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Preface

This year was the eighth edition of the VLDB Secure Data Management Work-
shop. The topic of data security remains an important area of research especially
due to the steady growing proliferation of emerging data services such as cloud
computing, location-based services, and health-related services. Confidentiality
is the main driver for the research that covers topics such as privacy-enhancing
technologies, access control, and search in encrypted data.

We received 19 submissions of which the Program Committee selected 10
papers to be presented at the workshop and included in the proceedings (approx.
50% acceptance rate). We hope the papers collected in this volume will stimulate
your research in this area.

The regular papers in the proceedings are grouped into three sections. The
first section focuses on privacy. The papers in this section present a study in
privacy violations followed by application-driven work on algorithms. The second
section focuses on data security in networks. The papers address issues related to
management of confidential data that are stored in cloud and sensor networks.
The third section groups a collection of more basic secure data management
techniques that can find their way toward many different application settings.

We wish to thank all the authors of submitted papers for their high-quality
submissions. We would also like to thank the Program Committee members
as well as additional referees for doing an excellent review job. Finally, let us
acknowledge Luan Ibraimi who helped in the technical preparation of the pro-
ceedings.

September 2011 Willem Jonker
Milan Petković
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Quantifying Privacy Violations

Mishtu Banerjee, Rosa Karimi Adl, Leanne Wu, and Ken Barker

Advanced Database Systems Laboratory, Department of Computer Science,
University of Calgary, Calgary, Alberta, Canada

{smbanerj,rkarimia,lewu,kbarker}@ucalgary.ca

Abstract. Understanding privacy in a data storage environment has
become of increasing interest to the data management and user com-
munities over the past decade. Previous work has produced a number
of definitions with greater or lesser specificity. The value of a particular
definition can only be understood in light of how it helps us understand
when a privacy violation occurs. This paper builds upon earlier work
that defines privacy using a four-dimensional taxonomy with an inher-
ent sense of increasing privacy exposure. This taxonomy is extended to
formally capture the notions of (a) privacy violations, (b) the severity of
a privacy violation, and (c) the likelihood of data providers ceasing to
provide data due to privacy exposures. The privacy violation model de-
veloped here provides an operational framework to characterize and esti-
mate privacy violation in a relational database system. It also allows one
to calculate the consequences to the data provider of widening privacy
policies. We describe a quantitative analysis of violations that captures
discrepancies between the data collector’s stated policies and practices
in comparison to the data providers’ data preferences. We demonstrate
this analysis using a simple example and show how the accumulation of
privacy violations can have a detrimental effect upon the data collector.

1 Introduction

Data systems of all varieties increasingly rely on the collection and storage of
data from everyday users. As the volume and frequency of data collection and
storage from individuals increases, privacy becomes an ever-present concern. The
notion of privacy is a difficult one to articulate, and may cover a wide range of
concerns when it comes to user data. For example, there exist privacy violations
defined by legislation which are reliant on human factors, such as maintaining
the ability of the data provider to access and update the information solicited
from them; we draw the focus of the paper away from these types of violations
for the present to concentrate on forms of data privacy which can be protected
by using a data management system.

In a general sense, we find that the uses to which collected and stored data
is put (the ‘practices’ of the data collector) often conflict with the preferences
of the individuals who have provided such data, particularly with regards to
the individual privacy of the data providers. This discrepancy has motivated a
tremendous research effort in the field of data privacy.

W. Jonker and M. Petković (Eds.): SDM 2011, LNCS 6933, pp. 1–17, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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The majority of studies in the field of data privacy are concerned with a
particular subclass of privacy violations, which may also be called ‘leakages’ or
‘inadvertent disclosures’, among several related terms. This subclass comprises
a narrow set of privacy concerns, and is relatively straightforward to describe.
The study of such violations is centered around the act of publishing a given set
of data, and preventing an external party from being able to re-identify specific
individuals whose data was included. Relatively few such studies also attempt to
define the cause, nature and effect of such violations. We examine this question
as a starting point to expand the range of violations with which our model can
address, in the process applying a pre-existing privacy model to explore the
concept of a privacy violation.

Legal and social definitions of privacy centre upon the maintenance of a trans-
parent relationship between data collectors and data providers, not simply upon
the risk of inadvertent disclosures when data is released or published. Privacy
can be violated without data release or publication if data is used outside of the
stated purpose for which it was collected, or retained beyond an agreed period.
Privacy protection in this context requires the ability to verify, in a quantifiable
manner, that information systems which house data from a provider conform to
a stated privacy policy.

Furthermore, data providers vary in their privacy preferences. Thus, protec-
tion of individual privacy depends not only on a data collector conforming to
its stated privacy policies, but also on how those privacy policies align with the
preferences of individual providers. Given a clearly stated and enforced privacy
policy, an individual who is very sensitive about their privacy may distrust the
house more than an individual who is relatively unconcerned about their privacy.
Privacy concerns of data providers are varied. They may include the access of
data by unauthorized persons or for unauthorized purposes, use of data in more
detail (such as including a person’s actual weight rather than a weight range),
or the retention of data for an unspecified period in time. Such data provider
concerns are common across a wide variety of applications, including healthcare,
social networking, government records, or customer relationship management.

We build on these considerations of variability in data providers’ privacy con-
cerns to make fundamental contributions to the issues of privacy in several ways.
The key contributions of this paper are a model of privacy violations that pro-
vides definitions of: (1) privacy violations and a privacy–preserving database; (2)
sensitivity to and severity of privacy violations; and (3) data provider default,
where data providers cease to provide data due to privacy violations. These def-
initions can be put into practice in the context of relational database systems.
Additionally, we (4) use the above definitions to examine the trade-offs between
benefits to the house due to widening its privacy policy versus losses to the house
via data providers defaulting from the system under a widened privacy policy.

1.1 Related Work

The best known approaches to prevent privacy violations have focussed on data
release. k-Anonymity and its refinements [20] [14] [13] concern the release of
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tabular data in such a way that individuals are not identifiable. Differential pri-
vacy [3] [2] [4] attempts to guarantee that participation in a statistical database
will not allow any third-party to learn any more about the individual (via that
participation) than if the individual had not participated. A more recent ap-
proach [12] adapts methods from statistical decision theory to identify the pri-
vacy risk by incorporating both the probability of identifying an individual and
the sensitivity of the disclosed information.

Two approaches are generally used to quantify data privacy. The first relies
on social science to query data providers, potential or otherwise, on their beliefs
with respect to certain privacy issues. One of the best known of these approaches
compiles work performed by Westin [11]. However, such studies are specific to a
certain population of data providers at a single point in time, and cannot be used
to frame a general model. The other approach is based on information theory, in
which the degree of information leakage from data released from the data store
can be calculated. A typical example is provided by Ngoc et al. [15]. However,
this approach is largely concentrated on specific problems, and cannot be used
to build a general privacy model for any data repository.

Efforts have also been made to understand the protection of data privacy
as an equilibrium between two different parties with conflicting interests. van
Heerde et al. [7] describe how the process of setting a policy for data degrada-
tion can be described as an attempt to establish an equilibrium between the data
provider and the data collector. Gianini and Damiani [6] and Ren and Xiao [17]
both apply game theory to model privacy decisions with respect to external
risks to privacy. The problems are described as zero-sum games between attack-
ers and a data collector. While the former explores the problem in a location
anonymization context, the latter focuses on finding an optimum level in a pre-
defined generalization hierarchy. Preibusch [16] utilizes game theory concepts to
demonstrate the interactions between data providers and a data collector in a
dynamic privacy policy setting.

2 Modeling Privacy

‘A Data Privacy Taxonomy’ [1] introduces a model of privacy more comprehen-
sive than had previously been offered in the literature. The taxonomy represents
privacy as a point in a four-dimensional space, where each dimension represents
a different privacy predicate: purpose, visibility, granularity and retention. Pur-
pose refers to the uses for which data has been collected. Visibility describes the
parties who will have access to the data while it is in storage. Granularity defines
the specificity of data which will be revealed. Retention describes how long the
data will be kept in storage.

Consider the act of collecting and storing private data as a form of gambling;
this process incurs the risk of a privacy violation. The taxonomy therefore defines
three kinds of ‘players’ in a data privacy scenario. There are data providers who
provide raw data. There is the house, which is the organization that maintains a
data repository. This is generally the party which stands to profit from any use of
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the data, regardless of whether the data provider’s privacy has been protected.
There are also third-parties who have access to the data maintained by the
house. The interactions of these players constitute a privacy gamble, in which
data providers exchange their data in return for services, and risk having their
privacy violated by the house or third-parties.

The ideas in [1] have recently been applied to characterizing differences in pri-
vacy policy between different social networks [23]. An earlier work [22] demon-
strated data providers are willing to provide more information to a house if they
can provide it at coarser granularity rather than a specific atomic value. The
corollary of this observation is that a data provider may provide less informa-
tion if the house’s policy requires it to be provided as precise atomic values. If
the house’s policy severely violates the data provider’s privacy preferences, the
data provider may even default; they will not participate, and contribute zero
information to the system.

In the context of the taxonomy, other research efforts, particularly in the
area of anonymization [20] [14] [13] and differential privacy [3] [2] [4] focus on
granularity, and assume risk comes from forces external to the system. Our
approach differs by focussing on privacy at the stages of data acquisition, storage
and data access for a specified purpose. In the taxonomy, all four dimensions are
called into play in defining privacy violations, the severity of privacy violations,
and the likelihood data providers leave the system due to privacy violations.

Focus on external risks leads to a scenario where an honest house releases
data in such a way that data provider privacy is protected. In this context, pri-
vacy protection is equated with maintaining the anonymity of individual records.
Research with this focus provides an explicit attack model, defining the compu-
tational capabilities of third-parties given a particular anonymization protocol.
The key issue in such scenarios is the risk of released data being used to identify
individual data providers.

By contrast, focus on internal risks leads to the question of how a specific
house policy (or the modification of an existing house policy) would affect a
data provider, given their privacy preferences. A key issue in such scenarios
is the degree to which house policies conform to the privacy concerns of data
providers. When the privacy practices of the house do not align with the privacy
preferences of the provider, the challenge becomes making the privacy practices
of the house transparent enough that data providers can identify the areas where
alignment has not been achieved, and quantify the resulting privacy violation.
Automation of this procedure makes privacy violations auditable, so that data
providers can continuously monitor the state of their privacy.

We focus on the first step towards data privacy transparency, by quantifying
the degree to which house privacy policies conform to data provider privacy
preferences. To do so, we need to bring together house privacy policies and data
provider privacy preferences in such a way that it is possible to identify when
they may be in conflict, in particular, those instances where a data provider’s
privacy may be violated. The privacy taxonomy [1] represents privacy as data
points in a four-dimensional space. Implicit in this notion is the idea that a data
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provider’s privacy preferences and a house’s privacy policy can be represented
as points in a geometric space. We make this idea explicit in such a way that we
can formally define what it means for a data provider’s privacy preferences to be
violated by a house. We further investigate the consequences of such violations.

An explicit model of privacy violations following from the taxonomy has sev-
eral benefits. First, such a model is one of the requirements in the construction
of a privacy–preserving database. Secondly, it provides a tool for the analysis of
privacy scenarios, to determine whether a given scenario may involve the risk
of a privacy violation. Third, it is a first step to characterizing the dynamics of
different parties (data provider, house, third-party) that may be in conflict with
respect to privacy of data.

We now turn to the intuition behind our model, followed by our core as-
sumptions. Next, we define features that distinguish the privacy perspective of
the house from that of data providers. We then introduce formal definitions of
the privacy violation of an individual data provider, from which we calculate the
probability of a privacy violation. We develop a framework for characterizing the
severity of privacy violations and use it to define the default of individual data
providers, from which we calculate the probability of default. We illustrate this
process with a simple example. Finally, we show the consequences of a house
widening its privacy policy. Via doing so, the house increasingly violates the
privacy preferences of data providers, which leads to a level of default of data
providers that limits the gains to the house.

3 Privacy Violations

The privacy taxonomy provides a simple geometric view of a privacy violation.
Figure 1 illustrates our intuition. We plot on the privacy taxonomy selected
dimensions of a privacy policy for the house, and the corresponding components
of the preferences for the data provider. Each privacy predicate contained by
a house’s privacy policy or a data provider’s preference can be geometrically
represented as a point in a privacy space. The points are denoted by privacy
tuples. If, for any dimension defined by the taxonomy, the house’s privacy policy
does not form a box which can be completely bounded by those of the data
provider’s preferences, then we say a violation has occurred along that dimension.
Part b) of Figure 1 shows a violation along a single dimension and part c) shows
a violation along two dimensions.

We make the following assumptions:

1. The dimensions of privacy are orthogonal.
2. Values for the granularity, visibility and retention can be put into a total

order, for the purposes of defining both the existence and severity of privacy
violations.

3. Every datum is associated with a privacy tuple which is expressed as partic-
ular values for granularity, visibility, retention and purpose.

4. Purpose is treated differently from the other dimensions, and provides a
grouping principle for individual privacy tuples. In that sense, purpose acts
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Fig. 1. Comparison between a single privacy preference tuple and a privacy policy
tuple over two privacy dimensions Si and Sj . Privacy preference and privacy policy
tuples are defined for the same data attribute and share the same purpose.

like a categorical variable, and our key assumption here is simply that dif-
ferent purposes are distinguishable. There is ongoing research which intends
to give the concept of purpose a set of structured semantics by arranging
purpose into a lattice [5] or as a series of interrelated actions[9]. If this ap-
proach leads to a total ordering on the purpose dimension, then in this case
we could treat purpose as any other privacy dimension without changing our
approach.

5. For simplicity, every tuple in a data table is considered to represent a sin-
gle data provider. The model below can be extended to deal with situa-
tions where multiple records may exist in the same table for a given data
provider, by specifying the appropriate one-to-many relationships between
a data provider and tuples in a table. Such extensions will depend on the
specifics of the entities being modelled.

4 Defining the House and Data Providers

To model the relationship between data and privacy we need to bring together
the data in a database, and privacy associated with that data. We distinguish
the privacy policies held by a house from the privacy preferences held by an in-
dividual data provider. The essential idea we are building up to is that a privacy
violation occurs when the privacy policy of a house exceeds the privacy prefer-
ences for a data provider around a specific datum the data provider supplies.

Figure 2 visually represents the notation we introduce below. We define the
policies of the house, the preferences of a data provider, the database and the
specific data to which privacy policies and preferences may apply. Superscripts
are used for data attributes. Subscripts are used for individual data providers.
Square brackets are used for dimensions of privacy.
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Fig. 2. Visual Representation of Privacy Violation Model Notation

Let the data table of private information be: T = {t1, ..., tn} where n is the
number of records in the table.

The relation schema can be defined as:
T (A1 ∈ D1, A2 ∈ D2, ..., AK ∈ DK) where Aj ∈ A is the jth attribute with

domain Dj .
We denote the data from the ith data provider for the jth attribute as tji .
Next let us define the privacy policies (house) and the privacy preferences

(data provider). There are dim = 4 privacy dimensions: visibility (V), purpose
(Pr), granularity (G) and retention (R). The set of all privacy tuples P is the
cross product of the privacy dimensions.

P = Pr × V × G × R. (1)

The house may have multiple privacy tuples associated with the jth attribute
in its database. The ith data provider has a set of privacy preference tuples
associated with each datum tji . When we want to refer to a particular element
of a privacy tuple, p, we use the notation p[dim], so that p[dim] is the actual
value for dimension dim of a privacy tuple.

A privacy policy (or preference) is a collection of privacy tuples associated
with each attribute (or datum).

Let Policy be the set of all possible policy tuples for a house.

Policy = {< a, p > |a ∈ A ∧ p ∈ P}. (2)

A particular house policy HP is defined as a subset of Policy:

HP ⊆ Policy. (3)

From HP we can extract the house’s privacy policy for collecting attribute Aj

as follows:
HP j = {< a, p > | < a, p >∈ HP ∧ a = Aj}. (4)
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Every potential data provider has a set of privacy preferences for every piece of
data he/she provides. We define the privacy preferences of an individual i by
ProviderPrefi as follows:

ProviderPrefi = {〈i, a, p〉|i ∈ n ∧ a ∈ A ∧ p ∈ P}. (5)

Similar to the house’s privacy policy, we define privacy preferences of individual
i on data value tji as follows:

ProviderPref j
i = {〈i, a, p〉|〈i, a, p〉 ∈ ProviderPrefi ∧ a = Aj}. (6)

5 Definition of Privacy Violation

A privacy violation can now be defined in terms of the above notation.

Definition 1. Let wi be a variable denoting whether privacy of data provider i
has been violated or not. The value of wi can be determined as follows:

wi = 1 ⇔ ∃ 〈i, a, p〉 ∈ ProviderPrefi,
∃〈a, p′〉 ∈ HP,
∃ dim 	= Pr s.t.
p[Pr] = p′[Pr] ∧
p[dim] < p′[dim]

wi = 0 otherwise.

(7)

Notice that if there exists a purpose pr = p′[Pr], such that individual i has not
explicitly specified any preference for, we assume that the individual does not
prefer to reveal her information for purpose pr and we add the tuple 〈i, a, 〈pr, 0,
0, 0〉〉 to ProviderPrefi. As a result, in the process of assessing a privacy viola-
tion, we compare privacy policy and privacy preferences of each purpose sepa-
rately. Privacy violations occur when, within a given purpose, the house policy
tuple for a datum exceeds the data provider’s privacy preference on one of the
other three dimensions (Visibility, Granularity, Retention).

Given a formal definition of a privacy violation, it is straightforward to define
the probability of a privacy violation in a database. We take a relative frequency
approach to the definition of probabilities ([19]:pp. 1-3, [18]:pp. 30-33.) where
for a repeated series of trials in which τ is the number of trials, and τ(A) is the
number of trials in which the event A occurred, the fraction of trials in which A

occurred, τ(A)
τ , tends towards the probability of A, P (A). So P (A) ∼ τ(A)

τ for a
large series of trials.

Definition 2. Let each trial be the random selection of a data provider from the
database and the determination of whether their privacy has been violated. Let
τ(W ) be the number of trials in which privacy is violated for a randomly selected
data provider. Let τ be the total number of trials. Let P (W ) be the probability
that a randomly selected data provider’s privacy will be violated. There are N
data providers.

P (W ) ∼ τ(W )
τ

∼ Σiwi

N
. (8)
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With this definition, we can simply define a privacy–preserving database (PPDB)
in terms of P (W ).

Definition 3. Let an α-PPDB be a database where P (W ) is not above a thresh-
old α.

P (W ) ≤ α. (9)

6 Severity of Privacy Violation

The definition of privacy violation provided in Section 5, explains a violation as a
binary variable which only denotes whether a violation has occurred or not. The
definition is therefore incapable of measuring severity of a violation. We believe
that severity of a violation depends on both sensitivity (of datum, attribute, and
privacy dimensions) and also the amount of violation along each axis.

6.1 Sensitivity

Use of private information in a manner that extends beyond an individual’s
privacy preferences causes varying amounts of discomfort to the data provider.
The amount of discomfort depends upon the type of information and the value
the provider associates with a data item. The sensitivity factors in our privacy
violation measurement incorporate these differences in evaluating the severity of
a privacy violation. The relative sensitivities of data attributes and data values
are highly tied to social norms and need to be defined according to a careful
survey of the population of providers.

For example, Westin [21] recognizes financial and health information as the
most sensitive data attributes. Kobsa [10] also claims that personal preferences,
demographics, life style information are less sensitive compared to financial, pur-
chase related, online behavior, religion, political party identification, and occu-
pation information. For each of these information types, as the data value neg-
atively deviates from the social norms the sensitivity of the value increases [8].
As the range of data solicited from everyday users broadens and its uses become
even more myriad, further study of how data providers are sensitive to privacy
violations involving such data becomes a pressing need.

Sensitivity factors for each purpose in a private database can be defined as:

Sensitivity = 〈σ, Σ〉. (10)

Where σ = 〈σ1, σ2, ..., σn〉 is the vector of sensitivity factors for each data
provider and Σ = 〈Σ1, Σ2, ..., Σk〉 denotes the vector of sensitivity values
(defined as an integer number) associated with each data attribute.

Every data provider, i, has a sensitivity factor σi which denotes the sensitivity
he/she associates with each data value and each dimension of privacy. In other
words, σi = 〈σ1

i , σ2
i , , ..., σk

i 〉, where σj
i explains the sensitivity element that data

provider, i, associates with datum provided for attribute Aj . These sensitivity
elements can be described as:

σj
i = 〈sj

i , sj
i [V ], sj

i [G], sj
i [R]〉. (11)
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Where sj
i is the sensitivity of the data value tji , and the rest of the elements

reflect the sensitivity of a violation along visibility, granularity, and retention
dimensions.

6.2 Privacy Violation Measurement

To measure the severity of a violation along each dimension, we assume that the
visibility, granularity, and retention values are specified via a numerical value
in preference and privacy tuples. Since we have assumed total ordering for the
values along these dimensions, numerical values can simply be chosen to reflect
the orderings.

To begin with, we define the function diff : N×N → Z to measure the differ-
ence between a preference tuple and a privacy tuple along visibility, granularity,
or retention dimension:

diff(p, P ) =
{

P − p if P > p
0 otherwise

(12)

Now we can assess the amount of conflict between a privacy preference tuple,
pref = 〈i, a, p〉, and a privacy policy tuple, Pol = 〈a′, p′〉. To do so, we first
define the notion of comparability; a preference tuple and a privacy tuple are
comparable if they are both associated with the same attribute and have the
same purpose. Therefore we have:

comp(pref, Pol) =

⎧⎨
⎩

0 if a 	= a′

0 if p[Pr] 	= p′[Pr]
1 otherwise

(13)

Given a pair of privacy preference tuples, pref = 〈i, a, p〉, and privacy policy
tuple, Pol = 〈a′, p′〉, the privacy conflict can be measured as:

conf(pref, Pol) =
comp(pref, Pol)×

∑
dim∈{V,G,R}

diff(p[dim], p′[dim]) × Σa′ × sa
i × sa

i [dim].

(14)
Therefore, if the two tuples are comparable, the violation along each dimension is
evaluated (using diff function) and weighted by the sensitivity of the attribute
(Σa′

), then sensitivity of the data value (sa
i ), and the sensitivity of the dimension

(sa
i [dim]). All of these sensitivities are tied to a specific purpose.
To evaluate the amount of privacy violation for each data provider, i, we

need to compare all of his/her privacy preference tuples against all privacy pol-
icy tuples in the house. The total privacy violation for data provider, i, is the
summation of all mutual conflicts between these two sets:

V iolationi =
∑

pref∈ProviderPrefi

∑
Pol∈HP

conf(pref, Pol). (15)
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Finally, the amount of privacy violations conducted by the house is defined as
the summation of violations over all data providers:

V iolations =
n∑

i=1

V iolationi. (16)

7 Definition of Data Provider Default

Let us consider the circumstances under which a privacy violation may lead to
a data provider defaulting, i.e. leaving the system and no longer contributing
data to the house.

Breadth. A data provider may default if there are privacy violations on many
attributes of their information.

Depth. A data provider may default if there is a particularly large violation
on a single attribute or datum (particularly if the attribute is considered
sensitive or the datum is sensitive for that data provider).

The formulation of V iolationi combines both aspects of privacy violation. Given
sufficient privacy violations, a data provider i will default, and no longer con-
tribute data to the house.

Definition 4. For a data provider i, let vi be a threshold value for V iolationi

above which data provider i will default from the database. Let defaulti represent
whether an individual i will default.

defaulti =
{

1 if V iolationi > vi

0 otherwise
(17)

Given a formal definition of default, it is straightforward to define the probability
of data provider default in a database.

Definition 5. Let each trial be the random selection of a data provider from
the database and the determination of whether that data provider will default
from the database. Let τ(Default) be the number of trials in which a randomly
selected data provider defaults from the database. Let τ be the total number of
trials. Let P (Default) be the probability that a randomly selected data provider
will default due to the severity of privacy violations.

P (Default) ∼ τ(Default)
τ

∼ Σidefaulti
N

. (18)

In the next section we provide a simple example of the interplay between house
gains due to expanding its privacy policies versus losses due to data providers
defaulting from the system.
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8 A Simple Example

To illustrate how our proposed method measures privacy violations, we provide
a simple example of a private data collection situation. In our example the
private data table only has two attributes: A = {Age, Weight}. For simplicity
we assume a single privacy tuple associated with each attribute and a single
privacy preference tuple for each data item. We also assume that data providers’
privacy preferences are defined in such a way that the house’s privacy tuple on
Age does not violate anyone’s preferences. As a result we only focus on privacy
violations on attribute Weight.

House policy on attribute Weight is defined as: HPWeight =
{〈Weight, pr, v, g, r〉} where pr, v, g, and r are some specific values along pur-
pose, visibility, granularity, and retention dimensions. Moreover, assume that we
have ΣWeight = 4 as the sensitivity of attribute Weight. Let Alice, Ted, and
Bob be the only data providers in the system. Privacy preferences, sensitivities,
and violation threshold of each data provider are described in Table(1).

Table 1. Privacy Preferences of Data providers on attribute Weight

Data provider ProviderPrefWeight
i σWeight

i vi wi

Alice {< Weight, pr, v + 2, g + 1, r + 3 >} 〈1, 1, 2, 1〉 vAlice = 10 wAlice = 0

Ted {< Weight, pr, v + 2, g − 1, r + 2 >} 〈3, 1, 5, 2〉 vTed = 50 wTed = 1

Bob {< Weight, pr, v, g − 1, r − 1 >} 〈4, 1, 3, 2〉 vBob = 100 wBob = 1

As can be seen in the table, privacy of Ted is violated on attribute Weight
along granularity dimension and privacy of Bob is violated on attribute Weight
along both granularity and retention dimensions. Since all the privacy preferences
are comparable with the privacy policy, we calculate the conflicts as follows:

conf(pref, Pol) =
∑

dim∈{V,G,R}
diff(p[dim], p′[dim])×Σa′×sa

i ×sa
i [dim]. (19)

conf(ProviderPrefWeight
Alice , 〈Weight, pr, v, g, r〉) = 0

conf(ProviderPrefWeight
Ted , 〈Weight, pr, v, g, r〉) = 1 ∗ 4 ∗ 3 ∗ 5 = 60

conf(ProviderPrefWeight
Bob , 〈Weight, pr, v, g, r〉) = 1 ∗ 4 ∗ 4 ∗ 3 + 1 ∗ 4 ∗ 4 ∗ 2 = 80

(20)

Since each data provider has only a single privacy preference tuple for Weight
data and the house has a single privacy tuple attached to this attribute, the
conflicts are also the amount of violations. The defaulting behaviour of the data
providers (based on their violation threshold) are as follows:

V iolationAlice = 0 < 10 ⇒ defaultAlice = 0 (21)
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V iolationTed = 60 > 50 ⇒ defaultTed = 1 (22)

V iolationBob = 80 < 100 ⇒ defaultBob = 0 (23)

Notice that although Bob’s privacy is violated along two dimensions (compared
to Ted), the combination of his sensitivities and violation threshold are set such
that he stays in the system. However, since Ted believes that a violation along
granularity dimension is very sensitive and has lower violation threshold, he will
default and leave the system. Consequently, P (Default) is:

P (Default) =
0 + 1 + 0

3
=

1
3

(24)

9 Expansion of the Privacy Policies for a House

In a commercial setting, information provided to the house by data providers
often defines a revenue stream in terms of its value to third-parties. It is in the
house’s interest to expand its privacy policies, so it has more information to
sell per data provider. However, that trend is counter-balanced by the increased
likelihood of data providers defaulting as the house expands its privacy policy.

In a non-commercial setting, utility is provided by other means than revenue.
Utility could be in terms of cost savings, or it could be in terms of social goods,
such as public safety, public security or public health. However utility is valued,
we can formulate the additional utility a house must acquire per user via an
expansion of its privacy policy to justify any defaults due to that change in
policy.

Let Ncurrent be the number of data providers currently in the system.
Let U be the utility per data provider i currently obtained by the house. Then,

Utilitycurrent = Ncurrent × U. (25)

Let us assume that currently, no data providers have defaulted; i.e. all V iolationi

are less than the critical vi. The house can justify an expansion of its privacy
policy only if it provides additional utility. Let Nfuture be the number of data
providers after the house has expanded its privacy policy.

Nfuture = Ncurrent − Σidefaultifuture
. (26)

Let T be the additional utility above U per data provider available to the house
due to the expansion of its privacy policy.

Utilityfuture = Nfuture × (U + T ). (27)

The condition to justify a house in expanding its privacy policy is:

Utilityfuture > Utilitycurrent. (28)

Nfuture × (U + T ) > Ncurrent × U. (29)
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Gather revenues per data provider on the LHS and population sizes on the RHS.

U + T

U
>

Ncurrent

Nfuture
. (30)

If we solve for T :
T > U(

Ncurrent

Nfuture
− 1). (31)

We have now defined the minimum amount of extra utility per data provider
that must accrue to the house to compensate for any losses due to defaults after
expanding its privacy policy. In a commercial setting, the utilities could be in
terms of revenue to the house. In a non-commercial settings, the utilities could
represent cost savings due to an expansion of house policy. However, in other
situations, it may be inappropriate to value utility in monetary terms either as
revenue gains or cost savings. In those cases, other measures of utility would
have to be devised.

This example is very simple with some strong assumptions to simplify our
analysis. We are assuming that utilities are expressed simply per data provider,
and not dependent on the specific population sizes, or ‘influences’ amongst data
providers. We are assuming that these utilities can be strictly valued. We are
assuming that data providers have free choice as to whether they will participate
in a database. We assume that expansions of house privacy policies are not
ameliorated by the provision of incentives. Given such assumptions, the basic
nature of the trade-offs between increased utility and data provider default are
illustrated. Effectively, the increases of a house’s privacy policies can be seen
as negative utilities with respect to data providers which eventually lead data
providers to default. The house is strictly limited in how much it can expand
its privacy policies and economically benefit. Weakening of these assumptions
leads naturally to a game theoretic setting where one can examine the balance
between the competing interests of a house and its data providers.

10 Contributions of the Framework and Next Steps

Providing data establishes a relationship between a set of data providers and a
house. Data providers are inclined to stay in that relationship to the extent they
trust the house to protect their privacy. So, the degree to which data provider’s
privacy preferences are protected by house privacy policies must be quantifiable
as a first step. Further steps towards trust would include verification via an audit
framework to ensure that the house is adhering to its stated privacy policies.

Our key goal in developing this privacy violations model is to understand
how to evaluate whether house privacy policies conform to data provider pri-
vacy preferences. Understanding the conditions under which privacy violations,
and data provider defaults occur allows us to reason about the dynamics of
changing privacy policies in databases. This can apply to issues that often frus-
trate privacy-conscious users such as frequently changing privacy policies on
social networking sites. While privacy preservation has been defined in specific
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contexts including public statistical databases [3] and modified values in a table
before release [20], our privacy violations model provides the first demonstration
of the capabilities required to facilitate a privacy-preserving database applicable
to a broad range of relational databases.

The violations model described here can be used to calculate the probability of
a violation. It is also possible to develop ‘what if ’ scenarios that modify a house’s
privacy policies with respect to data provider default. Thus, if a particular default
level is explicitly adopted, the database can be demonstrably shown to be an
α − PPDB. The model also contributes by identifying how house policies and
data provider privacy preferences must be brought into alignment to determine
(a) whether violations have occurred, (b) the degree of violation, and (c) the
impact on the house, based on the number of users defaulting due to violations.

Incorporating the privacy violation model and approach developed here into
legacy systems is also possible. Future work will explore how this might be
accomplished pragmatically. For example, in the absence of explicit tracking of
providers’ privacy preferences or knowledge of the specific values vi at which data
providers default, the model identifies the quantities that require estimation.
Long-term observation of a particular house and its population of users, or survey
questions (see [22]) can be used to identify the number of users who will default
as a house expands its privacy policy. This in turn can be used to empirically
construct a cumulative distribution function of the number of defaults as the
house expands its privacy policies. This function can then be used to examine
particular house scenarios projected by the modification of its privacy policies.

A general privacy violation model provides rich opportunities for future work.
The legacy system issue mentioned earlier and a detailed understanding of how to
model various scenarios using techniques such as game theory suggest themselves
immediately. These questions are already being considered but the opportunities
are much broader. The current thrust should immediately consider the issues
associated with developing an initial prototype of the α − PPDB based on
the model described here. This will undoubtedly lead to several open problems
and test the feasibility of the violations model expeditiously. The model can
then be refined with an eye to capturing the challenging problem of real-time
dynamics occurring between a house and a set of (possibly very heterogeneous)
data providers or end users.

Significant work remains not just in extending the limits of this model, but
in strengthening the model via evaluation and further study. A first step would
be in producing a simulation using a sample dataset to show that our model has
the properties claimed by this paper; later steps would see implementation of
algorithms which could use the model to check for privacy violations in “real-
life” scenarios. Further work (in the realm of the social sciences) also remains
to determine the feasibility of identifying values for sensitivity for each data
provider, and whether these values can be accurately assessed.

Finally, though certainly not exhaustively, this work has only considered a
traditional relational database model. Extending it to other popular structures
such XML will undoubtedly identify new opportunities and challenges. This may
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involve changing the violation model itself. It would also reveal new ways of ap-
proaching the kind of data that should be collected to help ensure that data
providers are protected by only collecting data at the appropriate level of gran-
ularity which will afford much better protection for end users. Nonetheless, this
violations model provides a framework for anwering many important questions
which have not yet been posed in the literature.
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Abstract. Generalization hierarchies are frequently used in computer science, 
statistics, biology, bioinformatics, and other areas when less specific values are 
needed for data analysis. Generalization is also one of the most used disclosure 
control technique for anonymizing data. For numerical attributes, generalization 
is performed either by using existing predefined generalization hierarchies or a 
hierarchy-free model. Because hierarchy-free generalization is not suitable for 
anonymization in all possible scenarios, generalization hierarchies are of 
particular interest for data anonymization. Traditionally, these hierarchies were 
created by the data owner with help from the domain experts. But while it is 
feasible to construct a hierarchy of small size, the effort increases for 
hierarchies that have many levels. Therefore, new approaches of creating these 
numerical hierarchies involve their automatic/on-the-fly generation. In this 
paper we extend an existing method for creating on-the-fly generalization 
hierarchies, we present several existing information loss measures used to 
assess the quality of anonymized data, and we run a series of experiments that 
show that our new method improves over existing methods to automatically 
generate on-the-fly numerical generalization hierarchies. 

Keywords: anonymization, k-anonymity, hierarchies for quasi-identifier 
numerical attributes. 

1   Introduction and Motivation 

Generalization hierarchies are frequently used in computer science, statistics, biology, 
bioinformatics, and other areas when less specific values than the original ones are 
needed for data analysis. The term generalization hierarchy is used in data privacy 
and anonymity community and more recently in data mining community. 
Generalization hierarchies are commonly called taxonomies (biology, bioinformatics, 
statistics, etc.) or concept hierarchies (data mining and data warehousing).  

These hierarchies provide the foundation of roll-up and roll-down operations in a 
data warehousing system [13]. In data mining, generalization hierarchies are used in 
various data mining techniques such as characteristic rule mining [9] classification 
[19], association rule mining [11], and clustering [5, 7]. Other areas of computer 
science such as machine learning [20], data integration [34], object-oriented databases 
[12], and intrusion detection [18] also use generalization hierarchies. Recently, 
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generalization hierarchies received a renewed attention in the data privacy field. 
Statistical disclosure control community used global/local recoding (a close substitute 
of a generalization hierarchy) as a disclosure control technique for protecting datasets 
against de-identification [41]. In the data anonymity community, the seminal papers 
of Sweeney [35] and Samarati [33] reinforced the use of generalization as a powerful 
and useful technique to achieve k-anonymity [33, 35]. 

Generalization consists in replacing the actual value of an attribute with a less 
specific, more general value that is faithful to the original [36]. In general, 
generalization is based on a domain generalization hierarchy (DGH) associated to 
that attribute. Such a generalization hierarchy is usually provided by a domain expert 
based on the attribute characteristics. A second hierarchy, called value generalization 
hierarchy (VGH), represents all values from different domains/levels of the domain 
generalization hierarchy and their ancestor/descendant relationships. Fig. 1 shows two 
examples of DGHs and VGHs for attributes country and gender. 

 
 

 

 

Fig. 1. DGHs and VGHs for attributes country and gender 

Generalization is one of the most used disclosure control technique for 
anonymizing data. It is applied to microdata sets in order to avoid de-identification of 
individuals. Microdata represents a series of tuple, each tuple containing information 
on an individual unit such as a person or organization [41]. We call the original 
microdata initial microdata (IM). Due to existing regulations in various areas (such as 
Health Insurance Portability and Accountability Act, HIPAA [14]), IM should be 
released for use by a third party only after the owner of the data has masked it to limit 
the possibility of disclosure. We call the final microdata ready for release, the masked 
microdata (MM). 

Generalization was initially used for categorical attributes with predefined DGHs 
and VGHs constructed by the domain experts [36]. Generalization was next extended 
for numerical attributes either by using predefined hierarchies [16] or a hierarchy-
free model [23]. While generalization of numerical attributes using predefined 
hierarchies is similar to the generalization for categorical attributes, the generalization 
of numerical attributes without generalization hierarchies is based on determining 
generalization intervals/bins during the anonymization process based on an 
optimization criterion (such as minimizing information loss). Based on how 
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generalization intervals are created, that hierarchy-free generalization for numerical 
attributes helps minimizing the information loss that occurs in the masking process, 
and might perform in that respect better than using a predefined hierarchy. Still, there 
are situations when hierarchy-free generalization is not suitable for anonymization. 
First, creating generalization intervals during the anonymization process does not 
guarantee that those intervals are disjoint (in many situations these intervals will 
overlap) and this will create difficulties in analyzing the resulting masked microdata. 
For example, the values 12, 17, 23 for the attribute age can be generalized to the 
interval [12 – 23], and the values 16, 34 for the same attribute can be generalized to 
[16 – 34]. The reason why the grouping is not based on the order of values (the first 
group in that case would be 12, 16, 17; the second group 23, 34) is because there are 
other attributes involved in the anonymization process and the values of those 
attributes will impact the creation of groups; due to their influence, the overlapping 
generalization intervals for the numerical attribute are preferred for a smaller overall 
information loss in the anonymized data. If these overlaps are not desired in the 
resulting masked microdata, due to the nature of the application, then the data owner 
should use hierarchies during the generalization process. Second, certain data 
anonymity models, such as constrained k-anonymity (which relies on boundaries 
imposed on the amount of generalization allowed in the anonymization process) [30] 
and personalized anonymity (which uses guarding nodes as boundaries for the 
sensitive information) [39] require pre-existing hierarchies for numerical attributes.  

Based on the above considerations, we conclude that there are situations when 
using hierarchies for numerical attributes during the anonymization process cannot be 
avoided. Traditionally, the generalization hierarchies were created by the data owner 
with help from the domain experts. But while it is feasible to construct a hierarchy of 
small size, the effort increases for large hierarchies. The manual construction of a 
generalization hierarchy might cause problems such as erroneous classifications or 
omissions of concepts [17]. Usually, creating and understanding a hierarchy for 
categorical attributes is easier than for numerical attributes: the values of the 
categorical attribute are well established, discrete, have a natural hierarchical 
organization, while numerical attributes have many values and not very often have a 
natural hierarchical structure. Moreover, a domain expert will not be able to capture 
the data characteristics when designing a generalization hierarchy, and this will likely 
lead to creating masked microdata where the information loss is high.  Using a “good” 
hierarchy in the anonymization process significantly impacts the quality of the 
anonymized microdata; depending on how well the hierarchy fits the distribution and 
grouping of the attribute’s values in the microdata set. Using on-the-fly hierarchies 
created based on data characteristics will help in creating a better-quality masked 
microdata. 

Automatic generation methods for creating generalization hierarchies in data 
mining community (usually called concept hierarchies) exist for both categorical and 
numerical values. There are only a few studies for categorical attributes since, as 
mentioned before, these hierarchies are in general easier to create by human experts 
[22]. For numerical hierarchies, many techniques to generate automatic hierarchies 
are proposed in the literature. The binning method, which partitions numbers in equal 
ranges or equal frequencies, is reviewed in [13]. Extensions to this method include 
histogram analysis and numeric clustering [10, 13]. Other approaches that try to 
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locate better cutting points are based on recursive binary discretization [4], minimum 
description length [6], entropy-based discretization [32], chi-square test [21, 26], 
relaxation error [5], and attribute-oriented induction [15]. All these methods focus on 
preprocessing data before applying data mining techniques, and they are not tailored 
to data anonymity. Still, we selected two such approaches introduced by Han and Fu 
[10] and by Chu and Chiang [5] for our experimental comparison. 

A method to generate on-the-fly numerical hierarchies for anonymizing data is 
introduced in [3]. A hierarchical clustering agglomerative approach [37] is used to 
construct a hierarchy based on the distance between already created nodes in the 
generalization hierarchy of the target attribute. 

Our research contributions in this paper are as follows.  
First, we improve the existing method for creating on-the-fly hierarchies for 

numerical attributes introduced in [3]. Our new method will replace the agglomerative 
selection approach based on minimal distance between nodes with the selection of two 
neighbor nodes that, combined, will create the smallest possible node (in a sense that 
we will describe later) at that step. This improved method is presented in Section 2.  

Second, we discuss how the generated hierarchies are used during anonymization 
and we present several existing information loss measures that assess the information 
lost in the generalization of numerical quasi-identifier attribute values.  

Third, we perform a series of experiments on the Adult dataset [17]. We generate 
k-anonymous masked microdata sets using the on-the-fly generalization hierarchies 
created based on our new method, using the existing method presented in [3], using a 
set of predefined hierarchies, and without using hierarchies (hierarchy-free 
generalization). We also create anonymized datasets using hierarchies generated with 
two existing methods used for dynamic generation of numerical hierarchies in data 
mining [5, 10]. The quality of the resulting datasets is compared with respect to the 
information loss measures discussed in Section 3. These information loss measures’ 
values are dependent on the hierarchies used to perform generalization and on the 
anonymization algorithm used. To compare the quality of generalization hierarchies, 
we use the same anonymization algorithm (introduced in [2]) for all our generated 
datasets.  

The paper ends with conclusions and suggestions for future work. 

2   On-the-Fly Hierarchies for Numerical Attributes 

The initial microdata (IM) is described by a set of attributes that are classified into 
three categories: identifier attributes such as Name and SSN that can be used to 
identify a tuple; quasi-identifier attributes such as ZipCode and Sex that may be 
known by an intruder; and confidential or sensitive attributes such as Diagnosis and 
Income that are assumed to be unknown to an intruder.  

In the released dataset (called masked microdata and labeled MM) only the quasi-
identifier and confidential attributes are preserved; identifier attributes are removed as 
a prime measure for ensuring data privacy. Although direct identifiers are removed, 
an intruder may use record linkage techniques between externally available datasets 
and the quasi-identifier attributes values from the masked microdata to glean the 
identity of individuals. To avoid this possibility of disclosure, one frequently used 
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solution is to further process (modify) the initial microdata through generalization and 
suppression [36] of quasi-identifier attributes values, so that to enforce the k-
anonymity property for the masked microdata. In order to rigorously and succinctly 
express k-anonymity property, we use the following concept: 

Definition 1. (QI-Cluster): Given a microdata, a QI-cluster consists of all the tuples 
with identical combination of quasi-identifier attribute values in that microdata. 

We define k-anonymity based on the minimum size of all QI-clusters. 

Definition 2. (K-Anonymity Property): The k-anonymity property for a MM is 
satisfied if every QI-cluster from MM contains k or more tuples. 

Unfortunately, k-anonymity protects only against identity disclosure and it fails to 
protect confidential information against attribute disclosure [29, 38]. As a result, 
several anonymity models were introduced to increase the protection of confidential 
information of individuals in the released datasets. Some of the most known 
extensions of k-anonymity include l-diversity [29], p-sensitive k-anonymity [38], (α, 
k)-anonymity [42], t-closeness [25], (ε, m)-anonymity [24], l+-diversity [27], and (τ, 
λ)-uniqueness [40]. 

Generalization is one of the most used techniques to create a masked microdata 
that satisfies not only k-anonymity but also any of the improved anonymization 
models. For a fair comparison of the quality of generated masked microdata sets with 
various generalization hierarchies, the same anonymization model must be used. In 
this paper we decided to use k-anonymity for our comparison. While a different 
anonymization model may increase the information loss (due to a stronger privacy 
requirement, the utility is expected to drop), we expect that the information loss for 
various generalization hierarchies will keep for other models the relative proportion 
they have for k-anonymity.  

Let K be the numerical quasi-identifier attribute for which we construct a 
generalization hierarchy. We denote by V = {v1, v2, …, vm} the distinct values of K in 
the dataset IM. Each one of these values can have one or more occurrences in IM. If 
more than one numerical quasi-identifier attribute needs on-the-fly hierarchies, they 
are constructed individually, one attribute at a time.  

The method to create on-the-fly hierarchies is described next. The construction of 
the hierarchy starts with a set of m nodes, one node for each of the m unique values of 
the attribute K. These nodes will become the leaves of the domain value hierarchy 
labeled HK for the attribute K. Next, the hierarchy is built from leaves to root, by 
merging at each step two nodes that will create the smallest possible node at that step. 
The generalization hierarchy is completely built when all values are combined into a 
single node, the root of the hierarchy. The resulting hierarchy is a tree, called a 
dendrogram [13], which is usually not balanced, and which can have its leaves on any 
level under the root. 

We will define next the size of a node and how two nodes are merged in our 
approach.  
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Definition 3. (a node in the numerical hierarchy). Each node in HK, leaf or internal, is 
characterized by two values: the minimum (min) and maximum (max) numerical 
values represented by the node.  
 
For a leaf node created for the value v, min and max are the same value (v). A node 
will be represented as X = [min, max]. We will denote by v both a value of K and its 
associated leaf node. 

Definition 4. (size of a node). We compute the size of a node X = [min, max] as 
size(X) = max – min. 

Definition 5. (adjacent nodes). During the construction of a hierarchy, two nodes Xi = 
[mini, maxi] and Xj = [min j, max j] are called adjacent if they do not have yet any 
ancestors (in other words these nodes were not yet used in merging) and there is no 
value from K between the two nodes (in other words the interval (min(maxi, maxj), 
max(mini, minj)) does not contain any value from K). 

Definition 6. (merge two nodes). Two adjacent nodes Xi = [mini, maxi] and Xj = [minj, 
maxj] are merged into a new node Y = merge(Xi, Xj) = [min(mini, minj), max(maxi, 
maxj)].Both Xi and Xj are made descendants of Y when merged. The nodes Xi and Xj 
are selected such that the resulting node (Y) will have the smallest possible size at that 
time. 

We give next the pseudocode for the generalization algorithm for constructing a 
numerical attribute’s hierarchy. 

 
Algorithm Improved On-The-Fly Hierarchy (IOTF) is 
 Input: IM, attribute K 
 Output: HK 

 Extract from IM the leaf nodes in HK,  
 V = {v1, v2, …, vm};  
 each vi ∈ V has vi.min = vi.max = value vi; 
 HK = V;  
 Repeat  
  Find Xi, Xj ∈ V such that 
   Xi, Xj are adjacent and // see Definition 5    
   ∀ X,Y∈V, size(merge(Xi, Xj)) ≤ size(merge(X, Y)) 
   // In other words, size(merge(Xi, Xj)) is minimized 
   // Merge two adjacent nodes that create the smallest new node 
   Xnew = merge(Xi, Xj); 
   Make Xnew parent in HK for Xi and Xj; 
   V = V – {Xi, Xj} ∪ {Xnew}; 
 Until (|V| = 1); 
 The remaining node in V is the root of HK; 
End On-The-Fly Hierarchy.  

 
In the above algorithm, the size of the current set of nodes, V, is reduced by one 

when two nodes are merged, and after m-1 iterations, only one node will remain in the 
set. This node becomes the root of the hierarchy. The hierarchies produced by this 
algorithm are shaped as binary trees and can be very deep, due to how they are 
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created – they can actually have a maximum of m-1 levels. In is worth noting that at 
every iteration, the nodes from the current set of nodes are completely disjoint. In the 
generated hierarchy any initial value has a unique path from its corresponding leaf to 
the root. This prevents one problem that exists with hierarchy-free generalization 
(described in Section 1). Examples of hierarchies constructed with this algorithm are 
presented in Section 4.  

The complexity of the NumericalHierarchy algorithm is O(m2). This is because, in 
each merging step, the two nodes to be merged can only be adjacent nodes in the list 
of current nodes V. The nodes in V are kept sorted based on their max value (any 
value from the node can be used in this ordering since the nodes are disjoint). 
Consequently, finding the pair of nodes in V that when merged create the smallest 
node implies comparing |V|-1 pairs of nodes. As the size of V decreases from m to 1, 
the overall cost is O(∑ ) = O(m2).  

3   Information Loss Measures Used in Data Anonymity 

To measure the quality of masked microdata we use and adapt several well known 
information loss (IL) / data utility measures. Since our on-the-fly generalization is 
applicable to numerical attributes only, we present in this section these information 
loss measures with the assumption that all quasi-identifier attributes are numerical. 
We exclusively limit quasi-identifiers to homogeneous combinations of numerical 
attributes, with or without hierarchies, to isolate and study the impact on masked 
microdata quality of using different types of numerical hierarchies in the 
anonymization process.  

We use the following notations in this section: 

 QI = {K1, K2,…, Kp} – the set of p numerical quasi-identifiers for the initial 
microdata, IM. 

 s – the number of quasi-identifier attributes for which we use hierarchy-free 
generalization. We agree that these attributes are the first s in the set QI ({K1, 
K2,…, Ks}). Consequently, the set {Ks+1, K s+2,…, Kp} represent the quasi-
identifier attributes that are generalized using hierarchies. Note that when s = 0, 
all quasi-identifier attributes have hierarchies and when s = p all attributes are 
generalized using hierarchy-free generalization. 

 n – the number of tuples from IM. 
 cl = {t1, t2, …,  tq} – a set of q tuples from IM. 
 S = {cl1, cl2, …, clu} – a complete and disjoint partition of IM (every tuple from 

IM belongs to exactly one cluster from the partition).   
 tr |QI = (tr

1, tr
2, …, tr 

p), for all r = 1..q; tr |QI denotes the relational projection 
operation of a tuple tr on the set of attributes QI. 

 [mink (cl), max 

k (cl)] = [min(t1
k, t2

k,…, tq
k), max(t1

k, t2
k,…, tq

k)] for all k = 1..p. 
This interval represents the generalization interval of the cluster cl for the 
attribute Kk when hierarchy-free generalization is used. 

 HKk – the generalization hierarchy of the attribute Kk. 
 root(HKk) – the root node of HKk. 
 anck (cl) – the generalization node in HKk for the cluster cl. This node is the first 
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common ancestor for all values form the cluster cl with respect to the attribute Kk. 
This node represents the interval [anck (cl).min, anck (cl).max] (see Definition 3). 
We also use size(anck (cl)) =  anck (cl).max – anck (cl).min as per Definition 4. 

 

To achieve k-anonymity, IM is partitioned into clusters of size at least k. Each such 
cluster is generalized to the corresponding QI-cluster using either hierarchy-free 
generalization or hierarchy (predefined or on-the-fly)-based generalization for each 
quasi-identifier attribute. This process will lead to loss of information in MM 
compared to IM. 

The first information loss measure we present in Definitions 7 and 8 was 
previously presented in [3] and it extends the measure previously introduced in [2] by 
assessing the information loss in hierarchies where leaf nodes are situated at different 
levels. 

Definition 7. (cluster information loss due to generalization). The information loss 
caused by generalizing a cluster cl to the same “tuple” (these tuples form a QI-cluster 
in MM), denoted by IL(cl), is defined as follows: 

| |      

Definition 8. (normalized total information loss). The normalized total information 
loss for a partition into clusters, S, of the initial microdata set, IM, is the sum of the 
information loss for all clusters in S divided to the number of tuples from IM times the 
number of quasi-identifier attributes. Formally:  ,   ∑ · , 
 
The maximum value for NTIL is 1, and it corresponds to the case when all tuples in 
IM would have each quasi-identifier attribute generalized to the interval that covers 
all of its values in the set, or, respectively, generalized to the root value of its value 
generalization hierarchy. The minimum value (0) is obtained when MM is the same as 
IM (there was no generalization performed). 

The next two information loss measures presented in Definitions 9 and 10 are 
based on Minkowski-norms on group extents and they are introduced in [8]. 

Definition 9. (normalized information loss – average-extent metric). The normalized 
information loss based on average extent metric for a partition into clusters, S, of the 
initial microdata set, IM, is defined as follows: 

,   ·  
NIL1 is similar to NTIL except it does not take into account the size of clusters from 
the partition S. The range of values for NIL1 is [0, 1], and the boundaries are also met 
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for no generalization (NIL1 = 0) and generalization to the root (NIL1 = 1), 
respectively. 

Definition 10. (normalized information loss – maximum-extent metric). The 
normalized information loss based on maximum extent metric for a partition into 
clusters, S, of the initial microdata set, IM, is defined as follows: 

, ,   ,  
NIL∞ is considering the maximum information loss per attribute between all clusters 
which is averaged for all quasi-identifier attributes and normalized to [0, 1]. While the 
value 0 is also obtained when there is no generalization, the value 1 can be obtained 
more easily, for instance it is enough if only a cluster is generalized to the root (or 
maximum interval, for hierarchy-free generalization) for all attributes. This value can 
also be obtained if for any quasi-identifier attribute, there is a cluster that generalizes 
that attribute to the root.  

The last two information loss measures we present in Definitions 11 and 12 are 
based on discernability metric (DM) [1] and average cluster size metric (AVG) [23]. 
These measures are not normalized to [0, 1]. 

Definition 11. (discernability metric). The discernability metric (DM) assigns to each 
tuple from IM a penalty that is determined by the size of the cluster containing that 
tuple: ,  
Definition 12. (average cluster size metric). The average cluster size metric (AVG) is 
defined as follows: , ·  
4   Experimental Results  

For our experiments, we selected the anonymization algorithm called greedy k-
member clustering presented in [2]. This algorithm works by creating clusters of 
tuples from IM, of size k or more. These clusters will be then generalized to the same 
tuple, forming a QI-cluster in the MM. The clusters are created one at a time, starting 
from a seed tuple and absorbing one new tuple at a time, until the cluster has k tuples. 
The new tuple selection criterion is based on an objective function. The objective 
function in our case is the NTIL function; therefore, a new tuple is added to a cluster 
labeled cl if it produces a local minimum increase of IL(cl) (see Definition 7). 

To assess the performance of the new proposed on-the-fly generalization method 
of hierarchies for numerical attributes, we used the Adult dataset [31]. This dataset is 
the de-facto benchmark for many data anonymization problems and it consists of 
45,422 tuples. Since we want to compare the generalization hierarchies for numerical 
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attributes we will restrict our experiments to the following 3 numerical quasi-
identifier attributes: age, education_num, hours_per_week. As we already mentioned 
before, we considered all of the quasi-identifiers to be numerical, as to avoid the 
categorical ones to impact in any way the anonymization process and the quality of 
the masked microdata. 

We performed experiments with six settings for the above mentioned quasi-
identifier attribute set: 

 

 Each attribute had a generalization hierarchy dynamically created with the 
method introduced in this paper. We refer to it as IOTF (improved on-the-fly) 
method.  

 Each attribute had a generalization hierarchy dynamically created with the related 
method introduced in [3]. We call this method OTF (on-the-fly) method.  

 Each attribute had predefined hierarchies. These hierarchies are the same as in 
[3]. 

 Each attributes did not have hierarchies (i.e. hierarchy-free generalization). 
 Each attribute had a generalization hierarchy dynamically created with a method 

used in data mining for concept hierarchies introduced in [10]. In the algorithm to 
generate hierarchies from [10] we use a threshold value of 4 and a fan-out value 
of 5. We call this method Han based on the first author name. 

 Each attribute had a generalization hierarchy dynamically created with a method 
used in data mining for concept hierarchies introduced in [5]. In the algorithm to 
generate hierarchies from [5] we use a threshold value of 2. We use the first 
author’s name, Chu, to refer to this method.  

 
 

 

Fig. 2. VGHs for attribute education_num generated using IOTF, OTF, Predefined, Han, and 
Chu methods 
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We present in Fig. 2 the generated value generalization hierarchies for the attribute 
education_num (we selected this attribute as it has the smallest number of distinct 
values; similar hierarchies were generated for age and hours_per_week attributes 
using all five methods). In Fig. 2, due to space limitation some of the single value 
leafs are not shown. 

In each setting, we anonymized the microdata set using the same algorithm ([2]), 
for all possible k values in the range 2 - 20. It is worth noting that in all experiments 
we either use hierarchies (s = 0) or a hierarchy-free approach (s = p) for all three 
quasi-identifier attributes (see Section 3 for definitions of s and p). For each 
experiment we computed all measures presented in Section 3: NTIL, NIL1, NIL∞, DM, 
and AVG.  

Fig. 3 presents comparatively the normalized total information loss (NTIL) and 
normalized information loss based on average-extent metric (NIL1) for all six cases, 
for the even values of k we considered in our experiments (k = 2, .., 20). It can be seen 
that the IOTF method of generating on-the-fly hierarchies outperform the other four 
methods based on generated or predefined hierarchies (OTF, Predefined, Han, and 
Chu) and as expected it does not perform as well as hierarchy-free generalization. 
However, as presented in Section 1, hierarchy-free generalization is not applicable in 
all anonymization scenarios. Out of the five generated or predefined hierarchy 
methods, Han and Predefined perform the worse because they do not use binary 
hierarchies, and therefore the generalization will create larger intervals faster than in 
the other methods. Chu and OTF methods produce results that are close to IOTF, 
however IOTF performed better with respect to NTIL and NIL1 in all scenarios. The 
reason why Chu method performs reasonably well is because it uses a top down-
approach in which intervals are split based on a measure (called relaxation error) that 
considers the value frequencies and the distance between values [5]. 

Fig. 4 presents comparatively the discernability metric (DM) and average cluster 
size (AVG) for all six cases, for even values of k considered in our experiments (k = 2, 
.., 20). The results are similar with the ones for NTIL and NIL1 measures. Han and 
Predefined methods perform worse than the other methods, and as expected, 
hierarchy-free generalization performs the best. However in this case, there is almost 
a tie between the other three methods. For discernability metric values, out of 18 
experiments (k = 2, 3, …, 20), IOTF  outperformed OTF and Chu 7 times, while OTF 
and Chu had the best result 6 times each. For average cluster size metric, IOTF had 
the best result 9 times, OTF 5 times, and Chu also 5 times. The reason why the 
proposed algorithm is not a clear winner for these two measures is because they do 
not consider the size of the created clusters, but only their number. As described in 
Section 2, the IOTF algorithm minimizes the size of newly created intervals, and this 
will contribute to smaller size clusters but not necessarily to fewer clusters.  

We did not include a depiction with the results for NIL∞ because, when using 
hierarchies, in almost all cases one cluster was generalized to the entire range for each 
attribute, and therefore the NIL∞ measure is almost all the time 1. The only three cases 
(out of 95, five hierarchy-based methods and 19 values of k) when NIL∞ was not equal 
to 1 are: (k = 5, IOTF), (k = 6, IOTF), and (k = 3, Chu). The reason why this measure 
is almost all the time 1 is the chosen anonymization algorithm. K-member-clustering 
[2] is a greedy algorithm that at the end will create large clusters (large not as number 
of members, but large with respect to our definition of size), and since NIL∞ considers  
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Fig. 3. NTIL and NIL1 for k = 2, 4, .., 20 (even values) using five types of generalization 
hierarchies (IOTF, OTF, Predefined, Chu, and Han) and hierarchy-free generalization 

 

 

    

Fig. 4. DM and AVG for k = 2, 4, .., 20 (even values) using five types of generalization 
hierarchies (IOTF, OTF, Predefined, Chu, and Han) and hierarchy-free generalization 

the maximum size intervals between those clusters, the results will always be 1 or 
close to 1. For the same reason, NIL∞ measure was close to 1 (but not equal) for all 19 
cases of hierarchy-based generalization.  
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5   Conclusions and Future Work 

We introduced in this paper a new method for dynamically creating hierarchies for 
numerical quasi-identifier attributes. The resulting hierarchies represent a valid 
alternative to predefined hierarchies, and their usage generally results in good quality 
masked microdata, with reasonable information loss. Our new method clearly 
outperforms existing approaches to generate on-the-fly numerical hierarchies with 
respect to two information loss measures, normalized total information loss (NTIL) 
and normalized information loss based on average-extent metric (NIL1). The proposed 
method had similar or slightly better results for the other three information loss 
measures, namely normalized information loss based on maximum-extent metric  
(NIL∞), discernability metric (DM), and average cluster size (AVG), when compared 
with two other methods to create on-the fly hierarchies (OTF and Chu). On-the-fly 
hierarchies can be easily produced when hierarchies are necessary, instead of forcing 
the user to artificially develop ones that might not reflect the properties of the data, 
therefore negatively impacting the quality of the masked microdata.  

As future work, we intend to investigate other anonymization algorithms that 
generate k-anonymous or l-diverse [29] masked microdata with respect to how well 
they perform using on-the-fly generalization hierarchies generated with the proposed 
method.  
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Abstract. In this paper, we propose a randomization scheme, LORA
(Link Obfuscation by Randomization), to obfuscate edge existence in
graphs. Specifically, we extract the source graph’s hierarchical random
graph model and reconstruct the released graph randomly with this
model. We show that the released graph can preserve critical graph sta-
tistical properties even after a large number of edges have been replaced.
To measure the effectiveness of our scheme, we introduce the notion of
link entropy to quantify its privacy-preserving strength wrt the existence
of edges.
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1 Introduction

A graph is an effective structure that has been used to represent network data,
where the nodes capture the entities and the edges reflect the relationships be-
tween the entities. For example, in social network applications such as facebook
(facebook.com), a graph captures the friendships (edges) between individuals
(nodes). By analyzing the graph, researchers can acquire interesting knowledge,
such as how communities are formed and evolved, how diseases are transmit-
ted and spread, and so on. However, the data associated with the graph also
contain sensitive information, such as individual medical records in community
health databases, personal friendship in social networks and private legislative
collaborations among congressional representatives in government collaboration
network. As such, it is critical to protect the privacy of personal information of
released graphs.

While there has been numerous attempts to protect the privacy of personal
information in released graphs, these methods are still vulnerable to various
types of attacks [10,16,17,3]. Backstrom et al.[17] showed that, with very limited
background knowledge, a great amount of nodes can be easily re-identified even
after sanitizing the node’s identity information such as social ID and name. More
recently, Liu et al. [10] reported that node degree can be used as a quasi-identifier
to re-identify node’s identity in the graph. Zhou et al. also claimed that local
subgraph knowledge such as a node’s neighborhood can be easily retrieved by
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attackers. By matching the structure of the victim node’s subgraph, attackers
can trace and find the victim node [16]. Hay et al. also pointed out that hubs, as
the fingerprints of graphs, are often uniquely identifiable. In fact, the popularity
of social networks in recent years and the availability of powerful web crawling
techniques have made personal information more easily accessible. Therefore, it
is almost impossible to foresee an attacker’s background knowledge in advance.
Meanwhile, it is also unrealistic to make any assumptions on the constraints
of an attacker’s ability to collect such knowledge. As such, it is challenging to
preserve privacy on graphs. This has prompted researchers to develop robust
network/graph data protection techniques.

Existing works on preserving privacy of graphs fall into two main theoretical
privacy models: k-anonymity-based model [7,8,9,10] and randomization model
[3,1]. Under the k-anonymity-based model, a source graph is manipulated so that
it has at least k corresponding entities satisfying the same structural knowledge.
However, these methods are designed to be robust to certain specific attacks,
e.g., k-degree [10] and k-automorphism [7] anonymization schemes protect the
privacy of node degrees. Moreover, these works typically assume attackers’ lim-
ited background knowledge. In addition, graph modification is restricted as the
released graphs need to respect some symmetric properties in order for k candi-
dates to share certain properties.

On the other hand, in randomization models [1,4,5,6], the released graph is
picked from a set of graphs generated from a random perturbation of the source
graph (through edge addition, deletion, swap or flip). Such an approach offers
more freedom in “shaping” the released graph, i.e., no additional properties
are intentionally injected. More importantly, an attacker’s background knowl-
edge would become unstable because of the random process. For example, by
allowing random insertion and deletion of edges, an attacker is no longer 100%
certain of an edge’s existence. Moreover, randomization techniques are typically
designed independent of any specific attacks, and hence are robust to a wider
range of attacks. However, uncontrolled random purturbation means the space
from which the released graph is picked is effectively “unbounded”, making it
difficult to preserve the source graph’s structure. For example, if we allow only
edge deletion, since edges are arbitrarily selected for deletion, important ties in a
graph, such as bridge edges, may be eliminated resulting in a partitioned graph.

In this paper, we advocate and focus on randomization techniques. Our goal
is to ensure that the released graph is privacy preserving, and yet useful for
a wide range of applications. In particular, for the latter, the released graph
should be “similar” to the source graph in terms of most properties (e.g., degree
distribution, shortest path length and clustering coefficient). This raises three
questions:

1. How to randomize a source graph so that the resultant released graph is still
similar to it?

2. How to provide a measurement of shared information between the source and
released graphs, to indicate the utility of the released graph ? Conversely,
the measurement reflects the information loss due to randomization.
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3. How to quantify the effectiveness of the randomized technique (and random-
ized graph) wrt privacy preservation? In other words, what is an appropriate
measurable definition of privacy on graph?

From existing works, we can see much effort to address the first question above.
In [4], the proposed approach restrains the changes in the random graphs’ spec-
tra to provide rough bounds of the random graph distribution. Another approach
adopts the Metropolis-Hastings algorithm (specifically, the Markov Chain Monte
Carlo method) to sample graphs with feature constraints [6,5]. This approach
can preserve several graph statistical summaries, such as degree distribution,
average clustering coefficient and average path length. However, since statistical
summaries typically provide descriptions of a graph from different perspectives,
but do not directly determine the graph structure, it is hard to quantify infor-
mation lost since other graph features are not intentionally preserved. It is also
not easy to evaluate its effectiveness wrt privacy preservation. In these works,
the popular privacy measurement adopted merely relies on the different numbers
of edges between the two graphs [5].

In this paper, we propose a randomization scheme, LORA (Link Obfuscation
by Randomization), to generate a synthetic graph (from a source graph) that
preserves the link (i.e., the extent of two node’s relationship) while blurring the
existence of an edge. In our context, link refers to the relation between two
nodes. It is a virtual connection relationship, and is not necessarily a real edge
that physically exists in the graph. We use the concept link probability as a
quantity to measure the strength of link.

Next, we explain how LORA addresses the 3 questions that we raised. Firstly,
we adopt the hierarchical random graph (HRG) model [2] to estimate each link
probability in the source graph. The HRG model is a generic model that can
capture assorted statistical properties of graphs. Based on the HRG model, we
can randomly generate graphs that are similar to the source graph wrt statis-
tical properties (i.e., dealing with the first challenge). Next, by reconstructing
statistically similar graphs that preserve the source graph’s HRG structure, we
can select one to be released. In the ideal scenario, the released graph and source
graph would share exactly the same HRG structure (i.e., addressing the second
challenge).

Third, to investigate how our method can preserve link privacy and how to
quantify its strength, we introduce the notion of link entropy. Entropy has been
widely used to measure the uncertainty of random variable in information theory.
We will show that entropy is also appropriate in our scheme in terms of clarifica-
tion and simplicity, compared to posterior belief that is used in previous works.
Instead of analysing privacy with node’s entropy [1], we define entropy based
on links to theoretically quantify the effectiveness (wrt privary preservation) of
our randomization scheme. As an attempt to address the third challenge, we will
show how to derive the entropy for each individual link and then the composition
of entropy of a set of links. We specifically define the notion of entropy of a node’s
egocentric network, which is an entropy ensemble and quantifies our scheme’s
privacy-preserving strength towards egocentric subgraphs. We will show how
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(b) Graph Obfuscation (c) Dendrogram

v1 v2 v3 v4 v5 v6

v1 1 1 1 0.11 0.11 0.11

v2 1 1 1 0.11 0.11 0.11

v3 1 1 1 0.11 0.11 0.11

v4 0.11 0.11 0.11 1 1 1

v5 0.11 0.11 0.11 1 1 1

v6 0.11 0.11 0.11 1 1 1

(d) Link Probability Matrix

v1 v2 v3 v4 v5 v6

v1 0 0 0 0.50 0.50 0.50

v2 0 0 0 0.50 0.50 0.50

v3 0 0 0 0.50 0.50 0.50

v4 0.50 0.50 0.50 0 0 0

v5 0.50 0.50 0.50 0 0 0

v6 0.50 0.50 0.50 0 0 0

(e) Link Entropy Matrix

Fig. 1. An example of graph’s hierarchical random graph(HRG) model. c is the den-
drogram representation of graph a’s optimal HRG model. Dashed lines in b show the
equivalent links of edge (3,4) in a according to the dendrogram c. d and e are c’s
corresponding link probability matrix and link entropy matrix.

entropy quantifies an attacker’s uncertainty accurately and clearly towards an
egocentric network.

The rest of this paper is organized as follows. In Section 2, we provide some
preliminaries. Section 3 gives an overview of our proposed LORA, and Section
4 presents the technical details of LORA. In Section 5, we analyze the privacy
of our proposed LORA. Section 6 presents results of experimental studies. In
Section 7, we review some related works. Finally, we conclude this paper in
Section 8.

2 Preliminaries

2.1 Graph Notation

A graph G(n, m) = (V, E) is a set of vertices V connected with a set of edges
E, where |V |= n and |E|= m. Let A = (aij)n×n be its adjacency matrix, where
aij = 1 if node i and j are connected and aij = 0 otherwise. G̃(ñ, m̃) = (Ṽ , Ẽ)
is the released graph reconstructed by randomization.

2.2 Hierarchical Random Graph and Its Dendrogram
Representation

A graph often exhibits a hierarchical organization. Vertices can be clustered into
subgraphs, each of which can be further subdivided into smaller subgraphs, and
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so forth over multiple scales. The hierarchical random graph (HRG) model is a
tool to explicitly describe such hierarchical organization at all scales for a graph.
According to Clauset’s experiments [2], the graphs “resampled” with HRG can
match the statistical properties of the source graphs closely, including degree
distributions, clustering coefficients, and distributions of shortest path lengths.

HRG can be represented with a dendrogram tree. Let D be the corresponding
dendrogram of the source graph G. A dendrogram D is a binary tree with n leaf
nodes corresponding to the n vertices of G [2,11]. Let r be the lowest common
ancestor of the two nodes in D. Let Lr and Rr be the number of leaf nodes in
the two subtrees of r, respectively. And let Er denote the number of edges in
graph G whose endpoints correspond to leaf nodes from each of two subtrees of
r in D. Each inner node r of one dendrogram is associated with a probability
pr, which describes the probability of connections between two groups of leaf
nodes in the two subtrees of r. In HRG, we use Er/(Lr ·Rr) to be the maximum
likelihood estimator of pr. The likelihood of one HRG model for a given graph
measures how plausible this HRG is to represent the graph. It can be calculated
as follows:

L(D, {pr}) =
∏
r∈D

pEr
r (1 − pr)LrRr−Er (1)

As an example, Fig. 1(c) is a dendrogram representation of the graph in Fig.
1(a). At the top scale of dendrogram in Fig. 1(c), vertices in graph G are divided
into two groups from the root r in dendrogram D, corresponding to the leaf
set {1,2,3} in the left subtree of D and leaf set {4,5,6} in the right subtree,
respectively. Each group has 3 leaf nodes, so Lr = Rr = 3. Since only one edge
(3,4) exists in the graph Fig. 1(a), Er should be one. And the probability pr of
connections between two groups can be estimated as Er/(Lr · Rr) = 1

9 .
The optimal HRG that fits an orginal graph can be determined using the

Markov Chain Monte Carlo method (MCMC). In practice, most real world net-
works will have many plausible hierarchical representations of roughly equal like-
lihood even after reaching equilibrium, which may slightly differ in arrangement
of tree’s branches. We sample dendrograms at regular intervals and calculate the
mean probability pij for each pair of vertices i, j. In our analysis, we assume the
dendrogram derived by MCMC is always the ideal one that fits the source data
best. For instance, we assume Fig. 1(c) is Fig. 1(a)’s ideal dendrogram. From
Fig. 1(c), we note that all pij can be quantified with Er/(Lr · Rr) as shown in
the probability matrix in Fig. 1(d).

2.3 Entropy

Entropy measures the uncertainty regarding the value of one random variable in
information theory. The less probable the outcome of one random variable X is,
the greater its entropy is.

A random variable X has a probability p to render an outcome x, and a
probability 1− p to generate another alternative outcome x′. The uncertainty of
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an outcome of this random variable X is defined as a binary entropy function,

H2(X) = p log2

1
p

+ (1 − p) log2

1
1 − p

, (2)

with the convention that 0 × log 1/0 = 0.
An ensemble random variable X , where the outcome x is the value of X , can

take on one of a set of possible values, CX = {c1, c2..., cI}. CX has probabilities
PX = {p1, p2, ..., pI}. The entropy of the ensemble variable X is,

H(X) = H(p1, p2, ..., pI) =
I∑

i=1

pi log2

1
pi

, (3)

Entropy has additive properties for independent variables. That is, if variable X
and Y are independent, the entropy of the outcome x, y satisfies,

H(X, Y ) = H(X) + H(Y ) (4)

In addition, H(X) ≥ 0 with equality iff pi = 1 for one i.

3 LORA: The Big Picture

Our proposed LORA framework consists of two main steps: (1) Find a HRG
model that best fits the source graph; (2) Based on the HRG, reconstruct a new
graph by random link sampling. Algorithm 1 outlines the LORA framework.

We firstly introduce two critical concepts: link and link probability. In our
context, the term link refers to the relation between two nodes. The term link
probability is one quantity to measure the strength of link. These two concepts
are appropriate to depict such a scenario: A pair of nodes, although not directly
connected in the source graph, may still have a weak relation (link) if the two
shares many common neighbours. Due to these common neighbours, a promising
connection may appear in the future. For example, in social networks, friends of
friends would more likely become friends soon. To distinguish, we use the term
“edge” if there is a direct connection between two nodes in a graph.

The role of each link differs in its impact on topology. For instance, in Fig.
1(a), links (3,4) and (1,6) exhibit the same topological effect, i.e., they are ex-
changeable. Thus, we can replace edge (3,4) in Fig. 1(a) with link (1,6) without
destroying any topological structure (see Fig. 2). Moreover, the role of vertex is
fully determined by the links incident on the vertex. As Fig. 1(a) shows, vertices
3 and 4 have the same roles, and so are vertices 1 and 2.

In order to estimate such link probabilities in the source graph, we adopt the
hierarchical random graph (HRG) model in LORA. More specifically, we use the
Markov Chain Monte Carlo (MCMC) method to find the HRG model that best
fits the source graph. We choose HRG as our model because it is a generic model,
which describes a graph’s structure in detail, including all the probabilities of a
connection between any two vertices in the graph. Here we extend the concept
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of this probability to be link probability in order to quantify our “link” notion.
In addition, in [2], Clauset claimed that the HRG model can capture assorted
statistical properties of a graph. It is also shown that hierarchy is a central orga-
nizing principle of networks [2]. In contrast to simple clustering, HRG describes
organization at all scales in a network. Intuitively, once the change in the HRG
model can be restricted, it would naturally bound the distribution of regenerated
random graphs, since the HRG models they hold are similar.

Now, we begin to describe the two steps in LORA. At the first step of LORA,
we determine the best HRG model of the source graph by running MCMC
sampling algorithm until equilibrium and represent it as a dendrogram tree D
(See Algorithm 1, line 1). Leaf nodes in D correspond to vertices in the graph.
Each non-leaf internal node is associated with two communities(i.e. two sets of
leaf nodes) induced by its left and right subtrees (line 3,4). Ideally, links across
these two communities are viewed as approximately equivalent and exchangeable
relationships in terms of the inter-community association strength. We denote
such a group of equivalent links as one link equivalent class (line 5).

Secondly, in the reconstruction step (line 6,7), we replace true edges in the
source graph with their equivalent links in link equivalent classes. In order to main-
tain the same inter-community association strength, we randomly pick the same
number of links in the link equivalent class to substitute the true edges observed
in the source graph and let the chosen links be the new edges in the released graph
(lines 7). Note that obfuscation also comes simultaneously from the inherent ran-
dom process. In the privacy analysis part, we would introduce the concept of “link
entropy” to assess the degree of privacy brought by link obfuscation.

Data: A simple source Graph G(V, E)
Result: A reconstructed random Graph G̃(Ṽ , Ẽ) for release, where Ṽ ⊆ V

Dendrogram D ←− fitHRG(G)1

foreach nonleaf node r in D do2

Vleft(r) ← findLeafVertices(left subtree of r)3

Vright(r) ← findLeafVertices(right subtree of r)4

link equivalent class L(r) ← Vleft(r) × Vright(r)5

E(r) ← the number of observed edges ∈ Vleft(r) × Vright(r) in G6

randomly pick up E(r) links in current equivalent class L(r) to be new edges7

in G̃
end8

Algorithm 1. The LORA Framework

4 Link Obfuscation by Randomization with HRG

4.1 Link Equivalence Class

Given a network G(n, m) = (V, E) and its HRG dendrogram tree D, links bridg-
ing the nodes in the left and right subtrees are in the same equivalence class with
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respect to their topological roles. Consider the graph G in Fig. 1(a) and its den-
drogram in Fig. 1(c). At the top level of G’s dendrogram tree, the dendrogram
divides into two subtrees, which induces two separate leaf sets - left subtree leaf
set {1,2,3} and right subtree leaf set {4,5,6}. All the possible cross links bridging
these two leaf sets consist of one link equivalence class. In this case, as shown
by the dash lines in Fig. 1(b), links (1,4), (2,4), (3,4), (1,5), (2,5), (3,5), (1,6),
(2,6), (3,6) are 9 pairs of links in one equivalence class. Let Lr and Rr be the
sizes of the left and right leaf sets respectively (in our example, Lr = 3, Rr = 3).
Let Er be the number of edges in the source graph G linking the two sets (in
Fig. 1(a), there is only one edge (3,4), so Er = 1). We can then estimate the
link probability of this link equivalence class as Er/(Lr · Rr) = 1/(3 · 3) = 1/9.
This probability indicates the connection strength between the nodes in the two
leaf groups. In this sense, we obfuscate the existence of connections of nodes, by
turning real edges into virtual probabilistic links.

Note that, ideally, if links in one equivalent class share exactly the same
topological roles, the new generated graph should also share exactly the same
dendrogram as the source graph. However, this is not usually the case. Very often,
the equivalent link class derived through HRG is just a group of approximately
topological similar links. Besides, for computation efficiency, we have adopted
a local optimal HRG right after the MCMC runs into local equilibrium state.
For these reasons, links in one link equivalent class we derive are actually just
approximately equivalent. As such, the released graph’s optimal HRG is very
likely changed a bit compared to the optimal HRG of the source graph. In
this paper’s analysis, we assume the released graph shares exactly the same
global optimal dendrogram of the source graph. Note that, from a privacy’s
perspective, it is intuitive that, if the dendrograms of the source and released
graphs are not the same, it would be much harder to infer the source graph
from the released graph. Therefore, this assumption is biased against LORA in
terms of its privacy strength. Since the statistical relationship of each link in
the graphs are fully preserved in this ideal scenario, such released graphs would
share the same inherent statistical properties with the source graph. Essentially,
all information that the released and source graphs share is the dendrogram D
in the ideal scenario.

4.2 Link Replacement

Now we explain the link replacement procedure with HRG model during graph
reconstruction. We reconstruct random graph by a series of link replacement pro-
cedures, where each inner node in HRG corresponds to one link replacement pro-
cedure. Consider one inner node r in dendrogram D. There are Er real edges in
G bridging the two leaf node sets in the left and right subtrees in D. In order to
maintain the same connection strength between the two leaf node sets in the re-
leased graph G̃, we randomly pick Er links in an inner node r’s link equivalent class
to replace the Er real edges. The whole reconstruction process is done through
n−1 independent link replacement procedures, corresponding to n−1 inner nodes
in HRG. Referring to our running example again, consider the root node in the
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dendrogram, since there is only one real edge (3,4), we need to find a link to re-
place it. Fig. 2 shows the released graph after link (1, 6) replaces edge (3,4).

4.3 Hide Weak Ties and Retain Strong Ties

Essentially, HRG model tends to exchange weak ties(yet true edge) in the source
graph with links that are not connected yet. See the instance of graph in Fig. 1(a)
and its perturbed graph in Fig. 2. By “weak ties”, we mean edges that are bridges
to link two graph components, such as edge a34 in Fig. 1(a). As real world graphs
are typically sparse, weak ties are not uncommon. In fact, they are important
channels between many clustered groups and hold important roles in shaping
the entire graph structure. In pure random edge deletion scheme, such weak ties
may be removed, which will severely undermine the source graph’s structure.
However, under our LORA scheme, link obfuscation is employed to substitute
such weak ties with fake (non-existent) ties within the same equivalence class. In
this way, large amount of changes can be operated on the graph while preserving
the skeleton of source graph as well as the clique-like components.

Using Fig. 2 as illustration, we associate (small) link probabilities with weak
links, that is, links between node set {1,2,3} and {4,5,6}, which give much free-
dom to perturb the source graph to obfuscate links in the released graph. In
this case, nodes 1, 2, 3, which are rooted in the same inner node, have exactly
the same link relationship towards all the other nodes. Therefore, they are in-
terchangeable. In Fig. 2, the skeleton (the dashed line and dashed circles) of
the perturbed graph (of the graph in Fig. 1(a)) remains the same as the source
graph. For complete components, namely, clique, link probability obfuscation
usually would preserve them fully since they link with each other closely. This
makes sense since cliques are obvious features in graphs, one cannot perturb one
complete graph without destroying its property of complete graph. To improve
the privacy of nodes in a clique, an alternative way is to compress cliques into
one super node. That is, in our context, to generalize all the leaf nodes induced
from one subtree in the dendrogram to one supernode. With an ideal dendro-
gram, it is an effective way to compress subcomponents of graph with minimal
disruptions to the remaining structure.

2

3

1 6

5

4

Fig. 2. Perturbed Graph

5 Privacy Analysis

In this paper, we use entropy as the privacy criterion to quantify the strength
of link obfuscation method in preserving link privacy.
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As an analogy of binary entropy function, each link aij with link probability
pij has binary link entropy,

H(aij) = pij log2

1
pij

+ (1 − pij) log2

1
1 − pij

(5)

Link entropy quantifies the degree of uncertainty of the existence of a edge,
i.e., whether nodes i and j are connected or not in source graph. In general, a
larger entropy value is preferred. For example, the table in Fig. 1(e) is a matrix
consisting of all link entropies, which is derived by the probability matrix in Fig.
1(d) for the graph in Fig. 1(a). As shown in Fig. 1(e), links between node set
{1,2,3} and set {4,5,6} have entropy 0.50, indicating the uncertainty level of the
real state of the links measured in entropy.

5.1 The Joint Link Entropy

It is not uncommon for attackers to attempt to identify a set of links, e.g. check
the egocentric network of one node (i.e., all edges incident to that node), search
for subgraphs and so on. To this end, we then formalize the joint link entropy
to quantify the degree of uncertainty in these scenarios.

Joint Entropy of Dependent Links. For the links associated with the same
inner node r in a dendrogram D, they are dependent (or relevant) random vari-
ables. Consider observing the outcome of k (k ≤ Lr ·Rr) dependent links whose
endpoints are rooted at the same lowest common ancestor r. We use a joint
ensemble variable Xr = ar

i1j1
ar

i2j2
...ar

ikjk
to represent the ensemble of such k

link variables under observation. The ensemble variable Xr can take on one of
a set of possible ensemble outcomes, xs

r, which consists of the outcome of each
link variable ar

ij ∈ Caij = {0, 1}. Here ar
ij = 1 denotes link ar

ij is chosen during
link replacement; otherwise, for non-chosen links, ar

ij = 0. Each specific out-
come xs

r has a probability ps. In the context of link replacement, ps refers to the
possibility one specific outcome xs

r of the k relevant links (chosen or unchosen)
appears after link replacement. The link ensemble Xr has a probability distri-
bution PX = p1, p2, ..., pS , where ps is the joint of probability for the ensemble
outcome.

As one example, we consider the outcome values(i.e. the possible outcomes)
of links Xr = a14a24a34 in Fig. 1(a). Xr can take on one of 4 ordered sequence
outcomes, that is, no link selected from {a14, a24, a34}(outcome “000”); a34 se-
lected(outcome “001”);a24 selected(outcome “010”) and a14 selected(outcome
“100”). Consider the calculation of ps(000), the probability that the outcome
value of link set a14a24a34 is 000 after link replacement. First of all, after the
link replacement regarding inner node r, there are

(
Lr·Rr

Er

)
types of outcomes for

the whole link equivalent class. Among all the outcomes, we count the number
of outcomes where link {a14a24a34} is 000. Sequence 000 indicates that in the
observed link set {a14, a24, a34}, none of links is chosen. Let l denote the number
of links chosen from the k relevant links. Hence, in sequence 000, l = 0. The
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observed link set size k is 3 here. In order to replace 1 (Er = 1) original edge in
G, another 1 (Er − l = 1) link needs to be drawn from the rest links in the inner
node r’s link equivalence class(Lr · Rr − k links). There are

(
Lr·Rr−k

Er−l

)
types of

ensemble outcomes for drawing Er − l links from the rest links. Hence ps(000)
is

(
3·3−3
1−0

)
/
(
3·3
1

)
= 6/9. In the following, we give the generalized formula of ps:

ps =

(
Lr·Rr−k

Er−l

)
(
Lr·Rr

Er

) , (6)

where l is the number of links drawn from the observed k relevant links.
The joint entropy of dependent links is defined as,

H(Xr) = H(ar
i1j1a

r
i2j2 ...a

r
ikjk

)

= H(p1, p2, ..., pS) =
S∑

s=1

ps log2

1
ps

,
(7)

which measures the degree of attacker’s uncertainty regarding a set of dependent
links.

As illustration, we again consider the possible outcomes of links Xr =a14a24a34

in Fig. 1(a). The space of Xr’s possible worlds consists of 4 binary sequences
{000, 001, 010, 100} with the probability distribution {6/9, 1/9, 1/9, 1/9}. Note
that the possible outcomes are dependently distributed, yet not identical. The
corresponding joint entropy of Xr is 1.45.

Joint Entropy of Independent Links. For the links associated with differ-
ent inner nodes, they are independent random variables. The joint ensemble of
independent links is the sum of the link entropy of each link, i.e.,

H(X) = H(ar1
i1j1

ar2
i2j2

...ark
ikjk

) =
k∑

h=1

H(arh
ihjh

), (8)

Joint Entropy of Arbitrary Links. Given a set of arbitrary links, we sepa-
rate them into two categories: independent links and dependent links. Essentially
we arrange the links in different groups according to the inner node in the den-
drogram they associate to. Links in the same group are dependent. Otherwise,
they are independent. The joint entropy of arbitrary links is the sum of the joint
entropy of each group, which is given by the following equation,

H(Xr1,r2...rt) =
t∑

k=1

H(Xrk
) (9)

In order to provide a more meaningful measure of each vertex’s privacy, we
next define the notation of the entropy of a vertex’s egocentric network. The
egocentric network is one smallest subgraph centered on each node. The egocen-
tric network entropy is an ensemble entropy regarding all the immediate links
associated with the node,
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Definition 1. (Joint entropy of vertex i’s egocentric network) H(vi) is the en-
tropy of the joint link entropy H(aij1aij2 ...aijn−1) which includes all links inci-
dent to vertex i.

This definition quantifies an attacker’s uncertainty towards the composition of
one vertex’s egocentric network.

Traditionally, for randomization schemes, the posterior belief is used to mea-
sure an attacker’s uncertainty [4][3]. Here we use entropy rather than the pos-
terior belief for clarifying the ensemble uncertainty of possible worlds. Consider
a link with probability p. For an attacker, there are two scenarios - aij = 0 or
aij = 1. Rather than specifying that the attacker has posterior belief p for aij = 1
and posterior belief 1 − p for aij = 0, we use H(aij) to evaluate the attacker’s
uncertainty of this link random variable as a whole. H(aij) reflects the extent to
which an attacker is unsure of aij ’s real outcome in all its possible worlds. Note
that the possible worlds are not always evenly distributed. Entropy describes
the extent of obfuscation compactly instead of specifying several probabilities
of each possible world. This is particular convenient in more intricate scenarios,
especially in the case of joint entropy.

Essentially, the released graph conveys the same amount of information con-
tained in the dendrogram, which indicates that the most amount of information
attackers can infer from one released graph is just the dendrogram, by using
MCMC to learn from the released graph. Note that each link replacement pro-
cedure associated with one inner node in the dendrogram cannot be directly
learned, since it operates as a non-deterministic mapping function. Information
transferred after link obfuscation is inherently blurred according to the HRG
model.

5.2 Link Obfuscation Vs Node Obfuscation

In [1], Bonchi et. al. claimed that entropy-based quantification of anonymity
level is more adequate than quantification based on posteriori belief probabili-
ties. Our approach is similar in spirit to their work, but differs crucially in the
quantity under measurement. Rather than defining the quantity of node identity
anonymity level directly, we consider an entropy quantification for links. Bonchi’s
work is mainly concerned with re-identification of node identity, while our work
attempts to address re-identification of links. Moreover, in [1], node candidates
are the vertices in the released graph G̃. But in our scheme, link candidates are
the imaginary possible worlds during obfuscation scheme.

Furthermore, we show that link entropy distinguishes the uncertainty of links
in different distribution of possible worlds under randomization scheme. As il-
lustration, we consider the following two situations:

(1) p(a12 = 0, a13 = 1) = 1
2 ,

p(a12 = 1, a13 = 0) = 1
2 ,

p(a12 = 0, a13 = 0) = 0,
p(a12 = 1, a13 = 1) = 0.
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(2) p(a12 = 0, a13 = 1) = 1
2 ,

p(a12 = 1, a13 = 0) = 1
6 ,

p(a12 = 0, a13 = 0) = 1
6 ,

p(a12 = 1, a13 = 1) = 1
6 .

We note that with the probabilities listed above, it is hard to evaluate which
of the two cases brings more uncertainty. We next show how link entropy can
distinguish the extent of these two cases’ uncertainty. According to Equation 7,
in case 1, the joint link entropy is log2 2, but it is log2 2

√
3 in case 2. Although

an attacker’s greatest confidence about the state of links in released graph is
both 1/2 in two the cases, the attacker needs more effort to cross out the more
uncertain possible worlds in the second case. Under LORA, during link replace-
ment, the existence of a weak tie in graph is blurred since the link probability is
effectively being spread among the fake candidate links in the equivalence class.
Thus, the uncertainty of possible worlds of links is increased.

Our scheme is specially designed for link privacy in the first place. But more
importantly, the uncertainty of links would directly undermine the structural
knowledge that the attackers can hold in any attacks. This is because links,
the smallest atomic elements in graph, are the foundations of all the structure
knowledge attackers can hold in a simple graph.

0

1

0

1

aij ãij

1
0

1-p
p

(a) Random Sparsification

?

0

1

aij ãij
1− pij

pij

(b)Link Obfuscation

Fig. 3. Link Obfuscation vs Random Sparsification

5.3 Randomization by Link Obfuscation vs Edge Addition/Deletion

Unlike randomization schemes in [3,4,6,1], link probability obfuscation is a so-
phisticated method based on the source graph’s characteristics. We use Fig. 3 to
illustrate the difference between random sparsification [1] and link obfuscation.
For the pure random sparsification, links are perturbed in a way similar to a coin
flipping game, where the coins are the same and independent. As it turns out in
Fig. 3(a), every aij is associated with the same parameter p in the procedure of
perturbation. Each aij “flips” like a coin in the same way. Conversely, in LORA
(see in Fig. 3(b)), each aij owns its specific perturbation parameter pij . Each
inner node in the dendrogram is associated with one independent link replace-
ment procedure. During each procedure, links in the link equivalence class are
all related. This means more dedicate modifications are allowed on the source
graph.

From entropy’s perspective, in the former scheme, all aij = 0 will retain its
state in the released graph. Therefore, the entropy H(aij |ãij = 1) = p(aij =
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0|ãij = 1) log 1
p(aij=0|ãij=1) + p(aij = 1|ãij = 1) log 1

p(aij=1|ãij=1) = 0 · log(1/0)+
1 · log(1/1) = 0. This implies that an attacker can learn that aij = 1 if the
observation is ãij = 1 in the released graph. However, in the latter scheme,
pij that aij associates with is not necessarily always 0 or 1. Hence, if pij 	= 0
or pij 	= 1, it is almost not learnable from the obfuscation procedure. In other
words, it is difficult to infer the true state in the source graph with full confidence.

6 Experimental Studies

In this section, we report results of two experimental studies to evaluate the
effectiveness of LORA. We report results from two real datasets, adjnoun [13]
and celegans [14]. adjnoun is an undirected graph of common adjective and
noun adjacencies for the novel “David Copperfield” by Charles Dickens. Edges
connect any pair of words that occur in adjacent position in the text of the book.
celegans is a biological network representing the neural network of C. Elegans.

6.1 Graph Statistics

We measure the following statistics: graph diameter (i.e., the maximum distance
among pairs of vertices), histograms of degree distribution (i.e., the probability
distribution of vertices degrees over the whole graph), shortest path lengths
(i.e., the shortest path lengths between any two nodes in graph) and clustering
coefficients (i.e., for each node, find the fraction of possible triangles that exist).
We also measure the join entropy histogram of each vertex’s egocentric network.

For the adjnoun dataset, the source graph has 112 vertices and 425 edges. In
the released random graph, the number of vertices ñ is 110 and the number of
edges m̃ is 425. Only two vertices in source graph are lost (disconnected with
the largest component of released graph) during link obfuscation. 301 original
edges are substituted with previously non-connected links in the released graph.

The Source graph of celegans dataset has 297 vertices and 2148 undirected
edges, whereas its released random graph has 288 vertices and 2148 undirected
edges. 1640 original edges are replaced with previously non-connected links in
the released graph.

The results, shown in Fig. 4 and Fig. 5, are summarized in the following.

Graph Diameter: The diameters of the source and released adjnoun graphs
are both 5. For the celegans dataset, both the source and released graphs’
diameters are also equal to 5.

Degree Distribution: Fig. 4(a) shows that the degree distribution histogram
of the source (left figure in red) and released (right figure in blue) graphs for
the adjnoun dataset. We observe that the two histograms share similar profiles.
Specifically, both histograms have “fat tails” in their distributions, containing
some nodes with large degrees greater than 30. It is known that the network
with the scale-free property is characterized by its fat-tail. The result for the
celegans dataset, shown in Fig. 5(a), also demonstrates the same property.
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Shortest Path Lengths: The results of the shortest path length histograms
for the two datasets are shown in Fig. 4(b) and Fig. 5(b) respectively. As shown,
for both datasets, the released and source graphs share similar shortest path
distribution.

Clustering Coefficients: From the result of the clustering coefficients his-
togram (see Fig. 4(c) for the adjnoun dataset and Fig. 5(c) for the celegans
dataset), we observe again the similarity in the two histogram profiles. Moreover,
for the adjnoun dataset, as shown in Fig. 4(c), the average clustering coefficients
(vertical dashed lines in the right figure) are almost the same. For the celegans
dataset, the average clustering coefficients are also close.

To summarize, we can see that link probability obfuscation can preserve graph
features well.

6.2 Privacy Analysis

To understand the effectiveness of LORA, we report the vertex egocentric en-
tropy in Fig. 4(d) and Fig. 5(d). We use Fig. 4(d) for explanation. Fig. 4(d) shows
the cumulative histogram of egocentric entropy for all vertices in the source graph
of dataset adjnoun according to the derived HRG model used to reconstruct the
released graph. The horizontal axis specifies the egocentric entropy interval. The
vertical axis specifies the percentage of nodes whose entropy is less than the
right value of the corresponding entropy interval in the horizontal axis for this
height. As an example, for the interval 10-12, about 38% of the nodes’ entropy
is less than 12; and 100% of the nodes’ entropy is less than 30. Now, the more
egocentric entropy one node holds, the more privacy it gets. The lowest value
of entropy is zero, meaning there is no uncertainty regarding the node’s egocen-
tric network. Notice that the entropy we measure here is a subgraph’s entropy,
that is, each node’s egocentric network. Fig.4(d) is the histogram of this type of
entropy with regard to all the nodes’ egocentri networks in the graph.

From Fig. 4(d), we note that less than 30% of the vertices’ egocentric entropy
is smaller than 8, which means, for at least 70% of the vertices’ egocentric net-
work, an attacker’s uncertainty is above 8 in terms of entropy. Less than 10%
of the vertices have egocentric entropy smaller than 2. Assume 2 is the entropy
threshold δ, nodes with entropy value lower than this threshold are the vulner-
able targets. In this case, attackers can believe their egocentric networks in the
released graph are likely to be close to the source egocentric networks. However,
it should be noted that for such nodes with low egocentric entropy can be further
processed in order to improve their privacy. Because often link probabilities of
such nodes are near 1, most likely to be the nodes in cliques. Clique-like nodes
can be compressed into a super node, without significantly disrupting the rest
graph structure. We leave this issue for further study.

7 Related Work

In recent works on randomization based scheme, Ying considered graph’s spectra
as an indicator to adjust released graph. Graph’s spectra, consisting the set of
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graph eigenvalues, are known as quantities that characterize one graph. It is also
conceivable that almost all graphs are uniquely determined by their spectra[15].
However, it is not clear how precisely edge deletion/addition would influence
graph’s spectral but only rough bound for just the two important eigenvalues
among them, namely, the largest eigenvalue(λ1) for the adjacency matrix A
and the second eigenvalue(μ2) for the Laplacian matrix L. In [5][6], Ying and
Hanhijarvi considered approaches to generate synthetic graphs with Metropo-
lis–Hastings algorithm(more specifically, Markov Chain Monte Carlo method).
Essentially, these two methods extract important parameters of original graph,
such as λ1, μ2, h(the harmonic mean of the shortest distance), and then use
Markov Chain Monte Carlo method to sample the set of graph with same pa-
rameters as the original graph. To this perspective, they effectively bound the
subspace of samples so that guarantee its released graph preserves one same
feature as original graph. However, preserving one statistical summaries does
not always guarantee preserving other summaries simultaneously according to
their observation. In addition, they also observe that the attacker can utilize the
same strategy to exploit the graph space, which will jeopardize approximately
20% true edges to expose, dependent on different parameters. It is not easy
to analyze this risk theoretically since it varies according to different parame-
ters, which hence renders precisely assessing the privacy-preserving strength of
such strategy difficult. In [12], Mir considered one approach from the opposite
perspective. Rather than sampling a particular distribution in graph space ac-
cording to certain parameters, Mir proposed to learn from original graph with
Leskovec et al.’s Kronecker graph model firstly and then generate one synthetic
graph. Because Kronecker graph model theoretically captures some key features
of realistic graphs[12], the synthetic graphs will generically share almost same
features. However, in order to respect their graph differential privacy model,
they consider to inject Laplacian noise on the parameters of their graph model
before graph generation, which intentionally disorders the sample’s distribution
induced from true graph model a bit. In addition, their privacy model and sen-
sitivity criteria consider just parameters of graph model, not on graph itself. It
is not clear how exactly privacy criteria imposed on graph model parameters
would exert privacy protection on released graph.

8 Conclusion

In this paper, we have proposed a randomization scheme, LORA, to preserve link
privacy of network data publishing. LORA builds the HRG model of the source
graph, and uses it to reconstruct a set of graphs that preserve the statistical
graph properties of the source graph. The released graph is then selected from
these graphs. We also introduced and argued that the link entropy concept is
an appropriate measure of the uncertainty degree of links. Our experimental
results showed that the released (reconstructed) graphs have acceptable link
entropy while preserving statistical properties such as graph diameter, degree
distribution, shortest path lengths and clustering coefficients.
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Abstract. Data security in the cloud is a big concern that blocks the
widespread use of the cloud for relational data management. First, to en-
sure data security, data confidentiality needs to be provided when data
resides in storage as well as when data is dynamically accessed by queries.
Prior works on query processing on encrypted data did not provide data
confidentiality guarantees in both aspects. Tradeoff between secrecy and
efficiency needs to be made when satisfying both aspects of data con-
fidentiality while being suitable for practical use. Second, to support
common relational data management functions, various types of queries
such as exact queries, range queries, data updates, insertion and dele-
tion should be supported. To address these issues, this paper proposes
a comprehensive framework for secure and efficient query processing of
relational data in the cloud. Our framework ensures data confidentiality
using a salted IDA encoding scheme and column-access-via-proxy query
processing primitives, and ensures query efficiency using matrix column
accesses and a secure B+-tree index. In addition, our framework provides
data availability and integrity. We establish the security of our proposal
by a detailed security analysis and demonstrate the query efficiency of
our proposal through an experimental evaluation.

Keywords: Data security in the cloud, Query processing on encrypted
data, Data confidentiality, Data availability.

1 Introduction

Cloud computing has been gaining interests in the commercial arena due to its
desirable features of scalability, elasticity, fault-tolerance, self-management and
pay-per-use. However, the security of sensitive data stored in the cloud remains
a big concern, and even a road block to the widespread usage of the cloud for
relational data management and query processing. The shared environment of
the cloud renders access control policies and authentication vulnerable [1]. Many
enterprises therefore question whether adequate security and functionality can
be ensured for performing their regular data storing and query processing tasks
in the cloud.

Data confidentiality is one of the most important security concerns and chal-
lenges. It should be adequately provided to safeguard against attackers’ analysis
and inferences. In addition, data confidentiality has to be balanced with query
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processing functions and performance. First, although encryption is a commonly
used solution to data confidentiality, encryption itself is insufficient to guarantee
data confidentiality, even if the encryption scheme does not reveal any charac-
teristics about the plaintext data and is resistant to statistical analysis. When
encrypted data is frequently accessed to serve clients’ queries, any potential infor-
mation leakage should also be controlled, since attackers may infer the plaintext
data from clients’ accessed positions on the encrypted data. Many existing pro-
posals of query processing on encrypted data do not consider both confidentiality
for data residing in storage and for data being accessed by queries [2,3,4,5,6,7].
Second, different queries must be supported in the same framework, and practical
query performance should not be lost in pursuit of the above data confidential-
ity requirements. Note that some of the previous works are only able to support
one or two types of queries on encrypted data, and in general do not support
data updates [3,4]. The powerful cryptographic techniques such as homomorphic
encryption [8] and Private Information Retrieval (PIR) [9] can satisfy the above
mentioned data confidentiality requirements, but they are computationally ex-
pensive and can adversely impact both latency and throughput. The approaches
improving the performance of PIR via the use of special hardwares [10,11] may
not be feasible for some small businesses who do not have the resources to make
such investments.

Next to data confidentiality are the concerns of data availability and in-
tegrity. Information Dispersal Algorithm (IDA) [12] and similar error-correcting
codes [13] have been used in recent works [12,14,15] to provide data availability,
and are commercialized [16]. A recent trend in industry even considers IDA as
an alternative to traditional data encryption [17], since IDA provides both data
availability and a certain degree of data confidentiality.

Our goal in this paper is to provide a comprehensive secure query processing
framework that addresses the issues of data confidentiality, availability and in-
tegrity, and supports practical processing of various types of queries on relational
data in the cloud. We aim at a practical solution with balanced security and func-
tions. We achieve confidentiality for data residing in storage using a variant of
IDA, called “salted” IDA (Section 4). Salted IDA relies on pseudo-randomness
to improve the data confidentiality of the original IDA scheme against compu-
tationally bounded adversaries and relies on the original IDA scheme to provide
data availability. We achieve confidentiality for data dynamically accessed by
queries by transforming query requests to single operations and routing them via
trusted proxies, which we call column-access-via-proxy (Section 5), so that differ-
ent queries and queries among different clients are unlikely to be differentiated.
We discuss the security implications of these two schemes in a comprehensive
security analysis (Section 7).

To enable practical query processing, we build a secure B+-tree index [18] on
frequently queried attributes. We encode and disperse the index and the data
tuples into matrix column pieces using salted IDA, and access the index and the
tuples using the column-access-via-proxy operations. During query processing,
a client retrieves and decodes only a small part of the index, based on which
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the client locates the candidate answer tuples. We boost query performance by
caching parts of the index on the client. Caching the index also helps improve
data confidentiality at accesses by confusing inferences on the index traversal
paths. We are thus able to support common relational database queries such as
exact queries, range queries and data updates with consistent security guarantees
(Section 6) and practical performance (Section 8).

2 Related Work

To support queries on encrypted relational data, one class of solutions proposed
processing encrypted data directly. However, these approaches do not provide
good tradeoff between data confidentiality and query efficiency. For example, the
methods that attach range labels to encrypted data [2,3] reveal the underlying
data distributions. Methods relying on order preserving encryption [4,19] reveal
the data order. These methods cannot overcome attacks based on statistical
analysis on encrypted data. On the other hand, homomorphic encryption is
secure and enables calculation on encrypted data [20,8], but relies on expensive
public key cryptosystem and thus is not practical.

Instead of processing encrypted data directly, an alternative is to use an en-
crypted index which allows the client to traverse the index and to locate the
data of interest in a small number of rounds of retrieval and decryption [6,7,5].
Although these works provide confidentiality for data residing in storage, they
do not provide data confidentiality under dynamic query access patterns. Recent
work obfuscates users’ data access patterns using special oblivious RAM for data
outsourced in the cloud [11], but it still incurs a lot of computation and com-
munication costs and requires special-purpose hardware. A contemporary work
to our work obfuscates users’ data access pattern by shuffling index nodes [21].
In contrast to the above approaches, our work provides a comprehensive and
practical secure query processing framework to protect data in storage and at
accesses as well as to support different kinds of queries.

3 System and Attacker Model

3.1 System Model

Data Model. We consider a relational table D with N tuples. Each tuple t
has d attributes, A1, A2, ..., Ad. An index I is built on the frequently queried
attributes of D, such as the primary key. Without loss of generality, we refer to
I as a one-dimensional index with one-to-one mapping to the tuples in D. We
assume each attribute value (and each index key) can be mapped to an integer
in the range of [1, ..., MAX ].

Data Storage Model. The tuples and the index are encoded under separate
secret keys C and then stored on n servers, S1, S2, ..., Sn, hosted by cloud storage
providers. The same keys C are used for decoding the tuples and the index
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retrieved from servers. The tuples and the index are only accessible to the clients
who own the data or the trusted partners of the clients (partners are also referred
to as clients hereinafter).

Data Access Model. We assume that the cloud is heavily loaded with many
clients issuing many queries continuously. This is typical of modern cloud sys-
tems. We support exact, range queries and tuple updates given index keys as
predicates, as well as tuple insertion and deletion.

3.2 Attacker Model

Attacker and Prior Knowledge Assumptions. We consider attackers are
external entities or the servers where data is stored. We do not deal with insider
attacks, such as from malicious partners. We assume client machines are safe,
thus any confidential information on the client such as the secret key C is not
known to attackers. Attackers do not know clients’ queries. However, attack-
ers could know the clients’ data distribution and even some exact values and
their occurrence frequencies. We assume attackers’ computations are bounded
by polynomial size circuits.

Attacks. We consider two types of attacks: (1) attacks that target to compro-
mise data confidentiality without compromising data availability or integrity;
(2) attacks that target to compromise data integrity or availability, e.g. modi-
fying the encoded tuples or index keys, or Denial-of-Service (DoS) attacks. We
say servers are faulty in (2). In (1), attackers can compromise any number of
servers. They can analyze the encoded data, monitor index and data accesses,
and perform inference or linking attacks [6], in which they try to infer the cor-
respondence between the positions of encoded data in storage and plain-text
values in the data domain, and even try to infer the secret key C.

4 Data Encryption and Dispersal by “Salted” IDA

Information Dispersal Algorithm (IDA) [12] ensures secure and reliable storage.
It is widely used in emerging cloud storages [16,14,22]. We use IDA as the basis
for providing data confidentiality and availability, and propose an easy-to-use
data encoding and dispersal scheme called salted IDA.

4.1 Information Dispersal Algorithm (IDA)

We first introduce IDA [12]. IDA encodes and disperses data into n uninter-
pretable pieces so that only m (m ≤ n) pieces are required to reconstruct the
data, and the total storage size of the dispersed pieces is only n/m times of the
data size. Consider that n pieces are distributed onto n servers, then IDA can
tolerate up to (n − m) faulty servers (faulty pieces) for data retrievals. Table 1
summarizes the notations we use in the paper.
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Table 1. Table of Frequently Used Notations

Notation Description

n Number of dispersed data pieces (number of servers to distribute the data)

m Threshold number of pieces to recover the data
(threshold number of servers to retrieve the data)

N Number of data tuples or keys

d Number of attributes in one tuple

C n × m secret key matrix

ID, TD Plaintext index matrix, data tuples matrix

IE, TE Encoded index matrix, data tuples matrix

Ei,:, E:,i ith row, ith column of matrix E

E∗ m × m sub matrix obtained by deleting rows in E

b Number of branches in a B+-tree index node

col Column address pointing to a column in a matrix

key Key in a B+-tree index node

Given a matrix M , let Mi,: be its ith row, M:,i be its ith column, and Mi,j

or Mij be the entry at the ith row, jth column of M . Consider an m × w data
matrix D. Each entry in D is an integer in a finite field GF (2s), or a residue mod
B = 2s. The following data values and arithmetic operations are on GF (2s). To
encode and disperse D, IDA uses an n × m information dispersal matrix C, in
which every m rows are linearly independent, or any submatrix C∗ formed by
any m rows of C is invertible. A Vandermonde matrix satisfies this property,
where each row is in the form of Ci,: = (1, ai, ..., a

m−1
i ) (ai ∈ GF (2s), 1 ≤ i ≤ n).

For example in GF (24),

C =

⎛
⎜⎜⎜⎜⎝

30 31 32

40 41 42

50 51 52

60 61 62

70 71 72

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

1 3 5
1 4 3
1 5 2
1 6 7
1 7 6

⎞
⎟⎟⎟⎟⎠

Let the encoded data matrix be E = C ·D, then each row of E, Ei,: (1 ≤ i ≤ n),
is a dispersed piece stored on a server. To reconstruct D, we collect m dispersed
pieces, corresponding to m rows of E. Let these rows form an m×w submatrix
of E, E∗. Keep the corresponding m rows of C to form an m × m submatrix of
C, C∗. Then

D = C∗−1 · E∗ (1)

For example in GF (24), consider a matrix D =

⎛
⎝1 4 7

2 5 8
3 6 9

⎞
⎠. Using C =

⎛
⎜⎜⎜⎜⎝

1 3 5
1 4 3
1 5 2
1 6 7
1 7 6

⎞
⎟⎟⎟⎟⎠,
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we get

E = C · D =

⎛
⎜⎜⎜⎜⎝

1 3 5
1 4 3
1 5 2
1 6 7
1 7 6

⎞
⎟⎟⎟⎟⎠

⎛
⎝1 4 7

2 5 8
3 6 9

⎞
⎠ =

⎛
⎜⎜⎜⎜⎝

8 6 7
12 9 9
13 10 8
4 8 8
5 11 9

⎞
⎟⎟⎟⎟⎠

We distribute five rows E1,:, E2,:, ..., E5,: onto five servers S1, S2, ..., S5 respec-
tively. If S2 and S3 are faulty, we obtain E1,:, E4,: and E5,: from S1, S4 and S5

to form E∗. We then delete C2,: and C3,: from C to form C∗, and reconstruct D
using Equation (1).

D = C∗−1 · E∗ =

⎛
⎝1 3 5

1 6 7
1 7 6

⎞
⎠

−1 ⎛
⎝8 6 7

4 8 8
5 11 9

⎞
⎠ =

⎛
⎝1 4 7

2 5 8
3 6 9

⎞
⎠

4.2 “Salted” IDA

IDA ensures data availability, but does not ensure adequate data confidential-
ity. An encryption scheme with adequate confidentiality should be resistant to
statistical analysis on a set of encrypted data. That is, the encrypted data set
should not reveal any characteristics of the corresponding plaintext data set.

Based on IDA, we propose a scheme called salted IDA to achieve such data
confidentiality. As in IDA, a client maintains an n × m secret matrix C as the
information dispersal matrix and the keys for encoding and decoding a data
matrix D, where n, m are determined by the client based on the number of
servers that she plans to use and the estimated number of non-faulty servers.
In addition, the client keeps a secret seed ss, and a deterministic function fs for
producing random factors based on ss and the address of data entries on D. We
call these random factors salt.

Function fs feeds ss into a pseudorandom number generator (PRNG). Before
encoding and dispersing D onto n servers using IDA, for each column of D, D:,i,
the client calls the PRNG procedure i times, sets the last generated random
number as the salt, and then adds the salt to each data entry of D:,i, Dj,i

(1 ≤ j ≤ m). After decoding the encoded data retrieved from m non-faulty
servers, the client reconstructs salts by calling fs and then deducts these salts
from the decoded data entries, recovering D. An alternative to generate salt is
to employ a hash function on ss and the column index i, hash(i, ss). The security
of salted IDA is established in Section 7.1.

5 Secure Cloud Data Access

5.1 Overview

We use salted IDA to encode and disperse the data onto servers in the cloud.
To be able to perform queries on salted IDA encoded matrix, we retrieve partial
data by retrieving single columns of the matrix as follows.

D:,i = C∗−1 · E∗
:,i (2)
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Fig. 1. Secure Cloud Data Access Framework

Similarly we can update and encode a single column D:,i as follows.

E:,i = C · D:,i (3)

Using the above column access property, we can process a query or an update
by accessing a few columns at a time. However, selecting which columns to access
is still difficult, because searching data directly on the IDA encoded matrix based
on plaintext input is infeasible. We solve this problem by building a B+-tree index
on the key attribute. The index is kept secure and is only known to the client.

Given a table D with N tuples and a B+-tree index I on the key attributes
of D, we store D into a tuple matrix TD, and I into an index matrix ID. TD
and ID have a fixed column size, m. Each column of TD thus corresponds to
one or more tuples in D. One or more columns of ID correspond to a tree node
in I. Each leaf node of I maintains the pointers to the columns of TD where
the tuples with the keys in this leaf node are stored. We encode ID into IE and
TD into TE, and then disperse IE and TE onto n servers, S1, S2, ..., Sn, using
salted IDA (see Fig. 1). Queries on the index key attribute can be efficiently
processed by locating the columns of ID (tree nodes) that store the query keys
and then retrieving the corresponding tuples from columns of TD.

5.2 Organization of Index

Let the branching factor of the B+-tree index I be b. Every node of I then has
[� b−1

2 �, b − 1] keys, and every internal node of I has [� b
2�, b] children. We fix the

size of a tree node as 2b + 1. Since the column size of the index matrix ID is
fixed to m, the ideal case would be m = 2b + 1, one column for one tree node.
We assume the ideal case in this paper and discuss the case of multiple columns
representing one tree node in our technical report [23].

We assign each tree node an integer column address denoting its beginning
column in ID according to the order it is inserted in ID. Similarly, we assign



A Comprehensive Framework for Secure Query Processing in the Cloud 59

every tuple column of TD an integer column address according to the order its
tuples are added into TD. These column addresses serve as pointers to the tree
nodes.

We represent a tree node of I, node, or the corresponding consecutive columns
in ID, ID:,g as (isLeaf, col0, col1, key1, col2, key2, ..., colb−1, keyb−1, colb), where
isLeaf indicates if the node is a leaf node. keyi is an index key, or 0 if node
has less than i keys. For an internal node, col0 = 0, coli (1 ≤ i ≤ b) is the
beginning column address of the ith child node of node if keyi−1 exists, otherwise
coli = 0. For a leaf node, col0 and colb are the beginning column addresses of
the predecessor/successor leaf nodes respectively, and coli(1 ≤ i ≤ b − 1) is the
column address of the tuple with keyi.

Fig. 2. Employee Table Fig. 3. Index Matrix of Employee Table

Given an example Employee table shown in Fig. 2, Fig. 3 gives an index (the
upper part) built on Perm No and the corresponding index matrix ID (the
lower part). In the figure, the branching factor b = 4, and the column size of ID,
m = 9. Keys are inserted into the tree in ascending order. The numbers shown
on top of the tree nodes are the column addresses of these nodes. The numbers
pointed to by arrows below the keys of the leaf nodes are the column addresses
of the tuples with those keys. For the root node ID:,2, isLeaf = 0, col0 = 0,
col1 = 1 is the column address of its leftmost child, key1 = 10003, col2 = 3 is
the column address of its middle child, key2 = 10005, col3 = 4 is the column
address of its rightmost child, key3 = 0 and col4 = 0 for no third key. For the
leaf node ID:,1, isLeaf = 1, col0 = 0 for no predecessor, col1 = 1 is the column
address of the tuple with key = 10001, col2 = 1 is the column address of the
tuple with key = 10002, col3 = 0 and key3 = 0 for no third key, and col4 = 3 is
the column address of the successor ID:,3.

5.3 Organization of Data Tuples

To disperse data tuples on the same set of servers as the index keys, the column
size of the tuple matrix TD is also set to m. Initially, to organize the existing
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d-dimensional tuples of D in TD, we sort these tuples in ascending order of their
keys, and pack every p tuples in a column of TD such that p ·d ≤ m−k and (p+
1)·d > m−k, where k is the size of a secure checksum. The checksum is calculated
by applying the Message Authentication Code (MAC) [24] on the attribute values
of all p tuples, so as to verify the integrity of these tuples returned by servers.

After initialization, a new tuple t is inserted in the last column of TD if the
column can accommodate t, or inserted into a new column at the end of TD.
Tuples are not stored in the order of their index keys as in the initialization.
This approach speeds up tuple insertion. A deleted tuple is removed from the
corresponding column by leaving the d entries it occupied previously empty (the
corresponding encoded entries are not empty, but are filled with salt).

5.4 Secure Column Access via Proxies

In our framework, a client directs query processing, while the servers store or
retrieve columns on the index matrix ID and the tuple matrix TD based on the
client’s decisions. Both data updates and the initial data uploading need to store
columns. Read-only queries only need to retrieve columns. To store a column of
ID (or TD), ID:,i (or TD:,i), the client adds salts into the data entries in the
column, encodes the column using Equation (3), and disperses it onto n servers.
To retrieve ID:,i (or TD:,i), the client retrieves m pieces from m non-faulty
servers, decodes the assembled column using Equation (2), and deducts salt.
The m requests are sent in parallel.

By monitoring these column accesses, attackers cannot precisely determine
the content of a query or the plaintext data involved. However, attackers could
learn the initiator client’s identity through social engineering attacks, and then
infer the client’s query and the data accessed in the query. To hide query initia-
tors from attackers, we route column access requests and responses for different
clients through a trusted proxy, so that attackers cannot even distinguish between
different queries sent from different clients. Multiple proxies can be used for load
balancing and fault tolerance. A client can switch to another proxy whenever
needed. We call this scheme column-access-via-proxy. Its security guarantee is
analyzed in Section 7.1.

6 Query Processing

Our framework supports exact, range queries, as well as updates, inserts and
deletes. These common queries form the basis for general purpose relational
data processing.

Exact Query. To find the tuple t for a given index key x, the client traverses
the index downwards from the root. This traversal is similar to the traversal on a
traditional B+-tree index, except that retrieving each tree node requires retriev-
ing the corresponding index matrix column. At the end of the index traversal,
if the client finds x in a leaf node, the client follows the tuple matrix column
address associated with x to locate t, which also needs retrieving the column
where t is stored.
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Range Query. To find the tuples whose keys fall in a given range [xl, xr], the
client locates all qualified keys in the leaf nodes of the index, gets the addresses
of the tuple matrix columns associated with these keys, and then retrieves the
answer tuples from these tuple matrix columns. The qualified index keys are
located by performing an exact query on either xl or xr, and then following the
successor or predecessor links at the leaf level. Note that the answer tuples cannot
be retrieved directly from the tuple matrix columns in between the tuple matrix
columns corresponding to xl and xr, since tuples can be dynamically inserted
and deleted, and the tuple matrix columns may not be ordered by index keys.
After finding the qualified index keys and the associated tuple matrix column
addresses, the qualified tuple matrix columns can be retrieved in batch.

Tuple Update. Update to a tuple without changing its index key can be done
by performing an exact query on the key to get the target tuple column and
then storing the updated tuple column.

Insertion and Deletion. Data insertion is done in two steps: tuple insertion
and index key insertion. The corresponding columns in the tuple matrix TD and
in the index matrix ID need to be updated by re-storing these columns. Data
deletion follows a similar process, with the exception that the tuple to be deleted
is first located based on the tuple’s key. The order that a TD column is updated
before the ID column is important, since the column address of the TD column
is the link between the two and needs to be recorded in the ID column. Index
key insertion and deletion are always done on the leaf nodes, but node splits
or merges may be needed to maintain the B+-tree structure. The overhead in
these cases is still small, since the number of nodes (columns) to be updated is
bounded by the height of B+-tree, logbN .

Boosting Performance and Improving Data Confidentiality at Ac-
cesses by Caching Index Nodes on Client. The above query processing
relies heavily on index traversals, which means that the index nodes are fre-
quently retrieved from servers and then decoded on the client, resulting in a lot
of communication and computation overhead. Query performance can be im-
proved by caching some of the most frequently accessed index nodes in clear on
the client. Top level nodes in the index are more likely to be cached. We assume
that the root node of the index is always cached. Caching the index could also
confuse attackers’ inferences that infer the index structure and the data based
on the order of requests, thus help improving data confidentiality during data
accesses.

7 Security Analysis

In loaded cloud environment with the use of proxies between clients and servers
and client side index caches, we ensure data confidentiality against polynomial size
circuits bounded attackers, even when all servers are monitored by attackers. We
ensure data integrity and availability when no more than n−m servers are faulty.
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7.1 On Data Confidentiality

We rely on the definition of data indistinguishability [10,25] to prove the con-
fidentiality of “salted” IDA encoding. Data indistinguishability means that the
encryption of any two database tables with the same schema and the same num-
ber of tuples should be computationally indistinguishable for any polynomial size
circuit. It is a strong security guarantee in that it invalidates statistical analy-
sis on encoded data. The original IDA scheme [12] does not have such security
guarantees, e.g. equal plaintext columns would be encoded into equal ciphertext
columns, and constructing m × m correct correspondences between plaintext
and ciphertext data could reveal the secret key C. We show in the following that
salted IDA achieves data indistinguishability.

Theorem 1. If the random numbers generated by a pseudorandom number gen-
erator (PRNG) are indistinguishable from truly random numbers, ∀ two m × w
data matrices D, D′ in GF (232), their encryption under the salted IDA scheme
are computationally indistinguishable.

Proof. Given that the random numbers generated by PRNG are drawn uniformly
from GF (232), each column of a matrix D:,i will be added with a salt value which
is uniformly distributed in [1, 232], thus the number of possible choices of salts
for each column is 232. For w columns, the total number of possible choices of
salts is 232w. Since w > N/(b − 1), 232w > 232N/(b−1), which is exponential in
N . For a typical database index with b = 50, N = 106, 232N/(b−1) > 2653061.
Given such a large choice space of salts and that after adding salt to D and D′,
the data will be encoded and mixed together by applying an unknown secret
matrix C, the ciphertext matrices E, E′ obtained by salted IDA encoding are
computationally indistinguishable. ��
Since the rows of E, E′ are distributed onto n servers, two rows Ei,:, E

′
i,: are also

computationally indistinguishable. Similarly due to the large choice space of salt,
C is unbreakable on polynomial size circuits. However, ensuring the security of
the salted IDA encoding scheme itself does not ensure data confidentiality. For
example, a target data table may still be located due to its unique size. Then
attackers could monitor data accesses on its index matrix and infer the keys based
on user accessed positions and known index key distribution. We therefore define
confidentiality as follows.

Definition 1. A secure relational data processing framework ensures data con-
fidentiality if it satisfies the following conditions: (1) Two encrypted data sets
are computationally indistinguishable; (2) By observing index accesses on the en-
crypted data, finding out the correct correspondences between the plaintext data
and the encrypted data only has negligible advantage over random guesses with
prior knowledge on polynomial size circuits.

Theorem 1 shows that our framework satisfies condition (1). We next show that it
satisfies condition (2). Because query processing in our framework is performed
through column-access-via-proxy operations, and the cloud is typically loaded
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with many queries from many clients, a client’s data access pattern is obfuscated
among multiple clients, and a query’s data access pattern is obfuscated among
multiple queries.

Lemma 1. In loaded environment with index cache enabled on the client, the
best that attackers can gain under the column-access-via-proxy scheme is to iden-
tify the columns that represent leaf nodes of the index.

Proof. In loaded environment with index cache enabled on the client, all the
attackers observe on the index are single and batch column accesses. The exact
structure of the index are not known to the attackers. To them, single column
accesses could correspond to either internal nodes or leaf nodes in processing
exact or range queries, while batched column accesses could only correspond to
leaf nodes in processing range queries. In the long term, attackers may be able
to identify a large number of leaf nodes and sort some of them in the natural
order of key values, but they are unlikely to get the total order of all the leaf
nodes. ��
Based on Lemma 1, we show our framework satisfies condition (2) of Definition 1.

Lemma 2. Finding the correct correspondences between plaintext keys and en-
coded leaf nodes only has negligible advantage over random guesses on polynomial
size circuits.

Proof. Assume the exact plaintext key values and the exact order of all the leaf
nodes are known. Consider the possible ways of distributing N ordered key values
into w ordered leaf nodes with the constraint that each node holds [ b−1

2 , b − 1]
keys. After nodei holds b−1

2 keys, the next [ b−1
2 , b−1] keys can only be distributed

between nodei and nodei+1, yielding
( b−1

2 +1
1

)
= b+1

2 choices. As there are (w−1)
pairs of preceding and succeeding nodes in total, the total number of choices is
( b+1

2 )
w−1

. Since w > N/(b−1), ( b+1
2 )

w−1
> ( b+1

2 )
N/(b−1)−1

, which is exponential

in N . For a typical database index of b = 50, N = 106, ( b+1
2 )

N/(b−1)−1
> 227957.

Given such a large choice space, finding the correct correspondences between
plaintext key values and encoded leaf nodes only has negligible advantage over
random guesses. ��
Since our framework satisfies Definition 1, we claim the following.

Theorem 2. The proposed secure relational data processing framework ensures
data confidentiality.

Note that the loaded environment that we assume in the above is typical in
the cloud. We do not deal with under-loaded scenarios for now, but we suggest
requesting redundant columns in a k-anonymous [26] fashion in each request to
provide practical data confidentiality at accesses in under-loaded scenarios.
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7.2 On Data Integrity and Availability

We check integrity violations on the index structure using the relationships of
sorted key values and the relationships of nodes in the index, and check integrity
violations on data values using the checksums. We rely on IDA to provide data
availability when no more than n − m servers are faulty. More details on data
integrity and availability can be found in our technical report [23].

8 Experimental Evaluation

Our evaluation focuses on the following: (1) the efficiency of our framework for
processing different types of queries; (2) the overhead introduced by security
when compared with the baseline query processing with no security provided,
and with the basic encrypted index approach [6] of insufficient data confiden-
tiality and no data availability; (3) the overhead breakdown in terms of client
processing time, server processing time and network latency as well as the com-
munication sizes for index and tuples; (4) the effects of data size, query selectivity
and index caching on query performance.

8.1 Implementation and Setup

Implementation. We implemented the baseline approach, denoted as baseline,
the basic encrypted index approach [6], denoted as encr, and our approach,
denoted as sida, in C++. For baseline, all the query processing is done on the
server and a plaintext B+-tree index is used. For encr, a B+-tree index is stored
on the server, with each node encrypted using 3DES. We used Crypto++ Library
5.6.0 [27] for implementing IDA and MAC (Message Authentication Code) in
sida and for implementing 3DES in encr. We simulated servers in the cloud
by using exactly the same number of local files, and simulated network latency
by dividing the communication sizes with the average internet download speed
(5.1Mbps) and upload speed (1.1Mbps) in a wide area network [28]. To account
for the overhead of proxy in sida, we doubled the calculated network latency.
We implemented the client side index cache for all three approaches for fairness
of performance comparison. Given a client desired cache hit rate, we cached the
most frequently accessed index nodes based on the query workload.

Data Set. We extracted 5 attributes, I ID, I A ID, I RELATED1, I STOCK
and I PAGE from the Item table of TPC-W Benchmark [29] to form the test
data table and built an index on the primary key I ID. We used a TPC-W data
generating tool to generate different sizes of tuple sets.

Setup. We fixed the branching factor of B+-tree index b = 50. We used m =
13, n = 21 servers for sida, and only one server for baseline and encr respectively.
Our experimental parameters are summarized in Table 2. For each combination
of parameters, we generated 1000 exact queries, range queries, data updates and
inserts respectively. A query key was generated by randomly picking a value
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from the domain of I ID based on Zipf distribution with the specified query
skew (default skew=1). For a range query, we used this generated query key as
the pivot value, and picked a fixed size query range (query range/selectivity in
Table 2) around the pivot value. For an update or insert, the new values of the
tuple were generated using the TPC-W tool. The reported results were averaged
over 1000 queries of the same type. Experiments were run on Linux servers with
Intel 2.40GHz CPU, 3GB memory and Fedora Core 8 OS.

Table 2. Experimental Parameters

Parameter Domain Default

Number of Tuples N 10K, 100K, 1M, 10M 1M

Query Range/Selectivity 100, 500, 1000, 2000 500

Index Cache Hit Rate for Client 0.0, 0.4, 0.8, 1.0 0.8

8.2 Experimental Results

General Overhead Comparison. To understand the security overhead due
to sida, we first evaluate the efficiency of sida for processing different types
of queries. We varied the number of tuples N from 10K to 10M as shown on
the x-axis while fixing other parameters as default. These figures show that
having security schemes in sida do not dramatically degrade query performance
as compared to baseline with no security schemes at all. Take 10M tuples as an
example, from Figs. 4(a) and 5(a), we can see that the total processing time of
sida (shown as the middle bar) for an exact query is 0.86ms vs. 0.28 ms of that
of baseline (shown as the left bar), and the total processing time of sida for a
range query is 167ms vs. 20ms of that of baseline. The communication size of sida
for an exact query is around 0.5KB vs. 0.023KB of that of baseline, as shown in
Fig. 4(b), and the communication size of sida for a range query is 78KB vs. 9.8KB
of that of baseline, as shown in Fig. 5(b). In many cases, sida even outperforms
encr which has weaker security guarantees. Although sida sometimes transmits
more data than encr because sida packs tuples into tuple matrix columns and
uses checksums, as shown in Fig. 5(b), the data communication of sida happens
between the client and multiple servers in parallel, so sida incurs smaller network
latency. The comparison result of total processing time on data inserts is similar,
so we do not show it here and specifically study its client processing time below.
These results suggest that our approach is a practical security solution.

Overhead Breakdown. By breaking down the processing time in Figs. 4(a)
and 5(a), we find that client processing dominates query processing in sida and
encr, which is because the client directs query processing and perform all the
decoding. For exact queries in which index traversal is the dominant factor, index
communication dominates tuple communication, as shown in Fig. 4(b). However
for range queries in which tuple processing takes more work than index traversal,
tuple communication dominates index communication, as shown in Fig. 5(b).
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Fig. 5. Effects of Varying Number of Tuples N on Range Queries

Varying Number of Tuples. We then study the effects of increasing the num-
ber of tuples N on query performance. Fig. 4 shows that the processing time
and communication sizes for exact queries increase steadily with larger values
of N . For data inserts shown in Fig. 6, the client processing time and the data
communication sizes increase slowly. The results for data updates are similar to
those of data inserts, and thus are omitted due to space limit. However for range
queries shown in Fig. 5, these overheads almost do not change. This is because
the range query size is fixed, and the major part of processing for a range query
is to process the tuples in the requested range, the sum of which could be much
larger than the number of traversed index nodes. In general, our approach scales
well with the increasing number of tuples.

Varying Query Range/Selectivity. We then study the effects of range query
size/query selectivity on query performance. We varied the range query size from
100 to 2000 while fixing other parameters as default. As a result, the answer
size for the range query would increase. Fig. 7 shows that the client processing
time and data communication size in sida and encr increase more dramatically
than those of baseline. This is because sida and encr must decode the encoded
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Fig. 8. Varying Cache Hit Rate on Exact Queries

candidate answers sent from servers, so they are more sensitive to the change of
the query answer size.

Varying Cache Hit Rate. We next study the effects of caching index on the
client for reducing the costs for retrieving and decoding index nodes. We changed
the desired cache hit rate from 0.0 (no caching) to 1.0 (caching all the index
nodes). Fig. 8 indicates that caching improves the performance for processing
exact queries.

We have also studied the effects of query skew in reducing the index cache
size and the effects of the number of servers on query processing time. We found
that the size of index cache needed for 80% cache hit rate is small enough to
reside in the client memory, and our framework scales well with the increasing
number of servers. These results can be found in our technical report [23].
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9 Conclusion

To solve the security concern for widespread use of relational data management
in the cloud, this paper has proposed a comprehensive framework for practical
secure query processing on relational data in the cloud. Our work is distinguished
from previous works in that data confidentiality is ensured in both storage and
at access time, and different queries and data updates are supported. Data con-
fidentiality in storage is ensured using the “salted” IDA scheme to encode and
disperse the data. Data confidentiality in query accesses is ensured by only allow-
ing proxied single operations called column-access-via-proxy between clients and
servers. To support efficient query processing, a B+-tree index is built on fre-
quently queried key attributes. Both the index and the data table are organized
into matrices, encoded and dispersed using salted IDA. Moreover, data availabil-
ity is provided using IDA, and data integrity is provided using checksum and
the index structure. A security analysis and an experimental evaluation indicate
our framework achieves a practical trade-off between security and performance.
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Abstract. Cloud computing is a concept that has received significant
attention lately. With advances in virtualization, coupled with the de-
mand for services, many initiatives are underway in the environment of
cloud computing. At this point, most of the services in cloud Comput-
ing are broadly in the paradigm of computing and storage, and in the
traditional Client Server mode. With the recent explosion of wireless
sensor networks and their applicability in civilian and military applica-
tions, there is an emerging vision for integrating sensor networks into the
cloud. Practical systems like Microsoft’s SensorMap and Asia Pacific En-
vironmental Sensor Grid are attestations to the enormous potential for
sensor networks to be integrated into the cloud. In this framework users
need not own sensor networks. Sensor Network owners after a mission
need not disband the networks. There is a symbiotic relationship wherein
sensor network owners can provide a variety of services to customers for
profit. Customers also benefit from a variety of remote services without
being physically close to the environment of interest. However, despite
the benefits of sensor-clouds, security issues are largely open. A variety
of new threats and attacks are possible, and existing solutions in stan-
dalone sensor networks will not be applicable in the cloud. The vision of
this article is to introduce the sensor-cloud computing and overview the
research challenges from the security perspective.

1 Introduction

Sensor networks are already making impacts to several military and civilian
applications, it is natural to believe that end users should also benefit from
these services more or less. However, the uses of sensor network is only limited
to a small groups of users due to the lack of efficient maintenance cost, elasticity,
and the simple deployment (simplicity). With the new computing paradigm of
cloud computing adopted in the market. We can then foresee the future demands
on sensor based services remotely via the cloud. This demand gives rise to the
sensor-cloud computing service which opens the new opportunity of utilizing
the on-demand sensing operations and paves ways toward an Internet of things
where clients consume a mixture of services from virtual and physical objects.

Sensor-cloud computing is a heterogeneous computing environment in which
there are potentially ten of thousands of deployed sensors geographically spread
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apart. The sensor-cloud provisions the use of physical sensors through the virtu-
alization of sensing services. The virtualization significantly expands the bound-
ary of service capability to facilitate a variety of missions [31,13,18].

Sensor-cloud is particularly attractive as it can change the computation
paradigm ofwireless sensor networks. As reported in [1], sensor-clouds have various
applications including environment monitoring, enterprise computing, scientific
simulation, and social networking. For example, hundreds of sensors collaborate
towardMicrosoft’s SensorMapproject (http://atom.research.microsoft.com/sen-
sormap),which target a new class of applications forming a large-scale environmen-
tal observations by collecting various kinds of data into a central data repository
in a continuous, pervasive, and real-time manner. The Asia-Pacific Environmental
Sensor Grid (APESG) effort is an initiative that aims to encourage development of
technologies for disaster/emergency detection, mitigation, response, and recovery
in the Asia-Pacific region, by collecting data from environmental sensors deployed
in the participating APEC countries to form a sensor-rich infrastructure.

Sensor-cloud computing surpasses traditional wireless sensor networks in many
aspects. In sensor-cloud computing network, users do not need to own sensors.
They can simply rent the sensing services. This significantly reduces the cost of
ownership enabling the usage large scale sensor networks become affordable. One
physical sensor can be projected as multiple virtual sensors and vise versa. The
nature of sensor-cloud enables resource sharing and allows virtual sensors scale
up or down as needed. Also, the sensor-cloud abstracts different platforms of the
physical devices hence giving the impression of a homogeneous network, greatly
benefiting users and enhancing satisfaction. Finally, a variety of multi-sensing
activities for multiple missions can be simultaneously performed via the cloud
greatly enhancing the usability of the devices and networks.

Despite the benefits of the sensor-cloud computing, emerging influences of
sensor-cloud could be hindered by various security threats. Hence, the realiza-
tion of risk in sensor-cloud network will give an early precaution for sensor net-
work application developers to be aware of when joining the sensor network as
a service on cloud. The security awareness can lend itself toward the design and
integration of security for ensuring trusted computing of the emerging technol-
ogy. This article identifies newer threats and attacks when sensor networks are
integrated with the cloud and propose a spectrum of potential research topics
which hold the key solutions to the development of secure sensor-cloud service.
The remaining sections are organized as the follow. Section 2 gives an overview
of the sensor-cloud service environment. Section 3 identify the new challenges
in the delivery of trusted service in sensor-cloud environment from three di-
mensions namely, secured pre-deployment, secured pre-processing, and secured
runtime. For each dimension, we formalize the problem and discuss the spectrum
of potential research solutions. Finally, section 5 concludes the approach.

2 An Overview of Sensor-Cloud Service

Sensor-cloud computing is a heterogeneous system combining multiple sensor
networks with dedicated purpose for data processing. The sensor-cloud
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Fig. 1. A Simplified Sensor-Cloud Architecture

provisions the use of physical sensor through the virtualization of sensing ser-
vices. The virtualization significantly expands the boundary of service capability
to facilitate ad hoc missions.

We envision the sensor-cloud network as a heterogeneous computing envi-
ronment in which there are potentially millions of deployed sensors. A group
of sensors is operated by individual organizations/owners. The owners join the
cloud and provide sensor-as-a-service. The sensor network may continue sens-
ing a steady stream of information or passively reports the observation when
certain conditions are met. In either case, the data are relayed through a gate-
way and middleware layer network, where sensing data is eventually consumed
by clients through the sensor-cloud infrastructure. Figure 1 shows the simpli-
fied architecture of the sensor-cloud. The Client-centric layer is responsible for
providing service gateway for the users to the working sessions and virtual sen-
sors. The layer provides user interface to facilitate users in forming their virtual
networks, assembling the workflow, monitoring and collecting data from the vir-
tual sensor network. The middleware administrates service negotiation, virtual
sensor network fabrication, service life-cycle, and billing management. Finally,
the sensor-centric layer provides the Data-link layer like functions to provision
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Fig. 2. Virtualization in Sensor-Cloud

the inter connectivity between virtual sensors and the physical sensors. Thus it
becomes a gateway communication between virtual sensor and physical sensors
(the third party). We envision the virtual sensor as an image of an application
which interacts with the users and represent to the user as a custom sensor for a
specific mission. The virtual sensors act as a Software as a Service (SaaS) which
is responsible for processing the data sensed by the physical sensor. The function
of the virtual sensor is to pass the user’s specifications to physical sensors and
fuse sensing data collected from different sensors and deliver back to the user. In
this environment, the user is projected with an illusion that the instance given
to him/her is the physical sensor which does the sensing. Below SaaS lies the
Platform as a Service (PaaS) providing the computing, networking, and reposi-
tory environments for SaaS. Finally, Infrastructure as a Service (IaaS) provides
the gateway between virtual and physical sensor as depicted in Figure 2. Vir-
tualization can be done in many ways. One-on-one virtualization is when one
physical sensor is mapped to one virtual sensor. When multiple physical sensors
are mapped to one virtual instance, its referred to as many-to-one. It is also
possible for multiple users share the same physical sensors, but through their
own instance allocated to them by the middleware. The virtualization projects
to the user that they are the sole user of that corresponding physical sensor
as well as the abstraction that the user is interacting with the physical sensors
directly. The commands issued by the user are passed on to the physical sensors
by the middleware. The group which the user creates is visible to him and the
administrator who handles the application.

3 Emerging Topics in Securing the Sensor-Cloud Services

Despite the benefits of the sensor-cloud computing, emerging influences of sensor-
cloud could be hindered by various security threats. Sensor nodes are susceptible
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to attacks including node capturing and compromising. Wireless communications
can be eavesdropped, captured, or tampered. Most security best-practices can-
not be used in WSNs due to the limitation in communication and computation
capability. The infrastructure of the sensor-cloud can be misused by malicious
users. Malicious user may reveal the physical sensors or physical sensor may
reveal the user, which are very undesirable. This implies that the security of
sensor-cloud computing is indispensable as the characteristics of this network
make it easy for one to abuse, jeopardizing the benefits that could be brought to
the society. We now propose emerging research topics in order to ensure security
services to the sensor-cloud. In this section, we identify newer threats and attacks
from three dimensions: Secure Pre-Deployment, Secure Pre-Processing, and Se-
cure Run-time. For each dimension, we discuss a spectrum of potential solutions
integrating concepts from Attack Graphs, Policy Management, Anonymization,
Statistical Estimation and Topology aware key management.

3.1 Dimension 1: Secure Preprocessing

The security of the sensor-cloud operations is very important as user interacts
with the network/applications directly. Unfortunately, adhering to the security
standards does not always guarantee the security on operations which is unique
to the sensor-cloud. In this regard, the sensor-cloud allows users to pass the
commands to the sensors range from the entire code transfer, script functions, to
a seemingly unharmed command argument. If the software does not sufficiently
limit which codes or arguments allowing to be passed to a component, it will
allow malicious code to be executed leading to potentially security violation.
Besides, physical sensor networks can also be seen as countless sources of external
risk to the sensor-cloud. In this regard, we need to realize the magnitude in which
the cross-layer dependencies influence this kind of risk. In particular, we should
study the feasibility of attack to the system from bottom up including how fast
and how much does it cost for one compromised state to spread to other.

Related Works. Threat modeling and risk analysis are fundamental to secu-
rity. Commercial and noncommercial risk analysis tools like SAINT, Nessus, and
Snort rely heavily on the list of vulnerabilities. When evaluating security of a
network, it is not enough to simply consider the presence or absence of vulner-
abilities in isolation. Hence, it cannot correlate local vulnerabilities to depict
global vulnerabilities introduced by interconnections between hosts.

In this regard, Attack graph model [30,7,8] has gained more acceptance as
it can analyze the threats from both attacker and defender perspectives. This
proposal uses attack graph base risk analysis as a key concept for secure pre-
deployment.

Emerging Research. Our current research [8,24] have identified that attack
graph analysis can help discovering and defining basic system properties that
compose system security and other useful attributes; properties that can be ver-
ified and validated through theoretical proof and/or experiment. This approach
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can help system administrator examines the universe of possible consequences
following a successful attack.

Using attack graph benefits three folds; the attack graph based risk assessment
model reveals the causal dependencies between vulnerabilities and sensor-cloud
system properties. Knowing ways in which the sensor-cloud system can be com-
promised allows the system administrator to be aware of attack surface at the
service interface including the risks from external sources. Second, it can help
understanding whether the system should be enforced with security policies in
what specific component or across components to effectively increase security
of the entire system. Third, a given model is formalized as a logical model to
realize the relations among the system, security policies, attacks and defensive
measures. Finally, the model is rich enough to allow one to measure the risk.
Hence, it is an interesting research topic in applying attack graph along with at-
tack surface measurement to formally define metrics for basic system properties
and system ability to enforce security policies and defend against known classes
of attacks.

3.2 Dimension 2: Secure Processing

Sensor-cloud has objective, asset, and mission to protect. It should have the
capability to maintain desired level of security under real world threats. Hence,
security administrator needs to ensure that the sensor-cloud has all necessary
security controls deployed. In this regards, we have found Identity and Access
Management and Information Privacy challenging.

Identity and Access Management. To meet the challenge of distributed
sensor-cloud architecture and provisioning toward Business-to-Business collabo-
ration, sensor network owners will eventually extend their local services to ex-
ternal users allowing connectivity to internal users, and sensor-cloud customers.
Providing an efficient and seamless data/service outsourcing requires building of
trusted service that enables “entities” (include sensor owners and sensor-cloud
providers) to securely share their user’s identity information and enforces usage
restrictions to protect sensitive information. Such service needs to be formed
quickly and efficiently to maximize the service productivity and eliminate the
need of redundant/successive authentications when the transaction is formed
across the organizations. Identity and Access Management refers to such a tech-
nology.

Related Works. Several works [20,2,25] have been proposed to address issues
in the identity and access management. Among these works, we outline some
outstanding products: SAML, Microsoft Forefront Identity Manager, Shibboleth,
and OpenID. Security Assertion Markup Language (SAML) [28] is n XML-based
standard for exchanging authentication and authorization data between identity
provider (IdP) and service providers (SP). Although technology leaders such as
Google, Safesforce.com, and Amazon support the SAML protocol only about
5% of the SPs in cloud-computing market appear to support SAML [21]. In Mi-
crosoft Forefront Identity Manager 2010 (FIM’10) [29], user’s identity is stored
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in the form of state-based identity, the multi-attributes metadata. These meta-
data (claims) act as a security token of a particular user. As opposed to FIM’10,
Shibboleth [4] is aiming for decentralized identity management. Each user has a
home IdP where SPs can query the profile attributes. The use of Shibboleth is
shared among academic institutes. OpenID [25] is a decentralized authentication
protocol that helps cloud users managing their multiple digital identities over
the sharing of credential information. Given an OpenID, SP queries the IdP from
which the OpenID is issued. The major criticism on Shibboleth and OpenID is
that they rely on user’s judgment on how much information to reveal. Hence,
they have been questioned in terms of security and privacy concerns.

Emerging Research. Traditional Federate Identity Services rely heavily on
trusted third party. Therefore it is most interested to discover the Identity and
Access Management w/o trusted third party. Let’s user credential information
are described with a set of n attributes

∑
, Φn be the class of predicates used to

authorize the request. The problem can be realized as a Hidden-vector encryption
[5] corresponding to a predicate encryption scheme for the class of predicates

Φn = { φ(a1,...,an) | (a1,...,an) ∈ ∑ },
where

φ(a1,...,an) (x1,...,xn) =
{

1 , if, for all i, either ai = xi or ai = don′t care
0 , otherwise

The theoretical proof of the above equation in regarding to its existence was given
in [14]. What was missing from Hidden-vector encryption is the realization on
a specific application of identity management. Hence, it is interested for one to
focus the research in this direction.

The advantage of this research comes in three folds; first, organizations man-
age their own policies so that the change of access policy can be done quickly
and confidentially. Second, organization can use different criteria implementing
the access policy. Beside, the change of the scheme or decision criteria does not
require an organization to notify the entire community. Thus, we can provide
more effective and secure approach for one to express and restrict access in
sensor-cloud computing.

Data Privacy. Data privacy is one of the vital concerns in cloud resource
sharing. We know from the past that the advent of data mining technique created
a capability for data about individuals to be collected and combined from a
wide variety of sources very easily. Therefore the privacy breaches in sensor-
cloud service can be difficult to detect as the cloud is provisioned for on-demand
services. This implies not only ineffective defenses but also undue cost and wasted
resources. In particular, there is a concern that a virtual sensor network can be
abused to gather sensitive information or breaching information privacy. This
kind of risk is known as function creep [26]. The function creep occurs when
an item, process, or procedure designed for one specific purpose end up serving
another purpose. The function creep in sensor-cloud network is more difficult to
prevent.

In addition to the data privacy, we also found that there is a potential for
an attacker to breach the meta-data in revealing the identity of wireless sensor
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network. This problem is similar to Yao’s Millionaires’ problem in that attackers
may take advantage on the service negotiation to reveal the secrets or ownership
of the physical sensor networks. In fact, sensors are different in various aspects of
device specifications. Taking TelosB and Mica2 sensors for example, we shall see
that they are significantly different in memory size, current draw, transmission
frequency, and bandwidth. Hence, it is possible for one to craft the sensing
operation/mission in such a way that only one specific sensor can operate on it.

Note that we are fully aware that the success chance or severity is highly
depended on the level of the prior knowledge of attackers. However, this attack
can not be underestimated. The challenge to the problem is how we can balance
between the anonymity and the service availability so as to yields the optimal
benefit to the sensor-cloud operations.

Related Works. To tackle the privacy attack, data anonymizer techniques like
k-anonymity and l-diversity [27,19] appear to be a viable tool. k-anonymity is
a property that guarantees to protect the linkage and identification of the data
set.

To achieve k-anonymity, several data anonymizer techniques [11,15,3] has
been proposed. These approaches base their assumption on single-table data set.
Hence, single dimensional k-anonymity approaches are not sufficient for sensor-
cloud service as multi relational data set dominates the cloud. In this regard, sev-
eral multi dimensional k-anonymity techniques are proposed by [9,22,16]. They
have shown that Multi relational k-anonymity can be reached although it may
not optimal. We are interested to analyze these techniques for the in-transit and
at-rest sensor-cloud data set.

One major drawback of k-anonymity is that it does not ensure diversity of
sensitive attributes. Hence, it allows adversary to implicitly leak out sensitive
information without the need for identifying the identity. Hence, we should con-
sider l-diversity [19] and T-Closeness [17] as an extension of k-anonymity. In
particular, sensor-cloud providers should be aware of protentially leaking infor-
mation through sensitive fields in addition to quasi-identifier fields.

Emerging Research. In sensor-cloud computing, the service catalog and sensor
specification are two data sources which are likely to be exploited and, hence,
they need to meet k-anonymity property. From k-anonymity’s perspective (l-
diversity is an extension of k-anonymity on sensitive attributes), the problem is
formalized as follow.

Definition 1. Multirelational Data Set
Let’s C be the service catalog and S be the standardization table maintaining
device specifications of participated sensor networks1. The functional relation
T(A1, A2, ..., An) = C �� S be the natural join of C and S. T describes the uni-
verse of system specification and capabilities used by the sensor-cloud in deter-
mining if it is capable to provide service as requested by the user. T satisfies

1 Service catalog is a public table while the standardization is a private table.
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multi relation schema as S uniquely identifies the existence of the physical sen-
sor network.

Definition 2. k-anonymity of the sensor-cloud data
Let’s QT be the quasi-identifier of T, representing a set of attributes { Ai, ..., Aj

} ⊆ { A1, A2, ..., An } which could be used for linking with external information
to uniquely identify a data entry ti ∈ T. T is said to satisfy k-anonymity if and
only if there are at least k occurrences in the projection of T with respect to QT
(T[QT ]).

Continue along this direction, we need to identify the quasi-identifier and sen-
sitive attributes. In addition, we also need to find out the attributes domain
of the requirement properties used to describe the sensing operation/mission in
the service negotiation as these attributes can be used as a tool for an attacker
to breach the data privacy. Next, we need to analyze various data anonymity
techniques so as to discover applicable data prevention approach to be applied to
the data repository. These summarize the research challenges in this direction.

3.3 Dimension 3: Secure Runtime

To secure the runtime service, we envisage the importance of the research re-
garding to, at the minimum, trusted data aggregation and key management.

Trusted Data Aggregation. Once a wireless sensor is physically compromised
by an adversary, trust and reputation based data aggregation techniques have
been proposed to address it. Most trust models assume firm network connectiv-
ity, where each sensor monitors the behavior of its neighbors. Such an assumption
is prohibitive in a sensor-cloud environment. Sensor-cloud is a network of net-
works, and sensors provisioned for a specific application may be spread across
a number of networks. This topology presents three challenges in trusted data
aggregation: a) individual sensor network owner may not allow sensors from a
different network to monitor its sensors. b) sensors may be located far away from
each other and may have no means of directly monitoring their virtual neigh-
bors. c) an individual sensor network may be compromised on the whole, which
will render the “monitor your neighbor” approach useless.

Related Works. Only a few researched have addressed the problem of trusted
data aggregation on virtual network environment. An agent based trust model
is discussed by Boukerche et. al [6], where a mobile agent is used to calculate
trust on every entity. The mobile agent is supposed to be tamper proof, secure
and trusted. However, it is difficult to guarantee these assumptions amidst com-
promised nodes. Probst et. al [23] propose an approach where nodes evaluate
other nodes by comparing their own data with others data. Trust is established
based upon how closely the data matches. The scheme though is only designed
for faulty sensors and does not take into account, compromised sensor. In [32] a
probability distribution function of a group of nodes is generated by the aggrega-
tor and sensors data is compared against this distribution statistically. Sensors
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which follow the distribution are tagged trustworthy while others who dont are
not. While this approach works well when a single node is compromised, an
adversary which compromises many nodes together can circumvent this scheme.

Emerging Research. From our perspective, remote monitoring and the trusted
core are on top of the interested topics. In remote monitoring, sensors are clus-
tered into correlated groups base upon the correlation of the sensed data, the
geo-spatial of data entities. From the view of the trust observer, groups are
formed again and again at every end of the iteration. A node is trustworthy if
it remains in the same group after iteration n as it was after iteration n − 1. A
node changing his group signals deviation from normal behavior. In regarding to
remote monitoring approach, we can outline two important challenges, namely,
the Correlation estimation and Trusted core.

Correlation Estimation. A research problem is how to find out the correlation
between data coming from various sensors. The correlation estimation can be
formalized as follow. The aggregator collects data from its children and maintains
a vector of past data of each of its child. Let the data sensed by a node i at time
tj is denoted by xi

j . The aggregator keeps a vector vi[xi
1, x

i
2, . . . , x

i
n] for each

of its k children, where n is the size of the window for which the data is kept.
A vector V [v1, v2, . . . , vk] of such vectors is created and a covariance matrix of
this vector is calculated. The element at i, j position of this matrix gives us the
correlation between vi and vj . Based on their correlation, the sensors can now
be divided into groups using any clustering algorithm.

Trusted Core. For applications where the setup time x is very large, a long
history of each sensor would be required to build correlation. A trusted core of
sensors can be used to ease the computation overhead cost. We can make use
of the centralized characteristic of the sensor-cloud to establish nodes in each
network which act like a trusted core. The trusted core is made up of a handful
of well connected nodes. It randomly samples the sensors by sending a query, to
which all the other sensors reply with their measurements, irrespective of whether
they are working for the application or not. The trusted core then evaluates the
trustworthiness of nodes working for the application and sends the report to the
aggregators. However, the challenge to trusted core is the optimal node place-
ment. One of the required conditions is that a trusted core node should have a
very high connectivity and it should be directly connected to a number of nodes
in the network it resides. Another condition is that a trusted core node should
be able to connect to other trusted core nodes in other networks. Thus choosing
a trusted core node becomes a multi criteria optimization problem. The condi-
tions can be mapped to optimization criteria μ1(x), μ2(x), . . ., μn(x), and an
objective can be established as min[μ1(x), μ2(x), . . . , μn(x)]. This multi-criterion
optimization is an emerging research waiting to be formalized and explored.

Key Management. Confidentiality in sensor network missions is important.
In the sensor-cloud service environment, confidentiality manifests in newer di-
mensions. Users of any sensor-cloud will desire confidentiality of their tasks and
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communications, which means a desired level of the security needs to be pro-
vided for users. Since multiple applications may run simultaneously on a sensor
network at the same time, information exchanged among sensors from one ap-
plication must be isolated from another application. Also, networks of sensor
networks may have to collaborate for the same mission. An adversary compro-
mising one sensor network should not be able to compromise collaborating sensor
networks. All these situations are unique to sensor-cloud based infrastructures
and need new solutions.

Related Works. In a majority of sensor network deployments, sensor posi-
tions cannot be controlled especially for large scale missions. Even if there is
some control over the placement of sensors, over time, faults and failures can
affect sensors. Consequently, a lot of investment has gone in the study of se-
cure key management for randomly deployed sensor networks. Currently, the
well accepted approach for key management in WSNs is based on the idea of
key pre-distribution (generalized as KP protocols) [10]. In the simplest version,
each sensor is pre-distributed with k distinct keys randomly chosen from a large
pool of K keys. Post deployment, neighboring nodes use the pre-distributed
keys to establish a pairwise key in between either directly or using other nodes
as proxies. The basic redundancy in initial key pre-distribution enables nodes to
overcome deployment randomness, making it easier to discover secure neighbors
and proxies. A host of key management protocol variants have been proposed
based on key pre-distribution [10] etc., each one improving upon one or more
features like connectivity, resilience, overhead etc. Denoting RC (Resilient Con-
nectivity), as the Probability that a secure pairwise key is present between two
physically neighboring nodes, we have
Theorem 1. For any KP protocol, and a non-zero node capture probability
(Pc > 0), (1) ∃Densities D1, D2 : D1, D2 ∈ (0, +∞), D1 > D2 : RC(D1) <
RC(D2); (2) limD→+∞RC(D) = 0.
The first part of Theorem 1 states that for any non-zero node capture probability
Pc, performance of KP protocols does not always increase with node density D.
There exists densities D1 and D2, where RC at a smaller node density is higher
than RC at larger node density for any protocol and network parameters. The
second part of the theorem states that RC → 0 when D → ∞. It implies there
is a finite value of node density D for optimal performance for any KP protocol.
To conclude, KP protocols are not scalable with respect to node density in terms
of security.

Emerging Research. We found the issue of secure key management in sensor-
cloud environment most interested. It is our conjecture that Key Distribution
schemes despite inherent limitations are still relevant in the sensor-cloud. Missions
in a sensor cloud environment are dynamic, and consequently, pre-deployment of
static keys by the base-station of the sensor network is not possible. Furthermore,
users may also have changing requirements, which necessitates dynamic key as-
signments. Since sensor networks are mission oriented, the scalability problem can
be alleviated by appropriate assignment of keys. Furthermore, a critical challenge
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in the cloud environment is collaboration among multiple sensor networks. There-
fore, one may direct the research on the investigation of differentiated key pre-
distribution. The idea is to provide different number of keys to different sensors,
via different key pools with slight overlap. For two sensor networks S1 and S2, let’s
the K1 be the key pool for sensor network S1 and K2 be the key pool for sensor
network S2. The intersection of K1 and K2, denoted as K3 is small, but not null.
Isolating attacks across collaborating networks, while still ensuring secure com-
munications among networks is a very challenging topic.

Continue along this direction, one might interested to study a 2 layer commu-
nication framework. Nodes within a network reside at level one. They use key
K1 to communicate amongst themselves. When nodes send information across
networks, they send messages to trusted nodes with keys from their respective
key pools. The trusted nodes then use keys from key pool K3 to communicate
across networks. Assuming trusted nodes are secure, attacks should be minimal
in this framework. Alternatively, the idea of differentiated key distribution can
be applied even on a single WSN. This provides us with links with different
security and resilience with that network. These links can be chosen for routing.
This approach is a cross-layer approach wherein the key management scheme
can be combined with the routing layer. This, however, increases the commu-
nication overhead of some nodes in the networks. This further increases energy
consumption among those nodes. This is an open issue to be investigated.

4 Summary of Research Directions

Sensor-cloud computing emerges with a unique opportunity for abuses and at-
tacks. This implies that the security of sensor-cloud computing is indispensible
as the characteristics of this network make it easy for one to abuse, jeopardiz-
ing the benefits that could be brought to the society. The broad motivation of
this article is an investigation of the security issues and challenges in the sensor
cloud environment, and to discuss potential research topics to secure emerging
sensor-clouds against a variety of attacks. The core research spread across three
directions as described below.

– Secure Pre-deployment: This direction involves research on security issues
prior to deployment of sensor-cloud. Sensor-cloud developers need to real-
ize the relations among the system, security policies, attacks and defensive
measures. Regarding to this, attack graph analysis can be used to exam-
ine the universe of possible consequences following a successful attack and
determine whether the system should be reinforced, and if so in what spe-
cific component (or across components) to effectively increase security of the
entire system.

– Secure Pre-processing: This direction involves research on security issues
prior to execution of missions. To maintain the desired level of security, we
need to ensure that the sensor-cloud has all necessary precautions deployed
in it before execution. In this direction, we found the predicate encryption
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scheme very attractive in dealing with authentication and authorization and
also found k-anonymity on multirelational data set an emerging research.

– Secure Runtime: This direction involves study of issues related to sensor-
cloud security at run time. In particular, we have found demands on secure
data aggregation and 2 layer key management framework.

Acknowledgment. The authors would like to thank Mukund Krishnan for his
great contribution to the research project.

5 Conclusion

This article introduces the sensor-cloud service and identifies newer threats and
attacks from three dimensions: Secure Pre-Deployment to proactively identify
design problems and reinforce policies and define defense mechanisms; Secure
Pre-Processing to ensure all safety procedures are in place, along with Identity,
Access Management and Information Privacy at mission time; Secure Run-time
to ensure trusted sensor network operation and key management techniques for
cloud based sensor networks. For each dimension, we design a spectrum of po-
tential solutions integrating concepts from Attack Graphs, Policy Management,
Anonymization, Statistical Estimation and Topology aware key management.
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Abstract. The widespread use of smartphones and body-worn sensors
has made continuous and unobtrusive collection of personal data fea-
sible. This has led to the emergence of useful applications in diverse
areas such as medical behavioral studies, personal health-care and par-
ticipatory sensing. However, the nature of highly personal information
shared with these applications, together with the additional inferences
that could be possibly drawn using the same data leads to a variety
of privacy concerns. This paper proposes SensorSafe, an architecture
for managing personal sensory information in a privacy-preserving way.
Our architecture consists of multiple remote data stores and a broker so
users can retain the ownership of their data and management of multi-
ple users can be well supported. SensorSafe also provides a context-aware
ne-grained access control mechanism by which users can dene their own
sharing rules based on various conditions including context and behav-
ioral status. We discuss our design of the SensorSafe architecture and
provide application examples to show how our system can support user
privacy.

Keywords: Information Privacy, Personal Sensory Information, Data
Management Architecture.

1 Introduction

Mobile smartphones and body-worn sensors have enabled the continuous col-
lection of sensory information about individuals as they live their daily lives.
Current smartphones are typically equipped with GPS, WiFi, and accelerome-
ter which can provide location and activity information. Wearable sensors such
as BioHarness BT [7] include ECG, respiration, and skin temperature sensors. A
variety of inferences can be made by applying machine learning algorithms on the
collected data. For example, stress and smoking behaviors can be detected from
ECG and respiration data [31], current transportation mode can be determined
by using GPS and an accelerometer [33], and personal exposure to pollutants
can be measured by using location data together with a public pollutant map
[28]. Collection of such sensor data and inferences have other useful applications
in areas such as medical behavioral studies [31,1], personal health-care [6,22],
and location sharing social applications [36].
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An important aspect of such applications is that they involve sharing of per-
sonal sensitive information, which raises significant concerns about an individ-
ual’s privacy. In behavioral studies, participants share their data with researchers
or doctors. Location sharing applications involve friends or family members. Per-
sonal health-care applications have coaches who give useful advice about the
user’s health [6]. Medical home-care systems can involve not only the patient’s
doctor but also the insurance company [22]. Sharing of personal data is inevitable
because it is essential for the application to work. While users want to share some
of their personal information to benefit from certain services, they do not want
to share information that they feel uncomfortable sharing.

Especially in medical behavioral studies involving multiple institutions [1],
Institutional Review Board (IRB) requires that data collected from human par-
ticipants should be hosted by the institution conducting the data collection [3].
Therefore, it is not possible to have a single centralized server to store data from
multiple institutions. Instead, each institutional server should store its own data
and interact with other institutional servers to share the data. A data manage-
ment framework should be able to support such kind of IRB regulations.

A recent user study on awareness about privacy implications of sensory infor-
mation [32] reports how users’ privacy concerns change with personal stake and
abstraction levels. In the study, users live their daily lives while wearable sensors
and smartphones collect information about exercise, places, conversation, com-
muting, and stress. In general, the better users understand their data and the
personal stakes associated with it, the higher are the concerns regarding its shar-
ing. Especially, certain types of information such as conversation, commuting,
and stress lead to more concerns than exercise and places. Privacy concerns also
increase as the data contains more specific information such as place, duration,
and timestamp. The fact that users have different levels of concerns depending
on the types of information shared and the levels of abstractions motivates the
need for a privacy-preserving data sharing framework.

Sharing sensory information poses a new challenge in protecting an indi-
vidual’s privacy. Traditional privacy research has focused on preventing de-
anonymization of published personal data. This research has been motivated by
several incidents such as de-anonymization attacks to Netflix data [29] and the
AOL search records [19]. Several privacy metrics [35,25,24] have been proposed,
and mechanisms to achieve certain privacy requirements have been devised [16].
While the traditional research protects an individual’s identity, sharing of sensory
information requires protection of an individual’s behavior. That is, users want to
have complete control over what kind of behavioral information is shared when
they provide their sensor data. In addition, identity is often essential informa-
tion in applications such as behavioral studies or health-care systems. Therefore,
protecting private behaviors in sensory information becomes an important issue.

In this paper, we propose SensorSafe, an architecture that enables sharing
of personal sensory information in a privacy-preserving way. Our architecture
provides users with the ability to control the amount of behavioral information
they want to share. This control is achieved by a context-aware, fine-grained
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access control mechanism which provides numerous options to support various
privacy preferences of users. Moreover, the SensorSafe architecture stores sensor
data in multiple distributed servers such that users or institutions can have
the ownership of their own data. Because data are not stored in a centralized
server, managing data from number of users is a non-trivial problem. SensorSafe
supports multiple users with ditributed data storage by having a separate broker
server.

The rest of this paper is structured as follows. Related work is discussed in
Section 2 and important design considerations are presented in Section 3. In
Sections 4 and 5, we provide an overview and details of our architecture. We
discuss application examples in Section 6 and conclude in Section 7.

2 Related Work

Several privacy breaches have been published [29,19,30], and these incidents have
lead to research in protecting privacy of users when their information is shared. In
an effort to protect an individual’s identity in context of relational data, several
privacy metrics such as k-anonymity [35], l-diversity [25], and t-closeness [24]
have been proposed. Algorithms to achieve certain privacy requirements defined
by the privacy metrics are also proposed. They include perturbation, suppression,
generalization, and so on [16]. These research efforts mainly deal with protection
against de-anonymization attacks on personal data sets. Although the data sets
do not contain explicit identifiers (e.g., name, social security number), the de-
anonymization attacks exploit quasi-identifiers (e.g., zip code, age, gender) which
cannot be removed due to utility of the data sets. While these privacy metrics
and algorithms are useful in context of relational data, they cannot be directly
applied to sensory information due to several reasons. First, sensor data are
often both sensitive and quasi-identifying so it is harder to anonymize without
degrading much of its utility. Second, sensory information often need to be shared
with identity (e.g., health-care application, medical behavioral studies) [32].

In order to protect identity when sharing sensory information, many tech-
niques have been proposed. Several works try to preserve aggregated information
by modifying original sensor data. AnonySense [14] has a mix-network in their
architecture which anonymizes sensor data from multiple users. PoolView [17]
is an architecture with perturbation scheme which adds noise to original sen-
sor data but maintains a community average and distribution. Later, Ahmadi et
al. [8] proposed a data transformation scheme which preserved a regression model
of the original data. There are also several techniques for protecting identity that
can be inferred from location information. Hoh et al. [20] achieve k -anonymous
location updates using a temporal cloaking scheme. Krumm et al. [23] introduced
techniques such as deleting, rounding, and addition of noise for obfuscating home
location. Although these works protect privacy of identity, they do not deal with
privacy of behavioral information in sensor data.

In online social networks, several architectures provide users with control over
their own data. Caceres et al. [11] proposed Virtual Individual Servers that allows
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users to retain ownership of their data and to determine what data is shared with
whom. PrPl [34] is a decentralized social networking infrastructure with personal
data storage called Personal Cloud Butler. Lockr [37] provides an access control
mechanism based on digitally signed social relationships. Persona [9] provides
an access control mechanism via attribute-based encryption with out-of-the-
band key exchange. These architectures provide access control that determines
who has access to what, but more fine-grained way of access control is needed
when sharing sensory information. Fine-grained access control is proposed in
Locaccino [36]. However, they lack access control based on a user’s context or
behavior which is important to protect privacy of behavioral information in
sensor data. Commercial software such as Microsoft Health Vault [5] or Google
Health [2] also provide sharing of personal data with privacy in mind. However,
they are designed for sharing Personal Health Records [38] rather than sensory
information.

Mun et al. proposed Personal Data Vault (PDV) [27], which is an individual
data storage with fine-grained access control mechanism, privacy rule recom-
mender, and trace audit. Our system enhances the fine-grained access control
by supporting privacy rules with context/behavior conditions and control for
levels of inferences. In addition, while PDV is a single personal data storage, our
architecture facilitates management of multiple individual data stores by having
a broker server.

3 Design Considerations

In this section, we discuss several important considerations that have guided us
to design SensorSafe. The key functionalities of SensorSafe are storing personal
sensory information of data contributors who are willing to provide their data and
sharing those data with data consumers who are interested in such information.
The following design considerations are essential for our system to be privacy-
preserving, practically usable, and effective.

Selective Sharing: Even though data contributors are willing to share data,
they do not want to share all their data because some of the collected information
might disclose private and sensitive aspects of their lives. Therefore, our system
provides a mechanism for data contributors to share only what they want to
share. The key challenge is how a selective sharing mechanism can fully support
a data contributor’s various privacy preferences. SensorSafe achieves this goal
by providing numerous options such as context/behavior, consumer identity,
location, time, and levels of inferences.

Data Ownership: Traditional data collection systems store the data in a cen-
tralized server [13,28,26]. However, the central server is the single point of failure
because if the server is compromised, all the data contributors’ information is at
risk. Moreover, the IRB regulation mentioned in Section 1 requires multiple insti-
tutional servers. The SensorSafe architecture is distributed so the actual storage
points can be data contributors’ personal computers or institutional servers.
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Managing Multiple Data Contributors: Each contributor’s data is stored
at a different physical server, making the task of data management across con-
tributors a challenging one. Without architectural support, data consumers will
have to directly contact each data contributor’s server and manually manage
them. Especially in behavioral studies, researchers need to search for data con-
tributors with suitable privacy preferences because some contributors might not
share enough data for the study. In SensorSafe, we have a dedicated server for
managing multiple data contributors and searching for data contributors with
suitable privacy rules.

User Controllable Privacy: Studies have shown that users often have dif-
ficulty expressing and managing their own privacy policies [15]. Moreover, as
data collection at the contributors occurs as they live their daily lives, the pri-
vacy preferences tend to change over time. Thus, it is necessary to provide a
user-friendly interface that allows the data contributors to control their infor-
mation at all time. To achieve this, we have designed a web-based user interface
where the users can define and manage privacy rules. The user interface consists
of standard HTML UI components and Google Maps, which most Internet users
are already familiar with.

Data-Store Functionality: It is important for data-storage systems to be gen-
eral enough to support a variety of applications. Therefore, it should provide
enough functionality to support applications. First, a data retrieval mechanism
should not limit kinds of queries that applications can issue. Second, data stor-
age should be able to store various types of data that applications require. To
achieve this, SensorSafe provides expressive data query language and does not
have restrictions on the structure of data.

4 Architecture Overview

The overall system architecture is presented in Figure 1. SensorSafe consists of
remote data stores and a broker, which interact with data consumers and data
contributors. Data contributors carry smartphones and possibly wearable sensors
on their body. The smartphones upload collected sensor data to the data con-
tributors’ remote data stores. The data contributors create privacy rules on their
data store. When the data contributors are first registered on their data store,
they are automatically registered on the broker, too. Data consumers interact
with the broker to search for data contributors with suitable privacy rules. After
obtaining a list of the data contributors, data consumers directly communicate
with remote data stores to download pertinent data. In this process, access to
the data is controlled by the data contributors’ privacy rules. The broker is not
a performance bottleneck because sensor data are directly transferred from each
remote data store to data consumers.

Figure 2 illustrates the design of remote data stores and the broker. Every
interaction with both servers has to go through the user authentication layer to
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Fig. 1. SensorSafe Architecture

(a) Remote Data Store (b) Broker

Fig. 2. Remote Data Store and Broker

limit access to registered users only. Both servers also have a web user interface
for user administrations. Data consumers access a contributor’s data through
query API provided by remote data stores. Every access is regulated by the
query/privacy processing module, which interacts with the underlying database.
Data contributors upload their sensor data through upload API, create/manage
their privacy preferences, and view their own data using the web-based interface.
Data consumers use the web interface provided by the broker to search and
manage data contributors. They can also access a contributor’s data through
the web user interface. A list of data contributors and their data store locations
can be obtained by API on the broker. The architectural details of SensorSafe
are discussed in the following sections.
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5 SensorSafe Framework

The main functionalities of SensorSafe include remote data stores, the bro-
ker, a context-aware fine-grained access control, data contributor management/
searching, and privacy rule-aware data collection. Each component of SensorSafe
is discussed in detail as follows.

5.1 Remote Data Stores

Traditional sensor data collection systems [13,28,26] store users’ data in a cen-
tralized server. Although the centralized approach is simple and straightforward,
it has several disadvantages in terms of privacy. First, data is stored in the server,
which users may not trust. Second, when the centralized server is compromised,
every user’s data on the server is breached at the same time. Moreover, as men-
tioned in Section 1, the IRB regulation requires each institution stores its own
data so we need multiple institutional servers. By having remote data stores,
SensorSafe supports multiple institutional servers as well as personal data stor-
age that users can trust. The storage can be a personal computer in a user’s
house, or the institution that collects data can provide a virtual machine pool
of individual data stores and make each virtual machine accessible by its owner
only. This approach allows users to store data on their own server and reduces
the risk of server compromise. The advantages of virtual individual servers are
also discussed in [11,34].

Context-Aware Fine-Grained Access Control. Each remote data store
provides an access control mechanism. Continuously collected sensor data con-
tain considerable amount of privacy-sensitive information about the data con-
tributors themselves. Location and timestamp information can reveal presence
in sensitive places or even life patterns. Sensors such as accelerometers, ECGs,
and respiration sensors can tell a lot about contributors’ activities and phys-
iological status. Especially when sophisticated inferences are performed, more
sensitive information can be revealed such as stress, smoking, conversation [31],
or transportation modes [33]. Although data contributors voluntarily participate
to share their data, sharing too much information increases their privacy con-
cerns. This concern further increases when contributors understand what kinds
of inferences can be drawn from their sensor data [32]. Therefore, we need a
mechanism which enables contributors to share only what they want.

In order to support a variety of privacy preferences, our access control mech-
anism provides various conditions such as data consumer, location, time, sensor,
and context. Based on the conditions, contributors can specify actions such as
allow, deny, or modify the level of data abstraction. The context condition allows
contributors to define privacy rules such as “don’t share any data while I am
driving.” or “don’t share data while I am in conversation.” Using the conditions
and actions, data contributors define a set of rules which express their privacy
preferences and the remote data store enforces the rules. Table 1 summarizes
the conditions and actions of privacy rules.
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Table 1. Various Options for Privacy Rules

(a) Conditions and Actions

Options Attributes

C
o
n
d
it

io
n
s

Data Consumer
User Name, Group Name,
Study Name

Location
Pre-defined Label,
Region Coordinates

Time Time Range, Repeated Time

Sensor
Sensor Channel Name
(e.g., Accelerometer, ECG)

Context

Available context from sensors
(e.g., Moving, Not Moving,
Still, Walk, Run, Bike, Drive,
Stress, Conversation, Smoke)

Actions Allow, Deny, Abstraction

(b) Example Abstraction Options

Context Options

Location
Coordinates, Street Address, Zipcode,
City, State, Country, Not Share

Time
Milliseconds, Hour, Day, Month, Year,
Not Share

Activity
Accelerometer Data,
Still/Walk/Run/Bike/Drive,
Move/Not Move, Not Share

Stress
ECG/Respiration Data,
Stressed/Not Stressed,
Not Share

Smoking
Respiration Data, Smoking/Not Smoking,
Not Share

Conversation
Microphone/Respiration Data,
Conversation/Not Conversation,
Not Share

Basic conditions: Using the data consumer condition, contributors can specify
who will be affected by this privacy rule. It can be a unique user name of a data
consumer, or a group or study name which includes a set of data consumers.
Data contributors specify locations by defining a region on a map user interface.
Time condition is defined as a continuous time range (e.g., from Feb. 2011 to
Mar. 2011) or repeated time (e.g., 3-6pm on every Wednesday). Using the sensor
condition, contributors can select specific sensor channels in their privacy rules.

Context condition: Data contributors can also define their privacy rules using
context information drawn from sensor data. For example, microphones and res-
piration sensors can be used to infer whether a data contributor is in conversa-
tion or not. An accelerometer with GPS can provide transportation information
such as walking, running, biking, and driving. A data contributor might not feel
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comfortable sharing sensor data while in conversation with someone or while
driving. In these cases, context conditions can be used to describe such privacy
rules.

Actions: Data contributors can either allow or deny access to sensor data which
satisfy the basic and context conditions. When allowed, raw sensor data are
shared with corresponding data consumers. In addition, contributors can share
more abstracted information instead of sharing raw sensor data. For example,
instead of sharing latitude and longitude coordinates, contributors can abstract
this information as zip code, city, or state names. With accelerometers, contrib-
utors can choose to share only transportation modes (e.g., still, walk, run, bike,
drive) or just whether moving or not moving. Note that a sensor can be used to
infer multiple context information (e.g., a respiration sensor is used for stress,
conversation, and smoking). Therefore, if a contributor chooses not to share such
a sensor or a related context, the raw sensor data will not be shared even though
other relevant contexts are chosen to be shared in raw data form. For example,
if the smoking context is not shared, respiration sensor data will not be shared
even though stress and conversation are shared in raw data form. This is be-
cause once respiration data are provided by stress or conversation, smoking can
be also inferred from the data. The privacy rule processing module contains this
sensor/context dependency information and performs access control accordingly.

Privacy rules are created and edited using a web user interface shown in Fig-
ure 3. The user interface consists of Google Maps, calendars, dialog boxes, and
common HTML UI components such as text boxes, check boxes and radio but-
tons. Although a usability study of our user interface remains as future work, we
believe users will find it easy to create privacy rules because most Internet users
are familiar with our web user interface components. Once data contributors
define their privacy rules using the web UI, they are stored as JSON objects
[4] on the remote data stores. Figure 4 shows an example privacy rule with its
corresponding JSON representation.

Data Storage. Wave Segments: Another important aspect of a remote data
store is that it needs to handle large volumes of data generated by continuous
sensing. Storing the time series of sensor data as individual tuples is inefficient
both in terms of storage size and querying time. Therefore, in order to increase
scalability and computational efficiency, it is essential for a remote data store to
have a compact representation of data.

In a remote data store, a continuous stream of sensor data is divided into
many segments, called wave segments, an extension of an abstract data type
proposed in [18]. A wave segment is the smallest unit of data representation, and
each wave segment typically contains hundreds or thousands of data samples.
We further observe that sensors are typically sampled in uniform intervals, so
a wave segment stores timestamp information as a start time and a sampling
interval. A wave segment can also have an individual timestamp for each data
sample, which is necessary to represent sampling schemes such as adaptive [21],
compressive [12], and episodic.
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Fig. 3. Web User Interface for Privacy Rules

Sequences of data samples from multiple sensor channels are typically stored
as Binary Large Objects (blob) in database systems. A wave segment also con-
sists of a sensor value blob and additional metadata describing the value blob.
The value blob is an array of tuples each containing values from multiple sensor
channels. The metadata includes a start time, a sampling interval, a location,
and a format of tuples in the value blob. For non-periodic sampling and mobile
sensors, time and location stamps are stored in the value blob as additional sen-
sor channels. Figure 5 shows an example of a wave segment represented in Java
Script Object Notation (JSON) [4].

Wave Segment Optimization: The number of wave segments directly affects
query performance because it is the number of records stored in a database.
Therefore, it is important for each wave segment to include a large enough num-
ber of samples. Because memory space is constrained at the sensors, a single data
packet from the sensors typically contains dozens or hundreds of samples. For
example, the Zephyr chest-band transmits 64 ECG samples in a single packet
[7]. If this packet is directly converted to a wave segment, there will be too many
wave segments in total decreasing the query performance. Therefore, remote data
stores perform a wave segment optimization by merging them as much as pos-
sible. If timestamps of two wave segments are consecutive, they can be merged
as long as they have the same location coordinates and data channels.
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Fig. 4. Example of JSON Privacy Rule: “Share all data collected at UCLA with Bob
but do not share stress information while I am in conversation at UCLA on Weekdays
from 9am to 6pm”

Fig. 5. Example of a Wave Segment in Java Script Object Notation

5.2 Broker

In scientific behavioral studies, data consumers (study coordinators such as
researchers or doctors) typically recruit many data contributors (study partici-
pants) [1,31]. In participatory sensing [10], a data collection campaign also in-
volves many data contributors. In centralized systems, it is trivial to manage
those multiple data contributors because every data contributor is registered on
a single server. However, if storage for the data contributors are distributed and
there is no dedicated server to maintain the list of the data contributors, it is
not trivial to manage all the individual data stores.

Data Contributor Management. Therefore, SensorSafe has a broker that
manages all the remote data stores so the data consumers can easily access
them. The broker stores every data contributor’s identity and the IP address of
the associated remote data store. Using the web user interface on the broker, the
data consumers can create a list of data contributors or search for suitable data
contributors. Data contributor searching is further discussed in the following



96 H. Choi et al.

section. The broker also provides a convenient web user interface for accessing
contributors’ data. The web interface provides query options such as location,
time, and data channels so the data consumers can retrieve data in which they are
interested. Data consumer applications also can obtain a list of data contributors
and their IP addresses by using an API provided by the broker.

Data Contributor Searching. From the data consumer’s point of view, a
data contributor’s privacy rules directly affect the utility of the sensor data.
Depending on the privacy rules, a contributor’s data could be partially useful
for data consumers or not useful at all. For example, suppose a data consumer
is interested in studying stress events and related physiological signals in work
environments. However, a data contributor participating in the study defines a
privacy rule saying he/she does not want to share stress-related data at work
place. In this case, these data are not useful to the data consumer. The data
consumer needs to find other contributors who share enough data for the data
consumer’s study.

In SensorSafe, the broker provides a web user interface for searching for data
contributors with suitable privacy rules so that data consumers can find contrib-
utors who share enough data for their study. The broker locally stores all privacy
rules of every user on remote data stores to search through them. Whenever data
contributors change their privacy rules, remote data stores automatically com-
municate with the broker to synchronize the privacy rules. Data consumers can
search for all conditions and actions of privacy rules such as location, time, sen-
sor, context, and abstraction. For example, finding data contributors who share
ECG and respiration sensor data at the location labeled “work” from 9am to
6pm on weekdays can be performed. After searching suitable data contributors,
data consumers can store the list of contributors to access their data.

5.3 Privacy Rule-Aware Data Collection

If a privacy rule says not to share data at a certain location, time, or context, it
is better not to collect such data in the first place because the data will not be
shared anyway. In order to enable this, smartphones carried by data contributors
download the owner’s privacy rules from the remote data stores and determine
whether to collect data based on the privacy rules. The decision can be made
on three conditions such as current location, time, and context. When there are
no data to be shared at the current location and time, sensors will be disabled.
In case of a context condition, sensor data are first temporarily collected on a
smartphone to infer current context. If there are no data to be shared in the
current context, the data will be discarded.

Although privacy rule-aware data collection provides a more secure way to
collect data, but one should not overlook cases in which a data contributor wants
to change privacy rules after collecting data. If a contributor wants to share data
that have not been collected at all, there is no way to recover them. Therefore,
we provide privacy rule-aware data collection as optional functionality, and data
contributors need to carefully decide whether or not to use this option.
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5.4 Authentication

When data consumers and contributors access the broker and remote data stores
through APIs, they are authenticated by their unique API keys. An API key is
a random string generated by the SHA algorithm. Each user obtains a unique
API key when he/she is first registered to the servers. Users must keep their API
keys private because it acts as a username and a password. In order to secure the
API key during communications, it is included in the body of a HTTPS POST
request and the communication is secured with HTTPS. When a data consumer
first accesses a certain data contributor’s remote data store, he/she needs to
register to the remote data store and obtain an API key. Therefore, a data
consumer might have many API keys for multiple remote data stores. However,
the registration process is automatically handled by the broker and the list of
API keys are stored on the broker. Data consumer applications use the HTTP
API on the broker to obtain a list of data contributors with corresponding remote
data stores and API keys. Accesses to web user interfaces are authenticated by
a login system using a username and a password.

6 Application Examples

In this section, we show how SensorSafe can support sharing sensor data in
privacy-preserving way. Our example scenarios include two applications: a med-
ical behavioral study and a health-care application. In the behavioral study,
researchers want to analyze effects of various environmental factors on an in-
dividual’s stress level [31]. For this study, data contributors wear a chest band
equipped with an ECG and a respiration sensor. They also carry smartphones
which record acceleration, time, location, and voice on the microphone. They live
their normal life as the sensor data are collected automatically. On the smart-
phone, various contextual information such as stress, smoking, conversation, and
transportation modes are inferred using the sensors on the phone and the chest
band. The sensor data are annotated with the context information and uploaded
to remote data stores. In our health-care application scenario, data contributors
want to share their daily activities with personal coaches to get advice on exercise
and health habit [6].

A data contributor, say Alice, first decides to share all data with the researchers.
After logging into her remote data store, she defines a privacy rule that allows
the researchers to access all the data. She also thinks her health coach only needs
activity data so she defines a privacy rule that allows the health coach to access
accelerometer data only. After collecting data for one day, Alice reviews her data
using the web user interface on her data store. Alice finds out that she is frequently
stressed while driving. She feels uncomfortable with sharing this information so
she adds a privacy rule that denies access to stress data while driving. She also feels
uncomfortable sharing activity data while she is home so she adds a privacy rule
which denies accelerometer data collected at her home location. She is certain that
she is not going to change her mind about sharing her data so she turns on privacy
rule-aware data collection on her smartphone. Whenever the smartphone detects
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she is driving, it stops collecting ECG and respiration data which are related to
stress inference. Whenever the smartphone detects that current location is her
home, it also stops collecting accelerometer data.

A data consumer, say Bob, wants to obtain some data for his study. He has
recruited 20 data contributors including Alice. He first logs into the broker server
and adds the data contributors to his account. When he adds his data contribu-
tors, the broker automatically registers Bob to the remote data stores to obtain
an API key. Bob is especially interested in people’s stress behavior while they
are driving. Because Bob knows that not every data contributor will share their
stress information while driving, he uses a data contributor searching function
on the broker. After searching for suitable data contributors, he obtains a list of
data contributors without Alice and saves the list in his account. Bob reviews
the contributors’ data using the web user interface provided on the broker. Bob
also uses his own data analyzing software. The software first obtains the list
of data contributors with access information for their remote data stores from
the broker. Then, the software downloads the contributors’ data using the query
API provided by each remote data store.

7 Conclusion and Future Work

This paper presents SensorSafe, a framework that enables data contributors
to share their personal sensory information with data consumers in privacy-
preserving way. Using its context-aware fine-grained access control mechanism,
data contributors can define sharing rules with various conditions including cur-
rent context or behavior. To improve the usability of SensorSafe, we implemented
web-based user interfaces for defining privacy rules and reviewing a user’s data.
In addition, data contributors retain the ownership of their data by using re-
mote data stores. SensorSafe also supports applications involving data collection
from multiple contributors and institutions by having a separate broker server.
We provide application examples to show how SensorSafe can support user pri-
vacy and management of sensory information. In the future, user studies will be
conducted to evaluate and improve the usability of our system and also provide
understanding of how people share personal data with others. Moreover, in order
to improve security of the SensorSafe architecture, we will analyze our system
for various attack scenarios and implement appropriate security mechanisms.

References

1. FieldStream: network data services for exposure biology studies in natural envi-
ronments, http://www.fieldstream.org/

2. Google health, http://www.google.com/intl/en/health/about/
3. Institutional Review Board - Protect Research Data,

http://irb.ufl.edu/irb01/data.html

4. JavaScript object notation, http://www.json.org/
5. Microsoft HealthVault, http://www.healthvault.com

http://www.fieldstream.org/
http://www.google.com/intl/en/health/about/
http://irb.ufl.edu/irb01/data.html
http://www.json.org/
http://www.healthvault.com


A Framework for Privacy-Preserving Management 99

6. Philips DirectLife: fitness, health and successful weight management,
http://www.directlife.philips.com/

7. Zephyr technology corporation, BioHarness BT,
http://www.zephyr-technology.com/bioharness-bt

8. Ahmadi, H., Pham, N., Ganti, R., Abdelzaher, T., Nath, S., Han, J.: Privacy-aware
regression modeling of participatory sensing data. In: Proceedings of the 8th ACM
Conference on Embedded Networked Sensor Systems, pp. 99–112 (2010)

9. Baden, R., Bender, A., Spring, N., Bhattacharjee, B., Starin, D.: Persona: an online
social network with user-defined privacy. ACM SIGCOMM Computer Communi-
cation Review 39(4), 135–146 (2009)

10. Burke, J., Estrin, D., Hansen, M., Parker, A., Ramanathan, N., Reddy, S., Srivas-
tava, M.: Participatory sensing. In: World Sensor Web Workshop, pp. 1–5 (2006)
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Abstract. Online multimedia distribution is often done by means of
adaptive streaming protocols. To protect this content, its owners apply
a unique watermark to each copy. However, sending a unique copy to
each client incurs a prohibitive cost, especially in terms of bandwidth
and server load, and embedding a watermark on a client device not only
compromises the system security, but also is not feasible in the uncon-
trolled environment such as the Internet. In this paper, we propose to
solve this problem by creating a few streams, each with different but
constant watermarks, and force the client to switch between the streams.
This will result in a uniquely watermarked stream for the each client. We
illustrate our solution on the example of the currently deployed adaptive
streaming protocols.

Keywords: watermarking framework, adaptive streaming, anti-piracy.

1 Introduction

Today many people explore the possibilities for consuming media over the In-
ternet. The majority of solutions for multimedia delivery that are on the market
today use real-time streaming. The advantages of the real-time streaming – real-
time content delivery (live events can be viewed as they happen) and the ability
to play content as soon as transmission is started barely balance the fact that it
puts a big burden on content providers due to the need for a streaming server,
sophisticated techniques to deal with users’ bandwidth constraints and special
ways of traversing firewalls [14]. One of the biggest disadvantages of traditional
streaming is that it does not scale, since, in practice, it is based on a unicast
protocol (RTP/UDP [19] or proprietary protocols).

Recently, a new generation of technologies that employ progressive download
has emerged with the aim to overcome this weakness of streaming while provid-
ing a similar quality of experience to end users. To access content via progressive
download a user-device uses HTTP/TCP [8] to request (typically consecutive)
parts of content from the server. The new technology enables solutions that re-
quire only a standard web server, provide a guaranteed high-quality delivery
with no lost or discarded data and easily cross most firewalls. Moreover, use of
HTTP allows the solutions to benefit from proxy caching that reduces trans-
mission latency and decreases server/network loads. The main disadvantages of
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progressive download – potentially slower delivery time due to packet retrans-
mission and paying no regards to the user’s bandwidth constraints are being
addressed by adaptive streaming protocols [18,17].

The latest developments of progressive download for delivering multimedia
content spawned protocols that allow transmitting content as a set of time-
bounded segments called chunks. The protocols starts by having a client down-
load a description file (also known as ”manifest” or ”playlist”) that lists the
location(s) of content chunks and describes rules for forming a request to access
a chunk. To consume content, the client first obtains the description file and
then requests, gets and consumes content chunks. Since each chunk has a unique
address, the protocols support web caching. So, if multiple clients request the
same chunk from the adaptive streaming server, there is a high probability that
some of them will receive the chunk from the cache of an intermediate web node,
instead of from the server itself. Using web caches enables building systems that
can easily scale from hundreds of users to millions.

Chunks can be separated physically (a separate file is created for each chunk
of content) or logically (all chunks of content are stored in a single file with
an addressing structure that allows accessing any chunk individually). Protocols
that are based on physically separated chunks break the content into a sequence
of short chunks of equal duration. At the start of the streaming session, the client
downloads a description file that contains an ordered list of URIs referring to
media files (each media file contains a single chunk of content) that the client
may consume. Protocols that are based on logically separated chunks relay on a
file format that allows addressing parts of the content at a number of predefined
access points (time offsets). At the start of the streaming session, the client
downloads a description file that contains the name of the media file and rules
to create a URI that points to the files with a given offset. Physical separation
is used by HTTP Live Streaming [18] and 3GPP adaptive HTTP Streaming [6],
whereas logical separation is employed by Microsoft SmoothStreaming [17].

The basic progressive download can be extended with support for the delivery
of content over a network infrastructure that has no quality-of-service guarantees.
This is done by providing multiple copies of the same content with different bit-
rates, spatial resolution and/or other encoding characteristics (these copies are
also called quality levels). Since each quality level (copy) consists of a sequence
of time-aligned chunks, a client can switch between several quality levels at
run-time on a chunk-by-chunk basis to react to varying transmission and/or
processing conditions. Due to its adaptive nature, this new class of protocols is
called “adaptive streaming protocols”.

A number of challenges exist, however, when using adaptive streaming proto-
cols for delivering premium content over the Internet. One challenge is to prevent
illegal copying and distribution of content. In addition to the attacks that are
used against traditional streaming (capturing still frames from monitors, record-
ing video data traffic on the network interface, replaying connection requests,
data transfer capturing, etc.), protocols based on progressive download may al-
low retrieving video parts from the browser cache directly and, after merging
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the parts together, redistributing content. A commonly used counter mechanism
to such attacks (except for screen capturing) is the protection of the content
by a DRM/CA system. From the consumer’s perspective, however, a content
protection system that does not block all actions that may, potentially, lead to
an infringement, but that offers possibilities to trace the pirate once an infringe-
ment occurred is preferable. Such protection systems can be implemented using
watermarking technology. Watermarking is a process of including a hidden signal
(watermark) in the content in a non-removable manner.

Typically, to allow unambiguous identification of every user of a system, the
server must uniquely watermark each item of content for each user or entity
to which the content is to be distributed. If the number of users that consume
content is large (which is a typical case for Internet content delivery solutions
that are the main adopters of the progressive-download protocols), watermarking
can be computationally intensive for the server. Moreover, since protocols as
described above rely on web caches to achieve scalability, reduce latency and
to minimize server load, it is not possible to maintain the performance of the
web caching if the content chunk changes are unique for every client device. As
adaptive streaming protocols depend on web cache for efficiency benefits, unique
content chunks are a disadvantage. Finally, any watermarking solution should be
directly applicable to existing adaptive streaming protocols without any changes
to the protocols and, if possible, to existing client devices.

This paper describes the way to uniquely watermark content distributed by
adaptive streaming protocols. The approach is to convert each chunk from the
original content into two (or more) chunk instances, each with a different content
modification (i.e. bearing a different watermark). Then, for protocols that rely
on physical separation of chunks, the server generates a personalized playlist
consisting of a unique sequence of modified chunks, so that the resulting con-
tent is uniquely watermarked. For protocols that use logical chunks, additional
client-based software is proposed that enables watermarking by manipulating
the HTTP requests from the client device to the web server.

2 Solution Description

The proposed solution creates a limited number of watermarked copies of content
on the server and assembles a watermark that is unique for each user by re-
using mechanisms of chunk-based transmission technologies. Generally speaking,
any adaptive streaming solution consists of two parts: a server and a client.
The server is responsible for encoding, encapsulating and preparing content for
distribution as well as for supporting a standard web server functionality. The
client is responsible for fetching description data from the server, parsing the
description to make a list of content chunks to be downloaded, and acquiring
and presenting the chunks in a continuous way to the user. In the proposed
solution, the server undergoes the most modifications, whereas the client is not
modified at all (for physically separated chunks) or modified slightly (for logically
separated chunks).
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Fig. 1. Server architecture diagram

The server architecture diagram (Figure 1) shows Q quality level encoders to
transcode/encode the original content into a set of derived content versions at
different quality levels {q1, . . . , qQ}. Each derived content version is then split
by the chunk generators into N time-aligned chunks {c1, . . . , cN}. The duration
of the chunks is shared between the synchroniser and the playlist generator that
creates the playlist on the basis of information in the chunk store1. The water-
mark embedder creates M copies of each chunk. We define the watermark length
l such that we have enough symbols (e.g. bits) to identify each client uniquely
(plus, optionally carry some service information). The watermark symbol length
is chosen equal to the length of a chunk. Each copy of chunk ck (of quality level
qj), mi.qj .ck, is embedded with its own watermark symbol wi. So, the modified
chunks mi.qj .ck (for i = 1 . . .M) contain M different watermark symbols, even
though they contain the same piece of content. Generally, there will be more
chunks then the watermark length, so we embed the watermark repeatedly.

The most important part of the solution is to make the client request chunks
based on its identity in such a way that after transmission of l chunks each client
has a unique combination of modifications in its received set mi.qj .ck. In this
fashion, the content that is transmitted to each client is uniquely watermarked.
For example, in a system with two quality levels and two different watermarks,
one can divide the chunks into subsets by the different modifications: the set
S1 of all copies watermarked with w1 consists of S1 = {m1.q1.ck} ∪ {m1.q2.ck}.
Similarly, we have S2 = {m2.q1.ck}∪{m2.q2.ck} as the set of chunks watermarked
with w2. After transmission of l chunks each client has a unique combination
of chunks from subsets S1 and S2. Thus, the content that is transmitted to the
client is uniquely watermarked.

In the case of the physically separated chunks that are prepared as described
above, the server creates a unique description file based on the client’s identity
and transmits it to the said client. Figure 2 shows an example of playlist gen-
erated for a user with ID 0100 in a system with two quality levels (q1 and q2),
four chunks (c1, . . . , c4) and two watermarks (w1 and w2) that have at least four

1 Note that chunk creation may occur before quality level encoding.
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Fig. 2. Example playlists for physically separated chunks watermarked with symbols
w1, w2, w1, and w1 respectively

symbols. The main playlist tells the client that two quality levels are available
and the playlists for these levels are list q1 and list q2. The latter playlists pro-
vide URIs for every chunk taking chunk modifications that correspond to the
user ID (for 0100 these are m1m2m1m1). Even if the client randomly switches
between list q1 and list q2 but keeps the order of chunks intact (i.e. chunk or-
der c1, c2, c3, c4), its content will be correctly watermarked. Thus, by making
a unique sequence of modified content chunks, the adaptive streaming system
constructs a unique content file for each particular streaming content receiver.

Fig. 3. An example playlists for the logically separated chunks

The described approach is not possible for solutions based on logically sepa-
rated chunks, since the description file that the server deliver to clients contains
the address of a single file per quality level (e.g. file q1, file q2,. . . , file qn).
Figure 3 shows an example of a playlist generated in a system with four quality
levels (q1 through q4) and with chunks of duration d. The client request content
from the server by forming URI requests of the form http : //server/file qj@tk,
where qj is the chosen quality level and tk is the time offset at step k.

Even though the modifications of the content are still performed in accordance
to the diagram shown in Figure 1 and the server storage contains modifications
m1.f ile qj and m2.f ile qj of the derived content version file qj , it is neither
possible nor desirable (from a security perspective) to refer to both modifications
in the same playlist.
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Client 
proxy

Client

Request manifestRequest manifest

manifest manifest

file_qj@tk

file_qj@tk

mi.file_qj@tk

mi.file_qj@tk

Fig. 4. Illustration of chunk requests modification for the logically separated chunks.
The user-specific information is the modification version mi (mi is modification version
at step i) that is inserted before the file name.

The only feasible solution found is to either modify the client to include user-
specific information into the URIs that would allow the server to redirect the
requests to the particular modification of the file, or to use an additional ‘proxy’
component on the user device that intercepts HTTP requests from the adaptive
streaming client and alters them with user-specific information (Figure 4). In
both cases the client side will be responsible for initiating the customization of
the watermark even though the customization itself will still be done on the
server.

The playlists (Figure 2) and user-specific information (Figure 4) in the ex-
amples above use a structured naming sequence for modified content chunks.
This would allow an attacker to make educated guesses for content chunks that
are modified differently and create content in a way that bypasses the track-
ing mechanism. Hence, an attacker should be unable to guess which modified
chunks contain the same content. This can be achieved by applying a pseudo-
random permutation, as discussed in the section below.

3 References Randomization

In the first step content preparation, chunk creation and chunk modification are
performed as described earlier. Figure 5 depicts this for two different quality
settings (q1 and q2) and two different modifications (m1 and m2). The second
step assigns a unique number to each chunk. For instance, a chunk with label
mi.qj .ck can be assigned number n(i, j, k) = i + M ∗ j + M ∗Q ∗ k. Note that at
this stage, it is still easy for an attacker to guess which chunk numbers contain
the same content. For example, in Figure 5, chunks 0 through 3 contain the same
content in different quality levels and with different modifications. In the third
step, each chunk is assigned a (pseudo)random number. Renumbering is done
by selecting a pseudorandom permutation σ on the range [1, . . . , M ∗ Q ∗ N ],
and applying this to the unique number of each chunk. For example, in Figure 5
we have that σ(0) = 55 and σ(1) = 12. In this way, an attacker cannot predict
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Fig. 6. Streaming from the server to the client with ID ’0100’

which chunks contain the same piece of content. One can make the permuta-
tion σ unique for each piece of (original) content by seeding a pseudorandom
permutation generator with e.g. the original filename.

The algorithm discussed above can be directly applied to solutions based
on physically separated chunks, whereas other solutions require some additional
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implementation. For solutions based on logically separated chunks, the client will
be provisioned with a tamper-resistant piece of software (called client ‘proxy’ in
Figure 4) that is able to calculate the permutation σ. This software will have
the client ID embedded in the form of modifications mi it can make. In the
above figure, when the client asks for the first chunk of content (the request
”file@0”), the proxy translates this, using the permutation σ, into the actual
chunk number on the server: σ(n(0, 1, 0)) = 55. In particular, as the client ID is
embedded, the client proxy does not need to be able to calculate the permutation
σ for all possible inputs, just for those that match its expected modifications.
For example, if the embedded modification for a particular client will be 0100,
the client need only calculate the values σ(n(0, j, 4k + 1)), σ(n(1, j, 4k + 2)),
σ(n(0, j, 4k + 3)) and σ(n(0, j, 4k + 4)). There is never any need for this client
to for instance evaluate σ(n(1, j, 4k + 1)), as this would indicate a modification
value 1 in the first position. The process of streaming from the server to the
client is depicted in Figure 6.

4 HTTP Live Streaming Example

To illustrate application of the proposed solution to an existing adaptive stream-
ing protocol, we have chosen HTTP Live Streaming from Apple[18]. Although it
is targeted at Apple devices (e.g. iPhone, iPod, Macintoshes), it can be seen as a
typical example of a protocol that is based on physical separation of chunks. In
HTTP Live Streaming a continuous stream of content, multiplexed in an MPEG-
2 transport stream [11], is divided into a set of short MPEG-2 TS (.ts) files with

Fig. 7. An example of HTTP Live Streaming playlist
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each file’s URI being stored in a M3U [10] playlist file. The client fetches the
playlist file, reads it, requests the listed .ts files in order and displays them to
the user in the right order.

Figure 7 show an example of HTTP Live Streaming playlist. In the example,
the adaptive streaming server prepares a playlist for two quality levels with
a unique sequence of modified chunk references to insert 0100 watermark. In
the figure, the sequence is inserted by the modified content chunk sequence
(m1.qi.c1, m2.qi.c2, m1.qi.c3, m1.qi.c4). For each quality level, the appropriate
watermarking symbol will be generated in the output of the receiver.

5 Discussion

5.1 Scalability of the Solution

In this section, we discuss the scalability of our solution. The number of users
that can be assigned with a unique watermark depends on the number of chunks
that we can embed with a watermark symbol (N), and the number of differently
watermarked copies of the content (M). In practice, watermarking systems re-
quired to support 64 bits of payload [4], which is more than sufficient to uniquely
identify users of any existing system. So, even if only two copies of watermarks
(i.e. M = 2 and the first copy is watermarked with bits 0 while the second copy
is watermarked with bits 1) are created, we need 64 chunks to embed the whole
watermark. Assuming that the chunk length is 5 seconds, we need 320 seconds
of content to embed a watermark.

A larger value of M means that we need lesser chunks to embed the water-
mark. Higher value of M , however, requires more copies to be created, which
means an increased storage demand. It is likely that content providers would
choose having just two copies (M = 2), which, in turn, pose a question about ef-
fectiveness of using 2 to 5 second chunks for embedding just a single bit. Schemes
exist (e.g. [15]) that allow to embed large payloads in the given amount of con-
tent. An optimization of the proposed solution could be achieved by combining a
user-specific payload (i.e. a bit of the watermark that carries the user’s ID) with
a payload that is specific to the content or content distributer or with a service
payload (e.g. synchronization bits, timing bits). Since a the latter payload is the
same for all users, it is transparent to switching between chunks with different
user-dependent watermark symbols. Figure 8 demonstrates a three-section con-
cept to mix user- dependent and independent (common) watermarks. The figure
features one common section before and one after each watermarking section.

Fig. 8. Example of content watermarked content with w1 and w2. wib1 and wib2 are
the first and the second bits of watermark wi. wcx is xth common section.
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The chunk segmentation of the content occurs between two adjustment common
sections when the three-section concept is employed.

5.2 Security of the Solution

In this section, we analyze the security weaknesses our scheme might be suscep-
tible to, and suggest defenses against these known attacks. We can divide the
possible attacks on our scheme in two broad classes: firstly, an attacker could
try to attack the watermarking technology directly. In this case, the attack is
performed without regard to our framework’s stream switching. We assume that
the employed watermarking technology is robust enough to withstand this class
of attacks.

Secondly, an attacker can try to mount a collusion attack. In such an attack,
he will obtain a number of (uniquely watermarked) copies of the same content,
which enables him to compare sections and see the differences. Based on these
copies, the attacker will produce a pirated copy that he distributes. Here, the
challenge is to still identify (a subset of) the original copies that were used
in constructing the pirated copy. This problem is called traitor tracing in the
literature, and solved by applying fingerprinting codes.

We will assume the marking assumption applies, as introduced by [3]. This
assumption states that if (in a certain chunk) the attacker gets the same wa-
termark symbol in all copies, he is forced to output this same symbol in the
pirated copy. As the pirate sees no difference across all his copies, in our scheme
this assumption is realistic given the robustness of the underlying watermarking
technology.

We choose to use the Tardos fingerprinting code [21] as it has two key benefits:
firstly, recent work [20,1,9] has focused on the length of the codewords to be
embedded, resulting in constructions with codewords of length (2 ln 2)c2 ln ε−1

1

that are designed to resist attackers that obtains up to c different copies, and
a probability ε1 of accusing an innocent user. Secondly, the code is frameproof:
even if an attacker obtains more copies than the code was designed to resist, the
attacker is unable to frame innocent users.

Note that the Tardos fingerprinting code described above is static: each user
is assigned a long, fixed (random) string to embed into his copy, and this set of
strings is not adapted dynamically after the tracer runs an analysis. One could
also employ a dynamic traitor tracing solution [16], which will alleviate many
difficulties that Tardos code will introduces. First of all, such a dynamic Tardos
code no longer needs to fix the number of colluders beforehand. Secondly, as
traitors can be removed immediately after each symbol (at least in the live re-
broadcasting scenario) once their behaviour becomes too suspicious, the actual
code length needed in practice is smaller than expected. Also, if the available
number of different modifications is large enough, Fiat-Tassa type traitor tracing
schemes [7] can be employed. We leave the further investigation of dynamic
schemes as future work.

In the case the chunks are logically separated, an additional class of attacks
exists. As the client proxy has to calculate the pseudorandom permutations by
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itself, an attacker could try to influence this part of the client proxy software
(and for instance try to force it to only select chunks with modifications mi = 1).
We can deal with this attack in two ways: as mentioned before, we assume
that (this part of) the client proxy is tamper-resistant [12], and that such a
change is infeasible. A second defense can be mounted by making sure the proxy
software is only capable of generating its own pseudorandom permutations. This
is especially delicate when Tardos fingerprinting codes are used, as a priori all
modifications are possible, but dependent on the selected bias value. In this case,
the client proxy should be provided with an authenticated bias value, which is
then used together with its identity (and the chunk index and desired quality
level) to generate the correct permutation. For example, one can be achieve this
by using whitebox cryptography [5] and hash functions.

To summarize, our watermarking framework is at least as secure as the un-
derlying watermarking technology. We can defend against collusion attacks by
employing fingerprinting codes.

6 Conclusions

In conclusion, our solution allows for efficient watermarking of adaptive stream-
ing content, by utilizing the protocols’ native property of dividing content into
chunks and by using the idea of creating multiple variations of each chunk (at
least two alternatives per chunk) that has been described in [23,2,13]. The solu-
tion can be applied to the physically and logically separated cases of adaptive
streaming.

Having one or more modified chunk instances for each original chunk at a given
quality level, increases the total number of chunks and only slightly decreases
the effectiveness of the web caching. More precisely, as each modification results
in a new, different stream, the cache effectiveness is reduced linearly with the
number of modifications.

As for the security of our solution, a user is deterred from distributing ei-
ther his playlist (in the physically separated case) or his software client (in the
logically separated case), as it will be traceable. Solutions based on physically
separated chunks are secure from an attacker as the attacker is unable to find
other modified versions of the original chunks. In systems with logically separated
chunks, a hardened solution that can evaluate the pseudorandom permutation
of chunks for the personalised (user-id based) series of modifications (either a
separate ‘proxy’, or integrated into the client) is required.

Attacks that employ the logging and replay of connection requests [22],can
also be defeated by making the chunk renumbering permutation change pseudo-
randomly over time. This might be more efficient than relying on fingerprinting
codes to defeat this attack as well. We leave the analysis of employing this
additional defense technique as future work.

Employing a dynamic traitor tracing solution will make the tracing more
efficient – both dynamic Tardos schemes [16] and Fiat-Tassa type schemes [7]
are candidates. As future work, we intend to investigate the efficiency of the
tracing procedure.
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The proposed solution describes a watermarking application (i.e. when and
how content is manipulated to apply a watermarking technology) rather than a
watermarking technology (i.e. how data representing the watermark value is hid-
den in and retrieved from content). As a result, the proposed system is agnostic
about the actual watermarking technology used.
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Abstract. Searchable encryption allows a party to search over encrypted
data without decrypting it. Prior schemes in the symmetric setting deal
only with exact or similar keyword matches. We describe a scheme for the
problem of wildcard searches over encrypted data to make search queries
more flexible, provide a security proof for our scheme and compare the
computational, communication and space complexity with existing
schemes. We develop an efficient scheme, using pseudorandom functions
and Bloom filters, that supports wildcard searches over encrypted data.
The scheme also supports conjunctive wildcard searches, efficient and se-
cure updates and is more efficient than previous solutions. Besides, our
construction is independent of the encryption method of the remote data
and is practical to use in real world applications.

Keywords: Searchable Encryption, Bloom filter, Wildcard.

1 Introduction

Nowadays, remote storage is ubiquitous and widely used for services like out-
sourcing data to reduce operational costs or private backups. To securely store
outsourced data on an untrusted server, the data should be encrypted which
makes it impossible for inside and outside attackers to access the data, but at
the same time the data owner loses all searching capabilities. It is desirable to
support (full) searching functionality on the server side, without decrypting the
data, and thus, without any loss of data confidentiality. This is typically called
searchable encryption (SE).

Over the last decade there has been active research in the symmetric [16, 10,
7, 8] and the public key setting [4, 6]. To construct efficient schemes we focus
on searchable symmetric encryption (SSE), where the same client stores and
retrieves encrypted documents. Prior SSE schemes support only exact keyword
matches or similarity searches, where keyword similarity is measured in the Ham-
ming or edit distance. To get more flexibility in the search queries, we create a
new construction that supports wildcard searches over encrypted data, where
a wildcard may represent any number of characters. We present a construction
that supports conjunctive wildcard searches, where a conjunction is the union
of any number of keywords.
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Protocol. We consider a user U who stores a set of encrypted documents on an
honest-but-curious [11] database server S that can be trusted to adhere to the
protocol, but which tries to learn as much information as possible. U later wants
to retrieve some of the documents containing a specific keyword. To do so, U
first generates an index over his documents and then stores the index and the
encrypted documents on the server. The index allows U to search the encrypted
documents. To search for a specific keyword in the document collection, U creates
a trapdoor for that keyword and sends this trapdoor to the server which then
returns the result indicating which documents match the query and which not.
U then decides which of the documents she wants to retrieve and sends the
document ids to S. The server returns the requested documents.

Related Work. Searchable encryption can be achieved by using the works of
Ostrovsky and Goldreich [15,14,12] on oblivious RAMs from 1990, which hide all
information including the access pattern, from a remote server. Unfortunately
the scheme is not efficient in practice. The scheme needs a logarithmic number
of rounds of interaction for each read and write.

The first practical scheme for searching in encrypted data in the symmetric
setting was proposed by Song et al. [16] in 2000. They use a special two-layered
encryption construct which is known as a sequential scan. Unfortunately, the
scheme is not secure against statistical analysis across multiple queries and can
leak the positions of the queried keywords in a document. The scheme has to
use fix-sized words and the complexity of the encryption and search is linear
in the number of words. Also it is not compatible with existing file encryption
standards and has to use their specific encryption method which can be used
only for plaintext data and not for example on compressed data.

Some of the above problems are addressed by Goh [10] by introducing a Bloom
filter index to each document. The index makes the scheme independent of
the document encryption. Goh also introduced the formal indistinguishability
against chosen keyword attack (IND-CKA) and a slightly stronger IND-CKA2
adversary model.

Chang and Mitzenmacher [7] developed two index schemes, similar to Goh
[10], using pre-build dictionaries. Their search schemes are independent of the
encryption method and use one index per document.

Curtmola et al. [8] propose new adversarial models for searchable encryption:
a non-adaptive and an adaptive one. They construct two schemes which are
provably secure in these new models. The first scheme (SSE-I) is only secure
against non-adaptive adversaries, but more efficient than the second scheme
(SSE-II), which is also secure against adaptive adversaries.

Our Contribution. In this paper we present the first conjunctive wildcard
search scheme in the symmetric setting. The scheme is proven secure against
adaptive adversaries.

Structure. The rest of the paper is organized as follows. Section 2 describes
the building blocks necessary for our constructions. We summarize the security
definitions from Curtmola et al. [8] in Section 3. For sake of simplicity we explain
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Fig. 1. Bloom filter with storage

an easy basic search scheme in Section 4.1, before we describe our new masked
index scheme in Section 4.2. We then present the wildcard add-on for our search
scheme in Section 5. Section 6 analyses the security of our masked scheme and
in Section 7 we take a look at the efficiency of the constructions. We conclude
the paper in Section 8.

2 Preliminaries

Bloom Filters. A Bloom filter (BF) [3] is a data structure which is used to
answer set membership queries. It is represented as an array of b bits which are
initially set to 0. In general the filter uses r independent hash functions ht, where
ht : {0, 1}∗ → [1, b] for t ∈ [1, r], each of which maps a set element to one of
the b array positions. For each element e in the set S = {e1, . . . em} the bits at
positions h1(e), . . . , hr(e) are set to 1. To check whether an element x belongs
to the set S, we check if the bits at positions h1(x), . . . , hr(x) are set to 1. If
so, x is considered a member of set S. Bloom filters have a possibility of false
positives, because the positions of an element may have been set by one or more
other elements. With appropriate parameters the false positive probability can
be reduced to a desired error rate.

Instead of r different hash functions we use a single HMAC-SHA1 [2, 13]
function with r different and independent keys to create a trapdoor. This allows
only legitimate users in possession of the keys to construct the correct Bloom
filter and thus to add and search documents on a server.

In our constructions we use a Bloom filter with storage, as introduced by
Boneh et al. [5]. Figure 1 shows two different versions of a Bloom filter with
storage. Our constructions use the type (b).

Pseudorandom Generators. A pseudorandom bit generator g : {0, 1}α →
{0, 1}β is a deterministic algorithm which, given a seed of length α, outputs a
binary sequence of length β � α that is computationally indistinguishable from
a random string.

Notation. Throughout this paper we use the following notation. Let D be a
document collection D = {did1 , . . . , didn

}, consisting of n documents. The size of
a document did is denoted |did |, where id is a unique document identifier. Each
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document did consists of a set of words Wid. Let Δid = u(did ) be a dictionary of
distinct words in a document did . The function u(·) extracts the unique words
of a document. The number of distinct words per document is denoted by |Δid |.
We refer to D(w) as all the document ids containing word w and the sequence
D(w1), . . . ,D(wc) as the access pattern of a client.

3 Definitions

Index Scheme. Our index schemes consist of the following four algorithms:

Keygen(s): Given a security parameter s, Keygen outputs the master private
key K. This algorithm is run by the client.

BuildIndex(K,D): Given the master key K and a document collection D, the
algorithm outputs an index I. This algorithm is run by the client.

Trapdoor(K, w): Given the key K and a keyword w, Trapdoor outputs the trap-
door Tw for w. This algorithm is run by the client.

SearchIndex(Tw, I): Given a trapdoor Tw for word w and the index I, the al-
gorithm outputs a bit string which indicates the matched documents. This
algorithm is run by the server.

3.1 Security Definitions

We use the security definitions for searchable symmetric encryption (SSE) from
Curtmola et al. [8] which we summarize in this section. For detailed information
we refer to the original paper [8].

Before stating the security definition for semantic security for SSE, we intro-
duce three auxiliary notions: the history, the view and the trace.

History. The history defines the user input to the scheme. It is an interaction
between the client and the server, which is determined by a document collection
and a set of words that the client wishes to search for (and that we wish to hide
from the adversary).

Definition 1. (History). A history Hu, is an interaction between a client and
a server over u queries, consisting of a document collection D and the keywords
wi used for u consecutive search queries. The partial history Hτ

u of a given history
Hu = (D, w1, . . . , wu), is the sequence Hτ

u = (D, w1, . . . , wτ ), where τ ≤ u.

View. The server’s view consists of all the information the server can gather
during a protocol run. In particular, the view will consist of the index (of the
document collection) and the trapdoors (of the queried words). It will also con-
tain some additional common information, such as the number of documents in
the collection and their ciphertexts. However the view should not reveal any in-
formation about the history besides the outcome and the pattern of the searches.
Let I be the index of a document collection generated under key K, and Twi ,
1 ≤ i ≤ u, be the trapdoors for the words wi queried in Hu.
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Definition 2. (View). Let D be a collection of n documents and Hu = (D,
w1, . . . , wu) be a history over u queries. An adversary’s view of Hu under secret
key K is defined as

VK(Hu) = (id1, . . . , idn, E(did1), . . . , E(didn
), I, Tw1 , . . . , Twu) .

The partial view V τ
K(Hu) of a history Hu under secret key K is the sequence

V τ
K(Hu) = (id1, . . . , idn, E(did1), . . . , E(didn

), I, Tw1 , . . . , Twτ ) ,

where τ ≤ u.

Note that K refers only to the secret key for the SSE scheme and not to the
encryption key of the documents.

Trace. The trace consists of exactly the information we are willing to leak or
that the server is allowed to learn. This information includes the identifiers of
the documents that contain each query word in the history and information
that describes which trapdoors in the view correspond to the same underlying
words in the history. The encrypted documents are also stored on the server,
so the document sizes and identifiers will be leaked. We add also the sequence
(D(w1), . . . ,D(wn)) which denotes the access pattern of a client and the search
pattern Πu of a client as any information that can be derived from knowing
whether two arbitrary searches were performed for the same word or not to the
trace. More formally, Πu can be thought of as a symmetric binary matrix where
Πu[i, x] = 1 if wi = wx, and 0 otherwise, for 1 ≤ i, x ≤ u.

Definition 3. (Trace). Let D be a collection of n documents and Hu = (D,
w1, . . . , wu) be a history over u queries. The trace of Hu is the sequence

Tr(Hu) = (id1, . . . , idn, |did1 |, . . . , |didn
|,D(w1), . . . ,D(wu), Πu) .

Semantic Security. We now present the simulation-based definition for se-
mantic security from Curtmola et al. [8]. We assume that the client initially
stores a number of documents and afterwards performs an arbitrary number of
search queries. For all queries 0 ≤ τ ≤ u, we require the simulator, given only
a partial trace of the history, to simulate the adversary on a partial view of the
same history.

Definition 4. (Adaptive Semantic Security for SSE). An SSE scheme is
adaptively semantically secure if for all u ∈ N and for all (non-uniform) prob-
abilistic polynomial-time adversaries A, there exists a (non-uniform) probabilis-
tic polynomial-time algorithm (the simulator) S such that for all traces Tru of
length u, all polynomially samplable distributions Hu over {Hu : Tr(Hu) = Tru}
(i.e., the set of histories with trace Tru), all functions f : {0, 1}m → {0, 1}v(m)

(where m = |Hu| and v(m) = poly(m)), all 0 ≤ y ≤ u and all polynomials p and
sufficiently large s:

|Pr [A (V τ
K(Hu)) = f(Hτ

u)] − Pr [S (Tr(Hτ
u )) = f(Hτ

u)]| <
1

p(s)
,
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where Hu
R←− Hu, K ← Keygen(s), and the probabilities are taken over Hu and

the internal coins of Keygen, A, S and the underlying BuildIndex algorithm.

4 Constructions

In this section we describe two index based constructions similar to Goh [10]. We
first introduce the basic construction, which stores a keyed Bloom filter index
on an untrusted server. The second construction stores a masked index on the
server side. We refer to our basic search scheme as (B) and to our masked index
search scheme as (M). Both constructions use a Bloom filter per document. The
index can thus be represented as an n× b binary matrix where n is the number
of documents and b the size of a single Bloom filter in bits. We use the words
index and matrix interchangeably.

4.1 The Basic Index Scheme

To create a searchable index, we use one Bloom filter per document. We insert
all distinct words of a document did in its Bloom filter BFid by applying the
HMAC-SHA1 function r times with r independent keys on each distinct word.
All the BFs and the encrypted documents are then stored on the server.

To search in the database a trapdoor is required. This trapdoor for finding
a specific keyword w in the database is derived by applying r times HMAC-
SHA1 on the keyword to search for. The outcome of each HMAC-SHA1 denotes
a specific position in a Bloom filter. After receiving the trapdoor, the server
looks up the columns of the index specified in the trapdoor, handles them as bit
strings and computes the bitwise AND on the columns. The resulting bit string
indicates a match with a 1 and a non-match with a 0.

Our construction consists of the following four algorithms:

Keygen(s): Given a security parameter s, generate a secret master key K =
{k1, . . . , kr}, consisting of r independent secret keys.

Trapdoor(K, w): Given the key K = {k1, . . . , kr} and a word w, calculate the
positions pt = hkt(w) for t ∈ [1, r] in a Bloom filter and output the trapdoor
Tw = {p1, . . . , pr}, where pt ∈ [1, b].

BuildIndex(K,D): The input is the master secret key K and a document collec-
tion D comprising of a set of n documents.
1. For each id ∈ [1, n], create the list of unique words Δid = u(did) and

compute for each word wi ∈ Δid:
(a) the trapdoor: Twi = {p1, . . . , pr}
(b) and set the bits at the positions Twi in BFid to 1.

2. Output the index I = (BF1, . . . , BFn)T .

We define I[p] as the column vector [BFid[p]]id∈[1,n] of the matrix I.
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SearchIndex(Tw, I): Given the trapdoor Tw = {p1, . . . , pr} for word w and the
index I, take the set of columns {I[pt]}t∈[1,r] of the matrix I. Consider each
column as a bit string and output the bitwise AND of the columns.

It is easy to see, that this construction is vulnerable to correlation attacks which
leak the similarity of documents upfront. This is because each word is represented
by the same r positions in all Bloom filters. Another disadvantage of Bloom
filters is the fact, that the number of 1’s is dependent on the number of entries,
in this case the number of distinct keywords per document. As a consequence,
the scheme gives a good guess on the number of keywords in each document. To
conceal this information we can use padding, where we add random strings to
a documents distinct word list, so that the number of entries per BF is equal.
To gain a higher level of security we mask the index before it is stored on an
untrusted server as seen in the next section.

4.2 The Masked Index Scheme

To mask the index we use a pseudorandom generator g(KG, p, id) which takes a
secret generator key KG and the exact position of the bit to mask in the matrix
(p, id) as input.

Our construction consists of the following four algorithms:

Keygen(s): Given a security parameter s, generate a secret master key K =
〈KH , KG〉, with KH = {kt}t∈[1,r] being r independent keys to compute the
HMAC and KG ∈ {0, 1}∗ the key for the pseudorandom generator.

Trapdoor(KH , w): Given the key KH = {k1, . . . , kr} and a word w, output the
trapdoor Tw = {p1, . . . , pr}, where p ∈ [1, b].

BuildIndex(K,D): The input is the master secret key K and a document collec-
tion D comprising of a set of n documents.
1. For each id ∈ [1, n], create the list of unique words Δid = u(did ) and

compute for each word wi ∈ Δid :
(a) the trapdoor: Twi = {p1, . . . , pr}
(b) and set the bits at the positions Twi in BFid to 1.

2. Create the index I = (BF1, . . . , BFn)T .
3. For each position BFid [p], with p ∈ [1, b], compute g(KG, p, id) and create

the masked index

M[p][id ] = {I[p][id ] ⊕ g(KG, p, id)} .

4. Output the masked index M.

SearchIndex(Tw,M): Given the trapdoor Tw = {p1, . . . , pr} for word w and the
masked index M, send the set of columns {M[pt]}t∈[1,r] of the matrix M to
the client. The client computes the set of decrypted columns

I[pt][id ] = {M[pt][id ] ⊕ g(KG, pt, id)}t∈[1,r] ,
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and outputs the bitwise AND of the columns. The resulting bit vector indi-
cates the matched documents.

This interactive construction allows a user to decide which documents from the
list of matched documents she wants to retrieve. By having a two-round protocol
the scheme becomes more flexible. This is comparable with an internet search,
where the search engine gives a list of results and the user can decide, which
sites to download/visit. Most of the times not all of the matching documents
are interesting for a user. By downloading only the desired documents, instead
of all the matched documents, we do not produce unnecessary traffic. This is
important for mobile users with limited bandwidth or expensive data usage fees.

4.3 Properties

Boolean Queries. As an additional feature our scheme supports conjunctive
search queries, which means a boolean AND combination of two or more key-
words. This is done by sending the union of several trapdoors to the server,
which then sends back the result associated to those keywords. The resulting bit
string indicates the documents including all of the searched words.

Secure Updates. Our search scheme supports efficient and secure updates on
a document collection D, in the sense that the client is able to Add and Delete
documents from the database. A document is added by simply running the
BuildIndex algorithms with the new documents as input. The resulting index can
then be appended to the existing index stored on a server. To delete a document
in our constructions, the document and the corresponding row of the index can
be deleted from the server.

Adding a document can be done with the following algorithm:

Add(K,D): This Algorithm is equal to BuildIndex. The resulting index is ap-
pended to the existing index.

Deleting a document in the unmasked index scheme can be done with the
following algorithm:

Delete(id): Given a document id , delete did and BFid from the server.

Complexity. The complexity of an update operation (add, delete) depends on the
number of documents processed. The communication overhead is O(n), where
n is the number of documents U wants to add. Per document U has to transfer
the Bloom filter of size b bit to the server. To delete a document in our schemes,
U can simply delete the document and the corresponding row from the index by
sending the id to the server.

Security. During an update operation, U reveals only the number of documents
processed. The newly added BFs look like random strings.
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5 Wildcard Add-On

In this section we introduce a simple wildcard add-on that can be used with most
search schemes. The main idea behind our wildcard search is to pre-process the
words that will be inserted into the index: for each distinct word we create all
the wildcardified variants of the word as shown in Algorithm 1. The individual
characters of a word are denoted by wi[j]j∈[1,λ] where wi[x : y] denotes the
characters x to y.

For example, the keyword flower will be represented in a single wildcard
scheme as {flower, *flower, flower*, *lower, . . ., flowe*, *ower, . . .,
flow*, *wer, f*er, fl*r, flo*, *er, f*r, fl*, *r, f*}. Thus all possi-
ble variations of the word are created.

The number of all these single wildcard combinations per distinct word is
computed by ⎛

⎝ λ∑
j=1

j

⎞
⎠ + 2 =

λ(λ + 1)
2

+ 2,

where λ is the length of the word wi.

Algorithm 1. Algorithm for Wildcardifying Words
Input: A word wi

Output: Ωi: all wildcardified versions of the word wi

1: wild carded words = [wi, ∗wi, wi∗]
2: for wild card size = 1 to wordLength do
3: for v = 1 to (wordLength - wild card size +1) do
4: wild carded words.append(wi[1 : v] + ∗ + wi[v + wild card size : λ])
5: end for
6: end for

For our wildcard search scheme we insert not only the keywords, but all the
wildcardified versions of a word into the index. Hence the scheme transforms the
problem of a wildcard search into a lookup for an exact match. The scheme still
supports conjunctive search queries.

Example 1. A search for the word chin* will return all the document ids con-
taining a word starting with chin*, like china, chinatown, chinaware, chinchilla,
chine, chinese, chinked, chinless, ... .

Multiple Wildcards. If desired, it is possible to add multiple wildcards at the
cost of more pre-processing and server storage space. Thus it is possible, to add
the support for two or more wildcards (e.g., *owe* or f*o*r).
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6 Security Proof

We now provide the security proof for our masked index scheme. At this point
we do not take updates and conjunctive queries into account. HMAC-SHA1 is
used as the hash function for the Bloom filter. Bellare [1] proved, that HMAC
is a pseudorandom function.

Theorem 1. If h and g are secure pseudorandom functions, our masked search
scheme described in Section 4.2 including the wildcard add-on explained in Sec-
tion 5 is an adaptively secure SSE scheme.

Proof. Let u ∈ N, and let A be a probabilistic polynomial-time adversary. We de-
scribe a probabilistic polynomial-time simulator S such that for all polynomially-
bounded functions f and all distributions Hu, S can simulate the partial view
of an adversary A(V τ

K(Hu)) given only the trace of a partial history Tr(Hτ
u ) for

all 0 ≤ τ ≤ u with probability negligibly close to 1. For all 0 ≤ τ ≤ u, we show
that S(Tr(Hτ

u )) can generate a simulated view Vτ
u that is indistinguishable from

V τ
K(Hu). Let

Tr(Hτ
u ) = (id1, . . . , idn, |did1 |, . . . , |didn

|, b,D(w1), . . . ,D(wτ ), Πτ ).

be the trace of an execution after τ search queries and let Hu be a history
consisting of u search queries such that Tr(Hu) = Tru. The simulator S works
as follows:

With the information from the trace, S chooses n random values R1, . . . , Rn

such that |Ri| = |di| for all i = 1, . . . , n. S also includes the document identifiers,
known from the trace, in the partial view. Then the simulator S generates a
simulated index M = (B1, . . . , Bn)T with random Bi ∈ {0, 1}b, for i ∈ [1, n]. M
will be included in all partial views Vτ

u used to simulate A. Next S simulates the
trapdoor for query τ, (1 ≤ τ ≤ u) in sequence. If Πτ [j, τ ] = 1 for some 1 ≤ j < τ
set Tτ = Tj . Otherwise S picks a random value rnd , calculates pt = hkt(rnd)
for t ∈ [1, r] and sets Tτ = {p1, . . . , pr}, such that for 1 ≤ j < τ, Tτ �= Tj. Then
S constructs for all τ a simulated view

Vτ
u = (id1, . . . , idn, E(R1), . . . , E(Rn), M, T1, . . . , Tτ ) ,

and eventually outputs A(Vτ
u). We now claim that Vτ

u is indistinguishable from

V τ
K(Hu) = (id1, . . . , idn, E(did1), . . . , E(didn),M, T1, . . . , Tτ ) .

Therefore we state that for all i ∈ [1, n], id i in V 0
K(Hu) and V0

u are iden-
tical and thus indistinguishable. Also, E(·) is a semantically secure encryp-
tion algorithm, thus E(di) is indistinguishable from E(Ri) of the same length.
Given the BuildIndex algorithm, it is clear that M is indistinguishable from
M. Otherwise one could distinguish between a random string B of size b and
[BF [p]⊕g(KG, p)]p∈[1,b], the bitwise XOR of a Bloom filter of size b and the out-
put of the pseudorandom generator g(·). It is easy to see that the trapdoors are
indistinguishable, otherwise one could distinguish hk(Ω) from hk(rnd). Thus,
Vτ

u is indistinguishable from V τ
K(Hu), for all 0 ≤ τ ≤ u. ��
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Updates. In our scenario, intermixing queries and updates is equivalent to first
update and then query. Incremental updates can be aggregated to one BuildIndex
over a larger document set. Thus we can proceed with the proof of Theorem 1.

Conjunctive Queries. The above proof also holds if we search for a conjunctive
set of words. Imagine that we substitute the words w0 and w1 with the two sets
(w0,1, . . . , w0,l) and (w1,1, . . . , w1,l). Then proceed with the proof of Theorem 1.

Stronger Security. Note that to gain a higher level of security it is possible
to split the large Bloom filter into several smaller parts and store the parts on
different non communicating servers. Another way of increasing the security by
not revealing the access pattern is to store the index and the documents on two
different non communicating servers.

7 Performance

We now consider the efficiency of our constructions where the efficiency is mea-
sured in terms of the computation, communication and space complexity.

Computational Complexity. Table 2 shows the efficiency of our schemes com-
pared to others in terms of computational complexity. The Trapdoor, BuildIndex
and SearchIndex columns describe the computational complexity of the algo-
rithms. The column Server gives the computation on the server side, whereas
Client shows the computational complexity on the client.

The Trapdoor algorithm is a constant time operation. The BuildIndex algorithm
has to process each distinct word per document. Thus the complexity is O(n|Δ|).
Because the index is stored as a Bloom filter with storage (see Figure 1(b)), the
SearchIndex algorithm is a simple table lookup and takes time O(1). However the
table lookup does not give us the result of the query. Thus after a basic index
search the server has to compute a bitwise AND of the matrix columns labelled
by the trapdoor, which is a O(n) operation. With the masked index the server
is not able to compute the result and has to send the matrix columns to the
client, which is then able to decrypt the columns by an XOR operation and then
performs the AND on the unmasked columns. Thus the client computation is
O(n). Note that in both of our schemes the server and client computations are
AND and/or XOR operations and thus are efficient. Table 2 shows that in the
big O notation the scheme of Curtmola et al. is more efficient than our schemes
but in practice n AND operations are more efficient than |D(w)| encryptions.

The scheme of Song et al. (SWP) [16] does not use an index. Thus the BuildIn-
dex field is marked with a “-”. The SearchIndex algorithm denotes the search
through the encrypted documents. In the SWP scheme all the words per docu-
ment have to be searched and so the complexity is O(nq) where n is the number
of documents and the q the number of words per document.

Communication and Space Complexity. Table 3 compares the space com-
plexity of different search schemes. Index describes the storage space for the
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Table 1. Number example of communication and space complexity. Parameters: Key-
words to search = 1000, average word length = 5, FP-rate = 0.01, k = 6, b = 153000.

Documents Index Trapdoor Result

1000 18.24 MB 108 b 750 B
5000 91.21 MB 108 b 3.66 kB
10000 182.42 MB 108 b 7.32 kB

Table 2. Computational performance of different search schemes, where n is the num-
ber of documents in the database and q the number of words per document. The
number of distinct words per document is denoted by |Δ| and |D(w)| denotes the num-
ber of documents containing the keyword w. The number of all distinct words in the
database is denoted by |Wdb|. The asterisk ∗ denotes a bitwise AND and/or XOR. The
two asterisks ∗∗ refer to the use of a so-called FKS dictionary introduced by Fredman
et al. [9].

Scheme Trapdoor BuildIndex SearchIndex Server Client

SWP [16] O(1) O(nq) O(nq) O(nq) O(|D(w)|q)
Goh [10] O(1) O(n|Δ|) O(n) O(n) O(1)
CM2 [7] O(log |Wdb|) O(n|Δ|) O(n) O(n) O(1)
SSE-1 [8] O(1) O(n|Δ|) O(1)∗∗ O(|D(w)|) O(1)

Our (M) O(1) O(n|Δ|) O(1) O(1) O(n)∗

Table 3. Communication and space complexity of different search schemes, where n
is the number of documents in the database and |D(w)| the number of documents
containing the keyword w. The total size of the plaintext document collection in units,
where a unit is the smallest possible size for a word, is denoted by m and the number
of all distinct words in the database is denoted by |Wdb|.

Scheme Index Trapdoor Result

SWP [16] - O(1) O(|D(w)|)
Goh [10] O(n) O(1) O(n)
CM2 [7] O(n) O(1) O(n)
SSE-1 [8] O(m) + O(|Wdb|) O(1) O(|D(w)|)
Our (M) O(n) O(1) O(n)

index on the server side. The Trapdoor column shows the size of a trapdoor and
the Result column describes the size of the results that have to be transferred
to the client. In both of our schemes the index can be seen as a n × b-matrix,
where n is the number of documents and b the size of the Bloom filter. Thus the
server has to store nb bits, where b is a constant. The trapdoor has a constant
size O(1) and the size of the result vector is O(n) because it is dependent on the
number of documents in the database.
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Example 2. Assume a user who wants to search for 1000 keywords. The average
word length in the English language is 5 characters per word. Thus we end up
with 17,000 wildcardified words. To achieve a false positive rate of 0.01, we set
k = 6 and b = 153000. The resulting sizes for different document collections can
be found in Table 1.

8 Conclusion

We examined the problem of wildcard searches over encrypted data in the sym-
metric setting and proposed a searchable encryption scheme similar to Goh [10]
which supports wildcards that can be either any single character or a string of
characters inside a word. The scheme also supports conjunctive search queries
with any number of keywords. We proposed two variants of our scheme which
differ in the security of the index and the communication overhead. The first
scheme is more efficient in terms of computation and communication, while the
second scheme is more secure in the sense that we leak less information about
the index. Our masked scheme is proven secure against adaptive adversaries.
Our schemes are more efficient than previous search schemes and are practical
to use in real world applications.

References

1. Bellare, M.: New Proofs for NMAC and HMAC: Security Without Collision-
Resistance. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 602–619.
Springer, Heidelberg (2006)

2. Bellare, M., Canetti, R., Krawczyk, H.: Keying Hash Functions for Message Au-
thentication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15.
Springer, Heidelberg (1996)

3. Bloom, B.H.: Space/Time Trade-Offs in Hash Coding with Allowable Errors. Com-
mun. ACM 13(7), 422–426 (1970)

4. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public Key Encryption
with Keyword Search. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

5. Boneh, D., Kushilevitz, E., Ostrovsky, R., Skeith III, W.E.: Public Key Encryption
that Allows PIR Queries. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622,
pp. 50–67. Springer, Heidelberg (2007)

6. Boneh, D., Waters, B.: Conjunctive, Subset, and Range Queries on Encrypted
Data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer,
Heidelberg (2007)

7. Chang, Y.-C., Mitzenmacher, M.: Privacy Preserving Keyword Searches on Remote
Encrypted Data. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005.
LNCS, vol. 3531, pp. 442–455. Springer, Heidelberg (2005)

8. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable Symmetric Encryp-
tion: Improved Definitions and Efficient Constructions. In: CCS 2006: Proceedings
of the 13th ACM Conference on Computer and Communications Security, pp. 79–
88. ACM, New York (2006)



Conjunctive Wildcard Search over Encrypted Data 127
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Abstract. Database queries present a potential privacy risk to users,
as they may disclose sensitive information about the person issuing the
query. Consequently, privacy preserving query processing has gained sig-
nificant attention in the literature, and numerous techniques have been
proposed that seek to hide the content of the queries from the database
server. Secure hardware-assisted private information retrieval (PIR) is
currently the only practical solution that can be leveraged to build al-
gorithms that provide perfect privacy. Nevertheless, existing approaches
feature amortized page retrieval costs and, for large databases, some
queries may lead to excessive delays, essentially taking the database
server offline for large periods of time. In this paper, we address this
drawback and introduce a novel approach that sacrifices some degree of
privacy in order to provide fast and constant query response times. Our
method leverages the internal cache of the secure hardware to constantly
reshuffle the database pages in order to create sufficient uncertainty re-
garding the exact location of an arbitrary page. We give a formal defi-
nition of the privacy level of our algorithm and illustrate how to enforce
it in practice. Based on the performance characteristics of the current
state-of-the-art secure hardware platforms, we show that our method can
provide low page access times, even for very large databases.

1 Introduction

Internet users are becoming increasingly wary of the potential privacy risks as-
sociated with their everyday online activities. Web search engines, for example,
maintain detailed logs of every query that they receive. However, with sophisti-
cated data mining techniques, these query logs can reveal sensitive information
about a user’s lifestyle, health, habits, etc. [4,15]. Similarly, the emergence of
location based services (LBS) allows mobile users to browse points of interest
(e.g., restaurants) in their surroundings. Since these queries are also logged at
the LBS provider, a user’s location over a period of time can be tracked with
very high accuracy [23].

Clearly, ordinary database queries involve an inherent privacy risk for users
and, as a result, privacy preserving query processing is an emerging research
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field in the database community. A popular approach that enhances the level of
privacy in certain applications, is anonymity. The central principle of anonymity
is to inject sufficient noise into a query, so that the user has plausible deniability
over the exact content of the query. For instance, the client could combine the real
query with several dummy ones (that are typically unrelated) or alter slightly the
query parameters. Algorithms based on anonymity have been proposed for both
text search engines (e.g., [21,22]) and location based services (e.g., [3,8,16,20]).
However, since the database server has access to the plaintext queries, it may be
able to determine the real content of a query using background knowledge (e.g.,
detailed information about a specific user).

Data encryption is another technique that can be leveraged to hide the con-
tent of a query. In this scenario, the server interacts with an encrypted version
of the original database. Queries are also encrypted in a similar fashion and,
thus, the server can not deduce any information about the query content. Re-
search work is this area has focused on developing efficient encryption algorithms
that facilitate exact query processing at the server side [1,2]. The limitation of
encryption schemes, however, is that two identical queries always produce the
same encrypted result. Consequently, if the server has knowledge of the access
patterns of the database records (i.e., their relative popularities), it can extract
some information about a query through the records included in the result set.

Private information retrieval (PIR) is the only solution available that can be
leveraged to build algorithms that provide perfect privacy. In particular, PIR
protocols [7] allow a client to retrieve any record from a database, while making
it impossible for a computationally bounded server to determine which record
was retrieved. Note that, when PIR is employed, the server cannot perform the
actual query processing. Instead, the client accesses (privately) the disk-resident
index structure at the database server and resolves the query locally through
a series of PIR retrievals [23]. Currently, secure hardware-assisted PIR is the
only practical PIR construction. It is implemented on top of a tamper-resistant
CPU (secure hardware), which acts as a proxy between the server and the clients.
Nevertheless, existing approaches feature amortized page retrieval costs, because
they necessitate periodic reshuffle operations on the database. As a result, some
queries may lead to excessive delays, essentially taking the database server offline
for large periods of time.

In this paper, we address this drawback and introduce a novel approach that
sacrifices some degree of privacy in order to provide fast and constant query
response times. The goal is to design a system that balances the trade-off between
computational cost and privacy guarantees. In other words, we aim to provide
a much stronger notion of privacy compared to anonymity or encryption based
schemes, but with a computational cost that is considerably lower compared
to existing PIR techniques. Such a system would benefit applications that do
not require perfect privacy, but are instead satisfied with a sufficient level of
uncertainty.

Our algorithm initially encrypts and obliviously permutes the database pages.
Each page is then retrieved efficiently by accessing (through the secure hardware)
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its encrypted version from the server’s disk. To further enhance the privacy of
our approach, we introduce a randomized algorithm that constantly reshuffles
the underlying pages in order to create sufficient uncertainty regarding the exact
location of an arbitrary page. The algorithm works by randomly moving every
requested page to a new location on the disk. In particular, it leverages a built-in
cache at the secure hardware that stores a fixed number of previously retrieved
pages. Reshuffling occurs during each page request, with a random page from the
cache being written to a new location on the disk. We give a formal definition
of the privacy level of this approach and illustrate how to enforce it in practice.
Based on the performance characteristics of the current state-of-the-art secure
hardware platforms, we show that our method can provide low page access times,
even for very large databases. In summary, the contributions of our work are the
following.

– We propose a novel architecture, based on state-of-the-art secure hardware,
that reduces significantly the cost of private page retrievals compared to
existing PIR based techniques.

– We formally define the privacy level of our approach and use analytical
models to derive the corresponding security parameter.

– We evaluate the performance of our method, using (i) analytical results from
a secure hardware deployment and (ii) measurements from a software imple-
mentation. We show that, given sufficient secure storage capacity, our system
can achieve sub-second query response times, even for TB-sized databases.

The remainder of this paper is organized as follows. Section 2 reviews previous
work on database privacy and private information retrieval techniques. Section 3
describes the architecture of our approach and outlines the underlying adversar-
ial model. Section 4 introduces our private page retrieval algorithm and Section
5 presents the analytical results from a secure hardware implementation. Finally,
Section 6 concludes the paper.

2 Related Work

PIR was first introduced by Chor et al. [7], and is formally defined as follows.
The server holds a database, which is assumed to be a binary string X of length
n. The client wants to retrieve the i-th bit (xi) of the database, without the
server knowing the value of the index i. In general, PIR protocols can be classi-
fied into three main categories: information theoretic, computational, and secure
hardware.

First, information theoretic PIR [5,7,12,27] ensures that the query discloses
no information about the retrieved bit, even if the server has unbounded com-
putational power. However, these protocols are not practical, as they require
that the database be replicated into k non-colluding servers. On the other hand,
computational PIR protocols [6,10,18,19] work with a single server, and employ
well known cryptographic primitives that guarantee query privacy for a compu-
tationally bounded server. Nevertheless, these protocols are extremely expensive
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for large databases, as they require at least one modular multiplication for every
bit of the database.

Finally, secure hardware PIR [14,24,25,26] relies on a tamper resistant CPU
(located at the server side), which acts as a proxy between the clients and the
server. These protocols are significantly faster than computational PIR, because
they do not need to scan the whole database for every query. Wang et al. [24]
utilize the internal storage of the secure hardware that can hold k out of n
database pages. Every request inserts a new page into the secure storage and,
when the storage capacity is reached, the database is reshuffled. Therefore, the
amortized computational cost of this approach is O(n/k). Ref. [14,25,26] lever-
age the Oblivious RAM model [13], which arranges the database pages into
a pyramid-like structure. To achieve access pattern privacy, (i) every level of
the structure is accessed during a page retrieval and (ii) the pyramid levels
are periodically reshuffled by the secure hardware. Iliev and Smith [14] propose
a method with O(

√
n log n) amortized computational cost, while Williams and

Sion [25] improve this amortized cost to O(log2 n). Currently, the state-of-the-art
approach is due to Williams et al. [26], and provides an amortized logarithmic
computational cost of O(log n log log n). However, due to the periodic reshuffling
of the pyramid levels, the response time of a single PIR retrieval may vary from
hundreds of milliseconds to thousands of seconds (as illustrated in [26]).

PIR based solutions have been explored previously in the context of spatial
nearest neighbor queries. In particular, Khoshgozaran et al. [17] and Papadopou-
los et al. [23] utilize secure hardware protocols, while Ghinita et al. [11] employ
an expensive computational PIR algorithm [18]. Ref. [23] is a more general and
comprehensive study on the applicability of PIR protocols on multi-level index
structures. The authors introduce a solution that provides perfect privacy, and
also present a detailed experimental evaluation based on secure hardware [25]
simulations. Their results show that query processing may require tens of sec-
onds, even for moderate databases, due to the large number of PIR retrievals on
the underlying disk-resident index structures. Motivated by this fact, we propose
an alternative approach that sacrifices some degree of privacy in order to reduce
significantly the query processing cost.

3 Preliminaries

Section 3.1 describes the basic architecture of our approach and Section 3.2
outlines the underlying threat model.

3.1 System Architecture

Figure 1 illustrates the proposed system architecture. The secure hardware is
a tamper resistant CPU, such as the IBM 4764 PCI-X secure coprocessor1. It
is attached at the server machine, but it can be trusted to operate without

1 http://www-03.ibm.com/security/cryptocards/pcixcc/overview.shtml
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any interference from the server. Specifically, it includes tamper detecting and
responding circuitry that, in the event of an attack, destroys all the critical
keys and certificates. The secure hardware incorporates an internal cache (up to
64MB for the IBM 4764 secure coprocessor) that is inaccessible by the server,
and also has direct access to the server’s disk.

Client
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Server

Secure
Hardware

Disk

22

Encrypted
pages

Cache

0

1

2

3

99

57

99
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14
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Fig. 1. System architecture

Note that the secure hardware is only necessary in the three-party query-
ing model, i.e., when any client (including the adversary) is allowed to query
the database server. Nevertheless, our methods are also applicable in the two-
party querying model. The two-party model applies to the database outsourcing
paradigm, where the data owner is the only client that accesses the database.
In this setting, the owner outsources its data to a third-party service provider
and wishes to access these data in a private manner. Since the data owner is
the sole client in this architecture, there is no need for a secure hardware plat-
form at the service provider. Instead, the functionality of the secure hardware
can be implemented entirely at the owner’s side (physically isolated from the
adversary), using any standard server configuration. We explore the feasibility
of this approach in Section 5.

In our problem formulation, we consider a database consisting of n pages
(Table 1 summarizes the symbols used throughout the paper). Each page is a
tuple 〈id, data〉, where the id attribute uniquely identifies the page. Prior to
query processing, the secure hardware encrypts and obliviously permutes the
database pages. It utilizes a symmetric-key encryption algorithm, such as AES
[9], and the encryption key is secret from both the database server and the clients.
Clients communicate with the secure hardware via secure SSL connections. A
client query Q(i) is simply a request to retrieve the page with id = i from the
database (we assume pages are assigned id values ranging from 0 to n − 1).
To facilitate query processing, the secure hardware stores in its cache a look-up
table that maps each page id to its actual position on the disk. After identifying
the corresponding position, the secure hardware retrieves the page from the disk,
decrypts it, and finally transmits it to the client via the secure connection.
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Table 1. Summary of symbols

Symbol Description

n Database size (number of pages)

k Block size (number of pages)

T Number of blocks in database (= n/k)

m Cache capacity (number of pages)

B Page size (bytes)

To provide perfect query privacy, previous approaches apply periodically an
oblivious permutation algorithm to reshuffle the database pages. Note that, after
the reshuffling operation, every database page has an equal probability (= 1/n)
of landing in any of the n available locations. Consequently, any query that
accesses a new page from the disk becomes indistinguishable from any other
query. In this work, we aim to relax this stringent constraint and allow pages to
land in different disk locations according to a non-uniform distribution. Unlike
prior methods, we do not reshuffle the entire database at once; instead, during
each request instant, one previously retrieved page (that resides temporarily
inside the cache) is relocated to a new position on the disk. In particular, for
any value c ≥ 1, we introduce the notion of c-approximate PIR as follows.

Definition 1. A scheme provides c-approximate PIR if, after moving a single
page p to a new location on the disk and for any pair of disk locations li, lj, the
probability of p landing in location li is at most c times larger than the probability
of landing in location lj.

The value c is the privacy parameter of our approach, as it determines the
variability of the distribution that models the individual page relocation process.
Smaller values of c result in better privacy, while the case c = 1 offers perfect
privacy (i.e., equivalent to PIR).

3.2 Adversarial Model

We assume that the adversary is the server itself, and its goal is to derive any
non-trivial information regarding the id of a requested page. Because of the un-
derlying secure SSL connections, both the client queries and the generated replies
are unreadable by the server. Nevertheless, the server can see the accessed loca-
tions on the disk and has knowledge of all the algorithms that are implemented
inside the secure hardware. We also assume that the server can only perform
polynomial time computations and is “curious but not malicious” (i.e., it will
not tamper will the actual data).

4 Private Page Retrieval Algorithm

Section 4.1 describes the page retrieval algorithm, while Section 4.2 provides
an analytical model that quantifies its privacy level. Section 4.3 illustrates the
database update procedure.
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Fig. 2. Data structures at the secure hardware

4.1 Algorithm

Our approach leverages the built-in cache at the secure hardware to obliviously
mix a pool of database pages and copy them into random positions on the disk.
We assume that the cache can store a total of m pages and employs a randomized
cache replacement policy. Note that the purpose of the cache is not to improve
the page retrieval time, but to facilitate this continuous page reshuffling process.

During each page request, the algorithm retrieves a fixed number of k+1 pages,
where k is the security parameter. In particular, the secure hardware initially
reads (in a round-robin manner) a block of k contiguous pages. Specifically, on
the first request it accesses the database pages at locations 0 through k−1, next
the pages at locations k through 2k − 1, etc. The (k + 1)-th page that is read is
either the page requested by the client or a random one (the detailed algorithm
is explained shortly). The reason for reading multiple pages is to guarantee
that any cached page has a non-negligible probability of being written to any
location on the disk (discussed in Section 4.2). If n is not a multiple of k, the
secure hardware inserts an appropriate number of dummy pages during the initial
reshuffling stage.

Figure 2 shows the data structures maintained at the secure hardware. First,
the cache is implemented as a vector (pageCache) holding m database pages.
pageMap is a vector of size n and corresponds to the look-up table for all the
database pages. Each entry in pageMap is a tuple 〈inCache, position〉. Attribute
inCache uses a single bit that, when set, indicates that the corresponding page
is stored inside the cache. Attribute position is an integer value that has a dual
interpretation: if inCache = 1, it represents the index in the pageCache vector
where the page is stored; otherwise, it identifies the location of that page at
the server disk under the current permutation order (see Figure 2). Finally,
serverBlock is the vector (of size k + 1) that temporarily stores the pages that
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Retrieve(i)

// read next block (of size k) in a round-robin fashion
1: serverBlock[0..k − 1] ← read(nextBlock)
2: if (pageMap[i].inCache or i ∈ serverBlock)

// select a random page that is not cached
// and is not retrieved in serverBlock

3: do
4: p ← random(0, n − 1)
5: while (pageMap[p].inCache or p ∈ serverBlock)
6: if (pageMap[i].inCache)
7: result ← pageCache[pageMap[i].position]

// else use requested page
8: else
9: p ← i

// read page p from the disk
10: serverBlock[k] ← read(pageMap[p].position)

// decrypt all pages in serverBlock
11: decrypt(serverBlock)
12: if (!pageMap[i].inCache)
13: q ← index of page i in serverBlock
14: result ← serverBlock[q]
15: else
16: q ← k

// select a random page from the block
17: r ← random(0, k − 1)
18: swap(serverBlock[r], serverBlock[q])

// select random page from cache
19: s ← random(0, m − 1)
20: swap(pageCache[s], serverBlock[r])

// re-encrypt all pages in serverBlock (with a new nonce)
21: encrypt(serverBlock)

// write updated pages at the disk
22: write(serverBlock)

// update pageMap (3 pages)
23: update(pageMap[pageCache[s]])
24: update(pageMap[serverBlock[r]])
25: update(pageMap[serverBlock[q]])

// send page i to the client over the SSL connection
26: return result

Fig. 3. The page retrieval algorithm

are written to or read from the disk. In the sample configuration of Figure 2,
n = 100, m = 10, and k = 4.

The page retrieval algorithm is shown in Figure 3, and operates as follows.
First, the client sends a query to the secure hardware, containing the id of the
required page (e.g., page i). The secure hardware then reads and stores into
serverBlock the next block of k pages, according to the round-robin schedule.
Next, it accesses pageMap[i] and identifies the current location of that page. If
page i is located at the server and is not included in the serverBlock vector,
the page is retrieved from the corresponding location on the disk and stored
into serverBlock. If, on the other hand, page i is included in the serverBlock
vector, the secure hardware selects a random page from the database that is not
currently cached or stored into serverBlock.

Subsequently, the secure hardware decrypts all k+1 pages in serverBlock and
extracts the requested page. It then selects a random page from the cache and
replaces it with the newly requested page i. Similarly, the cached page is copied
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into serverBlock, overwriting page i. However, to ensure that the cached page
is moved to any of the k locations in the read block (corresponding to the first k
pages in serverBlock) with equal probability, the requested page initially swaps
places with a random page in the block (line 18). Next, the pages in serverBlock
are re-encrypted with a new random nonce, and are eventually transferred back
to the server’s disk. Finally, the secure hardware modifies the necessary entries
(for the swapped pages) at the pageMap vector.

In the case where the requested page produces a cache hit, the secure hardware
retrieves a random page p from the disk and repeats the same steps as above,
i.e., as if page p was requested by the client. To summarize, during every query,
the requested page (or a random page, in the case of a cache hit) is stored into
the cache and a random page from the cache is moved to one of the k locations
in the block that was accessed as part of that request. Note that, due to the
randomized cache replacement policy, a certain cached page may be evicted
while it is being requested by the client. Also, to avoid timing attacks, a cached
page is not returned immediately to the client, because that would reveal the
cache hit to the adversary.

4.2 Security Analysis

The page retrieval algorithm works by spreading the accesses for a single page
over multiple disk locations. Once a page is requested and moves into the cache,
it will be relocated to a new position during a subsequent request. Consequently,
an adversary can only track probabilistically the location of an arbitrary page
within the server’s disk. Our goal is to properly adjust the block size k, in order
to meet the privacy requirements of the c-approximate PIR definition (Section
3.1).

Consider a sequence of client requests at instants t = 0, 1, 2, . . .. Assume that
page p is copied into the cache during a client request at t = 0. Then, the
probability that it moves back to the disk at time t ≥ 1 is computed as:

P t =
(

1 − 1
m

)t−1

· 1
m

(1)

Therefore, if the secure hardware accesses a set of k locations (from a single
block) Lt = {l1, l2, . . . , lk} during the request at time t, the probability that
page p is relocated to position lj (1 ≤ j ≤ k) is equal to:

P t
p→lj =

(
1 − 1

m

)t−1

· 1
m

· 1
k

(2)

The value k is the security parameter of our approach, since it controls the time
interval T = n/k (given as number of requests) that is required to scan every
location on the disk exactly once through the round-robin schedule. Note that
Equation (2) is a monotonically decreasing function, so the k locations that are
accessed at t = 1 have the highest probability of hosting page p. Specifically, for
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the locations lj ∈ L1, the probability that p is relocated there is:

P 1
p→lj =

∞∑
i=0

(
1 − 1

m

)T ·i
· 1
m

· 1
k

(3)

Similarly, the locations lj ∈ LT have the lowest probability of storing page p:

PT
p→lj =

∞∑
i=0

(
1 − 1

m

)(i+1)·T−1

· 1
m

· 1
k

(4)

Consequently, the value of k can be determined by setting

P 1
p→lj

PT
p→lj

=
1(

1 − 1
m

)T−1
=

1(
1 − 1

m

)n
k −1

= c (5)

Solving the above equation, we get:

k =
n

log(1/c)
log(1−1/m) + 1

(6)

Note that, the value c = 1 corresponds to the trivial case of PIR, i.e., when the
whole database is read for every request (k = n). On the other hand, a value
such as c = 2 would indicate that any location is at most twice as likely to
host a previously cached page as any other location on the disk. For a given
database size n and privacy parameter c, the value of the security parameter k
is determined by the available cache capacity. As evident in Equation (5), for a
fixed value of T , the privacy parameter c converges towards 1 as the value of m
increases.

4.3 Database Updates

A final remark concerns the handling of database updates in our system archi-
tecture. Similar to query processing, the database owner interacts only with the
secure hardware through a secure SSL connection. Our system can handle triv-
ially any type of updates, including insertions, deletions, and page modifications.
In particular, every database update is treated as a regular query, i.e., the secure
hardware (i) retrieves k + 1 pages from the disk, (ii) swaps one page from the
cache with one of the retrieved pages, and (iii) writes the k + 1 pages back to
the disk after re-encrypting them. Consequently, the type of update operation
performed on the database is kept secret from the server.

Deletions are handled as cache hits, i.e., the (k + 1)-th page is selected ran-
domly. Additionally, if the deleted page is stored inside the cache, it is always
selected to swap positions with one of the k pages in the block. Finally, the
position attribute of the pageMap entry for that page is set to a reserved value
(e.g., all 1’s) that signifies the deletion event. Note that, if there are numerous
page deletions on the database, the owner may choose to reshuffle (offline) the
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whole database in order to physically remove the deleted pages. Page modifica-
tions are handled as regular queries, i.e., they can either produce a cache hit (if
the page is stored inside the cache) or a cache miss. In any case, the original
page is replaced with the new version.

To handle insertion operations, the secure hardware should reserve in advance
sufficient storage space in its internal data structures. Therefore, during the
initial reshuffling stage, the secure hardware should create numerous dummy
pages that may be utilized to store the newly inserted pages. These pages are
marked as deleted, so pages that are explicitly deleted by the data owner may
serve the same purpose as well. When a new page is created in the database, the
secure hardware accesses the next block of k pages as usual. However, the (k+1)-
th page is always a deleted page. The newly inserted page is then stored inside
the cache, replacing one of the pages therein. Finally, the deleted page swaps
positions with one of the k locations of the retrieved block, and the evicted page
is copied over the deleted page.

5 Secure Hardware Deployment

In this section we analyze the storage requirements and query processing cost
of our methods in a secure hardware deployment. Our analysis is based on the
configuration shown in Table 2, which is similar to the ones assumed in related
studies [23,25].

Table 2. System specifications

Parameter Value

Secure hardware cache 64MB

Disk seek time (ts) 5ms

Disk read/write (rd) 100 MB/s

Secure hardware link bandwidth (rb) 80 MB/s

Encryption/decryption (red) 10 MB/s

Secure Storage Requirements. The page retrieval algorithm necessitates the
storage of the three vectors depicted in Figure 2, inside the secure hardware
cache. Given a database of n pages, each of size B bytes, the pageCache vector
stores exactly m pages, thus consuming m · B bytes. The serverBlock vector
stores the k + 1 pages that are read from the server, i.e., it requires (k + 1) · B
bytes of space. Finally, the pageMap vector maintains information about the
position of all database pages, plus an additional bit that indicates whether a
page is currently cached. Consequently, it requires n · (log n + 1) bits of storage
space. Summarizing, the total storage cost of our approach (in bytes) is given
as:

S = n ·
⌈

(log n + 1)
8

⌉
+ (m + k + 1) · B (7)
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(d) 1TB (n = 109)

Fig. 4. Page retrieval costs for 1KB pages (c = 2)

Page Retrieval Cost. For every client query the secure hardware needs to per-
form 4 random accesses at the server’s disk. Two of those correspond to the read
operations (one for reading the next block, and one for the additional page), while
the remaining two are performed for writing back the re-encrypted pages. The
k + 1 accessed pages are transferred twice between the secure hardware and the
server (read/write) and are also processed twice by the encryption/decryption
circuitry inside the secure hardware. Therefore, the query processing time at the
server for retrieving a single page from the disk is:

Qt = 4 · ts + 2 · (k + 1) · B ·
(

1
rd

+
1
rb

+
1

red

)
(8)

Figures 4 and 5 show some sample configurations for retrieving 1KB and 10KB
pages, respectively, from databases of different sizes (with a privacy parame-
ter c = 2). Specifically, they depict the page retrieval times and storage space
requirements at the secure hardware as a function of the cache size m. For a
1GB database, a single secure coprocessor can retrieve privately 1KB pages in
27ms and 10KB pages in 94ms. Note that, unlike existing secure hardware PIR
schemes that feature amortized cost, the processing times shown here are con-
stant. For larger databases, we may leverage multiple coprocessors at the server
site to increase the secure storage capacity. This will boost the value of m, thus
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Fig. 5. Page retrieval costs for 10KB pages (c = 2)

reducing considerably the security parameter k. For instance, with 1 coprocessor
(up to 64MB of storage space) and a 10GB database, we can retrieve 1KB pages
in 197ms and 10KB pages in 731ms. On the other hand, combining the storage
space of 2 coprocessors can reduce those times to 65ms and 378ms, respectively.

Larger databases cannot be trivially handled by the current technology of
tamper-resistant CPUs, due to the minimal storage resources that they provide.
Consequently, 100GB databases will require 10 coprocessors to retrieve 1KB
pages in 197ms and 10KB pages in 613ms. Even though this is an entirely
feasible solution, it may increase considerably the monetary cost of PIR. Finally,
for 1TB databases, sub-second page retrieval times (727ms for 1KB pages and
907ms for 10KB pages) are only feasible with over 4GB of secure storage. With
the current technology, this capacity translates to over 70 coprocessor units. This
excessive cost is mainly due to the pageMap data structure that maintains the
location of every database page on the disk. However, this is an unavoidable
cost because, unlike previous approaches that use hash functions to permute the
entire database, our scheme reshuffles on a per page level and necessitates each
page to be stored individually.

Figure 6 depicts the query response time as a function of the privacy pa-
rameter c = 1 + ε. We consider 1KB pages and set the cache sizes for the
different databases to their largest values shown in Figure 4. Clearly, there is a
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Fig. 6. Response time as a function of c = 1 + ε (B = 1KB)

trade-off between the privacy level of our approach and the computational cost.
If we wish to provide better privacy, we need to retrieve more pages per block
(increase k) in order to reduce the value of T . As shown in Equation (5), this
will essentially decrease the value of the privacy parameter c. Nevertheless, our
algorithm is efficient under strict privacy requirements and, for databases up to
100GB, sub-second query response times are achievable even for c = 1.1.

Despite the restrictions of current secure hardware technology, our methods
are also applicable in the two-party querying model, as explained in Section 3.1.
In this setting, the functionality of the secure hardware can be implemented
on a powerful server (physically isolated from the adversary), thus allowing for
much larger cache sizes. Consequently, our page retrieval algorithm can be im-
plemented efficiently even for TB-sized databases. To verify the efficiency of this
approach, we measured the page retrieval costs from a real implementation2 of
the two-party model. We set up the service provider and the owner to run on two
different machines that were connected through a WiFi network. The network
round-trip time (RTT) was set to 50ms and was simulated with the sleep func-
tion. Figure 7 illustrates the query response time and storage cost at the data

2 We used the Boost.Asio library for the networking primitives and the Crypto++

library for the AES implementation.
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Fig. 7. Page retrieval costs for 1TB database (c = 2)

owner as a function of the cache size m. With 6GB of storage space, the system
can accommodate 2 million pages in its cache, achieving a query response time
of 0.737ms (for 1KB pages). Note that the bottleneck in this architecture is the
network transfer cost, since our algorithm necessitates the transfer of (k + 1)
database pages twice between the owner and the service provider. As a result,
retrieving larger pages (10KB) requires a significant amount of storage space (to
reduce the value of the security parameter k) and, as shown in Figure 7(b), over
10GB of space is necessary to achieve a query response time of 1.3s.

6 Conclusions

Privacy preserving query processing is an emerging research field in the database
community, due to the increasing demand for protecting user privacy. Existing
techniques fail to provide adequate solutions, because they do not achieve a
good trade-off between computational cost and privacy guarantees. On one hand,
anonymity and encryption based schemes are computationally efficient, but they
provide weak privacy. On the other hand, private information retrieval techniques
offer perfect privacy, but their high computational cost renders them impractical
for large databases. In this paper, we introduce a novel approach that provides
a much stronger notion of privacy compared to anonymity or encryption based
schemes, but with a computational cost that is considerably lower compared to
existing PIR approaches. Our methods are built on top of a secure hardware
that acts as a proxy between the clients and the server. The secure hardware
encrypts and constantly reshuffles the database pages, in order to create sufficient
uncertainty regarding the exact location of an arbitrary page. We give a formal
definition of the privacy level of our algorithm and illustrate how to apply it
in practice. Based on the performance characteristics of the current state-of-
the-art secure hardware platforms, we show that our method is computationally
efficient, even for very large databases.

Acknowledgments. This research has been funded by the NSF CAREER
Award IIS-0845262.
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Zhou, J., López, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp.
314–328. Springer, Heidelberg (2005)

20. Mokbel, M.F., Chow, C.Y., Aref, W.G.: The New Casper: Query processing for
location services without compromising privacy. In: VLDB (2006)

21. Murugesan, M., Clifton, C.: Providing privacy through plausibly deniable search.
In: SDM (2009)



144 S. Bakiras and K.F. Nikolopoulos

22. Pang, H., Ding, X., Xiao, X.: Embellishing text search queries to protect user
privacy. PVLDB 3(1), 598–607 (2010)

23. Papadopoulos, S., Bakiras, S., Papadias, D.: Nearest neighbor search with strong
location privacy. PVLDB 3(1), 619–629 (2010)

24. Wang, S., Ding, X., Deng, R.H., Bao, F.: Private information retrieval using trusted
hardware. In: Gollmann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS,
vol. 4189, pp. 49–64. Springer, Heidelberg (2006)

25. Williams, P., Sion, R.: Usable PIR. In: NDSS (2008)
26. Williams, P., Sion, R., Carbunar, B.: Building castles out of mud: Practical access

pattern privacy and correctness on untrusted storage. In: CCS (2008)
27. Woodruff, D.P., Yekhanin, S.: A geometric approach to information-theoretic pri-

vate information retrieval. In: IEEE Conference on Computational Complexity
(2005)



Purpose Control: Did You Process the Data for the
Intended Purpose?�

Milan Petković1,3, Davide Prandi2, and Nicola Zannone3

1 Philips Research Eindhoven
milan.petkovic@philips.com

2 Centre for Integrative Biology, University of Trento
prandi@science.unitn.it

3 Eindhoven University of Technology
n.zannone@tue.nl

Abstract. Data protection legislation requires personal data to be collected and
processed only for lawful and legitimate purposes. Unfortunately, existing pro-
tection mechanisms are not appropriate for purpose control: they only prevent
unauthorized actions from occurring and do not guarantee that the data are actu-
ally used for the intended purpose. In this paper, we present a flexible framework
for purpose control, which connects the intended purpose of data to the busi-
ness model of an organization and detects privacy infringements by determining
whether the data have been processed only for the intended purpose.

1 Introduction

In recent decades, many countries have enacted privacy laws and regulations that im-
pose very stringent requirements on the collection and processing of personal data (e.g.,
EU Directive 95/46/EC, HIPAA). Purpose control plays a central role in such legisla-
tion [1]: personal data shall be collected for specified, lawful and legitimate purposes
and not processed in ways that are incompatible with the purposes for which data have
been collected. Purpose control requires the deployment of mechanisms that hold users
accountable for their actions by verifying how data have actually been processed.

In contrast, current security and data protection mechanisms do not provide appro-
priate support for purpose control. They are preventive and, more importantly, they do
not check for which purpose data are processed after access to data has been granted.
Protection of personal information is often implemented by augmenting access control
systems with the concept of purpose [2,3,4,5] (hereafter, we call access control policies
augmented with purpose data protection policies). Here, protecting data implies guar-
anteeing that data are disclosed solely to authorized users with the additional condition
that data are requested for the intended purpose. The access purpose is usually specified
by the requester [4], implying complete trust on users. This poses risks of re-purposing
the data [6,7] as users might process the data for purposes other than those for which
the data were originally obtained. Therefore, to ensure compliance to data protection
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and purpose control, it is necessary to extend the current preventive approach by imple-
menting mechanisms for verifying the actual use of data.

Some privacy enhancing technologies (e.g., [2,8]) partially address this issue. They
collect and maintain audit trails, which record the actual user behavior, for external pri-
vacy audits. These auditing activities, however, are usually manual; the auditors sample
and inspect the audit trails recorded by the system. The lack of systematic methods for
determining how data are used makes auditing activities time-consuming and costly.
For instance, at the Geneva University Hospitals, more than 20,000 records are opened
every day [9]. In this setting, it would be infeasible to verify every data usage manually,
leading to situations in which privacy breaches remain undetected.

In this paper, we present a framework for purpose control which detects privacy
infringements by determining whether data are processed in ways that are incompatible
with the intended purpose of data. To this end, we need a purpose representation model
that connects the intended purpose of data to the business activities performed by an
organization and methods able to determine whether the data are actually processed in
accordance with purpose specifications.

Organizations often make use of business processes to define how organizational
goals should be fulfilled. These organizational processes define the expected user be-
havior for achieving a certain organizational goal. The idea underlying our approach
is to link the purposes specified in data protection policies to organizational goals and,
therefore, to the business processes used to achieve such goals. Thus, the problem of
verifying the compliance of data usage with the intended purpose consists in determin-
ing whether the audit trail is a valid execution of the organizational processes repre-
senting the purposes for which data are meant to be used. Intuitively, if the audit trail
does not correspond to a valid execution of those processes, the actual data usage is not
compliant with the purpose specification.

To enable automated analysis, we use the Calculus of Orchestration of Web Services
(COWS) [10] for the representation of organizational processes. COWS is a founda-
tional calculus strongly inspired by WS-BPEL [11]. It is based on a very small set of
primitives associated with a formal operational semantics that can be exploited for the
automated derivation of the dynamic evolution of the process. The COWS semantics
makes it possible to construct a labeled transition system that generates the set of traces
equivalent to the set produced by all possible executions of the process.

A naı̈ve approach for purpose control would be to generate the transition system of
the COWS process model and then verify if the audit trail corresponds to a valid trace
of the transition system. Unfortunately, the number of possible traces can be infinite,
for instance when the process has a loop, making this approach not feasible. Therefore,
in this paper we propose an algorithm that replays the audit trail in the process model
to detect deviations from the expected behavior. We demonstrate that the algorithm
terminates and is sound and complete.

The structure of the paper is as follows. Next section presents our running exam-
ple. (§2). Then, we introduce the building blocks of our framework and analyze their
alignment (§3). We present an algorithm for purpose control (§4) and demonstrate the
termination, soundness and completeness of the algorithm (§5). Finally, we discuss re-
lated work (§6) and conclude the paper, providing directions for future work (§7).
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Fig. 1. Healthcare Treatment Process

2 Running Example

This section presents a simple scenario in the healthcare domain to illustrate our ap-
proach. Consider a patient who goes to a hospital to see a doctor. The hospital is
equipped with its own Hospital Information System (HIS) to manage the administrative,
financial, and clinical aspects of patient information. In particular, patient information
are stored in an electronic patient record (EPR); here, we assume that EPRs are orga-
nized in sections; each of them contains a certain type of information. Members of the
hospital staff can access specific sections of the EPR (or parts of them) depending on
their position within the hospital and for well defined purposes. Suppose that a patient,
Jane, did not give the hospital consent to process her information for research purposes.
Then, the hospital staff cannot access Jane’s information for clinical trials.

The provision of healthcare treatments can be seen as a process that involves several
parties. Fig. 1 describes an example of a healthcare treatment process specified in the
Business Process Modeling Notation (BPMN) [12]. Here, every BPMN pool1 repre-
sents the visit of the patient to a member of the clinical staff at the local hospital. The
process starts when a patient visits the general practitioner (GP) at the hospital (S1).
The GP accesses the HIS to retrieve the patient’s EPR and makes a physical exami-
nation to collect the symptoms (T01). Based on the gathered information, the GP may
suspect that the patient is affected by a certain disease. He can either make a diagnosis
(T02) or refer to a specialist if the case is more complex (T05). For instance, in case the
GP suspects a cardio-vascular disease, he can refer the patient to a cardiologist.

1 In BPMN a pool is used to specify the boundaries of the activities to be performed by a partic-
ipant in the process and is graphically represented as a container enclosing those activities.



148 M. Petković, D. Prandi, and N. Zannone

Fig. 2. Clinical Trial Process

If the patient is referred to a cardiologist (S3), the cardiologist accesses patient medi-
cal history in the HIS and makes a medical examination to collect the symptoms (T06).
Based on this information, the cardiologist can either make a diagnosis directly (T07),
or request lab tests or radiology scans (T08 and T09, respectively). If the resulting tests
and scans are not good or a diagnosis cannot be made based on them, further tests
can be required. When the lab or the radiology department receive the request for tests
from the cardiologist (S5 and S6, respectively), they check the EPR for allergies or
other counter-indications (T10 and T03, respectively). Then, they do the lab exam (T11
and T14) and export the results to the HIS (T12 and T15). A notification is sent to the
cardiologist when the tests or the scans have been completed (E6 and E7).

When the cardiologist receives a notification for all the ordered tests and scans (S4),
he retrieves the test results or the scans from the HIS (T06) and, based on them, makes
a diagnosis (T07). After the cardiologist enters the diagnosis into the HIS, a notification
is sent to the GP (E4). Upon the notification (S2), the GP extracts the diagnosis made
by the cardiologist, scans and tests from the patient’s EPR (T01). Based on them, the
GP prescribes medical treatments to the patient (T03) and discharges her (T04).

Suppose now that the same cardiologist mentioned above is involved in a clinical
trial. Fig. 2 shows the part of the clinical trial process in which a physician is involved.
The physician has to define eligibility criteria for the trial (T91). Then, he accesses
EPRs to find patients with a specific condition that meet the eligibility criteria (T92).
In the next step, the physician asks the selected candidates whether they want to partic-
ipate in the trial (T93). The trial is then performed (T94) and the results are analyzed
(T95). Note that the cardiologist can get access to patient information for the legiti-
mate purpose (i.e., claiming that it is for healthcare treatment) and then use the data
for research purposes (i.e., clinical trial). Preventive mechanisms are not able to cope
with these situations. In particular, they cannot prevent a user to process data for other
purposes after the same user has legitimately got access to them.

To address this issue, we need mechanisms that make users accountable for their ac-
tions by determining how data were actually used. In this paper, we propose an approach
that enables purpose control by determining if an audit trail is a valid execution of the
process used by the organization to implement the intended purposes. In our scenario,
this implies verifying that every usage of patient information is part of the sequence of
tasks that the cardiologist and the other parties involved in the provision of healthcare
treatments have to perform in order to accomplish the goal.

3 A Framework for Purpose Control

In this section, we propose a formal framework for purpose control. The main goal of
the framework is to verify if a user processed the data only for the intended purpose.
The proposed approach uses and interlinks the following three components:
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– Data protection policies that define who can access the data and for which purpose.
– Organizational processes that describe the business processes and procedures of an

organization.
– Audit trails that record the sequence of actions performed by users.

In the remainder of this section, we present the formal model components of the frame-
work and discuss their alignment.

3.1 Basic Concepts and Notation

Our framework includes sets of five basic elements: users (U), roles (R), objects (O),
actions (A), and organizational processes (P). A user denotes any entity capable to
perform actions on an object, and a role denotes a job function describing the authority
and responsibility conferred on a user assigned to that role. We assume that roles are
organized into a hierarchical structure under partial ordering ≥R. Such an order reflects
the principles of generalization and specialization. Let r1, r2 ∈ R be roles. We say that
r1 is a specialization of r2 (or r2 is a generalization of r1) if r1 ≥R r2.

Objects denote resources (i.e., data, services, or system components) under protec-
tion. We use a directory-like notation to represent hierarchical resources like file sys-
tems and EPRs. This implies a partial ordering ≥O on resources, which reflects the data
structure. In addition, we make explicit the name of the data subject when appropri-
ate. For instance, Jane’s EPR is denoted as [Jane]EPR, whereas [Jane]EPR/Clinical
denotes the section containing medical information in her EPR, with [Jane]EPR ≥O

[Jane]EPR/Clinical . We use [·]EPR to denote EPRs, regardless a specific patient.
An action is an operation that can be performed on a resource. The set of actions A

includes “read”, “write”, and “execute”.
Organizational processes specifies the sequences of tasks that have to be performed

to achieve organizational goals. We use Q to denote the set of tasks belonging to any
process in P . Process models can specify the entity that is expected to perform a certain
task (e.g., using pools in BPMN). However, processes usually are not specified in terms
of identifiable users. For example, a hospital would not define a specific clinical trial
process for each physician. Business processes are intended to be general in order to
cover a large number of scenarios. Therefore, we assume that every BPMN pool corre-
sponds to a role in R. Finally, a given task can be part of more than one process, and
several instances of the same process can be executed concurrently. To apply confor-
mance checking techniques, it is necessary to distinguish the process instance (the so
called case) in which tasks are performed [13]. Hereafter, C denotes the set of cases.

In data protection, the concept of purpose plays a central role [1,2,4]. The purpose
denotes the reason for which data can be collected and processed. In particular, we
refer to purposes that regulate data access as intended purposes, and to purposes for
which data access is requested as access purposed. Purposes are related to the busi-
ness activities of an organization and can be identified with organizational goals. For
instance, [14] defines a list of purposes for healthcare, which includes healthcare treat-
ment, payment, research and marketing. Thus, in this paper, we represent purposes by
the organizational process implemented by an organization to achieve the correspond-
ing organizational goal.
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(Physician, read, [·]EPR/Clinical, treatment)
(Physician, write, [·]EPR/Clinical, treatment)
(Physician, read, [·]EPR/Demographics, treatment)
(MedicalTech, read, [·]EPR/Clinical, treatment)
(MedicalTech, read, [·]EPR/Demographics, treatment)
(MedicalLabTech, write, [·]EPR/Clinical/Tests, treatment)
(Physician, read, [X]EPR, clinicaltrial)

Fig. 3. Sample Data Protection Policy

3.2 Data Protection Policies

The aim of data protection policies is to protect an individual’s right to privacy by
keeping personal data secure and by regulating its processing. Several languages for
the specification of data protection policies have been proposed in literature [3,4]. The
objective of this paper is not to propose yet another policy specification language. Thus,
here we present a simple language that suffices for the purpose of this paper.

A data protection policy specifies the access rights: who is authorized to access the
system, what actions he is allowed to perform on a resource, and for which purpose.

Definition 1. A data protection statement is a tuple (s, a, o, p) where s ∈ U∪R, a ∈ A,
o ∈ O, and p ∈ P . A data protection policy Pol is a set of data protection statements.

Fig. 3 presents the data protection policy governing our scenario. The first block of
Fig. 3 states that physicians can read and write patient medical information in EPRs for
treatment. Moreover, physicians can also read patient demographics for treatment. Note
that roles GP, radiologist, and cardiologist are specializations of role physician. The
second block of statements targets medical technicians. They can read patient medical
information for treatment. Moreover, medical lab technicians (which is a specialization
of medical technicians) have write permission on the EPR section concerning test re-
sults. The last block of Fig. 3 represents the hospital policy that allows physicians to
access the EPR of those patients (X) who give consent to use their data for clinical trial.

Users can request access to system’s resources by means of access request.

Definition 2. An access request is a tuple (u, a, o, q, c) where u ∈ U , a ∈ A, o ∈ O,
q ∈ Q, and c ∈ C.

An access request specifies the user who makes the request, the object to be accessed,
and the action to be performed on the object along with information about the purpose
for which the request is made. In particular, the access purpose is represented by the
task for which the access to the object is requested and by the process instance.

When a user requests permission to execute an action on an object for a certain
purpose, the access request is evaluated against the data protection policy. Access is
granted if there exists a data protection statement that matches the access request di-
rectly or through a hierarchy.

Definition 3. Let Pol be a data protection policy and (u, a, o, q, c) an access request.
We say that the access request is authorized if there exists a statement (s, a′, o′, p) ∈ Pol
such that (i) s = u, or s = r1, u has role r2 active,2 and r2 ≥R r1; (ii) a = a′; (iii)
o′ ≥O o; (iv) c is an instance of p, and q is a task in p.

2 We assume users have to authenticate within the system before performing any action. During
the authentication process, the role membership of users is determined by the system.
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3.3 Organizational Processes

Organizational processes specify the activities that users are expected to take in order
to accomplish a certain goal. Organizational processes are often modeled in BPMN
[12], the de-facto standard modeling notation in industry. Although BPMN provides
a standard visualization mechanism, it is informal and therefore not suitable for for-
mal verification. We rely on COWS [10], a foundational language for service-oriented
computing that combines constructs from process calculi with constructs inspired by
WS-BPEL [11], for the formalization of BPMN processes. Here, we present a minimal
version of COWS that suffices for representing organizational processes.

COWS basic entities are services, i.e., structured activities built by combining basic
activities. COWS relies on three countable and pairwise disjoint sets: names, variables,
and killer labels. Basic activities take place at endpoints, identified by both a partner
and an operation name. The grammar of COWS is defined as follows:

s ::= p · o! 〈w〉 | [ d ]s | g | s | s | {|s|} | kill(k) | ∗ s

g ::= 0 | p · o? 〈w〉. s | g + g

Intuitively, the basic activities a service can perform are: the empty activity 0; p ·o! 〈w〉,
an invoke (sending) activity over endpoint p · o with parameter w; p · o? 〈w〉, a request
(receiving) activity over endpoint p · o with parameter w; kill(k), a block activity that
prevents services within the scope of a killer label k to proceed. The scope for names,
variables, and killer labels is denoted by [ d ]s. The construct {|s|}, when not covered by
an action, saves a service s from a killer signal sent out by a kill( ).

The temporal execution order of the basic activities is described by a restricted set of
operators: p · o? 〈w〉. s executes request p · o? 〈w〉 and then service s; services s1 and s2

running in parallel are represented as s1|s2; a choice between two request activities g1

and g2 is written as g1 + g2. Finally, recursion is modeled with the replication operator
∗: the service ∗ s behaves as ∗ s | s, namely ∗ s spawns as many copies of s as needed.

COWS is equipped with a structural operational semantics [15], i.e., a set of syntax-
driven axioms and rules which describes the dynamics of the system at hand. Specif-
ically, rules allow the definition of a Labeled Transition System (LTS) (s0, S, L,−→),
where S is a set of COWS services or states, s0 ∈ S is the initial state, L is a set of
labels, and −→ ⊆ S × L × S is a labeled transition relation among COWS services,
such that (s, l, s′) ∈ −→ iff COWS semantics allows one to infer the labeled transition.

We use s
l−→s′ as a shortcut for (s, l, s′) ∈ −→.

Labels in L are generated by the following grammar:

l ::= (p · o) � w | (p · o) � w | p · o (v) | †k | †
Invoke label (p ·o)� w and request label (p ·o)� w are for invoke and request activities,
respectively. Label p·o (v) represents a communication between an invoke label (p·o)� v
and a request label (p · o) � w. If the communication is indeed a synchronization, the
label is simplified as p · o. Finally, labels †k and † manage, respectively, ongoing and
already executed killing activities. We refer to [10] for a detailed description of the
COWS structural operational semantics.
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The encoding of BPMN processes into COWS specifications founds on the idea of
representing every BPMN element as a distinct COWS service. For the lack of space,
here we only present the intuition of the encoding; examples of the encoding are given
in Appendix A. In [16], we have defined elementary and parametric COWS services for
a core set of BPMN elements. For example, a start event (e.g., S1 in Fig. 1) is modeled
in COWS as x·y! 〈〉 where x·y is the endpoint triggering the next BPMN element in the
flow (x is the pool that contains the element and y is the name of the element); a task
(e.g., T 01 in Fig. 1) is modeled as x · y? 〈〉.Act , where x · y is the endpoint to trigger
the execution of the task, and Act is the activity performed by the task (Act eventually
specifies the next BPMN element). Parameters are instantiated to connect the BPMN
elements forming the BPMN process. The COWS service implementing S1 and T 01,
denoted by [[S1]] and [[T 01]] respectively, are [[S1]] = GP · T 01! 〈〉 and [[T 01]] =
GP · T 01? 〈〉. [[Act ]], where [[Act ]] is the COWS service implementing activity Act
and GP stands for general practitioner. The overall organizational process results from
the parallel composition of the elementary services implementing the single BPMN
elements. The process composed by services [[S1]] and [[T 01]] is [[S1]] | [[T 01]].

The sequence flow, which describes the execution order of process activities by track-
ing the path(s) of a token through the process, is rendered as a sequence of communica-
tions between two services. For instance, the sequence flow between event S1 and task
T 01 is defined by the labeled transition

[[S1]] | [[T 01]] GP ·T01−−−−−→ 0 | [[Act ]]

Intuitively, the label GP · T 01 allows one to “observe” on the COWS transition sys-
tem that the task received the token. The same idea applies to message flow as well as
to other BPMN elements like event handlers and gateways. However, in case of event
handlers and gateways, some “internal computation” is required to determine the next
BPMN element to be triggered. For instance, exclusive gateway G1 in Fig. 1 is con-
nected to T 02 and T 05; from G1, the token can flow either to T 02 or T 05, but not to
both. The act of deciding which task should be triggered does not represent a flow of
the token. In this case we use the private name sys as the partner in the label. Similarly,
label sys · Err is used to represent error signals. In general, it is not known in advance
how many times a service is invoked during the execution of a process. An example of
this is given by cycles (e.g., T 01, G1 and T 02 in Fig. 1). To this end, we prefix COWS
services with the replication operator ∗ . This operator makes multiple copies of the
COWS service; each copy corresponds to an invocation of the service.

3.4 Audit Trails

Auditing involves observing the actions performed by users to ensure that policies and
procedures are working as intended or to identify violations that might have occurred.
Audit trails are used to capture the history of system activities by representing events
referring to the actions performed by users. Every event is recorded in a log entry.

Definition 4. A log entry is a tuple (u, r, a, o, q, c, t, s) where u ∈ U , r ∈ R, a ∈ A,
o ∈ O, q ∈ Q, c ∈ C, t ties an event to a specific time, and s is the task status indicator.
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The field user represents the user who performed the action on the object. Role
represents the role held by the user at the time the action was performed. The task status
indicator specifies whether the task succeeded or not (i.e., s ∈ {success, failure}).
We assume that the failure of a task makes the task completed; therefore, no actions
within the task are possible after the task has failed. In addition, the process can pro-
ceed only if there is in place a mechanism to handle the failure. Log entries also contain
information about the purpose for which the action was performed. In particular, the
purpose is described by the task in which the action was performed and the case that
identifies the process instance in which the action took place.

An audit trail consists of the chronological sequence of events that happen within the
system.

Definition 5. A audit trail is an ordered sequence of log entries where given two entries
ei = (ui, ri, ai, oi, qi, ci, ti, si) and ej = (uj, rj , aj , oj , qj , cj, tj , sj) we say that ei is
before ej (denoted by ei < ej) if ti < tj .

Recent data protection regulations in the US (see [17]) impose healthcare providers to
record all actions related to health information. Accordingly, we assume that audit trails
record every action performed by users, and these logs are collected from all applica-
tions in a single database with the structure given in Def. 4. In addition, audit trails
need to be protected from breaches of their integrity. A discussion on secure logging
is orthogonal to the scope of this paper. Here, we just mention that there exist well-
established techniques [18,19], which guarantee the integrity of logs.

Fig. 4 presents a possible audit trail for the scenario of Section 2. The audit trail
describes the accesses to Jane’s EPR made by the GP (John), the cardiologist (Bob),
and the radiologist (Charlie) in the process of providing her medical treatments (we
assume that Bob did not order lab tests). It also shows that a number of instances of the
process can be executed concurrently. Time is in the form year-month-day-hour-minute.
Tasks are denoted by a code as defined in Fig. 1. Case HT-1 represents the instance of
the process being executed. In particular, HT stands for the healthcare treatment process
and the number indicates the instance of the process.

The last part of Fig. 4 presents the log entries generated during the execution of the
clinical trial (CT) process. Here, Bob specified healthcare treatment as the purpose in
order to retrieve a larger number of EPRs.3 Note that preventive mechanisms cannot
detect the infringement. Only the patients selected for the trial might suspect a privacy
breach. Certainly, the infringement remains covered for those patients who were not
selected for the trial and did not allow the usage of their data for research purposes.

3.5 Alignment

In the previous sections, we introduced data protection policies, organizational pro-
cesses, and audit trails. Although these components make use of the same concepts,
such concepts are often specified at a different level of abstraction. In this section, we
discuss how they are related to each other.

3 Note that, if the physician specifies clinical trial as purpose, the HIS would only return the
EPRs of those patients who gave their consent to use their information for research purposes.
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user role action object task case time status
John GP read [Jane]EPR/Clinical T01 HT-1 201003121210 success
John GP write [Jane]EPR/Clinical T02 HT-1 201003121212 success
John GP cancel N/A T02 HT-1 201003121216 failure
John GP read [Jane]EPR/Clinical T01 HT-1 201003121218 success
John GP write [Jane]EPR/Clinical T05 HT-1 201003121220 success
John GP read [David]EPR/Demographics T01 HT-2 201003121230 success

· · ·
Bob Cardiologist read [Jane]EPR/Clinical T06 HT-1 201003141010 success
Bob Cardiologist write [Jane]EPR/Clinical T09 HT-1 201003141025 success
Charlie Radiologist read [Jane]EPR/Clinical T10 HT-1 201003201640 success
Charlie Radiologist execute ScanSoftware T11 HT-1 201003201645 success
Charlie Radiologist write [Jane]EPR/Clinical/Scan T12 HT-1 201003201730 success
Bob Cardiologist read [Jane]EPR/Clinical T06 HT-1 201003301010 success
Bob Cardiologist write [Jane]EPR/Clinical T07 HT-1 201003301020 success
John GP read [Jane]EPR/Clinical T01 HT-1 201004151210 success
John GP write [Jane]EPR/Clinical T02 HT-1 201004151210 success
John GP write [Jane]EPR/Clinical T03 HT-1 201004151215 success
John GP write [Jane]EPR/Clinical T04 HT-1 201004151220 success
Bob Cardiologist write ClinicalTrial/Criteria T91 CT-1 201004151450 success
Bob Cardiologist read [Alice]EPR/Clinical T06 HT-10 201004151500 success
Bob Cardiologist read [Jane]EPR/Clinical T06 HT-11 201004151501 success

· · ·
Bob Cardiologist read [David]EPR/Clinical T06 HT-20 201004151515 success
Bob Cardiologist write ClinicalTrial/ListOfSelCand T92 CT-1 201004151520 success
Bob Cardiologist read [Alice]EPR/Demographics T06 HT-21 201004151530 success

· · ·
Bob Cardiologist read [David]EPR/Demographics T06 HT-30 201004151550 success
Bob Cardiologist write ClinicalTrial/ListOfEnrCand T93 CT-1 201004201200 success
Bob Cardiologist write ClinicalTrial/Measurements T94 CT-1 201004221600 success

· · ·
Bob Cardiologist write ClinicalTrial/Measurements T94 CT-1 201004291600 success
Bob Cardiologist write ClinicalTrial/Results T95 CT-1 201004301200 success

Fig. 4. Audit Trail

Audit trails usually capture and store information at a lower level of abstraction than
organizational processes. While the basic components of organizational processes are
tasks, the basic components of audit trails are actions. Accomplishing a task may require
a user to execute a number of actions. Thereby, there is a 1-to-n mapping between tasks
and log entries: one task can be associated with multiple log entries. One can think to
bring organizational processes and audit trails at a comparable level of abstraction, for
instance, by specifying a process in terms of actions or by annotating each task in the
process with the actions that can be executed within the task. However, these approaches
would require several efforts in the specification of organizational processes as well as
affect their readability and understanding. To address this issue, we allow for every
action executed within the tasks active at a certain time (when checking the compliance
of the actual data usage with the intended purpose as described in Section 4). However,
this leaves risks of unauthorized access to data. To prevent unauthorized access while
keeping the management of organizational processes simple, a mechanism for purpose
control should be complemented with a preventive enforcement mechanism that verifies
access requests in isolation (i.e., independently from other requests).

Languages for representing business processes often rely on information that is not
available in audit trails. For instance, the COWS representation of organizational
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processes founds on the idea that the evolution of the transition system completely char-
acterizes the evolution of the process. Accordingly, transition systems contain informa-
tion about the management of gateways and the occurrence of non-observable events,
which is not recorded in audit trails. To define a suitable mapping between log entries
and COWS labels, we distinguish the information that is IT observable by defining the
set of observable labels L as a subset of the set of labels L, i.e., L ⊂ L. In particular,
labels in L specify labels representing the execution of a task q by a partner r (i.e.,
synchronization labels of the form r · q) and labels representing errors (i.e., sys ·Err).
Summing up, the set of observable labels is

L = {r · q | r ∈ R and q ∈ Q} ∪ {sys · Err}.

Our definition of observable labels reflects the fact that we assume that only the execu-
tion of tasks and error events are IT observable. In case other activities can be logged
by the system (e.g., message flows), the definition above should be extended to include
the corresponding labels.

How the system determines the purpose for which an action was performed (i.e.,
the task and case in a log entry) is a critical issue as it is necessary to link the actions
to the appropriate process instance. We assume that information about the purpose is
available. Different solutions can be adopted to collect this information. For instance,
most IT systems based on transactional systems such as WFM, ERP, CRM and B2B
systems are able to record the task and the instance of the process [13]. Here, the system
itself is responsible to determine the context of an action and store it in the log entry. A
different approach is proposed in [2,3,4] where users are required to specify the purpose
along with the access request. This approach is also adopted in existing EPR systems
like DocuLive which require users to provide the reason for the access and record that
reason in audit trails [20]. We assume that the purpose specified in the access request
(i.e., q and c in Def. 2), which can be determined either by the user or by the system,
is recorded in the corresponding log entry. In the next section, we present an algorithm
for verifying if data have actually been processed for that purpose.

4 Compliance with Purpose Specification

The aim of purpose control is to guarantee that personal data are not processed in ways
that are incompatible with the intended purpose of data. We identify two main issues to
be addressed in order to ensure compliance to purpose control: (a) data access should be
authorized, and (b) access purposes should be specified correctly and legally. The first
issue is addressed by Def. 3 which provides a way to evaluate access request against
data protection policies. In particular, this definition guarantees that the data requester
has the permission necessary to access the data.

However, the real challenge in ensuring purpose control is to validate the access
purpose specified in the access request, i.e. determining whether data were in fact pro-
cessed for that purpose. In our scenario, the cardiologist legitimately accessed patient
data for healthcare treatment and then used those data for clinical trial, which leads to
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Algorithm 1. Compliance procedure
input : a state s, an audit trail l
output: bool

let conf set = {(s, empty, WeakNext(s))};1
let next conf set = null;2
while l 	= null do3

let l = e ∗ l′;4
let r ∈ R s.t. e.role ≤R r;5
let found = false;6
forall conf ∈ conf set do7

if ((r , e.task) /∈ conf .active tasks) ∨ (e.status = failure)) then8
forall (label, state, active task) ∈ conf.next do9

if ((label = r · e.task) ∧ (e.status = success)) ∨ ((label = sys · Err) ∧10
(e.status = failure)) then

found = true;11
next conf set+ = (state, active task , WeakNext(state));12

end13
else14

found = true;15
next conf set+ = conf ;16

let l = l′;17
conf set = next conf set ;18
next conf set = null ;19

end20
if ¬found then return false;21

end22

return true;23

a privacy infringement. To detect re-purposing of data, it is necessary to analyze the
actual usage of data. Therefore, for each case in which the object under investigation
was accessed, we determine if the portion of the audit trail related to that case is a valid
execution of the process implemented by an organization to achieve the corresponding
purpose using Algorithm 1.

The algorithm takes as input the COWS service representing the purpose and a finite
(portion of) audit trail and determines whether the LTS associated to that service accepts
the audit trail, i.e. the audit trail corresponds to a trace of the LTS. The key point of
the algorithm is to determine if a log entry can be simulated at a certain point of the
execution of the process. Hence we introduce the concept of configuration to represent
the current state, the tasks active in that state, and the states reachable from the current
state together with the set of active tasks in those states.

Definition 6. Let S be the set of COWS services, R the set of roles, Q the set of tasks,
and L the set of observable labels. A configuration conf is a triple (state, active tasks,
next) where state ∈ S represents the current state, active tasks ∈ 2(R×Q) represents

the set of active tasks in the current state, and next ∈ 2(L×S×2(R×Q)) represents the
possible states that can be reached from the current state executing l ∈ L together with
the corresponding active tasks. Hereafter, we denote the components of a configuration
as conf .state, conf .active tasks , and conf .next , respectively.

The initial configuration consists of the state s representing a given process. Because
a BPMN process is always triggered by a start event [12], the set of active tasks in the
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initial configuration is empty. The conf .next is computed using function WeakNext.
This function takes state s as input and returns the set of states S reachable from s
with exactly one observable label. Intuitively, this function explores the process and
determines which activities can be executed and the states that are reachable executing
such activities. Consider, for instance, the LTS in Fig. 5 where we use l for labels

�������	s¬l

�����
��� l

�����
���


������s0
l

����
� l

���
��


������s1¬l

����
� l

���
��


������s2 
������s3 
������s4 
������s5

Fig. 5. WeakNext

in L and ¬l for labels in L \ L. Function WeakNext(s)
returns states s1, s2, and s3. The reachable states are
computed on the basis of the sequence and message
flow. This requires analyzing the gateways which the
token(s) goes through. For instance, parallel gateways
(i.e., AND gateways) create parallel flow. Accordingly,
WeakNext returns the states reachable following all
the flows coming out from the gateway. On the other
hand, inclusive decision gateways (i.e., OR gateways) are locations where the sequence
flow can take one or more alternative paths. Therefore, the set of reachable states in-
cludes states that allow the execution of every possible combination of alternatives. For
each reachable state, the function also computes the set of tasks active in that state.
WeakNext can be implemented on top of CMC [21], an on-the-fly model checker and
interpreter for COWS. This tool supports the derivation of all computations originating
from a COWS process in automated way.

Algorithm 1 extracts an entry e from the audit trail (line 4), and, for each configu-
ration conf in next conf set , it verifies whether the executed activity (i.e., (r, e.task)
where role r is a generalization of e.role according to the role hierarchy) is active and
succeeded. If it is the case, the task remains active and the configuration is added to the
set of configurations to be considered in the next iteration (next conf set ) (line 16).
Otherwise, if the action succeeded and the execution of the task makes it possible
to reach a reachable state, a new configuration for that state is created and added to
next conf set . Similarly, if the activity failed and the failure leads to a reachable state,
a new configuration for that state is created and added to next conf set .

The computation terminates with false (i.e., an infringement is detected), if the en-
try cannot be simulated by the process (line 21). Otherwise, the computation proceeds
until the audit trail has been completely analyzed. If infringements are not detected,
the computation terminates with true (line 23). Note that the analysis of the audit trail
may lead the computation to a state for which further activities are still possible. In this
case the analysis should be resumed when new actions within the process instance are
recorded. However, if a maximum duration for the process is defined, an infringement
can be raised in the case where this temporal constraint is violated.

We show now the application of Algorithm 1 to the process in Fig. 1 and the se-
quence of audit entries of Fig. 4 with case HT-1. Fig. 6 presents a portion of the transi-
tion system generated by the algorithm. Here, nodes represent the states visited by the
algorithm together with the set of active tasks; edges represent observable transitions
from the states. The number on the edge indicates the path of the transition system (i.e.,
the order of log entries).

It is worth noting that the failure of task T 02 (step 3) leads to a state in which no
tasks are active (St4). This state corresponds to a “suspension” of the process awaiting
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Fig. 6. Portion of the transition system visited by Algorithm 1

the proper activities (GP · T 01) to restore it. Moreover, one can notice that five states
are reachable from state St7. This situation is due to the combination of exclusive de-
cision gateway G2 and inclusive decision gateway G3 (see Fig. 1). In particular, G3
allows four possible states, one in which the cardiologist (C in Fig. 6) ordered only lab
tests (St9), one in which he ordered only radiology scans (St10), and two in which
he ordered both (St11 and St12). The difference between these two states lies in the
activity executed to reach them. The next log entry refers to the radiologist verifying
counter-indications (R ·T 10). States St10 and St11 allow the execution of that activity;
therefore, both states are considered in the next iteration. The algorithm proceeds until
the audit trail is fully simulated by the process (step 17). As the portion of the audit trail
corresponding to HT-1 is completely analyzed without deviations from the expected
behavior, no infringement is detected by the algorithm.

Besides for HT-1, Jane’s EPR has been accessed for case HT-11 (see Fig. 4). If we
apply the algorithm to the portion of the audit log corresponding to that case (only one
entry), we can immediately see that it does not correspond to a valid execution of the
HT process. Therefore, the algorithm returns false indicating the presence of an in-
fringement: Jane’s EPR was accessed for healthcare treatment (HT-11), but it was not
processed for that purpose. The cardiologist might have launched a mimicry attack to
cover the infringement. However, achieving a purpose requires the execution of a num-
ber of tasks; each task should be executed by a user who is allowed to hold the role
to which the task is assigned. Therefore, a single user cannot simulate the whole pro-
cess alone, but he has to collude with other users to make a mimicry attack successful.
Moreover, if the cardiologist reuses a previous case as the reason for the request (i.e.,
HT1 instead of HT11), the attack would succeed only in very restricted time windows:
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the unlawful access has to be in conjunction with a legitimate access, otherwise Al-
gorithm 1 recognizes that the audit trace is not a valid execution of the process. This
threat can be partially mitigated by limiting multi-tasking, i.e. a user have to complete
an activity before starting a new activity.

5 Properties of the Algorithm

In the previous section, we have proposed an algorithm that can either confirm that
the data were processed for the intended purpose or detect privacy infringements. In
this section, we discuss the termination, soundness and completeness of the algorithm.
Proofs are presented in Appendix B.

The critical part of Algorithm 1 is function WeakNext, because, given a COWS
service s, it has to generate and explore (part of) the possibly infinite transition system
LTS(s) associated to s; thereby, we have to guarantee the termination of WeakNext.
We start by giving some basic definitions.

Given a LTS Ω = (s, S, L,−→), a trace is a possibly infinite sequence of S ×L pairs
σ ≡ (s, l0), (s0, l1) . . . (sn, ln+1) . . . describing a trajectory of the LTS, also denoted as

s
l0−→s0

l1−→ . . . sn
ln+1−−−→ . . .. The possibly infinite set of traces of Ω is Σ(Ω).

A formal definition of the set of states computed by function WeakNext follows.

Definition 7. Let s be a COWS service and L the set of observable labels for s. Then,

WeakNext(s) = {s′ | ∃k < ∞.s
l0−→ . . .

lk−→sk
l−→s′ ∧ ∀i ≤ k . li /∈ L ∧ l ∈ L}.

Given a COWS service s, function WeakNext(s) is decidable w.r.t. the set of observable
labels L if, for each trace from s, it is not possible to perform an infinite number of
transitions with label in L \ L. The following generalizes this concept.

Definition 8. Let Ω = (s, S, L,−→) be a LTS and M ⊆ L a set of labels. A trace
σ ≡ (s, l0), (s0, l1) . . . (sn, ln+1) . . . in Σ(Ω) is finitely observable w.r.t M iff ∃n <
∞ . ln ∈ M and ∀j > n . (lj ∈ M ⇒ ∃k < ∞ . lj+k ∈ M). The set of finitely
observable traces of Ω is denoted as ΣFO (Ω). If Σ(Ω) = ΣFO (Ω), Ω is a finitely
observable LTS w.r.t M .

A finitely observable transition system w.r.t. a set of labels M could express infinite
behaviors, but, within a finite time period it is possible to observe a label in M . This is
the idea underlying Algorithm 1. In particular, given a task active at a certain step of the
execution of the process, the algorithm determines what are the possible sets of active
tasks in the next step. The definition of finitely observable transition system allows us
to state a first important result.

Proposition 1. Given a COWS service s and the set of observable labels L for s, if
LTS(s) is finitely observable w.r.t. L, then WeakNext(s) is decidable on L.

Although COWS is expressive enough to represent BPMN processes, in order to guar-
antee the decidability of WeakNext we have to restrict our target to the set of BPMN
processes whose transition system is finitely observable w.r.t. the set of observable la-
bels. Hereafter, we say that a BPMN process p is well-founded w.r.t. a set of labels M if
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LTS(s) is finitely observable w.r.t. M , where s is the COWS encoding of p. Intuitively,
a BPMN process p is well-founded if every cycle in p has at least one activity which
is observable. Given the definition of observable labels L in Section 3.5, a BPMN pro-
cess is therefore well-founded if every sequence flow path ending in a cycle contains
at least a task or an event handling errors. Restricting the analysis to well-founded pro-
cesses does not impose a serious limitation in practice. It avoids those degenerate cases
where the process could get stuck because no task or event handler is performed but
the process is not ended. An example is a BPMN process with a cycle formed only by
gates. Note that non well-founded processes can be detected directly on the diagram
describing the process.

From the above considerations, we can state the following corollary.

Corollary 1. Let p be a well-founded BPMN process, s the COWS service encoding p,
LTS(s) = (s, S, L,−→), and L ⊆ L the set of observable labels for s. Then, WeakNext
terminates for all s′ ∈ S.

We now prove that Algorithm 1 terminates for every COWS service s encoding a well-
founded BPMN process. If we consider an audit trail l of length k, Algorithm 1 explores
only a finite portion of the transition system of s to verify if an entry e of l is accepted,
because of Corollary 1. The idea is that, being k finite, Algorithm 1 explores a finite
portion of LTS(s), and therefore terminates.

Theorem 1. Let p be a well-founded BPMN process, s the COWS service encoding p,
L the set of observable labels for s, and l an audit trail of length k. Then, Algorithm 1
on (s, l) terminates.

The following result demonstrates the correctness of Algorithm 1.

Theorem 2. Let s be a COWS service encoding a well-founded BPMN process and l
an audit trail. Algorithm 1 on (s, l) returns true iff there exists a trace σ ∈ Σ(LTS (s))
such that σ accepts l.

The results presented in this section allow us to conclude that, within the boundaries
defined by a well-founded BPMN process, Algorithm 1 can always decide if a finite
audit trail raises concerns about infringement of purpose specification.

6 Related Work

It is largely recognized that traditional access control is insufficient to cope with pri-
vacy issues [1,2,22]. Karjoth et al. [23] identify the need of three additional elements
(i.e., purpose, condition, and obligation), beside the basic authorization elements (i.e.,
subject, object, and action). Based on this observation, a number of models, languages
and standards tailored to specify data protection policies have been proposed in the
last decade [2,4,5,8,24,25,26]. In this section, we discuss existing proposals based on
the concept of purpose. Works on obligations are complementary to our work as obli-
gations are intended to address different data protection requirements (e.g., retention
period).
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Existing purpose-based frameworks [2,4,5,24] treat the intended purpose as a la-
bel attached to data. Upon receiving an access request, they match the access purpose
against the label attached to the requested data. However, they rely on the fact that the
requester specifies the purpose legally, implying complete trust on the requester. Few
researchers have addressed the problem of validating the access purpose. For instance,
Byun and Li [4] specify the roles that can make a request for a given purpose. However,
this approach is preventive and does not solve the problem of re-purposing the data. In
contrast, we propose to specify the operational behavior of purposes, which makes it
possible to analyze the actual usage of data with respect to purpose specifications.

To best of our knowledge, there is only another framework, the Chain method [27],
that attempts to define an operational model for purposes. Here, a privacy policy speci-
fies the “chains of acts” that users are allowed to perform where each act is some form
of information handling (i.e., creating, collecting, processing, disclosing); purposes are
implicitly defined by the sequences of acts on personal information. Compared to our
approach, this corresponds to specifying business processes in terms of actions, intro-
ducing an undesirable complexity into process models. Conversely, our solution pro-
vides a flexible way to align business processes, data protection policies and audit trails
and allows an organization to reuse its business process models for purpose control. In
addition, the Chain method has a preventive nature and lacks capability to reconstruct
the sequence of acts (when chains are executed concurrently).

Some approaches propose methods for a-posteriori policy compliance [28,29]. For
instance, Cederquist et al. [29] present a framework that allows users to justify their
actions. However, these frameworks can only deal with a limited range of access con-
trol policies and do not consider the purpose. Agrawal et al. [30] propose an auditing
framework to verify whether a database system is compliant with data protection poli-
cies. However, their focus is mainly on minimizing the information to be disclosed and
identifying suspicious queries rather than verifying data usage.

Techniques for detecting system behaviors that do not conform to an expected model
have been proposed in process mining and intrusion detection. In intrusion detection,
logs of system calls are analyzed either to detect deviations from normal behavior
(anomaly detection) [31] or to identify precise sequences of events that damage the
system (misuse detection) [32]. Accordingly, our method can be seen as an anomaly
detection technique. Process mining [33] and, in particular, conformance checking [13]
have been proposed to quantify the “fit” between an audit trail and a business pro-
cess model. These techniques, however, work with logs in which events only refer to
activities specified in the business process model. Consequently, they are not able to
analyze the compliance with fine-grained data protection policies. Moreover, they are
often based on Petri Nets. This formalism does not make it possible to capture the full
complexity of business process modeling languages such as BPMN. Existing solutions
based on Petri Nets either impose some restrictions on the syntax of BPMN (e.g., avoid-
ing cycles), or define a formal semantics that deviate from the informal one. Conversely,
we have adopted COWS [10] for the representation of organizational processes. This
language has been proved to be suitable for representing a large set of BPMN constructs
and analyzing business processes quantitatively [16].
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7 Conclusions

Organizations often make use of business process models to define how organizational
goals should be achieved. In this paper, we proposed to associate the purpose defined
in data protection policies to such process models. This representation makes it pos-
sible to verify the compliance of the actual data usage with purpose specifications by
determining whether the audit trail represents a valid execution of the processes defined
by the organization to achieve a certain purpose. We expect that the audit process is
tractable and scales to real applications. Intuitively, the complexity of the approach is
bound to the complexity of Algorithm 1. Indeed, Algorithm 1 is independent from the
particular object under investigation so that it is not necessary to repeat the analysis
of same process instance for different objects. In addition, the analysis of process in-
stances is independent from each other, allowing for massive parallelization. A detailed
complexity analysis of the algorithm is left for future work, but our first experiments
show encouraging performances.

The work presented in this paper suggests some interesting directions for the future
work. The proposed approach alone may not be sufficient when we consider the hu-
man component in organizational processes. Process specifications may contain human
activities that cannot be logged by the IT system (e.g., a physician discussing patient
data over the phone for second opinion). These silent activities make it not possible to
determine if an audit trail corresponds to a valid execution of the organization process.
Therefore, we need a method for analyzing user behavior and the purpose of data us-
age when audit trails are partial. In addition, many application domains like healthcare
require dealing with exceptions. For instance, a physician can take actions that diverge
from the procedures defined by a hospital to face emergency situations. On one side,
preventing such actions may be critical for the life of patients. On the other side, check-
ing every occurrence of emergency situations can be costly and time consuming. To
narrow down the number of situations to be investigated, we are complementing the
presented mechanism with metrics for measuring the severity of privacy infringements.
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A Encoding of BPMN in COWS

In this section we present some examples that provide the intuition underlying the
COWS semantics and the encoding of BPMN processes into COWS specification.

Consider the simple process in Fig. 7(a); it is composed by a start event S, a task
T , and an end event E within a pool P . The corresponding COWS service is Serv =
[[S]] | [[T ]] | [[E]], where services [[S]], [[T ]], and [[E]] are defined in Fig. 7(b). Service
[[S]] gives the control to task T in pool P , written as P ·T ! 〈〉. Service [[T ]] receives the
control (P · T ? 〈〉) and then (represented as infix dot “. ”) gives the control to the end
event E within pool P (P ·E! 〈〉). Finally, [[E]] closes the flow receiving the control P ·
E? 〈〉. The LTS associated with service Serv (Fig. 7(c)) gives a compact representation
of the possible paths of tokens within the process of Fig. 7(a). In this simple case, only
a single path is possible.

An example involving a gateway is presented in Fig. 8(a). Here, when reaching the
exclusive gateway G, the token can follow only one flow, either through T 1 or through
T 2. Fig. 8(b) shows the encoding of the process in COWS. Note that the encoding of
G, [[G]], makes use of kill(k): when an alternative is selected, a killer signal is sent
to prevent the other alternative to be executed. This is evident in Fig. 8(c) where state
St6 is reached by running either T 1 or T 2, but there is no path where both T 1 and T 2

http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
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(a) BPMN Process

[[S]] := P · T ! 〈〉
[[T ]] := P · T ? 〈〉. P · E! 〈〉
[[E]] := P · E? 〈〉

(b) COWS Serv

������ !St1
P ·T �� ������ !St2

P ·E �� ������ !St3

(c) COWS LTS

Fig. 7. A Simple BPMN process in COWS

(a) BPMN Process

[[S]] := P · T ! 〈〉
[[T ]] := P · T? 〈〉. P · G! 〈〉
[[G]] := P · G? 〈〉. [ k ][ sys ](

sys · T1! 〈〉 | sys · T2! 〈〉|
sys · T1? 〈〉.(kill(k) | {|P · T1! 〈〉|})|
sys · T2? 〈〉.(kill(k) | {|P · T2! 〈〉|}))

[[T1]] := P · T1? 〈〉. P · E1! 〈〉
[[E1]] := P · E1? 〈〉
[[T2]] := P · T2? 〈〉. P · E2! 〈〉
[[E2]] := P · E2? 〈〉

(b) COWS Serv

������ !St1

P ·T��
������ !St2

P ·G��
������ !St3

sys·T1

�����
� sys·T2

��




������ !St4

P ·T1 ��

������ !St7

P ·T2��
������ !St5

P ·E1 ��


 ������ !St8

P ·E2�����
�

������ !St6

(c) COWS LTS

Fig. 8. A BPMN Process with Exclusive Gateway

are executed. We use the private name sys to avoid interference between services or
between different executions of the same service.

Tasks with an associated error event are another example of sequence flow. The ex-
ample in Fig. 9(a) models a task T that can either proceed “correctly” to task T 2 or
incur an error Err managed by task T 1. The encoding of the COWS services is reported
in Fig. 9(b). Note that the encoding of the BPMN elements S, T 1, E1, T 2, and E2 are
the same of the previous example (Fig. 8(b)). We only change the definition of [[T ]]:
when T takes the token, it can either proceed normally invoking T 2 (P ·T 2! 〈〉) or after
signaling an error (label “sys · Err”) proceed invoking T 1 (P · T 1! 〈〉). The LTS of
Fig. 9(c) shows these two possible paths.

The three examples above give some hints about the representation of an organiza-
tional process through COWS. To have a complete insight in the COWS services used
to model the process in Fig. 1 we have to discuss two further topics, namely message
flows and service replication.

Message flows are represented as communications over endpoints belonging to dif-
ferent pools. An example is given in Fig. 10. Here, events S2 and S3 are message start
events, i.e. events that trigger the start of the process upon the receipt of a message, and
E1 and E2 are message end events, i.e. events that send a message to a participant at
the conclusion of the process. When the end event E1 is triggered, it sends a message
msg1 to the start event S3 in pool P2; similarly, end event E2 sends a message msg2
to the start event S2 in pool P1. Upon the receipt of the message, S2 and S3 start the
corresponding process. The COWS encoding of the process in Fig. 10(a) is presented
in Fig. 10(b) and the corresponding LTS in Fig. 10(c).

In general, it is not known in advance how many times a service is invoked during the
execution of a process. An example of this is given by cycles. Cycles are closed paths
in the process; they can consist of sequence flows, as the cycle involving T 01, G1,



166 M. Petković, D. Prandi, and N. Zannone

(a) BPMN Process

[[S]] := P · T ! 〈〉
[[T ]] := P · G? 〈〉. [ k ][ sys ](

sys · Err! 〈〉 | sys · T2! 〈〉|
sys · Err? 〈〉.(kill(k) | {|P · T1! 〈〉|})|
sys · T2? 〈〉.(kill(k) | {|P · T2! 〈〉|}))

[[T1]] := P · T1? 〈〉. P · E1! 〈〉
[[E1]] := P · E1? 〈〉
[[T2]] := P · T2? 〈〉. P · E2! 〈〉
[[E2]] := P · E2? 〈〉

(b) COWS Serv

������ !St1

P ·T ��
������ !St2

sys·T2 ��
sys·Err

�����
���

������ !St3

P ·T2 ��

������ !St6

P ·T1��
������ !St4

P ·E2 ��

������ !St7

P ·E1�����
���

������ !St5

(c) COWS LTS

Fig. 9. A BPMN Process with Error Event

(a) BPMN Process

[[S1]] := P1 · T1! 〈〉
[[S2]] := ∗ [ z ]P1 · S2? 〈z〉. P1 · T1! 〈〉
[[T1]] := ∗P1 · T1? 〈〉. P1 · E1! 〈〉
[[E1]] := ∗P1 · E1? 〈〉. P2 · S3! 〈msg1〉
[[S3]] := ∗ [ z ]P2 · S3? 〈z〉. P2 · T2! 〈〉
[[T2]] := ∗P2 · T2? 〈〉. P2 · E2! 〈〉
[[E2]] := ∗P · E2? 〈〉. P1 · S2! 〈msg2〉

(b) COWS Serv

������ !St1

P1·T1��
������ !St2

P1·E2��
������ !St3

P2·S3 (msg1)��
������ !St4

P2·T2��
������ !St5

P2·E2��
������ !St6

P1·S2 (msg2)

��

(c) COWS LTS

Fig. 10. A BPMN Process with Message Flow and Cycles

T 02, and again T 01 in Fig. 1, or combination of sequence and message flows, as the
cycle involving S2, T 1, E1, S3, T 2, E2, and again S2 in Fig. 10(a). A cycle involves
the restart of the process from a certain activity. Consider the example of Fig. 1: if
the GP is not able to make a diagnosis (Err in task T 02), the process has to restart
from T 01. To address this issue, we prefix COWS services with the replication operator
∗ (Fig. 10(b)). This operator makes multiple copies of the COWS service; each copy
corresponds to an invocation of the service.

B Proofs

Proof of Proposition 1. If LTS(s) is finitely observable w.r.t. L, then for each trace

s
l0−→s0

l1−→s1 . . . sn
ln+1−−−→sn+1 . . .

there exists a value k < ∞ such that lk ∈ L, by Def. 8. This implies that the set of
states that can be reached from s with exactly one label in L can be computed in a finite
number of steps, namely WeakNext(s) is decidable on L. �
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Proof of Theorem 1. The proof is by induction on the length k of l = e1e2 . . . ek.

Base Step: Let l = e1. A BPMN process is always triggered by a start event [12].
Therefore, the initial configuration has the form conf = (s, empty, WeakNext(s)).
By definition LTS(s) is a finitely observable LTS. Therefore, each trace σ ≡
(s, l0), (s0, l1) . . . (sn, ln) . . . in Σ(LTS(s)) is such that ∃j < ∞ . lj ∈ L. If
Σ(LTS(s)) is empty, WeakNext(s) returns an empty set. In this case, the algo-
rithm does not enter into the forall of line 7 and the variable found remains false.
Thereby, the algorithm exits at line 22 with false. If there exists (lj , s′, active tasks)
∈ WeakNext(s) such that lj = r ·e1.task with e1.role ≤R r, or lj = sys ·Err and
e1.status = failure, Algorithm 1 returns true at line 24. Otherwise, Algorithm 1
returns false at line 22.

Inductive Step: Let l = e1 . . . ek with k > 1. By the inductive hypothesis, Algo-
rithm 1 terminates on the audit trail l(k−1) = e1e2 . . . ek−1. Let conf set be the
set of actual configurations. If conf set = ∅, the variable found remains false, and
Algorithm 1 returns false at line 22. If there exists a configuration conf ∈ conf set
such that (r, ek.task) ∈ conf .active tasks with ek.role ≤R r and ek.status =
success, the configuration is added to the set of configurations to be considered
in the next iteration (line 16). As l is completely analyzed and found is equal to
true (line 15), Algorithm 1 returns true at line 24. If there exists a configuration
conf ∈ conf set such that (r · ek.task, s′, at) ∈ conf .next with ek.role ≤R r
or (sys · Err, s′, at) ∈ conf .next and ek.status = failure, variable found be-
comes true at line 11. Then, Algorithm 1 returns true at line 24. Otherwise, if
the entry ek does not correspond either to any task in conf .active tasks or to any
label in conf .next , Algorithm 1 returns false on line 22. Therefore, by induction,
Algorithm 1 terminates for l. �

Proof of Theorem 2. The correctness is essentially given in term of soundness (for-
wards proof) and completeness (backwards proof). We show the implications sepa-
rately. We only sketch the proof of the theorem, which requires a double induction on
the length of l and on the structure of s.

(=⇒) Let l = e1e2 . . . ek be of length k. Algorithm 1 on (s,l) returns true only if
the while cycle of line 3 ends and line 24 is executed. By Theorem 1, we know that the
algorithm and, consequently, the cycle always terminates. Line 24 is executed only if for
each ei ∈ l either condition on line 8 is not verified (i.e., ei .task is active and ei .status
is not failure) or, by line 10, there exists a configuration conf ∈ conf set that accepts
ei (i.e., (r · ei.task, s′, at) ∈ conf .next with ei.role ≤R r or (sys · Err, s′, at) ∈
conf .next and ek.status = failure). This consideration makes it possible to prove
that, at each iteration i ∈ [1, k] of the while cycle, Algorithm 1 computes the set of
traces of LTS(s) that accept the prefix e1 . . . ei. Therefore, if line 24 is executed, there
exists at least one trace σ in Σ(LTS(s)) that accepts l.

(⇐=) To prove the completeness of Algorithm 1, we have to prove that if there is a trace
from s that accepts l, then Algorithm 1 on (s, l) gives true. Below, we demonstrate the
contra-positive of the previous sentence, i.e. if Algorithm 1 on (s, l) returns false, then
there is not a trace from s that accepts l. Given l = e1e2 . . . ek, Algorithm 1 on (s, l)
returns false if there exists an iteration i ∈ [1, k] of the while cycle in line 3 such that the
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condition on line 21 is true. This is possible if during iteration i both line 11 and line 15
are not executed. The first condition is verified if, given a conf ∈ conf set such that ei

does not correspond to any task in conf .active tasks or it is a failure (i.e., condition on
line 8 is true), there is not a triple (lm , sm , at) ∈ conf .next that accepts ei (condition on
line 10 is false). In this case, by Proposition 1, there does not exist a finitely observable
trace (sj , lj+1) . . . (sm−1, lm) from the current state sj to sm such that ei corresponds
to lm. Line 15 is executed only if ei corresponds to a task in conf .active tasks and it
is not a failure (i.e., condition on line 8 is false). No execution of this line implies that
there does not exist a conf ∈ conf set where e1 is active. This means that ei does not
correspond to an active task in the current state sj . Suppose that at the i-th iteration
of the while cycle, Algorithm 1 has already built all the traces accepting e1 . . . ei−1. If
Algorithm 1 cannot replay ei in the process, we can conclude that there is not a trace in
Σ(LTS(s)) accepting e1 . . . ei, and so l. �
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