
Chapter 1
Introduction

The unsaturated zone, also called vadose zone, is located between the soil surface
and the groundwater table. Its depth is variable and depends on geological and cli-
matic factors. As the name implies, soils and rocks in the unsaturated zone are only
partially filled with water, the rest of the pore space being occupied by air. The vadose
region constitutes a vital link between groundwater, atmospheric water and surface
water. It is a place of intense human activity of various kinds, including civil and
environmental engineering and agriculture. Therefore, flow and transport phenom-
ena occurring in the unsaturated zone can be studied from different viewpoints, as
shown schematically in Fig. 1.1.

A distinct scientific specialization, soil physics, is entirely devoted to the study
of physical processes in soils, including the water flow in unsaturated conditions,
e.g. [17, 20, 47]. Soil physics developed in a close relationship to agronomy and
hydrology. In agricultural applications, emphasis is put on the availability of water
and dissolved nutrition substances to plants, which motivates the development of
comprehensive models to describe the soil-plant-atmosphere system, e.g. [8, 9].
Accurate evaluation of water infiltration into the soil and evapotranspiration from the
soil is also important for hydrological models. For instance, the infiltration capacity
of soils has a direct influence on the formation of runoff, and thus is an important
factor in predicting the risk of flood. Consequently, a trend towards explicit coupling
of the surface and shallow subsurface flow in hydrological models can be observed,
e.g. [11, 48].

On the other hand, the water flow processes in the unsaturated zone have sig-
nificant impact on groundwater flow in saturated aquifers, which constitute a major
source of drinking water. Even more importantly, the vadose zone is a buffer between
groundwater and various sources of pollutants located at the soil surface or in the
shallow subsurface. Reliable prediction of the fate of contaminants dissolved in water
requires the knowledge of water flow velocities in the unsaturated zone, which are in
general highly variable in space and time. Therefore, increasing attention is paid to
coupled saturated-unsaturated models of groundwater flow and contaminant trans-
port, e.g. [43, 44, 50]. Moreover, accounting for the unsaturated flow allows for

A. Szymkiewicz, Modelling Water Flow in Unsaturated Porous Media, 1
GeoPlanet: Earth and Planetary Sciences, DOI: 10.1007/978-3-642-23559-7_1,
© Springer-Verlag Berlin Heidelberg 2013
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Fig. 1.1 Typical problems related to water flow in the vadose zone

improved estimation of parameters related to the hydraulics of phreatic aquifers,
such as the recharge rate [18], the specific yield [35] or the height of the seepage
face in wells [5].

Water flow in the vadose zone has important implications also for geotechni-
cal engineering. Traditionally, soil mechanics focused mostly on completely dry or
fully saturated non-cohesive soils, and fully saturated cohesive soils. However, a wide
range of problems can be more accurately modelled, if the variability in the soil water
saturation is taken into account. This is particularly necessary for soils that swell,
shrink or collapse due to the changes in water saturation, but there is an increas-
ing awareness of the importance of unsaturated flow also for other applications,
including soil compaction, slope stability, flow in dams and embankments, protec-
tion of landfills, tunneling or interpretation of penetration tests, e.g. [30, 31, 51].
Unsaturated soil mechanics is still an emerging and very active field of research,
which developed substantially during the last twenty years, e.g. [10, 25, 28].

In all the applications mentioned above a crucial issue is the ability to accurately
model water flow in soils, or—more generally—partially saturated porous media.
This, however, is a challenging task, due to the multi-phase and multi-scale nature of
porous media, especially the ones formed by natural processes. Porous soils and rocks
in the vadose zone consist of several deformable solid and fluid phases, separated
by clearly distinguishable interfaces, representing sharp discontinuities in physical
and chemical properties [16, 33]. In general, each of the phases consists of multi-
ple chemical components, which can move between phases. Pore air, for instance,
is a mixture of gases, including water vapor, while pore water contains many dis-
solved substances, including gases. The number of phases and components included
in the mathematical model depends on the problem under consideration. In many
applications focusing on the water flow, a sufficient accuracy can be achieved with
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Fig. 1.2 Observation scales in a porous medium

a simplified model, where both air and water are considered as immiscible single-
component phases and the deformation of the solid skeleton is neglected. Such an
approach is adopted in the present work.

Modelling of flow in porous media is further complicated by the fact that the
relevant physical processes can be described at various observation scales. Mathe-
matical models applied at each scale typically represent the principles of conservation
of basic quantities such as mass, momentum and energy, but the exact form of the
governing equations may differ substantially between the scales. In some cases the
model describing processes at a larger scale can be derived directly from the equa-
tions relevant at a smaller scale by an appropriate averaging procedure. This process
is known as upscaling. Alternatively, the governing equations can be formulated
directly at the larger scale, based on phenomenological considerations. Two basic
scales, typically distinguished in porous media, are the pore scale and the Darcy
scale, Fig. 1.2. In the former case, the characteristic spatial dimension is the size of a
single pore, which in granular media is approximately proportional to the grain size.
At this scale, each phase occupies a distinct spatial domain, and each point of space
can be associated with a specific phase. On the other hand, it is assumed that each
phase can be regarded as a continuum within its own spatial sub-domain, i.e. the size
of the pores is much larger than the size of fluid molecules. The flow of fluid phases
can be described by the Navier-Stokes equations with appropriate conditions at the
fluid-solid and fluid-fluid interfaces. However, the pore scale description is not suit-
able for practical problems, which involve spatial domains having dimensions larger
than the pore size by many orders of magnitude. Therefore, the governing equations
describing behaviour of various phases are usually formulated at a much larger scale,
which in the present work will be referred to as the Darcy scale, from the name of
H. Darcy, who developed the well-known formula for the water seepage velocity in
a porous medium [7]. At this scale, each spatial point corresponds to a representative
elementary volume (REV), containing a sufficiently large number of pores, occupied
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by multiple fluid phases. Thus, in contrast to the pore scale description, at the Darcy
scale each phase forms a continuum over the entire spatial domain.

The most commonly used two-phase model of air and water flow at the Darcy
scale is a combination of the mass conservation equation for each fluid with the semi-
empirical equation for flow velocity, based on an extension of the Darcy formula for
the case of multi-phase flow. One of key components of the model is the capillary
function, describing the relationship between the water saturation and the capillary
pressure, defined as the difference between pressures in the air and water phases.
A complementary constitutive relationship is given by the relative permeability func-
tion, which describes the ability of each fluid phase to flow in the porous medium
as a function of the phase saturation. Both functions are strongly nonlinear. Their
form depends principally on the geometrical characteristic of the pore space and
on the properties of the fluid-fluid and fluid-solid interfaces (surface tension). The
mathematical model of two-phase flow is often formulated as two coupled partial
differential equations of parabolic type, with the two phase pressures or saturations
as the primary unknown variables.

The two-phase model can be simplified, if one assumes that the air phase is con-
tinuously distributed in pores, it is connected to the atmospheric air and much more
mobile than the water phase. Accordingly, the pressure in the air phase can be con-
sidered constant and equal to the atmospheric pressure, and the equation describing
air flow is eliminated. The remaining equation for the water flow is called the unsat-
urated flow equation or the Richards equation [34]. Similarly to the full two-phase
flow model, the Richards equation is based on semi-empirical concepts of the capil-
lary and relative permeability functions, introduced at the Darcy scale to account for
a number of pore scale phenomena, which at present are not fully understood. These
constitutive relationships are difficult to associate with the Darcy-scale processes in
a manner that is both physically rigorous and easy to implement practically. While
a number of improved formulations for the two-phase and unsaturated flow have
been proposed, e.g. [3, 14, 26, 29, 32, 49], the Richards equation remains a useful
and well-established tool in the unsaturated zone modelling, and is the basis of the
present analysis.

The present book focuses on two aspects of the application of the Richards equa-
tion. The first one is related to its numerical solution. Although significant develop-
ment of the numerical algorithms occurred in the last twenty years, e.g. [4, 27], solu-
tion of the Richards equation remains a challenging task due to the afore-mentioned
strongly nonlinear constitutive relationships, which must be appropriately repre-
sented in the discretized space-time domain. A particularly important issue is the
approximation of the relative permeability between the nodes of a spatial grid, which
is a necessary to estimate water fluxes, according to a discrete version of the Darcy
formula. As the relative permeabilities may differ by several orders of magnitude (for
example, during infiltration in a dry soil, or evaporation), the choice of the averaging
method is often essential for the overall accuracy of the approximate solution. Sev-
eral simple averaging schemes have been proposed, e.g. arithmetic mean, geometric
mean and upstream weighting, but each of them may lead to large errors for partic-
ular combinations of the initial and boundary conditions, grid size and the form of
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functional relationship between the relative permeability and the capillary pressure,
e.g. [1, 2, 15]. On the other hand, more accurate methods often require significantly
larger computational effort, e.g. [46]. In this work an averaging scheme is presented,
that is relatively easy to implement and significantly improves the solution accuracy
for a wide range of one- and two-dimensional problems. The method was proposed
in the paper [36], and further developed in [37, 38]. Extension of the method for
unstructured grids and implications for the solution of the full two-phase model are
also discussed. The analysis is carried out for a simple form of the Richards equa-
tion, which does not account for soil compressibility nor water uptake by plant roots.
While these two factors are very important in many applications related to the unsat-
urated zone and must be properly treated numerically, they have no direct influence
on the development of the averaging schemes for inter-nodal permeabilities.

The second topic considered in this book deals with flow in porous media showing
material heterogeneity at the Darcy scale. Heterogeneity may be related to various
physical and chemical properties of the porous medium. The focus of this work is on
porous formations composed of sub-domains characterized by distinct textural prop-
erties, which imply differences in pore geometry, and consequently in the physical
parameters such as permeability, hydraulic diffusivity or air entry pressure (defined
as the value of the capillary pressure above which the pore air flow is possible).
The important issue of chemical heterogeneity, for instance related to the wettability
and adsorption properties of the solid phase is not considered here. If the number of
heterogeneous regions in the considered spatial domain is large, their explicit rep-
resentation on a numerical grid becomes difficult or even impossible. Therefore, a
new observation scale can be introduced, which for the purposes of this work will
be called the field scale, Fig. 1.2. At this scale the relevant representative elemen-
tary volume encompasses sufficiently large number of Darcy scale heterogeneities
to allow for the development of an upscaled model. The heterogeneous structure can
be described in either deterministic or stochastic terms. In particular the stochas-
tic models for flow and transport in unsaturated heterogeneous porous media have
been a subject of intense research, e.g. [6, 12, 52]. In this book the deterministic
viewpoint is adopted and a specific heterogeneity pattern is considered: a binary
porous medium with disconnected porous inclusions (lenses) embedded in a contin-
uous porous background material. While such a structure is relatively simple, it is
representative of a number of natural porous formations, such as fluvial or coastal sed-
iments, or sandstone-shale sequences, e.g. [19]. On the other hand, this type of pattern
can be conveniently parametrized and analysed from the theoretical point of view,
allowing for a good general understanding of local heterogeneities on the large-scale
behaviour of the medium. The second part of this work presents an extended discus-
sion of several models based on the Richards equation, which were developed for
such type of media using the asymptotic homogenization approach [21–24, 39, 41].
These works showed that the macroscopic behaviour of the medium depends on
the ratio between the permeabilities of the inclusions and the background material.
A generalized model, valid for a wide range of inclusion-to-background permeability
ratio, was proposed [39], and its preliminary experimental verification was carried
out [40]. It can be also shown that the Richards approximation is not valid for media
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characterized by higher value of the air-entry pressure in the matrix than in inclu-
sions. In porous media showing heterogeneity with respect to the air-entry pressure
the assumption of the continuity of air phase in porous medium, which underlies the
Richards equation, may not be satisfied [41]. However, the accuracy of the Richards
equation can be improved, if the large-scale capillary and permeability functions are
appropriately modified [42].

The field scale discussed in this book represents an intermediate level in the hier-
archy of scales relevant to the modeling of water flow in the vadose zone, with the
characteristic length of the order of meters to dekameters. Significant research has
been devoted to the description of unsaturated zone processes at regional scale, cor-
responding to hydrological watersheds, with the horizontal dimensions of many kilo-
meters, e.g. [13, 45]. At such a scale, simplified mathematical models of the black-box
type are routinely used and an important question is how to relate their parameters
to the more detailed characteristics of the porous media available at smaller scales.
While regional-scale hydrological modelling is of high practical importance, it is not
considered in this book.

The book is structured as follows. Chapter 2 presents the mathematical formula-
tion of flow in unsaturated porous medium. The governing equations for the two-
phase model and the Richards model are discussed, together with various analytical
formulae for capillary and permeability functions. In Chap. 3 a numerical algorithm
to solve the governing flow equations is developed. The algorithm is formulated in
general terms and can be applied to both the two-phase model and the Richards
equation. Various methods of spatial discretization are discussed, including the con-
trol volume–finite difference and control volume–finite element approaches. The
approximation of the average permeability in spatially discretized Richards equation
is considered in detail in Chap. 4. Chapter 5 introduces basic concepts of upscaling.
In Chap. 6 the upscaled models developed for flow in binary media without air-entry
pressure effects are presented. The model accounting for air-entry effects is discussed
in Chap. 7. The final chapter summarizes the contents of the book and outlines some
open problems related to the discussed topics.
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of unsaturated water flow in a double-porosity medium under axi-symmetric conditions. Can
Geotech J 45(2):238–251. doi:10.1139/T07-096

41. Szymkiewicz A, Helmig R, Kuhnke H (2011) Two-phase flow in heterogeneous porous media
with non-wetting phase trapping. Trans Porous Media 86(1):27–47. doi:10.1007/s11242-010-
9604-x

42. Szymkiewicz A, Helmig R, Neuweiler I (2012) Upscaling unsaturated flow in binary
porous media with air entry pressure effects. Water Resour Res 48:W04522. doi:10.1029/
2011WR010893

43. Thoms R, Johnson R, Healy R (2006) Users guide to the variably saturated flow (VSF) process
for MODFLOW. Technical Report, USGS

44. Twarakavi N, Simunek J, Seo S (2008) Evaluating interactions between groundwater and vadose
zone using the HYDRUS-based flow package for MODFLOW. Vadose Zone J 7(2):757–768.
doi:10.2136/vzj2007.0082

45. Vereecken H, Kasteel R, Vanderborght J, Harter T (2007) Upscaling hydraulic properties and
soil water flow processes in heterogeneous soils: a review. Vadose Zone J 6(1):1–28. doi:
10.2136/vzj2006.0055

46. Warrick A (1991) Numerical approximation of Darcian flow through unsaturated soil. Water
Resour Res 27(6):1215–1222. doi:10.1029/91WR00093

47. Warrick A (2002) Soil physics companion. CRC Press, Boca Raton
48. Weill S, Mouche E, Patin J (2009) A generalized Richards equation for surface/subsurface flow

modelling. J Hydrol 366(1–4):9–20. doi:10.1016/j.jhydrol.2008.12.007
49. Whitaker S (1986) Flow in porous media II: the governing equations for immiscible, two-phase

flow. Transp Porous Media 1(2):105–125. doi:10.1007/BF00714688
50. Xu T, Sonnenthal E, Spycher N, Pruess K (2008) TOUGHREACT user’s guide: A simulation

program for non-isothermal multiphase reactive geochemical transport in variably saturated
geologic media, v1.2.1. Technical Report, Lawrence Berkeley National Laboratory

51. Xu YQ, Unami K, Kawachi T (2003) Optimal hydraulic design of earth dam cross section
using saturated-unsaturated seepage flow model. Adv Water Resour 26(1):1–7. doi:10.1016/
S0309-1708(02)00124-0

52. Zhang D (2002) Stochastic methods for flow in porous media: coping with uncertainties.
Academic Press, San Diego

http://dx.doi.org/10.1016/S0022-1694(02)00251-2
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000121
http://dx.doi.org/10.1029/2008WR007654
http://dx.doi.org/10.2478/v.10169-011-0016-2
http://dx.doi.org/10.1016/j.advwatres.2011.05.011
http://dx.doi.org/10.1139/T07-096
http://dx.doi.org/10.1007/s11242-010-9604-x
http://dx.doi.org/10.1007/s11242-010-9604-x
http://dx.doi.org/10.1029/2011WR010893
http://dx.doi.org/10.1029/2011WR010893
http://dx.doi.org/10.2136/vzj2007.0082
http://dx.doi.org/10.2136/vzj2006.0055
http://dx.doi.org/10.1029/91WR00093
http://dx.doi.org/10.1016/j.jhydrol.2008.12.007
http://dx.doi.org/10.1007/BF00714688
http://dx.doi.org/10.1016/S0309-1708(02)00124-0
http://dx.doi.org/10.1016/S0309-1708(02)00124-0

	1 Introduction
	References


