
Chapter 4
Computation of Inter-Nodal Permeabilities
for Richards Equation

As shown in Chap. 3, an important problem in the spatial discretization of the unsa-
turated and two-phase flow equations is related to the averaging of the fluid perme-
abilities. Various averaging techniques are presented in this chapter, with particular
focus on the case of one-dimensional unsaturated flow in a homogeneous medium,
for which accurate inter-nodal permeability estimations based on the steady flow
analysis are available. It is shown that the relation between capillary and gravity
forces at the scale of a single grid cell has key importance for the choice of the
averaging scheme. The method proposed by the author is presented in detail, and its
extensions to heterogeneous materials and multidimensional problems are discussed.
Finally, implications for two-phase flow modelling are considered.

4.1 Overview of Averaging Approaches for One-Dimensional
Flow

The averaging methods described below can be used for one-dimensional incom-
pressible unsaturated flow in a homogeneous medium. The water pressure head hw
is chosen as the primary variable, in order to facilitate the presentation of the averag-
ing methods based on the analysis of the steady state pressure distribution between
nodes. The semi-discrete equation for node j obtained using the finite difference
method, Eq. (3.12), can be rewritten as follows:

�x(ij) dθ
(j)
w

d t
+ v(jk)

w − v(ij)
w = 0 , (4.1)

where the volumetric fluxes (Darcian velocities) are defined as:

v(ij)
w = −Ksw k(ij)

rw

(
h(j)

w − h(i)
w

�x(ij)
− ζ

)
, (4.2)
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v(jk)
w = −Ksw k(jk)

rw

(
h(k)

w − h(j)
w

�x(jk)
− ζ

)
. (4.3)

In the above equations Ksw is the saturated conductivity of the water phase and ζ is the
cosine of the angle between the x axis and the gravity vector, introduced in Eqs. (3.5)
and (3.6). The average relative permeabilities k(ij)

rw and k(jk)
rw can be computed using

a number of methods as discussed below.

4.1.1 Simple Averaging Methods

In the simplest approach, if the nodal relative permeabilities are known, the average
value can be calculated as one of the well-known algebraic means:

• arithmetic mean:

k(ij)
rw = 1

2

(
k(i)

rw + k(j)
rw

)
, (4.4)

• geometric mean:

k(ij)
rw =

√
k(i)

rw k(j)
rw , (4.5)

• harmonic mean:

k(ij)
rw = 2 k(i)

rw k(j)
rw

k(i)
rw + k(j)

rw

. (4.6)

For the same pair of numbers, the arithmetic averaging yields the largest value of the
three methods listed above, while the harmonic averaging—the smallest one. The use
of arithmetic mean is well-established in the numerical solution of the unsaturated
flow equation, e.g. [11, 23, 25, 35, 43]. It provides relatively accurate results for
many typical flow problems, but also has some deficiencies. It tends to overestimate
the infiltration rate for capillary-dominated flow, e.g. [19, 21], while for gravity-
dominated flow on coarse grids it may lead to unphysical oscillations in the resulting
water pressure profile, e.g. [5, 39]. This effect can be considered as equivalent to the
oscillations appearing in the solution of linear advection equation using centred in
space approximation of fluxes, i.e. it is related to the numerical dispersion.

Geometric averaging yields values of the inter-nodal permeability smaller than
the arithmetic averaging. Therefore, it offers some improvement when the arithmetic
mean overestimates the flow rate, i.e. during capillary-driven infiltration, e.g. [8, 21,
32]. However, for precisely the same reason, the geometric mean, as compared to the
arithmetic mean, leads to larger oscillations and more severe convergence problems
in the case of gravity-dominated flow, e.g. [3, 40].

The harmonic mean yields accurate values of the average permeability for steady-
state saturated flow in a layered medium in the direction perpendicular to the layers
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(see Sect. 2.3.3). While some authors recommended its use also for unsaturated flow
in a homogeneous medium [7, 29], in such a case it could be accurate only if the
distribution of the relative permeability between nodes were piecewise-constant, i.e.
the whole half of the grid cell adjacent to node i had a constant permeability k(i)

rw,
while the other half, adjacent to node j had a constant permeability k(j)

rw. This is not
true, since in unsaturated flow the permeability varies continuously between nodes,
following the variation of the saturation in a nonlinear manner. Thus, the harmonic
mean tends to underestimate the inter-nodal permeability, particularly for downward
water infiltration into a dry porous medium. Note that in the limit case of the initial
water saturation equal to the residual saturation and the initial relative permeability
equal to zero, both geometric and harmonic averaging predict k(ij)

rw = 0, i.e. no flow
at all, which is inconsistent from the physical point of view.

Some schemes are based on the averaging of the argument to the relative per-
meability function, rather than the relative permeability itself. For example, the
inter-nodal permeability can be calculated for the arithmetic average of the nodal
saturations:

k(ij)
rw = krw

(
S(i)

w + S(j)
w

2

)
. (4.7)

It was shown [28, 30, 46] that this method provides somewhat better results than the
averaging of the nodal permeabilities given by Eq. (4.4).

Since in the unsaturated flow the relative permeability is uniquely defined by the
water pressure head, the inter-nodal permeability can be calculated using the average
of the nodal values of the pressure head:

k(ij)
rw = krw

(
h(i)

w + h(j)
w

2

)
. (4.8)

While Eq. (4.8) is rather seldom used, one can note that it is consistent with the
finite element approximation of the flux term if linear shape functions and a single-
point quadrature rule are used, as discussed in Sect. 3.2.2. Geometric and harmonic
averaging of the nodal water pressure heads in the argument of the permeability
function in Eq. (4.8) was also tested, but these approaches do not seem to offer any
particular advantage [21].

Another averaging method, which was already mentioned in Sect. 3.2.2, is the
integrated mean:

k(ij)
rw = k(ij)

int = 1

h(j)
w − h(i)

w

h(j)
w∫

h(i)
w

krw(ĥ) dĥ = �h(h
(j)
w ) − �h(h

(i)
w )

h(j)
w − h(j)

w

, (4.9)
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where �h is the flux potential defined with respect to the water pressure head. Follow-
ing Eq. (2.83) the volumetric water flux can be written in terms of the flux potential
as:

vw = −Ksw

(
∂�h

∂x
− ζ krw

)
, (4.10)

or in a discrete form as:

v(ij)
w = −Ksw

�
(j)
h − �

(i)
h

�x(ij)
− ζ Ksw k(ij)

rw . (4.11)

For ζ = 0, comparing Eq. (4.11) with the discrete form of the Darcy equation given
by Eq. (4.2) results in a formula for k(ij)

rw identical with Eq. (4.9). Thus, the integrated
mean is an accurate approximation of the inter-nodal conductivity for horizontal
unsaturated flow. It was also reported to give accurate results for vertical flow if the
node spacing was sufficiently fine, i.e. when the capillary gradient was much larger
than the gravity gradient at the scale of a single grid cell [30, 34]. On the other hand,
as mentioned in Sect. 3.2.2, the integrated mean results from the exact integration of
the flux term in one-dimensional finite element method with linear shape functions
used to represent the distribution of pw or hw.

Comparative studies available in the literature [6, 21, 30, 34, 36] show that the per-
formance of the simple averaging methods listed above is highly problem-dependent.
For example, Haverkamp and Vauclin [21] obtained accurate solutions using geomet-
ric averaging, while the simulations presented by Belfort and Lelmann [6] indicated
that the geometric mean severely underestimates the flow rate. It is clear that the
performance of simple averaging schemes varies according to the following factors:
form of the relative permeability function, direction of the flow, initial and boundary
conditions and distance between nodes. This observation motivated the development
of more accurate averaging methods, in which these factors are at least partially
represented. Such methods are described in the following sections.

4.1.2 Direction Dependent Methods

The second group of methods takes into account the direction of the flow. The two
most basic approaches are the upstream mean and the downstream mean:

• upstream mean:

k(ij)
rw =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k(i)
rw if

h(j)
w − h(i)

w

�x(ij)
− ζ ≤ 0

k(j)
rw if

h(j)
w − h(i)

w

�x(ij)
− ζ > 0

(4.12)
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• downstream mean:

k(ij)
rw =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k(i)
rw if

h(j)
w − h(i)

w

�x(ij)
− ζ > 0

k(j)
rw if

h(j)
w − h(i)

w

�x(ij)
− ζ ≤ 0

(4.13)

As mentioned in Chap. 3, in the case of linear advection equation, the upstreaming
of the advective flux introduces numerical diffusion, and thus ensures oscillation-
free solution at the cost of additional smoothing. Therefore, the upstream mean is the
preferred choice for two-phase flow with important contribution of advective (viscous
or gravity) terms [16, 22]. It is also recommended for the simulation of gravity-driven
unsaturated flow [16]. On the other hand, upstream averaging introduces large errors
for capillary-dominated (diffusive) flow, for example in the case of upward flow
driven by capillary forces [5, 39, 40].

The downstream mean is practically not used, since it may lead to severe under-
estimation of the average permeability and, similarly to the geometric and harmonic
average, it cannot reproduce infiltration into very dry medium [6]. Moreover, in
the case of pure advection equation the use of downstream approximation of the
advective fluxes causes instability of solution [14].

The unsaturated water flux consists of two parts. The first one is related to the
capillary forces, and has diffusive character, while the other one is related to the grav-
ity forces, and has advective character. In view of this fact, some authors propose to
split the flux and use a different permeability averaging scheme for each component:

v(ij)
w = −Ksw

(
k(ij)

ca
h(j)

w − h(i)
w

�x(ij)
− ζ k(ij)

gr

)
, (4.14)

where k(ij)
ca and k(ij)

gr denote the average relative permeabilities for the capillary and
gravity term, respectively. The principal difficulty related to the application of such
methods is that if different averaging schemes are used for the capillary and gravity
term, the expression:

k(ij)
ca

h(j)
w − h(i)

w

�x(ij)
− ζ k(ij)

gr

does not necessarily has the same sign as the water potential gradient:

h(j)
w − h(i)

w

�x(ij)
− ζ .

If this is the case, the flux becomes wrongly oriented leading to physically inadmis-
sible solutions. In particular, depending on the choice of the two permeabilities, this
method may predict a non-zero flux for hydrostatic case, when the total potential
gradient is equal to zero. Nevertheless, such an approach offers some advantages

http://dx.doi.org/10.1007/978-3-642-23559-7_3
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over the simple averaging methods, like the arithmetic mean, especially for the case
of downward infiltration, when both capillary and gravity gradients are oriented in
the same direction.

Taking into account the considerations presented above, a natural choice for k(ij)
ca

is the integrated mean k(ij)
int , while for the gravity term the upstream mean should

be used. Note that in this case the choice of the upstream direction should be based
on the gravitational potential, not the total potential, which means that k(ij)

gr is equal
to the permeability of the node which is placed higher with regard to the reference
level:

k(ij)
gr =

⎧⎨
⎩

k(i)
rw if ζ ≥ 0 ,

k(j)
rw if ζ < 0 .

(4.15)

The combination of integrated average for k(ij)
ca and upstream average for k(ij)

gr was used
by Zhang and Ewen [47], while Fuhrmann and Langmach [17] applied arithmetic
average for k(ij)

ca and the upstream average for k(ij)
gr . On the other hand, Zaidel and

Russo [46] used the standard arithmetic mean for k(ij)
gr , while for k(ij)

ca they developed

a simplified formula which approximates k(ij)
int for the relative permeability function

of the van Genuchten–Mualem type. Ross [33] also applied the arithmetic average
for gravity term in his scheme based on the Kirchhoff transform, but recognized that
it should be replaced by a weighted average, with weighting parameters giving more
importance to the upper node. In general, if k(ij)

gr is approximated with other schemes
than the upstream mean, the monotonicity of the solution is not guaranteed [17].

Equation (4.14) can be transformed to the form of Eq. (4.2):

v(ij)
w = −Ksw k(ij)

rw

(
h(j)

w − h(i)
w

�x(ij)
− ζ

)
, (4.16)

if the inter-nodal permeability for the whole flux term is defined as:

k(ij)
rw =

[
k(ij)

ca
h(j)

w − h(i)
w

�x(ij)
− ζ k(ij)

gr

]/[
h(j)

w − h(i)
w

�x(ij)
− ζ

]
. (4.17)

4.1.3 Darcian Means

A physically consistent framework for computing inter-nodal permeabilities in the
discretized unsaturated flow equation was introduced by Warrick [44]. It is called the
Darcian mean approach, because it postulates equivalence between the discrete and
differential (continuous) forms of the Darcy equation for steady unsaturated water
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flow between nodes x(i) and x(j). Assuming (without the loss of generality) that the
saturated conductivity Ksw is equal to unity, one can write the following relation:

v(ij)
st = −k(ij)

rw

(
�h(ij)

w

�x(ij)
− ζ

)
= −krw(hw)

(
dhw

dx
− ζ

)
, (4.18)

where v(ij)
st is the uniform steady flux between nodes and �h(ij)

w = h(j)
w − h(i)

w . The
differential form of the Darcy equation can be integrated as follows:

x(j)∫
x(i)

dx = −
h(j)

w∫
h(i)

w

krw(hw) dhw

v(ij)
st − ζkrw(hw)

. (4.19)

For horizontal flow with ζ = 0 one obtains:

�x(ij) = − 1

v(ij)
st

h(j)
w∫

h(i)
w

krw(hw)dhw . (4.20)

Comparing this result with the discrete form of the Darcy equation appearing in
Eq. (4.18) gives:

k(ij)
rw = 1

�h(ij)
w

h(j)
w∫

h(i)
w

krw(ĥ)dĥ = k(ij)
int . (4.21)

Thus, the integrated mean corresponds to the Darcian mean for horizontal flow.
For ζ �= 0 the Darcian mean depends on �x(ij) and is different from any of the

simple averages listed in the previous section. Analytical solution can be obtained if
the relative permeability is an exponential function of hw as defined by Eq. (2.44):

krw(hw) = exp
(
hw/hg

)
, (4.22)

where hg > 0 is a scaling parameter expressed in terms of the water pressure head.
For such a constitutive relationship, the integration of Eq. (4.19) yields [2, 12]:

v(ij)
st =

ζ ′
(

k(j)
rw − exp(ζ ′) k(i)

rw

)
1 − exp(ζ ′)

, (4.23)

where:
ζ ′ = �x(ij) ζ/hg . (4.24)

http://dx.doi.org/10.1007/978-3-642-23559-7_2
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Making use of the following relationship:

�hw = h(j)
w − h(i)

w = hg Lk , (4.25)

where Lk = ln(k(j)
rw/k(i)

rw), one can define the inter-nodal permeability as:

k(ij)
rw = −v(ij)

st �x(ij)/hg

�h(ij)
w − ζ �x(ij)

=
ζ ′
(

exp(ζ ′) k(i)
rw − k(j)

rw

)
(1 − exp(ζ ′)) (Lk − ζ ′)

. (4.26)

The above formula was developed by Baker [2] for the case of ζ = 1, while an
equivalent result was obtained by Desbarats [12] for a more general case of arbitrary
ζ . Moreover, Baker [2] and Baker et al. [5] showed that the Darcian average varies in
the range between the integrated mean (k(ij)

int ) and the permeability at the upper node

(k(i)
rw, assuming that the gravity force acts in the direction of x axis). Baker et al. [5]

proposed to compute the inter-nodal permeability as a weighted arithmetic average
of those two values:

k(ij)
rw = ωv k(i)

rw + (1 − ωv) k(ij)
int , (4.27)

where ωv is a weighting parameter ranging from 0 to 1. In this work the original
formula for ωv [3, 5] is extended for the case of arbitrary ζ :

ωv =
(

k(i)
rw exp(ζ ′) − k(j)

rw

)
Lk ζ ′ − (1 − exp(ζ ′)

)
�k

(
Lk − ζ ′)

(1 − exp(ζ ′)) (Lk − ζ ′)
(

k(i)
rw Lk − �k

) (4.28)

where �k = k(j)
rw − k(i)

rw, and

ζ ′ = �x(ij) ζ√
k(i)

rw k(j)
rw

∂krw

∂hw

∣∣∣∣
krw=

√
k(i)

rw k(j)
rw

. (4.29)

It means that the modified gravity coefficient ζ ′ depends on the derivative of the
relative permeability function computed for the geometric mean of the nodal per-
meabilities. The above formula is exact for the exponential relative permeability
function, for which Eqs. (4.27)–(4.28) reduce to Eq. (4.26). As shown by Baker
et al. [5] and Baker [3], it is a relatively accurate approximation of the true
Darcian mean also for other types of the relative permeability functions. An advan-
tage of such approach is that the inter-nodal permeability always remains in the
physically consistent range between k(ij)

int , which is the limit value for capillary dom-

inated flow and k(i)
rw which is the limit value for gravity-dominated flow. On the other

hand, the relative permeability function must be inverted to obtain hw

(√
k(i)

rw k(j)
rw

)
,
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which may be impossible to carry out analytically for more complicated functions
(e.g. van Genuchten–Mualem model).

In principle, the Darcian means can be computed for an arbitrary relative perme-
ability function by integrating numerically Eq. (4.18) or by solving (also numerically)
the steady-state flow equation:

− ∂

∂x
krw(hw)

(
∂hw

∂x
− ζ

)
= 0 (4.30)

in the domain 〈x(i), x(j)〉 with the boundary conditions hw = h(i)
w for x = x(i) and

hw = h(j)
w for x = x(j). The resulting value of the steady-state flux can be subsequently

used to calculate the inter-nodal permeability. Unfortunately, the numerical solution
of steady-state Richards equation is a non-trivial problem in itself, and the amount
of work necessary to compute the permeabilities for each pair of nodes at each time
step of a transient simulation is prohibitive. Warrick [44] suggested to express the
inter-nodal permeability as a weighted arithmetic average of the permeability values
at the upper and lower node:

k(ij)
rw = ωw k(i)

rw + (1 − ωw) k(j)
rw (4.31)

where ωw is a weighting parameter ranging from 0 to 1. For a known grid spacing and
relative permeability function it is possible to perform multiple solutions of the steady
problem at the preprocessing stage in order to obtain the values of the parameter ωw
as a function of the two nodal permeability values. During transient flow simulation,
ωw can be interpolated from the table for the considered pair of permeabilities k(i)

rw

and k(j)
rw. However, if the relative permeability function or the grid spacing change,

a new interpolation table must be generated, which requires additional numerical
effort.

The method based on Eq. (4.31) was further developed by Gasto et al. [19]. They
showed that for Brooks–Corey–Burdine and van Genuchten–Mualem permeability
functions, the weighting parameter ωw can be expressed as a function of four vari-
ables: k(i)

rw, k(j)
rw, �x′ and n′. For Brooks–Corey model �x′ = �x(ij)/he, where he

is the air entry pressure head, and n′ = 1 + nb, while for van Genuchten–Mualem
model �x′ = �x(ij)/hg, where hg is the pressure scaling parameter expressed in
terms of the pressure head, and n′ = ng. Gasto et al. [19] fitted a closed form analyt-
ical function, which allows to compute ωw directly if the four variables are known.
The calculation is performed according to the following formula:

ωw =
⎡
⎢⎣1 +

a′
(

k(i)
rw

)b′/(
k(j)

rw

)c′

1 + β ′ n′
(

k(i)
rw

)b′/(
k(j)

rw

)c′

⎤
⎥⎦

−1

, (4.32)

with the parameters a′, b′ and c′ defined as follows:
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Table 4.1 Fitting parameters used in the formula of [19] for Brooks–Corey (BC) and
van Genuchten–Mualem (VG) relative permeability functions

a′
10 a′

11 a′
2 b′

01 b′
02 b′

1 c′
0 β ′

BC 0.208 0.634 0.191 0.690 2.294 0.049 0.020 0.008
VG 0.465 0.052 0.112 0.551 1.939 0.057 0.009 0.011

a′ = 1 − (a′
10 + a′

11 log n′) �x′

1 + a′
2 (n′)2 �x′ , (4.33)

b′ = b′
01 n′

b′
02 n′ − 1

− b′
1 �x′ , (4.34)

c′ = b′
01 n′

b′
02 n′ − 1

+ c′
0

(
n′ − 1

)
�x′ . (4.35)

Thus, the approximating formula contains altogether eight fitting parameters. Two
sets of parameters were provided—one for Brooks–Corey–Burdine and the other
one for van Genuchten–Mualem functions. Their values are listed in Table 4.1. This
approach is relatively simple to implement, but has some limitations. First, the fitted
analytical formula is valid only for 1.05 ≤ n′ ≤ 5 and the values of the normalized
node spacing �x′ < 1, which is satisfied when:

�x(ij) ≤ he or �x(ij) ≤ hg . (4.36)

The above condition limits the applicability of this approach for coarse textured soils,
where the pressure scaling parameter is of the order of a few centimetres. Moreover,
adaptation of the method to other types of hydraulic functions would require a new
parameter fitting procedure.

4.2 Improved Approximation Scheme

In this section, the averaging method proposed by the author, which also belongs
to the Darcian averaging framework, is presented in more detail. The presentation
closely follows the original paper [39]. The method is based on the analysis of the
approximate shape of steady-state water pressure head profiles. The form of the pres-
sure profile depends on the type of flow and three major cases can be distinguished,
as shown in Fig. 4.1. In the following discussion it is assumed (without the loss of
generality) that x axis is inclined downward, so that the values of ζ range from 0 to
1. The three basic flow regimes are as follows:

• Infiltration in dry soil:
−∞ < �h(ij)

w /�x(ij) < 0 .
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(a) (b) (c)

Fig. 4.1 Steady-state profiles of the water potential head for different types of flow (after [45])

In this case, both capillary and gravity forces act in the direction of x axis. In the
upper part of the profile the water saturation and relative permeability are larger.
Consequently, the gradient in the water pressure is smaller than in the lower part
of the domain, in order to ensure uniform flux in both parts. For

�h(ij)
w /�x(ij) → 0

the pressure profile tends to a vertical line.
• Drainage or infiltration close to the water table:

0 < �h(ij)
w /�x(ij) < ζ .

In this case, the saturation in the lower part of the domain is larger than in the
upper part, but the flow direction is downward, because the capillary potential
gradient is smaller than the gravity potential gradient. The pressure profile varies
from uniform (�h(ij)

w /�x(ij) → 0) to hydrostatic (�h(ij)
w /�x(ij) → ζ ).

• Capillary rise or evaporation:

ζ < �h(ij)
w /�x(ij) < ∞ .

The gradients of the capillary and gravity potentials act in the opposite directions.
Since the capillary gradient in larger, the flow is in upward direction.

Note that for each flow regime the profiles are monotonous. The differences in profile
shapes suggest that for each case a separate averaging formula should be considered.
Moreover, three special limit cases can be distinguished:
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• Horizontal flow: ζ = 0. As shown above, in this case the Darcian mean corresponds
to the integrated mean.

• Uniform pressure distribution:

�h(ij)
w /�x(ij) = 0 .

In this case, the average permeability is trivially k(ij)
rw = k(i)

rw = k(j)
rw.

• Hydrostatic pressure distribution:

�h(ij)
w /�x(ij) − ζ = 0 .

In this case, the Darcian averaging principle cannot be used, because both flux and
gradient are equal to zero. However, the limit value of the inter-nodal permeability
for

(� h(ij)
w /�x(ij) − ζ ) → 0

is given by the upstream value k(i)
rw [5].

4.2.1 Infiltration

For infiltration in a dry soil inaccurate approximations of the inter-nodal permeability
may lead to two types of errors. For capillary-dominated flow, the correct limit value
is given by the integrated mean. Many other averaging methods (in particular the
arithmetic or upstream average) overestimate the inter-nodal permeability and con-
sequently predict too large infiltration rates. On the other hand, for gravity-dominated
flow all simple averaging methods except the upstream average underestimate k(ij)

rw ,
which leads to oscillatory profile of the water pressure head. The deficiencies of the
commonly used averaging methods were shown by Baker [4] on the example of a
simple numerical grid consisting of three nodes. Here a similar analysis is performed
in order to derive an improved formula for the inter-nodal permeability. It is based
on the observation that for steady state unsaturated flow in a homogeneous porous
medium the pressure profile resulting form the solution of the Richards equation is
monotonous. On coarser numerical grid, the monotonicity can be violated by inaccu-
rate approximation of the inter-nodal permeability, leading to unphysical oscillations
(wiggles).

Consider a numerical approximation of steady flow equation on a grid consisting
of three nodes, as shown in Fig. 4.2. The flux continuity condition at node j can be
written as:

− k(ij)
rw

(
h(j)

w − h(i)
w

�x(ij)
− ζ

)
= −k(jk)

rw

(
h(k)

w − h(j)
w

�x(jk)
− ζ

)
. (4.37)
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(a) (b)

Fig. 4.2 Approximate water pressure head profiles for infiltration (a) and drainage (b). Modified
with permission from [39]

Physically admissible profiles for steady flow are represented by solid lines in Fig. 4.2.
The values of the water potential head at the central node h(j)

w should be in the range
between h(A)

w and h(i)
w , where h(A)

w corresponds to a linear profile and is defined as:

h(A)
w = �x(jk) h(i)

w + �x(ij) h(k)
w

�x(ij) + �x(jk)
. (4.38)

Assuming h(j)
w = h(A)

w , the continuity condition given by Eq. (4.37) can be satisfied
only if the relative permeability is constant, k(ij)

rw = k(ik)
rw , which is the case for

saturated flow. In unsaturated conditions, k(ij)
rw > k(jk)

rw , because the upper part of the
medium is more saturated with water. Consequently, if h(j)

w = h(A)
w then v(ij)

w > v(jk)
w

and the flux continuity condition is not satisfied. In order to equilibrate the fluxes,
the value at the central node j must be larger than h(A)

w .
In the second limit case, when h(j)

w = h(i)
w the relative permeabilities at nodes i

and j are equal, k(i)
rw = k(j)

rw, and the capillary pressure gradient is zero. The flux in
the upper part of the column can be written as:

v(ij)
w = ζ k(i)

rw = ζ k(j)
rw , (4.39)

while the flux between the nodes j and k can be written as:

v(jk)
w = −k(jk)

rw

(
�h(jk)

w

�x(jk)
− ζ

)
. (4.40)
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If the following condition holds:

v(ij)
w ≤ v(jk)

w , (4.41)

then one can be sure that there exists a value of the pressure head h(j)
w between h(A)

w

and h(i)
w , for which v(ij)

w = v(jk)
w . Inequality (4.41) together with Eqs. (4.39) and (4.40)

imply the following condition for the inter-nodal permeability k(jk)
rw :

k(jk)
rw ≥ ζ k(j)

rw

ζ − �h(jk)
w /�x(jk)

. (4.42)

If the applied averaging method underestimates the permeability k(jk)
rw , the fluxes are

not in equilibrium even for h(j)
w = h(i)

w and the profile becomes non-monotonous, as
shown by the dashed line in Fig. 4.2. The maximum amplitude of the wiggle cannot
exceed �x(ij), since for h(j)

w = h(i)
w + �x(ij) one obtains a hydrostatic potential

distribution between x(i) and x(j), and thus v(ij)
w = 0 < v(jk)

w for any value of k(jk)
rw .

Equation (4.42) represents a sufficient condition, although not a necessary one, for
a non-oscillating solution. In some situations physically admissible profiles can be
obtained for smaller values of k(jk)

rw , but the use of the presented approximation
guarantees a monotonous solution for all cases. Note that as �h(jk)

w tends to zero,
the limit permeability value from Eq. (4.42) tends to the upstream mean k(jk)

rw = k(j)
rw,

while, on the other hand, the upstream mean always satisfies the condition given by
Eq. (4.42). This is consistent with the findings of other authors who recommended
the use of upstream mean to ensure monotonous solution of the Richards equation
[15, 16].

In the case of capillary dominated flow, (�h(jk)
w /�x(jk)) → −∞ and consequently

the lower limit for k(jk)
rw given by Eq. (4.42) tends to zero. On the other hand, it is

known that for capillary dominated flow the appropriate averaging method is the
integrated mean k(jk)

int . Therefore, one can use the integrated mean as long as it satisfies
the condition Eq. (4.42) and then switch to the limit value given by Eq. (4.42). To
summarize, the inter-nodal relative permeability between any two adjacent nodes j
(upper) and k (lower) can be computed according to the following formula:

k(jk)
rw = max

(
k(jk)

int ,
ζ k(j)

rw

ζ − �h(jk)
w /�x(jk)

)
. (4.43)

This method requires only slightly more computational effort than the integrated
mean approach.
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4.2.2 Drainage

A similar reasoning can be applied to derive the limit value of the average permeabil-
ity for drainage as (�h(jk)

w /�x(jk)) → 0. This case is shown in Fig. 4.2b. Physically
admissible profiles are obtained for values of h(j)

w in the range between h(i)
w and h(A)

w ,
the latter one being interpolated linearly according to Eq. (4.38). In unsaturated
conditions, k(ij)

rw is smaller than k(jk)
rw and consequently the total water potential gra-

dient in the lower part of the domain should be smaller than in the upper part. In the
limit case when h(j)

w = h(i)
w the average permeability k(jk)

rw should satisfy the following
condition:

ζk(j)
rw ≥ −k(jk)

rw

(
h(k)

w − h(j)
w

�x(jk)
− ζ

)
. (4.44)

Inequality (4.44) can be transformed to the following form:

k(jk)
rw ≤ ζk(j)

rw

ζ − �h(jk)
w /�x(jk)

. (4.45)

If k(jk)
rw is overestimated and does not satisfy Eq. (4.45), the water fluxes v(ij)

w and v(jk)
w

equilibrate for a value of the water pressure head h(j)
w < h(i)

w , producing a wiggle in
the pressure head profile, shown with the dashed line in Fig. 4.2b. The value of h(j)

w

will not exceed h(k)
w − �x(jk), for which a zero gradient of the total water potential

in the lower part of the domain is obtained. As in the previous case, Eq. (4.45) gives
a sufficient, although not a necessary condition to obtain a monotonous solution.

The limit value of k(jk)
rw defined by Eq. (4.45) tends to infinity as the value of

the capillary gradient �h(jk)
w /�x(jk) approaches ζ . In such a case, another formula

is necessary. It can be obtained from an analysis of the approximate potential head
profile within a singe grid cell between nodes j and k, as shown in Fig. 4.3. Let
us assume that �x(jk) is larger than �h(jk)

w only by a small value �x(jD), i.e. the
hydrostatic distribution of the water pressure is approached. An intermediate point
x(D) is introduced in such a way that it divides the grid cell in two unequal segments
〈x(j), x(D)〉 and 〈x(D), x(k)〉. For a linear potential distribution, the value of h(D)

w would
be equal to h(B)

w defined as:

h(B)
w = h(k)

w −
(
�h(jk)

w

)2

ζ �x(jk)
. (4.46)

In unsaturated conditions, the value of the potential head h(D)
w should fall between

h(j)
w and h(B)

w . On the basis of Fig. 4.3 one can assume that the total hydraulic gradient
within the segment 〈x(D), x(j)〉 is approximately the same as the hydraulic gradient
between x(j) and x(k), and both of them are close to zero:
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Fig. 4.3 Water potential head profile during drainage close to the hydrostatic state. Modified with
permission from [39]

h(k)
w − h(D)

w

x(k) − x(D)
− ζ ≈ h(k)

w − h(j)
w

x(k) − x(j)
− ζ → 0 . (4.47)

On the other hand, for the conditions close to the hydrostatic state the value of the
inter-nodal permeability approaches the permeability of the upper node. Thus, the
average permeability in the segment 〈x(D), x(k)〉 is approximately k(Dk)

rw ≈ k(D)
rw . The

value of k(D)
rw is not known—it is between k(j)

rw and k(B)
rw . Let us assume k(D)

rw ≈ k(B)
rw —

if one assumes k(D)
rw = k(j)

rw, then the conductivity for the whole grid block would
be equal to k(j)

rw, which is correct only for the limit case when �h(jk)
w /�x(jk) = ζ .

Consequently, the water flux between x(D) and x(k) is estimated as:

v(Dk)
w ≈ −k(Dk)

rw

(
h(k)

w − h(D)
w

�x(jk) − �x(jD)
− ζ

)
≈ −k(B)

rw

(
h(k)

w − h(j)
w

�x(jk)
− ζ

)
. (4.48)

For steady flow, the flux v(Dk)
w should be equal to the average flux between the nodes

j and k:

v(Dk)
w = v(jk)

w = −k(jk)
rw

(
h(k)

w − h(j)
w

�x(jk)
− ζ

)
. (4.49)

Therefore, the following approximation can be developed:

k(jk)
rw ≈ k(B)

rw , (4.50)
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where:

k(B)
rw = krw

(
h(B)

w

)
= krw

⎛
⎜⎝h(k)

w −
(
�h(jk)

w

)2

ζ �x(jk)

⎞
⎟⎠ (4.51)

For �h(jk)
w → �x(jk), Eq. (4.50) yields the expected limit value k(jk)

rw → k(j)
rw, while

for �h(jk)
w � �x(jk) the value of the inter-nodal conductivity tends to k(k)

rw , which is
an overestimation and does not satisfy Eq. (4.45). The suggested approach is to use
the minimum of the two values of k(jk)

rw given by Eqs. (4.45) and (4.50):

k(jk)
rw = min

(
k(B)

rw ,
ζ k(j)

rw

ζ − �h(jk)
w /�x(jk)

)
. (4.52)

The obtained averaging formula is very simple to implement, as it does not involve
the integrated average.

4.2.3 Capillary Rise

In contrast to the previous cases, for capillary rise the over- or underestimation of the
inter-nodal permeability does not lead to oscillations in the numerical solution. While
the permeability in the upper part of the domain is smaller than in the lower part,
this can be always compensated for by an arbitrarily small potential gradient in the
lower part, i.e. the water pressure profile close to hydrostatic, see Fig. 4.4. Therefore,
any value of the inter-nodal permeability from the range k(j)

rw to k(k)
rw will lead to

physically admissible monotonous solution. Nevertheless, depending on �x(jk), the
actual steady-state relative permeability varies from the permeability of the upper
node k(j)

rw to the integrated mean k(jk)
int , which in the case of initially dry soil may

represent a range of several orders of magnitude. A more accurate approximation of
k(j)

rw can be obtained if the grid cell is divided in two parts, as shown in Fig. 4.4. The
length of the upper sub-cell is denoted by �x(jE), while the length of the lower sub-cell
is �x(Ek). The position of point x(E) is chosen in such a way that the corresponding
value of the water pressure head is:

h(E)
w = h(k)

w − ζ �x(jk) . (4.53)

In the lower sub-cell, the water pressure distribution is close to the hydrostatic one,
which means that the average permeability between the points x(E) and x(k) can be
estimated as:

k(Ek)
rw ≈ k(E)

rw = krw

(
h(E)

w

)
. (4.54)
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Fig. 4.4 Water pressure head profile for capillary rise. Modified with permission from [39]

In the upper sub-cell, the flow is dominated by capillary forces and the average
permeability can be approximated by the integrated mean:

k(jE)
int = 1

h(E)
w − h(j)

w

h(E)
w∫

h(j)
w

krw(ĥ) dĥ . (4.55)

For steady-state flow, the water flux should be the same in each part of the cell.
Moreover, it should be equal to the flux between nodes j and k estimated using the
average inter-nodal permeability k(jk)

rw . This conditions can be written as follows:

v(jk)
w = v(jE)

w = v(Ek)
w , (4.56)

where:

v(jk)
w = −k(jk)

rw

(
�h(jk)

w

�x(jk)
− ζ

)
, (4.57)

v(jE)
w = −k(jE)

int

(
�h(jk)

w − ζ�x(jk)

�x(jE)
− ζ

)
, (4.58)

v(Ek)
w = −k(E)

rw

(
ζ �x(jk)

�x(jk) − �x(jE)
− ζ

)
. (4.59)

The double equality (4.56) can be transformed to a system of two equations with
two unknowns, k(jk)

rw and �x(jE). By requiring v(jE)
w = v(Ek)

w one arrives at a quadratic
equation with respect to �x(jE). This equation has one positive and one negative root.
The positive root is given by the following formula:
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�x(jE) = −�h(jk)
w + Zk

2 ζ (k(E)
rw /k(jE)

int − 1)
, (4.60)

where:

Zk =
√(

�h(jk)
w

)2 + 4 ζ �x(jk)
(

k(E)
rw /k(jE)

int − 1
) (

�h(jk)
w − ζ �x(jk)

)
. (4.61)

The average permeability k(jk)
rw is equal to the weighted harmonic average of the

permeabilities of the two sub-cells:

k(jk)
rw = �x(jk) k(jE)

int k(E)
rw

(�x(jk) − �x(jE)) k(jE)
int + �x(jE) k(E)

rw

. (4.62)

Note that the harmonic averaging is applied to the values of k(jE)
int and k(E)

rw which
themselves represent average permeabilities and can be considered uniform in the
respective parts of the cell. Such an approach is physically justified, in contrast to
the harmonic averaging of nodal relative permeabilities k(j)

rw and k(k)
rw as described in

Sect. 4.1.1. While the final formula for capillary rise is somewhat more complex than
the formulas for infiltration and drainage, the arithmetic operations are straightfor-
ward to perform once the value of the integrated mean k(jE)

int is known.

4.2.4 Implementation Issues

The application of the method described above requires that for any pair of nodal
values of the pressure head, h(j)

w and h(k)
w , first the value of the capillary gradient

�h(jk)
w /�x(jk) needs to be computed and compared to the gravity coefficient ζ . Based

on this comparison, one of the three available formulae must be chosen. It means
that for more complex flow scenarios the averaging formula may change with time
and/or spatial position.

While the method was developed for the pressure head as the primary variable in
the Richards equation, it can be easily adapted to the case of primary variable pw.
To this order the values of pressure head should be replaced by the values of the
pressure, while the gravity coefficient ζ should be replaced by ζ ρw g, where g is
the magnitude of the gravitational acceleration. In the numerical examples presented
below both forms of the governing equations are used.

The proposed approach, similarly to the integrated mean and the method of
Baker [3], requires an integration of the relative permeability defined as a func-
tion of the water pressure (or pressure head). For several models of the relative
permeability functions, including the exponential, Brooks–Corey–Burdine and
Brooks–Corey–Mualem models, this can be done analytically. However, for the
widely used van Genuchten–Mualem model (and many other), analytical integration
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is not possible. The use of numerical integration significantly increases the compu-
tational effort and the time of the simulation. An efficient approach is to create at
the preprocessing stage a look-up table containing the values of the flux potential
�p or �h defined as a function of the water pressure (or head). These values are
calculated using numerical integration with a large number of quadrature points, in
order to obtain an accurate approximation. During the simulation of unsteady flow,
the integrated mean is computed as the difference in flux potentials divided by the
difference in the pressures (or heads), with the values of the flux potential interpolated
from the look-up table. In the examples presented below, linear interpolation was
used, although more sophisticated techniques are also available [30]. Interpolation
from a look-up table can be also used to evaluate the water saturation and the relative
permeability as functions of the water pressure. Such an approach offers a signif-
icant speedup of the computations, even if simple permeability averaging schemes
are employed. In order to minimize the error introduced by interpolation, the points
should be spaced non-uniformly, with higher density in the regions where the val-
ues of hydraulic functions change more rapidly. Numerical experiments presented
in [39] and [40] showed that if the interpolation is used, the proposed averaging
method requires simulation time comparable to the standard averaging approaches
like arithmetic or geometric means.

4.2.5 Evaluation for Steady Flow

The accuracy of the formulae presented in the previous sections can be evaluated by
comparing the resulting values of the inter-nodal permeability with the ones obtained
from the solution of equation describing steady state incompressible unsaturated flow
between two nodes. First, let us consider exponential relative permeability function
given by Eq. (4.22). In this case the exact value of the steady-state inter-nodal per-
meability is given by the formula of Baker et al. [5], Eq. (4.26), which results from
the analytical solution of the steady flow equation. In Tables 4.2 and 4.3 these exact
permeability values (K-EXACT) are compared with the approximations obtained
using the formulae of Szymkiewicz [39] (K-SZYM), described in Sects. 4.2.1–4.2.3,
as well as other commonly used averaging schemes. They include the arithmetic
(K-ARIT), geometric (K-GEOM), harmonic (K-HARM) and integrated (K-INT)
averages, as well as upstream weighting (K-UPS) and the method based of flux
splitting (K-SPLIT), as given by Eqs. (4.14) and (4.17). In the latter case, it was
assumed that the relative permeability for the capillary flux is equal to the integrated
mean approach and the relative permeability for the gravitational flux is equal to
the permeability of the upper node. The calculations were carried out for two values
of the pressure scaling parameter: hg = 1 m and hg = 0.05 m, which correspond
respectively to a moderate and a strong nonlinearity in the krw(hw) relationship. Two
values of the gravity coefficient were used: ζ = 1 (vertical flow) and ζ = 0.707
(flow direction inclined by 45◦ to the horizontal plane). The inter-nodal distance
was assumed constant, �x = 0.2 m. A number of boundary value problems were
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Table 4.2 Exact and approximate steady-state inter-nodal permeability values for exponential
relative permeability function with hg = 1 m, �x = 0.2 m

Test case 1 2 3 4 5 6

Flow type Infiltration Capillary rise Drainage Infiltration Capillary rise Drainage

h(j)
w (m) −1.00E−03 −5.00E+00 −1.50E−01 −1.00E−03 −5.00E+00 −1.00E−01

k(j)
rw (–) 9.99E−01 6.74E−03 8.61E−01 9.99E−01 6.74E−03 9.05E−01

h(k)
w (m) −5.00E+00 −1.00E−03 −1.00E−03 −5.00E+00 −1.00E−03 −1.00E−03

k(k)
rw (–) 6.74E−03 9.99E−01 9.99E−01 6.74E−03 9.99E−01 9.99E−01

ζ (–) 1.00E+00 1.00E+00 1.00E+00 7.07E−01 7.07E−01 7.07E−01
K-EXACT 2.11E−01 1.86E−01 9.26E−01 2.07E−01 1.90E−01 9.50E−01
K-SZYM 1.98E−01 1.92E−01 8.94E−01 1.98E−01 2.00E−01 9.32E−01
K-ARIT 5.03E−01 5.03E−01 9.30E−01 5.03E−01 5.03E−01 9.52E−01
K-GEOM 8.20E−02 8.20E−02 9.27E−01 8.20E−02 8.20E−02 9.51E−01
K-HARM 1.34E−02 1.34E−02 9.25E−01 1.34E−02 1.34E−02 9.50E−01
K-INT 1.98E−01 1.98E−01 9.28E−01 1.98E−01 1.98E−01 9.51E−01
K-UPS 9.99E−01 9.99E−01 8.61E−01 9.99E−01 9.99E−01 9.05E−01
K-SPLIT 2.29E−01 2.06E−01 6.64E−01 2.21E−01 2.04E−01 7.97E−01

Table 4.3 Exact and approximate steady-state inter-nodal permeability values for exponential
relative permeability function with hg = 0.05 m, �x = 0.2 m

Test case 7 8 9 10 11 12

Flow type Infiltration Capillary rise Drainage Infiltration Capillary rise Drainage

h(j)
w (m) −1.00E−03 −5.00E+00 −1.50E−01 −1.00E−03 −5.00E+00 −1.00E−01

k(j)
rw (–) 9.80E−01 3.72E−44 4.98E−02 9.80E−01 3.72E−44 1.35E−01

h(k)
w (m) −5.00E+00 −1.00E−03 −1.00E−03 −5.00E+00 −1.00E−03 −1.00E−03

k(k)
rw (–) 3.72E−44 9.80E−01 9.80E−01 3.72E−44 9.80E−01 9.80E−01

ζ (–) 1.00E+00 1.00E+00 1.00E+00 7.07E−01 7.07E−01 7.07E−01
K-EXACT 3.84E−02 7.62E−04 1.27E−01 2.87E−02 1.79E−03 2.74E−01
K-SZYM 3.77E−02 4.74E−04 1.06E−01 2.70E−02 1.51E−03 2.45E−01
K-ARIT 4.90E−01 4.90E−01 5.15E−01 4.90E−01 4.90E−01 5.58E−01
K-GEOM 1.91E−22 1.91E−22 2.21E−01 1.91E−22 1.91E−22 3.64E−01
K-HARM 7.44E−44 7.44E−44 9.38E−02 7.44E−44 7.44E−44 2.38E−01
K-INT 9.80E−03 9.80E−03 3.12E−01 9.80E−03 9.80E−03 4.27E−01
K-UPS 9.80E−01 9.80E−01 4.98E−02 9.80E−01 9.80E−01 1.35E−01
K-SPLIT 4.71E−02 1.02E−02 −7.17E−01 3.65E−02 1.01E−02 −5.45E−01

examined, which represent all three types of flow, i.e. infiltration, drainage and cap-
illary rise in either vertical or inclined direction.

It can be seen that the approximation method proposed by the author (K-SZYM)
is in most cases more accurate than any other method. The exceptions are represented
by test cases 3 and 6, corresponding to drainage where the permeabilities at the upper
and lower node are very similar, and consequently most of the averaging methods give
similar results. It should be noted that for the same two cases the method based on flux
splitting predicts average permeability which is outside the range of values defined
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by the two nodal permeabilities, and thus physically inadmissible. It means that such
an averaging scheme should be used with care. The advantages of the new method
can be seen even more clearly in Table 4.3, where the results for highly nonlinear
relative permeability function are reported. Here the maximum relative error of the
new method does not exceed 40 %, while other methods often lead to errors of more
than one order of magnitude. For drainage (test cases 9 and 12) the method based on
flux splitting predicts negative values of the permeability coefficient, which means
that the flux direction is opposite to the direction resulting from the water potential
gradient.

Further results for steady-state flow can be found in [39]. In that paper various
averaging schemes were verified against numerical solutions of steady flow equa-
tion for fifteen relative permeability functions, corresponding to a range of soils
from sands to clays. Included were four Brooks–Corey–Burdine functions, four
van Genuchten–Mualem functions, two exponential functions, one Gardner func-
tion, two van Genuchten–Mualem functions with negative connectivity parameter κ

(see Sect. 2.1.6), and two combinations of van Genuchten capillary function with
power-type relative permeability functions, as proposed in [27]. For each function
a large number of steady flow problems was solved, with the internodal distances
varying between 1 mm and 100 m and the nodal values of the water pressure head
ranging from −1 mm to −100 m. For any specific test case, the error of the considered
averaging scheme was defined as follows:

ERR-K = log10
k(jk)

rw

k(jk)
ref

(4.63)

where k(jk)
rw was computed with the considered averaging scheme, and k(jk)

ref is the
reference value obtained from the numerical solution of steady state flow equation
between nodes. Such a formulation was chosen in order to give equal weight to
over- and underestimation of the average permeability, and to facilitate comparison
of the relative errors, which often differ by several orders of magnitude. In view of
the large number of results, representative error measures were defined to quantify
the accuracy of each method of inter-nodal permeability approximation:

• root-mean square error, RMS-ERR-K

RMS-ERR-K =
√√√√ 1

N

N∑
1

(ERR-K)2 (4.64)

where N is the number of test cases in the considered set,
• maximum error value (largest overestimation), max(ERR-K),
• minimum error value (largest underestimation), min(ERR-K).

The values of these error measures are reported in Table 4.4 for some of the aver-
aging methods used in the previous example: K-ARIT, K-GEOM, K-INT, K-UPS

http://dx.doi.org/10.1007/978-3-642-23559-7_2
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Table 4.4 Root-mean-square errors obtained with various permeability averaging schemes for
steady flow test cases. Data from [39]

K-SZYM K-BAKER K-GASTO K-ARIT K-GEOM K-INT K-UPS

Average 0.12 0.36 0.29 1.61 1.14 1.01 1.30
Small �x 0.04 0.07 0.33 1.13 0.84 0.09 1.34
Medium �x 0.13 0.38 0.22 1.33 0.89 0.62 1.44
Large �x 0.17 0.49 0.19 2.17 1.55 1.68 1.10
Infiltration 0.04 0.11 0.33 0.86 1.26 0.57 1.04
Drainage 0.22 0.51 0.09 2.57 1.29 1.90 0.27
Capillary rise 0.11 0.49 0.26 1.74 0.77 0.64 1.96

and K-SZYM. Moreover, computations were performed with the method of [19]
(K-GASTO), for Brooks–Corey and van Genuchten–Mualem functions and node
spacing satisfying condition given by Eq. (4.36), and with the method of Baker [3]
(K-BAKER), for those relative permeability functions, which can be inverted ana-
lytically to obtain hw(krw).

Table 4.4 provides the average value of RMS-ERR-K for all test cases, as well as
separate results obtained for three ranges of inter-nodal distances �x: small (1 mm,
1 cm, 2 cm), medium (10, 20, 50 cm) and large (1, 10, 100 m), and three types of
flow (infiltration, drainage, capillary rise). It should be noted that due to its definition
RMS-ERR-K is always positive and provides information only on the magnitude of
error, without indicating whether the specific method under- or overestimates the
internodal permeability. As the errors are defined in terms of decimal logarithm, a
value of RMS-ERR-K = 1.0 corresponds to an error of one order of magnitude (i.e.
1000 %), while a value of 0.17—to an error of about 50 %.

Overall, it can be seen that the methods based on Darcian means are significantly
more accurate than the simple averaging schemes, especially on medium or coarse
grids. On fine grids, accurate results were obtained also with the integrated mean
approach. As far as the type of flow is considered, the author’s method gave the best
results of all methods for infiltration and capillary rise, while for drainage it was sec-
ond best, after the method of Gasto et al. [19]. The performance of the simple methods
differ significantly, depending on the type of flow. For infiltration, the arithmetic and
integrated averages provided average errors below one order of magnitude, while
the average errors of the geometric average and the upstream weighting exceeded
this value. In contrast, for drainage the upstream weighting largely outperformed the
other simple methods, allowing to obtain very high accuracy. For the capillary rise,
the geometric and integrated means proved more accurate than the arithmetic and
upstream means.

Finally, the methods can be also compared in terms of the largest error obtained
for the ensemble of test problems. The maximum and minimum error values are
reported in Table 4.5. The most extreme case corresponds to the overestimation of
the inter-nodal permeability by 10.5 orders of magnitude using the arithmetic mean
approach, which occurred for drainage with large �x in a soil characterized by a
very rapid decrease of the relative permeability within a small range of the negative
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Table 4.5 Root-mean-square errors obtained with various permeability averaging schemes for
steady flow test cases. Data from [39]

K-SZYM K-BAKER K-GASTO K-ARIT K-GEOM K-INT K-UPS

min(ERR-K) −1.50 −4.30 −1.24 −2.89 −5.38 −3.23 −6.05
max(ERR-K) 0.11 4.47 1.60 10.50 5.40 8.55 8.18

values of the water pressure head. Other simple averaging methods may also lead to
over- or underestimation of the permeability by several orders of magnitude in par-
ticular conditions. Significant errors were generated also by the method of Baker [3],
despite the fact that the average errors obtained with this method are rather small.
This indicates that the latter method may be relatively inaccurate for some specific
types of the relative permeability functions. In contrast, the largest errors generated
by the method of Szymkiewicz [39] did not exceed 1.5 order of magnitude. The
method of Gasto et al. [19] was similarly accurate, but due to its limitations it could
be applied to a substantially smaller number of test cases.

4.2.6 Evaluation for Unsteady Flow

In this section, four one-dimensional unsteady flow test cases are discussed, in order
to show the performance of the proposed method in comparison with other averaging
schemes. The first two examples are similar to the ones presented in [39], but differ
in the values of soil parameters and in accounting for the compressibility of water.
The soil is characterized by Brooks–Corey–Burdine hydraulic functions with the
following parameters: porosity φ = 0.4, residual saturations Srw = Sra = 0, intrinsic
permeability ks = 8.5×10−12 m2, entry pressure pe = 440 Pa, exponent nb = 1.124.
The parameters correspond to sand with a relatively uniform grain size distribution.

The first example is vertical downward infiltration in a 2-m thick soil layer with
initially uniform distribution of the water pressure pw = −49050 Pa, corresponding
to the water saturation of 0.005. At the soil surface a constant value of the water
pressure is imposed, pw = −500 Pa (Sw = 0.866), while at the bottom of the layer
the free drainage condition is applied. Numerical simulations were performed for two
values of node spacing, �x = 20 cm and �x = 1 cm, respectively. Figure 4.5 shows
the water saturation profiles after 3 h of infiltration obtained on the coarser grid for
various permeability averaging schemes. They are compared to the reference solution
obtained on a fine grid with �x = 1 mm. For such a fine discretization, essentially
the same results were obtained using K-INT and K-UPS schemes. As discussed
above, these two averaging schemes represent the limit values of the inter-nodal
conductivity for downward infiltration. Thus, the corresponding solution is assumed
to be a close approximation of the exact solution. The reference solution predicts
a very sharp wetting front, which cannot be exactly reproduced on the coarse grid.
However, K-UPS, K-ARIT, K-BAKER and K-SZYM approximate the position of
the wetting front with reasonable accuracy. The latter two methods give very similar
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Fig. 4.5 Example 1: water saturation profiles obtained with various permeability averaging meth-
ods, coarse grid

results, which are somewhat more accurate than the upstream weighting and on the
other hand do not produce oscillations, which occur in the solution obtained with
K-ARIT. The integrated mean (K-INT) and the method based on arithmetic averaging
of the water saturation (K-S-ARIT) not only lead to oscillations but also considerably
underestimate the position of the wetting front. The least accurate solution is given
by the geometric mean, which severely underestimates the inter-nodal permeability
and consequently predicts virtually no flow. The latter three methods are clearly not
adequate to simulate gravity-dominated infiltration on coarse grids.

In contrast, if a finer node spacing of 1 cm is used, the differences between various
methods are much smaller. The only exception is the geometric mean, which still
underestimates the position of the wetting front and produces saturation values larger
than the boundary saturation in the wet zone (not shown here). In order to better show
the differences between the other methods, only a small part of the solution domain
near the wetting front is presented in Fig. 4.6. For the considered node spacing,
K-SZYM gives the same values as K-INT (the latter one is not shown in the figure).
This approach underestimates the position of the wetting front, albeit only slightly.
Even better results are obtained with K-BAKER, K-GASTO and K-S-ARIT. In con-
trast, both K-ARIT and K-UPS give more diffuse solutions, which overestimate the
position of the wetting front, K-UPS being less accurate than K-ARIT. Note also
that the geometric averaging predicts the position of the wetting front at the value of
x ≈ 0.5 m, well outside the range shown in the figure.

The second example concerns drainage in the same domain as in Example 1. The
initial condition is pw = 0 in the whole soil layer and this value is maintained at the
bottom as the boundary condition. At the soil surface a zero-flux condition is imposed.
Water drains from the layer under the influence of gravity. The same values of �x
as in Example 1 were used. The water saturation profiles for coarse grid after 4 h of
drainage are shown in Fig. 4.7. It can be seen that all simple permeability averaging
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Fig. 4.6 Example 1: water saturation profiles obtained with various permeability averaging meth-
ods, fine grid
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Fig. 4.7 Example 2: water saturation profiles obtained with various permeability averaging meth-
ods, coarse grid

schemes lead to oscillatory solutions. In contrast, monotonous saturation profiles
are obtained with K-UPS, K-BAKER and K-SZYM, the latter one being closest to
the reference solution. For the finer grid, �x = 1 cm, all averaging schemes produce
very accurate solutions, thus the results are not shown here.

The test cases presented above may suggest that the node spacing of about 1 cm
is fine enough to obtain sufficiently accurate results with the arithmetic averaging
scheme, which is widely used in unsaturated flow modelling. Such a conclusion was
drawn by van Dam and Feddes [43] on the basis of several numerical simulations
performed by those authors. However, a re-examination of two of their test cases
presented by Szymkiewicz [39] showed that the results obtained with �x = 1 cm
significantly differ from those obtained for a finer grid if arithmetic averaging is
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applied. The two cases (Examples 3 and 4 in the numeration of this chapter) are
briefly described here, following [39]. Both problems concern vertical flow in a
40 cm column of soil characterized by the van Genuchten capillary function and
Mualem relative permeability function with the following parameters: θsw = 0.43,
θrw = 0.01, pg = 3940 Pa, ng = 1.507, mg = 1 − 1/ng, ks = 2.065 × 10−13 m2

(Ksw = 17.5 cm d−1) and the connectivity parameter κ = −0.14. Note that for the
non-standard Mualem permeability function neither K-GASTO nor K-BAKER can
be applied.

The boundary conditions correspond to the soil–atmosphere interface, as described
in Sect. 2.3.2. In Example 3 the soil is initially dry, with a uniform water content
θ init

w = 0.1, corresponding to the water pressure head hinit
w = −832.5 cm. At the

top of the column a constant infiltration flux of vtop
w = 100 cm d−1 is imposed, until

the soil surface reaches saturation. Afterwards, the boundary condition is switched
to a constant pressure head, htop

w = 0. The infiltration continues, but the value of
the flux decreases in time. At the bottom, the initial value of the water content
is maintained. The solutions are compared in terms of the cumulative infiltration
qinf , defined as the integral of the infiltration flux over time. The reference solution
obtained on a fine grid with �x = 0.05 cm predicted the cumulative infiltration
of qinf = 3.69 cm at t = 0.1 d, while the ponding occured (the surface became
saturated) at tpond = 0.006 day. On such a fine grid, virtually the same results were
obtained using the arithmetic and integrated permability averaging and they were
cross-checked with the Hydrus-1D code [35]. On a coarser grid of �x = 1 cm,
the arithmetic averaging yielded the cumulative infiltration qinf = 3.88 cm and
tpond = 0.009 d, the geometric averaging: qinf = 3.66 cm and tpond = 0.002 d,
respectively, while the author’s method: qinf = 3.68 cm and tpond = 0.006 d. In
this case the new method offers a considerable improvement over the arithmetic
averaging.

In Example 4 the soil is initially moderately wet (θ init
w = 0.1, hinit

w = −200 cm)
and a constant evaporation flux of vtop

w = −0.5 cm d−1 is applied at the surface, until
the water pressure head at the surface reaches the value of hdry = −1377 m, which
is then maintained as a Dirichlet boundary condition. The evaporation continues, but
the flux diminishes with time. At the bottom, the initial value of the water pressure
head is kept. Similarly to the previous case, the solutions are compared in terms of the
cumulative flux at the surface. According to the reference solution (�x = 0.05 cm),
the cumulative evaporation flux after 5 days is qev = 0.89 cm and the water pressure
head at the soil surface reaches its limit value after tdry = 0.51 day. For �x = 1 cm the
differences between averaging schemes are even larger than in the previous case, with
the arithmetic averaging predicting qev = 1.12 cm and tdry = 1.14 d, the upstream
averaging: qev = 1.26 cm and tdry = 1.41 d, and the author’s method: qev = 0.90 cm
and tdry = 0.63 d. Again, the new method proved more accurate than the arithmetic
mean.

http://dx.doi.org/10.1007/978-3-642-23559-7_2
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4.3 Saturated–Unsaturated Transition

A special case for permeability averaging arises when one of the nodes is fully water-
saturated, with the water pressure larger than the entry pressure for the given soil,
while the other node is unsaturated. If the value of the water pressure at the saturated
node increases, the inter-nodal relative permeability obtained from the steady-state
solution will also increase, tending in the limit to the value k(jk)

rw = 1. Among the
simple averaging methods presented in Sect. 4.1, only the integrated mean, Eq. (4.9),
and the formula based on the arithmetic average of nodal pressures, Eq. (4.8), are
able to reproduce this behaviour. Other methods, based on the averaging of the
nodal permeabilities or saturations, do not predict any change in the inter-nodal
permeability, because both permeability and saturation are independent of the water
pressure in the saturated range. For a more detailed discussion of the errors arising
at the saturated–unsaturated interface, see [31].

As far as the methods based on the Darcian averaging approach are considered,
one should note that the formulae presented in Sect. 4.2 are applicable without any
modifications to the case of saturated–unsaturated transition. They are based on the
integrated mean permeability and on the values of permeability calculated for some
intermediate values of the pressure head. Thus, a change of the pressure head at
the saturated node will influence the resulting inter-nodal permeability, even if both
nodal permeabilities remain constant. The same is true for the formulae of Baker [2],
Baker et al. [5] and Baker [3]. In contrast, the formula of Gasto et al. [19] was
developed for strictly unsaturated conditions, but the authors proposed a modification
to account for the saturated–unsaturated transition, which can be also used with
any other scheme for unsaturated permeability averaging. The grid cell is explicitly
divided in two parts, one fully saturated and the other one unsaturated, with the
interface located at x(S), as shown in Fig. 4.8. Assuming that node j is saturated,
one can write the flux continuity condition at the saturated–unsaturated interface as
follows:

− k(jS)
rw

(
h(S)

w − h(j)
w

�x(jS)
− ζ

)
= −k(Sk)

rw

(
h(k)

w − h(S)
w

�x(Sk)
− ζ

)
, (4.65)

where h(S)
w is the water pressure head corresponding to the transition from unsaturated

to saturated state (equal to zero or the air entry pressure, depending on the assumed
constitutive relationship). The relative permeability in the saturated zone is k(jS)

rw = 1,
while the permeability in the unsaturated zone k(Sk)

rw can be computed with the formula
of Gasto et al. [19], or any other formula suitable for unsaturated flow. If k(Sk)

rw
depends on �x(Sk), Eq. (4.65) is nonlinear with respect to �x(Sk) and has to be
solved iteratively. A further simplification can be introduced if one considers that
the pressure distribution between nodes j and k is linear. This leads to the following
expression for the inter-nodal permeability k(jk)

rw [19]:
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Fig. 4.8 Water pressure head
profile near the saturated–
unsaturated interface

k(jk)
rw = k(Sk)

rw �h(jk)
w(

h(k)
w − h(S)

w

)
+ k(Sk)

rw

(
h(S)

w − h(j)
w

) , (4.66)

where the unsaturated permeability k(Sk)
rw is computed assuming the position of the

interface:

x(S) = x(k) − �x(jk) h(k)
w − h(S)

w

�h(jk)
w

. (4.67)

An analogous formula can be easily obtained for the opposite case, i.e. when the
lower node is saturated.

As an example, let us consider steady-state vertical downward flow (ζ = 1)
in a porous medium characterized by Brooks–Corey–Burdine relative permeability
function with the air-entry pressure head he = 0.25 m and the shape parameter
nb = 2.0. The distance between nodes is �x = 0.20 m and the water pressure head
at the lower node is h(k) = −5.0 m, with the corresponding relative permeability
k(k)

rw = 3.91 × 10−11. At the upper node, the water pressure head assumes four
different values, such that h(j)

w ≥ −he and k(j)
rw = 1, as shown in Table 4.6. For

each case, the inter-nodal relative permeability obtained from a numerical solution
of the steady-state problem is compared with four approximations. The approximate
methods include those proposed by Szymkiewicz [39] (K-SZYM), Baker et al. [5]
(K-BAKER) and Gasto et al. [19] (K-GASTO), as well as the integrated mean (K-
INT) and the method based on the arithmetic average of the water pressure head
(K-H-ARIT). The results in Table 4.6 shows that the most accurate approximation in
this case is obtained with the formula of Baker et al. [5]. Good results are also obtained
with K-SZYM, which predicts values equal to the integrated mean, except for the first
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Table 4.6 Inter-nodal permeability values for saturated–unsaturated transition obtained from the
numerical solution of steady flow equation and various approximating formulae

Test case 1 2 3 4

h(j)
w (m) −0.25 0.00 1.00 5.00

K-NUM 4.04E−02 9.24E−02 2.42E−01 5.44E−01
K-SZYM 4.04E−02 5.71E−02 2.14E−01 5.29E−01
K-BAKER 4.10E−02 8.89E−02 2.41E−01 5.44E−01
K-GASTO 8.82E−02 9.24E−02 1.09E−01 1.61E−01
K-INT 7.52E−03 5.71E−02 2.14E−01 5.29E−01
K-H-ARIT 6.77E−09 1.00E−08 5.96E−08 1.00E+00

case, where it is close to the reference value, while K-INT underestimates the steady-
state permeability by a factor of about 5. K-GASTO is the most accurate method for
hw = 0, while in other cases it is less accurate than K-BAKER and K-SZYM, but still
correctly reproduces the order of magnitude of the inter-nodal permeability. Finally,
the arithmetic averaging of the water pressure head, K-H-ARIT, while showing the
expected increase of the inter-nodal permeability with the increase of the pressure
at the upper node, leads to very inaccurate results for all cases except the last one,
where at least the correct order of magnitude is reproduced.

4.4 Heterogeneous Medium

The permeability averaging methods described in the previous sections were based
on the assumption that the porous medium between the two adjacent nodes is homo-
geneous. Nevertheless, they can be directly applied also for heterogeneous media if
the material properties are associated with grid cells (elements) and the nodes are
placed at material interfaces (vertex-centred scheme with element-oriented material
properties, discussed in Sect. 3.2.4). In such a case, the porous medium between two
adjacent nodes is always homogeneous, and any of the averaging methods described
above can be applied.

On the other hand, additional considerations are necessary if the adjacent nodes
belong to different material regions, as shown in Fig. 4.9. In such a case, physi-
cally consistent approximation of the inter-nodal permeability can be obtained if
one makes use of the interface conditions discussed in Sect. 2.3.3. The following
discussion focuses again on the case of one-dimensional incompressible unsaturated
flow. The interface separating materials I and II is located at x(F), between nodes
x(j) and x(k), as shown in Fig. 4.9. The materials are characterized by the saturated
hydraulic conductivities KI

sw and KII
sw and the relative permeability functions kI

rw(hw)

and kII
rw(hw), respectively. The flux continuity condition for the interface can be writ-

ten as follows:
v(jF)

w = v(Fk)
w , (4.68)

http://dx.doi.org/10.1007/978-3-642-23559-7_3
http://dx.doi.org/10.1007/978-3-642-23559-7_2
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Fig. 4.9 Water pressure head profile in a layered medium. Modified with permission from [40]

where:

v(jF)
w = −KI

sw kI(jF)
rw

[
h(F)

w − h(j)
w

�x(jF)
− ζ

]
, (4.69)

v(Fk)
w = −KII

sw kII(Fk)
rw

[
h(k)

w − h(F)
w

�x(Fk)
− ζ

]
. (4.70)

In the above equations, kI(jF)
rw denotes the average relative permeability in material I

between node j and the interface, while kII(Fk)
rw is the average relative permeability in

material II between the interface and node k. Equations (4.68)–(4.70) account for the
continuity of the water pressure across the interface since the same value of h(F)

w is
used for both sides. The average relative permeabilities for the two layers above and
below the interface can be computed with any suitable method, leading to a nonlinear
equation with respect to h(F)

w . The equation can be solved iteratively, yielding the
value of h(F)

w and the corresponding permeabilities in each of the two the sub-cells.
The resulting value of the inter-nodal conductivity K(jk)

w must satisfy the following
relationship:

− K(jk)
w

[
h(k)

w − h(j)
w

�x(jk)
− ζ

]
= v(jF)

w = v(Fk)
w . (4.71)

In contrast to the case of homogeneous medium with constant saturated conductiv-
ity, here the averaging is applied to the total conductivity Kw = Ksw krw, not only
to the relative permeability krw. In view of the flux continuity condition given by
Eqs. (4.68)–(4.70), the average inter-nodal conductivity K(jk)

w can be subsequently
computed the as weighted harmonic mean of the two sub-cell conductivities:
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K(jk)
w =

[
�x(jF) + �x(Fk)

] [ �x(jF)

KI
sw kI(jF)

rw

+ �x(Fk)

KII
sw kII(Fk)

rw

]−1

. (4.72)

It is clear that the choice of the method used to compute the average relative perme-
ability in each of the homogeneous sub-cells will have significant influence on the
final result. Therefore, the use of improved methods based on the Darcian averag-
ing principle is recommended. Note also that for saturated flow, when the relative
permeabilities are equal to unity at both sides of the interface, one recovers from
Eq. (4.72) a formula for the average saturated conductivity analogous to Eq. (2.110):

K(jk)
sw =

[
�x(jF) + �x(Fk)

] [�x(jF)

KI
sw

+ �x(Fk)

KII
sw

]−1

. (4.73)

A number of other methods to calculate inter-nodal permeability at a material
interface can be found in the literature. Possibly the most straightforward option is to
apply one of the simple averages defined by Eqs. (4.4)–(4.6) to the total conductivity
Kw or permeability kw, instead of the relative permeability krw. For the case of
arithmetic averaging, the resulting formula can be written as follows:

K(jk)
w = 1

2

(
KI

sw kI(j)
rw + KII

sw kII(k)
rw

)
. (4.74)

This formula is used, for example, in the well known HYDRUS-1D numerical code
[35]. Its drawback is that it does not lead to physically consistent inter-nodal perme-
ability for steady-state saturated flow. In the latter case, as it was mentioned above,
accurate results are obtained using the harmonic mean. Therefore, an often used
approach, e.g. [1, 13, 26], is to compute the average intrinsic permeability (or satu-
rated conductivity) as the harmonic mean of the intrinsic permeabilities (or saturated
conductivities) of the two materials, while the relative permeability is computed by
the upstream weighting:

K(jk)
w = K(jk)

sw k(jk)
rw , (4.75)

k(jk)
rw =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k(j)
rw if

h(k)
w − h(j)

w

�x(jk)
− ζ ≤ 0 ,

k(k)
rw if

h(k)
w − h(j)

w

�x(jk)
− ζ > 0 ,

(4.76)

where K(jk)
sw is given by Eq. (4.73) This method leads to physically consistent result

for saturated flow. On the other hand, the use of upstream averaging ensures a monoto-
nous solution.

The scheme proposed by Romano et al. [32] is based on Eq. (4.68) but introduces
two additional ghost points in the vicinity of the interface, Fig. 4.9. One of them is
located above the interface and extrapolates the pressure profile from the lower layer.

http://dx.doi.org/10.1007/978-3-642-23559-7_2
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The other one is positioned below the interface and extrapolates the pressure profile
from the upper layer. It is assumed that the interface is located mid-way between the
nodes j and k and the extrapolation is linear, so the following relation holds:

1

2

(
h(j)

w + h(k)′
w

)
= 1

2

(
h(j)′

w + h(k)
w

)
, (4.77)

where h(j)′
w and h(k)′

w denote the water pressure head values at the ghost nodes. The
flux continuity condition is written as:

− KI
sw kI(jk)

rw

[
h(k)′

w − h(j)
w

�x(jk)
− ζ

]
= −KII

sw kII(jk)
rw

[
h(k)

w − h(j)′
w

�x(jk)
− ζ

]
, (4.78)

where the average relative permeability for each of the materials is equal to the
geometric mean of the values at the real and ghost node:

kI(jk)
rw =

√
kI

rw

(
h(j)

w

)
× kI

rw

(
h(k)′

w

)
, (4.79)

kII(jk)
rw =

√
kII

rw

(
h(j)′

w

)
× kII

rw

(
h(k)

w

)
. (4.80)

The nonlinear system of equations (4.77)–(4.78) has to be solved iteratively for each
material interface. The inter-nodal conductivity is then computed as the harmonic
average of the conductivities in two sub-layers:

K(jk)
w = 2 KI

sw kI(jk)
rw KII

sw kII(jk)
rw

KI
sw kI(jk)

rw + KII
sw kII(jk)

rw

(4.81)

While this method was shown to be more accurate than the standard arithmetic
and geometric weighting of the nodal conductivities in the test cases considered
by Romano et al. [32] and Brunone et al. [8], it raises two questions. First, it is
not clear, why the pressure values at ghost nodes, which do not have any physical
interpretation, should be used instead of the value of the pressure at the interface, as
in Eq. (4.68). Second, geometric averaging of the relative permeabilities was shown
to be very inaccurate in some problems involving homogeneous media, and one can
expect similar type of errors in the heterogeneous case.

Szymkiewicz and Helmig [40] compared the performance of various permeabil-
ity averaging schemes for one-dimensional incompressible flow in layered soils.
Principal results of their investigation are presented here. Four approximation meth-
ods were used to compute the average permeability across a material interface
separating sand and clay layers. They include Eqs. (4.68)–(4.72) combined with
the method of Szymkiewicz [39] to evaluate the permeability at each side of the
interface (referred to as CC-SZYM), the simple arithmetic averaging, Eq. (4.74)
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Table 4.7 Parameters of soils used in the numerical simulations of steady-state flow in a hetero-
geneous medium. Modified with permission from [40]

Soil θrw θsw pe or pg nb or ng Ksw

(–) (–) (Pa) (–) (m s−1)

BC-sand 0.020 0.417 711 0.592 5.83 × 10−5

BC-clay 0.056 0.423 3360 0.127 2.50 × 10−7

VGM-sand 0.043 0.430 677 2.68 8.25 × 10−5

VGM-clay 0.007 0.360 19620 1.09 5.56 × 10−8

(CC-ARIT), the combination of harmonic averaging of the intrinsic permeability
and upstream weighting of the relative permeability, Eqs. (4.73), (4.75) and (4.76)
(CC-UPS), and the method of Romano et al. [32] (CC-ROM). The results were
compared to the values of the inter-nodal permeability obtained from the numerical
solution of steady-state flow equation between the two points, using very fine spatial
discretization. The two soils were characterized by either Brooks–Corey–Burdine
or van Genuchten–Mualem functions. Their parameters are listed in Table 4.7. For
each set of hydraulic functions, a large number of simulations was performed, with
varying sequence of the layers (sand over clay, clay over sand), distance between
nodes, �x = {1, 2, 5, 10, 20, 50, 100, 200, 500} cm, and potential head values at
the nodes, hw = {10, 0,−1,−10,−100,−1000} cm (for Brooks–Corey model the
potential values were modified by adding negative value corresponding to he, as
listed in Table 4.7 for respective soils).

The error of each averaging scheme was defined similarly to Eq. (4.63). However,
the values of total conductivity were used instead of the relative permeability:

ERR-K = log10
K(jk)

w

K(jk)
ref

(4.82)

where K(jk)
w and K(jk)

ref denote, respectively, the approximate inter-nodal conductivity
and the reference conductivity obtained from the steady-state solution. For each
averaging method the root mean square, maximum and minimum error values were
defined in the way described in Sect. 4.2.5. The values of these parameters are listed
in Table 4.8 for soils characterized by Brooks-Corey functions and in Table 4.9 for
the van Genuchten–Mualem functions. Additionally, for the schemes CC-ROM and
CC-SZYM the values of the potential head at the interface h(F)

w can be compared with
the values obtained from the numerical steady flow solution. The corresponding root
mean square errors, denoted as RMS-ERR-H, are also reported.

The results shown in the tables indicate that the averaging scheme CC-SZYM,
based on the approximation of the Darcian means, is much more accurate in predicting
the value of steady-state average conductivity than the other three methods. CC-ROM
is second best, but still can lead to over- or underestimation of the conductivity by
several orders of magnitude. It can be also noted that all methods are less accurate
for the van Genuchten–Mualem model than for the Brooks–Corey–Burdine model.
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Table 4.8 Errors of permeability approximation schemes for steady-state flow in a heterogeneous
medium, Brooks–Corey–Burdine functions. Reproduced with permission from [40]

Scheme RMS-ERR-K max(ERR-K) min(ERR-K) RMS-ERR-H
(–) (–) (–) (m)

CC-ARIT 1.91 6.18 −0.24 −
CC-ROM 0.66 2.32 −2.77 0.1815
CC-UPS 1.56 5.46 −2.55 −
CC-SZYM 0.08 1.34 −0.32 0.0041

Table 4.9 Errors of permeability approximation schemes for steady-state flow in a heterogeneous
medium, van Genuchten–Mualem functions. Reproduced with permission from [40]

Scheme RMS-ERR-K max(ERR-K) min(ERR-K) RMS-ERR-H
(–) (–) (–) (m)

CC-ARIT 3.21 10.37 −0.28 −
CC-ROM 1.78 5.58 −7.30 23.42
CC-UPS 1.94 7.88 −3.71 −
CC-SZYM 0.10 0.07 −0.51 1.31

Moreover, Szymkiewicz and Helmig [40] carried out comparisons of various
permeability averaging schemes for several unsteady flow problems, using both cell-
centred and vertex-centred spatial discretizations. In cell-centred scheme they used
the same four methods for approximating permeability at material interface, as in the
steady state analysis described above. In the framework of vertex-centred approach,
where the porous material between the nodes is always homogeneous, the inter-nodal
permeabilities were computed as arithmetic averages, Eq. (4.4) (VC-ARIT), geomet-
ric average, Eq. (4.5) (VC-GEOM), upstream weighting, Eq. (4.12) (VC-UPS) and
the method of Szymkiewicz [39] (VC-SZYM). Two examples from [40] are presented
below.

The first example concerns vertical downward infiltration with prescribed water
flux at the surface, see Fig. 4.10a for the details of the geometry and the initial and
boundary conditions. The sand and clay layer are characterized by
Brooks–Corey–Burdine hydraulic functions with the parameters listed in Table 4.7.
Since the hydraulic conductivity of clay is much smaller than the conductivity of
sand, after some time a saturated zone develops at the material interface. Figure 4.11
shows the distribution of the volumetric water content in the soil profile after 32 h
of infiltration. The thick solid line denotes the reference solution obtained on a
dense grid with �x = 1 mm. One can note the presence of a fully saturated
zone in the vicinity of the interface with the maximum values of θw = 0.417
for sand and θw = 0.423 for clay. Below the interface a relatively sharp wetting
front can be observed in the clay layer, while above the interface the water con-
tent in sand also decreases rapidly. The simulations performed on a coarse grid with
�x = 20 cm show significant influence of the method used for computing inter-nodal
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Fig. 4.10 Initial and bound-
ary conditions used in simula-
tions of flow in layered media.
Modified with permission
from [40]

(a) (b)

permeabilities, for either vertex-centred (Fig. 4.11a) or cell-centred (Fig. 4.11b)
discretization approaches. The results obtained with VC-SZYM and CC-SZYM
schemes are relatively close to the reference solution. Similarly accurate results
(not shown here) can be obtained with the method of Baker et al. [5]. In contrast,
the schemes based on geometric averaging lead to very inaccurate profiles, with
large saturated zone in the sand layer. The arithmetic and upstream weighting lead to
moderately accurate solutions, which reproduce the general shape of the reference
profile, but with more shifting and smoothing than the methods based on Darcian
averaging.

In the second test case, evaporation from a three-layer soil profile was simulated.
Evaporation was enforced by imposing a very large negative value of the pressure
head at the soil surface. The details of the problem formulation are presented in
Fig. 4.10b. The soil materials are characterized by van Genuchten–Mualem functions,
with parameters listed in Table 4.7. A very long process was considered, with the final
time equal to 5×104 h, and the cumulative amount of evaporated water equal to 7.26
cm, as predicted by the reference solution on fine grid (�x = 1 mm). The coarse
grid simulations with �x = 10 cm predicted very different amounts of cumulative
evaporation, depending on the applied method of permeability averaging. The relative
error can be defined as:

ERR-EV = qev − qref
ev

qref
ev

× 100 % (4.83)

where qev and qref
ev denote the value of cumulative evaporation obtained in a given

solution and the reference value, respectively. The relative errors are listed in
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Fig. 4.11 Infiltration in layered medium: water content profiles obtained with vertex-centred
(a) and cell-centred (b) schemes (t = 32 h, �x = 20 cm). Reproduced with permission
from [40]

Table 4.10. It can be seen that the smallest errors were obtained with the schemes
based on the method of Szymkiewicz [39] and with the CC-UPS scheme. Arithmetic
averaging and VC-UPS led to very large overestimation of the cumulative evapora-
tion. In contrast, the schemes based on geometric mean significantly underestimated
the evaporation. The profiles of the water pressure head at the end of simulation
obtained using the same spatial discretization are shown in Fig. 4.12. They confirm
high accuracy of the improved method of permeability averaging discussed in this
work. The results obtained with VC-SZYM and CC-SZYM schemes are very close
to the reference solution. In particular, these methods correctly predict the large gra-
dient of the pressure head in the upper part of the central sand layer. Such a large
gradient is necessary to sustain the upward flow in sand, as the relative permeability
in the dry upper part of the sand layer is very small. Obviously, the accuracy in the the
pressure gradient is strongly influenced by the accuracy in the inter-nodal permeabil-
ity, as the product of these two values gives the volumetric water flux. The schemes
VC-UPS, VC-ARIT and CC-ARIT overestimate the inter-nodal permeability. There-
fore, the resulting gradients are smaller than in the reference solution. On the other
hand, CC-ROM and VC-GEOM underestimate the inter-nodal permeability, leading
to gradients much larger than in the reference profile.

For a finer discretization, �x = 1 cm, the errors caused by arithmetic and
upstream averaging significantly diminish, but they are still much larger than for
the K-SZYM approach, with the exception of CC-UPS, which provides the most
accurate results. The difference in performance between the two schemes based on
upstream weighting, i.e. CC-UPS and VC-UPS, may be due to the fact that in VC
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Table 4.10 Evaporation in a layered medium: relative errors in the cumulative amount of evaporated
water for various permeability averaging schemes. Data from [40]

�x = 10 cm �x = 1 cm
Scheme ERR-EV Scheme ERR-EV Scheme ERR-EV Scheme ERR-EV

(%) (%) (%) (%)

CC-ARIT 400 VC-ARIT 237 CC-ARIT 19.7 VC-ARIT 16.4
CC-ROM −59.1 VC-GEOM −63.9 CC-ROM −58.9 VC-GEOM −59.3
CC-UPS −9.63 VC-UPS 469 CC-UPS 2.11 VC-UPS 29.1
CC-SZYM −2.33 VC-SZYM −5.25 CC-SZYM 3.09 VC-SZYM 3.07
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Fig. 4.12 Evaporation in a layered medium: pressure head profiles obtained with vertex-centred
(a) and cell-centred (b) schemes (t = 50000 h, �x = 10 cm). Reproduced with permission
from [40]

scheme the change in water content at highly permeable side of the interface results
in an immediate change in the part of the control volume located at the weakly per-
meable part of the interface. This is caused by the assumption of the continuity of
the water pressure across the interface. If the control volumes at the interface are
large, considerable amounts of water can move instantaneously across the interface.
In the CC-UPS scheme, the interface coincides with the boundary between control
volumes and harmonic averaging of the saturated conductivity (which gives more
weight to the weakly permeable medium) partly compensates for the acceleration
caused by upstream weighting of the relative conductivity [40]. Finally, it should
be noted that in this numerical example the performance of the schemes based on
geometric averaging (CC-ROM and VC-GEOM) does not improve as the grid is
refined.
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4.5 Multidimensional Problems

As shown in Chap. 3, permeability averaging in multidimensional problems can be
carried out either using a finite-element like approach or a finite-difference like
approach (used either in the finite difference or finite volume framework). In the first
case, the permeability value at a specific point in the element is interpolated from
the nodal values at all vertices of the element, or is evaluated as a function of the
capillary pressure or water saturation at the considered point, which in turn is inter-
polated from the nodal pressures or saturations. In the second case, the permeability
is evaluated at the midpoint of a primary grid edge, connecting two nodes. To this
order many averaging schemes developed for one-dimensional flow can be used.
However, their applicability depends on the properties of the numerical grid and the
degree of anisotropy of the porous medium. Assuming that the spatial discretization
is performed with the control volume finite element approach, several specific cases
can be distinguished, as discussed below:

• Isotropic permeability, rectangular grid. In this case, all methods developed for
one-dimensional flow can be used. The methods based on flux splitting and Darcian
averaging can be expected to yield more accurate results, as they provide different
relative permeabilities for horizontal and vertical fluxes.

• Isotropic permeability, unstructured grid. All simple averaging methods can be
used, as well as the flux splitting methods, if one takes into account that the value of
the gravitational coefficient ζ varies from one edge to the other, depending on their
orientation with respect to the gravity vector. In the group of Darcian means, the
variability of gravitational coefficient is included in the method of Szymkiewicz
[39], and can be easily introduced in the methods of Baker [2] and Baker et al. [5],
as shown in Sect. 4.1.3.

• Diagonally anisotropic permeability, rectangular grid. If the main anisotropy axes
are aligned with the axes of spatial coordinate system and with the grid lines,
the permeability in each direction can be computed with the one-dimensional
approach. The relative permeability functions can be different in the horizontal
and vertical direction.

• Anisotropic intrinsic permeability, isotropic relative permeability, arbitrary grid.
For anisotropic media, the flux along specific edge depends on the components of
the water potential gradient in both parallel and perpendicular directions. It means
that the one-dimensional steady-state analysis, which is the basis of the Darcian
averaging schemes, does not hold strictly. However, such methods can still be
used to approximate the scalar relative permeability, which is then multiplied by
the intrinsic permeability tensor.

• Anisotropic intrinsic and relative permeability, arbitrary grid. In this case, it is
impossible to define the relative permeability function for an arbitrary direction.
Therefore, methods based on the integration of the relative permeability function,
including the integrated mean and Darcian mean approaches, cannot be used. In
contrast, methods based on averaging of the nodal permeability values can be
still applied, for example by averaging each component of the permeability tensor

http://dx.doi.org/10.1007/978-3-642-23559-7_3
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separately. Upstreaming can be easily implemented assuming that the permeability
tensor is positively definite, which in the context of groundwater flow means that
the flux is directed from the node with larger potential to the node with lower
potential.

In all the above cases, the permeability averaging is performed within a materially
homogeneous grid element, according to the vertex-centred discretization scheme.
In a heterogeneous medium, the inter-nodal permeabilities are calculated separately
for the elements at each side of the edge, using the same pair of nodal pressures
and different relative permeability functions. In some cases, the methods based on
Darcian mean concept can be applied for multidimensional problems also in the
framework of the cell-centred discretization, which implies the existence of material
interfaces between nodes. This is possible if the medium is diagonally anisotropic
and the grid is rectangular. In such a case, the interface condition given by Eq. (4.68)
can be easily formulated for each spatial direction and the relative permeabilities at
each side of the interface can be computed using more accurate formulae. However,
in a more general case of unstructured cell-centred grids, one-dimensional Darcian
approximations cannot be easily implemented.

In order to show the applicability of the improved averaging scheme [39] to two-
dimensional flow in an isotropic medium, a comparison of the numerical results
with the analytical solution of Tracy [42] is performed. The flow domain is a square
L1 = 1 m by L2 = 1 m, with x1 axis horizontal and x2 axis oriented vertically upward.
The capillary and relative permeability functions are formulated with respect to the
water pressure head hw and have the exponential form:

θw = θrw + (θsw − θrw) exp(hw/hg) , (4.84)

Kw = Ksw exp(hw/hg) , (4.85)

with the parameters θsw = 0.45, θrw = 0.15, hg = 2 m and Ksw = 10−5 m s−1. The
compressibility of soil and water is neglected. As the initial condition, a uniform
distribution of the water pressure hinit

w = −10 m is assumed. Along the bottom and
the vertical sides of the domain this value is maintained as the boundary condition.
At the top boundary a sinusoidal distribution of the pressure head is imposed:

htop
w (x1) = hg ln

[
exp

(
hinit

w

hg

)
+
(

1 − exp

(
hinit

w

hg

))
sin

(
πx1

L1

)]
(4.86)

For the above assumptions the value of the water pressure for a given spatial point
(x1, x2) and time t can be calculated analytically as [42]:
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hw(x1, x2, t) = hg ln

{
exp

(
hinit

w

hg

)
+ h′′ sin

πx1

L1
exp

(
L2 − x2

2 hg

)
[

sinh(β ′′ x2)

sinh(β ′′ L2)
+ 2

L2 c′′
∞∑

n=1

(−1)n λ′′
n

γ ′′ sin(λ′′
n x2) exp(−γ ′′ t)

]}
(4.87)

where:

c′′ = (θsw − θrw)

hg Ksw
, γ ′′ = (β ′′)2 + (λ′′

n)
2

c′′ , λ′′
n = n π

L2
,

β ′′ =
√

1

4 (hg)2 +
(

π

L1

)2

, h′′ = 1 − exp(hinit
w /hg).

Numerical simulations were performed using both rectangular and unstructured
(triangular) meshes. For each mesh type, two levels of refinement were considered:
a coarser one with �x = 10 cm and a finer one with �x = 2 cm. In the case of
unstructured grid, these values refer to the node spacing imposed along the boundaries
of the domain. The unstructured mesh was generated using NetGen code, developed
by Burzyński [9]. The vertex centred finite volume approach was used with two-
point approximation of the average permeability at each cell face, which allowed
for the use of various schemes developed for one-dimensional flow. The pressure
gradient was evaluated using the finite element approach. For structured meshes the
evaluation point was chosen as either the edge midpoint or the face midpoint, as
shown in Chap. 3, Fig. 3.4. In the first case the scheme becomes equivalent to the
finite difference scheme, and is denoted by FD. For each simulation the root mean
square error of the nodal values of the water pressure at the final time t = 720 s was
computed:

RMSEp =
√√√√ 1

N

N∑
1

(pnum − pref)
2 (4.88)

where N is the number of internal nodes in the domain, pnum is the final water
pressure at a specific node from the numerical solution and pref is the correspond-
ing pressure value obtained from the analytical solution (pw = hw ρw g). The val-
ues of RMSE for different grids and permeability averaging schemes are listed in
Table 4.11.

It can be seen that the permeability averaging schemes K-SZYM and K-BAKER
are significantly more accurate than the other approaches. In this test case, the flow
is dominated by capillary forces and K-SZYM is equivalent to the integrated mean
method. On the other hand, for exponential permeability function K-BAKER repre-
sents the exact solution of steady-state flow. Thus, one could expect K-BAKER to
be the most accurate of all methods. However, the results show that it is slightly less
accurate than K-SZYM. This apparent contradiction can be explained by the fact that

http://dx.doi.org/10.1007/978-3-642-23559-7_3
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Table 4.11 Example 7: root mean square errors in the water pressure (Pa) for different numerical
approximation schemes

Grid K-SZYM K-BAKER K-GEOM K-ARIT K-UPS

Structured, FD
Fine 32 35 271 388 1915
Coarse 836 911 1036 2183 6308

Structured, FE
Fine 29 31 271 389 1914
Coarse 676 746 920 2160 6298

Unstructured, FE
Fine 39 39 219 322 1634
Coarse 502 536 979 1754 5334

Fig. 4.13 Example 7: water pressure distribution for the final time t = 720 s according to the
analytical solution and three numerical solutions of coarse grid

applying steady-state results to transient flow introduces additional error. It should
be also noted that for this particular setting the geometric mean is more accurate than
the arithmetic mean, while the upstream weighting produces considerable errors,
even on finer grids.

In Fig. 4.13 the distribution of the water pressure for t = 720 s obtained with
the K-SZYM method on structured and unstructured coarse grids is compared to
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Fig. 4.14 Example 7: water pressure profile along the vertical symmetry axis according to the
analytical solution and three numerical solutions of coarse grid (t = 720 s)

the analytical solution and to the solution on structured grid using K-UPS averaging
scheme. The plots are consistent with the error measures reported in Table 4.11. The
solutions obtained using K-SZYM scheme are in a very good visual agreement with
the reference analytical solution, while K-UPS predicts a more diffuse wetting front.
Figure 4.14 shows the water pressure profiles along the vertical symmetry axis at
the end of the simulation obtained for the coarse unstructured grid using K-SZYM,
K-ARIT and K-UPS. It can be seen that the result for K-SZYM is virtually the same
as the analytical solution, K-ARIT gives a slight discrepancy, while K-UPS predicts
significantly different profile shape.

4.6 Two-Phase Flow

The development of approximate Darcian averages, such as the ones presented in
Sect. 4.2, is not possible for two-phase flow, because the relative permeability depends
on the pressures in both fluid phases. In contrast, the simple averaging methods such
as the arithmetic, geometric, harmonic and upstream mean can be in principle used to
compute the inter-nodal permeability for each of the fluid phases. It is also possible to
define an integrated mean for each fluid phase by integrating the relative permeability
with respect to the capillary pressure:
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k(ij)
rw = 1

p(j)
c − p(i)

c

p(j)
c∫

p(i)
c

krw(p̂) dp̂ (4.89)

k(ij)
ra = 1

p(j)
c − p(i)

c

p(j)
c∫

p(i)
c

kra(p̂) dp̂ (4.90)

It should be noted that the above formula for krw is equivalent to the integrated mean
developed for the Richards equation, Eq. (4.9), only if the air pressure is atmospheric
(pa = 0) and both nodes are unsaturated.

The two-phase flow model includes advective terms related to viscous and gravity
forces, as well as the capillary diffusion term. The Richards equation represents a
limit case where the viscous forces are negligible and only capillary and gravity terms
remain. Thus some insights into the problem of permeability averaging for two phase
flow can be gained from the analysis of the Richards equation presented in the above
sections. In particular, one can expect that if the pressure gradients in the air phase are
negligible, the average permeability of the water phase will vary in the range from the
integrated mean (for capillary dominated flow) to the permeability of the upper node
(for gravity dominated flow), with the arithmetic mean being a reasonable approxi-
mation for intermediate conditions. This is confirmed by numerical solutions of Celia
and Binning [10] and Kees and Miller [24], who employed arithmetic averaging, and
Touma and Vauclin [41], who used geometric averaging on a relatively fine grid. On
the other hand, if significant pressure gradients exist in the non-wetting phase, the role
of advective terms related to the viscous forces increases. Consequently, arithmetic,
geometric or integrated averaging will produce oscillatory solutions, which can be
avoided by employing upstream average. Permeability upstreaming is commonly
used for two-phase flow with non-wetting to wetting phase mobility ratio close to
one or smaller than one, e.g. in liquid hydrocarbons—water system [22]. However,
the application of upstreaming for capillary driven two-phase flow in air-water sys-
tem may lead to overly diffusive and inaccurate solutions. An approach alternative
to upstreaming is the explicit addition of artificial diffusion to the discrete equations.
This method was applied in [20] for the fractional flow formulation.

The influence of the permeability averaging method on the solution of one-
dimensional two phase flow equations was investigated in the framework of the finite
element discretization by Helmig and Huber [22], and in the framework of the finite
volume formulation by Szymkiewicz [38]. In the following two other illustrative
examples are presented. In the first test case, one-dimensional, horizontal, capillary
dominated flow is considered. The dimension of the solution domain is 0.5 m and
the soil is characterized by Brooks–Corey–Burdine hydraulic functions with the fol-
lowing parameters: φ = 0.4, Srw = Sra = 0, k = 1.25 × 10−12 m2, pe = 814 Pa,
nb = 0.686. The compressibility of water and soil is neglected. Initially, the pore
air is at atmospheric pressure (pa = 0) and the water saturation is Sw = 0.1. At the
left-hand side boundary (x = 0), a constant value of water saturation Sw = 0.95 is



4.6 Two-Phase Flow 135

0

 0.2

 0.4

 0.6

 0.8

1

0  0.1  0.2  0.3  0.4  0.5

S
w

 (
-)

x (m)

Reference
K-ARIT

K-INT
K-UPS

Fig. 4.15 Water saturation profiles for two-phase horizontal flow (t = 4 h)

imposed, while the air phase is maintained at atmospheric pressure. The right-hand
side boundary is assumed to be impermeable for both fluids (vw = va = 0). For
such conditions, a semi-analytical solution of Sunada and McWhorter [37] can be
applied. The semi-analytical solution is computed following the improved method
by Fucik et al. [18]. It is compared to the results of the numerical simulations using
three permeability averaging schemes: the upstream weighting, arithmetic averag-
ing and integrated averaging with respect to the kα(pc) function. For a fine grid,
�x = 0.5 cm, all three approaches gave results very close to the analytical solution
(results not shown here). For a coarser grid with �x = 5 cm, significant differences
occur, as shown in Fig. 4.15. The integrated mean provides results very close to the
reference solution, while K-ARIT and K-UPS lead to more diffuse wetting fronts,
which in the case of K-UPS reaches the boundary of the domain. Note that the same
relative accuracy of the three methods is observed for the Richards equation if the
flow is capillary-dominated, which is the case for horizontal flow or vertical flow
with small �x, as shown in Example 1, Fig. 4.6.

In the final example, vertical two phase flow is considered. The geometry, soil para-
meters and initial conditions are the same as in the previous case. The boundary con-
ditions correspond to ponded infiltration, i.e. at the top of the soil layer pw = 100 Pa
and Sw = 1, while at the bottom the initial values of the water pressure and saturation
are maintained. In this case no analytical solution can be applied and a numerical
solution on dense grid �x = 0.05 cm is considered as the reference. The coarse grid
solutions (�x = 0.5 cm) shown in Fig. 4.16 behave differently from the previous
case. The integrated mean underestimates the position of the wetting front, while
the upstream weighting and arithmetic averaging are more accurate with respect to
the position of the front, but show more significant numerical diffusion, especially
in the case of upstream weighting.

An additional issue arises when a part of the solution domain is fully saturated
with water and the medium has a non-zero value of the entry pressure. In such a
case, the air pressure at the water-saturated nodes is physically undefined, but in the
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Fig. 4.16 Water saturation profiles for two-phase vertical flow (t = 3 h)

numerical algorithm it is computed as pa = pw + pe, and thus can be higher than
the atmospheric pressure. If air at atmospheric pressure is present at a neighboring
node, a gradient in the air potential occurs between the water-saturated node and
the unsaturated node, even though physically no flow is possible. The average air
permeability in this case should be equal to zero, which is naturally accounted for
by the use of upstream weighting and geometric averaging. For other averaging
formulae, appropriate modifications have to be made to prevent non-physical fluxes.

The above examples show that there is a potential for improvement of the per-
meability averaging formulas for the two-phase flow, based on the relations between
capillary, gravity and viscous forces at the scale of a single numerical grid cell.
However, such an analysis is beyond the scope of the present work.
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