Alfredo Cuzzocrea
Umeshwar Dayal (Eds.)

Data Warehousing
and Knowledge Discovery

13th International Conference, DaWakK 2011
Toulouse, France, August/September 2011
Proceedings

A

LNCS 6862

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Alfred Kobsa

University of California, Irvine, CA, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

TU Dortmund University, Germany
Madhu Sudan

Microsoft Research, Cambridge, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max Planck Institute for Informatics, Saarbruecken, Germany

6862

Alfredo Cuzzocrea Umeshwar Dayal (Eds.)

Data Warehousing and
Knowledge Discovery

13th International Conference, DaWaK 2011
Toulouse, France, August/September 2011
Proceedings

@ Springer

Volume Editors

Alfredo Cuzzocrea

ICAR-CNR

University of Calabria

via P. Bucci 41 C

87036 Rende (CS), Italy

E-mail: cuzzocrea@si.deis.unical.it

Umeshwar Dayal
Hewlett-Packard Labs

1501 Page Mill Road, MS 1142
Palo Alto, CA 94304, USA
E-mail: umeshwar.dayal @hp.com

ISSN 0302-9743 e-ISSN 1611-3349

ISBN 978-3-642-23543-6 e-ISBN 978-3-642-23544-3
DOI 10.1007/978-3-642-23544-3

Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011934786
CR Subject Classification (1998): H.2, H.2.8, H.3, H4,J.1, H.5

LNCS Sublibrary: SL 3 — Information Systems and Application, incl. Internet/Web
and HCI

© Springer-Verlag Berlin Heidelberg 2011

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Data warehousing and knowledge discovery is an extremely active research area
where a number of methodologies and paradigms converge, with coverage on both
theoretical issues and practical solutions. From a broad viewpoint, data ware-
housing and knowledge discovery has been widely accepted as a key technology
for enterprises and organizations, as it allows them to improve their abilities in
data analysis, decision support, and the automatic extraction of knowledge from
data. With the exponentially growing amount of information to be included in
the decision-making process, data to be considered become more and more com-
plex in both structure and semantics. As a consequence, novel developments are
necessary, both at the methodological level, e.g., complex analytics over data,
and at the infrastructural level, e.g., cloud computing architectures. Orthogonal
to the latter aspects, the knowledge discovery and retrieval process from huge
amounts of heterogeneous complex data represents a significant challenge for
this research area.

Data Warehousing and Knowledge Discovery (DaWaK) has become one of the
most important international scientific events that brings together researchers,
developers, and practitioners to discuss the latest research issues and experiences
in developing and deploying data warehousing and knowledge discovery systems,
applications, and solutions.

The 13" International Conference on Data Warehousing and Knowledge Dis-
covery (DaWakK 2011), continued the tradition by discussing and disseminating
innovative principles, methods, algorithms, and solutions to challenging prob-
lems faced in the development of data warehousing and knowledge discovery,
and applications within these areas. In order to better reflect novel trends and
the diversity of topics, like the previous edition, DaWaK 2011 was organized
into four tracks: Cloud Intelligence, Data Warehousing, Knowledge Discovery,
and Industry and Applications.

Papers presented at DaWaK 2011 covered a wide range of topics within cloud
intelligence, data warehousing, knowledge discovery, and applications. The top-
ics included data warehouse modeling, spatial data warehouses, mining social
networks and graphs, physical data warehouse design, dependency mining, busi-
ness intelligence and analytics, outlier and image mining, pattern mining, and
data cleaning and variable selection.

It was encouraging to see that many papers covered emerging important
issues such as social network data, spatio-temporal data, streaming data, non-
standard pattern types, complex analytical functionality, multimedia data, as
well as real-world applications. The wide range of topics bears witness to the
fact that the data warehousing and knowledge discovery field is dynamically
responding to the new challenges posed by novel types of data and applications.

VI Preface

From 119 submitted abstracts, we received 109 papers from Europe, North
and South America, Asia, Africa, and Oceania, further confirming to us the wide
interest in the topics covered by DaWaK within the research community. The
Program Committee finally selected 37 papers, yielding an acceptance rate of
31%.

We would like to express our most sincere gratitude to the members of the
Program Committee and the external reviewers, who made a huge effort to
review the papers in a timely and thorough manner. Due to the tight timing
constraints and the high number of submissions, the reviewing and discussion
process was a very challenging task, but the commitment of the reviewers ensured
a successful result. We would also like to thank all authors who submitted papers
to DaWakK 2011, for their contribution to the excellent technical program.

Finally, we send our warmest thanks to Gabriela Wagner for delivering an out-
standing level of support on all aspects of the practical organization of DaWaK
2011. We also thank Amin Anjomshoaa for his support of the conference man-
agement software.

August 2011 Alfredo Cuzzocrea
Umeshwar Dayal

Program Chair

Alfredo Cuzzocrea
Umeshwar Dayal

Program Committee

Alberto Abello

Reda Alhajj

Elena Baralis

Ladjel Bellatreche
Bettina Berendt

Petr Berka

Jorge Bernardino

Elisa Bertino

Stephane Bressan
Longbing Cao

Frans Coenen

Bruno Cremilleux
Judith Cushing
Alfredo Cuzzocrea
Karen Davis

Frank Dehne

Antonios Deligiannakis
Alin Dobra

Josep Domingo-Ferrer
Dejing Dou

Curtis Dyreson

Todd Eavis

Johann Eder

Floriana Esposito
Vladimir Estivill-Castro
Christie Ezeife

Ling Feng

Eduardo Fernandez-Medina
Sergio Greco

Se June Hong

Frank Hoppner

Organization

ICAR-CNR and University of Calabria, Italy
Hewlett-Packard Laboratories, Palo Alto, CA,
USA

Universitat Politecnica de Catalunya, Spain
University of Calgary, Canada
Politecnico di Torino, Italy

LISI/ENSMA, France
Humboldt University Berlin, Germany

University of Economics Prague, Czech Republic
SEC, Polytechnic Institute of Coimbra, Portugal

Purdue University, USA

National University of Singapore, Singapore

University of Technology Sydney, Australia

The University of Liverpool, UK

Université de Caen, France

The Evergreen State College, USA

University of Calabria, Italy

University of Cincinnati, USA

Carleton University, Canada

Technical University of Crete, Greece

University of Florida, USA

Universitat Rovira i Virgili, Spain

University of Oregon, USA

Utah State University, USA

Concordia University, USA

University of Klagenfurt, Austria

University of Calabria, Italy

Griffith University, Australia

University of Windsor, Canada

Tsinghua University, China

University of Castilla-La Mancha, Spain

University of Calabria, Italy

RSM emeritus, IBM T.J. Watson Research
Center, USA

University of Applied Sciences
Braunschweig/Wolfenbuettel, Germany

VIII Organization

Andreas Hotho
Jimmy Huang
Yong Hwan-Seung
Hasan Jamil

Chris Jermaine
Murat Kantarcioglu
Panagiotis Karras
Martin Kersten
Jens Lechtenborger
Wolfgang Lehner
Carson K. Leung
Jinyan Li

Xuemin Lin
Patrick Martin
Michael May

Carlos Ordonez
Apostolos Papadopoulos
Jeffrey Parsons
Torben Bach Pedersen
Adriana Prado

Lu Qin

Zbigniew W. Ras
Mirek Riedewald
Stefano Rizzi
Domenico Sacca
Maria Luisa Sapino
Kai-Uwe Sattler
Timos Sellis

Neeraj Sharma
Alkis Simitsis
Domenico Talia
David Taniar

Yufei Tao

Dimitri Theodoratos

A Min Tjoa

Juan Trujilo
Panos Vassiliadis
Gottfried Vossen
Wei Wang

Ranga Vatsavai
Marcos Vaz Salles
Wolfram Wof
Robert Wrembel

University of Kassel, Germany

York University, Canada

Ewha Womans University, Korea

Wayne State University, USA

Rice University, USA

University of Texas at Dallas, USA

National University of Singapore, Singapore

CWI, The Netherlands

Universitdt Miinster, Germany

Dresden University of Technology, Germany

The University of Manitoba, Canada

National University of Singapore, Singapore

UNSW, Australia

Queen’s University, Canada

Fraunhofer Institut fiir Autonome Intelligente
Systeme, Germany

University of Houston, USA

Aristotle University, Greece

Memorial University of Newfoundland, Canada

Aalborg University, Denmark

INSA-Lyon, LIRIS, France

The Chinese University of Hong Kong, China

University of North Carolina, USA

Cornell University, USA

University of Bologna, Italy

University of Calabria and ICAR-CNR, Italy

Universita degli Studi di Torino, Italy

Ilmenau University of Technology, Germany

Institute for the Management of Information
Systems and NTUA, Greece

India IBM Labs, India

Stanford University, USA

University of Calabria, Italy

Monash University, Australia

Chinese University of Hong Kong, China

New Jersey’s Science and Technology
University, USA

IFS, Vienna University of Technology, Austria

University of Alicante, Spain

University of loannina, Greece

University of Miinster, Germany

UNSW, Australia

Oak Ridge National Laboratory, USA

Cornell University, USA

University of Linz, Austria

Poznan University of Technology, Poland

Carlo Zaniolo
Bin Zhou
Esteban Zimanyi

External Reviewers

Cem Aksoy

Kamel Boukhalfa
Nicola Di Mauro
Claudia d’Amato
David Gil

Ursula Gonzalez-Nicolés

Fernando Gutierrez
Sara Hajian
Shangpu Jiang
Shrikant Kashyap
Elli Katsiri
Christian Koncilia
Selma Khouri

Jens Lechtenborger
Haishan Liu
Sadegh Nobari
Kostas Patroumpas

Deolinda Rasteiro

Domenico Redavid
Oscar Romero
Zhitao Shen

Jordi Soria

Jichao Sun

Manolis Terrovitis
Rolando Trujillo
Paolo Trunfio
Elisa Turricchia
Xiaoying Wu

Vincent Yip
Weiren Yu
Xijaodong Yue
Yiling Zeng
Liming Zhan
Zhigang Zheng
Lin Zhu

Organization IX

University of California, Los Angeles, USA
Simon Fraser University, Canada
Université Libre de Bruxelles, Belgium

New Jersey Institute of Technology (NJIT),
USA

USTHB, Algiers, Algeria

Universita degli Studi “Aldo Moro”, Bari, Italy

Universita degli Studi “Aldo Moro”, Bari, Italy

University of Alicante, Spain

Universitat Rovira i Virgili, Spain

University of Oregon, USA

Universitat Rovira i Virgili, Spain

University of Oregon, USA

National University of Singapore

Research Center ATHENA, Greece

Alpen Adria Universitdt Klagenfurt, Austria

ESI, Algiers, Algeria

University of Miinster, Germany

University of Oregon, USA

National University of Singapore

National Technical University of Athens,
Greece

ISEC - Institute Polytechnic of Coimbra,
Portugal

Universita degli Studi “Aldo Moro”, Bari, Italy

Universitat Politecnica de Catalunya, Spain

University of New South Wales, Australia

Universitat Rovira i Virgili, Spain

New Jersey Institute of Technology (NJIT),
USA

Research Center ATHENA, Greece

Universitat Rovira i Virgili, Spain

University of Calabria, Italy

University of Bologna, Italy

New Jersey Institute of Technology (NJIT),
USA

University of Oregon, USA

University of New South Wales, Australia

University of Technology Sydney, Australia

University of Technology Sydney, Australia

University of New South Wales, Australia

University of Technology Sydney, Australia

University of Technology Sydney, Australia

Table of Contents

Physical and Conceptual Data Warehouse Models

ONE: A Predictable and Scalable DW Model
Joao Pedro Costa, José Cecilio, Pedro Martins, and Pedro Furtado

The Planning OLAP Model - A Multidimensional Model with Planning
SUDPDOTt et
Bernhard Jaecksch and Wolfgang Lehner

Extending the Dimensional Templates Approach to Integrate Complex
Multidimensional Design Conceptscooiiiiiii ...
Rui Oliveira, Fatima Rodrigues, Paulo Martins, and
Joao Paulo Moura

OLAP Formulations for Supporting Complex Spatial Objects in Data
Warehousesot e
Ganesh Viswanathan and Markus Schneider

Data Warehousing Design Methodologies and Tools

Multidimensional Database Design from Document-Centric XML
Documents
Genevieve Pujolle, Franck Ravat, Olivier Teste,
Ronan Tournier, and Gilles Zurfluh

Modern Software Engineering Methodologies Meet Data Warehouse
Design: A4WD . ..o
Matteo Golfarelli, Stefano Rizzi, and Elisa Turricchia

GEM: Requirement-Driven Generation of ETL and Multidimensional
Conceptual Designs
Oscar Romero, Alkis Simitsis, and Alberto Abello

ETL Methodologies and Tools

ETLMR: A Highly Scalable Dimensional ETL Framework Based on
MapReduce e
Xiufeng Liu, Christian Thomsen, and Torben Bach Pedersen

Complementing Data in the ETL Process
Livia de S. Ribeiro, Ronaldo R. Goldschmidt, and
Maria Cldudia Cavalcanti

14

26

39

o1

66

80

96

XII Table of Contents

TTL: A Transformation, Transference and Loading Approach for
Active Monitoringoiii e 124
Emma Chdvez and Gavin Finnie

Support for User Involvement in Data Cleaning 136
Helena Galhardas, Antonia Lopes, and Emanuel Santos

Data Warehouse Performance and Optimization

Efficient Processing of Drill-across Queries over Geographic Data

Warehouses 152
Jaqueline Joice Brito, Thiago Luis Lopes Siqueira,
Valéria Cesdrio Times, Ricardo Rodrigues Cliferri, and
Cristina Dutra de Ciferri

The NOX OLAP Query Model: From Algebra to Execution 167
Ahmad Taleb, Todd Eavis, and Hiba Tabbara

VarDB: High-Performance Warehouse Processing with Massive
Ordering and Binary Search 184
Pedro Martins, Joao Costa, José Cecilio, and Pedro Furtado

Data Warehouse Partitioning Techniques

Vertical Fragmentation of XML Data Warehouses Using Frequent Path
] 2= 196
Doulkifli Boukraa, Omar Boussaid, and Fadila Bentayeb

Implementing Vertical Splitting for Large Scale Multidimensional
Datasets and Its Evaluations i i 208
Takayuki Tsuchida, Tatsuo Tsuji, and Ken Higuchi

Analytics over Large Multidimensional Datasets

Describing Analytical Sessions Using a Multidimensional Algebra 224
Oscar Romero, Patrick Marcel, Alberto Abelld,
Veronika Peralta, and Ladjel Bellatreche

Tagged MapReduce: Efficiently Computing Multi-analytics Using

MapReduce 240
Andreas Williams, Pavlos Mitsoulis-Ntompos, and
Damianos Chatziantoniou

Table of Contents XIII

Pattern Mining

Frequent Pattern Mining from Time-Fading Streams of Uncertain
Data ... 252
Carson Kai-Sang Leung and Fan Jiang

SPO-Tree: Efficient Single Pass Ordered Incremental Pattern Mining ... 265
Yun Sing Koh and Gillian Dobbie

RP-Tree: Rare Pattern Tree Mining 277
Sidney Tsang, Yun Sing Koh, and Gillian Dobbie

Matrix-Based Mining Techniques

Co-clustering with Augmented Data Matrix 289
Meng-Lun Wu, Chia-Hui Chang, and Rui-Zhe Liu

Using Confusion Matrices and Confusion Graphs to Design Ensemble
Classification Models from Large Datasets 301
Patricia E.N. Lutu

Data Mining and Knowledge Discovery Techniques

Pairwise Similarity Calculation of Information Networks 316
Yuanzhe Cai and Sharma Chakravarthy

Feature Selection with Mutual Information for Uncertain Data......... 330
Gauthier Doquire and Michel Verleysen

Time Aware Index for Link Prediction in Social Networks 342
Lankeshwara Munasinghe and Ryutaro Ichise

An Efficient Cacheable Secure Scalar Product Protocol for
Privacy-Preserving Data Mining 354
Duc H. Tran, Wee Keong Ng, Hoon Wei Lim, and Hai-Long Nguyen

Data Mining and Knowledge Discovery Applications

Learning Actions in Complex Software Systems 367
Koosha Golmohammadi, Michael Smit, and Osmar R. Zaiane

An Envelope-Based Approach to Rotation-Invariant Boundary Image
Matching 382
Sang-Pil Kim, Yang-Sae Moon, and Sun-Kyong Hong

Finding Fraud in Health Insurance Data with Two-Layer Outlier
Detection Approach 394
Rob M. Konijn and Wojtek Kowalczyk

XIV Table of Contents

Enhancing Activity Recognition in Smart Homes Using Feature
Induction 406
Naveen Nair, Ganesh Ramakrishnan, and Shonali Krishnaswamy

Stream, Sensor and Time-Series Mining

Mining Approximate Frequent Closed Flows over Packet Streams 419
Imen Brahmi, Sadok Ben Yahia, and Pascal Poncelet

Knowledge Acquisition from Sensor Data in an Equine Environment.... 432
Kenneth Conroy, Gregory May, Mark Roantree, Giles Warrington,
Sarah Jane Cullen, and Adrian McGoldrick

Concurrent Semi-supervised Learning of Data Streams................ 445
Hai-Long Nguyen, Wee-Keong Ng, Yew-Kwong Woon, and
Duc H. Tran

A Bounded Version of Online Boosting on Open-Ended Data

SUTAIMS . ottt 460
José Luis Trivino-Rodriguez, Amparo Ruiz-Sepilveda, and
Rafael Morales-Bueno

Moderated VFDT in Stream Mining Using Adaptive Tie Threshold
and Incremental Pruning. 471
Hang Yang and Simon Fong

Finding Critical Thresholds for Defining Bursts 484
Bibudh Lahiri, Ioannis Akrotirianakis, and Fabian Moerchen

Author Index 497

ONE: A Predictable and Scalable DW Model

Jodo Pedro Costal, José Cecﬂioz, Pedro Martinsz, and Pedro Furtado’

' ISEC-Institute Polytechnic of Coimbra
jcosta@isec.pt
% University of Coimbra
{jcecilio,pmom,pnf}@dei.uc.pt

Abstract. The star schema model has been widely used as the facto DW storage
organization on relational database management systems (RDBMS). The physi-
cal division in normalized fact tables (with metrics) and denormalized dimen-
sion tables allows a trade-off between performance and storage space while, at
the same time offering a simple business understanding of the overall model as
a set of metrics (facts) and attributes for business analysis (dimensions). How-
ever, the underlying premises of such trade-off between performance and
storage have changed. Nowadays, storage capacity increased significantly at af-
fordable prices (below 50$/terabyte) with improved transfer rates, and faster
random access times particularly with modern SSD disks. In this paper we eva-
luate if the underlying premises of the star schema model storage organization
still upholds. We propose an alternative storage organization (called ONE) that
physically stores the whole star schema into a single relation, providing a pre-
dictable and scalable alternative to the star schema model. We use the TPC-H
benchmark to evaluate ONE and the star schema model, assessing both the
required storage size and query execution time.

Keywords: DW, DSM.

1 Introduction

Data warehouses are stored in relation DBMS systems as a set of tables organized in a
star schema, with a central fact table and surrounded by dimension tables. The fact
table is highly normalized, containing a set of foreign keys referencing the
surrounding dimension tables, and stores the measure facts. Usually, these fact tables
represent a huge percentage of the overall storage space required by the data
warehouse (DW). That’s one reason why the central fact table is highly normalized, in
order to minimize data redundancy and thus reducing the table storage space. On the
other hand, dimension tables are highly denormalized and represent only a small
amount of the overall DW storage space. The potential gains in terms of storage space
that could be achieved by normalizing dimensions does not pay-off the decline in
query execution performance, requiring more complex query execution plans and
extra memory and processing requirements for processing the additional joins.

Since DWs store historical measures of the business data, their size is continuously
growing, particularly the central fact table which has to store the new data measures

A. Cuzzocrea and U. Dayal (Eds.): DaWaK 2011, LNCS 6862, pp. 1-l[3, 2011.
© Springer-Verlag Berlin Heidelberg 2011

2 J.P. Costa et al.

that are being produced by the operational systems. Due to their nature, fact tables
usually are only subject to insert operations, while the same doesn’t necessary happen
to dimension tables. Along with insert operations, at lower rates when compared with
the fact table, some update operations are also made to dimension tables.

This continuous increase in size, present some problems to the hardware infrastructure
capability to process such increased volume of data. DBMS engines generate complex
query execution plans, considering different data access methods and joining algorithms
which are sensitive to the hardware characteristics such as the available memory and
processing capabilities. Distributed and parallel infrastructures also have to take into
account the available network bandwidth required for exchanging temporary results
between nodes. There’s no simple method to determine the minimal requirements of the
supporting hardware infrastructure in order to scale up with the data volume increase. IT
departments that have to manage and fine tune DW systems, when recognizing that the
hardware infrastructure is unable to satisfactorily process such data volumes, usually try
to solve this problem by acquiring more processing power and replacing existing
infrastructure with newer expensive machinery, or by adding additional processing
nodes. This decision is made with the assumption that the newer infrastructure, with
more memory and faster CPUs, will be sufficient of handle such volume increase,
without a real knowledge of its data volume processing capacity.

In this paper, we evaluate whether the premises that lead to the definition of star
schema model for storing DWs in relational DBMS still upholds in current hardware
systems, where storage space and becoming increasingly faster at affordable prices,
and the availability and affordable distributed data processing infrastructures
composed of Common-off-the-Shelf (COTS) hardware. We propose to extend the
denormalization applied to dimension tables to the overall star schema model,
reducing the fact tab and the dimension tables to a single table containing all the data.
We called this single relation storage organization “ONE”. We evaluate the impact of
such organization in both storage and processing requirements.

In section 2 we discuss some related work on DW storage and processing
organization. Section 3 presents the denormalization process and illustrates the
storage requirements with the TPC-H schema. Section 4 discusses how the processing
costs of ONE compare with the base TCP-H schema. Section 5 uses the TPC-H
benchmark to experimentally evaluate the query execution times of ONE storage
organization. Finally, we conclude with section 6.

2 Related Works

Both academia and the industry have been investigating methods, algorithms and
strategies for speedup the execution time of queries that need to join several relations.
Some had investigated the different join algorithms, such as, sort-merge, hash join,
grace-hash join and hybrid-hash join [1][2][3][4]. Other investigated access methods,
such as btree and bitmap indexes [5]. Materialized views [6] use extra storage space
to physically stored aggregates for well known and planned queries. Sampling [7]
trades-off precision for performance by employing the power of offered by statistical
methods to reduce the volume of data that need to be processed for computing an
acceptable result. Vertical partitioning and column-wise store engines [8], [9] as
proved to be effective in reducing the disk IO and thus boosting query performance.

ONE: A Predictable and Scalable DW Model 3

Works on denormalization includes [10,11,12][but fall short on demonstrating the
performance gains of obtained by denormalization the whole star schema model, and
doesn’t offer a clear insight of the query performance predictability and scalability.

3 ONE Storage Model

In this section, we present ONE as an alternative storage organization for the star
schema model, and discuss the major advantages and disadvantages of the proposed
model. We use the TPC-H schema model to illustrate the storage trade-off.

A normalized central fact table reduces the overall DW storage size, since it only
stores a set of measures (m), which are mainly numerical attributes (facts) with a fixed
width, and a set of foreign keys (n) that are also numerical identifiers. The size of fact
tables increases as a function of the number of tuples.

faCtTablesize (Ntuples) = Ntuples X (nforeign keys + mmeasures)

For joining the relations, the star schema model has to include a set of extra
primary and foreign keys which usually are artificially generated (surrogate keys) and
do not have operational meaning. These keys increase the DW storage requirements.
In some star schema models, the number of foreign keys represents a large percentage
of the number of fact table attributes. This is particularly relevant for some special
types of fact tables (factless fact tables), which do not have measures and only store
foreign keys, where each tuple represents an event without measures.

For instance, in TPC-H benchmark, which is not a typical star schema model, but is
well known by the data warehouse community, we observe (in table 1) that 1 of the 61
columns of the benchmark schema are keys, which represents a 30% increase in the
number of attributes and 8% increase in storage size.

Table 1. Increase in the number of attributes

#Attributes #Key #Attribute Space
(non keys) Attributes %increase %increase

REGION 2 1 50% 4%
NATION 2 2 100% 9%
SUPPLIER 5 2 33% 6%
CUSTOMER 6 2 33% 5%
PART 8 1 13% 3%
PARTSUPP 3 2 67% 6%
ORDERS 7 2 29% 8%
LINEITEM 13 3 25% 10%
Total 46 15

In the TPC-H schema, the additional surrogate keys and foreign keys added to
LINEITEM table represent a 25% increase in the number of the table attributes. It
only represents a 10% increase in storage size though, due to the fact that this schema
is not a typical star schema, as discussed in [13], and does not follow the principles of

4 J.P. Costa et al.

muldimensional modeling explained in [14]. In the SSB schema [13], the overhead
created by including keys corresponds to a 70% increase in both the number of
attributes and the space required by the foreign keys attributes on table LINEITEM.

Foreign keys are justified by the need to join fact tables with the surrounding
dimension tables. However, this requires more complex query execution, since join
algorithms are usually the heaviest of operations on a data warehouse. Access
methods and join algorithms were thoroughly investigated and evaluated by both the
academia and the DBMS industry. The query optimizer has to choose the most
appropriate execution plan and to fine-tune the alternative execution plans with
hardware characteristics, taking into account aspects such the available memory for
hashing and sorting.

The ONE Storage Model

In ONE storage organization, the whole star schema model is physically stored in a
single relation without primary and foreign keys. This single relation, named ONE in
figure 1, contains all the attributes from both the fact table and dimension tables. The
cardinality of ONE is the same as the greatest cardinality of the star schema relations.
Usually it is set as the cardinality of the fact table. This denormalization increases the
overall space necessary for storing all the data, since data from dimension tables are
redundantly sorted in ONE relation. For instance, each tuple of table SUPPLIERS is,
on average, inserted (repeated) 60 times. This redundancy requires extra storage space
for storing all the denormalized data, and consequently may cause performance
issues, since it now is more IO dependent.

I -
1

1
|| PART PARTSUPP SUPPLIERS 1
1|== g S AN 5 5 IDORHE :

1
1 E 1
I 1

]
. 1

| - . ONE

1

NATION REGION | !
. LINETEM = SF ¥ 6 000 00D

5F x& 0O0000 1
' : '
1 1
. | :
1 W 1
! 1
: SFx1 500000 SFx 150000 1
1
1 1

Fig. 1. The TPC-H and ONE schema

However, in a single relation no primary keys and foreign keys are required, which,
as discussed above and shown in tablel, represents about 25% of the number of

ONE: A Predictable and Scalable DW Model 5

attributes. Moreover, most RDMS engines create an index structure for each table
primary key, which represents additional space. These index structures, and related
storage requirements, are also not necessary on the denormalized schema.

Considering ss as storage space by a schema model, the total storage space
occupied by a DW is

SSpw = SStabies + Sspkindexes + szkindexes

The storage space required by ONE is determined as

SSone = SStapieong + 0+ 0

We define ¢, as the storage space increase ratio in comparison with the base DW
star schema model

Goy = SSoNE — SSaw
SS SSdW

Without considering the block (or page) overheads, and the number of tuples that
can fit within each page block, since they are engine dependent, and considering the
maximum space required for each variable length attribute (VAL), we conclude that
the denormalized schema requires at most a 5,3x increase in the storage size.

VAL attributes with an average size below the maximum size will have a greater
impact in the overall size of ONE, since it affects all tuples in the relation, whereas in
the base schema it only affects the size of the related relation. For instance, if the size
of a VAL attribute from table CUSTOMER is reduced by half, it represents almost
negligible impact in overall schema size, since CUSTOMER only represents 3% of
the overall schema, whereas in ONE the storage size is reduced proportionally to the
percentage of the attribute size in the overall tuple size. Size variability of VAL
attributes from LINEITEM or ORDERS will have greater impact in the overall size,
since they (in conjunction) represent 80% of the total space.

Table 2. Disk space required by each relation

SF=1 N2 Rows Space %
REGION 5 1KB 0%
NATION 25 5 KB 0%
SUPPLIER 10 000 1,9 MB 0%
CUSTOMER 150 000 31,3 MB 3%
PART 200 000 30,5 MB 3%
PARTSUPP 800 000 164,0 MB 14%
ORDERS 1 500 000 190,3 MB 17%
LINEITEM 6 000 000 726,7 MB 63%
Total 1144,7 VB 100%

The overall storage space required by ONE to store the data increases by a factor
of 5,3x , as show in table 3, which shows the storage space required by each storage

6 J.P. Costa et al.

organization and the corresponding space ratio, for a scale factor of 1. The storage
space ratio is reduced to less than 4x when we also take into account in the equation
the space occupied by indexes.

Table 3. Storage space required by each schema organization

Schema (SF1) Size (MB) Pss
base TPC-H 1.144,7 MB 5,323
base TPC-H + Indexes 1.448,4 MB 3,998
ONE 7.238,4 MB

With a scale factor of 1 (SF=1), we observe that the required space increase to
about 7GB. For quite some time, this increase in storage was unacceptable since
storage space was expensive, disks had limited capacity and with slow transfer rates.
However, currents disks are acceptably fast, providing sequential transfer rates of
hundreds of MB per second, at affordable prices (with prices below 0.05€/GB).

Looking to the relation sizes, we may observe that queries that solely require data
from table LINEITEM will become slower, since they need to read and process almost
10x more data (not tuples) in comparison with the base star schema. However this is not
a typical query. The usual DW query pattern involves selecting (or filtering) some
attributes from dimension tables and then joining with the central fact table, before
performing some aggregated computations to the data from the central fact tables.

4 Query Processing

In this section, we discuss and compare the query processing costs and requirements
for processing queries against ONE, without joins, and the hybrid hash join, which, as
discussed and evaluated in [3], is a join algorithm that delivers enhanced performance
execution time for large relations.

Queries submitted to the DW require that the central fact tables be joined with one
or several surrounding dimension tables. In what concerns query execution costs, the
storage space isn’t an issue, the real issue that we have to be concerned is the required
IO operations, and particularly the random reads which are expensive and the
available memory. If it is possible to process joins and sorts in memory, this will be
important, since it saves expensive disk write operations.

Query optimizers have to evaluate and assess which combination and orchestration
of access methods, joining algorithms and joining order in order to determine the
query execution plan with minimum costs that fits to the hardware characteristics. For
this, they resort to several supplementary structures containing statistical information
and data distribution histograms of the data that resides in each relation. This is
fundamental to better estimate the query selectivity over each relation and thus
determine which access method to use, and the joining order and algorithm.

ONE: A Predictable and Scalable DW Model 7

Predictable Execution Time

ONE does not require any join algorithm, since data is already joined, thus the query
optimizer complexity is reduced, and it has reduced memory requirements, in contrast
with the memory requirements of the joining algorithms. Since ONE only requires
memory for sorting and grouping, it has minimal memory requirements to process
queries.

The bottleneck of ONE is 10 dependent, since it requires more 10 operations to
process the denormalized data. However, this characteristic offers a predictable
and simpler method to determine the query execution time. Since, no joins are
required, and query execution presents minimal memory requirements, the query
execution time can be determined as a function of the employed access method and
the number and complexity of filtering conditions and the selected computations. The
relational star schema model is more unpredictable since the query time and the num-
ber of 10 operations are widely amplified as the volume data surpasses the available
memory.

A Comparative Analysis with Hybrid Hash Join

Hash Join algorithms use a hash function to partition two relations R and S into hash
partitions and are particularly efficient for joining large data sets. The optimizer selects
the smaller relation as the inner relation, used as the lookup driver relation, to probe
each tuple of the outer relation. The optimizer selects the smaller of two tables or data
sources to build a hash table in memory on the join key. It then scans the larger table,
probing the hash table to find the joined rows. This method is best used when the
smaller table fits entirely in memory. The optimizer uses a hash join to join two tables
if they are joined using an equijoin and a large amount of data need to be joined
together. When the available memory is insufficient to store the entire inner relation, it
uses a Hybrid Hash Join algorithm which partitions both relations into partitions such
as a hash table for the inner relation to fit into memory. Corresponding partitions of the
two input relations are then joined by probing the hash table with the tuples from the
corresponding partition of the larger input relation. Partitions that cannot fit into
memory have to temporally be written to disk before being joined together.

Consider relation R and S, where R is the smaller relation. For a relation R,
consider that fx is the number of tuples of R , by is the number of blocks (or pages) of
R, tsg is the tuple size of R and tpby is the number of tuples of R that can fit in a
block (or page) with size block;;,.. The cost of joining relations R with S, using a
Hybrid Hash Join algorithm [3][2] can be computed as

HHJ(R,S) = (tg + ts) X Ipash

+ (tg X tsg +tg X tsg) X (1 —) X I¢opy
+2 X (bg+bg)x(1—q)xI0

+(tR + tS) X (1 - q) X Ihash

+ tgp X tsg X I¢gpy

+tS X Iprobe X l:hash

ey

8 J.P. Costa et al.

Considering that q = bg, /by , and bg, is the size of the first partition that can
reside in memory, and that does not need to be written to disk. To process a query Q
that require that two relation R and S, be joined together, we can determined the
overall cost, without considering other costs such as filtering, grouping and
aggregating, for executing the query as

Exectime,c, = (bgr + bs) X 10 + HHJ (R, S) 2)

With ONE storage organization, the cost for executing the same query, without
considering filters and computations, can be determined as

. _ ts
Exectime,,, = tpb(ts; + £57) X 10 (3)
) block size
with tpb(tsg) = I—J

block.; block.:
Assuming thatl SLZEJ ~ size
SR tsg
- tS X (tss + tSR)
Exect =SS T PRI 10
xectime,,, Blocko, "

For the query execution cost with ONE storage organization to be smaller than the
base TPC-H storage schema using hybrid hash joins for joining relations R and S, the
following inequality must be satisfied.

tg X (tsg + ts,
XS H I8 1o < (b + by) x 10+ HHIR,S) &

blockg;,.
HHJ(R,S) = 10 x Lk X (ts — tg)
_ —tp) o
J(R,5) = blockg,, > R
ts
> -~ _
HHJ (R,S) > 10 X by X <tR 1) 5)

For ONE to outperform the base TPC-H schema, the Hybrid Hash Join cost must
be greater than the IO cost for reading the by blocks of relation R multiplied by the a
ratio of number of tuples between relations S and R. Figure 2 depicts graphically the
results of the inequality of the equation 4, with a IO sequential read costs of
15ms, 10ms and Sms respectively. The tg/tg ratio is represented as the x axis, by is
the z axis and y axis depicts the function result. This result was obtained with a 30%
value for g.

ONE: A Predictable and Scalable DW Model 9

Fig. 2. HHJ graph using equation 5

5 Evaluation

We evaluated the ONE storage organization using a default installation of the
PostgreSQL[15] 8.4 DBMS engine in a Dual Core Pentium D, at 3.4Ghz, with 2GB
Ram, a 150GB SATA disc drive, and running a default installation of Ubuntu
Maverick Linux distribution.

‘We have created two different schemas, the base TPC-H schema as defined in the
benchmark, and the ONE schema comprised by a single relation containing all the
attributes of the relations with the exception of the surrogate keys (primary and
foreign keys). The former was populated with the DBGEN data generator [16] and the
later with a modified version that generate the denormalized data as single file.

For each setup, we measured the elapsed time for generating and loading the
dataset, indexing and analyzing the schema, and the time taken to execute the TPC-H
queries. The loading costs, time taken to load the data, create the required indexes and
finally analyzing the schema, were almost the same for both setups: the base TPC-H
star schema, named TPC-H and the denormalized star schema model, named ONE.

Queries ran on denormalized schema (ONE), were rewritten in order to use the
denormalized relation instead of the star schema relations, and the joining conditions
were removed. No specific tuning or tweaking was made to queries or relations.

We have evaluated and populated both setups using scale factors {0.1, 0.3, 0.5, 1,
3, 5, 10}. For each setup, we run each query 30 times and obtained the query
execution time. For each query, we excluded the two smaller and greater results.

Fig. 3 shows the average and stddev execution time obtained for all queries for
different scale factors, ranging from 0.1 to 10. As discussed above, the average
execution time of ONE scales linearly with the data volume, depicting a perfect line.
This is due to the simpler query execution cost, which doesn’t require joins and is
fairly independent of the available memory.

10 J.P. Costa et al.

sec

2000 avg & stddev execution time (s)

=9=One (avg) One (stddev)
1.500 === TPC-H (avg) ==3i=TPC-H (stddev)

1.000

500

Fig. 3. Execution time (avg and stddev) for varying SF

Furthermore, the standard deviation of ONE is impressive. While TPC-H performs
better, at small scale factors, since a large amount of the inner relations resides in
memory, requiring less IO operations, the query execution time is highly
unpredictable. One, with a scale factor of 10 (SF=10), presents an average query
execution time faster than TPCH.

= One A Execution Time

TPC-H 89% 92%

71%
62%
56%
42%
33%

1,6% 0,9% 1,0% 2,4% 2,8% 2,9% 2,9%
— — —] || | |

01 03 0,5 1 3 5 10 SF

Fig. 4. Query execution time variability for varying SF

ONE: A Predictable and Scalable DW Model 11

Because ONE doesn’t have to perform join operations, only filters, grouping and
aggregation operations, it provides a very predictable execution time. We observe
that, in Fig. 4, which depicts the execution time variability considering all the
queries, ONE presents a low variability (below 3% to the average execution time).
This means that ONE for a given scale factor (SF) can execute queries with a
predictable response time.

Fig. 5 depicts the average execution time for queries 1 to 9. From the figure, one
thing that stands out is that ONE presents an execution time with minimal variability
across the queries with the same scale factor, while the base TPC-H schema presents a
large variability across queries. Another interesting aspect is that, as expected, the
query execution times of ONE are greater than those obtained with TPC-H. However
the execution time ratio is smaller than the storage space ratio as discussed in
previous sections.

sec querytime (s)
1.000 .
Hone tpc-h I
100 HIH §
10 !
1
1579157915791579157915791579‘
0,1 0,3 0,5 1 3 5 10 ‘
Query/ SF

Fig. 5. Average execution time for varying SF for queries 1-9

Query execution time obtained by ONE may appear unimpressive, since some
queries present worse times when compared with the base star schema model,
however the execution time are almost constant, as expected from the results from
figure 4 (query time variation below 3%).

12 J.P. Costa et al.

Moreover, as the data volume increases (ex. SF10) and hash joins are not solely
done in memory the query execution time of the base star schema are getting closer to
those obtained for ONE, since hash joins need to perform IO writes and reads.

ONE storage model offers a reliable and predictable execution time, which can be
estimated as a function of the data volume and the underlying hardware storage
system. As ONE scales linearly with the volume of data, the DBA knows, with an
appreciable confidence, how the infrastructure that supports the DW will behave with
the data increase. Moreover, since a large amount of the query execution cost is from
the 10 operations, particularly the sustained transfer read rate, we can, with high
confidence, estimate how current hardware systems behave and estimate the
performance gains obtained by hardware upgrades even without testing it.

6 Conclusions

In this paper we discussed the issues and limitations currently presented by the star
schema model, and we proposed and evaluated ONE as an alternative storage
organization which stores the denormalized star schema model, and thus eliminating
the processing costs associated with the joining algorithms and the additional 10
operations (random and sequential) when the available memory is insufficient to
process in-memory joins, resulting in a simpler and more predictable model.

We also demonstrate that ONE offers optimal scale-up scalability with minimal
intra-query 10O operations and network data exchange operations. One also allow DBA
and IT managers better estimate and determine the current limitations of existing
hardware infrastructure and determine the requirements of the new infrastructure to
handle a given data volume without even testing it.

References

1. Pavlo, A., et al.: A comparison of approaches to large-scale data analysis. In: Proceedings
of the 35th SIGMOD International Conference on Management of Data, pp. 165-178
(2009)

2. Patel, J.M., Carey, M.J., Vernon, M.K.: Accurate modeling of the hybrid hash join
algorithm. In: ACM SIGMETRICS Performance Evaluation Review, NY, USA (1994)

3. DeWitt, D.J., Katz, R.H., Olken, F., Shapiro, L.D., Stonebraker, M.R., Wood, D.A.:
Implementation techniques for main memory database systems. In: ACM SIGMOD
Record, New York, NY, USA, pp. 1-8 (1984)

4. Harris, E.P., Ramamohanarao, K.: Join algorithm costs revisited. The VLDB Journal —
The International Journal on Very Large Data Bases 5, 064084 (1996)

5. Johnson, T.: Performance Measurements of Compressed Bitmap Indices. In: Proceedings
of the 25th International Conference on Very Large Data Bases, pp. 278-289 (1999)

6. Zhou, J., Larson, P.-A., Goldstein, J., Ding, L.: Dynamic Materialized Views. In:
International Conference on Data Engineering, Los Alamitos, CA, USA, pp. 526-535
(2007)

7. Costa, J.P., Furtado, P: Time-Stratified Sampling for Approximate Answers to
Aggregate Queries. In: International Conference on Database Systems for Advanced
Applications, Los Alamitos, CA, USA, p. 215 (2003)

10.

11.

12.

13.

14.

15.
16.

ONE: A Predictable and Scalable DW Model 13

Stonebraker, M., et al.: C-store: a column-oriented DBMS. In: Proceedings of the 31st
International Conference on Very Large Data Bases, pp. 553-564 (2005)

Zhang, Y., Hu, W., Wang, S.: MOSS-DB: a hardware-aware OLAP database. In: Proc. 11th
International Conference on Web-Age Information Management, pp. 582-594 (2010)

Yma, P.: A Framework for Systematic Database Denormalization. Global Journal of
Computer Science and Technology 9(4) (August 2009)

Sanders, G.L.: Denormalization Effects on Performance of RDBMS. In: Proceedings of
the 34th Hawaii International Conference on System Sciences (2001)

Zaker, M., Phon-Amnuaisuk, S., Haw, S.-C.: Optimizing the data warehouse design by
hierarchical denormalizing. In: Proc. 8th Conference on Applied Computer Science (2008)

O’Neil, P., O’Neil, E., Chen, X., Revilak, S.: The Star Schema Benchmark and Augmented
Fact Table Indexing. In: Nambiar, R., Poess, M. (eds.) TPCTC 2009. LNCS, vol. 5895, pp.
237-252. Springer, Heidelberg (2009)

Kimball, R., Ross, M., Thornthwaite, W., Mundy, J., Becker, B.: The Data Warehouse
Lifecycle Toolkit, 2nd edn. Wiley Publishing, Chichester (2008)

“PostgreSQL”, http: //www.postgresql.org/

“TPC-H Benchmark”, http: //www. tpc.org/tpch/

The Planning OLAP Model - A Multidimensional
Model with Planning Support

Bernhard Jaecksch and Wolfgang Lehner

TU Dresden, Institute for System Architecture,
Database Technology Group, 01062 Dresden, Germany
bernhard. jaecksch@mailbox.tu-dresden.de,
wolfgang.lehner@tu-dresden.de

Abstract. A wealth of multidimensional OLAP models has been sug-
gested in the past, tackling various problems of modeling multidimen-
sional data. However, all of these models focus on navigational and query
operators for grouping, selection and aggregation. We argue that plan-
ning functionality is, next to reporting and analysis, an important part
of OLAP in many businesses and as such should be represented as part
of a multidimensional model. Navigational operators are not enough for
planning, instead new factual data is created or existing data is changed.
To our knowledge we are the first to suggest a multidimensional model
with support for planning. Because the main data entities of a typi-
cal multidimensional model are used both by planning and reporting,
we concentrate on the extension of an existing model, where we add a
set of novel operators that support an extensive set of typical planning
functions.

1 Introduction

With the rise of decision-support-systems and the use of data-warehouses in
many modern companies, the research community devised various models to
support multidimensional analysis in the process of On-Line Analytical Process-
ing (OLAP) [4]. The common data entities to model such multidimensional data
are so called cubes consisting of a set of orthogonal dimensions and mostly nu-
merical fact-data characterized by the values of the different dimensions. The
main aspect of OLAP is the navigation through and aggregation of multidi-
mensional data. The models provide an algebra of operators that often contains
typical operators of relational algebra transferred to the multidimensional sce-
nario and extended by navigational operators to group, select and aggregate
data, also termed as slice/dice and roll-up/drill-down operations.

Business planning is an important task in many companies where business
targets are defined for future periods to provide specific guidelines for current
operations and a comparison whether goals have been reached or not. As such,
planning is an important part of many practically used decision-support-systems.
However, to our knowledge, none of the existing multidimensional models sup-
ports planning functionality. We strive to overcome the limitation of existing

A. Cuzzocrea and U. Dayal (Eds.): DaWaK 2011, LNCS 6862, pp. 14, 2011.
© Springer-Verlag Berlin Heidelberg 2011

The Planning OLAP Model - A Multidimensional Model 15

models to support planning functionality as part of OLAP. As the basic data
entities are the same for planning and reporting, we build on an existing OLAP
model an extend its set of operations with novel operators to support a list of
typical planning functions.

The paper is structured as follows: in the next section we describe related work
in the field of OLAP models as well as the multidimensional model that serves
as foundation for our OLAP model with planning support. Section Bl introduces
a list of typical planning functions by example. Our novel operators to support
planning are introduced in Section dl where we show how to express the planning
functions with the set of extended operators. We finish with a conclusion in
Section [providing an outlook for an implementation of our model.

2 Foundation and Related Work

Starting with the Data Cube operation by Gray et al. [6] as an extension of
SQL, a wealth of multidimensional models have been proposed. Similar to the
Data Cube, the first models by Li et al. [9] and Gysses et al. [7] were extensions
to the relational model. The field of statistical databases also dealt with the
quantitative analysis of large amounts of scientific data and, faced with similar
problems, suggested different models. Prominent candidates are the Summary
Tables model by Ozsoyoglu et al. [10] and the graphical model for Statistical
Object Representation (STORM) by Rafanelli et al. [I2]. While all these mod-
els, divide the data into qualifying and quantifying information, most modern
models are base on the concept that the qualifying information defines a multi-
dimensional space represented by a cube where each axis is called a dimension.
The quantifying information at the intersection points, called measures or facts,
is characterized by the dimensions. Typical and often cited representatives are
the Multidimensional Database Model by Agrawal et al. [I], the F-Table Calcu-
lus by Cabibbo et al. [3], the Cube Operations model by Vassiliadis et al. [I3],
the Multidimensional Object model by Lehner [8] and the Cube Data model by
Datta et al. [5]. Vassiliadis provides a good classification and survey of these
models in [I4]. The suitability of the models to implement a practical and com-
plex data-warehouse scenario was evaluated by Pedersen et al. [II] according
to an extensive set of typical requirements such as explicit hierarchies, multi-
ple and flexible hierarchies per dimension, symmetric treatment of dimensions
and measures and explicit aggregation semantics. Since none of the previous
models fulfilled all requirements they suggested their own model, the Extended
Multidimensional Data model (EMDM). As this model satisfies all of the above
requirements we considered it a suitable foundation for our planning extensions.

The basic EMDM model entity is a multidimensional object MO =
(S, F, Dim, R), which is a four-tuple consisting of an n-dimensional fact schema
S, a set of facts F', a set of dimensions Dim and a set of corresponding fact-
dimension relations R that map the facts to elements of the dimensions. A key
aspect of the model is that everything that characterizes a fact is regarded dimen-
sional. That includes measures and as such dimensions and measures are treated

16 B. Jaecksch and W. Lehner

symmetrically. An n-dimensional fact schema S is a two-tuple (F'S, D) with F'S
describing a fact type and D being a set of dimension types D = {T;,i = 1..n}.
Each dimension type T itself is a four-tuple (C, <7, Tr, L), where C' is a set
of category types {C;,j = 1..k} of T that form a partial ordering <7 with T
and L7 as the top and bottom elements of the ordering. There is always a single
top element that contains all other elements. For certain category types it often
makes sense to aggregate them. To support the different aggregation types in
the model, three different classes of aggregation functions exist: constant ¢, av-
erage functions ¢ and sum functions Y. For these classes an ordering exists such
that ¢ C ¢ C X. For each dimension type 7' the model provides a function that
determines the aggregation type for a category type. A dimension Dim,; has a
dimension type T that is defined in the fact schema of an MO as explained in the
previous section. Dim,; = (Ca, <) is a two-tuple with C'a being a set of categories
{Ca,;} and < a partial ordering on all dimension values e in each category Ca,;
with T'ype(e) = C;. Furthermore, all values e in the dimension Dim; are smaller
than value T and the most granular values are contained in category L. To
establish a connection between facts and dimensions, fact-dimension relations
are introduced. A fact-dimension relation R is a set of two-tuples {(f,e)} where
f is a fact and e is a dimension value. Therefore, the fact is characterized by the
dimension value e. Values from different dimension categories can determine the
same fact. Also it must be ensured in the model that each fact in R is character-
ized by at least one dimension value. Thus, if there is no suitable dimension value
to characterize a fact, the value T is used. Based on these entities an algebra
with a list of operators is part of the model. As basic operators, all operations
from relational algebra like selection, projection, rename, union, difference and
join are adopted to operate on MOs. In addition, the aggregate formation op-
erator allows to built aggregates and group facts. Typical OLAP operators like
roll-up, drill-down, SQL-like aggregation and star-joins are expressed in terms
of the basic operators.

3 Common Planning Functions by Example

The example used throughout the paper has the schema shown in Figure [I1
consisting of 5 dimensions with dimension types Article, Location, SellDate,
Price and Quantity. They characterize the Sale of a product. Usually, Price
and Quantity would be considered as measures, so we call them the measure
dimensions. Each dimension consists of different categories that form one or
more hierarchies per dimension. For the two dimensions Article and Location
Figures 2 and [B] show dimension values and their partial ordering.

The measure dimensions contain numerical values, where quantities are inte-
gral numbers and prices are values taken from real numbers. In Table [[l we list
the facts for our example in column 1 and each entry represents a fact. The other
columus represent the dimensions that characterize the fact and the value(s) in
each row represent the dimension value(s) forming, together with the fact, (an)
element(s) of the fact-dimension relations.

The Planning OLAP Model - A Multidimensional Model 17

DimensionTypes: Article Location SellDate Price Quantity
Category Types: il T T T T
Country Year
Group Region ShopType Quarter
0s Family Brand City Month Week
Article Shop Day Price Quantity

Fig. 1. An example schema

LGroup Mobilephones .
- T
Family Smartphones Cellphones Accessories

_Brand | _Apple _HTC/ \ Samsung [Nokia____/ _N_._! Hama
os i0S Windows Phone 7 Symbian
Article iPhone4 HTC Desire Omnia7 Nokia 2323 BT Headset Mini-USB Charger

Fig. 2. Dimension values and partial ordering for dimension Article

Country Germany

ShopType Brandstore

,,,,, Gty | o) ,,M!ni,cb,,,,,,,,,\,/,9(%5515",,,,,Hemlzlffs,,,,, LN Pkt |

Shop Apple Store Vodafone Shop MediaMarkt Real Handy Shop
Fig. 3. Dimension values and partial ordering for dimension Shop

The following example introduces a list of common planning functions in a
typical business planning scenario. Our model should be able to express each of
these functions. Assume a company that sells phones and accessories to shops
and retailers. Our example schema shows a multidimensional object with a list
of facts that capture sales for year 2010. It is the task of a controller to plan
sales quantities and prices for year 2011.

Step 1. As a first step he wants to base his plan on the values of the previous
year and therefore he needs a planning function that copies data from 2010 into
year 2011. The new MO would now contain twice as much facts as before.

Step 2. Because of recent market trends the company decides to sell only smart-
phones in 2011 and therefore a delete planning function deletes all standard
cellphone sales from 2011.

18 B. Jaecksch and W. Lehner

Table 1. Lists of facts in the example schema

Fact Rarticle Rrocation RseliDate Rprice RQuantity
f iPhone4,iO8, AppleStore,Munich, 2010-05-06, 05, 699.00 50
Apple,Smartphones BrandStore Q2, 2010
f2 Desire,Android, Vodafone Shop, 2010-04-23, 04, 479.00 35

HTC,Smartphones Dresden,Provider Q2, 2010
f3 Omnia 7,Windows Media Markt, 2010-12-14, 12, 389.00 10
Phone 7,Samsung, = Hamburg,Retailer Q4, 2010

Smartphones
fa 2323,Symbian, Real,Frankfurt, 2010-01-11, 01, 79.95 110
Nokia, Cellphones Retailer Q1, 2010
fs BT Headset,Nokia, HandyShop,Dresden, 2010-03-27, 03, 24.55 70
Accessories Smalldealer Q1, 2010
f6 USB Charger,Hama, Real,Frankfurt, 2010-08-13, 08, 12.99 45
Accessories Retailer Q3, 2010

Step 3. For the year 2011 the prices are lowered by 5% compared to the
previous year. Therefore the planner calls a revalue planning function to apply
these changes. Furthermore, he wants to know the planned revenue that is based
on sales quantities and price.

Step 4. For a each retailer the planner requests the estimated quantity of sold
items from the sales person that is responsible for this customer. These quantities
are now entered to the plan at aggregated customer level and must be distributed
to individual facts using a disaggregation planning function.

Step 5. Finally, the controller wants to use the current data of 2010 and the
planned data of 2011 to predict a sales quantity trend for 2012. He requires a
planning function that calculates a forecast and generates a set of forecasted
facts.

After all these steps, the complete plan data is created and can be used for
reports and comparisons with the actual data of 2011. The list of planning
functions that was involved includes copy, delete, calculate expressions to revalue
quantitative values, disaggregation of new values from an aggregated level to the
most granular fact level and forecasting new values.

4 An OLAP Model for Planning

In the following section we extend the EMDM and develop our novel model al-
gebra to support planning. One major aspect of planning is that it changes fact
data. All the models existing so far make the assumption that fact data is a
read only set of values and all operators have navigational, i.e. read only seman-
tic. With planning new facts will be created or existing facts are manipulated.
Therefore, the novel operators for planning must support this. From the list of
basic planning functions shown in Section B not all require a separate operator.
Similar to the original model, where typical OLAP operators like roll-up and

The Planning OLAP Model - A Multidimensional Model 19

drill down are expressed in terms of the basic aggregation formation operator,
we only need a few basic operators to keep the extended algebra simple and
minimal.

4.1 Basic Planning Operators

Value Mapping. An important basic operation, e.g. for the copy function, is value
mapping. When new plan data has to be generated one can copy facts from a
previous year. As a result, for a set of facts, one or more dimension values change.
For example, to copy along the time dimension the values must change from one
year to another. The mapping operator takes as input a set of mapping functions,
which map a combination of source dimension values to corresponding target
values. As fact-dimension relations are the glue between facts and dimensions,
the mapping operator modifies these relations. We formally denote the mapping
operator as:

Definition 1. Value mapping v [{m,,r = 1..s}] (MO) = (S', F’, Dim/, R') takes
a set of mapping functions m,, which have the form my(eq, .., €, .., en) — €%, with

-8 =8 F =F, Dim"=Dim

- R ={R},i=1.n}

— R; = {(f/, 6;)|f’ - F’/\eg = mr(el, R 7 S en)/\el —1 f, € = f, B)

fne;—i f'}

Intuitively a mapping function m,. is applied to a fact-dimension relation R; and
maps the input value to itself or, for matching values, to a different dimension
value. It is important that the mapping function is aware of dimension hierarchies
and provides a complete mapping from one part of the hierarchy lattice structure
to another. If we consider the SellDate hierarchy of our example schema and want
to map from the year 2010 to the year 2011, a mapping function fap102011 must
provide a mapping for all dimension values that are in the partial ordering below
2010 to the respective values in the hierarchy below 2011. Thus Q1-2010 would
be mapped to Q1-2011 and so on.

Duplication. The value mapping operator from the previous section modifies
fact-dimension relations, but the set of facts is not changed. To introduce new
facts, as it is necessary for a copy function, we add the duplication operator
to the model, which duplicates the facts of an MO. The resulting MO’ has
identical dimension structure and fact-dimension relations with the exception
that for each fact in MO there is a new fact in MO’ that is characterized by the
same dimension attributes and values.

Definition 2. Duplication 7(MO) = (S’, F', Dim/, R") with

-5 =5

- P = {f/Bf € FAer =1 fonen —n N[# f/\e/l -1 f{w've/n —n
flhner=efN...Ne,=¢€l}

- R ={R},i=1.n}

— R ={(f",e))V(f,ei) € Ri A ' € F' Nej € Dimi}

20 B. Jaecksch and W. Lehner

Disaggregation. A typical planning function is to enter an aggregated value for a
group of facts and then calculate how it distributes to the individual fact values
that contribute to the aggregated value. The disaggregation can be viewed as the
reverse operation to the aggregation. In contrast to the drill-down operation, the
disaggregation operation defines a new sum value and changes all contributing
values accordingly. We define the disaggregation operator similar to the aggre-
gation formation operator as the inverse operator a~!. As input it takes a set
of dimension values, that define the aggregation level where the new sum value
is entered. Additional parameters are a distribution function ¢g~! and an aggre-
gate function g that determines how the values are aggregated. Finally, a new
dimension value en¢,, is given as well as the index ¢ of the target dimension and
the index r of a reference dimension. It is allowed that ¢ = r, in which case the
new value is distributed according to the original fractions dimension Dimy.

Definition 3. Disaggregation is a ! [61, ..,en,g_l,g,enew,tr] (MO) =
(S, F', Dim/, R'), where

- S8'"=8, F\=F, Dim' ={Dim;,i=1.nANi#t} U{Dim,}
Dimy = (Cay, =3), =i==t,ps
Cay = {Cay; € Dimy|Type(Cay;) = T pim, V (Type(Cay;) = Lpim, Ney;
gil(erja Cnew, eold) A €rj S Carj A Type(carj) = J—Dim,.
SUM (Group(el, ..,eh)) = enew N €o1a = g(Group(ey,..,en)) A (€, ..,€l)
Cal x---xCal, A(e1,..,en) € Cay x -+ x Cay)}
- R ={Rj,i=1nnNi#t}U{R}, R, ={(f,e)|f € F' Ne' € Dim}}
- R, ={(f,e)|3e1,..,en) € Cag x --- x Ca, A f' € F' Ne; € Dimj A €]

gil(eria Enew, 6old) A vei € Dimtzleri € Dzmr}

m >

The fact-schema S’ of MO’ is the same as that of the original MO since only
values are changed and no dimensions are added or removed. The set of facts
is the same, too, because the disaggregation operator does not introduce new
facts. It only maps the facts for the target dimension to new values. The set of
dimensions is again taken from the original M O, but the target dimension Dim,
changes in the sense that intuitively the new dimension values are calculated
based on the new sum and the fractions of the given reference dimension Dim,..
The category attributes Ca;j of the target dimension are either the top attribute,
or they are in the class of the most granular attribute and their new dimension
values are calculated using the distribution function ¢g—'. The distribution func-
tion calculates the new dimension values eéj using the new sum e, as input,
the old reference aggregate value e,y and the respective dimension value e,; of
the reference dimension. The aggregate value e,;q is obtained by applying the
reference aggregate function g to the grouping of Group(es,..,e,) at the level
of the given input dimension values. Finally, the fact-dimension mapping R; is
adapted such that the facts are now mapped to the new dimension values calcu-
lated by the distribution function. This includes, the requirement that for each
fact-dimension mapping in the target dimension there exists a fact-dimension
mapping in the reference dimension.

By allowing arbitrary functions for the distribution function g—' and the ref-
erence aggregate function g, different types of distribution can be achieved. For

The Planning OLAP Model - A Multidimensional Model 21

example, a typical distribution function that calculates the new fraction based on
the percentile of the reference value from the old sum value is g~ (e, €new, €otd) =
€r * Enew/ Eold together with g = SU M. The reference dimension can be the same
as the target dimension. For a uniform distribution, the reference aggregate func-
tion should be g = COUNT and for a constant distribution gil(er, Enew, Cold) =
enew- The following example illustrates how disaggregation works: we distribute
a new article quantity of 384 to all sales facts in Germany for the year 2010.
The input MO contains all 5 dimensions Article, Location, SellDate, Price and
Quantity and is not restricted. The parameters for the disaggregation are:

a_l [TArticla German:% 2010, T price, TQuantityv 9_17 9,

Cnew = 384,t =5,r =5] (MO) = MO’
The distribution function g~ is the standard function explained in the previous
section and the reference aggregate function g is SUM. The target dimension
Quantity now contains the new dimension values that would result in the new
sum 384 when the reverse operation, i.e. the aggregate formation, would be
applied to M O’. The disaggregation affects all facts f1, .., f¢ in the example and
the fact-dimension mapping Rquantity would change from

{(f1,50), (f2,35), (f3,10), (f1, 110), (f5,70), (f6,45)}

to
R/Quantity = {(fh 60)7 (f2, 42)7 (f?n 12)7 (f1, 132)7 (f5 84)7 (fe; 54)}

Calculated Dimensions. Another cornerstone of planning is to calculate various
expressions on multidimensional data. We therefore allow expressions on multi-
dimensional objects. Since everything is a dimension in the model and the facts
are objects that are described by dimension values, such an expression is an
operation on dimension values. We realize this within our model by defining a
calculated dimension Dim of type T = (Cj, <7, T, Ly) similar to basic di-
mensions as a two-tuple Dim = (Ca, <). The set Cla contains the categories of
the dimension and < is the partial ordering on all dimension values. The dif-
ference is, that a category attribute Ca; € Dimy,11 is now defined in terms of
an expression where the operands are category attributes of other dimensions
Ca; = ®(Caj,Cay) with Ca; € Dim,, Cay, € Dimg and ® being an arbitrary
binary operator from the following list {+, —, *,/,A,V}. In the same manner
expressions can contain arbitrary scalar functions and operators by extending
the definition of a calculated category type to the general form Ca; = ®({Ca;})
where Ca; € Dim,,j = 1.m,r = 1l.n+ 1,7 # j and ® is an arbitrary unary,
binary or n-nary operator or scalar function applied to a number of category
attributes. It is possible that the expression references other category attributes
of the calculated dimension. This is useful for example to add constant to the
expression by defining a category attribute that only has one dimension value
and reference it in other expressions. To calculate such an expression we add a
calculated dimension to a multidimensional object using the following operator:

22 B. Jaecksch and W. Lehner

Definition 4. The add dimension operator —+ [Dimy41] (MO) =
(S',F', Dim/, R") takes as input a multidimensional object MO and a cal-
culated dimension Dim, 1 where

— S = (FS',\ D), D ={T!i=1.n}U{Tpp1}, T/ =T}, F' = F
— Dim/ = {Dim},i = 1.n} U{Dimy41}, Dim} = Dim,
— Dimn+1 = (Can+1, <)
- Can+1 = {CCLnJrLi = ®({Carj\Carj € Dimr,j = 1..m,r = 177,})}
-~ R ={R},i=1.n}U{R, \}, Ri=R;
— Ry ={(f e)lff € F' Nepi— [Nep ;= ®(ep)A
e, €Cay}

To calculate an expression between values of two different MOs, first a join
operator should be applied to create a combined MO and then a calculated
dimension containing the expression is added.

As an example we will calculate the revenue for our mobile phone data. There-
fore we add a dimension Dimyepenue = (Ca, <) with Ca = (Revenue, T),
Revenue = Qty * Price and add this dimension to our multidimensional object
+ [Dimpevenue] (M O). The resulting M O’ now has an additional Revenue dimen-
sion where the dimension values of the Revenue category attribute are calculated
for each fact as the product of the Quantity and Price dimension values.

Forecast. The need for a forecast operator is directly motivated by the respective
forecast planning function. Besides copying values or enter plan values manually,
it is often useful to use a forecasting function fc to project trends of historical
data into the future. For the forecast operator this means creating a set of new
fact values for a category attribute Ca; (most often from a time dimension).
An ordering O[Cay] is required for all dimension values ey; of type Ca;. Let
O[Ca;] = 1.m with O[Ca](ey;) < O[Cay](es;),i # j,i =1.m,j=1.mif ey is
smaller than e;; in terms of ordering O. The forecast function f(F,O[Ca],tgt, k)
can be an arbitrary forecasting algorithm like exponential smoothing or ARMA
models [2]. It takes as input a set of facts F', an ordering O[Cay] for these facts
based on a given dimension Dim; with Ca; € Dim;, an integral number tgt
which specifies the number of new facts it should produce and an index k = 1..tgt
that specifies which of the forecasted values it should return. We can now write
the following definition for the forecast operator:

Definition 5. ¢[f, O, Cas,Cay,tgt](MO) = MO’ = (S', F', Dim/, R") with the
fact schema staying the same S’ = S, the set of facts is extended by tgt new
facts and
- F/ = FU{fJ//‘j = 1tgt/\T1 —1 f]/»//\. . /\Tl -3 fj{//\. . ./\Tn —n f]/»//\eé —t
fiNe, = [NiFtNiF# v}
— Dim’ =Dim, R ={Rjli=1.nNi#tNi#v}U{R},,R,}
— Rl =R U{(f], Ti)lj = L.tgt A f € F'}
— Ry = Ry U{(f],e))ls = L.tgt A fj' € F' AN O[Cai](e}) = maz(O[Caj](ex)) +
JAk=1.n}
— R, =R, U{(f],e;)lj = L..tgt A f' € F' Ney, = f(F,O[Cai, tgt, j)}

VR

The Planning OLAP Model - A Multidimensional Model 23

In essence the forecast operator produces [new facts, which are mapped to an
ordered set of dimension values such that the new facts are mapped to the [
successors of the last dimension value from the existing facts. Furthermore, for
a given (measure) dimension each new fact is mapped to its projected new value
according to the prediction of the forecasting algorithm.

4.2 Expressing Typical Planning Functions

The following section lists typical planning functions that are necessary to sup-
port planning applications. For each of these functions we describe it in terms
of operators of our novel Planing-OLAP model.

Delete. The delete operator deletes fact values from a multidimensional ob-
ject. We make no distinction here between an MO’ where facts have only been
filtered and actual deletion. Therefore, the planning operator delete can be ex-
pressed with the selection operator. Let MO = (S, F, Dim, R) and p an arbi-
trary predicate, that selects the values for deletion, then o [-p] (MO) = MO’ =
(S, F', Dim/, R") results in MO’ that only contains the not-deleted values.

Copy. When we introduced the wvalue mapping operator, we already empha-
sized that copying is an important part of planning to set a starting point for
subsequent planning operations with data based on historic values. The copy
operator can be expressed in terms of the value mapping basic planning op-
eration combined with the duplication. The new MO’ is created by applying
a mapping to an MO®°PY that contains duplicates of the original facts. Let
M = {m,,r =1..s} be a set of mapping functions, then copying is defined as:
Uy [M](7(MO)),MO) = MO’ = (S’, F',Dim/, R').

Disaggregation. The disaggregation planning function can be directly mapped
to the disaggregation operator of the model.

Revalue. The revalue planning function is used to change a set of values ac-
cording to a formula. To execute such calculations within our Planning-OLAP
model, we use calculated dimensions.

Forecasting. Similar to the disaggregation planning function, the forecasting
planning functions has a direct representation as an operator in our Planning-
OLAP model and can therefore expressed with a call to this operator.

5 Impact and Conclusion

When comparing the Planning-OLAP model with traditional OLAP models then
the distinction is, that the latter is based purely on read operations whereas the
planning operators write or generate data. As planning has a simulation char-
acter, it is often the case that generated data is continuously adjusted until a

24 B. Jaecksch and W. Lehner

Planning-OLAP model

{ copy H delete H revalue H disaggregate H forecast }—@

Implementation ——_—
P SELECT INSERT/UPDATE/DELETE e I
<]
-» A ‘J merge
Begin m result ppg
Planning transaction Planning transaction

Fig. 4. Implementation scheme for the Planning-OLAP model

final result is obtained. As such it can be viewed as a long running transaction
containing a mixture of read (roll-up, drill-down, slice and dice) and write (dis-
aggregate, copy, revalue, forecast and delete) operations. While the transaction
bracket is not necessary for the read-only traditional OLAP, it makes sense for
the Planning-OLAP model where only the final result of a planning transac-
tion should become visible and persistent. The scheme in Figure @ outlines how
this usage paradigm of the Planning-OLAP model can be mapped to a rela-
tional system using SQL. At the begin of a planning transaction one or more
temporary tables are created that will contain the modifications of the current
transaction and final results are merged into the original tables at the end of
the transaction. Each operator is mapped to a combination of SELECT and IN-
SERT/UPDATE/DELETE statements that modify the temporary tables. For
example the disaggregation operator has to update every measure value that
contributes to the overall sum. However, as the disaggregation operator contains
possibly complex distribution logic, the orchestration of these statements to yield
the correct result must either be done by the application or may be encapsulated
in a stored procedure. Clearly, a direct integration of this functionality into the
database system as a native operator would facilitate standardized and applica-
tion independent behavior and allow for optimizations. This is similar for other
operations such as value-mapping and forecasting. Therefore, we argue that in
the future, these operations should be first-class citizens in a database system,
equal to many navigational OLAP operators that are already supported natively
by major database systems today.

Although, there exists a wealth of OLAP models in the literature, none of the
existing models incorporated planning functionality. Many requirements have
been formulated for OLAP modeling to support real-world scenarios. While
many requirements are already met by some of the models, none of it explicitly
supported planning, which is a vital part of OLAP today. We proposed a novel
Planning-OLAP model that uses the Extended Multidimensional Data Model
(EMDM) as a foundation. By introducing a set of novel planning operators our
model is capable of supporting an extensive list of standard planning functions,
which we illustrated by examples. Since the Planning-OLAP model contains op-
erators that change data according to complex semantics, the challenge on the
implementation level is to have planning operators as first-class citizens within
a database system.

The Planning OLAP Model - A Multidimensional Model 25

References

1.

10.

11.

12.

13.

14.

Agrawal, R., Gupta, A., Sarawagi, S.: Modeling Multidimensional Databases.
In: Proc. of 13th. Int. Conf. on Data Engineering ICDE, vol. 7, p. 11 (1997),
http://eprints.kfupm.edu.sa/51421/

. Box, G., Jenkins, G.: Time Series Analysis: Forecasting and Control (1970)
. Cabibbo, L., Torlone, R.: Querying Multidimensional Databases. In: Database Pro-

gramming Languages, pp. 319-335. Springer, Heidelberg (1998),
http://www.springerlink.com/index/£76731r05mbu662j.pdf

. Codd, E., Codd, S., Salley, C.: Providing OLAP (On-Line Analytical Processing)

to User-Analysis: An IT Mandate (1993),
http://www.citeulike.org/user/MoritzStefaner/article/4937436

. Datta, A.: The Cube Data Model: a Conceptual Model and Algebra for On-line

Analytical Processing in Data Warehouses. Decision Support Systems 27(3), 289—
301 (1999),
http://linkinghub.elsevier.com/retrieve/pii/S0167923699000524

. Gray, J., Bosworth, A., Layman, A., Pirahesh, H.: Data Cube: A Relational Ag-

gregation Operator Generalizing Group-By, Cross-Tab, and Sub-Total. In: ICDE,
pp. 152-159 (1996)

. Gyssens, M., Lakshmanan, L.V.S.: A Foundation for Multi-Dimensional Databases.

In: Proceedings of the International Conference on Very Large Data Bases, pp. 106—
115. Citeseer (1997),

http://citeseerx.ist.psu.edu/viewdoc/

download?doi=10.1.1.46.7255& rep=repl&type=pdf

. Lehner, W.: Modeling Large Scale OLAP Scenarios. In: Advances in Database

TechnologyAATEDBT 1998, p. 153 (1998),
http://www.springerlink.com/index/1VR766FUCVW7NY4T. pdf

. Li, C., Wang, X.S.: A Data Model for Supporting On-Line Analytical Processing.

In: Proceedings of the Fifth International Conference on Information and Knowl-
edge Management - CIKM 1996, vol. 199, pp. 81-88 (1996),
http://portal.acm.org/citation.cfm?doid=238355.238444

Ozsoyoglu, G., Ozsoyoglu, Z., Mata, F.: A Language and a Physical Organization
Technique for Summary Tables. In: Proceedings of the 1985 ACM SIGMOD Inter-
national Conference on Management of Data, pp. 3-16. ACM, New York (1985),
http://portal.acm.org/citation.cfm?id=318899

Pedersen, T., Jensen, C., Dyreson, C.: A Foundation for Capturing and Querying
Complex Multidimensional Data. Information Systems 26(5), 383-423 (2001),
http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.22.6209& ; rep=repl&type=pdf

Rafanelli, M.: A Functional Model for Macro-Databases. ACM SIGMOD
Record 20(1), 3-8 (1991),
http://portal.acm.org/citation.cfm?id=122050.122051& col1=GUIDE
& ; d1=ACM& ; 1idx=J689& ; part=periodical&
WantType=periodical&title=ACMSIGMODRecord

Vassiliadis, P.: Modeling Multidimensional Databases, Cubes and Cube Op-
erations. In: Proceedings of Tenth International Conference on Scientific and
Statistical Database Management (Cat. No0.98TB100243), pp. 53-62 (1998),
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=688111
Vassiliadis, P., Sellis, T.: A Survey on Logical Models for OLAP Databases. SIG-
MOD Record 28, 64—69 (1999)

http://eprints.kfupm.edu.sa/51421/
http://www.springerlink.com/index/f76731r05m5u662j.pdf
http://www.citeulike.org/user/MoritzStefaner/article/4937436
http://linkinghub.elsevier.com/retrieve/pii/S0167923699000524
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.46.7255\&rep=rep1\&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.46.7255\&rep=rep1\&type=pdf
http://www.springerlink.com/index/1VR766FUCVW7NY4T.pdf
http://portal.acm.org/citation.cfm?doid=238355.238444
http://portal.acm.org/citation.cfm?id=318899
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.22.6209\&rep=rep1\&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.22.6209\&rep=rep1\&type=pdf
http://portal.acm.org/citation.cfm?id=122050.122051\&coll=GUIDE\&dl=ACM\&idx=J689\&part=periodical\&WantType=periodical\&title=ACMSIGMODRecord
http://portal.acm.org/citation.cfm?id=122050.122051\&coll=GUIDE\&dl=ACM\&idx=J689\&part=periodical\&WantType=periodical\&title=ACMSIGMODRecord
http://portal.acm.org/citation.cfm?id=122050.122051\&coll=GUIDE\&dl=ACM\&idx=J689\&part=periodical\&WantType=periodical\&title=ACMSIGMODRecord
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=688111

Extending the Dimensional Templates Approach
to Integrate Complex Multidimensional Design
Concepts

Rui Oliveira!, Fatima Rodrigues?, Paulo Martins?, and Jodo Paulo Moura?

! Informatics Department, School of Technology and Management
Polytechnic Institute of Leiria, Portugal
rui.oliveira@estg.ipleiria.pt
2 GECAD-Knowledge Engineering and Decision Support Research Center
Informatics Engineering Dept., School of Engineering,

Polytechnic Inst. of Porto, Portugal
mfc@isep.ipp.pt
3 GECAD-Knowledge Engineering and Decision Support Research Center
Informatics Engineering Dept., University of Trés-os-Montes e Alto Douro, Portugal
{pmartins, jpmoura}@utad.pt

Abstract. In the past, several approaches have been devised to semi-
automate the multidimensional design (MDD) of Data Warehouse
(DW) projects. Such approaches highly contribute to more expertise-
independent and deterministic MDD results. Among them, only the
Dimensional Templates Approach (DTA) focuses on solving the critical
resource containment problems of DW prototypes.

Originally, the DTA allows solely the generation of basic MDDs. In
this paper, we depict an extension to address complex MDD issues. These
include (i) date/time hierarchies, (ii) many-to-many relationships, (iii)
hierarchically structured data and (iv) coverage facts. The proposed
enhancements, including a rebuilt generation algorithm, allow more
accurate and broadening results than the original DTA. Throughout the
paper, references are made to a real case study to which the improved
DTA has been applied using two developed prototype tools.

Keywords: Dimensional Templates, Multidimensional Design, DW.

1 Introduction

The multidimensional design (MDD) stage is known to be one of the most
resource consuming stages in the development of Data Warehouse (DW) projects
[1, 2]. The accuracy requirements it imposes are not easy to balance with the
time and human resources they rely on. Business requirements must be gathered,
data sources must be deeply analysed, DW expertise must be acquired, and
performance plus storage sustainability must be assured.

Aiming to accelerate the MDD stage of DWs, several semi-automated methods
have been devised. Some of these are exclusively oriented towards available

A. Cuzzocrea and U. Dayal (Eds.): DaWaK 2011, LNCS 6862, pp. 26-B8, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Extending the Dimensional Templates Approach 27

data information, data-driven [3-5], others primarily guided by end-users
requirements (EURs), user-driven |6H8], and others still a mixture of both,
mized-driven [9-11]. Among the major handicaps of these methods (not
simultaneously found in all of them) are the need for a deep understanding
of data sources by DW designers, multidimensional experts manual intervening
and, specially, specifically formatted and validated data source documentation.
Most importantly, these methods produce results which are not reusable between
scenarios, despite their hypothetical similarities.

Recently [12] presented the Dimensional Templates Approach (DTA), a
mixed-driven semi-automated MDD approach. It proposes the semi-automation
of MDDs specifically for DW prototypes. As explained there, the DTA has the
potential to better comply with cost and time constraints of DW prototypes
comparing to other approaches. However, the original work allows solely the
generation of basic dimensions and fact tables, which presents as insufficient
for the DTA to be considered a strong alternative. Extra developments towards
greater accuracy and application range are, thus, required. In this paper we
present such developments to deal with date/time hierarchies, many-to-many
data relationships, hierarchically structured data and coverage facts. To
accomplish this, the DTA notation syntax was extended and its basic generation
algorithm was deeply enhanced, now presented with high detail.

The improved DTA has been successfully applied to a real-world DW
prototype case study, the SAD-IES (Decision Support System for Higher
Education Institutions) project. References to it are made throughout the paper
to illustrate the developments made (oppositely, the original DTA work had
been solely applied to an academic case study). The SAD-IES project, currently
undergoing on the Polytechnic Institute of Leiria (IPL), consists primarily in
the development of a DW prototype. In the future, the DW should support
the institutes’s management board into better plans of action concerning its
students’ motivation and performance. Currently, the project deals with the
business processes of students evaluation and students assistance to classes.

The paper is structured as follows. Section 2 presents relevant background on
the DTA. Section 3 describes the DTA’s non-addressed issues and the required
enhancements to handle them. Section 4 details the rebuild generation algorithm
considering the enhancements proposed. Section 5 concludes the paper.

2 Related Work

In the past, valuable approaches have been devised to semi-automate the
MDD of DWs, with focus on diminishing the time consumed and reducing
MDD subjectivity while maintaining high quality standards. In chapter [we
have referenced the most recent and relevant. Their further presentation and
discussion was considered beyond the scope of this paper. Besides, [13] provides
an extensive comparison of these approaches in terms of MDD flexibility.

Among these approaches, the DTA is still the only one to specifically target
DW prototype resource problems. Considering the potential denoted in [12], it
thus makes sense to support new developments on it.

28 R. Oliveira et al.

2.1 The Dimensional Templates Approach

The DTA detaches from other approaches in a core aspect: it stands on the
conviction that a pre-built generic and configurable solution better handles
resource containment during DW prototype MDD than specific tailored
solutions. It proposes the use of the template concept, largely adopted in other
Informatica areas. The approach focus on three main goals: refinement resilience,
human interaction avoidance and design effort optimisation.

Succinctly, a DTA template (named dimensional template) consists of
a generic configurable MDD solution for a specific business process. Each
dimensional template is composed by a set of rationale diagrams: tree-oriented
charts that map pre-defined EURs (named goals) to the types of source data
required to satisfy them (named markers). Each goal can be progressively
decomposed into child-goals using AND/OR tree-branches. Figure [l depicts a
much simplified rationale diagram taken from the SAD-IES project. From this
diagram, cropped from the template addressing the students evaluation business
process, the following statements can be retrieved:

— The goal “AVG/MAX/MIN grad. grade” can be satisfied at two different
grain levels (named reasonable grains): UnitSeasonEval (in which facts must
represent a student’s grade in a specific evaluation season) and UnitExam
(in which facts must represent a student’s grade in a specific exam).

— The parent-most goal “Students grades” can be satisfied if at least one of its
child goals (“AVG/MAX/MIN grad. grade”, “Curricular unit precedences”
and “AVG #students switching scholar year”) is satisfied. This is true
considering that an OR-decomposition is being used to decompose the goal.

— The child goal “AVG #students switching scholar year” can be satisfied
at the grain level UnitSeasonEval if its child goals (“#students switching
scholar year”,“Registered students in scholar year”) are simultaneously
satisfied (now, and AND-decomposition has been used).

— The child goal “Registered students in scholar year” can be satisfied at the
level UnitSeasonFEval if source data simultaneously addresses three contexts:
who is the student involved (marker student id); which curricular unit is
involved (marker unit id); when did the register occur (marker scholar year).

Once a dimensional template is built and made available (DTA’s first stage,
construction stage), it can be requested (DTA’s second stage, acquisition stage)
and then configured according to the needs of a specific DW prototype scenario
(DTA’s third and final stage, generation stage). During the third stage, MDD
operations are automated by means of a generation algorithm. The same available
dimensional template can be reused indefinitely throughout different scenarios.

3 Extending the Dimensional Templates Approach

The original DTA provides basic notation for designing simplistic rationale
diagrams, along with a subjective generation algorithm. Therefore, it can only
target the simplest scenarios. Following subsections present the DTA’s handicaps
and propose related enhancements.

Extending the Dimensional Templates Approach 29

Students

-« gxtended by----- orades

(a) course. (E’

(a) course

0 (a) season
season_id
(a) season

course_name
season_name (a) season

AVG # students
swilching
scholar year

1
UnitSeasonEval
P N
S Curricular unit 'y
\ precedences

course_id

season_star_day -~ AND
(©)
AVGIMAXMIN @
grad. grade # students Registered
o (a) CurricUnit s:"lmmg s’;‘:“?"ﬁ "
nEval 7 {a) CurricUnit Acholaydar 50 oarwar
Ua?l'f.geasoniva Unﬁﬁm |j/(a) CurmicUnit
e P
i AVGIMATMN < AVGIMAXMIN | unitid N o
\,_grad. grade / 1 _grad.grade unit_id 1 i
mandatory_preceedes | .
S #students 7 Registered
1 [switching) [studentsin |
(a) CurmricUnit @ (&) student () student 5 sEholalyear J sEhoIa[wa; B
|j (1) Minute h
student_id d student_id
umit_id exam_time
(1) Day (a)CurntUnll “J\'Eal
A uml ECTS (a) student
|l__| @) tlJYear scnnolar _year
graduation_date (a) CurricUnit umt i (a)CurncUmt
(a) student
student_unit_grade exam_grade unit_id 5"‘90'3' _year smuem id
Description s|udenl id uml id
| *
S i : +
O T O | o fb orain, 7 grain %. _texendedby, * . _
goal | grain-goal | dimensional | marker AND-/OR- grain- NM 8 el n?w not:auon
context decomposition position -

Fig.1. One of the rationale diagrams used in the SAD-IES project, simplified
for reading simplicity. It depicts date/time hierarchy handling (A), many-to-many
relationship (B), HSD data (C), coverage facts handling (D) and perspective
usage (E).

3.1 Time-Related Data

A crucial step in the MDD stage of any DW project is to define time-related
data’s granularity [1]: too much/less detailed data in date/time dimensions is
equally harmful to the process of decision support.

Although time granularity differs from facts granularity, both concepts are
related. For instance, assuming the case study’s fact granularity as a student’s
grade in a curricular unit exam, relevant information would be lost if time related
data was set at the day level instead of hour level (e.g.: “Do students perform
better in the morning or in the afternoon?”, “Which is the minimum advisable
time gap between exams taken in the same day by a student?”). However, if
facts granularity represented less detail, like a student’s grade in a curricular
unit evaluation season, day level would suffice. Hence, date/time grain depends
on facts’ detail level.

Secondly, source data’s detail also limits the choice of the date/time grain. It
would be incoherent and predictably harmful to set date/time dimensions to

30 R. Oliveira et al.

a deeper detail level than the one retrievable from source data. Consider again
the case study in which source systems store students’ exam pre-register with
a year-month-day detail: day is bound to be the bottommost acceptable detail
level to associate with register-related facts; if more detail was forced into the
DW (like hour), erroneous data would have to be associated to each student’s
register (e.g., a fake hour).

Time-related data issues were not handled on the DTA original work. Here,
they are dealt by adapting the DTA’s tagging method (each marker receives
a tag depending on the dimensional context that marker connects to). Now,
each marker linked to a when dimensional context must be tagged with the (1)
tag, followed by the name of the minimum adequate date/time grain for that
marker. Figure [Tl depicts the application of a (t)-tag to the marker graduation
date using day detail level (labelled as (A)). In the illustrated situation the
template designer is stating “It is required to retrieve graduation date from
data sources with (at least) day information so that the "AVG/MAX/MIN grad.
grade’ goal can be fulfilled.”.

(t)-tagging benefits from the fact that Time’s structure is universal, known
in advance and naturally hierarchic: one century contains years, each of which
contains months, each of which contains weeks and so on. Thus, when a marker
is (t)-tagged, no uncertainty exists whatsoever about the date/time hierarchy
level that tag refers to.

3.2 Many-to-Many Relationships

Most commonly, dimension table records relate to facts in one-to-many
relationships [1], while many-to-many relationships’ only occasionally occur. As
an exercise, let it be assumed that a fact in the case study represents a student’s
grade in a curricular unit exam: a common one-to-many relationship relates
each student’s exam grade (a fact) to one curricular unit, which in return can
be related to many exam grades; a many-to-many relationship, however, would
determine that a student’s exam grade can be used at many curricular units
instead of one.

Originally, the DTA reckons only one-to-many relationships, which limits the
accuracy of the generated MDD results. Therefore, the N:M notation element
(N:M stands for many-to-many) has been created, as shown in Figure [l The
N:M element can be applied to pairs of dimensional contexts (what,c), with ¢
IN {how,when,which,who,where}. When used in this context, the N:M element
indicates (without imposing) the reasonable expectancy that data can relate
in a many-to-many fashion. The N:M element “used for” shown in Figure [l
labelled as (B), states “Each student’s grade in a taken exam can relate to
several curricular units.” (a common practice nowadays).

3.3 Hierarchically Structured Data

We refer to hierarchically structured data (HSD) not as one-to-many data
relations inside dimensions and crucial to data roll-up and drill operations

Extending the Dimensional Templates Approach 31

(like the classic recurrent example of date/time dimensions’ hierarchy). Rather,
we refer to HSD as data resuming into hierarchies due to source’s organisational
constraints. An example taken from the case study is curricular unit precedences,
by which a curricular unit’s student success is known/supposed to depend on a
previous graduation at other curricular units (for instance, to obtain a graduation
in the X unit a prior graduation is advised in the Y unit; furthermore, Y unit’s
success depends on graduating at the Z unit).

The original DTA work disregards HSD. In fact, it provides no mechanisms in
rationale diagrams structure to address this special type of data relationships.
To fill this void, the N:M element was again chosen since HSD is commonly of
a many-to-many nature. In the just given example, the X curricular unit can
require Y and Z as its precedents (many); these, in return, can be required as
precedents not only by X but also by many others. This discussion resembles
the parts explosion problem [1]].

Since the N:M element is used for many-to-many relationships as well as to
address HSD, a distinction is required. This is made at the dimensional context
level: HSD uses the N:M element to perform a connection of a dimensional
context to itself; also, no what dimensional context coexist in the same grain-goal.
Figure 1 depicts the use of the N:M element “preceeded by” in the “Curricular
unit precedences” grain-goal (labelled as (C)). It states that each curricular unit
may have a precedence towards other curricular unit(s) and that such precedence
can be of a mandatory nature.

3.4 Dealing with Coverage Facts

A varying amount of the facts found in source systems are not strictly
business process facts. Called coverage facts |1], these reflect second tier source
occurrences required to answer a restrict set of EURs. Consider the case study’s
main facts’ granularity to be “students’ grades in a curricular unit’s evaluation
season”. Second tier events like “students registering in curricular units” are
only required to punctually complement main facts. In Figure[ll, the goal “AVG
number of students switching scholar year” is satisfiable by simultaneously
analysing the ratio number of students switching scholar year /registered students
in scholar year (labelled as (D)): while this ratio’s numerator is answered by
main facts, the denominator is answered by coverage facts.

Dealing with coverage facts requires no additional notation elements in
rationale diagrams. Rather, their detection is made by the generation algorithm
(step 3) solely by interpreting the combination of elements used in rationale
diagrams. Section L2 explains how this is achieved.

3.5 Handling Perspective Analysis

The quality of a DW depends on its capacity to allow data analysis under
different perspectives. The EUR taken from the case study “How did students’
grades evolve in a course basis per evaluation season?” answers the simpler

32 R. Oliveira et al.

Sales
evolution
"L/

(E)
e ‘omonon..{:]

+ extended by "~

Products Unsold promo- (a) promotion pr_start_date
sold together ted products
‘ .RN pr_start_date
Register ti-
Dueto Due to parts megin BOE Sold promo-
assoclahon explosion LAl 9'0“2“\'“5 ted products

LN 2N e
Line-obsgie Sale Lnne»of—sa!e Sale Line-otsale Line-ot-safe “Sale.,
0 - b) - -
il IR B~ U
H Duew parts 1 ! Registerti- : Promated 'y ; Sold promo- |y
1 explosion i ' _me in F'OS ,' \ proaucts A i ted products .

, | F | duet
('Ea'e (C)) product @ pmdm o proman ;:) produc

{a) product
(a) product ‘ﬁ ” Sale .
product_id (t)Seconu pmducl id .
sale_id - producl id transaction_id product_id
product_id pmmo'mn 4 promotion_id
sale it los tlmestamp

Fig. 2. A rationale diagram illustrating the DTA enhancements used on Figure [[l now
applied under the context of retail sales [1]. Labels (4) to (E) equally apply.

question “How did students’ grades evolve?”. In fact, the more detailed first
question is a biased version of the second using the course and evaluation season
perspectives. Therefore, perspectives are additional analysis extensions one can
perform on a goal. Perspectives are not explicitly handled in the DTA.

In the current work, we handle perspectives as goal refinements. To do so, the
enhanced DTA adds the goal-extender notation element, representing a specific
perspective analysis for a goal. Figure [depicts the use of a goal-extender,
labelled as (E). Through that association it is stated the high value of optionally
analysing students’ grades based on course information, particularly its id
(marker course id) and name (marker course name).

Markers linked to goal-extenders represent the same as when attached to
grain-goals: required data. The difference resides in the mandatory profiles of
the relations: (i) all of a grain-goal’s markers have to be mapped for it to be a
satisfied grain-goal and therefore used by the generation algorithm (section E.T);
(ii) only one of a goal-extender’s markers requires mapping for the corresponding
perspective to be considered by the algorithm.

3.6 Enhanced DTA’s Broadening Scope

Figure @] intends to demonstrate the broadening scope of the enhanced DTA
by using a scenario (retail sales, ﬂil]), much different from this paper’s primary
SAD-IES case study. Using the same notation elements to model MDD
concepts in such disparate scenarios shows the flexibility and straightforwardness
of the approach. Numerous other examples could be used to illustrate the

Extending the Dimensional Templates Approach 33

broadening applicability of the enhanced DTA: it was considered as an exercise
of redundancy. From Figure [2] the following aspects are relevant:

— Grain levels sale and line-of-sale are available (in increasing order of detail);
— Sold products can be components of other products [1] (C);
— A selling product can be under several promotions simultaneously (B).

4 Improving the DTA Generation Algorithm

The current section details the rebuilt algorithm’s step 5, responsible for
delivering MDDs. It necessarily incorporates the enhancements discussed on the
previous section.

4.1 The Generation Algorithm Basics

The DTA algorithm consists of five steps, each triggered by the successful ending
of its previous. Succinctly, these are as follows ((Dn) represent DTA’s original
definitions, helpful for referencing):

Step 1. From the available goals in a template, its user chooses those which
adapt to the particular DW scenario (D1: chosen goal). From these, the
corresponding list of markers can be retrieved (D2: mappable marker).

Step 2. Mappable markers (D2) are mapped to real data (either manually or
in an automated fashion, depending on source’s metadata), now becoming
mapped markers (D3: mapped marker);

Step 3. Each grain-goal related to a chosen goal (D1) having all of its markers
mapped (D3) will become satisfied (D5: satisfied grain-goal);

Step 4. Once all satisfied grain-goals (D5) are found, the corresponding
rationale AND/OR decomposition-trees are read to deliver satisfied goals
(D6: satisfied goal) from the set of chosen goals (D1).

Step 5. MDDs are generated considering only the set of satisfied goals (D6)
and their related mapped markers (D3).

4.2 Further on Satisfied Grain-Goals: Step 3

It was found that a further categorisation of satisfied grain-goals (D5) was
sufficient to identify coverage facts from rationale diagrams without requiring
additional notation elements (as discussed in section [B4]). This categorisation
divides grain-goals into status grain-goals (D5.1: status grain-goal) and basic
grain-goals (D5.2: basic grain-goal).

Status grain-goals are the subset of satisfied grain-goals which contain no
what dimensional context (exemplified in Figure[Il by the grain-goal “Registered
students in scholar year”, labelled as (D)). The absence of the what dimensional
context in a grain-goal indicates that a coverage fact is present. Basic grain-goals
are the ones in the remaining subset of satisfied grain-goals (D6). This extra
division is of high value in the generation process since status grain-goals allow
the generation of coverage fact tables (Table [I]).

34 R. Oliveira et al.

Table 1. Comparing the DTA and the enhanced DTA (e-DTA) MDD abilities

MDD achievement DTA e-DTA How achieved
Dimension (with basic attributes) x x DTA original work
Fact table x x DTA original work
Coverage fact x Status grain-goals (label D)
Bridge table x N:M element (labels B,C)

Fixed time dimension X DTA original work
Adjusted time dimension (t)-tagging (label A)
Adjusted dimension’s attributes x Goal-extender element (label E)

»

(C) [+ «preceed_by» bridge table
CurricUnit key (FK)
CHILD CurricUnit key (FK)

weight factor

[E3 UnitSeasonEval

Date_Key (FK) =] CurricUnit

CurricUnit_Key (FIK) Key (PK)
=] Date season_Key (FK) unit_id
Key (PK) ~] student dstudent_Key (FIK)
Year Key (PK) unit_ECTS
Semester student_id student_unit_grade
Quarter o] season
Month Key (PK)
Week (A) rrc‘Registemd students in scholar year season_id
Day CurricUnit_Key (FK) season_name

student_Key (FK)
season_Key (FK) (D)
Date_Key (FK)

(E)

Fig. 3. Generated MDD considering that all goals of Figure [[l are satisfied. The labels
of Figure [[] are reused to relate the rationale diagram with the corresponding results.

4.3 The Generation Algorithm: Step 5

Figures [and [l present the restructured generation algorithm (optimised for
reading simplicity) with reasonably high detail. Like in the DTA, for each distinct
reasonable grain referred in the satisfied goals (D6), a corresponding algorithm
execution is required (D7: algorithm iteration).

Figure[3 depicts the generated MDD considering that all of the goals of Figure
[0 are satisfied at the UnitSeasonEval detail level (like in the SAD-IES project).
Labels (A), (C), (D) and (E) match the labels in Figure[Il Table [Il resumes the
relation between the proposed enhancements and new MDD achievements with
the ones in original DTA.

Extending the Dimensional Templates Approach 35

0. SET min time grain = -1, triads extend = {}

1. SET satisf grain goals = set of basic grain-goals (D5.2) having same
grain as the iteration’s grain (D7)

2. IF satisf grain goals is not empty THEN

2.1 CREATE iteration's fact table f.

2.2 SET usable markers = set of usable markers (D4) belonging to

satisf grain goals

2.3 SET usable markersyna: = subset of usable markers linked to a what
dimensional context

2.4 SET pairs = set of distinct pairs <marker,marker.grain> retrieved

using usable markersynar
2.5 FOR EACH pairsj, l<i<pairs.count, DO
IF pairsj.marker.grain = iteration.grain THEN
CREATE measure in table f, using pairs;.marker.name
ELSE
IF pairsj.marker.grain < iteration.grain AND
dimension dgraip not exists,grain=pairs;.marker.grain, THEN
CREATE degenerated dimension dgrsip in fact table f}
2.6 SET usable markersypen = subset of usable markers linked to a when
dimensional context
2.7 SET triads=distinct triads <marker,marker.grain,marker.time grain>
retrieved using usable markersypen
2.8 FOR EACH triads;, l<i<triads.count, DO
IF triads;.marker.grain = iteration.grain THEN

IF dimension dgste not exists THEN CREATE dimension dgate
CREATE FK (dg.:-—>table 1)
IF triads;.marker.time_grain > 'day' THEN
IF dimension diime not exists THEN CREATE dimension diipme
CREATE FK (d:im.—>table f)
SET min_time grain = MIN(min_time grain,
triadsj.marker.time grain)

Fig. 4. Pseudocode for the algorithm’s MDD generation step (part 1)

36 R. Oliveira et al.

2.8 (continued)
IF triadsj.marker.grain = iteration.grain THEN
as on part 1{ (v..)
ELSE
IF triads;.marker.grain < iteration.grain THEN
IF dimension dgrain Not exists,grain=triads;.marker.grain, THEN
CREATE dimension dgrain with FK (dgrain->table f£)
ELSE
IF dgrain ©xists AND dgrain is degenerated THEN
CREATE FK (dgrain—>table £)
UNSET dgrain @5 degenerated dimension
CREATE column in dgrsip named as triads;.marker.name
2.9 FOR EACH dimensional context ctx {how,where,which,who} DO
SET usable markers.ty = subset of usable markers linked to ctx
SET pairs=set of distinct pairs <marker,marker.agent> retrieved
using usable markers.:y
FOR EACH pairsj, 1l<i<pairs.count, DO
IF dimension named pairs;.marker.agent not exists THEN
CREATE dimension digen:t with FK (dagent—>table f)
ELSE
IF dagent has no FK to f THEN CREATE FK (dagenc—>table f)
CREATE column in digent named as pairs;.marker.name
2.10 SET triadsNM=set of distinct triads <context to,agent_to,NMlabel>
retrieved using satisf grain goals plus
N:M-relationships starting in what dim. context
2.11 FOR EACH triadsNM;, l<i<triadsNM.count, DO
SET dimension dagept=get dimension for agent triadsNM;.agent_to
CREATE bridge table bt with FK(bt->dagent) and FE(bt->dagent)
2.12 SET triadsNM=set of distinct triads <context_to,agent_to,NMlabel>
retrieved using satisf grain goals and
N:M-elements starting in a dimensional context
other than what
2.13 FOR EACH triadsNM;, l<i<triadsNM.count, DO
SET dimension dggept=get dimension for agent triadsNM;.agent to
CREATE bridge table bt with FK(bt->dagent) and FK(bt->daigent)
CREATE column weight factor in bt
2.14 SET goal ext=set of goal extenders linked to satisf grain goals
2.15 FOR EACH goal ext;, l<i<gcal ext.count, DO
SET triads_ext=distinct <marker,marker.agent,goal_ext;.dim_context>
triads retrieved from geal ext;'s mapped markers
2.16 FOR EACH triads ext; DO, l<i<triads ext.count
IF dagent not exists, agent=triads ext; marker.agent THEN
CREATE dimension digent With FK (dagest—>table f)
CREATE column in dagepr named as triads extj.marker.name
3. SET satisf grain goals = set of status grain-goals (D5.1) with the
same grain as the iteration’s grain (D7)
4. IF satisf grain goals not empty THEN
4.1 CREATE iteration's coverage fact table f
4.2 REPEAT steps 2.2 TO 2.16
5. IF min time grain = -1 THEN
IF dgate ©xists THEN
CREATE columns in dgste considering min_time grain value
IF diime ©xists THEN
CREATE columns dijme considering min time grain value

Fig. 5. Pseudocode for the algorithm’s MDD generation step (part 2)

Extending the Dimensional Templates Approach 37

5 Conclusions

This paper presents an extension to the DTA work [12]. In it, dimensional
templates were proposed for semi-automating the MDD stage of DW prototypes.
Despite its advantages, the original DTA allows solely the generation of basic
MDDs. The here proposed enhancements enable the creation of more complex
MDDs by dealing with date/time hierarchies, many-to-many relationships, HSD,
coverage facts and perspective analysis. To achieve that purpose, notation
elements were introduced and the step 5 of the generation algorithm was rebuilt,
now particularly objective and detailed in contrast with the original one.

The enhanced DTA has been applied to a real world case study, the SAD-IES
project. Throughout this paper several references are made to it to better
contextualise the proposed improvements. The prototype tool referred in the
original DTA paper was updated accordingly to the here proposed enhancements,
both in terms of rationale diagrams’ design support as well as algorithm’s
execution. Figures [l and [l were generated using that same prototype tool.

Regarding future work, additional improvements to the approach are being
considered towards the relevant deliverance of mini-dimensions. Also, optimising
the rationale diagrams design notation is possible and advisable to reduce
particular redundancy occurrences.

References

1. Kimball, R., Ross, M.: The Data Warehouse Toolkit: The Complete Guide to
Dimensional Modeling. John Wiley & Sons, Inc., New York (2002)

2. Adelman, S., Dennis, S.: Capitalising the DW. White Paper, DMReview (2005)

3. Jensen, M.R., Holmgren, T., Pedersen, T.B.: Discovering Multidimensional
Structure in Relational Data. In: Kambayashi, Y., Mohania, M., W68, W. (eds.)
DaWaK 2004. LNCS, vol. 3181, pp. 138-148. Springer, Heidelberg (2004)

4. Song, 1.Y., Khare, R., Dai, B.: SAMSTAR: a semi-automated lexical method for
generating star schemas from an entity-relationship diagram. In: ACM 10th Intern.
Workshop on Data Warehousing and OLAP, pp. 9-16. ACM, New York (2007)

5. Romero, O., Abellé, A.: Automating Multidimensional Design from Ontologies.
In: ACM 10th Intern. Workshop on Data Warehousing and OLAP, pp. 1-8. ACM,
New York (2007)

6. Phipps, C., Davis, K.C.: Automating Data Warehouse Conceptual Schema Design
and Evaluation. In: 4th International Workshop on Design and Management of
Data Warehouses, DMDW 2002, pp. 23-32. CEUR (2002)

7. Winter, R., Strauch, B.: A Method for Demand-Driven Information Requirements
Analysis in Data Warehousing Projects. In: 36th Hawaii International Conference
on System Sciences, HICSS 2003, pp. 1359-1365. IEEE Computer Society, Los
Alamitos (2002)

8. Prat, N., Akoka, J., Comyn-Wattiau, I.: A UML-based Data Warehouse Design
Method. Journal of Decision Support Systems 42(3), 1449-1473 (2006)

9. Vrdoljak, B., Banek, M., Rizzi, S.: Designing Web Warehouses from XML Schemas.
In: Kambayashi, Y., Mohania, M., W68, W. (eds.) DaWaK 2003. LNCS, vol. 2737,
pp. 89-98. Springer, Heidelberg (2003)

38

10.

11.

12.

13.

R. Oliveira et al.

Giorgini, P., Rizzi, S., Garzetti, M.: GRAnD: A Goal-Oriented Approach to
Requirement Analysis in Data Warehouses. Decision Support Systems 45, 18 (2008)
Mazén, J.-N., Trujillo, J.: A Model Driven Modernization Approach for
Automatically Deriving Multidimensional Models in Data Warehouses. In: Parent,
C., Schewe, K.-D., Storey, V.C., Thalheim, B. (eds.) ER 2007. LNCS, vol. 4801,
pp. 56-71. Springer, Heidelberg (2007)

Oliveira, R., Rodrigues, F., Martins, P., Moura, J.P.: Dimensional Templates in
Data Warehouses: Automating the Multidimensional Design of Data Warehouse
Prototypes. In: Filipe, J., Cordeiro, J. (eds.) Enterprise Information Systems.
LNBIP, vol. 24, pp. 184-195. Springer, Heidelberg (2009)

Romero, O., Abelld, A.: A Survey of Multidimensional Modeling Methodologies.
International Journal of Data Warehousing & Mining 5, 1-23 (2009)

OLAP Formulations for Supporting Complex
Spatial Objects in Data Warehouses

Ganesh Viswanathan and Markus Schneider

Department of Computer & Information Science & Engineering
University of Florida
Gainesville, FL 32611, USA
{gv1,mschneid}@cise.ufl.edu

Abstract. In recent years, there has been a large increase in the amount
of spatial data obtained from remote sensing, GPS receivers, communi-
cation terminals and other domains. Data warehouses help in modeling
and mining large amounts of data from heterogeneous sources over an
extended period of time. However incorporating spatial data into data
warehouses leads to several challenges in data modeling, management
and the mining of spatial information. New multidimensional data types
for spatial application objects require new OLAP formulations to sup-
port query and analysis operations on them. In this paper, we introduce
a set of constructs called C? for defining data cubes. These include cat-
egorization, containment and cubing operations, which present a funda-
mentally new, user-centric strategy for the conceptual modeling of data
cubes. We also present a novel region-hierarchy concept that builds spa-
tially ordered sets of polygon objects and employs them as first class
citizens in the data cube. Further, new OLAP constructs to help define,
manipulate, query and analyze spatial data have also been presented.
Overall, the aim of this paper is to leverage support for spatial data in
OLAP cubes and pave the way for the development of a user-centric
SOLAP system.

Keywords: spatial data cube, user-centric OLAP, region hierarchy.

1 Introduction

Data warehouses and OLAP systems help to analyze complex multidimensional
data and provide decision support. With the availability of large amounts of
spatial data in recent years, several new models have been proposed to enable
the integration of spatial data in data warehouses and to help analyze such data.
This is often achieved by a combination of GIS and spatial analysis tools with
OLAP and database systems, with the primary goal of supporting spatial anal-
ysis dimensions, spatial measures and spatial aggregation operations. However,
this poses several new challenges related to spatial data modeling in a multidi-
mensional context, such as the need for new spatial aggregation operations and
ensuring consistent and valid results. Moreover, existing commercial geographic
data management systems force database designers to use logical data structures

A. Cuzzocrea and U. Dayal (Eds.): DaWaK 2011, LNCS 6862, pp. 39 2011.
© Springer-Verlag Berlin Heidelberg 2011

40 G. Viswanathan and M. Schneider

heavily influenced by implementation concerns. This paper takes an unique ap-
proach to alter this implementation dependent view for modeling OLAP sys-
tems, by using a lattice theoretic approach based on the (hyper)cube metaphor
to model multidimensional data. We present a user-centric conceptual modeling
strategy that incorporates spatial data as first class citizens in data hierarchies.
The modeling and querying of complex hierarchical structured multidimensional
data in a large scale presents interesting challenges through the entire spectrum
of spatial data warehouse development from designing conceptual data models
accommodating complex aggregations on hierarchical, multidimensional spatial
data, to developing the logical schema and finally, storage and the physical im-
plementation. In this paper, we focus on the conceptual data model design that
would allow the user to easily yet effectively create spatial data cubes, and navi-
gate and analyze them. The model we present here is an extension of the BigCube
approach [I] that presents a strict type structured hierarchy of classes to model
the hierarchical data dimensions in data cubes. We start by introducing a new
region-hierarchy or regH representation for complex structured region objects
into a partially ordered lattice structure. Then, we introduce the C® constructs,
which stand for the three primary constructs required for data-cube creation and
maintenance, namely, Categorization, Containment and Cubing or Combination.
Categorization helps to organize base data values into meaningful categories,
containment helps to assign a hierarchy of ordering over the categories, and fi-
nally cubing forms an association between categories of different hierarchies in
order to signify a new subject of analysis (measure value). Further, we also in-
troduce new OLAP formulations to support the spatial data in cubes, such as
the geo construct operator which allows the creation of new spatial regions from
complex region hierarchies to facilitate analysis.

The rest of this paper is organized as follows. Section 2l reviews existing work
in spatial data warehousing and provides a case study in the form of a Product
Sales data cube that is used in the rest of the paper. Section Bl presents the regH
concept, which is a region-hierarchy specification to help incorporate complex
structured spatial objects in data warehouses for performing analysis. Section [4]
presents the C3 constructs for spatial data cube definition and construction.
Section [l presents new OLAP formulations such as geo construct, slice and
dice, and discusses spatial topological relations among complex regions using
the poset structures. Finally, Section [f] concludes the paper and mentions topics
for further research.

2 Related Work

Spatial data warehousing (SDW) has become a topic of growing interest in recent
years. This is primarily due to the explosion in the amount of spatial information
available from various sources such as GPS receivers, communication media,
online social networks and other geo-spatial applications. Consequently several
spatial OLAP tools are now available to help model and analyze such data.

OLAP Formulations for Supporting Complex Spatial Objects 41

An early approach to spatial online analytical processing (SOLAP) is [2],
which mentions essential SOLAP features classified into three areas of require-
ments. The first is to enable data visualization via cartographic (maps) and
non-cartographic displays (e.g., 2D tables), numeric data representation and the
visualization of context data. Second, data exploration requires multidimensional
navigation on both cartographic and non-cartographic displays, filtering on data
dimensions (members) and support for calculated measures. The third area dis-
cussed involves the structure of the data, for example, the support for spatial and
mixed data dimensions, support for storage of geometric data over an extended
time period, etc. The conceptual design models for spatial data warehouses are
extensions of ER and UML diagrams or ad-hoc design approaches. Among exten-
sions of ER models, [3] presents a clear integration of spatial data for OLAP by
extending the MultiDimER, and MADS approaches. Among other ad-hoc design
approaches, [4] presents a formal framework to integrate spatial and multidimen-
sional databases by using a full containment relationship between the hierarchy
levels. In [5], the formal model from [6] is extended to support spatially over-
lapping hierarchies by exploiting the partial containment relations among data
levels, thus leading to a more flexible modeling strategy. For a comprehensive
review of spatial data warehouse design models the reader is referred to [7g].

For modeling spatial data there are now several established approaches in the
database community. [9/T0] provide a robust discussion of spatial data types by
introducing types such as point, line and region for simple and complex spatial
objects and describe the associated spatial algebra. Composite spatial objects
(collections of points, lines and regions) are presented as spatial partitions or map
objects. Similarly, the Open GIS Consortium also provides a Reference Model
[11] as a standard for a representing geo-spatial information. Qualitative spa-
tial operations include topological relations [12] such as disjoint, meet, overlap,
equal, inside, contains, covers and coveredBy, and cardinal direction relations.
Quantitative relations on spatial objects include metric operations based on the
size, shape and metric distances between objects or their components. All these
operations can be used to query and analyze spatial data in the data warehouse.

3 Modeling Data Cubes with Complex Spatial Data

In this section, we describe a new approach to design and model cubes for com-
plex, hierarchical, multi-structured data. Spatial data such as points, lines and
polygons or regions often display such semantics. Consider for example, Figure [T]
that illustrates a complex region object which consists of three regions with one
of them inside the hole of another. The figure also displays a single face of a re-
gion object (which can also be regarded as a simple region) with multiple holes.
To facilitate the handling of such complex data in multidimensional data cubes,
we introduce the regH or region-hierarchy concept that aims to provide a clear
hierarchical representation of a complex region that can be incorporated as first
class citizens into spatial data cubes.

42 G. Viswanathan and M. Schneider

exterior

interior

boundary

(a) (b

Fig. 1. Illustration of (a) a complex region object with three faces and its interior,
boundary and exterior point sets, and (b) a single face, also denoted as a simple region
with holes

The first step to accommodate complex spatial data in OLAP cubes is to
explore and extract the common properties of all structured objects. Unsurpris-
ingly, the hierarchy of a structured object can always be represented as a directed
acyclic graph (DAG) or more strictly, as a tree.

Figure Bh provides a more detailed visualization of a complex region object
with three faces labeled as F1, F2 and F3. The interior, exterior and boundary
point sets of the region are also displayed. After performing a plain-sweep op-
eration the cyclic order of the region’s boundary is stored to represent a each
face uniquely. Figure Zb shows such as tree structure of a region object. In the
figure, face[|, holeCycle] |, and segment[] represent a list of faces, a list of hole
cycles and a list of segments respectively. In the tree representation, the root
node represents the structured object itself, and each child node represents a
component named sub-object. A sub-object can further have a structure, which
is represented in a sub-tree rooted with that sub-object node. For example, the
region object in Figure 2k consists of a label component and a list of face com-
ponents. Each face in the face list is also a structured object that contains a face
label, an outer cycle, and a list of hole cycles, where both the outer cycle and
the hole cycles are formed by segments lists.

Further, we observe that two types of sub-objects can be distinguished called
structured objects (SO) and base objects (BO) [13]. Structured objects consist of
sub-objects, and base objects are the smallest units that have no further inner
structure. In a tree representation, each leaf node is a base object while inter-
nal nodes represent structured objects. A tree representation is a useful tool
to describe hierarchical information at a conceptual level. However, to give a
more precise description and to make it understandable to computers, a for-
mal specification would be more appropriate. Therefore, we propose a generic
region-hierarchy as an alternative of the tree representation for describing the
hierarchical structure of region (or multi-polygon) objects. Thus, we can define
the structure of a region object from Figure 2b with the following structure
expression: (region : SO) = (regionLabel : BO)(face : SO)[|. In the expres-
sion, the left side of := gives the tag declaration of a region object and the
right side of := gives the tag declarations of its components, in this case, the

OLAP Formulations for Supporting Complex Spatial Objects 43

F3 region
/ \
F2 'a regionLabel face[]
T
faceLabel outer‘Cycle holeC‘ycle[]
?1 segment[| segment][|
(a) (b)

Fig. 2. Tllustration of a complex structured region showing faces F1 (containing cycles
C1 and C2), F2 (cycle C3) and F3 (cycle C4), and a hierarchical representation for the
region (or multi-polygon) object

region label and the face list. Thus, we say the region object is defined by this
structure expression. Using this representation, we can now recursively define
the structure of structured sub-objects until no structured sub-objects are left
undefined. A algebraic list of structure expressions then forms a specification.
We call such a region specification that consists of structure expressions and is
organized following some rules a region-hierarchy or regH.

It can be observed that the conversion from a tree representation to the regH
is simple. The root node in a tree maps to the first structure expression in
the region-hierarchy. Since all internal nodes are structured sub-objects and leaf
nodes are base sub-objects, each internal node has exactly one corresponding
expression in the regH, and leaf nodes require no structure expressions. The
regH for a region object corresponding to the tree structure as in Figure 2h is
thus defined as follows:

(region : SO) := (regionLabel : BO)(face : SO)| |;

(face : SO) := (faceLabel : BO)(outerCycle : SO)(holeCycle : SO)|];
(outerCycle : SO) := (segment : BO)[|;

(holeCycle : SO) := (segment : BO)[|;

The region-hierarchy provides a unique representation for complex multi-
structured regions. This can be incorporated into data hierarchies in OLAP
cubes by using the extract and union operators specified in section [Bl

4 Data Model and C? Constructs

In this section, we present our data model for multidimensional data cubes sup-
porting complex hierarchical spatial objects. These are extensions to the BigCube
approach [1], which is a conceptual metamodel for OLAP data defined over
several levels of multidimensional data types.

To support complex objects in data warehouses we need new constructs that
can handle data with complicated structures. However to keep the data ware-
house modeling user-friendly, the approach taken for conceptual modeling and
for applying aggregations must be simple. The C3 constructs presented here
satisfy both these requirements by providing the analyst with three simple and

44 G. Viswanathan and M. Schneider

logical operations to construct data cubes, namely categorization, containment
and cubing. Later by using classical OLAP operations such as slice, dice, rollup,
drilldown and pivot, users can navigate and query the data cubes.

Categorization helps to create groupings of base data values based on their
logical and physical relationships. Containment helps to organize the data cate-
gories into levels and place them in atleast a partial ordering in order to construct
hierarchies. Cubing or Combination takes different categories of data from the
various hierarchies an helps to create a data cube from them by specifying mean-
ingful semantics. This is done by associating a set of members defining the cube
to a set of measures placed inside the cube. Further, each of the C® constructs
have a set of analysis functions associated with them, called the A-set. An A-set
can include aggregation functions, query functions such as selections, and user-
defined functions (UDF's). Since aggregations are fundamental to OLAP cubes,
we first introduce the definition of an A-set in Definition [

Definition 1. Analysis set or A-set. An analysis set or A-set is a set of
functions defined on the components of a data cube that are available for aggre-
gation, querying and other user-defined operations. An A-set has the following
algebraic structure:

A=<{ay,...,an},{ql, ..., g}, {ul, .., up} >

where, a; represents the it" aggregation function available, q; the it" query

function available and u; the i*" user-defined function (UDF) available in that
particular cube component.

The A-set is available as part of every category, hierarchy, perspective (data
dimension) and subject of analysis (fact) in the data cube. The operations on the
constituent elements of these cube components are specified by its corresponding
A-set .

Next, to facilitate the development of the C® constructs and additional OLAP
formulations, we present some necessary terminology and definitions based on
lattice theory [I4] and OLAP formalisms [I5/1].

Definition 2. Poset and its Top and Bottom Elements. A partially or-
dered set or poset P is a set with an associated binary relation < that for any z,
y and z, satisfies the following conditions:

Reflexivity : r<x
Transitivity : Ve<yandy<z=z<z
Anti-Symmetry : Ve <y andy<zx =z =y

For any S C P, m € P is a maximum or greatest element of Sif Vz € S : (m > z),
and is represented as maxP. The minimum or least element of P is defined dually
and represented as minP. A poset (P, <) is a totally or linearly ordered set (also
called chain) if Vz,y € P = x < yory < x With an induced order, any subset
of a chain is also a chain.

OLAP Formulations for Supporting Complex Spatial Objects 45

TIME (Year)
Year: ms_date

Sales Quantity : ms_int Month : ms_date
Profit : ms_int — | @ -
Day : ms_date

Name : ms_string
= PRODUCT (Name)

Country : ms_strin;
o -string Subjects: 2007
Zone : ms_region Sales Qnty. = 10 units 2008

Profit = 1500 USD‘—\‘(@ 2009 TIME (Year)

2010

State : ms_string

County : ms_string iPhone PRODUCT (Name)

Rubix cube

City: ms_string USA Ttaly ...
LOCATION (Country) LOCATION (Country)
(a) (b)

Fig. 3. Product-Sales BigCube (a) structure shows three perspectives: Time, Product
and Location that define two subjects of interest: Sales-Quantity and Sales-Profit, and
a (b) sample instance

The greatest element of P is called the top element of P and is represented
as T, and its dual, the least element of P is called the bottom element of P and
represented as L.

A non-empty finite set P always has a T element (by Zorn’s Lemma). OLAP
cubes often contain sparse data. To ensure that a bottom element exists and to
make the OLAP operations generically applicable to all multidimensional cube
elements, we perform a lifting procedure where given a poset P (with or without
1), take an element 0 ¢ P and define < on P, = PU{0}as: z <y iff x =0 or
z <yin P.

Definition 3. Lattice. Let P be a poset and let S C P. An element v € P called
an upper bound of S if Vs € S : (s < u). Dually, an element lin P is called the
lower bound of S if Vs € S : (s > 1). The set of all upper bounds and lower
bounds is represented as S* and S' respectively.

St ={ueP|(VseS):s<u}
St ={leP|(Vs€8):s>1}

An element z is called the supremum or the least upper bound of S if: x € S*
and Vz,y € S* : x < y. This is represented as supS or VS. The infimum or the
greatest lower bound of S is defined dually and represented as infS or NS. A
non-empty ordered set P is called a lattice if Vx,y € P: xVy and z A y.

Ezxample: Consider the classical product-sales multidimensional dataset as shown
in Figure Bh. The data cube has product, location and time perspectives (or
data dimensions), and sales quantity and profit, for example, as the subjects
of analysis (or facts). There are several hierarchies on location perspective such
as {city,county,zone,country} and {city,state,country}. An instance of the data
cube is shown in Figure Bb.

46 G. Viswanathan and M. Schneider

The basic data that needs to be stored (and later analyzed) in the data
warehouse are values such as 1500 (of type int) for the profit in USD and
“Gainesville” (of type string) for the City name. These are called the base data
values of the dataset. The base data type for each value is indicated within paren-
thesis. According to their functionality, base data values can be either members
when used for analysis along data dimensions, or measures when used to quan-
tify factual data. Now we introduce the C? constructs and supporting OLAP
formulations.

Real-world data always has some form of symmetric and asymmetric nature
associated with its base data values. For e.g., all persons working in a University
can be employees (symmetric relationship). Employees could be students, faculty
or administrators (asymmetric relationship).

Definition 4. The first C in C3: Categorization. A categorization construct
defines groupings of base data values based on the similarity of data as: (C, A.)
where C is a category (collection of base values) and A is a set of analysis
functions that can be applied on the elements of C. The base data values can be
members or measures of the data warehouse.

The exact semantics of categorization relationships are defined in one of three
ways: arbitrary (for e.g., split 100 base values into 10 categories equally accord-
ing to some criteria), user-defined (for e.g., Gainesville, Chapel Hill and Madi-
son can be categorized as College Towns), or according to real-world behavior
(such as spatial grouping, for e.g., New Delhi, Berlin and Miami can be catego-
rized as Cities). Examples of A-set functions on such categories include string
concatenation, grouping (nesting) and the multiset constructor.

Ezample: In our case study, two examples of categories are City={(“Gainesville”,
“Orlando”, “Miami”)} and Profit={ (“1500, “10000, “45000”)} for the profit in
USD. These are of types string and int respectively.

Definition 5. Category, Category Type and CATEGORY. A category
of elements c € S;,S C BASE, is a grouping of base data values such that a
valid categorization relationship exists among the set of elements. A category
type, provides the multiset data types for each category. The set of all available
category types is defined as a kind CATEGORY.

Categories help us to construct higher levels of BigCube types, namely hierar-
chy, perspective and subject. Hierarchies are constructed using the containment
construct over the categories, and perspectives are defined as a combination of
hierarchies.

Definition 6. The second C in C?: Containment. The Containment con-
struct helps to define hierarchies in the data. These data hierarchies are modeled
as partially ordered sets (or posets) to use an extensible paradigm that supports
different kinds of ragged and unbalanced hierarchies. The containment construct

OLAP Formulations for Supporting Complex Spatial Objects 47

takes one or more data categories and builds a new partial ordering (data hierar-
chy) from it. These data hierarchies are part of the generalized lattice structure
that is established by the partial ordering of the constituent categories.

The containment construct is defined as a set inclusion from one level to
another as < P,Q,=, A >, where P and Q) represent the categories of data on
which =< holds. The containment construct is analogous to a single path between
two levels in a poset. The set of analysis functions that are applicable on a
particular containment are available in A. These functions can be applied which
moving from the elements of one category to another. This helps to uniquely
define operations on specific hierarchical paths in the perspectives of the cube.

The semantics of the containment construct is defined by: (i) any arbitrary con-
tainment, for e.g., fifteen base data values can be ordered into a four- level hier-
archy using the structure of a balanced binary tree, (ii) user-defined containment
: for e.g., products can be ordered into a hierarchy based on their selling price,
(iii) according to real-world behavior: these reflect the fact that a higher level
element is a context of the elements of the lower level, it offers constraint to the
lower level values, it evolves at a lower frequency than the lower level elements,
or that it contains the lower level elements. To define the multidimensional cube
space we now need to third C in C® which is the cubing or combination con-
struct. Before arriving at this, we first need to define the direct product of two
lattices.

Definition 7. Direct Product. The direct product P X Q of two posets P and
Q is the set of all pairs (x,y),x € P and yin@ such that (z1,y1) < (2,y2), iff
1 <o in P and y; <y in Q.

The direct product generates new ordered sets from existing posets. The direct
product Ly x Lo of two lattices Ly and Lg is a lattice with T := (z1,y1) A
(x2,y2) = (x1 Ax2,y1 Ay2) and L := (21,y1) V (22,y2) = (21 V2,91 Vye) for all
x1,y1 € L1, xa,y2 € Lo and (21, 1), (x2,y2) € L1 X La. The use of direct product
enables the creation of perspectives and subjects of analysis from a combination
of member and measure value lattices.

Definition 8. The third C in C?: Cubing or Combination. The Combi-
nation construct helps to map two semantically unique categories of data val-
ues by a set of analysis functions. Given two ordered sets of categories P and
Q, we define a order-preserving (monotone) mapping ¢ : P — Q such that
ifr <yin P = ¢(x) < p(y) in Q. Now, the combination construct is defined
as (P,Q, ¢, A), where A is the set of analysis functions that can be applied on
the combination relationship.

A collection of lattices are together taken as perspectives combine to determine
the cells of the BigCube, each containing one or more subjects of analysis. Se-
mantically, subjects of analysis are thus unique, in that they are functionally
determined by a set of perspectives, however, they are structurally similar to
perspectives in being a collection of lattices.

48 G. Viswanathan and M. Schneider

Definition 9. BigCube. Given a multidimensional dataset, the BigCube cell
structure is defined as an injective function from the n-dimensional space defined
by the Cartesian product of n functionally independent perspectives P (identi-
fied by its members) to a set of r subjects (identified by its measures) S and
quantifying the data for analysis as:

fB: (P1®P2®...®P,L)—>Si
wherei € {1,...r} A (S;,P) € BASE

The complete BigCube structure is now defined as a union of all its cells, given
as:

BigCube (B)= |) S

i€{1,...7}, 5

5 Spatial OLAP Formulations with the C® Constructs

In this section, we present OLAP formulations that help to apply analysis oper-
ations on data cubes with complex spatial data by using the C® constructs on
the BigCube model.

First, we analyze how data cubes can be easily designed and modeled using the
(3 constructs as follows. The basic, low-level data types are available in the kind
BASE. These include alphanumeric, time and geo-spatial data types. Elements
of these types are the base data values which are first organized into Categories
by using the categorization construct. This means that for e.g., “GNV” “LA”,
“MN” can be a category of cities. Analysis functions can be associated to the
domain of the categories. For e.g., we can define a union function that takes
the elements of cities and performs a union operation to yield a new polygon
(country). The geo construct operation allows to extract any face of the com-
plex region from the regH and construct a new region from it, for example, a
city (Gainesville) from the country (USA). This is done using three topological
operations interior, boundary and closure that remove possible anomalies such
as dangling points or lines in the structure of the region. The interior A° of a
region A is given by the set of points contained inside the region object. The
boundary 0A gives the set of points covering the object. Thus, A° U 0A gives
the closure A of A and this is used to construct the regH for the new spatial
object from the base segment lists.

The next step is to use the containment construct to define the hierarchical
nature of the elements within the categories. This allows for the creation of
explicit hierarchical paths between categories and the specification of analysis
operations on each of them on uniquely or as a whole. An e.g., of analysis being
using the containment construct is the often-used SUM aggregation operator on
Sales quantity defined from City to State level.

The final step is the creation of interacting lattice galaxies which is achieved by
using the combination construct. The combination construct maps the categories
in different hierarchies to others in the galaxy to create the data cube schema

OLAP Formulations for Supporting Complex Spatial Objects 49

(cells). Elements of the data cube (objects within the cells) are identified by
their defining cube perspectives.

We now provide examples of OLAP formulations that can applied on the
BigCube types and their instances thus defined.

Consider a BigCube Bwith n perspectives and i subjects of analysis. Let
ma1, ..., My be members from each of the n perspectives defining the set of mea-
sures bi,...,b;. Then, the restrict operator returns the cell value by following
the cubing from upto n perspectives of the BigCube as ({mq,...,my),b1,...,b;).
For example, the sales quantity of iphones in Gainesville region in March 2011
is given by ({ “iPhone”, “Gainesville”, “March2011”),50). The slice operation
removes one perspective and returns the resulting BigCube and dice performs
slice across two or more perspectives. The resulting cells have the structure
({my,...,mg),b1,...,b;, A), where 1 < k < n and A provides the set of aggre-
gation functions applicable on the measures of this subcube. These operations
change the state of the BigCube, because any change in perspectives redefines
the cells (measures) in it. Pivot rotates the perspectives for analysis across axes
and returns a BigCube with a different ordering of subjects. Roll-up performs
specialization transformation over one or more constituent hierarchical levels,
and drill-down applies the generalization transformation over one or more hi-
erarchical levels. Given members m1j,...,mgj, 1 < 7 < n denoting k levels of
ordering in each of the n perspectives, roll-up and drill-down operations yield a
different aggregated state of the cube, as, ((m1j,...,mgj),s1,...,si, A;), where
s; = fi(b1,...,b;), f € A. Drill-through obtains the base data values with highest
granularity. Drill-across combines several BigCubes in order to obtain aggregated
data across the common perspectives.

For spatial measures, spatial relationships can be given directly by checking
with the C? constructs and ordering in the poset. For example, to check for
containment of a region X in region Y, we check the containment construct on X
and Y. If (XY, <, A) exists with X <Y, then X is contained in Y. Similarly, the
largest area contained contained in one or more given areas X; is given by | x.
Dually, the smallest area containing one or more given areas Y} is given by Ty-.
In this manner, lattice ordering along with the categorization, containment and
cubing constructs provide a minimal set of formulations to create, manipulate
and query spatial data cubes in a user-friendly manner.

6 Conclusions and Future Work

In this paper, we present a novel modeling strategy to incorporate support for
complex spatial data in OLAP data cubes. First, we introduce a region-hierarchy
that helps to represent a complex region object (with several faces and multi-
ple holes) in a uniquely distinguishable manner. Then we present three new
constructs called C3, involving categorization, containment and cubing or com-
bination that together help to easily build data cubes in a multidimensional
environment. This provides a framework consisting of a user-friendly conceptual
cube model that abstracts over logical design details such as star or snowflake

50

G. Viswanathan and M. Schneider

schema and other implementation details. Later, new OLAP formulations are
specified for manipulating spatial data hierarchies (geo construct), and for query-
ing. Overall, this region-hierarchy provides a unique approach to include spatial
regions as first class citizens of data hierarchies in multidimensional data cubes.
In the future, we plan to provide the complete set of OLAP operations for ma-
nipulating and querying spatial data cubes, and to provide translations from
the hypercube to logical design (relational and multidimensional) to facilitate
implementation of the SOLAP system.

References

1.

10.

11.

12.

13.

14.

15.

Viswanathan, G., Schneider, M.: BigCube: A MetaModel for Managing Multidi-
mensional Data. In: Proceedings of the 19th Int. Conf. on Software Engineering
and Data Engineering (SEDE), pp. 237-242 (2010)

. Rivest, S., Bedard, Y., Marchand, P.: Toward Better Support for Spatial Deci-

sion Making: Defining the Characteristics of Spatial On-line Analytical Processing
(SOLAP). Geomatica-Ottawa 55(4), 539-555 (2001)

. Malinowski, E., Zimanyi, E.: Representing Spatiality in a Conceptual Multidimen-

sional Model. In: 12th ACM Int. workshop on Geographic Information Systems,
pp. 12-22. ACM, New York (2004)

. Ferri, F., Pourabbas, E., Rafanelli, M., Ricci, F.: Extending Geographic Databases

for a Query Language to Support Queries Involving Statistical Data. In: Int. Conf.
on Scientific and Statistical Database Management, pp. 220-230. IEEE, Los Alami-
tos (2002)

. Jensen, C., Kligys, A., Pedersen, T., Timko, I.: Multidimensional Data Modeling

for Location-based Services. The VLDB Journal 13(1), 1-21 (2004)

. Pedersen, T., Jensen, C., Dyreson, C.: A Foundation for Capturing and Querying

Complex Multidimensional Data. Information Systems 26(5), 383-423 (2001)

. Viswanathan, G., Schneider, M.: On the Requirements for User-Centric Spatial

Data Warehousing and SOLAP. Database Systems for Advanced Applications,
144-155 (2011)

. Malinowski, E., Zimdnyi, E.: Advanced Data Warehouse Design: From Conven-

tional to Spatial and Temporal Applications. Springer, Heidelberg (2008)

. Shekhar, S., Chawla, S.: Spatial Databases: A Tour. Prentice Hall, Englewood Cliffs

2003

E}utin)g, R., Schneider, M.: Realm-based Spatial Data Types: The ROSE algebra.
The VLDB Journal 4(2), 243-286 (1995)

Open GIS Consortium: Reference Model, http://openlayers.org| (accessed: April
11, 2010

Schneide)r, M., Behr, T.: Topological Relationships between Complex Spatial Ob-
jects. ACM Transactions on Database Systems (TODS) 31(1), 39-81 (2006)
Chen, T., Khan, A., Schneider, M., Viswanathan, G.: iBLOB: Complex object man-
agement in databases through intelligent binary large objects. In: Dearle, A., Zicari,
R.V. (eds.) ICOODB 2010. LNCS, vol. 6348, pp. 85-99. Springer, Heidelberg (2010)
Davey, B., Priestley, H.: Introduction to Lattices and Order. Cambridge University
Press, Cambridge (2002)

Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M.,
Pellow, F., Pirahesh, H.: Data cube: A Relational Aggregation Operator General-
izing Group-by, Cross-tab, and Sub-totals. Data Mining and Knowledge Discov-
ery 1(1), 29-53 (1997)

http://openlayers.org

Multidimensional Database Design from
Document-Centric XML Documents

Genevieve Pujollel, Franck Ravatl, Olivier Testez,
Ronan Tournierl, and Gilles Zurfluh'

! Université de Toulouse, Toulouse 1 Capitole
2 Toulouse 3 Paul Sabatier
IRIT (UMRS5505), Team SIG, 118 route de Narbonne, F-31062 Toulouse Cedex 9, France
{genevieve.pujolle, ravat, teste, tournier, zurfluh}t@irit. fr

Abstract. Despite a decade of research in OLAP systems, very few works
attempt to tackle the problem of analysing data extracted from XML text-rich
documents. These documents are loosely structured XML documents mainly
composed of text. This paper details conceptual design steps of multidimen-
sional databases from such documents. With the use of an adapted multidimen-
sional conceptual model, the design process allows the integration of data
extracted from text-rich XML documents within an adapted OLAP system.

1 Introduction

OLAP (On-Line Analytical Processing) systems allow decision-makers to improve
their management by consulting and analysing aggregated historical data with the use
of multidimensional databases [15]. These systems are based on a well-mastered
technique of numeric-centric data warehouses [30]. However, recent studies show that
only 20% of corporate information system data is compatible with this numeric-
centric approach [32]. The remaining 80%, namely “digital paperwork,” mainly com-
posed of text, stays out of reach of OLAP due to the lack of tools and adapted
processing. Nowadays, analysts require integrating these data along with numerical
business data.

This type of data does not have much structure. Recently, XML' technology has
increased the availability of documents (notably textual documents) within corporate
networks and provides a framework to structure textual data. However, despite nu-
merous research works on numerical XML data integration [26], current OLAP
systems do not cope with this data type. Due to the increasing amount of XML docu-
ments, integrating them into OLAP systems a new exciting challenge. In order to cope
with textual data type, new design processes have to be developed.

1.1 Related Works: Design Processes

To our knowledge, design processes have only been specified for decisional informa-
tion systems based on numerical data and not on textual data. These systems use

! XML, Extended Markup Language, from http: //www.w3 .org/XML/

A. Cuzzocrea and U. Dayal (Eds.): DaWaK 2011, LNCS 6862, pp. 51 2011.
© Springer-Verlag Berlin Heidelberg 2011

52 G. Pujolle et al.

conceptual models to represent the multidimensional data. These conceptual multidi-
mensional models describe schemas that represent analysis subjects as Facts (e.g. sale
quantities) and analysis axes as Dimensions (e.g. where the sales were done). Three
types of design processes have been considered.

Bottom-up approaches, are data-driven, i.e. multidimensional schemas are built
from the analysis the available data sources [4,10,14,18,29]. Data sources are taken
into account while analysis requirements are ignored. Notably in [4,10], the authors
build a multidimensional schema from the E/R schemas of the data sources. This ap-
proach takes advantage of the data sources’ semantics but, as the data source domain
may be broad, this may require a great deal of resources and time.

Top-down approaches are requirement-driven, i.e. multidimensional schemas are
derived from user requirements analysis [8,12,15,23,35]. For example, in [15] a gen-
eral methodology is presented whereas in [23], the authors present a design process
resting on UML notations. In these approaches, data sources are not taken into
account, thus it is possible to design inconsistent schemas, due to unavailable data.

Finally mixed approaches combine the advantages of both previous processes
[3,5,6,16,21,27]. User-requirements are translated into one (possibly more) “ideal”
multidimensional schema and the analysis of data sources produces “candidate” mul-
tidimensional schemas. A confrontation phase ensures compatibility between the
different schemas and allows designers to come up with a final schema.

However, all these processes have been conceived for models that rely on numeri-
cal analysis data. Moreover, identifying analysis indicators is hard in the context of
textual documents. Despite several works on XML data integration [7,26] and numer-
ous research on information extraction (see surveys such as [28,19]), these do not
solve issues linked to identifying indicators. Thus, there is a need for:

— adapted multidimensional models running analyses on textual data extracted from
XML documents;
— adesign process taking into account user requirements as well as data sources.

Our objective is to offer a complete design process, taking into account textual
content of XML documents in order to implement OLAP multidimensional databases.

1.2 Objectives and Contributions

Two types of XML documents exist [20]: data-centric documents are highly struc-
tured (e.g. the list of orders of an online sales Web service) and the order of the XML
elements is not important (e.g. whether the sales order 1 is before or after the number
2 has no consequence); document-centric documents are more loosely structured and
contain more text (e.g. press or scientific articles) and the order of the elements is
very important (e.g. whether the first paragraph of the document is after or before the
second paragraph has consequences). Using document-centric XML documents
(particularly text-rich ones) in OLAP environments requires a specific model [24]
that has no pre-defined analysis subjects (facts) as well as an adapted integration
process [25].

Multidimensional Database Design from Document-Centric XML Documents 53

The major objective of this paper is to detail the major steps of our design process
[25] to build OLAP systems from document-centric XML documents. More specifi-
cally, the paper focuses on the mixed design process taking into account the user
requirements as well as the available data sources.

The rest of this paper is organised as follows: section 2 presents the whole design
process; section 3 is centred on the analysis of the user requirements in order to gen-
erate the multidimensional conceptual schema; section 4 deals with the confrontation
phase between the obtained conceptual schema and the data sources; finally, section 5
details the implementation steps.

2 Overview of the Design Process

The design process is based on an interactive and incremental process in order to take
into account user-requirements evolution and data sources’ modifications. Each itera-
tion is based on a mixed approach: first user-requirements are translated into a multi-
dimensional database schema; second, the data sources are analysed in order to be
integrated within the multidimensional database according to a bottom-up approach.

The design process starts by a concurrent analysis of the user requirements ex-
pressed through a conceptual schema (see stage 1 in Fig. 1) and the data sources, i.e.
XML text-rich documents (see stage 2). A confrontation stage follows, ensuring com-
patibility between the data sources and the future multidimensional database—
described by the conceptual schema (stage 3). A synonym dictionary is used in order
to ease the process. Incompatibilities may then arise. They represent the missing or
incompatible data in the sources to allow loading the multidimensional database. In
case of incompatibility, either user requirements are revised (stage 4a) or data sources
are enriched (stage 4b). This process is iterated until no more incompatibilities arise.
Then, the structures of the multidimensional database are created (stage 5a) and
loaded with data extracted from the data sources (stage 5b).

The different stages of our design process have been identified in [25]. In this pa-
per, compared to our previous publication [25], we describe formally two of these
stages: the formal specification of the conceptual multidimensional schema from
user/analysis requirements (1) and its semi-automatic validation during the con-
frontation phase (3). A word is given on final implementation stages (5a,5b). We
mainly focused our attention on stages 1 and 3 for two main reasons: 1) the fact that
not only numerical data but also textual data may be used as analysis indicators re-
quires new means for specifying user-requirements. And 2) XML data structures re-
quire an adapted confrontation process. Note that due to lack of space, the source
analysis (2) will not be detailed.

The synonym dictionary is built from stages 1 and 2 of the design process. Its goal
is to associate a system identifier (id) to each entry of the dictionary (either a lone
term or a set of synonym terms). This id is used by the system during the automatic
stages. The dictionary content is filled with element names used in the user-
requirement analysis, in the multidimensional schema and by extracting available
element names in the XML document sources. Associated user entries help in solving
conflicts, e.g. by differentiating synonyms from homonyms.

54 G. Pujolle et al.

SOURCES ANALYSIS CONFRONTATION IMPLEMENTATION

r{ Adaptation of the conceptual schema @a) % Tranformation Rules
g €3 Create MDB
,,,,, i —)_‘% structures
O g Sy
===+ Conceptual multidimensional 5
User / Analysis ¥ Y, schema '4

requirements st =S nonymyl £ @j CONFRONTATION | .
____': _-]Jdictionary ----
XML Documents MDB*

L3
AY
Irli C " 7| Date sources
Analysis

La Sources enrichment @b

Fig. 1. General overview of the design process composed of 5 different stages

@ ures with data
Mapping & Tranformation
Rules Rules

*MDB = Multidimensional DataBase

ALITIGILVdINODNI

3 From User Requirement analysis to a Multidimensional Schema

The analysis of user-requirements allows the specification of a multidimensional da-
tabase with a conceptual schema that models the available structures for specifying
analyses (stage 1 in Fig. 1). Two steps compose this process: collecting user-
requirements and specifying the conceptual schema from these requirements.

3.1 Collecting Requirements and Building a Requirement Matrix

The objective of this step is to obtain the list of the attributes used for analyses and to
generate a conceptual multidimensional schema of the multidimensional database.
This phase is divided into: 1) collect user-requirements; 2) translate requirements into
typical analytical queries; 3) build the attribute list and, from that list, create a
requirement matrix in order to 4) identify attributes that will interact together.

User requirements are collected from: interviews that provide a first description of
typical analytical queries [33] (OLAP queries); the analysis of documents that are used
by the decision-makers; and questionnaires that provide valuable complementary
information on the domain of expertise.

Interviews and analysis of decision makers’ documents provide the information
necessary to write typical analytical queries expressed in a pseudo-query language. In
some complex cases user-requirements are translated into dimensional pivot tables
(left upper part of Fig. 2) for requirement validation [1,33]. Then, these tables are also
translated into the pseudo-language. A query q is of the form: “Analyse what analysis
subject (s) according to which analysis axes (a;...a,) for what data restrictions
(ry...r,)” (see examples in Fig. 2). The s is the analysis subject indicator, the a; are at-
tributes of analysis indicators and r; are SQL-like restrictions on an attribute (called r;
for simplicity). This phase aims at identifying the attributes.

Multidimensional Database Design from Document-Centric XML Documents 55

qi: Analyse the number of references according to the author

. . . i Inst1
names of the article and their institute and according to the CO.UNT Institute | ns
. . (Articles) [Author | Aul | Au2 | Au3

name of coqferlence; where the articles was published for au- [Gonferences
thors of the institute inst1. Dawak 3 2 1

. . DEXA 2 - -
q2: Analyse the content of articles according to the author CAISE 1 1 >
(name, team and institute or status) and according to the year [stiute="Inst1"

of publication of the article for article contents limited to sec- -
tion of the type introduction. a1 expressed through a pivot table

qs: Analyse the number of articles according to the name of
the author and according to the years of publication for publi- o
cations in a conference of international audience. q1=(s=Reference, a,=name_author, a=institute,

.) az=name_conference, r/=institute)
qa: Analyse the number of project reports according to the

authors and according to the month and year of publication of a; expressed formally
the report for reports of scientific type.

Fig. 2. Example of typical queries (note that g, is based on textual data analysis)

In each query g, each s, a; and r; is an attributes. An attribute list A is constructed from
all ge Q (the set of user-queries). The attributes are placed in a requirement matrix.

Definition. The requirement matrix M=A%A is a square binary matrix, with the list of
attributes in lines (future analysis subjects) and in columns (future analysis axes).

The matrix is built in three steps: 1) construction; 2) simplification; and 3) reordering.
For construction, for i (respectively j) an attribute in line i (resp. in column j), M is
defined such that:

— M(ij)=1 (i#) if 3 g=(s,a;...a,,r;...r,)eQ / (s=i and I a;€ (a;...a,) and g;=j). An
attribute in line i/ (an analysis subject indicator), is analysed according to an attrib-
ute in column j (an analysis axis);

— M(j)=1 (i=) if A g=(s,a;...a,.r;...r,)e Q| (A re(r;...r,) and r=i). An attribute is
used as a restriction;

— M(ij)=0 (Vi, Vj) in all other cases

M represents the interactions between attributes: more precisely, subjects (lines) and
analysis axes (columns) (see left part of Fig. 3). However, these attributes do not all
interact with one another, thus it is necessary to isolate attribute interaction groups.
This starts with a simplification: empty lines—attribute that are not used as subjects—
or empty columns—attributes that are not used as analysis axes— are removed. The
process is: For each line [, if Vj#l, M(l,j)=0, [is removed; For each column c, if Vi#c,
M(i,c)=0 ¢ is removed; In the removed lines, if M(l,c)=1 and I=c, then [(or c) was
only a restriction r; in Q. The information that / was associated with some s in some g
is kept and / is added to a set R.

This is followed by a line and column reordering for grouping the cells with “1”
around the diagonal of the matrix. The goal is to get the matrix as close as possible to
a block diagonal matrix: a diagonal matrix in which all diagonal elements are square
matrices of any size (even 1x1) and off-diagonal elements are 0. The solution is a re-
organised matrix (RM) composed of pseudo-blocks that are diagonal matrix blocks
that may partially overlap.

56 G. Pujolle et al.

Finding a solution to this problem is similar to solving the travelling salesman
problem. In order to offer an automatic solution, we used a genetic algorithm [9] (a
good technique for the salesman problem [22]). The algorithm uses chromosomes to
express the solution (the order of the lines and columns) and a fitness function that
maximises the number of pseudo-blocks while minimising the overlap between these
blocks. The algorithm runs with a population of a few thousands individuals over ap-
proximately 500 generations. For the moment, only crossover (of 80%) without mu-
tations is performed. In the end, the pseudo-blocks represent attributes that interact
together during analyses with an eventual share of attributes with another interaction
group. In the right part of Fig. 3, two groups have been identified: the analysis of sci-
entific publications (light gray/yellow) and the analysis of reports (dark grey/
green). The shared part is the grey/red column headers. This part indicates that some
information is shared between the two groups (here authors and dates).

2 attributes that are

common to both groups
8 group: 7
3 g - ———
o 5] £ o After Sorting
= HEEHEEEMEE e | g overl
58|82 S
AttributeNames | o | E 3| 2|E £(S|8|5|2 RM ® B verlap
ele MELE AN = 8 3
§|E|lolelS]l gl AR N PR] S| 8|« =
A HEEENNENEEE . 5|2(E|le|8|8
g|&|l=|8|2|5|5|8|S|3|S|E(8|8 Attribute Names | Z | E|S|£|9| £
rlo|l<|a|Elz|2]|> [~ | F|ha[-]|= 13812 g2
AR £ 4D N <
Content_Article 1 1 11 S E|2|E|S|E|glE
Atticle 1 1 2l12lalel2| 2L | 8)s
Report 1 1 Refenreces 1)1 1 W 3 é‘
I'\r:shtuleAJ::thm 1 Content_Article 1] (11 3 o
ame_Author Article ASIE g8
Name_Conference L_lL_JLu =
Report 1
Year
Type_Section 1
Audience_Conference 1 9 2 groups of attributes that do —
Type_Report 1 C o not interact between them
Status_Author = I
Team. Author @ . ([Institute Author 1
3 € & J [Type_sect 1
Month € o [Type Section
35 £ [Type Report 1
8 Audience_Conference 1

Fig. 3. Left: the requirement matrix (M); right: the same matrix reorganised (RM) with two
groups identified and in grey the columns and the lines ignored during the reorganisation. Also,
associated to R, (r=type_section, s=content), from g, and (r=type_report, s=report) from q,.

Note that, although in our simple example, there is a complete disjunction between
analysis subjects and analysis axes; it is not always the case in real-life examples.

The output of the algorithm is the set R and the reorganised matrix RM. This
information will allow the design of a galaxy schema described hereafter.

3.2 Multidimensional Model for Documents: A Galaxy

For specifying analyses on text-rich XML documents (document-centric XML docu-
ments), there is a need for a model that: 1) represents text-rich document specificities;
and 2) eases conceptual representation of the multidimensional structures while
avoiding to provide limitations of predefined solutions to the user. To answer these
requirements we have previously defined a specific model named Galaxy [24].

The galaxy is based on: 1) a unique dimension concept that represents an analysis
axis, but also a possible analysis subject; and 2) groupings of these dimensions to
show their compatibility for analysis specification. The model also allows linking

Multidimensional Database Design from Document-Centric XML Documents 57

attributes together (e.g. references of an article are articles themselves thus authors of
cited articles may be used combined with authors of citing articles). Due to lack of
space, this will not be detailed (consult [24,25] for more details).This model has the
advantage of generalising all traditional models based on facts and dimensions (see
[31] for a survey). In the galaxy model, the fact (subject of analysis) is not predefined
but will be specified when querying as it will be one of the dimensions.

Definition: A Galaxy G = (D°, Star®, Lk®) where
- D= {Dy,..., D,} is a set of dimensions,
= Star®:D, — 2% is a function that associates each dimension D; to its linked di-

mensions D;e D (D#D;). This expression models nodes c, (or cliques?) that may
be expressed through: {D,;,...,D,,} SD | Vije[c;..c,), i#j, 3 Di—2"e Star®. This
represents dimensions compatible within a same analysis.?

— Lk°={g,, g5...} is a set of functions associating some attribute instances together
(see [24] for more details).

A dimension is composed attributes, representing graduations of an analysis axis.

Definition: A dimension D=(A", H”, I”, IStar”) where:

- AP = {aDI,..., aD,} is a set of attributes,

— H?={H",,..., H"} is a set of hierarchies,

- P= {iDI,..., iD,} is a set of dimension instances. Each attribute has a value for
each instance a” u(iD), called an attribute instance.

— IStar® = {IStar/D, IStarzD...} is set of functions IStar” 11”7 — (1 Dy) X... X (1 D,)*,

each associating the instances of the D dimension to the instances of other linked
dimensions through Star® (Vke[l..n], Die DO, D;#D and D,e StarG(D), i.e. Dy is
associated/linked to D).?

The attributes are hierarchically organised in the dimensions. Two types of attributes
exist: parameters (a graduation of the analysis axis) and weak attributes
(complementary data to the graduation—the parameter).

Definition: A hierarchy noted H”; or H= (Param", Weak) where:

— Param’ = <pH Ioeens pan> is an ordered set of attributes, called parameters, which
represent the levels of granularity of the dimension, Vke[l..n,], peA” and
PHI =d’;;

— Weak" : Param™ — 2"~ " is an application possibly associating weak attrib-
utes to parameters, completing the parameter semantic.

To ease the understanding of this model, we provide an associated graphic
formalism [24] (inspired by [10]).

Example. In Fig. 4 a decision maker wishes to analyse the performance of research
institutes. Two dimension groups (cliques) represent those which are compatible

2 The notation (/)" represents a finite set of elements of /.

58 G. Pujolle et al.

during a same analysis. The decision maker analyses scientific articles published at a
certain date, in a certain conference (or journal) by authors; but he also analyses pro-
ject reports published by authors at a certain date. In this example, each analysis axis
and each potential analysis subject is represented with dimensions. For example:
DAVTHORS _ (AAUTHORS_ ¢ A ythor, Team, Institute, Status}, HAVTHORS={HA HSt}...)

Acceptance Rate —— — — Weak Attributes . . Title Sec
Dimension pe P: T

ARTICLES

AUTHORS

Pt

o
Team Institute
Name Name

,,,,,, Dimension

Nodes designate groups
of dimensions that are
Compatible for a same
analysis (clique)

Parametel
Author) ’

Name Weak Attribute

Fig. 4. The analysis of scientific articles and research reports modeled with a galaxy schema

3.3 Translating Requirements into a Multidimensional Schema

The galaxy schema will be designed from the matrix. Recall that user-requirements,
specified by decision makers, are available through a cleaned and reorganised matrix
(Fig. 3). From this matrix, the following process defines the elements of the galaxy
schema: DG, StarG, for each De D¢ AD, H" and for each He H”: Param" and Weak".

The design process of a galaxy schema from a requirement matrix follows 7 steps.
Each step will be illustrated through an example given from Fig. 3; our objective
being the construction of the galaxy in Fig. 4.

Step 1: determine useful attributes. List the line and column attributes. Add to the
column attributes the set R.
Example. In our example:

— Line attributes: References, Content_Article, Article, Report;

— Column Attributes: Institute_Author, = Name_Conference, Status_Author,
Team_Author, Audience_Conference, Name_Author, Year, Month, Type_Section,
Type_Report.

Step 2: Determining dimensions from column attributes. A dimension is specified
as a grouping of column attributes. The dimension name is chosen to be fully
representative of the concept described by its attributes. Attributes are manually
grouped based on domain concept knowledge. Attributes in R are grouped with the
help of the s associated attribute.

Example. Attribute grouping generates the A sets of each De D

— A™E. Month, Year,

— AAUTHORS, Institute_Author, Status_Author, Name_Author, Team_Author;

— ACOVERENCES. Nyme_Conferences, Audience_Conference;

Multidimensional Database Design from Document-Centric XML Documents 59

_ AARTICLES, Type_Section;
_ ARepoRTS, Type_Report.

Step 3: Determining dimensions from line attributes. Each line attribute that is not
already associated to a dimension is added either to an existing dimension of a new
dimension. The following constraint is applied: a line attribute that has a 1 with a
column attribute cannot be grouped in the same dimension as the latter. Indeed, the 1
means that the line attribute is an analysis subject for the analysis axis (the dimension)
represented by the column attribute. They both cannot describe the same dimension.
Formally: a; in line i is added to D provided that: 7g¢€ AP (#i) / M(ij) = 1. This
constraint can be processed automatically.

Example. In our example, the following additions to dimensions are done:

— AT Content_Article, Article, References;
_ AREPORTS: Report.

Step 4: Determining dimension hierarchies. The specification of dimension
hierarchies is manually done, based on domain knowledge and source analysis.
Functional dependencies such as one-to-many relationships in the data sources, i.e.
cardinalities [1..*]—[1..1] between attributes a; and a,, provide valuable information
on how to hierarchically organise data, in this case, Param" = <a 1, a>>. Moreover, the
tree-like structure of source XML documents can also be used to put in light
hierarchies. Missing values are systematically handled by a generic “undefined”
value. Any attribute used for grouping (in the a; statements in Q) is placed in Param"
sets, all others are placed in the Weak” sets and associated to the corresponding p; in
the Param™ set (e.g. in HTime, Month—s 2"""-Nemey,
Example. In our example:
— Domain knowledge allows the definition of: Param = <Date,Month,Year>;
— The tree-like DTD structure of the XML documents (scientific articles) shows the
following hierarchy: Param™"™™ = <Section,Document> (the new parameter
Document will probably replace Content_Article and Article attributes, see step 7)

HTIme

Step 5: Enrich dimensions. The designer, depending on his/her domain knowledge
expertise and of the source analysis, can complement the schema by adding other
attributes. The source analysis may provide new attributes previously unthought-of.
The new attributes are either inserted in existing hierarchies or in new ones.

Example. In our example, a Paragraph attribute will be added to the ARTICLES Di-
mension: Param™ "™ = <Paragraph,Section,Document>; In the CONFERENCES di-
mension will be enriched by the Accept_Rate attribute (that appears in the DTD of the
articles in the document sources). The corresponding level is the “conference” level,
Weak"“: Conference—s2"""-R",

Step 6: Determining the interactions between the dimensions. The requirement
matrix shows blocks and pseudo-blocks of attributes. Each block determines a clique:
¢; (i.e. the possible interaction between the attributes. Each attribute being associated
to a dimension, interactions between the dimensions may be automatically determined
and thus the functions Star® may be specified.

60 G. Pujolle et al.

Example. In our example, 2 attribute blocks determine 2 dimension interaction
groups

— Scientific article analysis: D*/"0% | DARTICHES | YEONFERENCES g TIME,

— Reports analysis: D%, DAV and D™,

Step 7: Merging common parts and final adjustments. In this step, redundant
attributes are removed or replaced, dimensions are eventually shared between cliques
and the final schema is obtained. These adjustments are incorporated into the
synonym dictionary, thus enriching the synonym sets.

Example. In our example:

— Report authors and article authors happen to have the same available information
in the sources, thus both D*“"*® dimensions will be fused;

— For similar reasons, the D™~ dimensions will be fused;

— The attributes of D**""*; Content_Article and Article will be replaced by the more
detailed ones found in phase 4: Paragraph, Section and Document.

Finally, the galaxy schema is obtained (see Fig. 4).

4 Confrontation

The galaxy schema represents only user-requirements. Thus the galaxy has to be vali-
dated with the data sources (stage 3 of our design process, see Fig. 1). The goal of this
stage is to ensure that the multidimensional structures represented by the galaxy
schema will be loaded with compatible data from the data sources. As this is a tedious
and critical task we offer a semi-automatic process.

This process converts the galaxy schema into XML document structure (DTD). This
structure eases the comparison with the source documents. These latter are supposed to
be uniform and are also represented by a DTD. The DTD comparison generates a set of
mapping rules that will transform the XML elements of the document source DTD into
elements of the Galaxy DTD (see Fig. 5). A mapping rule is a link between a source ele-
ment and a galaxy attribute: an XPath expression [34] designates the elements in the data
sources and a database column name designates the galaxy attribute.

— Preparing the multidimensional database : Confrontation

GALAXY Transformation rules Galaxy Document Model (DTD)

Galaxy -> XML

Generate XML
structure

Fig. 5. Details of the confrontation phase

Multidimensional Database Design from Document-Centric XML Documents 61

In a first step, the galaxy schema is converted into a DTD. Formally, for a galaxy
G there exists a set (named C°) composed of i cliques (noted c;). All dimensions of a
clique ¢; are represented by D, D“cDC. The following algorithm is used to generate
a DTD for each clique of the galaxy:

For each c, in ¢ Do
Create new DTD Galaxy G_ci;
Create new Element Galaxy G root ci;
Append Element Galaxy G root ci to DTD Galaxy G;
For each Di in Dci Do
Create new Element Dim Di;
Append Element Dim Di to Element Galaxy G _root_cij;
For each H, in H” Do
Element attribute previous = Element Dim Di;
For each p, in Param” Do
Create new Element_Attribute_pi;
Append Element Attribute pi to Element Attribute previous;
Element_Attribute_ previous := Element_ Attribute_pi;
For each wa, in Weak™ and wa, associated to p, Do
Create new Element Attribute_wai;
Append Element Attribute wai to Element Attribute previous;
End_For;
End_For;
End_For;
End_For;
End_For;

In this algorithm, the functions “Create new element...” create an XML element
that represent one of the four corresponding conceptual element of the galaxy: a cli-
que (the root of the generated DTD), a dimension, a parameter or a weak attribute.
This XML element is composed of an XML attribute Id (the system identifier taken
from the dictionary) and possibly other sub elements inserted by the algorithm. More
specifically, an XML element that represents an attribute of the galaxy (“Ele-
ment_Attribute_...”") is composed of an identifier and a Content element (that contains
the attribute data (PCDATA in XML DTD terminology) as well as child elements that
represent other elements of the galaxy.

The confrontation step proceeds by associating elements of the source DTD, the
DTD of the XML document sources and the destination DTD, the DTD that
represents the galaxy. This process is semi-automatic and done by comparing the
XML element names and with the help of the system identifiers from the dictionary.
In ambiguous cases, the designer takes the final decision in associating source and
destination elements (i.e. the XML tags) using suggestions made by the system.

Although the data source analysis is out of the scope of this paper, a few relevant
features should be mentioned. To limit conflicts a pre-processing step is done on each
XML document source. This step enriches the dictionary. For example, the INEX
scientific journal collection [13] uses the tags <sec> for sections and <p> for para-
graphs whereas the galaxy uses <section> and <paragraph>. Only XML elements are
considered: attributes are either dropped or converted into sub-elements if source
structure transformation can be considered. XML REF links are either ignored to
avoid cycles or, if source modification is possible, replaced by the XML elements the
REF points to. Elements need not necessarily be hierarchically organized in the
sources: elements laid out flat can also be handled if cardinalities implied by the

62 G. Pujolle et al.

galaxy hierarchies are respected—e.g. elements author and institute can be laid out
flat but there should only be one institute for each group of authors.

During the confrontation, other more complex incompatibilities may arise. The de-
signer, either 1) modifies the user-requirements (the analysis objectives) implying a
change in the galaxy schema; or 2) enriches the data sources with complementary data
or documents (see stages 4a and 4b in Fig. 1). More details are provided in [25].

The entire process is iterated until no more errors arise and all the destination elements
are linked, i.e. all elements of the galaxy—structures of the multidimensional database—
have a data source element linked. Thus the implementation of the multidimensional
database can be considered.

S Multidimensional Database Implementation

Implementing the multidimensional database is possible once the galaxy schema is
compatible with the data sources (stages 5a and 5b of Fig. 1). This is done with an
automatic process according to two steps. This process is based on two sets of conver-
sion rules. First, multidimensional database structures are generated from the galaxy
schema (step 1 in Fig. 6). Second, data extracted from XML document sources is
loaded within the structures of the multidimensional database (step 2 in Fig. 6).

During the first step, the galaxy schema is implemented with the use of conversion
rules within an R—-OLAP architecture (Relational-OLAP [15]), the most used OLAP
implementation. Every dimension is converted into a relation (a table) and cliques are
implemented through foreign keys. In the second step, correspondence rules, generated
during the confrontation, are used to extract and transform the source XML document
data. The conversion rules allow XML data to be compatible with the ROLAP structures
previously created: character strings that hold numerical values are converted into nu-
merical types before being inserted into the database tables. This may be done with a
Model Driven Architecture (MDA) based process such as the one presented in [2].

Data loading is done with XQuery queries [34]. The queries assemble the XPath
expressions of the mapping rules generated in the confrontation stage. The expres-
sions are assembled in for and let expressions depending on the data source struc-
ture and cardinalities in the galaxy structure. Note that incompatible cases have been
processed in the previous phase. Loading into the R-OLAP tables is done with
SQL/XML instructions that use the generated XQuery expressions [17].

—1 Implementation of the multidimensional database: ETL Processing }—————————

GALAXY n
m_% Generate multi- o
e %E,& dimensional structures

Mapping rules Transformation rules
Galaxy -> ROLAP
- _ MDB*

Transformation rules
XML documents l XML -> ROLAP
||| Extract Transform Load data within
data data structrues

* MDB = Multidimensional DataBase

Fig. 6. Implementation of the structure (1) and the content (2) of the multidimensional database

Multidimensional Database Design from Document-Centric XML Documents 63

6 Conclusion and Future Works

In order to get closer to the integration of a 100% of decisional data into OLAP sys-
tems we have specified a design process to implement OLAP systems loaded with
text-rich XML document data. The method associates a galaxy model [24] to an
adapted design process. Compared to existing multidimensional models, the galaxy
model is used for the following advantages: 1) it is based on the unique dimension
concept; 2) it takes into account document specificities (structure described with
XML tags and textual content); 3) it provides document analysis perspectives that are
not limited to predefined indicators; and 4) it generalises actual multidimensional
models.

The design process has the advantage of taking into account simultaneously user
requirements and the available data sources: 1) user requirements are expressed
through typical analysis queries that are then translated into a galaxy schema; while 2)
the data sources (documents) are analysed. Our mixed approach has the advantage to
ease the implementation by using a semi-automatic confrontation stage: the elements
of the galaxy schema are associated to elements in the XML document sources, using
a pivot model (XML DTDs). Conflicts that may arise are solved through an iterative
process. The third stage generates mapping rules that are used to during a fourth step
to implement the multidimensional database schema, whose structure is directly de-
rived from the galaxy schema. A CASE tool [25] (not detailed in this paper) com-
pletes the design process by assisting the user during the different design steps. The
tool is a java graphical client linked to an Oracle 11g database running XMLDB. The
process is done using Oracle SQL/XML structures and queries [17].

Among future works, we consider associating the design process to a formal speci-
fication of data source analysis for the integration of XML document sources that
have several heterogeneous structures and reuse research from the data integration
community [28,19]. I.e. XML documents with missing elements or elements de-
scribed in several different formats. Moreover, a module is being currently imple-
mented to allow the system to suggest to the user the possible associations between
elements of the DTD that represents the XML document sources and the elements of
the galaxy schema. This module uses the synonym dictionary.

References

1. Annoni, E., Ravat, F., Teste, O., Zurfluh, G.: Towards Multidimensional Requirement
Design. In: Tjoa, A.M., Trujillo, J. (eds.) DaWaK 2006. LNCS, vol. 4081, pp. 75-84.
Springer, Heidelberg (2006)

2. Atigui, F., Ravat, F., Tournier, R., Zurfluh, G.: A Unified Model Driven Methodology for
Data Warehouses and ETL design. In: 13th Intl. Conf. on Enterprise Information Systems,
ICEIS (to appear, 2011)

3. Bonifati, A., Cattaneo, F., Ceri, S., Fuggetta, A., Paraboschi, S.: Designing data marts for
data Warehouses. ACM Trans. Softw. Eng. Methodol. 10(4), 452-483 (2001)

4. Cabibbo, L., Torlone, R.: A Logical Approach to Multidimensional Databases. In: Schek,
H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS, vol. 1377, pp. 183-197.
Springer, Heidelberg (1998)

64

~

o

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

G. Pujolle et al.

. Carneiro, L., Brayner, A.: X-META: A methodology for data warehouse design with

metadata management. In: 4th Intl. Workshop Design and Management of Data Ware-
houses (DMDW). CEUR Workshop Proceedings (CEUR-WS.org), vol. 58, pp. 13-22
(2002)

Cavero, J.M., Piattini, M., Marcos, E.: MIDEA: A Multidimensional Data Warehouse Me-
thodology. In: 3rd Intl. Conf. on Enterprise Information Systems (ICEIS 2001), vol. 1, pp.
138-144. INSTICC Press (2001)

Draper, D., Halevy, A.Y., Weld, D.S.: The Nimble XML Data Integration System. In:
Proc. of the 17th Intl. Conf. on Data Engineering (ICDE), pp. 155-160. IEEE Comp. So-
ciety, Los Alamitos (2001)

Giorgini, P., Rizzi, S., Garzetti, M.: Goal-oriented requirement analysis for datawarehouse
design. In: Proc. of 8th Int. Workshop on Data Warehousing and OLAP (DOLAP), pp. 47—
56. ACM Press, New York (2005)

Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addi-
son-Wesley Longman Publishing Co., Amsterdam (1989)

Golfarelli, M., Rizzi, S.: Methodological Framework for Data Warehouse Design. In:
ACM 1st Intl. Workshop on Data Warehousing and OLAP (DOLAP), pp. 3-9. ACM
Press, New York (1998)

Gyssens, M., Lakshmanan, L.V.S.: A Foundation for Multi-dimensional Databases. In:
23rd Intl. Conf. on Very Large Data Bases (VLDB), pp. 106—-115. Morgan Kaufmann, San
Francisco (1997)

Hiisemann, B., Lechtenborger, J., Vossen, G.: Conceptual data warehouse modeling. In:
Proc. of 2nd Int. Workshop on Design and Management of Data Warehouses (DMDW).
CEUR Workshop Proceedings (CEUR-WS.org), vol. 28, p. 6 (2000)

INEX, INitiative for the Evaluation of XML Retrieval (INEX), XML document collection
used until 2005 (2005), http://inex.is.informatik.uni-duisburg.de/
Jensen, M.R., Holmgren, T., Pedersen, T.B.: Discovering Multidimensional Structure in
Relational Data. In: Kambayashi, Y., Mohania, M., W68, W. (eds.) DaWaK 2004. LNCS,
vol. 3181, pp. 138-148. Springer, Heidelberg (2004)

Kimball, R.: The data warehouse toolkit. John Wiley and Sons, Chichester (1996); 2nd
edn. (2003)

Lujan-Mora, S., Trujillo, J.: A Comprehensive Method for Data Warehouse Design. In: Sth
Intl. Workshop on Design and Management of Data Warehouses (DMDW 2003). CEUR
Workshop Proceedings (CEUR-WS.org), vol. 77 (2003)

Melton, J., Buxton, S.: Querying XML, XQuery, XPath and SQL/XML in context. Elsevi-
er, Morgan Kaufman (2006)

Moody, D., Kortink, M.: From enterprise models to dimensional models: a methodology
for data warehouse and data mart design. In: Proc. of 2nd Int. Workshop on Design and
Management of Data Warehouses (DMDW). CEUR Workshop Proceedings (CEUR-
WS.org), vol. 28, p. 5 (2000)

Noy, N.F.: Semantic integration: a survey of ontology-based approaches. SIGMOD
Record 33(4), 65-70 (2004)

Pérez, .M., Berlanga, R., Aramburu, M.J., Pedersen, T.B.: Integrating Data Warehouses
with Web Data: A Survey. IEEE Trans. on Knowledge and Data Engineering
(TKDE) 20(7), 940-955 (2008)

Phipps, C., Davis, K.C.: Automating data warehouse conceptual schema design and evalu-
ation. In: 4th Intl. Workshop on Design and Management of Data Warehouses (DMDW).
CEUR Workshop Proceedings (CEUR-WS., vol. 58, pp. 23-32 (2002)

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

Multidimensional Database Design from Document-Centric XML Documents 65

Potvin, J.-Y.: Genetic algorithms for the traveling salesman problem. Annals of Operations
Research 63(3), 337-370 (1996)

Prat, N., Akoka, J., Comyn-Wattiau, I.. A UML-based data warehouse design method.
Decision Support System 42(3), 1449-1473 (2006)

Ravat, F., Teste, O., Tournier, R., Zurlfluh, G.: A Conceptual Model for Multidimensional
Analysis of Documents. In: Parent, C., Schewe, K.-D., Storey, V.C., Thalheim, B. (eds.)
ER 2007. LNCS, vol. 4801, pp. 550-565. Springer, Heidelberg (2007)

Ravat, F., Teste, O., Tournier, R., Zurfluh, G.: Designing and Implementing OLAP Sys-
tems from XML Documents. In: Submitted to Annals of Information Systems (AolS),
Special Issue on New Trends in Data Warehousing and Data Analysis. Springer, Heidel-
berg

Ravat, F., Teste, O., Tournier, R., Zurfluh, G.: Finding an Application-Appropriate Model
for XML Data Warehouses. Information Systems (IS) 36(6), 662—-687 (2010)

Romero, O., Abello, A.: A framework for multidimensional design of data warehouses
from ontologies. J. Data & Knowledge Engineering 69(11), 1138-1157 (2010)

Sarawagi, S.: Information Extraction. Foundations and Trends in Databases 1(3), 261-377
(2008)

Song, I.-Y., Khare, R., Dai, B.: SAMSTAR: a semi-automated lexical method for generat-
ing STAR schemas from an ER diagram. In: Proc. of the 10th Int. Workshop on Data Wa-
rehousing and OLAP (DOLAP), pp. 9-16. ACM Press, New York (2007)

Sullivan, D.: Document Warehousing and Text Mining. Wiley John & Sons, West Sussex
(2001)

Torlone, R.: « Conceptual Multidimensional Models ». In: Rafanelli, M. (ed.) Multidimen-
sional Databases: Problems and Solutions, ch. 3, pp. 69-90. Idea Publishing Group, IGP
(2003)

Tseng, F.S.C., Chou, A.Y.H.: The concept of document warehousing for multi-
dimensional modeling of textual-based business intelligence. J. of Decision Support Sys-
tems (DSS) 42(2), 727-744 (2006)

Tsois, A., Karayannidis, N., Sellis, T.: MAC: Conceptual Data Modelling for OLAP. In:
3rd Intl. Workshop on Design and Management of Data Warehouses (DMDW). CEUR
Worshop Proceedings, WS-CEUR.org, vol. 39, p. 5 (2001)

W3C XQuery, « XQuery 1.0 and XPath 2.0 Formal Semantics », recommandation du
W3C (January 23, 2007), http://www.w3 .0org/TR/xquery-semantics/

Winter, R., Strauch, B.: A method for demand-driven information requirements analysis in
DW projects. In: Proc. of 36th Annual Hawaii Int. Conf. on System Sciences, pp. 231-239.
IEEE Comp. Society, Los Alamitos (2003)

Modern Software Engineering Methodologies
Meet Data Warehouse Design: 4WD

Matteo Golfarelli, Stefano Rizzi, and Elisa Turricchia

DEIS, University of Bologna, Italy

Abstract. Data warehouse systems are characterized by a long and ex-
pensive development process that hardly meets the ambitious require-
ments of today’s market. This suggests that some further investiga-
tion on the methodological issues related to data warehouse design is
necessary, aimed at improving the development process from different
points of view. In this paper we analyze the potential advantages arising
from the application of modern software engineering methodologies to
a data warehouse project and we propose 4WD, a design methodology
that couples the main principles emerging from these methodologies to
the peculiarities of data warehouse projects. The principles underlying
4WD are risk-based iteration, evolutionary and incremental prototyping,
user involvement, component reuse, formal and light documentation, and
automated schema transformation.

Keywords: Data warehouse; Design methodologies; Agile development.

1 Introduction

The continuous market evolution and the increasing competition among compa-
nies solicit organizations to improve their ability to foresee customer demand and
create new business opportunities. In this direction, over the last decade, data
warehouses have become an essential element for strategic analyses. However,
data warehouse systems are characterized by a long and expensive development
process that hardly meets the ambitious requirements of today’s market. This
is one of the main causes behind the low penetration of data warehouse systems
in small-medium firms, and even behind the failure of whole projects [20].

As a matter of fact, data warehouse projects often leave both customers and
developers dissatisfied. The main reasons for low customers’ satisfaction are the
long delay in delivering a working system and the large number of missing or
inadequate (functional and non-functional) requirements. As to developers, they
complain that —mainly due to uncertain requirements— it is overly difficult
to accurately predict the resources to be allocated to data warehouse projects,
which leads to gross errors in estimating design times and costs. In the light of
the above, we believe that the methodological issues related to data warehouse
design deserve some further investigation aimed at improving the development
process from different points of view, such as efficiency and predictability.

A. Cuzzocrea and U. Dayal (Eds.): DaWaK 2011, LNCS 6862, pp. 66 2011.
© Springer-Verlag Berlin Heidelberg 2011

Modern Software Engineering Methodologies 67

uncertain & changing inadequat 4
requirements inadequate system

long project &

linear approach to design i elfveres

design complexity unreliable estimates

problems complaints

Fig. 1. Cause-effect relationships in customer and developer dissatisfaction

The available literature on data warehouse design mainly focuses on tradi-
tional, linear approaches such as the waterfall approach, and it appears to be
only loosely related to the sophisticated design methodologies that have been
emerging in the software engineering community. Though some works about ag-
ile data warehousing have appeared [12], there are also evidences that applying
an agile approach tout court to data warehouse design has several risks, such
as that of inappropriately narrowing the data warehouse scope [2]. In this pa-
per we analyze the potential advantages arising from the application of modern
software engineering methodologies to a data warehouse project and we pro-
pose Four-Wheel-Drive (4WD), a design methodology that aims at coupling the
main principles emerging from these methodologies to the peculiarities of data
warehouse projects.

Our modus operandi for this work is the following. First we identify the main
problems behind data warehouse projects based on traditional methodologies,
and we define our goals accordingly in terms of desired qualities of the software
development process (Section [2). Then, from an analysis of the main software
engineering methodologies we derive a set of design principles to be adopted in
order to achieve the quality goals (Section B]). Then we apply these principles to
build up our methodological proposal, inspired by practical evidences emerged
during real data warehouse projects (Section). Section [B] completes the paper
by discussing our proposal in the light of the related works.

2 From Problems to Goals

Our experience with real projects led us to attempt a classification of the main
reasons why customers (meant as both sponsors and users) and developers often
end up with being dissatisfied. Figure [[l summarizes the results of this investi-
gation, distinguishing between problems, complaints, and their human impact,
and emphasizing the existing cause-effect relationships between them. A closer
glance at the problems column reveals that:

— Requirements for data analyses are often unclear and uncertain, mainly be-
cause decision processes are flexibly structured and poorly shared across

68

M. Golfarelli, S. Rizzi, and E. Turricchia

large organizations, but also because of a difficult communication between
users and analysts. Besides, the fast evolution of the business conditions may
cause requirements to drastically change even in the short-term [5]. Failing
to address these problems dramatically contributes to making users perceive
the system as inadequate from the functional point of view and leads to
inflating the overall project duration and cost by introducing unexpected
delays in the development process.

Data warehouses are normally built one data mart at a time; each data
mart is developed following a linear approach, which means that the differ-
ent phases are organized into a rigid sequence. Releasing a data mart re-
quires 4-6 months, and it is very difficult to provide intermediate deliveries
to be discussed and validated with users, who may easily feel not sufficiently
involved and understood, and loose interest in the project.

The intrinsic complexity of data warehouse design depends on several issues.
Among the most influential ones, we mention a couple: data warehouse design
leans on data integration, that in most cases is a hard problem; the huge data
volume and the workload unpredictability make performance optimization
hard. Problems related to data quality and performances have a particularly
negative impact on the perceived system inadequacy.

We argue that these problems can be solved by working on four qualities of the
software development process [4], as explained below.

1.

3

The reliability of a development process is the probability that the delivered
system completely and accurately meets user requirements. In our context,
increasing the reliability of the design process can contribute to address-
ing the “inadequate system” complaint, i.e., to ensuring a high-quality and
satisfactory final system.

. By robustness we mean the process flexibility, i.e., its capability of quickly

and smoothly reacting to unanticipated changes in the environment. A ro-
bust process can more effectively accommodate both uncertain and changing
requirements.

The process productivity measures how efficiently it uses the resources as-
signed to the project to speed up system delivery. Increasing productivity
leads to shorter and cheaper projects.

The timeliness of a process is related to how accurately the times and costs
for development can be predicted and respected. A timely process makes
resource estimates more reliable.

From Goals to Principles

To understand how the main software engineering methodologies devised in the
last thirty years can help designers achieve our four quality goals, we analyzed
the objectives and underlying principles of seven methodologies, namely Wa-
terfall [21], Rapid Application Development [15], Prototyping-Oriented Software
Development [18], Spiral Software Development [3], Model-Driven Architecture

Modern Software Engineering Methodologies 69

[13], Component-Based Software Engineering [11], and Agile Software Develop-
ment [I]. Overall, the emerging methodological principles can be condensed as
follows:

— Incrementality and risk-based iteration. Developing and releasing the system
in increments leads to a better management of the project risks, thanks
to a proper prioritization of activities aimed at letting the most critical
requirement features drive the design of the skeleton architecture. A stepwise
refinement based on short iterations increases the quality of projects by
supporting rapid feedback and quick deliveries [3/15].

— Prototyping. Complex projects are conveniently split into smaller units or
increments corresponding to sub-problems that can be more easily solved
and released to users. To facilitate requirement validation and obtain better
results, system development is achieved by refining and expanding an evolu-
tionary prototype that progressively integrates the implementation of each
increment [18§].

— User involvement. Project specifications are difficult to be understood during
the preliminary life-cycle phases. A user-centered design increases customer
satisfaction and promotes a high level of trust between the parties. Indeed,
this feature focuses on constant communication and user participation at
every stage of software development.

— Component reuse. The reuse of predefined and tested components speeds up
product releases and promotes cost reduction as well as software reliability
11].

— [Foj“mal and light documentation. A well-defined documentation is a key fea-
ture to comply with user requirements. Moreover, formal analysis leads to
clear and non-ambiguous specifications, and user involvement enables light
and up-to-date documentation [IIT3I21].

— Automated schema transformation. This feature involves the use of for-
mal and automated transformations between schemata representing different
software perspectives (e.g., between conceptual and logical schemata). This
accelerates software development and promotes standard processes [13].

Table [summarizes the relationship between these methodological principles
and the four quality goals introduced in Section 2] i.e., it gives an idea of how
each principle can help increase each quality factor with specific reference to a
data warehouse project. More details are given in the following section.

4 From Principles to Methodology: 4WD

In this section we propose an innovative design methodology, called Four- Wheel-
Drive (4WD), leaning on the principles discussed in the previous section. These
principles are applied in such a way as to effectively balance their pros and
their cons, as resulting from practical evidences emerged during the real data
warehouse projects 4WD was applied to. Besides the projects we were directly
involved in, our findings are based on an elaboration of the experiences collected
during the last five years by some practitioners we collaborate with.

70 M. Golfarelli, S. Rizzi, and E. Turricchia

Table 1. Expected impact of methodological principles on process quality goals

Reliability Robustness Productivity Timeliness

Incrementality continuous feed- better manage-]roneetrtlir of mas?ii; early detection of
and risk-based back, clearer g projec Y
‘ . ; ¢ ment of change resources, rapid errors
iteration requirements feedback

frequent tests,
Prototyping easier error early deliveries

detection

better requir.

early error detec-

User involvement validation, better tion

data quality

error-free compo- predictable devel-

Component reuse faster design

nents opment
Formal & hght clearer require- . . .
. easier evolution faster design
documentation ments
Autom. schema gptimi .
optimized perfor easier evolution faster design predictable design

transformation ~ mances

As sketched in Figure 2 4WD is based on nested iteration cycles. The exter-
nal one is called data mart cycle; it defines and maintains the global plan for
the development of the whole data warehouse and, at each iteration, it incre-
mentally designs and releases one data mart. Data mart design is achieved by
the fact cycle, that refines the data mart plan and incrementally designs and
releases its factdl. Finally, fact design is based on two cycles (modeling and im-
plementation cycles, respectively), that include the core of analysis, design, and
implementation activities for delivering reports and applications concerning a
single fact. The documents produced can be distinguished into releases (that
correspond to project milestones) and deliveries (used for testing and valida-
tion). Remarkably, cycles are nested in a way that enables a reassessment of the
decisions made during an outer iteration based on the evidences emerging from
an inner iteration.

The main activities carried out in the data mart cycle are:

— Architectural sketch, during which the overall functional and physical ar-
chitecture of the data warehouse is progressively drawn based on a macro-
analysis of user requirements and an exploration of data sources as well as
on budget, technological, and organizational constraints.

— Conformity analysis, aimed at determining which dimension of analysis will
be conformed across different facts and data marts. Conforming hierarchies
in terms of schema and data is a key element to allow cross-fact analysis and
obtain consistent results.

— Data mart prioritization, based on a trade-off between user priorities and
technical constraints.

L A fact is a concept relevant to decision-making processes, and it typically models a set
of events taking place within a company (such as sales, shipments, and purchases).

DM Cycle

Modern Software Engineering Methodologies

Architectural Sketch ———> DW Schema

Conformity Analysis

DW Planning

Data Mart Priorities

DM Design

l

Data Mart

Fact Cycle T

Source & Fact
Macro-Analysis

Fact Priorities

DM Planning

Fact Design

Fact

Implementation Cycle

Bus Matrix

71

——> Fact Schema

S0
S
& 4
Y.
<%
Source Conceptual %

Analysis Design

Requirement
Analysis
7

-

Testing

Modeling Cycle

S :
&z? Physical

ETL &
Design Logical

2
%,
2,
®

e Prototype

~ Design

- ™

Application
Development

— __7,/“"/
Testing

Fig. 2. A sketch of the 4WD methodology

— Data mart design, which builds and releases the top-priority data mart. After
each data mart has been built, the three phases above are iterated to allow
the data warehouse plan to be refined and updated.

The activities carried out within a fact cycle are:

— Source and fact macro-analysis, aimed at checking the availability, quality,
and completeness of the data sources and determining the main business
facts to be analyzed by users.

— Fact prioritization that, like for data marts, is the result of a trade-off be-
tween user requirements and technical priorities.

— Fact design, which develops and releases the top-priority fact. After that,
the two phases above are iterated to allow the data mart plan to be refined

and updated.

Finally, the activities necessary to release a single fact (or even a small set of
strictly related facts) are grouped into two separate sub-cycles to emphasize that
releasing a conceptual schema of a fact marks a clear separation between a mod-
eling and an implementation phase for the fact itself. Validating the conceptual
schema of a fact before implementation leads to reducing the number of imple-
mentation cycles, i.e., to faster fact cycles. While modeling should come before
implementation, the activities included in each sub-cycle are not strictly sequen-
tial and can be differently prioritized by each project team. Each sub-cycle can

72 M. Golfarelli, S. Rizzi, and E. Turricchia

be iterated a number of times before its results (the conceptual schema in the
first case, the analysis applications in the second) are validated and released.

In the following subsections we will discuss how 4WD meets the principles
introduced in Section [Bl Then, we briefly present the main outcomes of the
application of 4WD to a real project in the area of pay-tvs.

4.1 Incrementality and Risk-Based Iteration

As suggested by the RAD approach, iteration is at the core of 4WD and is
coupled with incremental development, that aims at slicing the system function-
ality into increments; in each increment, a portion of the system is designed,
built, and released. Developing a system through repeated cycles leads to lower
risk of misunderstood requirements (higher reliability and timeliness), to faster
software deliveries (higher productivity), and to more flexible management of
evolving requirements and emerging critical issues (higher robustness) [15].

Though these advantages are largely acknowledged in all modern methodolo-
gies, the type of iterations and their frequencies vary from one another depend-
ing on the type of software to be developed. For example, agile methodologies
pushes segmentation to the limit by centering iteration on the so-called user sto-
ries, meant as high-level functional requirements —concisely expressed by users
in their business language— that can be released in a few days. Since functional
requirements in data warehouse projects are mainly expressed in terms of anal-
ysis capabilities, agile data warehouse design often focuses each iteration on a
small set of reporting or OLAP functionalities. While this may sound natural to
business users, it can lead to dramatically increasing the overall design effort,
because it gives little or no relevance to the multidimensional schemata adopted
to store information. Indeed, as reported by designers who adopt functionality-
centered iterations in data warehouse projects, a common problem is that they
fail in recognizing that apparently different analyses, designed during separate
iterations, are actually supported by the very same multidimensional schema.

In 4WD, the shortest iterations that release a tangible result to users are those
for modeling and implementing a single fact, that are normally completed in 2-4
weeks overall. This release rate could seem to be not very high, but it is backed by
quite more frequent deliveries. Indeed, the modeling and implementation cycles
have a daily to weekly frequency; the deliveries they produce enable a progressive
refinement of the fact conceptual schema and implementation through a massive
test based on active involvement of users.

Incremental techniques require a driver to define an order for developing in-
crements. In 4WD this is done when deciding data mart and fact priorities, and
in both cases risk is the driver —as suggested by the Spiral Software Develop-
ment approach [3]. The project team should balance the risk of early releasing
data marts/facts that are not highly valuable to users —which would lead users
to lose interest in the project— against the risk of ordering design activities in
a non-optimal way —which would determine higher costs and a longer overall
project duration. Some guidelines for reducing the risk in data mart prioritiza-
tion are: (a) Give priority to data marts that include widely shared hierarchies,

Modern Software Engineering Methodologies 73

which makes the overall schema more robust and ensures that dimensions are
fully conformed; (b) Give priority to data marts that are fed from stable and
well-understood data sources; and (¢) Postpone data marts based on unclear
requirements, assuming that these requirement will be better understood as the
user’s involvement in the project increases. As to facts: (a) Give priority to
facts that include the main business hierarchies and require the most complex
ETL procedures; (b) Adopt a data-driven approach to design rather than a
requirement-driven one whenever users do not appear to have a deep knowledge
of the business domain; and (c¢) Plan the length of an iteration in proportion to
the complexity of the fact, since failing a release in the early stage of a project
will undermine the team credibility.

4.2 Prototyping

Prototyping has a crucial role in most modern software projects. In a data ware-
house project, an evolutionary (where a robust prototype is continuously refined)
and incremental (where the prototype is gradually enlarged by adding new sub-
systems) approach to prototyping is generally preferable to a throw-away ap-
proach (where the prototype is used to demonstrate a small set of functions and
then is abandoned). In fact, the effectiveness of prototyping is maximized when
the prototype is tested together with users, and in a data warehouse project
this requires the whole data flow —from operational sources to the front-end
through ETL— to be prototyped: a large effort, that should not be wasted. The
main advantages of prototyping, with particular reference to a data warehouse
project, can be summarized as follows:

— Prototypes help designers to validate requirements, because they allow users
to evaluate designers’ proposals by trying them out, rather than interpreting
design documents. This is particularly crucial to enable a better understand-
ing of hierarchies by users [24].

— Prototypes are especially valuable to improve the design of reports and anal-
ysis applications, due to their interactive nature. In general, prototype-based
user-interfaces have higher usability [10].

— Prototypes can be used to advance testing to the early phases of design,
thus reducing the impact of error corrections. For instance, an early loading
test can be effectively coupled with a preliminary functional test of front-end
applications to check for correct data balancing [§].

— Prototypes can be used to evaluate the feasibility of alternative solutions
during logical design of multidimensional schemata and during ETL design.
This typically leads to improved performance and maintainability, and to
reduced development costs [24].

The above points are basically associated with an increase in reliability and
productivity. More specifically, the impact on reliability is related to both data
schemata, data quality, and performances. First of all, having a working pro-
totype available during the early project phases enables the designer to keep a
strict and constant control over the data schema to ensure that it fully supports

74 M. Golfarelli, S. Rizzi, and E. Turricchia

user requirements. Then, data quality can be improved by closely involving users
in testing the prototype using both real and ad-hoc generated data. Finally, an
incremental approach can also be used to take better care of performance issues
by following the modularity principle to separate correctness from efficiency.
This means that a working prototype can be delivered first; then, performances
can be improved during the following iteration to deliver an increment in the
form of a working and efficient prototype.

4.3 User Involvement

Recent years have been characterized by a growing awareness that human re-
sources are one of the keys to a project success. In this direction, some modern
software design methodologies tend to emphasize organizational factors rather
than technical aspects. For instance, agile approaches pursue the idea of creat-
ing responsible and self-organizing teams to maximize participation of developers
and their productivity. They also focus on user involvement as a means to re-
duce the risk of expressing ambiguous requirements and make software validation
easier and more effective [IJ.

4WD pays a large attention to user involvement because it has a substantial
influence on process reliability and timeliness. User involvement can be promoted
in different ways:

— All users should preliminary receive a comprehensive training to clarify the
project goals, explain the multidimensional model, and introduce a shared
language for conceptual design.

— Prototyping is the most effective way to have users participate in the design
process and keep them aware of the project status.

— Due to the complex data transformation that is inherent to data warehouse
systems, only users —who have insight of business data— can easily detect
problems and errors. So, most testing activities should be based on user feed-
back. User involvement is specifically crucial for usability tests of reporting
and OLAP front-ends, and for functional tests of ETL procedures.

4.4 Component Reuse

Applying a component-based methodology means using predefined elements to
support the software development process [11]. This is often done by data ware-
house designers, though mostly in an unstructured way. The components that
can most effectively be reused in a data warehouse project are:

— Conformed hierarchies, that are reused in different facts and data marts.
Using conformed hierarchies not only accelerates conceptual design, but is
also the key for achieving an enterprise view of business in a data warehouse.

— Library hierarchies, that model common hierarchy structures for a given
business domain. For instance, a customer hierarchy in a sales analysis has
some basic features that can be easily reused in different data warehouse
projects to reduce the effort in designing facts.

Modern Software Engineering Methodologies 75

— Library facts, that define common measure and dimension structures as
emerging from design best practices for a given business domain. Of course,
library facts must be tailored to specific user needs; nevertheless, they may
be very useful in requirement-driven approaches to give designers and users
a starting point for conceptual design.

— ETL building blocks, meant as predefined extraction, transformation, clean-
ing, and loading routines (e.g., a routine for cleaning a geographical attribute
against the list of ISO 3166-2 codes for administrative divisions, or one for
loading a type-3 slowly-changing dimension from an operational data store).
Reusing such routines reduces the ETL design effort and makes ETL more
reliable due to the use of largely-tested algorithms.

— Analysis templates, that define a reference structure for reports and ap-
plications. In particular, sharing an analysis template across a data ware-
house project is warmly suggested to standardize the interface presented to
users.

4WD takes advantage of component reuse to accelerate development and in-
crease robustness. While ETL tools already include some building blocks that
can be easily reused through parameterization, identifying hierarchies and facts
to be reused deserves more attention. 4WD devotes an ad-hoc phase (conformity
analysis) to identifying hierarchies to be conformed using a bus matrix. Besides,
conceptual schemata are a very effective tool to formalize the structure of facts
and hierarchies and support their matching against the available libraries.

4.5 Formal and Light Documentation

In waterfall approaches, documentation is extensively used during the whole
life-cycle to support the design process and represent and validate requirements.
Other approaches, like RAD and agile methodologies, tend to discourage the use
of documentation (other than the one automatically produced by tools) because
it may lead to prematurely freezing requirements and slowing down iterations,
and suggest to replace it with continuous communication with users [TIT5].

While we agree that textual documentation should be reduced to the mini-
mum, we firmly believe that formal documentation is a key factor to promote
precise formalization of requirements, clear communication between designers
and users, accurate design, and maintainability. In 4WD, the main role to this
end is played by conceptual schemata. In particular:

— At the data warehouse level, we mostly use a simple but effective schema
that summarizes the data marts, their data sources, and the profiles of the
users who access them [9]. This high-level schema is first drawn during the
architectural sketch phase, and refined after each data mart cycle. It is es-
sentially used to share the basic functional architecture with users and to
support the discussion of data mart priorities.

— At the data mart level, an important role is played by a bus matriz that
associates each fact with its dimensions, thus pointing out the existence of

76 M. Golfarelli, S. Rizzi, and E. Turricchia

conformed hierarchies. This schema is built and progressively refined during
the conformity analysis and fact macro-analysys phases, and is used to test
that the designers has properly captured the existing similarities between
different facts and different data marts, thus ensuring their integrability [9].

— At the fact level, we force designers to complete and release the concep-
tual schema of a fact before proceeding with implementation. Indeed, hav-
ing users and designers clearly agree on the fact granularity and measures,
as well as on the hierarchy structures and semantics, is the most effective
way to avoid misunderstandings and omissions. Finding this agreement in-
formally, or leaning on the logical/physical schema of the fact, is obviously
hard and error-prone, while a (graphical) conceptual schema is clearly under-
stood even by non-technical users. In particular, we adopted the Dimensional
Fact Model [9] in a number of projects for public administrations (such as
local health authorities, the Ministry of Justice, the State Accounting De-
partment) and we verified that fact schemata are also understood by non-IT
people such as physicians and jurists.

A major role in this context is also played by metadata, that multidimensional
engines store to describe the structure of a data mart. Metadata can typically
be exported to generate a documentation based on standard languages (such
as XML) and models (such as the CWM); this also encourages interoperability,
that is normally seen as a crucial issue in data warehouse projects.

4.6 Automated Schema Transformation

To reduce design complexity, the MDA approach proposes to use formal models
for separately specifying a Platform Independent Model (PIM, it represents sys-
tem functionalities at a conceptual level) and a Platform Specific Model (PSM,
it gives a logical and platform-dependent representation of system functionali-
ties), and to use automated transformations to derive a PSM from a PIM. In a
data warehouse project, this can be applied to design both ETL procedures and
multidimensional schemata, as shown in [23/16].

In 4WD, automated schema transformations are encouraged, mainly to speed
up design and simplify evolution, as long as they need a reasonable effort from
users to understand formal models and they do not require to invest too many
resources in activities that are not directly valuable to users. We propose two
metadata-based activities for automation, possibly supported by CASE tools:

— Supply-driven conceptual design. In supply-driven approaches, a basic con-
ceptual schema for a fact can be automatically derived starting from the
logical schema of operational data sources [I7]. When applicable, this is a
very effective way to cut design costs.

— Logical design. A logical schema can be automatically obtained from a con-
ceptual schema by applying a set of transformations that express common
design rules and best practices, possibly based on the expected workload [9].

Modern Software Engineering Methodologies 7

4.7 Practical Evidences

4WD was applied to a project in the area of pay-tvs. The project had an over-
all duration of 6 months and was carried out by an Italian system integrator
specialized in BI applications.

During data warehouse planning two data marts were identified, namely ad-
ministration and management control, that were prioritized according to their
importance for users: the administration data mart was given higher priority
because its size is definitely larger (9 vs. 3 facts). During data mart planning we
organized the overall project in 7 releases (5 for the first data mart, 2 for the
second one), each centered on at most 3 facts and taking from 10 to 26 days.
Facts were grouped into a single release when they either shared several dimen-
sions or had similar ETL processes (e.g., because measures were extracted from
the same data sources and tables), as emerging from conformity analysis and
source and facts macro-analysis. Each release was then assigned a value from
the users point of view, an estimated nominal complexity, and a risk expressed
as a percentage complexity overhead (ranging from 19 to 35%) to determine a
worst-case complexity. The criteria used for establishing release priorities were:
(1) advance the most valuable facts to early releases; (2) uniformly distribute the
worst-case complexity; and (3) respect the dependencies in fact implementation.
Besides, some fact were delayed because the development of specific extraction
interfaces by external consultants was required for some of their source data;
other facts were postponed due to some uncertainty on the requirements. After
each release, its actual duration was compared to the estimated complexity. In 2
cases it turned out that the estimation was inaccurate; this was fixed right away
by revising the remaining estimates and by changing the team composition.

One of the benefits of adopting 4WD in this project was the speed-up due to
large user involvement and extensive prototyping. Users were enabled to access a
web portal to signal the errors, and monitor the team’s answers and the project
state. This was particularly effective for improving the structure of reports and
the business rules for detecting source data errors. Noticeably, all errors signaled
by users were related to wrong data: user mainly own empirical knowledge, so it
may be hard for them to reason from an abstract point of view (e.g., to evaluate
an ETL flow or a report structure with no data loaded). The implementation
effort was reduced by partially reusing existing reports and dimension tables, be-
cause those required by administration and management control users are quite
standard. This was not the case for ETL, that required a strong personalization,
so reuse was limited to some basic routines made available by the adopted ETL
suite. Finally, adopting the DFM as a conceptual model enabled designers to
produce a concise but exhaustive documentation, and to use a CASE tool to
automate logical design [7].

5 Related Literature and Discussion

In this paper we started by identifying the main problems behind data ware-
house projects, and we ended up with proposing an original methodology, 4WD,

78 M. Golfarelli, S. Rizzi, and E. Turricchia

inspired by six basic principles of modern software engineering. In this section we
critically compare 4WD with the existing data warehouse design methodologies.

Data warehouse design has been investigated by the research community since
the late nineties. A classic waterfall approach was first proposed in [6]; a distin-
guishing feature was the inclusion of a conceptual design phase aimed at better
formalizing the data schema. A sequential approach to design is also followed
in [T4], where an object-oriented method based on UML is proposed to cover
analysis, design, implementation, and testing. Another UML-based method is
presented in [I9]; here, the use of the Common Warehouse Metamodel (CWM)
is suggested to promote a more standard approach to conceptual design. All these
methodologies follow a linear approach that hardly adapts to changes and is un-
suitable when requirements are uncertain. In 4WD these problems are overcome
thanks to iteration and prototyping.

Iterative solutions are typically adopted by methodologies like RAD and Ag-
ile. The work in [I2] breaks with strictly sequential approaches by applying two
Agile development techniques, namely scrum and eXtreme Programming, to the
specific challenges of data warehouse projects. To better meet user needs, the
work suggests to adopt a user stories decomposition step based on a set of archi-
tectural categories for the back-end and front-end portions of a data warehouse.
However, it does not deeply discuss how this decomposition impacts on modeling
and design. In this direction, 4WD emphasizes the key role of the multidimen-
sional model as a driver for the development process and promotes fact-based
iterations to increase its productivity while preserving reliability.

A different approach to tackle the data warehouse design complexity is the
MDA methodology proposed in [I6] to better separate the system functionality
from its implementation. Strong relevance is given to the development of the
data warehouse repository; the three main perspectives of MDA (CIM, PIM,
and PSM) are defined using extensions of UML and CWM, and the inter-model
transformations are described using the Query/View/Transformation (QVT)
language. In practice, strictly applying this methodology may be hard due to the
poor aptitude of users for reading formal models and investing resources in low-
values activities. To overcome these issues, in 4WD automation is specifically
targeted on supply-driven conceptual design and logical design. This reasserts
the key role played by conceptual schemata of facts in 4WD.

A pragmatic comparison between data warehouse design methodologies is
offered in [22], where 15 different solutions proposed by Business Intelligence
software vendors are examined. The authors emphasize the lack of software-
independent approaches, and point out that all the proposed solutions hardly
can deal with changes and market evolution, which creates a robustness problem.
To improve robustness, 4WD specifically relies on three key factors: (a) iteration
breaks the linear development process by offering frequent deliveries and review-
ing points; (b) a formal and light documentation provides a clear picture of the
current specifications, facilitating the identification of the units to be evolved;
(c) automating schema transformations reduces the time needed to propagate
changes to the different levels.

Modern Software Engineering Methodologies 79

References

1.

2.

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

Agile Manifesto: Manifesto for agile software development (2010),
http://agilemanifesto.org/

Beyer, M., Richardson, J.: Agile techniques augment but do not replace business
intelligence and data warehouse best practice. Tech. Rep. G00201031, Gartner
Research (2010)

. Boehm, B.W.: A spiral model of software development and enhancement. IEEE

Computer 21(5), 61-72 (1988)

. Ghezzi, C., Jazayeri, M., Mandrioli, D.: Fundamentals of software engineering.

Prentice Hall, Englewood Cliffs (2002)

. Giorgini, P., Rizzi, S., Garzetti, M.: GRAnD: A goal-oriented approach to require-

ment analysis in data warehouses. Decision Support Systems 45(1), 4-21 (2008)

. Golfarelli, M., Rizzi, S.: A methodological framework for data warehouse design.

In: Proc. DOLAP, pp. 3-9 (1998)

. Golfarelli, M., Rizzi, S.: WAND: A CASE tool for data warehouse design. In: Proc.

ICDE, pp. 7-9 (2001)

. Golfarelli, M., Rizzi, S.: A comprehensive approach to data warehouse testing. In:

Proc. DOLAP, pp. 17-24 (2009)

. Golfarelli, M., Rizzi, S.: Data warehouse design: Modern principles and method-

ologies. McGraw-Hill, New York (2009)

Gordon, V.S., Bieman, J.M.: Rapid prototyping: Lessons learned. IEEE Soft-
ware 12(1), 85-95 (1995)

Heineman, G.T., Councill, W.T.: Component-based software engineering: Putting
the pieces together. Addison-Wesley, Reading (2001)

Hughes, R.: Agile Data Warehousing: Delivering world-class business intelligence
systems using Scrum and XP. IUniverse (2008)

Kruchten, P.: The 4+1 view model of architecture. IEEE Software 12(6), 42-50
(1995)

Lujan-Mora, S., Trujillo, J.: A comprehensive method for data warehouse design.
In: Proc. DMDW (2003)

Martin, J.: Rapid application development. MacMillan, Basingstoke (1991)
Mazén, J.N., Trujillo, J.: An MDA approach for the development of data ware-
houses. In: Proc. JISBD, pp. 208-208 (2009)

Moody, D., Kortink, M.: From enterprise models to dimensional models: A method-
ology for data warehouse and data mart design. In: Proc. DMDW (2000)
Pomberger, G., Bischofberger, W.R., Kolb, D., Pree, W., Schlemm, H.:
Prototyping-oriented software development — concepts and tools. Structured Pro-
gramming 12(1), 43-60 (1991)

Prat, N., Akoka, J., Comyn-Wattiau, I.. A UML-based data warehouse design
method. Decision Support Systems 42(3), 1449-1473 (2006)

Ramamurthy, K., Sen, A., Sinha, A.P.: An empirical investigation of the key de-
terminants of data warehouse adoption. Decision Support Systems 44(4), 817-841
2008)

{:{oyce, W.W.: Managing the development of large software systems: Concepts and
techniques. In: Proc. ICSE, Monterey, California, USA, pp. 328-339 (1987)

Sen, A., Sinha, A.P.: A comparison of data warehousing methodologies. Commun.
ACM 48(3), 79-84 (2005)

Simitsis, A., Vassiliadis, P.: A method for the mapping of conceptual designs to
logical blueprints for ETL processes. Decision Support Systems 45(1), 22-40 (2008)
Sommerville, 1.: Software Engineering. Pearson Education, London (2004)

http://agilemanifesto.org/

GEM : Requirement-Driven Generation of ETL
and Multidimensional Conceptual Designs

Oscar Romero!, Alkis Simitsis?, and Alberto Abell6

! Universitat Politecnica de Catalunya, BarcelonaTech
Barcelona, Spain
{oromero,aabello}@essi.upc.edu
2 HP Labs, Palo Alto, CA, USA
alkis@hp.com

Abstract. At the early stages of a data warehouse design project, the
main objective is to collect the business requirements and needs, and
translate them into an appropriate conceptual, multidimensional design.
Typically, this task is performed manually, through a series of interviews
involving two different parties: the business analysts and technical de-
signers. Producing an appropriate conceptual design is an error-prone
task that undergoes several rounds of reconciliation and redesigning, un-
til the business needs are satisfied. It is of great importance for the busi-
ness of an enterprise to facilitate and automate such a process. The goal
of our research is to provide designers with a semi-automatic means for
producing conceptual multidimensional designs and also, conceptual rep-
resentation of the extract-transform-load (ETL) processes that orches-
trate the data flow from the operational sources to the data warehouse
constructs. In particular, we describe a method that combines informa-
tion about the data sources along with the business requirements, for
validating and completing —if necessary— these requirements, producing
a multidimensional design, and identifying the ETL operations needed.
We present our method in terms of the TPC-DS benchmark and show
its applicability and usefulness.

1 Introduction

“A gemstone or gem is a piece of attractive mineral, which —when cut and
polished— is used to make jewelry or other adornments. Most gems are
hard, but some soft minerals are used in jewelry because of their lustre
or other physical properties that have aesthetic value.” (Wikipedia)

As most of the raw materials and resources, gems are out there in large vari-
eties and quantities, but we need to dig and work hard in order to get them and
make profit out of them.

Data are the gems of the enterprise. They are available at large quantities,
but we need to “dig” for recognizing the relevant and useful ones, and to adjust
and polish them for making our valued assets, our “jewelry”. The jewelry for
an enterprise is any tool or means that facilitates strategic decision making and
helps in satisfying business needs. Such a tool is a data warehouse (DW) that

A. Cuzzocrea and U. Dayal (Eds.): DaWaK 2011, LNCS 6862, pp. 80 2011.
© Springer-Verlag Berlin Heidelberg 2011

GEM: Requirement-Driven Generation of ETL 81

organizes the raw, source data in a way that enables decision support. Building a
DW requires two essential constructs: the multidimensional (MD) design of the
target data stores and the extract-transform-load (ETL) process that populates
the target data stores from the source ones.

Nowadays, the construction of conceptual MD and ETL designs is an error-
prone, manual process that undergoes several rounds of reconciliation and re-
designing, until the business needs are satisfied. It is essential for the business
of an enterprise to facilitate, speed up, and automate these design processes.

This paper presents a system called GEM (Generating Etl and Multidimen-
sional designs). GEM starts with a set of source data stores and business re-
quirements —e.g., business queries, service level agreements (SLAs)— and based
on these, it produces a MD design for the target data stores, along with a set of
ETL operations required for the population of the target DW.

The semantics, characteristics, and constraints of data sources are represented
by means of an OWL ontology. The business requirements are expressed in a
structured form. We consider functional requirements that drive the generation
of the MD design constructs and also, soft or non-functional requirements —e.g.,
freshness, recoverability, availability— that can be used for giving “lustre” and
adding value to our designs. For example, based on a freshness requirement we
may decide which data source to use and according to a recoverability require-
ment we may choose to enrich the ETL process with recovering techniques.

For each business requirement, we identify the relevant part of the data sources
(e.g., concepts, attributes, properties) needed to answer it. If we identify conflicts,
we either suggest corrections or ask for user feedback. The output of these tasks
is an annotated subset of the source ontology that corresponds to a business
requirement. Next, we classify the relevant concepts as dimensional or factual
and validate the result. We also explore schema information for identifying the
respective ETL operations. Finally, we consolidate the individual designs, one
for each business requirement, and get the conceptual MD and ETL designs.

Contributions. In particular, our main contributions are as follows.

— We present GEM, a system that facilitates the production of ETL and MD
designs, starting from a set of business requirements and source data stores.
To the best of our knowledge, GEM is the first approach towards the semi-
automatic generation of both the ETL and MD conceptual designs, since we
automatically generate mappings from sources to cubes.

— We propose novel algorithms finding and validating an ontology subset as a
MD schema, and identifying ETL operators at the same time.

— We are able to deal with incomplete requirements and validate them.

— We evaluate our method using the schema and constructs of the TPC-DS
benchmark and show the quality of the GEM designs.

Outline. The rest of the paper is structured as follows. Section] formulates
the problem at hand and presents the GEM architecture. Sections Bl and @ dis-
cuss the validation and completion of business requirements, respectively. Then,

82 O. Romero, A. Simitsis, and A. Abell6

Section [l describes the validation of the MD design and Section [0l the identifica-
tion of ETL operations. Section[f evaluates GEM using the TPC-DS benchmark
and Section B presents the related work.

2 GEM in a Nutshell

This section gives an overview of our system, GEM. Given two inputs, namely
information about the operational sources and a set of user requirements,
GEM produces two designs: the MD design of the target DW constructs and the
conceptual ETL flow that interconnects the target constructs to the operational
sources.

2.1 Inputs

Source Data Stores. We capture the semantics of the data sources in terms of
an OWL ontology. In previous work, we have shown that a variety of structured
and unstructured data stores can be elegantly represented as graphs, and we
have also described how we can construct an appropriate ontology for such data
stores by integrating a domain vocabulary with the data sources’ vocabulary [17].
Here, due to space consideration, we assume that we do have an OWL ontology
annotated with the mappings of those concepts and properties available in the
operational data sources. For further details on how we get this ontology from
the sources, we refer the interested reader to our past work [I7]. Figure [(page
O2) depicts an example ontology based on the TPC-DS schema [19].

Business Requirements. In typical DW and ETL engagements, the design
starts from a set of functional and non-functional requirements (respectively f-
req and nf-req, from here on) expressing business needs. Example requirements
could be “examine stocks provided by suppliers” or “a report on total revenue per
branch should be updated every 10 minutes”. Such requirements often come as
service level agreements (SLAs) or business queries and are expressed in various
forms, either structured or unstructured. Much work has been done in capturing
and representing business needs. For example, SLAs expressed as free-form text,
require natural language processing (NLP) techniques for being interpreted in a
machine processable way. How to capture such requirements are out of the scope
of this work. Here, without loss of generality, we consider requirements expressed
in a structured way (e.g., by means of i* profiles [22]). Such requirements are
represented in an XML file that contains two main parts.

The first part involves functional or information requirements that are cap-
tured by identifying the measures and dimensions of interest. In the previous
example, stocks would be the measure and suppliers the dimensional concept.

<measures>< concept id = “stocks” /| >< /measures>
< dimensions >< concept id = “suppliers” /| >< /dimensions >

The second part, involves the non-functional requirements of interest for each
concept indicated by the functional requirements. For example, the measures

GEM: Requirement-Driven Generation of ETL 83

used by the revenue report (i.e., the respective view) should conform to a non-
functional requirement for freshness that requires that the corresponding data
should be updated at least every 10 minutes.

< concept id ="v revenue” ><nf req>
< freshness format = “HH24:M1:55” > &It;00:10:00 < /freshness>
< /nf req>< [concept >

Due to space restrictions, we omit a detailed description of the XML structure
for representing such requirements. Briefly, it contains:

— Levels of detail, which represent data granularity. The user may provide a
discretization process for continuous (or with high cardinality) data types.

— Descriptors, which carry out selections over them (i.e., slicers). Type of
comparison carried out; e.g., “in a given year YYYY”.

— Measures, which should be analyzed. Aggregation function and a partial
order between them; the latter is needed when we perform different aggrega-
tions (one order per dimension). In doing so, we would be able to distinguish
between, for example, ‘average of sums’ and ‘sum of averages’.

Note that although our XML structure captures multidimensional requirements
over a domain (i.e., non-multidimensional) ontology, the expressivity we support
is equivalent to that of the dimensional expressions introduced in [4].

In addition, we may have nf-reqs either for each one of the above three
elements or for the whole design.

As a remark, different requirements affect different design levels. For example,
a freshness requirement indicates how often an ETL flow should run in order to
meet the required latency in updating the DW. However, such decision affects the
execution level and should be taken under consideration at the physical model.
Nevertheless, we may need to use this requirement during the conceptual design
as well. For example, assume two source data stores containing the same data
but placed in different locations for business reasons (e.g., two snapshots placed
in two different branches of the organization). Assume also that the first data
store is updated every hour and the second every 5 minutes or that the conges-
tion of the network coming from the first data store is significantly greater than
the one coming from the second source. If we have such information, then based
on the freshness requirement we need to honor for our target data stores, we
should decide to pull data from the second data store. Clearly, such decision is
to be taken at the conceptual level.

However, we are interested in capturing all requirements. Those that cannot
be used at the conceptual level (which is the focus of this paper) should be trans-
ferred to the subsequent, more detailed design levels, along with the outcome
of this process; i.e., the conceptual ETL and MD designs. Hence, the designer
of the logical and physical models does not need to revisit and reinterpret the
original set of business requirements.

84 O. Romero, A. Simitsis, and A. Abell6

legend:
000.000
s - E - <t

alternative,
L Data Warehouse ffyl
scenarios output
Conceptual Schema ETL Process
rocess PN
suggestionss = @ «p- P flow ﬁ
Consolidation
Annotated
Ontology, = = = = Annotated Ontology ‘.’ ‘.’
mappings & = == = Ontology Subset AOS and
Data source = = (AOS) Context Edges Conceptual ETL
o Operations

Data Sources features = e . o
Ve Y
~sy g g ==
NN

QI::> Business <.> |::> Requirements Requirements Multidimensional Operator
Requirements | — Validation Completion Tagging Identification
Designer '
A ' : : t

]]
¢ A : : Operator
-------------------------- - [] Library7
Er Ry, ? -

Fig. 1. System architecture

2.2 System Architecture

The process of producing the ETL and MD designs is a semi-automatic process
comprising five main stages (see Figure[Il). Here, we briefly describe these stages.
The next sections provide more details for each stage.

Stage 1: Requirement Validation. First, the system checks if there is a
mismatch among the business requirements (either functional or non-functional)
in the XML and the data sources, by looking for the corresponding concepts in
the ontology and checking whether they are mapped to the sources or not. In
case of mismatch, it identifies the possible problems or it may suggest relaxation
of the requirements. Otherwise, concepts in the ontology are selected and tagged
as either Level, Descriptor or Measure. These concepts are also annotated with
nf-reqs and composition of extraction mappings, if necessary.

Stage 2: Requirement Completion. After considering the business require-
ments, the system complements them with additional information gathered from
the sources. This stage identifies intermediate concepts that are not explicitly
stated in the business requirements, but are needed in order to answer the f-
regs. User feedback is welcomed for ensuring correctness and compliance to the
end-user needs.

Stage 3: Multidimensional Tagging. Next, we tag the new concepts iden-
tified by the previous stage, as either factual or dimensional and validate the
correctness of these completed f-reqs tagging according to MD design principles.
Hence, we check two issues: i) first, whether the factual data is arranged in a
MD space (i.e., if each instance of factual data is identified by a point in each
of its analysis dimensions) and second, ii) whether the data summarization is
correct by examining whether the following conditions hold [§]: (1) disjointness
(the sets of objects to be aggregated must be disjoint); (2) completeness (the

GEM: Requirement-Driven Generation of ETL 85

union of subsets must constitute the entire set); and (3) compatibility of the
dimension, the type of measure being aggregated and the aggregation function.
Stage 4: Operator Identification. The ETL operations are identified in three
phases. First, we use the annotations generated by the previous steps (i.e., map-
pings in Stage 1, intermediate concepts in Stage 2, and their taggings in Stage 3)
for extracting schema modification operations. Then, we complement the design
with additional information that might be found in the sources and with typical
ETL operations regarding surrogate key and slowly changing dimensions.
Stage 5: Conciliation. The previous stages run once for each f-req. Eventually,
the individual results obtained per f-req are conciliated in a single conceptual
MD schema and a single ETL flow.

2.3 Output

At the end, we produce a conceptual, MD schema composed by facts and dimen-
sions. In addition, we identify the ETL operations needed in order to interconnect
the source data stores to the MD constructs.

3 Requirement Validation

Starting from the inputs discussed in Section 2] we validate the business re-
quirements w.r.t. the available data sources, as follows: (a) we analyze the input
XML file and tag the ontology concepts corresponding to the f-req, identifying
possible mapping conflicts, and (b) we include and then validate assertions re-
garding nf-reqs and data sources features. The input XML file contains three
kinds of concepts: measures, levels, and descriptors (see Section). So, first, we
tag the corresponding concepts in the input ontology with these labels. Then, we
check whether the tagged concepts can be mapped to the sources (either directly
or by means of ETL operators). When an error occurs, user feedback is required.
The validation method is as follows:
1. if the tagged concept is mapped to the sources then no further action is needed
2. else if the tagged concept is involved in a concept taxonomy then
(a) if any of its subclass(es) has (have) a mapping then we annotate the tagged concept
with the ETL operations ‘renaming’ and ‘union’
(b) else if any superclass has a mapping then we use the general concept mapped and
annotate the required concept with ETL operations ‘renaming’ and ‘selection’
i. if discriminant function has not been specified in the input XML file then user
feedback is required
i. if the tagged node has several superclasses then ‘minus’ or ‘intersection’ are also
considered (see Section [f] for details)
3. else if exists a (transitive) one-to-one association to a mapped concept then suggest it as a
potential synonym

(a) if the suggestion is accepted then the f-req is updated with the synonym concept
4. else the concept is not available in the data sources

4 Requirement Completion

This stage takes as input the annotated ontology produced in the previous stage
and it completes the requirements regarding the sources. First, it identifies in-
termediate concepts that are not explicitly stated in the f-req, but needed to

86 O. Romero, A. Simitsis, and A. Abell6

retrieve the required information. If an f-req cannot be met, it suggests alter-
native solutions. Finally, it produces the ontology subset needed to answer the
business query at hand and additional annotations regarding ETL operations.

This stage starts with a pruning process. We identify how tagged concepts
are related in the ontology and then, (a) we disregard concepts/relationships not
mapped nor tagged (if a concept taxonomy is affected, we replace the concept
pruned with the first superclass mapped/tagged); and next, (b) we prune all
the mapped many-to-many (i.e., *-*) associations. Note that such associations
violate the three summarization necessary conditions [§] and thus, they cannot
be exploited for MD design. The outcome of this pruning is a subset of the
input annotated ontology, which we call AOS. Since an arbitrary ontology can
be represented as a graph, we will talk about paths between concepts and thus,
we will also refer to concepts as nodes and to associations as edges.

Looking for Paths Between Tagged Concepts. For identifying how tagged
concepts are related in the sources, we use the following algorithm that computes
paths between tagged concepts.

1. foreach edge e in O do
(a) if right left concepts(e) are tagged then paths between tagged concepts U=e;
(b) else if right concept(e) is tagged then max length paths U=e; //Seed edges
2. while size(max length paths) != () do
(a) paths := 0;
(b) foreach path p in max length paths do
i. extended paths := explore new edges(p, O); //only considering edges not in p
ii. foreach path p! in extended paths do
A. if left concept(pl) is tagged then paths between tagged concepts U=pI;
B. else paths U= pl;
(c¢) max length paths := paths;
3. return paths between tagged concepts;

We start by identifying edges directly relating tagged concepts (step [Ial) and
edges reaching tagged concepts (from now on, seed edges; step D). For the
sake of understandability, although the AOS has no directed edges, we say that
the tagged node is in the seed edge right-end, and its counterpart to be in the
the left-end. Then, the algorithm applies the transitive property starting from
tagged concepts. At the first iteration, we explore new edges such that their
right-end matches the left-end of a seed edge, and similarly for the forthcoming
iterations (step [2(b)i). Intuitively, we explore paths starting from tagged con-
cepts by exploring a new edge per iteration. This guided exploration has two
main restrictions: we cannot explore any edge already explored in a given path
(step and if we reach another tagged concept we finish exploring that
path (i.e., we have found a path between tagged concepts; step . Note
that in a given iteration ¢, we only explore the longest paths computed in the
previous iteration (steps [l and Bd). Eventually, we explore all the paths and
the algorithm finishes (step Bl). Observe that step [l can be computed by means
of generic ontological reasoning.

This algorithm is sound since it computes direct relationships and propagates
them according to the transitivity rule and complete, because it converges; note
that each path is explored only once. This algorithm has a theoretical exponen-
tial upper bound regarding the size of the longest path between tagged concepts.

GEM: Requirement-Driven Generation of ETL 87

However, this theoretical upper bound is hardly achievable in real-world ontolo-
gies as they have neither all classes with maximum connectivity nor all paths
are of maximum length. Moreover, note that *-* relationships were previously
pruned. (See also our evaluation in Section [7]).
Producing the Output Subset. Based on the paths between tagged con-
cepts that the previous algorithm found, the following algorithm determines the
ontology subset needed to answer the f-req.

1. if between two tagged concepts there are more than one path then we ask the user for

disambiguation (i.e., which is the path fulfilling the semantics needed for the f-req at hand)
2. foreach pair of related tagged concepts not involving a descriptor do

(a) Edges forming that path are annotated as aggregation edges, because these relationships
determine the data granularity of the output

The AOS is compound by the paths selected in step 1. Note that these paths
include the intermediate concepts (i.e., those not tagged but involved in the
paths) and that the user may not select any path between a given pair of con-
cepts. At this point, taxonomies are also disregarded.

Annotating the Ontology AOS. Having an AOS containing the new concepts
needed to answer the f-req (besides those in the input XML file), we check
whether the whole graph makes MD sense.

First, we check the semantics of each edge according to the tag -if any- of the
related concepts and its multiplicity. According to these semantics, we tag each
edge with MD relationships that it could represent; i.e., related MD concepts.
Next, we consider factual nodes (those tagged as measures) and dimensional
nodes (those either tagged as levels or descriptors). For guaranteeing the MD
design principles (see Section [Z2]), factual and dimensional nodes must be re-
lated properly. For example, factual data cannot be related to dimensional data
by means of a one-to-many (i.e., 1-*) association, as by definition, each instance
of factual data is identified by a point in each of its analysis dimensions. Di-
mensional data can only appear in the *-end of an edge when the other end is
also tagged as dimensional data. Furthermore, non-complete associations —i.e.,
accepting zeros— in the dimensional end are not allowed either, as they do not
preserve completeness.

Hence, we analyze the graph looking for not correct edges and try to fix them.
For example, if the node in the *-end of a *-1 association is tagged as dimensional
then, its counterpart should also be dimensional. If by doing so we have been able
to infer an unequivocal label, this knowledge is propagated to the rest of the AOS.
However, if we identify a meaningless conceptual relationship —i.e., when both
ends are tagged in a forbidden way— the algorithm stops and alternative analysis
scenarios are proposed. For this task, we use previously proposed techniques, as
those described in [14].

5 Multidimensional Validation

This stage validates the AOS and checks whether its concepts and associa-
tions collectively produce a data cube. If the validation fails (according to the

88 O. Romero, A. Simitsis, and A. Abell6

constraints discussed in Section Z2)), GEM proposes alternative analysis solu-
tions. Otherwise, the resulting MD schema is directly derived from the AOS.

The previous stage might have propagated some tags when tagging the AOS
associations (i.e., inferring unequivocal knowledge), but it does not guarantee
that all the concepts have a MD tag at this point. Thus, we start this stage
with a pre-process aimed at deriving new MD knowledge from non-tagged con-
cepts, and each non-tagged concept is considered to play a dimensional role or
a factual role. Furthermore, it would be possible to retag a dimensional node as
dimensional /factual node. Next, we validate if any of these tags, eventually, are
sound in a MD sense. Thus, in this step, we determine every potential MD tag-
ging that would make sense for the input f-req and we also determine how these
alternatives would affect the output schema, deriving (in some cases) interesting
analytical options that may have been overlooked by the designer.

For each possible combination of new tags, an alternative annotation is created
if the tags do not contradict the edge semantics already depicted in the AOS.
Subsequently, each of these AOS will be validated and only those that make MD
sense will be finally considered. Therefore, an f-req can produce several valid
MD taggings for the same AOS and thus, multiple MD schemas.

The validation process introduced in this stage guarantees the multidimen-
sional normal forms presented in [67] for validating the output MD schema,
and the summarizability constraints discussed in [I0]. The following algorithm
is called once for each alternative tagging generated.

1. If ! factualdata(AOS) then return notifyFail(” The requirement does not include any fact.”);
2. If lconnected(AOS) then return notifyFail(” Cartesian product is not allowed.”);
3. For each subgraphO fLevels C AOS do
(a) If cycles(subgraphO fLevels) and contradictoryMultiplicities(subgraphO f Levels)
then
i. return notifyFail(”Cycles cannot be used to select data”);
(b) If existsTwoLevelsRelatedSameFactualData(subgraphO fLevels) then
i. return notifyFail(”Non-orthogonal Analysis Levels”);
(¢) For each (ci,c2) € getToManyEdges(subgraphO f Levels) do
i. If relatedToNodesWithMeasures(AOS, cz) then
A. return notifyFail(” Aggregation Problems”);
4. For each cycle C AOS do
(a) If contradictoryMultiplicities(cycle) then
i. return notifyFail(”Cycles cannot be used to select data”);
(b) else
i. askUserForSemanticV alidation();
ii. add(AOS, newContextEdge(bottom(cycle), top(cycle), cycle));
5. For each (c1,c2) € getToManyEdges(AOS) do
(a) If relatedToNodesWithMeasures(AOS, cz) then
i. return notifyFail(” Aggregation problems between Measures”);

Step [ensures that the AOS contains factual data. Note that in our pre-
process we could have tagged nodes as factual data that do not contain mea-
sures. From here on, we distinguish between factual nodes and factual nodes with
measures. So this function returns false if all the nodes are tagged as dimensional
data. Step 2] ensures that the AOS is connected to avoid “Cartesian Product”.

The intuition behind steps[3 to [l is shown in Figure 2l Step [validates levels
subgraphs (i.e., subgraphs only containing level concepts) with regard to where
factual nodes are placed. First, every subgraph must represent a valid dimension

GEM: Requirement-Driven Generation of ETL 89

s S
— Pk ~ s __ B —
3. a3 — TN TN W \ 4 2 Y
a) ‘.f L), ; 3b) (L_ % 3.¢) Fm . “\ Vg -tblj(Fl \sz
(N AR Nt iy / ~ " [Lsgend: Bt botiom [top |
= i /-\) T ~ ;_/ F: Factual node *; Many data instances|
(L] (fL) ¢ (L . i _,’ L: Dimensional node 1: 1 data instance
./ _/‘I H ‘/.' &\ . FM: Factual node with moasure
1 1 : &
-X, AP 2){\F 4b|ll|’ Fu\ /‘T 7'L"§ F:\I @: MO compliant @ Non-MD compliant
(Gy F®i (L)" (AL IE)
2N - Ca text edge (%= 1)

Fig. 2. Graphical representation of the multidimensional validation steps

hierarchy. We must be able to identify two nodes in the level subgraph which
represent the top and bottom levels of the hierarchy (Step Bal). Two different
levels in a subgraph cannot be related to the same factual node (Step [3D).
Moreover, level - level edges raising aggregation problems in factual nodes with
measures must be forbidden (Step [Bd). Note that by convention we assume that
in every *-1 edge (c1,¢2), ¢1 corresponds to the * end of the association. Hence,
Step [B] validates the correspondences between dimensional nodes, whereas Step
M generates the path of factual nodes (MD data retrieved); i.e., it validates
cycles in the path of factual nodes to ensure that they are not used to select
data, similarly to the validation of levels cycles in [Bal Once the cycle has been
validated, the edges involved are clustered in a context edge (since cycles are
checked to correspond a correct multi-path aggregation hierarchy, i.e., a one-
to-many or one-to-one lattice) tagged with the lattice multiplicity, as shown in
Figure[2l Finally, Step[Hllooks for aggregation problems induced by factual nodes
with measures at the 1-end of a 1-* edge —either context edge or not.

6 Operation Identification

For each graph validated as a data cube in the previous stage, we launch an
ETL operation identification process, which is a semi-automatic process that
comprises three phases.

Phase I. This phase identifies operations that are needed for mapping the source
to target data stores, using the target schema produced in the previous stage.
For example, for aggregating over states, we need a location dimension at the
target site and to map it with source information about zip code, street address,
and so on.

During this phase, we identify mainly schema modification operations as fol-
lows. Selection is generated from concepts having attached a selection condition:
from slicers recorded in AOS; or when a required concept does not have any
mapped source (neither it nor its subclasses), while some of its superclasses
do have such mapping. Union appears when a required concept is not directly
mapped to the sources, but some of its subclasses are. Similarly, Intersection and
Minus are generated when a concept is not mapped but some of its superclasses
are. Join is generated for every association in the ontology; if one or both of
the association ends is not mandatory, we state it as outer. Aggregation is gen-
erated when a *-1 association is found so that there is a measure at its *-end.

90 O. Romero, A. Simitsis, and A. Abell6

Renaming is generated for each attribute in the data sources and gives to it the
name of the corresponding ontological concept. Projection is generated for each
concept and association in the ontology. Function expresses operations stated in
the requirements, like a discretization process for an attribute to be used in a
dimension or a transformation for an attribute to facilitate its interpretation as
a measure.

Starting from the AOS, we iteratively synthesize several of its nodes into one
single operation, as shown in the algorithm placed in the next page.

The ETL variable is a directed acyclic graph that tracks the ETL flow gen-
erated, whereas the findOper(ETL g, concept ¢) function looks for a node in
g, with no successors, such that it contains c. Step [l considers extraction oper-
ations like a single table access, a union, an intersection or a minus operation,
along with the corresponding selection, projection, renaming mechanisms, and
functions. Step [fuses all data that do not involve any aggregation. Hence, for
those AOS nodes related by means of 1-1 associations (i.e., identity), we join
their corresponding operations in the ETL. We also join nodes connected with
edges that do not involve aggregation (i.e., stemming from slicing requirements
and identified in Section []).

1. For each ¢ € AOS do
(a) add(ETL,newExtraction(c));

2. For each (c1,c2) € edges(AOS) do
(a) If multiplicity((ci,c2)) =”1 — 17 or not aggregationEdge((c1,c2)) then
i. 01 := findOper(ETL,c1);02 := findOper(ETL,c2);
ii. If 01 <> 02 then add(ETL,newJoin(o1, 02, getGroupingAttrs(o1)));
3. For each o € ETL and successors(ETL,0) = (0 and | outputEdges(AOS, o) |> 1 do
(a) setGroupingAttrs(o,0); e := outputEdges(AOS, o);
(b) For each (c1,c2) € (e) do
i. 02 := findOper(ETL,c2);
ii. o:=newlJoin(o, oz, getGroupingAttrs(o) U getGroupingAttrs(oz));
iii. add(ETL,o0);
(¢) add(ETL,newAggr(o, getGroupingAttrs(o));
4. While not connected(ETL) do

(a) (e1,c2) := first(U,—contains Measure(ETL) OUtPUt Edges(o));

(b) o1 := findOper(ETL,c1);02 := findOper(ETL,c2);

(c) o3 :=newdoin(o1, 02, (getGroupingAttrs(o1) \ getAttr(c1)) U getGroupingAttrs(oz));
(d) add(ETL,o03); add(ETL,newAggr(os, getGroupingAttrs(os)));

Step Bl creates the basic cubes. First, we check the already generated opera-
tions that have no successors, and whose AOS nodes have more than one edge
with the 1-end related to a concept in another ETL node without successors (ob-
serve that after step Pl only *-1 associations remain). Next, we successively join
these operations. The grouping attributes of the final operation is the union of
the grouping attributes of each joined operation. Note that a grouping operation
is generated to guarantee that data is at the appropriate granularity.

Finally, step[d connects all cubes produced, starting from those with measures,
by following the order specified by the requirements. Since each AOS edge not
used yet corresponds to an aggregation, we join the output of the operations
(following the AOS aggregation edges), substitute the grouping attributes of ¢y
by those of the new aggregation level ¢y, and generate the grouping operation
taking into account the new attributes. The choice of the aggregation function

GEM: Requirement-Driven Generation of ETL 91

depends on the requirements (there, it should be associated to a corresponding
measure and cg) or a default one is used; e.g., SUM.

Phase II. During this phase, the designer might want to refine the design pro-
duced by checking for additional information at the sources that might be useful.
(Part of this phase can be done before Phase I too.) For example, the domain
ontology might relate state with zip code and street address. If there is a source
containing information about “location” and contains both the street address
and zip code in the same field, then such information is definitely useful, but the
domain ontology cannot help. We can correct this by enriching the result with
such a mapping and producing the appropriate function(s).

Nf-regs can be exploited in a similar way. For example, a strict requirement
regarding recoverability may suggest to consider adding recovery points at points
of the flow that are generally known for being expensive (e.g., after the extraction
phase or after an expensive blocking operator [I6]). Of course the final decision
on which are the good places to add recovery points is to be taken by an optimizer
at the logical level [10].

The same holds when we work with f-reqs that involve the data itself. For
example, a requirement like “make sure that each customer is considered once”
can add a “de-duplicate customer info” operation to the design.

Phase III. The last phase complements the design with operations needed to
satisfy standard business and design needs. This task is mainly automatic and
involves typical DW operations that can be identified and added to the design
after the consolidation phase.

For example, common practices suggest replacing production keys with sur-
rogate keys. For that, the system identifies the respective production keys and
enriches the design with appropriate ‘surrogate key assignment’ operations. Sim-
ilarly, the system adds operations that take care of slowly changing dimensions
(SCDs). There are standard dimensions that are not updated very often (e.g.,
dimensions that keep structural information about the organization such as ge-
ographical location, customer information or product information). Hence, the
design can be enriched with operations that handle the update of such dimen-
sions. Possible update operations for SCDs can be: do nothing (do not propagate
changes), keep no history (overwrite old values with new data), keep history by
creating multiple records in the dimensional tables with separate keys, keep his-
tory using separate columns, keep history by storing new data to an active table
and keep (all or some of the) old values to ’history tables’, or use a hybrid ap-
proach. Of course, here we list just a few frequently used operations. The list
can go long and our method is extensible to adapt such a list.

7 Evaluation

We evaluated GEM using the TPC-DS benchmark [19]. TPC-DS provides a set
of DW tables —both facts and dimensions— along with a set of data sources.
ETL operations (or data maintenance functions according to TPC-DS) are also
provided, for maintaining fact tables and dimensions. Finally, a set of business

92 O. Romero, A. Simitsis, and A. Abell6

1.0 1
Purchase [¥ . 0.1 [Zinto_gmt |

[can_center | [market |
o1 e 1 | | -
- < Hast_login_date il
1-*Uist_shipto_date | ' . ! !
Mirst_purchase_date | 1 ship 0.
Sale * 1.0
Pr " Hast_review_date Catalog_order
|-date ¢ = Channel
-start_date Ltime k<t
_end_date Web_order open_date |4
= Warehouse -close_date
0.1 Inventory * Web_site -
1 , .
Store . ! ! Catalog
-create_date Catalog_order_lineil
Web_order_linei e —— e start_date
; 1 7 = ‘ -end_date
n 01 [catalog resturns_| 1
Purchase_linei I_D Returns 4 I i
1 og_page
B

Fig. 3. Ontology for TPC-DS data sources

queries (i.e., business requirements) exists. Having all these constructs allows us
to evaluate our method as follows. Starting only from the business queries and
the data source, we use GEM for producing the DW schema and ETL opera-
tions. Then, we compare our solutions to the design constructs provided by the
benchmark. Here, due to limited space, we show results concerning the store sales
cube (the results generalize throughout the whole benchmark though).

We worked as follows. We constructed an ontology containing all source tables,
specializations, and added some additional concepts that do not map to data
sources (see Figure[3)). Thus, we intentionally make the ontology more complex
by adding more classes to stress GEM; note, that adding more associations does
not affect GEM, since these would be pruned during AOS creation.

First, we examine the search space produced for AOS creation. Figure El
presents the number of algorithm iterations needed to converge, the total num-
ber of paths computed, the number of paths between tagged concepts (i.e., the
output), and the maximum length of the output, per business query. The re-
sults show that the search space is not exponential regarding the length of the
longest path. Indeed, although the average length of the longest path is 8, in the
worst case, our algorithm computes no more than 178 paths (24 between tagged
concepts). These findings verify the feasibility and efficiency of our approach in
real-world cases. In fact, the worst total time did not exceed 900ms. Construct-
ing AOS is the most expensive part of our method; the rest tasks are processed
fairly fast, in much less time.

Next, we evaluated the quality of our solutions (see Figure Bl). Every busi-
ness query reveals a part of the final design (tables and attributes). Frequently,
business queries reveal overlapping information. However, after a few iterations
over these queries (in fact, after the fifth query) we identified correctly all target
tables. Since numerous attributes are involved overall, identifying them requires
digging into more requirements. After processing 11 business queries, we identi-
fied almost 40% of the total attributes. However, attributes are added throughout
the whole process. For example, surrogate keys are identified after Phase III of
the ETL operation identification task.

GEM: Requirement-Driven Generation of ETL 93

. . coverage coverage
1000 - . (%))
put w 100

100 5 e 5
/W\—- e g =

/

/

4/‘\/_/“\;/"_ S0 =0
10 —a — e
= Sgw == =
¥ - = 5
=== total tables
—a—total ETL oper.

total attributes
1] o

1 2 % a & & 7 &8 9 1011 1 2 3 4 5 & 7 8 9 W 1n 1 2 3 4 5 & 7 8 9% w1

queries queries queries

Fig. 4. Space Fig.5. MD coverage Fig. 6. ETL coverage

Two observations can be made at this point. One may find tempting the fact
that the target tables are identified really fast. Thus, after a certain point of her
choice, the designer might want to stop this automatic process and start refining
the design by herself. As an aside issue, many business queries involve the same
target design constructs. This means that these constructs (e.g., tables) should
be quite popular and this information can help us in the physical design; e.g.,
for choosing appropriate indices or partitioning schemes.

Similar are the findings for the identification of ETL operations (see Figure[]).
GEM returned almost 60% of ETL operations after the completion of Phase I.
The remaining operations (not shown in the figure) are mostly surrogate key
assignments and a few SCDs, which are identified after Phase III. Therefore,
GEM identifies the complete set of ETL operations for the TPC-DS case.

8 Related Work

Various efforts have been proposed for the conceptual ETL modeling. These in-
clude approaches based on ad hoc formalisms [20], on standard languages like
UML (e.g., [@]), MDA (e.g., [I112]), BPMN [I], and on semantic Web technology
and graph transformations [I7]. Most of these works do not specifically consider
business requirements and do not describe how such requirements drive ETL de-
sign. Recent research on optimization of information integration flows proposed
techniques for incorporating such objectives into ETL design [2IT5/T62T]. How-
ever, none of the abovementioned research efforts considers synchronous creation
of MD design. In addition, commercial, off-the-shelf ETL products do not offer
functionality similar to the one described in this paper.

Many works have dealt with designing DW models; e.g., [BIBTIIT3II]], to
mention a few, but the list is long. However, in most works, it seems that the
more the process gets automated, the more the integration of requirements is
overlooked on the way. Recently, the use of ontologies was considered for facili-
tating this task [13]. However, that work aims at identifying the MD knowledge
contained in the sources and overlooks business requirements. Another approach
to MD design considers business requirements too [I4], but the f-req are con-
sidered in the form of SQL queries, so a major design task is done manually.
GEM automates this part and automatically creates such queries from f-req. In
addition, GEM is different from all previous approaches in that it identifies the
ETL operation at the same time.

94 O. Romero, A. Simitsis, and A. Abell6

9 Conclusions

We have presented GEM. A system that facilitates the (semi-)automatic genera-
tion of ETL and MD conceptual designs, starting from a set of business require-
ments and data sources. In particular, we have described how the requirements
can be validated and enriched, in order to produce an annotated ontology con-
taining correct information for both the sources and the requirements. Then, we
have shown how to use this ontology for producing the MD and ETL conceptual
designs. Finally, we have reported on our experimental findings working on the
TPC-DS benchmark. Our future plans involve extending our techniques to the
logical and physical levels, for facilitating their (semi-)automatic production.

Acknowledgements. This work has been partly supported by the Ministerio
de Ciencia e Innovacién under project TIN2008-03863.

References

1. Akkaoui, Z.E., Zimanyi, E.: Defining ETL worfklows using BPMN and BPEL. In:
DOLAP, pp. 41-48 (2009)

2. Dayal, U., Castellanos, M., Simitsis, A., Wilkinson, K.: Data Integration Flows for
Business Intelligence. In: EDBT, pp. 1-11 (2009)

3. Golfarelli, M., Maio, D., Rizzi, S.: The Dimensional Fact Model: A Conceptual
Model for Data Warehouses. 1JCIS, 215-247 (1998)

4. Golfarelli, M., Rizzi, S.: Data Warehouse Design. Modern Principles and Method-
ologies. McGraw-Hill, New York (2009)

5. Hiisemann, B., Lechtenborger, J., Vossen, G.: Conceptual Data Warehouse Mod-
eling. In: DMDW, pp. 1-11 (2000)

6. Lechtenborger, J., Vossen, G.: Multidimensional Normal Forms for Data Warehouse
Design. Information Systems, 415434 (2003)

7. Lehner, W., Albrecht, J., Wedekind, H.: Normal Forms for Multidimensional
Databases. In: SSDBM, pp. 63-72 (1998)

8. Lenz, H., Shoshani, A.: Summarizability in OLAP and Statistical Data Bases. In:
SSDBM, pp. 132-143 (1997)

9. Lujan-Mora, S., Vassiliadis, P., Trujillo, J.: Data mapping diagrams for data ware-
house design with UML. In: Atzeni, P., Chu, W., Lu, H., Zhou, S., Ling, T.-W.
(eds.) ER 2004. LNCS, vol. 3288, pp. 191-204. Springer, Heidelberg (2004)

10. Mazén, J., Lechtenborger, J., Trujillo, J.: A Survey on Summarizability Issues in
Multidimensional Modeling. DKE, 1452-1469 (2009)

11. Mazén, J.N., Trujillo, J.: An MDA Approach for the Development of Data Ware-
houses. In: DSS, pp. 41-58 (2008)

12. Munoz, L., Mazén, J.N., Trujillo, J.: Automatic Generation of ETL Processes from
Conceptual Models. In: DOLAP, pp. 33—40 (2009)

13. Romero, O., Abelld, A.: A Framework for Multidimensional Design of Data Ware-
houses from Ontologies. Data & Knowledge Engineering 69(11), 1138-1157 (2010)

14. Romero, O., Abellé, A.: Automatic Validation of Requirements to Support Multi-
dimensional Design. Data Knowl. Eng. 69(9), 917-942 (2010)

15. Simitsis, A., Wilkinson, K., Castellanos, M., Dayal, U.: QoX-driven ETL design:
Reducing the Cost of ETL Consulting Engagements. In: SIGMOD (2009)

16.

17.

18.

19.
20.

21.

22.

GEM: Requirement-Driven Generation of ETL 95

Simitsis, A., Wilkinson, K., Dayal, U., Castellanos, M.: Optimizing ETL Workflows
for Fault-Tolerance. In: ICDE, pp. 385-396 (2010)

Skoutas, D., Simitsis, A.: Ontology-Based Conceptual Design of ETL Processes for
Both Structured and Semi-Structured Data. IJSWIS, 1-24 (2007)

Song, 1., Khare, R., Dai, B.: SAMSTAR: A Semi-Automated Lexical Method for
Generating STAR Schemas from an ER Diagram. In: DOLAP, pp. 9-16 (2007)
TPC: TPC-DS specification (2010), http://www.tpc.org/tpcds/

Vassiliadis, P., Simitsis, A., Skiadopoulos, S.: Conceptual modeling for ETL pro-
cesses. In: DOLAP, pp. 14-21 (2002)

Wilkinson, K., Simitsis, A.: Designing Integration Flows Using Hypercubes. In:
EDBT (2011)

Yu, E.S.K., Mylopoulos, J.: From E-R to ”"A-R” - Modelling Strategic Actor
Relationships for Business Process Reengineering. In: ER, pp. 548-565 (1994)

http://www.tpc.org/tpcds/

ETLMR: A Highly Scalable Dimensional ETL
Framework Based on MapReduce

Xiufeng Liu, Christian Thomsen, and Torben Bach Pedersen

Dept. of Computer Science, Aalborg University
{xiliu, chr, tbp}@cs.aau.dk

Abstract. Extract-Transform-Load (ETL) flows periodically populate data ware-
houses (DWs) with data from different source systems. An increasing challenge
for ETL flows is processing huge volumes of data quickly. MapReduce is estab-
lishing itself as the de-facto standard for large-scale data-intensive processing.
However, MapReduce lacks support for high-level ETL specific constructs, re-
sulting in low ETL programmer productivity. This paper presents a scalable di-
mensional ETL framework, ETLMR, based on MapReduce. ETLMR has built-in
native support for operations on DW-specific constructs such as star schemas,
snowflake schemas and slowly changing dimensions (SCDs). This enables ETL
developers to construct scalable MapReduce-based ETL flows with very few code
lines. To achieve good performance and load balancing, a number of dimension
and fact processing schemes are presented, including techniques for efficiently
processing different types of dimensions. The paper describes the integration of
ETLMR with a MapReduce framework and evaluates its performance on large re-
alistic data sets. The experimental results show that ETLMR achieves very good
scalability and compares favourably with other MapReduce data warehousing
tools.

1 Introduction

In data warehousing, ETL flows are responsible for collecting data from different data
sources, transformation, and cleansing to comply with user-defined business rules and
requirements. Traditional ETL technologies face new challenges as the growth of in-
formation explodes nowadays, e.g., it becomes common for an enterprise to collect
hundreds of gigabytes of data for processing and analysis each day. The vast amount
of data makes ETL extremely time-consuming, but the time window assigned for pro-
cessing data typically remains short. Moreover, to adapt rapidly changing business en-
vironments, users have an increasing demand of getting data as soon as possible. The
use of parallelization is the key to achieve better performance and scalability for those
challenges. In recent years, a novel “cloud computing” technology, MapReduce 6], has
been widely used for parallel computing in data-intensive areas. A MapReduce program
is written as map and reduce functions, which process key/value pairs and are executed
in many parallel instances.

We see that MapReduce can be a good foundation for the ETL parallelization. In
ETL, the data processing exhibits the composable property such that the processing of
dimensions and facts can be split into smaller computation units and the partial results

A. Cuzzocrea and U. Dayal (Eds.): DaWaK 2011, LNCS 6862, pp. 96 , 2011.
© Springer-Verlag Berlin Heidelberg 2011

ETLMR: A Highly Scalable Dimensional ETL Framework Based on MapReduce 97

from these computation units can be merged to constitute the final results in a DW. This
complies well with the MapReduce paradigm in term of map and reduce.

ETL flows are inherently complex, which is due to the plethora of ETL-specific activ-
ities such as transformation, cleansing, filtering, aggregating and loading. Programming
of highly parallel and distributed systems is also challenging. To implement an ETL pro-
gram to function in a distributed environment is thus very costly, time-consuming, and
error-prone. MapReduce, on the other hand, provides programming flexibility, cost-
effective scalability and capacity on commodity machines and a MapReduce frame-
work can provide inter-process communication, fault-tolerance, load balancing and task
scheduling to a parallel ETL program out of the box. Further, MapReduce is a very pop-
ular framework and is establishing itself as the de-facto standard for large-scale data-
intensive processing. It is thus interesting to see how MapReduce can be applied to the
field of ETL programming.

MapReduce is, however, a generic programming model. It lacks support for high-
level DW/ETL specific constructs such as the dimensional constructs of star schemas,
snowflake schemas, and SCDs. This results in low ETL programmer productivity. To
implement a parallel ETL program on MapReduce is thus still not easy because of
the inherent complexity of ETL-specific activities such as the processing for different
schemas and SCDs.

In this paper, we present a parallel dimensional ETL framework based on MapRe-
duce, named ETLMR, which directly supports high-level ETL-specific dimensional
constructs such as star schemas, snowflake schemas, and SCDs. We believe this to be
the first paper to specifically address ETL for dimensional schemas on MapReduce.
The paper makes several contributions: We leverage the functionality of MapReduce
to the ETL parallelization and provide a scalable, fault-tolerable, and very lightweight
ETL framework which hides the complexity of MapReduce. We present a number of
novel methods which are used to process the dimensions of a star schema, snowflaked
dimensions, SCDs and data-intensive dimensions. In addition, we introduce the offline
dimension scheme which scales better than the online dimension scheme when handling
massive workloads. The evaluations show that ETLMR achieves very good scalability
and compares favourably with other MapReduce data warehousing tools.

The running example: To show the use of ETLMR, we use a running example through-
out this paper. This example is inspired by a project which applies different tests to web
pages. Each test is applied to each page and the test outputs the number of errors de-
tected. The test results are written into a number of tab-separated files, which serve as
the data sources. The data is processed to be stored in a DW with the star schema shown
in Fig. [l This schema comprises a fact table and three dimension tables. Note that
pagedim is a slowly changing dimension. Later, we will consider a partly snowflaked
(i.e., normalized) schema.

The remainder of the paper is structured as follows: Section 2] gives an overview of
ETLMR. Sections [3 and [present dimension processing and fact processing, respec-
tively. Section [3l introduces the implementation of ETLMR in the Disco MapReduce
framework, and presents the experimental evaluation. Section [@] reviews related work.
Finally, Section[7l concludes the paper and provides ideas for future work.

98 X. Liu, C. Thomsen, and T.B. Pedersen

testdim DFs
% testd | |
testname 1. Dimension processing m 2. Fact processing
testauthor _ 5 ; :
datedim pagedim g Ry @reducd |
pk| dateid pk[pageid g X
date + url_ 8 :
day teStrESUItSfaCt val!dfrom partitionicombine part\tlonicombme
month pk,fk3| testid L Va“d_to MR framework :
year " pk,fk2| dateid version :
week pk,fk1| pageid domain)
weekyear errors serverversion

Fig. 1. Star schema of the running example Fig. 2. Data flow on MapReduce

2 Overview

Fig. 2l illustrates the data flow using ETLMR on MapReduce. In ETLMR, the dimen-
sion processing is done at first in a MapReduce job, then the fact processing is done in
another MapReduce job. A MapReduce job spawns a number of parallel map/reduce
taskd] for processing dimension or fact data. Each task consists of several steps, in-
cluding reading data from a distributed file system (DFS), executing the map function,
partitioning, combining the map output, executing the reduce function and writing re-
sults. In dimension processing, the input data for a dimension table can be processed by
different processing methods, e.g., the data can be processed by a single task or by all
tasks. In fact processing, the data for a fact table is partitioned into a number of equal-
sized data files which then are processed by parallel tasks. This includes looking up
dimension keys and bulk loading the processed fact data into the DW. The processing
of fact data in the reducers can be omitted (shown by dotted ellipses in Fig. 2)) if no
aggregation of the fact data is done before it is loaded.

Algorithm [I] shows the details of the Algorithm 1. The ETL process
whole process of using ETLMR. The
operations in lines 2-4 and 6-7 are the
MapReduce steps which are responsible
for initialization, invoking jobs for pro-
cessing dimensions and facts, and return-
ing processing information. Line 1 and 5
are the non-MapReduce steps which are
used for preparing input data sets and syn-
chronizing dimensions among nodes (if
no DFS is installed).

ETLMR defines all the run-time parameters in a configuration file, including declara-
tions of dimension and fact tables, dimension processing methodologies, user-defined-
functions (UDFs) for processing data, number of mappers and reducers, and others. A
complete example is available at [9].

. Partition the input data sets;

. Read the configuration parameters and initialize;

. Read the input data and relay the data to the map function
in the map readers;

. Process dimension data and load it into dimension stores;

: Synchronize the dimensions across the clustered comput-
ers, if applicable;

. Prepare fact processing (connect to and cache dimen-
sions);

. Read the input data for fact processing and perform trans-
formations in mappers;

. Bulk load fact data into the DW.

0 N O UNE W=

! Map/reduce task denotes map tasks and reduce tasks running separately.

ETLMR: A Highly Scalable Dimensional ETL Framework Based on MapReduce 99
3 Dimension Processing

In ETLMR, each dimension table has a corresponding definition in the configuration
file. For example, we define the object for the dimension table testdim of the running
example by festdim = CachedDimension(name="testdim’, key="testid’, defaultidvalue
=-1, attributes=["testname’, 'testauthor’], lookupatts=["testname’,]). It is declared as
a cached dimension which means that its data can be temporarily kept in memory.
ETLMR also offers other dimension classes for declaring different dimension tables, in-
cluding SlowlyChangingDimension and SnowflakedDimension, each of which are con-
figured by means of a number of parameters for specifying the name of the dimension
table, the dimension key, the attributes of dimension table, the lookup attributes (which
identify a row uniquely), and others. Each class offers a number of functions for dimen-
sion operations such as lookup, insert, ensure, etc.

ETLMR employs MapReduce’s primitives map, partition, combine, and reduce to
process data. This is, however, hidden from the user who only specifies transformations
applied to the data and declarations of dimension tables and fact tables. A map/reduce
task reads data by iterating over lines from a partitioned data set. A line is first processed
by map, then by partition which determines the target reducer, and then by combine
which groups values having the same key. The data is then written to an intermediate
file (there is one file for each reducer). In the reduce step, a reduce reader reads a list of
key/values pairs from an intermediate file and invokes reduce to process the list. In the
following, we present different approaches to process dimension data.

3.1 One Dimension One Task

In this approach, map tasks process data for all dimensions by applying user-defined
transformations and by finding the relevant parts of the source data for each dimension.
The data for a given dimension is then processed by a single reduce task. We name this
method one dimension one task (ODOT for short).

The data unit moving around within ETLMR is a dictionary mapping attribute
names to values. Here, we call it a row, e.g., row={"url’:"'www.dom0.t10/p0.htm’,’size’:
12553 'serverversion’:’SomeServer/1.0°, ’downloaddate’:’2011-01-31°, lastmoddate’:
"2011-01-01", ’test’: "Test001°, ’errors’:’7’}. ETLMR reads lines from the input files
and passes them on as rows. A mapper does projection on rows to prune unnecessary
data for each dimension and makes key/value pairs to be processed by reducers. If we
define dim; for a dimension table and its relevant attributes, (ag, a1..., a,), in the data
source schema, the mapper will generate the map output, (key, value) = (dim;.name,
[1ag.a1.....a, (row)) where name represents the name of dimension table. The MapRe-
duce partitioner partitions map output based on the key, i.e., dim;.name, such that the
data of dim; will go to a single reducer (see Fig.[3). To optimize, the values with identi-
cal keys (i.e., dimension table name) are combined in the combiner before they are sent
to the reducers such that the network communication cost can be reduced. In a reducer,
a row is first processed by UDFs to do data transformations, then the processed row is
inserted into the dimension store, i.e., the dimension table in the DW or in an offline
dimension store (described later). When ETLMR does this data insertion, it has the fol-
lowing reduce functionality: If the row does not exist in the dimension table, the row

100 X. Liu, C. Thomsen, and T.B. Pedersen

is inserted. If the row exists and its values are unchanged, nothing is done. If there are
changes, the row in the table is updated accordingly. The ETLMR dimension classes
provide this functionality in a single function, dim;.ensure(row). For an SCD, this
function adds a new version if needed, and updates the values of the SCD attributes,
e.g., the validto and version.

We have now introduced the most fundamental method for dimension processing
where only a limited number of reducers can be utilized. Therefore, its drawback is that
it is not optimized for the case where some dimensions contain large amounts of data,
namely data-intensive dimensions.

(key, value)

(datedim, [{...}, ...]) (key, value)

(0, [pagedimy{...}, testdim:{...}, ...])

rows

mapper: rows
ppero mappero

rows rows
mapper; mapper:

Fig. 3. ODOT Fig. 4. ODAT

reducero

H
‘(j, [pagedimy{...}, testdim:{...}, ...])

I N
'(page'dim, {.}..D)

3.2 One Dimension All Tasks

We now describe another approach in which all reduce tasks process data for all di-
mensions. We name it one dimension all tasks (ODAT for short). In some cases, the
data volume of a dimension is very large, e.g., the pagedim dimension in the running
example. If we employ ODOT, the task of processing data for this dimension table
will determine the overall performance (assume all tasks run on similar machines). We
therefore refine the ODOT in two places, the map output partition and the reduce func-
tions. With ODAT, ETLMR partitions the map output by round-robin partitioning such
that the reducers receive equally many rows (see Fig. d)). In the reduce function, two
issues are considered in order to process the dimension data properly by the parallel
tasks:

The first issue is how to keep the uniqueness of dimension key values as the data for
a dimension table is processed by all tasks. We propose two approaches. The first one is
to use a global ID generator and use post-fixing (detailed in Section [3.4)) to merge rows
having the same values in the dimension lookup attributes (but different key values)
into one row. The other approach is to use private ID generators and post-fixing. Each
task has its own ID generator, and after the data is loaded into the dimension table,
post-fixing is employed to fix the resulting duplicated key values. This requires the
uniqueness constraint on the dimension key to be disabled before the data processing.

The second issue is how to handle concurrency problem when data manipulation
language (DML) SQL such as UPDATE, DELETE, etc. is issued by several tasks. Con-
sider, for example, the type-2 SCD table pagedim for which INSERTs and UPDATEs
are frequent (the SCD attributes validfrom and validto are updated). There are at least
two ways to tackle this problem. The first one is row-based commit in which a COM-
MIT is issued after every row has been inserted so that the inserted row will not be
locked. However, row-based commit is more expensive than transaction commit, thus,

ETLMR: A Highly Scalable Dimensional ETL Framework Based on MapReduce 101

it is not very useful for a data-intensive dimension table. Another and better solution is
to delay the UPDATE to the post-fixing which fixes all the problematic data when all
the tasks have finished.

In the following section, we propose an alternative approach for processing snow-
flaked dimensions without requiring the post-fixing.

3.3 Snowflaked Dimension Processing

In a snowflake schema, dimensions are normalized meaning that there are foreign key
references and hierarchies between dimension tables. If we consider the dependencies
when processing dimensions, the post-fixing step can be avoided. We therefore pro-
pose two methods particularly for snowflaked dimensions: level-wise processing and

hierarchy-wise processing.
testresultsfact
testresultsfact i

T

% J0b2| datedim H pagedim H testdim ‘
-E Jobzl datedim H pagedim H testdim ‘ =y
E’ é l domaindim ‘ lserverversiondim‘
‘@ Jobl l domaindim ‘ lserverversiondim‘ §
é | l a l topdomaindim ‘ l serverdim ‘
1 Jobo l topdomaindim ‘ l serverdim ‘ Jobl Jobo
Fig. 5. Level-wise processing Fig. 6. Hierarchy-wise processing

Level-wise processing. This refers to processing snowflaked dimensions in an order
from the leaves towards the root (the dimension table referred by the fact table is the
root and a dimension table without a foreign key referencing other dimension tables is
a leaf). The dimension tables with dependencies (i.e., with foreign key references) are
processed in sequential jobs, e.g., Jobl depends on Job0, and Job2 depends on Jobl
in Fig.[5l Each job processes independent dimension tables (without direct and indirect
foreign key references) by parallel tasks, i.e., one dimension table is processed by one
task. Therefore, in the level-wise processing of the running example, Job0 first pro-
cesses topdomaindim and serverdim in parallel, then Jobl processes domaindim and
serverversiondim, and finally Job2 processes pagedim, datedim and testdim. It corre-
sponds to the configuration loadorder = [("topdomaindim’, 'serverdim’), (’domaindim’,
'serverversiondim’), ('pagedim’, datedim’, ’testdim’)]. With this order, a higher level
dimension table (the referencing dimension table) is not processed until the lower level
ones (the referenced dimension tables) have been processed and thus, the referential
integrity can be ensured.

Hierarchy-wise processing. This refers to processing a snowflaked dimension in a
branch-wise fashion (see Fig.[6). The root dimension, pagedim, derives two branches,
each of which is defined as a separate snowflaked dimension, i.e., domainsf =
SnowflakedDimension([(domaindim, topdomaindim)]), and serverversionsf =
SnowflakedDimension([(serverversiondim, serverdim)]). They are processed by two
parallel jobs, JobO and Jobl, each of which processes in a sequential manner, i.e.,
topdomaindim followed by domaindim in Job0 and serverdim followed by serverver-
siondim in Jobl. The root dimension, pagedim, is not processed until the dimensions
on its connected branches have been processed. It, together with daredim and testdim,
is processed by the Job2.

102 X. Liu, C. Thomsen, and T.B. Pedersen

domaindim topdomaindim ____domaindim _ topdomaindim
taskid[domid[__dom topdomid taskid[topdomidftopdom]| ,.f domid| dom topdomid topdomid| topdom
1 www.dom1.tl1 T T ik 1 jwww.doml.tlf 1 1 T
1 2 |www.dom2.tl2 2 1 2 tI2 2 |www.dom2.tl2 2 2 12

2 1 [www.dom2.ti2| 1 2 1 tI2

pagedim _ paged_im _ _ _
taskid [pageid] url validfrom_Jvalidto|version][domid| | |pagei url validfrom [validto version|domid

T | 1 [|www.domL.Ul/p0.nim|2010-01-0] null | 1 T .dom1.1/p0.ntm|2010-01-01] null T T

1 | 2 |www.dom2.t2/p0.htm|2010-01-0] null [1 2 2 .dom2.t12/p0.htm|2010-01-01f2010-12-31] 1 2

2 | 1 |www.dom2.12/p0.htm[2010-12-31] null | 1 1 3 .dom2.112/p0.htm|2010-12-31] null 2 2

Fig. 7. Before post-fixing Fig. 8. After post-fixing

3.4 Post-fixing

As discussed in Section post-fixing is a remedy to fix problematic data in ODAT
when all the tasks of the dimension processing have finished. Four situations require
data post-fixing: 1) using a global ID generator which gives rise to duplicated values in
the lookup attributes; 2) using private ID generators which produce duplicated key val-
ues; 3) processing snowflaked dimensions (and not using level-wise or hierarchy.wise
processing) which leads to duplicated values in lookup and key attributes; and 4) pro-
cessing slowly changing dimensions which results in SCD attributes taking improper
values.

Example. Consider two map/reduce tasks, task 1 and task 2, that process the page di-
mension which we here assume to be snowflaked. Each task uses a private ID generator.
The root dimension, pagedim, is a type-2 SCD. Rows with the lookup attribute value
url="www.dom2.t12/p0.htm’ are processed by both the tasks.

Figure [l depicts the resulting data in the dimension tables where the white rows
were processed by task 1 and the grey rows were processed by task 2. Each row is
labelled with the taskid of the task that processed it. The problems include duplicate
IDs in each dimension table and improper values in the SCD attributes, validfrom,
validto, and version. The post-fixing program first fixes the topdomaindim
such that rows with the same value for the lookup attribute (i.e., url) are merged into
one row with a single ID. Thus, the two rows with topdom = tI2 are merged into
one row. The references to topdomaindim from domaindim are also updated to
reference the correct (fixed) rows. In the same way, pagedim is updated to merge the
two rows representing www.dom2.t12. Finally, pagedim is updated. Here, the post-
fixing also has to fix the values for the SCD attributes. The result is shown in Fig.[8]

The post-fixing invokes a recursive Algorithm 2. post fix(dim)

function (see Algorithm) to fix the
problematic data in the order from the
leaf dimension tables to the root dimen-
sion table. It comprises four steps: 1)
assign new IDs to the rows with du-
plicate IDs; 2) update the foreign keys
on the referencing dimension tables;
3) delete duplicated rows which have
identical values in the business key at-
tributes and foreign key attributes; and
4) fix the values in the SCD attributes

refdims «— The referenced dimensions of dim
for ref in refdims do
itr < post fix(ref)
for ((taskid, keyvalue), newkeyvalue) in itr do
Update dim set dim.key = newkeyvalue where
dim.taskid=taskid and dim.key=keyvalue
ret < An empty list
Assign newkeyvalues to dim’s keys and add
((taskid, keyvalue), newkeyvalue) to ret
if dim is not the root then
Delete the duplicate rows, which have identical values in
dim’s lookup attributes
if dim is a type-2 SCD then

Fix the values on SCD attributes, e.g., dates and version
return ret

ETLMR: A Highly Scalable Dimensional ETL Framework Based on MapReduce 103

if applicable. In most cases, it is not needed to fix something in each of the steps for a
dimension with problematic data. For example, if a global ID generator is employed, all
rows will have different IDs (such that step 1 is not needed) but they may have duplicate
values in the lookup attributes (such that step 3 is needed). ETLMR’s implementation
uses an embedded SQLite database for data management during the post-fixing. Thus,
the task IDs are not stored in the target DW, but only internally in ETLMR.

3.5 Offline Dimensions

In ODOT and ODAT, the map/reduce tasks interact with the DW’s (“online”) dimen-
sions directly through database connections at run-time and the performance is affected
by the outside DW DBMS and the database communication cost. To optimize, the off-
line dimension scheme is proposed, in which the tasks do not interact with the DW
directly, but with the distributed offline dimensions residing physically in all nodes. It
has several characteristics and advantages. First, a dimension is partitioned into mul-
tiple smaller-sized sub-dimension, and small-sized dimensions can benefit dimension
lookups, especially for a data-intensive dimension such as pagedim. Second, high per-
formance storage systems can be employed to persist dimension data. Dimensions are
configured to be fully or partially cached in main memory to speedup the lookups when
processing facts. In addition, offline dimensions do not require direct communication
with the DW and the overhead (from the network and the DBMS) is greatly reduced.
ETLMR has offline dimension implementations for one dimension one task (ODOT (of-
fline) for short) and hybrid. As the ODOT (offline) is similar to the ODOT we discussed
in Section 3.1l we now only describe the latter. Hybrid combines the characteristics of
ODOT and ODAT. In this approach, the dimensions are divided into two groups, the
most data-intensive dimension and the other dimensions. The input data for the most
data-intensive dimension table is partitioned based on the business keys, e.g., on the ur/
of pagedim, and processed by all the map tasks (this is similar to ODAT), while for the
other dimension tables, their data is processed in reducers, a reducer exclusively pro-
cessing the data for one dimension table (this is similar to ODOT). As the input data
for most data-intensive dimension is partitioned based on business keys, the rows with
identical business key values are processed within the same mapper such that when we
employ a global ID generator to generate the dimension key values, the post-fixing is
not needed. This improves the processing performance.

In the offline dimension scheme, the dimensions are expected to reside in the nodes
permanently and will not be loaded into the DW until this is explicitly requested.

4 Fact Processing

Fact processing is the second phase in ETLMR, which consists of looking up of dimen-
sion keys, doing aggregation on measures (if applicable), and loading the processed
facts into the DW. Similarly to the dimension processing, the definitions and settings of
fact tables are also declared in the configuration file. ETLMR provides the BulkFact-
Table class which supports bulk loading of facts to DW. For example, the fact table of
the running example is defined as testresultsfact=BulkFactTable(name="testresultsfact’,
keyrefs=[’pageid’, ’testid’, ’dateid’], measures=["errors’], bulkloader=UDF pgcopy,

104 X. Liu, C. Thomsen, and T.B. Pedersen

bulksize=5000000). The parameters are the fact table name, a list of the keys referenc-
ing dimension tables, a list of measures, the bulk loader function, and the size of the
bulks to load. The bulk loader is a UDF which can be configured to satisfy different
types of DBMSs.

Algorithm 3 shows the pseudocode for processing facts.

The function can be used as the map function or as the reduce function. If no aggre-
gations (such as sum, average, or count) are required, the function is configured to be
the map function and the reduce step is omit-
ted for better performance. If aggregations Algorithm 3. process fact(row)
are required, the function is configured to Require: A row from the input data and the config
be the reduce function since the aggregations ; 'ﬁ?}bh + tho fct tables defined in config

: facttbl in facttbls do

must be computed from all the data. This ap- 3: dims < the dimensions referenced by facttbl
for dim in dims do

proach is flexible and good for performance. row[dim.key] — dim.lookup(row)

Line 1 retrieves the fact table definitions in
the configuration file and they are then pro-
cessed sequentially in line 2—-8. The process-
ing consists of two major operations: 1) look
up the keys from the referenced dimension tables (line 3-5), and 2) process the fact data
by the rowhandlers, which are user-defined transformation functions used for data type
conversions, calculating measures, etc. (line 6-8). Line 9 invokes the insert function to
insert the fact data into the DW. The processed fact data is not inserted into the fact
table directly, but instead added into a configurably-sized buffer where it is kept tem-
porarily. When a buffer becomes full, its data is loaded into the DW by using the bulk
load. Each map/reduce task has a separate buffer and bulk loader such that tasks can do
bulk loading in parallel.

rowhandlers «— facttbl.rowhandlers
for handler in rowhandlers do
handler(row)

facttbl.insert(row)

RIS

S Implementation and Evaluation

ETLMR uses and extends pygrametl [[14], a Python code-based programming frame-
work, which enables high programmer productivity in implementing an ETL program.
We choose Disco [2] as our MapReduce platform since it has the best support for
Python. In the rest of this section, we measure the performance achieved by the pro-
posed methods. We evaluate the system scalability on various sizes of tasks and data
sets and compare with other business intelligence tools using MapReduce.

5.1 Experimental Setup

All experiments are conducted on a cluster of 6 nodes connected through a gigabit
switch and each having an Intel(R) Xeon(R) CPU X3220 2.4GHz with 4 cores, 4 GB
RAM, and a SATA hard disk (350 GB, 3 GB/s, 16 MB Cache and 7200 RPM). All
nodes are running the Linux 2.6.32 kernel with Disco 0.2.4, Python 2.6, and ETLMR
installed. The GlusterFS DEFS is set up for the cluster. PostgreSQL 8.3 is used for the
DW DBMS and is installed on one of the nodes. One node serves as the master and
the others as the workers. Each worker runs 4 parallel map/reduce tasks, i.e., in total
20 parallel tasks run. The time for bulk loading is not measured as the way data is
bulk loaded into a database is an implementation choice which is independent of and

ETLMR: A Highly Scalable Dimensional ETL Framework Based on MapReduce 105

outside the control of the ETL framework. To include the time for bulk loading would
thus clutter the results. We note that bulk loading can be parallelized using off-the-shelf
functionality.

5.2 Test Data

We continue to use the running example. We use a data generator to generate the test
data for each experiment. In line with Jean and Ghemawat’s assumption that MapRe-
duce usually operates on numerous small files rather than a single, large, merged file [5]],
the test data sets are partitioned and saved into a set of files. These files provide the in-
put for the dimension and fact processing phases. We generate two data sets, bigdim
and smalldim which differ in the size of the page dimension. In particular, 80 GB
bigdim data results in 10.6 GB fact data (193,961,068 rows) and 6.2 GB page dimen-
sion data (13,918,502 rows) in the DW while 80 GB smalldim data results in 12.2 GB
(222,253,124 rows) fact data and 54 MB page dimension data (193,460 rows) in the
DW. Both data sets produce 32 KB test (1,000 rows) and 16 KB date dimension data
(1,254 rows).

5.3 Scalability of Proposed Processing Methods

In this experiment, we compare the scalability and performance of the different ETLMR
processing methods. We use a fixed-size bigdim data set (20 GB), scale the number of
parallel tasks from 4 to 20, and measure the total elapsed time from start to finish.
The results for a snowflake schema and a star schema are shown in Fig.[Qland Fig.[1Q
respectively. The graphs show the speedup, computed by T odot,snow fiake/Tn Where
T4,0dot,snow flake 18 the processing time for ODOT using 4 tasks in a snowflake schema
and T, is the processing time when using n tasks for the given processing method.

We see that the overall time used for the star schema is less than for the snowflake
schema. This is because the snowflake schema has dimension dependencies and hier-
archies which require more (level-wise) processing. We also see that the offline hybrid
scales the best and achieves almost linear speedup. The ODAT in Fig. [0 behaves simi-
larly. This is because the dimensions and facts in offline hybrid and ODAT are processed
by all tasks which results in good balancing and scalability. In comparison, ODOT, oft-
line ODOT, level-wise, and hierarchy-wise do not scale as well as ODAT and hybrid
since only a limited number of tasks are utilized to process dimensions (a dimension is
only processed in a single task). The offline dimension scheme variants outperform the
corresponding online ones, e.g., offline ODOT vs. ODOT. This is caused by 1) using
a high performance storage system to save dimensions on all nodes and provide in-
memory lookup; 2) The data-intensive dimension, pagedim, is partitioned into smaller
chunks which also benefits the lookup; 3) Unlike the online dimension scheme, the off-
line dimension scheme does not communicate directly with the DW and this reduces
the communication cost considerably. Finally, the results show the relative efficiency
for the optimized methods which are much faster than the baseline ODOT.

5.4 System Scalability

In this experiment, we evaluate the scalability of ETLMR by varying the number of
tasks and the size of the data sets. We select the hybrid processing method, use the

106 X. Liu, C. Thomsen, and T.B. Pedersen

23 [4. Offline. Hybrid ... p 23 [4. Offiine Hybrid 23 | -®. Compared wint 1-task ETLMR .|
oy L2 Lovelwise] .y | opAT o1 | #. Compared with pygramel
= Bl Hierarchy-wise = *—% Offline ODOT
3 19 % Offine ODOT: b 2 191 e~e OBOT 19
£ 17 - e=# 0bDOT b 7 : 17

snam flake

Speedup, T odot sno
Speedup, T nint

e
: i

3%./*/‘;””/‘
= , ,

h | |] i i 1]
4 8 12 16 20 4 8 12 16 20 4 8 12 16 20
The number of tasks, n The number of tasks, n The number of tasks, n

Fig.9. Parallel ETL for Fig.10. Parallel ETL for star Fig.11. Speedup with increas-
snowflake schema, 20 GB schema, 20 GB ing tasks, 80 GB

offline dimension scheme, and conduct the testing on a star schema, as this method
not only can process data among all the tasks (unlike ODOT in which only a limited
number of tasks are used), but also showed the best scalability in the previous exper-
iment. In the dimension processing phase, the mappers are responsible for processing
the data-intensive dimension pagedim while the reducers are responsible for the other
two dimensions, datedim and testdim, each using only a single reducer. In the fact pro-
cessing phase, no reducer is used as no aggregation operations are required.

We first do two tests to get comparison baselines by using one task (named /-task
ETLMR) and (plain, non-MapReduce) pygrametl, respectively. Here, pygrametl also
employs 2-phase processing, i.e., the dimension processing is done before the fact pro-
cessing. The tests are done on the same machine with a single CPU (all cores but one
are disabled). The tests process 80 GB bigdim data. We compute the speedups by using
T1/T,, where T; represents the elapsed time for 1-task ETLMR or for pygrametl, and
T, the time for ETLMR using n tasks. Fig. [[1] shows that ETLMR achieves a nearly
linear speedup in the number of tasks when compared to 1-task ETLMR (the line on the
top). When compared to pygrametl, ETLMR has a nearly linear speedup (the lower line)
as well, but the speedup is a little lower. This is because the baseline, 1-task ETLMR,
has a greater value due to the overhead from the MapReduce framework.

To learn more about the details of the speedup, we break down the execution time
of the slowest task by reference to the MapReduce steps when using the two data sets
(see Table [T). As the time for dimension processing is very small for smalldim data,
e.g., 1.5 min for 4 tasks and less than 1 min for the others, only its fact processing
time is shown. When the bigdim data is used, we can see that partitioning input data,
map, partitioning map output (dims), and combination (dims) dominate the execution.
More specifically, partitioning input data and map (see the Part.Input and Map func.
columns) achieve a nearly linear speedup in the two phases. In the dimension process-
ing, the map output is partitioned and combined for the two dimensions, datedim and
testdim. Also here, we see a nearly linear speedup (see the Part. and Comb. columns).
As the combined data of each is only processed by a single reducer, the time spent on
reducing is proportional to the size of data. However, the time becomes very small since
the data has been merged in combiners (see Red. func. column). The cost of post-fixing
after dimension processing is not listed in the table since it is not required in this case

ETLMR: A Highly Scalable Dimensional ETL Framework Based on MapReduce 107

Table 1. Execution time distribution, 80 GB (min.)

Testing data Phase Task Part. Map Part. Comb. Red. Others Total

Num Input func. func.
4 4743 17897 8.56 2457 132 0.1 260.95
dims 8 2558 9098 4.84 1297 118 0.1 135.65
12 1721 60.86 3.24 8.57 1.41 0.1 91.39
bigdim data 16 12.65 4738 250 6.54 1.56 0.1 70.73
20 10.19 3641 1.9 5.21 1.32 0.1 55.22
(results in 4 4720 18324 0.0 0.0 0.0 0.1 230.44
10.6GB facts) facts 8 2432 9248 0.0 0.0 0.0 0.1 116.80
12 16.13 6550 0.0 0.0 0.0 0.1 81.63
16 1212 5140 0.0 0.0 0.0 0.1 63.52
20 9.74 4092 0.0 0.0 0.0 0.1 50.66
4 4985 21120 0.0 0.0 0.0 0.1 261.15
smalldim data facts 8 2523 10620 0.0 0.0 0.0 0.1 131.53
12 17.05 7121 0.0 0.0 0.0 0.1 88.36
(results in 16 1270 5323 0.0 0.0 0.0 0.1 66.03
12.2GB facts) 20 10.04 4244 0.0 0.0 0.0 0.1 52.58

500

500

T T T T
X=X 4tasks 4—4 16 tasks %=X 4tasks 4—4# 16 tasks
*— B8tasks A—A 20 tasks *—* 8tasks A—A 20 tasks

Bl 12tasks Bl 12 task
oo s A 400 |- ™. 121asks

400

300 e

Processing time (min.)
Processing time (min.)

020 46 éU 80 O20 4‘0 66 80
Data size (GB) Data size (GB)
Fig.12. Proc. time when scaling up Fig.13. Proc. time when scaling up
bigdim data smalldim data

where a global key generator is employed to create dimension IDs and the input data is
partitioned by the business key of the SCD pagedim (see section[3.4).

In the fact processing, the reduce function needs no execution time as there is no
reducer. The time for all the other parts, including map and reduce initialization, map
output partitioning, writing and reading intermediate files, and network traffic, is rel-
atively small, but it does not necessarily decrease linearly when more tasks are added
(Others column). To summarize (see Total column), ETLMR achieves a nearly linear
speedup when the parallelism is scaled up, i.e., the execution time of 8 tasks is nearly
half that of 4 tasks, and the execution time of 16 tasks is nearly half that of 8 tasks.

We now proceed to another experiment where we for a given number of tasks size
up the data sets from 20 to 80 GB and measure the elapsed processing time. Fig.[12and
Fig. [13] show the results for the bigdim and smalldim data sets, respectively. It can be
seen that ETLMR scales linearly in the size of the data sets.

108 X. Liu, C. Thomsen, and T.B. Pedersen

5.5 Comparison with other Data Warehousing Tools

There are some MapReduce data warehousing tools available, including Hive [15116],
Pig [10] and Pentaho Data Integration (PDI) [3]. Hive and Pig both offer data stor-
age on the Hadoop distributed file system (HDFS) and scripting languages which have
some limited ETL abilities. They are both more like a DBMS instead of a full-blown
ETL tool. Due to the limited ETL features, they cannot process an SCD which requires
UPDATE:s, something Hive and Pig do not support. It is possible to process star and
snowflake schemas, but it is complex and verbose. To load data into a simplified version
of our running example (with no SCDs) require 23 statements in Pig and 40 state-
ments in Hive. In ETLMR — which in contrast to Pig and Hive is dimensional — only
14 statements are required. ETLMR can also support SCDs with the same number of
statements, while this would be virtually impossible to do in Pig and Hive. The details
of the comparison are available in the full paper [9].

PDI is an ETL tool and provides Hadoop support in its 4.1 GA version. However,
there are still many limitations with this version. For example, it only allows to set a
limited number of parameters in the job executor, customized combiner and mapper-
only jobs are not supported, and the transformation components are not fully supported
in Hadoop. We only succeeded in making an ETL flow for the simplest star schema,
but still with some compromises. For example, a workaround is employed to load the
processed dimension data into the DW as PDI’s fable output component repeatedly
opens and closes database connections in Hadoop such that performance suffers.

In the following, we compare how PDI and ETLMR perform when they process the
star schema (with page as a normal dimension, not an SCD) of the running example. To
make the comparison neutral, the time for loading the data into the DW or the HDFS is
not measured, and the dimension lookup cache is enabled in PDI to achieve a similar
effect of ETLMR using offline dimensions. Hadoop is configured to run 4 parallel task
trackers in maximum on each node, and scaled by adding nodes horizontally. The task
tracker JVM option is set to be -Xmx256M while the other settings are left to the default.
Table 2] shows the time spent on processing 80 GB smalldim data when scaling up the
number of tasks. As shown, ETLMR is significantly faster than PDI for Hadoop in
processing the data. Several reasons are found for the differences. First, compared with
ETLMR, the PDI job has one more step (the reducer) in the fact processing as its job
executor does not support a mapper-only job. Second, by default the data in Hadoop
is split which results in many tasks, i.e., 1192 tasks for the fact data. Thus, longer
initialization time is observed. Further, some transformation components are observed
to run with low efficiency in Hadoop, e.g., the components to remove duplicate rows
and to apply JavaScript.

Table 2. Time for processing star schema (no SCD), 80 GB smalldim data set, (min.)

Tasks 4 8 12 16 20
ETLMR 246.7 124.4 83.1 63.8 46.6
PDI 975.2 469.7 317.8 232.5 199.7

ETLMR: A Highly Scalable Dimensional ETL Framework Based on MapReduce 109

6 Related Work

We now compare ETLMR to other parallel data processing systems using MapReduce,
and parallel DBMSs. In addition, we study the current status of parallel ETL tools.
MapReduce is a framework well suited for large-scale data processing on clustered com-
puters. However, it has been criticized for being too low-level, rigid, hard to maintain
and reuse [10/15]]. In recent years, an increasing number of parallel data processing
systems and languages built on the top of MapReduce have appeared. For example, be-
sides Hive and Pig (discussed in Section[3.3)), Chaiken et al. present the SQL-like lan-
guage SCOPE [4] on top of Microsoft’s Cosmos MapReduce and distributed file system.
Friedman et al. introduce SQL/MapReduce [7]], a user-defined function (UDF) frame-
work for parallel computation of procedural functions on massively-parallel RDBMSs.
These systems or languages vary in the implementations and functionalities provided,
but overall they give good improvements to MapReduce, such as high-level languages,
user interfaces, schemas, and catalogs. They process data by using query languages, or
UDFs embedded in the query languages, and execute them on MapReduce. However,
they do not offer direct constructs for processing star schemas, snowflaked dimensions,
and slowly changing dimensions. In contrast, ETLMR runs separate ETL processes on
a MapReduce framework to achieve parallelization and ETLMR directly supports ETL
constructs for these schemas.

Another well-known distributed computing system is the parallel DBMS which first
appeared two decades ago. Today, there are many parallel DBMSs, e.g., Teradata, DB2,
Objectivity/DB, Vertica, etc. The principal difference between parallel DBMSs and
MapReduce is that parallel DBMSs run long pipe-lined queries instead of small inde-
pendent tasks as in MapReduce. The database research community has recently com-
pared the two classes of systems. Pavlo et al. [[L1], and Stonebraker et al. [13]] conduct
benchmarks and compare the open source MapReduce implementation Hadoop with
two parallel DBMSs (a row-based and a column-based) in large-scale data analysis. The
results demonstrate that parallel DBMSs are significantly faster than Hadoop, but they
diverge in the effort needed to tune the two classes of systems. Dean et al. [5] argue
that there are mistaken assumptions about MapReduce in the comparison papers and
claim that MapReduce is highly effective and efficient for large-scale fault-tolerance
data analysis. They agree that MapReduce excels at complex data analysis, while par-
allel DBMSs excel at efficient queries on large data sets [[13]].

In recent years, ETL technologies have started to support parallel processing. Infor-
matica PowerCenter provides a thread-based architecture to execute parallel ETL ses-
sions. Informatica has also released PowerCenter Cloud Edition (PCE) in 2009 which,
however, only runs on a specific platform and DBMS. Oracle Warehouse Builder (OWB)
supports pipeline processing and multiple processes running in parallel. Microsoft SQL
Server Integration Services (SSIS) achieves parallelization by running multiple threads,
multiple tasks, or multiple instances of a SSIS package. IBM InfoSphere DataStage
offers a process-based parallel architecture. In the thread-based approach, the threads
are derived from a single program, and run on a single (expensive) SMP server, while
in the process-based approach, ETL processes are replicated to run on clustered MPP
or NUMA servers. ETLMR differs from the above by being open source and based
on MapReduce with the inherent advantages of multi-platform support, scalability on

110 X. Liu, C. Thomsen, and T.B. Pedersen

commodity clustered computers, light-weight operation, fault tolerance, etc. ETLMR is
also unique in being able to scale automatically to more nodes (with no changes to the
ETL flow itself, only to a configuration parameter) while at the same time providing au-
tomatic data synchronization across nodes even for complex structures like snowflaked
dimensions and SCDs. We note that the licenses of the commercial ETL packages pre-
vent us from presenting comparative experimental results.

7 Conclusion and Future Work

As business intelligence deals with continuously increasing amounts of data, there is
an increasing need for ever-faster ETL processing. In this paper, we have presented
ETLMR which builds on MapReduce to parallelize ETL processes on commodity com-
puters. ETLMR contains a number of novel contributions. It supports high-level ETL-
specific dimensional constructs for processing both star schemas and snowflake schemas,
SCDs, and data-intensive dimensions. Due to its use of MapReduce, it can automati-
cally scale to more nodes (without modifications to the ETL flow) while it at the same
time provides automatic data synchronization across nodes (even for complex dimen-
sion structures like snowflakes and SCDs). Apart from scalability, MapReduce also
gives ETLMR a high fault-tolerance. Further, ETLMR is open source, light-weight,
and easy to use with a single configuration file setting all run-time parameters. The re-
sults of extensive experiments show that ETLMR has good scalability and compares
favourably with other MapReduce data warehousing tools.

ETLMR comprises two data processing phases, dimension and fact processing. For
dimension processing, the paper proposed a number of dimension management schemes
and processing methods in order to achieve good performance and load balancing. The
online dimension scheme directly interacts with the target DW and employs several di-
mension specific methods to process data, including ODOT, ODAT, and level-wise and
hierarchy-wise processing for snowflaked dimensions. The offline dimension scheme
employs high-performance storage systems to store dimensions distributedly on each
node. The methods, ODOT and hybrid allow better scalability and performance. In the
fact processing phase, bulk-load is used to improve the loading performance.

Currently, we have integrated ETLMR with the MapReduce framework, Disco. In the
future, we intend to port ETLMR to Hadoop and explore a wider variety of data storage
options. In addition, we intend to implement dynamic partitioning which automatically
adjusts the parallel execution in response to additions/removals of nodes from the clus-
ter, and automatic load balancing which dynamically distributes jobs across available
nodes based on CPU usage, memory, capacity and job size through automatic node
detection and algorithm resource allocation.

References

1. wiki.apache.org/hadoop/PoweredBy (June 06, 2011)
2. http://www.discoproject.org/ (June 06, 2011)
3. http://www.pentaho.com (June 06, 2011)

wiki.apache.org/hadoop/PoweredBy
http://www.discoproject.org/
http://www.pentaho.com

10.

11.

12.

13.

14.

15.

16.

17.

ETLMR: A Highly Scalable Dimensional ETL Framework Based on MapReduce 111

Chaiken, R., Jenkins, B., Larson, P., Ramsey, B., Shakib, D., Weaver, S., Zhou, J.: SCOPE:
easy and efficient parallel processing of massive data sets. PVLDB 1(2), 1265-1276 (2008)
Dean, J., Ghemawat, S.: MapReduce: A Flexible Data Processing Tool. CACM 53(1), 72-77
(2010)

Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters. In: Proc.
of OSDI, pp. 137-150 (2004)

Friedman, E., Pawlowski, P., Cieslewicz, J.: SQL/MapReduce: A Practical Approach to
Self-describing, Polymorphic, and Parallelizable User-defined Functions. PVLDB 2(2),
1402-1413 (2009)

Kovoor, G., Singer, J., Lujan, M.: Building a Java MapReduce Framework for Multi-core
Architectures. In: Proc. of MULTIPROG, pp. 87-98 (2010)

Liu, X., Thomsen, C., Pedersen, T.B.. ETLMR: A Highly Scalable Dimensional
ETL Framework Based on MapReduce. In: DBTR-29. Aalborg University (2011),
www.Cs .aau.dk/DBTR

Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig Latin: A Not-so-foreign
Language for Data Processing. In: Proc. of SIGMOD, pp. 1099-1110 (2008)

Pavlo, A., Paulson, E., Rasin, A., Abadi, D., DeWitt, D., Madden, S., Stonebraker, M.:
A Comparison of Approaches to Large-scale Data Analysis. In: Proc. of SIGMOD,
pp. 165-178 (2009)

Ranger, C., Raghuraman, R., Penmetsa, A., Bradski, G., Kozyrakis, C.: Evaluating MapRe-
duce for Multi-core and Multiprocessor Systems. In: Proc. of HPCA, pp. 13-24 (2007)
Stonebraker, M., Abadi, D., DeWitt, D., Madden, S., Paulson, E., Pavlo, A., Rasin, A.:
MapReduce and Parallel DBMSs: friends or foes? CACM 53(1), 64-71 (2010)

Thomsen, C., Pedersen, T.B.: pygrametl: A Powerful Programming Framework for Extract-
Transform-Load Programmers. In: Proc. of DOLAP, pp. 49-56 (2009)

Thusoo, A., Sarma, J., Jain, N., Shao, Z., Chakka, P., Anthony, S., Liu, H., Wyckoff, P,
Murthy, R.: Hive: A Warehousing Solution Over a Map-reduce Framework. PVLDB 2(2),
1626-1629 (2009)

Thusoo, A., Sarma, J., Jain, N., Shao, Z., Chakka, P., Zhang, N., Anthony, S., Liu, H., Murthy,
R.: Hive — A Petabyte Scale Data Warehouse Using Hadoop. In: Proc. of ICDE, pp. 996-1005
(2010)

Yoo, R., Romano, A., Kozyrakis, C.: Phoenix Rebirth: Scalable MapReduce on a Large-scale
Shared-memory System. In: Proc. of IISWC, pp. 198-207 (2009)

www.cs.aau.dk/DBTR

Complementing Data in the ETL Process

Livia de S. Ribeiro!, Ronaldo R. Goldschmidt?, and Maria Cldudia Cavalcanti'

!Instituto Militar de Engenharia
Praca General Tiburcio, 80, Praia Vermelha, Urca - 22290-270 - Rio de Janeiro, RJ
2 Universidade Federal Rural do Rio de Janeiro
Av. Governador Roberto Silveira S/No. Moqueta - 26.020-740, Nova Iguacu, RJ
{liviaribeirol4,ronaldo.rgold,maryoko}@gmail.com

Abstract. Data quality in a typical Data Warehouse (DW) environment is
critical. The process of transferring data from different sources into the DW
environment, known as ETL (Extraction, Transformation, and Load), usually
takes care of improving the data quality. However, it is not unusual to identify
null values in a DW fact table during the ETL process, and this may impact
negatively on the accuracy of data analyses results. Data imputation' techniques
are commonly used for dealing with the missing value problem. Some of them
observe table values to generate a new value for the missing one. This paper
proposes a new strategy to address the missing data problem on the ETL
process. The idea is to enrich the DW fact table with dimension attributes, in
order to reach better imputation results. The strategy uses the k-NN algorithm
as the imputation approach. Tests performed on an implemented prototype
showed promising results with respect to imputation quality.

Keywords: Data Warehouse, Data Imputation, Data Provenance.

1 Introduction

The constant advances in Information Technology have made it possible to produce
systems that store and integrate huge amounts of data emerged from different sources.
Known as Data Warehouses (DW), such systems have been used in many
organizations as important decision support devices. According to Inmon [7], a DW is
“a subject oriented, nonvolatile, integrated, time variant collection of data in support
of management's decisions”. Each data in a DW is attached to a timestamp, which
enables to observe tendencies using appropriate tools. In general, DW’s environments
provide resources for trend detection as well as other data analysis.

A usual practice [8] recommends that data in DW should be organized according to
the star schema. The star schema consists of a few fact tables referencing any number
of dimension tables. Fact tables hold the main data, while the usually smaller
dimension tables describe each value of a dimension and can be joined to fact tables

! The term imputation is largely used in the literature about missing data in the artribution
sense, i.e., meaning “to give a notional value to goods or services when the real value is
unknown”.

A. Cuzzocrea and U. Dayal (Eds.): DaWaK 2011, LNCS 6862, pp. 112 2011.
© Springer-Verlag Berlin Heidelberg 2011

Complementing Data in the ETL Process 113

as needed. Generally the fact table contains qualitative attributes (linked to dimension
tables) and metric attributes. As the name suggests, qualitative attributes contain
categorical data. Metric attributes are quantitative ones. For example, in a typical DW
concerning sales of a megastore, supplier, product and date would be qualitative
attributes and number of items sold would be a metric attribute.

Corporative data loaded in DW usually come from different and distributed
sources. As a consequence, data can present many problems such as: misspelling,
illegal values, different domains, missing values and other inconsistencies. These
problems can seriously harm data analysis. For example, if missing values are not
treated, important facts may not be taken into consideration in the analysis process.

To overcome these problems, data must be submitted into a process called ETL
(Extraction, Transformation and Load). The ETL process is generally implemented by
a set of software tools properly designed for this task. In the extraction phase, data is
captured from multiple sources. Different sources may need different and possibly
specific extraction tools. Such tools must periodically capture information from
specific environments. Historical information metadata may be collected within data
itself. Data’s origin and time of extraction are examples of historical metadata. The
theory that aggregates historical information to data itself is called data provenance in
databases [2]. Hence, every DW naturally deals with data provenance once its data is
associated with historical facts.

The transformation phase is the one responsible for data cleaning which consists of
detecting and correcting the mentioned problems. In particular, this phase includes
data imputation that detects and corrects missing values. Data imputation substitutes
missing values by new values inferred from present data. In this scenario, quality of
inference is a matter of great importance, once good inference may lead to better and
more precise data analysis.

Although there are many preprocessing approaches to perform data imputation,
including machine learning based ones [3][5][11][15], none of them use provenance
data to improve quality of imputation. In DW, such use becomes possible once fact
tables may be enriched with data from dimension tables. Additionally, DW 2.0
reveals an increase tendency to integrate data and metadata.

So, the present work has as its main goal to describe the development of a tuple
imputation strategy for the fact table in which the metric attributes may have null
values. We assume these null values emerge from the cleaning phase of the ETL
process, where a set of dimension values combinations that should have been present
are said to be missing. Dimension attributes can be seen as provenance attributes, and
could be used to enrich the fact table in order to reach better imputation results.

This paper is organized in more six sections. Section 2 provides some background
on data provenance and imputation techniques. Related works are described in section
3. Sections 4 and 5 respectively present the proposed approach and the developed
prototype. Experiments to confirm the influence of data provenance in the
improvement of data imputation are shown in section 6. Section 7 concludes the paper
and depicts alternatives of future work.

2 http://www.information-management.com/issues/20060401/1051111-1.html

114 L. de S. Ribeiro, R.R. Goldschmidt, and M.C. Cavalcanti

2 Background Knowledge

Data quality and accuracy are important features in data analysis. Poor quality or
imprecise data may lead to bad decisions in any scenario. Historical information about
data such as date, author and place of creation are examples of metadata that help
validate data. According to Buneman et al. [2], the theory that aggregates historical
information to data itself is called data provenance in databases. Data provenance tries
to answer the following questions: “How, when, why and where was data created or
changed?” and “Who created or changed it?”.

Data provenance is represented by metadata [14]. Specifically in DW s scenarios,
data provenance is naturally used once their data is associated with historical facts. It
may allow users to identify and correct information failures and errors [12].
Therefore, data provenance may be used to provide data reliability and quality.

Relational database tables of real applications usually present missing data in their
attributes/columns. Missing values may occur in only one attribute (univariate
problem) or in two or more attributes (multivariate problem) of a table.

Data imputation methods try to fulfill databases by substituting missing values
with new data. The new data depend upon the technique used by the imputation
method. According to [11], certain imputation methods try to cluster tuples based on
data similarity and then use the data cluster (local) to generate the values to replace
the missing ones. The k-NN (k-Nearest Neighbors) algorithm is an important and
representative local method for data imputation. In spite of its simplicity, this method
has been successfully used in many works on machine learning based data imputation
[11][5][3]. The algorithm general idea works as follows:

e It receives a new tuple with missing values, possibly in two or more attributes;

e [t retrieves from database the k most similar tuples without missing values in the
same attributes of the new tuple.

e The method uses the retrieved tuples to fill the gaps.

Some important considerations about the k-NN must be made. (i) Treatment depends
on attributes’ data type: qualitative or quantitative. (ii) Tuple similarity is calculated
by a distance measure. Euclidean distance (eq. 1) is a very popular distance used by
data imputation when the database only contains quantitative attributes, while the
mixed types distance (eq. 2) is a good alternative when database contains both
quantitative and qualitative attributes [5].

d(i,j) = (i = 1)+ (X2 = %2)2 + o+ (Xiy — Xj)? (H

Where d (i, j) is the distance value, x is the set of attributes of a database, i = (x;; , X2
» Xi3 5o Xin) a0d J = (X1, Xj3 , Xj3 ..., Xj) are the tuples to be compared.

p s
=10 d;j

., f=1
dij) = ——/——7— (2)
62)
z:}z:=15ij
B — 0 i _ - o ") _
Where 6L.j =0, if ((xiyf or xjr are missing) or (x;r = x;r = 0)) and 6L.j =1,
otherwise, dL(Jf) depends on data type:

Complementing Data in the ETL Process 115

(a) Quantitative attributes

Yir — Xjr ©)
maxpXpr — MiNpXpr
Where maxyxpr and minyxyr are maximum and minimum values for attribute f,

respectively.
(b) Qualitative attributes

d?f) =0 ifx;y = x;p or d¥ = 1, otherwise. 4)

tj

(iii) Average of present values in the k tuples is a technique frequently used to
calculate the new values to replace the missing ones. It is used when attributes are
quantitative. Mode is a statistical measure frequently used when the attribute with
missing values is qualitative. Although both average and mode based imputation
techniques can introduce biased data, their results have been used in many related
works [15][11][5][3], as the baseline to evaluate other data imputation methods.

3 Related Work

As we said before, data quality is a central issue for DW environments. There are
works [12] [1] that propose applying data cleaning techniques before loading data into
these environments. Most of these works focus on the problem of data duplicities,
which means the occurrence of two data items that represent the same real world
object. They propose techniques for data deduplication, i.e., the elimination of such
data duplicities. Missing data is also a problem in large databases, such as DW
databases [9]. However, there are just some works [6] [13] that provide solutions for
complementing data in a DW.

In Hong et al. [6], the authors describe the design of a DW database for storing
Quick Access Recorder (QAR) data. This database is used for the analysis of aircraft
flights of a specific company. They propose a framework to manage the ETL process,
which first extracts data from several sources, then identifies absent values in these
data, inputs new values, removes duplicated data, and finally, consolidates data. Data
imputation occurs before the extracted data is loaded into the fact table, and it is
performed according to three approaches. The first one is a manual imputation,
usually when the data is already known, but it is missing in the database for some
reason. The second one uses a supervised imputation method based on linear
regression technique. The third one, also supervised, uses a linear interpolation
technique. It is not clear though, when to use each technique. Moreover, besides the
fact that this approach was designed for a specific domain (aircraft companies), it
does not take into account category or dimension values, focusing only on numeric
and continuous values. According to the authors, their approach showed some good
results, meaning that data imputation had a positive impact on the quality of the
analysis over then QAR data.

Another related work [13] focus on the imputation of semi-continuous values,
defined as measure attributes that can often be zero for some combinations of
dimensions. The authors propose a two-part model to fill in these values based on the

116 L. de S. Ribeiro, R.R. Goldschmidt, and M.C. Cavalcanti

idea of dividing the fact table into smaller cubes (called chunks), and then proceed
with the imputation, using techniques such as logistic regression models (to identify
which missing positions have zero or non-zero measure values) and loglinear models
(to estimate and fulfill missing data) constructed over known values in dataset. They
also combine forward variable selection and backward variable elimination
algorithms [4] to implement a heuristic strategy to select attributes for logistic model.
As imputation occurs after data consolidation, detailed information about the
aggregated values cannot be obtained. The authors recommend future investigation in
alternatives to fulfill missing values based on data decomposition. Another option
would be to impute missing values before data aggregation.

Although many machine learning based data imputation approaches have been
developed [3][S][11][15], as far as we could investigate, we found no similar work
that could address the missing value problem in the context of the ETL process,
taking into account the dimension attributes, as a way of getting better results on data
imputation.

4 A Strategy for Data Imputation during the ETL Process

The strategy described in this section is a mechanism for imputation of tuples where
there are missing values, taking into account data provenance present in a DW. The
proposed mechanism intends to play an important role in the context of the ETL
cleaning task. The idea is to apply this mechanism after data integration and some
initial cleaning actions (such as treating missing values at the dimension tables), while
data load into a fine grained multidimensional schema is already in course, but not yet
consolidated. Also, it assumes missing value tuples are already identified, i.e.,
measure attributes for some dimension combination that should exist according to
some business rule. The mechanism uses data provenance to enrich the fact table
aiming at a better characterization of tuples, which may lead to a more accurate
similarity calculation, and consequently, may provide better imputation results. In the
context of this work, provenance data used is obtained in the dimension tables, which
naturally refers to the context of each fact. Also, in this proposal, we focus on the
imputation of numeric measure attributes of the fact table only.

idProd idSupp idClient idTime saleqty
1 2 4 2 ?7?
1 3 3 4 50
5 1 5 3 23
5 4 3 1 ??
4 1 2 3 30

Fig. 1. Sales Fact Table Example

In order to explain the dynamics of the proposed strategy, we take a DW typical
example of a Sales fact table (Figure 1). In this example, the measure attribute
saleqgty represents the quantity sold for the combination of a product (idProd), a
supplier (1dSupp), a client (1idClient), in a given date (1dTime). The idea of the

Complementing Data in the ETL Process 117

proposed strategy is to depart from a fact table that presents some missing values at a
numeric measure attribute, and enrich it with dimension attributes. In the example of
Figure 1, the salegty measure attribute presents some missing values (??). Figure 2
presents the enriched fact table, where each tuple contains also values that came from
the corresponding dimension tuple, characterizing each fact tuple in the context of
dimension categories such as the brand of a product, or the region of a supplier, or
even the season of the sale time. Without this information, the imputation would be
calculated just according to the dimension foreign key value.

Keys and metrics Product Di ion Attributes Supplier Di ion Attributes
idProd idSupp idTime idClient saleqty | name | brand | type | size | name phone area region
2 4 2 7 Part1 Sun A 15 Supp2 2222-2222 Area2 | Southeast
1 3 3 4 50 Partl Sun A 15 Supp3 4545-4545 Area3 North
5 1 5 3 23 Part5 Mars B 30 Suppl 3333-3333 Areal | Northeast
5 4 3 1 7? Part5 Mars B 30 Supp4 8675-4333 Area4 South
4 1 2 3 30 Part4 Jupiter C 10 Suppl 3333-3333 Areal | Northeast
Time Di ion Attributes Client Di ion Attributes
day month | year season holiday | name2 region2 segMarketing
1 4 2008 autumn 0 Cli2 Northeast C
25 12 2009 | summer 1 Cli4 North A
12 10 2009 spring 1 Cli3 Northeast A
25 12 2009 | summer 1 Clil South A
13 4 2009 autumn 0 Cli3 Northeast A

Fig. 2. Enriched Sales Fact Table

In the example of Figure 2, for the dimension id combination <1,2,4,2>, note that
the sale happened in the autumn, similarly to the sale for the combination <4,1,2,3>.
If the imputation technique used is based on similar tuples, then these tuples were not
supposed to be similar. However, if we analyze the enriched tuples it would be
possible to identify a relevant similarity with respect to the season of the year (both
sales happened in the autumn season). This means that even though fact tuples may
have different key value combinations, they could be evaluated as similar based on
the enriched attribute values.

The proposed imputation strategy is performed in four main steps: (i) attribute
combination definition, (ii) training set preparation, (iii) performance calculation for
combinations, (iv) real imputation. In (i) a manual selection of attributes to be
considered for imputation takes place, and then, based on some heuristics, we form an
attribute combination set. Each combination is a subset of attributes of the enriched
fact table. The training set is prepared based on the enriched fact table. A new training
fact table is created, but without the missing value tuples. In this training table, for
randomly selected existing tuples, new missing values are created, i.e., we substitute
known values of the measure attribute in focus for null values. Once (ii) provides the
complete training set, step (iii) initiates. It calculates the imputation and its
performance for each attribute combination defined in (i). In step (iv), we analyze the
performance results obtained in (iii), identify the best performance attribute
combination, and proceed with the real imputation, i.e., the fulfillment of missing
values in the original fact table, taking into account the enriched tuple values for the
chosen attribute combination. The following subsections describe in more details each
step of the proposed strategy.

118 L. de S. Ribeiro, R.R. Goldschmidt, and M.C. Cavalcanti

4.1 Attribute Combination Definition

The first step of the strategy consists in the selection of the best provenance attributes
that could be found in the dimension, to enrich the fact table. This selection should be
done by a specialized user. In order to help the user on selecting a representative set
of attributes, the selectivity estimation of each candidate attribute is calculated. The
idea is to identify attributes with a variety of different values (heterogeneity). The
more heterogeneous, the more appropriate for an index attribute [2], and in the
context of his work, the better it characterizes a set of tuples in the fact table. This
calculation is done over a denormalized fact table, which means an extended fact
table based on the join of the traditional fact table and its dimensions. The
denormalization is a very expensive process, and it would not be viable to do this for
each imputation execution. Therefore, we assume that a denormalized fact table is
maintained in parallel to the traditional fact table, meaning that the load task is always
performed in both tables.

After the user selection of a set of attributes, a set of attribute combinations C is
generated. This also depends on a user choice. There are five types of combinations:
(1) all user selected attributes; (ii) only user selected numeric attributes; (iii) the user
selected attribute (numeric or categorical) with the best selectivity estimation, for
each dimension; (iv) the user selected numeric attribute with the best selectivity
estimation, for each dimension; (v) substitution of each dimension foreign key with
the corresponding user selected dimension attribute(s).

For the best configuration of the proposed strategy, initial tests (described further)
were performed in order to select attributes for such combination set. All possible
attribute combinations were not tested because of the high processing costs. However,
the types of combinations listed above showed promising results.

4.2 Training Set Preparation

Once C is defined, then a training set is prepared in order to define which ¢; (¢c; € C) is
recommended by the strategy, and should then be used for the real imputation. This
training set is generated by eliminating, of the denormalized fact table, the tuples
which have absent values on the measure attribute in focus (named hereafter, the x
attribute). After that, a set of randomly generated absent values are placed in existing
tuples, for x, in the same real absence proportion found. The old values are not lost
here, as they still exist in the real fact table.

Now we have the complete training set, i.e., the dirty denormalized fact table. It is
worth to mention, that for performance reasons, this fact table may not be complete,
and include only more recent tuples, for a representative pre-defined period of time
(e.g. the last 2 years).

4.3 Performance Calculation for Attribute Combinations

In this step, the imputation is applied over the training set. We calculate the
imputation performance for each absent tuple and for each ¢; € C. Initially, we
identify the absent tuples in the training set. For each f; absent tuple, 1 <=1 <= n,
which contains an absent value for x attribute, the real value x(i, for x is retrieved from

Complementing Data in the ETL Process 119

the real fact table and kept for later use. After that, we start an iteration on C
elements, i.e., for each c; € C, 1 <= j <= m, we apply the k-NN algorithm, to select a
set of local similar tuples, in the training set table. The similarity is calculated based
only on the attributes of c;, plus the original fact table attributes, and using the
Euclidean distance or the mixed type distance between each tuple pair. Then, the
selected set of k similar tuples is used to calculate the new value xj (fifx] = x}), using
the mean of the set of x values for those tuples.

According to the initial tests the best performance k value was 10, which is
suggested as a default value. Finally, we calculate the error rate between values x}
and x};, based on the Relative Absolute Derivation — RAD metric [11], which uses the
following formula:

=1 X

1 |xk — xl
RAD:ZZ “—R (5)

where:

e x} is the original value,
e X} is the new calculated value and
e n is the total of absent tuples on x.

There are other formulas for error calculation [13], but RAD was chosen as it has
been used successfully in some related works [11]. In the current step, we calculate
(and accumulate) each individual imputation error rate for each f; tuple and for each c;
attribute combination. We generate an array of m error rate values (combination(3j]),
where each entry is the sum of the error rate values for the n absent tuples. The rest of
the RAD formula (division by n) is calculated in the next step.

The following algorithm summarizes this step.

While there is a tuple with missing value in desnormal do
RealValue = corresp. real value obtained from the original table;
While there is a combination of attributes (combination[j]) do

NewValue = application of k-NN algorithm for combination[j];
Diffvalue = abs(RealvValue - NewValue) / RealValue;
Add Diffvalue to combination([j];
End-While
End-While

4.4 Real Imputation

In the last step of the proposed strategy we calculate the best combination of attributes
by finishing the RAD formula application. The global error rate calculation for each
cj, and the best one is identified c;,. Then, the combination c; is then used to proceed
with the imputation in the original fact table. Initially, we identify the absent tuples in
the original fact table. For each f; tuple, 1 <= i <= n, which contains an absent value
for x attribute, we apply the k-NN algorithm, to select a set of local similar tuples, in
the training set table. The similarity is calculated based only on the attributes of cy,
plus the original fact table attributes, and using the Euclidean distance between each
tuple pair. Then, the k selected similar tuples are used to calculate the new value,
applying the mean of the x values for those tuples.

120 L. de S. Ribeiro, R.R. Goldschmidt, and M.C. Cavalcanti

5 ComplETL

This section describes ComplETL, a computational tool that implements the
previously presented provenance based data imputation approach. ComplETL must be
used by the end of the transformation phase in ETL process. The target database must
be in a traditional star schema with a fact table and its dimensional tables. Once
ComplETL has been applied, the target database is ready for the ETL s loading phase.

ComplETL was developed using packages from Appraisal’s library [3], a
workflow management based environment that is used to execute and evaluate
missing data imputation processes. ComplETL is able to: (i) implement the proposed
data imputation approach as a process; (ii) allow parameter configuration in such
approach; (iii) allow access to databases with multiple tables; (iv) deal with big tables,
a common situation in data warehouse applications; and (v) treat categorical as well
as quantitative data, one of Appraisal’s main limitations.

Like Appraisal, ComplETL was developed in Java, due to its portability and
available resources. ComplETL uses Spring Framework’, JSTL* and MySQL’
DBMS, version 5.1.

The Attribute Combination Definition step was implemented as specified in section
4 and includes some additional configurations: (a) target dataset; (b) k value for the k-
NN algorithm; (c) type of attribute combinations; (d) missing value attribute x; (e)
fact table denormalization, based on foreign key metadata; (f) foreign key removal;
(g) selectivity estimation; (h) user interface for attribute manual selection; and (i)
decision whether dimension attribute data should be normalized or not. In order to
reduce access to database, ComplETL stores metadata and configuration information
in XML documents.

The Performance Calculation step uses the k-NN implementation available in
Appraisal s packages. Simplicity, effectiveness and availability have influenced on
this decision.

6 Experiments and Results

Experiments in ComplETL were organized in two groups: initial and evaluation tests.
Initial tests aimed at defining which configuration should be used during evaluation
tests. All tests were performed in a computational environment with core 2 duo
processor, 4 GB RAM, 360 HD GB and Windows 7® operating system.

A customized version of TPC-H® benchmark’s database was used for all tests.
TPC-H database was transformed, using the Kettle’ utility, into a traditional DW star
schema with a fact table and its dimensional tables. In this database schema, we
focused on only one missing value attribute in the fact table (univariate imputation

* Spring Source, http://www.springsource.org/

4 JavaServer Pages Standard Tag Library, http://java.sun.com/products/jsp/jstl/

> MySQL.com http://www.mysgl.com

® TPC Benchmark H — Standard Specification Revision 2.8.0.
http://www.tpc.org/tpch/spec/tpch2.8.0.pdf

7 Pentaho Data Integration. Pentaho. www.pentaho.com

Complementing Data in the ETL Process 121

problem). As we did not have real missing values in this dataset, the missing value
rate was set to 10% of fact table.

The TPC-H database was populated with DBGEN, a synthetic data generator for
TPC-H. Five thousand (5.000) tuples and then 32.000 tuples were generated,
configuring 1 and 6 MB databases, for the initial and evaluation tests, respectively.

In order to establish an error threshold for using as a reference in analyzing other
tests results, similarly to other related works [3][11][15], we ran a test where we
applied an average based data imputation over the complete fact table (taking all
tuples into account), and found 1.91 as the error rate threshold. In all tests, the error
rate was always below such threshold.

The best k for the k-NN algorithm, found in the initial tests, were k = 10 and k =
\/n_c (where n. is the total of complete tuples from fact table). Also, when k-NN was
configured with the Euclidian distance, it overcame its version with the Mixed Types
distance in 69% of the tests.

Linear normalization was employed in TPC-H’s dimensions in order to smooth the
differences among values from the set of attributes. In the initial tests, the imputation
errors calculated over non-normalized database were lower than the ones obtained
over the normalized database version.

Initial tests also aimed at the evaluation of the proposed strategy. The following
aspects were taken into consideration in the data imputation process:

(a) Influence of dimensional data when used to enrich the fact table. Four groups
of attributes were created to represent the following dimensional types:
“where”, “when”, “who”, “all”.

(b) Attributes’ types: (i) only categorical attributes; (ii) only numeric attributes;
(iii) both numeric and categorical attributes.

(c) Attributes’ selectivity: Experiments were performed in order to vary

selectivity level of the attributes.

Table 1 summarizes the main results of initial tests. For these tests 48 imputations
were performed, and, in average, error rate with numeric attributes were 40% higher
than with categorical data, which means that categorical attributes showed a better
performance than numeric ones. Additionally, error rate with k = 10 and categorical
attributes from all dimensions was the lowest value produced in these tests.

The evaluation tests were performed under the following conditions: (a) Euclidian
distance was fixed for the similarity metric; (b) k was set to 10 and n; (c) non-
normalized data. For these tests, three scenarios were configured: (a) only categorical

Table 1. Summary of results (error rate values) of the initial Tests

k Dimension Categorical Numeric Categorical and Numeric
Where 0,817 2,144 2,148
Who 0,831 2,771 1,645
When 0,817 1,646 1,655

10 All 0,801 1919 1,565
Where 0,946 2,180 2,296
Who 0,951 1,374 1,858
When 0,947 1,626 1,642

e All 0,952 1,945 1,535

122 L. de S. Ribeiro, R.R. Goldschmidt, and M.C. Cavalcanti

attributes; (b) only numeric attributes; (c) both numeric and categorical attributes. In
all scenarios, attributes with highest selectivity were used. Table 2 summarizes the
main results obtained with the evaluation tests. Once again, the scenario with
categorical attributes and 10 nearest neighbors outperformed the others.

Table 2. Summary of results (error rate values) of the Evaluation Tests

k Scenario Error Combination with lowest error
Categorical Attributes 0,831 All attributes
Numeric Attributes 1,713 All attributes
10 Categorical and Numeric Attributes | 1,336 All attributes
Categorical Attributes 0,979 All attributes
Numeric Attributes 1,668 All attributes
n Categorical and Numeric Attributes | 1,549 Numeric attributes with highest selectivity

Test results were promising with respect to the imputation quality. However, a real
case study would be necessary to evaluate the impact of such approach on the DW
confidence, through the analysis of specific analytical queries (with and without data
imputation). Moreover, it is also necessary to prepare a much larger set of tuples, that
resembles a real DW, in order to evaluate this approach with respect to performance.

7 Conclusions

This paper proposed a new strategy to address the missing data problem on the ETL
process. The idea is to use data provenance (data from dimensional tables) to enrich
the fact table aiming at a better characterization of tuples. Our strategy uses some
heuristics in order to help final user to identify which provenance attributes can
improve imputation quality.

A prototype called ComplETL was implemented in order to evaluate our proposal.
Tests were performed over a customized version of TPC-H benchmark’s database,
which was transformed into a traditional DW star schema with a fact table and its
dimensional tables.

Some interesting and promising results could be identified based on the performed
experiments: (i) all results achieved with the proposed approach outperformed the
ones obtained with average based data imputation, a commonly used technique; (ii)
when used to enrich the fact table, categorical attributes showed better imputation
results than the numeric ones; (iii) attributes with higher values of selectivity led to
the best results; (iv) imputation errors with non-normalized data were lower than with
normalized ones.

Future work includes: (i) evaluate other machine learning based imputation
algorithms but k-NN; (ii) tests with real and larger databases; (iii) develop a parallel
and distributed version of ComplETL; (iv) improve the strategy to take both attribute
correlation and ontology resources into account, in the selection of attributes to enrich
the fact table.

Acknowledgements. This work was supported in part by CAPES and by CNPq
(Proc. 309307/2009-0).

Complementing Data in the ETL Process 123

References

*

10.

11.

12.

13.

14.

15.

Boskovitz, A.: Data Editing and Logic: The covering set method from the perspective of
logic. Thesis. The Australian National Univ., Research School of Information Sciences and
Engineering (2008)

Buneman, P., Khanna, S., Tan, W.-C.: Why and where: A characterization of data
provenance. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973,
pp- 316-330. Springer, Heidelberg (2000)

Castaneda, R., Ferlin, C., Goldschmidt, R., Soares, J.A., Carvalho, L.A.V., Choren, R.:
Aprimorando Processo de Imputacdo Multivariada de Dados com Workflows. In: XXIII
Simp.6sio Brasileiro de Banco de Dados — SBBD, Campinas-SP (2008)

Farhangfar, A., Kurgan, L., Pedrycz, W.: A Novel Framework for Imputation of Missing
Values in Databases. IEEE Trans. Syst., Man, and Cybern. 37(5), 692-709 (2007)

Han, J.Y., Kamber, M.: Data Mining: Concepts and Techiniques, p. 550. Morgan
Kaufmann, San Francisco (2001)

Hong, W., Xiuxia, H., Hongwei, W.: Research and Implementation of QAR Data
Warehouse. In: Proc. of 2nd Int. Symp. on Intelligent Information Technology
Application, IITA 2008, pp. 156-162 (2008)

Inmon, W.H.: Como Construir o Data Warehouse, p. 388. Rio de Janeiro, Campus (1997)
Kimball, R.: The Data Warehouse Toolkit, p. 387. Makron Books, S. Paulo (1998)

Rahm, E., Do, H.H.: Data Cleaning: Problems and Current Approaches. IEEE Bulletin Of
The Technical Committee On Data Engineering 23(4) (2000)

Sarawagi, S., Bhamidipaty, A.: Interactive Deduplication using Active Learning. In: Proc.
of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD-2002), Canada (2002)

Soares, J.A.: Pré-Processamento em Mineragdo de Dados: Um Estudo Comparativo em
Complementacdo. Thesis. COPPE-UFRIJ, Rio de Janeiro (2007)

Woodruff, A., Stonebraker, M.: Supporting Fine-Grained Data Lineage in a Database
Visualization. In: Int. Conference on Data Engineering, Birmingham, UK, pp. 91-102
(1997)

Wu, X., Barbard, D.: Learning Missing Values from Summary Constraints. ACM
SIGKDD Explorations Newsletter 4, 21-30 (2002)

Zhao, J., Goble, C., Greenwood, M., Wroe, C., Stevens, R.: Annotating, linking and
browsing provenance logs for e-Science. In: Workshop on Semantic Web Technologies for
Searching and Retrieving Scientific Data, Florida, pp. 92-106 (2003)

Magnani, M., Montesi, D.: A New Reparation Method for Incomplete Data in the Context
of Supervised Learning. In: Proc. of the Int. Conf. on Information Technology: Coding and
Computing (ITCC 2004), Nevada, pp. 471-475 (2004)

TTL: A Transformation, Transference and
Loading Approach for Active Monitoring

Emma Chévez!? and Gavin Finnie®

! Bond University, Australia
2 Universidad Catélica de la SSMA Concepcién, Chile

Abstract. In Data Warehouse (DW) environments, operational pro-
cesses move data from sources to the warehouse. This includes data
export, preparation, and loading usually performed using Extraction,
Transformation and Loading (ETL) tools. Past research has treated DW
7as collections of materialized views” whose data is regularly refreshed
and locally stored [I]. Requirements have changed and real time transac-
tions are required to support on-line operational decision making. Tradi-
tional DW systems may impose unacceptable delays due to their batch
nature. ETL techniques are difficult to scale up to address the challenge
of data loading, performance and low latency to provide real-time deci-
sion support. We propose a new approach for designing real-time DW in
which traditional ETL does not apply. Data is pre-analysed by agents
in each data source before being pushed as needed to the DW. The ap-
proach has been evaluated in a simulated environment and some of the
results are discussed here.

1 Introduction

In today’s information era, organizations must be able to integrate large volumes
of data from a variety of sources (i.e operational systems, sensors, other people)
in order to support tactical IT plans and strategic decisions. Business Intelligence
(BI) seems to be the right paradigm to follow in order to help managers to make
timely and effective decisions. BI tools help with information gathering and
processing data, building rich and relevant information that is then sent back to
decision makers [2].

Most BI architectures use data warehouse technologies as the way to con-
solidate, analyse and report data. Traditional data warehouses are refreshed in
a periodic manner, usually on a daily basis (off-peak hours), where the opera-
tional sources and the data warehouse experience low load conditions. There is a
cooling-off period between business transactions and their representation in the
data warehouse, with the most recent data unavailable for analysis as it is caught
in the operational sources [3]. Thus, it is possible to say that traditional data
warehouse technologies are ”out-of-sync very quickly” which can be an issue in
obtaining real time information response [4].

Past research has treated data warehouses ”as collections of materialized
views” whose data is regularly refreshed and locally stored [5], but today re-

A. Cuzzocrea and U. Dayal (Eds.): DaWaK 2011, LNCS 6862, pp. 124 2011.
© Springer-Verlag Berlin Heidelberg 2011

TTL: A Transformation, Transference and Loading Approach 125

quirements have changed and real time transactions are required to support on-
line operational decision making. Active Data Warehousing and real time data
warehouse applications are required in which large amounts of heterogeneous
information can be updated as frequently as possible [6].

Certainly, no data can be really obtained in real-time, not in a ”quantum
sense” because by the moment data is seen it is no longer real time [7]. For some
researchers real-time means up to time which means that any data change that
is taking place in a source system has an immediate and automatic echo in the
data warehouse [§]. For others real-time is not about being fast, it is the ”utility
function” that designates the damage for an organization because of missing
a deadline [9]. Therefore, real time is a subjective variable and involves some
qualitative and quantitative rules. [I0] states that ” The critical challenges of
decision support in general is how quickly can we make sound decisions? The
issue really revolves around time to decision”.

This means real time for an organization could be considered as the ability to
respond to a decision in a day due to it crossing the overnight-update barrier, or
the ability to make data flow without delay (trickle-feed) instead of batch load;
or in a practical sense, real time will be defined by the ” service level agreement
given by the organization deadlines” (e.g. ability to report and fix a problem)[d].

One of the main components of a data warehouse implementation is the pro-
cess of data integration. Data is integrated into the data warehouse in three
steps: Data is extracted first then transformed and loaded into the warehouse.
Extraction, Transformation, and Loading processes (ETL)are the key to ”bring
data from heterogeneous data sources to an homogeneous environment” [I1].
These processes tend to take a few hours to complete as they deal with large
volumes of data.

Solution techniques vary to provide real time to extract, transform and load
data (ETL) [12]. The main approaches are:

— Near real time ETL: e.g. hourly loads.
— Real time solutions:

e The direct trickle feed, in which the data warehouse is continuously fed
with new data from the source system.

e The Trickle and Flip, in which the data is continuously fed into staging
tables that are in the exact same format as the target tables. It helps
with issues such as tables being simultaneously updated.

e Real time data cache, which can be a dedicated database server or an-
other instance of a large database system with the purpose of loading,
storing, and processing the real-time data.

Trickle feed applications are mainly in finance where stock prices or currency
exchange rates that change during the day are loaded as they change [I3]. In
general it works under a messaging infrastructure via streaming data. To date,
there is little research in the implementation of these technologies as they are
mainly treated as a black box by the vendors.

On the other side, the problem with most of the solutions that implement real
time date cache is that it is not possible to join reports and co-display alerts

126 E. Chédvez and G. Finnie

to display real-time and historical information together. Therefore, this kind of
solution is more efficient when historical information is not needed. Moreover, if
complex analytical reports are run on the real-time cache, it is possible for it to
start showing the same internal report inconsistencies, database contention, and
scalability problems that the warehouse would present [12].

It can be seen that during the last 5 years few studies in the optimization of
the ETL process has been conducted. Existing studies focus on a logical opti-
mization of the ETL process such as [5] who proposed a framework to optimize
ETL processes by modelling the problem as a state space search problem (in
which activities are placed in the flow). Nevertheless concurrency and the real
application of this (semantic) was not discussed in the study.

In BI choices of data generation flow solutions vary from batch versus stream,
and from push versus pull. Today in most BI architectures all data to be anal-
ysed has to be consolidated in the warehouse first, by following a pull approach.
Queries are directed to the data sources to extract and integrate all the infor-
mation [I4]. These pull solutions have found federated systems the best way to
achieve data freshness in a timely manner. Nevertheless, real time alerting and
reporting cannot be done in a query [I5]. [16] proposes the idea of an improve-
ment over the traditional batch ETL technologies by considering the idea of ELT
where the data is loaded into the warehouse to then continue with the transfor-
mation (batch versus streaming). However, no ELT application or research to
support the idea of order change in traditional ETL is presented.

[1I7] offers CTU, a Capture, Transform and Update mechanism to incremen-
tally update the performance of the warehouse in real time. It uses data triggers
as the main components to initiate the sequence of actions to push data. How-
ever, most of the techniques already in use have to schedule in some way the
data extraction to pull or push data in the warehouse, and all of them analyse
the data, perform reports and alerts only when all the data extracted has been
consolidated in the data warehouse.

By changing the sequence of processes in the traditional ETL approach it
may be possible to enable local autonomy at the level of the data sources to
push information (transfer data) to the warehouse. Thus, our solution offers an
approach that empowers the data sources and moves data analysis to the first
level before data integration and data consolidation. Thus, as soon as valuable
data arrives at the data source, data is pre-analysed based on previous knowledge
(historical information). If there is not enough information to take an action, data
is immediately sent to the warehouse. To enable data push, agents can be used
as these are defined as entities that enable local intelligence to react in particular
environments.

In the following sections the main features of the architecture designed are
presented, and the results of the pre-analysis process are discussed. Section 2
describes the main design considerations, section 3 explains the functionalities
of agents, and the pre-analysis task results and how this process is implemented.
Section 4 presents the main results of some of the tests conducted to then sum-
marize the conclusions and actions for future research in section 5.

TTL: A Transformation, Transference and Loading Approach 127

2 The TTL Approach

We propose an event driven approach as a way to sense and react in real time to
certain environment conditions. Data is filtered, processed and analysed in the
sources by enabling learning capabilities in them. Thus, sources of information
sense and react by then pushing data into the warehouse only if needed. Real time
response will be kept to a minimum latency by eliminating the data availability
gap to perform data analysis which will enable organizations to concentrate on
accessing and processing valuable data.

To deal with latency issues our architecture empowers the data sources with
intelligent capabilities to monitor and pre-analyse valuable data. The pre-analysis
is performed by using a Multi Agent System Architecture (MAS). This paradigm
has become more and more important in many aspects of computer science by
introducing the issues of distributed intelligence and interaction. Agents learn
and reveal the data activity patterns through day to day measurements and the
data history contained in each source of information. An agent reacts, after the
pre-analysis has been done, by sending alarms according to changes in those pat-
terns [I8], or transfers data to the warehouse because more actions are needed,
or if there is not enough knowledge to perform an action at the source level.

An partial view of the TTL approach can be seen in Fig.1. There are three
stages to perform the monitoring process, as in current ETL approaches, never-
theless the modules have been organized in a different way to start pre-analysing
data from the very beginning.

— Data Push: This module is responsible for monitoring the individual data
contained in each source of information. Source agent (SA) is subscribed to
the ID of the data to monitor in each source of information and through a
set of specific rules that it has from the base of knowledge (historical data),
it takes the decision to perform an action such as deliver information to the
learning repository or to send an alert to data managers.

Source Agent does not monitor all data available in each source. It moni-
tors only relevant data for that entity that has been declared important to
monitor (i.e Particular patient, share or product).Therefore, this is an ”in-
dividual” specific framework in which local knowledge has been taken from
a subset of the original data. The relevant entity to monitor in a source has
been called a compound. In our application a particular patient will be a
compound.

Compound normal ranges, and/or valuable data to monitor come from the
knowledge obtained in all the historical data available for that compound
in the sources of information. It also considers the general base of knowl-
edge that tells us which are the features or factors relevant and necessary
to monitor. The General base of knowledge can be the area of interest to
monitor. In our application the general base of knowledge comes from the
general features to consider for cardiovascular heart disease.

As soon as valuable data arrives at a source of information a trigger alerts
to the SA which checks:

128

E. Chavez and G. Finnie
i Source Agent 1
| Goal
| Lok after veluable 101 data
| React
! 1.IF ID1 data is not under normal ranges
: 2. It ID1 data incoming is unknown
: It 2. Data Transtorm and Transference to DW -
L N S Y
' < .
A ! Alerts Agent | | -
{ Alerts Agent ' e T e
K d " Source /" Source
- - H Data Push |
5 ' Agent1l ' Agent2 ModuleﬁT]]
i B S
a I
i H 1 LI -
==, S i I
1 I Update\, Transference Source 2 ~ \
! fa ;
i Source 1 UDdalc\Tﬂ!ins rence i N Data Alerts/ !
| 1 Update i
1 . . mrm o= L ey P
! : /" Knowledge .
; " . Agemt [} || .
i N Data Consolidation |
ooy T/ ; Module (L) 1
:.Alerts\kaporls_._._._._._._. ———————————————— I
H Learning repository
i |
i !
1] —
i !
1] |
: L . -Alerts/Reports. - 1
1 S
1
| ———Alerts/Reports— = - === == ——— = == === = — —] » _/

Fig.1. TTL approach

e IF the data changed (dc) in the source is valuable data THEN check it
against normal ranges and data structures (type)

e [F dc=normal THEN go to sleep because no action is needed

e ELSE IF dc!= normal THEN reacts/alert/transform/transference

Data is transformed and transferred to the data warehouse when there is not
enough knowledge to take an action at the source level and a consolidated
view of data is needed.

Data consolidation: To monitor a special compound at the source level and
to update the local knowledge of Source Agent, a reinforcement learning
mechanism was selected. Thus, source agent has a set of rules for which is
necessary to provide an alert. Each rule has been built based on the historical
information of the compound.

When a set of data is extracted from the sources of information it is
compared with the actual rules to decide the possible outcomes. If the set of
data does not match any of the rules that SA has, the information is then
compared with the full base of knowledge of the compound that resides in
the Knowledge Agent(KA).

Information is delivered when the data obtained in the source of informa-
tion is not within normal ranges, does not match any of the cases obtained

TTL: A Transformation, Transference and Loading Approach 129

from the historical information, or there is not enough information to take a
decision. Therefore, it represents valuable data to monitor for the compound
and may need to be analysed as a whole view in the learning repository.
KA is continuously learning from the data to have the capability of adapt-
ing to new environment conditions or requirements, new compound rules or
normal data ranges for example.

The data warehouse drives local knowledge updates, consolidates patient
valuable data and main rules, and acts as a communication mechanism
among agents.

— Data alerts and updates: Once data has been analysed, whether this analysis
is performed in the central repository or at the agent level, alerts are sent
to the decision makers, as risk scenarios might be present. Alerts are also
sent to the patient in our application as a sensor device may not be working
properly due to the data received in the source being incomplete or not in
normal ranges.

We have used real time as follows: ” Any valuable data (key features to monitor
at the sources level) that changes will trigger and determine certain reactions
(analyse/alert/update/transference) to save time in the decision making process
before the deadline is reached. A deadline is reached when clearly the monitoring
compound is in a risk scenario”.

By monitoring key features only, evaluating, and then responding to them on
time the proposed architecture is able to respond and/or alert to risk scenarios in
a more effective way than traditional data warehousing strategies have allowed.

3 The Application Domain

The effectiveness of the framework proposed has been assessed by testing it in
the area of health informatics. We have proposed a solution to manage cardiac
disease patients by designing an architecture that learns and reveals the disease
activity patterns through day to day measurements and the clinical history of an
individual patient, reacts in real time by sending alarms according to changes in
those patterns, and is adaptive to new system conditions and changes in health
care requirements.

Cardiac disease monitoring of patients takes place at each step of patient
management, from disease detection to disease prognosis and from surgery to
recovery. During routine screening, day to day measurements (sensor devices)
and patient knowledge can be obtained and risk scenarios can be detected.

Nowadays the ”pervasive health care” monitoring environments, in the same
way as in business, gather information from a variety of data sources, but they
include new challenges because of the use of body and wireless sensors which
makes the system more complex to monitor in real time. Here filtering data fusion
techniques using data warehouses, context aware and knowledge generation using
RFID and data mining techniques to achieve reliability are some of the proposed
approaches to achieve real time data monitoring. The use of BI tools are still
very limited in healthcare, and the generation of false positive alerts and patient
specific data processing in right time is still not achieved [19] [20][21].

130 E. Chédvez and G. Finnie

3.1 Base of Knowledge

The general knowledge about cardiac disease features (symptoms and combina-
tion of symptoms) to consider in heart disease patients was obtained from the
list of 24 clinical features of [22]. This list provided us with the main critical
diagnostic features of 5 major heart diseases. This includes diagnostic features
such as age, dizziness, cyanosis, chest pain, dyspnea, blood pressure and edema
of lower limb.

Furthermore, by general expert feedback (four cardiologists) a sub list of 15
symptoms considered important to monitor in ongoing patient assessment, for
patients identified with coronary heart disease as well as their relative level of
importance was obtained. These can be seen in Table 1.

Table 1. Symptoms

Level of Importance Symptom

High ST-T alteration
Dyspnea
Hypertension
Discomfort, heaviness in the chest
Chest Pain
Neck venous return or engorgement
Medium Cyanosis
Systolic murmur
Dizziness
Diastolic murmur
Blood pressure
Low Headache
Second heart sound
Barrel chest
Upper respiratory infection

Once the level of importance of a symptom or medical test was found a list
of features that triggers alarms for a particular patient (patient’s rules) was ob-
tained. Although this list is obviously incomplete, it will be adequate to demon-
strate the validity of the approach. An example of patient’s case to add knowl-
edge to monitor can be described as follows:

— P1: [ST-T alteration + Chest pain = Cardiac insufficiency|Date

3.2 The Pre-analysis

The sources of information that feed the warehouse have the capability to process
local knowledge. A source agent resides in each patient data source such as
sensors, General Practitioner, and hospital data bases. Source agents have the
goal to look after valuable data to monitor for an individual patient to control
disease prognosis, transform the data received and transfer it (if needed) to the
warehouse when local knowledge is not enough to take an action at that level.
It also performs on-line alerts according to the data outcomes (certain events)
and changes in patient data patterns.

TTL: A Transformation, Transference and Loading Approach 131

Based on the base of knowledge given by experts in the field (as described in
the previous section) and a set of features to be considered in ongoing assessment
for patients with heart disease, a simulated environment of patient scenarios
disease data and cases was created and deployed. A MySql data base was used
which contains patient’s data, episodes and cases from the last 10 years for 20
coronary heart disease patients.

Once patient data was simulated, a function was programmed in a query to
obtain patient’s normal rages. A number of risk scenarios was also simulated
given by episodes over a certain period of time for some patients.

By using JADE (Java Agent Development Framework), a software platform
to develop distributed applications based in agents [23], a prototype to demon-
strate the effectiveness of the local knowledge empowerment in each source was
developed. JADE simplifies the development of applications that need coordi-
nation and negotiation among various agents. Thus, patient specific information
and the general knowledge about heart disease were placed as knowledge rules
for Source Agent. Thus, values like expected and current for the patient features
(compound) allows SA to monitor patient’s states as soon as new data arrives
at any source.

It is important to consider that heart disease normal parameters are well
defined in the literature, but each patient might have conditions which do not
necessarily fit in the base of knowledge of heart disease. As an example patient
normal blood pressure, value/ranges, differs from one patient to another. Thus,
SA has to contrast for the pre-analysis the general heart disease base of knowl-
edge as well as the patient specific data values for each critical feature relevant
to monitor. An example is given in Table.2. According to the features described
in Table 1, and the patient individual characteristics (history), patients were
classified in high, medium and low risk patients.

Table 2. Sample rules for pre-analysing data at SA

SA sample rules

IF blood.pressure is above normal value,

THEN check whether the exception is tolerable
IF blood.pressure is tolerable,

THEN send current blood.pressure record to Knowledge Agent
ELSE IF blood pressure is not tolerable,

THEN check patient classification

IF patient classification equal high risk

THEN wakeup Alerts Agent under the message of
feature above normal ranges

for a high risk patient

4 Results of Implementation

The main differences between a traditional clinical data warehouse system and
our approach can be seen in Table.3.

132 E. Chédvez and G. Finnie

Table 3. ETL vs TTL

Processes ETL TTL

Data Extraction 1st stage Does not apply

Data Transformation 2nd stage 1st in conjunction with the pre-analysis
Data loading 3rd stage 3rd stage and only if needed

Data analysis/reporting After ETL has been completed Analysis 1st stage
Reporting any time if needed

In a system designed to actively monitor data, resources consumption and
response time are usually the metrics of interest to evaluate a system. These can
be explained from two main aspects. Efficiency as the way to do the task using
less resources and Effectiveness by means of doing the task in the right way.

— Efficiency

A dedicated machine (Intel core Duo, 3GHz and 3.25GB of RAM) was
used. A MySQI data base with 20 heart disease patients, with records from
the years 2000 to 2010 was simulated. Data in the database includes, GP
patient records (visits,symptoms,outcomes, medication), pathology results
(test, ECG results), hospital patient records and sensor monitoring data
results). That gave us an environment of around 6000 records for the total
of patients.

We used Linux Ksar utility to monitor the system states and resource
usage during the tests in order to compare traditional data extraction vs
intelligent transference and pre-analysis. The results of these tests can be
seen in Table.4.

Table 4. Cpu usage

Average usage of CPU in %

Scenario Duration in sec User System Idle

Traditional Simple 1.0027 50.29 19.27 30.44
extraction Complex 1.0054 51.27 18.29 24.52
Intelligence Simple 0.6378 30.27 21.15 48.58
transference Complex 2.0974 44.17 19.31 36.52

Traditional extraction was considered as a simple planned and batched
programmed query, that extracts patient’s data to be moved to a warehouse
in a certain period of time. Intelligent transference is the new approached
that we propose instead.

A simple scenario refers to an scenario in which data has changed at the
source level but is not relevant to monitor. A complex scenario refers to a
new data entry at the source level that is relevant to monitor and an action
must be taken.

As can be seen in the table the intelligent transference, (agent pre-
analysis) consumes less or almost the same amount of CPU than the tra-
ditional data extraction mechanism programmed. Therefore, enabling pre-
processing and filtering at the source levels does not stress the sources of

TTL: A Transformation, Transference and Loading Approach 133

information. Source agent seems to run to a low priority (given the % CPU
idle used) so does not impact programs that run at normal priority in the
server.

In the complex scenario SA performed pre-analysis and a transference
and it did not show mayor differences in relation to traditional transference.
These test were planned to move a number of KB only (200 records) which is
the best scenario and it does not represent a Very Large Data Base (VLDB)
environment. Nevertheless, on a VLDB environment traditional data extrac-
tion will use more machine resources and it will be more time consuming [24]
[25] while in our case the database size is not relevant as SA will keep almost
the same average consumption as it will only analyse relevant data only (a
small data load) and not all the data that has changed in the source.

In terms of process duration traditional data extraction is affected by
the number of rows/bytes to extract while intelligent data transference is
affected by the amount of data to analyse. Because in the tests a small data
load was programmed, it was not really possible to compare process duration
with the two scenarios proposed. Therefore, although these data is included
in the table they were not considered enough to be discussed here and more
tests to prove this part need to be done in the future.

Effectiveness

We argue that by monitoring key features in each patient, pre-analysing
and then if needed transferring them to a central repository the proposed
architecture is more effective than traditional ETL and data warehouse ar-
chitectures.

By having local knowledge and empowering the data sources (using a
monitoring agent) we have reduced the numbers of steps to analyse data.
Data analysis as been moved to an early stage starting once relevant data to
monitor has been changed in a source. That pre-analysis is performed now
in the local source and if there is enough knowledge to perform an action, an
alert mechanism is activated to either alert the patient because maybe the
data that has changed in the source is incomplete (i.e sensor device data)
or to the health care staff because the data that has changed is relevant to
monitor and implies that the patient might be at risk.

Data inconsistency is detected in an early stage because of the knowledge
about data types and data structure that Source Agent has in each source of
information. Therefore, SA knows data structures and types of each source.
Thus, data inconsistency is picked up in relevant data as soon as the agent
is notified. Source Agent checks data structures and value before performing
any analysis which help us to inform and not include uncompleted data as
part of the analysis.

Therefore, by monitoring only relevant data in a distributed environment
and by having local knowledge to check normal patterns it is possible to
identify changes in the disease prognosis at an early stage and send an alert
as soon as possible to the health care staff in patient risk scenarios.

134 E. Chédvez and G. Finnie

5 Conclusions

We propose a new approach to active monitoring using data warehouses in which
traditional extraction, transformation and loading tools do not apply. The main
characteristics of this new approach are that the data warehouse is not pro-
grammed for querying the sources for the information, and that there is local
knowledge at the sources level which allows data transformation, filtering, and
analysis before sending if it needed, to the central repository.

The data analysis to perform data monitoring has been moved to the first
stage of the architecture. Therefore, alerts and actions can be taken as soon
as relevant data has changed in a source. Through this approach, important
time for decision making is saved and a mechanism to support monitoring under
patient risk scenarios in real time is proposed. The decision making starts from
the owner of information and only patient useful data (data that needs to be
monitored in risk scenarios) is sent to a consolidated repository.

Although data security is important, not all the framework has been dis-
cussed here with only those areas involved in data management (pre-analysis)
being mentioned. A mechanism to consider environmental scenarios needs to be
established in the future too. A symptom can be triggered by different factors
and scenarios like stress, anxiety and others that may affect the probability of a
heart episode to occur. This will affect the alerts module and will eliminate false
positives in the monitoring process.

References

1. Sellis, T., Simitsis, A.: ETL workflows: From formal specification to optimization.
In: Ioannidis, Y., Novikov, B., Rachev, B. (eds.) ADBIS 2007. LNCS, vol. 4690,
pp. 1-11. Springer, Heidelberg (2007)

2. Srinivasan, S., Krishna, V., Holmes, S.: Web-log-driven business activity monitor-
ing. IEEE Computer Society 38(3), 61-68 (2005)

3. Jaorg, T., Dessloch, S.: Near real-time data warehousing using state-of-the-art
ETL tools. In: Castellanos, M., Dayal, U., Miller, R.J. (eds.) BIRTE 2009. LNBIP,
vol. 41, pp. 100-117. Springer, Heidelberg (2010)

4. Yan, Y., Li, W., Xu, J.: Information value-driven near real-time decision support
systems. In: 29th TEEE international conference on Distributed Computing Sys-
tems, ICDCS 2009, pp. 571-578 (2009)

5. Simitsis, A., Vassiliadis, P., Sellis, T.: Optimizing etl processes in data warehouses.
In: 21st International Conference on Data Engineering, pp. 564-575 (2005)

6. Sutherland, J., Van den Heuvel, W.J.: Clinical process and data integration and
evolution. In: 40th Annual Hawaii International Conference on System Sciences in
IEEE Database (2007)

7. Raden, N.: Exploring the business imperative of real-time analytics. Hired Brains,

Inc. Implementing Business Analytics (2010)
. Terr, S.: Real-time data warehousing, vol. 101 (2004)
9. Etzion, O.: On real-time, right-time, latency, throughput and other time-oriented
measurements (2007)
10. Nelson, G., Wright, J.: Real time decision support: Creating a flexible architecture
for real time analytics (2005)

oo

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

TTL: A Transformation, Transference and Loading Approach 135

Javed, M., Nawaz, A.: Data load distribution by semi real time data warehouse.
In: Proceedings of the 2010 Second International Conference on Computer and
Network Technology, pp. 556-560 (2010)

Langseth, J.: Real-time data warehousing: Challenges and solutions (2004)
Taylor, R.: Concurrency in the data warehouse. In: 36th International Conference
on Very Large Data Bases, VLDB 2010, pp. 724-727 (2000)

Halevy, A., Rajaraman, A., Ordille, J.: Database integration: The teenage years.
In: VLDB 2006 Proceedings of the 32nd International Conference on Very Large
Databases, pp. 9-16 (2006)

Castellanos, M., Casati, F., Shan, M., Dayal, U.: ibom: A platform for intelligent
business operation management. In: 21st International Conference on Data Engi-
neering (2005)

Dayal, U., Castellanos, M., Simitsis, A., Wilkinson, K.: Data integration flows for
business intelligence. In: Proceedings of the 12th International Conference on Ex-
tending Database Technology: Advances in Database Technology, pp. 1-11 (2009)
Chieu, T., Zneg, L.: Real time perfomance monitoring for an enterprice information
managemetn system. In: IEEE International Conference on e-Business Engineering,
pp. 429-434 (2008)

Chavez, E., Finnie, G.: Empowering data sources to manage clinical data. In: 23rd
IEEE International Symposium on Computer-Based Medical Systems, CBMS 2010
(2010)

Spil, T., Stegwee, R., Teitink, C.: Business intelligence in healthcare organization.
In: 35th Annual Hawaii Internation Conference on System Sciences, p. 142b (2002)
Ferdous, S., Fegaras, L., Makedon, F.: Applying data warehousing technique in per-
vasive assistive environment. In: Proceedings of the 3rd International Conference
on PErvasive Technologies Related to Assistive Environments (2010)

Lee, H., Park, K., Lee, B., Choi, J., Elmasri, R.: Issues in data fusion for health
care monitoring. In: Proceedings of the 1st International Conference on PErvasive
Technologies Related to Assistive Environments, vol. 3 (2008)

Yang, H., Zheng, J., Jiang, Y., Peng, C., Xiao, S.: Selecting critical clinical features
for heart diseases diagnosis with real-coded genetic algorithm. In: Applied Soft.
Computing, vol. 8, pp. 1105-1111 (2008)

Bellifemine, F., Caire, G., Poggi, A., Rimassa, G.: Jade a white paper. Technical
report, Telecom Italia Lab (2003)

Yin, Y., Papadias, D.: Just-in-time processing of continuous queries. In: IEEE 24th
International Conference on Data Engineering, pp. 1150-1159 (2008)

In: Nascimento, M., Zsu, T., Kossmann, D., Miller, R., Blakeley, J., Schiefer, K.
(eds.) Proceedings of the 30th International Conference on Very Large Databases.
Morgan Kaufmann, San Francisco (2004)

Support for User Involvement in Data Cleaning

Helena Galhardas', Anténia Lopes?, and Emanuel Santos!

! INESC-ID and Technical University of Lisbon
hig@inesc-id.pt, esantos@ist.utl.pt
2 Faculty of Sciences, University of Lisbon
mal@di.fc.ul.pt

Abstract. Data cleaning and ETL processes are usually modeled as
graphs of data transformations. The involvement of the users responsible
for executing these graphs over real data is important to tune data trans-
formations and to manually correct data items that cannot be treated
automatically. In this paper, in order to better support the user involve-
ment in data cleaning processes, we equip a data cleaning graph with data
quality constraints to help users identifying the points of the graph and
the records that need their attention and manual data repairs for rep-
resenting the way users can provide the feedback required to manually
clean some data items. We provide preliminary experimental results that
show the significant gains obtained with the use of data cleaning graphs.

1 Introduction

Data cleaning and ETL processes are commonly modeled as workflows or graphs
of data transformations. The logic underlying real-world data cleaning processes
is usually quite complex. These processes often involve tens of data transforma-
tions that are implemented, for instance, by pre-defined operators of the chosen
ETL tool, SQL scripts, or procedural code. Moreover, these processes have to
deal with large amounts of input data. Therefore, as pointed out in [I4], in
general it is not easy to devise a graph of data transformations able to always
produce accurate data. This happens for two main reasons. First, individual data
transformations that consider all possible data quality problems are difficult to
write. Consequently, the underlying logic needs to undergo several revisions, in
particular when the cleaning process is executed over a new batch of data. Hence,
it is important that users responsible for executing the data cleaning processes
have adequate support for tuning data transformations. Second, a fully auto-
mated solution that meets the quality requirements is not always attainable. In
general, a portion of the cleaning work has to be done manually and, hence, it
is important to also support the user involvement in this activity.

When using ETL and data cleaning tools, intermediate results obtained af-
ter individual data transformations are typically not available for inspection or
eventual manual correction — the output of a data transformation is directly
pipelined into the input of the transformation that follows in the graph. The so-
lution we envisage for this problem is to support the specification of the points in

A. Cuzzocrea and U. Dayal (Eds.): DaWaK 2011, LNCS 6862, pp. 136 , 2011.
© Springer-Verlag Berlin Heidelberg 2011

Support for User Involvement in Data Cleaning 137

the graph of data transformations where intermediate results must be available,
together with the quality constraints that this data should meet, if the upward
data transformations correctly transform all the data records as expected. Be-
cause assignment of blame is crucial for identifying where the problem is, the
records responsible for the violation of quality constraints are highlighted. This
information is useful both for tuning data transformations that do not handle
the data as expected and for performing the manual cleaning of records not
handled automatically by data transformations.

While the tuning of data transformations requires some knowledge about the
logic of the cleaning process, it is useful that manual data repairing actions can
also be performed in a black-box manner, namely by the application end-users.
As already advocated in the context of Information Extraction [4], in many
situations, data consumers have knowledge about how to correctly handle the
rejected records and, hence, can provide critical feedback into the data clean-
ing program. Our proposal is that the developer of the cleaning process has the
ability to specify, in the points of the graph of data transformations where inter-
mediate results are available, the way users can provide the feedback required
to manually clean certain data items. This may serve two different purposes:
for guiding the effort of the user that is executing the cleaning process (even if
he/she has some knowledge about the underlying logic) and for supporting the
feedback of users that are just data consumers.

In this paper, we put forward a notion of data cleaning graph (DCG, for
short) that supports the modeling of data cleaning processes that explicitly
define where and how user feedback is expected as well as which data should
be inspected by the user. The operational semantics of DCGs formally defines
the execution of a data cleaning process over source data and past instances of
manual data repairs. With this semantics it is possible to interleave the tuning
of data transformations with the manual data correction without requiring that
the user repeats his feedback actions. We present experimental results that show,
for a real-world data cleaning application modeled as a DCG, the gain in terms
of the accuracy of the data produced, and the amount of user work involved.

The paper is organized as follows. Section [2] presents the motivation and an
overview of the proposed approach. In Section Bl the elements of the approach
are presented in detail. In Section [we present a case study of a data cleaning
process and, in Section Bl we report on the experimental results obtained that
show the usefulness of our approach. In Section [6, we discuss the related work
and in Section [l we summarize the conclusions and future work.

2 DMotivation

Let us consider that the information required for computing the research perfor-
mance metrics for a given team is collected into a database with tables Team and
Pub as illustrated in Figlll (a simplification of the real database used in the CIDS
system [6]). The Team table is manually filled with accurate information about
the team members. The Pub table stores the information about the citations of
team members obtained through queries posed to Google Scholar.

138 H. Galhardas, A. Lopes, and E. Santos

The relationship that exists between the two tables, through the foreign key
tld, associates all the publications to a team member. However, this association
may be incorrect, namely due to the existence of homonyms. In our example,
the first member in Team refers to a colleague of us and the Pub record with pid 4
is not authored by him, but by a homonym. Another problem that affects these
tables is the multitude of variants that author names admit. For instance, the
records of Pub shown in FiglI] contain two synonyms of “Carrico, L.".

pld| tid title authors year event link cits | citNS
Adaptation of digital . International Conference on [scholar?cluster=1749|
1)t books Duarte, C.and Carri{\c{cho, L.|2005 Human Computer Interaction |4767326604985714 12 2
Po— - Py _
2|1 Ubiquitous Sa, M. and Carrico, L. and 2007 IEEE Pervasive Computing S,CP?l_a.r.' Sl}l.sfe_r. ,1_7,({2 10 1
Psychotherapy Antunes, P.
Ubiquitous de Sa, M. and Carrico, L. and it SlEAe SEAIS
3|1 T r 2007 IEEE Pervasive Comput| 1 Luis Carrigo Carrigo, L.
Psychotherapy Antunes, P. i
Reduction of the 2, 4, 6 Pereira, C. and Gil, L. and 2 André Leal Santos Santos, A. L.
411 o r o T 2007 | Radiation Physics and Che | 3 André Santos Santos, A.
radiation Carrico, L. n Antonia L L A
Managing duplicates in a § ACM Symposium on Apy ntonia OPeS "‘?es' -
5(2 web archive Santos, A. L. and Silva, M.]. {2006 Computing 5 Marco S& S&, M.
6 Carlos Teixeira Teixeira, C.

Fig. 1. Pub and Team tables

The computation of reliable research performance indicators for a team re-
quires a data cleaning process that, among other things, deals with the problems
of synonyms and homonyms pointed before. The Team table can be used as ref-
erence to identify and correct these problems. State-of-art procedures to solve
synonyms are based on the use of approximate string matching [12]. Names as
“Carrico, L.” in tuple 1 of Team table and “Carrico, L.” in tuple 2 of Pub table can
easily be found as matches. However, it may also happen that these procedures
find several possible correct names for the same author name. For example, “San-
tos, A" and “Santos, A. L." are the names of two team members and both match
the author name “Santos, A. L.” encountered in tuple 5 of the Pub table. That is
to say, both names in (“Santos, A.”,"Santos, A. L.") and (“Santos, A. L.", “Santos,
A.L.") are similar enough so that both entries of the Team table are considered
as potential candidates of team member names for “Santos, A. L.". The problem
that remains to be solved is which of the two to choose, or to decide if none of
them does in fact correspond to the individual “Santos, A. L.”". We believe that
this kind of domain knowledge can only be brought by a user that is aware of
the team members and their research work. The syntactic similarity value that
exists between the two pairs is not enough for automatically taking this decision.

The detection of homonyms in the context of names has been object of active
research. For instance, [I3] has shown that the detection of homonyms among
author names can benefit from the use of knowledge about co-authorship. If this
kind of information is available, then a clustering algorithm can be applied with
the purpose of putting into the same cluster those author names that share a
certain amount of co-authors. In principle, the author names that belong to the
same cluster most probably correspond to the same real entity. The problem that
remains is how to obtain accurate co-authorship information. Clearly, automatic
methods for calculating this information from publications are also subject to
the problem of homonyms and, hence, the produced information in general is

Support for User Involvement in Data Cleaning 139

not accurate. In this case, we believe that the problem of circularity can only
be broken by involving the user in the cleaning of the co-authorship information
that was automatically obtained.

The example just presented shows the importance of being able to automati-
cally clean data while efficiently employing user’s efforts to overcome the prob-
lems that were not possible to handle automatically. In this paper, we propose
a way of incorporating the user involvement in these processes and present a
modeling primitive — the data cleaning graph, that supports the description of
data cleaning processes that are conceived having user involvement in mind. A
DCG encloses a graph of data transformations as used, for instance, in [I7J9].
The output of each transformation is explicitly expressed and associated with a
quality constraint. This constraint expresses the criteria that data produced by
the transformation should obey to and its purpose is to call the user attention for
quality problems in the data produced by the transformation. Additionally, the
DCG encloses the specification of the points where the manual data repairing
actions may take place. The aim of this facility is to guide the intervention of
the user (end-users included) and, hence, it is important to define which data
records can be subject to manual modifications and how. We have only consid-
ered actions that can be applied to individual data records for repairing data.
Three types of actions were found useful: remove a tuple, insert a tuple, and
modify the values of certain attribute of a tuple.

3 Data Cleaning Graphs

In this section we present the concept of data cleaning graph — the modeling
primitive we propose for describing data cleaning processes. We provide its op-
erational semantics through an algorithm that manipulates sets of tuples.

Terminology. We consider a set R of relations names and, for every RER, a
schema sch(R) constituted by an ordered set of attribute names. An instance of
arelation R is a finite set of sch(R)-tuples. We consider a set 7 of data transfor-
mations. Fach T'€T consists of an ordered set I of input relation schemas, an
output relation schema O and a total function that maps a sequence of I-tuples
to Op-tuples. We use]I%« to denote the i-ary element of Iy. If G is a direct acyclic
graph (DAG), we use *n and n® to denote, respectively, {m :(m,n)€edges(G)}
and {m :(n,m)€edges(G)} and <¢g to denote the partial order on the nodes of
G, ie., n <g m iff there exists a directed path from n to m in G.

3.1 The Notion of Data Cleaning Graph

The notion of DCG builds on the notion of data transformation graph introduced
in [9]. These graphs are tailored to relational data and include data transforma-
tions that can range from relational operators and extensions (like the mapper
operator formalized in [3]) to procedural code. The partial order <¢ on nodes(Q)
partially dictates the order of execution of the data transformations in the pro-
cess (transformations not comparable can be executed in any order).

140 H. Galhardas, A. Lopes, and E. Santos

A data cleaning graph is a DAG, where nodes correspond to data transfor-
mations or relations, and edges connect (input and output) relations to data
transformations. In order to support the user involvement in the process of data
cleaning, each relation R in a cleaning graph has associated a constraint express-
ing a data quality criteria. If the constraint is violated, it means that there is a
set of tuples in the current instance of R that needs to be inspected by the user.
Quality constraints can include the traditional constraints developed for schema
design, such as functional dependencies and inclusion dependencies, as well as
constraints specifically developed for data cleaning, such as conditional func-
tional dependencies [7]. Each relation R in a cleaning graph has also associated
a set of manual data repairs. These represent the actions that can be performed
by the user over the instances of that relation in order to repair some quality
problems, typically made apparent by one or more quality constraint labelling
that relation or a relation “ahead” of R in the graph. For the convenience of the
user, it might be helpful to filter the information available in R and, thus, we
have considered that data repair actions are defined over updatable views of A.
They can range from SQL expressions to relational lenses [2]. The examples of
manual data repairs provided in this paper consider an updatable view defined
as an SQL expression.

Definition 1. A Manual Data Repair m over a relation R(Aq, ..., A,) consists
of a pair (view(m), action(m)), where view(m) is an updatable view over R and
action(m) is one of the actions that can be performed over view(m):

action ::= delete | insert | update A;

In the case where the action is update A;, we use attribute(m) to refer to A;.

Definition 2. A Data Cleaning Graph G for a set of input relations Ry and a
set of output relations Ro is a labelled directed acyclic graph (G,{Q, M)) s.t.:

— nodes(G)CRUT. We denote by rels(G) and trans(G) the set of nodes of G
that are, respectively, relations and data transformations.

— Ry URoCrels(G).

— neRy if and only if *n =0, and n€ERo if and only if n® =0 and *n # 0.

— if (n,m)€edges(G), then either (n€R and meT) or (n€T and meR).

— if T € trans(G) then Ir={sch(R) : R €*T} and Or={sch(R): R €T*}.

— if R € rels(G) then *R has at most one element.

— Q is a function that assigns to every Rerels(G), a quality constraint over the
set of relations behind R in G or in Ry, i.e., Q(R)EL(R; U{R' € rels(G) :
R’ <g R}) such that Q(R) is monotonic w.r.t. R, i.e., given a set of relation
instances that satisfies Q(R), the removal of an arbitrary number of tuples
form the instance of R does not affect the satisfaction of Q(R).

— M is a function that assigns to every Rerels(G), a set of manual data
repairs over R.

! For a definition of an updatable view, see [T1], for instance.

Support for User Involvement in Data Cleaning 141

The conditions imposed on DCGs ensure that R; and Ro are input and out-
put relations of the graph; relations are always connected through data trans-
formations; the input and output schemas of a data transformation are those
determined by their immediate predecessors and successors nodes in the graph;
the instances of a relation in the graph result, at most, from one data trans-
formation; the quality constraints over a relation in the graph can only refer to
relations that are either in R; or behind that node in the graph and must be
monotonic w.r.t. to the relation of the node. This last condition is necessary to
ensure that quality constraints can be evaluated immediately after the data of
the relation is produced, i.e., does not depend on data that will be produced

later, by transformations ahead in the graph.

Pub(pld, tid, title, authors, year, event, link, cits, citsNs)

T1: Extract all authors of each publication

R1(pld, ald, aName, title)

T2: Projects ald, aName
and title

R2(ald, aName, title)

T3: Approximate lookup

of author names in Team

\

Qc3: unique (ald, title) |\

\
\

Mdr3:V(ald, aName, tName, title):
select ald, aName, tName,

title /

from blamed(Qc3) /
delete on V; /

R3(ald, aName, tid, R4(pld, ald, aName, tid)

tName, title)
Clean
i * pub
T4: Join author names u

with corresponding pld CleanPub(pld, tid, title,...,citsNs)

Fig. 2. Excerpt of a data cleaning graph for cleaning Pub table

The example sketched in Fig[2illustrates an excerpt of the DCG required for
cleaning the Pub table introduced in Section [2 It mainly makes use of SQL for
expressing constraints and updatable views. The input relations of this DCG are
Team and Pub and there is a single output relation, CleanPub that contains only
publications authored by a member of Team. In the part of the graph that
is shown, we can see that the node R3 is labelled with the quality constraint
unique(ald, title). It is not difficult to conclude this is indeed a monotonic con-
straint over relations <g R. The reason for imposing this quality constraint, at
this point, is because we want to have at most one matching team member, for
each author of a publication in Pub. Since transformation T3 applies a string
similarity function to decide if two names (one from Pub and the other from
Team) are the same, it might happen that some data produced by T3 violates
this constraint. For instance, both Team members “Santos, A.” and “Santos, A. L.”
are found similar to Pub author “Santos, A. L.". The quality constraint will call
the attention of the user to the tuples blamed for the violation.

142 H. Galhardas, A. Lopes, and E. Santos

Moreover, the function M of this DCG assigns to the node R3 a single manual
data repair, Mdr3, that consists in the view V defined over R3 that returns only
the tuples blamed for the violation of Qc3 (this is formally defined in the next
section) and the action delete. The view V projects almost all the attributes of
the relation but we could use the view to exclude non relevant information and,
in this way, limit the amount of information the user has to process in order to
decide which are the appropriate manual data repairs to apply.

3.2 Operational Semantics

DCGs specify the quality criteria that the instances of each relation should
meet. The records responsible for the violation are identified through the notion
of blame assignment for quality constraints.

Definition 3. Let ¢ be a quality constraint over a set of relations Ry,, R, that
1s assigned to relation R. Let v and r1,...,T, be instances of these relations s.t.
7,71, ..oy TnEd. The blame of the violation is assigned to the set blamed($), which
is defined as the union of all subsets rp of r that satisfy: (1) r\rp,r1,...,TnFd;
(2) rp does not have a proper subset o s.t. r\o,T1, ..., rnFo.

Each subset rp of r that satisfies the two conditions above represents a way of
“repairing” r through the removal of a set of tuples that, all together, cause
the violation of ¢ (a particular case of data repairs as introduced in [I]). Hence,
all tuples in 7 that have this type of “incompatibility” share the blame for the
violation of ¢. For instance, suppose that R3 in Fig[2 has the tuples (1, "Santos, A.
L.”,“Santos, A. L.", 2,“Managing...”) and (1,"“Santos, A. L.”, “Santos, A.", 3,"Manag-
ing...”). These tuples are blamed for the violation of the quality constraint Qc3.
Notice that this form of blame assignment is only appropriate if constraints are
monotonic in R and this is why we limit constraints to be of this type.

Data cleaning of a source of data tends to be the result of numerous iterations,
some involving the tuning of data transformations and others involving manual
data repairs. Even if the DCG developed for the problem was subject to a strict
validation and verification process, it is normal that when it is executed over the
real data, small changes in the DCG, confined to specific data transformations,
are needed. Because we do not want to force the user to repeat the data repairs
previously done that, in principle, are still valid, we define that the execution
of a DCG takes as input not only the data that needs to be cleaned but also
collections of instances of manual data repairs (mdr, for short). These represent
mdr actions enacted at some point in the past. For convenience, we consider that
instances of mdrs keep track of their type.

Definition 4. Let m be a manual data repair. If action(m) is delete or insert,
an m—instance ¢ is a pair {(m,tuple(r)) where tuple(t) is a view(m)-tuple. If
action(m) is update A, an m—instance ¢ is a triple (m, tuple(r), value(t)) where
tuple(r) is a view(m)-tuple, value(t) is a value in Dom(A).

For instance, still referring to Figl2, after analyzing the violation of the quality
constraint Qc3 and taking the title into account, the user could conclude that

Support for User Involvement in Data Cleaning 143

the author “Santos, A. L.” does not correspond to the team author “Santos, A."
and decide to delete the corresponding tuple from OR3. This would generate the
Mdr3-instance <mdr37 (1, “Santos, A. L.", “Santos, A.", “Managing...”)).

The execution of a DCG is defined over a source of data (instances of the
graph input relations) and what we call a manual data repair state M — a
state capturing the instances of mdrs that have to be taken into account in
the cleaning process. Because the order of actions in this context is obviously
relevant, this state registers the order by which the instances of mdrs associated
to each relation should be executed (what comes in first is handled first).

The execution of a DCG consists in the sequential execution of each data
transformation in accordance with the partial order defined by the graph: if
T <g T', then T is executed after T. The execution of a data transformation T
produces an instance of the relation R in T'®. This relation is then subject to the
mdr instances in M (R). Then, the set of tuples in the resulting relation instance
that are blamed for the violation of the quality constraint associated to R, Q(R)
is calculated. Formally, the execution of a DCG can be defined as follows.

Definition 5. Let G = (G, (Q, M)) be a data cleaning graph for a set Ry, ..., Ry,
of input relations. Let 1, ...,y be instances of these relations and M be a manual
data repair state for G, i.e., a function that assigns to every relation R € rels(G),
a list of instances of manual data repairs over R. The result of executing G over

1, ..., and M is {(tuples(R), tuples® (R)) : R € rels(G)} calculated as follows:
1: for i=1ton do 21: apply-mdr(mdrInstances,vr)
2: for each™ 1€ M(R;) do 22: for each™ . € mdrInstances do
8: vr «— compute_view(view(t), tuples(R;)) 23: if action(mdr(t)) = delete then
4: apply-mdr (¢, vr) 24: vr «— or \ {tuple(v)}
5: tuples(R;) < propagate(vr) 25: else if action(mdr(t)) = insert then
6: end for 26: vr «— r U {tuple(v)}
7: end for 27: else if action(mdr(t)) = update then
8: for i=1ton do 28: newt «— tuple(t)
9: tuples® (R;) «— blamed(tuples(r;)) 29: newtlattribute(action(mdr(c)))] «— value(t)
10: end for 30: vr «— (vr \ {tuple(¢)}) U {newt}
11: for each™ T € trans(G) do 31: end if
12: let {R},...,R,} = °T 32: end for

13: tuples(T*®) « T (tuples(R)), ..., tuples(R}))
14: for each™™ 1€ M(T®) do

15: vr — compute_view(view(t), tuples(T*))
16: apply-mdr (¢, vr)
17: tuples(T*®) < propagate(vr)

18: end for
19: tuples® (T*) — blamed(tuples(T*))
20: end for

* Assuming that the underlying iteration will traverse the set in ascending element order.
** Assuming that the underlying iteration will traverse the list in proper sequence.

The procedure compute view(view,setOfTuples) encodes the application of the
view to the base table constituted by the setOfTuples whereas propagate(view)
encodes the propagation of the updates applied to the tuples returned by view
to the base table. Although this algorithm defines an operational semantics for
DCGs, it must not be regarded as a proposal for the implementation of an engine
that supports the execution of DCGs. The sole purpose of this algorithm is to
formally define what is the result of executing a DCG over a source of data and
a manual data repair state.

144 H. Galhardas, A. Lopes, and E. Santos

4 Case Study

We have developed and implemented in full depth the process to clean publica-
tion citation data retrieved from the web, introduced in Section 2l The goal of
this process is to clean the Pub table and produce a table containing only the
publications authored by at least one team member, with duplicate entries for
the same real world publication organized in clusters. The process: (i) extracts
the author names independently of the publication they are associated to; (ii)
matches each of these author names against the names stored in the Team table,
and tries to find synonyms (i.e., approximate similar names); (iii) builds the list
of co-authors for each author; (iv) removes those publications that are not au-
thored by any team member; and (v) detects and clusters approximate duplicate
publication records.

The DCG that models this process is presented in Fig. Bland in the two tables
presented in Fig. @ It presents slight differences with respect to the excerpt
presented in Fig. 2l because therein we made some simplifications (more details
can be found in [I0]). The condition that an author of each publication can
only match one team member is now checked through the quality constraint
Qc6 that is imposed after the user gives feedback about the co-authorship tuples
(through Mdr5). The data transformation T5 was introduced for gathering the co-
authorship information about each author. The co-authorship information, after
being validated by the user, can provide additional knowledge that is helpful
for automatically deciding whether an author name in a publication refers to a
team member.

Based on the matching name pairs produced by T3 and T4, and on the co-
authorship tuples produced by T5, the transformation T6 is able to distinguish,
among the set of authors for each publication, those who belong to the team from
those who do not. The user feedback provided through Mdr6 confirms whether the
information automatically produced is true. Finally, T7 discards the publication
records whose list of authors does not contain a team member. Besides producing
Pub records that concern only team members, the goal of the graph is also to
put together Pub records that concern the same real world publication. To this
end, the publication records must be compared in order to identify entries that
constitute approximate duplicates. For this purpose, transformations T9 and T10
match pairs of publications, and cluster the matched publications.

Other quality constraints were introduced in the graph to call the user’s at-
tention for anticipated data problems. QcO and Qc8 call the user attention for
analyzing and correcting tuples that have the word “others” in its authors at-
tribute value, and tuples that correspond to single-author publications (i.e., by
checking if the author attribute value does not contain the conjunction “and”,
which connects two or more authors names), respectively. Quality constraints
Qc3 and Qc9 are imposed on the result of the matching operations encoded in T3
and T9, respectively, that consider the existence of two threshold values. Pairs of
records whose computed similarity is below the inferior threshold are considered
as non-matches and discarded by the transformations. Pairs of records whose
similarity is above the inferior threshold are considered as candidate matches

Pub(pld, tld, title, authors,
year, event, link, cits, citsNs)

T1: Extract all authors of
each publication

R1(pld, ald, aName)

T2: Projects ald and aName

Team(tld,..., tName,

R2(ald, aName)
T3: Approximate match of
author names in Team

R3(ald, aName, tid,
tName, sim)

T4: Join author names

Support for User Involvement in Data Cleaning

with corresponding pld

R4(pld, ald, aName, tid,
tName)

T5: Build Co-authorship

R5(ald, aName, coAuthor)

T6: Selects the teams and
non-teams authors for
each publication.

Ré6(pld, title, ald, aName,
tid, tName)

T7: Concatenate authors
of publications that
have, at least, one team
author.

=
3

R7(pld, authors)

T8: Join with Publication

ORHURO20

145

ﬂ R8(pld, title, authors, ...)

T9: Approximate match of
publications

R9(pld1, title1, authorsl, ...,
pld2, title2, authors1, ...,

T10: Clustering of matched
publications

R10(clusterld, pld, title,
authors, ...)

m G T11: Join with Publication
CleanPub(pld, clusterld,
title,...,citsNs)

Clean
Pub

Fig. 3. Data cleaning graph for the case study

Node Quality Constraint Mdr | Node User actions View

Pub |QcO: Pub.authors !contains(“others”) ||MdrO|Pub |delete, update author |Select title, authors From blamed(Qc0)

R3 QC3: R3.sim 2 0.8 Mdr3| R3 update sim Select aName, tname, sim From blamed(Qc3)

R6 Qc6: unique(pid,ald) Mdr5 | RS delete Select aName, coAuthor From R5

R8 Qc8: R8.authors !contains(“and”) Mdr6| R6 delete Select title, aName From blamed(Qc6)

R9 Qc9: R9.sim 2 0.8 Mdr8| R8 delete Select title, authors, ... From blamed(Qc8)
Mdr9 | R9 update sim Select titell, ..., title2,.. From blamed(Qc9)

Fig. 4. Quality constraints and manual data repairs of the DCG

and returned as a result of the data transformations. Those resulting records
whose similarity value (stored in the sim attribute) is inferior to the superior
threshold violate the corresponding quality constraints (Qc3 and Qc9). These
records do not have a sufficiently high value nor a sufficiently low value of the
sim attribute, so the user must analyze them. Then, through Mdr3 and Mdr9, the
user may decide whether the corresponding pairs of author names or publica-
tions are considered as matches, by modifying the sim value accordingly (1 for
matches, and 0 for no matches).

5 Experiments

We performed a set of experiments to evaluate the benefits of involving the user
in the data cleaning process described in Sectiondl We focused on two different
aspects: the data quality obtained at the end of the data cleaning process and
the cost of the manual activities that have to be performed by the user.

The experiments were performed with the AJAX data cleaning prototypel[§],
over a subset of the database of the CIDS[6]. These experiments required to
implement two data cleaning programs: P; complying with the data transforma-
tion graph presented in Fig[y and P, complying with the data transformation

146 H. Galhardas, A. Lopes, and E. Santos

graph presented in Fig[3 and capturing, as closest as possible with the means
available, the quality constraints presented in the first table presented in Fig[dl
Quality constraints in P» were encoded inside transformations, making use of
exceptions as supported by AJAX. As a result, the tuples available for user in-
spection are not those blamed for the violation but those that originate a blamed
tuple. Moreover, the tuples that raise exceptions are not available as input for
the transformations ahead in the graph. However, for the evaluation purpose at
hand, these differences were considered to be neglectable.

We performed the following cleaning tasks. T'aski: the manual cleaning of
the Pub table. T'asks: the execution of P; and the manual intervention of the
user over the produced data in the output CleanPub table so that it contains
all publications that are authored by at least one team member with duplicates
organized in clusters. T'asks: the execution of the P, and the manual intervention
of the user over the produced data in the CleanPub table guided by the rejected
tuples in the different points of the program. T'ask,: the execution of the data
cleaning program and, after receiving user feedback, the re-execution of parts
of it — with the user involvement guided by the rejected tuples and the mdrs
presented in the second table presented in Figl

The metrics used to evaluate the quality of the CleanPub records produced are
recall and precision. TD Recall (TD R) is given by the number of CleanPub tuples
that are authored by the team (i.e., authored by at least one team member)
divided by the number of CleanPub tuples authored by the team that should have
been produced. TD Precision (TD P) is given by the number of CleanPub tuples
that are authored by the team divided by the number of CleanPub tuples that
were produced. DD Recall (DD R) is given by the number of pairs of CleanPub
tuples that were correctly identified as duplicates (i.e., the ones with the same
value of the clusterld attribute and that correspond to the same real publication)
divided by the total number of pairs of CleanPub tuples that should have been
identified as duplicates. DD Precision (DD P) is given by the number of pairs
of CleanPub tuples that were correctly identified as duplicates divided by the
number of pairs of CleanPub tuples that were identified as duplicates.

To evaluate the cost associated to the user feedback, we consider the following
metrics that we believe can capture the most relevant aspects of user interaction:
the number of characters the user needs to visualize in order to decide which data
corrections need to be undertaken; the maximum number of characters that may
need to be updated, when attribute values are modified; the maximum number
of characters that may need to be deleted or inserted, when tuples are deleted or
inserted; and the number of tuples that need to be updated, deleted or inserted.
The number of characters is given by the multiplication of the number of tuples
by the sum of the sizes of each attribute.

We used an instance of the CIDS database, that contains 509 and 24 tuples
in the tables Pub and Team, respectively. It includes all the publication records
returned by Google Scholar for five members of the team, chosen beforehand.
First, we performed Task; and obtained the cleaned version of this instance by
manually cleaning it. This process was performed by retrieving information from

Support for User Involvement in Data Cleaning 147

the member’s home pages and DBLP. Then, the cleaned Pub table obtained was
checked and eventually corrected by each team member. The manually cleaned
publication table, named CleanPub;, was used as a reference for computing the
quality of the data cleaned automatically and the impact of user feedback.

Data Accuracy. To compute the gain of data quality obtained when incorpo-
rating the user feedback, we performed Tasks, T'asks and Tasks. The resulting
publication records obtained in each of these cases were stored in tables named,
CleanPubs, CleanPubs, and CleanPuby, respectively. The recall and precision (both
TD and DD) of the CleanPubs and CleanPuby tables were 100%. We recall that, in
both cases, the manual corrections applied by the user are guided by rejected tu-
ples. In the case of CleanPubsy, 70% of TD R, 78% of DD R and 100% of precision
were obtained. In fact, in T'asks, the user only has access to the data produced
at the end of the data cleaning process and so there is no way of recovering
the data tuples that were not properly handled by some data transformations.
Overall, these data accuracy values can be considered as good, but there is a
trade-off between data accuracy and the cost of user feedback required.

In the case of Tasky, to analyze the effect of the different mdrs in the final
result, we measured the values of precision and recall after applying each mdr.
We considered that after the mdr instances were applied, the remaining of the
DCG was re-executed and the precision and recall of CleanPub, data was re-
computed. The results obtained are summarized in Table[Il We notice that the
precision and recall values greatly improved with the user’s feedback via mdrs.
The non-increasing values of DD P when Mdr8 is applied are justified by the
existence of pairs of tuples that correspond to the same single-author publication
but whose similarity is inferior to 0.8. These pairs of tuples violated Qc8 and,
because we use AJAX exception mechanism for “simulating” quality constraint
violation, they were not delivered to transformation T9.

Table 1. Precision and Recall Table 2. Cost of user feedback

for CleanPuby4 table
mdrITD PITD RIDD PIDD & Cost/Task Task1 |Tasks |Tasks |Taska
nonel 083 1 070 1 0.98 1 0.76 Visualization 200,000{137,000{115,000(32,000
Mdrol 083 1070 1 0.98 1 0.76 # deleted tuples (164 56 56 134
Va3l 055 T 080 1 093 T 091 Deletion 33,500 [11,500 |11,500 |7,500
Mdr5 1 0.92 0.98 0.91 # updated tuples 121 2 32 21
Vdre T T 092 1098 T 091 Updating 2,600 |40 |800 |150
Mdral 1 1 0.93 | 0.93 # inserted tuples |0 0 68 0
Mdro| 1 1 1 1 Insertion 0 0 14,000 |0

Cost of User Feedback. We also wanted to find out whether the approach of
incorporating the user feedback into the DCG (embodied by Tasks) facilitates
the work of the user when compared to other approaches. For this purpose, we
measured the cost associated to the user actions performed in the four tasks
referred above. The results obtained are presented in Table[2l The cost of data
visualization, updating, deletion and insertion are approximate values.

148 H. Galhardas, A. Lopes, and E. Santos

In Table[2] we observe that the use of quality constraints and mdrs in T'asky
greatly decreases the cost of data visualization with respect to the other tasks.
Notice that this result is even true when comparing the cost of data visualization
incurred in Tasks, which only considers the data produced at the end of the
data cleaning process. This result can be explained by the existence of quality
constraints that were specified in such a way that only the set of tuples blamed
by constraint violations are shown to the user. In other cases, the mdrs define
judiciously the data the user needs to analyze in order to decide which action
must be applied.

In what concerns the cost of the user feedback incurred in each task, we also
observe that the use of mdrs also decreases substantially the number and cost
of user actions that must be applied to manually correct data. In comparison
to T'asky and Tasks, the results obtained by Tasky are significantly improved.
Although in T'ask, the user deletes a higher number of tuples than in T'asks, the
cost of delete in Task, is lower than the corresponding cost in T'asks because
the user has to analyse a smaller amount of data in order to apply each delete
action. With respect to Tasks, the obtained results are slightly better than
Task4 because in Tasky the user actions are only applied over data produced at
the end of the data cleaning process and, therefore, the rejected tuples are not
analyzed, resulting in significantly worst recall values (70% of TD R and a 78%
of DD R). Overall, the results show that the use of the new primitives addressing
the user feedback (T'asks) may significantly improve a data cleaning process.

6 Related Work

Error Handling in ETL and Data Cleaning Tools. In current commercial
ETL and data cleaning tools, the developer can specify that input records not
handled by some pre-defined operators are written into a log file whose contents
can be later analyzed by the user. However, no user feedback provided on the
data stored in these files can be re-integrated in the flow of data transformations.
In some tools (e.g. SQL Server Integration Services), it is possible to partially
overcome this limitation, by explicitly specifying an error output flow for some
data operators that can be later analyzed by the user or considered as input of
further data operators.

Support for error handling in the context of data cleaning was investigated in
the context of prototypes AJAX [J9] and ARKTOS [I§] through the notion of,
respectively, exception and rejection. Both notions correspond to input tuples
that are not properly handled by a given data transformation. Rejected tuples
and exceptions are stored in a specific table whose schema is the same as the
input schema of the transformation (in ARKTOS) or contains the key of the
input tuples (in AJAX). The purpose of this information is to call the user’s
attention for data items not correctly handled in specific points of the graph of
data transformations. However, these solutions do not provide the support we
believe should be available at the modelling level of data cleaning processes. For
instance, AJAX exceptions rely on relational technology to detect the occurrence

Support for User Involvement in Data Cleaning 149

of integrity constraint violations. As a result, in many situations it is not possible
to predict which are the tuples that will be identified as exceptions because it will
depend on the order in which tuples of the input tables are processed (typically
not under the control of the developer). Other initiatives to encode data quality
rules and store the records that violate them have taken place (e.g., [16]).

User Feedback. The incorporation of user feedback has shown to be useful
in several automatic tasks. For example, Chai et al [4] propose a solution to
incorporate the end-user feedback into Information Extraction programs. An
Information Extraction program is composed by a set of declarative rules. The
developer writes some of these rules with the purpose of specifying the items of
data the users can edit and the user interfaces that can be used. Analogously,
we are proposing a way of specifying the exact points in the graph of data
transformations where the user can provide feedback to improve the quality of
the produced data. Moreover, we are limiting the amount of information the user
can visualize and provide some guidance for the manual modification of data.
In the context of data cleaning, Potter’s Wheel [15] offers a graphical interface
through which the developer can specify and quickly debug data cleaning rules
that are applied to samples of data.

Data Repairs. In [5], Cong and colleagues propose a framework for data clean-
ing that supports algorithms for finding repairs for a database and a statistical
method to guarantee the accuracy of the repairs found. As noted in Section [3]
the notion of blamed tuples introduced in this paper is based on the concept
of database repair (considering that repair operations are limited to deletion of
tuples). We consider as blamed for the violation of a data quality constraint
associated to a relation of a database, those tuples in the relation instance that
belong to some repair of the database.

Recently, [19] puts forward a system for guiding data repairing that explicitly
involves the user in the process of checking the data repairs automatically pro-
duced by the algorithms introduced in [5]. In particular, the authors focused on
ranking the repairs in such a way that the user effort spent in analyzing useless
information is minimized. In this paper, we aim at reaching the same goal: to
minimize the user effort when providing feedback in a data cleaning process.
However, in the current version of our research, we do not provide any method
for clustering or ranking the tuples that violate constraints. For the moment,
we claim that by disclosing a limited set of records to the user, we are able to
reduce the amount of data that he/she needs to analyze and eventually modify.

7 Conclusions

In this paper, we address the problem of integrating the user feedback in an
automatic data cleaning process. We propose the notion of data quality constraint
that may be associated to any of the intermediate relations produced by data
transformations in a DCG. We also propose that a DCG specifies manual data
repairs, that to some extend can be regarded as a kind of wizard-based form

150 H. Galhardas, A. Lopes, and E. Santos

that limits the amount of data that can be visualized and modified. We have
performed preliminary experiments with a real-world data set that show the
gain of data quality achieved when the user feedback is incorporated and that
the overhead incurred by the user, when providing feedback guided by quality
constraints and mdrs, is significantly inferior to the effort involved in cleaning
rejected records in an ad-hoc manner.

As future work, we plan to modify the definition of updatable view that is
used in the definition of mdrs so that the join of base relations is possible.
Special care must be taken so that the view remains updatable in the sense that
the updates can always be propagated to the base relations. In addition, the
concept of DCG and corresponding operational semantics must be adequately
supported by a software platform that should efficiently compute the set of
blamed tuples for a given quality constraint violation, enable the automatic re-
application of past user actions, and support the incremental execution of data
transformations.

References

1. Arenas, M., Bertossi, L.E., Chomicki, J.: Consistent query answers in inconsistent
databases. In: PODS, pp. 68-79 (1999)

2. Bohannon, A., Pierce, B.C., Vaughan, J.A.: Relational lenses: a language for up-
datable views. In: PODS, pp. 338-347. ACM, New York (2006)

3. Carreira, P., Galhardas, H., Lopes, A., Pereira, J.: One-to-many data transforma-
tions through data mappers. Data Knowl. Eng. 62(3), 483-503 (2007)

4. Chai, X., Vuong, B.-Q., Doan, A., Naughton, J.F.: Efficiently incorporating user
feedback into information extraction and integration programs. In: SIGMOD,
pp. 87-100 (2009)

5. Cong, G., Fan, W., Geerts, F., Jia, X., Ma, S.: Improving data quality: Consistency
and accuracy. In: VLDB, pp. 315-326 (2007)

6. Couto, F.M., Pesquita, C., Grego, T., Verissimo, P.: Handling self-citations using
google scholar. Cybermetrics 13(1) (2009)

7. Fan, W., Geerts, F., Jia, X.: Conditional dependencies: A principled approach
to improving data quality. In: Sexton, A.P. (ed.) BNCOD 26. LNCS, vol. 5588,
pp. 8-20. Springer, Heidelberg (2009)

8. Galhardas, H., Florescu, D., Shasha, D., Simon, E.: Ajax: An extensible data clean-
ing tool. In: SIGMOD, p. 590 (2000)

9. Galhardas, H., Florescu, D., Shasha, D., Simon, E., Saita, C.-A.: Declarative data
cleaning: Language, model, and algorithms. In: VLDB, pp. 371-380 (2001)

10. Galhardas, H., Lopes, A., Santos, E.: Support for user involvement in data clean-
ing applications. DI/FCUL TR 2010-03, Faculty of Sciences, University of Lisbon
(2010), http://hdl.handle.net/10455/6674

11. Garcia-Molina, H., Ullman, J., Widom, J.: Database Systems: The Complete Book.
Prentice-Hall, Englewood Cliffs (2008)

12. Hall, P.A.V., Dowling, G.R.: Approximate string matching. ACM Comput.
Surv. 12(4), 381-402 (1980)

13. Kang, I.-S., Na, S.-H., Lee, S., Jung, H., Kim, P., Sung, W.-K., Lee, J.-H.: On co-
authorship for author disambiguation. Inf. Process. Manage. 45(1), 84-97 (2009)

14. Rahm, E., Do, H.H.: Data cleaning: Problems and current approaches. IEEE Data
Eng. Bull. 23(4), 3-13 (2000)

http://hdl.handle.net/10455/6674

15.

16.

17.

18.

19.

Support for User Involvement in Data Cleaning 151

Raman, V., Hellerstein, J.M.: Potter’s wheel: An interactive data cleaning system.
In: VLDB, pp. 381-390 (2001)

Rodic, J., Baranovic, M.: Generating data quality rules and integration into etl
process. In: DOLAP, pp. 65-72 (2009)

Simitsis, A., Vassiliadis, P., Terrovitis, M., Skiadopoulos, S.: Graph-based modeling
of ETL activities with multi-level transformations and updates. In: Tjoa, A.M.,
Trujillo, J. (eds.) DaWaK 2005. LNCS, vol. 3589, pp. 43-52. Springer, Heidelberg
(2005)

Vassiliadis, P., Simitsis, A., Georgantas, P., Terrovitis, M., Skiadopoulos, S.:
A generic and customizable framework for the design of ETL scenarios. Inf.
Syst. 30(7), 492-525 (2005)

Yakout, M., Elmagarmid, A.K., Neville, J., Ouzzani, M., Ilyas, I.F.: Guided data
repair. PVLDB 4(5), 279-289 (2011)

Efficient Processing of Drill-across Queries over
Geographic Data Warehouses

Jaqueline Joice Brito!, Thiago Luis Lopes Siqueira??, Valéria Cesario Times?,

Ricardo Rodrigues Ciferri®, and Cristina Dutra de Ciferri!

! Department of Computer Science, University of Sdo Paulo at Sio Carlos, USP

13.560-970, Sao Carlos, SP, Brazil
2 Sao Paulo Federal Institute of Education, Science and Technology, IFSP
Sao Carlos Campus, 13.565-905, Sao Carlos, SP, Brazil

3 Department of Computer Science, Federal University of Sdo Carlos, UFSCar

13.565-905, Sao Carlos, SP, Brazil
4 Informatics Center, Federal University of Pernambuco, UFPE
50.670-901, Recife, PE, Brazil
jjbrito@icmc.usp.br, prof.thiago@cefetsp.br, vct@cin.ufpe.br,
ricardo@dc.ufscar.br, cdac@icmc.usp.br

Abstract. Drill-across SOLAP queries (spatial OLAP queries) allow for
strategic decision-making through the use of numeric measures from dis-
tinct fact tables that share dimensions and by the evaluation of spatial
predicates. Despite the importance of these queries in geographic data
warehouses (GDWs), there is a lack of research aimed at their study. In
this paper, we investigate three challenging aspects related to the effi-
cient processing of drill-across SOLAP queries over GDWs: (i) the design
of a GDW schema to enable the performance evaluation of drill-across
SOLAP query processing; (ii) the definition of classes of drill-across SO-
LAP queries to be issued over the proposed GDW schema; and (iii) the
analysis of different approaches to process drill-across SOLAP queries,
as follows: star-join computation, materialized views and a new proposed
approach based on the SB-index, which is named DrillAcrossSB. We con-
clude that the DrillAcrossSB approach highly speedups the processing
of drill-across SOLAP queries from 39% up to 98%.

Keywords: geographic data warehouse, drill-across SOLAP query,
index structure, the SB-index.

1 Introduction

Similar to a conventional data warehouse, a geographic data warehouse (GDW)
is a subject-oriented, integrated, historical and non-volatile multidimensional
database. Additionally, the GDW holds spatial attributes to store spatial ob-
jects that are represented by geometries such as points and polygons [I5J5T4]. In
relational databases, the GDW multidimensional model is usually implemented
as an adapted star schema, which contains a fact table that stores numeric or

A. Cuzzocrea and U. Dayal (Eds.): DaWaK 2011, LNCS 6862, pp. 152 2011.
© Springer-Verlag Berlin Heidelberg 2011

Efficient Processing of Drill-across Queries over GDWs 153

spatial measures, and several dimension tables that store descriptive or spa-
tial attributes and their hierarchies. While measures are the subject of analysis,
the dimensions contextualize these measures. Regarding hierarchies, they im-
pose a partial ordering on conventional or spatial attributes, specifying that one
aggregation of higher granularity can be determined using data from another ag-
gregation of lower granularity. In GDW, a predefined spatial hierarchy is a 1:N
association among higher and lower granularity spatial attributes that is deter-
mined by a spatial predicate [5]. Furthermore, differently from the conventional
star schema, spatial attributes are not stored redundantly [T13/6].

Ezxample 1. Suppose a GDW schema that represents historical data related to
orders and sales of a corporation and that extends the TPC-H benchmark [10] to
store spatial attributes about the locations of suppliers and customers (see Fig-
ure[Mlin Section@.T]). A subset of this GDW schema has Lineitem as a fact table
that holds numeric measures such as [quantity, Part as a conventional dimen-
sion table, and Customer and Supplier as spatial dimension tables. Furthermore,
(region geo) < (nation geo) = (city geo) =< (s address geo) is a predefined spatial
hierarchy composed of spatial attributes suffixed with geo, which is defined for
the dimension table Supplier. In this hierarchy, the operator < represents the
partial ordering. Also, the spatial relationship is containment, imposing that a
given supplier address is inside only one city, a city is inside only one nation,
and a nation is inside only one region. Therefore, the quantity sold for a given
nation is the sum of the quantities sold in each city inside this nation. O

GDWs are also characterized by supporting SOLAP (spatial online analytical
processing [3]) queries, i.e. analytical operations extended with spatial predi-
cates. Important analytical operations are drill-down, roll-up and drill-across,
and spatial predicates frequently used are intersection, containment and enclo-
sure. While spatial drill-down operations analyze data on increasingly higher
levels of detail, spatial roll-up operations analyze them on progressively lower
levels of detail. Regarding spatial drill-across operations, they use distinct nu-
meric measures whose fact tables are related to each other by at least one shared
dimension, strictly taking into account one or more spatial predicates. Correlat-
ing fact tables that belong to different star schemas but share dimension tables
that have the same semantics and the same hierarchies of attributes originates
a fact constellation.

Ezample 2. Consider the GDW schema introduced in Example [Il In a spatial
drill-down operation, a decision-making user may require the [quantity sold
by part by nations that intersect a given rectangular window, and later may
require the [quantity sold by part by cities that intersect a smaller rectangular
window. To illustrate a spatial drill-across operation, consider another subset
of the GDW schema, which is composed of the fact table Partsupp containing
numeric measures such as ps supplycost, the conventional dimension table Part
and the spatial dimension table Supplier (see Figure [Il). The user may require
over the fact constellation the [quantity sold and the ps supplycost of suppliers
whose addresses are inside a given rectangular window. O

154 J.J. Brito et al.

SOLAP queries are more complex and costly than analytical operations involving
only conventional attributes. In addition to performing joins and aggregations
over huge fact tables and dimension tables, SOLAP queries also require the
processing of spatial predicates defined over spatial data. Therefore, improving
the performance of SOLAP queries is a core issue in GDW. The challenge is to
retrieve data related to ad hoc spatial query windows, avoiding the high cost of
joining large fact tables with dimension tables.

In the literature, there are a number of approaches that focus on spatial drill-
down and spatial roll-up operations (see Section 2l). However, to the best of our
knowledge, there is a lack of research aimed at investigating drill-across SOLAP
queries. These queries are often used by decision-making users to look across
broad perspectives that require the analysis of geographic locations.

In this paper, we focus on the efficient processing of drill-across SOLAP
queries over GDWs. We introduce the contributions as described as follows.

— We propose a GDW schema based on predefined spatial hierarchies, which
is specifically designed to enable the performance evaluation of drill-across
SOLAP query processing.

— We describe novel classes of drill-across SOLAP queries to be issued over
the proposed GDW schema, such that these classes also focus on drill-down
and roll-up SOLAP queries.

— We investigate different approaches to enhance the query processing perfor-
mance of drill-across SOLAP queries, as follows. The first approach analyses
the star-join computation, and the second approach analyses the use of ma-
terialized views. The third approach, which is proposed in this paper and is
named DrillAcrossSB, investigates the use of the SB-index [I3/12].

This paper is organized as follows. Section [] surveys related work, Section Bl
details concepts used as a basis in our work, Section Ml investigates each con-
tribution introduced by our paper, Section [0l discusses the experimental results,
and Section [0] concludes the paper.

2 Related Work

In the literature, there are a number of approaches that have been proposed
for designing the GDW and improving the performance of OLAP and SOLAP
queries, but they differ from our work on their purpose. Regarding the design
of the GDW, Malinowski and Zimnyi [5] define the concepts of conventional
and spatial facts, dimensions and hierarchies, as well as introduce the use of
pictograms for spatial data types, such as point and area to represent spatial
dimensions that contain attributes stored as points and polygons, respectively.
Siqueira et al. [I3] investigate redundant and non-redundant GDW star schemas.
While in the former the dimension tables store both conventional and spatial at-
tributes, in the latter conventional and spatial attributes are stored separately in
different dimension tables. Mateus et al. [6] argue that conventional and spatial

Efficient Processing of Drill-across Queries over GDWs 155

data should be stored in a single dimension table if there is a 1:1 association be-
tween objects from the related conventional and spatial dimensions. Otherwise,
these data should be stored separately. Although we base the GDW schema that
we propose in this paper in some principles surveyed here, the aforementioned
approaches do not focus on drill-across SOLAP queries, which is our main goal.
In detail, these approaches do not focus on fact constellations containing spatial
dimension tables nor define classes of drill-across SOLAP queries to be issued
over the GDW schema.

Regarding improving the performance of OLAP and SOLAP queries, there are
several approaches addressing view materialization [I5JIT], data fragmentation
and partitioning [4UT], execution of drill-across queries over fact constellations in
conventional data warehouses [2], and also indices [SI9T3/7]. However, despite
the importance of drill-across SOLAP queries, there is a lack of research aimed
at their study. On the one hand, approaches that improve the performance of
drill-across OLAP queries do not focus on GDWs nor consider the processing of
spatial predicates. On the other hand, approaches that improve the performance
of SOLAP queries do not focus on drill-across SOLAP queries.

3 Theoretical Foundation

SOLAP queries can be processed according to different techniques, such as
star-join computation, materialized views and the SB-index. The star-join com-
putation consists in accessing the GDW schema and performing all joins and
aggregations required by the SOLAP query, as well as solving all query filter
conditions defined over conventional and spatial predicates. Also, spatial indices
such as the R-tree can be defined on spatial attributes to improve the spatial
predicate processing. Although star-join computation usually refers to conven-
tional star schemas, we adopt this concept throughout this paper to also refer
to fact constellation schemas and their derivations in GDW.

Materialized views are an alternative to the star-join computation, as they
pre-compute data according to frequent queries and store the result as tables. In
detail, these tables are built containing pre-computed data from fact tables that
were joined to dimension tables and whose measures were aggregated. As a con-
sequence, the use of materialized views avoids costly join operations among the
fact and the dimension tables, as well as simplifies groupings, reduces the number
of rows handled and benefits the evaluation of query filter conditions. Although
avoiding join operations is straightforward when dealing with conventional data
warehouses, GDWs impose that materialized views do not hold redundant spa-
tial data. Therefore, in GDWs, materialized views maintain foreign keys to join
spatial dimension tables [136].

The Spatial Bitmap Index (SB-index) [I3/12] is an index based on the
Bitmap [8] and on the minimum bounding rectangle (MBR), which is designed
to efficiently index predefined spatial hierarchies over GDWs. It has a sequential
structure whose entries maintain a primary key value for the spatial dimension
table and a MBR. Also, the i-th entry of the SB-index points to the i-th bit-
vector of a star-join Bitmap index. There is exactly one bit-vector associated to

156 J.J. Brito et al.

each key value, which is used to indicate the tuples of the fact table where the
given key value occurs (i.e. bit value 1) and does not occur (i.e. bit value 0).
A core aspect of the SB-index’s query processing is that it computes the spa-
tial predicate and transforms it into a conventional one, which can be evaluated
together with other conventional predicates using the star-join Bitmap index.

4 Efficient Processing of Drill-across SOLAP Queries

In order to investigate the efficient processing of drill-across SOLAP queries over
GDWs, we introduce: (i) the design of a GDW schema to enable the performance
evaluation of drill-across SOLAP query processing in Section [T} (ii) the defi-
nition of classes of drill-across SOLAP queries to be issued over the proposed
GDW schema in Section and (iii) the proposal of an approach based on the
SB-index to process drill-across SOLAP queries in Section

4.1 The Proposed GDW Schema

In this section, we propose the SpatialDrillAcross schema, a GDW schema that
faces two challenges. Firstly, it focuses on conventional and spatial dimensions
and attributes, as well as hierarchies of conventional attributes and predefined
spatial hierarchies. Secondly, it also enables the performance evaluation of drill-
across SOLAP query processing.

To develop a GDW schema that addresses these challenges, we propose that
this schema is based on the guidelines described as follows.

— The schema must have at least one fact constellation.

— Spatial data should be stored as attributes in dimension tables.

— Dimension tables should maintain descriptive and spatial attributes if and
only if there is a 1:1 association between the spatial attribute and the di-
mension table primary key. Otherwise, the spatial attribute should be stored
in a separate spatial dimension table that has its own primary key, which is
referenced by the conventional dimension table.

— Spatial hierarchies enable the execution of drill-down and roll-up SOLAP
queries together with drill-across SOLAP queries.

Figure[Ildepicts the proposed SpatialDrillAcross schema. Note that the semantic
of the data warehousing application is the same as that introduced by the TPC-
H benchmark. However, the SpatialDrillAcross schema extends this benchmark
to comply with the aforementioned guidelines as explained as follows.

— It contains a fact constellation composed of the fact tables Lineitem and
Partsupp, which share the conventional dimension table Part and the spatial
dimension table Supplier.

— It stores spatial attributes identified by the suffix geo in the spatial dimen-
sion tables Supplier, Customer, City, Nation and Region. Spatial attributes

Efficient Processing of Drill-across Queries over GDWs 157

SSF*5
Region 4
SF*10,000 /| region pk | SF*150,000
P i N\

Supplier . ,/ reglon_geo \\ Customer @
s_suppkey / 55F*25 M| c_custkey
s_name / Nation 4 N[c_name
s_address_name " . c_address_name
s_address_geo m c_address_geo

) \ nation_geo / !
s_city_name \ /| e_city_name

) \ /)
s_city_fk . / c_city_fk
it \ SSF*250 / iy
s_nation_name S ¢_nation_name
s_nation_fk N City &4 |/ c_nation_fk
5_region_name city_pk c_region_name
s_region_fk city_geo c_region_fk
s_phone c_phone

SF*800,000 -P -P
s_acctbal c_acctbal
SF*6,000,000
Partsupp s_comment c_mktsegment
ps_suppkey \ Lineitem ¢_comment
s _part |_orderkey
ps_availgty I_linenumber
ps_supplycost I_partkey
SF*200,000 -
ps_comment 1 1suppkey \\\ SF*1,500,000
Part // |_extendedprice AN Orders
4 . \\
p_partkey . :_dlsco::t o orderke
p_name —quantity o_custke
p_mfrg I_tax u_orders:ratus
p_brand Sretiniiag o_totalprice
p_tl,rpe I_linestatus o_orderdate
p_size I_shipdate u_urderpriorit\.r
p_container |_commitdate o-clerk
p_retailprice LR o_shippriority
p_comment I_shipinstruct o_comment
- I_shipmode -
I_comment

Fig. 1. The proposed SpatialDrillAcross schema. SF and SSF refer to the scale factor
for conventional and spatial data, respectively.

were introduced in the SpatialDrillAcross schema according to their corre-
spondence with conventional data already present in the TPC-H benchmark,
except for City, which was added to the proposed schema to generate another
spatial granularity level. Also, the spatial dimension tables are represented
by pictograms for spatial data types described in Section[2 such as point (i.e.
Supplier and Customer) and area/polygon (i.e. City, Nation and Region).
— It stores the addresses of customers and suppliers as spatial attributes
in the dimension tables Customer and Supplier, i.e. in ¢ address geo and
s address geo, respectively. This design decision was motivated by the fact
that there is a 1:1 association between ¢ address geo and the dimension table
Customer, as well as a 1:1 association between s address geo and the dimen-
sion table Supplier. That is, there is only one address for a customer (or a
supplier). Also, customers and suppliers do not share common addresses.

158 J.J. Brito et al.

— It has two spatial predefined hierarchies defined by the spatial rela-
tionship containment: (i) (region geo) =< (nation geo) =< (city geo) =
(c address geo) for Customer; and (ii) (region geo) =< (nation geo) =
(city geo) = (s address geo) for Supplier.

4.2 Classes of Drill-across SOLAP Queries

In this section, we propose three different classes of drill-across SOLAP queries,
which focus on the analysis of different spatial data types, different granularities
and increasing number of spatial query windows, thus imposing distinct process-
ing costs. The templates of these classes are shown in Figures 2h and Bh. These
templates represent drill-across SOLAP queries as they use the numeric mea-
sures ps supplycost and [quantity from the distinct fact tables Lineitem and
Partsupp, respectively, and define one or more spatial predicates. In the tem-
plates, we highlight in bold both spatial granularity levels and spatial attributes
and dimensions that vary according to the spatial granularity level, as well as
indicate the need to perform join operations due to the use of the spatial dimen-
sions. We also use two filters defined over conventional attributes: p brand =
‘Brand#14’ and extract(year FROM o orderdate) BETWEEN 1994 AND 1997.
Furthermore, in Figures Zb and Bb, we instantiate the values of spatial gran-
ularity levels, spatial attributes, and spatial predicates. Regarding the spatial
predicates, we use the WITHIN relationship to represent which points are inside
a given query window, and the INTERSECT relationship to represent which
polygons intersect a given query window.

Class Q1. Drill-across SOLAP queries of this class include those that define
one spatial query window over supplier, and that support drill-down and roll-
up queries extended with a spatial predicate. Figure Bh depicts the template
of queries from class Q1. It compares the average supply cost to the amount
sold by part, by supplier, for those parts whose brand are Brand#14 and that
were sold between 1994 and 1997, considering suppliers located at a given re-
gion. Regarding the spatial predicate, class Q1 applies a spatial query window
QW to retrieve only those suppliers whose spatial location satisfies the spatial
relationship against QW.

Ezample 3. Figure[2b illustrates four queries from class Q1. Q1.1 is defined over
the address granularity of suppliers, while Q1.2, Q1.3 and Q1.4 are defined over
the city, nation and region granularities of suppliers, respectively. Also, QW 4,
QWe, QWx and QWEg are the spatial query windows to evaluate the spatial
predicate on each granularity. In addition, the consecutive execution of queries
starting at Q1.1 and ending at Q1.4 consists of a roll-up SOLAP query, while
the inverse order of execution consists of a drill-down SOLAP query. (]

Class Q2. Drill-across SOLAP queries of this class include those that define
one spatial query window over suppliers and one spatial query window over cus-
tomers, and that support drill-down and roll-up queries extended with a spatial

Efficient Processing of Drill-across Queries over GDWs 159

SELECT granularity_level, p_partkey, total_quantity_sold, average_supplycost
FROM (SELECT granularity_level, granularity_key, p_partkey, AVG (ps_supplycost) AS average_supplycost
FROM Partsupp, Part, Supplier, spatial dimension table
WHERE ps_partkey = p_partkey AND ps_suppkey = s_suppkey AND p_brand = 'Brand#14 '
AND spatial_predicate AND join operation due to the use of the spatial dimension
GROUP BY granularity_level, granularity_key, p_partkey
) AS supply_cost,
(SELECT granularity_key, |_partkey, SUM (I_guantity) AS total_quantity_sold
FROM Lineitem, Orders, Part, Supplier, spatial dimension table
WHERE |_orderkey = o_orderkey AND |_suppkey = s_suppkey AND |_partkey = p_partkey
AND p_brand = 'Brand#14 ' AND extract(year FROM o_orderdate) BETWEEN 1994 AND 1997
AND spatial_predicate AND join operation due to the use of the spatial dimension
GROUP BY granularity_key, |_partkey
) AS quantity_sold
WHERE quantity_sold.granularity_key = supply_cost.granularity_key AND p_partkey = |_suppkey
ORDER BY granularity_level, p_partkey DESC;

(a) Template of class Q1.

Query g larity_level g larity_key spatial_predicate

Qi1 s_address_name s_suppkey WITHIN(s_address_geo, QWa) = 'E
Ql.z §_city_name s_city_fk INTERSECTS(s_city_geo, QWc) _E g
Q13 s_nation_name s_nation_fk INTERSECTS(s_nation_geo, QWh) 5 g
Ql4 s_region_name s_region_fk INTERSECTS(s_region_geo, QWs) z

(b} Values of granularity_level, granularity_key and spatial_predicate for class Q1.

Fig. 2. Drill-across SOLAP queries of class Q1

predicate. Although the spatial query windows are placed on distinct locations,
they should be defined over the same granularities of suppliers and customers
simultaneously. Figure Bl depicts the template of queries from class Q2. It com-
pares the average supply cost to the amount sold by part, by supplier, for those
parts whose brand are Brand#14 and that were sold between 1994 and 1997,
considering suppliers located at a given location and customers located at an-
other location. Class Q2 has a query window QW for suppliers and another query
window QW' for customers, in order to retrieve only those suppliers and cus-
tomers whose spatial location satisfies the spatial relationship against QW and
QW' respectively. As class Q2 restricts the locations of suppliers and customers,
it is more complex and restrictive than class Q1.

Example /. FigureBb illustrates four queries from class Q2. Q2.1 is defined over
the address granularity of suppliers and customers, while 2.2, Q2.3 and Q2.4
are defined over the city, nation and region granularities of suppliers and cus-
tomers, respectively. All the four queries are defined over the same granularities
of suppliers and customers simultaneously and evaluate spatial predicates involv-
ing attributes that store the same data type, i.e. points for Q2.1 and polygons
for the Q2.2, Q2.3 and Q2.4. Also, the consecutive execution of queries starting
at Q2.1 and ending at Q2.4 consists of a roll-up SOLAP query, while the inverse
order of execution consists of a drill-down SOLAP query. O

160 J.J. Brito et al.

SELECT granularity_level, p_partkey, total_quantity_sold, average_supplycost
FROM (SELECT granularity_level, granularity_key, p_partkey, AVG (ps_supplycost) AS average_supplycost
FROM Partsupp, Part, Supplier, spatial di ion table
WHERE ps_partkey = p_partkey AND ps_suppkey = 5_suppkey AND p_brand = 'Brand#14 '
AND spatial_predicate_01 AND join operation due to the use of the spatial dimension
GROUP BY granularity_level, granularity_key, p_partkey
) AS supply_cost,
(SELECT granularity_key, |_partkey, SUM (|_guantity) AS total_quantity_sold
FROM Lineitem, Orders, Part, Supplier, Customer, spatial dimension tables
WHERE |_orderkey = o_orderkey AND |_suppkey = s_suppkey AND o_custkey = c_custkey
AND |_partkey = p_partkey AND p_brand = 'Brand##14 '
AND extract{year FROM o_orderdate) BETWEEN 1994 AND 1997
AND spatial_predicate_02 AND join operations due to the use of the spatial dimensions
GROUP BY granularity_key, |_partkey
) AS quantity_sold
WHERE quantity_sold.granularity_key =supply_cost.granularity_key AND p_partkey = |_suppkey
ORDER BY granularity_level, p_partkey DESC;

(a) Template of classes Q2 and Q3.

Query g larity_level g larity_key spatial_predicate_01 spatial_predicate_02

Q2.1 s_address_name s_suppkey WITHIN(s_address_geo, QWa) mEH\mIrsﬁr:{if:ﬁxﬁx?]awa; o
=

Q2.2 5_city_name s_city_fk INTERSECTS(s_city_geo, QWc) TJ;RI%S:;E?;:‘E?:?;?;:;] aw') E E
=]

Q2.3 5_nation_name s_nation_fk INTERSECTS(s_nation_geo, QWn) ::[ET:Iigss{sé:;{t:i:;ﬁ:\ﬁ::}mv'n] % g

Q2.4 5_region_name s_region_fk INTERSECTS(s_region_geo, QWs) r;;T:?E:?;é:ﬂi:g;ii’_zxﬁ}QW,R]

(b) Values of granularity_level, granularity_key, spatial_predicate01 and spatial_predicate02 for class Q2.

Query g larity_level g larity_key spatial_predicate_01 spatial_predicate_02 1

Q31 s_city_name s_city_fk INTERSECTS(s_city_geo, QWe) L"Jgﬁffﬂ?ﬁi::ﬁ;ﬁ:;’qwd = E
=

Q3.2 5_nation_name s_nation_fk INTERSECTS(s_nation_geo, QW) :q:;ﬁfﬂfﬁi‘:::;—:je:v;&q E {E

Q33 5_region_name s_region_fk INTERSECTS(s_region_geo, QWs) ;:Lﬁ':‘:ﬁ%ﬁé{:ﬂur:;f;:j‘gxll =

(c) Values of granularity_level, granularity_key, spatial_predicate01 and spatial_predicate02 for class Q3.

Fig. 3. General structure of the proposed drill-across SOLAP queries

Class Q3. Drill-across SOLAP queries of this class include those that define one
spatial query window over supplier and one spatial query window over customer,
and that support drill-down and roll-up queries extended with a spatial predi-
cate. The spatial query windows should be defined over different granularities of
suppliers and customers simultaneously. Class Q3 is similar to class Q2, except
for the fact that the spatial query windows defined over suppliers and customers
have different granularities to allow for the processing of different spatial data
types and the processing of different cardinalities in the same query.

Ezample 5. Figure Bk illustrates examples of queries from class Q3. We fixed
the granularity of customers as address and varied the granularities of suppliers.
Therefore, Q3.1, Q3.2 and Q3.3 are defined over the city, nation and region

Efficient Processing of Drill-across Queries over GDWs 161

granularities of suppliers, respectively. Note that all the queries are defined over
spatial attributes with different cardinalities. Also, the spatial data types are
different. While the spatial attribute s address is represented by points, the
spatial attributes ¢ city, ¢ nation and c¢ region are represented by polygons. [

4.3 The Proposed DrillAcrossSB Approach

In this section, we propose DrillAcrossSB, an approach to process drill-across
SOLAP queries using a spatial index specifically designed to index predefined
spatial hierarchies over GDWs. This approach is based on two main tasks. First,
each star schema and each spatial dimension table of a fact constellation are
separately indexed. Then, each indexed star schema is processed to produce
partial results that are merged and ordered to obtain the final answer.

Algorithms [l and Pl detail the proposed DrillAcrossSB approach. Algorithm [T
named BuildIndices, generates one star-join Bitmap index for each star schema
of the fact constellation (lines 1 and 2), as well as one SB-index for each spatial
dimension table present in the fact constellation (lines 3 and 4). This is because
the star-join Bitmap index is always applied to a single star schema, while the
SB-index defined over shared spatial dimension tables can be used by different
star schemas. Regarding Algorithm [, it is aimed at processing a drill-across
SOLAP query @ and calculating @)’s answer, using as a basis the indices created
by Algorithm [[I The DrillAcrossProcessing algorithm first divides @ into
several subqueries, so that each subquery is processed over a specific star schema
(lines 1 to 4). The answer of @ is obtained by merging the partial results of the
subqueries and by ordering the merged results (lines 5 to 7).

Example 6. As an example of input and output produced by the proposed
algorithms, consider the SpatialDrillAcross schema and query Q1 shown in
Figures [0l and B respectively. Algorithm [generates two star-join Bitmap
indices (i.e. SJB;y for Lineitem and SJBy for Partsupp), and five different
SB-index (i.e. SBy for region geo, SBs for nation geo, SBs for city geo, SBy
for ¢ address geo, SBy for s address geo). As for Algorithm [2 it: (i) gener-
ates two subqueries (i.e. supply cost for the first nested SELECT clause and
quantity sold for the second nested SELECT clause), which are processed by
the appropriate indices; (ii) merges the partial results according to the condi-
tions quantity sold.granularity key = supply cost.granularity key and p partkey
= [suppkey; and (iii) orders the final result according to the spatial attribute
represented by granularity level and the conventional attribute p partkey. O

5 Performance Evaluation

5.1 Experimental Setup

In this section, we describe the experimental setup that was used to evaluate
and compare the performance of the proposed DrillAcrossSB approach with the
performance of the star-join computation and materialized views. We used the

162 J.J. Brito et al.

Algorithm 1. BuildIndices (FC,m,n)

Input : FC {a fact constellation},
m {number of star schemas in FC},
n {number of spatial dimension tables in FC}
Output: SJBy, ..., SJB,, {a set of star-join Bitmap indices},
SBi, ..., SBy {a set of SB-index}
1 foreach star schema SC; € FC do

2 create a star-join Bitmap index SJB;
3 foreach spatial dimension table SDT; € FC do
4 create a SB-index SBj on the spatial attributes of interest

Algorithm 2. DrillAcrossProcessing (Q, FC,SJBy,...,SJBy,, SBy, ..., SBy)

Input : Q {the drill-across query},
FC {a fact constelation},
SJBAu, ..., SJBp, {a set of star-join Bitmap indices},
SBi, ..., SBy {a set of SB-index}
Output: FinalResult {query answer}
foreach star schema SC; € FC do
create a subquery SQ; from @
Partial Result; < process the SB-index using SJB; and
the appropriates SB; over SQ;
Final Result «— merge(Partial Resulti, ..., Partial Result,,)
according to the ORDER BY clause of @
FinalResult «— sort(FinalResult) according to the WHERE clause of Q

NI 0 A W N

SpatialDrillAcross schema introduced in Section 4] which was populated with
conventional data generated from the TPC-H benchmark [I0] and spatial data
generated from the Spadawan benchmark [14]. For this schema, we produced two
datasets. The first dataset, named D.S;, required 16.4 GB and was generated
with the scale factor of 10 for both conventional and spatial data. The second
dataset, named DS, required 1.7 GB and was generated with scale factor 1
for conventional data and scale factor 10 for spatial data, thus emphasizing the
spatial predicate processing.

The workload was composed of the 4 queries from class Q1, the 4 queries
from class Q2 and the 3 queries from class Q3 defined in Figures 2b, Bb and Bk,
respectively. For each dataset, we issued each query 5 times, and took the average
of the measurements. The system cache was flushed at the end of each execution.
Also, aiming at analyzing drill-down and roll-up SOLAP queries together with
drill-across SOLAP queries, we defined a set of four spatial query windows, each
one associated to a given granularity level (i.e. address, city, nation and region
granularity levels) and of a specific size (i.e. the lower the granularity, the smaller
the spatial query window). The query windows were quadratic, correlated with
the spatial data and disjoint.

We define in this paper that selectivity is the percentage of the number of
tuples that are retrieved by a query. Regarding the templates shown in Figures[Zh

Efficient Processing of Drill-across Queries over GDWs 163

and Bk, the conventional filter p brand = ‘Brand#1/’ provided a selectivity
of 4% and the conventional filter extract(year FROM o orderdate) BETWEEN
1994 AND 1997 provided a selectivity of almost 61%. The selectivity provided
by each spatial predicate was defined as follows: 0.023% to 0.1% for the address
granularity level of suppliers, 0.025% to 0.05% for the address granularity level
of customers, 0.24% to 0.36% for the city granularity level, 1.2% for the nation
granularity level, and 2% for the region granularity level.

The experiments were conducted on a computer with an Intel Core i7 2.67
GHz processor, 12 GB of main memory, 2 SATA 1 TB hard disks, Linux Ubuntu
9.04, PostgreSQL 8.3 and PostGIS 1.3.3. We employed FastBit version 1.2.1 with
the WAH compression method as the Bitmap software to implement the star-
join Bitmap index and to process the conventional predicates. We implemented
the DrillAcrossSB approach using the C/C++ language and used the merge-join
and the quicksort algorithms to obtain the final result of queries (lines 5 to 7 of
Algorithm [2)). Also, we used the R-tree to index the spatial attributes handled
by the star-join computation and materialized views. We collected the elapsed
time in seconds to process the SOLAP queries.

5.2 Performance Results for Dataset DS,

In this section, we discuss the performance results provided by the star-join com-
putation, materialized views and the DrillAcrossSB approach to process drill-
across SOLAP queries over the dataset DS;. This dataset is the most voluminous
dataset and has the same scale factor for both conventional and spatial data.
For short, we use star-join, views and DrillAcrossSB to refer to the approaches.

Figure] shows the performance results for processing queries of class Q1,
according to different granularity levels (i.e. QL.1, Q1.2, Q1.3 and Q1.4 are
respectively defined over the address, city, nation and region granularity levels).
The use of views avoids several joins among conventional dimension tables and,
therefore, produced a better performance than the star-join, which ranged from
65% to 76%. Regarding DrillAcrossSB, it produced better results than views
when compared with the star-join, which ranged from 93% to 95%. In fact,

200
150

star-join
100

i L

Qi1 a1z Qis Ql.4

W views

m DrillAcrossSB

Fig. 4. Performance obtained with the star-join computation, materialized views and
the DrillAcrossSB approach for queries of class Q1. Elapsed time in seconds.

164 J.J. Brito et al.

star-join Wviews M DrillAcrossSB star-join Wviews @ DrilldcrossSs

600 200
300
400

300
80
200
100 e
i N B L |
a1 a2 @3 24 a3l a2 ais3

Fig. 5. Performance obtained with the star-join computation, materialized views and
the DrillAcrossSB approach for queries of classes Q2 and Q3. Elapsed time in seconds.

DrillAcrossSB was at least 70% better than views, thus providing a remarkable
performance gain. Both views and DrillAcrossSB required similar storage costs
(e.g. for queries of class Q1, views required 3.7 GB and DrillAcrossSB required
3.5 GB).

The same pattern was observed for queries of classes Q2 and Q3, as shown
in Figure Bl DrillAcrossSB always produced the better performance results.
Furthermore, the drill-down SOLAP queries performed over distinct granu-
larity levels did not impair the performance gains of the proposed approach.
DrillAcrossSB’s performance gains over the star-join computation were at least
94% and over wviews ranged from 87% up to 96%.

5.3 Performance Results for Dataset DS

In this section, we discuss the performance results to process drill-across SO-
LAP queries over the dataset DSs. This dataset has a higher scale factor for
spatial data (i.e. SSF = 10) than for conventional data (i.e. SF = 1), aiming at
impairing the evaluation of spatial predicates. We only present here results for
views and DrillAcrossSB, since views outperformed the star-join, as shown in
Section

Figure [B] shows the performance results for processing queries of classes
Q1, Q2 and Q3, according to different granularity levels. Regarding queries of
class Q1, DrillAcrossSB was always faster than views. The performance gain
of DrillAcrossSB ranged from 39% at the region granularity level up to 81%
at the address granularity level. Comparing the results presented here with
those described in Section .2 the performance gain of DrillAcrossSB over
views decreased. This is due to the processing of the spatial predicate for the
dataset DS,, which is more costly than the processing of the conventional
predicate. The same pattern was observed for queries of classes Q2 and Q3.
DrillAcrossSB always produced the better performance results, which ranged
from 60% to 98% for queries of class Q2 and from 68% to 90% for queries of
class Q3.

Efficient Processing of Drill-across Queries over GDWs 165

mviews mSB-index

16

32

Bviews MSB-index mviews MSB-index

30

100

24

18

12

Fig. 6. Performance obtained with materialized views and the DrillAcrossSB approach
for the dataset DS>. Elapsed time in seconds. Results for class Q2 are in log scale.

6 Conclusions and Future Work

In this paper, we focused on the efficient processing of drill-across SOLAP queries
over GDWs. Our contributions are threefold. We proposed SpatialDrillAcross, a
GDW schema that is based on the TPC-H benchmark and enables the perfor-
mance evaluation of drill-across SOLAP query processing. SpatialDrillAcross is
a fact constellation that contains not only conventional dimensions but also spa-
tial dimensions with spatial attributes and predefined spatial hierarchies, as well
as specifies how spatial data should be stored. We also defined a set of classes
of drill-across SOLAP queries to be issued over the SpatialDrillAcross schema,
so that each class imposes distinct costs in query performance. Furthermore,
we proposed DrillAcrossSB, an approach to process drill-across SOLAP queries
using a spatial index, which is characterized by indexing separated star schemas
of a fact constellation by using the SB-index and merging the partial results.

The DrillAcrossSB approach was validated through performance tests that is-
sued queries from the proposed set of classes over the SpatialDrillAcross schema,
and that investigated different spatial data types, different granularities and
increasing number of spatial query windows. The results demonstrated that
DrillAcrossSB efficiently answers drill-across SOLAP queries. Comparisons of
the DrillAcrossSB approach, the star-join computation and materialized views
showed that DrillAcrossSB highly speedup the processing of drill-across SOLAP
queries from 39% to 98%. Furthermore, both materialized views and
DrillAcrossSB required similar storage costs.

166 J.J. Brito et al.

We are currently extending the Spadawan benchmark [I4] with the concepts
introduced in this paper to also focus on fact constellation schemas and drill-
across SOLAP queries. We also plan to investigate other types of spatial objects
in our tests, such as lines, polygons with holes, and vague spatial objects.

Acknowledgments. This work has been supported by the following Brazilian
research agencies: FAPESP, CNPq, CAPES, INEP and FINEP. The second and
the fourth authors also thank the support of the Web-PIDE Project in the
context of the Observatory of the Education of the Brazilian Government.

References

1. Bellatreche, L., Woameno, K.: Dimension table driven approach to referential par-
tition relational data warehouses. In: DaWakK, pp. 9-16 (2009)

2. Golfarelli, M., Maniezzo, V., Rizzi, S.: Materialization of fragmented views in mul-
tidimensional databases. DKE 49(3), 325-351 (2004)

3. Gémez, L.I., Vaisman, A.A., Zimanyi, E.: Physical design and implementation of spa-
tial data warehouses supporting continuous fields. In: Bach Pedersen, T., Mohania,
M.K., Tjoa, A.M. (eds.) DAWAK 2010. LNCS, vol. 6263, pp. 25-39. Springer, Hei-
delberg (2010)

4. Gorawski, M., Gorawski, M.: Balanced spatio-temporal data warehouse with
R-MVB, STCAT and BITMAP indexes. In: PARELEC, pp. 4348 (2006)

5. Malinowski, E., Zimanyi, E.: Advanced Data Warehouse Design: From Conven-
tional to Spatial and Temporal Applications (Data-Centric Systems and Applica-
tions). Springer, Heidelberg (2008)

6. Mateus, R.C., Siqueira, T.L.L., Times, V.C., Ciferri, R.R., Ciferri, C.D.A.: How
does the spatial data redundancy affect query performance in geographic data
warehouses? JIDM 1(3), 519-534 (2010)

7. Mohan, P., Wilson, R., Shekhar, S., George, B., Levine, N.; Celik, M.: Should
SDBMS support a join index?: A case study from CrimeStat. In: ACM GIS, pp.
1-10 (2008)

8. O’Neil, P., Graefe, G.: Multi-table joins through bitmapped join indices. SIGMOD
Record 24(3), 8-11 (1995)

9. Papadias, D., Kalnis, P., Zhang, J., Tao, Y.: Efficient OLAP operations in spatial
data warehouses. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.)
SSTD 2001. LNCS, vol. 2121, pp. 443-459. Springer, Heidelberg (2001)

10. Poess, M., Floyd, C.: New TPC benchmarks for decision support and web com-
merce. SIGMOD Record 29(4), 64-71 (2000)

11. Rao, F., Zhang, L., Yu, X., Li, Y., Chen, Y.: Spatial hierarchy and OLAP-favored
search in spatial data warehouse. In: DOLAP, pp. 48-55 (2003)

12. Siqueira, T.L.L., Ciferri, C.D.A., Times, V.C., Ciferri, R.R.: The SB-index and the
HSB-index: efficient indices for spatial data warehouses. To Appear in Geoinfor-
matica (2011) doi:10.1007/s10707-011-0128-5

13. Siqueira, T.L.L., Ciferri, C.D.A., Times, V.C., Oliveira, A.G., Ciferri, R.R.: The
impact of spatial data redundancy on SOLAP query performance. JBCS 15(2),
19-34 (2009)

14. Siqueira, T.L.L., Ciferri, R.R., Times, V.C., Ciferri, C.D.A.: Benchmarking spa-
tial data warehouses. In: Bach Pedersen, T., Mohania, M.K., Tjoa, A.M. (eds.)
DAWAK 2010. LNCS, vol. 6263, pp. 40-51. Springer, Heidelberg (2010)

15. Stefanovic, N., Han, J., Koperski, K.: Object-based selective materialization for
efficient implementation of spatial data cubes. IEEE TKDE 12(6), 938-958 (2000)

The NOX OLAP Query Model: From Algebra to
Execution

Ahmad Taleb, Todd Eavis, and Hiba Tabbara

! Najran University, Najran, Saudia Arabia
ahmadtaleb@hotmail.com
2 Concordia University, Montreal, Canada
eavis@cs.concordia.ca
3 Concordia University, Montreal, Canada
h tabarra@encs.concordia.ca

Abstract. Current OLAP servers are typically implemented as either
extensions to conventional relational databases or as non-relational
array-based storage engines. In the former case, the unique modeling
and processing requirements of OLAP systems often make for a rela-
tively awkward fit with RDBM systems. In the latter case, the pro-
prietary nature of the MOLAP implementations has largely prevented
the emergence of a standardized query model. In this paper, we dis-
cuss an algebra for the specification, optimization, and execution of
OLAP-specific queries, including its ability to support a native language
query framework. In addition, we ground the conceptual work by in-
corporating the query optimization and execution facilities into a fully
functional OLAP-aware DBMS prototype. Experimental results clearly
demonstrate the potential of the new algebra-driven system relative to
both the un-optimized prototype and a pair of popular enterprise servers.

1 Introduction

Data warehousing and Online Analytical Processing (OLAP) are two of the
most important components of contemporary Decision Support Systems (DSS).
Collectively, they allow organizations to make effective decisions regarding both
their current and future state. In practice, warehouse databases are implemented
via array-based multi-dimensional storage engines (MOLAP) or as extensions to
the more familiar relational DBM systems (ROLAP). While the MOLAP tools
offer impressive performance, their limited scalability often restricts their use to
environments with more modest resource requirements (e.g., departmental data
marts). Conversely, enterprise ROLAP systems tend to scale quite well, but
offer design and implementation models that are constrained by conceptual and
architectural elements intended primarily for transaction processing systems.
Moreover, current warehouse/OLAP systems utilize query mechanisms that
were designed decades ago. Specifically, they rely upon a combination of string
based query languages such as SQL and MDX, along with various proprietary
extensions. These languages (and their APIs) have little in common with the

A. Cuzzocrea and U. Dayal (Eds.): DaWaK 2011, LNCS 6862, pp. 167, 2011.
© Springer-Verlag Berlin Heidelberg 2011

168 A. Taleb, T. Eavis, and H. Tabbara

safe, flexible Object Oriented languages commonly used in today’s development
environments. Not only do these languages make client side programming less
effective (e.g., no compile time type checking, no semantic verification, no abil-
ity to re-factor code, plus the requirement to interleave distinct programming
models), but they also make it very difficult for the DBMS server to effectively
exploit OLAP-specific constructs at query resolution time. In other words, the
requirement to work with existing query languages and APIs largely prevents
the backend server from effectively optimizing user queries to take full advantage
of either OLAP conceptual structures (e.g., concept hierarchies and aggregation
paths) or physical layer extensions (e.g., enhanced indexing or sorting opportu-
nities).

For this reason, we believe that new OLAP query interfaces are required. In an
earlier work [I3], we discussed an approach that would allow data cube queries
to be written in native OOP languages such as Java. In the current paper, we
extend that initial research by presenting an expressive multi-dimensional OLAP
algebra that can be used to support the language libraries visible to the client
side programmer. Moreover, we discuss the integration of the algebra with a
robust DBMS backend that not only natively supports the algebraic operators
but is able to optimize query plans by applying a series of transformations to the
initial parse trees. The fully optimized plan can then be passed to an execution
engine that, in turn, exploits indexes and algorithms designed expressly for this
purpose. The end result is a framework for an OLAP DBMS that offers the
performance of a MOLAP system and the scalability of a ROLAP architecture.

The paper is organized as follows. Section 2] briefly reviews related work. An
overview of the Sidera data model and architecture is provided in Section [3]
including its application to native language querying. In Section [, we discuss
the formal properties of the current algebra, with Section [l reviewing some of
the server’s more important optimization techniques. Key experimental results
are then presented in Section [6l Section [concludes the paper with a few final
observations.

2 Related Work

Over the past decade or so, numerous attempts have been made to simplify, ex-
tend, or otherwise improve DBMS query interfaces, languages and data models.
One common theme has been the adaptation of APIs to include Object Ori-
ented semantics and syntax. Object Relational Mapping (ORM) frameworks —
including JDO (Java Data Objects) [I] and Hibernate [6] — have been used to
define transparent object persistence for DBMS-backed OOP applications. Still,
the query language extensions — including JDOQL (JDO) and HQL (Hibernate)
— required to execute joins, complex selections, and sub-queries, produce a de-
velopment environment that often seems as complex as the model it was meant
to replace. More recently, Safe Query Objects (SQO) [10] have been introduced.
Rather than explicit mappings, safe queries are defined by a class containing, in
its simplest form, a filter and execute method. The compiler checks the validity

The NOX OLAP Query Model 169

of query types, relative to the objects defined in the filter. The execute method
is then rewritten as a JDO call to the remote database.

Other approaches target the language itself. For example, one can point to lan-
guage extensions such as those found in Ruby’s Active Records [5], HaskellDB [2],
and Microsoft’s LINQ extensions for its C# and VisualBasic environments [§].
Here, however, one must note that none of these languages are in any way OLAP-
aware and, thus, have no native support for concepts such as cubes, dimensions,
aggregation hierarchies, granularity levels, and drill down relationships. By con-
trast, Microsoft’s popular MDX query language [22] — while syntactically remi-
niscent of SQL — provides direct support for both multi-level dimension hierar-
chies and a crosstab data model. Still, MDX remains an embedded string based
language and, as such, cannot provide comprehensive compile-time type check-
ing, a single unified application/DBMS development language, OOP functional-
ity (e.g., inheritance and polymorphism), or efficient source code re-factoring.

In terms of OLAP and BI specific design themes, most contemporary research
builds in some way upon the OLAP data cube operator [I5]. In addition to
various algorithms for cube construction, including those with direct support for
dimension hierarchies [20], researchers have identified a number of new OLAP
operators [11], each designed to minimize in some way the relative difficulty of
implementing core operations in “raw SQL”.

Performance optimization has been another fairly popular target. At vari-
ous times, researchers have focused on view materialization [I7J18], improved
indexing [9/12], and parallelization and partitioning [I9/16]. In general, all such
approaches build on techniques that were developed for OLTP databases. There
has also been some interest in the design of supporting algebras [21]. The pri-
mary focus of this work has been to define an API that would ultimately lead
to transparent, intuitive support for the underlying data cube, and in a more
general sense, to the identification of the core elements of the OLAP concep-
tual data model. OLAP-specific optimization based upon query re-writing has
also been proposed. For example, using an OLAP algebra that highlights the
visual representation of the data cube, Bellatreche et al. propose a set of rules
to re-structure OLAP queries executed against fact and dimension tables (i.e.,
Star Schema) stored in a standard relational DBMS [7]. Though improved per-
formance is suggested, there is no concrete DBMS implementation (or physical
operators) by which to fully quantify or evaluate the proposal.

3 Preliminary Material

Before presenting the algebra, we first review the conceptual and physical model
upon which the Sidera DBMS is constructed. To begin, we note that the methods
discussed in this paper are part of a larger framework known as NOX (Native
language OLAP query eXecution) [I3] that is designed to provide native language
(e.g., Java) Object Oriented OLAP query facilities. In other words, traditional
string-based query languages such as SQL and MDX are not required to access
the analytics data. NOX provides the following components:

170 A. Taleb, T. Eavis, and H. Tabbara

— OLAP conceptual model. NOX allows developers to write code directly
at the conceptual level; no knowledge of the physical or even logical schema
is required.

— Client side libraries. NOX provides a small suite of OOP classes corre-
sponding to the objects of the conceptual model. Collectively, the exposed
methods of the libraries form a clean programming API that can be used to
instantiate OLAP queries.

— Augmented compiler. At its heart, NOX is a query re-writer. During a
pre-processing phase, the framework’s compilation tools effectively re-write
source code to provide transparent model-to-DBMS query translation.

— Cube result set. OLAP queries essentially extract a subcube from the
original space. The NOX framework exposes the result in a logical, read-
only multi-dimensional array.

In short, the developer’s view of the OLAP environment consists solely of the
API and the Result Set. More to the point, from the developer’s perspective, all
OLAP data is housed in a series of cube objects housed in local memory. The
fact that these repositories are not only remote, but possibly Gigabytes or even
Terabytes in size, is largely irrelevant.

3.1 Conceptual Model

As noted in the previous section, NOX allows one to program directly against a
conceptual data model. Briefly, we consider analytical environments to consist
of one or more data cubes. Each cube is composed of a series of d dimensions
(sometimes called feature attributes) and one or more measures. The dimensions
can be visualized as delimiting a d-dimensional hyper-cube, with each axis iden-
tifying the members of the parent dimension (e.g., the days of the year). Cell
values, in turn, represent the aggregated measure (e.g., sum) of the associated
members. Figure[Il(a) provides an illustration of a very simple three dimensional
cube. We can see, for example, that 12 units of Product AM54 were sold in the
Berkeley location during the month of January (assuming a Count measure).

Location
ity) San Jose,
(city Los Angeles,

Berkeley Country

Dec | 20 35 31

(month) Jan 14 20 12 d

Measure . Los
ko | 21 | 40 | 24 o city A | bany

Sk11 FH12 AMS54 v v i i v v

Product (number) Store Store 1 Store 2 Store 3 Store 4 | | Store 5 | | Store 6

(a) (b)

San Jose

i

Fig. 1. (a) NOX conceptual query model (b) A simple symmetric hierarchy

The NOX OLAP Query Model 171

Beyond the basic cube, however, the conceptual OLAP model relies exten-
sively on aggregation hierarchies provided by the dimensions themselves. In fact,
hierarchy traversal is one of the more common and important elements of an-
alytical queries. In practice, there are many variations on the form of OLAP
hierarchies (e.g., symmetric, ragged, non-strict). NOX supports virtually all of
these, and does so by augmenting the conceptual model with the notion of an
arbitrary graph-based hierarchy that may be used to decorate one or more cube
dimensions. Figure [[l(b) illustrates a simple geographic hierarchy that an orga-
nization might use to identify intuitive customer groupings.

3.2 Native Language Queries

NOX provides a set of client libraries that map directly to the conceptual model
described above. In addition to base classes representing OLAP objects such
as dimensions, hierarchies, cells, and aggregation paths, the framework include
a core OLAPQuery class that exposes methods corresponding to the algebra
described in Section[dl The programmer therefore defines queries not by embed-
ding a non-OOP text string, but by over-riding and extending the OLAPQuery
base class and adding just those constraints relevant to the current query. In
so doing, the NOX environment is able to provide compile time type checking,
semantic verification (as per the client libraries), refactoring facilities, and OOP
functionality (e.g., query inheritance). Figure @ illustrates an MDX query and
the corresponding NOX query (written in Java). Note that as queries become
larger and more complex, NOX queries tend to maintain their readability much
better than the corresponding MDX queries.

Though the translation and submission of NOX queries is a somewhat complex
process [I3], the reader should note the following. The client side query depicted
in Figure [is not executed directly. Instead, the NOX processor parses the
source code, identifies the NOX class constructs, and transparently re-writes

class SimpleQuery extends OlapQuery {
public boolean select() {
DateDimension date = new DateDimension();
Customer customer = new Customer() ;
OlapProperty dateMonth = new OlapProperty(date.getMonth());

SELECT return (customer.getAge() > 40 && date.getYear() == 2007 &&
{ [Product].[Type] ALLMEMBERS } ON COLUMNS, dateMonth.inRange(5, 10));

{ [Customer].[Province] ALLMEMBERS } ON ROWS

}
public Object[] project() {

FROM [Order] Customer customer = new Customer() ;
WHERE (Product product = new Product() ;
[Measures].[Quantity Ordered], Mc.asurc measurcA ey Measure() ;
[Time].[Year].[2007], Object[] projections = {product.getType(),
[Time].[Month].[May], customer.getProwpce(),
[Time].[Month].[June], measgre.getQuanutyﬁOrdered()) 5
[Customer].[Age].[45],[Customer].[Age].[55] return projections;
) }
}
(a) (b)

Fig. 2. (a) A simple MDX query (b) The NOX equivalent

172 A. Taleb, T. Eavis, and H. Tabbara

the programmer’s source code. In place of the original OLAPQuery definition,
the processor inserts a network call to the Sidera DBMS. Within the network
packet is a query representation that has already been reduced to its algebraic
components. It is this form of the query that is actually optimized and executed
by the server at runtime.

3.3 The Sidera Architecture

Sidera is a research DBMS that targets analytics environments. To this end, it
provides native, OLAP-specifc support for indexing (bitmaps and R-trees), fault
tolerance (network heartbeat), caching (spatial query representation), lightweight
graphical interfaces (via the Google Web toolkit) and, of course, query languages
(NOX). It is also designed from the ground up as a parallel DBMS that is intended
to scale to ROLAP sizes, while giving something close to MOLAP performance.
Essentially, Sidera is constructed as a federation of sibling servers that function
more or less independently, each accessing and processing a slice of the current
query. A Parallel Service Interface (PSI) offers global coordination and merging
services as required.

In this section, we discuss those elements of the architecture that support the
execution of translated NOX queries. Specifically, we will look at the storage and
indexing model with which the query costing and optimization is associated. We
begin with the physical representation of the NOX conceptual model described
above. Traditionally, relational warehouses use a Star Schema, consisting of a
Fact table and one or more Dimension tables. Process metrics are housed in
the Fact table, with dimension tables containing feature information typically
used to constrain user queries. A Sidera database is roughly analagous to this
design. However, rather than a Fact table, Sidera employs a materialized cube
(fully or partially, as space permits) that is constructed as a set of Hilbert packed
R-trees, then minimized using a form of tuple differential compression [12]. We
then incorporate the (open source) Berkeley DB embedded libraries [3] into the
Sidera code base so as to efficiently encode the Fact Structure. Note that we refer
to measure data as a Fact Structure, rather than a Fact table, as the storage

0 1 2..10 11 12...15 16...15 26...31 32 33...35

Btree |Btree|] ABC ABC| ABC AC Hilbert R-tree BC BC [BC
Meta |[Root | Data Blocks| Meta| Index (Meta + Index Blocks |Data Blocks [Meta [Index

Data Data | Blocks + Data Blocks) Data |Blocks

36,37 38...47 48...53 54...59 60 61...64 65 66
Btree | AB Hilbert R-tree A Hilbert C Hilbert | Btree (B B B
Ly [Data | (Meta + Index Blocks| R-tree index | R-tree index| Data [Data Blocks [Meta Index
+ Data Blocks Data| Blocks

Fig. 3. The physical structure of the indexed cube

The NOX OLAP Query Model 173

format bears little resemblance to a traditional table. Figure [3] illustrates the
internal structure of the Sidera/Berkeley cube. Note that the letters A-B-C are
simply used as a shorthand for Dimension names such as Product, Date, etc. In
short, the cube consists of a packed sequence of meta data, measure data, and
index blocks for each aggregated view, as well as a master B-tree that locates
the relevant view data, as per the current query specification.

Dimension data is stored independently of the central cube structure, as it
requires distinct forms of indexing and representation. Specifically, Sidera is
aware of both hierarchical and mon-hierarchical elements. By hierarchical, we
mean those values associated with user-defined aggregation pathways (e.g., the
common Day-Month-Year Time hierarchy). Sidera uses a structure known as
mapGraph to efficiently translate cell values between arbitrary hierarchy levels
at run-time [I4]. Figure[@(a) shows mapGraph’s representation of the meta data
associated with a simple symmetric Product-Type-Category hierarchy (Sidera
can also support support more complex hierarchies). Note that the integer values
in the figure corresponds to ranges of Product ID values (i.e., Product keys)
that are encapsulated within the tuple differential values encoded in the Fact
Structure. Sidera always stores cell values at the lowest level of granularity so as
to permit arbitrary bi-directional translation between hierarchy levels. In effect,
the DBMS uses the in-memory mapGraph structure as a join index between the
Fact Structure and the hierarchy values.

Non hierarchical attributes such as age, on the the other hand, may be used
to constrain user queries but are not associated with identifiable aggregation
paths. In this case, dimension attributes are encoded with FastBit [4], an efficient
compressed bitmap indexing mechanism. Sidera’s Fastbit attribute processing
essentially produces contiguous sequences of key values that can be mapped
against the Fact Structure. Because the encoded Berkeley R-trees are internally
packed level-by-level and processed with a breadth first search strategy (rather
than the conventional depth first approach), Fastbit key sequence matching can
be accomplished with a single pass through the cube index. Figured(b) illustrates
how the R-tree search algorithm sweeps across levels of the index identifying

Page Number

pageList

ProductID Type Hash Use(rU?;ery _ . childList
Type Map Table /
’T’?e‘ » i Table

! 2 Brakes [Brakes 1
Engine - Engine 2 35 pagelist
Interior _[*— | ierior | 3 > 1] childList -40 [41]
Appliénces ¢ Appliances | 4 Z—
Furniture j#— Fyrniture | 5 i A
40 ‘
Category Category Hash \
Map Table Table \ —
' o
‘L,» 7 Automative [#— Automative |1 Pages 40 and 41 are
11 | HouseHold la—| HouseHold |2 el
(a) (b)

Fig. 4. (a) A simple mapGraph translation map (b) Linear Breadth First R-tree search

174 A. Taleb, T. Eavis, and H. Tabbara

OLAP View OLAP Hierarchy FastBit bitmap Berkeley Access Berkeley
Manager Manager indexes Methods Transactions
: ' Pty
Berkeley
OLAP Cache Manager Lock

:

Hilbert R-tree cube |4
indexing

| —»{ Berkeley Buffer Pool

:

Berkeley Log

OLAP Data Storage

Fig. 5. The architecture of the individual nodes of the cluster DBMS

sequences of pages that correspond to the consecutive key values produced by
the bitmap indexes.

As noted previously, Sidera is constructed as a parallel DBMS and runs on
commodity Linux clusters (multi-core and GPU extensions are currently being
investigated). Figure [illustrates the processing model of the individual sibling
servers, showing the relationship between the components discussed above.

4 The Sidera Algebra

While the language of OLAP algebras has yet to be standardized, it is neverthe-
less the case that a core set of operations has been consistently identified in the
literature [21]. However, before defining the operators of the Sidera algebra, we
will first provide a more formal representation of the conceptual model presented
in Section Bl

An N-dimensional cube C' is constructed as <D, F, M, BasicCube> where:

— D is a set of dimension D; of C, where D = {D;,Ds,...,Dy}, and
1<i< N

— F is a set of feature attributes F; of C, F = {Fy, Fy,...,Fn}, where
1<i <N

— M is a list of measure attributes M, of C, M = {My, Mo, ..., M}, where
J <k

— BasicCube is a set of cells that describes the facts (measure attributes) at
the particular level of detail specified by F'.

A dimension (D;) is defined by a schema written as schema(D;) = < ColumnList,
Key, Hierarchy> where:

— ColumnlListis aset of dimension attributes D;.A; of D;, ColumnList ={D1.Ax,
..., D1.A,}, where n is the number of attributes in dimension D;.

The NOX OLAP Query Model 175

— Key is an attribute D;.Ay of ColumnList, where D;.Ay is the deepest level
of detail for dimension D;, where 1 < k < n.

— Hierarchy is a set of hierarchies D;.H; of D;, with Hierarchy ={D;.H1,D;.H,
..., D;.H,}, where j < z and z is the number of hierarchies associated
with dimension D;. Each hierarchy D;.H; is of the form D;.H; = {Hj,
D;. A, — ... — D; A}, where D;.A, is the root hierarchal attribute level,
while D;.A4; is the leaf level in hierarchy H; of dimension D;.

A Feature Attributes F; refers to a specific attribute A; in dimension Dy,
where i,k C [1,N]. It is of the form F; ={Dy.A;}, where F; is an attribute in
the ColumnList of dimension Dy.

A BasicCube is a multidimensional end user representation with a schema of
the form schema (BasicCube) = {F, M}. An instance of a BasicCube is the set of
cells/facts/records/tuples that are described by the values of measure attributes
M at the level defined by F. Through the remainder of this paper, we will use
the terms cells, facts, records, and tuples interchangeably.

SELECTION. The selection operator identifies one or more cells from within
the full d-dimensional search space and its application produces what is com-
monly referred to as “slicing and dicing”. This operator is applied to a data cube
and produces a subset of the same data cube. More formally, we can define the
SELECTION operator on cube C as

o(D,;.A; 0P $)C

where D;.A; is an attribute in dimension D;, OP is a conditional operator such
as {<,>,=,..., etc.}, and ¢ is one or more values in domain(D;.A;).

The result of o(p, 4, op ¢)C 18 a cube C1<D, F, M, BasicCubel>, where sets
D, F, and M are equivalent to those in the input cube C and schema(BasicCubel)
= schema(BasicCube). From the user’s perspective, the query is executed against
the physical data cube such that the selection criteria will be iteratively evalu-
ated against each and every cell. If the selection test evaluates to true, the cell
is included in the result; if not, then it is ignored.

PROJECTION. Used for the identification of presentation attributes, includ-
ing both the measure attribute(s) and dimension members, a projection extracts,
from a source cube, a new cube composed of only those elements specified with
the PROJECTION operator. Formally, the PROJECTION operator can be writ-
ten as:

T(D;.Aj, y)C7

where D;.A; is a list of dimension attributes, and y C M. The resulting cube is
Ci<D1, F1, M1, BasicCubel>, where D1 is a set of dimensions, F'1 = list of
dimension attributes D;.A;, M1 =y, and Schema(BasicCubel) = F1, M1. Note
that the measure value(s) M1 of BasicCubel are aggregated at the level of the
attribute(s) in F1.

176 A. Taleb, T. Eavis, and H. Tabbara

CHANGE LEVEL. This operator allows the user to navigate amongst levels
of a concept hierarchy, each with a distinct aggregation granularity. We typically
refer to these processes as “roll-up” and “drill down.” Formally, we denote the
change level operator as:

@(D,LA]%D,A]C) C?

such that D; € D, D;.A; is a feature attribute of cube C and D;. Ay is a hi-
erarchical attribute level in dimension D;. The resulting cube is of the form
Cl = <D, F1, M, BasicCubel>. Note that while the result cube C1 main-
tains the same dimensions and measure attribute(s), it will have a new feature
set(F1 = F — D;.A; + D;.Aj). The CHANGE BASE operator may also pro-
duce multiple level changes as follows: @(Di-Aj_’Di-Aler-As_’Dr-Aty---) C, where
i,r=[1...N].

CHANGE BASE. This operator represents the addition or deletion of one or
more dimensions from the current result cube C. Aggregated cell values must
be re-calculated accordingly. CHANGE BASE may be represented as:

i(D,;.Aj—>Action)C>

where Action € (Remove or Add). The resulting cube C1 = <D1, F1, M,
BasicCubel> has different dimensions, feature attributes and BasicCube rel-
ative to that of the source cube C.

PIVOT. This is a presentation-specific operation that allows users to re-
organize the axes of the cube. No recalculation of cell values is required. Formally,
we have:

O(p;.Aj—Dy.A) C

where D;.A; and Dy.A; are feature attributes in cube C. This operator re-
organizes the axes of cube C so that Dj.A4; is viewed instead of D;.A;, and vice
versa. The result cube is equivalent in construction to the source cube.

DRILL ACROSS. Here, we denote the integration of two independent cubes,
with each possessing common dimensional axes, so as to compare their measure
attributes. In effect, this is a cube “join” (possibly a self join) that changes
or extends the subject of analysis. Consider two cubes C1 = <D1, F1, M1,
BasicCubel> and C2 = <D1, F1, M2, BasicCube2> having the same set of
dimensions and feature attributes but with different sets of measure attributes
(M1 and M2). We therefore have:

C1(M1) S C2(M2)

The result of this operation is another cube C = <D1, F1, M, BasicCube>,
where M is the union of sets M1 and M2 and BasicCube contains the union of
BasicCubel and BasicCube2, with the new measure attributes M.

The NOX OLAP Query Model 177

SET Operations. Set operations may also be applied to data cubes. Given
cubes C1 and C2, we have C1U C2 (UNION), C1 N C2 (INTERSECTION),
and C1—C2 (DIFFERENCE). In all cases, C1 and C2 must be composed of the
same feature attribute set (i.e., they must possess the same dimensional axes).
For UNION and INTERSECTION, we may aggregate measure values if cells
share the same feature attributes.

5 Query Optimization

As noted in Section B.2] native language client-side queries are decomposed into
the associated algebraic operators and passed to the DBMS at runtime. That
being said, this initial query form likely does not represent the most efficient
execution plan for an OLAP DBMS, as no attempt has been made to either ex-
ploit the physical representation of the cube (e.g., indexes, materialized views) or
the properties of the algebra itself (e.g., re-ordering logical operations to reduce
intermediate cube sizes). In this section, we will discuss optimization principles
relevant to OLAP aware servers in general, and to Sidera specifically. We note
that due to the length of the paper, it is not possible to present optimization
strategies for the full algebra (we intend to do this in a longer version of the
paper). Instead, we will focus on SELECTION and PROJECTION strategies,
as these two operations typically dominate processing cost.

5.1 Selection

Processing costs in the Sidera DBMS (or any OLAP server) are dominated by
Fact Structure access. In a traditional DBMS, OLAP queries would require a
join operation between the fact table and one or more dimension tables. Sidera
streamlines this process by re-writing the common Fact Structure SELECTION
operation as follows:

UDi7rz1 (Cl),DiTILQ(Cg),...Dimn(Cn)C = O-DimlID:Ll,DimZID:LQH‘D'L‘m"ID:LTLC

where L ... L, are lists of Dimension key values associated with rows constrained
by conditions C} ... C,, respectively. In other words, Sidera does not perform tra-
ditional relational sort or hash-based joins. Instead, it uses the FastBit indexes
to retrieve the relevant dimension keys values, then uses these to directly per-
form a selection on the Fact Structure. Because the Fact Structure is encoded as a
packed R-tree, and is accessed by a linear breadth first search, the “standard” Star
Schema query effectively becomes a single pass SELECTION. As a concrete exam-
ple> a query lnltlauy expressed aS O Product. Type=Brakes AN D Employee.Age>30 Sales
— where Product 1 and Product 2 are of Type “brakes” , Employee 2 and Employee
3 are older than 30, and the underlying Fact is Sales — would be transformed by
Sidera into o product1 D=(1,2) AN DEmployeel D=(2,3)Sales-

Pushing transformations, as is the case with any DBMS system, are also
important. In other words, we can typically reduce intermediate view sizes by
pushing SELECTION operations closer to the data source. The Sidera system

178 A. Taleb, T. Eavis, and H. Tabbara

INTERSECTION INTERSECTION
PROJECTION PROJECTION PROJECTION PROJECTION

(Product Number - (product Number, (Product Number, (Product Number,

, Time.Month, 1ime.Month, : Time.Month,

. ! Time.Month, me. >

Units_Sold) Units_Sold) Units_Sold) Units_Sold)
: ‘ (Time.Month = Dec) (Time.Month = Dec)

C2 C2 Cl

(a) (b)

Fig. 6. (a) Initial OLAP expression tree. (b) Improving the initial expression by pulling
SELECTION up and then pushing it down the tree.

uses pushing techniques extensively for selections executed in combination will
other algebraic operations. We have also found it useful to sometimes combine
an initial pull with the push operation. Figure[6, for example, demonstrates that
with an INTERSECTION requiring common schemas, a SELECTION operator
may be pulled up the left side of the query tree and pushed down the right,
thereby reducing the cost of the INTERSECTION operation.

5.2 Projection

Pushing projections down the query tree can also reduce the size of intermediate
data sets. Sidera does this as well. However, it is also possible to decompose
PROJECTION operations into a <CHANGE LEVEL, PROJECTION> pair in
order to take advantage of efficient grouping functionality. In Sidera’s case, the
mapGraph structure can be used to translate between the base level data (i.e.,
the most detailed) in the Fact Structure and the hierarchy level listed in the
initial query. More formally, we can say:

T, C =Tr1-L)(m (11 20/ C)

Figure [1 illustrates how a projection decomposition would be used in practice.
Here, the programmer has specified a query at the level of Product Type. Because
the data is physically stored in the Fact Structure at the most granular level,
the Sidera optimizer essentially wraps the low level PROJECTION operator (on
ProductID) with a CHANGE LEVEL operator that will transform and aggregate
the detailed Product data into Product Type groupings at run-time.

6 Experimental Results

Sidera is a relatively sophisticated prototype and, as such, lends itself to mean-
ingful experimental evaluation. We stress that Sidera is a DBMS in the true
sense of the word. In other words, it is not simply an interface to a relational or

The NOX OLAP Query Model 179

CHANGE_LEVEL
(Product.ProductID ->Product.Type)

(PROJECTION W
(Product.Type, Total_Sales)Sales { PROJECTION
(

Product.ProductID, Total Sales)

-
‘ Sales
Sales

PROJECTION(Product.Type, Total_Sales)Sales CHANGE_LEVEL(Product.ProductID a Product.Type)
PROJECTION(Product.ProductID, Total_Sales)Sales

(a) (b)

Fig. 7. (a) Initial OLAP expression tree. (b) Improving the initial expression by de-
composing the PROJECTION.

even multidimensional server. Rather, it provides data storage, indexing, query
parsing, optimization, and caching services. As such, the experimental results
listed below provide a reasonable representation of the potential for this type of
OLAP model (i.e., one that uses OLAP-specific indexes, storage and algebraic
operations to provide scalable OLAP functionality).

In terms of the environment, tests were conducted on a dual-boot workstation
running Windows Vista and a Fedora Linux distribution (2.6.x kernel). (Note
that we perform single-node evaluation in this paper rather than utilizing the
full cluster architecture). The machine uses 1GB of main memory and houses
a standard 160 GB SATA hard drive. The analytics database consists of six
dimensions with cardinalities ranging between 300 and one million. Each di-
mension also has a three or four level hierarchy. Dimension data was generated
with an open source data generation tool so as to more accurately represent
real (i.e., text) values. In terms of the the Fact Structure, relevant feature at-
tributes (i.e., with matching keys) and measure attributes were produced by a
generator designed specifically for Sidera. While the generator has the ability to
produce skewed data, the distribution in the current case is essentially uniform
as skew is largely irrelevant for the current round of testing. Depending on the
test, row counts typically vary from 100,000 records to 10,000,000 records. Once
generated, Rtrees and Bitmaps are constructed as required.

Because no true OLAP query benchmark currently exists, we developed a
set of “Star Schema queries” representing common OLAP operations (slice and
dice, drill down, roll up, etc). In each case, the queries were hand coded in
SQL, MDX, and Sidera’s XML format as required (Note that in the longer
version of the paper, we intend to include the full query suite as an appendix).
Unless otherwise indicated, batches of 10-20 such queries are used in a given
test, with the average of five runs recorded. Finally, query and OS caches are
cleared between runs.

We begin by looking at the performance of the Fact Structure described
in Section In most environments, indexing demonstrates increasingly poor

180 A. Taleb, T. Eavis, and H. Tabbara

performance once query selectivity reaches a certain point, typically about 5%
of the records in the data set. However, Sidera’s Berkeley R-tree storage —
with its breadth first traversal pattern that limits access to a single sequential
pass — does not degrade in this manner. Figure §(a) illustrates that for a 12-
query batch, with selectivity ranging between 1% and 25%, Sidera’s query per-
formance remains 3-4 times faster than that of a sequential scan of the data set.
Figure [B(b), on the other hand, demonstrates Sidera’s ability to exploit R-tree
Fact Structures containing a fully materialized cube (i.e., all aggregation levels
included) generated by a Sidera ETL module. Specifically, for data sets of 10
million records, the same query batch completes in one tenth of the time (black
bars) if aggregates are available (Note that the query optimizer transparently
determines the optimal summary view).

Figure[@ shows query performance — relative to record and dimension counts
— on a batch of 16 OLAP queries that have been parsed into the algebraic
operations described in the paper and re-written using the join and pushing
optimizations described in Section [l Here, we see performance improve by a
factor of 5-15 when optimization steps are undertaken (black bars).

We have also compared Sidera to DBMS systems often used in industrial
database environments, namely the open source MySQL server and Microsoft’s
Analysis Services. In this case, we reproduce the database stored by Sidera and
load it into both DBMS platforms in the standard Star Schema format. Queries
are re-written in SQL form to match. Figure shows comparative results for
both platforms and demonstrates that the MySQL server takes approximately
10-15 times as long to resolve the same queries, while Microsoft’s Analysis Service
— running in ROLAP mode — is three to six times slower.

Of course, one can argue that MOLAP offers superior performance to ROLAP
configurations. So we loaded the same Star Schema data using the MOLAP mode
of Microsoft’s Analysis Services. Figure [[1[(a) shows that MOLAP does indeed

250

218

200

W HilbertR-tree Index Scan M Squential Scan 150

99.71

100

Time in Seconds

75.96

50

Time in Seconds
@
3

25.96

19.55 6.29 8.18

100K im oM
Dimension Count Fact Table (Number of Records)

(a) (b)

Fig. 8. (a) Rtree performance versus sequential scan (10M records) (b) Fact structure
performance by record count

The NOX OLAP Query Model 181

200

179.55
180
200 17955
180 160
160 5 140 1358
2 140 £
= S 120
g 120 g
S Z 100
Z 100 z
£ g 80
g 80 =
£ =60
E 60
40
B 15.18 16.23
20 20
0 0 -
M 10M 4 6
Fact Table Dimension Count
(a) (b)
Fig.9. SELECTION optimization by (a) Record count (b) Dimension count
M SideraServer M MySQL Server
1200
1046
1000
W SideraEngine B Microsoft Analysis Services
v 49.4
€ 800
8
@
E 600 P
< -]
g
E 400 §
200 é
04
100000 1,000,000 10,000,000
100,000 1,000,000 10,000,000
Number of Records in the Fact Table
Fact Table Size
(a) (b)
Fig. 10. Sidera versus (a) MySQL (b) MS Analysis Services (ROLAP)
Query Running Time
60 Query Running Time
50.66 16 1465
30 14
E 40 P 10376
g H]
H £
= ? 10.376 E 1
10 . 4
I :
0 0 1
SQL Analysis Services (MOLAP Sidera Engine
Storage) sQL Analysis Services (MOLAP Sidera Engine with full
Storage) materialized cube
10 Million Fact Table

(a)

(b)

Fig.11. (a) MOLAP versus non-materialized Sidera (b) MOLAP versus materialized

Sidera

182 A. Taleb, T. Eavis, and H. Tabbara

outperform the Sidera DBMS by a factor of about 5 to 1. However, we note
that in this test, Sidera was not permitted to materialize any additional data; it
was essentially just an efficient Star Schema. In Figure [[T(b), we see the result
once aggregate materialization is added to the R-tree Fact Structure. While
Microsoft’s MOLAP server still has a slight advantage, we note that (i) the
Microsoft DBMS benefits from years of optimization, and (ii) MOLAP is ideally
suited to the scale of the current test (i.e., 1-10 million records). Given that the
Sidera DBMS framework is not constrained by the limits of array-based storage,
these preliminary results suggest that the Sidera DBMS has the potential to
provide MOLAP-style performance with ROLAP-style scalability.

7 Conclusions

OLAP servers have traditionally relied either on extensions to DBM systems
designed primarily for OLTP environments or on array-based servers that lack a
formal query model and tend to provide limited scalability. In this paper, we have
discussed the integration of an OLAP-oriented algebra with a DBMS prototype
designed specifically for analytical processing. The use of the algebraic operators
lends itself to both a clean, native language query interface for end users and
a query execution engine that is able to optimize performance by manipulating
initial parse trees to more efficiently exploit the available index and storage
structures. Initial testing demonstrates that not only does the DBMS provide
a contemporary OOP interface for end users, but that it is already competitive
in performance to commercial systems optimized for in-memory OLAP. Given
that Sidera is ultimately designed as a scalable parallel system, we believe the
current work suggests that MOLAP-level performance — at commodity prices
— is indeed possible for Terabyte scale analytical environments.

References

1. JSR 243: Java Data Objects 2.0 - An Extension to the JDO specification (2008),
http://java.sun.com/products/jdo/

2. HaskellDB (2010), http://www.haskell.org/haskellDB/

3. Berkeleydb (2011),
http://www.oracle.com/technetwork/database/
berkeleydb/overview/index.html

4. Fastbit indexing (2011), http://crd.1bl.gov/~kewu/fastbit/index.html

Ruby programming language (2011), http://www.ruby-lang.org/en/

6. Bauer, C., King, G.: Java Persistence with Hibernate. Manning Publications Co.,
Greenwich (2006)

7. Bellatreche, L., Giacometti, A., Laurent, D., Marcel, P., Mouloudi, H.: Olap query
optimization: A framework forcombining rule-based and cost-based approaches. In:
EDA (2005)

8. Blakeley, J.A., Rao, V., Kunen, 1., Prout, A., Henaire, M., Kleinerman, C.: NET
database programmability and extensibility in Microsoft SQL Server. In: ACM
SIGMOD International Conference on Management of Data, pp. 1087-1098. ACM,
New York (2008)

o

http://java.sun.com/products/jdo/
http://www.haskell.org/haskellDB/
http://www.oracle.com/technetwork/database/berkeleydb/overview/index.html
http://www.oracle.com/technetwork/database/berkeleydb/overview/index.html
http://crd.lbl.gov/~kewu/fastbit/index.html
http://www.ruby-lang.org/en/

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

The NOX OLAP Query Model 183

. Chmiel, J., Morzy, T., Wrembel, R.: Time-hobi: indexing dimension hierarchies

by means of hierarchically organized bitmaps. In: Proceedings of the ACM 13th
International Workshop on Data Warehousing and OLAP, pp. 69-76. ACM, New
York (2010)

Cook, W.R., Rai, S.: Safe query objects: statically typed objects as remotely ex-
ecutable queries. In: International Conference on Software Engineering (ICSE),
pp. 97-106 (2005)

Cunningham, C., Graefe, G., Galindo-Legaria, C.A.: PIVOT and UNPIVOT:
Optimization and execution strategies in an RDBMS. In: International Conference
on Very Large Data Bases (VLDB), pp. 998-1009 (2004)

Eavis, T., Cueva, D.: The Ibf r-tree: Efficient multidimensional indexing with grace-
ful degradation. In: Proc. 11th International Database Engineering and Applica-
tions Symposium IDEAS 2007, September 6-8, pp. 241-250 (2007)

Eavis, T., Tabbara, H., Taleb, A.: The NOX framework: Native language queries
for business intelligence applications. In: Bach Pedersen, T., Mohania, M.K., Tjoa,
A M. (eds.) DAWAK 2010. LNCS, vol. 6263, pp. 172-189. Springer, Heidelberg
(2010)

Eavis, T., Taleb, A.: Mapgraph: efficient methods for complex olap hierarchies.
In: Proceedings of the Sixteenth ACM Conference on Information and Knowledge
Management, CIKM 2007, pp. 465-474. ACM, New York (2007)

Gray, J., Bosworth, A., Layman, A., Pirahesh, H.: Data Cube: A relational aggre-
gation operator generalizing group-by, cross-tab, and sub-total. In: International
Conference on Data Engineering (ICDE), pp. 152-159. IEEE Computer Society,
Washington, DC, USA (1996)

Grund, M., Kriiger, J., Plattner, H., Zeier, A., Cudre-Mauroux, P., Madden, S.:
Hyrise: a main memory hybrid storage engine. In: Proc. VLDB Endow., vol. 4, pp.
105-116 (November 2010)

Hanusse, N., Maabout, S., Tofan, R.: A view selection algorithm with performance
guarantee. In: Proceedings of the 12th International Conference on Extending
Database Technology: Advances in Database Technology, EDBT 2009, pp. 946—
957. ACM, New York (2009)

Hose, K., Klan, D., Marx, M., Sattler, K.-U.: When is it time to rethink the ag-
gregate configuration of your olap server? In: Proc. VLDB Endow., vol. 1, pp.
1492-1495 (August 2008)

Lauer, T., Datta, A., Khadikov, Z., Anselm, C.: Exploring graphics processing
units as parallel coprocessors for online aggregation. In: Proceedings of the ACM
13th International Workshop on Data Warehousing and OLAP, DOLAP 2010, pp.
77-84. ACM, New York (2010)

Morfonios, K., Ioannidis, Y.: CURE for cubes: cubing using a ROLAP engine. In:
International Conference on Very Large Data Bases (VLDB), pp. 379-390. VLDB
Endowment (2006)

Romero, O., Abell6, A.: On the need of a reference algebra for OLAP. In: Inter-
national Conference on Data Warehousing and Knowledge Discovery (DaWak),
pp. 99-110 (2007)

Whitehorn, M., Zare, R., Pasumansky, M.: Fast Track to MDX. Springer-Verlag
New York, Inc., Secaucus (2005)

VarDB: High-Performance Warehouse Processing with
Massive Ordering and Binary Search

Pedro Martinsl, Jodo Costal, José Cecﬂiol, and Pedro Furtado'

! University of Coimbra
Coimbra Portugal
{pmom, jpcosta, jcecilio,pnf}@dei.uc.pt

Abstract. Current data base management systems (DBMS) compete
aggressively for performance. In order to accomplish that, they are adopting new
storage schemas, developing better compression algorithms, using faster
hardware, optimizing parallel and distributed data processing. Current row-wise
systems do not exploit massive ordering redundancy, and current column-wise
approaches exploit only partially. An important current research issue concerns
replacing optimization and processing complexity by less complex but ultra fast
solutions. We propose the varDB approach to optimize performance over data
warehouses. The solution minimizes complex operators, by applying a simple
scheme and organizing all structures and processing to that end: massive
ordering with efficient sorting and log2N searching. Considering data
warehouses, with periodic loads and frequent analysis operations, such an
approach provides very fast query processing. In our work we show how it is
possible to use this massive data ordering/sorting in order to optimize queries for
high speed, even without the use of data compression (therefore also avoiding
compression/decompression overheads). We dedicate our attention to sort
columns of data and correlating them with other replicated and unsorted
columns. For querying, we focus on binary-search and the use of mainly offsets.
Our tests of loading data, sorting vs. creating indexes and executing very
selective operations like data filtering and joining show, using a simple disk
based prototype, that we are able to obtain much better performance comparing
with optimized row-wise engines, and also improvements when comparing with
column-wise optimized engines. Comparing to those we were able to attain at
least similar performance for many queries and much better performance for
queries with complex joins.

Keywords: data warehousing, query processing, database architectures,
efficiency.

1 Introduction

Two paradigms currently stand in the context of databases, row-oriented and column-
oriented, both of them exploring memory and/or disk in optimized manners. Over the
last decades, the specialization of DBMSs to different niches has increased, each one
exploring specific methods and techniques to obtain better performance in the

A. Cuzzocrea and U. Dayal (Eds.): DaWaK 2011, LNCS 6862, pp. 184 2011.
© Springer-Verlag Berlin Heidelberg 2011

VarDB: High-Performance Warehouse Processing with Massive Ordering 185

respective niche. In order to obtain better scalability and performance, they rely
mostly on techniques such as massive indexing, compression algorithms and better
hardware such as memories, multi-core CPUs, faster networks, etc. Although DBMS
engines have started to target specific niches, giving rise to the statement that the old
general-purpose DBMS is dead, they still do not explore to full length the possibilities
of different data organization, replication or representation for data to achieve top
performance. We explore a kind of RISC-like database architecture. The term RISC
was created some decades ago to mean ‘“reduced instruction-set computers”, as
opposed to CISC processors “complex instruction set computers”, and the idea is that
it is possible to implement the same processing capabilities with a smaller, “cleaner”
and simpler instruction set. For instance, the fact that instructions had fixed size
meant that instructions could be processed much faster than in CISC architectures.
Likewise, our approach is to focus on the data warehouse engine and explore software
techniques that result in a reduced set of simple, fast and uniform processing model.
We take into account massive data replication (since disk space is not a limitation
nowadays), a few schemes and organizations, and propose a single method to perform
fast queries based on disk, data replication and sorts over a column-wise approach.

In order to explore the proposed solutions we developed a DBMS engine, varDB,
from scratch, incorporating the proposed mechanisms. VarDB is a column-wise
prototype, and the version used for these experiments is based on disk and without
compression.

The test results using TPC-H prove that the mass redundancy and ordering
approach is able, together with corresponding query techniques, to speedup
processing significantly, therefore we adopted the approach for our future varDB
architecture and propose the mechanisms in this paper.

The next section presents related work. It is followed by section 3, which mentions
relevant architectural details of varDB, how data is stored and replicated, and filtering
methodologies. Section 4 presents experimental results, and we conclude in section 5,
with a conclusion and discussion on future work.

2 Related Work

There have been innumerous efforts by various companies (e.g. Oracle, Vertica, IBM,
SUN) to find solutions for data processing on large scale. So emerging approaches
have aroused, such as vertical models [2], memory-based databases, the use of
optimization strategies such as histograms, indexes and compression mechanisms.
Leading to specialization of the DBMSs for processing analytical or transactional
tasks with performance optimizations [13][14].

Trends point to three major groups of processing models:

e Row-wise [4], the data is stored in the form of table rows with dynamic
characteristics that are good fits for both transactional and analytic loads,
although not particularly optimized for any of the contexts (e.g. Oracle,
PostgreSQL);

e Column-wise, the data is stored as columns and further compressed [3]
(Vertica, Teradata, MonetDB, SadasDB), providing faster processing for
analytical workloads;

186 P. Martins et al.

e Main-memory [8], systems that rely mainly on memory, the disc is only
used to ensure ACID properties (e.g. Oracle TimesTen, VoltDB).

Large performance penalties are paid by disk accesses, which are incurred not only
for accessing the data that is stored in tables, but also for costly processing of
operations such as joins and sorts that may need extra temporary disk space when
memory is not enough. Additional disk access costs are also incurred fault-tolerance
based on persistent logs or other forms of persistent replication [7]. Column-wise
DBMSs [11], such as Vertica, MonetDB or ParAccel, focus partly on decreasing the
amount of data that needs to be accessed when compared with row-oriented DBMSs
[5][6]. Some column-wise approaches introduced column sorting for additional
performance boost. Commercial memory and column-based DBMSs exhibit good
performance/price relations for some application contexts when comparing with
traditional engines. Some approaches rely on specific hardware, data processing
within clusters and main-memory to achieve such performance gains [8][7][1].

There has been a common interest in vertical data partitioning as a means for major
performance gains. This technique has been explored by researchers [18] before,
some works have the sole objective of minimizing disk I/O [16] such as MonetDB
and MonetDB/X100 [15][12], C-Store [9]. Others, like Oracle, increase their systems
performance by acquiring companies and integrating their systems based on memory
and new hardware with Oracle systems (e.g. Oracle ExaData [1]). Some academic
studies point to the creation of hybrid memory based column-wise and row-wise
systems such as HyRise [17] and hybrids in-memory/on-disk (HDD and/or SSD) like
Vertica. Other solutions based on memory, using a variety of common machines
(share-nothing), include Oracle Times Ten and VoltDB, oriented solely for
performance. MonetDB makes use of large amounts of memory, since it assumes the
data to be processed must fit entirely into memory. All these efforts generally focus
on hardware, more memory, more CPU for compression, faster disks and networks
and in some cases hybrid combinations. Our approach is orthogonal to those ones,
since the massive ordering and query processing mechanism proposed here can and
will be applied by us together with any of those improvements to yield extremely fast
solutions.

3 Relevant Architectural Details

For better support of data sorting and data replication, we chose a column-oriented
architecture for varDB. This way we are able to easily sort data columns. The
problem is correlating data with other columns. So to overcome that we create offset
data maps, which translate current offsets to the offsets in other representations.

In the next sub-sections of this section we will address: generic data processing
mechanism; how data is inserted and stored into the columns that are broken into
partitions; construction of offset maps, to link columns to each other through the
respective offsets; creation of simple histograms to store the data distribution inside
partitions and columns; description of the most common filters, group by, join,
greater, less and equals operators.

VarDB: High-Performance Warehouse Processing with Massive Ordering 187

3.1 Introduction to Data Processing Mechanism

VarDB is committed to the following simple principles: fixed-size attributes and
sorted columnar partitioned files; cost-based (i.e. selectivity-based) decision on
binary-search over which sorted columns; opportunistic sorting (learn-by-use). The
desired processing situation happens when binary-search over a sorted version of a
very selective column is then followed by sequential range scan of subset over the
remaining columns. The exception happens when a column is not sorted as needed for
fastest operation, in which case access is either by full-column-scan, or using offsets
if those are available from previous processing parts of the query. Cost-based
estimation determines whether full-scan is cheaper than ordered offset-based tuples
picking. The following flux diagram tries to explain in a simple way that a query is
processed based on varDB implemented mechanisms.

Query Tasks
{execution plan})

] Use sort Tasks Use linear

j—f columns / partitions Columns / partitions

= i $ Full column scan

4

Bl i

z2 | oome } pe=ss¥eneas |
5l =0=2= I | =20 |
= I O = | \ = |
= | O = | | = |
=l e = I | = |
=] ! | | e 2 | | = |
Bl | soned partitions’ | | o }
4 : SRS PRLIICE } : Linear partitions |
g| tolmostofbetsmaps) Lo
|

E Intermediate

8 Filtered Otffsets Result (IR) Filtered Offsets

| Intermediate result (IR) Intermediate result (IR)

No

Query job

Yes Intermediate Result (IR).
finished? > Oftsets basgd result Output
projection.

Fig. 1. Query processing simplified flux-diagram

3.2 Storage Architecture

When using common magnetic hard-drives to store data, the most relevant issue is
how to minimize I/O and make all accesses - reads and writes - as sequential as
possible (since a random access is by far much more expensive than a sequential one).
The best way to minimize I/O when inserting is to insert blocks of data sequentially.
In varDB we used two main representations, linear and sorted. In the linear
representation, data is inserted into partitions of equal size by arrival order.

The figure (Fig, 2) represents the conversion process of TPC-H generated
information to varDB linear partitions. Concerning organized/sorted data
representation, it can be created in two ways. On the fly, when linear partitions are
loaded (with some memory limitations) or on a secondary step using an external sort
merge [10]. The advantage that varDB explores is the massive organization/sorting of
data to minimize random disk reads when performing queries. Sorted data

188 P. Martins et al.

I — I

: 0 Adam Street Z, n°l t

: 1 Smith Street B, n"2 t
[o s o o e e M i W (!
| 0| Adam | Street Z,n°1 | 12 Annie Street A, 03 | |
| 1|Smith|Street B, n"2 | | T |
: 2 | Annie | Street A, n°3 : | 3 lohn Street O, n°4 E
| 3|John| Street O,n"4 : a4 Mark Street Y.n°5 | |
| 4| Mark | Street Y, n"5 | 1 |
: 5| Darla | Street D, n°6 : I L5 Darla Street D06 | |
| 6| Daniel | Street], n°7 : — - — t
| 7|Peter| Street H, n"8 | | 3 Daniel Street 1, n*7 |
: & | Sam | Street [, n"9 : Il 7 Pt Street H.1'8 | |
| 9 | Rose | Street 1, n*0 | | — t
———————————— : g Sam Street [, n"9 |
Raw TPC-H generated data | I

| I

!]

VarDB linear representation

Fig. 2. Conversion of the raw data generated from TPC-H to varDB linear partitioned columns

Fes=——— L] [Rmm==w ey Fe===== 1 p==1
1 | | 1 | |
i Adam | | : Adam : : o) 1 Adam | | [0
[} 2 | = Ik 1 = | | |
1 Smith | : Annie : : 20 1 Annie | il2]
1 | | 1 | |
1| Amie || t] smin | i Hali | panier | 1 18]
1 | =l I [fy |
I
: John : | | Darla 1 : 5 : : Darla : : 5 :
P e || AN ERIE : | ot [1 1]]!
o Blsl L=
: Darla : : Mark : 1] 4 : : Mark : : 4 :
| L=
I | [sl]]
| | Daniel | | : Daniel } TR0 || peter |1 4|71
[} | ' L 1 | Tul
1 | Peter || : Peter : I 71] Rose | | |[9]]
[} | ! 1 | | |
1 Sam | [Sam | : 81 1 I (L8]t
I | : o — I L == :
' | L]} | L
1 Rose | 1 Rose | : 1 1 | | 1
| I B = i T | 1___|
{inear colwnin Column partitions — Offfer map ‘Column partitions Gyffer map
representation s0rt representation fitll sart representation

Fig. 3. Creation of the organized/sorted representations, respective offset map for data linking
and replication of other columns following the same order

organizations also make possible to access data using a single binary-search plus
sequential reads, instead of having to rely on b-tree indexes or requiring full-table-
scans. When sorting on the fly, each partition is kept in memory until it is full. When
the partition is full, varDB sorts it, and stores it on disk. This process is done for each
partition. Still, we must be able to correlate by offset the data with the rest of the
unsorted partitions. So an offset map partition is generated to link data between
representations.

The figure 3 represents the partitioned data immediately after insertion and the
respective offset map (middle part, partition sorted column). A final optional step is
also represented that consists on obtaining the fully sorted column (partitions merge).
This elementary operation is then applied massively through all columns/tables, with
data replication and using the offset map to extend the sort. Notice that we only sort
the data and create the offset map according to a single column. Fortunately, hard
drive disk space is very cheap and commonly abundant, so no problem results from
this massive replication when considering data warehouses.

VarDB: High-Performance Warehouse Processing with Massive Ordering 189

The process of order replication to other columns is done following strategies of
learn by use. This means that varDB is capable of self-optimization, sorting the
columns needed to execute certain tasks after a few runs. If for instance new-sorted
columns are needed for a new task, using the offset map, this process is very
straightforward by accessing the respective offset in the linear representation.

Other key element of varDB is the data histograms. When inserting, data
histograms of each column are updated. So, to perform a query, the first operation of
the query processor/optimizer is to go to the histogram and choose the most selective
column involved to start the data filtering process. When filtering data, after
determining the most selective column by access to the histograms, one of two types
of search is applied: full-column-scan or binary-search. If we use a fully sorted
column representation, we can binary-search the entire column, otherwise we may
need to do a full scan or partial binary searches if there are sorted and unsorted
partitions. As result of each step in processing a guery, varDB stores only the relevant
offsets or range of offsets, for further exclusion depending on other filters to be
applied next. The offsets are stored in a hybrid architecture based on memory and
disk, so no matter what the size of a task output might be, the engine will always be
capable of processing it. VarDB uses this hybrid architecture in all situations where
memory is involved to temporarily store intermediate results.

In the next section we describe some of the most relevant operations or filters used
during processing and also applied in the experimental tests.

3.3 Some Implemented Filters

VarDB implements most operators as simple “filters”, for instance, between, larger
and smaller, projections, sums, group by, joins, and others that combine
functionalities. In this section we present a general overview of how some of the
filters work.

Between, Larger, Smaller, Projection, Sum

These filters are all very similar, their implementation being straightforward. As
already mentioned, two main types of data access methods are available, full-column-
scan and binary-search, from both a column or an intermediate result (IR) generated
in a hybrid structure (memory and disk). The IRs can be set as input for other filters
reuse for final or intermediate processing. Projection involves selecting only a subset
of the columns to be read, sum involves adding over expressions on the data being
scanned, and range conditions are either processed based on the binary search model
or full scan by comparing with the condition.

Group By

Several methods to group data are available [10]. For the proposed work and tests in
varDB we will be using only group by by hash that also operates in a hybrid standard.
The used method is explained in a simplified form with the help of fig 4, varDB
creates a hash code and assigns to it a unique id that points to the data. Each id
corresponds to a position in a /ist that will contain the synfax of the group and the data
that it contains. All the structures presented are hybrids (disk and memory), meaning
that if they overflow a certain size, part of data is swapped into disk.

190 P. Martins et al.

Column A -
: pEEzssn 1 r ;Gohmn B 1 | Group by~ hash
| I I
|
: : I | : | Heshgroupl | Id
| : : : : | Hash group ;/ id
1 | ! 1 1 /
I : 1 I H I IR Y
| : : \ : I Haspéoup n id
: ! [-] i I’ ¥
|] N . .
| : 1 : 11 id id id
| 1 : | : | | Group syntax [data) | Group syntax [data) I | Group syntax [data]
[| : Al |
I i
| I I
| 1] ! |
I |
I | |1
| 1 | | | | Group syntax
A —— | I —— [data]

[data]

[data]

Fig. 4. Simplified description of the hash based group by filter

Joins

This filter manages the join between two or more tables that may involve several
columns. VarDB data join method is very simple and based on data offsets. Figure 5,
is a simplified graphical representation of the process. Following the figure we have
tree main steps.

1. First, varDB generates the offset IR results form the join operation
involving pairs of tables. According to the image 5, IR1 is created from the
Jjoin of column A with column B, and the same logic for creating IR2.

2. Secondly, based on the smallest IR (the more selective), varDB will
generate an IR3 concerning the join of IR1 with IR2 (join IRI + IR2),
based on the common column (column B).

3. Finally the third step is the result of the join offsets, now in order to do the
result projection we only need to access the necessary columns, based on

the result offsets.
Column A Column B Column C Column B
(values) (values) (values) {values)

199 199 26 199
26 199 27 199
33 26 28 26
a44 33 39 33
523 33 33 33
645 33 40 33
Offset IR1{A+ B) Offset TR2 (C + B)

i} 0 i} 0

a 1 4 3

2§ 2 4 4

2|3 4| s

2 4

2 5

Join IR1 + IR2 (using B)
B

0
3
4
5

[SH SRR =N
S FN PN -
s}

Fig. 5. Simplified data join process, based on offsets

VarDB: High-Performance Warehouse Processing with Massive Ordering 191

4 Experimental Results

In this section we show experimental results using varDB and other three engines,
two row-wise, and one columns-wise. The engines based on rows are distinct, one is
commonly used by large enterprises (RDBMS-X1) and another mainly for web sites
(RDBMS-X2). The column-wise engine makes use of large amounts of memory,
which led us to use a 64bits OS for all tests (CDBMS-X).

This section is organized as follows: Analysis to Bulk Load time for 10GB;
Execution of selective queries to test specific functions, without any optimization;
Cost of sorting columns in varDB vs. creating indexes in the other DBMSs, for 10GB
of data; Execution of selective queries to test specific functions, with indexes, and in
varDB with data organization and replication.

4.1 Bulk Load Times

To test the cost of partitioning data through columns and at the same time creating
histograms, we compare the load times of all DBMSs with 10GB of data. Notice that
RDBMS-X1 supported different types of data loading, so we tested with the standard
and the most optimized, which we mention as direct.

BulkLoad, 10GB

seconds
7000,00

6132,00

6000,00

5000,00

4000,00

3000.00 2S00

182500
2000,00 1566,11 [

1245,68
1] l . B
0,00

varDB RDBMS-X1 RDBMS-X1direct RDBMS-X2 CDBMS-X

Fig. 6. 10GB data Bulk Load

Comparing the results form figure 6 we manage to obtain very satisfactory results
for varDB, specially improving over both CDBMS-X and RDBMS-X1, and only
slightly worse than RDBMS-X2. We were glad to see that, all engines scaled well, so
all will be apt to the next tests.

4.2 Queries Execution without Indexes

After we had the data loaded, we performed experiments to study how the developed
techniques handle queries without optimizations of any kind involved. This means that
in this case the data is not indexed in any of the tested database engines and it is not
sorted in varDB. These results can then be compared with the results in the following
sections, which apply indexes and in the case of varDB apply sorted columns.

192 P. Martins et al.

We chose a set of TPC-H queries to test specific operations comparing with the
other engines from 5GB to 10GB:

e Query 1 (Q1): used to mainly test group by tasks;
e Query 14 (Q14): to test join operations. We also altered this query (Q14-
2j) so it had a more complex join, in this case we added, ps_partkey =

p_partkey;
e Query 6 (Q6): to test basic filtering operations;

No indexes, 10GB

seconds
1200,00

>14 hours
1000,00 __-____ﬂﬁui_
800,00
600,00
400,00
200,00
0.00 . — - - . ||
! o5 Qi4 Q14-2j Q6
" varDB 146,80 107,20 111,70 139,20
RDBMS-X1 186,80 >14h >14h 186,60

RDBMS-X2 271,68 1000,00 1000,00 164,70
= CDBMS-X 51,08 748,86 490,26 72,16

Fig. 7. Query tests for 10GB of TPC-H data without any optimization

First conclusion we may take is that all the engines scale well performing basic
filtering operations from 5 to 10GB. Nonetheless, we had to stop processing when
using RDBMS-X2, since it was taking too long to complete the task Q14 and Q14-2j
involving data joins.

In the previous graphics we can conclude that CDBMS-X is generally more
efficient than varDB performing data filtering and grouping data. The better
performance of CDBMS-X can be explained by the use of large amounts of memory
and, above all, data compression. VarDB can still be optimized in those respects,
therefore it can match such performance if some form of compression and memory
optimizations are added to it. However, when performing join operations, varDB was
the best of all, since it managed to keep heavy operations as light and in-memory as
possible, with low I/O requirements. In contrast, the other engines swap lots of data.
We were particularly happy with these results, since the used varDB prototype is still
a RISC-style disk-based DBMS lacking compression or other mechanisms of
optimization.

4.3 Indexes Creation

In order to test the creation of indexes in each system and to compare with varDB, we
decided to create a set of b-tree indexes for the engines used as base of comparison.
The chosen indexes where made based on the queries used in previous tests.
Analyzing the two graphics bellow (Fig 8) we concluded that RDBMS-X1 is very
constant while the performance of RDBMS-X2 is degrading as we create more

VarDB: High-Performance Warehouse Processing with Massive Ordering 193

Index creation for 10GB of data

Seconds
4000,00

3500,00

3000,00

2500,00

2000,00 —1

0,00 — |

100000 ————— B —B———8B——8B—

=1 7' 7. 4' 7' 7' 7'
u.00 J -
|_extended
price

Idisccunt | p_size | p_partkey | ps_p: ps_sugplyc

|_shipdate |_retrunflag||_lineststus | |_quantity | |_partkey o

®RDBMSX1| 667,00 575,00 533,00 681,00 862,00 349,00 536,00 16,00 13,00 57,00 101,00
ROBVS-X2 | 66632 104292 | 121166 | 184233 | 192184 | 233180 262295 1742 14,09 9336 116,48
= CDBMS-X 9,42 13,25 23,01 49,33 138 14,76 12,89 045 0,47 167 1,68

Fig. 8. Index creation times (seconds) for 10GB of TPC-H data

indexes. The CDBMS-X indexes were super fast. To study the impact of indexes on
the CDBMS used for comparison, we have ran several queries before and after index
creation. We obtained similar performance results with very small differences,
leading us to conclude that in fact no indexes were created or were not useful when
we specified their creation in the CDBMS.

After these tests, we calculated the average time that each engine took to create the
set of indexes, grouping them by the tested queries.

o Ql: I_sipdate, I_returnflag, l_linestatus.
e Q14: [_shipdate, I_partkey, p_size, p_partkey.
e Q14-2j: [_shipdate, [_partkey, p_size, p_partkey, ps_partkey,

ps_supplycost.
e Q6: [_shipdate, I_quantity, |_discount.

seconds Indexes creation vs. varDB, 10GB

6000,00

5000,00

4000,00

3000,00

2000,00

1000,00 I 1 I 1

0.00 | | | I
! a1l Qi4 Qid-2 Qs

‘ = varDB 1700,00 336,00 305,00 327,00
‘ RDBMS-X1 1775,00 1558,00 1716,00 1944,00
‘ ¥ RDBMS-X2 2921,00 2619,77 2829,61 4931,70
‘ ™ CDBMS-X 45,69 11,70 15,06 59,21

Fig. 9. Index creation times for 10GB of TPC-H data versus varDB

The graphics from figure 9 show equivalent optimizations in varDB that, when
comparing varDB data organization/sort and replication with the RDBMSs, it manages to
always obtain better performance, leading to the conclusion that in fact data
organization/sort and replication is not worse than index creation times, in fact it is better.

194 P. Martins et al.

Since now we have the data loaded and indexes created, in the next section we
study the previous queries tested with indexes, comparing with varDB
organization/sort and replication.

4.4 Queries Execution with Indexes

In this section we rerun the tested queries on section 4./, but using indexes for the
engines used as comparison base, and comparing with varDB, that makes use of data
organization/sort and replication.

The results of our tests (fig /0) using data organization and replication in varDB
show a large performance gain when compared with the tests without any type of
optimization (fig 7). Also to notice that, for RDBMS-X2, Q6 with indexes ps_partkey
and ps_supplycost did not bring any advantage.

seconds Queries execution with indexes (10GB)

1200,00
24434,34

1000,00 8024,39
3711,66

800,00 = ———— ST L

600,00

400,00

200,00 I

0,00 . -— [| — L
’ a1 a1a Q14-2j as
® varDB 141,40 7,00 112,50 32,40
RDBMS-X1 186,80 195,40 213,60 186,60

* REDMS-X2 271,68 3711,66 8024,39 2443434

= CDBMS-X 51,08 748,86 430,26 72,16

Fig. 10. Query tests for 10GB of TPC-H data using indexes

As before, varDB manages to perform better than all engines when join operations
were involved, in the other tests varDB and the CDBMS-X are very competitively
similar.

5 Conclusion

In this work we have proposed a RISC-like approach to design a DBMS for data
warehousing using columnar organization, massive replication and ordering/sorting.
We have proven that that the approach manages to obtain superior performance, even
when compared with column-wise DBMSs or to row-wise DBMSs with strong
markets and fully optimized and tuned. The presented tests are still limited in size and
will be extended in the future to include all TPC-H queries. When comparing varDB
with two well known RDBMSs and CDBMS, varDB is able to perform the same tasks
3x faster. VarDB still has significant improvement possibilities ahead, which will be
part of our future work on the subject. There is still much to enhance and improve,
such as methods of optimization of random accesses to disk, data compression,
exploring CPU parallelism, optimizing use of available memory and other data
representation methods.

VarDB: High-Performance Warehouse Processing with Massive Ordering 195

References

10.

11.

12.

13.

14.

15.

16.
17.

18.

. Richard Burns, Senior Consultant. Exadata — the Sequel, Exadata V2 is Still Oracle.

Teradata Corporation

Stonebraker, M., Abadi, D.J., Batkin, A., Chen, X., Cherniack, M., Ferreira, M., Lau, E.,
Lin, A., Madden, S., O’Neil, E.J., O’Neil, P.E., Rasin, A., Tran, N., Zdonik, S.B.: C-Store:
A column-oriented DBMS. In: VLDB, pp. 553-564 (2005)

. Stonebraker, M., Hellerstein, J.: What Goes Around Comes Around. In: Readings in

Database Systems, 4th edn., pp. 2-41. The MIT Press, Cambrid