
Chapter 7
Flow in Binary Media with Heterogeneous
Air-Entry Pressure

The upscaled models presented in Chap. 6 are based on the assumption that the
Richards equation is a valid model of water flow at the local (Darcy) scale. This,
however, is not necessarily the case, especially during transition between unsatu-
rated and water-saturated conditions in porous media showing distinct and locally
variable values of the entry pressure. As the continuity of the air phase and its connec-
tion to the atmosphere may be lost, the assumptions underlying the Richards model
no longer hold, and the description should be based on the full two-phase flow model.
This chapter presents the development of an upscaled model which accounts for het-
erogeneity in the air entry pressure and which is applicable to capillary-dominated
flow in media showing moderate permeability contrast. It is shown that, after appro-
priate modification, the upscaled Richards equation shows a better agreement with
the reference two-phase model than the non-upscaled Richards equation solved for
explicitly represented heterogeneous structure. The following presentation is based
on papers [8, 9].

7.1 Upscaled Model of Two-phase Capillary Flow

7.1.1 Basic Assumptions

The porous medium is characterized by the same binary structure as considered in
Chap. 6, see Fig. 6.1, i.e. it is composed of a continuous background material, denoted
by superscript I and disconnected inclusions, denoted by superscript II. Furthermore,
it is assumed that the condition of separation of scales, given by Eq. (6.1), is satisfied.
At the local scale, the flow of water and air in each region is described by Eqs. (2.50)–
(2.51), with the storage terms written according to Eq. (2.52):
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where cw and ca are the compressibility coefficients of water and air. The conditions
at the interface � vary, depending on the saturation of the two materials, as discussed
in the following sections. Similarly to the previous chapter, the characteristic time of
the process is chosen as the time of flow at the macroscopic scale in the background
material. However, in contrast to the previous chapter, the analysis is limited to the
case when the permeabilities of the two materials are of the same order of magnitude.

As far as the local balance of driving forces is considered, we assume that at
the scale of a single periodic cell the capillary forces dominate over the viscous
and gravitational forces. These conditions can be quantified by two dimensionless
numbers. The Bond number Rg represents the ratio of gravitational to capillary
forces, while the capillary number Rc represents the ratio of viscous to capillary
forces, e.g. [2]:
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where the superscript (c) denotes characteristic values. The characteristic length for
the Bond number lg can be assumed equal to the vertical dimension of a single
heterogeneity (inclusion), while the length in the capillary number lc can be taken
as the dimension of the heterogeneity in the direction of the flow. A more detailed
discussion of the role of dimensionless numbers in upscaling of two-phase flow can
be found in [2, 3, 7].

The form of the upscaled model depends on the continuity of the non-wetting fluid
across the material interface � between the background material and inclusions. One
can distinguish three cases, which are described in the following paragraphs.
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7.1.2 Capillary Flow without Entry Pressure Effects

If both air and water are mobile at either side of the material interface, one can
assume that the pressures in each of the phases (and consequently also the capillary
pressure) are continuous across the background-inclusion interface:

pI
w = pII

w on �, (7.7)

pI
a = pII

a on �. (7.8)

Moreover, the continuity of normal mass fluxes across the interface can be assumed:
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where n� is the unit vector normal to the interface �.
For the above interface conditions, Saez et al. [6] derived a homogenized model

of the following form:
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This model can be regarded as a two-phase counterpart of the upscaled Richards
equation with local equilibrium, described in Sect. 6.3.1. The pressures in each fluid
phase is uniform within a unit cell at the zeroth order of approximation. Conse-
quently, the phase densities are also uniform, their values corresponding to the phase
pressures, ρeff

α = ρα

(
peff

c

)
. Moreover, the capillary pressure:

peff
c = peff

a − peff
w

is uniform in a periodic cell, i.e. local capillary equilibrium conditions occur. How-
ever, the saturations and phase contents are different in each of the two regions,
because the background material and inclusions are characterized by different
pc − Sew curves. The effective (average) porosity and volumetric phase contents
are defined similarly as in the case of the upscaled Richards equation:

φeff = wI φ I + wII φ II , (7.13)
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Seff
α = θeff

α /φeff . (7.15)
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In order to simplify the presentation, it is assumed that the residual saturations of
air and water are zero in each material, i.e. the saturations can change in the whole
range of values between 0 and 1:

0 ≤ Sι
α ≤ 1, (7.16)

0 ≤ θι
α ≤ φ, (7.17)

where ι = 1, 2 is the index of porous material. This assumption does not reduce the
generality of the model and the case with non-zero residual saturations is described
in [8].

The effective permeability tensors for each phase depend on the effective capillary
pressure. They are defined in a similar way as the effective water permeability in
the case of upscaled Richards equation, Eqs. (6.43)–(6.47). For the chosen value of
the effective capillary pressure, a corresponding piecewise-constant distribution of
the phase permeability is assumed, with k I

α

(
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c

)
in the background material and

k II
α

(
peff

c

)
in the inclusions. Next, the local boundary value problem, Eqs. (6.43)–

(6.46), is solved for each spatial direction m to obtain the corresponding auxiliary
variable χm , which has to satisfy periodic boundary conditions. Based on these
results, the entries of the effective tensor are computed from Eq. (6.47). The same
procedure applies to water and air phases. Note that the formulation of the local
boundary value problem implies that the local permeability values are larger than
zero in inclusions as well as in the background material, i.e. the fluid is mobile
everywhere in the periodic cell. This is consistent with the assumed conditions at the
interface �, Eqs. (7.7)–(7.10). If both materials are isotropic, instead of the solution
of the elliptic boundary value problem, simplified approaches can be used to compute
the components of the effective tensor for the given pair of scalar values k I

α

(
peff

c

)
and

k II
α

(
peff

c

)
. However, the procedure outlined above seems more accurate for complex

geometries [1, 2].

7.1.3 Infiltration with Entry Pressure Effects

The model described above is valid on condition that both fluid phases are present
and mobile on both sides of the interface. If the capillary functions in both inclusions
and background do not show air entry pressure (as is the case, for instance, with the
van Genuchten model), the air phase disappears from the system for the same value
of pc = 0 in both materials. However, if the capillary functions have distinct entry
pressures, which are different in each material, one of the materials becomes fully
saturated at a value of the capillary pressure for which the other material remains
unsaturated. In such a case an extended capillary pressure continuity condition must
be used at the interface �, as discussed in Sect. 2.3.3. The effect of this change on
the upscaled model depends on whether the flow is of infiltration or drainage type
and whether the entry pressure is higher in the background or in inclusions. This
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Fig. 7.1 Upscaled capillary functions for heterogeneous medium with coarse-textured inclusions:
a infiltration, b drainage, (bk) background material, (in) inclusions, (std) standard upscaling method,
(mod) modified upscaling method accounting for the air entry pressure effects

problem was analyzed for flow in one-dimensional layered medium by [4, 10] and
for a multidimensional medium with inclusions by [8].

First, infiltration in a medium with higher entry pressure in the background is
considered, pI

e > pII
e . Since the entry pressure is in general inversely proportional

to the characteristic size of the pores, the inclusions can be regarded as having
coarser texture (larger pores) compared to the finer background material. Initially
the medium is dry, which corresponds to a large value of the capillary pressure.
As the water infiltrates, the capillary pressure decreases and the saturation in both
materials increases. When the value of the entry pressure of the background pI

e is
reached, this material becomes fully saturated with water. However, the water content
in inclusions is still below its maximum value, due to the differences in shape of the
capillary functions. This is shown schematically in Fig. 7.1a. If capillary equilibrium
conditions hold at the Darcy scale, the inclusion becomes surrounded with fully
water saturated fine material and the connectivity of the air phase is lost. In contrast,
the water phase remains connected throughout the medium, and the continuity of its
pressure and normal flux can be assumed at the material interfaces. The difference
between the air pressure in inclusions and the pressure in the water phase does not
exceed the entry value for the background material, so the air remains trapped in
inclusions. The threshold value of the effective water content, which corresponds to
the effective capillary pressure equal to the entry pressure of the background, can be
written as:

θ
trap
w = wI φ I + wII φ II S II

w

(
pI

e

)
< φeff (7.18)

and the corresponding effective water saturation is:

Strap
w = θ

trap
w /φeff < 1. (7.19)
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The corresponding values for the air phase:

θ
trap
a = φeff − θ

trap
w , (7.20)

Strap
a = 1 − Strap

w , (7.21)

can be considered as the field-scale residual air content and saturation, respectively.
Note that these residual values result only from the presence of material hetero-
geneities, since the pore-scale residual saturations are neglected here. The actual
value of the field-scale residual air content depends on the shapes of the capillary
functions of the porous materials, as shown in Fig. 7.1a.

Even if the water pressure increases further, the air phase cannot leave the inclu-
sions. This is in contrast to the model described in the previous section, where further
decrease of the capillary pressure results in the corresponding decrease of θ II

a and θeff
a

and the increase of the wetting phase permeability, computed from the solution of the
cell problem. Such approach does not take into account the fact that the non-wetting
phase cannot leave the inclusions, because it cannot overcome the entry pressure
in the background material. In order to include this effect, the interface conditions
(7.7)–(7.10) and the upscaled equations should be modified.

In the simplified case of incompressible flow (cw = ca = 0) the interface condi-
tions can be specified as follows:
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where pI
e is the entry pressure of the background material, while for the normal
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Note that the air phase pressure is undefined in the background material. With
these boundary conditions, the upscaled equation for water becomes:
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where ktrap
w is the effective wetting phase permeability obtained from the solution

of the local boundary value problem with the relative permeability k I
rw = 1 in the

background material and k II
rw = k II

rw

(
pI

e

)
in the inclusions. Equation (7.26) describes

steady flow, because the water saturation cannot increase any further and the fluids
are incompressible. Since the background becomes impermeable with respect to the
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non-wetting phase, the corresponding effective permeability becomes keff
a = 0. Note

that this result cannot be obtained from the solution of the cell problem, because the
problem becomes ill-posed when the permeability in any part of the cell is equal to
zero. The air content in inclusions is constant:

θeff
a = θ

trap
a = const. (7.27)

The capillary pressure in inclusions remains constant and equal to the entry pressure
in the background material. Thus, any increase in the water pressure will cause the
same increase of the air pressure and the air saturation in inclusions will remain
constant. In reality, air can dissolve in water or move upwards in form of small
bubbles, but these long-term processes are not accounted for by the present model,
based on two-phase immiscible formulation.

If the compressibility of the fluids is taken into account, the model becomes more
complex, since the air saturation in inclusions can change due to the compressibility.
The relevant upscaled equations can be written as:
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Equation (7.29) states that the mass of the air phase trapped in inclusions should
remain constant. Note that the local capillary function is used instead of an upscaled
one. The change in saturation is driven by the change in the macroscopic wetting
phase pressure. A positive change in peff

w causes an increase of the non-wetting
phase pressure in inclusions and consequently an increase in the density of the non-
wetting fluid. In order to keep the mass constant, the increase in density should be
balanced by a decrease of volume occupied by the fluid, which means in turn that
the capillary pressure decreases. On the other hand, if peff

w decreases, the capillary
pressure in inclusions is expected to increase. It can even reach values higher than
the entry pressure in the background, which enables the non-wetting fluid to move
from inclusions to the background. In this case one should switch again to the model
with two continuous phases, described in the previous section. Note also that the
saturation change in inclusions due to the compressibility is assumed to be small and
its influence on the effective permeability tensor for the water phase is neglected.

7.1.4 Drainage with Entry Pressure Effects

As the second case, drainage in a medium with disconnected coarse inclusions is
analyzed. The medium is initially fully saturated with the wetting phase (Sw = 1)
and starts to be invaded by the non-wetting phase. However, the drainage is possible
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only after the critical capillary pressure pI
e is reached. In the range of capillary

pressures below that value, the upscaled equations have the following form:

θeff
w cw

∂peff
w

∂t
− ∇

[
ρw

keff
s

μw

(
∇ peff

w − ρeff
w g

)]
= 0, (7.30)
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a = 0 = const, (7.31)

where the effective permeability of the wetting phase is equal to the effective intrinsic
permeability of the medium.

Initially, there is no capillary equilibrium between inclusions and background,
because the capillary pressure in each material is equal to its entry pressure. Once the
entry pressure for the matrix is exceeded, the non-wetting phase from the injection
zone starts invading the system. As soon as there is a connected path of the non-
wetting phase between the injection zone and inclusions, the capillary pressure in
inclusions increases, until it equilibrates with the surrounding background material,
with the corresponding non-wetting phase saturation in inclusions much larger than
the one in the background. This can be represented by a discontinuity in the effective
capillary curve, Fig. 7.1b. The water content is constant and equal to the porosity for
peff

c < pI
e . If the capillary pressure increases by a very small value above the entry

pressure of the background, the average water content within a unit cell decreases
rapidly to the value corresponding to the capillary equilibrium conditions, because the
inclusions desaturate quickly. Such behavior is confirmed by physical experiments
on heterogeneous media with disconnected coarse-textured inclusions [11].

Comparing this result with the one obtained for infiltration, one can note that the
presence of disconnected coarse inclusions causes a hysteretic behaviour of the het-
erogeneous medium in the range of capillary pressures below the entry pressure of
the background material pI

e . The upscaled capillary and permeability functions are
different for infiltration and drainage, as shown in Fig. 7.1a, b. In contrast, application
of the standard upscaling procedure based on the assumption of local capillary equi-
librium for the whole range of pressures leads to a unique capillary curve for both
infiltration and drainage, shown by dotted lines in Fig. 7.1. In the range of capillary
pressures above the entry pressure of the background material, all three curves are
the same.

The hysteresis results from the presence of material heterogeneities at the Darcy
scale and occurs even if locally each of the materials is characterized by a unique
capillary curve for infiltration and drainage. The presented approach can be also
used when each of the material exhibits hysteresis in its local scale capillary curve.
In this case, the method of computing the effective parameters remains the same,
but different local scale functions should be used as input, depending on the process
which is to be simulated.

The numerical implementation of the upscaled model with entry pressure effects
depends on the formulation used in the numerical code to solve the effective equa-
tions. As mentioned in Chap. 3, two approaches are possible, i.e. either the principal
variables are the pressures of the two fluids and the phase content and permeabilities

http://dx.doi.org/10.1007/978-3-642-23559-7_3
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are calculated as functions of the pressure difference (capillary pressure) or the prin-
cipal variables are one of the pressures and one of the saturations and the capillary
pressure and permeabilities are calculated as the functions of the saturation. In the
first case, one should remember that when the capillary pressure is below the critical
value peff

c < pI
e , Eqs. (7.14)–(7.15) are no longer valid because the air phase content

is either constant or changes very slightly due to the compressibility. In the second
case, one should remember that during infiltration the value of the wetting phase
content cannot exceed the critical value θ

trap
w = φeff − θ

trap
a . During the drainage one

has to deal with a discontinuous capillary function. For the purposes of consistent
numerical solution, it can be replaced by a continuous capillary curve, with linear
variation of θeff

w between peff
c and peff

c + υ, where υ is a small number (similar
technique for the unsaturated flow equation was used by [11].

Finally, one has to consider an inverse heterogeneity pattern, i.e. fine-textured
inclusions with high entry pressure embedded in a continuous coarser background
with low entry pressure. During infiltration in such a medium the air phase disappears
in inclusions earlier than in the background. Consequently, there is no trapping effect
and the standard upscaling procedure can be used for the effective capillary and water
permeability functions. In the range of capillary pressures below the entry pressure
pII

e , the inclusions are impermeable to air, and the cell problem used to define the
effective air permeability must be modified. The auxiliary variable χ is defined only
in the background material, while the material interface is considered impermeable.
The resulting formulation would be the same as the cell problem describing water
permeability in a medium with weakly permeable inclusions, described in Sect. 6.3.2.

The same observation regarding the air permeability holds for drainage. Since the
medium starts to drain as soon as the entry pressure of the coarse material is exceeded,
there is no discontinuity in the resulting capillary curve. Until the value of the entry
pressure for inclusions is reached, the saturation in inclusions remains equal to one,
but the effective water content decreases, due to the drainage of the continuous coarse-
textured background. In this range the inclusions must be considered as impermeable
to air. If the difference in the shape of the capillary curves of the two materials is very
large, for high values of the capillary pressure a phenomenon of water phase trapping
in fine inclusions may occur, as pointed out by [5]. Since the coarse background is
virtually impermeable for water in the range of capillary pressures around the entry
pressure of the inclusions, the changes of the capillary pressure in the background
(e.g. due to evaporation) are not reflected by the changes of the water saturation in
inclusions, because mobile water phase cannot enter the coarse material. Analysis of
such phenomena would require accounting for evaporation and vapor transfer and is
beyond the scope of this work.

7.1.5 Modified Richards Equation

The above analysis has important implications for the Richards equation. The latter
approach differs from the full two-phase model in two important aspects. First,

http://dx.doi.org/10.1007/978-3-642-23559-7_6
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the volume of water entering or leaving a porous domain is not balanced with the
corresponding volume of air which must be displaced by water or replace water,
respectively. Second, the water content (or saturation) and permeability are defined
as functions of the water pressure, which is assumed to be equal to the negative of the
capillary pressure. Thus, it is not possible to describe the air entry effects discussed
above using the Richards equation as the model of flow at the Darcy scale.

Consider, for instance, horizontal two-dimensional incompressible flow in a
domain containing a single centrally placed inclusion, with entry pressure lower
than at the background. Initially, the capillary pressure is equal to the entry pressure
in the background material, and the air is at atmospheric pressure (pa = 0). If the
water pressure is uniformly increased along the boundaries of the cell, the water
pressure in the interior will equilibrate with the new value, due to the continuity of
the water phase. According to the two-phase flow model, the pressure of the air in
the inclusion will increase by the same value, while the capillary pressure and satu-
ration will remain the same, because the air cannot leave the inclusion through the
fully water-saturated background material. However, in the Richards equation the
new capillary pressure, taken as the negative of the water pressure, will be smaller
than the entry pressure in the background and the corresponding water saturation in
the inclusions will increase. Since the increase in water saturation is not balanced
with a decrease in air saturation, the result will be such that some amount of water
enters the inclusion. If the boundary water pressure is increased to pw = 0, the whole
domain will eventually become fully water-saturated.

Differences between the Richards model and the two-phase model are also appar-
ent for drainage of initially fully water-saturated medium with coarse inclusions.
Since in the Richards approach the capillary pressure, and consequently the water
saturation, depends uniquely on the water pressure, as soon as the water pressure
becomes smaller than (−pII

e ), i.e. the negative of the entry pressure in inclusions, the
saturation in inclusions decreases. According to the two-phase model, the drainage
cannot start until pw falls below (−pI

e ) which is the negative of the entry pressure
for the fine-textured background.

In order to overcome this deficiency of the Richards equation, a different approach
can be adopted. In this approach, the Richards equation is used not as a Darcy-
scale model, but as an upscaled model, with the effective capillary and permeability
functions which account for the entry pressure effects in the same way as it was
presented for the full two-phase model in the preceding sections. Such a model does
not result from a direct upscaling of the Darcy-scale Richards equation. Rather, it
should be regarded as a simplification of the two-phase model which is introduced
only at the field scale, after the entry pressure effects have been taken into account.

7.2 Numerical simulations

In order to illustrate the application of the modified Richards equation, two numer-
ical examples are presented. They concern two-dimensional flow in a heteroge-
neous medium with inclusions characterized by lower air-entry pressure than the
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(a) (b)

Fig. 7.2 Geometry and boundary conditions used in the numerical example: a water table fluctu-
ation, b infiltration in a dry soil

background. For each example, several numerical simulations are provided, based
on different models. First, the two-phase model and the Richards equation are solved
for the homogeneous background material without inclusions, in order to evaluated
the differences between these two approaches due to factors other than material het-
erogeneity. These solutions are denoted as 2PH-BK and RE-BK, respectively. Next,
Darcy-scale solutions are provided for a heterogeneous medium containing inclu-
sions, again using both the two-phase model and the Richards equation. They are
denoted as 2PH-DAR and RE-DAR, respectively. Finally, two forms of upscaled
Richards equation are solved. The first one is based on the standard approach, which
assumes the continuity of the capillary pressure in the periodic cell in the whole
range of its values, with the effective parameters defined as in Sect. 7.1.2. This solu-
tion is denoted as RE-UPS-1. The second upscaled solution takes into account the
air-entry pressure effects, which lead to air trapping during infiltration and retarda-
tion of drainage in inclusions, as described in Sects. 7.1.3 and 7.1.4. This solution is
referred to as RE-UPS-2.

7.2.1 Geometry and Material Parameters

In each of the two examples, the flow takes place in the same two-dimensional domain
represented by a rectangle of 60 by 40 cm, Fig. 7.2. The heterogeneous domain con-
tains 100 inclusions of the dimensions 4 by 2 cm arranged in a regular pattern in the
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Table 7.1 Hydraulic parameters of porous media used in numerical examples

φ (–) Srw (–) Sra (–) pe (Pa) nb (–) ks (m2)

Background 0.4 0.0 0.0 1,200 1.5 1e−11
Inclusions 0.4 0.0 0.0 400 2.5 1e−10
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Fig. 7.3 Capillary functions used in the numerical examples: a infiltration, b drainage, (bk) back-
ground material, (in) inclusions, (std) standard upscaling method, (mod) modified upscaling method
accounting for the air entry pressure effects
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Fig. 7.4 Water permeability functions used in the numerical examples: a infiltration, b drainage,
(bk) background material, (in) inclusions. The effective permeability in horizontal and vertical
direction is shown only for the modified method

background material, so that the scale parameter ε = 0.1 for both horizontal and
vertical direction. The two porous materials are characterized by Brooks–Corey–
Burdine hydraulic functions. Their parameters are listed in Table 7.1. The capillary
functions and the relative permeability functions for the wetting phase are shown in
Figs. 7.3 and 7.4. Both materials are characterized by a sharp decrease of the water
saturation above the air-entry pressure, which is typical for uniformly sized pores.
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7.2.2 Example 1: Fluctuating Water Table

The considered flow process consists of two stages. At the beginning of the simu-
lation, the domain is fully saturated with water and the position of the water table
corresponds to the top of the domain, Fig. 7.2a. The water pressure is distributed
hydrostatically from pw = 0 at the top to pw = 3924 Pa at the bottom. In the first
phase the water table is gradually lowered until it reaches the bottom of the domain.
This is represented by a linear decrease of the water pressure from the initial value
at t = 0 to the value pw = 0 at t = 1200 s. The latter value of the pressure is kept
constant at the bottom until t = 7200 s, allowing the water to drain from the domain
under the action of the gravity force. Next, the upward infiltration stage begins. The
water table is gradually risen to its initial position. Accordingly, the pressure at the
bottom increases linearly from pw = 0 at t = 7200 s to pw = 3924 Pa at t = 8400 s.
This value remains constant till the end of the simulation at t = 9600 s. The top of
the domain and the vertical edges are considered impermeable for water. For the
air flow equation, the initial condition is pa = 0 in the whole domain and a constant
boundary value pa = 0 is also imposed at all external boundaries, which represents
unobstructed contact with atmospheric air.

The Darcy-scale numerical simulations for heterogeneous domain were per-
formed on a uniform rectangular grid consisting of 60 (horizontal) by 40 (vertical)
elements. For the assumed set of boundary conditions the upscaled problems become
essentially one-dimensional in the vertical direction, and were solved as such, using
40 elements along x3 axis. The same approach was applied to solve the flow equations
in a homogeneous medium (without inclusions).

The results obtained with different models are compared in terms of the average
water saturation of the domain, which changes in function of time, as shown in
Figs. 7.5 and 7.6. The average water saturation is obtained by dividing the total
volume of water in the domain by the total volume of the pores. The drainage and
infiltration phases can be easily distinguished as they correspond to the decrease and
increase in the average saturation, respectively. In the solutions for homogeneous
material, Fig. 7.5, the average water saturation at the end of the drainage–infiltration
sequence becomes equal to the initial saturation, i.e. Sw = 1. There are virtually no
differences between the two-phase model and the Richards equation. In contrast, the
presence of inclusions gives rise to significant discrepancies in the results obtained
with these two models. In RE-DAR solution the drainage starts earlier than in the
2PH-DAR solution and the amount of drained water is larger, which corresponds to
smaller saturation in the domain at the end of drainage phase. The Richards equation
does not take into account the fact that drainage of inclusions is only possible if the
air is able to reach them, i.e. if the air-entry pressure in the background material
is exceeded. The evolution of the average saturation shown in Fig. 7.5 is consistent
with the distribution of the local saturation in the domain at t = 960 s, t = 7200 s and
t = 8160 s shown in Figs. 7.7, 7.8 and 7.9, respectively. It can be seen that according to
the Richards equation some inclusions become drained even though the background
material around them remains fully saturated. In the 2PH-DAR model, the entry
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Fig. 7.5 Example 1: Evolution of the average water saturation in homogeneous background material
without inclusions according to the two-phase solution (2PH-BK) and the Richards model (RE-BK)
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Fig. 7.6 Example 1: Evolution of the average water saturation in heterogeneous domain
according to Darcy-scale two-phase solution (2PH-DAR), Darcy-scale Richards model
(RE-DAR), Richards model upscaled in the standard way (RE-UPS-1) and the modified upscaled
Richards model (RE-UPS-2)

pressure effects are correctly taken into account and the inclusions remain fully
saturated in the lower part of the domain, where the difference between the air
pressure and the water pressure does exceed the air entry pressure of the background
material.

In the second phase of the flow, which corresponds to upward infiltration, the dif-
ferences between the two-phase model and the Richards equation become even more
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Fig. 7.7 Example 1: Distribution of the water saturation at t = 960 s, notation as in Fig. 7.6

Fig. 7.8 Example 1: Distribution of the water saturation at t = 7200 s, notation as in Fig. 7.6
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Fig. 7.9 Example 1: Distribution of the water saturation at t = 8160 s, notation as in Fig. 7.6

pronounced. According to the 2PH-DAR solution, as the water table is risen the back-
ground material in the whole domain becomes fully saturated, before the previously
drained inclusions reach full saturation. The blocking of flow paths for air leads to
trapping of large quantities of air in the inclusions. The inclusions remain unsaturated
till the end of the simulation. In contrast, RE-DAR solution shows that all inclusions
become fully saturated at the end of the simulation. While there are some unsaturated
inclusions immediately behind the wetting front in the background material, they are
quickly filled with water, as can be seen in Fig. 7.9. Thus, the Richards equation pre-
dicts a reversible drainage–infiltration process, which is similar to the one observed
for homogeneous medium, Fig. 7.5. On the other hand, the two-phase flow model
describes a reversible phenomenon only in the case of homogeneous medium, while
in the presence of coarse-textured inclusions the initial fully water-saturated state is
not recovered.

As can be seen from Fig. 7.6, the upscaled model based on the standard approach,
RE-UPS-1, follows very closely the solution of Darcy-scale Richards equation,
RE-DAR. This proves the accuracy of the homogenization approach, but both solu-
tions are far from the two-phase solution, which should be considered as the reference
point. In contrast, the modified approach, RE-UPS-2, is in a reasonable agreement
with the 2PH-DAR model, and correctly captures the irreversibility of the drainage–
infiltration cycle. This suggest that the Richards equation can be used to describe
unsaturated water flow in porous media showing heterogeneity with respect to the air
entry pressure, on condition that the effective functions are appropriately modified.
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Fig. 7.10 Example 2: Evolution of the average water saturation in homogeneous domain

7.2.3 Example 2: Two-Dimensional Infiltration

The second example represents two-dimensional downward infiltration in an ini-
tially dry porous medium, Fig. 7.2b. The initial value of the water pressure is
pw = −9810 Pa (water pressure head of hw = −1 m) and the air is at atmospheric
pressure pa = 0. At the left part of the top boundary, the water pressure is instanta-
neously risen to the value pw = 0, while the air pressure is kept at atmospheric value,
which implies full water saturation. All other boundary segments are considered
impermeable for water and open for the atmospheric air (pa = 0). Since the upscaled
problem is also two-dimensional, all numerical simulations were performed on the
same grid of 60 by 40 elements.

In contrast to the previous example, some differences between the two-phase
model and the Richards model can be noticed even for homogeneous medium. The
corresponding values of the average saturation in the background material with-
out inclusions are shown in Fig. 7.10. The Richards equation predicts a slightly
faster infiltration rate than the two-phase model, while at the end of the simulation
the domain becomes wholly water-saturated according to both approaches. As the
boundaries are open for air flow, the discrepancy seems to be caused by the viscous
resistance to air flow. In fact, decreasing the air viscosity by two orders of magnitude
leads to a perfect matching, as shown in Fig. 7.10.

The evolution of average water saturation in heterogeneous medium is plotted
in Fig. 7.11, while Figs. 7.12 and 7.13 show the spatial distribution of the water
saturation in the domain for two intermediate times. In Fig. 7.11 it can be seen that
the presence of inclusions leads to a much larger discrepancy between the Richards
and two-phase solutions in terms of the evolution of the average water saturation.
In the first case, the whole domain becomes fully water-saturated at the end of
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Fig. 7.11 Example 2: Evolution of the average water saturation in heterogeneous domain, notation
as in Fig. 7.6

Fig. 7.12 Example 2: Distribution of the water saturation at t = 540 s, notation as in Fig. 7.6

the simulation. In the second case, only the background material saturates, while
a significant amount of air is trapped in the inclusions. Thus, the final steady-state
average saturation is 0.706 according to the two-phase flow model and the infiltration
rate represented by the slope of the saturation curve is significantly smaller than in
the Richards model.
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Fig. 7.13 Example 2: Distribution of the water saturation at t = 1800 s, notation as in Fig. 7.6

As far as the upscaled models are considered, one can see that RE-UPS-1 follows
the corresponding Darcy-scale solution of the Richards equation (RE-DAR) very
closely. In contrast, the difference between the two-phase model and the modified
Richards equation RE-UPS-2 is significantly larger than in the previous example,
although a qualitative agreement can be observed. While the final steady state satu-
ration of RE-UPS-2 (0.688) is only slightly smaller than the corresponding saturation
obtained from 2PH-DAR, more pronounced differences are observed in the infiltra-
tion rate, which is lower in the RE-UPS-2 approach. A possible reason for these
discrepancies may be a more important role played by gravity and viscous forces,
compared to the previous test case. A closer examination of Fig. 7.13 reveals that
the saturation in inclusions at the end of simulation is not uniform. In particular, the
inclusions close to the infiltration boundary have much higher saturation than the
value corresponding to the entry pressure in the background material Sw = 0.064.
The actual values reach locally 0.578. In the initial stages of the infiltration, the vis-
cous and gravitational forces are important and the capillary equilibrium assumption
does not hold for the periodic cells close to the infiltration boundary. Since the water
saturation is higher than the one predicted from the capillary equilibrium model, the
equivalent permeability of the cell with respect to water is also significantly increased.
Consequently, the water infiltration according to 2PH-DAR solution proceeds faster
than in the RE-UPS-2 approach, based on the assumption of local capillary equilib-
rium. Nevertheless, the modified upscaled model RE-UPS-2 is considerably closer
to the reference two-phase solution than either the Darcy-scale Richards equation or
the upscaled Richards equation without entry pressure effects.
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