
Purpose Control: Did You Process the Data for the
Intended Purpose?�

Milan Petković1,3, Davide Prandi2, and Nicola Zannone3

1 Philips Research Eindhoven
milan.petkovic@philips.com

2 Centre for Integrative Biology, University of Trento
prandi@science.unitn.it

3 Eindhoven University of Technology
n.zannone@tue.nl

Abstract. Data protection legislation requires personal data to be collected and
processed only for lawful and legitimate purposes. Unfortunately, existing pro-
tection mechanisms are not appropriate for purpose control: they only prevent
unauthorized actions from occurring and do not guarantee that the data are actu-
ally used for the intended purpose. In this paper, we present a flexible framework
for purpose control, which connects the intended purpose of data to the busi-
ness model of an organization and detects privacy infringements by determining
whether the data have been processed only for the intended purpose.

1 Introduction

In recent decades, many countries have enacted privacy laws and regulations that im-
pose very stringent requirements on the collection and processing of personal data (e.g.,
EU Directive 95/46/EC, HIPAA). Purpose control plays a central role in such legisla-
tion [1]: personal data shall be collected for specified, lawful and legitimate purposes
and not processed in ways that are incompatible with the purposes for which data have
been collected. Purpose control requires the deployment of mechanisms that hold users
accountable for their actions by verifying how data have actually been processed.

In contrast, current security and data protection mechanisms do not provide appro-
priate support for purpose control. They are preventive and, more importantly, they do
not check for which purpose data are processed after access to data has been granted.
Protection of personal information is often implemented by augmenting access control
systems with the concept of purpose [2,3,4,5] (hereafter, we call access control policies
augmented with purpose data protection policies). Here, protecting data implies guar-
anteeing that data are disclosed solely to authorized users with the additional condition
that data are requested for the intended purpose. The access purpose is usually specified
by the requester [4], implying complete trust on users. This poses risks of re-purposing
the data [6,7] as users might process the data for purposes other than those for which
the data were originally obtained. Therefore, to ensure compliance to data protection

� This work has been partially funded by the EU-IST-IP-216287 TAS3 project.

W. Jonker and M. Petković (Eds.): SDM 2011, LNCS 6933, pp. 145–168, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

146 M. Petković, D. Prandi, and N. Zannone

and purpose control, it is necessary to extend the current preventive approach by imple-
menting mechanisms for verifying the actual use of data.

Some privacy enhancing technologies (e.g., [2,8]) partially address this issue. They
collect and maintain audit trails, which record the actual user behavior, for external pri-
vacy audits. These auditing activities, however, are usually manual; the auditors sample
and inspect the audit trails recorded by the system. The lack of systematic methods for
determining how data are used makes auditing activities time-consuming and costly.
For instance, at the Geneva University Hospitals, more than 20,000 records are opened
every day [9]. In this setting, it would be infeasible to verify every data usage manually,
leading to situations in which privacy breaches remain undetected.

In this paper, we present a framework for purpose control which detects privacy
infringements by determining whether data are processed in ways that are incompatible
with the intended purpose of data. To this end, we need a purpose representation model
that connects the intended purpose of data to the business activities performed by an
organization and methods able to determine whether the data are actually processed in
accordance with purpose specifications.

Organizations often make use of business processes to define how organizational
goals should be fulfilled. These organizational processes define the expected user be-
havior for achieving a certain organizational goal. The idea underlying our approach
is to link the purposes specified in data protection policies to organizational goals and,
therefore, to the business processes used to achieve such goals. Thus, the problem of
verifying the compliance of data usage with the intended purpose consists in determin-
ing whether the audit trail is a valid execution of the organizational processes repre-
senting the purposes for which data are meant to be used. Intuitively, if the audit trail
does not correspond to a valid execution of those processes, the actual data usage is not
compliant with the purpose specification.

To enable automated analysis, we use the Calculus of Orchestration of Web Services
(COWS) [10] for the representation of organizational processes. COWS is a founda-
tional calculus strongly inspired by WS-BPEL [11]. It is based on a very small set of
primitives associated with a formal operational semantics that can be exploited for the
automated derivation of the dynamic evolution of the process. The COWS semantics
makes it possible to construct a labeled transition system that generates the set of traces
equivalent to the set produced by all possible executions of the process.

A naı̈ve approach for purpose control would be to generate the transition system of
the COWS process model and then verify if the audit trail corresponds to a valid trace
of the transition system. Unfortunately, the number of possible traces can be infinite,
for instance when the process has a loop, making this approach not feasible. Therefore,
in this paper we propose an algorithm that replays the audit trail in the process model
to detect deviations from the expected behavior. We demonstrate that the algorithm
terminates and is sound and complete.

The structure of the paper is as follows. Next section presents our running exam-
ple. (§2). Then, we introduce the building blocks of our framework and analyze their
alignment (§3). We present an algorithm for purpose control (§4) and demonstrate the
termination, soundness and completeness of the algorithm (§5). Finally, we discuss re-
lated work (§6) and conclude the paper, providing directions for future work (§7).

Purpose Control: Did You Process the Data for the Intended Purpose? 147

Fig. 1. Healthcare Treatment Process

2 Running Example

This section presents a simple scenario in the healthcare domain to illustrate our ap-
proach. Consider a patient who goes to a hospital to see a doctor. The hospital is
equipped with its own Hospital Information System (HIS) to manage the administrative,
financial, and clinical aspects of patient information. In particular, patient information
are stored in an electronic patient record (EPR); here, we assume that EPRs are orga-
nized in sections; each of them contains a certain type of information. Members of the
hospital staff can access specific sections of the EPR (or parts of them) depending on
their position within the hospital and for well defined purposes. Suppose that a patient,
Jane, did not give the hospital consent to process her information for research purposes.
Then, the hospital staff cannot access Jane’s information for clinical trials.

The provision of healthcare treatments can be seen as a process that involves several
parties. Fig. 1 describes an example of a healthcare treatment process specified in the
Business Process Modeling Notation (BPMN) [12]. Here, every BPMN pool1 repre-
sents the visit of the patient to a member of the clinical staff at the local hospital. The
process starts when a patient visits the general practitioner (GP) at the hospital (S1).
The GP accesses the HIS to retrieve the patient’s EPR and makes a physical exami-
nation to collect the symptoms (T01). Based on the gathered information, the GP may
suspect that the patient is affected by a certain disease. He can either make a diagnosis
(T02) or refer to a specialist if the case is more complex (T05). For instance, in case the
GP suspects a cardio-vascular disease, he can refer the patient to a cardiologist.

1 In BPMN a pool is used to specify the boundaries of the activities to be performed by a partic-
ipant in the process and is graphically represented as a container enclosing those activities.

148 M. Petković, D. Prandi, and N. Zannone

Fig. 2. Clinical Trial Process

If the patient is referred to a cardiologist (S3), the cardiologist accesses patient medi-
cal history in the HIS and makes a medical examination to collect the symptoms (T06).
Based on this information, the cardiologist can either make a diagnosis directly (T07),
or request lab tests or radiology scans (T08 and T09, respectively). If the resulting tests
and scans are not good or a diagnosis cannot be made based on them, further tests
can be required. When the lab or the radiology department receive the request for tests
from the cardiologist (S5 and S6, respectively), they check the EPR for allergies or
other counter-indications (T10 and T03, respectively). Then, they do the lab exam (T11
and T14) and export the results to the HIS (T12 and T15). A notification is sent to the
cardiologist when the tests or the scans have been completed (E6 and E7).

When the cardiologist receives a notification for all the ordered tests and scans (S4),
he retrieves the test results or the scans from the HIS (T06) and, based on them, makes
a diagnosis (T07). After the cardiologist enters the diagnosis into the HIS, a notification
is sent to the GP (E4). Upon the notification (S2), the GP extracts the diagnosis made
by the cardiologist, scans and tests from the patient’s EPR (T01). Based on them, the
GP prescribes medical treatments to the patient (T03) and discharges her (T04).

Suppose now that the same cardiologist mentioned above is involved in a clinical
trial. Fig. 2 shows the part of the clinical trial process in which a physician is involved.
The physician has to define eligibility criteria for the trial (T91). Then, he accesses
EPRs to find patients with a specific condition that meet the eligibility criteria (T92).
In the next step, the physician asks the selected candidates whether they want to partic-
ipate in the trial (T93). The trial is then performed (T94) and the results are analyzed
(T95). Note that the cardiologist can get access to patient information for the legiti-
mate purpose (i.e., claiming that it is for healthcare treatment) and then use the data
for research purposes (i.e., clinical trial). Preventive mechanisms are not able to cope
with these situations. In particular, they cannot prevent a user to process data for other
purposes after the same user has legitimately got access to them.

To address this issue, we need mechanisms that make users accountable for their ac-
tions by determining how data were actually used. In this paper, we propose an approach
that enables purpose control by determining if an audit trail is a valid execution of the
process used by the organization to implement the intended purposes. In our scenario,
this implies verifying that every usage of patient information is part of the sequence of
tasks that the cardiologist and the other parties involved in the provision of healthcare
treatments have to perform in order to accomplish the goal.

3 A Framework for Purpose Control

In this section, we propose a formal framework for purpose control. The main goal of
the framework is to verify if a user processed the data only for the intended purpose.
The proposed approach uses and interlinks the following three components:

Purpose Control: Did You Process the Data for the Intended Purpose? 149

– Data protection policies that define who can access the data and for which purpose.
– Organizational processes that describe the business processes and procedures of an

organization.
– Audit trails that record the sequence of actions performed by users.

In the remainder of this section, we present the formal model components of the frame-
work and discuss their alignment.

3.1 Basic Concepts and Notation

Our framework includes sets of five basic elements: users (U), roles (R), objects (O),
actions (A), and organizational processes (P). A user denotes any entity capable to
perform actions on an object, and a role denotes a job function describing the authority
and responsibility conferred on a user assigned to that role. We assume that roles are
organized into a hierarchical structure under partial ordering ≥R. Such an order reflects
the principles of generalization and specialization. Let r1, r2 ∈ R be roles. We say that
r1 is a specialization of r2 (or r2 is a generalization of r1) if r1 ≥R r2.

Objects denote resources (i.e., data, services, or system components) under protec-
tion. We use a directory-like notation to represent hierarchical resources like file sys-
tems and EPRs. This implies a partial ordering ≥O on resources, which reflects the data
structure. In addition, we make explicit the name of the data subject when appropri-
ate. For instance, Jane’s EPR is denoted as [Jane]EPR, whereas [Jane]EPR/Clinical
denotes the section containing medical information in her EPR, with [Jane]EPR ≥O

[Jane]EPR/Clinical . We use [·]EPR to denote EPRs, regardless a specific patient.
An action is an operation that can be performed on a resource. The set of actions A

includes “read”, “write”, and “execute”.
Organizational processes specifies the sequences of tasks that have to be performed

to achieve organizational goals. We use Q to denote the set of tasks belonging to any
process in P . Process models can specify the entity that is expected to perform a certain
task (e.g., using pools in BPMN). However, processes usually are not specified in terms
of identifiable users. For example, a hospital would not define a specific clinical trial
process for each physician. Business processes are intended to be general in order to
cover a large number of scenarios. Therefore, we assume that every BPMN pool corre-
sponds to a role in R. Finally, a given task can be part of more than one process, and
several instances of the same process can be executed concurrently. To apply confor-
mance checking techniques, it is necessary to distinguish the process instance (the so
called case) in which tasks are performed [13]. Hereafter, C denotes the set of cases.

In data protection, the concept of purpose plays a central role [1,2,4]. The purpose
denotes the reason for which data can be collected and processed. In particular, we
refer to purposes that regulate data access as intended purposes, and to purposes for
which data access is requested as access purposed. Purposes are related to the busi-
ness activities of an organization and can be identified with organizational goals. For
instance, [14] defines a list of purposes for healthcare, which includes healthcare treat-
ment, payment, research and marketing. Thus, in this paper, we represent purposes by
the organizational process implemented by an organization to achieve the correspond-
ing organizational goal.

150 M. Petković, D. Prandi, and N. Zannone

(Physician, read, [·]EPR/Clinical, treatment)
(Physician, write, [·]EPR/Clinical, treatment)
(Physician, read, [·]EPR/Demographics, treatment)
(MedicalTech, read, [·]EPR/Clinical, treatment)
(MedicalTech, read, [·]EPR/Demographics, treatment)
(MedicalLabTech, write, [·]EPR/Clinical/Tests, treatment)
(Physician, read, [X]EPR, clinicaltrial)

Fig. 3. Sample Data Protection Policy

3.2 Data Protection Policies

The aim of data protection policies is to protect an individual’s right to privacy by
keeping personal data secure and by regulating its processing. Several languages for
the specification of data protection policies have been proposed in literature [3,4]. The
objective of this paper is not to propose yet another policy specification language. Thus,
here we present a simple language that suffices for the purpose of this paper.

A data protection policy specifies the access rights: who is authorized to access the
system, what actions he is allowed to perform on a resource, and for which purpose.

Definition 1. A data protection statement is a tuple (s, a, o, p) where s ∈ U∪R, a ∈ A,
o ∈ O, and p ∈ P . A data protection policy Pol is a set of data protection statements.

Fig. 3 presents the data protection policy governing our scenario. The first block of
Fig. 3 states that physicians can read and write patient medical information in EPRs for
treatment. Moreover, physicians can also read patient demographics for treatment. Note
that roles GP, radiologist, and cardiologist are specializations of role physician. The
second block of statements targets medical technicians. They can read patient medical
information for treatment. Moreover, medical lab technicians (which is a specialization
of medical technicians) have write permission on the EPR section concerning test re-
sults. The last block of Fig. 3 represents the hospital policy that allows physicians to
access the EPR of those patients (X) who give consent to use their data for clinical trial.

Users can request access to system’s resources by means of access request.

Definition 2. An access request is a tuple (u, a, o, q, c) where u ∈ U , a ∈ A, o ∈ O,
q ∈ Q, and c ∈ C.

An access request specifies the user who makes the request, the object to be accessed,
and the action to be performed on the object along with information about the purpose
for which the request is made. In particular, the access purpose is represented by the
task for which the access to the object is requested and by the process instance.

When a user requests permission to execute an action on an object for a certain
purpose, the access request is evaluated against the data protection policy. Access is
granted if there exists a data protection statement that matches the access request di-
rectly or through a hierarchy.

Definition 3. Let Pol be a data protection policy and (u, a, o, q, c) an access request.
We say that the access request is authorized if there exists a statement (s, a′, o′, p) ∈ Pol
such that (i) s = u, or s = r1, u has role r2 active,2 and r2 ≥R r1; (ii) a = a′; (iii)
o′ ≥O o; (iv) c is an instance of p, and q is a task in p.

2 We assume users have to authenticate within the system before performing any action. During
the authentication process, the role membership of users is determined by the system.

Purpose Control: Did You Process the Data for the Intended Purpose? 151

3.3 Organizational Processes

Organizational processes specify the activities that users are expected to take in order
to accomplish a certain goal. Organizational processes are often modeled in BPMN
[12], the de-facto standard modeling notation in industry. Although BPMN provides
a standard visualization mechanism, it is informal and therefore not suitable for for-
mal verification. We rely on COWS [10], a foundational language for service-oriented
computing that combines constructs from process calculi with constructs inspired by
WS-BPEL [11], for the formalization of BPMN processes. Here, we present a minimal
version of COWS that suffices for representing organizational processes.

COWS basic entities are services, i.e., structured activities built by combining basic
activities. COWS relies on three countable and pairwise disjoint sets: names, variables,
and killer labels. Basic activities take place at endpoints, identified by both a partner
and an operation name. The grammar of COWS is defined as follows:

s ::= p · o! 〈w〉 | [d]s | g | s | s | {|s|} | kill(k) | ∗ s

g ::= 0 | p · o? 〈w〉. s | g + g

Intuitively, the basic activities a service can perform are: the empty activity 0; p ·o! 〈w〉,
an invoke (sending) activity over endpoint p · o with parameter w; p · o? 〈w〉, a request
(receiving) activity over endpoint p · o with parameter w; kill(k), a block activity that
prevents services within the scope of a killer label k to proceed. The scope for names,
variables, and killer labels is denoted by [d]s. The construct {|s|}, when not covered by
an action, saves a service s from a killer signal sent out by a kill().

The temporal execution order of the basic activities is described by a restricted set of
operators: p · o? 〈w〉. s executes request p · o? 〈w〉 and then service s; services s1 and s2

running in parallel are represented as s1|s2; a choice between two request activities g1

and g2 is written as g1 + g2. Finally, recursion is modeled with the replication operator
∗: the service ∗ s behaves as ∗ s | s, namely ∗ s spawns as many copies of s as needed.

COWS is equipped with a structural operational semantics [15], i.e., a set of syntax-
driven axioms and rules which describes the dynamics of the system at hand. Specif-
ically, rules allow the definition of a Labeled Transition System (LTS) (s0, S, L,−→),
where S is a set of COWS services or states, s0 ∈ S is the initial state, L is a set of
labels, and −→ ⊆ S × L × S is a labeled transition relation among COWS services,
such that (s, l, s′) ∈ −→ iff COWS semantics allows one to infer the labeled transition.

We use s
l−→s′ as a shortcut for (s, l, s′) ∈ −→.

Labels in L are generated by the following grammar:

l ::= (p · o) � w | (p · o) � w | p · o (v) | †k | †
Invoke label (p ·o)� w and request label (p ·o)� w are for invoke and request activities,
respectively. Label p·o (v) represents a communication between an invoke label (p·o)� v
and a request label (p · o) � w. If the communication is indeed a synchronization, the
label is simplified as p · o. Finally, labels †k and † manage, respectively, ongoing and
already executed killing activities. We refer to [10] for a detailed description of the
COWS structural operational semantics.

152 M. Petković, D. Prandi, and N. Zannone

The encoding of BPMN processes into COWS specifications founds on the idea of
representing every BPMN element as a distinct COWS service. For the lack of space,
here we only present the intuition of the encoding; examples of the encoding are given
in Appendix A. In [16], we have defined elementary and parametric COWS services for
a core set of BPMN elements. For example, a start event (e.g., S1 in Fig. 1) is modeled
in COWS as x·y! 〈〉 where x·y is the endpoint triggering the next BPMN element in the
flow (x is the pool that contains the element and y is the name of the element); a task
(e.g., T 01 in Fig. 1) is modeled as x · y? 〈〉.Act , where x · y is the endpoint to trigger
the execution of the task, and Act is the activity performed by the task (Act eventually
specifies the next BPMN element). Parameters are instantiated to connect the BPMN
elements forming the BPMN process. The COWS service implementing S1 and T 01,
denoted by [[S1]] and [[T 01]] respectively, are [[S1]] = GP · T 01! 〈〉 and [[T 01]] =
GP · T 01? 〈〉. [[Act]], where [[Act]] is the COWS service implementing activity Act
and GP stands for general practitioner. The overall organizational process results from
the parallel composition of the elementary services implementing the single BPMN
elements. The process composed by services [[S1]] and [[T 01]] is [[S1]] | [[T 01]].

The sequence flow, which describes the execution order of process activities by track-
ing the path(s) of a token through the process, is rendered as a sequence of communica-
tions between two services. For instance, the sequence flow between event S1 and task
T 01 is defined by the labeled transition

[[S1]] | [[T 01]] GP ·T01−−−−−→ 0 | [[Act]]

Intuitively, the label GP · T 01 allows one to “observe” on the COWS transition sys-
tem that the task received the token. The same idea applies to message flow as well as
to other BPMN elements like event handlers and gateways. However, in case of event
handlers and gateways, some “internal computation” is required to determine the next
BPMN element to be triggered. For instance, exclusive gateway G1 in Fig. 1 is con-
nected to T 02 and T 05; from G1, the token can flow either to T 02 or T 05, but not to
both. The act of deciding which task should be triggered does not represent a flow of
the token. In this case we use the private name sys as the partner in the label. Similarly,
label sys · Err is used to represent error signals. In general, it is not known in advance
how many times a service is invoked during the execution of a process. An example of
this is given by cycles (e.g., T 01, G1 and T 02 in Fig. 1). To this end, we prefix COWS
services with the replication operator ∗ . This operator makes multiple copies of the
COWS service; each copy corresponds to an invocation of the service.

3.4 Audit Trails

Auditing involves observing the actions performed by users to ensure that policies and
procedures are working as intended or to identify violations that might have occurred.
Audit trails are used to capture the history of system activities by representing events
referring to the actions performed by users. Every event is recorded in a log entry.

Definition 4. A log entry is a tuple (u, r, a, o, q, c, t, s) where u ∈ U , r ∈ R, a ∈ A,
o ∈ O, q ∈ Q, c ∈ C, t ties an event to a specific time, and s is the task status indicator.

Purpose Control: Did You Process the Data for the Intended Purpose? 153

The field user represents the user who performed the action on the object. Role
represents the role held by the user at the time the action was performed. The task status
indicator specifies whether the task succeeded or not (i.e., s ∈ {success, failure}).
We assume that the failure of a task makes the task completed; therefore, no actions
within the task are possible after the task has failed. In addition, the process can pro-
ceed only if there is in place a mechanism to handle the failure. Log entries also contain
information about the purpose for which the action was performed. In particular, the
purpose is described by the task in which the action was performed and the case that
identifies the process instance in which the action took place.

An audit trail consists of the chronological sequence of events that happen within the
system.

Definition 5. A audit trail is an ordered sequence of log entries where given two entries
ei = (ui, ri, ai, oi, qi, ci, ti, si) and ej = (uj, rj , aj , oj , qj , cj, tj , sj) we say that ei is
before ej (denoted by ei < ej) if ti < tj .

Recent data protection regulations in the US (see [17]) impose healthcare providers to
record all actions related to health information. Accordingly, we assume that audit trails
record every action performed by users, and these logs are collected from all applica-
tions in a single database with the structure given in Def. 4. In addition, audit trails
need to be protected from breaches of their integrity. A discussion on secure logging
is orthogonal to the scope of this paper. Here, we just mention that there exist well-
established techniques [18,19], which guarantee the integrity of logs.

Fig. 4 presents a possible audit trail for the scenario of Section 2. The audit trail
describes the accesses to Jane’s EPR made by the GP (John), the cardiologist (Bob),
and the radiologist (Charlie) in the process of providing her medical treatments (we
assume that Bob did not order lab tests). It also shows that a number of instances of the
process can be executed concurrently. Time is in the form year-month-day-hour-minute.
Tasks are denoted by a code as defined in Fig. 1. Case HT-1 represents the instance of
the process being executed. In particular, HT stands for the healthcare treatment process
and the number indicates the instance of the process.

The last part of Fig. 4 presents the log entries generated during the execution of the
clinical trial (CT) process. Here, Bob specified healthcare treatment as the purpose in
order to retrieve a larger number of EPRs.3 Note that preventive mechanisms cannot
detect the infringement. Only the patients selected for the trial might suspect a privacy
breach. Certainly, the infringement remains covered for those patients who were not
selected for the trial and did not allow the usage of their data for research purposes.

3.5 Alignment

In the previous sections, we introduced data protection policies, organizational pro-
cesses, and audit trails. Although these components make use of the same concepts,
such concepts are often specified at a different level of abstraction. In this section, we
discuss how they are related to each other.

3 Note that, if the physician specifies clinical trial as purpose, the HIS would only return the
EPRs of those patients who gave their consent to use their information for research purposes.

154 M. Petković, D. Prandi, and N. Zannone

user role action object task case time status
John GP read [Jane]EPR/Clinical T01 HT-1 201003121210 success
John GP write [Jane]EPR/Clinical T02 HT-1 201003121212 success
John GP cancel N/A T02 HT-1 201003121216 failure
John GP read [Jane]EPR/Clinical T01 HT-1 201003121218 success
John GP write [Jane]EPR/Clinical T05 HT-1 201003121220 success
John GP read [David]EPR/Demographics T01 HT-2 201003121230 success

· · ·
Bob Cardiologist read [Jane]EPR/Clinical T06 HT-1 201003141010 success
Bob Cardiologist write [Jane]EPR/Clinical T09 HT-1 201003141025 success
Charlie Radiologist read [Jane]EPR/Clinical T10 HT-1 201003201640 success
Charlie Radiologist execute ScanSoftware T11 HT-1 201003201645 success
Charlie Radiologist write [Jane]EPR/Clinical/Scan T12 HT-1 201003201730 success
Bob Cardiologist read [Jane]EPR/Clinical T06 HT-1 201003301010 success
Bob Cardiologist write [Jane]EPR/Clinical T07 HT-1 201003301020 success
John GP read [Jane]EPR/Clinical T01 HT-1 201004151210 success
John GP write [Jane]EPR/Clinical T02 HT-1 201004151210 success
John GP write [Jane]EPR/Clinical T03 HT-1 201004151215 success
John GP write [Jane]EPR/Clinical T04 HT-1 201004151220 success
Bob Cardiologist write ClinicalTrial/Criteria T91 CT-1 201004151450 success
Bob Cardiologist read [Alice]EPR/Clinical T06 HT-10 201004151500 success
Bob Cardiologist read [Jane]EPR/Clinical T06 HT-11 201004151501 success

· · ·
Bob Cardiologist read [David]EPR/Clinical T06 HT-20 201004151515 success
Bob Cardiologist write ClinicalTrial/ListOfSelCand T92 CT-1 201004151520 success
Bob Cardiologist read [Alice]EPR/Demographics T06 HT-21 201004151530 success

· · ·
Bob Cardiologist read [David]EPR/Demographics T06 HT-30 201004151550 success
Bob Cardiologist write ClinicalTrial/ListOfEnrCand T93 CT-1 201004201200 success
Bob Cardiologist write ClinicalTrial/Measurements T94 CT-1 201004221600 success

· · ·
Bob Cardiologist write ClinicalTrial/Measurements T94 CT-1 201004291600 success
Bob Cardiologist write ClinicalTrial/Results T95 CT-1 201004301200 success

Fig. 4. Audit Trail

Audit trails usually capture and store information at a lower level of abstraction than
organizational processes. While the basic components of organizational processes are
tasks, the basic components of audit trails are actions. Accomplishing a task may require
a user to execute a number of actions. Thereby, there is a 1-to-n mapping between tasks
and log entries: one task can be associated with multiple log entries. One can think to
bring organizational processes and audit trails at a comparable level of abstraction, for
instance, by specifying a process in terms of actions or by annotating each task in the
process with the actions that can be executed within the task. However, these approaches
would require several efforts in the specification of organizational processes as well as
affect their readability and understanding. To address this issue, we allow for every
action executed within the tasks active at a certain time (when checking the compliance
of the actual data usage with the intended purpose as described in Section 4). However,
this leaves risks of unauthorized access to data. To prevent unauthorized access while
keeping the management of organizational processes simple, a mechanism for purpose
control should be complemented with a preventive enforcement mechanism that verifies
access requests in isolation (i.e., independently from other requests).

Languages for representing business processes often rely on information that is not
available in audit trails. For instance, the COWS representation of organizational

Purpose Control: Did You Process the Data for the Intended Purpose? 155

processes founds on the idea that the evolution of the transition system completely char-
acterizes the evolution of the process. Accordingly, transition systems contain informa-
tion about the management of gateways and the occurrence of non-observable events,
which is not recorded in audit trails. To define a suitable mapping between log entries
and COWS labels, we distinguish the information that is IT observable by defining the
set of observable labels L as a subset of the set of labels L, i.e., L ⊂ L. In particular,
labels in L specify labels representing the execution of a task q by a partner r (i.e.,
synchronization labels of the form r · q) and labels representing errors (i.e., sys ·Err).
Summing up, the set of observable labels is

L = {r · q | r ∈ R and q ∈ Q} ∪ {sys · Err}.

Our definition of observable labels reflects the fact that we assume that only the execu-
tion of tasks and error events are IT observable. In case other activities can be logged
by the system (e.g., message flows), the definition above should be extended to include
the corresponding labels.

How the system determines the purpose for which an action was performed (i.e.,
the task and case in a log entry) is a critical issue as it is necessary to link the actions
to the appropriate process instance. We assume that information about the purpose is
available. Different solutions can be adopted to collect this information. For instance,
most IT systems based on transactional systems such as WFM, ERP, CRM and B2B
systems are able to record the task and the instance of the process [13]. Here, the system
itself is responsible to determine the context of an action and store it in the log entry. A
different approach is proposed in [2,3,4] where users are required to specify the purpose
along with the access request. This approach is also adopted in existing EPR systems
like DocuLive which require users to provide the reason for the access and record that
reason in audit trails [20]. We assume that the purpose specified in the access request
(i.e., q and c in Def. 2), which can be determined either by the user or by the system,
is recorded in the corresponding log entry. In the next section, we present an algorithm
for verifying if data have actually been processed for that purpose.

4 Compliance with Purpose Specification

The aim of purpose control is to guarantee that personal data are not processed in ways
that are incompatible with the intended purpose of data. We identify two main issues to
be addressed in order to ensure compliance to purpose control: (a) data access should be
authorized, and (b) access purposes should be specified correctly and legally. The first
issue is addressed by Def. 3 which provides a way to evaluate access request against
data protection policies. In particular, this definition guarantees that the data requester
has the permission necessary to access the data.

However, the real challenge in ensuring purpose control is to validate the access
purpose specified in the access request, i.e. determining whether data were in fact pro-
cessed for that purpose. In our scenario, the cardiologist legitimately accessed patient
data for healthcare treatment and then used those data for clinical trial, which leads to

156 M. Petković, D. Prandi, and N. Zannone

Algorithm 1. Compliance procedure
input : a state s, an audit trail l
output: bool

let conf set = {(s, empty, WeakNext(s))};1
let next conf set = null;2
while l �= null do3

let l = e ∗ l′;4
let r ∈ R s.t. e.role ≤R r;5
let found = false;6
forall conf ∈ conf set do7

if ((r , e.task) /∈ conf .active tasks) ∨ (e.status = failure)) then8
forall (label, state, active task) ∈ conf.next do9

if ((label = r · e.task) ∧ (e.status = success)) ∨ ((label = sys · Err) ∧10
(e.status = failure)) then

found = true;11
next conf set+ = (state, active task , WeakNext(state));12

end13
else14

found = true;15
next conf set+ = conf ;16

let l = l′;17
conf set = next conf set ;18
next conf set = null ;19

end20
if ¬found then return false;21

end22

return true;23

a privacy infringement. To detect re-purposing of data, it is necessary to analyze the
actual usage of data. Therefore, for each case in which the object under investigation
was accessed, we determine if the portion of the audit trail related to that case is a valid
execution of the process implemented by an organization to achieve the corresponding
purpose using Algorithm 1.

The algorithm takes as input the COWS service representing the purpose and a finite
(portion of) audit trail and determines whether the LTS associated to that service accepts
the audit trail, i.e. the audit trail corresponds to a trace of the LTS. The key point of
the algorithm is to determine if a log entry can be simulated at a certain point of the
execution of the process. Hence we introduce the concept of configuration to represent
the current state, the tasks active in that state, and the states reachable from the current
state together with the set of active tasks in those states.

Definition 6. Let S be the set of COWS services, R the set of roles, Q the set of tasks,
and L the set of observable labels. A configuration conf is a triple (state, active tasks,
next) where state ∈ S represents the current state, active tasks ∈ 2(R×Q) represents

the set of active tasks in the current state, and next ∈ 2(L×S×2(R×Q)) represents the
possible states that can be reached from the current state executing l ∈ L together with
the corresponding active tasks. Hereafter, we denote the components of a configuration
as conf .state, conf .active tasks , and conf .next , respectively.

The initial configuration consists of the state s representing a given process. Because
a BPMN process is always triggered by a start event [12], the set of active tasks in the

Purpose Control: Did You Process the Data for the Intended Purpose? 157

initial configuration is empty. The conf .next is computed using function WeakNext.
This function takes state s as input and returns the set of states S reachable from s
with exactly one observable label. Intuitively, this function explores the process and
determines which activities can be executed and the states that are reachable executing
such activities. Consider, for instance, the LTS in Fig. 5 where we use l for labels

�������	s¬l

�����
��� l

�����
���

������s0
l

����
� l

���
��

������s1¬l

����
� l

���
��

������s2
������s3
������s4
������s5

Fig. 5. WeakNext

in L and ¬l for labels in L \ L. Function WeakNext(s)
returns states s1, s2, and s3. The reachable states are
computed on the basis of the sequence and message
flow. This requires analyzing the gateways which the
token(s) goes through. For instance, parallel gateways
(i.e., AND gateways) create parallel flow. Accordingly,
WeakNext returns the states reachable following all
the flows coming out from the gateway. On the other
hand, inclusive decision gateways (i.e., OR gateways) are locations where the sequence
flow can take one or more alternative paths. Therefore, the set of reachable states in-
cludes states that allow the execution of every possible combination of alternatives. For
each reachable state, the function also computes the set of tasks active in that state.
WeakNext can be implemented on top of CMC [21], an on-the-fly model checker and
interpreter for COWS. This tool supports the derivation of all computations originating
from a COWS process in automated way.

Algorithm 1 extracts an entry e from the audit trail (line 4), and, for each configu-
ration conf in next conf set , it verifies whether the executed activity (i.e., (r, e.task)
where role r is a generalization of e.role according to the role hierarchy) is active and
succeeded. If it is the case, the task remains active and the configuration is added to the
set of configurations to be considered in the next iteration (next conf set) (line 16).
Otherwise, if the action succeeded and the execution of the task makes it possible
to reach a reachable state, a new configuration for that state is created and added to
next conf set . Similarly, if the activity failed and the failure leads to a reachable state,
a new configuration for that state is created and added to next conf set .

The computation terminates with false (i.e., an infringement is detected), if the en-
try cannot be simulated by the process (line 21). Otherwise, the computation proceeds
until the audit trail has been completely analyzed. If infringements are not detected,
the computation terminates with true (line 23). Note that the analysis of the audit trail
may lead the computation to a state for which further activities are still possible. In this
case the analysis should be resumed when new actions within the process instance are
recorded. However, if a maximum duration for the process is defined, an infringement
can be raised in the case where this temporal constraint is violated.

We show now the application of Algorithm 1 to the process in Fig. 1 and the se-
quence of audit entries of Fig. 4 with case HT-1. Fig. 6 presents a portion of the transi-
tion system generated by the algorithm. Here, nodes represent the states visited by the
algorithm together with the set of active tasks; edges represent observable transitions
from the states. The number on the edge indicates the path of the transition system (i.e.,
the order of log entries).

It is worth noting that the failure of task T 02 (step 3) leads to a state in which no
tasks are active (St4). This state corresponds to a “suspension” of the process awaiting

158 M. Petković, D. Prandi, and N. Zannone

�� ��
�� ��St1 (empty)

GP ·T01
�� �������	1

�� ��
�� ��St4 (empty)

GP ·T01 ��
�������	4
�� ��
�� ��St2 ({GP · T01})

GP ·T02
�����

������� GP ·T05
��

�������	2
�� �������	5

�� ��
�� ��St3 ({GP · T02})

sys·Err

		

GP ·T03
��

�������	3

�� ��
�� ��St6 ({GP · T05})

C·T06
�� �������	6

�� ��
�� ��St5 ({GP · T03}) �� ��

�� ��St7 ({C · T06}) C·T07 ��

C·T08
�����

������� C·T09
��

C·T09
�����

����� C·T08
�������������

���������������
�������	7 �������	7

�� ��
�� ��St8 ({C · T07})

�� ��
�� ��St9 ({C · T08})

TL·T13

��

�� ��
�� ��St10 ({C · T09})

R·T10
�� �������	8

�� ��
�� ��St11 ({C · T08, C · T09})

R·T10
�� C·T08

				
	

��				
	�������	8

�� ��
�� ��St12 ({C · T08, C · T09})

TL·T13

��
C·T09

�� ��
�� ��St13 ({R · T10})

R·T11
�� �������	9

�� ��
�� ��St14 ({C · T08, R · T10})

R·T11
�� C·T08

				
	

��				
	�������	9

�� ��
�� ��St15 ({R · T11})

R·T12

��
������10

�� ��
�� �	St16 ({C · T08, R · T11})

R·T12

��
������10
C·T08
����

������
. . .

GP ·T04 ��
������16���� ��
�� ��St36 ({GP · T04})

���� ��
�� ��St38 (empty)

Fig. 6. Portion of the transition system visited by Algorithm 1

the proper activities (GP · T 01) to restore it. Moreover, one can notice that five states
are reachable from state St7. This situation is due to the combination of exclusive de-
cision gateway G2 and inclusive decision gateway G3 (see Fig. 1). In particular, G3
allows four possible states, one in which the cardiologist (C in Fig. 6) ordered only lab
tests (St9), one in which he ordered only radiology scans (St10), and two in which
he ordered both (St11 and St12). The difference between these two states lies in the
activity executed to reach them. The next log entry refers to the radiologist verifying
counter-indications (R ·T 10). States St10 and St11 allow the execution of that activity;
therefore, both states are considered in the next iteration. The algorithm proceeds until
the audit trail is fully simulated by the process (step 17). As the portion of the audit trail
corresponding to HT-1 is completely analyzed without deviations from the expected
behavior, no infringement is detected by the algorithm.

Besides for HT-1, Jane’s EPR has been accessed for case HT-11 (see Fig. 4). If we
apply the algorithm to the portion of the audit log corresponding to that case (only one
entry), we can immediately see that it does not correspond to a valid execution of the
HT process. Therefore, the algorithm returns false indicating the presence of an in-
fringement: Jane’s EPR was accessed for healthcare treatment (HT-11), but it was not
processed for that purpose. The cardiologist might have launched a mimicry attack to
cover the infringement. However, achieving a purpose requires the execution of a num-
ber of tasks; each task should be executed by a user who is allowed to hold the role
to which the task is assigned. Therefore, a single user cannot simulate the whole pro-
cess alone, but he has to collude with other users to make a mimicry attack successful.
Moreover, if the cardiologist reuses a previous case as the reason for the request (i.e.,
HT1 instead of HT11), the attack would succeed only in very restricted time windows:

Purpose Control: Did You Process the Data for the Intended Purpose? 159

the unlawful access has to be in conjunction with a legitimate access, otherwise Al-
gorithm 1 recognizes that the audit trace is not a valid execution of the process. This
threat can be partially mitigated by limiting multi-tasking, i.e. a user have to complete
an activity before starting a new activity.

5 Properties of the Algorithm

In the previous section, we have proposed an algorithm that can either confirm that
the data were processed for the intended purpose or detect privacy infringements. In
this section, we discuss the termination, soundness and completeness of the algorithm.
Proofs are presented in Appendix B.

The critical part of Algorithm 1 is function WeakNext, because, given a COWS
service s, it has to generate and explore (part of) the possibly infinite transition system
LTS(s) associated to s; thereby, we have to guarantee the termination of WeakNext.
We start by giving some basic definitions.

Given a LTS Ω = (s, S, L,−→), a trace is a possibly infinite sequence of S ×L pairs
σ ≡ (s, l0), (s0, l1) . . . (sn, ln+1) . . . describing a trajectory of the LTS, also denoted as

s
l0−→s0

l1−→ . . . sn
ln+1−−−→ The possibly infinite set of traces of Ω is Σ(Ω).

A formal definition of the set of states computed by function WeakNext follows.

Definition 7. Let s be a COWS service and L the set of observable labels for s. Then,

WeakNext(s) = {s′ | ∃k < ∞.s
l0−→ . . .

lk−→sk
l−→s′ ∧ ∀i ≤ k . li /∈ L ∧ l ∈ L}.

Given a COWS service s, function WeakNext(s) is decidable w.r.t. the set of observable
labels L if, for each trace from s, it is not possible to perform an infinite number of
transitions with label in L \ L. The following generalizes this concept.

Definition 8. Let Ω = (s, S, L,−→) be a LTS and M ⊆ L a set of labels. A trace
σ ≡ (s, l0), (s0, l1) . . . (sn, ln+1) . . . in Σ(Ω) is finitely observable w.r.t M iff ∃n <
∞ . ln ∈ M and ∀j > n . (lj ∈ M ⇒ ∃k < ∞ . lj+k ∈ M). The set of finitely
observable traces of Ω is denoted as ΣFO (Ω). If Σ(Ω) = ΣFO (Ω), Ω is a finitely
observable LTS w.r.t M .

A finitely observable transition system w.r.t. a set of labels M could express infinite
behaviors, but, within a finite time period it is possible to observe a label in M . This is
the idea underlying Algorithm 1. In particular, given a task active at a certain step of the
execution of the process, the algorithm determines what are the possible sets of active
tasks in the next step. The definition of finitely observable transition system allows us
to state a first important result.

Proposition 1. Given a COWS service s and the set of observable labels L for s, if
LTS(s) is finitely observable w.r.t. L, then WeakNext(s) is decidable on L.

Although COWS is expressive enough to represent BPMN processes, in order to guar-
antee the decidability of WeakNext we have to restrict our target to the set of BPMN
processes whose transition system is finitely observable w.r.t. the set of observable la-
bels. Hereafter, we say that a BPMN process p is well-founded w.r.t. a set of labels M if

160 M. Petković, D. Prandi, and N. Zannone

LTS(s) is finitely observable w.r.t. M , where s is the COWS encoding of p. Intuitively,
a BPMN process p is well-founded if every cycle in p has at least one activity which
is observable. Given the definition of observable labels L in Section 3.5, a BPMN pro-
cess is therefore well-founded if every sequence flow path ending in a cycle contains
at least a task or an event handling errors. Restricting the analysis to well-founded pro-
cesses does not impose a serious limitation in practice. It avoids those degenerate cases
where the process could get stuck because no task or event handler is performed but
the process is not ended. An example is a BPMN process with a cycle formed only by
gates. Note that non well-founded processes can be detected directly on the diagram
describing the process.

From the above considerations, we can state the following corollary.

Corollary 1. Let p be a well-founded BPMN process, s the COWS service encoding p,
LTS(s) = (s, S, L,−→), and L ⊆ L the set of observable labels for s. Then, WeakNext
terminates for all s′ ∈ S.

We now prove that Algorithm 1 terminates for every COWS service s encoding a well-
founded BPMN process. If we consider an audit trail l of length k, Algorithm 1 explores
only a finite portion of the transition system of s to verify if an entry e of l is accepted,
because of Corollary 1. The idea is that, being k finite, Algorithm 1 explores a finite
portion of LTS(s), and therefore terminates.

Theorem 1. Let p be a well-founded BPMN process, s the COWS service encoding p,
L the set of observable labels for s, and l an audit trail of length k. Then, Algorithm 1
on (s, l) terminates.

The following result demonstrates the correctness of Algorithm 1.

Theorem 2. Let s be a COWS service encoding a well-founded BPMN process and l
an audit trail. Algorithm 1 on (s, l) returns true iff there exists a trace σ ∈ Σ(LTS (s))
such that σ accepts l.

The results presented in this section allow us to conclude that, within the boundaries
defined by a well-founded BPMN process, Algorithm 1 can always decide if a finite
audit trail raises concerns about infringement of purpose specification.

6 Related Work

It is largely recognized that traditional access control is insufficient to cope with pri-
vacy issues [1,2,22]. Karjoth et al. [23] identify the need of three additional elements
(i.e., purpose, condition, and obligation), beside the basic authorization elements (i.e.,
subject, object, and action). Based on this observation, a number of models, languages
and standards tailored to specify data protection policies have been proposed in the
last decade [2,4,5,8,24,25,26]. In this section, we discuss existing proposals based on
the concept of purpose. Works on obligations are complementary to our work as obli-
gations are intended to address different data protection requirements (e.g., retention
period).

Purpose Control: Did You Process the Data for the Intended Purpose? 161

Existing purpose-based frameworks [2,4,5,24] treat the intended purpose as a la-
bel attached to data. Upon receiving an access request, they match the access purpose
against the label attached to the requested data. However, they rely on the fact that the
requester specifies the purpose legally, implying complete trust on the requester. Few
researchers have addressed the problem of validating the access purpose. For instance,
Byun and Li [4] specify the roles that can make a request for a given purpose. However,
this approach is preventive and does not solve the problem of re-purposing the data. In
contrast, we propose to specify the operational behavior of purposes, which makes it
possible to analyze the actual usage of data with respect to purpose specifications.

To best of our knowledge, there is only another framework, the Chain method [27],
that attempts to define an operational model for purposes. Here, a privacy policy speci-
fies the “chains of acts” that users are allowed to perform where each act is some form
of information handling (i.e., creating, collecting, processing, disclosing); purposes are
implicitly defined by the sequences of acts on personal information. Compared to our
approach, this corresponds to specifying business processes in terms of actions, intro-
ducing an undesirable complexity into process models. Conversely, our solution pro-
vides a flexible way to align business processes, data protection policies and audit trails
and allows an organization to reuse its business process models for purpose control. In
addition, the Chain method has a preventive nature and lacks capability to reconstruct
the sequence of acts (when chains are executed concurrently).

Some approaches propose methods for a-posteriori policy compliance [28,29]. For
instance, Cederquist et al. [29] present a framework that allows users to justify their
actions. However, these frameworks can only deal with a limited range of access con-
trol policies and do not consider the purpose. Agrawal et al. [30] propose an auditing
framework to verify whether a database system is compliant with data protection poli-
cies. However, their focus is mainly on minimizing the information to be disclosed and
identifying suspicious queries rather than verifying data usage.

Techniques for detecting system behaviors that do not conform to an expected model
have been proposed in process mining and intrusion detection. In intrusion detection,
logs of system calls are analyzed either to detect deviations from normal behavior
(anomaly detection) [31] or to identify precise sequences of events that damage the
system (misuse detection) [32]. Accordingly, our method can be seen as an anomaly
detection technique. Process mining [33] and, in particular, conformance checking [13]
have been proposed to quantify the “fit” between an audit trail and a business pro-
cess model. These techniques, however, work with logs in which events only refer to
activities specified in the business process model. Consequently, they are not able to
analyze the compliance with fine-grained data protection policies. Moreover, they are
often based on Petri Nets. This formalism does not make it possible to capture the full
complexity of business process modeling languages such as BPMN. Existing solutions
based on Petri Nets either impose some restrictions on the syntax of BPMN (e.g., avoid-
ing cycles), or define a formal semantics that deviate from the informal one. Conversely,
we have adopted COWS [10] for the representation of organizational processes. This
language has been proved to be suitable for representing a large set of BPMN constructs
and analyzing business processes quantitatively [16].

162 M. Petković, D. Prandi, and N. Zannone

7 Conclusions

Organizations often make use of business process models to define how organizational
goals should be achieved. In this paper, we proposed to associate the purpose defined
in data protection policies to such process models. This representation makes it pos-
sible to verify the compliance of the actual data usage with purpose specifications by
determining whether the audit trail represents a valid execution of the processes defined
by the organization to achieve a certain purpose. We expect that the audit process is
tractable and scales to real applications. Intuitively, the complexity of the approach is
bound to the complexity of Algorithm 1. Indeed, Algorithm 1 is independent from the
particular object under investigation so that it is not necessary to repeat the analysis
of same process instance for different objects. In addition, the analysis of process in-
stances is independent from each other, allowing for massive parallelization. A detailed
complexity analysis of the algorithm is left for future work, but our first experiments
show encouraging performances.

The work presented in this paper suggests some interesting directions for the future
work. The proposed approach alone may not be sufficient when we consider the hu-
man component in organizational processes. Process specifications may contain human
activities that cannot be logged by the IT system (e.g., a physician discussing patient
data over the phone for second opinion). These silent activities make it not possible to
determine if an audit trail corresponds to a valid execution of the organization process.
Therefore, we need a method for analyzing user behavior and the purpose of data us-
age when audit trails are partial. In addition, many application domains like healthcare
require dealing with exceptions. For instance, a physician can take actions that diverge
from the procedures defined by a hospital to face emergency situations. On one side,
preventing such actions may be critical for the life of patients. On the other side, check-
ing every occurrence of emergency situations can be costly and time consuming. To
narrow down the number of situations to be investigated, we are complementing the
presented mechanism with metrics for measuring the severity of privacy infringements.

References

1. Guarda, P., Zannone, N.: Towards the Development of Privacy-Aware Systems. Information
and Software Technology 51(2), 337–350 (2009)

2. Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Hippocratic Databases. In: Proceedings of the
28th International Conference on Very Large Data Bases, pp. 143–154. Morgan Kaufmann,
San Francisco (2002)

3. Ashley, P., Hada, S., Karjoth, G., Schunter, M.: E-P3P privacy policies and privacy autho-
rization. In: Proceedings of the 2002 ACM Workshop on Privacy in the Electronic Society,
pp. 103–109. ACM, New York (2002)

4. Byun, J.-W., Li, N.: Purpose based access control for privacy protection in relational database
systems. VLDB J 17(4), 603–619 (2008)

5. Massacci, F., Mylopoulos, J., Zannone, N.: Hierarchical Hippocratic Databases with Minimal
Disclosure for Virtual Organizations. VLDB J 15(4), 370–387 (2006)

6. Catteddu, D., Hogben, G.: Cloud Computing – Benefits, risks and recommendations for in-
formation security. European Network and Information Security Agency (ENISA), Report
(2009)

Purpose Control: Did You Process the Data for the Intended Purpose? 163

7. Daskala, B.: Being diabetic in 2011 – Identifying Emerging and Future Risks in Remote
Health Monitoring and Treatment. European Network and Information Security Agency
(ENISA), Report (2009)

8. Karjoth, G., Schunter, M., Waidner, M.: Platform for Enterprise Privacy Practices: Privacy-
enabled Management of Customer Data. In: Dingledine, R., Syverson, P.F. (eds.) PET 2002.
LNCS, vol. 2482, pp. 69–84. Springer, Heidelberg (2003)

9. Lovis, C., Spahni, S., Cassoni, N., Geissbuhler, A.: Comprehensive management of the ac-
cess to the electronic patient record: Towards trans-institutional networks. Int. J. of Medical
Informatics 76(5-6), 466–470 (2007)

10. Lapadula, A., Pugliese, R., Tiezzi, F.: Calculus for Orchestration of Web Services. In: De
Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 33–47. Springer, Heidelberg (2007)

11. OASIS, Web Services Business Process Execution Language – Version 2.0, OASIS Standard
(2007),
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

12. Object Management Group, Business Process Modeling Notation (BPMN) Specification
(version 1.2), OMG document (2009), http://www.omg.org/spec/BPMN/1.2/

13. Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on monitoring
real behavior. Inf. Syst. 33(1), 64–95 (2008)

14. Enterprise Security and Privacy Authorization (XSPA) Profile of XACML v2.0 for Health-
care, Committee Draft (2008),
http://xml.coverpages.org/xspa-xacml-profile-CD01-29664.pdf

15. Plotkin, G.: The origins of structural operational semantics. J. Log. Algebr. Program 60, 3–15
(2004)

16. Prandi, D., Quaglia, P., Zannone, N.: Formal analysis of BPMN via a translation into COWS.
In: Wang, A.H., Tennenholtz, M. (eds.) COORDINATION 2008. LNCS, vol. 5052, pp. 249–
263. Springer, Heidelberg (2008)

17. Office of the National Coordinator for Health Information Technology Electronic Health
Records and Meaningful Use (2010),
http://healthit.hhs.gov/portal/server.pt/community/
healthit hhs gov meaningful use announcement/2996

18. Ma, D., Tsudik, G.: A new approach to secure logging. ACM Trans. Storage 5(1), 1–21
(2009)

19. Schneier, B., Kelsey, J.: Secure audit logs to support computer forensics. ACM Trans. Inf.
Syst. Secur. 2(2), 159–176 (1999)

20. Rostad, L., Edsberg, O.: A study of access control requirements for healthcare systems based
on audit trails from access logs. In: Proceedings of the 22nd Annual Computer Security
Applications Conference, pp. 175–186. IEEE Computer Society, Los Alamitos (2006)

21. Fantechi, A., Gnesi, S., Lapadula, A., Mazzanti, F., Pugliese, R., Tiezzi, F.: A model checking
approach for verifying COWS specifications. In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE
2008. LNCS, vol. 4961, pp. 230–245. Springer, Heidelberg (2008)

22. He, Q., Antón, A.I.: A Framework for Modeling Privacy Requirements in Role Engineering.
In: Proceedings of the 9th International Workshop on Requirements Engineering: Foundation
for Software Quality, pp. 137–146 (2003)

23. Karjoth, G., Schunter, M.: A Privacy Policy Model for Enterprises. In: Proceedings of the
15th IEEE Workshop on Computer Security Foundations, pp. 271–281. IEEE Computer So-
ciety, Los Alamitos (2002)

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.omg.org/spec/BPMN/1.2/
http://xml.coverpages.org/xspa-xacml-profile-CD01-29664.pdf
http://healthit.hhs.gov/portal/server.pt/community/healthit_hhs_gov__meaningful_use_announcement/2996
http://healthit.hhs.gov/portal/server.pt/community/healthit_hhs_gov__meaningful_use_announcement/2996

164 M. Petković, D. Prandi, and N. Zannone

24. Backes, M., Karjoth, G., Bagga, W., Schunter, M.: Efficient comparison of enterprise privacy
policies. In: Proceedings of the 2004 ACM Symposium on Applied Computing, pp. 375–382.
ACM, New York (2004)

25. Hilty, M., Basin, D.A., Pretschner, A.: On Obligations. In: di Vimercati, S.d.C., Syverson,
P.F., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 98–117. Springer, Heidel-
berg (2005)

26. OASIS, eXtensible Access Control Markup Language (XACML) Version 2.0, OASIS Stan-
dard (2005), http://docs.oasis-open.org/xacml/2.0/
access control-xacml-2.0-core-spec-os.pdf

27. Al-Fedaghi, S.S.: Beyond purpose-based privacy access control. In: Proceedings of the 8th
Conference on Australasian Database, pp. 23–32. Australian Computer Society, Inc. (2007)

28. Fournet, C., Guts, N., Nardelli, F.Z.: A formal implementation of value commitment. In:
Gairing, M. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 383–397. Springer, Heidelberg (2008)

29. Cederquist, J.G., Corin, R.J., Dekker, M.A.C., Etalle, S., den Hartog, J.I., Lenzini, G.: Audit-
based compliance control. Int. J. Inf. Sec. 6(2-3), 133–151 (2007)

30. Agrawal, R., Bayardo, R., Faloutsos, C., Kiernan, J., Rantzau, R., Srikant, R.: Auditing Com-
pliance with a Hippocratic Database. In: Proceedings of the 30th International Conference
on Very Large Data Bases. VLDB Endowment, pp. 516–527 (2004)

31. Feng, H.H., Kolesnikov, O.M., Fogla, P., Lee, W., Gong, W.: Anomaly detection using call
stack information. In: Proceedings of the IEEE Symposium on Security and Privacy, pp.
62–75. IEEE Computer Society, Los Alamitos (2003)

32. Kumar, S., Spafford, E.H.: A Pattern Matching Model for Misuse Intrusion Detection. In:
Proceedings of the 17th National Computer Security Conference, pp. 11–21 (1994)

33. van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow Mining: Discovering Process
Models from Event Logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)

A Encoding of BPMN in COWS

In this section we present some examples that provide the intuition underlying the
COWS semantics and the encoding of BPMN processes into COWS specification.

Consider the simple process in Fig. 7(a); it is composed by a start event S, a task
T , and an end event E within a pool P . The corresponding COWS service is Serv =
[[S]] | [[T]] | [[E]], where services [[S]], [[T]], and [[E]] are defined in Fig. 7(b). Service
[[S]] gives the control to task T in pool P , written as P ·T ! 〈〉. Service [[T]] receives the
control (P · T ? 〈〉) and then (represented as infix dot “. ”) gives the control to the end
event E within pool P (P ·E! 〈〉). Finally, [[E]] closes the flow receiving the control P ·
E? 〈〉. The LTS associated with service Serv (Fig. 7(c)) gives a compact representation
of the possible paths of tokens within the process of Fig. 7(a). In this simple case, only
a single path is possible.

An example involving a gateway is presented in Fig. 8(a). Here, when reaching the
exclusive gateway G, the token can follow only one flow, either through T 1 or through
T 2. Fig. 8(b) shows the encoding of the process in COWS. Note that the encoding of
G, [[G]], makes use of kill(k): when an alternative is selected, a killer signal is sent
to prevent the other alternative to be executed. This is evident in Fig. 8(c) where state
St6 is reached by running either T 1 or T 2, but there is no path where both T 1 and T 2

http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf

Purpose Control: Did You Process the Data for the Intended Purpose? 165

(a) BPMN Process

[[S]] := P · T ! 〈〉
[[T]] := P · T ? 〈〉. P · E! 〈〉
[[E]] := P · E? 〈〉

(b) COWS Serv

������ !St1
P ·T �� ������ !St2

P ·E �� ������ !St3

(c) COWS LTS

Fig. 7. A Simple BPMN process in COWS

(a) BPMN Process

[[S]] := P · T ! 〈〉
[[T]] := P · T? 〈〉. P · G! 〈〉
[[G]] := P · G? 〈〉. [k][sys](

sys · T1! 〈〉 | sys · T2! 〈〉|
sys · T1? 〈〉.(kill(k) | {|P · T1! 〈〉|})|
sys · T2? 〈〉.(kill(k) | {|P · T2! 〈〉|}))

[[T1]] := P · T1? 〈〉. P · E1! 〈〉
[[E1]] := P · E1? 〈〉
[[T2]] := P · T2? 〈〉. P · E2! 〈〉
[[E2]] := P · E2? 〈〉

(b) COWS Serv

������ !St1

P ·T��
������ !St2

P ·G��
������ !St3

sys·T1

�����
� sys·T2

��

������ !St4

P ·T1 ��

������ !St7

P ·T2��
������ !St5

P ·E1 ��

 ������ !St8

P ·E2�����
�

������ !St6

(c) COWS LTS

Fig. 8. A BPMN Process with Exclusive Gateway

are executed. We use the private name sys to avoid interference between services or
between different executions of the same service.

Tasks with an associated error event are another example of sequence flow. The ex-
ample in Fig. 9(a) models a task T that can either proceed “correctly” to task T 2 or
incur an error Err managed by task T 1. The encoding of the COWS services is reported
in Fig. 9(b). Note that the encoding of the BPMN elements S, T 1, E1, T 2, and E2 are
the same of the previous example (Fig. 8(b)). We only change the definition of [[T]]:
when T takes the token, it can either proceed normally invoking T 2 (P ·T 2! 〈〉) or after
signaling an error (label “sys · Err”) proceed invoking T 1 (P · T 1! 〈〉). The LTS of
Fig. 9(c) shows these two possible paths.

The three examples above give some hints about the representation of an organiza-
tional process through COWS. To have a complete insight in the COWS services used
to model the process in Fig. 1 we have to discuss two further topics, namely message
flows and service replication.

Message flows are represented as communications over endpoints belonging to dif-
ferent pools. An example is given in Fig. 10. Here, events S2 and S3 are message start
events, i.e. events that trigger the start of the process upon the receipt of a message, and
E1 and E2 are message end events, i.e. events that send a message to a participant at
the conclusion of the process. When the end event E1 is triggered, it sends a message
msg1 to the start event S3 in pool P2; similarly, end event E2 sends a message msg2
to the start event S2 in pool P1. Upon the receipt of the message, S2 and S3 start the
corresponding process. The COWS encoding of the process in Fig. 10(a) is presented
in Fig. 10(b) and the corresponding LTS in Fig. 10(c).

In general, it is not known in advance how many times a service is invoked during the
execution of a process. An example of this is given by cycles. Cycles are closed paths
in the process; they can consist of sequence flows, as the cycle involving T 01, G1,

166 M. Petković, D. Prandi, and N. Zannone

(a) BPMN Process

[[S]] := P · T ! 〈〉
[[T]] := P · G? 〈〉. [k][sys](

sys · Err! 〈〉 | sys · T2! 〈〉|
sys · Err? 〈〉.(kill(k) | {|P · T1! 〈〉|})|
sys · T2? 〈〉.(kill(k) | {|P · T2! 〈〉|}))

[[T1]] := P · T1? 〈〉. P · E1! 〈〉
[[E1]] := P · E1? 〈〉
[[T2]] := P · T2? 〈〉. P · E2! 〈〉
[[E2]] := P · E2? 〈〉

(b) COWS Serv

������ !St1

P ·T ��
������ !St2

sys·T2 ��
sys·Err

�����
���

������ !St3

P ·T2 ��

������ !St6

P ·T1��
������ !St4

P ·E2 ��

������ !St7

P ·E1�����
���

������ !St5

(c) COWS LTS

Fig. 9. A BPMN Process with Error Event

(a) BPMN Process

[[S1]] := P1 · T1! 〈〉
[[S2]] := ∗ [z]P1 · S2? 〈z〉. P1 · T1! 〈〉
[[T1]] := ∗P1 · T1? 〈〉. P1 · E1! 〈〉
[[E1]] := ∗P1 · E1? 〈〉. P2 · S3! 〈msg1〉
[[S3]] := ∗ [z]P2 · S3? 〈z〉. P2 · T2! 〈〉
[[T2]] := ∗P2 · T2? 〈〉. P2 · E2! 〈〉
[[E2]] := ∗P · E2? 〈〉. P1 · S2! 〈msg2〉

(b) COWS Serv

������ !St1

P1·T1��
������ !St2

P1·E2��
������ !St3

P2·S3 (msg1)��
������ !St4

P2·T2��
������ !St5

P2·E2��
������ !St6

P1·S2 (msg2)

��

(c) COWS LTS

Fig. 10. A BPMN Process with Message Flow and Cycles

T 02, and again T 01 in Fig. 1, or combination of sequence and message flows, as the
cycle involving S2, T 1, E1, S3, T 2, E2, and again S2 in Fig. 10(a). A cycle involves
the restart of the process from a certain activity. Consider the example of Fig. 1: if
the GP is not able to make a diagnosis (Err in task T 02), the process has to restart
from T 01. To address this issue, we prefix COWS services with the replication operator
∗ (Fig. 10(b)). This operator makes multiple copies of the COWS service; each copy
corresponds to an invocation of the service.

B Proofs

Proof of Proposition 1. If LTS(s) is finitely observable w.r.t. L, then for each trace

s
l0−→s0

l1−→s1 . . . sn
ln+1−−−→sn+1 . . .

there exists a value k < ∞ such that lk ∈ L, by Def. 8. This implies that the set of
states that can be reached from s with exactly one label in L can be computed in a finite
number of steps, namely WeakNext(s) is decidable on L. �

Purpose Control: Did You Process the Data for the Intended Purpose? 167

Proof of Theorem 1. The proof is by induction on the length k of l = e1e2 . . . ek.

Base Step: Let l = e1. A BPMN process is always triggered by a start event [12].
Therefore, the initial configuration has the form conf = (s, empty, WeakNext(s)).
By definition LTS(s) is a finitely observable LTS. Therefore, each trace σ ≡
(s, l0), (s0, l1) . . . (sn, ln) . . . in Σ(LTS(s)) is such that ∃j < ∞ . lj ∈ L. If
Σ(LTS(s)) is empty, WeakNext(s) returns an empty set. In this case, the algo-
rithm does not enter into the forall of line 7 and the variable found remains false.
Thereby, the algorithm exits at line 22 with false. If there exists (lj , s′, active tasks)
∈ WeakNext(s) such that lj = r ·e1.task with e1.role ≤R r, or lj = sys ·Err and
e1.status = failure, Algorithm 1 returns true at line 24. Otherwise, Algorithm 1
returns false at line 22.

Inductive Step: Let l = e1 . . . ek with k > 1. By the inductive hypothesis, Algo-
rithm 1 terminates on the audit trail l(k−1) = e1e2 . . . ek−1. Let conf set be the
set of actual configurations. If conf set = ∅, the variable found remains false, and
Algorithm 1 returns false at line 22. If there exists a configuration conf ∈ conf set
such that (r, ek.task) ∈ conf .active tasks with ek.role ≤R r and ek.status =
success, the configuration is added to the set of configurations to be considered
in the next iteration (line 16). As l is completely analyzed and found is equal to
true (line 15), Algorithm 1 returns true at line 24. If there exists a configuration
conf ∈ conf set such that (r · ek.task, s′, at) ∈ conf .next with ek.role ≤R r
or (sys · Err, s′, at) ∈ conf .next and ek.status = failure, variable found be-
comes true at line 11. Then, Algorithm 1 returns true at line 24. Otherwise, if
the entry ek does not correspond either to any task in conf .active tasks or to any
label in conf .next , Algorithm 1 returns false on line 22. Therefore, by induction,
Algorithm 1 terminates for l. �

Proof of Theorem 2. The correctness is essentially given in term of soundness (for-
wards proof) and completeness (backwards proof). We show the implications sepa-
rately. We only sketch the proof of the theorem, which requires a double induction on
the length of l and on the structure of s.

(=⇒) Let l = e1e2 . . . ek be of length k. Algorithm 1 on (s,l) returns true only if
the while cycle of line 3 ends and line 24 is executed. By Theorem 1, we know that the
algorithm and, consequently, the cycle always terminates. Line 24 is executed only if for
each ei ∈ l either condition on line 8 is not verified (i.e., ei .task is active and ei .status
is not failure) or, by line 10, there exists a configuration conf ∈ conf set that accepts
ei (i.e., (r · ei.task, s′, at) ∈ conf .next with ei.role ≤R r or (sys · Err, s′, at) ∈
conf .next and ek.status = failure). This consideration makes it possible to prove
that, at each iteration i ∈ [1, k] of the while cycle, Algorithm 1 computes the set of
traces of LTS(s) that accept the prefix e1 . . . ei. Therefore, if line 24 is executed, there
exists at least one trace σ in Σ(LTS(s)) that accepts l.

(⇐=) To prove the completeness of Algorithm 1, we have to prove that if there is a trace
from s that accepts l, then Algorithm 1 on (s, l) gives true. Below, we demonstrate the
contra-positive of the previous sentence, i.e. if Algorithm 1 on (s, l) returns false, then
there is not a trace from s that accepts l. Given l = e1e2 . . . ek, Algorithm 1 on (s, l)
returns false if there exists an iteration i ∈ [1, k] of the while cycle in line 3 such that the

168 M. Petković, D. Prandi, and N. Zannone

condition on line 21 is true. This is possible if during iteration i both line 11 and line 15
are not executed. The first condition is verified if, given a conf ∈ conf set such that ei

does not correspond to any task in conf .active tasks or it is a failure (i.e., condition on
line 8 is true), there is not a triple (lm , sm , at) ∈ conf .next that accepts ei (condition on
line 10 is false). In this case, by Proposition 1, there does not exist a finitely observable
trace (sj , lj+1) . . . (sm−1, lm) from the current state sj to sm such that ei corresponds
to lm. Line 15 is executed only if ei corresponds to a task in conf .active tasks and it
is not a failure (i.e., condition on line 8 is false). No execution of this line implies that
there does not exist a conf ∈ conf set where e1 is active. This means that ei does not
correspond to an active task in the current state sj . Suppose that at the i-th iteration
of the while cycle, Algorithm 1 has already built all the traces accepting e1 . . . ei−1. If
Algorithm 1 cannot replay ei in the process, we can conclude that there is not a trace in
Σ(LTS(s)) accepting e1 . . . ei, and so l. �

	Purpose Control: Did You Process the Data for the Intended Purpose?
	Introduction
	Running Example
	A Framework for Purpose Control
	Basic Concepts and Notation
	Data Protection Policies
	Organizational Processes
	Audit Trails
	Alignment

	Compliance with Purpose Specification
	Properties of the Algorithm
	Related Work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

