synthesis for polynomial sys-
tems using sum-of-squares optimization, Ph.D. Dissertation, University of California (2003)

6. John Koo, T., Su, H.: A Computational Approach for Estimating Stability Regions. In: Proc.
of the IEEE Conference on Computer Aided Control Systems Design, pp. 62–68 (2006)

7. Khalil, H.C.: Nonlinear Systems. Prentice Hall, Englewood Cli�s (2002)
8. Koc̈vara, M., Stingl, M.: PENBMI Users Guide (Version 2.1) (2005),

������������	��������

9. Lakshmikantham, V., Leela, S., Martynyuk, A.A.: Practical Stability of Nonlinear System.
World Scientific, Singapore (1990)

10. Levin, A.: An analytical method of estimating the domain of attraction for polynomial dif-
ferential equations. IEEE Transactions on Automatic Control 39(12), 2471–2475 (1994)

11. Mitchell, I.M., Bayen, A.M., Tomlin, C.J.: A Time-Dependent HamiltonCJacobi Formula-
tion of Reachable Sets for Continuous Dynamic Games. IEEE Transactions on Automatic
Control 50(7), 947–957 (2005)

12. Noldus, E., Spriet, J., Verriest, E., Van Cauwenberghe, A.: A New Lyapunov Technique for
Stability Analysis of Chemical Reactors. Automatica 10, 675–680 (1974)

http://www.penopt.com

344 Z. She and B. Xue

13. Pai, M.A.: Power System Stability. North-Holland, Amsterdam (1981)
14. Papachristodoulou, A., Prajna, S.: On the construction of Lyapunov functions using the sum

of squares decomposition. In: Proceedings of the 41st IEEE Conference on Decision and
Control, pp. 3482–3487 (2002)

15. Parrilo, P., Lall, S.: Semidefinite programming relaxations and algebraic optimization in con-
trol. Eur. J. Control 9, 307–321 (2003)

16. Peterfreund, N., Baram, Y.: Convergence analysis of nonlinear dynamical systems by nested
Lyapunov functions. IEEE Trans. on Automatic Control 43(8), 1179–1184 (1998)

17. Podelski, A., Wagner, S.: Region stability proofs for hybrid systems. In: Raskin, J.-F., Thi-
agarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 320–335. Springer, Heidelberg
(2007)

18. Shields, D.N., Storey, C.: The behaviour of optimal Lyapunov functions. Int. J. Control 21,
561–573 (1975)

19. Ratschan, S., She, Z.: Safety Verification of Hybrid Systems by Constraint Propagation-based
Abstraction Refinement. ACM Transactions on Embedded Computing Systems 6(1), Article
No. 8, 1–23 (2007)

20. Ratschan, S., She, Z.: Provding a Basin of Attraction to A Target Region of Polynomial
Systems by Computation of Lyapunov-like Functions. SIAM Journal on Control and Opti-
mization 48(7), 4377–4394 (2010)

21. Ryali, V., Moudgalya, K.M.: Practical Stability Analysis of Uncertain Nonlinear Systems.
In: National Conference on Control and Dynamic Systems, IIT Bombay, pp. 27–29 (2005)

22. She, Z., Xia, B., Xiao, R., Zheng, Z.: A semi-algebraic approach for asymptotic stability
analysis. Nonlinear Analysis: Hybrid System 3(4), 588–596 (2009)

23. She, Z., Zheng, Z.: Condition number based complexity estimate for computing local ex-
trema. J. of Computational and Applied Mathematics 230(1), 233–242 (2009)

24. She, Z., Xia, B., Zheng, Z.: Condition number based complexity estimate for solving poly-
nomial systems. J. of Computational and Applied Mathematics 235(8), 2670–2678 (2011)

25. She, Z., Xue, B., Zheng, Z.: Algebraic Analysis on Asymptotic Stability of Continuous Dy-
namical Systems. In: Proceedings of the 36th International Symposium on Symbolic and
Algebraic Computation (2011)

26. Tan, W., Packard, A.: Stability region analysis using polynomial and composite polynomial
Lyapunov functions and sum-of-squares programming. IEEE Transactions on Automatic
Control 53(2), 565–571 (2008)

27. Tarski, A.: A Decision Method for Elementary Algebra and Geometry. University of Califor-
nia Press, Berkeley (1951)

28. Vincent, T., Grantham, W.: Nonlinear and Optimal Control Systems. Wiley-Interscience,
New York (1997)

29. Wang, T., Lall, S., West, M.: Polynomial level-set methods for nonlinear dynamical systems
analysis. In: Proc. of Allerton Conf. on Communication, Control and Computing (2005)

30. Weiss, L.: Converse theorems for finite time stability. SAIM Journal on Applied Mathemat-
ics, 1319–1324 (1968)

31. Xu, X., Zhai, G.: Practical Stability and Stabilization of Hybrid and Switched System. IEEE
Trans. Automat. Control 50(11), 1897–1903 (2005)

Symbolic-Numeric Solution of Ill-Conditioned

Polynomial Systems (Survey Talk Overview)
(Invited Talk)

Agnes Szanto�

North Carolina State University
aszanto@ncsu.edu

Abstract. This is a survey talk about some recent symbolic-numeric
techniques to solve ill-conditioned multivariate polynomial systems. In
particular, we will concentrate on systems that are over-constrained or
have roots with multiplicities, and are given with inexact coefficients.
First I give some theoretical background on polynomial systems with
inexact coefficients, ill-posed and ill-conditioned problems, and on the
objectives when trying to solve these systems. Next, I will describe a
family of iterative techniques which, for a given inexact system of poly-
nomials and given root structure, computes the nearest system which
has roots with the given structure. Finally, I present a global method to
solve multivariate polynomial systems which are near root multiplicities
and thus have clusters of roots. The method computes a new system
which is “square-free”, i.e. it has exactly one root in each cluster near
the arithmetic mean of the cluster. This method is global in the sense
that it works simultaneously for all clusters.

The results presented in the talk are joint work with Itnuit Janovitz-
Freireich, Bernard Mourrain, Scott Pope, Lajos Rónyai, Olivier Ruatta,
and Mark Sciabica.

Overview

In recent years there has been intensive research on extending the applicability of
symbolic and numerical methods to handle problems which are given with limited
accuracy and which were traditionally called “ill-conditioned”. The integration
of numerical and symbolic techniques resulted in a remarkable progress in the ap-
plicability, versatility, robustness and efficiency of the algorithms for the solution
of problems such as approximate GCD, approximate polynomial factorization,
solution of under- and over-constrained approximate polynomial systems, ap-
proximation of the solution of differential equations with Lie-symmetries. This
talk will concentrate on describing recent techniques for:

– The solution of near-consistent over-constrained polynomial systems, i.e. sys-
tems with more equations than unknowns such that the coefficients are small

� The author was partially supported by NSF grant CCR-0347506.

V.P. Gerdt et al. (Eds.): CASC 2011, LNCS 6885, pp. 345–347, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

346 A. Szanto

perturbations of systems which have common roots over the complex num-
bers. Note that over-constrained multivariate systems generically do not have
common roots;

– The solution of multivariate polynomial systems near root multiplicities. The
set of complex roots of these systems form finitely many clusters with small
radius.

The main motivation for studying these two types of systems come from the
observation that they arise frequently in many important applications areas such
as geometric modeling, computer vision, robotics, etc.

Before presenting the methods of solution, we give some theoretical frame-
work, including precise definitions of polynomials with inexact coefficients, for-
ward and backward error, ill-posed and ill-conditioned problems, and certifica-
tion of the solution.

All symbolic-numeric algorithms that solve ill-conditioned polynomial systems
contain the following two components to some degree:

1. they adapt symbolic techniques – such as Gröbner bases, border basis, or
resultant computation – to the inexact case,

2. they reduce the problem to classical numerical methods such as numerical
eigenvalue computation or Newton or Gauss-Newton method to locally iter-
ate roots of non-linear functions.

The first family of methods we present in the talk falls in the second category:
these are Gauss-Newton type iterative methods that compute the nearest system
to the input which have some prescribed root structure. We discuss in detail the
case when the input is near an over-constrained system with k common roots
[10], but the same ideas also work for systems near root multiplicities [8], and
have many other extensions [1]. Our main tool is the multivariate interpolation
method developed in [7] and [9]. Using interpolation we were able to generalize
to the multivariate case univariate results of [12] and [11] which use polynomial
division. By close inspection of the interpolation method, we can express the
distance of the input system from the set of systems with a given root mul-
tiplicity structure as the optimal value of a rational function of the roots. In
the univariate case we show the connection of our method to the optimization
problem formulated by Karmarkar and Lakshman in [6] for the nearest GCD. In
the multivariate case we generalize the expressions of Karmarkar and Lakshman,
and give component-wise iteration functions to compute the optimum.

In the second part of the talk I describe results that reduce the problem of
solving polynomial systems near root multiplicities to well-conditioned numerical
eigenvalue computation [2,3,4,5]. We present a method, based on the adaptation
of a suitable symbolic algorithm for the computation of the radical of an ideal, to
compute the “approximate radical” of a zero dimensional ideal I in C[x1, . . . , xm]
which has zero clusters. The approximate radical ideal has exactly one root in
each cluster for sufficiently small clusters. The method is “global” in the sense
that it does not require any local approximation of the zero clusters: it reduces
the problem to the computation of the numerical nullspace of the so called

Symbolic-Numeric Solution of Ill-Conditioned Polynomial Systems 347

“matrix of traces”, a matrix computable from the coefficients of the generating
polynomials of I. To compute the numerical nullspace of the matrix of traces
we propose to use Gauss elimination with pivoting, and we prove that if I has
k distinct zero clusters each of radius at most ε in the ∞-norm, then k steps
of Gauss elimination on the matrix of traces yields a submatrix with all entries
asymptotically equal to ε2. We also prove that the computed approximate radical
has one root in each cluster with coordinates which are the arithmetic mean
of the cluster, up to an error term asymptotically equal to ε2. We obtain the
coordinates of the roots of the approximate radical as eigenvalues of the so called
“multiplication matrices”, computed from maximal non-singular submatrices of
the matrix of traces. Finally, we present some simple symbolic techniques to
compute the matrix of traces from the coefficients of the input polynomials.

References

1. S. E. Hutton, Exact Sums-of-Squares Certificates in Numeric Algebraic Geometry,
PhD thesis, North Carolina State University (2011)

2. Janovitz-Freireich, I., Rónyai, L., Szántó, Á.: Approximate radical of ideals with
clusters of roots. In: ISSAC 2006, pp. 146–153. ACM, New York (2006)

3. Janovitz-Freireich, I., Rónyai, L., Szántó, Á.: Approximate radical for clusters: a
global approach using Gaussian elimination or SVD. Math. Comput. Sci. 1, 393–
425 (2007)

4. Janovitz-Freireich, I., Szántó, Á., Mourrain, B., Rónyai, L.: Moment matrices, trace
matrices and the radical of ideals. In: ISSAC 2008, pp. 125–132. ACM, New York
(2008)

5. Janovitz-Freireich, I., Szántó, Á., Mourrain, B., Rónyai, L.: On the Computation
of Matrices of Traces and Radicals of Ideals. Submitted to Journal of Symbolic
Computation (2009); arXiv:0901.2778

6. Karmarkar, N.K., Lakshman, Y.N.: On approximate GCDs of univariate polyno-
mials. Journal of Symbolic Computation 26, 653–666 (1998)

7. Mourrain, B.: Isolated points, duality and residues, J. Pure Appl. Algebra 117/118,
469–493 (1997); Algorithms for algebra, Eindhoven (1996)

8. Pope, S., Szanto, A.: Nearest multivariate system with given root multiplicities.
Journal of Symbolic Computation, 606–625 (2009)

9. Ruatta, O.: Dualité algébrique, structures et applications, PhD thesis, Université
de la Méditérranée (2002)

10. Ruatta, O., Sciabica, M., Szanto, A.: Over-constrained Weierstrass iteration and
the nearest consistent system (2009) (accepted for publication)

11. Zeng, Z.: Computing multiple roots of inexact polynomials. Mathematics of Com-
putation 74, 869–903 (2005)

12. Zhi, L., Wu, W.: Nearest singular polynomials, J. Symbolic Comput. 26, 667–675
(1998); Symbolic numeric algebra for polynomials

Symbolic-Manipulation Constructions of

Hilbert-Space Metrics in Quantum Mechanics

Miloslav Znojil

Nuclear Physics Institute ASCR, 250 68 Řež, Czech Republic
znojil@ujf.cas.cz

http://gemma.ujf.cas.cz

Abstract. The recently formulated quantum-mechanics problem of the
determination of the Hilbert-space metric Θ which renders a given Hamil-
tonian H self-adjoint is addressed. Via an exactly solvable example of
the so called Gegenbauerian quantum-lattice oscillator it is demonstrated
that the construction (basically, the solution of the so called Dieudonné’s
operator equation) and analysis of suitable Θ = Θ(H) (i.e., the determi-
nation of their domain’s “exceptional-point” boundary) may enormously
be facilitated via symbolic algebraic manipulations and via the MAPLE-
supported numerics and graphics.

1 Introduction

In the series of papers [1] - [8], we interpreted the Dieudonné’s quasi-Hermiticity
relation [9]

H†Θ = ΘH (1)

as an operator equation which connects a given, “input” quantum Hamiltonian
H with an unknown, “output” operator Θ called the Hilbert-space metric of
the quantum system in question [10]. In all of these papers we felt addressed
by the underlying physics (i.e., by quantum mechanics in its form described,
say, in Refs. [11,12]). We did not pay too much attention to the description
of the underlying constructive mathematics. In our present paper, we intend
to fill this gap by redirecting our attention to the computer-assisted symbolic-
manipulation background of our results. We will point out that although none
of our constructions required a particularly sophisticated code, all of them still
offered an efficient substitute for the laborious hand-made calculations and/or
for the difficult numerical analyses.

With this purpose in mind we shall employ here just very elementary illustra-
tive models. In particular, we shall assume that both of the operators H and Θ
in Eq. (1) are defined in a vector space V with the Dirac-ket elements |ψ〉 ∈ V .
For the sake of simplicity we shall further assume that dimV = N < ∞. In such
a setting one may select various toy-model matrices H(N) and construct the el-
igible metrics Θ. We shall choose the Gegenbauerian quantum N−site lattices
and study H = H(N)(a) and Θ = Θ(N)(a) of Ref. [2] (cf. section 2). The reasons
of a facilitated algebraic tractability of Eq. (1) will be clarified in section 3, with
some complementary numerical aspects mentioned in section 4.

V.P. Gerdt et al. (Eds.): CASC 2011, LNCS 6885, pp. 348–357, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Symbolic-Manipulation Constructions of Hilbert-Space Metrics 349

2 Gegenbauerian Quantum N−site Lattices

The general Hermitian conjugation operation as prescribed, say, by Eq. (16) of
Ref. [12] must be compatible with the principles of Quantum Mechanics. This
means that our choice of the metric Θ must guarantee the Hermiticity of the
observables (i.e., in our present paper, just of the Hamiltonian H) with respect
to this conjugation [10]. Such a requirement implies the necessity of the validity
of the above-mentioned relation (1).

The latter relation will be called here, for the sake of brevity, Dieudonné
equation. As long as this is the matrix equation, it seems to be an overdeter-
mined constraint. Its N2 items have to be satisfied by the mere N(N + 1)/2
independent matrix elements of the general N by N real and symmetric matrix
Θ with positive eigenvalues. Via a deeper study of an illustrative example taken
from Ref. [2] we intend to demonstrate that the situation is much more user
friendly.

First of all, the Hermitian conjugation may be perceived as a symmetry of
Eq. (1) so that just its upper-triangular nontrivial subset remains relevant.
This implies that the whole set of equations is in fact inderdeterminate. A
priori, the independent solutions Θ will form an N−parametric family. This
observation is compatible with the explicit constructive results published in
Ref. [2].

Secondly, the message delivered by Ref. [2] was aimed at the physics audi-
ence. Our present study will complement these results by their more systematic
derivation and by the more explicit explanation of their formal structure. Keep-
ing this aim in mind we shall consider the N−dimensional matrix Schrödinger
equation

H(N) |ψ(N)
n 〉 = E(N)

n |ψ(N)
n 〉 (2)

with the prescribed bound-state eigenvectors

|ψ(N)
n 〉 =

⎛⎜⎜⎜⎜⎝
〈0|ψ(N)

n 〉 = G(0, a, En)
〈1|ψ(N)

n 〉 = G(1, a, En)
...

〈N − 1|ψ(N)
n 〉 = G(N − 1, a, En)

⎞⎟⎟⎟⎟⎠ (3)

where, in the notation of MAPLE [13], the symbol G(n, a, x) denotes the nth
Gegenbauer polynomial G(n, a, x) equal to polynomial Ca

n(x) in the notation
of Ref. [14] or to C

(a)
n (x) according to Ref. [15]. Under such an assumption,

naturally, the explicit form of the related Hamiltonian is the tridiagonal array

350 M. Znojil

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1/2 a−1 0 0 . . . 0

2 a
2 a+2 0 (2 a+ 2)−1 0 . . .

...

0 2 a+1
2 a+4 0 (2 a+ 4)−1 . . . 0

0 0 2 a+2
2 a+6

. . .
. . . 0

...
. 0 (2 a + 2N − 4)−1

0 . . . 0 0 2 a+N−1
2 a+2N−2 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4)

which defines the manifestly asymmetric N by N matrix H(N).
The validity of such an assignment is equivalent to the standard three-term re-

currences for the Gegenbauer polynomials while the N by N matrix truncation is
equivalent to the implicit-equation identification of the real and non-degenerate
spectrum σ(H(N)) ≡ {En} of the bound-state energies with the roots of the Nth
Gegenbauer polynomial,

G(N, a,En) = 0 . (5)

Naturally, such a secular equation may be considered solvable with an arbi-
trary numerical precision. The only nontrivial task represented by the complete
description of the model will lie in the choice of a metric Θ compatible with
Dieudonné Eq. (1). The method has not been described in Ref. [2] because
it just consisted in the brute-force insertion of a general real and symmetric
ansatz for Θ(N) and in the subsequent trial and error analysis of Eq. (1) after its
insertion.

In the metric-construction problem, the key difficulties are twofold. Firstly, the
ansatz for Θ(N) contains too many (i.e., N(N + 1)/2) unknowns, and there are
no criteria for the clarification which ones of them should be selected as the “op-
timal” independent set. Even at the very small integers N , preliminary MAPLE-
based brute-force algebraic symbolic-manipulation-solution experiments starting
from Eq. (1) and from a few randomly selected N−plets of the tentative inde-
pendent matrix elements of Θ generated just the obscure many-page results for
all of the N− and a−dependent matrix elements of Θ(H). The second difficulty
emerged with the necessity of the parameter-range-specifying guarantee of the
obligatorily positive-definite nature of any resulting N by N matrix candidate
Θα(H) for the metric (characterized or distinguished, in general, by a suitable
multiindex α).

The core of the success (i.e., of the resolution to both of these parallel algebraic-
numerical difficulties) has been revealed to lie in an interactive and iterative ap-
proach to both of the problems. In more detail this approach is to be described
in what follows.

Symbolic-Manipulation Constructions of Hilbert-Space Metrics 351

3 The Dieudonné’s Equation

In the light of the old Dieudonné’s idea [9] it seems interesting to replace the
current textbook Hermiticity property H = H† of the current selfadjoint Hamil-
tonians in quantum mechanics by the weaker assumption containing a nontrivial
“metric” Θ �= I [10]. In this context relation (1) guarantees the reality of the
energies provided only that we require that the operator Θ = Θ† is, roughly
speaking [16], positive and invertible, i.e., tractable as a metric in the Hilbert
space of states H(S) where the superscript means “standard”.

The recent growth of popularity and applicability of the quantum models
requiring the unusual metrics Θ = Θ(S) > I may be found reviewed, e.g., in
Refs. [11,17,18,19]. In our present paper we circumvent a number of technicali-
ties by studying just the quantum models defined in finite-dimensional Hilbert
spaces. Thus, we may identify H(F) ≡ CN . Moreover, for the sake of definite-
ness, we shall only pay attention to the models where the Hamiltonian matrices
possess the tridiagonal real-matrix form.

3.1 An Interactive Algebraic-solution Technique

As an illustrative example we shall use the Gegenbauerian quantum lattice model
of Ref. [2] described in the preceding section. In fact, in Ref. [2] we described
the results showing the feasibility of the brute-force construction of the com-
plete family of the metrics Θ(H) admitted by the Dieudonné’s linear algebraic
constraints (1). In our present continuation of this effort we intend to provide
a deeper insight in the problem explaining the reasons why our construction of
the metrics appeared to be so successful.

We have to admit that with our very specific choice of the Gegenbauerian
model in Ref. [2] we were unexpectedly fortunate. This fact may be demon-
strated, say, by the recollection of the similar constructive attempts based on
a different choice of the N by N “input” Hamiltonian as reported in Ref. [5].
After the construction of Θ(H) at the dimension as low as N = 4 it has been
argued there that the construction at the very next N = 5 appeared almost
prohibitively complicated. This is really in contrast with the results of Ref. [2]
which proved valid at any integer N .

The core of the dimension-independent universality of the above-mentioned
Gegenbauerian result may be seen in the combination of the extremely sim-
ple bidiagonal form of the Hamiltonians H(N)(a) with the comparably simple
a−dependence of its matrix elements. The relevance of both of these ingredients
becomes obvious when we recall the explicit N = 4 sample of the Hamiltonian

H(4)(a) =

⎡⎢⎢⎢⎢⎢⎣
0 (2 a)−1 0 0
2 a

2 a+2 0 (2 a + 2)−1 0

0 2 a+1
2 a+4 0 (2 a+ 4)−1

0 0 2 a+2
2 a+6 0

⎤⎥⎥⎥⎥⎥⎦

352 M. Znojil

together with the general ansatz for the metric

Θ(4)(a) =

⎡⎢⎢⎢⎢⎢⎣
k b c d

b f g h

c g m n

d h n j

⎤⎥⎥⎥⎥⎥⎦ .

In such a setting we may study the 16-plet of the resulting relations, out of
which Nr. 1, Nr. 6, Nr. 11 and Nr. 16 (i.e., diagonal items) remain trivial while
the off-diagonal items form an antisymmetric matrix. Out of the remaining six
independent items (say, Nr. 2, 3, 4, 7, 8, and 12) there is just one (viz., Nr. 4)
which involves just two unknown quantities (viz., h and c). This leads to the
decision of taking d, c, b, and k as independent parameters and of eliminating,
in the first step, h via item Nr. 4,

h =
c (a + 1)

2 (a + 2) a
.

The inspection of the new set of items reveals that the simplest one is now just
Nr. 3 which defines g as a function of b and d, with the next-step Nr. 8 defining
n as a function of d and (newly known) g. We are left with the three items Nr.
2, 7 and 12 which couple (k, f), (f,m) and (m, j), respectively. As long as we
decided to use k as the fourth unconstrained parameter this means that in the
same order we now define, step by step, the missing items f , m and, ultimately,
j. The result is complete yielding

h = 1/2
c (a + 1)
(a + 2) a

g = 1/2
ba + 3 b + 2 da2 + 4 da + 2 d

(a + 3)a

n = 1/2
−6 da− 10 d+ ba + 3 b

(a + 3) a (2 a+ 1)

f = 1/2

(
2 ca2 + k a + ca + 2 k

)
(a + 1)

(a + 2)a2

m = 1/2
2 ca3 + ca2 − 7 ca+ k a2 + 5 k a + 6 k

(a + 3) a2 (2 a+ 1)

j = −1/4
6 ca2 + 10 ca− k a2 − 5 k a− 6 k

a2 (2 a+ 1) (a + 2) (a + 1)
.

We may conclude that using MAPLE one obtains the necessary answers quickly.
The same applies to the models at higher N .

Symbolic-Manipulation Constructions of Hilbert-Space Metrics 353

3.2 The Case of General N

After the above-explained heuristic exercise we are prepared to consider the real
and symmetric general ansatz for the metric

Θ(N)(a) =

⎡⎢⎢⎢⎢⎣
θ11 θ12 . . . θ1,N

θ12 θ22
. . .

...
...

. θN−1,N

θ1,N . . . θN−1,N θNN

⎤⎥⎥⎥⎥⎦ . (6)

and prove the general result.

Definition 1. At any N ≥ 2 the insertion of the N by N Hamiltonian H =
H(N)(a) given by Eq. (4) and of the general real and symmetric matrix ansatz
(6) for the metric Θ = Θ(N)(a) defines the N by N matrix array (1) of the linear
Dieudonné equations Mi,j = 0. Its ordered version has the form rα = 0 with

r1 = M1,N ,

r2 = M1,N−1 , r3 = M2,N ,

r4 = M1,N−2 , r5 = M2,N−1 , r6 = M3,N ,

. . . ,

r(N−1)(N−2))/2+1 = M1,2 , . . . , rN(N−1)/2 = MN−1,N . (7)

Theorem 1. In terms of the freely variable N−plet of the real initial parameters
Θ1j, j = 1, 2, . . . , N the Dieudonné equation in its ordered version (7) defines,
step by step, the respective “missing” matrix elements

Θ2,N ,

Θ2,N−1 , Θ3,N ,

. . . ,

Θ2,2 , Θ3,3 , Θ4,4 , . . . , ΘN,N (8)

in recurrent manner.

Proof. Once we revealed the diagonal-wise-arranged recurrent pattern it is easy
and entirely straightforward to verify its validity by the corresponding trivial
rearrangement of the two matrix multiplications in Eq. (1).

Remark 1. The diagonal-wise recurrent nature of Eq. (1) given by Theorem 1
has only been revealed by the post factum inspection of the results of Ref. [2].

4 The Formulation of Quantum Theory Using an Ad Hoc
Triplet of Hilbert Spaces

4.1 The Positive Definiteness of the Metric

During the recent years we are witnessing the remarkable growth of popularity
of the building of quantum models which combine the “false” non-Hermiticity

354 M. Znojil

H �= H† of the comparatively elementary Hamiltonian acting in a “friendly”
Hilbert space H(F) with the simultaneous “sophisticated” Hermiticity H = H‡

of the same Hamiltonian in another, less usual, amended, “standard” Hilbert
space H(S) endowed with a nontrivial metric Θ = Θ(S) �= I.

The key to the consistency of such a formulation of quantum theory lies in the
correct choice of the latter operator [10]. In Ref. [12] we summarized some of the
mathematical features of such an approach to the phenomenological quantum
model-building. We pointed out there that one of the main difficulties often lies
in the guarantee of the positive definiteness of the metric.

The essence of the problem has been made entirely transparent and obvious
when we eliminate the unfortunate confusion caused by the traditional termi-
nology. Our key point was that in fact, the innovated formalism never leaves the
abstract theoretical framework of quantum theory. Just a few new mathemat-
ical tricks (like, typically, an unusual, non-unitary generalization of the most
common Fourier transformation) are being added to the traditional textbook
recipes.

In particular, the Dieudonné-equation constraint imposed on a Hamiltonian
H is in fact equivalent to the manifested Hermiticity of its isospectral image

h = ΩH Ω−1 = h† (9)

In principle (though not always in practice), the latter operator is defined as
acting in another physical Hilbert space denoted by the third symbol H(P). In
this space the traditional, trivial metric Θ(P) = I is used.

In such a notation [12], both the Hilbert spaces H(P) and H(S) may be per-
ceived as unitarily equivalent. We may deduce

h† =
(
Ω−1

)†
H†Ω† . (10)

After we abbreviate Ω†Ω := Θ we end up with the Dieudonné’s relation (1) as
well as with the necessity of the positivity of the metric.

4.2 The Gegenbauerian Illustrative Example

For our real and finite-dimensional Gegenbauerian Hamiltonians H = H(N)(a)
which are given in advance, the Dieudonné’s relation (1) forms the set of N2

constraints imposed upon the [N(N + 1)/2]−plet of the unknown real matrix
elements of the metric matrix Θ = Θ† > 0. In papers [1] - [8], we proposed the
non-numerical, symbolic-manipulation approach to constructions of a complete
solution of this linear algebraic system. What remains for us to construct is
the appropriate domain D of free parameters for which these candidates for the
metric remain positive definite, i.e., truly eligible in the appropriate definitions of
the generalized Hermitian conjugation and/or of the appropriate Hilbert-space
inner product.

In Ref. [2] we discussed a few specific examples of candidates Θ(N)(a) for the
Gegenbauerian metrics. We revealed that such a study leads to a purely nu-
merical description supporting the hypothesis that the domains D(N)(a) change

Symbolic-Manipulation Constructions of Hilbert-Space Metrics 355

–22

–20

–18

–16

–14

–12

ttr

–3 –2 –1 0 1 2 3

g

4e+07

Fig. 1. Seven eigenvalues p = p(g) of metric Θ
(7)
g (1)

“smoothly” with N and lead to the non-empty and sufficiently large limiting
domains limN→∞ D(N)(a) = D(∞)(a) �= ∅.

A comparatively weak N -dependence characterizes even the domains D(N)(a)
at small N � 5. The direct evaluation of the eigenvalues of Θ(N)(a) (i.e., the
more precise determination of the boundaries ∂D(N)(a)) only suffers of the errors
caused by the multiple-scale nature of these eigenvalues.

In Ref. [2] we were only able to provide a transparent graphical illustration of
the free-parameter-dependence of the spectrum of selected Θ(N)(a)s at the very
first nontrivial dimension N = 3. In the context of programming in MAPLE
(offering an adaptable floating-point precision arithmetics) the remedy is easy.
One may take, say, the N = 3 toy metric of Ref. [2],

Θ(3)
g (a) =

⎡⎢⎢⎣
2 a2 2 ga 0

2 ga a + 1 g

0 g a+2
2 a+1

⎤⎥⎥⎦
and represent the triplet of eigenvalues pj(g), j = 1, 2, 3 (as sampled in Figure
Nr. 3 of loc. cit. at a = 1) in logarithmic scale yielding, say, the adapted a = 1
secular equation

det

⎡⎢⎢⎣
2 − e−ttr−20 2 g 0

2 g 2 − e−ttr−20 g

0 g 1 − e−ttr−20

⎤⎥⎥⎦ = 0

i.e., the non-polynomial version of our eigenvalue problem,

4 − 8 e−ttr−20 + 5
(
e−ttr−20

)2 − 6 g2 −
(
e−ttr−20

)3
+ 5 g2e−ttr−20 = 0 .

In a test run the numerical analysis of this equation reproduced the results given
in Table Nr. 1 of loc. cit..

356 M. Znojil

–20

–15

–10

ttr

–3 –2 –1 0 1 2 3

g

4e+07

Fig. 2. Nine eigenvalues p = p(g) of metric Θ
(9)
g (1)

On this basis one may expect that the key problem brought by the rescal-
ing appears tractable by the MAPLE-based numerical software. The main gain
came with the substantial extension of the feasibility of the graphical deter-
minations of the parameter-dependence of the physical domains D(N)

g (a) with
the growth of N . The characteristic illustration is offered by Figures 1 and 2
which clearly demonstrate the emergence of an obvious pattern which was not
accessible without rescaling.

5 Summary

¿From the point of view of Quantum Mechanics it is rather unfortunate that for
a given Hamiltonian H �= H† the specification of the metric Θ(H) prescribed
by Dieudonné Eq. (1) is ambiguous [10]. In this context, our series of papers [1]
- [8] has been devoted to the constructive study of the one-to-many mappings
H → Θ(H). In essence, we offered there a new methodical recipe of a systematic
suppression of the ambiguity of the menu of eligible Θ(H)s.

In our present continuation and extension of these papers, we decided to
explain the symbolic-manipulation aspects of such a recipe in more detail. Em-
phasizing that such a problem would be hardly tractable and/or solvable without
an essential interaction between the abstract quantum theory and the symbolic-
manipulation techniques and algebraic constructions assisted by contemporary
computers.

One of byproducts of such an interaction between methods has been shown
to lie in the amendment of the numerical aspects of the necessary simultaneous
analysis of physical domains and of the other properties of both of the physics-
representing operators H and Θ. On the basis of these results one can conclude
that the confirmation of feasibility of a methodical symbiosis between algebra
and analysis contributes to the contemporary quick growth of popularity of phe-
nomenological applications of models with nonhermitian matrices in optics [20].

Symbolic-Manipulation Constructions of Hilbert-Space Metrics 357

Acknowledgments. Workwas supportedby theGAČRgrantNr.P203/11/1433,
by the MŠMT “Doppler Institute” project Nr. LC06002 and by the Inst. Res. Plan
AV0Z10480505.

References

1. Znojil, M.: Fundamental length in quantum theories with PT-symmetric Hamilto-
nians. Phys. Rev. D. 80, 045022, 13 pages (2009)

2. Znojil, M.: Gegenbauer-solvable quantum chain model. Phys. Rev. A 82, 052113,10
pages (2010)

3. Znojil, M.: Scattering theory using smeared non-Hermitian potentials. Phys. Rev.
D. 80, 045009, 12 pages (2009)

4. Znojil, M.: Cryptohermitian picture of scattering using quasilocal metric operators.
Symmetry, Integrability and Geometry: Methods and Applications 5, 085, 21 pages
(2009)

5. Znojil, M.: Determination of the domain of the admissible matrix elements in the
four-dimensional PT-symmetric anharmonic model. Phys. Lett. A 367, 300–306
(2007)

6. Znojil, M.: Fundamental length in quantum theories with PT-symmetric Hamilto-
nians II: The case of quantum graphs. Phys. Rev. D. 80, 105004, 20 pages (2009)

7. Znojil, M.: Anomalous real spectra of non-Hermitian quantum graphs in a strong-
coupling regime. J. Phys. A: Math. Theor. 43, 335303 (2010)

8. Znojil, M.: Complete set of inner products for a discrete PT-symmetric square-well
Hamiltonian. J. Math. Phys. 50, 122105 (2009)

9. Dieudonne, J.: Quasi-Hermitian operators. In: Proc. Int. Symp. Lin. Spaces, pp.
115–122. Pergamon, Oxford (1961)

10. Scholtz, F.G., Geyer, H.B., Hahne, F.J.H.: Quasi-Hermitian Operators in Quantum
Mechanics and the Variational Principle. Ann. Phys. (NY) 213, 74 (1992)

11. Bender, C.M.: Making sense of non-hermitian Hamiltonians. Rep. Prog. Phys. 70,
947–1018

12. Znojil, M.: Three-Hilbert-space formulation of Quantum Mechanics. Symmetry,
Integrability and Geometry: Methods and Applications 5, 001, 19 pages (2009)

13. Char, B.W., et al.: Maple V Language Reference Manual. Springer, New York
(1993)

14. Gradshteyn, I.S., Ryzhik, I.M.: Tablicy integralov, summ, ryadov i proizvedenii,
Nauka, Moscow (1971)

15. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New
York (1970)

16. Siegl, P.: Supersymmetric quasi-Hermitian Hamiltonians with point interactions
on a loop. J. Phys. A: Math. Theor. 41, 244025 (2008)

17. Dorey, P., Dunning, C., Tateo, R.: The ODE/IM correspondence. J. Phys. A: Math.
Theor. 40, R205–R283 (2007)

18. Davies, E.B.: Linear Operators and Their Spectra. Cambridge University Press,
Cambridge (2007)

19. Mostafazadeh, A.: Pseudo-Hermitian Representation of Quantum Mechanics. Int.
J. Geom. Meth. Mod. Phys. 7, 1191–1306 (2010)

20. Makris, K.G., El-Ganainy, R., Christodoulides, D.N., Musslimani, Z.H.: Beam Dy-
namics in PT Symmetric Optical Lattices. Phys. Rev. Lett. 100, 103904 (2008)

Author Index

Abrahamyan, Sergey 1
Abramov, S.A. 10
Alcázar, Juan Gerardo 25
Anai, Hirokazu 239
Andrianov, Serge N. 37

Barkatou, M.A. 10
Berghammer, Rudolf 49
Bientinesi, Paolo 144
Blinkov, Yuri A. 158
Boulier, François 61, 73
Budzko, Dzmitry A. 88

Chen, Changbo 101
Chuluunbaatar, O. 175

de Swart, Harrie 49
Dreyer, Alexander 215

Edneral, Victor 126
Errami, Hassan 135

Fabregat-Traver, Diego 144

Gerdt, Vladimir P. 158, 175
Gusev, A.A. 175
Gutnik, Sergey A. 192

Hart, William 200
Hauser, Matthias 215

Irtegov, Valentin 226
Iwane, Hidenao 239

Jolly, Raphael 294

Karasözen, Bülent 251
Kira, Akifumi 239
Kornyak, Vladimir V. 263
Korporal, Anja 280
Koutschan, Christoph 309

Kredel, Heinz 294
Kyureghyan, Melsik 1

Lemaire, François 61, 73
Levandovskyy, Viktor 309

Maza, Marc Moreno 101
Motsak, Oleksandr 309
Murphy, Brian J. 321

Novocin, Andrew 200

Petitot, Michel 73
Pflügel, E. 10
Prokopenya, Alexander N. 88

Regensburger, Georg 280
Romanovski, Valery G. 126
Rosenkranz, Markus 280
Rostovtsev, V.A. 175
Rusinowska, Agnieszka 49

Salzig, Christian 215
Sedoglavic, Alexandre 61, 73
Seiler, Werner M. 135
She, Zhikun 333
Sturm, Thomas 135
Szanto, Agnes 345

Titorenko, Tatyana 226
Trofimova, Anastasia 251
Tsybulin, Vyacheslav 251

Vinitsky, S.I. 175

Weber, Andreas 135

Xue, Bai 333

Znojil, Miloslav 348

	Title
	Preface
	Organization
	Table of Contents
	A Recurrent Method for Constructing Irreducible Polynomials over Finite Fields
	Introduction
	Preliminaries
	Irreducibility of the Polynomial Composition
	Recurrent Method
	References

	Higher-Order Linear Differential Systems with Truncated Coefficients
	Introduction
	The Case of Scalar Equations
	The System Case
	Undecidability in the General Case
	Some Particular Decidable Cases

	Implementation
	Conclusion
	References

	Topology of Families of Implicit Algebraic Surfaces Depending on a Parameter
	Introduction
	Statement of the Main Result
	Special Cases

	Proof of the Main Result
	Open Questions
	References

	A Modular Approach for Beam Lines Design
	Introduction
	Matrix Presentation for LEGO Objects
	The Basic Concepts – The Ordinary Differential Equations
	The Basic Concepts – The Hamiltonian Formalism
	Particle Beam Presentation

	The Time Evolution of LEGO Objects
	Auxiliary LEGO Objects
	Computational Experiments – Mass-to-Charge Ratio Separator Design Problem
	References

	Computations on Simple Games Using RelView
	Introduction
	Relational Preliminaries
	The Computer Algebra System RelView
	Relational Models of Simple Games
	Three Applications Concerning Power of Players
	Conclusions
	References

	On the Regularity Property of Differential Polynomials Modulo Regular Differential Chains
	Introduction
	Basics of Differential Algebra
	The Normal Form of a Rational Differential Fraction
	On the Regularity Property of Polynomials
	On the Regularity Property of Differential Polynomials
	References

	Chemical Reaction Systems, Computer Algebra and Systems Biology
	Introduction
	Deterministic Modeling
	Approximating Models
	Reducing and Reparametrizing Models

	Stochastic Modeling
	Analysis of Statistical Moments
	Conclusion
	References

	On the Stability of Equilibrium Positions in the Circular Restricted Four-Body Problem
	Introduction
	Equilibrium Solutions and Their Linear Stability
	Normalization of the Third-Order Term H$_3$
	Normalizing the Fourth-Order Term H$_4$
	Stability Analysis in the Case of f = 0
	Conclusion
	References

	Semi-algebraic Description of the Equilibria of Dynamical Systems
	Introduction
	On the Complex Roots of a Univariate Polynomial
	Hurwitz Determinants and Stability of Hyperbolic Equilibria of Dynamical System
	Hurwitz Determinants and Subresultant Sequences
	Hurwitz Determinants and Symmetric Roots

	Stability of Hyperbolic Equilibria in View of Bifurcation
	Comprehensive Triangular Decomposition of Parametric Semi-algebraic Systems
	Disjoint Squarefree Comprehensive Triangular Decomposition
	Comprehensive Triangular Decomposition of a Parametric Semi-1lgebraic System

	Conclusion
	References

	Normal Forms of Two p : −q Resonant Polynomial Vector Fields
	Introduction
	Preliminaries
	D-isochronicity of Two Systems
	Concluding Remarks
	References

	On Muldowney’s Criteria for Polynomial Vector Fields with Constraints
	Introduction and Preliminaries
	The Bendixson-Dulac Criterion for 2-Dimensional Vector Fields
	Muldowney's Extensions of the Bendixson-Dulac Criterion to Higher Dimensions

	Case Studies
	The SIRS Epidemiological Model
	Computations on the 3D Model
	A Model of Viral Dynamics

	References

	Knowledge-Based Automatic Generation of Partitioned Matrix Expressions
	Introduction
	Input to the System
	Pattern Learning

	Partitioning and Inheritance
	Operands Partitioning and Direct Inheritance
	Theorem-Aware Inheritance
	Combining the Partitionings
	Automation

	Matrix Arithmetic and Pattern Matching
	Conclusions
	References

	Involutive Division Generated by an Antigraded Monomial Ordering
	Introduction
	Preliminaries
	Pair Divisions Generated by Total Monomial Orderings
	Heuristical Superiority of alex-division over Janet Division
	Conclusion and Future Work
	References

	Symbolic-Numerical Algorithms to Solve the Quantum Tunneling Problem for a Coupled Pair of Ions
	Introduction
	Problem Statement
	Formulation of BVP for a Set of the Kantorovich ODEs
	Benchmark Calculation of Penetration Coefficient
	Conclusion
	References

	Symbolic-Numeric Investigation of the Aerodynamic Forces Influence on Satellite Dynamics
	Introduction
	Equations of Motion
	Equilibrium Orientations of a Satellite
	Stability Analysis of Equilibria
	Conclusion
	References

	Practical Divide-and-Conquer Algorithms for Polynomial Arithmetic
	Polynomial Composition
	Horner's Method
	Divide and Conquer Algorithm
	Practical Timings

	Divide and Conquer Division
	Description of the Short Division Algorithm
	Mulders' vs Divide-conquer-div-short-improved
	Comparison with other Implementations

	Conclusions
	References

	Fast and Robust Symbolic Model Order Reduction with Analog Insydes
	Introduction
	Symbolic Model Order Reduction
	Transient Symbolic Model Order Reduction

	Numerical Advantages due to Sequential Equations
	Example
	Conclusion
	References

	On Invariant Manifolds of Lagrange Systems
	Introduction
	The Case of the Linear Routh System
	Investigation of Stability of the Invariant Manifolds
	On Lagrange Systems with n > 2 Positional Coordinates

	The Case of the Nonlinear Routh System
	Conclusion
	References

	Construction of Explicit Optimal Value Functions by a Symbolic-Numeric Cylindrical Algebraic Decomposition
	Introduction
	Parametric Optimization
	Symbolic Approach to Parametric Optimization

	Solution Approach Based on Cylindrical Algebraic Decomposition
	Cylindrical Algebraic Decomposition and Quantifier Elimination
	Parametric Optimization by a Specialized CAD

	Computational Examples
	Illustrative Examples
	Dynamic Programming

	Conclusion
	References

	Convection in a Porous Medium and Mimetic Scheme in Polar Coordinates
	Governing Equations and the Cosymmetry
	Finite–Difference Scheme
	Approximation of the Buoyancy Term
	Approximation of the Jacobian
	Computation of the Family of Steady States

	Numerical Results
	Cosymmetric Family of Steady States for Trapezoidal Enclosure
	Cosymmetric Family of Steady States for Semi–ring
	Preservation of Cosymmetry

	Summary
	References

	Computations in Finite Groups and Quantum Physics
	Introduction
	Dynamical Systems and Quantum Evolution
	Groups, Numbers and Representations
	Finite Quantum Systems
	Reducing Quantum Dynamics to Permutations
	Connection with Observation: The Born Rule

	Example: Group of Permutations of Three Things
	Finite Symmetry Groups in Particle Physics
	Conclusion
	References

	Regular and Singular Boundary Problems in Maple
	Introduction
	Integro-Differential Operators
	Regular Boundary Problems in Maple
	Singular Boundary Problems
	Outlook
	References

	Algebraic Structures as Typed Objects
	Introduction
	Related Work
	Outline

	Algebraic Structures as Typed Objects
	Ring Elements and Ring Factories
	Algorithms and Factories
	Algebraic and Transcendental Field Extensions
	Real Algebraic Numbers and Complex Algebraic Numbers
	Algebraic Structures in Interactive Scripting Interpreters

	Problems
	Generic Types and Sub-classes
	Dependent Types
	Package Structure

	Conclusions
	References

	On Two-Generated Non-commutative Algebras Subject to the Affine Relation
	Preliminaries
	Main Theorem and Applications
	Operator Algebras and Model Algebras
	Binomial Theorems

	Application in Computer Algebra Implementation
	Centers and Ring-Theoretic Properties of Model Algebras
	References

	Acceleration of the Inversion of Triangular Toeplitz Matrices and Polynomial Division
	Introduction
	Our Subjects
	Previous Work
	Our Progress
	Organization of Our Paper

	Preliminaries
	Definitions and Basic Facts
	Polynomial Reciprocal and Triangular Toeplitz Inversion
	Linking Toeplitz Matrix and Polynomial Computation

	Divide-and-Conquer for Triangular Toeplitz Inversion
	Our Speedup
	Triangular Toeplitz Speedup
	Further Speedup for Banded Triangular Toeplitz Matrices

	Some Potential Implementation Advantages
	References

	Computing a Basin of Attraction to a Target Region by Solving Bilinear Semi-Definite Problems
	Introduction
	Problem Formulation
	Computing a Basin of Attraction
	Framework of our Algorithm
	Implementation Using Bilinear Semi-definite Programming

	Examples
	Conclusion
	References

	Symbolic-Numeric Solution of Ill-Conditioned Polynomial Systems (Survey Talk Overview)
	References

	Symbolic-Manipulation Constructions of Hilbert-Space Metrics in Quantum Mechanics
	Introduction
	Gegenbauerian Quantum N-site Lattices
	The Dieudonné's Equation
	An Interactive Algebraic-solution Technique
	The Case of General N

	The Formulation of Quantum Theory Using an Ad Hoc Triplet of Hilbert Spaces
	The Positive Definiteness of the Metric
	The Gegenbauerian Illustrative Example

	Summary
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

