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Preface

Data warehousing and knowledge discovery is an extremely active research area
where a number of methodologies and paradigms converge, with coverage on both
theoretical issues and practical solutions. From a broad viewpoint, data ware-
housing and knowledge discovery has been widely accepted as a key technology
for enterprises and organizations, as it allows them to improve their abilities in
data analysis, decision support, and the automatic extraction of knowledge from
data. With the exponentially growing amount of information to be included in
the decision-making process, data to be considered become more and more com-
plex in both structure and semantics. As a consequence, novel developments are
necessary, both at the methodological level, e.g., complex analytics over data,
and at the infrastructural level, e.g., cloud computing architectures. Orthogonal
to the latter aspects, the knowledge discovery and retrieval process from huge
amounts of heterogeneous complex data represents a significant challenge for
this research area.

Data Warehousing and Knowledge Discovery (DaWaK) has become one of the
most important international scientific events that brings together researchers,
developers, and practitioners to discuss the latest research issues and experiences
in developing and deploying data warehousing and knowledge discovery systems,
applications, and solutions.

The 13th International Conference on Data Warehousing and Knowledge Dis-
covery (DaWaK 2011), continued the tradition by discussing and disseminating
innovative principles, methods, algorithms, and solutions to challenging prob-
lems faced in the development of data warehousing and knowledge discovery,
and applications within these areas. In order to better reflect novel trends and
the diversity of topics, like the previous edition, DaWaK 2011 was organized
into four tracks: Cloud Intelligence, Data Warehousing, Knowledge Discovery,
and Industry and Applications.

Papers presented at DaWaK 2011 covered a wide range of topics within cloud
intelligence, data warehousing, knowledge discovery, and applications. The top-
ics included data warehouse modeling, spatial data warehouses, mining social
networks and graphs, physical data warehouse design, dependency mining, busi-
ness intelligence and analytics, outlier and image mining, pattern mining, and
data cleaning and variable selection.

It was encouraging to see that many papers covered emerging important
issues such as social network data, spatio-temporal data, streaming data, non-
standard pattern types, complex analytical functionality, multimedia data, as
well as real-world applications. The wide range of topics bears witness to the
fact that the data warehousing and knowledge discovery field is dynamically
responding to the new challenges posed by novel types of data and applications.



VI Preface

From 119 submitted abstracts, we received 109 papers from Europe, North
and South America, Asia, Africa, and Oceania, further confirming to us the wide
interest in the topics covered by DaWaK within the research community. The
Program Committee finally selected 37 papers, yielding an acceptance rate of
31%.

We would like to express our most sincere gratitude to the members of the
Program Committee and the external reviewers, who made a huge effort to
review the papers in a timely and thorough manner. Due to the tight timing
constraints and the high number of submissions, the reviewing and discussion
process was a very challenging task, but the commitment of the reviewers ensured
a successful result. We would also like to thank all authors who submitted papers
to DaWaK 2011, for their contribution to the excellent technical program.

Finally, we send our warmest thanks to Gabriela Wagner for delivering an out-
standing level of support on all aspects of the practical organization of DaWaK
2011. We also thank Amin Anjomshoaa for his support of the conference man-
agement software.

August 2011 Alfredo Cuzzocrea
Umeshwar Dayal
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Rafael Morales-Bueno

Moderated VFDT in Stream Mining Using Adaptive Tie Threshold
and Incremental Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471

Hang Yang and Simon Fong

Finding Critical Thresholds for Defining Bursts . . . . . . . . . . . . . . . . . . . . . . 484
Bibudh Lahiri, Ioannis Akrotirianakis, and Fabian Moerchen

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497



A. Cuzzocrea and U. Dayal (Eds.): DaWaK 2011, LNCS 6862, pp. 1–13, 2011. 
© Springer-Verlag Berlin Heidelberg 2011 

ONE: A Predictable and Scalable DW Model  

João Pedro Costa1, José Cecílio2, Pedro Martins2, and Pedro Furtado2 

1 ISEC-Institute Polytechnic of Coimbra  
jcosta@isec.pt 

2 University of Coimbra 
{jcecilio,pmom,pnf}@dei.uc.pt 

Abstract. The star schema model has been widely used as the facto DW storage 
organization on relational database management systems (RDBMS). The physi-
cal division in normalized fact tables (with metrics) and denormalized dimen-
sion tables allows a trade-off between performance and storage space while, at 
the same time offering a simple business understanding of the overall model as 
a set of metrics (facts) and attributes for business analysis (dimensions). How-
ever, the underlying premises of such trade-off between performance and  
storage have changed. Nowadays, storage capacity increased significantly at af-
fordable prices (below 50$/terabyte) with improved transfer rates, and faster 
random access times particularly with modern SSD disks. In this paper we eva-
luate if the underlying premises of the star schema model storage organization 
still upholds. We propose an alternative storage organization (called ONE) that 
physically stores the whole star schema into a single relation, providing a pre-
dictable and scalable alternative to the star schema model. We use the TPC-H 
benchmark to evaluate ONE and the star schema model, assessing both the  
required storage size and query execution time. 

Keywords: DW, DSM. 

1   Introduction 

Data warehouses are stored in relation DBMS systems as a set of tables organized in a 
star schema, with a central fact table and surrounded by dimension tables. The fact 
table is highly normalized, containing a set of foreign keys referencing the 
surrounding dimension tables, and stores the measure facts. Usually, these fact tables 
represent a huge percentage of the overall storage space required by the data 
warehouse (DW). That’s one reason why the central fact table is highly normalized, in 
order to minimize data redundancy and thus reducing the table storage space. On the 
other hand, dimension tables are highly denormalized and represent only a small 
amount of the overall DW storage space. The potential gains in terms of storage space 
that could be achieved by normalizing dimensions does not pay-off the decline in 
query execution performance, requiring more complex query execution plans and 
extra memory and processing requirements for processing the additional joins.  

Since DWs store historical measures of the business data, their size is continuously 
growing, particularly the central fact table which has to store the new data measures 
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that are being produced by the operational systems. Due to their nature, fact tables 
usually are only subject to insert operations, while the same doesn’t necessary happen 
to dimension tables. Along with insert operations, at lower rates when compared with 
the fact table, some update operations are also made to dimension tables.  

This continuous increase in size, present some problems to the hardware infrastructure 
capability to process such increased volume of data. DBMS engines generate complex 
query execution plans, considering different data access methods and joining algorithms 
which are sensitive to the hardware characteristics such as the available memory and 
processing capabilities. Distributed and parallel infrastructures also have to take into 
account the available network bandwidth required for exchanging temporary results 
between nodes. There’s no simple method to determine the minimal requirements of the 
supporting hardware infrastructure in order to scale up with the data volume increase. IT 
departments that have to manage and fine tune DW systems, when recognizing that the 
hardware infrastructure is unable to satisfactorily process such data volumes, usually try 
to solve this problem by acquiring more processing power and replacing existing 
infrastructure with newer expensive machinery, or by adding additional processing 
nodes. This decision is made with the assumption that the newer infrastructure, with 
more memory and faster CPUs, will be sufficient of handle such volume increase, 
without a real knowledge of its data volume processing capacity. 

In this paper, we evaluate whether the premises that lead to the definition of star 
schema model for storing DWs in relational DBMS still upholds in current hardware 
systems, where storage space and becoming increasingly faster at affordable prices, 
and the availability and affordable distributed data processing infrastructures 
composed of Common-off-the-Shelf (COTS) hardware. We propose to extend the 
denormalization applied to dimension tables to the overall star schema model, 
reducing the fact tab and the dimension tables to a single table containing all the data. 
We called this single relation storage organization “ONE”. We evaluate the impact of 
such organization in both storage and processing requirements.  

In section 2 we discuss some related work on DW storage and processing 
organization. Section 3 presents the denormalization process and illustrates the 
storage requirements with the TPC-H schema. Section 4 discusses how the processing 
costs of ONE compare with the base TCP-H schema. Section 5 uses the TPC-H 
benchmark to experimentally evaluate the query execution times of ONE storage 
organization. Finally, we conclude with section 6. 

2   Related Works 

Both academia and the industry have been investigating methods, algorithms and 
strategies for speedup the execution time of queries that need to join several relations. 
Some had investigated the different join algorithms, such as, sort-merge, hash join, 
grace-hash join and hybrid-hash join [1][2][3][4]. Other investigated access methods, 
such as btree and bitmap indexes [5]. Materialized views [6] use extra storage space 
to physically stored aggregates for well known and planned queries. Sampling [7] 
trades-off precision for performance by employing the power of offered by statistical 
methods to reduce the volume of data that need to be processed for computing an 
acceptable result. Vertical partitioning and column-wise store engines [8], [9] as 
proved to be effective in reducing the disk IO and thus boosting query performance. 
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Works on denormalization includes [10,11,12][ but fall short on demonstrating the 
performance gains of obtained by denormalization the whole star schema model, and 
doesn’t offer a clear insight of the query performance predictability and scalability. 

3   ONE Storage Model  

In this section, we present ONE as an alternative storage organization for the star 
schema model, and discuss the major advantages and disadvantages of the proposed 
model. We use the TPC-H schema model to illustrate the storage trade-off. 

A normalized central fact table reduces the overall DW storage size, since it only 
stores a set of measures (m), which are mainly numerical attributes (facts) with a fixed 
width, and a set of foreign keys (n) that are also numerical identifiers. The size of fact 
tables increases as a function of the number of tuples.  ݂݈ܾܽܿ݁ܽܶݐ௦௜௭௘൫ ௧ܰ௨௣௟௘௦൯ ൌ  ௧ܰ௨௣௟௘௦ ൈ ൫݊௙௢௥௘௜௚௡ ௞௘௬௦ ൅  ݉௠௘௔௦௨௥௘௦൯ 

For joining the relations, the star schema model has to include a set of extra 
primary and foreign keys which usually are artificially generated (surrogate keys) and 
do not have operational meaning. These keys increase the DW storage requirements. 
In some star schema models, the number of foreign keys represents a large percentage 
of the number of fact table attributes. This is particularly relevant for some special 
types of fact tables (factless fact tables), which do not have measures and only store 
foreign keys, where each tuple represents an event without measures.  

For instance, in TPC-H benchmark, which is not a typical star schema model, but is 
well known by the data warehouse community, we observe (in table 1) that 1 of the 61 
columns of the benchmark schema are keys, which represents a 30% increase in the 
number of attributes and 8% increase in storage size. 

Table 1. Increase in the number of attributes 

  #Attributes 
(non keys) 

#Key  
Attributes 

#Attribute 
%increase 

Space 
%increase 

REGION 2 1 50% 4% 
NATION 2 2 100% 9% 
SUPPLIER 5 2 33% 6% 
CUSTOMER 6 2 33% 5% 
PART 8 1 13% 3% 
PARTSUPP 3 2 67% 6% 
ORDERS 7 2 29% 8% 
LINEITEM 13 3 25% 10% 
Total      46 15   

In the TPC-H schema, the additional surrogate keys and foreign keys added to 
LINEITEM table represent a 25% increase in the number of the table attributes. It 
only represents a 10% increase in storage size though, due to the fact that this schema 
is not a typical star schema, as discussed in [13], and does not follow the principles of 
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attributes. Moreover, most RDMS engines create an index structure for each table 
primary key, which represents additional space. These index structures, and related 
storage requirements, are also not necessary on the denormalized schema. 

Considering ss as storage space by a schema model, the total storage space 
occupied by a DW is ݏݏ஽ௐ ൌ ௧௔௕௟௘௦ݏݏ ൅ ௣௞೔೙೏೐ೣ೐ೞݏݏ  ൅  ௙௞೔೙೏೐ೣ೐ೞݏݏ

 
The storage space required by ONE is determined as  ݏݏைோ ൌ ௧௔௕௟௘ ைோݏݏ ൅  0 ൅ 0 

We define  ߮௦௦ aݏ the storage space increase ratio in comparison with the base DW 
star schema model ߮௦௦ ൌ ைோݏݏ െ ௗ௪ݏݏௗ௪ݏݏ  

Without considering the block (or page) overheads, and the number of tuples that 
can fit within each page block, since they are engine dependent, and considering the 
maximum space required for each variable length attribute (VAL), we conclude that 
the denormalized schema requires at most a 5,3x increase in the storage size.  

VAL attributes with an average size below the maximum size will have a greater 
impact in the overall size of ONE, since it affects all tuples in the relation, whereas in 
the base schema it only affects the size of the related relation. For instance, if the size 
of a VAL attribute from table CUSTOMER is reduced by half, it represents almost 
negligible impact in overall schema size, since CUSTOMER only represents 3% of 
the overall schema, whereas in ONE the storage size is reduced proportionally to the 
percentage of the attribute size in the overall tuple size. Size variability of VAL 
attributes from LINEITEM or ORDERS will have greater impact in the overall size, 
since they (in conjunction) represent 80% of the total space. 

Table 2. Disk space required by each relation 

SF = 1 Nº Rows Space % 

REGION 5 1 KB 0% 
NATION 25 5 KB 0% 
SUPPLIER 10 000 1,9 MB 0% 
CUSTOMER 150 000 31,3 MB 3% 
PART 200 000 30,5 MB 3% 
PARTSUPP 800 000 164,0 MB 14% 
ORDERS 1 500 000 190,3 MB 17% 
LINEITEM 6 000 000 726,7 MB 63% 

Total   1 144,7 MB 100% 

 
The overall storage space required by ONE to store the data increases by a factor 

of 5,3x , as show in table 3, which shows the storage space required by each storage 
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organization and the corresponding space ratio, for a scale factor of 1. The storage 
space ratio is reduced to less than 4x when we also take into account in the equation 
the space occupied by indexes.  

Table 3. Storage space required by each schema organization 

Schema (SF1) Size (MB) ࣐࢙࢙ 

base TPC-H 1.144,7 MB 5,323 

base TPC-H + Indexes 1.448,4 MB 3,998 

ONE 7.238,4 MB  

With a scale factor of 1 (SF=1), we observe that the required space increase to 
about 7GB. For quite some time, this increase in storage was unacceptable since 
storage space was expensive, disks had limited capacity and with slow transfer rates. 
However, currents disks are acceptably fast, providing sequential transfer rates of 
hundreds of MB per second, at affordable prices (with prices below 0.05€€ /GB).  

Looking to the relation sizes, we may observe that queries that solely require data 
from table LINEITEM will become slower, since they need to read and process almost 
10x more data (not tuples) in comparison with the base star schema. However this is not 
a typical query. The usual DW query pattern involves selecting (or filtering) some 
attributes from dimension tables and then joining with the central fact table, before 
performing some aggregated computations to the data from the central fact tables. 

4   Query Processing  

In this section, we discuss and compare the query processing costs and requirements 
for processing queries against ONE, without joins, and the hybrid hash join, which, as 
discussed and evaluated in [3], is a join algorithm that delivers enhanced performance 
execution time for large relations. 

Queries submitted to the DW require that the central fact tables be joined with one 
or several surrounding dimension tables. In what concerns query execution costs, the 
storage space isn’t an issue, the real issue that we have to be concerned is the required 
IO operations, and particularly the random reads which are expensive and the 
available memory. If it is possible to process joins and sorts in memory, this will be 
important, since it saves expensive disk write operations. 

Query optimizers have to evaluate and assess which combination and orchestration 
of access methods, joining algorithms and joining order in order to determine the 
query execution plan with minimum costs that fits to the hardware characteristics. For 
this, they resort to several supplementary structures containing statistical information 
and data distribution histograms of the data that resides in each relation. This is 
fundamental to better estimate the query selectivity over each relation and thus 
determine which access method to use, and the joining order and algorithm.  
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Predictable Execution Time 

ONE does not require any join algorithm, since data is already joined, thus the query 
optimizer complexity is reduced, and it has reduced memory requirements, in contrast 
with the memory requirements of the joining algorithms. Since ONE only requires 
memory for sorting and grouping, it has minimal memory requirements to process 
queries.  

The bottleneck of ONE is IO dependent, since it requires more IO operations to 
process the denormalized data. However, this characteristic offers a predictable  
and simpler method to determine the query execution time. Since, no joins are  
required, and query execution presents minimal memory requirements, the query 
execution time can be determined as a function of the employed access method and 
the number and complexity of filtering conditions and the selected computations. The 
relational star schema model is more unpredictable since the query time and the num-
ber of IO operations are widely amplified as the volume data surpasses the available 
memory. 

A Comparative Analysis with Hybrid Hash Join 

Hash Join algorithms use a hash function to partition two relations R and S into hash 
partitions and are particularly efficient for joining large data sets. The optimizer selects 
the smaller relation as the inner relation, used as the lookup driver relation, to probe 
each tuple of the outer relation. The optimizer selects the smaller of two tables or data 
sources to build a hash table in memory on the join key. It then scans the larger table, 
probing the hash table to find the joined rows. This method is best used when the 
smaller table fits entirely in memory. The optimizer uses a hash join to join two tables 
if they are joined using an equijoin and a large amount of data need to be joined 
together. When the available memory is insufficient to store the entire inner relation, it 
uses a Hybrid Hash Join algorithm which partitions both relations into partitions such 
as a hash table for the inner relation to fit into memory. Corresponding partitions of the 
two input relations are then joined by probing the hash table with the tuples from the 
corresponding partition of the larger input relation. Partitions that cannot fit into 
memory have to temporally be written to disk before being joined together.  

Consider relation R and S, where R is the smaller relation. For a relation R, 
consider that tR is the number of tuples of R , bR is the number of blocks (or pages) of 
R,  tsR is the tuple size of R and tpbR is the number of tuples of R that can fit in a 
block (or page) with size blocksize. The cost of joining relations R with S, using a 
Hybrid Hash Join algorithm [3][2] can be computed as  HHJ(R, S) ൌ (tୖ ൅ tୗ) ൈ I୦ୟୱ୦൅ (tୖ ൈ tsୖ ൅ tୗ ൈ tsୗ) ൈ (1 െ q) ൈ Iୡ୭୮୷൅ 2 ൈ (bୖ ൅ bୗ) ൈ (1 െ q) ൈ IO ൅(tୖ ൅ tୗ) ൈ (1 െ q) ൈ I୦ୟୱ୦ ൅ tୖ ൈ tsୖ ൈ Iୡ୭୮୷൅tୗ ൈ I୮୰୭ୠୣ ൈ F୦ୟୱ୦ 

(1)
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Considering that ݍ ൌ ܾோబ/ܾோ , and bRo is the size of the first partition that can 
reside in memory, and that does not need to be written to disk. To process a query Q 
that require that two relation R and S, be joined together, we can determined the 
overall cost, without considering other costs such as filtering, grouping and 
aggregating,  for executing the query as  ݁݉݅ݐܿ݁ݔܧ௧௣௖௛ ൌ (ܾோ ൅ ܾௌ) ൈ ܱܫ ൅ ,ܴ)ܬܪܪ ܵ) (2)

With ONE storage organization, the cost for executing the same query, without 
considering filters and computations, can be determined as  

௢௡௘݁݉݅ݐܿ݁ݔܧ ൌ ௌݏݐ)ܾ݌ݐௌݐ ൅ (ோݏݐ ൈ  ܱܫ

 
(3)

with ܾ݌ݐ(ݏݐோ) ൌ ඌܾ݈ݏݐ݁ݖ݅ݏ ݇ܿ݋ோ ඐ 

Assuming that ඌܾ݈݇ܿ݋௦௜௭௘ݏݐோ ඐ  ؆ ோݏݐ௦௜௭௘݇ܿ݋݈ܾ  

௢௡௘݁݉݅ݐܿ݁ݔܧ ൌ ௌݐ ൈ ௌݏݐ) ൅ ௦௜௭௘݇ܿ݋݈ܾ(ோݏݐ ൈ  ܱܫ

 
(4) 

For the query execution cost with ONE storage organization to be smaller than the 
base TPC-H storage schema using hybrid hash joins for joining relations R and S, the 
following inequality must be satisfied.     

ௌݐ  ൈ ௌݏݐ) ൅ ௦௜௭௘݇ܿ݋݈ܾ(ோݏݐ ൈ ܱܫ ൑  (ܾோ ൅ ܾௌ) ൈ ܱܫ ൅ ,ܴ)ܬܪܪ ܵ) ֞  
,ܴ)ܬܪܪ ܵ) ൒ ܱܫ ൈ ௦௜௭௘݇ܿ݋ோܾ݈ݏݐ ൈ ௌݐ) െ (ோݐ ֞ 

HHJ (R, S) ൒ IO ൈ bୖ ൈ ൬tୗtୖ െ 1൰ (5) 

For ONE to outperform the base TPC-H schema, the Hybrid Hash Join cost must 
be greater than the IO cost for reading the bR blocks of relation R multiplied by the a 
ratio of number of tuples between relations S and R. Figure 2 depicts graphically the 
results of the inequality of the equation 4, with a IO sequential read costs of  
15ms, 10ms and 5ms respectively. The ݐௌ/ݐோ ratio is represented as the x axis, bR is 
the z axis and y axis depicts the function result. This result was obtained with a 30% 
value for q.  
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Fig. 2. HHJ graph using equation 5 

5   Evaluation 

We evaluated the ONE storage organization using a default installation of the 
PostgreSQL[15] 8.4 DBMS engine in a Dual Core Pentium D, at 3.4Ghz, with 2GB 
Ram, a 150GB SATA disc drive, and running a default installation of Ubuntu 
Maverick Linux distribution. 

We have created two different schemas, the base TPC-H schema as defined in the 
benchmark, and the ONE schema comprised by a single relation containing all the 
attributes of the relations with the exception of the surrogate keys (primary and 
foreign keys). The former was populated with the DBGEN data generator [16] and the 
later with a modified version that generate the denormalized data as single file.  

For each setup, we measured the elapsed time for generating and loading the 
dataset, indexing and analyzing the schema, and the time taken to execute the TPC-H 
queries. The loading costs, time taken to load the data, create the required indexes and 
finally analyzing the schema, were almost the same for both setups: the base TPC-H 
star schema, named TPC-H and the denormalized star schema model, named ONE. 

Queries ran on denormalized schema (ONE), were rewritten in order to use the 
denormalized relation instead of the star schema relations, and the joining conditions 
were removed. No specific tuning or tweaking was made to queries or relations.  

We have evaluated and populated both setups using scale factors {0.1, 0.3, 0.5, 1, 
3, 5, 10}. For each setup, we run each query 30 times and obtained the query 
execution time. For each query, we excluded the two smaller and greater results.  

Fig. 3 shows the average and stddev execution time obtained for all queries for 
different scale factors, ranging from 0.1 to 10. As discussed above, the average 
execution time of ONE scales linearly with the data volume, depicting a perfect line. 
This is due to the simpler query execution cost, which doesn’t require joins and is 
fairly independent of the available memory.  
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Fig. 3. Execution time (avg and stddev) for varying SF 

Furthermore, the standard deviation of ONE is impressive. While TPC-H performs 
better, at small scale factors, since a large amount of the inner relations resides in 
memory, requiring less IO operations, the query execution time is highly 
unpredictable. One, with a scale factor of 10 (SF=10), presents an average query 
execution time faster than TPCH. 

  

 

Fig. 4. Query execution time variability for varying SF  
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Because ONE doesn’t have to perform join operations, only filters, grouping and 
aggregation operations, it provides a very predictable execution time. We observe 
that, in Fig.  4, which depicts the execution time variability considering all the 
queries, ONE presents a low variability (below 3% to the average execution time). 
This means that ONE for a given scale factor (SF) can execute queries with a 
predictable response time.  

Fig. 5 depicts the average execution time for queries 1 to 9. From the figure, one 
thing that stands out is that ONE presents an execution time with minimal variability 
across the queries with the same scale factor, while the base TPC-H schema presents a 
large variability across queries. Another interesting aspect is that, as expected, the 
query execution times of ONE are greater than those obtained with TPC-H. However 
the execution time ratio is smaller than the storage space ratio as discussed in 
previous sections.  

 

Fig. 5. Average execution time for varying SF for queries 1-9 

Query execution time obtained by ONE may appear unimpressive, since some 
queries present worse times when compared with the base star schema model, 
however the execution time are almost constant, as expected from the results from 
figure 4 (query time variation below 3%). 
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Moreover, as the data volume increases (ex. SF10) and hash joins are not solely 
done in memory the query execution time of the base star schema are getting closer to 
those obtained for ONE, since hash joins need to perform IO writes and reads. 

ONE storage model offers a reliable and predictable execution time, which can be 
estimated as a function of the data volume and the underlying hardware storage 
system. As ONE scales linearly with the volume of data, the DBA knows, with an 
appreciable confidence, how the infrastructure that supports the DW will behave with 
the data increase. Moreover, since a large amount of the query execution cost is from 
the IO operations, particularly the sustained transfer read rate, we can, with high 
confidence, estimate how current hardware systems behave and estimate the 
performance gains obtained by hardware upgrades even without testing it.  

6   Conclusions 

In this paper we discussed the issues and limitations currently presented by the star 
schema model, and we proposed and evaluated ONE as an alternative storage 
organization which stores the denormalized star schema model, and thus eliminating 
the processing costs associated with the joining algorithms and the additional IO 
operations (random and sequential) when the available memory is insufficient to 
process in-memory joins, resulting in a simpler and more predictable model.  

We also demonstrate that ONE offers optimal scale-up scalability with minimal 
intra-query IO operations and network data exchange operations. One also allow DBA 
and IT managers better estimate and determine the current limitations of existing 
hardware infrastructure and determine the requirements of the new infrastructure to 
handle a given data volume without even testing it. 
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Abstract. A wealth of multidimensional OLAP models has been sug-
gested in the past, tackling various problems of modeling multidimen-
sional data. However, all of these models focus on navigational and query
operators for grouping, selection and aggregation. We argue that plan-
ning functionality is, next to reporting and analysis, an important part
of OLAP in many businesses and as such should be represented as part
of a multidimensional model. Navigational operators are not enough for
planning, instead new factual data is created or existing data is changed.
To our knowledge we are the first to suggest a multidimensional model
with support for planning. Because the main data entities of a typi-
cal multidimensional model are used both by planning and reporting,
we concentrate on the extension of an existing model, where we add a
set of novel operators that support an extensive set of typical planning
functions.

1 Introduction

With the rise of decision-support-systems and the use of data-warehouses in
many modern companies, the research community devised various models to
support multidimensional analysis in the process of On-Line Analytical Process-
ing (OLAP) [4]. The common data entities to model such multidimensional data
are so called cubes consisting of a set of orthogonal dimensions and mostly nu-
merical fact-data characterized by the values of the different dimensions. The
main aspect of OLAP is the navigation through and aggregation of multidi-
mensional data. The models provide an algebra of operators that often contains
typical operators of relational algebra transferred to the multidimensional sce-
nario and extended by navigational operators to group, select and aggregate
data, also termed as slice/dice and roll-up/drill-down operations.

Business planning is an important task in many companies where business
targets are defined for future periods to provide specific guidelines for current
operations and a comparison whether goals have been reached or not. As such,
planning is an important part of many practically used decision-support-systems.
However, to our knowledge, none of the existing multidimensional models sup-
ports planning functionality. We strive to overcome the limitation of existing
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models to support planning functionality as part of OLAP. As the basic data
entities are the same for planning and reporting, we build on an existing OLAP
model an extend its set of operations with novel operators to support a list of
typical planning functions.

The paper is structured as follows: in the next section we describe related work
in the field of OLAP models as well as the multidimensional model that serves
as foundation for our OLAP model with planning support. Section 3 introduces
a list of typical planning functions by example. Our novel operators to support
planning are introduced in Section 4 where we show how to express the planning
functions with the set of extended operators. We finish with a conclusion in
Section 5 providing an outlook for an implementation of our model.

2 Foundation and Related Work

Starting with the Data Cube operation by Gray et al. [6] as an extension of
SQL, a wealth of multidimensional models have been proposed. Similar to the
Data Cube, the first models by Li et al. [9] and Gysses et al. [7] were extensions
to the relational model. The field of statistical databases also dealt with the
quantitative analysis of large amounts of scientific data and, faced with similar
problems, suggested different models. Prominent candidates are the Summary
Tables model by Ozsoyoglu et al. [10] and the graphical model for Statistical
Object Representation (STORM) by Rafanelli et al. [12]. While all these mod-
els, divide the data into qualifying and quantifying information, most modern
models are base on the concept that the qualifying information defines a multi-
dimensional space represented by a cube where each axis is called a dimension.
The quantifying information at the intersection points, called measures or facts,
is characterized by the dimensions. Typical and often cited representatives are
the Multidimensional Database Model by Agrawal et al. [1], the F-Table Calcu-
lus by Cabibbo et al. [3], the Cube Operations model by Vassiliadis et al. [13],
the Multidimensional Object model by Lehner [8] and the Cube Data model by
Datta et al. [5]. Vassiliadis provides a good classification and survey of these
models in [14]. The suitability of the models to implement a practical and com-
plex data-warehouse scenario was evaluated by Pedersen et al. [11] according
to an extensive set of typical requirements such as explicit hierarchies, multi-
ple and flexible hierarchies per dimension, symmetric treatment of dimensions
and measures and explicit aggregation semantics. Since none of the previous
models fulfilled all requirements they suggested their own model, the Extended
Multidimensional Data model (EMDM). As this model satisfies all of the above
requirements we considered it a suitable foundation for our planning extensions.

The basic EMDM model entity is a multidimensional object MO =
(S, F, Dim, R), which is a four-tuple consisting of an n-dimensional fact schema
S, a set of facts F , a set of dimensions Dim and a set of corresponding fact-
dimension relations R that map the facts to elements of the dimensions. A key
aspect of the model is that everything that characterizes a fact is regarded dimen-
sional. That includes measures and as such dimensions and measures are treated
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symmetrically. An n-dimensional fact schema S is a two-tuple (FS, D) with FS
describing a fact type and D being a set of dimension types D = {Ti, i = 1..n}.
Each dimension type T itself is a four-tuple (C,≺T ,�T ,⊥T ), where C is a set
of category types {Cj , j = 1..k} of T that form a partial ordering ≺T with �T

and ⊥T as the top and bottom elements of the ordering. There is always a single
top element that contains all other elements. For certain category types it often
makes sense to aggregate them. To support the different aggregation types in
the model, three different classes of aggregation functions exist: constant c, av-
erage functions φ and sum functions Σ. For these classes an ordering exists such
that c ⊂ φ ⊂ Σ. For each dimension type T the model provides a function that
determines the aggregation type for a category type. A dimension Dimi has a
dimension type T that is defined in the fact schema of an MO as explained in the
previous section. Dimi = (Ca,≺) is a two-tuple with Ca being a set of categories
{Caj} and ≺ a partial ordering on all dimension values e in each category Caj

with Type(e) = Cj . Furthermore, all values e in the dimension Dimi are smaller
than value � and the most granular values are contained in category ⊥T . To
establish a connection between facts and dimensions, fact-dimension relations
are introduced. A fact-dimension relation R is a set of two-tuples {(f, e)} where
f is a fact and e is a dimension value. Therefore, the fact is characterized by the
dimension value e. Values from different dimension categories can determine the
same fact. Also it must be ensured in the model that each fact in R is character-
ized by at least one dimension value. Thus, if there is no suitable dimension value
to characterize a fact, the value � is used. Based on these entities an algebra
with a list of operators is part of the model. As basic operators, all operations
from relational algebra like selection, projection, rename, union, difference and
join are adopted to operate on MOs. In addition, the aggregate formation op-
erator allows to built aggregates and group facts. Typical OLAP operators like
roll-up, drill-down, SQL-like aggregation and star-joins are expressed in terms
of the basic operators.

3 Common Planning Functions by Example

The example used throughout the paper has the schema shown in Figure 1,
consisting of 5 dimensions with dimension types Article, Location, SellDate,
Price and Quantity. They characterize the Sale of a product. Usually, Price
and Quantity would be considered as measures, so we call them the measure
dimensions. Each dimension consists of different categories that form one or
more hierarchies per dimension. For the two dimensions Article and Location
Figures 2 and 3 show dimension values and their partial ordering.

The measure dimensions contain numerical values, where quantities are inte-
gral numbers and prices are values taken from real numbers. In Table 1 we list
the facts for our example in column 1 and each entry represents a fact. The other
columns represent the dimensions that characterize the fact and the value(s) in
each row represent the dimension value(s) forming, together with the fact, (an)
element(s) of the fact-dimension relations.
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Fig. 1. An example schema
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Fig. 2. Dimension values and partial ordering for dimension Article
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Fig. 3. Dimension values and partial ordering for dimension Shop

The following example introduces a list of common planning functions in a
typical business planning scenario. Our model should be able to express each of
these functions. Assume a company that sells phones and accessories to shops
and retailers. Our example schema shows a multidimensional object with a list
of facts that capture sales for year 2010. It is the task of a controller to plan
sales quantities and prices for year 2011.

Step 1. As a first step he wants to base his plan on the values of the previous
year and therefore he needs a planning function that copies data from 2010 into
year 2011. The new MO would now contain twice as much facts as before.
Step 2. Because of recent market trends the company decides to sell only smart-
phones in 2011 and therefore a delete planning function deletes all standard
cellphone sales from 2011.



18 B. Jaecksch and W. Lehner

Table 1. Lists of facts in the example schema

Fact RArticle RLocation RSellDate RPrice RQuantity

f1 iPhone4,iOS, AppleStore,Munich, 2010-05-06, 05, 699.00 50
Apple,Smartphones BrandStore Q2, 2010

f2 Desire,Android, Vodafone Shop, 2010-04-23, 04, 479.00 35
HTC,Smartphones Dresden,Provider Q2, 2010

f3 Omnia 7,Windows Media Markt, 2010-12-14, 12, 389.00 10
Phone 7,Samsung, Hamburg,Retailer Q4, 2010

Smartphones
f4 2323,Symbian, Real,Frankfurt, 2010-01-11, 01, 79.95 110

Nokia, Cellphones Retailer Q1, 2010
f5 BT Headset,Nokia, HandyShop,Dresden, 2010-03-27, 03, 24.55 70

Accessories Smalldealer Q1, 2010
f6 USB Charger,Hama, Real,Frankfurt, 2010-08-13, 08, 12.99 45

Accessories Retailer Q3, 2010

Step 3. For the year 2011 the prices are lowered by 5% compared to the
previous year. Therefore the planner calls a revalue planning function to apply
these changes. Furthermore, he wants to know the planned revenue that is based
on sales quantities and price.
Step 4. For a each retailer the planner requests the estimated quantity of sold
items from the sales person that is responsible for this customer. These quantities
are now entered to the plan at aggregated customer level and must be distributed
to individual facts using a disaggregation planning function.
Step 5. Finally, the controller wants to use the current data of 2010 and the
planned data of 2011 to predict a sales quantity trend for 2012. He requires a
planning function that calculates a forecast and generates a set of forecasted
facts.

After all these steps, the complete plan data is created and can be used for
reports and comparisons with the actual data of 2011. The list of planning
functions that was involved includes copy, delete, calculate expressions to revalue
quantitative values, disaggregation of new values from an aggregated level to the
most granular fact level and forecasting new values.

4 An OLAP Model for Planning

In the following section we extend the EMDM and develop our novel model al-
gebra to support planning. One major aspect of planning is that it changes fact
data. All the models existing so far make the assumption that fact data is a
read only set of values and all operators have navigational, i.e. read only seman-
tic. With planning new facts will be created or existing facts are manipulated.
Therefore, the novel operators for planning must support this. From the list of
basic planning functions shown in Section 3 not all require a separate operator.
Similar to the original model, where typical OLAP operators like roll-up and
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drill down are expressed in terms of the basic aggregation formation operator,
we only need a few basic operators to keep the extended algebra simple and
minimal.

4.1 Basic Planning Operators

Value Mapping. An important basic operation, e.g. for the copy function, is value
mapping. When new plan data has to be generated one can copy facts from a
previous year. As a result, for a set of facts, one or more dimension values change.
For example, to copy along the time dimension the values must change from one
year to another. The mapping operator takes as input a set of mapping functions,
which map a combination of source dimension values to corresponding target
values. As fact-dimension relations are the glue between facts and dimensions,
the mapping operator modifies these relations. We formally denote the mapping
operator as:

Definition 1. Value mapping γ [{mr, r = 1..s}] (MO) = (S′, F ′, Dim′, R′) takes
a set of mapping functions mr, which have the form mr(e1, .., ei, .., en) �→ e′i, with

– S′ = S, F ′ = F , Dim′ = Dim
– R′ = {R′

i, i = 1..n}
– R′

i = {(f ′, e′i)|f ′ ∈ F ′∧e′i = mr(e1, .., ei, .., en)∧e1 →1 f, .., ei →i f, .., en →n

f ∧ e′i →i f ′}

Intuitively a mapping function mr is applied to a fact-dimension relation Ri and
maps the input value to itself or, for matching values, to a different dimension
value. It is important that the mapping function is aware of dimension hierarchies
and provides a complete mapping from one part of the hierarchy lattice structure
to another. If we consider the SellDate hierarchy of our example schema and want
to map from the year 2010 to the year 2011, a mapping function f2010 �→2011 must
provide a mapping for all dimension values that are in the partial ordering below
2010 to the respective values in the hierarchy below 2011. Thus Q1-2010 would
be mapped to Q1-2011 and so on.

Duplication. The value mapping operator from the previous section modifies
fact-dimension relations, but the set of facts is not changed. To introduce new
facts, as it is necessary for a copy function, we add the duplication operator
to the model, which duplicates the facts of an MO. The resulting MO′ has
identical dimension structure and fact-dimension relations with the exception
that for each fact in MO there is a new fact in MO′ that is characterized by the
same dimension attributes and values.

Definition 2. Duplication τ(MO) = (S′, F ′, Dim′, R′) with

– S′ = S
– F ′ = {f ′|∃f ∈ F ∧ e1 →1 f, .., en →n f ∧ f ′ �= f ∧ e′1 →1 f ′

1, .., e
′
n →n

f ′
n ∧ e1 = e′1 ∧ . . . ∧ en = e′n}

– R′ = {R′
i, i = 1..n}

– R′
i = {(f ′, e′i)|∀(f, ei) ∈ Ri ∧ f ′ ∈ F ′ ∧ e′i ∈ Dim′

i}
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Disaggregation. A typical planning function is to enter an aggregated value for a
group of facts and then calculate how it distributes to the individual fact values
that contribute to the aggregated value. The disaggregation can be viewed as the
reverse operation to the aggregation. In contrast to the drill-down operation, the
disaggregation operation defines a new sum value and changes all contributing
values accordingly. We define the disaggregation operator similar to the aggre-
gation formation operator as the inverse operator α−1. As input it takes a set
of dimension values, that define the aggregation level where the new sum value
is entered. Additional parameters are a distribution function g−1 and an aggre-
gate function g that determines how the values are aggregated. Finally, a new
dimension value enew is given as well as the index t of the target dimension and
the index r of a reference dimension. It is allowed that t = r, in which case the
new value is distributed according to the original fractions dimension Dimt.
Definition 3. Disaggregation is α−1

[
e1, .., en, g−1, g, enew, t, r

]
(MO) =

(S′, F ′, Dim′, R′), where

– S′ = S, F ′ = F , Dim′ = {Dimi, i = 1..n ∧ i �= t} ∪ {Dim′
t}

– Dim′
t = (Ca′

t,≺′
t), ≺′

t=≺t|Dim′
– Ca′

t = {Ca′
tj ∈ Dimt|Type(Ca′

tj) = �Dimt ∨ (Type(Ca′
tj) = ⊥Dimt ∧ e′tj =

g−1(erj, enew, eold) ∧ erj ∈ Carj ∧ Type(Carj) = ⊥Dimr ∧
SUM(Group(e′1, .., e′n)) = enew ∧ eold = g(Group(e1, .., en)) ∧ (e′1, .., e′n) ∈
Ca′

1 × · · · × Ca′
n ∧ (e1, .., en) ∈ Ca1 × · · · × Can)}

– R′ = {R′
i, i = 1..n ∧ i �= t} ∪ {R′

t}, R′
i = {(f ′, e′)|f ′ ∈ F ′ ∧ e′ ∈ Dim′

i}
– R′

t = {(f ′, e′i)|∃(e1, .., en) ∈ Ca1 × · · · × Can ∧ f ′ ∈ F ′ ∧ e′i ∈ Dim′
t ∧ e′i =

g−1(eri, enew, eold) ∧ ∀ei ∈ Dimt∃eri ∈ Dimr}
The fact-schema S′ of MO′ is the same as that of the original MO since only
values are changed and no dimensions are added or removed. The set of facts
is the same, too, because the disaggregation operator does not introduce new
facts. It only maps the facts for the target dimension to new values. The set of
dimensions is again taken from the original MO, but the target dimension Dim′

t

changes in the sense that intuitively the new dimension values are calculated
based on the new sum and the fractions of the given reference dimension Dimr.
The category attributes Ca′

tj of the target dimension are either the top attribute,
or they are in the class of the most granular attribute and their new dimension
values are calculated using the distribution function g−1. The distribution func-
tion calculates the new dimension values e′tj using the new sum enew as input,
the old reference aggregate value eold and the respective dimension value erj of
the reference dimension. The aggregate value eold is obtained by applying the
reference aggregate function g to the grouping of Group(e1, .., en) at the level
of the given input dimension values. Finally, the fact-dimension mapping R′

t is
adapted such that the facts are now mapped to the new dimension values calcu-
lated by the distribution function. This includes, the requirement that for each
fact-dimension mapping in the target dimension there exists a fact-dimension
mapping in the reference dimension.

By allowing arbitrary functions for the distribution function g−1 and the ref-
erence aggregate function g, different types of distribution can be achieved. For
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example, a typical distribution function that calculates the new fraction based on
the percentile of the reference value from the old sum value is g−1(er, enew, eold) =
er ∗enew/eold together with g = SUM . The reference dimension can be the same
as the target dimension. For a uniform distribution, the reference aggregate func-
tion should be g = COUNT and for a constant distribution g−1(er, enew, eold) =
enew. The following example illustrates how disaggregation works: we distribute
a new article quantity of 384 to all sales facts in Germany for the year 2010.
The input MO contains all 5 dimensions Article, Location, SellDate, Price and
Quantity and is not restricted. The parameters for the disaggregation are:

α−1
[
�Article, Germany, 2010,�Price,�Quantity , g−1, g,

enew = 384, t = 5, r = 5] (MO) = MO′

The distribution function g−1 is the standard function explained in the previous
section and the reference aggregate function g is SUM . The target dimension
Quantity now contains the new dimension values that would result in the new
sum 384 when the reverse operation, i.e. the aggregate formation, would be
applied to MO′. The disaggregation affects all facts f1, .., f6 in the example and
the fact-dimension mapping RQuantity would change from

{(f1, 50), (f2, 35), (f3, 10), (f4, 110), (f5, 70), (f6, 45)}

to
R′

Quantity = {(f1, 60), (f2, 42), (f3, 12), (f4, 132), (f5, 84), (f6, 54)}

Calculated Dimensions. Another cornerstone of planning is to calculate various
expressions on multidimensional data. We therefore allow expressions on multi-
dimensional objects. Since everything is a dimension in the model and the facts
are objects that are described by dimension values, such an expression is an
operation on dimension values. We realize this within our model by defining a
calculated dimension Dim of type T = (Cj ,≺T ,�T ,⊥T ) similar to basic di-
mensions as a two-tuple Dim = (Ca,≺). The set Ca contains the categories of
the dimension and ≺ is the partial ordering on all dimension values. The dif-
ference is, that a category attribute Cai ∈ Dimn+1 is now defined in terms of
an expression where the operands are category attributes of other dimensions
Cai = ⊗(Caj , Cak) with Caj ∈ Dimr, Cak ∈ Dims and ⊗ being an arbitrary
binary operator from the following list {+,−, ∗, /,∧,∨}. In the same manner
expressions can contain arbitrary scalar functions and operators by extending
the definition of a calculated category type to the general form Cai = ⊗({Caj})
where Caj ∈ Dimr, j = 1..m, r = 1..n + 1, i �= j and ⊗ is an arbitrary unary,
binary or n-nary operator or scalar function applied to a number of category
attributes. It is possible that the expression references other category attributes
of the calculated dimension. This is useful for example to add constant to the
expression by defining a category attribute that only has one dimension value
and reference it in other expressions. To calculate such an expression we add a
calculated dimension to a multidimensional object using the following operator:
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Definition 4. The add dimension operator +
[
Dimn+1

]
(MO) =

(S′, F ′, Dim′, R′) takes as input a multidimensional object MO and a cal-
culated dimension Dimn+1 where

– S′ = (FS′, D′), D′ = {T ′
i , i = 1..n} ∪ {Tn+1}, T ′

i = Ti, F ′ = F
– Dim′ = {Dim′

i, i = 1..n} ∪ {Dimn+1}, Dim′
i = Dimi

– Dimn+1 = (Can+1,≺)
– Can+1 = {Can+1,i = ⊗({Carj |Carj ∈ Dimr, j = 1..m, r = 1..n})}
– R′ = {R′

i, i = 1..n} ∪
{
R′

n+1

}
, R′

i = Ri

– R′
n+1 = {(f ′, e′n+1,i)|f ′ ∈ F ′ ∧ e′ri→ f ′ ∧ e′n+1,i = ⊗(e′ri)∧

e′ri ∈ Car}

To calculate an expression between values of two different MOs, first a join
operator should be applied to create a combined MO and then a calculated
dimension containing the expression is added.

As an example we will calculate the revenue for our mobile phone data. There-
fore we add a dimension Dimrevenue = (Ca,≺) with Ca = (Revenue,�),
Revenue = Qty ∗ Price and add this dimension to our multidimensional object
+ [DimRevenue] (MO). The resulting MO′ now has an additional Revenue dimen-
sion where the dimension values of the Revenue category attribute are calculated
for each fact as the product of the Quantity and Price dimension values.

Forecast. The need for a forecast operator is directly motivated by the respective
forecast planning function. Besides copying values or enter plan values manually,
it is often useful to use a forecasting function fc to project trends of historical
data into the future. For the forecast operator this means creating a set of new
fact values for a category attribute Cat (most often from a time dimension).
An ordering O[Cat] is required for all dimension values eti of type Cat. Let
O[Cat] = 1..m with O[Cat](eti) < O[Cat](etj), i �= j, i = 1..m, j = 1..m if eti is
smaller than etj in terms of ordering O. The forecast function f(F, O[Cat], tgt, k)
can be an arbitrary forecasting algorithm like exponential smoothing or ARMA
models [2]. It takes as input a set of facts F , an ordering O[Cat] for these facts
based on a given dimension Dimi with Cat ∈ Dimt, an integral number tgt
which specifies the number of new facts it should produce and an index k = 1..tgt
that specifies which of the forecasted values it should return. We can now write
the following definition for the forecast operator:

Definition 5. φ[f, O, Cat, Cav, tgt](MO) = MO′ = (S′, F ′, Dim′, R′) with the
fact schema staying the same S′ = S, the set of facts is extended by tgt new
facts and

– F ′ = F ∪{f ′′
j |j = 1..tgt∧�1 →1 f ′′

j ∧ . . .∧�i →i f ′′
j ∧ . . .∧�n →n f ′′

j ∧e′t →t

f ′′
j ∧ e′v →v f ′′

j ∧ i �= t ∧ i �= v}
– Dim′ = Dim, R′ = {R′

i|i = 1..n ∧ i �= t ∧ i �= v} ∪ {R′
t, R

′
v}

– R′
i = Ri ∪ {(f ′′

j ,�i)|j = 1..tgt ∧ f ′′
j ∈ F ′}

– R′
t = Rt ∪ {(f ′′

j , e′t)|j = 1..tgt ∧ f ′′
j ∈ F ′ ∧ O[Ca′

t](e′t) = max(O[Ca′
t](ek)) +

j ∧ k = 1..n}
– R′

v = Rv ∪ {(f ′′
j , e′v)|j = 1..tgt ∧ f ′′

j ∈ F ′ ∧ e′v = f(F, O[Cat], tgt, j)}
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In essence the forecast operator produces l new facts, which are mapped to an
ordered set of dimension values such that the new facts are mapped to the l
successors of the last dimension value from the existing facts. Furthermore, for
a given (measure) dimension each new fact is mapped to its projected new value
according to the prediction of the forecasting algorithm.

4.2 Expressing Typical Planning Functions

The following section lists typical planning functions that are necessary to sup-
port planning applications. For each of these functions we describe it in terms
of operators of our novel Planing-OLAP model.

Delete. The delete operator deletes fact values from a multidimensional ob-
ject. We make no distinction here between an MO′ where facts have only been
filtered and actual deletion. Therefore, the planning operator delete can be ex-
pressed with the selection operator. Let MO = (S, F, Dim, R) and p an arbi-
trary predicate, that selects the values for deletion, then σ [¬p] (MO) = MO′ =
(S′, F ′, Dim′, R′) results in MO′ that only contains the not -deleted values.

Copy. When we introduced the value mapping operator, we already empha-
sized that copying is an important part of planning to set a starting point for
subsequent planning operations with data based on historic values. The copy
operator can be expressed in terms of the value mapping basic planning op-
eration combined with the duplication. The new MO′ is created by applying
a mapping to an MOCopy that contains duplicates of the original facts. Let
M = {mr, r = 1..s} be a set of mapping functions, then copying is defined as:
∪(γ [M ] (τ(MO)), MO) = MO′ = (S′, F ′, Dim′, R′).

Disaggregation. The disaggregation planning function can be directly mapped
to the disaggregation operator of the model.

Revalue. The revalue planning function is used to change a set of values ac-
cording to a formula. To execute such calculations within our Planning-OLAP
model, we use calculated dimensions.

Forecasting. Similar to the disaggregation planning function, the forecasting
planning functions has a direct representation as an operator in our Planning-
OLAP model and can therefore expressed with a call to this operator.

5 Impact and Conclusion

When comparing the Planning-OLAP model with traditional OLAP models then
the distinction is, that the latter is based purely on read operations whereas the
planning operators write or generate data. As planning has a simulation char-
acter, it is often the case that generated data is continuously adjusted until a
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copy delete revalue disaggregate forecast …

temp

INSERT/UPDATE/DELETESELECT

Begin
Planning transaction

End
Planning transaction

Planning-OLAP model

Implementation

merge 
result

temp

Fig. 4. Implementation scheme for the Planning-OLAP model

final result is obtained. As such it can be viewed as a long running transaction
containing a mixture of read (roll-up, drill-down, slice and dice) and write (dis-
aggregate, copy, revalue, forecast and delete) operations. While the transaction
bracket is not necessary for the read-only traditional OLAP, it makes sense for
the Planning-OLAP model where only the final result of a planning transac-
tion should become visible and persistent. The scheme in Figure 4 outlines how
this usage paradigm of the Planning-OLAP model can be mapped to a rela-
tional system using SQL. At the begin of a planning transaction one or more
temporary tables are created that will contain the modifications of the current
transaction and final results are merged into the original tables at the end of
the transaction. Each operator is mapped to a combination of SELECT and IN-
SERT/UPDATE/DELETE statements that modify the temporary tables. For
example the disaggregation operator has to update every measure value that
contributes to the overall sum. However, as the disaggregation operator contains
possibly complex distribution logic, the orchestration of these statements to yield
the correct result must either be done by the application or may be encapsulated
in a stored procedure. Clearly, a direct integration of this functionality into the
database system as a native operator would facilitate standardized and applica-
tion independent behavior and allow for optimizations. This is similar for other
operations such as value-mapping and forecasting. Therefore, we argue that in
the future, these operations should be first-class citizens in a database system,
equal to many navigational OLAP operators that are already supported natively
by major database systems today.

Although, there exists a wealth of OLAP models in the literature, none of the
existing models incorporated planning functionality. Many requirements have
been formulated for OLAP modeling to support real-world scenarios. While
many requirements are already met by some of the models, none of it explicitly
supported planning, which is a vital part of OLAP today. We proposed a novel
Planning-OLAP model that uses the Extended Multidimensional Data Model
(EMDM) as a foundation. By introducing a set of novel planning operators our
model is capable of supporting an extensive list of standard planning functions,
which we illustrated by examples. Since the Planning-OLAP model contains op-
erators that change data according to complex semantics, the challenge on the
implementation level is to have planning operators as first-class citizens within
a database system.
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Abstract. In the past, several approaches have been devised to semi-
automate the multidimensional design (MDD) of Data Warehouse
(DW) projects. Such approaches highly contribute to more expertise-
independent and deterministic MDD results. Among them, only the
Dimensional Templates Approach (DTA) focuses on solving the critical
resource containment problems of DW prototypes.

Originally, the DTA allows solely the generation of basic MDDs. In
this paper, we depict an extension to address complex MDD issues. These
include (i) date/time hierarchies, (ii) many-to-many relationships, (iii)
hierarchically structured data and (iv) coverage facts. The proposed
enhancements, including a rebuilt generation algorithm, allow more
accurate and broadening results than the original DTA. Throughout the
paper, references are made to a real case study to which the improved
DTA has been applied using two developed prototype tools.

Keywords: Dimensional Templates, Multidimensional Design, DW.

1 Introduction

The multidimensional design (MDD) stage is known to be one of the most
resource consuming stages in the development of Data Warehouse (DW) projects
[1, 2]. The accuracy requirements it imposes are not easy to balance with the
time and human resources they rely on. Business requirements must be gathered,
data sources must be deeply analysed, DW expertise must be acquired, and
performance plus storage sustainability must be assured.

Aiming to accelerate the MDD stage of DWs, several semi-automated methods
have been devised. Some of these are exclusively oriented towards available
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data information, data-driven [3–5], others primarily guided by end-users
requirements (EURs), user-driven [6–8], and others still a mixture of both,
mixed-driven [9–11]. Among the major handicaps of these methods (not
simultaneously found in all of them) are the need for a deep understanding
of data sources by DW designers, multidimensional experts manual intervening
and, specially, specifically formatted and validated data source documentation.
Most importantly, these methods produce results which are not reusable between
scenarios, despite their hypothetical similarities.

Recently [12] presented the Dimensional Templates Approach (DTA), a
mixed-driven semi-automated MDD approach. It proposes the semi-automation
of MDDs specifically for DW prototypes. As explained there, the DTA has the
potential to better comply with cost and time constraints of DW prototypes
comparing to other approaches. However, the original work allows solely the
generation of basic dimensions and fact tables, which presents as insufficient
for the DTA to be considered a strong alternative. Extra developments towards
greater accuracy and application range are, thus, required. In this paper we
present such developments to deal with date/time hierarchies, many-to-many
data relationships, hierarchically structured data and coverage facts. To
accomplish this, the DTA notation syntax was extended and its basic generation
algorithm was deeply enhanced, now presented with high detail.

The improved DTA has been successfully applied to a real-world DW
prototype case study, the SAD-IES (Decision Support System for Higher
Education Institutions) project. References to it are made throughout the paper
to illustrate the developments made (oppositely, the original DTA work had
been solely applied to an academic case study). The SAD-IES project, currently
undergoing on the Polytechnic Institute of Leiria (IPL), consists primarily in
the development of a DW prototype. In the future, the DW should support
the institutes’s management board into better plans of action concerning its
students’ motivation and performance. Currently, the project deals with the
business processes of students evaluation and students assistance to classes.

The paper is structured as follows. Section 2 presents relevant background on
the DTA. Section 3 describes the DTA’s non-addressed issues and the required
enhancements to handle them. Section 4 details the rebuild generation algorithm
considering the enhancements proposed. Section 5 concludes the paper.

2 Related Work

In the past, valuable approaches have been devised to semi-automate the
MDD of DWs, with focus on diminishing the time consumed and reducing
MDD subjectivity while maintaining high quality standards. In chapter 1 we
have referenced the most recent and relevant. Their further presentation and
discussion was considered beyond the scope of this paper. Besides, [13] provides
an extensive comparison of these approaches in terms of MDD flexibility.

Among these approaches, the DTA is still the only one to specifically target
DW prototype resource problems. Considering the potential denoted in [12], it
thus makes sense to support new developments on it.
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2.1 The Dimensional Templates Approach

The DTA detaches from other approaches in a core aspect: it stands on the
conviction that a pre-built generic and configurable solution better handles
resource containment during DW prototype MDD than specific tailored
solutions. It proposes the use of the template concept, largely adopted in other
Informatica areas. The approach focus on three main goals: refinement resilience,
human interaction avoidance and design effort optimisation.

Succinctly, a DTA template (named dimensional template) consists of
a generic configurable MDD solution for a specific business process. Each
dimensional template is composed by a set of rationale diagrams : tree-oriented
charts that map pre-defined EURs (named goals) to the types of source data
required to satisfy them (named markers). Each goal can be progressively
decomposed into child-goals using AND/OR tree-branches. Figure 1 depicts a
much simplified rationale diagram taken from the SAD-IES project. From this
diagram, cropped from the template addressing the students evaluation business
process, the following statements can be retrieved:

– The goal “AVG/MAX/MIN grad. grade” can be satisfied at two different
grain levels (named reasonable grains): UnitSeasonEval (in which facts must
represent a student’s grade in a specific evaluation season) and UnitExam
(in which facts must represent a student’s grade in a specific exam).

– The parent-most goal “Students grades” can be satisfied if at least one of its
child goals (“AVG/MAX/MIN grad. grade”, “Curricular unit precedences”
and “AVG #students switching scholar year”) is satisfied. This is true
considering that an OR-decomposition is being used to decompose the goal.

– The child goal “AVG #students switching scholar year” can be satisfied
at the grain level UnitSeasonEval if its child goals (“#students switching
scholar year”,“Registered students in scholar year”) are simultaneously
satisfied (now, and AND-decomposition has been used).

– The child goal “Registered students in scholar year” can be satisfied at the
level UnitSeasonEval if source data simultaneously addresses three contexts:
who is the student involved (marker student id); which curricular unit is
involved (marker unit id); when did the register occur (marker scholar year).

Once a dimensional template is built and made available (DTA’s first stage,
construction stage), it can be requested (DTA’s second stage, acquisition stage)
and then configured according to the needs of a specific DW prototype scenario
(DTA’s third and final stage, generation stage). During the third stage, MDD
operations are automated by means of a generation algorithm. The same available
dimensional template can be reused indefinitely throughout different scenarios.

3 Extending the Dimensional Templates Approach

The original DTA provides basic notation for designing simplistic rationale
diagrams, along with a subjective generation algorithm. Therefore, it can only
target the simplest scenarios. Following subsections present the DTA’s handicaps
and propose related enhancements.
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Fig. 1. One of the rationale diagrams used in the SAD-IES project, simplified
for reading simplicity. It depicts date/time hierarchy handling (A), many-to-many
relationship (B), HSD data (C), coverage facts handling (D) and perspective
usage (E).

3.1 Time-Related Data

A crucial step in the MDD stage of any DW project is to define time-related
data’s granularity [1]: too much/less detailed data in date/time dimensions is
equally harmful to the process of decision support.

Although time granularity differs from facts granularity, both concepts are
related. For instance, assuming the case study’s fact granularity as a student’s
grade in a curricular unit exam, relevant information would be lost if time related
data was set at the day level instead of hour level (e.g.: “Do students perform
better in the morning or in the afternoon?”, “Which is the minimum advisable
time gap between exams taken in the same day by a student?”). However, if
facts granularity represented less detail, like a student’s grade in a curricular
unit evaluation season, day level would suffice. Hence, date/time grain depends
on facts’ detail level.

Secondly, source data’s detail also limits the choice of the date/time grain. It
would be incoherent and predictably harmful to set date/time dimensions to
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a deeper detail level than the one retrievable from source data. Consider again
the case study in which source systems store students’ exam pre-register with
a year-month-day detail: day is bound to be the bottommost acceptable detail
level to associate with register-related facts; if more detail was forced into the
DW (like hour), erroneous data would have to be associated to each student’s
register (e.g., a fake hour).

Time-related data issues were not handled on the DTA original work. Here,
they are dealt by adapting the DTA’s tagging method (each marker receives
a tag depending on the dimensional context that marker connects to). Now,
each marker linked to a when dimensional context must be tagged with the (t)
tag, followed by the name of the minimum adequate date/time grain for that
marker. Figure 1 depicts the application of a (t)-tag to the marker graduation
date using day detail level (labelled as (A)). In the illustrated situation the
template designer is stating “It is required to retrieve graduation date from
data sources with (at least) day information so that the ’AVG/MAX/MIN grad.
grade’ goal can be fulfilled.”.

(t)-tagging benefits from the fact that Time’s structure is universal, known
in advance and naturally hierarchic: one century contains years, each of which
contains months, each of which contains weeks and so on. Thus, when a marker
is (t)-tagged, no uncertainty exists whatsoever about the date/time hierarchy
level that tag refers to.

3.2 Many-to-Many Relationships

Most commonly, dimension table records relate to facts in one-to-many
relationships [1], while many-to-many relationships’ only occasionally occur. As
an exercise, let it be assumed that a fact in the case study represents a student’s
grade in a curricular unit exam: a common one-to-many relationship relates
each student’s exam grade (a fact) to one curricular unit, which in return can
be related to many exam grades; a many-to-many relationship, however, would
determine that a student’s exam grade can be used at many curricular units
instead of one.

Originally, the DTA reckons only one-to-many relationships, which limits the
accuracy of the generated MDD results. Therefore, the N:M notation element
(N:M stands for many-to-many) has been created, as shown in Figure 1. The
N:M element can be applied to pairs of dimensional contexts �what,c�, with c
IN {how,when,which,who,where}. When used in this context, the N:M element
indicates (without imposing) the reasonable expectancy that data can relate
in a many-to-many fashion. The N:M element “used for” shown in Figure 1,
labelled as (B), states “Each student’s grade in a taken exam can relate to
several curricular units.” (a common practice nowadays).

3.3 Hierarchically Structured Data

We refer to hierarchically structured data (HSD) not as one-to-many data
relations inside dimensions and crucial to data roll-up and drill operations
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(like the classic recurrent example of date/time dimensions’ hierarchy). Rather,
we refer to HSD as data resuming into hierarchies due to source’s organisational
constraints. An example taken from the case study is curricular unit precedences,
by which a curricular unit’s student success is known/supposed to depend on a
previous graduation at other curricular units (for instance, to obtain a graduation
in the X unit a prior graduation is advised in the Y unit; furthermore, Y unit’s
success depends on graduating at the Z unit).

The original DTA work disregards HSD. In fact, it provides no mechanisms in
rationale diagrams structure to address this special type of data relationships.
To fill this void, the N:M element was again chosen since HSD is commonly of
a many-to-many nature. In the just given example, the X curricular unit can
require Y and Z as its precedents (many); these, in return, can be required as
precedents not only by X but also by many others. This discussion resembles
the parts explosion problem [1].

Since the N:M element is used for many-to-many relationships as well as to
address HSD, a distinction is required. This is made at the dimensional context
level: HSD uses the N:M element to perform a connection of a dimensional
context to itself; also, no what dimensional context coexist in the same grain-goal.
Figure 1 depicts the use of the N:M element “preceeded by” in the “Curricular
unit precedences” grain-goal (labelled as (C)). It states that each curricular unit
may have a precedence towards other curricular unit(s) and that such precedence
can be of a mandatory nature.

3.4 Dealing with Coverage Facts

A varying amount of the facts found in source systems are not strictly
business process facts. Called coverage facts [1], these reflect second tier source
occurrences required to answer a restrict set of EURs. Consider the case study’s
main facts’ granularity to be “students’ grades in a curricular unit’s evaluation
season”. Second tier events like “students registering in curricular units” are
only required to punctually complement main facts. In Figure 1, the goal “AVG
# number of students switching scholar year” is satisfiable by simultaneously
analysing the ratio number of students switching scholar year/registered students
in scholar year (labelled as (D)): while this ratio’s numerator is answered by
main facts, the denominator is answered by coverage facts.

Dealing with coverage facts requires no additional notation elements in
rationale diagrams. Rather, their detection is made by the generation algorithm
(step 3) solely by interpreting the combination of elements used in rationale
diagrams. Section 4.2 explains how this is achieved.

3.5 Handling Perspective Analysis

The quality of a DW depends on its capacity to allow data analysis under
different perspectives. The EUR taken from the case study “How did students’
grades evolve in a course basis per evaluation season?” answers the simpler
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Fig. 2. A rationale diagram illustrating the DTA enhancements used on Figure 1 now
applied under the context of retail sales [1]. Labels (A) to (E) equally apply.

question “How did students’ grades evolve?”. In fact, the more detailed first
question is a biased version of the second using the course and evaluation season
perspectives. Therefore, perspectives are additional analysis extensions one can
perform on a goal. Perspectives are not explicitly handled in the DTA.

In the current work, we handle perspectives as goal refinements. To do so, the
enhanced DTA adds the goal-extender notation element, representing a specific
perspective analysis for a goal. Figure 1 depicts the use of a goal-extender,
labelled as (E). Through that association it is stated the high value of optionally
analysing students’ grades based on course information, particularly its id
(marker course id) and name (marker course name).

Markers linked to goal-extenders represent the same as when attached to
grain-goals: required data. The difference resides in the mandatory profiles of
the relations: (i) all of a grain-goal’s markers have to be mapped for it to be a
satisfied grain-goal and therefore used by the generation algorithm (section 4.1);
(ii) only one of a goal-extender’s markers requires mapping for the corresponding
perspective to be considered by the algorithm.

3.6 Enhanced DTA’s Broadening Scope

Figure 2 intends to demonstrate the broadening scope of the enhanced DTA
by using a scenario (retail sales, [1]), much different from this paper’s primary
SAD-IES case study. Using the same notation elements to model MDD
concepts in such disparate scenarios shows the flexibility and straightforwardness
of the approach. Numerous other examples could be used to illustrate the
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broadening applicability of the enhanced DTA: it was considered as an exercise
of redundancy. From Figure 2 the following aspects are relevant:

– Grain levels sale and line-of-sale are available (in increasing order of detail);
– Sold products can be components of other products [1] (C);
– A selling product can be under several promotions simultaneously (B).

4 Improving the DTA Generation Algorithm

The current section details the rebuilt algorithm’s step 5, responsible for
delivering MDDs. It necessarily incorporates the enhancements discussed on the
previous section.

4.1 The Generation Algorithm Basics

The DTA algorithm consists of five steps, each triggered by the successful ending
of its previous. Succinctly, these are as follows ((Dn) represent DTA’s original
definitions, helpful for referencing):

Step 1. From the available goals in a template, its user chooses those which
adapt to the particular DW scenario (D1: chosen goal). From these, the
corresponding list of markers can be retrieved (D2: mappable marker).

Step 2. Mappable markers (D2) are mapped to real data (either manually or
in an automated fashion, depending on source’s metadata), now becoming
mapped markers (D3: mapped marker);

Step 3. Each grain-goal related to a chosen goal (D1) having all of its markers
mapped (D3) will become satisfied (D5: satisfied grain-goal);

Step 4. Once all satisfied grain-goals (D5) are found, the corresponding
rationale AND/OR decomposition-trees are read to deliver satisfied goals
(D6: satisfied goal) from the set of chosen goals (D1).

Step 5. MDDs are generated considering only the set of satisfied goals (D6)
and their related mapped markers (D3).

4.2 Further on Satisfied Grain-Goals: Step 3

It was found that a further categorisation of satisfied grain-goals (D5) was
sufficient to identify coverage facts from rationale diagrams without requiring
additional notation elements (as discussed in section 3.4). This categorisation
divides grain-goals into status grain-goals (D5.1: status grain-goal) and basic
grain-goals (D5.2: basic grain-goal).

Status grain-goals are the subset of satisfied grain-goals which contain no
what dimensional context (exemplified in Figure 1 by the grain-goal “Registered
students in scholar year”, labelled as (D)). The absence of the what dimensional
context in a grain-goal indicates that a coverage fact is present. Basic grain-goals
are the ones in the remaining subset of satisfied grain-goals (D6). This extra
division is of high value in the generation process since status grain-goals allow
the generation of coverage fact tables (Table 1).



34 R. Oliveira et al.

Table 1. Comparing the DTA and the enhanced DTA (e-DTA) MDD abilities

MDD achievement DTA e-DTA How achieved

Dimension (with basic attributes) x x DTA original work

Fact table x x DTA original work

Coverage fact x Status grain-goals (label D)

Bridge table x N:M element (labels B,C)

Fixed time dimension x DTA original work

Adjusted time dimension x (t)-tagging (label A)

Adjusted dimension’s attributes x Goal-extender element (label E)

Fig. 3. Generated MDD considering that all goals of Figure 1 are satisfied. The labels
of Figure 1 are reused to relate the rationale diagram with the corresponding results.

4.3 The Generation Algorithm: Step 5

Figures 4 and 5 present the restructured generation algorithm (optimised for
reading simplicity) with reasonably high detail. Like in the DTA, for each distinct
reasonable grain referred in the satisfied goals (D6), a corresponding algorithm
execution is required (D7: algorithm iteration).

Figure 3 depicts the generated MDD considering that all of the goals of Figure
1 are satisfied at the UnitSeasonEval detail level (like in the SAD-IES project).
Labels (A), (C), (D) and (E) match the labels in Figure 1. Table 1 resumes the
relation between the proposed enhancements and new MDD achievements with
the ones in original DTA.
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Fig. 4. Pseudocode for the algorithm’s MDD generation step (part 1)
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Fig. 5. Pseudocode for the algorithm’s MDD generation step (part 2)
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5 Conclusions

This paper presents an extension to the DTA work [12]. In it, dimensional
templates were proposed for semi-automating the MDD stage of DW prototypes.
Despite its advantages, the original DTA allows solely the generation of basic
MDDs. The here proposed enhancements enable the creation of more complex
MDDs by dealing with date/time hierarchies, many-to-many relationships, HSD,
coverage facts and perspective analysis. To achieve that purpose, notation
elements were introduced and the step 5 of the generation algorithm was rebuilt,
now particularly objective and detailed in contrast with the original one.

The enhanced DTA has been applied to a real world case study, the SAD-IES
project. Throughout this paper several references are made to it to better
contextualise the proposed improvements. The prototype tool referred in the
original DTA paper was updated accordingly to the here proposed enhancements,
both in terms of rationale diagrams’ design support as well as algorithm’s
execution. Figures 1 and 3 were generated using that same prototype tool.

Regarding future work, additional improvements to the approach are being
considered towards the relevant deliverance of mini-dimensions. Also, optimising
the rationale diagrams design notation is possible and advisable to reduce
particular redundancy occurrences.
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5. Romero, O., Abelló, A.: Automating Multidimensional Design from Ontologies.
In: ACM 10th Intern. Workshop on Data Warehousing and OLAP, pp. 1–8. ACM,
New York (2007)

6. Phipps, C., Davis, K.C.: Automating Data Warehouse Conceptual Schema Design
and Evaluation. In: 4th International Workshop on Design and Management of
Data Warehouses, DMDW 2002, pp. 23–32. CEUR (2002)

7. Winter, R., Strauch, B.: A Method for Demand-Driven Information Requirements
Analysis in Data Warehousing Projects. In: 36th Hawaii International Conference
on System Sciences, HICSS 2003, pp. 1359–1365. IEEE Computer Society, Los
Alamitos (2002)

8. Prat, N., Akoka, J., Comyn-Wattiau, I.: A UML-based Data Warehouse Design
Method. Journal of Decision Support Systems 42(3), 1449–1473 (2006)

9. Vrdoljak, B., Banek, M., Rizzi, S.: Designing Web Warehouses from XML Schemas.
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Abstract. In recent years, there has been a large increase in the amount
of spatial data obtained from remote sensing, GPS receivers, communi-
cation terminals and other domains. Data warehouses help in modeling
and mining large amounts of data from heterogeneous sources over an
extended period of time. However incorporating spatial data into data
warehouses leads to several challenges in data modeling, management
and the mining of spatial information. New multidimensional data types
for spatial application objects require new OLAP formulations to sup-
port query and analysis operations on them. In this paper, we introduce
a set of constructs called C3 for defining data cubes. These include cat-
egorization, containment and cubing operations, which present a funda-
mentally new, user-centric strategy for the conceptual modeling of data
cubes. We also present a novel region-hierarchy concept that builds spa-
tially ordered sets of polygon objects and employs them as first class
citizens in the data cube. Further, new OLAP constructs to help define,
manipulate, query and analyze spatial data have also been presented.
Overall, the aim of this paper is to leverage support for spatial data in
OLAP cubes and pave the way for the development of a user-centric
SOLAP system.

Keywords: spatial data cube, user-centric OLAP, region hierarchy.

1 Introduction

Data warehouses and OLAP systems help to analyze complex multidimensional
data and provide decision support. With the availability of large amounts of
spatial data in recent years, several new models have been proposed to enable
the integration of spatial data in data warehouses and to help analyze such data.
This is often achieved by a combination of GIS and spatial analysis tools with
OLAP and database systems, with the primary goal of supporting spatial anal-
ysis dimensions, spatial measures and spatial aggregation operations. However,
this poses several new challenges related to spatial data modeling in a multidi-
mensional context, such as the need for new spatial aggregation operations and
ensuring consistent and valid results. Moreover, existing commercial geographic
data management systems force database designers to use logical data structures
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heavily influenced by implementation concerns. This paper takes an unique ap-
proach to alter this implementation dependent view for modeling OLAP sys-
tems, by using a lattice theoretic approach based on the (hyper)cube metaphor
to model multidimensional data. We present a user-centric conceptual modeling
strategy that incorporates spatial data as first class citizens in data hierarchies.
The modeling and querying of complex hierarchical structured multidimensional
data in a large scale presents interesting challenges through the entire spectrum
of spatial data warehouse development from designing conceptual data models
accommodating complex aggregations on hierarchical, multidimensional spatial
data, to developing the logical schema and finally, storage and the physical im-
plementation. In this paper, we focus on the conceptual data model design that
would allow the user to easily yet effectively create spatial data cubes, and navi-
gate and analyze them. The model we present here is an extension of the BigCube
approach [1] that presents a strict type structured hierarchy of classes to model
the hierarchical data dimensions in data cubes. We start by introducing a new
region-hierarchy or regH representation for complex structured region objects
into a partially ordered lattice structure. Then, we introduce the C3 constructs,
which stand for the three primary constructs required for data-cube creation and
maintenance, namely, Categorization, Containment and Cubing or Combination.
Categorization helps to organize base data values into meaningful categories,
containment helps to assign a hierarchy of ordering over the categories, and fi-
nally cubing forms an association between categories of different hierarchies in
order to signify a new subject of analysis (measure value). Further, we also in-
troduce new OLAP formulations to support the spatial data in cubes, such as
the geo construct operator which allows the creation of new spatial regions from
complex region hierarchies to facilitate analysis.

The rest of this paper is organized as follows. Section 2 reviews existing work
in spatial data warehousing and provides a case study in the form of a Product
Sales data cube that is used in the rest of the paper. Section 3 presents the regH
concept, which is a region-hierarchy specification to help incorporate complex
structured spatial objects in data warehouses for performing analysis. Section 4
presents the C3 constructs for spatial data cube definition and construction.
Section 5 presents new OLAP formulations such as geo construct, slice and
dice, and discusses spatial topological relations among complex regions using
the poset structures. Finally, Section 6 concludes the paper and mentions topics
for further research.

2 Related Work

Spatial data warehousing (SDW) has become a topic of growing interest in recent
years. This is primarily due to the explosion in the amount of spatial information
available from various sources such as GPS receivers, communication media,
online social networks and other geo-spatial applications. Consequently several
spatial OLAP tools are now available to help model and analyze such data.
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An early approach to spatial online analytical processing (SOLAP) is [2],
which mentions essential SOLAP features classified into three areas of require-
ments. The first is to enable data visualization via cartographic (maps) and
non-cartographic displays (e.g., 2D tables), numeric data representation and the
visualization of context data. Second, data exploration requires multidimensional
navigation on both cartographic and non-cartographic displays, filtering on data
dimensions (members) and support for calculated measures. The third area dis-
cussed involves the structure of the data, for example, the support for spatial and
mixed data dimensions, support for storage of geometric data over an extended
time period, etc. The conceptual design models for spatial data warehouses are
extensions of ER and UML diagrams or ad-hoc design approaches. Among exten-
sions of ER models, [3] presents a clear integration of spatial data for OLAP by
extending the MultiDimER and MADS approaches. Among other ad-hoc design
approaches, [4] presents a formal framework to integrate spatial and multidimen-
sional databases by using a full containment relationship between the hierarchy
levels. In [5], the formal model from [6] is extended to support spatially over-
lapping hierarchies by exploiting the partial containment relations among data
levels, thus leading to a more flexible modeling strategy. For a comprehensive
review of spatial data warehouse design models the reader is referred to [7,8].

For modeling spatial data there are now several established approaches in the
database community. [9,10] provide a robust discussion of spatial data types by
introducing types such as point, line and region for simple and complex spatial
objects and describe the associated spatial algebra. Composite spatial objects
(collections of points, lines and regions) are presented as spatial partitions or map
objects. Similarly, the Open GIS Consortium also provides a Reference Model
[11] as a standard for a representing geo-spatial information. Qualitative spa-
tial operations include topological relations [12] such as disjoint, meet, overlap,
equal, inside, contains, covers and coveredBy, and cardinal direction relations.
Quantitative relations on spatial objects include metric operations based on the
size, shape and metric distances between objects or their components. All these
operations can be used to query and analyze spatial data in the data warehouse.

3 Modeling Data Cubes with Complex Spatial Data

In this section, we describe a new approach to design and model cubes for com-
plex, hierarchical, multi-structured data. Spatial data such as points, lines and
polygons or regions often display such semantics. Consider for example, Figure 1
that illustrates a complex region object which consists of three regions with one
of them inside the hole of another. The figure also displays a single face of a re-
gion object (which can also be regarded as a simple region) with multiple holes.
To facilitate the handling of such complex data in multidimensional data cubes,
we introduce the regH or region-hierarchy concept that aims to provide a clear
hierarchical representation of a complex region that can be incorporated as first
class citizens into spatial data cubes.
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exterior

interior

boundary

(a) (b

Fig. 1. Illustration of (a) a complex region object with three faces and its interior,
boundary and exterior point sets, and (b) a single face, also denoted as a simple region
with holes

The first step to accommodate complex spatial data in OLAP cubes is to
explore and extract the common properties of all structured objects. Unsurpris-
ingly, the hierarchy of a structured object can always be represented as a directed
acyclic graph (DAG) or more strictly, as a tree.

Figure 2a provides a more detailed visualization of a complex region object
with three faces labeled as F1, F2 and F3. The interior, exterior and boundary
point sets of the region are also displayed. After performing a plain-sweep op-
eration the cyclic order of the region’s boundary is stored to represent a each
face uniquely. Figure 2b shows such as tree structure of a region object. In the
figure, face[ ], holeCycle[ ], and segment [ ] represent a list of faces, a list of hole
cycles and a list of segments respectively. In the tree representation, the root
node represents the structured object itself, and each child node represents a
component named sub-object. A sub-object can further have a structure, which
is represented in a sub-tree rooted with that sub-object node. For example, the
region object in Figure 2a consists of a label component and a list of face com-
ponents. Each face in the face list is also a structured object that contains a face
label, an outer cycle, and a list of hole cycles, where both the outer cycle and
the hole cycles are formed by segments lists.

Further, we observe that two types of sub-objects can be distinguished called
structured objects (SO) and base objects (BO) [13]. Structured objects consist of
sub-objects, and base objects are the smallest units that have no further inner
structure. In a tree representation, each leaf node is a base object while inter-
nal nodes represent structured objects. A tree representation is a useful tool
to describe hierarchical information at a conceptual level. However, to give a
more precise description and to make it understandable to computers, a for-
mal specification would be more appropriate. Therefore, we propose a generic
region-hierarchy as an alternative of the tree representation for describing the
hierarchical structure of region (or multi-polygon) objects. Thus, we can define
the structure of a region object from Figure 2b with the following structure
expression: 〈region : SO〉 := 〈regionLabel : BO〉〈face : SO〉[ ]. In the expres-
sion, the left side of := gives the tag declaration of a region object and the
right side of := gives the tag declarations of its components, in this case, the
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Fig. 2. Illustration of a complex structured region showing faces F1 (containing cycles
C1 and C2), F2 (cycle C3) and F3 (cycle C4), and a hierarchical representation for the
region (or multi-polygon) object

region label and the face list. Thus, we say the region object is defined by this
structure expression. Using this representation, we can now recursively define
the structure of structured sub-objects until no structured sub-objects are left
undefined. A algebraic list of structure expressions then forms a specification.
We call such a region specification that consists of structure expressions and is
organized following some rules a region-hierarchy or regH.

It can be observed that the conversion from a tree representation to the regH
is simple. The root node in a tree maps to the first structure expression in
the region-hierarchy. Since all internal nodes are structured sub-objects and leaf
nodes are base sub-objects, each internal node has exactly one corresponding
expression in the regH, and leaf nodes require no structure expressions. The
regH for a region object corresponding to the tree structure as in Figure 2a is
thus defined as follows:

〈region : SO〉 := 〈regionLabel : BO〉〈face : SO〉[ ];
〈face : SO〉 := 〈faceLabel : BO〉〈outerCycle : SO〉〈holeCycle : SO〉[ ];
〈outerCycle : SO〉 := 〈segment : BO〉[ ];
〈holeCycle : SO〉 := 〈segment : BO〉[ ];

The region-hierarchy provides a unique representation for complex multi-
structured regions. This can be incorporated into data hierarchies in OLAP
cubes by using the extract and union operators specified in section 5.

4 Data Model and C3 Constructs

In this section, we present our data model for multidimensional data cubes sup-
porting complex hierarchical spatial objects. These are extensions to the BigCube
approach [1], which is a conceptual metamodel for OLAP data defined over
several levels of multidimensional data types.

To support complex objects in data warehouses we need new constructs that
can handle data with complicated structures. However to keep the data ware-
house modeling user-friendly, the approach taken for conceptual modeling and
for applying aggregations must be simple. The C3 constructs presented here
satisfy both these requirements by providing the analyst with three simple and
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logical operations to construct data cubes, namely categorization, containment
and cubing. Later by using classical OLAP operations such as slice, dice, rollup,
drilldown and pivot, users can navigate and query the data cubes.

Categorization helps to create groupings of base data values based on their
logical and physical relationships. Containment helps to organize the data cate-
gories into levels and place them in atleast a partial ordering in order to construct
hierarchies. Cubing or Combination takes different categories of data from the
various hierarchies an helps to create a data cube from them by specifying mean-
ingful semantics. This is done by associating a set of members defining the cube
to a set of measures placed inside the cube. Further, each of the C3 constructs
have a set of analysis functions associated with them, called the A-set . An A-set
can include aggregation functions, query functions such as selections, and user-
defined functions (UDFs). Since aggregations are fundamental to OLAP cubes,
we first introduce the definition of an A-set in Definition 1.

Definition 1. Analysis set or A-set . An analysis set or A-set is a set of
functions defined on the components of a data cube that are available for aggre-
gation, querying and other user-defined operations. An A-set has the following
algebraic structure:

A =< {a1, ..., an}, {q1, ..., qn}, {u1, ..., un} >

where, ai represents the ith aggregation function available, qi the ith query
function available and ui the ith user-defined function (UDF) available in that
particular cube component.

The A-set is available as part of every category, hierarchy, perspective (data
dimension) and subject of analysis (fact) in the data cube. The operations on the
constituent elements of these cube components are specified by its corresponding
A-set .

Next, to facilitate the development of the C3 constructs and additional OLAP
formulations, we present some necessary terminology and definitions based on
lattice theory [14] and OLAP formalisms [15,1].

Definition 2. Poset and its Top and Bottom Elements. A partially or-
dered set or poset P is a set with an associated binary relation � that for any x,
y and z, satisfies the following conditions:

Reflexivity : x ≤ x
Transitivity : ∀x ≤ y and y ≤ z ⇒ x ≤ z
Anti-Symmetry : ∀x ≤ y and y ≤ x⇒ x = y

For any S ⊆ P, m ∈ P is a maximum or greatest element of S if ∀x ∈ S : (m ≥ x),
and is represented as maxP. The minimum or least element of P is defined dually
and represented as minP. A poset (P,�) is a totally or linearly ordered set (also
called chain) if ∀x, y ∈ P ⇒ x ≤ yory ≤ x With an induced order, any subset
of a chain is also a chain.
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Fig. 3. Product-Sales BigCube (a) structure shows three perspectives: Time, Product
and Location that define two subjects of interest: Sales-Quantity and Sales-Profit, and
a (b) sample instance

The greatest element of P is called the top element of P and is represented
as �, and its dual, the least element of P is called the bottom element of P and
represented as ⊥.

A non-empty finite set P always has a � element (by Zorn’s Lemma). OLAP
cubes often contain sparse data. To ensure that a bottom element exists and to
make the OLAP operations generically applicable to all multidimensional cube
elements, we perform a lifting procedure where given a poset P (with or without
⊥), take an element 0 /∈ P and define � on P⊥ = P ∪ {0} as: x ≤ y iff x = 0 or
x ≤ y in P.

Definition 3. Lattice. Let P be a poset and let S ⊆ P. An element u ∈ P called
an upper bound of S if ∀s ∈ S : (s ≤ u). Dually, an element l in P is called the
lower bound of S if ∀s ∈ S : (s ≥ l). The set of all upper bounds and lower
bounds is represented as Su and Sl respectively.

Su = {u ∈ P | (∀s ∈ S) : s ≤ u}
Sl = {l ∈ P | (∀s ∈ S) : s ≥ l}

An element x is called the supremum or the least upper bound of S if: x ∈ Su

and ∀x, y ∈ Su : x ≤ y. This is represented as supS or ∨S. The infimum or the
greatest lower bound of S is defined dually and represented as infS or ∧S. A
non-empty ordered set P is called a lattice if ∀x, y ∈ P : x ∨ y and x ∧ y.

Example: Consider the classical product-sales multidimensional dataset as shown
in Figure 3a. The data cube has product, location and time perspectives (or
data dimensions), and sales quantity and profit, for example, as the subjects
of analysis (or facts). There are several hierarchies on location perspective such
as {city,county,zone,country} and {city,state,country}. An instance of the data
cube is shown in Figure 3b.
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The basic data that needs to be stored (and later analyzed) in the data
warehouse are values such as 1500 (of type int) for the profit in USD and
“Gainesville” (of type string) for the City name. These are called the base data
values of the dataset. The base data type for each value is indicated within paren-
thesis. According to their functionality, base data values can be either members
when used for analysis along data dimensions, or measures when used to quan-
tify factual data. Now we introduce the C3 constructs and supporting OLAP
formulations.

Real-world data always has some form of symmetric and asymmetric nature
associated with its base data values. For e.g., all persons working in a University
can be employees (symmetric relationship). Employees could be students, faculty
or administrators (asymmetric relationship).

Definition 4. The first C in C3: Categorization. A categorization construct
defines groupings of base data values based on the similarity of data as: 〈C,Ac〉
where C is a category (collection of base values) and A is a set of analysis
functions that can be applied on the elements of C. The base data values can be
members or measures of the data warehouse.

The exact semantics of categorization relationships are defined in one of three
ways: arbitrary (for e.g., split 100 base values into 10 categories equally accord-
ing to some criteria), user-defined (for e.g., Gainesville, Chapel Hill and Madi-
son can be categorized as College Towns), or according to real-world behavior
(such as spatial grouping, for e.g., New Delhi, Berlin and Miami can be catego-
rized as Cities). Examples of A-set functions on such categories include string
concatenation, grouping (nesting) and the multiset constructor.

Example: In our case study, two examples of categories are City={(“Gainesville”,
“Orlando”, “Miami”)} and Profit={ (“1500, “10000, “45000”)} for the profit in
USD. These are of types string and int respectively.

Definition 5. Category, Category Type and CATEGORY. A category
of elements c ∈ S, S ⊆ BASE, is a grouping of base data values such that a
valid categorization relationship exists among the set of elements. A category
type, provides the multiset data types for each category. The set of all available
category types is defined as a kind CATEGORY.

Categories help us to construct higher levels of BigCube types, namely hierar-
chy, perspective and subject. Hierarchies are constructed using the containment
construct over the categories, and perspectives are defined as a combination of
hierarchies.

Definition 6. The second C in C3: Containment. The Containment con-
struct helps to define hierarchies in the data. These data hierarchies are modeled
as partially ordered sets (or posets) to use an extensible paradigm that supports
different kinds of ragged and unbalanced hierarchies. The containment construct
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takes one or more data categories and builds a new partial ordering (data hierar-
chy) from it. These data hierarchies are part of the generalized lattice structure
that is established by the partial ordering of the constituent categories.

The containment construct is defined as a set inclusion from one level to
another as < P, Q,�,A >, where P and Q represent the categories of data on
which � holds. The containment construct is analogous to a single path between
two levels in a poset. The set of analysis functions that are applicable on a
particular containment are available in A. These functions can be applied which
moving from the elements of one category to another. This helps to uniquely
define operations on specific hierarchical paths in the perspectives of the cube.

The semantics of the containment construct is defined by: (i) any arbitrary con-
tainment, for e.g., fifteen base data values can be ordered into a four- level hier-
archy using the structure of a balanced binary tree, (ii) user-defined containment
: for e.g., products can be ordered into a hierarchy based on their selling price,
(iii) according to real-world behavior: these reflect the fact that a higher level
element is a context of the elements of the lower level, it offers constraint to the
lower level values, it evolves at a lower frequency than the lower level elements,
or that it contains the lower level elements. To define the multidimensional cube
space we now need to third C in C3 which is the cubing or combination con-
struct. Before arriving at this, we first need to define the direct product of two
lattices.

Definition 7. Direct Product. The direct product P ×Q of two posets P and
Q is the set of all pairs (x, y), x ∈ P and yinQ such that (x1, y1) ≤ (x2, y2), iff
x1 ≤ x2 in P and y1 ≤ y2 in Q.

The direct product generates new ordered sets from existing posets. The direct
product L1 × L2 of two lattices L1 and L2 is a lattice with � := (x1, y1) ∧
(x2, y2) = (x1 ∧x2, y1∧y2) and ⊥ := (x1, y1)∨ (x2, y2) = (x1 ∨x2, y1∨y2) for all
x1, y1 ∈ L1, x2, y2 ∈ L2 and (x1, y1), (x2, y2) ∈ L1×L2. The use of direct product
enables the creation of perspectives and subjects of analysis from a combination
of member and measure value lattices.

Definition 8. The third C in C3: Cubing or Combination. The Combi-
nation construct helps to map two semantically unique categories of data val-
ues by a set of analysis functions. Given two ordered sets of categories P and
Q, we define a order-preserving (monotone) mapping ϕ : P → Q such that
ifx ≤ y in P ⇒ ϕ(x) ≤ ϕ(y) in Q. Now, the combination construct is defined
as 〈P, Q, ϕ,A〉, where A is the set of analysis functions that can be applied on
the combination relationship.

A collection of lattices are together taken as perspectives combine to determine
the cells of the BigCube, each containing one or more subjects of analysis. Se-
mantically, subjects of analysis are thus unique, in that they are functionally
determined by a set of perspectives, however, they are structurally similar to
perspectives in being a collection of lattices.
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Definition 9. BigCube. Given a multidimensional dataset, the BigCube cell
structure is defined as an injective function from the n-dimensional space defined
by the Cartesian product of n functionally independent perspectives P (identi-
fied by its members) to a set of r subjects (identified by its measures) S and
quantifying the data for analysis as:

fB : (P1 ⊗ P2 ⊗ . . .⊗ Pn) −→ Si

where i ∈ {1, . . . r} ∧ (Si, P ) ∈ BASE

The complete BigCube structure is now defined as a union of all its cells, given
as:

BigCube (B) =
⋃

i∈{1,...r}, fB

Si

5 Spatial OLAP Formulations with the C3 Constructs

In this section, we present OLAP formulations that help to apply analysis oper-
ations on data cubes with complex spatial data by using the C3 constructs on
the BigCube model.

First, we analyze how data cubes can be easily designed and modeled using the
C3 constructs as follows. The basic, low-level data types are available in the kind
BASE. These include alphanumeric, time and geo-spatial data types. Elements
of these types are the base data values which are first organized into Categories
by using the categorization construct. This means that for e.g., “GNV”, “LA”,
“MN” can be a category of cities. Analysis functions can be associated to the
domain of the categories. For e.g., we can define a union function that takes
the elements of cities and performs a union operation to yield a new polygon
(country). The geo construct operation allows to extract any face of the com-
plex region from the regH and construct a new region from it, for example, a
city (Gainesville) from the country (USA). This is done using three topological
operations interior, boundary and closure that remove possible anomalies such
as dangling points or lines in the structure of the region. The interior A◦ of a
region A is given by the set of points contained inside the region object. The
boundary ∂A gives the set of points covering the object. Thus, A◦ ∪ ∂A gives
the closure A of A and this is used to construct the regH for the new spatial
object from the base segment lists.

The next step is to use the containment construct to define the hierarchical
nature of the elements within the categories. This allows for the creation of
explicit hierarchical paths between categories and the specification of analysis
operations on each of them on uniquely or as a whole. An e.g., of analysis being
using the containment construct is the often-used SUM aggregation operator on
Sales quantity defined from City to State level.

The final step is the creation of interacting lattice galaxies which is achieved by
using the combination construct. The combination construct maps the categories
in different hierarchies to others in the galaxy to create the data cube schema
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(cells). Elements of the data cube (objects within the cells) are identified by
their defining cube perspectives.

We now provide examples of OLAP formulations that can applied on the
BigCube types and their instances thus defined.

Consider a BigCube Bwith n perspectives and i subjects of analysis. Let
m1, . . . , mn be members from each of the n perspectives defining the set of mea-
sures b1, . . . , bi. Then, the restrict operator returns the cell value by following
the cubing from upto n perspectives of the BigCube as 〈〈m1, . . . , mn〉, b1, . . . , bi〉.
For example, the sales quantity of iphones in Gainesville region in March 2011
is given by 〈〈“iPhone”, “Gainesville”, “March2011”〉, 50〉. The slice operation
removes one perspective and returns the resulting BigCube and dice performs
slice across two or more perspectives. The resulting cells have the structure
〈〈m1, . . . , mk〉, b1, . . . , bi,A〉, where 1 ≤ k ≤ n and A provides the set of aggre-
gation functions applicable on the measures of this subcube. These operations
change the state of the BigCube, because any change in perspectives redefines
the cells (measures) in it. Pivot rotates the perspectives for analysis across axes
and returns a BigCube with a different ordering of subjects. Roll-up performs
specialization transformation over one or more constituent hierarchical levels,
and drill-down applies the generalization transformation over one or more hi-
erarchical levels. Given members m1j, . . . , mkj, 1 ≤ j ≤ n denoting k levels of
ordering in each of the n perspectives, roll-up and drill-down operations yield a
different aggregated state of the cube, as, 〈〈m1j, . . . , mkj〉, s1, . . . , si,Ai〉, where
si = fi(b1, . . . , bi), f ∈ A. Drill-through obtains the base data values with highest
granularity. Drill-across combines several BigCubes in order to obtain aggregated
data across the common perspectives.

For spatial measures, spatial relationships can be given directly by checking
with the C3 constructs and ordering in the poset. For example, to check for
containment of a region X in region Y, we check the containment construct on X
and Y. If 〈X, Y,�, A〉 exists with X � Y , then X is contained in Y. Similarly, the
largest area contained contained in one or more given areas Xi is given by ⊥X .
Dually, the smallest area containing one or more given areas Yj is given by �Y .
In this manner, lattice ordering along with the categorization, containment and
cubing constructs provide a minimal set of formulations to create, manipulate
and query spatial data cubes in a user-friendly manner.

6 Conclusions and Future Work

In this paper, we present a novel modeling strategy to incorporate support for
complex spatial data in OLAP data cubes. First, we introduce a region-hierarchy
that helps to represent a complex region object (with several faces and multi-
ple holes) in a uniquely distinguishable manner. Then we present three new
constructs called C3, involving categorization, containment and cubing or com-
bination that together help to easily build data cubes in a multidimensional
environment. This provides a framework consisting of a user-friendly conceptual
cube model that abstracts over logical design details such as star or snowflake
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schema and other implementation details. Later, new OLAP formulations are
specified for manipulating spatial data hierarchies (geo construct), and for query-
ing. Overall, this region-hierarchy provides a unique approach to include spatial
regions as first class citizens of data hierarchies in multidimensional data cubes.
In the future, we plan to provide the complete set of OLAP operations for ma-
nipulating and querying spatial data cubes, and to provide translations from
the hypercube to logical design (relational and multidimensional) to facilitate
implementation of the SOLAP system.
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Abstract. Despite a decade of research in OLAP systems, very few works  
attempt to tackle the problem of analysing data extracted from XML text-rich 
documents. These documents are loosely structured XML documents mainly 
composed of text. This paper details conceptual design steps of multidimen-
sional databases from such documents. With the use of an adapted multidimen-
sional conceptual model, the design process allows the integration of data  
extracted from text-rich XML documents within an adapted OLAP system. 

1   Introduction 

OLAP (On-Line Analytical Processing) systems allow decision-makers to improve 
their management by consulting and analysing aggregated historical data with the use 
of multidimensional databases [15]. These systems are based on a well-mastered 
technique of numeric-centric data warehouses [30]. However, recent studies show that 
only 20% of corporate information system data is compatible with this numeric-
centric approach [32]. The remaining 80%, namely “digital paperwork,” mainly com-
posed of text, stays out of reach of OLAP due to the lack of tools and adapted  
processing. Nowadays, analysts require integrating these data along with numerical  
business data. 

This type of data does not have much structure. Recently, XML1 technology has 
increased the availability of documents (notably textual documents) within corporate 
networks and provides a framework to structure textual data. However, despite nu-
merous research works on numerical XML data integration [26], current OLAP  
systems do not cope with this data type. Due to the increasing amount of XML docu-
ments, integrating them into OLAP systems a new exciting challenge. In order to cope 
with textual data type, new design processes have to be developed. 

1.1   Related Works: Design Processes 

To our knowledge, design processes have only been specified for decisional informa-
tion systems based on numerical data and not on textual data. These systems use  

                                                           
1 XML, Extended Markup Language, from http://www.w3.org/XML/ 
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conceptual models to represent the multidimensional data. These conceptual multidi-
mensional models describe schemas that represent analysis subjects as Facts (e.g. sale 
quantities) and analysis axes as Dimensions (e.g. where the sales were done). Three 
types of design processes have been considered. 

Bottom-up approaches, are data-driven, i.e. multidimensional schemas are built 
from the analysis the available data sources [4,10,14,18,29]. Data sources are taken 
into account while analysis requirements are ignored. Notably in [4,10], the authors 
build a multidimensional schema from the E/R schemas of the data sources. This ap-
proach takes advantage of the data sources’ semantics but, as the data source domain 
may be broad, this may require a great deal of resources and time. 

Top-down approaches are requirement-driven, i.e. multidimensional schemas are 
derived from user requirements analysis [8,12,15,23,35]. For example, in [15] a gen-
eral methodology is presented whereas in [23], the authors present a design process 
resting on UML notations. In these approaches, data sources are not taken into  
account, thus it is possible to design inconsistent schemas, due to unavailable data. 

Finally mixed approaches combine the advantages of both previous processes 
[3,5,6,16,21,27]. User-requirements are translated into one (possibly more) “ideal” 
multidimensional schema and the analysis of data sources produces “candidate” mul-
tidimensional schemas. A confrontation phase ensures compatibility between the  
different schemas and allows designers to come up with a final schema. 

However, all these processes have been conceived for models that rely on numeri-
cal analysis data. Moreover, identifying analysis indicators is hard in the context of 
textual documents. Despite several works on XML data integration [7,26] and numer-
ous research on information extraction (see surveys such as [28,19]), these do not 
solve issues linked to identifying indicators. Thus, there is a need for: 

− adapted multidimensional models running analyses on textual data extracted from 
XML documents; 

− a design process taking into account user requirements as well as data sources. 

Our objective is to offer a complete design process, taking into account textual  
content of XML documents in order to implement OLAP multidimensional databases. 

1.2   Objectives and Contributions 

Two types of XML documents exist [20]: data-centric documents are highly struc-
tured (e.g. the list of orders of an online sales Web service) and the order of the XML 
elements is not important (e.g. whether the sales order 1 is before or after the number 
2 has no consequence); document-centric documents are more loosely structured and 
contain more text (e.g. press or scientific articles) and the order of the elements is 
very important (e.g. whether the first paragraph of the document is after or before the 
second paragraph has consequences). Using document-centric XML documents  
(particularly text-rich ones) in OLAP environments requires a specific model [24]  
that has no pre-defined analysis subjects (facts) as well as an adapted integration 
process [25]. 
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The major objective of this paper is to detail the major steps of our design process 
[25] to build OLAP systems from document-centric XML documents. More specifi-
cally, the paper focuses on the mixed design process taking into account the user  
requirements as well as the available data sources. 

The rest of this paper is organised as follows: section 2 presents the whole design 
process; section 3 is centred on the analysis of the user requirements in order to gen-
erate the multidimensional conceptual schema; section 4 deals with the confrontation 
phase between the obtained conceptual schema and the data sources; finally, section 5 
details the implementation steps. 

2   Overview of the Design Process 

The design process is based on an interactive and incremental process in order to take 
into account user-requirements evolution and data sources’ modifications. Each itera-
tion is based on a mixed approach: first user-requirements are translated into a multi-
dimensional database schema; second, the data sources are analysed in order to be  
integrated within the multidimensional database according to a bottom-up approach. 

The design process starts by a concurrent analysis of the user requirements ex-
pressed through a conceptual schema (see stage 1 in Fig. 1) and the data sources, i.e. 
XML text-rich documents (see stage 2). A confrontation stage follows, ensuring com-
patibility between the data sources and the future multidimensional database–
described by the conceptual schema (stage 3). A synonym dictionary is used in order 
to ease the process. Incompatibilities may then arise. They represent the missing or 
incompatible data in the sources to allow loading the multidimensional database. In 
case of incompatibility, either user requirements are revised (stage 4a) or data sources 
are enriched (stage 4b). This process is iterated until no more incompatibilities arise. 
Then, the structures of the multidimensional database are created (stage 5a) and 
loaded with data extracted from the data sources (stage 5b). 

The different stages of our design process have been identified in [25]. In this pa-
per, compared to our previous publication [25], we describe formally two of these 
stages: the formal specification of the conceptual multidimensional schema from 
user/analysis requirements (1) and its semi-automatic validation during the con-
frontation phase (3). A word is given on final implementation stages (5a,5b). We 
mainly focused our attention on stages 1 and 3 for two main reasons: 1) the fact that 
not only numerical data but also textual data may be used as analysis indicators re-
quires new means for specifying user-requirements. And 2) XML data structures re-
quire an adapted confrontation process. Note that due to lack of space, the source 
analysis (2) will not be detailed. 

The synonym dictionary is built from stages 1 and 2 of the design process. Its goal 
is to associate a system identifier (id) to each entry of the dictionary (either a lone 
term or a set of synonym terms). This id is used by the system during the automatic 
stages. The dictionary content is filled with element names used in the user-
requirement analysis, in the multidimensional schema and by extracting available 
element names in the XML document sources. Associated user entries help in solving 
conflicts, e.g. by differentiating synonyms from homonyms. 
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Fig. 1. General overview of the design process composed of 5 different stages 

3   From User Requirement analysis to a Multidimensional Schema 

The analysis of user-requirements allows the specification of a multidimensional da-
tabase with a conceptual schema that models the available structures for specifying 
analyses (stage 1 in Fig. 1). Two steps compose this process: collecting user-
requirements and specifying the conceptual schema from these requirements. 

3.1   Collecting Requirements and Building a Requirement Matrix 

The objective of this step is to obtain the list of the attributes used for analyses and to 
generate a conceptual multidimensional schema of the multidimensional database. 
This phase is divided into: 1) collect user-requirements; 2) translate requirements into 
typical analytical queries; 3) build the attribute list and, from that list, create a  
requirement matrix in order to 4) identify attributes that will interact together. 

User requirements are collected from: interviews that provide a first description of 
typical analytical queries [33] (OLAP queries); the analysis of documents that are used 
by the decision-makers; and questionnaires that provide valuable complementary  
information on the domain of expertise. 

Interviews and analysis of decision makers’ documents provide the information 
necessary to write typical analytical queries expressed in a pseudo-query language. In 
some complex cases user-requirements are translated into dimensional pivot tables 
(left upper part of Fig. 2) for requirement validation [1,33]. Then, these tables are also 
translated into the pseudo-language. A query q is of the form: “Analyse what analysis 
subject (s) according to which analysis axes (a1…an) for what data restrictions 
(r1…rm)” (see examples in Fig. 2). The s is the analysis subject indicator, the ai are at-
tributes of analysis indicators and ri are SQL-like restrictions on an attribute (called ri 
for simplicity). This phase aims at identifying the attributes. 
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q2: Analyse the content of articles according to the author 
(name, team and institute or status) and according to the year 
of publication of the article for article contents limited to sec-
tion of the type introduction. 

q3: Analyse the number of articles according to the name of 
the author and according to the years of publication for publi-
cations in a conference of international audience. 

q1: Analyse the number of references according to the author 
names of the article and their institute and according to the 
name of conferences where the articles was published for au-
thors of the institute inst1. 

q4: Analyse the number of project reports according to the 
authors and according to the month and year of publication of 
the report for reports of scientific type. 

Institute
Author Au1 Au2 Au3

Conferences
DaWaK 3 2 1
DEXA 2 - -
CAiSE 1 1 2

COUNT 
(Articles)

Inst1

Institute="Inst1"

q1 expressed through a pivot table

q1=(s=Reference, a1=name_author,  a2=institute, 
a3=name_conference, r1=institute)

q1 expressed formally

 

Fig. 2. Example of typical queries (note that q2 is based on textual data analysis) 

In each query q, each s, ai and ri is an attributes. An attribute list A is constructed from 
all q∈Q (the set of user-queries). The attributes are placed in a requirement matrix. 

Definition. The requirement matrix M=A×A is a square binary matrix, with the list of 
attributes in lines (future analysis subjects) and in columns (future analysis axes). 

 

The matrix is built in three steps: 1) construction; 2) simplification; and 3) reordering. 
For construction, for i (respectively j) an attribute in line i (resp. in column j), M is 
defined such that: 

− M(i,j)=1 (i≠j) if ∃ q=(s,a1…an,r1…rm)∈Q / (s=i and ∃ ak∈(a1…an) and ak=j). An 
attribute in line i (an analysis subject indicator), is analysed according to an attrib-
ute in column j (an analysis axis); 

− M(i,j)=1 (i=j) if ∃ q=(s,a1…an,r1…rm)∈Q / (∃ rk∈(r1…rm) and rk=i). An attribute is 
used as a restriction; 

− M(i,j)=0 (∀i, ∀j) in all other cases 

M represents the interactions between attributes: more precisely, subjects (lines) and 
analysis axes (columns) (see left part of Fig. 3). However, these attributes do not all 
interact with one another, thus it is necessary to isolate attribute interaction groups. 
This starts with a simplification: empty lines—attribute that are not used as subjects— 
or empty columns—attributes that are not used as analysis axes— are removed. The 
process is: For each line l, if ∀j≠l, M(l,j)=0, l is removed; For each column c, if ∀i≠c, 
M(i,c)=0 c is removed; In the removed lines, if M(l,c)=1 and l=c, then l (or c) was 
only a restriction ri in Q. The information that l was associated with some s in some q 
is kept and l is added to a set R. 

This is followed by a line and column reordering for grouping the cells with “1” 
around the diagonal of the matrix. The goal is to get the matrix as close as possible to 
a block diagonal matrix: a diagonal matrix in which all diagonal elements are square 
matrices of any size (even 1×1) and off-diagonal elements are 0. The solution is a re-
organised matrix (RM) composed of pseudo-blocks that are diagonal matrix blocks 
that may partially overlap. 
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Finding a solution to this problem is similar to solving the travelling salesman 
problem. In order to offer an automatic solution, we used a genetic algorithm [9] (a 
good technique for the salesman problem [22]). The algorithm uses chromosomes to 
express the solution (the order of the lines and columns) and a fitness function that 
maximises the number of pseudo-blocks while minimising the overlap between these 
blocks. The algorithm runs with a population of a few thousands individuals over ap-
proximately 500 generations. For the moment, only crossover (of 80%) without mu-
tations is performed. In the end, the pseudo-blocks represent attributes that interact 
together during analyses with an eventual share of attributes with another interaction 
group. In the right part of Fig. 3, two groups have been identified: the analysis of sci-
entific publications (light gray/yellow) and the analysis of reports (dark grey/ 
green). The shared part is the grey/red column headers. This part indicates that some 
information is shared between the two groups (here authors and dates). 
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Fig. 3. Left: the requirement matrix (M); right: the same matrix reorganised (RM) with two 
groups identified and in grey the columns and the lines ignored during the reorganisation. Also, 
associated to R, (r=type_section, s=content), from q2 and (r=type_report, s=report) from q4. 

Note that, although in our simple example, there is a complete disjunction between 
analysis subjects and analysis axes; it is not always the case in real-life examples. 

The output of the algorithm is the set R and the reorganised matrix RM. This  
information will allow the design of a galaxy schema described hereafter. 

3.2   Multidimensional Model for Documents: A Galaxy 

For specifying analyses on text-rich XML documents (document-centric XML docu-
ments), there is a need for a model that: 1) represents text-rich document specificities; 
and 2) eases conceptual representation of the multidimensional structures while 
avoiding to provide limitations of predefined solutions to the user. To answer these 
requirements we have previously defined a specific model named Galaxy [24]. 

The galaxy is based on: 1) a unique dimension concept that represents an analysis 
axis, but also a possible analysis subject; and 2) groupings of these dimensions to 
show their compatibility for analysis specification. The model also allows linking  
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attributes together (e.g. references of an article are articles themselves thus authors of 
cited articles may be used combined with authors of citing articles). Due to lack of 
space, this will not be detailed (consult [24,25] for more details).This model has the 
advantage of generalising all traditional models based on facts and dimensions (see 
[31] for a survey). In the galaxy model, the fact (subject of analysis) is not predefined 
but will be specified when querying as it will be one of the dimensions. 

Definition: A Galaxy G = (DG, StarG, LkG) where 
− DG = {D1,…, Dn} is a set of dimensions, 
− jD

i
G DStar 2→  is a function that associates each dimension Di to its linked di-

mensions Dj∈DG (Dj≠Di). This expression models nodes cz (or cliques2) that may 
be expressed through: {Dc1,…,Dcn} DG | ∀i,j∈[c1..cn], i≠j, ∃ Di 2Dj∈StarG. This 
represents dimensions compatible within a same analysis.3 

− LkG = {g1, g2,…} is a set of functions associating some attribute instances together 
(see [24] for more details). 

 

A dimension is composed attributes, representing graduations of an analysis axis.  

Definition: A dimension D=(AD, HD, ID, IStarD) where: 
− AD = {aD

1,…, aD
r} is a set of attributes, 

− HD = {HD
1,…, HD

s} is a set of hierarchies, 
− ID = {iD

1,…, iD
t} is a set of dimension instances. Each attribute has a value for 

each instance aD
u(i

D
x), called an attribute instance. 

− IStarD = {IStar1
D, IStar2

D…} is set of functions ( ) ( )**: nDDDD
i IIIIStar ××→ …1 , 

each associating the instances of the D dimension to the instances of other linked 
dimensions through StarG (∀k∈[1..n], Dk∈DG, Dk≠D and Dk∈StarG(D), i.e. Dk is 
associated/linked to D).2 

The attributes are hierarchically organised in the dimensions. Two types of attributes 
exist: parameters (a graduation of the analysis axis) and weak attributes  
(complementary data to the graduation—the parameter). 

Definition: A hierarchy noted HD
i or H= (ParamH, WeakH) where: 

− ParamH = <pH
1,…, pH

np> is an ordered set of attributes, called parameters, which 
represent the levels of granularity of the dimension, ∀k∈[1..np], pH

k∈AD and 
pH

1 = aD
1 ; 

− 
HD ParamAHH ParamWeak −→ 2  is an application possibly associating weak attrib-

utes to parameters, completing the parameter semantic.  

To ease the understanding of this model, we provide an associated graphic  
formalism [24] (inspired by [10]). 

Example. In Fig. 4 a decision maker wishes to analyse the performance of research 
institutes. Two dimension groups (cliques) represent those which are compatible  

                                                           
2 The notation (I)* represents a finite set of elements of I. 
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during a same analysis. The decision maker analyses scientific articles published at a  
certain date, in a certain conference (or journal) by authors; but he also analyses pro-
ject reports published by authors at a certain date. In this example, each analysis axis 
and each potential analysis subject is represented with dimensions. For example: 
DAUTHORS = (AAUTHORS={Author, Team, Institute, Status}, HAUTHORS={HA,HSt}…) 

 

Fig. 4. The analysis of scientific articles and research reports modeled with a galaxy schema 

3.3   Translating Requirements into a Multidimensional Schema 

The galaxy schema will be designed from the matrix. Recall that user-requirements, 
specified by decision makers, are available through a cleaned and reorganised matrix 
(Fig. 3). From this matrix, the following process defines the elements of the galaxy 
schema: DG, StarG, for each D∈DG: AD, HD and for each H∈HD: ParamH and WeakH. 

The design process of a galaxy schema from a requirement matrix follows 7 steps. 
Each step will be illustrated through an example given from Fig. 3; our objective  
being the construction of the galaxy in Fig. 4. 

Step 1: determine useful attributes. List the line and column attributes. Add to the 
column attributes the set R. 
Example. In our example: 

− Line attributes: References, Content_Article, Article, Report; 
− Column Attributes: Institute_Author, Name_Conference, Status_Author, 

Team_Author, Audience_Conference, Name_Author, Year, Month, Type_Section, 
Type_Report. 

Step 2: Determining dimensions from column attributes. A dimension is specified 
as a grouping of column attributes. The dimension name is chosen to be fully 
representative of the concept described by its attributes. Attributes are manually 
grouped based on domain concept knowledge. Attributes in R are grouped with the 
help of the s associated attribute. 
Example. Attribute grouping generates the AD sets of each D∈DG: 

− ATIME: Month, Year; 
− AAUTHORS: Institute_Author, Status_Author, Name_Author, Team_Author; 
− ACONFERENCES: Name_Conferences, Audience_Conference; 
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− AARTICLES: Type_Section; 
− AREPORTS: Type_Report. 

Step 3: Determining dimensions from line attributes. Each line attribute that is not 
already associated to a dimension is added either to an existing dimension of a new 
dimension. The following constraint is applied: a line attribute that has a 1 with a 
column attribute cannot be grouped in the same dimension as the latter. Indeed, the 1 
means that the line attribute is an analysis subject for the analysis axis (the dimension) 
represented by the column attribute. They both cannot describe the same dimension. 
Formally: ai in line i is added to D provided that: ∄aj ∈ AD (j≠i) / M(i,j) = 1. This 
constraint can be processed automatically. 
Example. In our example, the following additions to dimensions are done: 

− AARTICLES: Content_Article, Article, References; 
− AREPORTS: Report. 

Step 4: Determining dimension hierarchies. The specification of dimension 
hierarchies is manually done, based on domain knowledge and source analysis. 
Functional dependencies such as one-to-many relationships in the data sources, i.e. 
cardinalities [1..*]→[1..1] between attributes a1 and a2, provide valuable information 
on how to hierarchically organise data, in this case, ParamH = <a1, a2>. Moreover, the 
tree-like structure of source XML documents can also be used to put in light 
hierarchies. Missing values are systematically handled by a generic “undefined” 
value. Any attribute used for grouping (in the ai statements in Q) is placed in ParamH 
sets, all others are placed in the WeakH sets and associated to the corresponding pi in 
the ParamH set (e.g. in HTime, Month→2Month_Name). 
Example. In our example: 
− Domain knowledge allows the definition of: ParamHTIme = <Date,Month,Year>; 
− The tree-like DTD structure of the XML documents (scientific articles) shows the 

following hierarchy: ParamARTICLES = <Section,Document> (the new parameter 
Document will probably replace Content_Article and Article attributes, see step 7) 

Step 5: Enrich dimensions. The designer, depending on his/her domain knowledge 
expertise and of the source analysis, can complement the schema by adding other 
attributes. The source analysis may provide new attributes previously unthought-of. 
The new attributes are either inserted in existing hierarchies or in new ones. 
Example. In our example, a Paragraph attribute will be added to the ARTICLES Di-
mension: ParamARTICLES = <Paragraph,Section,Document>; In the CONFERENCES di-
mension will be enriched by the Accept_Rate attribute (that appears in the DTD of the 
articles in the document sources). The corresponding level is the “conference” level, 
WeakHConf: Conference→2Accept_Rate. 

Step 6: Determining the interactions between the dimensions. The requirement 
matrix shows blocks and pseudo-blocks of attributes. Each block determines a clique: 
ci (i.e. the possible interaction between the attributes. Each attribute being associated 
to a dimension, interactions between the dimensions may be automatically determined 
and thus the functions StarG may be specified. 
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Example. In our example, 2 attribute blocks determine 2 dimension interaction 
groups 
− Scientific article analysis: DAUTHORS, DARTICLES, DCONFERENCES and DTIME; 
− Reports analysis: DREPORTS, DAUTHORS and DTIME. 

Step 7: Merging common parts and final adjustments. In this step, redundant 
attributes are removed or replaced, dimensions are eventually shared between cliques 
and the final schema is obtained. These adjustments are incorporated into the 
synonym dictionary, thus enriching the synonym sets. 
Example. In our example: 

− Report authors and article authors happen to have the same available information 
in the sources, thus both DAUTHORS dimensions will be fused; 

− For similar reasons, the DTIME dimensions will be fused; 
− The attributes of DARTICLES: Content_Article and Article will be replaced by the more 

detailed ones found in phase 4: Paragraph, Section and Document. 

Finally, the galaxy schema is obtained (see Fig. 4).  

4   Confrontation 

The galaxy schema represents only user-requirements. Thus the galaxy has to be vali-
dated with the data sources (stage 3 of our design process, see Fig. 1). The goal of this 
stage is to ensure that the multidimensional structures represented by the galaxy 
schema will be loaded with compatible data from the data sources. As this is a tedious 
and critical task we offer a semi-automatic process. 

This process converts the galaxy schema into XML document structure (DTD). This 
structure eases the comparison with the source documents. These latter are supposed to 
be uniform and are also represented by a DTD. The DTD comparison generates a set of 
mapping rules that will transform the XML elements of the document source DTD into 
elements of the Galaxy DTD (see Fig. 5). A mapping rule is a link between a source ele-
ment and a galaxy attribute: an XPath expression [34] designates the elements in the data 
sources and a database column name designates the galaxy attribute. 

 

Fig. 5. Details of the confrontation phase 
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In a first step, the galaxy schema is converted into a DTD. Formally, for a galaxy 
G there exists a set (named CG) composed of i cliques (noted ci). All dimensions of a 
clique ci are represented by Dci, Dci⊆DG. The following algorithm is used to generate 
a DTD for each clique of the galaxy: 

For each ci in C
G Do 

 Create new DTD_Galaxy_G_ci; 
 Create new Element_Galaxy_G_root_ci; 
 Append Element_Galaxy_G_root_ci to DTD_Galaxy_G; 
 For each Di in Dci Do 
  Create new Element_Dim_Di; 
  Append Element_Dim_Di to Element_Galaxy_G_root_ci; 
  For each Hi in H

Di Do 
   Element_attribute_previous = Element_Dim_Di; 
   For each pi in Param

Hi Do 
    Create new Element_Attribute_pi; 
    Append Element_Attribute_pi to Element_Attribute_previous; 
    Element_Attribute_previous := Element_Attribute_pi; 
    For each wai in Weak

Hi and wai associated to pi Do 
     Create new Element_Attribute_wai; 
     Append Element_Attribute_wai to Element_Attribute_previous; 
    End_For; 
   End_For; 
  End_For; 
 End_For; 
End_For;  

In this algorithm, the functions “Create new element…” create an XML element 
that represent one of the four corresponding conceptual element of the galaxy: a cli-
que (the root of the generated DTD), a dimension, a parameter or a weak attribute. 
This XML element is composed of an XML attribute Id (the system identifier taken 
from the dictionary) and possibly other sub elements inserted by the algorithm. More 
specifically, an XML element that represents an attribute of the galaxy (“Ele-
ment_Attribute_...”) is composed of an identifier and a Content element (that contains 
the attribute data (PCDATA in XML DTD terminology) as well as child elements that 
represent other elements of the galaxy. 

The confrontation step proceeds by associating elements of the source DTD, the 
DTD of the XML document sources and the destination DTD, the DTD that 
represents the galaxy. This process is semi-automatic and done by comparing the 
XML element names and with the help of the system identifiers from the dictionary. 
In ambiguous cases, the designer takes the final decision in associating source and 
destination elements (i.e. the XML tags) using suggestions made by the system. 

Although the data source analysis is out of the scope of this paper, a few relevant 
features should be mentioned. To limit conflicts a pre-processing step is done on each 
XML document source. This step enriches the dictionary. For example, the INEX 
scientific journal collection [13] uses the tags <sec> for sections and <p> for para-
graphs whereas the galaxy uses <section> and <paragraph>. Only XML elements are 
considered: attributes are either dropped or converted into sub-elements if source 
structure transformation can be considered. XML REF links are either ignored to 
avoid cycles or, if source modification is possible, replaced by the XML elements the 
REF points to. Elements need not necessarily be hierarchically organized in the 
sources: elements laid out flat can also be handled if cardinalities implied by the  
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galaxy hierarchies are respected—e.g. elements author and institute can be laid out 
flat but there should only be one institute for each group of authors. 

During the confrontation, other more complex incompatibilities may arise. The de-
signer, either 1) modifies the user-requirements (the analysis objectives) implying a 
change in the galaxy schema; or 2) enriches the data sources with complementary data 
or documents (see stages 4a and 4b in Fig. 1). More details are provided in [25]. 

The entire process is iterated until no more errors arise and all the destination elements 
are linked, i.e. all elements of the galaxy—structures of the multidimensional database—
have a data source element linked. Thus the implementation of the multidimensional  
database can be considered. 

5   Multidimensional Database Implementation 

Implementing the multidimensional database is possible once the galaxy schema is 
compatible with the data sources (stages 5a and 5b of Fig. 1). This is done with an 
automatic process according to two steps. This process is based on two sets of conver-
sion rules. First, multidimensional database structures are generated from the galaxy 
schema (step 1 in Fig. 6). Second, data extracted from XML document sources is 
loaded within the structures of the multidimensional database (step 2 in Fig. 6). 

During the first step, the galaxy schema is implemented with the use of conversion 
rules within an R–OLAP architecture (Relational-OLAP [15]), the most used OLAP  
implementation. Every dimension is converted into a relation (a table) and cliques are 
implemented through foreign keys. In the second step, correspondence rules, generated 
during the confrontation, are used to extract and transform the source XML document 
data. The conversion rules allow XML data to be compatible with the ROLAP structures 
previously created: character strings that hold numerical values are converted into nu-
merical types before being inserted into the database tables. This may be done with a 
Model Driven Architecture (MDA) based process such as the one presented in [2]. 

Data loading is done with XQuery queries [34]. The queries assemble the XPath 
expressions of the mapping rules generated in the confrontation stage. The expres-
sions are assembled in for and let expressions depending on the data source struc-
ture and cardinalities in the galaxy structure. Note that incompatible cases have been 
processed in the previous phase. Loading into the R-OLAP tables is done with 
SQL/XML instructions that use the generated XQuery expressions [17].  

 

Fig. 6. Implementation of the structure (1) and the content (2) of the multidimensional database 
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6   Conclusion and Future Works 

In order to get closer to the integration of a 100% of decisional data into OLAP sys-
tems we have specified a design process to implement OLAP systems loaded with 
text-rich XML document data. The method associates a galaxy model [24] to an 
adapted design process. Compared to existing multidimensional models, the galaxy 
model is used for the following advantages: 1) it is based on the unique dimension 
concept; 2) it takes into account document specificities (structure described with 
XML tags and textual content); 3) it provides document analysis perspectives that are 
not limited to predefined indicators; and 4) it generalises actual multidimensional 
models. 

The design process has the advantage of taking into account simultaneously user 
requirements and the available data sources: 1) user requirements are expressed 
through typical analysis queries that are then translated into a galaxy schema; while 2) 
the data sources (documents) are analysed. Our mixed approach has the advantage to 
ease the implementation by using a semi-automatic confrontation stage: the elements 
of the galaxy schema are associated to elements in the XML document sources, using 
a pivot model (XML DTDs). Conflicts that may arise are solved through an iterative 
process. The third stage generates mapping rules that are used to during a fourth step 
to implement the multidimensional database schema, whose structure is directly de-
rived from the galaxy schema. A CASE tool [25] (not detailed in this paper) com-
pletes the design process by assisting the user during the different design steps. The 
tool is a java graphical client linked to an Oracle 11g database running XMLDB. The 
process is done using Oracle SQL/XML structures and queries [17]. 

Among future works, we consider associating the design process to a formal speci-
fication of data source analysis for the integration of XML document sources that 
have several heterogeneous structures and reuse research from the data integration 
community [28,19]. I.e. XML documents with missing elements or elements de-
scribed in several different formats. Moreover, a module is being currently imple-
mented to allow the system to suggest to the user the possible associations between 
elements of the DTD that represents the XML document sources and the elements of 
the galaxy schema. This module uses the synonym dictionary. 
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Meet Data Warehouse Design: 4WD
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Abstract. Data warehouse systems are characterized by a long and ex-
pensive development process that hardly meets the ambitious require-
ments of today’s market. This suggests that some further investiga-
tion on the methodological issues related to data warehouse design is
necessary, aimed at improving the development process from different
points of view. In this paper we analyze the potential advantages arising
from the application of modern software engineering methodologies to
a data warehouse project and we propose 4WD, a design methodology
that couples the main principles emerging from these methodologies to
the peculiarities of data warehouse projects. The principles underlying
4WD are risk-based iteration, evolutionary and incremental prototyping,
user involvement, component reuse, formal and light documentation, and
automated schema transformation.

Keywords: Data warehouse; Design methodologies; Agile development.

1 Introduction

The continuous market evolution and the increasing competition among compa-
nies solicit organizations to improve their ability to foresee customer demand and
create new business opportunities. In this direction, over the last decade, data
warehouses have become an essential element for strategic analyses. However,
data warehouse systems are characterized by a long and expensive development
process that hardly meets the ambitious requirements of today’s market. This
is one of the main causes behind the low penetration of data warehouse systems
in small-medium firms, and even behind the failure of whole projects [20].

As a matter of fact, data warehouse projects often leave both customers and
developers dissatisfied. The main reasons for low customers’ satisfaction are the
long delay in delivering a working system and the large number of missing or
inadequate (functional and non-functional) requirements. As to developers, they
complain that —mainly due to uncertain requirements— it is overly difficult
to accurately predict the resources to be allocated to data warehouse projects,
which leads to gross errors in estimating design times and costs. In the light of
the above, we believe that the methodological issues related to data warehouse
design deserve some further investigation aimed at improving the development
process from different points of view, such as efficiency and predictability.
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uncertain & changing
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linear approach to design

complaintsproblems impact

Fig. 1. Cause-effect relationships in customer and developer dissatisfaction

The available literature on data warehouse design mainly focuses on tradi-
tional, linear approaches such as the waterfall approach, and it appears to be
only loosely related to the sophisticated design methodologies that have been
emerging in the software engineering community. Though some works about ag-
ile data warehousing have appeared [12], there are also evidences that applying
an agile approach tout court to data warehouse design has several risks, such
as that of inappropriately narrowing the data warehouse scope [2]. In this pa-
per we analyze the potential advantages arising from the application of modern
software engineering methodologies to a data warehouse project and we pro-
pose Four-Wheel-Drive (4WD), a design methodology that aims at coupling the
main principles emerging from these methodologies to the peculiarities of data
warehouse projects.

Our modus operandi for this work is the following. First we identify the main
problems behind data warehouse projects based on traditional methodologies,
and we define our goals accordingly in terms of desired qualities of the software
development process (Section 2). Then, from an analysis of the main software
engineering methodologies we derive a set of design principles to be adopted in
order to achieve the quality goals (Section 3). Then we apply these principles to
build up our methodological proposal, inspired by practical evidences emerged
during real data warehouse projects (Section 4). Section 5 completes the paper
by discussing our proposal in the light of the related works.

2 From Problems to Goals

Our experience with real projects led us to attempt a classification of the main
reasons why customers (meant as both sponsors and users) and developers often
end up with being dissatisfied. Figure 1 summarizes the results of this investi-
gation, distinguishing between problems, complaints, and their human impact,
and emphasizing the existing cause-effect relationships between them. A closer
glance at the problems column reveals that:

– Requirements for data analyses are often unclear and uncertain, mainly be-
cause decision processes are flexibly structured and poorly shared across
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large organizations, but also because of a difficult communication between
users and analysts. Besides, the fast evolution of the business conditions may
cause requirements to drastically change even in the short-term [5]. Failing
to address these problems dramatically contributes to making users perceive
the system as inadequate from the functional point of view and leads to
inflating the overall project duration and cost by introducing unexpected
delays in the development process.

– Data warehouses are normally built one data mart at a time; each data
mart is developed following a linear approach, which means that the differ-
ent phases are organized into a rigid sequence. Releasing a data mart re-
quires 4-6 months, and it is very difficult to provide intermediate deliveries
to be discussed and validated with users, who may easily feel not sufficiently
involved and understood, and loose interest in the project.

– The intrinsic complexity of data warehouse design depends on several issues.
Among the most influential ones, we mention a couple: data warehouse design
leans on data integration, that in most cases is a hard problem; the huge data
volume and the workload unpredictability make performance optimization
hard. Problems related to data quality and performances have a particularly
negative impact on the perceived system inadequacy.

We argue that these problems can be solved by working on four qualities of the
software development process [4], as explained below.

1. The reliability of a development process is the probability that the delivered
system completely and accurately meets user requirements. In our context,
increasing the reliability of the design process can contribute to address-
ing the “inadequate system” complaint, i.e., to ensuring a high-quality and
satisfactory final system.

2. By robustness we mean the process flexibility, i.e., its capability of quickly
and smoothly reacting to unanticipated changes in the environment. A ro-
bust process can more effectively accommodate both uncertain and changing
requirements.

3. The process productivity measures how efficiently it uses the resources as-
signed to the project to speed up system delivery. Increasing productivity
leads to shorter and cheaper projects.

4. The timeliness of a process is related to how accurately the times and costs
for development can be predicted and respected. A timely process makes
resource estimates more reliable.

3 From Goals to Principles

To understand how the main software engineering methodologies devised in the
last thirty years can help designers achieve our four quality goals, we analyzed
the objectives and underlying principles of seven methodologies, namely Wa-
terfall [21], Rapid Application Development [15], Prototyping-Oriented Software
Development [18], Spiral Software Development [3], Model-Driven Architecture
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[13], Component-Based Software Engineering [11], and Agile Software Develop-
ment [1]. Overall, the emerging methodological principles can be condensed as
follows:

– Incrementality and risk-based iteration. Developing and releasing the system
in increments leads to a better management of the project risks, thanks
to a proper prioritization of activities aimed at letting the most critical
requirement features drive the design of the skeleton architecture. A stepwise
refinement based on short iterations increases the quality of projects by
supporting rapid feedback and quick deliveries [3,15].

– Prototyping. Complex projects are conveniently split into smaller units or
increments corresponding to sub-problems that can be more easily solved
and released to users. To facilitate requirement validation and obtain better
results, system development is achieved by refining and expanding an evolu-
tionary prototype that progressively integrates the implementation of each
increment [18].

– User involvement. Project specifications are difficult to be understood during
the preliminary life-cycle phases. A user-centered design increases customer
satisfaction and promotes a high level of trust between the parties. Indeed,
this feature focuses on constant communication and user participation at
every stage of software development.

– Component reuse. The reuse of predefined and tested components speeds up
product releases and promotes cost reduction as well as software reliability
[11].

– Formal and light documentation. A well-defined documentation is a key fea-
ture to comply with user requirements. Moreover, formal analysis leads to
clear and non-ambiguous specifications, and user involvement enables light
and up-to-date documentation [1,13,21].

– Automated schema transformation. This feature involves the use of for-
mal and automated transformations between schemata representing different
software perspectives (e.g., between conceptual and logical schemata). This
accelerates software development and promotes standard processes [13].

Table 1 summarizes the relationship between these methodological principles
and the four quality goals introduced in Section 2, i.e., it gives an idea of how
each principle can help increase each quality factor with specific reference to a
data warehouse project. More details are given in the following section.

4 From Principles to Methodology: 4WD

In this section we propose an innovative design methodology, called Four-Wheel-
Drive (4WD), leaning on the principles discussed in the previous section. These
principles are applied in such a way as to effectively balance their pros and
their cons, as resulting from practical evidences emerged during the real data
warehouse projects 4WD was applied to. Besides the projects we were directly
involved in, our findings are based on an elaboration of the experiences collected
during the last five years by some practitioners we collaborate with.
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Table 1. Expected impact of methodological principles on process quality goals

Reliability Robustness Productivity Timeliness

Incrementality
and risk-based
iteration

continuous feed-
back, clearer
requirements

better manage-
ment of change

better manage-
ment of project
resources, rapid
feedback

early detection of
errors

Prototyping
frequent tests,
easier error
detection

early deliveries

User involvement
better requir.
validation, better
data quality

early error detec-
tion

Component reuse error-free compo-
nents

faster design
predictable devel-
opment

Formal & light
documentation

clearer require-
ments

easier evolution faster design

Autom. schema
transformation

optimized perfor-
mances

easier evolution faster design predictable design

As sketched in Figure 2, 4WD is based on nested iteration cycles. The exter-
nal one is called data mart cycle; it defines and maintains the global plan for
the development of the whole data warehouse and, at each iteration, it incre-
mentally designs and releases one data mart. Data mart design is achieved by
the fact cycle, that refines the data mart plan and incrementally designs and
releases its facts1. Finally, fact design is based on two cycles (modeling and im-
plementation cycles, respectively), that include the core of analysis, design, and
implementation activities for delivering reports and applications concerning a
single fact. The documents produced can be distinguished into releases (that
correspond to project milestones) and deliveries (used for testing and valida-
tion). Remarkably, cycles are nested in a way that enables a reassessment of the
decisions made during an outer iteration based on the evidences emerging from
an inner iteration.

The main activities carried out in the data mart cycle are:

– Architectural sketch, during which the overall functional and physical ar-
chitecture of the data warehouse is progressively drawn based on a macro-
analysis of user requirements and an exploration of data sources as well as
on budget, technological, and organizational constraints.

– Conformity analysis, aimed at determining which dimension of analysis will
be conformed across different facts and data marts. Conforming hierarchies
in terms of schema and data is a key element to allow cross-fact analysis and
obtain consistent results.

– Data mart prioritization, based on a trade-off between user priorities and
technical constraints.

1 A fact is a concept relevant to decision-making processes, and it typically models a set
of events taking place within a company (such as sales, shipments, and purchases).
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Fig. 2. A sketch of the 4WD methodology

– Data mart design, which builds and releases the top-priority data mart. After
each data mart has been built, the three phases above are iterated to allow
the data warehouse plan to be refined and updated.

The activities carried out within a fact cycle are:

– Source and fact macro-analysis, aimed at checking the availability, quality,
and completeness of the data sources and determining the main business
facts to be analyzed by users.

– Fact prioritization that, like for data marts, is the result of a trade-off be-
tween user requirements and technical priorities.

– Fact design, which develops and releases the top-priority fact. After that,
the two phases above are iterated to allow the data mart plan to be refined
and updated.

Finally, the activities necessary to release a single fact (or even a small set of
strictly related facts) are grouped into two separate sub-cycles to emphasize that
releasing a conceptual schema of a fact marks a clear separation between a mod-
eling and an implementation phase for the fact itself. Validating the conceptual
schema of a fact before implementation leads to reducing the number of imple-
mentation cycles, i.e., to faster fact cycles. While modeling should come before
implementation, the activities included in each sub-cycle are not strictly sequen-
tial and can be differently prioritized by each project team. Each sub-cycle can
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be iterated a number of times before its results (the conceptual schema in the
first case, the analysis applications in the second) are validated and released.

In the following subsections we will discuss how 4WD meets the principles
introduced in Section 3. Then, we briefly present the main outcomes of the
application of 4WD to a real project in the area of pay-tvs.

4.1 Incrementality and Risk-Based Iteration

As suggested by the RAD approach, iteration is at the core of 4WD and is
coupled with incremental development, that aims at slicing the system function-
ality into increments; in each increment, a portion of the system is designed,
built, and released. Developing a system through repeated cycles leads to lower
risk of misunderstood requirements (higher reliability and timeliness), to faster
software deliveries (higher productivity), and to more flexible management of
evolving requirements and emerging critical issues (higher robustness) [15].

Though these advantages are largely acknowledged in all modern methodolo-
gies, the type of iterations and their frequencies vary from one another depend-
ing on the type of software to be developed. For example, agile methodologies
pushes segmentation to the limit by centering iteration on the so-called user sto-
ries, meant as high-level functional requirements —concisely expressed by users
in their business language— that can be released in a few days. Since functional
requirements in data warehouse projects are mainly expressed in terms of anal-
ysis capabilities, agile data warehouse design often focuses each iteration on a
small set of reporting or OLAP functionalities. While this may sound natural to
business users, it can lead to dramatically increasing the overall design effort,
because it gives little or no relevance to the multidimensional schemata adopted
to store information. Indeed, as reported by designers who adopt functionality-
centered iterations in data warehouse projects, a common problem is that they
fail in recognizing that apparently different analyses, designed during separate
iterations, are actually supported by the very same multidimensional schema.

In 4WD, the shortest iterations that release a tangible result to users are those
for modeling and implementing a single fact, that are normally completed in 2-4
weeks overall. This release rate could seem to be not very high, but it is backed by
quite more frequent deliveries. Indeed, the modeling and implementation cycles
have a daily to weekly frequency; the deliveries they produce enable a progressive
refinement of the fact conceptual schema and implementation through a massive
test based on active involvement of users.

Incremental techniques require a driver to define an order for developing in-
crements. In 4WD this is done when deciding data mart and fact priorities, and
in both cases risk is the driver —as suggested by the Spiral Software Develop-
ment approach [3]. The project team should balance the risk of early releasing
data marts/facts that are not highly valuable to users —which would lead users
to lose interest in the project— against the risk of ordering design activities in
a non-optimal way —which would determine higher costs and a longer overall
project duration. Some guidelines for reducing the risk in data mart prioritiza-
tion are: (a) Give priority to data marts that include widely shared hierarchies,
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which makes the overall schema more robust and ensures that dimensions are
fully conformed; (b) Give priority to data marts that are fed from stable and
well-understood data sources; and (c) Postpone data marts based on unclear
requirements, assuming that these requirement will be better understood as the
user’s involvement in the project increases. As to facts: (a) Give priority to
facts that include the main business hierarchies and require the most complex
ETL procedures; (b) Adopt a data-driven approach to design rather than a
requirement-driven one whenever users do not appear to have a deep knowledge
of the business domain; and (c) Plan the length of an iteration in proportion to
the complexity of the fact, since failing a release in the early stage of a project
will undermine the team credibility.

4.2 Prototyping

Prototyping has a crucial role in most modern software projects. In a data ware-
house project, an evolutionary (where a robust prototype is continuously refined)
and incremental (where the prototype is gradually enlarged by adding new sub-
systems) approach to prototyping is generally preferable to a throw-away ap-
proach (where the prototype is used to demonstrate a small set of functions and
then is abandoned). In fact, the effectiveness of prototyping is maximized when
the prototype is tested together with users, and in a data warehouse project
this requires the whole data flow —from operational sources to the front-end
through ETL— to be prototyped: a large effort, that should not be wasted. The
main advantages of prototyping, with particular reference to a data warehouse
project, can be summarized as follows:

– Prototypes help designers to validate requirements, because they allow users
to evaluate designers’ proposals by trying them out, rather than interpreting
design documents. This is particularly crucial to enable a better understand-
ing of hierarchies by users [24].

– Prototypes are especially valuable to improve the design of reports and anal-
ysis applications, due to their interactive nature. In general, prototype-based
user-interfaces have higher usability [10].

– Prototypes can be used to advance testing to the early phases of design,
thus reducing the impact of error corrections. For instance, an early loading
test can be effectively coupled with a preliminary functional test of front-end
applications to check for correct data balancing [8].

– Prototypes can be used to evaluate the feasibility of alternative solutions
during logical design of multidimensional schemata and during ETL design.
This typically leads to improved performance and maintainability, and to
reduced development costs [24].

The above points are basically associated with an increase in reliability and
productivity. More specifically, the impact on reliability is related to both data
schemata, data quality, and performances. First of all, having a working pro-
totype available during the early project phases enables the designer to keep a
strict and constant control over the data schema to ensure that it fully supports
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user requirements. Then, data quality can be improved by closely involving users
in testing the prototype using both real and ad-hoc generated data. Finally, an
incremental approach can also be used to take better care of performance issues
by following the modularity principle to separate correctness from efficiency.
This means that a working prototype can be delivered first; then, performances
can be improved during the following iteration to deliver an increment in the
form of a working and efficient prototype.

4.3 User Involvement

Recent years have been characterized by a growing awareness that human re-
sources are one of the keys to a project success. In this direction, some modern
software design methodologies tend to emphasize organizational factors rather
than technical aspects. For instance, agile approaches pursue the idea of creat-
ing responsible and self-organizing teams to maximize participation of developers
and their productivity. They also focus on user involvement as a means to re-
duce the risk of expressing ambiguous requirements and make software validation
easier and more effective [1].

4WD pays a large attention to user involvement because it has a substantial
influence on process reliability and timeliness. User involvement can be promoted
in different ways:

– All users should preliminary receive a comprehensive training to clarify the
project goals, explain the multidimensional model, and introduce a shared
language for conceptual design.

– Prototyping is the most effective way to have users participate in the design
process and keep them aware of the project status.

– Due to the complex data transformation that is inherent to data warehouse
systems, only users —who have insight of business data— can easily detect
problems and errors. So, most testing activities should be based on user feed-
back. User involvement is specifically crucial for usability tests of reporting
and OLAP front-ends, and for functional tests of ETL procedures.

4.4 Component Reuse

Applying a component-based methodology means using predefined elements to
support the software development process [11]. This is often done by data ware-
house designers, though mostly in an unstructured way. The components that
can most effectively be reused in a data warehouse project are:

– Conformed hierarchies, that are reused in different facts and data marts.
Using conformed hierarchies not only accelerates conceptual design, but is
also the key for achieving an enterprise view of business in a data warehouse.

– Library hierarchies, that model common hierarchy structures for a given
business domain. For instance, a customer hierarchy in a sales analysis has
some basic features that can be easily reused in different data warehouse
projects to reduce the effort in designing facts.
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– Library facts, that define common measure and dimension structures as
emerging from design best practices for a given business domain. Of course,
library facts must be tailored to specific user needs; nevertheless, they may
be very useful in requirement-driven approaches to give designers and users
a starting point for conceptual design.

– ETL building blocks, meant as predefined extraction, transformation, clean-
ing, and loading routines (e.g., a routine for cleaning a geographical attribute
against the list of ISO 3166-2 codes for administrative divisions, or one for
loading a type-3 slowly-changing dimension from an operational data store).
Reusing such routines reduces the ETL design effort and makes ETL more
reliable due to the use of largely-tested algorithms.

– Analysis templates, that define a reference structure for reports and ap-
plications. In particular, sharing an analysis template across a data ware-
house project is warmly suggested to standardize the interface presented to
users.

4WD takes advantage of component reuse to accelerate development and in-
crease robustness. While ETL tools already include some building blocks that
can be easily reused through parameterization, identifying hierarchies and facts
to be reused deserves more attention. 4WD devotes an ad-hoc phase (conformity
analysis) to identifying hierarchies to be conformed using a bus matrix. Besides,
conceptual schemata are a very effective tool to formalize the structure of facts
and hierarchies and support their matching against the available libraries.

4.5 Formal and Light Documentation

In waterfall approaches, documentation is extensively used during the whole
life-cycle to support the design process and represent and validate requirements.
Other approaches, like RAD and agile methodologies, tend to discourage the use
of documentation (other than the one automatically produced by tools) because
it may lead to prematurely freezing requirements and slowing down iterations,
and suggest to replace it with continuous communication with users [1,15].

While we agree that textual documentation should be reduced to the mini-
mum, we firmly believe that formal documentation is a key factor to promote
precise formalization of requirements, clear communication between designers
and users, accurate design, and maintainability. In 4WD, the main role to this
end is played by conceptual schemata. In particular:

– At the data warehouse level, we mostly use a simple but effective schema
that summarizes the data marts, their data sources, and the profiles of the
users who access them [9]. This high-level schema is first drawn during the
architectural sketch phase, and refined after each data mart cycle. It is es-
sentially used to share the basic functional architecture with users and to
support the discussion of data mart priorities.

– At the data mart level, an important role is played by a bus matrix that
associates each fact with its dimensions, thus pointing out the existence of
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conformed hierarchies. This schema is built and progressively refined during
the conformity analysis and fact macro-analysys phases, and is used to test
that the designers has properly captured the existing similarities between
different facts and different data marts, thus ensuring their integrability [9].

– At the fact level, we force designers to complete and release the concep-
tual schema of a fact before proceeding with implementation. Indeed, hav-
ing users and designers clearly agree on the fact granularity and measures,
as well as on the hierarchy structures and semantics, is the most effective
way to avoid misunderstandings and omissions. Finding this agreement in-
formally, or leaning on the logical/physical schema of the fact, is obviously
hard and error-prone, while a (graphical) conceptual schema is clearly under-
stood even by non-technical users. In particular, we adopted the Dimensional
Fact Model [9] in a number of projects for public administrations (such as
local health authorities, the Ministry of Justice, the State Accounting De-
partment) and we verified that fact schemata are also understood by non-IT
people such as physicians and jurists.

A major role in this context is also played by metadata, that multidimensional
engines store to describe the structure of a data mart. Metadata can typically
be exported to generate a documentation based on standard languages (such
as XML) and models (such as the CWM); this also encourages interoperability,
that is normally seen as a crucial issue in data warehouse projects.

4.6 Automated Schema Transformation

To reduce design complexity, the MDA approach proposes to use formal models
for separately specifying a Platform Independent Model (PIM, it represents sys-
tem functionalities at a conceptual level) and a Platform Specific Model (PSM,
it gives a logical and platform-dependent representation of system functionali-
ties), and to use automated transformations to derive a PSM from a PIM. In a
data warehouse project, this can be applied to design both ETL procedures and
multidimensional schemata, as shown in [23,16].

In 4WD, automated schema transformations are encouraged, mainly to speed
up design and simplify evolution, as long as they need a reasonable effort from
users to understand formal models and they do not require to invest too many
resources in activities that are not directly valuable to users. We propose two
metadata-based activities for automation, possibly supported by CASE tools:

– Supply-driven conceptual design. In supply-driven approaches, a basic con-
ceptual schema for a fact can be automatically derived starting from the
logical schema of operational data sources [17]. When applicable, this is a
very effective way to cut design costs.

– Logical design. A logical schema can be automatically obtained from a con-
ceptual schema by applying a set of transformations that express common
design rules and best practices, possibly based on the expected workload [9].
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4.7 Practical Evidences

4WD was applied to a project in the area of pay-tvs. The project had an over-
all duration of 6 months and was carried out by an Italian system integrator
specialized in BI applications.

During data warehouse planning two data marts were identified, namely ad-
ministration and management control, that were prioritized according to their
importance for users: the administration data mart was given higher priority
because its size is definitely larger (9 vs. 3 facts). During data mart planning we
organized the overall project in 7 releases (5 for the first data mart, 2 for the
second one), each centered on at most 3 facts and taking from 10 to 26 days.
Facts were grouped into a single release when they either shared several dimen-
sions or had similar ETL processes (e.g., because measures were extracted from
the same data sources and tables), as emerging from conformity analysis and
source and facts macro-analysis. Each release was then assigned a value from
the users point of view, an estimated nominal complexity, and a risk expressed
as a percentage complexity overhead (ranging from 19 to 35%) to determine a
worst-case complexity. The criteria used for establishing release priorities were:
(1) advance the most valuable facts to early releases; (2) uniformly distribute the
worst-case complexity; and (3) respect the dependencies in fact implementation.
Besides, some fact were delayed because the development of specific extraction
interfaces by external consultants was required for some of their source data;
other facts were postponed due to some uncertainty on the requirements. After
each release, its actual duration was compared to the estimated complexity. In 2
cases it turned out that the estimation was inaccurate; this was fixed right away
by revising the remaining estimates and by changing the team composition.

One of the benefits of adopting 4WD in this project was the speed-up due to
large user involvement and extensive prototyping. Users were enabled to access a
web portal to signal the errors, and monitor the team’s answers and the project
state. This was particularly effective for improving the structure of reports and
the business rules for detecting source data errors. Noticeably, all errors signaled
by users were related to wrong data: user mainly own empirical knowledge, so it
may be hard for them to reason from an abstract point of view (e.g., to evaluate
an ETL flow or a report structure with no data loaded). The implementation
effort was reduced by partially reusing existing reports and dimension tables, be-
cause those required by administration and management control users are quite
standard. This was not the case for ETL, that required a strong personalization,
so reuse was limited to some basic routines made available by the adopted ETL
suite. Finally, adopting the DFM as a conceptual model enabled designers to
produce a concise but exhaustive documentation, and to use a CASE tool to
automate logical design [7].

5 Related Literature and Discussion

In this paper we started by identifying the main problems behind data ware-
house projects, and we ended up with proposing an original methodology, 4WD,
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inspired by six basic principles of modern software engineering. In this section we
critically compare 4WD with the existing data warehouse design methodologies.

Data warehouse design has been investigated by the research community since
the late nineties. A classic waterfall approach was first proposed in [6]; a distin-
guishing feature was the inclusion of a conceptual design phase aimed at better
formalizing the data schema. A sequential approach to design is also followed
in [14], where an object-oriented method based on UML is proposed to cover
analysis, design, implementation, and testing. Another UML-based method is
presented in [19]; here, the use of the Common Warehouse Metamodel (CWM)
is suggested to promote a more standard approach to conceptual design. All these
methodologies follow a linear approach that hardly adapts to changes and is un-
suitable when requirements are uncertain. In 4WD these problems are overcome
thanks to iteration and prototyping.

Iterative solutions are typically adopted by methodologies like RAD and Ag-
ile. The work in [12] breaks with strictly sequential approaches by applying two
Agile development techniques, namely scrum and eXtreme Programming, to the
specific challenges of data warehouse projects. To better meet user needs, the
work suggests to adopt a user stories decomposition step based on a set of archi-
tectural categories for the back-end and front-end portions of a data warehouse.
However, it does not deeply discuss how this decomposition impacts on modeling
and design. In this direction, 4WD emphasizes the key role of the multidimen-
sional model as a driver for the development process and promotes fact-based
iterations to increase its productivity while preserving reliability.

A different approach to tackle the data warehouse design complexity is the
MDA methodology proposed in [16] to better separate the system functionality
from its implementation. Strong relevance is given to the development of the
data warehouse repository; the three main perspectives of MDA (CIM, PIM,
and PSM) are defined using extensions of UML and CWM, and the inter-model
transformations are described using the Query/View/Transformation (QVT)
language. In practice, strictly applying this methodology may be hard due to the
poor aptitude of users for reading formal models and investing resources in low-
values activities. To overcome these issues, in 4WD automation is specifically
targeted on supply-driven conceptual design and logical design. This reasserts
the key role played by conceptual schemata of facts in 4WD.

A pragmatic comparison between data warehouse design methodologies is
offered in [22], where 15 different solutions proposed by Business Intelligence
software vendors are examined. The authors emphasize the lack of software-
independent approaches, and point out that all the proposed solutions hardly
can deal with changes and market evolution, which creates a robustness problem.
To improve robustness, 4WD specifically relies on three key factors: (a) iteration
breaks the linear development process by offering frequent deliveries and review-
ing points; (b) a formal and light documentation provides a clear picture of the
current specifications, facilitating the identification of the units to be evolved;
(c) automating schema transformations reduces the time needed to propagate
changes to the different levels.
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Abstract. At the early stages of a data warehouse design project, the
main objective is to collect the business requirements and needs, and
translate them into an appropriate conceptual, multidimensional design.
Typically, this task is performed manually, through a series of interviews
involving two different parties: the business analysts and technical de-
signers. Producing an appropriate conceptual design is an error-prone
task that undergoes several rounds of reconciliation and redesigning, un-
til the business needs are satisfied. It is of great importance for the busi-
ness of an enterprise to facilitate and automate such a process. The goal
of our research is to provide designers with a semi-automatic means for
producing conceptual multidimensional designs and also, conceptual rep-
resentation of the extract-transform-load (ETL) processes that orches-
trate the data flow from the operational sources to the data warehouse
constructs. In particular, we describe a method that combines informa-
tion about the data sources along with the business requirements, for
validating and completing –if necessary– these requirements, producing
a multidimensional design, and identifying the ETL operations needed.
We present our method in terms of the TPC-DS benchmark and show
its applicability and usefulness.

1 Introduction

“A gemstone or gem is a piece of attractive mineral, which –when cut and
polished– is used to make jewelry or other adornments. Most gems are
hard, but some soft minerals are used in jewelry because of their lustre
or other physical properties that have aesthetic value.” (Wikipedia)

As most of the raw materials and resources, gems are out there in large vari-
eties and quantities, but we need to dig and work hard in order to get them and
make profit out of them.

Data are the gems of the enterprise. They are available at large quantities,
but we need to “dig” for recognizing the relevant and useful ones, and to adjust
and polish them for making our valued assets, our “jewelry”. The jewelry for
an enterprise is any tool or means that facilitates strategic decision making and
helps in satisfying business needs. Such a tool is a data warehouse (DW) that
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organizes the raw, source data in a way that enables decision support. Building a
DW requires two essential constructs: the multidimensional (MD) design of the
target data stores and the extract-transform-load (ETL) process that populates
the target data stores from the source ones.

Nowadays, the construction of conceptual MD and ETL designs is an error-
prone, manual process that undergoes several rounds of reconciliation and re-
designing, until the business needs are satisfied. It is essential for the business
of an enterprise to facilitate, speed up, and automate these design processes.

This paper presents a system called GEM (Generating E tl and Multidimen-
sional designs). GEM starts with a set of source data stores and business re-
quirements –e.g., business queries, service level agreements (SLAs)– and based
on these, it produces a MD design for the target data stores, along with a set of
ETL operations required for the population of the target DW.

The semantics, characteristics, and constraints of data sources are represented
by means of an OWL ontology. The business requirements are expressed in a
structured form. We consider functional requirements that drive the generation
of the MD design constructs and also, soft or non-functional requirements –e.g.,
freshness, recoverability, availability– that can be used for giving “lustre” and
adding value to our designs. For example, based on a freshness requirement we
may decide which data source to use and according to a recoverability require-
ment we may choose to enrich the ETL process with recovering techniques.

For each business requirement, we identify the relevant part of the data sources
(e.g., concepts, attributes, properties) needed to answer it. If we identify conflicts,
we either suggest corrections or ask for user feedback. The output of these tasks
is an annotated subset of the source ontology that corresponds to a business
requirement. Next, we classify the relevant concepts as dimensional or factual
and validate the result. We also explore schema information for identifying the
respective ETL operations. Finally, we consolidate the individual designs, one
for each business requirement, and get the conceptual MD and ETL designs.

Contributions. In particular, our main contributions are as follows.

– We present GEM, a system that facilitates the production of ETL and MD
designs, starting from a set of business requirements and source data stores.
To the best of our knowledge, GEM is the first approach towards the semi-
automatic generation of both the ETL and MD conceptual designs, since we
automatically generate mappings from sources to cubes.

– We propose novel algorithms finding and validating an ontology subset as a
MD schema, and identifying ETL operators at the same time.

– We are able to deal with incomplete requirements and validate them.
– We evaluate our method using the schema and constructs of the TPC-DS

benchmark and show the quality of the GEM designs.

Outline. The rest of the paper is structured as follows. Section 2 formulates
the problem at hand and presents the GEM architecture. Sections 3 and 4 dis-
cuss the validation and completion of business requirements, respectively. Then,
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Section 5 describes the validation of the MD design and Section 6 the identifica-
tion of ETL operations. Section 7 evaluates GEM using the TPC-DS benchmark
and Section 8 presents the related work.

2 GEM in a Nutshell

This section gives an overview of our system, GEM. Given two inputs, namely
information about the operational sources and a set of user requirements,
GEM produces two designs: the MD design of the target DW constructs and the
conceptual ETL flow that interconnects the target constructs to the operational
sources.

2.1 Inputs

Source Data Stores. We capture the semantics of the data sources in terms of
an OWL ontology. In previous work, we have shown that a variety of structured
and unstructured data stores can be elegantly represented as graphs, and we
have also described how we can construct an appropriate ontology for such data
stores by integrating a domain vocabulary with the data sources’ vocabulary [17].
Here, due to space consideration, we assume that we do have an OWL ontology
annotated with the mappings of those concepts and properties available in the
operational data sources. For further details on how we get this ontology from
the sources, we refer the interested reader to our past work [17]. Figure 3 (page
92) depicts an example ontology based on the TPC-DS schema [19].

Business Requirements. In typical DW and ETL engagements, the design
starts from a set of functional and non-functional requirements (respectively f-
req and nf-req, from here on) expressing business needs. Example requirements
could be “examine stocks provided by suppliers” or “a report on total revenue per
branch should be updated every 10 minutes”. Such requirements often come as
service level agreements (SLAs) or business queries and are expressed in various
forms, either structured or unstructured. Much work has been done in capturing
and representing business needs. For example, SLAs expressed as free-form text,
require natural language processing (NLP) techniques for being interpreted in a
machine processable way. How to capture such requirements are out of the scope
of this work. Here, without loss of generality, we consider requirements expressed
in a structured way (e.g., by means of i* profiles [22]). Such requirements are
represented in an XML file that contains two main parts.

The first part involves functional or information requirements that are cap-
tured by identifying the measures and dimensions of interest. In the previous
example, stocks would be the measure and suppliers the dimensional concept.

<measures><concept id = “stocks”/></measures>
<dimensions><concept id = “suppliers”/></dimensions>

The second part, involves the non-functional requirements of interest for each
concept indicated by the functional requirements. For example, the measures
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used by the revenue report (i.e., the respective view) should conform to a non-
functional requirement for freshness that requires that the corresponding data
should be updated at least every 10 minutes.

<concept id = ”v revenue”><nf req>
<freshness format = “HH24:MI :SS”> &lt; 00:10:00 </freshness>

</nf req></concept>

Due to space restrictions, we omit a detailed description of the XML structure
for representing such requirements. Briefly, it contains:

– Levels of detail, which represent data granularity. The user may provide a
discretization process for continuous (or with high cardinality) data types.

– Descriptors, which carry out selections over them (i.e., slicers). Type of
comparison carried out; e.g., “in a given year YYYY”.

– Measures, which should be analyzed. Aggregation function and a partial
order between them; the latter is needed when we perform different aggrega-
tions (one order per dimension). In doing so, we would be able to distinguish
between, for example, ‘average of sums’ and ‘sum of averages’.

Note that although our XML structure captures multidimensional requirements
over a domain (i.e., non-multidimensional) ontology, the expressivity we support
is equivalent to that of the dimensional expressions introduced in [4].

In addition, we may have nf-reqs either for each one of the above three
elements or for the whole design.

As a remark, different requirements affect different design levels. For example,
a freshness requirement indicates how often an ETL flow should run in order to
meet the required latency in updating the DW. However, such decision affects the
execution level and should be taken under consideration at the physical model.
Nevertheless, we may need to use this requirement during the conceptual design
as well. For example, assume two source data stores containing the same data
but placed in different locations for business reasons (e.g., two snapshots placed
in two different branches of the organization). Assume also that the first data
store is updated every hour and the second every 5 minutes or that the conges-
tion of the network coming from the first data store is significantly greater than
the one coming from the second source. If we have such information, then based
on the freshness requirement we need to honor for our target data stores, we
should decide to pull data from the second data store. Clearly, such decision is
to be taken at the conceptual level.

However, we are interested in capturing all requirements. Those that cannot
be used at the conceptual level (which is the focus of this paper) should be trans-
ferred to the subsequent, more detailed design levels, along with the outcome
of this process; i.e., the conceptual ETL and MD designs. Hence, the designer
of the logical and physical models does not need to revisit and reinterpret the
original set of business requirements.
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Fig. 1. System architecture

2.2 System Architecture

The process of producing the ETL and MD designs is a semi-automatic process
comprising five main stages (see Figure 1). Here, we briefly describe these stages.
The next sections provide more details for each stage.
Stage 1: Requirement Validation. First, the system checks if there is a
mismatch among the business requirements (either functional or non-functional)
in the XML and the data sources, by looking for the corresponding concepts in
the ontology and checking whether they are mapped to the sources or not. In
case of mismatch, it identifies the possible problems or it may suggest relaxation
of the requirements. Otherwise, concepts in the ontology are selected and tagged
as either Level, Descriptor or Measure. These concepts are also annotated with
nf-reqs and composition of extraction mappings, if necessary.
Stage 2: Requirement Completion. After considering the business require-
ments, the system complements them with additional information gathered from
the sources. This stage identifies intermediate concepts that are not explicitly
stated in the business requirements, but are needed in order to answer the f-
reqs. User feedback is welcomed for ensuring correctness and compliance to the
end-user needs.
Stage 3: Multidimensional Tagging. Next, we tag the new concepts iden-
tified by the previous stage, as either factual or dimensional and validate the
correctness of these completed f-reqs tagging according to MD design principles.
Hence, we check two issues: i) first, whether the factual data is arranged in a
MD space (i.e., if each instance of factual data is identified by a point in each
of its analysis dimensions) and second, ii) whether the data summarization is
correct by examining whether the following conditions hold [8]: (1) disjointness
(the sets of objects to be aggregated must be disjoint); (2) completeness (the
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union of subsets must constitute the entire set); and (3) compatibility of the
dimension, the type of measure being aggregated and the aggregation function.
Stage 4: Operator Identification. The ETL operations are identified in three
phases. First, we use the annotations generated by the previous steps (i.e., map-
pings in Stage 1, intermediate concepts in Stage 2, and their taggings in Stage 3)
for extracting schema modification operations. Then, we complement the design
with additional information that might be found in the sources and with typical
ETL operations regarding surrogate key and slowly changing dimensions.
Stage 5: Conciliation. The previous stages run once for each f-req. Eventually,
the individual results obtained per f-req are conciliated in a single conceptual
MD schema and a single ETL flow.

2.3 Output

At the end, we produce a conceptual, MD schema composed by facts and dimen-
sions. In addition, we identify the ETL operations needed in order to interconnect
the source data stores to the MD constructs.

3 Requirement Validation

Starting from the inputs discussed in Section 2.1, we validate the business re-
quirements w.r.t. the available data sources, as follows: (a) we analyze the input
XML file and tag the ontology concepts corresponding to the f-req, identifying
possible mapping conflicts, and (b) we include and then validate assertions re-
garding nf-reqs and data sources features. The input XML file contains three
kinds of concepts: measures, levels, and descriptors (see Section 2.1). So, first, we
tag the corresponding concepts in the input ontology with these labels. Then, we
check whether the tagged concepts can be mapped to the sources (either directly
or by means of ETL operators). When an error occurs, user feedback is required.
The validation method is as follows:

1. if the tagged concept is mapped to the sources then no further action is needed
2. else if the tagged concept is involved in a concept taxonomy then

(a) if any of its subclass(es) has (have) a mapping then we annotate the tagged concept
with the ETL operations ‘renaming’ and ‘union’

(b) else if any superclass has a mapping then we use the general concept mapped and
annotate the required concept with ETL operations ‘renaming’ and ‘selection’

i. if discriminant function has not been specified in the input XML file then user
feedback is required

i. if the tagged node has several superclasses then ‘minus’ or ‘intersection’ are also
considered (see Section 6 for details)

3. else if exists a (transitive) one-to-one association to a mapped concept then suggest it as a
potential synonym
(a) if the suggestion is accepted then the f-req is updated with the synonym concept

4. else the concept is not available in the data sources

4 Requirement Completion

This stage takes as input the annotated ontology produced in the previous stage
and it completes the requirements regarding the sources. First, it identifies in-
termediate concepts that are not explicitly stated in the f-req, but needed to
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retrieve the required information. If an f-req cannot be met, it suggests alter-
native solutions. Finally, it produces the ontology subset needed to answer the
business query at hand and additional annotations regarding ETL operations.

This stage starts with a pruning process. We identify how tagged concepts
are related in the ontology and then, (a) we disregard concepts/relationships not
mapped nor tagged (if a concept taxonomy is affected, we replace the concept
pruned with the first superclass mapped/tagged); and next, (b) we prune all
the mapped many-to-many (i.e., *-*) associations. Note that such associations
violate the three summarization necessary conditions [8] and thus, they cannot
be exploited for MD design. The outcome of this pruning is a subset of the
input annotated ontology, which we call AOS. Since an arbitrary ontology can
be represented as a graph, we will talk about paths between concepts and thus,
we will also refer to concepts as nodes and to associations as edges.
Looking for Paths Between Tagged Concepts. For identifying how tagged
concepts are related in the sources, we use the following algorithm that computes
paths between tagged concepts.

1. foreach edge e in O do
(a) if right left concepts(e) are tagged then paths between tagged concepts ∪=e;
(b) else if right concept(e) is tagged then max length paths ∪=e; //Seed edges

2. while size(max length paths) != ∅ do
(a) paths := ∅;
(b) foreach path p in max length paths do

i. extended paths := explore new edges(p, O); //only considering edges not in p
ii. foreach path p1 in extended paths do

A. if left concept(p1) is tagged then paths between tagged concepts ∪=p1;
B. else paths ∪= p1;

(c) max length paths := paths;
3. return paths between tagged concepts;

We start by identifying edges directly relating tagged concepts (step 1a) and
edges reaching tagged concepts (from now on, seed edges; step 1b). For the
sake of understandability, although the AOS has no directed edges, we say that
the tagged node is in the seed edge right-end, and its counterpart to be in the
the left-end. Then, the algorithm applies the transitive property starting from
tagged concepts. At the first iteration, we explore new edges such that their
right-end matches the left-end of a seed edge, and similarly for the forthcoming
iterations (step 2(b)i). Intuitively, we explore paths starting from tagged con-
cepts by exploring a new edge per iteration. This guided exploration has two
main restrictions: we cannot explore any edge already explored in a given path
(step 2(b)i) and if we reach another tagged concept we finish exploring that
path (i.e., we have found a path between tagged concepts; step 2(b)iiA). Note
that in a given iteration i, we only explore the longest paths computed in the
previous iteration (steps 1b and 2c). Eventually, we explore all the paths and
the algorithm finishes (step 2). Observe that step 1 can be computed by means
of generic ontological reasoning.

This algorithm is sound since it computes direct relationships and propagates
them according to the transitivity rule and complete, because it converges; note
that each path is explored only once. This algorithm has a theoretical exponen-
tial upper bound regarding the size of the longest path between tagged concepts.
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However, this theoretical upper bound is hardly achievable in real-world ontolo-
gies as they have neither all classes with maximum connectivity nor all paths
are of maximum length. Moreover, note that *-* relationships were previously
pruned. (See also our evaluation in Section 7).
Producing the Output Subset. Based on the paths between tagged con-
cepts that the previous algorithm found, the following algorithm determines the
ontology subset needed to answer the f-req.

1. if between two tagged concepts there are more than one path then we ask the user for
disambiguation (i.e., which is the path fulfilling the semantics needed for the f-req at hand)

2. foreach pair of related tagged concepts not involving a descriptor do
(a) Edges forming that path are annotated as aggregation edges, because these relationships

determine the data granularity of the output

The AOS is compound by the paths selected in step 1. Note that these paths
include the intermediate concepts (i.e., those not tagged but involved in the
paths) and that the user may not select any path between a given pair of con-
cepts. At this point, taxonomies are also disregarded.
Annotating the Ontology AOS. Having an AOS containing the new concepts
needed to answer the f-req (besides those in the input XML file), we check
whether the whole graph makes MD sense.

First, we check the semantics of each edge according to the tag -if any- of the
related concepts and its multiplicity. According to these semantics, we tag each
edge with MD relationships that it could represent; i.e., related MD concepts.
Next, we consider factual nodes (those tagged as measures) and dimensional
nodes (those either tagged as levels or descriptors). For guaranteeing the MD
design principles (see Section 2.2), factual and dimensional nodes must be re-
lated properly. For example, factual data cannot be related to dimensional data
by means of a one-to-many (i.e., 1-*) association, as by definition, each instance
of factual data is identified by a point in each of its analysis dimensions. Di-
mensional data can only appear in the *-end of an edge when the other end is
also tagged as dimensional data. Furthermore, non-complete associations –i.e.,
accepting zeros– in the dimensional end are not allowed either, as they do not
preserve completeness.

Hence, we analyze the graph looking for not correct edges and try to fix them.
For example, if the node in the *-end of a *-1 association is tagged as dimensional
then, its counterpart should also be dimensional. If by doing so we have been able
to infer an unequivocal label, this knowledge is propagated to the rest of the AOS.
However, if we identify a meaningless conceptual relationship –i.e., when both
ends are tagged in a forbidden way– the algorithm stops and alternative analysis
scenarios are proposed. For this task, we use previously proposed techniques, as
those described in [14].

5 Multidimensional Validation

This stage validates the AOS and checks whether its concepts and associa-
tions collectively produce a data cube. If the validation fails (according to the
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constraints discussed in Section 2.2), GEM proposes alternative analysis solu-
tions. Otherwise, the resulting MD schema is directly derived from the AOS.

The previous stage might have propagated some tags when tagging the AOS
associations (i.e., inferring unequivocal knowledge), but it does not guarantee
that all the concepts have a MD tag at this point. Thus, we start this stage
with a pre-process aimed at deriving new MD knowledge from non-tagged con-
cepts, and each non-tagged concept is considered to play a dimensional role or
a factual role. Furthermore, it would be possible to retag a dimensional node as
dimensional/factual node. Next, we validate if any of these tags, eventually, are
sound in a MD sense. Thus, in this step, we determine every potential MD tag-
ging that would make sense for the input f-req and we also determine how these
alternatives would affect the output schema, deriving (in some cases) interesting
analytical options that may have been overlooked by the designer.

For each possible combination of new tags, an alternative annotation is created
if the tags do not contradict the edge semantics already depicted in the AOS.
Subsequently, each of these AOS will be validated and only those that make MD
sense will be finally considered. Therefore, an f-req can produce several valid
MD taggings for the same AOS and thus, multiple MD schemas.

The validation process introduced in this stage guarantees the multidimen-
sional normal forms presented in [6,7] for validating the output MD schema,
and the summarizability constraints discussed in [10]. The following algorithm
is called once for each alternative tagging generated.

1. If !factualdata(AOS) then return notifyFail(”The requirement does not include any fact.”);
2. If !connected(AOS) then return notifyFail(”Cartesian product is not allowed.”);
3. For each subgraphOfLevels ⊂ AOS do

(a) If cycles(subgraphOfLevels) and contradictoryMultiplicities(subgraphOfLevels)
then

i. return notifyFail(”Cycles cannot be used to select data”);
(b) If existsTwoLevelsRelatedSameFactualData(subgraphOfLevels) then

i. return notifyFail(”Non-orthogonal Analysis Levels”);
(c) For each (c1, c2) ∈ getToManyEdges(subgraphOfLevels) do

i. If relatedToNodesWithMeasures(AOS, c2) then
A. return notifyFail(”Aggregation Problems”);

4. For each cycle ⊂ AOS do

(a) If contradictoryMultiplicities(cycle) then
i. return notifyFail(”Cycles cannot be used to select data”);

(b) else
i. askUserForSemanticV alidation();
ii. add(AOS, newContextEdge(bottom(cycle), top(cycle), cycle));

5. For each (c1, c2) ∈ getToManyEdges(AOS) do

(a) If relatedToNodesWithMeasures(AOS, c2) then
i. return notifyFail(”Aggregation problems between Measures”);

Step 1 ensures that the AOS contains factual data. Note that in our pre-
process we could have tagged nodes as factual data that do not contain mea-
sures. From here on, we distinguish between factual nodes and factual nodes with
measures. So this function returns false if all the nodes are tagged as dimensional
data. Step 2 ensures that the AOS is connected to avoid “Cartesian Product”.

The intuition behind steps 3 to 5 is shown in Figure 2. Step 3 validates levels
subgraphs (i.e., subgraphs only containing level concepts) with regard to where
factual nodes are placed. First, every subgraph must represent a valid dimension
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Fig. 2. Graphical representation of the multidimensional validation steps

hierarchy. We must be able to identify two nodes in the level subgraph which
represent the top and bottom levels of the hierarchy (Step 3a). Two different
levels in a subgraph cannot be related to the same factual node (Step 3b).
Moreover, level - level edges raising aggregation problems in factual nodes with
measures must be forbidden (Step 3c). Note that by convention we assume that
in every *-1 edge (c1, c2), c1 corresponds to the * end of the association. Hence,
Step 3 validates the correspondences between dimensional nodes, whereas Step
4 generates the path of factual nodes (MD data retrieved); i.e., it validates
cycles in the path of factual nodes to ensure that they are not used to select
data, similarly to the validation of levels cycles in 3a. Once the cycle has been
validated, the edges involved are clustered in a context edge (since cycles are
checked to correspond a correct multi-path aggregation hierarchy, i.e., a one-
to-many or one-to-one lattice) tagged with the lattice multiplicity, as shown in
Figure 2. Finally, Step 5 looks for aggregation problems induced by factual nodes
with measures at the 1-end of a 1-* edge –either context edge or not.

6 Operation Identification

For each graph validated as a data cube in the previous stage, we launch an
ETL operation identification process, which is a semi-automatic process that
comprises three phases.
Phase I. This phase identifies operations that are needed for mapping the source
to target data stores, using the target schema produced in the previous stage.
For example, for aggregating over states, we need a location dimension at the
target site and to map it with source information about zip code, street address,
and so on.

During this phase, we identify mainly schema modification operations as fol-
lows. Selection is generated from concepts having attached a selection condition:
from slicers recorded in AOS; or when a required concept does not have any
mapped source (neither it nor its subclasses), while some of its superclasses
do have such mapping. Union appears when a required concept is not directly
mapped to the sources, but some of its subclasses are. Similarly, Intersection and
Minus are generated when a concept is not mapped but some of its superclasses
are. Join is generated for every association in the ontology; if one or both of
the association ends is not mandatory, we state it as outer. Aggregation is gen-
erated when a *-1 association is found so that there is a measure at its *-end.
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Renaming is generated for each attribute in the data sources and gives to it the
name of the corresponding ontological concept. Projection is generated for each
concept and association in the ontology. Function expresses operations stated in
the requirements, like a discretization process for an attribute to be used in a
dimension or a transformation for an attribute to facilitate its interpretation as
a measure.

Starting from the AOS, we iteratively synthesize several of its nodes into one
single operation, as shown in the algorithm placed in the next page.

The ETL variable is a directed acyclic graph that tracks the ETL flow gen-
erated, whereas the findOper(ETL g, concept c) function looks for a node in
g, with no successors, such that it contains c. Step 1 considers extraction oper-
ations like a single table access, a union, an intersection or a minus operation,
along with the corresponding selection, projection, renaming mechanisms, and
functions. Step 2 fuses all data that do not involve any aggregation. Hence, for
those AOS nodes related by means of 1-1 associations (i.e., identity), we join
their corresponding operations in the ETL. We also join nodes connected with
edges that do not involve aggregation (i.e., stemming from slicing requirements
and identified in Section 4).

1. For each c ∈ AOS do

(a) add(ETL, newExtraction(c));

2. For each (c1, c2) ∈ edges(AOS) do
(a) If multiplicity((c1, c2)) = ”1 − 1” or not aggregationEdge((c1 , c2)) then

i. o1 := findOper(ETL, c1); o2 := findOper(ETL, c2);
ii. If o1 <> o2 then add(ETL,newJoin(o1, o2, getGroupingAttrs(o1)));

3. For each o ∈ ETL and successors(ETL, o) = ∅ and | outputEdges(AOS, o) |> 1 do
(a) setGroupingAttrs(o, ∅); e := outputEdges(AOS, o);
(b) For each (c1, c2) ∈ (e) do

i. o2 := findOper(ETL, c2);
ii. o := newJoin(o, o2, getGroupingAttrs(o) ∪ getGroupingAttrs(o2));
iii. add(ETL, o);

(c) add(ETL, newAggr(o, getGroupingAttrs(o));
4. While not connected(ETL) do

(a) (c1, c2) := first(
⋃

o=containsMeasure(ET L) outputEdges(o));

(b) o1 := findOper(ETL, c1); o2 := findOper(ETL, c2);
(c) o3 := newJoin(o1, o2, (getGroupingAttrs(o1) \ getAttr(c1)) ∪ getGroupingAttrs(o2));
(d) add(ETL, o3); add(ETL,newAggr(o3, getGroupingAttrs(o3)));

Step 3 creates the basic cubes. First, we check the already generated opera-
tions that have no successors, and whose AOS nodes have more than one edge
with the 1-end related to a concept in another ETL node without successors (ob-
serve that after step 2 only *-1 associations remain). Next, we successively join
these operations. The grouping attributes of the final operation is the union of
the grouping attributes of each joined operation. Note that a grouping operation
is generated to guarantee that data is at the appropriate granularity.

Finally, step 4 connects all cubes produced, starting from those with measures,
by following the order specified by the requirements. Since each AOS edge not
used yet corresponds to an aggregation, we join the output of the operations
(following the AOS aggregation edges), substitute the grouping attributes of c1

by those of the new aggregation level c2, and generate the grouping operation
taking into account the new attributes. The choice of the aggregation function
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depends on the requirements (there, it should be associated to a corresponding
measure and c2) or a default one is used; e.g., SUM .
Phase II. During this phase, the designer might want to refine the design pro-
duced by checking for additional information at the sources that might be useful.
(Part of this phase can be done before Phase I too.) For example, the domain
ontology might relate state with zip code and street address. If there is a source
containing information about “location” and contains both the street address
and zip code in the same field, then such information is definitely useful, but the
domain ontology cannot help. We can correct this by enriching the result with
such a mapping and producing the appropriate function(s).

Nf-reqs can be exploited in a similar way. For example, a strict requirement
regarding recoverability may suggest to consider adding recovery points at points
of the flow that are generally known for being expensive (e.g., after the extraction
phase or after an expensive blocking operator [16]). Of course the final decision
on which are the good places to add recovery points is to be taken by an optimizer
at the logical level [16].

The same holds when we work with f-reqs that involve the data itself. For
example, a requirement like “make sure that each customer is considered once”
can add a “de-duplicate customer info” operation to the design.
Phase III. The last phase complements the design with operations needed to
satisfy standard business and design needs. This task is mainly automatic and
involves typical DW operations that can be identified and added to the design
after the consolidation phase.

For example, common practices suggest replacing production keys with sur-
rogate keys. For that, the system identifies the respective production keys and
enriches the design with appropriate ‘surrogate key assignment’ operations. Sim-
ilarly, the system adds operations that take care of slowly changing dimensions
(SCDs). There are standard dimensions that are not updated very often (e.g.,
dimensions that keep structural information about the organization such as ge-
ographical location, customer information or product information). Hence, the
design can be enriched with operations that handle the update of such dimen-
sions. Possible update operations for SCDs can be: do nothing (do not propagate
changes), keep no history (overwrite old values with new data), keep history by
creating multiple records in the dimensional tables with separate keys, keep his-
tory using separate columns, keep history by storing new data to an active table
and keep (all or some of the) old values to ’history tables’, or use a hybrid ap-
proach. Of course, here we list just a few frequently used operations. The list
can go long and our method is extensible to adapt such a list.

7 Evaluation

We evaluated GEM using the TPC-DS benchmark [19]. TPC-DS provides a set
of DW tables –both facts and dimensions– along with a set of data sources.
ETL operations (or data maintenance functions according to TPC-DS) are also
provided, for maintaining fact tables and dimensions. Finally, a set of business
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Fig. 3. Ontology for TPC-DS data sources

queries (i.e., business requirements) exists. Having all these constructs allows us
to evaluate our method as follows. Starting only from the business queries and
the data source, we use GEM for producing the DW schema and ETL opera-
tions. Then, we compare our solutions to the design constructs provided by the
benchmark. Here, due to limited space, we show results concerning the store sales
cube (the results generalize throughout the whole benchmark though).

We worked as follows. We constructed an ontology containing all source tables,
specializations, and added some additional concepts that do not map to data
sources (see Figure 3). Thus, we intentionally make the ontology more complex
by adding more classes to stress GEM ; note, that adding more associations does
not affect GEM, since these would be pruned during AOS creation.

First, we examine the search space produced for AOS creation. Figure 4
presents the number of algorithm iterations needed to converge, the total num-
ber of paths computed, the number of paths between tagged concepts (i.e., the
output), and the maximum length of the output, per business query. The re-
sults show that the search space is not exponential regarding the length of the
longest path. Indeed, although the average length of the longest path is 8, in the
worst case, our algorithm computes no more than 178 paths (24 between tagged
concepts). These findings verify the feasibility and efficiency of our approach in
real-world cases. In fact, the worst total time did not exceed 900ms. Construct-
ing AOS is the most expensive part of our method; the rest tasks are processed
fairly fast, in much less time.

Next, we evaluated the quality of our solutions (see Figure 5). Every busi-
ness query reveals a part of the final design (tables and attributes). Frequently,
business queries reveal overlapping information. However, after a few iterations
over these queries (in fact, after the fifth query) we identified correctly all target
tables. Since numerous attributes are involved overall, identifying them requires
digging into more requirements. After processing 11 business queries, we identi-
fied almost 40% of the total attributes. However, attributes are added throughout
the whole process. For example, surrogate keys are identified after Phase III of
the ETL operation identification task.
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Fig. 4. Space Fig. 5. MD coverage Fig. 6. ETL coverage

Two observations can be made at this point. One may find tempting the fact
that the target tables are identified really fast. Thus, after a certain point of her
choice, the designer might want to stop this automatic process and start refining
the design by herself. As an aside issue, many business queries involve the same
target design constructs. This means that these constructs (e.g., tables) should
be quite popular and this information can help us in the physical design; e.g.,
for choosing appropriate indices or partitioning schemes.

Similar are the findings for the identification of ETL operations (see Figure 6).
GEM returned almost 60% of ETL operations after the completion of Phase I.
The remaining operations (not shown in the figure) are mostly surrogate key
assignments and a few SCDs, which are identified after Phase III. Therefore,
GEM identifies the complete set of ETL operations for the TPC-DS case.

8 Related Work

Various efforts have been proposed for the conceptual ETL modeling. These in-
clude approaches based on ad hoc formalisms [20], on standard languages like
UML (e.g., [9]), MDA (e.g., [11,12]), BPMN [1], and on semantic Web technology
and graph transformations [17]. Most of these works do not specifically consider
business requirements and do not describe how such requirements drive ETL de-
sign. Recent research on optimization of information integration flows proposed
techniques for incorporating such objectives into ETL design [2,15,16,21]. How-
ever, none of the abovementioned research efforts considers synchronous creation
of MD design. In addition, commercial, off-the-shelf ETL products do not offer
functionality similar to the one described in this paper.

Many works have dealt with designing DW models; e.g., [3,5,11,13,18], to
mention a few, but the list is long. However, in most works, it seems that the
more the process gets automated, the more the integration of requirements is
overlooked on the way. Recently, the use of ontologies was considered for facili-
tating this task [13]. However, that work aims at identifying the MD knowledge
contained in the sources and overlooks business requirements. Another approach
to MD design considers business requirements too [14], but the f-req are con-
sidered in the form of SQL queries, so a major design task is done manually.
GEM automates this part and automatically creates such queries from f-req. In
addition, GEM is different from all previous approaches in that it identifies the
ETL operation at the same time.
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9 Conclusions

We have presented GEM. A system that facilitates the (semi-)automatic genera-
tion of ETL and MD conceptual designs, starting from a set of business require-
ments and data sources. In particular, we have described how the requirements
can be validated and enriched, in order to produce an annotated ontology con-
taining correct information for both the sources and the requirements. Then, we
have shown how to use this ontology for producing the MD and ETL conceptual
designs. Finally, we have reported on our experimental findings working on the
TPC-DS benchmark. Our future plans involve extending our techniques to the
logical and physical levels, for facilitating their (semi-)automatic production.
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Abstract. Extract-Transform-Load (ETL) flows periodically populate data ware-
houses (DWs) with data from different source systems. An increasing challenge
for ETL flows is processing huge volumes of data quickly. MapReduce is estab-
lishing itself as the de-facto standard for large-scale data-intensive processing.
However, MapReduce lacks support for high-level ETL specific constructs, re-
sulting in low ETL programmer productivity. This paper presents a scalable di-
mensional ETL framework, ETLMR, based on MapReduce. ETLMR has built-in
native support for operations on DW-specific constructs such as star schemas,
snowflake schemas and slowly changing dimensions (SCDs). This enables ETL
developers to construct scalable MapReduce-based ETL flows with very few code
lines. To achieve good performance and load balancing, a number of dimension
and fact processing schemes are presented, including techniques for efficiently
processing different types of dimensions. The paper describes the integration of
ETLMR with a MapReduce framework and evaluates its performance on large re-
alistic data sets. The experimental results show that ETLMR achieves very good
scalability and compares favourably with other MapReduce data warehousing
tools.

1 Introduction

In data warehousing, ETL flows are responsible for collecting data from different data
sources, transformation, and cleansing to comply with user-defined business rules and
requirements. Traditional ETL technologies face new challenges as the growth of in-
formation explodes nowadays, e.g., it becomes common for an enterprise to collect
hundreds of gigabytes of data for processing and analysis each day. The vast amount
of data makes ETL extremely time-consuming, but the time window assigned for pro-
cessing data typically remains short. Moreover, to adapt rapidly changing business en-
vironments, users have an increasing demand of getting data as soon as possible. The
use of parallelization is the key to achieve better performance and scalability for those
challenges. In recent years, a novel “cloud computing” technology, MapReduce [6], has
been widely used for parallel computing in data-intensive areas. A MapReduce program
is written as map and reduce functions, which process key/value pairs and are executed
in many parallel instances.

We see that MapReduce can be a good foundation for the ETL parallelization. In
ETL, the data processing exhibits the composable property such that the processing of
dimensions and facts can be split into smaller computation units and the partial results
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from these computation units can be merged to constitute the final results in a DW. This
complies well with the MapReduce paradigm in term of map and reduce.

ETL flows are inherently complex, which is due to the plethora of ETL-specific activ-
ities such as transformation, cleansing, filtering, aggregating and loading. Programming
of highly parallel and distributed systems is also challenging. To implement an ETL pro-
gram to function in a distributed environment is thus very costly, time-consuming, and
error-prone. MapReduce, on the other hand, provides programming flexibility, cost-
effective scalability and capacity on commodity machines and a MapReduce frame-
work can provide inter-process communication, fault-tolerance, load balancing and task
scheduling to a parallel ETL program out of the box. Further, MapReduce is a very pop-
ular framework and is establishing itself as the de-facto standard for large-scale data-
intensive processing. It is thus interesting to see how MapReduce can be applied to the
field of ETL programming.

MapReduce is, however, a generic programming model. It lacks support for high-
level DW/ETL specific constructs such as the dimensional constructs of star schemas,
snowflake schemas, and SCDs. This results in low ETL programmer productivity. To
implement a parallel ETL program on MapReduce is thus still not easy because of
the inherent complexity of ETL-specific activities such as the processing for different
schemas and SCDs.

In this paper, we present a parallel dimensional ETL framework based on MapRe-
duce, named ETLMR, which directly supports high-level ETL-specific dimensional
constructs such as star schemas, snowflake schemas, and SCDs. We believe this to be
the first paper to specifically address ETL for dimensional schemas on MapReduce.
The paper makes several contributions: We leverage the functionality of MapReduce
to the ETL parallelization and provide a scalable, fault-tolerable, and very lightweight
ETL framework which hides the complexity of MapReduce. We present a number of
novel methods which are used to process the dimensions of a star schema, snowflaked
dimensions, SCDs and data-intensive dimensions. In addition, we introduce the offline
dimension scheme which scales better than the online dimension scheme when handling
massive workloads. The evaluations show that ETLMR achieves very good scalability
and compares favourably with other MapReduce data warehousing tools.

The running example: To show the use of ETLMR, we use a running example through-
out this paper. This example is inspired by a project which applies different tests to web
pages. Each test is applied to each page and the test outputs the number of errors de-
tected. The test results are written into a number of tab-separated files, which serve as
the data sources. The data is processed to be stored in a DW with the star schema shown
in Fig. 1. This schema comprises a fact table and three dimension tables. Note that
pagedim is a slowly changing dimension. Later, we will consider a partly snowflaked
(i.e., normalized) schema.

The remainder of the paper is structured as follows: Section 2 gives an overview of
ETLMR. Sections 3 and 4 present dimension processing and fact processing, respec-
tively. Section 5 introduces the implementation of ETLMR in the Disco MapReduce
framework, and presents the experimental evaluation. Section 6 reviews related work.
Finally, Section 7 concludes the paper and provides ideas for future work.
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Fig. 1. Star schema of the running example Fig. 2. Data flow on MapReduce

2 Overview

Fig. 2 illustrates the data flow using ETLMR on MapReduce. In ETLMR, the dimen-
sion processing is done at first in a MapReduce job, then the fact processing is done in
another MapReduce job. A MapReduce job spawns a number of parallel map/reduce
tasks1 for processing dimension or fact data. Each task consists of several steps, in-
cluding reading data from a distributed file system (DFS), executing the map function,
partitioning, combining the map output, executing the reduce function and writing re-
sults. In dimension processing, the input data for a dimension table can be processed by
different processing methods, e.g., the data can be processed by a single task or by all
tasks. In fact processing, the data for a fact table is partitioned into a number of equal-
sized data files which then are processed by parallel tasks. This includes looking up
dimension keys and bulk loading the processed fact data into the DW. The processing
of fact data in the reducers can be omitted (shown by dotted ellipses in Fig. 2) if no
aggregation of the fact data is done before it is loaded.

Algorithm 1. The ETL process

1: Partition the input data sets;
2: Read the configuration parameters and initialize;
3: Read the input data and relay the data to the map function

in the map readers;
4: Process dimension data and load it into dimension stores;
5: Synchronize the dimensions across the clustered comput-

ers, if applicable;
6: Prepare fact processing (connect to and cache dimen-

sions);
7: Read the input data for fact processing and perform trans-

formations in mappers;
8: Bulk load fact data into the DW.

Algorithm 1 shows the details of the
whole process of using ETLMR. The
operations in lines 2-4 and 6-7 are the
MapReduce steps which are responsible
for initialization, invoking jobs for pro-
cessing dimensions and facts, and return-
ing processing information. Line 1 and 5
are the non-MapReduce steps which are
used for preparing input data sets and syn-
chronizing dimensions among nodes (if
no DFS is installed).

ETLMR defines all the run-time parameters in a configuration file, including declara-
tions of dimension and fact tables, dimension processing methodologies, user-defined-
functions (UDFs) for processing data, number of mappers and reducers, and others. A
complete example is available at [9].

1 Map/reduce task denotes map tasks and reduce tasks running separately.
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3 Dimension Processing

In ETLMR, each dimension table has a corresponding definition in the configuration
file. For example, we define the object for the dimension table testdim of the running
example by testdim = CachedDimension(name=’testdim’, key=’testid’, defaultidvalue
=-1, attributes=[’testname’, ’testauthor’], lookupatts=[’testname’, ]). It is declared as
a cached dimension which means that its data can be temporarily kept in memory.
ETLMR also offers other dimension classes for declaring different dimension tables, in-
cluding SlowlyChangingDimension and SnowflakedDimension, each of which are con-
figured by means of a number of parameters for specifying the name of the dimension
table, the dimension key, the attributes of dimension table, the lookup attributes (which
identify a row uniquely), and others. Each class offers a number of functions for dimen-
sion operations such as lookup, insert, ensure, etc.

ETLMR employs MapReduce’s primitives map, partition, combine, and reduce to
process data. This is, however, hidden from the user who only specifies transformations
applied to the data and declarations of dimension tables and fact tables. A map/reduce
task reads data by iterating over lines from a partitioned data set. A line is first processed
by map, then by partition which determines the target reducer, and then by combine
which groups values having the same key. The data is then written to an intermediate
file (there is one file for each reducer). In the reduce step, a reduce reader reads a list of
key/values pairs from an intermediate file and invokes reduce to process the list. In the
following, we present different approaches to process dimension data.

3.1 One Dimension One Task

In this approach, map tasks process data for all dimensions by applying user-defined
transformations and by finding the relevant parts of the source data for each dimension.
The data for a given dimension is then processed by a single reduce task. We name this
method one dimension one task (ODOT for short).

The data unit moving around within ETLMR is a dictionary mapping attribute
names to values. Here, we call it a row, e.g., row={’url’:’www.dom0.tl0/p0.htm’,’size’:
’12553’,’serverversion’:’SomeServer/1.0’, ’downloaddate’:’2011-01-31’,’lastmoddate’:
’2011-01-01’, ’test’:’Test001’, ’errors’:’7’}. ETLMR reads lines from the input files
and passes them on as rows. A mapper does projection on rows to prune unnecessary
data for each dimension and makes key/value pairs to be processed by reducers. If we
define dimi for a dimension table and its relevant attributes, (a0, a1..., an), in the data
source schema, the mapper will generate the map output, (key, value) = (dimi.name,∏

a0,a1,...,an
(row)) where name represents the name of dimension table. The MapRe-

duce partitioner partitions map output based on the key, i.e., dimi.name, such that the
data of dimi will go to a single reducer (see Fig. 3). To optimize, the values with identi-
cal keys (i.e., dimension table name) are combined in the combiner before they are sent
to the reducers such that the network communication cost can be reduced. In a reducer,
a row is first processed by UDFs to do data transformations, then the processed row is
inserted into the dimension store, i.e., the dimension table in the DW or in an offline
dimension store (described later). When ETLMR does this data insertion, it has the fol-
lowing reduce functionality: If the row does not exist in the dimension table, the row
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is inserted. If the row exists and its values are unchanged, nothing is done. If there are
changes, the row in the table is updated accordingly. The ETLMR dimension classes
provide this functionality in a single function, dimi.ensure(row). For an SCD, this
function adds a new version if needed, and updates the values of the SCD attributes,
e.g., the validto and version.

We have now introduced the most fundamental method for dimension processing
where only a limited number of reducers can be utilized. Therefore, its drawback is that
it is not optimized for the case where some dimensions contain large amounts of data,
namely data-intensive dimensions.

Fig. 3. ODOT Fig. 4. ODAT

3.2 One Dimension All Tasks

We now describe another approach in which all reduce tasks process data for all di-
mensions. We name it one dimension all tasks (ODAT for short). In some cases, the
data volume of a dimension is very large, e.g., the pagedim dimension in the running
example. If we employ ODOT, the task of processing data for this dimension table
will determine the overall performance (assume all tasks run on similar machines). We
therefore refine the ODOT in two places, the map output partition and the reduce func-
tions. With ODAT, ETLMR partitions the map output by round-robin partitioning such
that the reducers receive equally many rows (see Fig. 4). In the reduce function, two
issues are considered in order to process the dimension data properly by the parallel
tasks:

The first issue is how to keep the uniqueness of dimension key values as the data for
a dimension table is processed by all tasks. We propose two approaches. The first one is
to use a global ID generator and use post-fixing (detailed in Section 3.4) to merge rows
having the same values in the dimension lookup attributes (but different key values)
into one row. The other approach is to use private ID generators and post-fixing. Each
task has its own ID generator, and after the data is loaded into the dimension table,
post-fixing is employed to fix the resulting duplicated key values. This requires the
uniqueness constraint on the dimension key to be disabled before the data processing.

The second issue is how to handle concurrency problem when data manipulation
language (DML) SQL such as UPDATE, DELETE, etc. is issued by several tasks. Con-
sider, for example, the type-2 SCD table pagedim for which INSERTs and UPDATEs
are frequent (the SCD attributes validfrom and validto are updated). There are at least
two ways to tackle this problem. The first one is row-based commit in which a COM-
MIT is issued after every row has been inserted so that the inserted row will not be
locked. However, row-based commit is more expensive than transaction commit, thus,
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it is not very useful for a data-intensive dimension table. Another and better solution is
to delay the UPDATE to the post-fixing which fixes all the problematic data when all
the tasks have finished.

In the following section, we propose an alternative approach for processing snow-
flaked dimensions without requiring the post-fixing.

3.3 Snowflaked Dimension Processing

In a snowflake schema, dimensions are normalized meaning that there are foreign key
references and hierarchies between dimension tables. If we consider the dependencies
when processing dimensions, the post-fixing step can be avoided. We therefore pro-
pose two methods particularly for snowflaked dimensions: level-wise processing and
hierarchy-wise processing.

Fig. 5. Level-wise processing Fig. 6. Hierarchy-wise processing

Level-wise processing. This refers to processing snowflaked dimensions in an order
from the leaves towards the root (the dimension table referred by the fact table is the
root and a dimension table without a foreign key referencing other dimension tables is
a leaf). The dimension tables with dependencies (i.e., with foreign key references) are
processed in sequential jobs, e.g., Job1 depends on Job0, and Job2 depends on Job1
in Fig. 5. Each job processes independent dimension tables (without direct and indirect
foreign key references) by parallel tasks, i.e., one dimension table is processed by one
task. Therefore, in the level-wise processing of the running example, Job0 first pro-
cesses topdomaindim and serverdim in parallel, then Job1 processes domaindim and
serverversiondim, and finally Job2 processes pagedim, datedim and testdim. It corre-
sponds to the configuration loadorder = [(’topdomaindim’, ’serverdim’), (’domaindim’,
’serverversiondim’), (’pagedim’, ’datedim’, ’testdim’)]. With this order, a higher level
dimension table (the referencing dimension table) is not processed until the lower level
ones (the referenced dimension tables) have been processed and thus, the referential
integrity can be ensured.

Hierarchy-wise processing. This refers to processing a snowflaked dimension in a
branch-wise fashion (see Fig. 6). The root dimension, pagedim, derives two branches,
each of which is defined as a separate snowflaked dimension, i.e., domainsf =
SnowflakedDimension([(domaindim, topdomaindim)]), and serverversionsf =
SnowflakedDimension([(serverversiondim, serverdim)]). They are processed by two
parallel jobs, Job0 and Job1, each of which processes in a sequential manner, i.e.,
topdomaindim followed by domaindim in Job0 and serverdim followed by serverver-
siondim in Job1. The root dimension, pagedim, is not processed until the dimensions
on its connected branches have been processed. It, together with datedim and testdim,
is processed by the Job2.
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Fig. 7. Before post-fixing Fig. 8. After post-fixing

3.4 Post-fixing

As discussed in Section 3.2, post-fixing is a remedy to fix problematic data in ODAT
when all the tasks of the dimension processing have finished. Four situations require
data post-fixing: 1) using a global ID generator which gives rise to duplicated values in
the lookup attributes; 2) using private ID generators which produce duplicated key val-
ues; 3) processing snowflaked dimensions (and not using level-wise or hierarchy.wise
processing) which leads to duplicated values in lookup and key attributes; and 4) pro-
cessing slowly changing dimensions which results in SCD attributes taking improper
values.

Example. Consider two map/reduce tasks, task 1 and task 2, that process the page di-
mension which we here assume to be snowflaked. Each task uses a private ID generator.
The root dimension, pagedim, is a type-2 SCD. Rows with the lookup attribute value
url=’www.dom2.tl2/p0.htm’ are processed by both the tasks.

Figure 7 depicts the resulting data in the dimension tables where the white rows
were processed by task 1 and the grey rows were processed by task 2. Each row is
labelled with the taskid of the task that processed it. The problems include duplicate
IDs in each dimension table and improper values in the SCD attributes, validfrom,
validto, and version. The post-fixing program first fixes the topdomaindim
such that rows with the same value for the lookup attribute (i.e., url) are merged into
one row with a single ID. Thus, the two rows with topdom = tl2 are merged into
one row. The references to topdomaindim from domaindim are also updated to
reference the correct (fixed) rows. In the same way, pagedim is updated to merge the
two rows representing www.dom2.tl2. Finally, pagedim is updated. Here, the post-
fixing also has to fix the values for the SCD attributes. The result is shown in Fig. 8.

Algorithm 2. post fix(dim)
refdims ← The referenced dimensions of dim
for ref in refdims do

itr ← post fix(ref )
for ((taskid, keyvalue), newkeyvalue) in itr do

Update dim set dim.key = newkeyvalue where
dim.taskid=taskid and dim.key=keyvalue

ret ← An empty list
Assign newkeyvalues to dim’s keys and add
((taskid, keyvalue), newkeyvalue) to ret

if dim is not the root then
Delete the duplicate rows, which have identical values in
dim’s lookup attributes

if dim is a type-2 SCD then
Fix the values on SCD attributes, e.g., dates and version

return ret

The post-fixing invokes a recursive
function (see Algorithm 2) to fix the
problematic data in the order from the
leaf dimension tables to the root dimen-
sion table. It comprises four steps: 1)
assign new IDs to the rows with du-
plicate IDs; 2) update the foreign keys
on the referencing dimension tables;
3) delete duplicated rows which have
identical values in the business key at-
tributes and foreign key attributes; and
4) fix the values in the SCD attributes
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if applicable. In most cases, it is not needed to fix something in each of the steps for a
dimension with problematic data. For example, if a global ID generator is employed, all
rows will have different IDs (such that step 1 is not needed) but they may have duplicate
values in the lookup attributes (such that step 3 is needed). ETLMR’s implementation
uses an embedded SQLite database for data management during the post-fixing. Thus,
the task IDs are not stored in the target DW, but only internally in ETLMR.

3.5 Offline Dimensions

In ODOT and ODAT, the map/reduce tasks interact with the DW’s (“online”) dimen-
sions directly through database connections at run-time and the performance is affected
by the outside DW DBMS and the database communication cost. To optimize, the off-
line dimension scheme is proposed, in which the tasks do not interact with the DW
directly, but with the distributed offline dimensions residing physically in all nodes. It
has several characteristics and advantages. First, a dimension is partitioned into mul-
tiple smaller-sized sub-dimension, and small-sized dimensions can benefit dimension
lookups, especially for a data-intensive dimension such as pagedim. Second, high per-
formance storage systems can be employed to persist dimension data. Dimensions are
configured to be fully or partially cached in main memory to speedup the lookups when
processing facts. In addition, offline dimensions do not require direct communication
with the DW and the overhead (from the network and the DBMS) is greatly reduced.
ETLMR has offline dimension implementations for one dimension one task (ODOT (of-
fline) for short) and hybrid. As the ODOT (offline) is similar to the ODOT we discussed
in Section 3.1, we now only describe the latter. Hybrid combines the characteristics of
ODOT and ODAT. In this approach, the dimensions are divided into two groups, the
most data-intensive dimension and the other dimensions. The input data for the most
data-intensive dimension table is partitioned based on the business keys, e.g., on the url
of pagedim, and processed by all the map tasks (this is similar to ODAT), while for the
other dimension tables, their data is processed in reducers, a reducer exclusively pro-
cessing the data for one dimension table (this is similar to ODOT). As the input data
for most data-intensive dimension is partitioned based on business keys, the rows with
identical business key values are processed within the same mapper such that when we
employ a global ID generator to generate the dimension key values, the post-fixing is
not needed. This improves the processing performance.

In the offline dimension scheme, the dimensions are expected to reside in the nodes
permanently and will not be loaded into the DW until this is explicitly requested.

4 Fact Processing

Fact processing is the second phase in ETLMR, which consists of looking up of dimen-
sion keys, doing aggregation on measures (if applicable), and loading the processed
facts into the DW. Similarly to the dimension processing, the definitions and settings of
fact tables are also declared in the configuration file. ETLMR provides the BulkFact-
Table class which supports bulk loading of facts to DW. For example, the fact table of
the running example is defined as testresultsfact=BulkFactTable(name=’testresultsfact’,
keyrefs=[’pageid’, ’testid’, ’dateid’], measures=[’errors’], bulkloader=UDF pgcopy,
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bulksize=5000000). The parameters are the fact table name, a list of the keys referenc-
ing dimension tables, a list of measures, the bulk loader function, and the size of the
bulks to load. The bulk loader is a UDF which can be configured to satisfy different
types of DBMSs.

Algorithm 3 shows the pseudocode for processing facts.
The function can be used as the map function or as the reduce function. If no aggre-

gations (such as sum, average, or count) are required, the function is configured to be

Algorithm 3. process fact(row)
Require: A row from the input data and the config
1: facttbls ← the fact tables defined in config
2: for facttbl in facttbls do
3: dims ← the dimensions referenced by facttbl
4: for dim in dims do
5: row[dim.key] ← dim.lookup(row)
6: rowhandlers ← facttbl.rowhandlers
7: for handler in rowhandlers do
8: handler(row)
9: facttbl.insert(row)

the map function and the reduce step is omit-
ted for better performance. If aggregations
are required, the function is configured to
be the reduce function since the aggregations
must be computed from all the data. This ap-
proach is flexible and good for performance.
Line 1 retrieves the fact table definitions in
the configuration file and they are then pro-
cessed sequentially in line 2–8. The process-
ing consists of two major operations: 1) look
up the keys from the referenced dimension tables (line 3–5), and 2) process the fact data
by the rowhandlers, which are user-defined transformation functions used for data type
conversions, calculating measures, etc. (line 6–8). Line 9 invokes the insert function to
insert the fact data into the DW. The processed fact data is not inserted into the fact
table directly, but instead added into a configurably-sized buffer where it is kept tem-
porarily. When a buffer becomes full, its data is loaded into the DW by using the bulk
load. Each map/reduce task has a separate buffer and bulk loader such that tasks can do
bulk loading in parallel.

5 Implementation and Evaluation

ETLMR uses and extends pygrametl [14], a Python code-based programming frame-
work, which enables high programmer productivity in implementing an ETL program.
We choose Disco [2] as our MapReduce platform since it has the best support for
Python. In the rest of this section, we measure the performance achieved by the pro-
posed methods. We evaluate the system scalability on various sizes of tasks and data
sets and compare with other business intelligence tools using MapReduce.

5.1 Experimental Setup

All experiments are conducted on a cluster of 6 nodes connected through a gigabit
switch and each having an Intel(R) Xeon(R) CPU X3220 2.4GHz with 4 cores, 4 GB
RAM, and a SATA hard disk (350 GB, 3 GB/s, 16 MB Cache and 7200 RPM). All
nodes are running the Linux 2.6.32 kernel with Disco 0.2.4, Python 2.6, and ETLMR
installed. The GlusterFS DFS is set up for the cluster. PostgreSQL 8.3 is used for the
DW DBMS and is installed on one of the nodes. One node serves as the master and
the others as the workers. Each worker runs 4 parallel map/reduce tasks, i.e., in total
20 parallel tasks run. The time for bulk loading is not measured as the way data is
bulk loaded into a database is an implementation choice which is independent of and
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outside the control of the ETL framework. To include the time for bulk loading would
thus clutter the results. We note that bulk loading can be parallelized using off-the-shelf
functionality.

5.2 Test Data

We continue to use the running example. We use a data generator to generate the test
data for each experiment. In line with Jean and Ghemawat’s assumption that MapRe-
duce usually operates on numerous small files rather than a single, large, merged file [5],
the test data sets are partitioned and saved into a set of files. These files provide the in-
put for the dimension and fact processing phases. We generate two data sets, bigdim
and smalldim which differ in the size of the page dimension. In particular, 80 GB
bigdim data results in 10.6 GB fact data (193,961,068 rows) and 6.2 GB page dimen-
sion data (13,918,502 rows) in the DW while 80 GB smalldim data results in 12.2 GB
(222,253,124 rows) fact data and 54 MB page dimension data (193,460 rows) in the
DW. Both data sets produce 32 KB test (1,000 rows) and 16 KB date dimension data
(1,254 rows).

5.3 Scalability of Proposed Processing Methods

In this experiment, we compare the scalability and performance of the different ETLMR
processing methods. We use a fixed-size bigdim data set (20 GB), scale the number of
parallel tasks from 4 to 20, and measure the total elapsed time from start to finish.
The results for a snowflake schema and a star schema are shown in Fig. 9 and Fig. 10,
respectively. The graphs show the speedup, computed by T4,odot,snowflake/Tn where
T4,odot,snowflake is the processing time for ODOT using 4 tasks in a snowflake schema
and Tn is the processing time when using n tasks for the given processing method.

We see that the overall time used for the star schema is less than for the snowflake
schema. This is because the snowflake schema has dimension dependencies and hier-
archies which require more (level-wise) processing. We also see that the offline hybrid
scales the best and achieves almost linear speedup. The ODAT in Fig. 10 behaves simi-
larly. This is because the dimensions and facts in offline hybrid and ODAT are processed
by all tasks which results in good balancing and scalability. In comparison, ODOT, off-
line ODOT, level-wise, and hierarchy-wise do not scale as well as ODAT and hybrid
since only a limited number of tasks are utilized to process dimensions (a dimension is
only processed in a single task). The offline dimension scheme variants outperform the
corresponding online ones, e.g., offline ODOT vs. ODOT. This is caused by 1) using
a high performance storage system to save dimensions on all nodes and provide in-
memory lookup; 2) The data-intensive dimension, pagedim, is partitioned into smaller
chunks which also benefits the lookup; 3) Unlike the online dimension scheme, the off-
line dimension scheme does not communicate directly with the DW and this reduces
the communication cost considerably. Finally, the results show the relative efficiency
for the optimized methods which are much faster than the baseline ODOT.

5.4 System Scalability

In this experiment, we evaluate the scalability of ETLMR by varying the number of
tasks and the size of the data sets. We select the hybrid processing method, use the
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Fig. 9. Parallel ETL for
snowflake schema, 20 GB

Fig. 10. Parallel ETL for star
schema, 20 GB
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offline dimension scheme, and conduct the testing on a star schema, as this method
not only can process data among all the tasks (unlike ODOT in which only a limited
number of tasks are used), but also showed the best scalability in the previous exper-
iment. In the dimension processing phase, the mappers are responsible for processing
the data-intensive dimension pagedim while the reducers are responsible for the other
two dimensions, datedim and testdim, each using only a single reducer. In the fact pro-
cessing phase, no reducer is used as no aggregation operations are required.

We first do two tests to get comparison baselines by using one task (named 1-task
ETLMR) and (plain, non-MapReduce) pygrametl, respectively. Here, pygrametl also
employs 2-phase processing, i.e., the dimension processing is done before the fact pro-
cessing. The tests are done on the same machine with a single CPU (all cores but one
are disabled). The tests process 80 GB bigdim data. We compute the speedups by using
T1/Tn where T1 represents the elapsed time for 1-task ETLMR or for pygrametl, and
Tn the time for ETLMR using n tasks. Fig. 11 shows that ETLMR achieves a nearly
linear speedup in the number of tasks when compared to 1-task ETLMR (the line on the
top). When compared to pygrametl, ETLMR has a nearly linear speedup (the lower line)
as well, but the speedup is a little lower. This is because the baseline, 1-task ETLMR,
has a greater value due to the overhead from the MapReduce framework.

To learn more about the details of the speedup, we break down the execution time
of the slowest task by reference to the MapReduce steps when using the two data sets
(see Table 1). As the time for dimension processing is very small for smalldim data,
e.g., 1.5 min for 4 tasks and less than 1 min for the others, only its fact processing
time is shown. When the bigdim data is used, we can see that partitioning input data,
map, partitioning map output (dims), and combination (dims) dominate the execution.
More specifically, partitioning input data and map (see the Part.Input and Map func.
columns) achieve a nearly linear speedup in the two phases. In the dimension process-
ing, the map output is partitioned and combined for the two dimensions, datedim and
testdim. Also here, we see a nearly linear speedup (see the Part. and Comb. columns).
As the combined data of each is only processed by a single reducer, the time spent on
reducing is proportional to the size of data. However, the time becomes very small since
the data has been merged in combiners (see Red. func. column). The cost of post-fixing
after dimension processing is not listed in the table since it is not required in this case
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Table 1. Execution time distribution, 80 GB (min.)

Testing data Phase Task
Num

Part.
Input

Map
func.

Part. Comb. Red.
func.

Others Total

bigdim data

dims

4 47.43 178.97 8.56 24.57 1.32 0.1 260.95
8 25.58 90.98 4.84 12.97 1.18 0.1 135.65
12 17.21 60.86 3.24 8.57 1.41 0.1 91.39
16 12.65 47.38 2.50 6.54 1.56 0.1 70.73
20 10.19 36.41 1.99 5.21 1.32 0.1 55.22

(results in

facts

4 47.20 183.24 0.0 0.0 0.0 0.1 230.44
10.6GB facts) 8 24.32 92.48 0.0 0.0 0.0 0.1 116.80

12 16.13 65.50 0.0 0.0 0.0 0.1 81.63
16 12.12 51.40 0.0 0.0 0.0 0.1 63.52
20 9.74 40.92 0.0 0.0 0.0 0.1 50.66

smalldim data facts

4 49.85 211.20 0.0 0.0 0.0 0.1 261.15
8 25.23 106.20 0.0 0.0 0.0 0.1 131.53
12 17.05 71.21 0.0 0.0 0.0 0.1 88.36

(results in 16 12.70 53.23 0.0 0.0 0.0 0.1 66.03
12.2GB facts) 20 10.04 42.44 0.0 0.0 0.0 0.1 52.58

Fig. 12. Proc. time when scaling up
bigdim data

Fig. 13. Proc. time when scaling up
smalldim data

where a global key generator is employed to create dimension IDs and the input data is
partitioned by the business key of the SCD pagedim (see section 3.4).

In the fact processing, the reduce function needs no execution time as there is no
reducer. The time for all the other parts, including map and reduce initialization, map
output partitioning, writing and reading intermediate files, and network traffic, is rel-
atively small, but it does not necessarily decrease linearly when more tasks are added
(Others column). To summarize (see Total column), ETLMR achieves a nearly linear
speedup when the parallelism is scaled up, i.e., the execution time of 8 tasks is nearly
half that of 4 tasks, and the execution time of 16 tasks is nearly half that of 8 tasks.

We now proceed to another experiment where we for a given number of tasks size
up the data sets from 20 to 80 GB and measure the elapsed processing time. Fig. 12 and
Fig. 13 show the results for the bigdim and smalldim data sets, respectively. It can be
seen that ETLMR scales linearly in the size of the data sets.
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5.5 Comparison with other Data Warehousing Tools

There are some MapReduce data warehousing tools available, including Hive [15,16],
Pig [10] and Pentaho Data Integration (PDI) [3]. Hive and Pig both offer data stor-
age on the Hadoop distributed file system (HDFS) and scripting languages which have
some limited ETL abilities. They are both more like a DBMS instead of a full-blown
ETL tool. Due to the limited ETL features, they cannot process an SCD which requires
UPDATEs, something Hive and Pig do not support. It is possible to process star and
snowflake schemas, but it is complex and verbose. To load data into a simplified version
of our running example (with no SCDs) require 23 statements in Pig and 40 state-
ments in Hive. In ETLMR – which in contrast to Pig and Hive is dimensional – only
14 statements are required. ETLMR can also support SCDs with the same number of
statements, while this would be virtually impossible to do in Pig and Hive. The details
of the comparison are available in the full paper [9].

PDI is an ETL tool and provides Hadoop support in its 4.1 GA version. However,
there are still many limitations with this version. For example, it only allows to set a
limited number of parameters in the job executor, customized combiner and mapper-
only jobs are not supported, and the transformation components are not fully supported
in Hadoop. We only succeeded in making an ETL flow for the simplest star schema,
but still with some compromises. For example, a workaround is employed to load the
processed dimension data into the DW as PDI’s table output component repeatedly
opens and closes database connections in Hadoop such that performance suffers.

In the following, we compare how PDI and ETLMR perform when they process the
star schema (with page as a normal dimension, not an SCD) of the running example. To
make the comparison neutral, the time for loading the data into the DW or the HDFS is
not measured, and the dimension lookup cache is enabled in PDI to achieve a similar
effect of ETLMR using offline dimensions. Hadoop is configured to run 4 parallel task
trackers in maximum on each node, and scaled by adding nodes horizontally. The task
tracker JVM option is set to be -Xmx256M while the other settings are left to the default.
Table 2 shows the time spent on processing 80 GB smalldim data when scaling up the
number of tasks. As shown, ETLMR is significantly faster than PDI for Hadoop in
processing the data. Several reasons are found for the differences. First, compared with
ETLMR, the PDI job has one more step (the reducer) in the fact processing as its job
executor does not support a mapper-only job. Second, by default the data in Hadoop
is split which results in many tasks, i.e., 1192 tasks for the fact data. Thus, longer
initialization time is observed. Further, some transformation components are observed
to run with low efficiency in Hadoop, e.g., the components to remove duplicate rows
and to apply JavaScript.

Table 2. Time for processing star schema (no SCD), 80 GB smalldim data set, (min.)

Tasks 4 8 12 16 20
ETLMR 246.7 124.4 83.1 63.8 46.6

PDI 975.2 469.7 317.8 232.5 199.7
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6 Related Work

We now compare ETLMR to other parallel data processing systems using MapReduce,
and parallel DBMSs. In addition, we study the current status of parallel ETL tools.
MapReduce is a framework well suited for large-scale data processing on clustered com-
puters. However, it has been criticized for being too low-level, rigid, hard to maintain
and reuse [10,15]. In recent years, an increasing number of parallel data processing
systems and languages built on the top of MapReduce have appeared. For example, be-
sides Hive and Pig (discussed in Section 5.5), Chaiken et al. present the SQL-like lan-
guage SCOPE [4] on top of Microsoft’s Cosmos MapReduce and distributed file system.
Friedman et al. introduce SQL/MapReduce [7], a user-defined function (UDF) frame-
work for parallel computation of procedural functions on massively-parallel RDBMSs.
These systems or languages vary in the implementations and functionalities provided,
but overall they give good improvements to MapReduce, such as high-level languages,
user interfaces, schemas, and catalogs. They process data by using query languages, or
UDFs embedded in the query languages, and execute them on MapReduce. However,
they do not offer direct constructs for processing star schemas, snowflaked dimensions,
and slowly changing dimensions. In contrast, ETLMR runs separate ETL processes on
a MapReduce framework to achieve parallelization and ETLMR directly supports ETL
constructs for these schemas.

Another well-known distributed computing system is the parallel DBMS which first
appeared two decades ago. Today, there are many parallel DBMSs, e.g., Teradata, DB2,
Objectivity/DB, Vertica, etc. The principal difference between parallel DBMSs and
MapReduce is that parallel DBMSs run long pipe-lined queries instead of small inde-
pendent tasks as in MapReduce. The database research community has recently com-
pared the two classes of systems. Pavlo et al. [11], and Stonebraker et al. [13] conduct
benchmarks and compare the open source MapReduce implementation Hadoop with
two parallel DBMSs (a row-based and a column-based) in large-scale data analysis. The
results demonstrate that parallel DBMSs are significantly faster than Hadoop, but they
diverge in the effort needed to tune the two classes of systems. Dean et al. [5] argue
that there are mistaken assumptions about MapReduce in the comparison papers and
claim that MapReduce is highly effective and efficient for large-scale fault-tolerance
data analysis. They agree that MapReduce excels at complex data analysis, while par-
allel DBMSs excel at efficient queries on large data sets [13].

In recent years, ETL technologies have started to support parallel processing. Infor-
matica PowerCenter provides a thread-based architecture to execute parallel ETL ses-
sions. Informatica has also released PowerCenter Cloud Edition (PCE) in 2009 which,
however, only runs on a specific platform and DBMS. Oracle Warehouse Builder (OWB)
supports pipeline processing and multiple processes running in parallel. Microsoft SQL
Server Integration Services (SSIS) achieves parallelization by running multiple threads,
multiple tasks, or multiple instances of a SSIS package. IBM InfoSphere DataStage
offers a process-based parallel architecture. In the thread-based approach, the threads
are derived from a single program, and run on a single (expensive) SMP server, while
in the process-based approach, ETL processes are replicated to run on clustered MPP
or NUMA servers. ETLMR differs from the above by being open source and based
on MapReduce with the inherent advantages of multi-platform support, scalability on
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commodity clustered computers, light-weight operation, fault tolerance, etc. ETLMR is
also unique in being able to scale automatically to more nodes (with no changes to the
ETL flow itself, only to a configuration parameter) while at the same time providing au-
tomatic data synchronization across nodes even for complex structures like snowflaked
dimensions and SCDs. We note that the licenses of the commercial ETL packages pre-
vent us from presenting comparative experimental results.

7 Conclusion and Future Work

As business intelligence deals with continuously increasing amounts of data, there is
an increasing need for ever-faster ETL processing. In this paper, we have presented
ETLMR which builds on MapReduce to parallelize ETL processes on commodity com-
puters. ETLMR contains a number of novel contributions. It supports high-level ETL-
specific dimensional constructs for processing both star schemas and snowflake schemas,
SCDs, and data-intensive dimensions. Due to its use of MapReduce, it can automati-
cally scale to more nodes (without modifications to the ETL flow) while it at the same
time provides automatic data synchronization across nodes (even for complex dimen-
sion structures like snowflakes and SCDs). Apart from scalability, MapReduce also
gives ETLMR a high fault-tolerance. Further, ETLMR is open source, light-weight,
and easy to use with a single configuration file setting all run-time parameters. The re-
sults of extensive experiments show that ETLMR has good scalability and compares
favourably with other MapReduce data warehousing tools.

ETLMR comprises two data processing phases, dimension and fact processing. For
dimension processing, the paper proposed a number of dimension management schemes
and processing methods in order to achieve good performance and load balancing. The
online dimension scheme directly interacts with the target DW and employs several di-
mension specific methods to process data, including ODOT, ODAT, and level-wise and
hierarchy-wise processing for snowflaked dimensions. The offline dimension scheme
employs high-performance storage systems to store dimensions distributedly on each
node. The methods, ODOT and hybrid allow better scalability and performance. In the
fact processing phase, bulk-load is used to improve the loading performance.

Currently, we have integrated ETLMR with the MapReduce framework, Disco. In the
future, we intend to port ETLMR to Hadoop and explore a wider variety of data storage
options. In addition, we intend to implement dynamic partitioning which automatically
adjusts the parallel execution in response to additions/removals of nodes from the clus-
ter, and automatic load balancing which dynamically distributes jobs across available
nodes based on CPU usage, memory, capacity and job size through automatic node
detection and algorithm resource allocation.
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Abstract. Data quality in a typical Data Warehouse (DW) environment is 
critical. The process of transferring data from different sources into the DW 
environment, known as ETL (Extraction, Transformation, and Load), usually 
takes care of improving the data quality. However, it is not unusual to identify 
null values in a DW fact table during the ETL process, and this may impact 
negatively on the accuracy of data analyses results. Data imputation1 techniques 
are commonly used for dealing with the missing value problem. Some of them 
observe table values to generate a new value for the missing one. This paper 
proposes a new strategy to address the missing data problem on the ETL 
process. The idea is to enrich the DW fact table with dimension attributes, in 
order to reach better imputation results. The strategy uses the k-NN algorithm 
as the imputation approach. Tests performed on an implemented prototype 
showed promising results with respect to imputation quality. 

Keywords: Data Warehouse, Data Imputation, Data Provenance. 

1   Introduction 

The constant advances in Information Technology have made it possible to produce 
systems that store and integrate huge amounts of data emerged from different sources. 
Known as Data Warehouses (DW), such systems have been used in many 
organizations as important decision support devices. According to Inmon [7], a DW is 
“a subject oriented, nonvolatile, integrated, time variant collection of data in support 
of management's decisions”. Each data in a DW is attached to a timestamp, which 
enables to observe tendencies using appropriate tools. In general, DW´s environments 
provide resources for trend detection as well as other data analysis. 

A usual practice [8] recommends that data in DW should be organized according to 
the star schema. The star schema consists of a few fact tables referencing any number 
of dimension tables. Fact tables hold the main data, while the usually smaller 
dimension tables describe each value of a dimension and can be joined to fact tables 
                                                           
1  The term imputation is largely used in the literature about missing data in the attribution 

sense, i.e., meaning “to give a notional value to goods or services when the real value is 
unknown”. 
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as needed. Generally the fact table contains qualitative attributes (linked to dimension 
tables) and metric attributes. As the name suggests, qualitative attributes contain 
categorical data. Metric attributes are quantitative ones. For example, in a typical DW 
concerning sales of a megastore, supplier, product and date would be qualitative 
attributes and number of items sold would be a metric attribute.  

Corporative data loaded in DW usually come from different and distributed 
sources. As a consequence, data can present many problems such as: misspelling, 
illegal values, different domains, missing values and other inconsistencies. These 
problems can seriously harm data analysis. For example, if missing values are not 
treated, important facts may not be taken into consideration in the analysis process.  

To overcome these problems, data must be submitted into a process called ETL 
(Extraction, Transformation and Load). The ETL process is generally implemented by 
a set of software tools properly designed for this task. In the extraction phase, data is 
captured from multiple sources. Different sources may need different and possibly 
specific extraction tools. Such tools must periodically capture information from 
specific environments. Historical information metadata may be collected within data 
itself. Data’s origin and time of extraction are examples of historical metadata. The 
theory that aggregates historical information to data itself is called data provenance in 
databases [2]. Hence, every DW naturally deals with data provenance once its data is 
associated with historical facts. 

The transformation phase is the one responsible for data cleaning which consists of 
detecting and correcting the mentioned problems. In particular, this phase includes 
data imputation that detects and corrects missing values. Data imputation substitutes 
missing values by new values inferred from present data. In this scenario, quality of 
inference is a matter of great importance, once good inference may lead to better and 
more precise data analysis. 

Although there are many preprocessing approaches to perform data imputation, 
including machine learning based ones [3][5][11][15], none of them use provenance 
data to improve quality of imputation. In DW, such use becomes possible once fact 
tables may be enriched with data from dimension tables. Additionally, DW 2.02 
reveals an increase tendency to integrate data and metadata. 

So, the present work has as its main goal to describe the development of a tuple 
imputation strategy for the fact table in which the metric attributes may have null 
values. We assume these null values emerge from the cleaning phase of the ETL 
process, where a set of dimension values combinations that should have been present 
are said to be missing. Dimension attributes can be seen as provenance attributes, and 
could be used to enrich the fact table in order to reach better imputation results.  

This paper is organized in more six sections. Section 2 provides some background 
on data provenance and imputation techniques. Related works are described in section 
3. Sections 4 and 5 respectively present the proposed approach and the developed 
prototype. Experiments to confirm the influence of data provenance in the 
improvement of data imputation are shown in section 6. Section 7 concludes the paper 
and depicts alternatives of future work. 

                                                           
2  http://www.information-management.com/issues/20060401/1051111-1.html 
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2   Background Knowledge  

Data quality and accuracy are important features in data analysis. Poor quality or 
imprecise data may lead to bad decisions in any scenario. Historical information about 
data such as date, author and place of creation are examples of metadata that help 
validate data. According to Buneman et al. [2], the theory that aggregates historical 
information to data itself is called data provenance in databases. Data provenance tries 
to answer the following questions: “How, when, why and where was data created or 
changed?” and “Who created or changed it?”.  

Data provenance is represented by metadata [14]. Specifically in DW´s scenarios, 
data provenance is naturally used once their data is associated with historical facts. It 
may allow users to identify and correct information failures and errors [12]. 
Therefore, data provenance may be used to provide data reliability and quality. 

Relational database tables of real applications usually present missing data in their 
attributes/columns. Missing values may occur in only one attribute (univariate 
problem) or in two or more attributes (multivariate problem) of a table. 

Data imputation methods try to fulfill databases by substituting missing values 
with new data. The new data depend upon the technique used by the imputation 
method. According to [11], certain imputation methods try to cluster tuples based on 
data similarity and then use the data cluster (local) to generate the values to replace 
the missing ones. The k-NN (k-Nearest Neighbors) algorithm is an important and 
representative local method for data imputation. In spite of its simplicity, this method 
has been successfully used in many works on machine learning based data imputation 
[11][5][3]. The algorithm general idea works as follows: 

• It receives a new tuple with missing values, possibly in two or more attributes; 
• It retrieves from database the k most similar tuples without missing values in the 

same attributes of the new tuple.  
• The method uses the retrieved tuples to fill the gaps. 

 

Some important considerations about the k-NN must be made. (i) Treatment depends 
on attributes’ data type: qualitative or quantitative. (ii) Tuple similarity is calculated 
by a distance measure. Euclidean distance (eq. 1) is a very popular distance used by 
data imputation when the database only contains quantitative attributes, while the 
mixed types distance (eq. 2) is a good alternative when database contains both 
quantitative and qualitative attributes [5]. ݀(݅, ݆) ൌ ඥ(ݔ௜ଵ െ ௝ଵ)ଶݔ ൅ ௜ଶݔ) െ ௝ଶ)ଶݔ ൅ … ൅ ௜௡ݔ) െ ௝௡)ଶ  (1)ݔ

Where ݀(݅, ݆) is the distance value, x is the set of attributes of a database, ݅ = (ݔ௜ଵ , ݔ௜ଶ 

 .are the tuples to be compared (௝௡ݔ ,..., ௝ଷݔ , ௝ଶݔ , ௝ଵݔ) = ݆ ௜௡) andݔ ,..., ௜ଷݔ ,

݀(݅, ݆) ൌ ∑ ∑௜௝(௙)݀௜௝(௙)௣௙ୀଵߜ ௜௝(௙)௣௙ୀଵߜ  (2)

Where ߜ௜௝(௙) ൌ 0, if ((ݔ௜௙ or ݔ௝௙ are missing) or (ݔ௜௙ ൌ ௝௙ݔ  ൌ 0)) and ߜ௜௝(௙) ൌ 1, 

otherwise, ݀௜௝(௙) depends on data type: 
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(a) Quantitative attributes หݔ௜௙ െ ௛௙ݔ௛ݔ௝௙ห݉ܽݔ െ ݉݅݊௛ݔ௛௙ 
(3)

Where max୦x୦୤ and min୦x୦୤ are maximum and minimum values for attribute f, 
respectively. 

(b) Qualitative attributes ݀௜௝(௙) ൌ 0  if ݔ௜௙ ൌ ௝௙ or ݀௜௝(௙)ݔ ൌ 1, otherwise. (4)

(iii) Average of present values in the k tuples is a technique frequently used to 
calculate the new values to replace the missing ones. It is used when attributes are 
quantitative. Mode is a statistical measure frequently used when the attribute with 
missing values is qualitative. Although both average and mode based imputation 
techniques can introduce biased data, their results have been used in many related 
works [15][11][5][3], as the baseline to evaluate other data imputation methods.  

3   Related Work 

As we said before, data quality is a central issue for DW environments. There are 
works [12] [1] that propose applying data cleaning techniques before loading data into 
these environments. Most of these works focus on the problem of data duplicities, 
which means the occurrence of two data items that represent the same real world 
object. They propose techniques for data deduplication, i.e., the elimination of such 
data duplicities. Missing data is also a problem in large databases, such as DW 
databases [9]. However, there are just some works [6] [13] that provide solutions for 
complementing data in a DW.  

In Hong et al. [6], the authors describe the design of a DW database for storing 
Quick Access Recorder (QAR) data. This database is used for the analysis of aircraft 
flights of a specific company. They propose a framework to manage the ETL process, 
which first extracts data from several sources, then identifies absent values in these 
data, inputs new values, removes duplicated data, and finally, consolidates data. Data 
imputation occurs before the extracted data is loaded into the fact table, and it is 
performed according to three approaches. The first one is a manual imputation, 
usually when the data is already known, but it is missing in the database for some 
reason. The second one uses a supervised imputation method based on linear 
regression technique. The third one, also supervised, uses a linear interpolation 
technique. It is not clear though, when to use each technique. Moreover, besides the 
fact that this approach was designed for a specific domain (aircraft companies), it 
does not take into account category or dimension values, focusing only on numeric 
and continuous values. According to the authors, their approach showed some good 
results, meaning that data imputation had a positive impact on the quality of the 
analysis over then QAR data.  

Another related work [13] focus on the imputation of semi-continuous values, 
defined as measure attributes that can often be zero for some combinations of 
dimensions. The authors propose a two-part model to fill in these values based on the 
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idea of dividing the fact table into smaller cubes (called chunks), and then proceed 
with the imputation, using techniques such as logistic regression models (to identify 
which missing positions have zero or non-zero measure values) and loglinear models 
(to estimate and fulfill missing data) constructed over known values in dataset. They 
also combine forward variable selection and backward variable elimination 
algorithms [4] to implement a heuristic strategy to select attributes for logistic model. 
As imputation occurs after data consolidation, detailed information about the 
aggregated values cannot be obtained. The authors recommend future investigation in 
alternatives to fulfill missing values based on data decomposition. Another option 
would be to impute missing values before data aggregation. 

Although many machine learning based data imputation approaches have been 
developed [3][5][11][15], as far as we could investigate, we found no similar work 
that could address the missing value problem in the context of the ETL process, 
taking into account the dimension attributes, as a way of getting better results on data 
imputation.  

4   A Strategy for Data Imputation during the ETL Process 

The strategy described in this section is a mechanism for imputation of tuples where 
there are missing values, taking into account data provenance present in a DW. The 
proposed mechanism intends to play an important role in the context of the ETL 
cleaning task. The idea is to apply this mechanism after data integration and some 
initial cleaning actions (such as treating missing values at the dimension tables), while 
data load into a fine grained multidimensional schema is already in course, but not yet 
consolidated. Also, it assumes missing value tuples are already identified, i.e., 
measure attributes for some dimension combination that should exist according to 
some business rule. The mechanism uses data provenance to enrich the fact table 
aiming at a better characterization of tuples, which may lead to a more accurate 
similarity calculation, and consequently, may provide better imputation results. In the 
context of this work, provenance data used is obtained in the dimension tables, which 
naturally refers to the context of each fact. Also, in this proposal, we focus on the 
imputation of numeric measure attributes of the fact table only.   

 
idProd idSupp idClient idTime saleqty 

1 2 4 2 ?? 
1 3 3 4 50 
5 1 5 3 23 
5 4 3 1 ?? 
4 1 2 3 30 

Fig. 1. Sales Fact Table Example 

In order to explain the dynamics of the proposed strategy, we take a DW typical 
example of a Sales fact table (Figure 1). In this example, the measure attribute 
saleqty represents the quantity sold for the combination of a product (idProd), a 
supplier (idSupp), a client (idClient), in a given date (idTime). The idea of the 
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proposed strategy is to depart from a fact table that presents some missing values at a 
numeric measure attribute, and enrich it with dimension attributes. In the example of 
Figure 1, the saleqty measure attribute presents some missing values (??). Figure 2 
presents the enriched fact table, where each tuple contains also values that came from 
the corresponding dimension tuple, characterizing each fact tuple in the context of 
dimension categories such as the brand of a product, or the region of a supplier, or 
even the season of the sale time. Without this information, the imputation would be 
calculated just according to the dimension foreign key value. 

 
Keys and metrics Product Dimension Attributes Supplier Dimension Attributes 

idProd idSupp idTime idClient saleqty name brand type size name phone area region 
1 2 4 2 ?? Part1 Sun A 15 Supp2 2222-2222 Area2 Southeast 
1 3 3 4 50 Part1 Sun A 15 Supp3 4545-4545 Area3 North 
5 1 5 3 23 Part5 Mars B 30 Supp1 3333-3333 Area1 Northeast 
5 4 3 1 ?? Part5 Mars B 30 Supp4 8675-4333 Area4 South 
4 1 2 3 30 Part4 Jupiter C 10 Supp1 3333-3333 Area1 Northeast 

 

Time Dimension Attributes Client Dimension Attributes 
day month year season holiday name2 region2 segMarketing 

1 4 2008 autumn 0 Cli2 Northeast C 
25 12 2009 summer 1 Cli4 North A 
12 10 2009 spring 1 Cli3 Northeast A 
25 12 2009 summer 1 Cli1 South A 
13 4 2009 autumn 0 Cli3 Northeast A 

Fig. 2. Enriched Sales Fact Table 

In the example of Figure 2, for the dimension id combination <1,2,4,2>, note that 
the sale happened in the autumn, similarly to the sale for the combination <4,1,2,3>. 
If the imputation technique used is based on similar tuples, then these tuples were not 
supposed to be similar. However, if we analyze the enriched tuples it would be 
possible to identify a relevant similarity with respect to the season of the year (both 
sales happened in the autumn season). This means that even though fact tuples may 
have different key value combinations, they could be evaluated as similar based on 
the enriched attribute values.  

The proposed imputation strategy is performed in four main steps: (i) attribute 
combination definition, (ii) training set preparation, (iii) performance calculation for 
combinations, (iv) real imputation. In (i) a manual selection of attributes to be 
considered for imputation takes place, and then, based on some heuristics, we form an 
attribute combination set. Each combination is a subset of attributes of the enriched 
fact table. The training set is prepared based on the enriched fact table. A new training 
fact table is created, but without the missing value tuples. In this training table, for 
randomly selected existing tuples, new missing values are created, i.e., we substitute 
known values of the measure attribute in focus for null values. Once (ii) provides the 
complete training set, step (iii) initiates. It calculates the imputation and its 
performance for each attribute combination defined in (i). In step (iv), we analyze the 
performance results obtained in (iii), identify the best performance attribute 
combination, and proceed with the real imputation, i.e., the fulfillment of missing 
values in the original fact table, taking into account the enriched tuple values for the 
chosen attribute combination. The following subsections describe in more details each 
step of the proposed strategy.  
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4.1   Attribute Combination Definition 

The first step of the strategy consists in the selection of the best provenance attributes 
that could be found in the dimension, to enrich the fact table. This selection should be 
done by a specialized user. In order to help the user on selecting a representative set 
of attributes, the selectivity estimation of each candidate attribute is calculated. The 
idea is to identify attributes with a variety of different values (heterogeneity). The 
more heterogeneous, the more appropriate for an index attribute [2], and in the 
context of his work, the better it characterizes a set of tuples in the fact table. This 
calculation is done over a denormalized fact table, which means an extended fact 
table based on the join of the traditional fact table and its dimensions. The 
denormalization is a very expensive process, and it would not be viable to do this for 
each imputation execution. Therefore, we assume that a denormalized fact table is 
maintained in parallel to the traditional fact table, meaning that the load task is always 
performed in both tables.  

After the user selection of a set of attributes, a set of attribute combinations C is 
generated. This also depends on a user choice. There are five types of combinations: 
(i) all user selected attributes; (ii) only user selected numeric attributes; (iii) the user 
selected attribute (numeric or categorical) with the best selectivity estimation, for 
each dimension; (iv) the user selected numeric attribute with the best selectivity 
estimation, for each dimension; (v) substitution of each dimension foreign key with 
the corresponding user selected dimension attribute(s). 

For the best configuration of the proposed strategy, initial tests (described further) 
were performed in order to select attributes for such combination set. All possible 
attribute combinations were not tested because of the high processing costs. However, 
the types of combinations listed above showed promising results.  

4.2   Training Set Preparation 

Once C is defined, then a training set is prepared in order to define which cj (cj Є C) is 
recommended by the strategy, and should then be used for the real imputation. This 
training set is generated by eliminating, of the denormalized fact table, the tuples 
which have absent values on the measure attribute in focus (named hereafter, the x 
attribute). After that, a set of randomly generated absent values are placed in existing 
tuples, for x, in the same real absence proportion found. The old values are not lost 
here, as they still exist in the real fact table.  

Now we have the complete training set, i.e., the dirty denormalized fact table. It is 
worth to mention, that for performance reasons, this fact table may not be complete, 
and include only more recent tuples, for a representative pre-defined period of time 
(e.g. the last 2 years). 

4.3   Performance Calculation for Attribute Combinations  

In this step, the imputation is applied over the training set. We calculate the 
imputation performance for each absent tuple and for each cj Є C.  Initially, we 
identify the absent tuples in the training set. For each fi absent tuple, 1 <= i <= n, 
which contains an absent value for x attribute, the real value ݔ଴௜  for x is retrieved from 
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the real fact table and kept for later use. After that, we start an iteration on C 
elements, i.e., for each cj Є C, 1 <= j <= m, we apply the k-NN algorithm, to select a 
set of local similar tuples, in the training set table. The similarity is calculated based 
only on the attributes of cj, plus the original fact table attributes, and using the 
Euclidean distance or the mixed type distance between each tuple pair.  Then, the 
selected set of k similar tuples is used to calculate the new value ݔோ௜  (fi[x] = ݔோ௜ ), using 
the mean of the set of x values for those tuples. 

According to the initial tests the best performance k value was 10, which is 
suggested as a default value. Finally, we calculate the error rate between values ݔ଴௜   
and ݔோ௜ , based on the Relative Absolute Derivation – RAD metric [11], which uses the 
following formula: ܴܦܣ ൌ  1݊ ෍ หݔ଴௜ െ ோ௜ݔ หݔ଴௜

௡௜ୀଵ  (5)

where: 

଴௜ݔ •  is the original value, 
ோ௜ݔ •  is the new calculated value and  
• n is the total of absent tuples on x.  

There are other formulas for error calculation [13], but RAD was chosen as it has 
been used successfully in some related works [11]. In the current step, we calculate 
(and accumulate) each individual imputation error rate for each fi tuple and for each cj 
attribute combination. We generate an array of m error rate values (combination[j]), 
where each entry is the sum of the error rate values for the n absent tuples. The rest of 
the RAD formula (division by n) is calculated in the next step.  

The following algorithm summarizes this step. 
 
While there is a tuple with missing value in desnormal do 

RealValue = corresp. real value obtained from the original table; 
While there is a combination of attributes (combination[j]) do 
 NewValue = application of k-NN algorithm for combination[j]; 
 DiffValue = abs(RealValue – NewValue) / RealValue; 
 Add Diffvalue to combination[j]; 
End-While 

End-While 

4.4   Real Imputation 

In the last step of the proposed strategy we calculate the best combination of attributes 
by finishing the RAD formula application. The global error rate calculation for each 
cj, and the best one is identified cb. Then, the combination cb is then used to proceed 
with the imputation in the original fact table. Initially, we identify the absent tuples in 
the original fact table. For each fi tuple, 1 <= i <= n, which contains an absent value 
for x attribute, we apply the k-NN algorithm, to select a set of local similar tuples, in 
the training set table. The similarity is calculated based only on the attributes of cb, 
plus the original fact table attributes, and using the Euclidean distance between each 
tuple pair. Then, the k selected similar tuples are used to calculate the new value, 
applying the mean of the x values for those tuples. 
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5   ComplETL 

This section describes ComplETL, a computational tool that implements the 
previously presented provenance based data imputation approach. ComplETL must be 
used by the end of the transformation phase in ETL process. The target database must 
be in a traditional star schema with a fact table and its dimensional tables. Once 
ComplETL has been applied, the target database is ready for the ETL´s loading phase. 

ComplETL was developed using packages from Appraisal´s library [3], a 
workflow management based environment that is used to execute and evaluate 
missing data imputation processes. ComplETL is able to: (i) implement the proposed 
data imputation approach as a process; (ii) allow parameter configuration in such 
approach; (iii) allow access to databases with multiple tables; (iv) deal with big tables, 
a common situation in data warehouse applications; and (v) treat categorical as well 
as quantitative data, one of Appraisal´s main limitations. 

Like Appraisal, ComplETL was developed in Java, due to its portability and 
available resources. ComplETL uses Spring Framework3, JSTL4 and MySQL5 
DBMS, version 5.1. 

The Attribute Combination Definition step was implemented as specified in section 
4 and includes some additional configurations: (a) target dataset; (b) k value for the k-
NN algorithm; (c) type of attribute combinations; (d) missing value attribute x; (e) 
fact table denormalization, based on foreign key metadata; (f) foreign key removal; 
(g) selectivity estimation; (h) user interface for attribute manual selection; and (i) 
decision whether dimension attribute data should be normalized or not. In order to 
reduce access to database, ComplETL stores metadata and configuration information 
in XML documents. 

The Performance Calculation step uses the k-NN implementation available in 
Appraisal´s packages. Simplicity, effectiveness and availability have influenced on 
this decision.  

6   Experiments and Results 

Experiments in ComplETL were organized in two groups: initial and evaluation tests. 
Initial tests aimed at defining which configuration should be used during evaluation 
tests. All tests were performed in a computational environment with core 2 duo 
processor, 4 GB RAM, 360 HD GB and Windows 7® operating system. 

A customized version of TPC-H6 benchmark´s database was used for all tests. 
TPC-H database was transformed, using the Kettle7 utility, into a traditional DW star 
schema with a fact table and its dimensional tables. In this database schema, we 
focused on only one missing value attribute in the fact table (univariate imputation 

                                                           
3  Spring Source, http://www.springsource.org/ 
4  JavaServer Pages Standard Tag Library, http://java.sun.com/products/jsp/jstl/ 
5  MySQL.com  http://www.mysql.com 
6  TPC Benchmark H – Standard Specification Revision 2.8.0.  

http://www.tpc.org/tpch/spec/tpch2.8.0.pdf 
7  Pentaho Data Integration. Pentaho. www.pentaho.com 
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problem). As we did not have real missing values in this dataset, the missing value 
rate was set to 10% of fact table. 

The TPC-H database was populated with DBGEN, a synthetic data generator for 
TPC-H. Five thousand (5.000) tuples and then 32.000 tuples were generated, 
configuring 1 and 6 MB databases, for the initial and evaluation tests, respectively. 

In order to establish an error threshold for using as a reference in analyzing other 
tests results, similarly to other related works [3][11][15], we ran a test where we 
applied an average based data imputation over the complete fact table (taking all 
tuples into account), and found 1.91 as the error rate threshold. In all tests, the error 
rate was always below such threshold. 

The best k for the k-NN algorithm, found in the initial tests, were k = 10 and k = ඥnୡ (where nୡ is the total of complete tuples from fact table). Also, when k-NN was 
configured with the Euclidian distance, it overcame its version with the Mixed Types 
distance in 69% of the tests.  

Linear normalization was employed in TPC-H’s dimensions in order to smooth the 
differences among values from the set of attributes. In the initial tests, the imputation 
errors calculated over non-normalized database were lower than the ones obtained 
over the normalized database version.  

Initial tests also aimed at the evaluation of the proposed strategy. The following 
aspects were taken into consideration in the data imputation process: 

 

(a) Influence of dimensional data when used to enrich the fact table. Four groups 
of attributes were created to represent the following dimensional types: 
“where”, “when”, “who”, “all”. 

(b) Attributes’ types: (i) only categorical attributes; (ii) only numeric attributes; 
(iii) both numeric and categorical attributes. 

(c) Attributes’ selectivity: Experiments were performed in order to vary 
selectivity level of the attributes. 

 

Table 1 summarizes the main results of initial tests. For these tests 48 imputations 
were performed, and, in average, error rate with numeric attributes were 40% higher 
than with categorical data, which means that categorical attributes showed a better 
performance than numeric ones. Additionally, error rate with k = 10 and categorical 
attributes from all dimensions was the lowest value produced in these tests. 

The evaluation tests were performed under the following conditions: (a) Euclidian 
distance was fixed for the similarity metric; (b) k was set to 10 and √n; (c) non-
normalized data. For these tests, three scenarios were configured: (a) only categorical  
 

Table 1. Summary of results (error rate values) of the initial Tests 

k Dimension Categorical Numeric Categorical and Numeric 
 
 
 

10 

Where 0,817 2,144 2,148 
Who 0,831 2,777 1,645 
When 0,817 1,646 1,655 

All 0,801 1,919 1,565 
 
 
 

√nc 

Where 0,946 2,180 2,296 
Who 0,951 1,374 1,858 
When 0,947 1,626 1,642 

All 0,952 1,945 1,535 
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attributes; (b) only numeric attributes; (c) both numeric and categorical attributes. In 
all scenarios, attributes with highest selectivity were used. Table 2 summarizes the 
main results obtained with the evaluation tests. Once again, the scenario with 
categorical attributes and 10 nearest neighbors outperformed the others. 

Table 2. Summary of results (error rate values) of the Evaluation Tests 

k Scenario Error Combination with lowest error 
 
 

10 

Categorical Attributes 0,831 All attributes 

Numeric Attributes 1,713 All attributes 
Categorical and Numeric Attributes 1,336 All attributes 

 
 

√nc 

Categorical Attributes 0,979 All attributes 
Numeric Attributes 1,668 All attributes 

Categorical and Numeric Attributes 1,549 Numeric attributes with highest selectivity 

 
Test results were promising with respect to the imputation quality. However, a real 

case study would be necessary to evaluate the impact of such approach on the DW 
confidence, through the analysis of specific analytical queries (with and without data 
imputation). Moreover, it is also necessary to prepare a much larger set of tuples, that 
resembles a real DW, in order to evaluate this approach with respect to performance.  

7   Conclusions 

This paper proposed a new strategy to address the missing data problem on the ETL 
process. The idea is to use data provenance (data from dimensional tables) to enrich 
the fact table aiming at a better characterization of tuples. Our strategy uses some 
heuristics in order to help final user to identify which provenance attributes can 
improve imputation quality. 

A prototype called ComplETL was implemented in order to evaluate our proposal. 
Tests were performed over a customized version of TPC-H benchmark’s database, 
which was transformed into a traditional DW star schema with a fact table and its 
dimensional tables.  

Some interesting and promising results could be identified based on the performed 
experiments: (i) all results achieved with the proposed approach outperformed the 
ones obtained with average based data imputation, a commonly used technique; (ii) 
when used to enrich the fact table, categorical attributes showed better imputation 
results than the numeric ones; (iii) attributes with higher values of selectivity led to 
the best results; (iv) imputation errors with non-normalized data were lower than with 
normalized ones. 

Future work includes: (i) evaluate other machine learning based imputation 
algorithms but k-NN; (ii) tests with real and larger databases; (iii) develop a parallel 
and distributed version of ComplETL; (iv) improve the strategy to take both attribute 
correlation and ontology resources into account, in the selection of attributes to enrich 
the fact table. 
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Abstract. In Data Warehouse (DW) environments, operational pro-
cesses move data from sources to the warehouse. This includes data
export, preparation, and loading usually performed using Extraction,
Transformation and Loading (ETL) tools. Past research has treated DW
”as collections of materialized views” whose data is regularly refreshed
and locally stored [1]. Requirements have changed and real time transac-
tions are required to support on-line operational decision making. Tradi-
tional DW systems may impose unacceptable delays due to their batch
nature. ETL techniques are difficult to scale up to address the challenge
of data loading, performance and low latency to provide real-time deci-
sion support. We propose a new approach for designing real-time DW in
which traditional ETL does not apply. Data is pre-analysed by agents
in each data source before being pushed as needed to the DW. The ap-
proach has been evaluated in a simulated environment and some of the
results are discussed here.

1 Introduction

In today’s information era, organizations must be able to integrate large volumes
of data from a variety of sources (i.e operational systems, sensors, other people)
in order to support tactical IT plans and strategic decisions. Business Intelligence
(BI) seems to be the right paradigm to follow in order to help managers to make
timely and effective decisions. BI tools help with information gathering and
processing data, building rich and relevant information that is then sent back to
decision makers [2].

Most BI architectures use data warehouse technologies as the way to con-
solidate, analyse and report data. Traditional data warehouses are refreshed in
a periodic manner, usually on a daily basis (off-peak hours), where the opera-
tional sources and the data warehouse experience low load conditions. There is a
cooling-off period between business transactions and their representation in the
data warehouse, with the most recent data unavailable for analysis as it is caught
in the operational sources [3]. Thus, it is possible to say that traditional data
warehouse technologies are ”out-of-sync very quickly” which can be an issue in
obtaining real time information response [4].

Past research has treated data warehouses ”as collections of materialized
views” whose data is regularly refreshed and locally stored [5], but today re-
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quirements have changed and real time transactions are required to support on-
line operational decision making. Active Data Warehousing and real time data
warehouse applications are required in which large amounts of heterogeneous
information can be updated as frequently as possible [6].

Certainly, no data can be really obtained in real-time, not in a ”quantum
sense” because by the moment data is seen it is no longer real time [7]. For some
researchers real-time means up to time which means that any data change that
is taking place in a source system has an immediate and automatic echo in the
data warehouse [8]. For others real-time is not about being fast, it is the ”utility
function” that designates the damage for an organization because of missing
a deadline [9]. Therefore, real time is a subjective variable and involves some
qualitative and quantitative rules. [10] states that ” The critical challenges of
decision support in general is how quickly can we make sound decisions? The
issue really revolves around time to decision”.

This means real time for an organization could be considered as the ability to
respond to a decision in a day due to it crossing the overnight-update barrier, or
the ability to make data flow without delay (trickle-feed) instead of batch load;
or in a practical sense, real time will be defined by the ” service level agreement
given by the organization deadlines” ( e.g. ability to report and fix a problem)[9].

One of the main components of a data warehouse implementation is the pro-
cess of data integration. Data is integrated into the data warehouse in three
steps: Data is extracted first then transformed and loaded into the warehouse.
Extraction, Transformation, and Loading processes (ETL)are the key to ”bring
data from heterogeneous data sources to an homogeneous environment” [11].
These processes tend to take a few hours to complete as they deal with large
volumes of data.

Solution techniques vary to provide real time to extract, transform and load
data (ETL) [12]. The main approaches are:

– Near real time ETL: e.g. hourly loads.
– Real time solutions:

• The direct trickle feed, in which the data warehouse is continuously fed
with new data from the source system.

• The Trickle and Flip, in which the data is continuously fed into staging
tables that are in the exact same format as the target tables. It helps
with issues such as tables being simultaneously updated.

• Real time data cache, which can be a dedicated database server or an-
other instance of a large database system with the purpose of loading,
storing, and processing the real-time data.

Trickle feed applications are mainly in finance where stock prices or currency
exchange rates that change during the day are loaded as they change [13]. In
general it works under a messaging infrastructure via streaming data. To date,
there is little research in the implementation of these technologies as they are
mainly treated as a black box by the vendors.

On the other side, the problem with most of the solutions that implement real
time date cache is that it is not possible to join reports and co-display alerts
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to display real-time and historical information together. Therefore, this kind of
solution is more efficient when historical information is not needed. Moreover, if
complex analytical reports are run on the real-time cache, it is possible for it to
start showing the same internal report inconsistencies, database contention, and
scalability problems that the warehouse would present [12].

It can be seen that during the last 5 years few studies in the optimization of
the ETL process has been conducted. Existing studies focus on a logical opti-
mization of the ETL process such as [5] who proposed a framework to optimize
ETL processes by modelling the problem as a state space search problem (in
which activities are placed in the flow). Nevertheless concurrency and the real
application of this (semantic) was not discussed in the study.

In BI choices of data generation flow solutions vary from batch versus stream,
and from push versus pull. Today in most BI architectures all data to be anal-
ysed has to be consolidated in the warehouse first, by following a pull approach.
Queries are directed to the data sources to extract and integrate all the infor-
mation [14]. These pull solutions have found federated systems the best way to
achieve data freshness in a timely manner. Nevertheless, real time alerting and
reporting cannot be done in a query [15]. [16] proposes the idea of an improve-
ment over the traditional batch ETL technologies by considering the idea of ELT
where the data is loaded into the warehouse to then continue with the transfor-
mation (batch versus streaming). However, no ELT application or research to
support the idea of order change in traditional ETL is presented.

[17] offers CTU, a Capture, Transform and Update mechanism to incremen-
tally update the performance of the warehouse in real time. It uses data triggers
as the main components to initiate the sequence of actions to push data. How-
ever, most of the techniques already in use have to schedule in some way the
data extraction to pull or push data in the warehouse, and all of them analyse
the data, perform reports and alerts only when all the data extracted has been
consolidated in the data warehouse.

By changing the sequence of processes in the traditional ETL approach it
may be possible to enable local autonomy at the level of the data sources to
push information (transfer data) to the warehouse. Thus, our solution offers an
approach that empowers the data sources and moves data analysis to the first
level before data integration and data consolidation. Thus, as soon as valuable
data arrives at the data source, data is pre-analysed based on previous knowledge
(historical information). If there is not enough information to take an action, data
is immediately sent to the warehouse. To enable data push, agents can be used
as these are defined as entities that enable local intelligence to react in particular
environments.

In the following sections the main features of the architecture designed are
presented, and the results of the pre-analysis process are discussed. Section 2
describes the main design considerations, section 3 explains the functionalities
of agents, and the pre-analysis task results and how this process is implemented.
Section 4 presents the main results of some of the tests conducted to then sum-
marize the conclusions and actions for future research in section 5.
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2 The TTL Approach

We propose an event driven approach as a way to sense and react in real time to
certain environment conditions. Data is filtered, processed and analysed in the
sources by enabling learning capabilities in them. Thus, sources of information
sense and react by then pushing data into the warehouse only if needed. Real time
response will be kept to a minimum latency by eliminating the data availability
gap to perform data analysis which will enable organizations to concentrate on
accessing and processing valuable data.

To deal with latency issues our architecture empowers the data sources with
intelligent capabilities to monitor and pre-analyse valuable data. The pre-analysis
is performed by using a Multi Agent System Architecture (MAS). This paradigm
has become more and more important in many aspects of computer science by
introducing the issues of distributed intelligence and interaction. Agents learn
and reveal the data activity patterns through day to day measurements and the
data history contained in each source of information. An agent reacts, after the
pre-analysis has been done, by sending alarms according to changes in those pat-
terns [18], or transfers data to the warehouse because more actions are needed,
or if there is not enough knowledge to perform an action at the source level.

An partial view of the TTL approach can be seen in Fig.1. There are three
stages to perform the monitoring process, as in current ETL approaches, never-
theless the modules have been organized in a different way to start pre-analysing
data from the very beginning.

– Data Push: This module is responsible for monitoring the individual data
contained in each source of information. Source agent (SA) is subscribed to
the ID of the data to monitor in each source of information and through a
set of specific rules that it has from the base of knowledge (historical data),
it takes the decision to perform an action such as deliver information to the
learning repository or to send an alert to data managers.

Source Agent does not monitor all data available in each source. It moni-
tors only relevant data for that entity that has been declared important to
monitor (i.e Particular patient, share or product).Therefore, this is an ”in-
dividual” specific framework in which local knowledge has been taken from
a subset of the original data. The relevant entity to monitor in a source has
been called a compound. In our application a particular patient will be a
compound.

Compound normal ranges, and/or valuable data to monitor come from the
knowledge obtained in all the historical data available for that compound
in the sources of information. It also considers the general base of knowl-
edge that tells us which are the features or factors relevant and necessary
to monitor. The General base of knowledge can be the area of interest to
monitor. In our application the general base of knowledge comes from the
general features to consider for cardiovascular heart disease.
As soon as valuable data arrives at a source of information a trigger alerts
to the SA which checks:
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Fig. 1. TTL approach

• IF the data changed (dc) in the source is valuable data THEN check it
against normal ranges and data structures (type)

• IF dc=normal THEN go to sleep because no action is needed
• ELSE IF dc!= normal THEN reacts/alert/transform/transference

Data is transformed and transferred to the data warehouse when there is not
enough knowledge to take an action at the source level and a consolidated
view of data is needed.

– Data consolidation: To monitor a special compound at the source level and
to update the local knowledge of Source Agent, a reinforcement learning
mechanism was selected. Thus, source agent has a set of rules for which is
necessary to provide an alert. Each rule has been built based on the historical
information of the compound.

When a set of data is extracted from the sources of information it is
compared with the actual rules to decide the possible outcomes. If the set of
data does not match any of the rules that SA has, the information is then
compared with the full base of knowledge of the compound that resides in
theKnowledge Agent(KA).

Information is delivered when the data obtained in the source of informa-
tion is not within normal ranges, does not match any of the cases obtained
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from the historical information, or there is not enough information to take a
decision. Therefore, it represents valuable data to monitor for the compound
and may need to be analysed as a whole view in the learning repository.
KA is continuously learning from the data to have the capability of adapt-
ing to new environment conditions or requirements, new compound rules or
normal data ranges for example.
The data warehouse drives local knowledge updates, consolidates patient
valuable data and main rules, and acts as a communication mechanism
among agents.

– Data alerts and updates : Once data has been analysed, whether this analysis
is performed in the central repository or at the agent level, alerts are sent
to the decision makers, as risk scenarios might be present. Alerts are also
sent to the patient in our application as a sensor device may not be working
properly due to the data received in the source being incomplete or not in
normal ranges.

We have used real time as follows: ” Any valuable data (key features to monitor
at the sources level) that changes will trigger and determine certain reactions
(analyse/alert/update/transference) to save time in the decision making process
before the deadline is reached. A deadline is reached when clearly the monitoring
compound is in a risk scenario”.

By monitoring key features only, evaluating, and then responding to them on
time the proposed architecture is able to respond and/or alert to risk scenarios in
a more effective way than traditional data warehousing strategies have allowed.

3 The Application Domain

The effectiveness of the framework proposed has been assessed by testing it in
the area of health informatics. We have proposed a solution to manage cardiac
disease patients by designing an architecture that learns and reveals the disease
activity patterns through day to day measurements and the clinical history of an
individual patient, reacts in real time by sending alarms according to changes in
those patterns, and is adaptive to new system conditions and changes in health
care requirements.

Cardiac disease monitoring of patients takes place at each step of patient
management, from disease detection to disease prognosis and from surgery to
recovery. During routine screening, day to day measurements (sensor devices)
and patient knowledge can be obtained and risk scenarios can be detected.

Nowadays the ”pervasive health care” monitoring environments, in the same
way as in business, gather information from a variety of data sources, but they
include new challenges because of the use of body and wireless sensors which
makes the system more complex to monitor in real time. Here filtering data fusion
techniques using data warehouses, context aware and knowledge generation using
RFID and data mining techniques to achieve reliability are some of the proposed
approaches to achieve real time data monitoring. The use of BI tools are still
very limited in healthcare, and the generation of false positive alerts and patient
specific data processing in right time is still not achieved [19] [20][21].
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3.1 Base of Knowledge

The general knowledge about cardiac disease features (symptoms and combina-
tion of symptoms) to consider in heart disease patients was obtained from the
list of 24 clinical features of [22]. This list provided us with the main critical
diagnostic features of 5 major heart diseases. This includes diagnostic features
such as age, dizziness, cyanosis, chest pain, dyspnea, blood pressure and edema
of lower limb.

Furthermore, by general expert feedback (four cardiologists) a sub list of 15
symptoms considered important to monitor in ongoing patient assessment, for
patients identified with coronary heart disease as well as their relative level of
importance was obtained. These can be seen in Table 1.

Table 1. Symptoms

Level of Importance Symptom

High ST-T alteration

Dyspnea

Hypertension

Discomfort, heaviness in the chest

Chest Pain

Neck venous return or engorgement

Medium Cyanosis

Systolic murmur

Dizziness

Diastolic murmur

Blood pressure

Low Headache

Second heart sound

Barrel chest

Upper respiratory infection

Once the level of importance of a symptom or medical test was found a list
of features that triggers alarms for a particular patient (patient’s rules) was ob-
tained. Although this list is obviously incomplete, it will be adequate to demon-
strate the validity of the approach. An example of patient’s case to add knowl-
edge to monitor can be described as follows:

– P1: [ST-T alteration + Chest pain = Cardiac insufficiency]Date

3.2 The Pre-analysis

The sources of information that feed the warehouse have the capability to process
local knowledge. A source agent resides in each patient data source such as
sensors, General Practitioner, and hospital data bases. Source agents have the
goal to look after valuable data to monitor for an individual patient to control
disease prognosis, transform the data received and transfer it (if needed) to the
warehouse when local knowledge is not enough to take an action at that level.
It also performs on-line alerts according to the data outcomes (certain events)
and changes in patient data patterns.
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Based on the base of knowledge given by experts in the field (as described in
the previous section) and a set of features to be considered in ongoing assessment
for patients with heart disease, a simulated environment of patient scenarios
disease data and cases was created and deployed. A MySql data base was used
which contains patient’s data, episodes and cases from the last 10 years for 20
coronary heart disease patients.

Once patient data was simulated, a function was programmed in a query to
obtain patient’s normal rages. A number of risk scenarios was also simulated
given by episodes over a certain period of time for some patients.

By using JADE (Java Agent Development Framework), a software platform
to develop distributed applications based in agents [23], a prototype to demon-
strate the effectiveness of the local knowledge empowerment in each source was
developed. JADE simplifies the development of applications that need coordi-
nation and negotiation among various agents. Thus, patient specific information
and the general knowledge about heart disease were placed as knowledge rules
for Source Agent. Thus, values like expected and current for the patient features
(compound) allows SA to monitor patient’s states as soon as new data arrives
at any source.

It is important to consider that heart disease normal parameters are well
defined in the literature, but each patient might have conditions which do not
necessarily fit in the base of knowledge of heart disease. As an example patient
normal blood pressure, value/ranges, differs from one patient to another. Thus,
SA has to contrast for the pre-analysis the general heart disease base of knowl-
edge as well as the patient specific data values for each critical feature relevant
to monitor. An example is given in Table.2. According to the features described
in Table 1, and the patient individual characteristics (history), patients were
classified in high, medium and low risk patients.

Table 2. Sample rules for pre-analysing data at SA

SA sample rules

IF blood.pressure is above normal value,
THEN check whether the exception is tolerable
IF blood.pressure is tolerable,
THEN send current blood.pressure record to Knowledge Agent
ELSE IF blood pressure is not tolerable,
THEN check patient classification
IF patient classification equal high risk
THEN wakeup Alerts Agent under the message of
feature above normal ranges
for a high risk patient

4 Results of Implementation

The main differences between a traditional clinical data warehouse system and
our approach can be seen in Table.3.
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Table 3. ETL vs TTL

Processes ETL TTL

Data Extraction 1st stage Does not apply

Data Transformation 2nd stage 1st in conjunction with the pre-analysis

Data loading 3rd stage 3rd stage and only if needed

Data analysis/reporting After ETL has been completed Analysis 1st stage
Reporting any time if needed

In a system designed to actively monitor data, resources consumption and
response time are usually the metrics of interest to evaluate a system. These can
be explained from two main aspects. Efficiency as the way to do the task using
less resources and Effectiveness by means of doing the task in the right way.

– Efficiency
A dedicated machine ( Intel core Duo, 3GHz and 3.25GB of RAM) was
used. A MySQl data base with 20 heart disease patients, with records from
the years 2000 to 2010 was simulated. Data in the database includes, GP
patient records (visits,symptoms,outcomes, medication), pathology results
(test, ECG results), hospital patient records and sensor monitoring data
results). That gave us an environment of around 6000 records for the total
of patients.

We used Linux Ksar utility to monitor the system states and resource
usage during the tests in order to compare traditional data extraction vs
intelligent transference and pre-analysis. The results of these tests can be
seen in Table.4.

Table 4. Cpu usage

Scenario Duration in sec
Average usage of CPU in %
User System Idle

Traditional
extraction

Simple 1.0027 50.29 19.27 30.44

Complex 1.0054 51.27 18.29 24.52

Intelligence
transference

Simple 0.6378 30.27 21.15 48.58

Complex 2.0974 44.17 19.31 36.52

Traditional extraction was considered as a simple planned and batched
programmed query, that extracts patient’s data to be moved to a warehouse
in a certain period of time. Intelligent transference is the new approached
that we propose instead.

A simple scenario refers to an scenario in which data has changed at the
source level but is not relevant to monitor. A complex scenario refers to a
new data entry at the source level that is relevant to monitor and an action
must be taken.

As can be seen in the table the intelligent transference, (agent pre-
analysis) consumes less or almost the same amount of CPU than the tra-
ditional data extraction mechanism programmed. Therefore, enabling pre-
processing and filtering at the source levels does not stress the sources of
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information. Source agent seems to run to a low priority (given the % CPU
idle used) so does not impact programs that run at normal priority in the
server.

In the complex scenario SA performed pre-analysis and a transference
and it did not show mayor differences in relation to traditional transference.
These test were planned to move a number of KB only (200 records) which is
the best scenario and it does not represent a Very Large Data Base (VLDB)
environment. Nevertheless, on a VLDB environment traditional data extrac-
tion will use more machine resources and it will be more time consuming [24]
[25] while in our case the database size is not relevant as SA will keep almost
the same average consumption as it will only analyse relevant data only (a
small data load) and not all the data that has changed in the source.

In terms of process duration traditional data extraction is affected by
the number of rows/bytes to extract while intelligent data transference is
affected by the amount of data to analyse. Because in the tests a small data
load was programmed, it was not really possible to compare process duration
with the two scenarios proposed. Therefore, although these data is included
in the table they were not considered enough to be discussed here and more
tests to prove this part need to be done in the future.

– Effectiveness
We argue that by monitoring key features in each patient, pre-analysing
and then if needed transferring them to a central repository the proposed
architecture is more effective than traditional ETL and data warehouse ar-
chitectures.

By having local knowledge and empowering the data sources (using a
monitoring agent) we have reduced the numbers of steps to analyse data.
Data analysis as been moved to an early stage starting once relevant data to
monitor has been changed in a source. That pre-analysis is performed now
in the local source and if there is enough knowledge to perform an action, an
alert mechanism is activated to either alert the patient because maybe the
data that has changed in the source is incomplete (i.e sensor device data)
or to the health care staff because the data that has changed is relevant to
monitor and implies that the patient might be at risk.

Data inconsistency is detected in an early stage because of the knowledge
about data types and data structure that Source Agent has in each source of
information. Therefore, SA knows data structures and types of each source.
Thus, data inconsistency is picked up in relevant data as soon as the agent
is notified. Source Agent checks data structures and value before performing
any analysis which help us to inform and not include uncompleted data as
part of the analysis.

Therefore, by monitoring only relevant data in a distributed environment
and by having local knowledge to check normal patterns it is possible to
identify changes in the disease prognosis at an early stage and send an alert
as soon as possible to the health care staff in patient risk scenarios.
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5 Conclusions

We propose a new approach to active monitoring using data warehouses in which
traditional extraction, transformation and loading tools do not apply. The main
characteristics of this new approach are that the data warehouse is not pro-
grammed for querying the sources for the information, and that there is local
knowledge at the sources level which allows data transformation, filtering, and
analysis before sending if it needed, to the central repository.

The data analysis to perform data monitoring has been moved to the first
stage of the architecture. Therefore, alerts and actions can be taken as soon
as relevant data has changed in a source. Through this approach, important
time for decision making is saved and a mechanism to support monitoring under
patient risk scenarios in real time is proposed. The decision making starts from
the owner of information and only patient useful data (data that needs to be
monitored in risk scenarios) is sent to a consolidated repository.

Although data security is important, not all the framework has been dis-
cussed here with only those areas involved in data management (pre-analysis)
being mentioned. A mechanism to consider environmental scenarios needs to be
established in the future too. A symptom can be triggered by different factors
and scenarios like stress, anxiety and others that may affect the probability of a
heart episode to occur. This will affect the alerts module and will eliminate false
positives in the monitoring process.
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Abstract. Data cleaning and ETL processes are usually modeled as
graphs of data transformations. The involvement of the users responsible
for executing these graphs over real data is important to tune data trans-
formations and to manually correct data items that cannot be treated
automatically. In this paper, in order to better support the user involve-
ment in data cleaning processes, we equip a data cleaning graph with data
quality constraints to help users identifying the points of the graph and
the records that need their attention and manual data repairs for rep-
resenting the way users can provide the feedback required to manually
clean some data items. We provide preliminary experimental results that
show the significant gains obtained with the use of data cleaning graphs.

1 Introduction

Data cleaning and ETL processes are commonly modeled as workflows or graphs
of data transformations. The logic underlying real-world data cleaning processes
is usually quite complex. These processes often involve tens of data transforma-
tions that are implemented, for instance, by pre-defined operators of the chosen
ETL tool, SQL scripts, or procedural code. Moreover, these processes have to
deal with large amounts of input data. Therefore, as pointed out in [14], in
general it is not easy to devise a graph of data transformations able to always
produce accurate data. This happens for two main reasons. First, individual data
transformations that consider all possible data quality problems are difficult to
write. Consequently, the underlying logic needs to undergo several revisions, in
particular when the cleaning process is executed over a new batch of data. Hence,
it is important that users responsible for executing the data cleaning processes
have adequate support for tuning data transformations. Second, a fully auto-
mated solution that meets the quality requirements is not always attainable. In
general, a portion of the cleaning work has to be done manually and, hence, it
is important to also support the user involvement in this activity.

When using ETL and data cleaning tools, intermediate results obtained af-
ter individual data transformations are typically not available for inspection or
eventual manual correction — the output of a data transformation is directly
pipelined into the input of the transformation that follows in the graph. The so-
lution we envisage for this problem is to support the specification of the points in
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the graph of data transformations where intermediate results must be available,
together with the quality constraints that this data should meet, if the upward
data transformations correctly transform all the data records as expected. Be-
cause assignment of blame is crucial for identifying where the problem is, the
records responsible for the violation of quality constraints are highlighted. This
information is useful both for tuning data transformations that do not handle
the data as expected and for performing the manual cleaning of records not
handled automatically by data transformations.

While the tuning of data transformations requires some knowledge about the
logic of the cleaning process, it is useful that manual data repairing actions can
also be performed in a black-box manner, namely by the application end-users.
As already advocated in the context of Information Extraction [4], in many
situations, data consumers have knowledge about how to correctly handle the
rejected records and, hence, can provide critical feedback into the data clean-
ing program. Our proposal is that the developer of the cleaning process has the
ability to specify, in the points of the graph of data transformations where inter-
mediate results are available, the way users can provide the feedback required
to manually clean certain data items. This may serve two different purposes:
for guiding the effort of the user that is executing the cleaning process (even if
he/she has some knowledge about the underlying logic) and for supporting the
feedback of users that are just data consumers.

In this paper, we put forward a notion of data cleaning graph (DCG, for
short) that supports the modeling of data cleaning processes that explicitly
define where and how user feedback is expected as well as which data should
be inspected by the user. The operational semantics of DCGs formally defines
the execution of a data cleaning process over source data and past instances of
manual data repairs. With this semantics it is possible to interleave the tuning
of data transformations with the manual data correction without requiring that
the user repeats his feedback actions. We present experimental results that show,
for a real-world data cleaning application modeled as a DCG, the gain in terms
of the accuracy of the data produced, and the amount of user work involved.

The paper is organized as follows. Section 2 presents the motivation and an
overview of the proposed approach. In Section 3, the elements of the approach
are presented in detail. In Section 4, we present a case study of a data cleaning
process and, in Section 5, we report on the experimental results obtained that
show the usefulness of our approach. In Section 6, we discuss the related work
and in Section 7 we summarize the conclusions and future work.

2 Motivation

Let us consider that the information required for computing the research perfor-
mance metrics for a given team is collected into a database with tables Team and
Pub as illustrated in Fig.1 (a simplification of the real database used in the CIDS
system [6]). The Team table is manually filled with accurate information about
the team members. The Pub table stores the information about the citations of
team members obtained through queries posed to Google Scholar.
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The relationship that exists between the two tables, through the foreign key
tId, associates all the publications to a team member. However, this association
may be incorrect, namely due to the existence of homonyms. In our example,
the first member in Team refers to a colleague of us and the Pub record with pid 4
is not authored by him, but by a homonym. Another problem that affects these
tables is the multitude of variants that author names admit. For instance, the
records of Pub shown in Fig.1 contain two synonyms of “Carriço, L.”.

Fig. 1. Pub and Team tables

The computation of reliable research performance indicators for a team re-
quires a data cleaning process that, among other things, deals with the problems
of synonyms and homonyms pointed before. The Team table can be used as ref-
erence to identify and correct these problems. State-of-art procedures to solve
synonyms are based on the use of approximate string matching [12]. Names as
“Carriço, L.” in tuple 1 of Team table and “Carrico, L.” in tuple 2 of Pub table can
easily be found as matches. However, it may also happen that these procedures
find several possible correct names for the same author name. For example, “San-

tos, A.” and “Santos, A. L.” are the names of two team members and both match
the author name “Santos, A. L.” encountered in tuple 5 of the Pub table. That is
to say, both names in (“Santos, A.”,“Santos, A. L.”) and (“Santos, A. L.”, “Santos,

A. L.”) are similar enough so that both entries of the Team table are considered
as potential candidates of team member names for “Santos, A. L.”. The problem
that remains to be solved is which of the two to choose, or to decide if none of
them does in fact correspond to the individual “Santos, A. L.”. We believe that
this kind of domain knowledge can only be brought by a user that is aware of
the team members and their research work. The syntactic similarity value that
exists between the two pairs is not enough for automatically taking this decision.

The detection of homonyms in the context of names has been object of active
research. For instance, [13] has shown that the detection of homonyms among
author names can benefit from the use of knowledge about co-authorship. If this
kind of information is available, then a clustering algorithm can be applied with
the purpose of putting into the same cluster those author names that share a
certain amount of co-authors. In principle, the author names that belong to the
same cluster most probably correspond to the same real entity. The problem that
remains is how to obtain accurate co-authorship information. Clearly, automatic
methods for calculating this information from publications are also subject to
the problem of homonyms and, hence, the produced information in general is
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not accurate. In this case, we believe that the problem of circularity can only
be broken by involving the user in the cleaning of the co-authorship information
that was automatically obtained.

The example just presented shows the importance of being able to automati-
cally clean data while efficiently employing user’s efforts to overcome the prob-
lems that were not possible to handle automatically. In this paper, we propose
a way of incorporating the user involvement in these processes and present a
modeling primitive — the data cleaning graph, that supports the description of
data cleaning processes that are conceived having user involvement in mind. A
DCG encloses a graph of data transformations as used, for instance, in [17,9].
The output of each transformation is explicitly expressed and associated with a
quality constraint. This constraint expresses the criteria that data produced by
the transformation should obey to and its purpose is to call the user attention for
quality problems in the data produced by the transformation. Additionally, the
DCG encloses the specification of the points where the manual data repairing
actions may take place. The aim of this facility is to guide the intervention of
the user (end-users included) and, hence, it is important to define which data
records can be subject to manual modifications and how. We have only consid-
ered actions that can be applied to individual data records for repairing data.
Three types of actions were found useful: remove a tuple, insert a tuple, and
modify the values of certain attribute of a tuple.

3 Data Cleaning Graphs

In this section we present the concept of data cleaning graph — the modeling
primitive we propose for describing data cleaning processes. We provide its op-
erational semantics through an algorithm that manipulates sets of tuples.

Terminology. We consider a set R of relations names and, for every R∈R, a
schema sch(R) constituted by an ordered set of attribute names. An instance of
a relation R is a finite set of sch(R)-tuples. We consider a set T of data transfor-
mations. Each T∈T consists of an ordered set IT of input relation schemas, an
output relation schema OT and a total function that maps a sequence of IT -tuples
to OT -tuples. We use Ii

T to denote the i-ary element of IT . If G is a direct acyclic
graph (DAG), we use •n and n• to denote, respectively, {m :(m, n)∈edges(G)}
and {m :(n, m)∈edges(G)} and ≤G to denote the partial order on the nodes of
G, i.e., n ≤G m iff there exists a directed path from n to m in G.

3.1 The Notion of Data Cleaning Graph

The notion of DCG builds on the notion of data transformation graph introduced
in [9]. These graphs are tailored to relational data and include data transforma-
tions that can range from relational operators and extensions (like the mapper
operator formalized in [3]) to procedural code. The partial order≤G on nodes(G)
partially dictates the order of execution of the data transformations in the pro-
cess (transformations not comparable can be executed in any order).
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A data cleaning graph is a DAG, where nodes correspond to data transfor-
mations or relations, and edges connect (input and output) relations to data
transformations. In order to support the user involvement in the process of data
cleaning, each relation R in a cleaning graph has associated a constraint express-
ing a data quality criteria. If the constraint is violated, it means that there is a
set of tuples in the current instance of R that needs to be inspected by the user.
Quality constraints can include the traditional constraints developed for schema
design, such as functional dependencies and inclusion dependencies, as well as
constraints specifically developed for data cleaning, such as conditional func-
tional dependencies [7]. Each relation R in a cleaning graph has also associated
a set of manual data repairs. These represent the actions that can be performed
by the user over the instances of that relation in order to repair some quality
problems, typically made apparent by one or more quality constraint labelling
that relation or a relation “ahead” of R in the graph. For the convenience of the
user, it might be helpful to filter the information available in R and, thus, we
have considered that data repair actions are defined over updatable views of R1.
They can range from SQL expressions to relational lenses [2]. The examples of
manual data repairs provided in this paper consider an updatable view defined
as an SQL expression.

Definition 1. A Manual Data Repair m over a relation R(A1, ..., An) consists
of a pair 〈view(m), action(m)〉, where view(m) is an updatable view over R and
action(m) is one of the actions that can be performed over view(m):

action ::= delete | insert | update Ai

In the case where the action is update Ai, we use attribute(m) to refer to Ai.

Definition 2. A Data Cleaning Graph G for a set of input relations RI and a
set of output relations RO is a labelled directed acyclic graph 〈G, 〈Q,M〉〉 s.t.:

– nodes(G)⊆R∪T . We denote by rels(G) and trans(G) the set of nodes of G
that are, respectively, relations and data transformations.

– RI ∪RO⊆rels(G).
– n∈RI if and only if •n = ∅, and n∈RO if and only if n• = ∅ and •n �= ∅.
– if (n, m)∈edges(G), then either (n∈R and m∈T ) or (n∈T and m∈R).
– if T ∈ trans(G) then IT ={sch(R) : R ∈•T } and OT ={sch(R) : R ∈T •}.
– if R ∈ rels(G) then •R has at most one element.
– Q is a function that assigns to every R∈rels(G), a quality constraint over the

set of relations behind R in G or in RI , i.e., Q(R)∈L(RI ∪ {R′ ∈ rels(G) :
R′ ≤G R}) such that Q(R) is monotonic w.r.t. R, i.e., given a set of relation
instances that satisfies Q(R), the removal of an arbitrary number of tuples
form the instance of R does not affect the satisfaction of Q(R).

– M is a function that assigns to every R∈rels(G), a set of manual data
repairs over R.

1 For a definition of an updatable view, see [11], for instance.
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The conditions imposed on DCGs ensure that RI and RO are input and out-
put relations of the graph; relations are always connected through data trans-
formations; the input and output schemas of a data transformation are those
determined by their immediate predecessors and successors nodes in the graph;
the instances of a relation in the graph result, at most, from one data trans-
formation; the quality constraints over a relation in the graph can only refer to
relations that are either in RI or behind that node in the graph and must be
monotonic w.r.t. to the relation of the node. This last condition is necessary to
ensure that quality constraints can be evaluated immediately after the data of
the relation is produced, i.e., does not depend on data that will be produced
later, by transformations ahead in the graph.

 select

from blamed

unique

Fig. 2. Excerpt of a data cleaning graph for cleaning Pub table

The example sketched in Fig.2 illustrates an excerpt of the DCG required for
cleaning the Pub table introduced in Section 2. It mainly makes use of SQL for
expressing constraints and updatable views. The input relations of this DCG are
Team and Pub and there is a single output relation, CleanPub that contains only
publications authored by a member of Team. In the part of the graph that
is shown, we can see that the node R3 is labelled with the quality constraint
unique(aId, title). It is not difficult to conclude this is indeed a monotonic con-
straint over relations ≤G R. The reason for imposing this quality constraint, at
this point, is because we want to have at most one matching team member, for
each author of a publication in Pub. Since transformation T3 applies a string
similarity function to decide if two names (one from Pub and the other from
Team) are the same, it might happen that some data produced by T3 violates
this constraint. For instance, both Team members “Santos, A.” and “Santos, A. L.”

are found similar to Pub author “Santos, A. L.”. The quality constraint will call
the attention of the user to the tuples blamed for the violation.
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Moreover, the functionM of this DCG assigns to the node R3 a single manual
data repair, Mdr3, that consists in the view V defined over R3 that returns only
the tuples blamed for the violation of Qc3 (this is formally defined in the next
section) and the action delete. The view V projects almost all the attributes of
the relation but we could use the view to exclude non relevant information and,
in this way, limit the amount of information the user has to process in order to
decide which are the appropriate manual data repairs to apply.

3.2 Operational Semantics

DCGs specify the quality criteria that the instances of each relation should
meet. The records responsible for the violation are identified through the notion
of blame assignment for quality constraints.

Definition 3. Let φ be a quality constraint over a set of relations R1, ...., Rn that
is assigned to relation R. Let r and r1, ..., rn be instances of these relations s.t.
r, r1, ..., rn�φ. The blame of the violation is assigned to the set blamed(φ), which
is defined as the union of all subsets rp of r that satisfy: (1) r\rp, r1, ..., rn�φ;
(2) rp does not have a proper subset o s.t. r\o, r1, ..., rn�φ.

Each subset rp of r that satisfies the two conditions above represents a way of
“repairing” r through the removal of a set of tuples that, all together, cause
the violation of φ (a particular case of data repairs as introduced in [1]). Hence,
all tuples in r that have this type of “incompatibility” share the blame for the
violation of φ. For instance, suppose that R3 in Fig.2 has the tuples (1,“Santos, A.

L.”,“Santos, A. L.”, 2,“Managing...”) and (1,“Santos, A. L.”, “Santos, A.”, 3,“Manag-

ing...”). These tuples are blamed for the violation of the quality constraint Qc3.
Notice that this form of blame assignment is only appropriate if constraints are
monotonic in R and this is why we limit constraints to be of this type.

Data cleaning of a source of data tends to be the result of numerous iterations,
some involving the tuning of data transformations and others involving manual
data repairs. Even if the DCG developed for the problem was subject to a strict
validation and verification process, it is normal that when it is executed over the
real data, small changes in the DCG, confined to specific data transformations,
are needed. Because we do not want to force the user to repeat the data repairs
previously done that, in principle, are still valid, we define that the execution
of a DCG takes as input not only the data that needs to be cleaned but also
collections of instances of manual data repairs (mdr, for short). These represent
mdr actions enacted at some point in the past. For convenience, we consider that
instances of mdrs keep track of their type.

Definition 4. Let m be a manual data repair. If action(m) is delete or insert,
an m−instance ι is a pair 〈m, tuple(ι)〉 where tuple(ι) is a view(m)-tuple. If
action(m) is update A, an m−instance ι is a triple 〈m, tuple(ι), value(ι)〉 where
tuple(ι) is a view(m)-tuple, value(ι) is a value in Dom(A).

For instance, still referring to Fig.2, after analyzing the violation of the quality
constraint Qc3 and taking the title into account, the user could conclude that
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the author “Santos, A. L.” does not correspond to the team author “Santos, A.”

and decide to delete the corresponding tuple from 0R3. This would generate the
Mdr3-instance 〈mdr3, (1, “Santos, A. L.”, “Santos, A.”, “Managing...”)〉.

The execution of a DCG is defined over a source of data (instances of the
graph input relations) and what we call a manual data repair state M — a
state capturing the instances of mdrs that have to be taken into account in
the cleaning process. Because the order of actions in this context is obviously
relevant, this state registers the order by which the instances of mdrs associated
to each relation should be executed (what comes in first is handled first).

The execution of a DCG consists in the sequential execution of each data
transformation in accordance with the partial order defined by the graph: if
T <G T ′, then T ′ is executed after T . The execution of a data transformation T
produces an instance of the relation R in T •. This relation is then subject to the
mdr instances in M(R). Then, the set of tuples in the resulting relation instance
that are blamed for the violation of the quality constraint associated to R, Q(R)
is calculated. Formally, the execution of a DCG can be defined as follows.

Definition 5. Let G = 〈G, 〈Q,M〉〉 be a data cleaning graph for a set R1, ..., Rn

of input relations. Let r1, ..., rn be instances of these relations and M be a manual
data repair state for G, i.e., a function that assigns to every relation R ∈ rels(G),
a list of instances of manual data repairs over R. The result of executing G over
r1, ..., rn and M is {〈tuples(R), tuplesbl(R)〉 : R ∈ rels(G)} calculated as follows:

1: for i = 1 to n do
2: for each∗∗ ι∈ M(Ri) do
3: vr ← compute view(view(ι), tuples(Ri))
4: apply mdr(ι, vr)
5: tuples(Ri) ← propagate(vr)
6: end for
7: end for
8: for i = 1 to n do
9: tuplesbl(Ri) ← blamed(tuples(ri))

10: end for
11: for each∗ T ∈ trans(G) do
12: let {R′

1, ..., R′
k} = •T

13: tuples(T•) ← T (tuples(R′
1), ..., tuples(R′

k))
14: for each∗∗ ι∈ M(T•) do
15: vr ← compute view(view(ι), tuples(T•))
16: apply mdr(ι, vr)
17: tuples(T•) ← propagate(vr)
18: end for
19: tuplesbl(T•) ← blamed(tuples(T•))
20: end for

21: apply mdr(mdrInstances, vr)
22: for each∗∗ ι ∈ mdrInstances do
23: if action(mdr(ι)) = delete then
24: vr ← vr \ {tuple(ι)}
25: else if action(mdr(ι)) = insert then
26: vr ← r ∪ {tuple(ι)}
27: else if action(mdr(ι)) = update then
28: newt ← tuple(ι)
29: newt[attribute(action(mdr(ι)))] ← value(ι)
30: vr ← (vr \ {tuple(ι)}) ∪ {newt}
31: end if
32: end for

∗Assuming that the underlying iteration will traverse the set in ascending element order.
∗∗Assuming that the underlying iteration will traverse the list in proper sequence.

The procedure compute view(view,setOfTuples) encodes the application of the
view to the base table constituted by the setOfTuples whereas propagate(view)
encodes the propagation of the updates applied to the tuples returned by view
to the base table. Although this algorithm defines an operational semantics for
DCGs, it must not be regarded as a proposal for the implementation of an engine
that supports the execution of DCGs. The sole purpose of this algorithm is to
formally define what is the result of executing a DCG over a source of data and
a manual data repair state.
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4 Case Study

We have developed and implemented in full depth the process to clean publica-
tion citation data retrieved from the web, introduced in Section 2. The goal of
this process is to clean the Pub table and produce a table containing only the
publications authored by at least one team member, with duplicate entries for
the same real world publication organized in clusters. The process: (i) extracts
the author names independently of the publication they are associated to; (ii)
matches each of these author names against the names stored in the Team table,
and tries to find synonyms (i.e., approximate similar names); (iii) builds the list
of co-authors for each author; (iv) removes those publications that are not au-
thored by any team member; and (v) detects and clusters approximate duplicate
publication records.

The DCG that models this process is presented in Fig. 3 and in the two tables
presented in Fig. 4. It presents slight differences with respect to the excerpt
presented in Fig. 2, because therein we made some simplifications (more details
can be found in [10]). The condition that an author of each publication can
only match one team member is now checked through the quality constraint
Qc6 that is imposed after the user gives feedback about the co-authorship tuples
(through Mdr5). The data transformation T5 was introduced for gathering the co-
authorship information about each author. The co-authorship information, after
being validated by the user, can provide additional knowledge that is helpful
for automatically deciding whether an author name in a publication refers to a
team member.

Based on the matching name pairs produced by T3 and T4, and on the co-
authorship tuples produced by T5, the transformation T6 is able to distinguish,
among the set of authors for each publication, those who belong to the team from
those who do not. The user feedback provided through Mdr6 confirms whether the
information automatically produced is true. Finally, T7 discards the publication
records whose list of authors does not contain a team member. Besides producing
Pub records that concern only team members, the goal of the graph is also to
put together Pub records that concern the same real world publication. To this
end, the publication records must be compared in order to identify entries that
constitute approximate duplicates. For this purpose, transformations T9 and T10

match pairs of publications, and cluster the matched publications.
Other quality constraints were introduced in the graph to call the user’s at-

tention for anticipated data problems. Qc0 and Qc8 call the user attention for
analyzing and correcting tuples that have the word “others” in its authors at-
tribute value, and tuples that correspond to single-author publications (i.e., by
checking if the author attribute value does not contain the conjunction “and”,
which connects two or more authors names), respectively. Quality constraints
Qc3 and Qc9 are imposed on the result of the matching operations encoded in T3

and T9, respectively, that consider the existence of two threshold values. Pairs of
records whose computed similarity is below the inferior threshold are considered
as non-matches and discarded by the transformations. Pairs of records whose
similarity is above the inferior threshold are considered as candidate matches
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Fig. 3. Data cleaning graph for the case study

Fig. 4. Quality constraints and manual data repairs of the DCG

and returned as a result of the data transformations. Those resulting records
whose similarity value (stored in the sim attribute) is inferior to the superior
threshold violate the corresponding quality constraints (Qc3 and Qc9). These
records do not have a sufficiently high value nor a sufficiently low value of the
sim attribute, so the user must analyze them. Then, through Mdr3 and Mdr9, the
user may decide whether the corresponding pairs of author names or publica-
tions are considered as matches, by modifying the sim value accordingly (1 for
matches, and 0 for no matches).

5 Experiments

We performed a set of experiments to evaluate the benefits of involving the user
in the data cleaning process described in Section 4. We focused on two different
aspects: the data quality obtained at the end of the data cleaning process and
the cost of the manual activities that have to be performed by the user.

The experiments were performed with the AJAX data cleaning prototype[8],
over a subset of the database of the CIDS[6]. These experiments required to
implement two data cleaning programs: P1 complying with the data transforma-
tion graph presented in Fig.3 and P2 complying with the data transformation
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graph presented in Fig.3 and capturing, as closest as possible with the means
available, the quality constraints presented in the first table presented in Fig.4.
Quality constraints in P2 were encoded inside transformations, making use of
exceptions as supported by AJAX. As a result, the tuples available for user in-
spection are not those blamed for the violation but those that originate a blamed
tuple. Moreover, the tuples that raise exceptions are not available as input for
the transformations ahead in the graph. However, for the evaluation purpose at
hand, these differences were considered to be neglectable.

We performed the following cleaning tasks. Task1: the manual cleaning of
the Pub table. Task2: the execution of P1 and the manual intervention of the
user over the produced data in the output CleanPub table so that it contains
all publications that are authored by at least one team member with duplicates
organized in clusters. Task3: the execution of the P2 and the manual intervention
of the user over the produced data in the CleanPub table guided by the rejected
tuples in the different points of the program. Task4: the execution of the data
cleaning program and, after receiving user feedback, the re-execution of parts
of it — with the user involvement guided by the rejected tuples and the mdrs
presented in the second table presented in Fig.4.

The metrics used to evaluate the quality of the CleanPub records produced are
recall and precision. TD Recall (TD R) is given by the number of CleanPub tuples
that are authored by the team (i.e., authored by at least one team member)
divided by the number of CleanPub tuples authored by the team that should have
been produced. TD Precision (TD P) is given by the number of CleanPub tuples
that are authored by the team divided by the number of CleanPub tuples that
were produced. DD Recall (DD R) is given by the number of pairs of CleanPub

tuples that were correctly identified as duplicates (i.e., the ones with the same
value of the clusterId attribute and that correspond to the same real publication)
divided by the total number of pairs of CleanPub tuples that should have been
identified as duplicates. DD Precision (DD P) is given by the number of pairs
of CleanPub tuples that were correctly identified as duplicates divided by the
number of pairs of CleanPub tuples that were identified as duplicates.

To evaluate the cost associated to the user feedback, we consider the following
metrics that we believe can capture the most relevant aspects of user interaction:
the number of characters the user needs to visualize in order to decide which data
corrections need to be undertaken; the maximum number of characters that may
need to be updated, when attribute values are modified; the maximum number
of characters that may need to be deleted or inserted, when tuples are deleted or
inserted; and the number of tuples that need to be updated, deleted or inserted.
The number of characters is given by the multiplication of the number of tuples
by the sum of the sizes of each attribute.

We used an instance of the CIDS database, that contains 509 and 24 tuples
in the tables Pub and Team, respectively. It includes all the publication records
returned by Google Scholar for five members of the team, chosen beforehand.
First, we performed Task1 and obtained the cleaned version of this instance by
manually cleaning it. This process was performed by retrieving information from
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the member’s home pages and DBLP. Then, the cleaned Pub table obtained was
checked and eventually corrected by each team member. The manually cleaned
publication table, named CleanPub1, was used as a reference for computing the
quality of the data cleaned automatically and the impact of user feedback.

Data Accuracy. To compute the gain of data quality obtained when incorpo-
rating the user feedback, we performed Task2, Task3 and Task4. The resulting
publication records obtained in each of these cases were stored in tables named,
CleanPub2, CleanPub3, and CleanPub4, respectively. The recall and precision (both
TD and DD) of the CleanPub3 and CleanPub4 tables were 100%. We recall that, in
both cases, the manual corrections applied by the user are guided by rejected tu-
ples. In the case of CleanPub2, 70% of TD R, 78% of DD R and 100% of precision
were obtained. In fact, in Task2, the user only has access to the data produced
at the end of the data cleaning process and so there is no way of recovering
the data tuples that were not properly handled by some data transformations.
Overall, these data accuracy values can be considered as good, but there is a
trade-off between data accuracy and the cost of user feedback required.

In the case of Task4, to analyze the effect of the different mdrs in the final
result, we measured the values of precision and recall after applying each mdr.
We considered that after the mdr instances were applied, the remaining of the
DCG was re-executed and the precision and recall of CleanPub4 data was re-
computed. The results obtained are summarized in Table 1. We notice that the
precision and recall values greatly improved with the user’s feedback via mdrs.
The non-increasing values of DD P when Mdr8 is applied are justified by the
existence of pairs of tuples that correspond to the same single-author publication
but whose similarity is inferior to 0.8. These pairs of tuples violated Qc8 and,
because we use AJAX exception mechanism for “simulating” quality constraint
violation, they were not delivered to transformation T9.

Table 1. Precision and Recall
for CleanPub4 table

mdr TD P TD R DD P DD R

none 0.83 0.70 0.98 0.76

Mdr0 0.83 0.70 0.98 0.76

Mdr3 0.85 0.80 0.98 0.91

Mdr5 1 0.92 0.98 0.91

Mdr6 1 0.92 0.98 0.91

Mdr8 1 1 0.93 0.93

Mdr9 1 1 1 1

Table 2. Cost of user feedback

Cost/Task Task1 Task2 Task3 Task4

Visualization 200,000 137,000 115,000 32,000

# deleted tuples 164 56 56 134

Deletion 33,500 11,500 11,500 7,500

# updated tuples 121 2 32 21

Updating 2,600 40 800 150

# inserted tuples 0 0 68 0

Insertion 0 0 14,000 0

Cost of User Feedback. We also wanted to find out whether the approach of
incorporating the user feedback into the DCG (embodied by Task4) facilitates
the work of the user when compared to other approaches. For this purpose, we
measured the cost associated to the user actions performed in the four tasks
referred above. The results obtained are presented in Table 2. The cost of data
visualization, updating, deletion and insertion are approximate values.
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In Table 2, we observe that the use of quality constraints and mdrs in Task4

greatly decreases the cost of data visualization with respect to the other tasks.
Notice that this result is even true when comparing the cost of data visualization
incurred in Task2, which only considers the data produced at the end of the
data cleaning process. This result can be explained by the existence of quality
constraints that were specified in such a way that only the set of tuples blamed
by constraint violations are shown to the user. In other cases, the mdrs define
judiciously the data the user needs to analyze in order to decide which action
must be applied.

In what concerns the cost of the user feedback incurred in each task, we also
observe that the use of mdrs also decreases substantially the number and cost
of user actions that must be applied to manually correct data. In comparison
to Task1 and Task3, the results obtained by Task4 are significantly improved.
Although in Task4 the user deletes a higher number of tuples than in Task3, the
cost of delete in Task4 is lower than the corresponding cost in Task3 because
the user has to analyse a smaller amount of data in order to apply each delete
action. With respect to Task2, the obtained results are slightly better than
Task4 because in Task2 the user actions are only applied over data produced at
the end of the data cleaning process and, therefore, the rejected tuples are not
analyzed, resulting in significantly worst recall values (70% of TD R and a 78%
of DD R). Overall, the results show that the use of the new primitives addressing
the user feedback (Task4) may significantly improve a data cleaning process.

6 Related Work

Error Handling in ETL and Data Cleaning Tools. In current commercial
ETL and data cleaning tools, the developer can specify that input records not
handled by some pre-defined operators are written into a log file whose contents
can be later analyzed by the user. However, no user feedback provided on the
data stored in these files can be re-integrated in the flow of data transformations.
In some tools (e.g. SQL Server Integration Services), it is possible to partially
overcome this limitation, by explicitly specifying an error output flow for some
data operators that can be later analyzed by the user or considered as input of
further data operators.

Support for error handling in the context of data cleaning was investigated in
the context of prototypes AJAX [9] and ARKTOS [18] through the notion of,
respectively, exception and rejection. Both notions correspond to input tuples
that are not properly handled by a given data transformation. Rejected tuples
and exceptions are stored in a specific table whose schema is the same as the
input schema of the transformation (in ARKTOS) or contains the key of the
input tuples (in AJAX). The purpose of this information is to call the user’s
attention for data items not correctly handled in specific points of the graph of
data transformations. However, these solutions do not provide the support we
believe should be available at the modelling level of data cleaning processes. For
instance, AJAX exceptions rely on relational technology to detect the occurrence



Support for User Involvement in Data Cleaning 149

of integrity constraint violations. As a result, in many situations it is not possible
to predict which are the tuples that will be identified as exceptions because it will
depend on the order in which tuples of the input tables are processed (typically
not under the control of the developer). Other initiatives to encode data quality
rules and store the records that violate them have taken place (e.g., [16]).

User Feedback. The incorporation of user feedback has shown to be useful
in several automatic tasks. For example, Chai et al [4] propose a solution to
incorporate the end-user feedback into Information Extraction programs. An
Information Extraction program is composed by a set of declarative rules. The
developer writes some of these rules with the purpose of specifying the items of
data the users can edit and the user interfaces that can be used. Analogously,
we are proposing a way of specifying the exact points in the graph of data
transformations where the user can provide feedback to improve the quality of
the produced data. Moreover, we are limiting the amount of information the user
can visualize and provide some guidance for the manual modification of data.
In the context of data cleaning, Potter’s Wheel [15] offers a graphical interface
through which the developer can specify and quickly debug data cleaning rules
that are applied to samples of data.

Data Repairs. In [5], Cong and colleagues propose a framework for data clean-
ing that supports algorithms for finding repairs for a database and a statistical
method to guarantee the accuracy of the repairs found. As noted in Section 3,
the notion of blamed tuples introduced in this paper is based on the concept
of database repair (considering that repair operations are limited to deletion of
tuples). We consider as blamed for the violation of a data quality constraint
associated to a relation of a database, those tuples in the relation instance that
belong to some repair of the database.

Recently, [19] puts forward a system for guiding data repairing that explicitly
involves the user in the process of checking the data repairs automatically pro-
duced by the algorithms introduced in [5]. In particular, the authors focused on
ranking the repairs in such a way that the user effort spent in analyzing useless
information is minimized. In this paper, we aim at reaching the same goal: to
minimize the user effort when providing feedback in a data cleaning process.
However, in the current version of our research, we do not provide any method
for clustering or ranking the tuples that violate constraints. For the moment,
we claim that by disclosing a limited set of records to the user, we are able to
reduce the amount of data that he/she needs to analyze and eventually modify.

7 Conclusions

In this paper, we address the problem of integrating the user feedback in an
automatic data cleaning process. We propose the notion of data quality constraint
that may be associated to any of the intermediate relations produced by data
transformations in a DCG. We also propose that a DCG specifies manual data
repairs, that to some extend can be regarded as a kind of wizard-based form
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that limits the amount of data that can be visualized and modified. We have
performed preliminary experiments with a real-world data set that show the
gain of data quality achieved when the user feedback is incorporated and that
the overhead incurred by the user, when providing feedback guided by quality
constraints and mdrs, is significantly inferior to the effort involved in cleaning
rejected records in an ad-hoc manner.

As future work, we plan to modify the definition of updatable view that is
used in the definition of mdrs so that the join of base relations is possible.
Special care must be taken so that the view remains updatable in the sense that
the updates can always be propagated to the base relations. In addition, the
concept of DCG and corresponding operational semantics must be adequately
supported by a software platform that should efficiently compute the set of
blamed tuples for a given quality constraint violation, enable the automatic re-
application of past user actions, and support the incremental execution of data
transformations.
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Abstract. Drill-across SOLAP queries (spatial OLAP queries) allow for
strategic decision-making through the use of numeric measures from dis-
tinct fact tables that share dimensions and by the evaluation of spatial
predicates. Despite the importance of these queries in geographic data
warehouses (GDWs), there is a lack of research aimed at their study. In
this paper, we investigate three challenging aspects related to the effi-
cient processing of drill-across SOLAP queries over GDWs: (i) the design
of a GDW schema to enable the performance evaluation of drill-across
SOLAP query processing; (ii) the definition of classes of drill-across SO-
LAP queries to be issued over the proposed GDW schema; and (iii) the
analysis of different approaches to process drill-across SOLAP queries,
as follows: star-join computation, materialized views and a new proposed
approach based on the SB-index, which is named DrillAcrossSB. We con-
clude that the DrillAcrossSB approach highly speedups the processing
of drill-across SOLAP queries from 39% up to 98%.

Keywords: geographic data warehouse, drill-across SOLAP query,
index structure, the SB-index.

1 Introduction

Similar to a conventional data warehouse, a geographic data warehouse (GDW)
is a subject-oriented, integrated, historical and non-volatile multidimensional
database. Additionally, the GDW holds spatial attributes to store spatial ob-
jects that are represented by geometries such as points and polygons [15,5,14]. In
relational databases, the GDW multidimensional model is usually implemented
as an adapted star schema, which contains a fact table that stores numeric or

A. Cuzzocrea and U. Dayal (Eds.): DaWaK 2011, LNCS 6862, pp. 152–166, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Efficient Processing of Drill-across Queries over GDWs 153

spatial measures, and several dimension tables that store descriptive or spa-
tial attributes and their hierarchies. While measures are the subject of analysis,
the dimensions contextualize these measures. Regarding hierarchies, they im-
pose a partial ordering on conventional or spatial attributes, specifying that one
aggregation of higher granularity can be determined using data from another ag-
gregation of lower granularity. In GDW, a predefined spatial hierarchy is a 1:N
association among higher and lower granularity spatial attributes that is deter-
mined by a spatial predicate [5]. Furthermore, differently from the conventional
star schema, spatial attributes are not stored redundantly [13,6].

Example 1. Suppose a GDW schema that represents historical data related to
orders and sales of a corporation and that extends the TPC-H benchmark [10] to
store spatial attributes about the locations of suppliers and customers (see Fig-
ure 1 in Section 4.1). A subset of this GDW schema has Lineitem as a fact table
that holds numeric measures such as l quantity, Part as a conventional dimen-
sion table, and Customer and Supplier as spatial dimension tables. Furthermore,
(region geo) � (nation geo) � (city geo) � (s address geo) is a predefined spatial
hierarchy composed of spatial attributes suffixed with geo, which is defined for
the dimension table Supplier. In this hierarchy, the operator � represents the
partial ordering. Also, the spatial relationship is containment, imposing that a
given supplier address is inside only one city, a city is inside only one nation,
and a nation is inside only one region. Therefore, the quantity sold for a given
nation is the sum of the quantities sold in each city inside this nation. �

GDWs are also characterized by supporting SOLAP (spatial online analytical
processing [3]) queries, i.e. analytical operations extended with spatial predi-
cates. Important analytical operations are drill-down, roll-up and drill-across,
and spatial predicates frequently used are intersection, containment and enclo-
sure. While spatial drill-down operations analyze data on increasingly higher
levels of detail, spatial roll-up operations analyze them on progressively lower
levels of detail. Regarding spatial drill-across operations, they use distinct nu-
meric measures whose fact tables are related to each other by at least one shared
dimension, strictly taking into account one or more spatial predicates. Correlat-
ing fact tables that belong to different star schemas but share dimension tables
that have the same semantics and the same hierarchies of attributes originates
a fact constellation.

Example 2. Consider the GDW schema introduced in Example 1. In a spatial
drill-down operation, a decision-making user may require the l quantity sold
by part by nations that intersect a given rectangular window, and later may
require the l quantity sold by part by cities that intersect a smaller rectangular
window. To illustrate a spatial drill-across operation, consider another subset
of the GDW schema, which is composed of the fact table Partsupp containing
numeric measures such as ps supplycost, the conventional dimension table Part
and the spatial dimension table Supplier (see Figure 1). The user may require
over the fact constellation the l quantity sold and the ps supplycost of suppliers
whose addresses are inside a given rectangular window. �
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SOLAP queries are more complex and costly than analytical operations involving
only conventional attributes. In addition to performing joins and aggregations
over huge fact tables and dimension tables, SOLAP queries also require the
processing of spatial predicates defined over spatial data. Therefore, improving
the performance of SOLAP queries is a core issue in GDW. The challenge is to
retrieve data related to ad hoc spatial query windows, avoiding the high cost of
joining large fact tables with dimension tables.

In the literature, there are a number of approaches that focus on spatial drill-
down and spatial roll-up operations (see Section 2). However, to the best of our
knowledge, there is a lack of research aimed at investigating drill-across SOLAP
queries. These queries are often used by decision-making users to look across
broad perspectives that require the analysis of geographic locations.

In this paper, we focus on the efficient processing of drill-across SOLAP
queries over GDWs. We introduce the contributions as described as follows.

– We propose a GDW schema based on predefined spatial hierarchies, which
is specifically designed to enable the performance evaluation of drill-across
SOLAP query processing.

– We describe novel classes of drill-across SOLAP queries to be issued over
the proposed GDW schema, such that these classes also focus on drill-down
and roll-up SOLAP queries.

– We investigate different approaches to enhance the query processing perfor-
mance of drill-across SOLAP queries, as follows. The first approach analyses
the star-join computation, and the second approach analyses the use of ma-
terialized views. The third approach, which is proposed in this paper and is
named DrillAcrossSB, investigates the use of the SB-index [13,12].

This paper is organized as follows. Section 2 surveys related work, Section 3
details concepts used as a basis in our work, Section 4 investigates each con-
tribution introduced by our paper, Section 5 discusses the experimental results,
and Section 6 concludes the paper.

2 Related Work

In the literature, there are a number of approaches that have been proposed
for designing the GDW and improving the performance of OLAP and SOLAP
queries, but they differ from our work on their purpose. Regarding the design
of the GDW, Malinowski and Zimnyi [5] define the concepts of conventional
and spatial facts, dimensions and hierarchies, as well as introduce the use of
pictograms for spatial data types, such as point and area to represent spatial
dimensions that contain attributes stored as points and polygons, respectively.
Siqueira et al. [13] investigate redundant and non-redundant GDW star schemas.
While in the former the dimension tables store both conventional and spatial at-
tributes, in the latter conventional and spatial attributes are stored separately in
different dimension tables. Mateus et al. [6] argue that conventional and spatial
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data should be stored in a single dimension table if there is a 1:1 association be-
tween objects from the related conventional and spatial dimensions. Otherwise,
these data should be stored separately. Although we base the GDW schema that
we propose in this paper in some principles surveyed here, the aforementioned
approaches do not focus on drill-across SOLAP queries, which is our main goal.
In detail, these approaches do not focus on fact constellations containing spatial
dimension tables nor define classes of drill-across SOLAP queries to be issued
over the GDW schema.

Regarding improving the performance of OLAP and SOLAP queries, there are
several approaches addressing view materialization [15,11], data fragmentation
and partitioning [4,1], execution of drill-across queries over fact constellations in
conventional data warehouses [2], and also indices [8,9,13,7]. However, despite
the importance of drill-across SOLAP queries, there is a lack of research aimed
at their study. On the one hand, approaches that improve the performance of
drill-across OLAP queries do not focus on GDWs nor consider the processing of
spatial predicates. On the other hand, approaches that improve the performance
of SOLAP queries do not focus on drill-across SOLAP queries.

3 Theoretical Foundation

SOLAP queries can be processed according to different techniques, such as
star-join computation, materialized views and the SB-index. The star-join com-
putation consists in accessing the GDW schema and performing all joins and
aggregations required by the SOLAP query, as well as solving all query filter
conditions defined over conventional and spatial predicates. Also, spatial indices
such as the R-tree can be defined on spatial attributes to improve the spatial
predicate processing. Although star-join computation usually refers to conven-
tional star schemas, we adopt this concept throughout this paper to also refer
to fact constellation schemas and their derivations in GDW.

Materialized views are an alternative to the star-join computation, as they
pre-compute data according to frequent queries and store the result as tables. In
detail, these tables are built containing pre-computed data from fact tables that
were joined to dimension tables and whose measures were aggregated. As a con-
sequence, the use of materialized views avoids costly join operations among the
fact and the dimension tables, as well as simplifies groupings, reduces the number
of rows handled and benefits the evaluation of query filter conditions. Although
avoiding join operations is straightforward when dealing with conventional data
warehouses, GDWs impose that materialized views do not hold redundant spa-
tial data. Therefore, in GDWs, materialized views maintain foreign keys to join
spatial dimension tables [13,6].

The Spatial Bitmap Index (SB-index) [13,12] is an index based on the
Bitmap [8] and on the minimum bounding rectangle (MBR), which is designed
to efficiently index predefined spatial hierarchies over GDWs. It has a sequential
structure whose entries maintain a primary key value for the spatial dimension
table and a MBR. Also, the i-th entry of the SB-index points to the i-th bit-
vector of a star-join Bitmap index. There is exactly one bit-vector associated to
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each key value, which is used to indicate the tuples of the fact table where the
given key value occurs (i.e. bit value 1) and does not occur (i.e. bit value 0).
A core aspect of the SB-index’s query processing is that it computes the spa-
tial predicate and transforms it into a conventional one, which can be evaluated
together with other conventional predicates using the star-join Bitmap index.

4 Efficient Processing of Drill-across SOLAP Queries

In order to investigate the efficient processing of drill-across SOLAP queries over
GDWs, we introduce: (i) the design of a GDW schema to enable the performance
evaluation of drill-across SOLAP query processing in Section 4.1; (ii) the defi-
nition of classes of drill-across SOLAP queries to be issued over the proposed
GDW schema in Section 4.2; and (iii) the proposal of an approach based on the
SB-index to process drill-across SOLAP queries in Section 4.3.

4.1 The Proposed GDW Schema

In this section, we propose the SpatialDrillAcross schema, a GDW schema that
faces two challenges. Firstly, it focuses on conventional and spatial dimensions
and attributes, as well as hierarchies of conventional attributes and predefined
spatial hierarchies. Secondly, it also enables the performance evaluation of drill-
across SOLAP query processing.

To develop a GDW schema that addresses these challenges, we propose that
this schema is based on the guidelines described as follows.

– The schema must have at least one fact constellation.
– Spatial data should be stored as attributes in dimension tables.
– Dimension tables should maintain descriptive and spatial attributes if and

only if there is a 1:1 association between the spatial attribute and the di-
mension table primary key. Otherwise, the spatial attribute should be stored
in a separate spatial dimension table that has its own primary key, which is
referenced by the conventional dimension table.

– Spatial hierarchies enable the execution of drill-down and roll-up SOLAP
queries together with drill-across SOLAP queries.

Figure 1 depicts the proposed SpatialDrillAcross schema. Note that the semantic
of the data warehousing application is the same as that introduced by the TPC-
H benchmark. However, the SpatialDrillAcross schema extends this benchmark
to comply with the aforementioned guidelines as explained as follows.

– It contains a fact constellation composed of the fact tables Lineitem and
Partsupp, which share the conventional dimension table Part and the spatial
dimension table Supplier.

– It stores spatial attributes identified by the suffix geo in the spatial dimen-
sion tables Supplier, Customer, City, Nation and Region. Spatial attributes
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Fig. 1. The proposed SpatialDrillAcross schema. SF and SSF refer to the scale factor
for conventional and spatial data, respectively.

were introduced in the SpatialDrillAcross schema according to their corre-
spondence with conventional data already present in the TPC-H benchmark,
except for City, which was added to the proposed schema to generate another
spatial granularity level. Also, the spatial dimension tables are represented
by pictograms for spatial data types described in Section 2, such as point (i.e.
Supplier and Customer) and area/polygon (i.e. City, Nation and Region).

– It stores the addresses of customers and suppliers as spatial attributes
in the dimension tables Customer and Supplier, i.e. in c address geo and
s address geo, respectively. This design decision was motivated by the fact
that there is a 1:1 association between c address geo and the dimension table
Customer, as well as a 1:1 association between s address geo and the dimen-
sion table Supplier. That is, there is only one address for a customer (or a
supplier). Also, customers and suppliers do not share common addresses.
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– It has two spatial predefined hierarchies defined by the spatial rela-
tionship containment : (i) (region geo) � (nation geo) � (city geo) �
(c address geo) for Customer ; and (ii) (region geo) � (nation geo) �
(city geo) � (s address geo) for Supplier.

4.2 Classes of Drill-across SOLAP Queries

In this section, we propose three different classes of drill-across SOLAP queries,
which focus on the analysis of different spatial data types, different granularities
and increasing number of spatial query windows, thus imposing distinct process-
ing costs. The templates of these classes are shown in Figures 2a and 3a. These
templates represent drill-across SOLAP queries as they use the numeric mea-
sures ps supplycost and l quantity from the distinct fact tables Lineitem and
Partsupp, respectively, and define one or more spatial predicates. In the tem-
plates, we highlight in bold both spatial granularity levels and spatial attributes
and dimensions that vary according to the spatial granularity level, as well as
indicate the need to perform join operations due to the use of the spatial dimen-
sions. We also use two filters defined over conventional attributes: p brand =
‘Brand#14’ and extract(year FROM o orderdate) BETWEEN 1994 AND 1997.
Furthermore, in Figures 2b and 3b, we instantiate the values of spatial gran-
ularity levels, spatial attributes, and spatial predicates. Regarding the spatial
predicates, we use the WITHIN relationship to represent which points are inside
a given query window, and the INTERSECT relationship to represent which
polygons intersect a given query window.

Class Q1. Drill-across SOLAP queries of this class include those that define
one spatial query window over supplier, and that support drill-down and roll-
up queries extended with a spatial predicate. Figure 2a depicts the template
of queries from class Q1. It compares the average supply cost to the amount
sold by part, by supplier, for those parts whose brand are Brand#14 and that
were sold between 1994 and 1997, considering suppliers located at a given re-
gion. Regarding the spatial predicate, class Q1 applies a spatial query window
QW to retrieve only those suppliers whose spatial location satisfies the spatial
relationship against QW .

Example 3. Figure 2b illustrates four queries from class Q1. Q1.1 is defined over
the address granularity of suppliers, while Q1.2, Q1.3 and Q1.4 are defined over
the city, nation and region granularities of suppliers, respectively. Also, QWA,
QWC , QWN and QWR are the spatial query windows to evaluate the spatial
predicate on each granularity. In addition, the consecutive execution of queries
starting at Q1.1 and ending at Q1.4 consists of a roll-up SOLAP query, while
the inverse order of execution consists of a drill-down SOLAP query. �

Class Q2. Drill-across SOLAP queries of this class include those that define
one spatial query window over suppliers and one spatial query window over cus-
tomers, and that support drill-down and roll-up queries extended with a spatial



Efficient Processing of Drill-across Queries over GDWs 159

Fig. 2. Drill-across SOLAP queries of class Q1

predicate. Although the spatial query windows are placed on distinct locations,
they should be defined over the same granularities of suppliers and customers
simultaneously. Figure 3a depicts the template of queries from class Q2. It com-
pares the average supply cost to the amount sold by part, by supplier, for those
parts whose brand are Brand#14 and that were sold between 1994 and 1997,
considering suppliers located at a given location and customers located at an-
other location. Class Q2 has a query window QW for suppliers and another query
window QW ′ for customers, in order to retrieve only those suppliers and cus-
tomers whose spatial location satisfies the spatial relationship against QW and
QW ′, respectively. As class Q2 restricts the locations of suppliers and customers,
it is more complex and restrictive than class Q1.

Example 4. Figure 3b illustrates four queries from class Q2. Q2.1 is defined over
the address granularity of suppliers and customers, while Q2.2, Q2.3 and Q2.4
are defined over the city, nation and region granularities of suppliers and cus-
tomers, respectively. All the four queries are defined over the same granularities
of suppliers and customers simultaneously and evaluate spatial predicates involv-
ing attributes that store the same data type, i.e. points for Q2.1 and polygons
for the Q2.2, Q2.3 and Q2.4. Also, the consecutive execution of queries starting
at Q2.1 and ending at Q2.4 consists of a roll-up SOLAP query, while the inverse
order of execution consists of a drill-down SOLAP query. �
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Fig. 3. General structure of the proposed drill-across SOLAP queries

Class Q3. Drill-across SOLAP queries of this class include those that define one
spatial query window over supplier and one spatial query window over customer,
and that support drill-down and roll-up queries extended with a spatial predi-
cate. The spatial query windows should be defined over different granularities of
suppliers and customers simultaneously. Class Q3 is similar to class Q2, except
for the fact that the spatial query windows defined over suppliers and customers
have different granularities to allow for the processing of different spatial data
types and the processing of different cardinalities in the same query.

Example 5. Figure 3c illustrates examples of queries from class Q3. We fixed
the granularity of customers as address and varied the granularities of suppliers.
Therefore, Q3.1, Q3.2 and Q3.3 are defined over the city, nation and region
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granularities of suppliers, respectively. Note that all the queries are defined over
spatial attributes with different cardinalities. Also, the spatial data types are
different. While the spatial attribute s address is represented by points, the
spatial attributes c city, c nation and c region are represented by polygons. �

4.3 The Proposed DrillAcrossSB Approach

In this section, we propose DrillAcrossSB, an approach to process drill-across
SOLAP queries using a spatial index specifically designed to index predefined
spatial hierarchies over GDWs. This approach is based on two main tasks. First,
each star schema and each spatial dimension table of a fact constellation are
separately indexed. Then, each indexed star schema is processed to produce
partial results that are merged and ordered to obtain the final answer.

Algorithms 1 and 2 detail the proposed DrillAcrossSB approach. Algorithm 1,
named BuildIndices, generates one star-join Bitmap index for each star schema
of the fact constellation (lines 1 and 2), as well as one SB-index for each spatial
dimension table present in the fact constellation (lines 3 and 4). This is because
the star-join Bitmap index is always applied to a single star schema, while the
SB-index defined over shared spatial dimension tables can be used by different
star schemas. Regarding Algorithm 2, it is aimed at processing a drill-across
SOLAP query Q and calculating Q’s answer, using as a basis the indices created
by Algorithm 1. The DrillAcrossProcessing algorithm first divides Q into
several subqueries, so that each subquery is processed over a specific star schema
(lines 1 to 4). The answer of Q is obtained by merging the partial results of the
subqueries and by ordering the merged results (lines 5 to 7).

Example 6. As an example of input and output produced by the proposed
algorithms, consider the SpatialDrillAcross schema and query Q1 shown in
Figures 1 and 2, respectively. Algorithm 1 generates two star-join Bitmap
indices (i.e. SJB1 for Lineitem and SJB2 for Partsupp), and five different
SB-index (i.e. SB1 for region geo, SB2 for nation geo, SB3 for city geo, SB4

for c address geo, SB5 for s address geo). As for Algorithm 2, it: (i) gener-
ates two subqueries (i.e. supply cost for the first nested SELECT clause and
quantity sold for the second nested SELECT clause), which are processed by
the appropriate indices; (ii) merges the partial results according to the condi-
tions quantity sold.granularity key = supply cost.granularity key and p partkey
= l suppkey; and (iii) orders the final result according to the spatial attribute
represented by granularity level and the conventional attribute p partkey. �

5 Performance Evaluation

5.1 Experimental Setup

In this section, we describe the experimental setup that was used to evaluate
and compare the performance of the proposed DrillAcrossSB approach with the
performance of the star-join computation and materialized views. We used the
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Algorithm 1. BuildIndices (FC, m, n)
Input : FC {a fact constellation},

m {number of star schemas in FC},
n {number of spatial dimension tables in FC}

Output: SJB1, ..., SJBm {a set of star-join Bitmap indices},
SB1, ..., SBn {a set of SB-index}

1 foreach star schema SCi ∈ FC do
2 create a star-join Bitmap index SJBi

3 foreach spatial dimension table SDTj ∈ FC do
4 create a SB-index SBj on the spatial attributes of interest

Algorithm 2. DrillAcrossProcessing (Q, FC, SJB1, ..., SJBm, SB1, ..., SBn)
Input : Q {the drill-across query},

FC {a fact constelation},
SJB1, ..., SJBm {a set of star-join Bitmap indices},
SB1, ..., SBn {a set of SB-index}

Output: FinalResult {query answer}
1 foreach star schema SCi ∈ FC do
2 create a subquery SQi from Q
3 PartialResulti ← process the SB-index using SJBi and
4 the appropriates SBj over SQi

5 FinalResult ← merge(PartialResult1, ..., PartialResultm)
6 according to the ORDER BY clause of Q
7 FinalResult ← sort(FinalResult) according to the WHERE clause of Q

SpatialDrillAcross schema introduced in Section 4.1, which was populated with
conventional data generated from the TPC-H benchmark [10] and spatial data
generated from the Spadawan benchmark [14]. For this schema, we produced two
datasets. The first dataset, named DS1, required 16.4 GB and was generated
with the scale factor of 10 for both conventional and spatial data. The second
dataset, named DS2, required 1.7 GB and was generated with scale factor 1
for conventional data and scale factor 10 for spatial data, thus emphasizing the
spatial predicate processing.

The workload was composed of the 4 queries from class Q1, the 4 queries
from class Q2 and the 3 queries from class Q3 defined in Figures 2b, 3b and 3c,
respectively. For each dataset, we issued each query 5 times, and took the average
of the measurements. The system cache was flushed at the end of each execution.
Also, aiming at analyzing drill-down and roll-up SOLAP queries together with
drill-across SOLAP queries, we defined a set of four spatial query windows, each
one associated to a given granularity level (i.e. address, city, nation and region
granularity levels) and of a specific size (i.e. the lower the granularity, the smaller
the spatial query window). The query windows were quadratic, correlated with
the spatial data and disjoint.

We define in this paper that selectivity is the percentage of the number of
tuples that are retrieved by a query. Regarding the templates shown in Figures 2a
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and 3a, the conventional filter p brand = ‘Brand#14’ provided a selectivity
of 4% and the conventional filter extract(year FROM o orderdate) BETWEEN
1994 AND 1997 provided a selectivity of almost 61%. The selectivity provided
by each spatial predicate was defined as follows: 0.023% to 0.1% for the address
granularity level of suppliers, 0.025% to 0.05% for the address granularity level
of customers, 0.24% to 0.36% for the city granularity level, 1.2% for the nation
granularity level, and 2% for the region granularity level.

The experiments were conducted on a computer with an Intel Core i7 2.67
GHz processor, 12 GB of main memory, 2 SATA 1 TB hard disks, Linux Ubuntu
9.04, PostgreSQL 8.3 and PostGIS 1.3.3. We employed FastBit version 1.2.1 with
the WAH compression method as the Bitmap software to implement the star-
join Bitmap index and to process the conventional predicates. We implemented
the DrillAcrossSB approach using the C/C++ language and used the merge-join
and the quicksort algorithms to obtain the final result of queries (lines 5 to 7 of
Algorithm 2). Also, we used the R-tree to index the spatial attributes handled
by the star-join computation and materialized views. We collected the elapsed
time in seconds to process the SOLAP queries.

5.2 Performance Results for Dataset DS1

In this section, we discuss the performance results provided by the star-join com-
putation, materialized views and the DrillAcrossSB approach to process drill-
across SOLAP queries over the dataset DS1. This dataset is the most voluminous
dataset and has the same scale factor for both conventional and spatial data.
For short, we use star-join, views and DrillAcrossSB to refer to the approaches.

Figure 4 shows the performance results for processing queries of class Q1,
according to different granularity levels (i.e. Q1.1, Q1.2, Q1.3 and Q1.4 are
respectively defined over the address, city, nation and region granularity levels).
The use of views avoids several joins among conventional dimension tables and,
therefore, produced a better performance than the star-join, which ranged from
65% to 76%. Regarding DrillAcrossSB, it produced better results than views
when compared with the star-join, which ranged from 93% to 95%. In fact,

Fig. 4. Performance obtained with the star-join computation, materialized views and
the DrillAcrossSB approach for queries of class Q1. Elapsed time in seconds.
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Fig. 5. Performance obtained with the star-join computation, materialized views and
the DrillAcrossSB approach for queries of classes Q2 and Q3. Elapsed time in seconds.

DrillAcrossSB was at least 70% better than views, thus providing a remarkable
performance gain. Both views and DrillAcrossSB required similar storage costs
(e.g. for queries of class Q1, views required 3.7 GB and DrillAcrossSB required
3.5 GB).

The same pattern was observed for queries of classes Q2 and Q3, as shown
in Figure 5. DrillAcrossSB always produced the better performance results.
Furthermore, the drill-down SOLAP queries performed over distinct granu-
larity levels did not impair the performance gains of the proposed approach.
DrillAcrossSB ’s performance gains over the star-join computation were at least
94% and over views ranged from 87% up to 96%.

5.3 Performance Results for Dataset DS2

In this section, we discuss the performance results to process drill-across SO-
LAP queries over the dataset DS2. This dataset has a higher scale factor for
spatial data (i.e. SSF = 10) than for conventional data (i.e. SF = 1), aiming at
impairing the evaluation of spatial predicates. We only present here results for
views and DrillAcrossSB, since views outperformed the star-join, as shown in
Section 5.2.

Figure 6 shows the performance results for processing queries of classes
Q1, Q2 and Q3, according to different granularity levels. Regarding queries of
class Q1, DrillAcrossSB was always faster than views. The performance gain
of DrillAcrossSB ranged from 39% at the region granularity level up to 81%
at the address granularity level. Comparing the results presented here with
those described in Section 5.2, the performance gain of DrillAcrossSB over
views decreased. This is due to the processing of the spatial predicate for the
dataset DS2, which is more costly than the processing of the conventional
predicate. The same pattern was observed for queries of classes Q2 and Q3.
DrillAcrossSB always produced the better performance results, which ranged
from 60% to 98% for queries of class Q2 and from 68% to 90% for queries of
class Q3.
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Fig. 6. Performance obtained with materialized views and the DrillAcrossSB approach
for the dataset DS2. Elapsed time in seconds. Results for class Q2 are in log scale.

6 Conclusions and Future Work

In this paper, we focused on the efficient processing of drill-across SOLAP queries
over GDWs. Our contributions are threefold. We proposed SpatialDrillAcross, a
GDW schema that is based on the TPC-H benchmark and enables the perfor-
mance evaluation of drill-across SOLAP query processing. SpatialDrillAcross is
a fact constellation that contains not only conventional dimensions but also spa-
tial dimensions with spatial attributes and predefined spatial hierarchies, as well
as specifies how spatial data should be stored. We also defined a set of classes
of drill-across SOLAP queries to be issued over the SpatialDrillAcross schema,
so that each class imposes distinct costs in query performance. Furthermore,
we proposed DrillAcrossSB, an approach to process drill-across SOLAP queries
using a spatial index, which is characterized by indexing separated star schemas
of a fact constellation by using the SB-index and merging the partial results.

The DrillAcrossSB approach was validated through performance tests that is-
sued queries from the proposed set of classes over the SpatialDrillAcross schema,
and that investigated different spatial data types, different granularities and
increasing number of spatial query windows. The results demonstrated that
DrillAcrossSB efficiently answers drill-across SOLAP queries. Comparisons of
the DrillAcrossSB approach, the star-join computation and materialized views
showed that DrillAcrossSB highly speedup the processing of drill-across SOLAP
queries from 39% to 98%. Furthermore, both materialized views and
DrillAcrossSB required similar storage costs.
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We are currently extending the Spadawan benchmark [14] with the concepts
introduced in this paper to also focus on fact constellation schemas and drill-
across SOLAP queries. We also plan to investigate other types of spatial objects
in our tests, such as lines, polygons with holes, and vague spatial objects.
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Abstract. Current OLAP servers are typically implemented as either
extensions to conventional relational databases or as non-relational
array-based storage engines. In the former case, the unique modeling
and processing requirements of OLAP systems often make for a rela-
tively awkward fit with RDBM systems. In the latter case, the pro-
prietary nature of the MOLAP implementations has largely prevented
the emergence of a standardized query model. In this paper, we dis-
cuss an algebra for the specification, optimization, and execution of
OLAP-specific queries, including its ability to support a native language
query framework. In addition, we ground the conceptual work by in-
corporating the query optimization and execution facilities into a fully
functional OLAP-aware DBMS prototype. Experimental results clearly
demonstrate the potential of the new algebra-driven system relative to
both the un-optimized prototype and a pair of popular enterprise servers.

1 Introduction

Data warehousing and Online Analytical Processing (OLAP) are two of the
most important components of contemporary Decision Support Systems (DSS).
Collectively, they allow organizations to make effective decisions regarding both
their current and future state. In practice, warehouse databases are implemented
via array-based multi-dimensional storage engines (MOLAP) or as extensions to
the more familiar relational DBM systems (ROLAP). While the MOLAP tools
offer impressive performance, their limited scalability often restricts their use to
environments with more modest resource requirements (e.g., departmental data
marts). Conversely, enterprise ROLAP systems tend to scale quite well, but
offer design and implementation models that are constrained by conceptual and
architectural elements intended primarily for transaction processing systems.

Moreover, current warehouse/OLAP systems utilize query mechanisms that
were designed decades ago. Specifically, they rely upon a combination of string
based query languages such as SQL and MDX, along with various proprietary
extensions. These languages (and their APIs) have little in common with the
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safe, flexible Object Oriented languages commonly used in today’s development
environments. Not only do these languages make client side programming less
effective (e.g., no compile time type checking, no semantic verification, no abil-
ity to re-factor code, plus the requirement to interleave distinct programming
models), but they also make it very difficult for the DBMS server to effectively
exploit OLAP-specific constructs at query resolution time. In other words, the
requirement to work with existing query languages and APIs largely prevents
the backend server from effectively optimizing user queries to take full advantage
of either OLAP conceptual structures (e.g., concept hierarchies and aggregation
paths) or physical layer extensions (e.g., enhanced indexing or sorting opportu-
nities).

For this reason, we believe that new OLAP query interfaces are required. In an
earlier work [13], we discussed an approach that would allow data cube queries
to be written in native OOP languages such as Java. In the current paper, we
extend that initial research by presenting an expressive multi-dimensional OLAP
algebra that can be used to support the language libraries visible to the client
side programmer. Moreover, we discuss the integration of the algebra with a
robust DBMS backend that not only natively supports the algebraic operators
but is able to optimize query plans by applying a series of transformations to the
initial parse trees. The fully optimized plan can then be passed to an execution
engine that, in turn, exploits indexes and algorithms designed expressly for this
purpose. The end result is a framework for an OLAP DBMS that offers the
performance of a MOLAP system and the scalability of a ROLAP architecture.

The paper is organized as follows. Section 2 briefly reviews related work. An
overview of the Sidera data model and architecture is provided in Section 3,
including its application to native language querying. In Section 4, we discuss
the formal properties of the current algebra, with Section 5 reviewing some of
the server’s more important optimization techniques. Key experimental results
are then presented in Section 6. Section 7 concludes the paper with a few final
observations.

2 Related Work

Over the past decade or so, numerous attempts have been made to simplify, ex-
tend, or otherwise improve DBMS query interfaces, languages and data models.
One common theme has been the adaptation of APIs to include Object Ori-
ented semantics and syntax. Object Relational Mapping (ORM) frameworks —
including JDO (Java Data Objects) [1] and Hibernate [6] — have been used to
define transparent object persistence for DBMS-backed OOP applications. Still,
the query language extensions — including JDOQL (JDO) and HQL (Hibernate)
— required to execute joins, complex selections, and sub-queries, produce a de-
velopment environment that often seems as complex as the model it was meant
to replace. More recently, Safe Query Objects (SQO) [10] have been introduced.
Rather than explicit mappings, safe queries are defined by a class containing, in
its simplest form, a filter and execute method. The compiler checks the validity
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of query types, relative to the objects defined in the filter. The execute method
is then rewritten as a JDO call to the remote database.

Other approaches target the language itself. For example, one can point to lan-
guage extensions such as those found in Ruby’s Active Records [5], HaskellDB [2],
and Microsoft’s LINQ extensions for its C# and VisualBasic environments [8].
Here, however, one must note that none of these languages are in any way OLAP-
aware and, thus, have no native support for concepts such as cubes, dimensions,
aggregation hierarchies, granularity levels, and drill down relationships. By con-
trast, Microsoft’s popular MDX query language [22] — while syntactically remi-
niscent of SQL — provides direct support for both multi-level dimension hierar-
chies and a crosstab data model. Still, MDX remains an embedded string based
language and, as such, cannot provide comprehensive compile-time type check-
ing, a single unified application/DBMS development language, OOP functional-
ity (e.g., inheritance and polymorphism), or efficient source code re-factoring.

In terms of OLAP and BI specific design themes, most contemporary research
builds in some way upon the OLAP data cube operator [15]. In addition to
various algorithms for cube construction, including those with direct support for
dimension hierarchies [20], researchers have identified a number of new OLAP
operators [11], each designed to minimize in some way the relative difficulty of
implementing core operations in “raw SQL”.

Performance optimization has been another fairly popular target. At vari-
ous times, researchers have focused on view materialization [17,18], improved
indexing [9,12], and parallelization and partitioning [19,16]. In general, all such
approaches build on techniques that were developed for OLTP databases. There
has also been some interest in the design of supporting algebras [21]. The pri-
mary focus of this work has been to define an API that would ultimately lead
to transparent, intuitive support for the underlying data cube, and in a more
general sense, to the identification of the core elements of the OLAP concep-
tual data model. OLAP-specific optimization based upon query re-writing has
also been proposed. For example, using an OLAP algebra that highlights the
visual representation of the data cube, Bellatreche et al. propose a set of rules
to re-structure OLAP queries executed against fact and dimension tables (i.e.,
Star Schema) stored in a standard relational DBMS [7]. Though improved per-
formance is suggested, there is no concrete DBMS implementation (or physical
operators) by which to fully quantify or evaluate the proposal.

3 Preliminary Material

Before presenting the algebra, we first review the conceptual and physical model
upon which the Sidera DBMS is constructed. To begin, we note that the methods
discussed in this paper are part of a larger framework known as NOX (Native
language OLAP query eXecution) [13] that is designed to provide native language
(e.g., Java) Object Oriented OLAP query facilities. In other words, traditional
string-based query languages such as SQL and MDX are not required to access
the analytics data. NOX provides the following components:
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– OLAP conceptual model. NOX allows developers to write code directly
at the conceptual level; no knowledge of the physical or even logical schema
is required.

– Client side libraries. NOX provides a small suite of OOP classes corre-
sponding to the objects of the conceptual model. Collectively, the exposed
methods of the libraries form a clean programming API that can be used to
instantiate OLAP queries.

– Augmented compiler. At its heart, NOX is a query re-writer. During a
pre-processing phase, the framework’s compilation tools effectively re-write
source code to provide transparent model-to-DBMS query translation.

– Cube result set. OLAP queries essentially extract a subcube from the
original space. The NOX framework exposes the result in a logical, read-
only multi-dimensional array.

In short, the developer’s view of the OLAP environment consists solely of the
API and the Result Set. More to the point, from the developer’s perspective, all
OLAP data is housed in a series of cube objects housed in local memory. The
fact that these repositories are not only remote, but possibly Gigabytes or even
Terabytes in size, is largely irrelevant.

3.1 Conceptual Model

As noted in the previous section, NOX allows one to program directly against a
conceptual data model. Briefly, we consider analytical environments to consist
of one or more data cubes. Each cube is composed of a series of d dimensions
(sometimes called feature attributes) and one or more measures. The dimensions
can be visualized as delimiting a d -dimensional hyper-cube, with each axis iden-
tifying the members of the parent dimension (e.g., the days of the year). Cell
values, in turn, represent the aggregated measure (e.g., sum) of the associated
members. Figure 1(a) provides an illustration of a very simple three dimensional
cube. We can see, for example, that 12 units of Product AM54 were sold in the
Berkeley location during the month of January (assuming a Count measure).

Time 
(month)

Location 
(city)

Product (number)

San Jose

Los Angeles

Berkeley

Dec

Jan

Feb

Sk11 FH12 AM54

Measure 
Value

20 35 31

14 20 12

21 40 24

(a)

USA

Los 
Angeles

New YorkCalifornia

AlbanySan Jose New 
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Store 1 Store 2 Store 3 Store 4 Store 5 Store 6
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Store

(b)

Fig. 1. (a) NOX conceptual query model (b) A simple symmetric hierarchy
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Beyond the basic cube, however, the conceptual OLAP model relies exten-
sively on aggregation hierarchies provided by the dimensions themselves. In fact,
hierarchy traversal is one of the more common and important elements of an-
alytical queries. In practice, there are many variations on the form of OLAP
hierarchies (e.g., symmetric, ragged, non-strict). NOX supports virtually all of
these, and does so by augmenting the conceptual model with the notion of an
arbitrary graph-based hierarchy that may be used to decorate one or more cube
dimensions. Figure 1(b) illustrates a simple geographic hierarchy that an orga-
nization might use to identify intuitive customer groupings.

3.2 Native Language Queries

NOX provides a set of client libraries that map directly to the conceptual model
described above. In addition to base classes representing OLAP objects such
as dimensions, hierarchies, cells, and aggregation paths, the framework include
a core OLAPQuery class that exposes methods corresponding to the algebra
described in Section 4. The programmer therefore defines queries not by embed-
ding a non-OOP text string, but by over-riding and extending the OLAPQuery
base class and adding just those constraints relevant to the current query. In
so doing, the NOX environment is able to provide compile time type checking,
semantic verification (as per the client libraries), refactoring facilities, and OOP
functionality (e.g., query inheritance). Figure 4 illustrates an MDX query and
the corresponding NOX query (written in Java). Note that as queries become
larger and more complex, NOX queries tend to maintain their readability much
better than the corresponding MDX queries.

Though the translation and submission of NOX queries is a somewhat complex
process [13], the reader should note the following. The client side query depicted
in Figure 4 is not executed directly. Instead, the NOX processor parses the
source code, identifies the NOX class constructs, and transparently re-writes

SELECT
{ [Product].[Type].ALLMEMBERS } ON COLUMNS,
{ [Customer].[Province].ALLMEMBERS } ON ROWS

FROM [Order]

WHERE (
[Measures].[Quantity_Ordered],
[Time].[Year].[2007],
[Time].[Month].[May],
[Time].[Month].[June],
[Customer].[Age].[45],[Customer].[Age].[55]
)

(a)

class SimpleQuery extends OlapQuery {
public boolean select() {
DateDimension date = new DateDimension();
Customer customer = new Customer() ;
OlapProperty dateMonth = new OlapProperty(date.getMonth());
return (customer.getAge() > 40 && date.getYear() == 2007 &&

dateMonth.inRange(5, 10));
}
public Object[] project() {
Customer customer = new Customer() ;
Product product = new Product() ;
Measure measure = new Measure() ;
Object[] projections = {product.getType(),

customer.getProvince(),
measure.getQuantity_Ordered()};

return projections;
}
}

(b)

Fig. 2. (a) A simple MDX query (b) The NOX equivalent
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the programmer’s source code. In place of the original OLAPQuery definition,
the processor inserts a network call to the Sidera DBMS. Within the network
packet is a query representation that has already been reduced to its algebraic
components. It is this form of the query that is actually optimized and executed
by the server at runtime.

3.3 The Sidera Architecture

Sidera is a research DBMS that targets analytics environments. To this end, it
provides native, OLAP-specifc support for indexing (bitmaps and R-trees), fault
tolerance (network heartbeat), caching (spatial query representation), lightweight
graphical interfaces (via the Google Web toolkit) and, of course, query languages
(NOX). It is also designed from the ground up as a parallel DBMS that is intended
to scale to ROLAP sizes, while giving something close to MOLAP performance.
Essentially, Sidera is constructed as a federation of sibling servers that function
more or less independently, each accessing and processing a slice of the current
query. A Parallel Service Interface (PSI) offers global coordination and merging
services as required.

In this section, we discuss those elements of the architecture that support the
execution of translated NOX queries. Specifically, we will look at the storage and
indexing model with which the query costing and optimization is associated. We
begin with the physical representation of the NOX conceptual model described
above. Traditionally, relational warehouses use a Star Schema, consisting of a
Fact table and one or more Dimension tables. Process metrics are housed in
the Fact table, with dimension tables containing feature information typically
used to constrain user queries. A Sidera database is roughly analagous to this
design. However, rather than a Fact table, Sidera employs a materialized cube
(fully or partially, as space permits) that is constructed as a set of Hilbert packed
R-trees, then minimized using a form of tuple differential compression [12]. We
then incorporate the (open source) Berkeley DB embedded libraries [3] into the
Sidera code base so as to efficiently encode the Fact Structure. Note that we refer
to measure data as a Fact Structure, rather than a Fact table, as the storage

Fig. 3. The physical structure of the indexed cube
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format bears little resemblance to a traditional table. Figure 3 illustrates the
internal structure of the Sidera/Berkeley cube. Note that the letters A-B-C are
simply used as a shorthand for Dimension names such as Product, Date, etc. In
short, the cube consists of a packed sequence of meta data, measure data, and
index blocks for each aggregated view, as well as a master B-tree that locates
the relevant view data, as per the current query specification.

Dimension data is stored independently of the central cube structure, as it
requires distinct forms of indexing and representation. Specifically, Sidera is
aware of both hierarchical and non-hierarchical elements. By hierarchical, we
mean those values associated with user-defined aggregation pathways (e.g., the
common Day-Month-Year Time hierarchy). Sidera uses a structure known as
mapGraph to efficiently translate cell values between arbitrary hierarchy levels
at run-time [14]. Figure 4(a) shows mapGraph’s representation of the meta data
associated with a simple symmetric Product-Type-Category hierarchy (Sidera
can also support support more complex hierarchies). Note that the integer values
in the figure corresponds to ranges of Product ID values (i.e., Product keys)
that are encapsulated within the tuple differential values encoded in the Fact
Structure. Sidera always stores cell values at the lowest level of granularity so as
to permit arbitrary bi-directional translation between hierarchy levels. In effect,
the DBMS uses the in-memory mapGraph structure as a join index between the
Fact Structure and the hierarchy values.

Non hierarchical attributes such as age, on the the other hand, may be used
to constrain user queries but are not associated with identifiable aggregation
paths. In this case, dimension attributes are encoded with FastBit [4], an efficient
compressed bitmap indexing mechanism. Sidera’s Fastbit attribute processing
essentially produces contiguous sequences of key values that can be mapped
against the Fact Structure. Because the encoded Berkeley R-trees are internally
packed level-by-level and processed with a breadth first search strategy (rather
than the conventional depth first approach), Fastbit key sequence matching can
be accomplished with a single pass through the cube index. Figure 4(b) illustrates
how the R-tree search algorithm sweeps across levels of the index identifying
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Fig. 4. (a) A simple mapGraph translation map (b) Linear Breadth First R-tree search
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Fig. 5. The architecture of the individual nodes of the cluster DBMS

sequences of pages that correspond to the consecutive key values produced by
the bitmap indexes.

As noted previously, Sidera is constructed as a parallel DBMS and runs on
commodity Linux clusters (multi-core and GPU extensions are currently being
investigated). Figure 5 illustrates the processing model of the individual sibling
servers, showing the relationship between the components discussed above.

4 The Sidera Algebra

While the language of OLAP algebras has yet to be standardized, it is neverthe-
less the case that a core set of operations has been consistently identified in the
literature [21]. However, before defining the operators of the Sidera algebra, we
will first provide a more formal representation of the conceptual model presented
in Section 3.1.

An N -dimensional cube C is constructed as <D, F, M, BasicCube> where:

– D is a set of dimension Di of C, where D = {D1, D2, ..., DN}, and
1 ≤ i ≤ N.

– F is a set of feature attributes Fi of C, F = {F1, F2, . . . , FN}, where
1 ≤ i ≤ N.

– M is a list of measure attributes Mj of C, M = {M1, M2, . . . , Mk}, where
j ≤ k.

– BasicCube is a set of cells that describes the facts (measure attributes) at
the particular level of detail specified by F .

A dimension (Di) is defined by a schema written as schema(Di) = <ColumnList,
Key, Hierarchy> where:

– ColumnList is a set of dimension attributesDi.Aj ofDi,ColumnList= {D1.A1,
. . . , D1.An}, where n is the number of attributes in dimension Di.
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– Key is an attribute Di.Ak of ColumnList, where Di.Ak is the deepest level
of detail for dimension Di, where 1 ≤ k ≤ n.

– Hierarchy is a set of hierarchies Di.Hj of Di, with Hierarchy ={Di.H1,Di.H2,
. . . , Di.Hz}, where j ≤ z and z is the number of hierarchies associated
with dimension Di. Each hierarchy Di.Hj is of the form Di.Hj = {Hj ,
Di.Ar → . . . → Di.Al}, where Di.Ar is the root hierarchal attribute level,
while Di.Al is the leaf level in hierarchy Hj of dimension Di.

A Feature Attributes Fi refers to a specific attribute Aj in dimension Dk,
where i,k ⊆ [1,N ]. It is of the form Fi ={Dk.Aj}, where Fi is an attribute in
the ColumnList of dimension Dk.

A BasicCube is a multidimensional end user representation with a schema of
the form schema(BasicCube) = {F, M}. An instance of a BasicCube is the set of
cells/facts/records/tuples that are described by the values of measure attributes
M at the level defined by F . Through the remainder of this paper, we will use
the terms cells, facts, records, and tuples interchangeably.

SELECTION. The selection operator identifies one or more cells from within
the full d-dimensional search space and its application produces what is com-
monly referred to as “slicing and dicing”. This operator is applied to a data cube
and produces a subset of the same data cube. More formally, we can define the
SELECTION operator on cube C as

σ(Di.Aj OP φ)C

where Di.Aj is an attribute in dimension Di, OP is a conditional operator such
as {<, >, =, . . ., etc.}, and φ is one or more values in domain(Di.Aj).

The result of σ(Di.Aj OP φ)C is a cube C1<D, F, M, BasicCube1>, where sets
D, F, and M are equivalent to those in the input cube C and schema(BasicCube1 )
= schema(BasicCube). From the user’s perspective, the query is executed against
the physical data cube such that the selection criteria will be iteratively evalu-
ated against each and every cell. If the selection test evaluates to true, the cell
is included in the result; if not, then it is ignored.

PROJECTION. Used for the identification of presentation attributes, includ-
ing both the measure attribute(s) and dimension members, a projection extracts,
from a source cube, a new cube composed of only those elements specified with
the PROJECTION operator. Formally, the PROJECTION operator can be writ-
ten as:

π(Di.Aj , y)C,

where Di.Aj is a list of dimension attributes, and y ⊂ M. The resulting cube is
C1<D1, F1, M1, BasicCube1>, where D1 is a set of dimensions, F1 = list of
dimension attributes Di.Aj , M1 = y, and Schema(BasicCube1) = F1, M1. Note
that the measure value(s) M1 of BasicCube1 are aggregated at the level of the
attribute(s) in F1.



176 A. Taleb, T. Eavis, and H. Tabbara

CHANGE LEVEL. This operator allows the user to navigate amongst levels
of a concept hierarchy, each with a distinct aggregation granularity. We typically
refer to these processes as “roll-up” and “drill down.” Formally, we denote the
change level operator as:

�(Di.Aj→Di.Ak) C,

such that Di ∈ D, Di.Aj is a feature attribute of cube C and Di.Ak is a hi-
erarchical attribute level in dimension Di. The resulting cube is of the form
C1 = <D, F1, M, BasicCube1>. Note that while the result cube C1 main-
tains the same dimensions and measure attribute(s), it will have a new feature
set(F1 = F − Di.Aj + Di.Ak). The CHANGE BASE operator may also pro-
duce multiple level changes as follows: �(Di.Aj→Di.Ak,Dr .As→Dr.At,...) C, where
i, r = [1 . . .N ].

CHANGE BASE. This operator represents the addition or deletion of one or
more dimensions from the current result cube C. Aggregated cell values must
be re-calculated accordingly. CHANGE BASE may be represented as:

±(Di.Aj→Action)C ,

where Action ∈ (Remove or Add). The resulting cube C1 = <D1, F1, M,
BasicCube1> has different dimensions, feature attributes and BasicCube rel-
ative to that of the source cube C.

PIVOT. This is a presentation-specific operation that allows users to re-
organize the axes of the cube. No recalculation of cell values is required. Formally,
we have:

�(Di.Aj→Dk.Al) C

where Di.Aj and Dk.Al are feature attributes in cube C. This operator re-
organizes the axes of cube C so that Dk.Al is viewed instead of Di.Aj , and vice
versa. The result cube is equivalent in construction to the source cube.

DRILL ACROSS. Here, we denote the integration of two independent cubes,
with each possessing common dimensional axes, so as to compare their measure
attributes. In effect, this is a cube “join” (possibly a self join) that changes
or extends the subject of analysis. Consider two cubes C1 = <D1, F1, M1,
BasicCube1> and C2 = <D1, F1, M2, BasicCube2> having the same set of
dimensions and feature attributes but with different sets of measure attributes
(M1 and M2). We therefore have:

C1(M1) � C2(M2)

The result of this operation is another cube C = <D1, F1, M, BasicCube>,
where M is the union of sets M1 and M2 and BasicCube contains the union of
BasicCube1 and BasicCube2, with the new measure attributes M.



The NOX OLAP Query Model 177

SET Operations. Set operations may also be applied to data cubes. Given
cubes C1 and C2, we have C1 ∪ C2 (UNION), C1 ∩ C2 (INTERSECTION),
and C1−C2 (DIFFERENCE). In all cases, C1 and C2 must be composed of the
same feature attribute set (i.e., they must possess the same dimensional axes).
For UNION and INTERSECTION, we may aggregate measure values if cells
share the same feature attributes.

5 Query Optimization

As noted in Section 3.2, native language client-side queries are decomposed into
the associated algebraic operators and passed to the DBMS at runtime. That
being said, this initial query form likely does not represent the most efficient
execution plan for an OLAP DBMS, as no attempt has been made to either ex-
ploit the physical representation of the cube (e.g., indexes, materialized views) or
the properties of the algebra itself (e.g., re-ordering logical operations to reduce
intermediate cube sizes). In this section, we will discuss optimization principles
relevant to OLAP aware servers in general, and to Sidera specifically. We note
that due to the length of the paper, it is not possible to present optimization
strategies for the full algebra (we intend to do this in a longer version of the
paper). Instead, we will focus on SELECTION and PROJECTION strategies,
as these two operations typically dominate processing cost.

5.1 Selection

Processing costs in the Sidera DBMS (or any OLAP server) are dominated by
Fact Structure access. In a traditional DBMS, OLAP queries would require a
join operation between the fact table and one or more dimension tables. Sidera
streamlines this process by re-writing the common Fact Structure SELECTION
operation as follows:

σDim1(C1),Dim2(C2),...Dimn(Cn)C = σDim1ID=L1,Dim2ID=L2...DimnID=LnC

where L1 . . . Ln are lists of Dimension key values associated with rows constrained
by conditions C1 . . . Cn respectively. In other words, Sidera does not perform tra-
ditional relational sort or hash-based joins. Instead, it uses the FastBit indexes
to retrieve the relevant dimension keys values, then uses these to directly per-
form a selection on the Fact Structure. Because the Fact Structure is encoded as a
packed R-tree, and is accessed by a linear breadth first search, the “standard” Star
Schema query effectively becomes a single pass SELECTION. As a concrete exam-
ple, a query initially expressed as σProduct.Type=BrakesANDEmployee.Age>30Sales
— where Product 1 and Product 2 are ofType “brakes”,Employee 2 and Employee
3 are older than 30, and the underlying Fact is Sales — would be transformed by
Sidera into σProductID=(1,2)ANDEmployeeID=(2,3)Sales.

Pushing transformations, as is the case with any DBMS system, are also
important. In other words, we can typically reduce intermediate view sizes by
pushing SELECTION operations closer to the data source. The Sidera system
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Fig. 6. (a) Initial OLAP expression tree. (b) Improving the initial expression by pulling
SELECTION up and then pushing it down the tree.

uses pushing techniques extensively for selections executed in combination will
other algebraic operations. We have also found it useful to sometimes combine
an initial pull with the push operation. Figure 6, for example, demonstrates that
with an INTERSECTION requiring common schemas, a SELECTION operator
may be pulled up the left side of the query tree and pushed down the right,
thereby reducing the cost of the INTERSECTION operation.

5.2 Projection

Pushing projections down the query tree can also reduce the size of intermediate
data sets. Sidera does this as well. However, it is also possible to decompose
PROJECTION operations into a <CHANGE LEVEL, PROJECTION> pair in
order to take advantage of efficient grouping functionality. In Sidera’s case, the
mapGraph structure can be used to translate between the base level data (i.e.,
the most detailed) in the Fact Structure and the hierarchy level listed in the
initial query. More formally, we can say:

π(L,M)C =�(L1→L)(π(L1,M)C)

Figure 7 illustrates how a projection decomposition would be used in practice.
Here, the programmer has specified a query at the level of Product Type. Because
the data is physically stored in the Fact Structure at the most granular level,
the Sidera optimizer essentially wraps the low level PROJECTION operator (on
ProductID) with a CHANGE LEVEL operator that will transform and aggregate
the detailed Product data into Product Type groupings at run-time.

6 Experimental Results

Sidera is a relatively sophisticated prototype and, as such, lends itself to mean-
ingful experimental evaluation. We stress that Sidera is a DBMS in the true
sense of the word. In other words, it is not simply an interface to a relational or
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Fig. 7. (a) Initial OLAP expression tree. (b) Improving the initial expression by de-
composing the PROJECTION.

even multidimensional server. Rather, it provides data storage, indexing, query
parsing, optimization, and caching services. As such, the experimental results
listed below provide a reasonable representation of the potential for this type of
OLAP model (i.e., one that uses OLAP-specific indexes, storage and algebraic
operations to provide scalable OLAP functionality).

In terms of the environment, tests were conducted on a dual-boot workstation
running Windows Vista and a Fedora Linux distribution (2.6.x kernel). (Note
that we perform single-node evaluation in this paper rather than utilizing the
full cluster architecture). The machine uses 1GB of main memory and houses
a standard 160 GB SATA hard drive. The analytics database consists of six
dimensions with cardinalities ranging between 300 and one million. Each di-
mension also has a three or four level hierarchy. Dimension data was generated
with an open source data generation tool so as to more accurately represent
real (i.e., text) values. In terms of the the Fact Structure, relevant feature at-
tributes (i.e., with matching keys) and measure attributes were produced by a
generator designed specifically for Sidera. While the generator has the ability to
produce skewed data, the distribution in the current case is essentially uniform
as skew is largely irrelevant for the current round of testing. Depending on the
test, row counts typically vary from 100,000 records to 10,000,000 records. Once
generated, Rtrees and Bitmaps are constructed as required.

Because no true OLAP query benchmark currently exists, we developed a
set of “Star Schema queries” representing common OLAP operations (slice and
dice, drill down, roll up, etc). In each case, the queries were hand coded in
SQL, MDX, and Sidera’s XML format as required (Note that in the longer
version of the paper, we intend to include the full query suite as an appendix).
Unless otherwise indicated, batches of 10-20 such queries are used in a given
test, with the average of five runs recorded. Finally, query and OS caches are
cleared between runs.

We begin by looking at the performance of the Fact Structure described
in Section 3.3. In most environments, indexing demonstrates increasingly poor
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performance once query selectivity reaches a certain point, typically about 5%
of the records in the data set. However, Sidera’s Berkeley R-tree storage —
with its breadth first traversal pattern that limits access to a single sequential
pass — does not degrade in this manner. Figure 8(a) illustrates that for a 12-
query batch, with selectivity ranging between 1% and 25%, Sidera’s query per-
formance remains 3-4 times faster than that of a sequential scan of the data set.
Figure 8(b), on the other hand, demonstrates Sidera’s ability to exploit R-tree
Fact Structures containing a fully materialized cube (i.e., all aggregation levels
included) generated by a Sidera ETL module. Specifically, for data sets of 10
million records, the same query batch completes in one tenth of the time (black
bars) if aggregates are available (Note that the query optimizer transparently
determines the optimal summary view).

Figure 9 shows query performance — relative to record and dimension counts
— on a batch of 16 OLAP queries that have been parsed into the algebraic
operations described in the paper and re-written using the join and pushing
optimizations described in Section 5. Here, we see performance improve by a
factor of 5-15 when optimization steps are undertaken (black bars).

We have also compared Sidera to DBMS systems often used in industrial
database environments, namely the open source MySQL server and Microsoft’s
Analysis Services. In this case, we reproduce the database stored by Sidera and
load it into both DBMS platforms in the standard Star Schema format. Queries
are re-written in SQL form to match. Figure 10 shows comparative results for
both platforms and demonstrates that the MySQL server takes approximately
10-15 times as long to resolve the same queries, while Microsoft’s Analysis Service
— running in ROLAP mode — is three to six times slower.

Of course, one can argue that MOLAP offers superior performance to ROLAP
configurations. So we loaded the same Star Schema data using the MOLAP mode
of Microsoft’s Analysis Services. Figure 11(a) shows that MOLAP does indeed
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outperform the Sidera DBMS by a factor of about 5 to 1. However, we note
that in this test, Sidera was not permitted to materialize any additional data; it
was essentially just an efficient Star Schema. In Figure 11(b), we see the result
once aggregate materialization is added to the R-tree Fact Structure. While
Microsoft’s MOLAP server still has a slight advantage, we note that (i) the
Microsoft DBMS benefits from years of optimization, and (ii) MOLAP is ideally
suited to the scale of the current test (i.e., 1-10 million records). Given that the
Sidera DBMS framework is not constrained by the limits of array-based storage,
these preliminary results suggest that the Sidera DBMS has the potential to
provide MOLAP-style performance with ROLAP-style scalability.

7 Conclusions

OLAP servers have traditionally relied either on extensions to DBM systems
designed primarily for OLTP environments or on array-based servers that lack a
formal query model and tend to provide limited scalability. In this paper, we have
discussed the integration of an OLAP-oriented algebra with a DBMS prototype
designed specifically for analytical processing. The use of the algebraic operators
lends itself to both a clean, native language query interface for end users and
a query execution engine that is able to optimize performance by manipulating
initial parse trees to more efficiently exploit the available index and storage
structures. Initial testing demonstrates that not only does the DBMS provide
a contemporary OOP interface for end users, but that it is already competitive
in performance to commercial systems optimized for in-memory OLAP. Given
that Sidera is ultimately designed as a scalable parallel system, we believe the
current work suggests that MOLAP-level performance — at commodity prices
— is indeed possible for Terabyte scale analytical environments.
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Abstract. Current data base management systems (DBMS) compete 
aggressively for performance. In order to accomplish that, they are adopting new 
storage schemas, developing better compression algorithms, using faster 
hardware, optimizing parallel and distributed data processing. Current row-wise 
systems do not exploit massive ordering redundancy, and current column-wise 
approaches exploit only partially. An important current research issue concerns 
replacing optimization and processing complexity by less complex but ultra fast 
solutions. We propose the varDB approach to optimize performance over data 
warehouses. The solution minimizes complex operators, by applying a simple 
scheme and organizing all structures and processing to that end: massive 
ordering with efficient sorting and log2N searching. Considering data 
warehouses, with periodic loads and frequent analysis operations, such an 
approach provides very fast query processing. In our work we show how it is 
possible to use this massive data ordering/sorting in order to optimize queries for 
high speed, even without the use of data compression (therefore also avoiding 
compression/decompression overheads). We dedicate our attention to sort 
columns of data and correlating them with other replicated and unsorted 
columns. For querying, we focus on binary-search and the use of mainly offsets. 
Our tests of loading data, sorting vs. creating indexes and executing very 
selective operations like data filtering and joining show, using a simple disk 
based prototype, that we are able to obtain much better performance comparing 
with optimized row-wise engines, and also improvements when comparing with 
column-wise optimized engines. Comparing to those we were able to attain at 
least similar performance for many queries and much better performance for 
queries with complex joins. 

Keywords: data warehousing, query processing, database architectures, 
efficiency. 

1   Introduction 

Two paradigms currently stand in the context of databases, row-oriented and column-
oriented, both of them exploring memory and/or disk in optimized manners. Over the 
last decades, the specialization of DBMSs to different niches has increased, each one 
exploring specific methods and techniques to obtain better performance in the 
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respective niche. In order to obtain better scalability and performance, they rely 
mostly on techniques such as massive indexing, compression algorithms and better 
hardware such as memories, multi-core CPUs, faster networks, etc. Although DBMS 
engines have started to target specific niches, giving rise to the statement that the old 
general-purpose DBMS is dead, they still do not explore to full length the possibilities 
of different data organization, replication or representation for data to achieve top 
performance. We explore a kind of RISC-like database architecture. The term RISC 
was created some decades ago to mean “reduced instruction-set computers”, as 
opposed to CISC processors “complex instruction set computers”, and the idea is that 
it is possible to implement the same processing capabilities with a smaller, “cleaner” 
and simpler instruction set. For instance, the fact that instructions had fixed size 
meant that instructions could be processed much faster than in CISC architectures. 
Likewise, our approach is to focus on the data warehouse engine and explore software 
techniques that result in a reduced set of simple, fast and uniform processing model. 
We take into account massive data replication (since disk space is not a limitation 
nowadays), a few schemes and organizations, and propose a single method to perform 
fast queries based on disk, data replication and sorts over a column-wise approach.  

In order to explore the proposed solutions we developed a DBMS engine, varDB, 
from scratch, incorporating the proposed mechanisms. VarDB is a column-wise 
prototype, and the version used for these experiments is based on disk and without 
compression.  

The test results using TPC-H prove that the mass redundancy and ordering 
approach is able, together with corresponding query techniques, to speedup 
processing significantly, therefore we adopted the approach for our future varDB 
architecture and propose the mechanisms in this paper. 

The next section presents related work. It is followed by section 3, which mentions 
relevant architectural details of varDB, how data is stored and replicated, and filtering 
methodologies. Section 4 presents experimental results, and we conclude in section 5, 
with a conclusion and discussion on future work. 

2   Related Work 

There have been innumerous efforts by various companies (e.g. Oracle, Vertica, IBM, 
SUN) to find solutions for data processing on large scale. So emerging approaches 
have aroused, such as vertical models [2], memory-based databases, the use of 
optimization strategies such as histograms, indexes and compression mechanisms. 
Leading to specialization of the DBMSs for processing analytical or transactional 
tasks with performance optimizations [13][14]. 

Trends point to three major groups of processing models: 
 

• Row-wise [4], the data is stored in the form of table rows with dynamic 
characteristics that are good fits for both transactional and analytic loads, 
although not particularly optimized for any of the contexts (e.g. Oracle, 
PostgreSQL); 

• Column-wise, the data is stored as columns and further compressed [3] 
(Vertica, Teradata, MonetDB, SadasDB), providing faster processing for 
analytical workloads; 
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• Main-memory [8], systems that rely mainly on memory, the disc is only 
used to ensure ACID properties (e.g. Oracle TimesTen, VoltDB). 

 

Large performance penalties are paid by disk accesses, which are incurred not only 
for accessing the data that is stored in tables, but also for costly processing of 
operations such as joins and sorts that may need extra temporary disk space when 
memory is not enough. Additional disk access costs are also incurred fault-tolerance 
based on persistent logs or other forms of persistent replication [7]. Column-wise 
DBMSs [11], such as Vertica, MonetDB or ParAccel, focus partly on decreasing the 
amount of data that needs to be accessed when compared with row-oriented DBMSs 
[5][6]. Some column-wise approaches introduced column sorting for additional 
performance boost. Commercial memory and column-based DBMSs exhibit good 
performance/price relations for some application contexts when comparing with 
traditional engines. Some approaches rely on specific hardware, data processing 
within clusters and main-memory to achieve such performance gains [8][7][1].  

There has been a common interest in vertical data partitioning as a means for major 
performance gains. This technique has been explored by researchers [18] before, 
some works have the sole objective of minimizing disk I/O [16] such as MonetDB 
and MonetDB/X100 [15][12], C-Store [9]. Others, like Oracle, increase their systems 
performance by acquiring companies and integrating their systems based on memory 
and new hardware with Oracle systems (e.g. Oracle ExaData [1]). Some academic 
studies point to the creation of hybrid memory based column-wise and row-wise 
systems such as HyRise [17] and hybrids in-memory/on-disk (HDD and/or SSD) like 
Vertica. Other solutions based on memory, using a variety of common machines 
(share-nothing), include Oracle Times Ten and VoltDB, oriented solely for 
performance. MonetDB makes use of large amounts of memory, since it assumes the 
data to be processed must fit entirely into memory. All these efforts generally focus 
on hardware, more memory, more CPU for compression, faster disks and networks 
and in some cases hybrid combinations. Our approach is orthogonal to those ones, 
since the massive ordering and query processing mechanism proposed here can and 
will be applied by us together with any of those improvements to yield extremely fast 
solutions.  

3   Relevant Architectural Details 

For better support of data sorting and data replication, we chose a column-oriented 
architecture for varDB. This way we are able to easily sort data columns. The 
problem is correlating data with other columns. So to overcome that we create offset 
data maps, which translate current offsets to the offsets in other representations. 

In the next sub-sections of this section we will address: generic data processing 
mechanism; how data is inserted and stored into the columns that are broken into 
partitions; construction of offset maps, to link columns to each other through the 
respective offsets; creation of simple histograms to store the data distribution inside 
partitions and columns; description of the most common filters, group by, join, 
greater, less and equals operators. 
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The process of order replication to other columns is done following strategies of 
learn by use. This means that varDB is capable of self-optimization, sorting the 
columns needed to execute certain tasks after a few runs. If for instance new-sorted 
columns are needed for a new task, using the offset map, this process is very 
straightforward by accessing the respective offset in the linear representation. 

Other key element of varDB is the data histograms. When inserting, data 
histograms of each column are updated. So, to perform a query, the first operation of 
the query processor/optimizer is to go to the histogram and choose the most selective 
column involved to start the data filtering process. When filtering data, after 
determining the most selective column by access to the histograms, one of two types 
of search is applied: full-column-scan or binary-search. If we use a fully sorted 
column representation, we can binary-search the entire column, otherwise we may 
need to do a full scan or partial binary searches if there are sorted and unsorted 
partitions. As result of each step in processing a query, varDB stores only the relevant 
offsets or range of offsets, for further exclusion depending on other filters to be 
applied next. The offsets are stored in a hybrid architecture based on memory and 
disk, so no matter what the size of a task output might be, the engine will always be 
capable of processing it. VarDB uses this hybrid architecture in all situations where 
memory is involved to temporarily store intermediate results.  

In the next section we describe some of the most relevant operations or filters used 
during processing and also applied in the experimental tests. 

3.3   Some Implemented Filters 

VarDB implements most operators as simple “filters”, for instance, between, larger 
and smaller, projections, sums, group by, joins, and others that combine 
functionalities. In this section we present a general overview of how some of the 
filters work. 

 
Between, Larger, Smaller, Projection, Sum 
These filters are all very similar, their implementation being straightforward. As 
already mentioned, two main types of data access methods are available, full-column-
scan and binary-search, from both a column or an intermediate result (IR) generated 
in a hybrid structure (memory and disk). The IRs can be set as input for other filters 
reuse for final or intermediate processing. Projection involves selecting only a subset 
of the columns to be read, sum involves adding over expressions on the data being 
scanned, and range conditions are either processed based on the binary search model 
or full scan by comparing with the condition. 

 

Group By 
Several methods to group data are available [10]. For the proposed work and tests in 
varDB we will be using only group by by hash that also operates in a hybrid standard. 
The used method is explained in a simplified form with the help of fig 4, varDB 
creates a hash code and assigns to it a unique id that points to the data. Each id 
corresponds to a position in a list that will contain the syntax of the group and the data 
that it contains. All the structures presented are hybrids (disk and memory), meaning 
that if they overflow a certain size, part of data is swapped into disk. 
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Abstract. Horizontal and vertical fragmentation have been intensively
studied for relational and object databases and recently for XML data.
However, little work has been done on XML warehouses. In this paper,
we address the problem of vertical fragmentation of XML Warehouses.
We use Association Rules to partition and cluster frequent path sets
into fragments. In addition, at the schema level, we address and solve
the problem of reconstructing the original non-fragmented schema to
ensure the fragmentation reversibility. At the data level, we propose a
data organization within fragments to optimize joint operations. Finally,
we present implementation details and show the benefits of our approach
over the non-fragmented schema.

Keywords: XML warehouse, vertical fragmentation, frequent path set.

1 Introduction

With the increasingly widespread use of XML in companies, huge amounts of
XML data are manipulated. The need to extract valuable knowledge from XML
data has naturally emerged and has given rise to XML warehouses [19]. In XML
warehouses, performance remains a key issue and performance enhancement
techniques, such as indexes and view materialization [13], need to be adapted
to cope with XML peculiarities. Among these techniques, we focus on frag-
mentation. Fragmentation has been intensively studied for relational and object
databases and recently for data warehouses and XML data. However, little work
has been done on XML warehouses. In relational databases, there are three frag-
mentation schemes [21]: (i) horizontal fragmentation (HF) where each fragment
consists of a subset of the tuples of a relation R, (ii) vertical fragmentation (VF)
where each fragment is designed as the projection of a relation on a subset of
its attributes and (iii) hybrid fragmentation which is the combination of HF and
VF. For a fragmentation to be correct, it has to meet three conditions [21]: (i)
Completeness, i.e. each tuple in the case of a HF or each attribute in the case of
a VF must be assigned to a fragment, (ii) Disjointness, i.e. all the fragments are
disjoint and (iii) Reconstruction, i.e. the original relation can be reconstructed.
This last property ensures the fragmentation reversibility. On the other hand,
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fragmentation is often associated with allocation to allow for parallel processing
and load balancing [21]. For relational databases, Ma et al (2006) [16] use a
heuristic to derive the fragmentation schema by combining query and site in-
formation. Gorla and Wing Yan (2008) [10] adopt association rules to derive
candidate fragmentation schemes, then select the best schema. Fragmentation
approaches can be driven by a cost model, expressed as an objective function and
using different parameters such as cache sizes [11] and query statistics [4]. Ma
and Kirchberg (2007) tackle the problem of vertical fragmentation in complex
value databases [14]. The authors propose to add internal indexes to solve the
problem of fragmentation reversibility. In the context of data warehouses, frag-
mentation can be logical or physical [13] and may target the basic data [3] or the
aggregated data [2]. For instance, Wu and Buchmann (1997) propose to parti-
tion the fact table according to its dimensions [22] whereas Golfarelli et al (2000)
apply VF to logical aggregated views of data [9]. The fragmentation techniques
have been adapted to XML data. Buneman et al (2005) address the problem by
totally vectorizing XML and by separating data from structure [8]. In [15], Ma
and Schewe (2003) adapt HF and VF to XML. In addition, they define a new
XML-specific fragmentation type called split, which consists of extracting XML
fragments from XML documents, and replacing them by references. Bremer and
Getz (2006) [7] define a sub-language of XPath to specify the fragments. They
divide a document into two parts: a lower part that contains the fragments and
an upper part that acts as a hook to the lower part. In [12], Hartmann et al
(2007) developed a cost model for VF. They use, among others, estimations of
the intermediate cost of results depending on the type of XML data and on
the query operation being performed. As for relational databases, other work
on XML fragmentation can be driven by system parameters, such as fragment
width, depth and size [5]. For XML Warehouses, to our knowledge, fragmenta-
tion has been addressed only in [17] and [20]. In [17], a horizontal fragmentation
is proposed using K-means to partition and cluster XML fragments based on se-
lection predicates. The approach proposed in [20] deals with multi-version XML
data warehouses. Partitioning can be document-based where a fact document is
split into sub-documents having the same structure or schema-based where the
fact is split into sub-facts having different structures.

To our knowledge, except for [20], VF is still unaddressed for XML ware-
houses. As for relational databases, VF is more complex than HF. In the case
of XML data, the problem is even more complex for many reasons. First, XML
queries may target different levels of a same path and some paths can be con-
tained in others, which is contradictory to the disjointness property. Secondly,
the reconstruction property becomes an issue when nested XML elements have
multiple occurrences. Finally, in the case of XML warehouses, VF adds up to
complexity since the number of joins of the warehouse model will explode. In
this paper, we address these problems. Our work builds on the assumption that
the impact of VF on joins can be reduced if the XML paths that are frequently
accessed together are grouped into the same fragments. However, we need to take
account of XML specificities to ensure disjointness and reconstruction. The rest
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Fig. 1. The XML Warehouse Model

of this paper is organized as follows. In section 2, we present the XML warehouse
model and formulate the problem of vertical fragmentation. The fragmentation
approach is presented in section 3. In section 4, we present experiments and
results. Finally, we conclude and present future work directions.

2 Background

In this section, we outline the necessary background for our approach. We first
present the XML warehouse model that we aim to fragment. Then we discuss
some XML specificities and we formalize the fragmentation problem.

2.1 XML Warehouse Model

Due to the absence of a standard model for XML warehouses [19], we base our
work on the XML warehouse model that we proposed in [6]. In a nutshell, our
model is snowflake-like. However, instead of being composed of structured ta-
bles, it is composed of XML collections. A collection represents either the fact
or a dimension member and contains well-formed XML documents that con-
form to a same XML schema. In our model, we treat the fact and dimensions
equally with regards to fragmentation and we refer to them as objects. Figure
1 pictures the XML warehouse model that we will use throughout the paper.
The model is adapted from the XMark benchmark project1 and allows for an-
alyzing current prices and final prices of auctions along the dimensions
of seller, watcher, buyer, item, bid and annotation. Notice the presence of
a hierarchy composed of item and category and that seller, watcher and
buyer are dimension roles related to the same object person. Figure 2 zooms
into objects auction, item and category and shows a subset of their struc-
ture. A rounded rectangle represents XML Elements, a circle represents XML
Attributes and a triangle represents a text node. Particularly, a gray rectangle
represents non-terminal XML elements, meaning that the elements are complex-
typed and can be further detailed. A black circle represents the identifier of an
object to differentiate its instances and a gray circle serves as a linking mech-
anism between the objects of the model. In what follows, we refer to the black
and gray circles respectively as primary and foreign keys.
1 http://www.xml-benchmark.org/
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Fig. 2. Examples of object structures

Our model allows to perform OLAP analyzes as in a classical data warehouse
model. However, two majors specificities of our model are worth noting. First, the
fact and dimension members are not flat but have a hierarchical structure. Thus,
a measure or a dimension parameter is accessed via an XML path. For instance,
the measure current is accessible via auction/current whereas the mails con-
cerning items are accessible via item/mailbox/mails. Secondly, since XML adds
semantics to data, each level in an XML path can be viewed as a descriptive
property of the object. Thus, OLAP queries may target different levels of a same
path. Further, the properties may be disjointed or contained in each other. For
instance, we can describe the object category by the paths item/description,
item/description/text and item/description/parlist.

2.2 Problem Formulation

In [18], it is stated that vertical partitioning is complex because if a relation
has m non-primary key attributes, the number of possible fragments is equal to
B(m) which is the mth Bell number. The aforementioned peculiarities of XML
add to the complexity of VF. In fact, the path containment between properties
of an object is contradictory with the disjointness condition of VF. Furthermore,
as data analysis makes intensive use of join operations in a data warehouse, frag-
menting each object of the warehouse model will lead to multiplying the number
of joins. For instance, if auction is fragmented into two fragments, the maxi-
mum number of joins jumps from 7 to 13. The problem can be formulated as
follows. Given the following

– an XML Warehouse Schema XWS, composed of a set of nb obj objects,
i.e. XWS = {Obji/i = 1...nb obj}. For instance, in the auction warehouse
model, XWS = {auction, person, item, category, bid, annotation}.
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– the objects in XWS are linked by p links, which is also the maximum number
of joins. In our example, there are seven links, six of which link the fact to
dimensions and the remaining one links two hierarchy members.

– Each object Obji is described as a set of XML rooted paths, i.e. Obji =
{PATHObji

r }, that may be overlapping. In our example, the object category
is described by the set of paths {category, category/@id, category/description,
category/description/text, category/description/parlist}.

– A query load QL composed of m queries, i.e. QL = {Qj/j = 1..m}.
– Each query Qj is abstracted as a set of paths belonging to different objects,

i.e. Qj = {PATH
Qj

t }.

We then aim at finding a fragmentation schema composed of nb fg fragments, i.e.
FS = {FGi/i = 1...nb fg} such as (i) FS is correct with respect to disjointness,
completeness and reconstruction and (ii) the total cost of running QL against
FS is less than the cost of running it against XWS. That is, Cost(QL/FS) <
Cost(QL/XWS).

3 Fragmentation Approach

The major drawback of VF is the number of fragments it generates, and thereby
the number of necessary joins to put back together the distributed properties.
This drawback can be minimized if the properties are grouped based on the
frequency of their co-occurrences in the queries. We generalize this principle to
the context of data warehouses. The main idea is that although new joins will
occur in the fragmented schema, some existing joins may disappear if the prop-
erties that originate from different objects are grouped into the same fragments.
Nevertheless, in some cases, even grouping is not enough and data need to be
further organized to avoid self-joins within objects.

3.1 Fragmentation Process

The input of fragmentation is the XML warehouse schema and data and a set
of XML path queries. Its output(s) is a fragmented schema and its data. The
process consists of (1) pruning the set of path queries, (2) grouping the paths
based on the frequency of their co-occurrences, (3) deriving the fragmentation
schemes (FS)s and selecting the best schema and (4) populating the best FS
from the XML warehouse.

3.2 Pruning the Set of Path Queries

This step aims at preventing the creation of overlapping fragments, which con-
trasts with disjointness. Pruning the set of queries consists in deleting some paths
so that no path is contained in another. For instance, if the set of queries con-
tains the paths category, category/description, category/description/ text and
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category/ description/parlist, there are three possible sets of non-overlapping
paths: {category}, {category/description}, {category/description/ text, cate-
gory/description/parlist}. XML path pruning them can be automated. For in-
stance, we can keep the most frequent path amongst the overlapping paths with
the other non-overlapping paths and delete all the overlapping ones. For exam-
ple, if category/description/text is the most frequent path, we keep it along with
category/description/parlist and we delete category and category/description. It
is worth noting that the paths we deal with do not necessarily target text nodes
or attributes. For instance, the path category/ description/ parlist, represented
in figure 2 by a gray rectangle means that element parlist is taken as a whole
and will not be subject to VF.

3.3 Grouping the Paths

The second step is to group the paths based on the frequency of their co-
occurences. For this purpose, we adopt a similar approach to [10] but we depart
from it by using paths instead of relation attributes. We use association rules to
discover the frequent path sets, from which we derive the fragmentation schema.
To do this, we need to transform the pruned set of queries into a transactional
format: each query corresponds to a transaction whereas each XML path cor-
responds to an item. Then, a frequent itemset corresponds to a group of XML
paths, refered to as frequent pathset.

3.4 Deriving the Fragmentation Schema

Once the association rules activity completed, we get the frequent pathsets
(FPS). A fragmentation schema is composed of many fragments where each
one is the equivalent of a combination of disjoint FPSs. Since the FPSs are not
generally disjoint, we need to select only disjoint ones to meet the disjointness
property. Yet, there are two kinds of paths we need to be pay attention to: paths
targeting primary keys, denoted by PKPs, and those targeting foreign keys, de-
noted by FKPs. As we saw earlier, vertical fragmentation inevitably induces
a duplication of the primary keys and foreign keys in the fragmented schema.
Hence, when checking the disjointness of the FPSs, we have to decide whether or
not to consider the PKPs and PKPs for the role they play or as normal paths.
We can distinguish when analyzing the FPSs. (i) Treat the PKPs and FKPs
as normal paths when checking for FPSs disjointness. The idea is that we may
obtain fragments that are composed only of PKPs and of FKPs if necessary.
Such fragments are beneficial for Rollup/Drill down operations which naturally
use primary and foreign keys. Yet, this choice may lead to many fragments in
the fragmented schema. (ii) Skip the PKPs and FKPs. The idea is that in a
fragmented schema, the disjointness property does not apply to these special
attributes. As stated in [18], ”as long as the fragments are disjoint except for the
key attributes, we can be satisfied and call them disjoint”.
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Whatever the choice, the subsequent steps remain the same. The process of
deriving the partitions is as follows. We sort the FPSs in descending order based
on their cardinality. We derive all possible combinations of the disjoint FPSs
having cardinality k where k is the maximum cardinality of FPSs. Each combi-
nation gives rise to a fragment. Then, we complete each fragment by all possible
combinations of k-1 FPS. In this case, we check the disjointness amongst the
k-1 FPSs and the current fragment simultaneously. We repeat the process un-
til we reach 1 FPSs. After deriving the fragmentation schema, we complete it
by the missing paths from the XML Warehouse schema. There are two kinds
of missing paths. (i) Paths belonging to the XML Warehouse schema but that
do not appear in any FPS. In this case, we group the missing paths of each
object into a new fragment. The creation of these new fragments ensures the
completeness of fragmentation. (ii) The PKPs and FKPs. The PKPs are added
to all fragments if they do not already exist whereas the FKPs are added if
they are necessary and do not already exist. For each object of the XML ware-
house, its primary key is duplicated in each of its corresponding fragments to
ensure the reversibility of fragmentation whereas the FKPs are added to preserve
all the links between the fact and dimensions or between subsequent hierarchy
members. The process of deriving the fragments from the FPSs is expressed
with the following algorithm. The algorithm may result in many fragmentation
schemes. The best one will be selected using a cost model, which we will not detail
here.

Data:
– SFS := {Φ} : the set of fragmentation schemes FS
– C : a combination of disjoint FPSs
– SC : the set of path combinations
– K : the cardinality of the biggest FPSs
– Si − FPS : the set of FPSs of cardinality i

Result: SFS : the set of fragmentation schemes
for i := K down to 1 do

for FSj ∈ SFS do
SC := Derive Disjoint Combination (FSj , Si − FPS) /*deriving all
disjoint combinations */;
for each Cm in SC do

FSm := FSj ∪ Cm /*create a new fragment */;
end
;
Replace (FSj , FSj , Cm/m = 1, ...) /*replace PSj by the new fragments
*/;

end

end

Algorithm 1. Deriving the fragmentation schema from the frequent path sets
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3.5 Populating the Fragments

In this section, we provide details on how to organize data in fragments. Data
organization depends on the content of the fragment. There are two cases: (i) the
fragment is formed by properties that belong to the same object of the original
warehouse schema; the fragment is said to be homogeneous and (ii) the fragment
is made of properties belonging to different objects; the fragment is said to be
mixed. We treat each case separately.

Homogeneous Fragment. A homogeneous fragment has as many entries as its
corresponding object. Each entry (instance) of the fragment is directly populated
from its corresponding entry in the object. However, due to XML peculiarities,
the problem of reconstruction occurs again even though we have added primary
and foreign keys. To illustrate this problem, let us suppose two paths a/b/c and
a/b/d of an object which, after fragmentation, belong to two different fragments,
say FG1 and FG2. Figure 3 shows the original entries of the object on the left
hand and the entries in fragments FG1 and FG2. In this case, because element
b is multivalued, we lose the link between values of elements c and d, i.e. c1 with
d1 and c2 and d2. This problem is similar to vertical fragmentation of complex
value databases [14]. To solve this problem, we use a similar approach as [14]
which we adapt to XML. Thus, for each path in each fragment, we check the
multiplicity of each element node. If the node is multiple-valued, we add an ID-
typed XML attribute to the node in the fragment and to the corresponding node
in the original schema, unless such attribute already exists. Then, we update the
data of the original schema with incremental values for the new added IDs.

Fig. 3. Example of data organization problem in homogeneous fragments

Mixed Fragment. In a mixed fragment, the properties originate from different
objects. The objects in question may be disjoint in the original schema, such as
objects person and category or they can be directly linked such as auction
and person or item and category. In case a fragment contains properties from
disjoint objects, the number of its entries is the sum of entry numbers of each
object. In the second case, we can adopt the same data organisation as in the
first case. Even better, since the content of the fragment originates from linked
objects, we can further leverage the fragmentation by reorganizing data in the
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fragment. For instance, let us suppose the properties originate from two joined
objects Obj1 and Obj2 where a foreign key in Obj1 references the primary key
in Obj2. The idea is then to embed under each entry of Obj1 the corresponding
entries of Obj2 using a semi join. The non-corresponding entries of Obj2 will
be kept as separate entries in the fragment. We generalize this principle for any
number of joined objects in a fragment. Figure 4 illustrates the case of a mixed
fragment made of joint objects item and category. On the left hand, the figure
depicts data organization of two entries of each object in the original schema and
to the right hand it shows data organization. Doing so, we avoid joining entries
of item and category to obtain information both on items and categories.

Fig. 4. Example of data organization in mixed fragments

4 Experimentation

We built an XML warehouse by transforming a single XML document, generated
from the XMark project through an ETL process. The warehouse model is the
same as in figure 1. It describes 192 auctions, 624 bids, 254 persons, 217 items,
98 annotations and 10 categories, stored as XML object tables under Oracle 11g
Rel 2. We used A priori algorithm [1] as part of Oracle Data Miner 11.1.0.3.0
with a minimum support of 20% and a minimum confidence of 50% [10].

4.1 Workload

The query load is composed of 100 XML-OLAP queries with an average number
of 13 XML paths per query and an average number of 2.92 of joins. Also, because
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Fig. 5. Query efficiency distribution

the measures current price and final price are exclusive, each fifty queries
target one measure. The transactional form of the query load has 1303 entries.
The A priori algorithm produced 566 frequent pathsets, distributed as follows:
251 4-FPSs, 202 3-FPSs, 91 2-FPSs and 22 1-FPSs. We derived the fragmentation
schemes according to the algorithm of section 3.4. We first treated the PKPs
and FKPs as normal paths. The result was one fragmentation schema only,
because of the few number of disjoint FPSs. The schema is composed of 28
fragments; we refer to it as 28-FS. The object person is the most fragmented
object (10 fragments) as it is the most accessed due to its dimension roles.
Also, the two exclusive measures current price and final prise fall into two
different fragments, which was expected as they are never queried together. We
reapplied the algorithm skipping the PKPs and FKPs. The result was also one
fragmentation schema. As expected, the schema has fewer fragments than 28-FS;
it is composed of 20 fragments and we refer to it as 20-FS. Then we rewrote the
100 queries against 28-FS and 20-FS.

4.2 Results and Discussion

To assess the benefit of our approach, we first compare each FS to the non-
fragmented schema (NFS), then we compare 28-FS to 20-FS. As a measure of
comparison, we counted the number of queries for which each schema has a
better response time. In figure 5, we report the results. In (a), we compare
28-FS to NFS: 28-FS has better response times for 53% of the queries against
47% for NFS. In (b), we compare 20-FS to NFS: 20-FS has better response
times for 57% of the queries against 43% for NFS. In (c), we compare 28-FS
to 20-FS: 20-FS is more efficient for 40% of the queries against 28% for 28-FS.
For the rest of the queries, the two schemata show equal response times. To
summarize, the fragmentation enhances the response time for more than half of
the queries on the one hand. On the other hand, treating the PKPs and FPKs
as key paths results in a better fragmentation schema. A deep analysis of the
nature of queries that make each schema efficient produced the following results.
The fragmentation is less efficient when the most fragmented object, namely
person, is queried for few properties or when it is discarded. On the contrary,
fragmentation yields better results for grouping queries, i.e queries that target
small fragments and when these fragments are made up of paths that occur in
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the grouping clause. Further, although the 20-FG has more efficient queries than
28-FS, the latter one performs better for join queries, since in this schema, many
fragments are composed only of PKPs and FKPs, which are the only necessary
paths needed for the joins.

5 Conclusion

In this paper, we have proposed a vertical fragmentation approach for XML
warehouses using association rules. We addressed some XML specificities with
regards to disjointness and reconstruction. We solved the problem of reconstruc-
tion by duplicating the XML paths that represent primary and foreign keys and
by adding ID-typed attributes within the multivalued element nodes. We ensured
disjointness by pruning the set of paths on the one hand. On the other hand,
we proposed an algorithm to derive disjoint fragments from the frequent path-
sets. As expected, the fragmentation enhances a portion of the query load. The
non-fragmented schema remains better for queries that extract the basic data
from the data warehouse. However, since OLAP queries perform many joins and
groupings, we believe the fragmentation to be more efficient since the joins are
performed on small fragments and grouping usually requires primary and foreign
keys only. At this stage of our work, we validated our approach experimentally.
For future work, we plan to develop a cost model that takes into account the
number of joins and the sizes of fragments and intermediate results. In addi-
tion, we intend to combine the cost model with the cost of XML path access,
which depends among others on the path length. We also aim at automatizing
query rewriting against the fragmented schema. In fact, some queries target dis-
joint objects only and require performing intermediate joins. The choice of the
intermediate fragments to use as bridges is not always systematic.
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Abstract. History-offset encoding we are proposing is a scheme for encoding 
multidimensional datasets. In general, significant problems in implementing 
multidimensional databases include the saturation of address space for 
addressing multidimensional data. One of the solutions against this problem is 
splitting the dimension attributes of the multidimensional data into more than 
one group; i.e., vertical splitting. We have implemented the vertical splitting 
scheme for large scale multidimensional datasets based on the history-offset 
encoding. In this paper, we describe implementation of the constructed 
prototype system and experimentally evaluate and compare the system with 
other systems. These systems include PostgreSQL, which is a relational DBMS 
conventionally implemented, and UB tree, which is organized in a similar kind 
of multidimensional approach with our history-offset encoding. The evaluation 
results prove that our vertical splitting scheme can reduce retrieval I/O cost, 
while expanding the required logical address space to store large scale 
multidimensional datasets. Our method far outperforms PostgreSQL and is 
fairly better than UB tree in retrieval time. The splitting causes increase of 
storage cost but the cost is not so large compared with those of them.  

Keywords: multidimensonal data, address space, vertical splitting, large scale 
dataset, history-offset encoding. 

1   Introduction 

Handling multidimensional data efficiently is a key technology for various 
multidimensional data application areas, such as scientific computations, multidimensional 
analysis for data mining or image processings. It has been promoting extensive research 
themes on organization or implementation schemes for multidimensional data structures 
on computer memory or secondary storage.  

Amongst the data structures the fast random accessing capability that is characteristic to 
multidimensional arrays enables scientific or aggregation computations to be performed 
efficiently on stored data. Thus, multidimensional arrays have been important data 
structures for storing large scale multidimensional data, e.g., in scientific computations or.  

However, such kind of multidimensional arrays suffer from the problem that each 
dimension size is fixed in order to be benefited by fast random addressing functions 
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of arrays.  A notion of extendible array has been proposed in literatures to solve this 
problem inherent in usual fixed size of multidimensional arrays. An extendible array 
can extend its size along any dimensions without relocation of any array elements. 

History-offset encoding [7] is a scheme for encoding multidimensional datasets 
based on the notion of extendible arrays. Records in a relational table R can be a 
multidimensional dataset, and each column of R is mapped to a dimension of the 
corresponding extendible multidimensional array and each record of R is mapped to its 
corresponding coordinate in the array. The encoding avoids poor storage utilization, 
which is common in implementing multidimensional datasets in computer storage 
using multidimensional arrays. Moreover it enables fast accessing to multidimensional 
data, while preserving the extendibility along every dimension.  

UB tree [8] is another excellent multidimensional data organization and provides 
fast multidimensional access method. But the method has a critical shortcoming that 
the parameters of an UB tree (e.g. the range of column value to be inserted) needs to 
be set before tree construction for address mapping [11]. As we described in section 
6, the requirement restricts the usability and performance of UB tree. Such restriction 
is not shared in our organization scheme based on the history-offset encoding due to 
the flexible extension capability of an extendible array. 

Unfortunately however, significant problems in implementing multidimensional 
datasets include the saturation of address space for addressing or encoding 
multidimensional data. We already provided the method to solve this problem by 
vertically splitting multidimensional data [7]. Various schemes of splitting relational 
tables have been proposed (e.g., [2][3][9]) aiming the performance improvement of 
table manipulation. We have implemented the vertical splitting scheme for large scale 
multidimensional datasets based on the history-offset encoding.  

In this paper, we describe implementation of the constructed prototype system and 
experimentally evaluate and compare the system with other systems. These systems 
include PostgreSQL, which is a relational DBMS conventionally implemented, and 
UB tree, which is organized in a similar kind of multidimensional approach with our 
history-offset encoding. The evaluation results prove that our vertical splitting scheme 
can reduce retrieval I/O cost, while expanding the required logical address space to 
store large scale multidimensional datasets. Our method far outperforms PostgreSQL 
and is fairly better than UB tree in retrieval time. The splitting causes increase of 
storage cost but the cost is not so large compared with those of them.  

2   Employing Extendible Arrays 

In this section, the concept of extendible array we employ is described. In order to be 
benefited by the fast random accessing capability of multidimensional arrays, their 
sizes should be fixed in every dimension; i.e., to store a new dimension value, array 
size extension along the dimension is necessary and this implies total reorganization 
of the existing array data according to the modified addressing function. To solve the 
problem, an extendible array can be employed and the array is extendible in any 
direction/dimension without any relocation of the data already stored. This advantage 
makes an extendible array to be applied to wider application area, where necessary  
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array size cannot be predicted. Our extendible array is based on the index array model 
presented in [5]. An n dimensional extendible array A has a history counter h  and 
three kinds of auxiliary table for each extendible dimension i(i=1,...,n). See Fig.1. 
These tables are history table Hi, address table Li, and coefficient table Ci. The history 
tables memorize extension history. If the size of A is [s1, s2, ... , sn], for an extension 
of A along dimension i, contiguous memory area that forms an 1−n  dimensional 
subarray S of size [s1, s2,...,si-1, si+1,..., sn-1, sn] is dynamically allocated. Then the 
current history counter value is incremented by one, and it is memorized on Hi, also 
the first address of S is held on iL . Since h increases monotonously, Hi is an ordered 
set of history values. Note that an extended subarray is one to one corresponding with 
its history value, so the subarray is uniquely identified by its history value.  
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Fig. 1. A two dimensional extendible array 

As is well known, element <i1, i2, ..., in-1> in an n-1 dimensional fixed size array of 
size [s1, s2, ..., sn-1] is allocated on memory using addressing function like: 

 

  f(i1, ..., in-1)= s2s3 ...sn-1i1+s3s4 ...sn-1i2+ ...+sn-1in-2+in-1                                 (1) 

 

We call (s2s3...sn-1, s3s4...sn-1, ..., sn-1) as a coefficient vector.  Such a coefficient 
vector is computed at array extension and held in a coefficient table.  

To illustrate the element accessing method, for example consider the element 
<4,3> in Fig.1. Compare the history values H1[4]=8 and H2[3]=6. Since H1[4]>H2[3], 
it can be proved that <4,3> is involved in the subarray S corresponding to the  
history value H1[4] in the first dimension and the first address of S is found out in 
L1[4] =63.       

From the first address of S is computed as 63+3 =66.  Note that we can use such a 
simple computational scheme to access an extendible array element only at the cost of 
small auxiliary tables.  The superiority of this scheme is shown in [5] compared with 
other schemes such as hashing [4]. 
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3   HOMD Implementation Model 

The model that we are going to present is based on the extendible array explained in 
Section 2. We already described the concept of extendible array. However, any 
existing extendible array models includes the model in Section 2 are not sufficient to 
solve the sparse problem, because consecutive storage area including non-effective 
array elements should be allocated to be benefited by fast random addressing 
function. Against this problem, data compression technique called chunk-offset[1] 
scheme is widely used, but the technique is applied only to the usual fixed size array .   

For a relational table R with n columns, the corresponding logical structure of 
HOMD (History Offset implementation scheme for Multidimensional Datasets) is the 
pair (M, A). A is an n dimensional extendible array created for R and M is the set of 
mappings. Each im )1( ni ≤≤  in M maps the i-th column values of R to subscripts of 

dimension i of A. A will be often called as a logical extendible array. Each element of 
an n dimensional extendible array can be specified by its n dimensional coordinate. In 
HOMD model, each element can be specified by using the pair of history value and 
offset value. Note that since each history value h is unique and one-to-one 
correspondent with its corresponding subarray S, S is specified uniquely by its history 
value h. The offset value of each element in S is also unique in the subarray. Hence, 
an element of A can be referenced by (history value, offset value).  
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Fig. 2. HOMD physical structure 

In the coordinate reference, if the dimensionality becomes higher, the length of the 
coordinate becomes longer and the storage for referencing records becomes large. On 
the contrary, in the history and offset reference, the size of the reference is always 
fixed in short.  Moreover, this encoded reference also expresses the record itself, so it 
greatly saves storage requirements for implementing relational tables by HOMD and 
makes the internal record handling in DBMS more simple. 

Each mapping im  in M is implemented using a single B+ tree called CVT, and A is 

implemented using a single B+ tree called RDT and n HOMD tables, each of which is 
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an extension of the three auxiliary tables of an extendible array in Section 2.  Fig. 2 
shows an example of a two dimensional HOMD data structure. 

CVT:  CVTk for the k-th column of R is a B+ tree with each distinct column value as a 
key and its associated data is subscript i of the k-th dimension of A. i references to the 
corresponding entry of the HOMD table.  

HT:  HTk(HOMD Table) for the k-th dimension includes the history table and the 
coefficient table. Note that the address table can be void in our HOMD physical 
implementation. In addition, column value table used for decoding (history, offset) 
into its corresponding record is included. 

HT is arranged according to the insertion order. For example, the column value 
“ink” is mapped to the subscript 2 as the insertion order, though in the sequence set of 
CVT, the key “ink” is in position 0 due to the property of B+ tree. At insertion of a 
record, each column value in it is inserted into the corresponding CVT as a key. If the 
key doesn’t exist, A is extended by one along the dimension.   

RDT: The set of (history, offset) pairs for all effective elements in A is stored as the 
keys in RDT. RDT and HT implements A on the physical storage. We assume that a 
key (history, offset) occupies fixed size storage and history is arranged in front of 
offset. Hence the keys are arranged in the order of their history values and keys that 
have the same history value are located consecutively in the sequence set of RDT. 

HOMD: For an n columns relational table, its HOMD implementation is the set of n 
CVTs, n HTs and RDT.  

We can see that the two problems in Section 2 are alleviated in the HOMD  
model.  

4   Chunked HOMD 

If R has many columns or the column cardinality increases, the history offset space 
would overflow. This problem is very serious for applying our HOMD model to 
application areas that require large scale multidimensional datasets. 

4.1   Chunking 

It should be noted that in a subarray whose history value is small, the offset space of 
the subarray is little used since the subarray size is very small. For example, assume 
the length of the history and offset values be 32 bits and 64 bits respectively. Let a 
chunk be an n-dimensional hyper-cube shaped subarray of an n-dimensional 
extendible array. An extendible array discussed thus far can be partitioned into a set 
of such chunks. See Fig.3. This chunked extendible array can extend its size by 
adding not a subarray of elements but a subarray of chunks in arbitrary dimension.  A 
chunk is numbered by the extended order as 0,1,2, …. The location of an element in 
an extendible array can be specified by the number of the chunk to which it belongs 
together with its offset in the chunk.   

The chunk number is determined using the similar addressing scheme of an 
extendible array element. We say such an implementation scheme of an extendible 
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array based on chunking as chunked HOMD abbreviated as C-HOMD. If we assume 
that the chunk number occupies 32 bits and an offset in a chunk occupies 64 bits, the 
maximum chunk size becomes 264. Hence the address space utilization extremely in-
creases than in usual HOMD.  

4.2   Structure of C-HOMD 

In C-HOMD, the data structure corresponding to HOMD table is double layered. See 
Fig.3. This table of C-HOMD will be called a C-HOMD table. The lower layer of the 
table holds chunk subarray information and the upper layer holds column value.  For 
a chunk subarray S, its information includes the history value, the first chunk number 
and the coefficient vector of S. Note that a history value and a coefficient vector are 
allocated for a chunk subarray not for an element subarray as in usual HOMD, so the 
storage space for these tables is greatly reduced. As in usual HOMD, key value of a 
CVT in C-HOMD is a column value, and its associated data value is the subscript of 
the upper layer of the C-HOMD table. It should be noted that the C-HOMD table is 
partitioned into the sections of chunk dimension size. For each record of a relational 
table, RDT of the C-HOMD stores the pair of the number of the chunk in which the 
record is involved and its offset within the chunk.  
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Fig. 3. C-HOMD structure 

4.3   Encoding Records into RDT Keys in C-HOMD 

Let >=< nvvvr ,....,, 21 be a record of a table R. For r the corresponding key (chunk 

number, offset) stored in RDT can be computed as follows. Firstly, searching CVT of 
each column, the subscript values <i1, i2, . . . , in> of r are obtained. Chunk subarray 
Sc including chunk C containing element <i1, i2, . . . , in> is determined. Assume q be 
the chunk dimension size. 
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 (i)  Computing the chunk number of C  
The subscript values of C in Sc can be computed as <i1/q, i2/q, . . . , in/q>  

(/ denotes the quotient of division). Since the chunks in Sc are arranged in the 
predefined order of the Sc’s dimensions, the required chunk number can be computed 
by using <i1/q, i2/q, . . . , in/q>.  

(ii)  Computing the element offset in the chunk 
<i1%q, i2%q, . . . , in%q> (% denotes the residue of division) are the subscripts of 

the array element to be accessed in chunk C determined in (i). The element offset in C 
can be computed by using <i1%q, i2%q, . . . , in%q>. 

The pair (chunk number, offset) computed in (i) and (ii) becomes the encoded key 
in RDT.  Conversely given a  (chunk number, offset), it can be easily decoded to its 
corresponding subscripts <i1, i2, . . . , in>.  Note that in order to decode quickly, a one 
dimensional array HA is prepared on main memory. At extension of the extendible 
chunk array, for the history value h of the allocated chunk subarray, HA[h] 
memorizes the dimension d to which the chunk subarray belongs and its subscript 

value di /q. 

4.4   Retrieval of Records 

Let values of some columns in a table be specified in a retrieval query, and the corre-
sponding dimensions be d1,d2,…,dk and their values be 

kdd vv ,...,
1

. Let 

kdd hh ,,
1
… be the history values of the chunk subarray that correspond to the 

subscripts )(),.....,(
11 kk dddd vCVTvCVT  and the maximum history value be 

),....,max(
1max kdd hhh = . The chunk subarray corresponding to maxh  is called as a 

principal chunk subarray. The first chunk of each chunk subarray is called as the top 
chunk. The top chunk of the principal chunk subarray is the chunk which has the 
smallest chunk number among those of the retrieval candidate chunks. In the case of 
retrieval for column value “display” in Fig. 3., top chunk  number is 1. Let (top chunk 
number, offset) be a key in the sequence set of RDT.  From (top chunk number, 
offset), the corresponding tuple of the subscripts <i1, ... , in> in the extendible chunk 
array can be uniquely decoded. For (top chunk number, offset), by looking HA[h], we 
can locate the corresponding principal chunk subarray quickly. The subscripts of the 
dimensions other than d can be simply computed by repeated divisions by the 
respective coefficient in ][ dd iHT .  

The following property is important for retrieval of records in C-HOMD.  

Property 1:  Among the known dimensions only the principal subarray is a candidate 
for searching. The other candidate subarrays belong to the unknown dimensions and 
the history values of these subarrays are greater than that of the principal subarray. 
This property leads to the history value dependency of retrieval time, namely, the 
smaller the corresponding subscript of the retrieval target column value is, the larger 
the number of subarrays to be searched is, hence more time consuming.  

For the retrieval of RDT, let GTEQ be the flag that returns the smallest key greater 
than or equal to the specified key and NEXT be the one that returns the next key of the 
current one in the sequence set. Note that the keys having the same history value are 
arranged consecutively in the sequence set of RDT. Due to the paper limit, we only 
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outline our retrieval methods. Searching is based on Property 1. It starts working from the 
root node of RDT with key value (top chunk number, 0) by GTEQ. Then sequential 
search is performed against all the keys in the principal subarray PS by NEXT. The keys 
matching the retrieval condition are included in the retrieval results. After that, the 
candidate subarrays other than PS will be searched and checked out.  From Property 1, 
the history values of these candidate subarrays are greater than hmax and do not belong to 
the known dimensions; note that for the history value h of a subarray, its corresponding 
dimension can be known from HA[h].  When the searching of a candidate subarray is 
over, traversing internal nodes of the B+ tree from the root node is performed in order to 
reach the next candidate chunk subarray. In this way, the key matching continues against 
the candidate chunk subarrays. In the case of previous example, the gray chunks are 
retrieval candidate in Fig. 3. Each chunk subarray may not include effective element (i.e. 
record) in spite of the chunk subarray is a candidate subarray to be searched. The cost of 
traversing from root node to each chunk subarray is not so small. In order to avoid empty 
chunk subarray access, we employ bit array for checking the condition of each chunk. If 
and only if the chunk includes effective record, boolean True is stored. Note that boolean 
true is stored per chunk but chunk subarray. Before the traversing from root node, bit 
array check is performed and when the corresponding value is true, the chunk subarray is 
obtained. The bit array is usually loaded in main memory. As an archive, only effective 
chunk number is stored and the storage cost of bit array is not large as will be presented 
in Section 6. 

4.5   Handling Unique Key Columns 

One of the reasons to accelerate the overflow of chunk number-offset space is the 
existence of a unique key column, which has no duplicate values. If a unique key 
column exists in R, whenever a new record is inserted, the logical extendible array is 
always extended along the key column dimension since its value should not be 
duplicated. So the corresponding extended subarray will include only a single record. 
Hence the chunk number and the array size soon become large, and the chunk 
number-offset space soon overflows. 
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Fig. 4. C-HOMD structure with a unique key 
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To prevent this situation, they are separately handled from the other columns, and 
the corresponding extendible array consists of only non-unique columns. This strategy 
can contribute to delay the chunk number-offset space overflow. Fig.4 shows a C-
HOMD data structure assuming “No.” be a unique key column. The two non-unique 
columns, “Item” and “Color”, constitute the corresponding C-HOMD data structure 
with a two dimensional extendible array. For the unique key column “No.”, a unique 
key table T is constructed as a relational table implemented by the usual scheme; i.e. 
records in the table are arranged sequentially on the secondary storage. Each record in 
T consists of a unique key column value and a (chunk number, offset) pair included in 
RDT that is constructed from the other column values. Note that both the CVT for the 
unique key column and RDT include the record location in T as data value. 

 

5   Splitting C-HOMD 

C-HOMD scheme can provide much larger address space than the non-chunked one. 
But, it should be noted that the situation becomes harder in higher dimensionality.  
We can apply the splitting scheme into C-HOMD.  

See Fig.5. If the (chunk number, offset) key space overflows by inserting a new 
column value, relational table R would be vertically split and the following 
reorganization of the original C-HOMD data structure would be triggered. The set of 
columns of R is divided into two sub-tables. For each of the sub-tables, corresponding 
new C-HOMD data structure is constructed; for each record of a sub-table its (chunk 
number, offset) key value is recomputed and stored in its corresponding RDT. In this 
situation, in order to maintain the correct correspondence between the two tables, a 
unique key table described in Section 4.5 is constructed even if there are no unique 
keys in R, in which the record number of R is an artificial unique key.   

If one of the chunk number-offset spaces of the two divided C-HOMD data 
structures again overflows by succeeding record insertions, it would be further 
divided and reorganized. Thus each record in the unique key table stores unique key 
column values and two or more (chunk number, offset) pairs. Fig. 5 shows an example 
of splitting of R and its split HOMD implementation. 

Using the above reorganized C-HOMD data structure, if a unique key column 
value is known, the other column values of the original table can be known without 
searching the divided RDTs. On the other hand, if a (chunk number, offset) key value 
of one of the RDTs can be known, all the other column values can be known by 
accessing the corresponding record in the unique key table. Note that even if no 
unique key columns exist in the original relational table, when overflow occurs by 
repeated record insertions, a unique key table is created at splitting. But each record 
of the table contains the pairs of (chunk number, offset) key value and the split RDTs 
contain the record locations in the unique key table as data values; this enables each 
column value of a record in the original relational table can be obtained by only 
accessing one of the RDTs.  
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Fig. 5. Split C-HOMD data structure 

The time cost of reorganizing C-HOMD data structure when the key space of RDT 
overflows would be much since all of the components of the C-HOMD data structure 
such as RDT should be reorganized.  Also the space cost would increase due to the 
splitting of RDT. In order to delay the next possible occurrence of reorganization, we 
adopt a simple strategy to divide the set of columns into two subsets in order to let the 
product of the column cardinalities in each subset nearly equal. Note that the column 
cardinality can be known simply from the corresponding current dimension size of the 
extendible array.  

The above reorganization would be repeatedly triggered by overflow of one of the 
current split tables, thus the original table would be able to contain its records un-
limitedly regardless of the chunk number-offset space size. 

6   Experimental Evaluations 

In this section we compare the four kinds of the implementation model described in 
the previous sections of relational tables using a constructed prototype system. They 
are usual HOMD, C-HOMD, split HOMD and split C-HOMD abbreviated as HI, 
CHI, S-HI, and S-CHI respectively in the following. We also compare our 
implementation model with UB tree and PostgreSQL that will be abbreviated as 
Postgres. The experimental evaluation were performed on Sun Fire E4900 server 
(CPU: 64 bits UltraSparc IV (1050 Mhz), memory size: 48 GB, OS: Solaris 9) and the 
employed PostgreSQL version is 8.4.2 of 64 bits. We used GiMP[10] as UB tree 
(column type:float). It is a generalized framework for multidimensional index. Its 
implementation has been obtained from the author’s web page at [14].  

The configuration of the employed tables is as follows: total number of records 
(NR): 1,000,000, number of columns: 5, 6 or 8, column type: 32 bits integer, 32 bytes 
character string or 32 bits float, cardinality Li of the i-th column : 1000~25000, 
duplicate factor dpi =NR/Li of the i-th column: 40~1000. 
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6.1   Retrieval Cost 

We have measured the retrieval time when the single column value is specified on a 
single dimension (range queries in the remaining dimensions). In our methods, due to 
the history value dependency stated in Property 1 in Section 4.4, the retrieval cost 
depends on the corresponding subscript of the retrieval target column value. For fair 
comparison, we varied the retrieval target column value and measured the retrieval 
times in order to average the retrieval time. 
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Fig. 6. Retrieval cost in 5 column table (a) CH, HI and postgres (b) S-CHI and S-HI 

Fig.6-8 show the retrieval time comparison (time per retrieval) among the six 
models when a single column value is specified as the retrieval condition for a 5 
column table (Fig. 6, Fig. 8) and, 6 or 8 column table (Fig. 7). In the case of Postgres, 
records would be stored in the input order, and its retrieval cost only depends on the 
total number of stored records. Therefore, the duplicate factor does not influence the 
retrieval time. On the contrary, in our schemes (HI, CHI, S-HI, S-CHI), the cost of 
retrieval depends on the duplicate factor, number of columns and chunk size in the 
case of CHI or S-CHI. In chunk based method, the chunking can restrict the logical 
range to be searched and the records stored in the same chunk can be read quickly 
because the records are placed consecutively on the sequence set of RDT. On the 
other hand, traversing from the root node to reach next chunk subarray takes much 
time since the disk seek time is dominate in disk I/O time. Thus the average number 
of records per chunk influences the retrieval performance in our method. Therefore, it 
is important to adjust chunk size according to the characteristics of the table data, 
namely, number of distinct column values(i.e., column cardinality) and number of 
columns(i.e., dimensionality) for efficient retrieval.  

See Fig. 6. In the case of large duplicate factor (600~1000), number of distinct 
column values is smaller than the chunk size, and almost all records are stored in a 
single chunk. In consequence, there is not so much retrieval time difference among 
each model. On the other hand, in smaller duplicate factor (40~400), the cost of CHI 
(chunk size:1625) is low because there are many chunks and the number of records 
per chunk is appropriate. As a result, its chunk access (from the root) causes small 
time cost. By vertically splitting the relational table, the sum of chunks can be 
decreased and it leads to better retrieval cost for S-CHI and S-HI. In the same way, 
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adjustment of chunk size is also effective to improve the retrieval cost for CHI (chunk 
size:7131). As the total number of chunks is depending on the product of each 
dimension size, if the number of columns increases, the total number of columns 
tends to be big. Thus, the retrieval time shown in Fig. 7 is generally bigger than in 
Fig. 6. In most cases, our method outperforms Postgres because in our methods, every 
record is encoded to only two values, namely (chunk number, offset) pair in RDT. 
Even the column type is char(32), the size of the pair can be suppressed in small.  
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Fig. 7. (a) Retrieval cost in 6 column table (b) Retrieval cost in 6 or 8 column table 
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Fig. 8. Retrieval cost in 5 column table (column type:float) (a) CH and UB tree (b) UB tree 

As Fig. 7 and Fig. 8 show, our methods outperform UB tree. The UB tree is the 
tree based on the Z-address [6], and bit-interleaving method [11] is often used for 
query performance improvement. In the method, several bits from first bit of each 
column value are combined to generate Z-address. We varied ORD which stands for 
the bit number to be used in Z-address generation (bit-interleaving). Note that we 
assume input data are normalized to d]0.1,0.0[ where d stands for number of columns 

in comparison between our methods and UB tree. The mapping method of UB tree 
includes severe shortcoming because the range of column value of input data can be 
very narrow. Thus, several bits might be the same value regarding all the input data. 
In case of column value range [0.0-0.5], first decimal place of Z-address source bit 
strings will be 0, and it means that the concentrated insertions to the restricted area in 
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UB tree. As Fig. 8 shows, it deteriorates retrieval performance of UB tree. Therefore, 
UB tree performance depends on the column value range. On the contrary, the range 
of column values doesn’t matter with our methods. 

6.2   Storage Cost 

The storage costs in each model are shown in Fig. 9-10. In our schemes the required 
storage consists of the following several kinds of file:   

tre file: RDT tree file, uni file: unique key table file described in Section 4.5, save 
file: HOMD or C-HOMD tables HTs described in Section 3, bit array: bit array 
descried in Section 4.4. 

As the number of distinct column values increases, the size of HTs becomes large. As 
the result, the save file at dup 40 is five times larger than that at dup 1000. In C-HOMD, 
the size of HTs is far less than those of HOMD because the table information is stored per 
chunk (e.g coefficient vector) and not per array element. The costs of S-HI and S-CHI is 
about three times as large as those of HI and CHI due to the tre file for newly created table 
in the vertical table splitting, and uni file to connect split tables. In the case of chunk size 
1625, the number of chunks which include effective record become large compared with 
the case of chunk size 7131. Ditto the size of bit array for chunks. According to the 
decrease of the number of distinct values(duplicate factor 1000), the storage cost of the 
save file decreases. On the contrary, the size of skl file includes same record information 
increases but the total storage size is as much as the case of duplicate 40. 

Fig. 9 and Fig. 10 show the comparison between our methods and Postgres in 5 
and, 6 or 8 column table respectively. In the case of char(32) C-HOMD table, as save 
file includes distinct column values, its size is bigger than the integer C-HOMD table. 
In non splitting C-HOMD, the size of bit array increases because the total number of 
chunks is larger in 6 or 8 column table than in 5 column table; note that the total 
number of chunks depends on the product of each dimension size of C-HOMD. In our 
methods, as all the records are converted into fixed size history-offset value, the 
increase of the column value size doesn’t lead to the increase of storage cost. On the 
other hand, as Postgres stores a record as a set of column values, its storage cost 
depends on the sizes of the column values (i.e., record size); the cost is about twice as 
our method in char(32) table. In UB tree, each column value will be stored as a bit 
string(Z-address, type long). UB tree also needs to store tree nodes and it takes cost.  

80

82

84

86

88

90

92

94

96

98

100

0 200 400 600 800 1000

duplicate factor

st
o
ra
ge
 s
iz
e
 [
M
B
]

S-CHI (chunk size:1625)

S-CHI (chunk size:7131)

S-HI

25

30

35

40

45

50

55

0 200 400 600 800 1000

duplicate factor

s
t
o
r
a
g
e
 s
iz
e
 [
M
B
]

CHI (chunk size:1625)

CHI (chunk size:7131)

HI

postgres 

UB DIM5ORD2

UB DIM5ORD3

UB DIM5ORD4

UB DIM5ORD3[0.0-0.5]

 

Fig. 9. Storage cost in 5 column table (a) S-CHI and S-HI (b) CHI, HI, postgres and UB tree 
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Fig. 10. (a) Storage cost in 6 column table (b) Storage cost in 6 or 8 column table 

6.3   Construction Cost 

Fig. 11 and Fig. 12 show the construction cost comparison of 5 and 6 column tables 
respectively. The cost of Postgres depends on the total number of records and the 
column sizes.  Therefore, in terms of the integer table construction cost of Postgres, 
there is no difference between Fig. 11 and Fig. 12. On the contrary, the cost of the 
char(32) table is twice as that of the integer table in Postgres. In the case of our 
methods, all records are encoded into two fixed size values regardless of the record 
length and the encoded values are inserted into RDT. Thus, there is no difference in 
the construction time between integer table and char(32) table. HOMD table 
construction or C-HOMD table construction is also required but the cost is not so big, 
and disk I/O cost of RDT construction takes time at a grate rate. Regarding split table, 
two RDTs construction is required and the cost is twice as the single RDT 
construction. As was stated in Section 6.2, UB tree stores a record as Z-address. The 
data that have the same Z-address will be stored in the same Z-address list. As the Z-
address cardinality decreases, the number of data stored in the same Z-address list 
increases. It means the increase of the cost to reach the last node of the Z-address list 
at record insertion (Fig. 11:ORD2 or ORD3[0.0-0.5]). On the other hand, too many Z-
address cardinality leads to the decrease of the average number of data stored in the 
same Z-address list. It also takes time to tree construction because many list nodes are 
necessary to be read at tree construction (see UB ORD3 in Fig. 12).  

0

100

200

300

400

500

600

0 200 400 600 800 1000

duplicate factor

c
o
n
s
t
r
u
c
t
io
n
 t
im
e
[s
e
c
] HI

S-HI

CH(Chunk size:1625)

S-CHI(chunk size:1625)

Postgres

UB DIM5ORD2

0

100

200

300

400

500

600

0 200 400 600 800 1000

duplicate factor

c
o
n
s
t
ru
c
t
io
n
 t
im
e
[s
e
c
]

CH(Chunk size:7131)

S-CH(chunk size:7131)

UB DIM5ORD3

UB DIM5ORD4

UB DIM5 ORD3[0.0-0.5]

 

Fig. 11. Construction time in 5 column table  (a) HI, S-HI, CHI, S-CHI, postgres and UB tree 
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Fig. 12. Construction time in 6 column table (a) integer and float  (b) 32 bytes character string 

7   Related Work 

In addition to indexes and materialized views, partitioning a table is an important 
aspect of physical design in a relational database system that significantly impact 
performance [2][9]. [2] presents vertical and horizontal partitioning techniques for 
designing a scalable solution to the integrated physical design problem that takes both 
performance and manageability into account. [9] identifies the key parameters for 
capturing the behavior of an access plan and propose a two-step methodology 
consisting of a query analysis step to estimate the parameters and a binary partitioning 
step which can be applied recursively.  

In this paper, with the purpose of expanding the logical address space for storing 
encoded multidimensional data, we designed a vertical splitting scheme for 
multidimensional dataset encoded by the history-offset scheme. We couldn’t find other 
works that describe splitting scheme for dynamically increasing multidimensional dataset 
aiming the expansion of the logical address space. 

Elements in a fixed size multidimensional array are usually arranged on storage in 
predetermined dimension order like row-wise or column-wise order. But the arrangement 
causes dimension dependency of retrieval time; retrieval along specific dimension may be 
very fast, but those along the other dimensions are slow. By chunking multidimensional 
arrays and placing the elements in a chunk on consecutive memory pages, such 
dimension dependency can be alleviated since logically adjacent elements along every 
dimension can be placed on physically near storage locations[1]. As we noted in Section 
4.1, such chunking is also another effective scheme for enlarging the logical address 
space.  

Various application area that handle multidimensional datasets can be developed 
based on the notion of an extendible array or the history-offset encoding scheme 
described in this paper. [12] describes an incremental maintenance scheme of data 
cubes based on the notion of extendible arrays. [13] provides a labeling scheme of 
dynamic XML trees based on history-offset encoding. In these works however, the 
address space saturation problem makes it difficult to handle large scale 
multidimensional datasets. 
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8   Conclusion 

We have described an experimental comparison amongst our history-offset based 
splitting approaches, PostgreSQL and UB tree. In the most conditions, vertical 
splitting of our method leads to significant reduces of retrieval I/O cost. Our method 
outperforms PostgreSQL and UB tree in retrieval time. The splitting in our method 
causes the increase of storage cost but the cost is not so large compared with 
PostgreSQL and UB tree. The result shows that our method is one of the best methods 
to handle large scale multidimensional datasets. While keeping the extendibility of 
multidimensional datasets, our schemes provide faster record accessing capability 
than conventional implementation irrespective of the size of the dataset. 
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Abstract. Recent efforts to support analytical tasks over relational
sources have pointed out the necessity to come up with flexible, powerful
means for analyzing the issued queries and exploit them in decision-
oriented processes (such as query recommendation or physical tuning).
Issued queries should be decomposed, stored and manipulated in a ded-
icated subsystem. With this aim, we present a novel approach for repre-
senting SQL analytical queries in terms of a multidimensional algebra,
which better characterizes the analytical efforts of the user. In this paper
we discuss how an SQL query can be formulated as a multidimensional
algebraic characterization. Then, we discuss how to normalize them in
order to bridge (i.e., collapse) several SQL queries into a single charac-
terization (representing the analytical session), according to their logical
connections.

1 Introduction

Although multidimensional (MD) databases (DBs) and OLAP are mature, there
is yet a considerable amount of systems devoted to data analysis based on rela-
tional technology. Deploying a MD DB to be exploited by OLAP tools is often
a long, tedious, risky and expensive process [8], which remains prohibitive for
medium-sized (or even some large) companies that prefer to stand close to the
well-known relational model. Furthermore, many data analysts who were con-
strained to learn SQL in order to conduct their analytical sessions are yet reluc-
tant to change their modus operandi. This trend is rather evident for scientists,
who are increasingly using relational databases and SQL for conducting analyti-
cal sessions over huge repositories of data [11]. For this reason, novel works have
focused on supporting analytical tasks over relational sources [3,4,10,11,14,17].
Specifically, it has already been pointed out the necessity to come up with flex-
ible, powerful means for analyzing the issued queries (the keystone of these sys-
tems, usually stored in the DB query log), and decompose, store and handle them
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Fig. 1. Exemplification of three SQL analytical queries within the same session

in a dedicated subsystem in order to better support any decisional task with the
knowledge captured in the analytical queries [10]. As examples of such tasks, the
system should be able to support the user when formulating new queries and
leverage his / her knowledge with other users (query recommendation) [3,4,11]
and, at the same time, database administrators should tune their databases to
cope with the evolution of queries issued (physical as well as conceptual design)
[14,17].

With this spirit, in this paper we present a novel approach for analyzing the is-
sued analytical queries and storing them in a structured way that facilitates their
reuse and exploitation (e.g., understanding their semantics, comparing them,
clustering into groups, etc.) in future tasks such as query recommendation or
physical and conceptual design. Thus, some kind of smart, normalized form is
required. In this sense, the relational algebra would be a candidate to charac-
terize the input queries. However, in our approach we move a step further as it
has already been discussed that the whole relational algebra does not properly
suit for analytical queries [12]. We propose, instead, using a multidimensional
algebra. The correspondence between both models has already been studied in
the literature and it has been shown that the MD algebra is a subset of the
relational one [15]. Note this is sound with the discussion introduced in [12]: the
relational algebra is, simply, too expressive (in the sense it provides function-
alities not needed) from an analytical point of view. Thus, the MD algebra is
simpler, and we can use it to express the analytical efforts of the user in a more
concise, effective way.

The rest of the paper is organized as follows. Section 2 motivates our approach
and introduces some basic concepts. Section 3 discusses the related work. Section
4 explains how to characterize an analytical SQL query with the MD algebra,
Section 5 presents how to normalize this characterization and Section 6 explains
how to exploit it to identify analytical sessions. Section 7 concludes the paper.

2 Motivation and Basic Concepts

In our approach we propose to characterize each issued SQL query (i.e., each
query in the query log) by means of the set of MultiDimensional Algebraic op-
erators presented in [1] (MDA from here on).

Example 1. Consider the following scenario (inspired by the TPC-DS benchmark
[18]), where a relational database is accessed with queries expressed in SQL.
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The database schema consists of the following relations (where foreign keys are
represented as attr1 (→ attr2)):

catalog sales (cs date (→ date), cs store (→ store), cs customer (→ customer),

cs product (→ product), cs quantity, cs amount),

date dim (date, month, quarter, year),

store dim (store, address, city, state, region),

customer dim (customer, name, address, city, state, profession, branch),

product dim (product, description, line)

Suppose queries in Fig. 1, extracted from the query log. Q1 asks for the total
sales by state and year for a product, Q2 disaggregates sales by month and Q3
focuses on the south-east region. It turns out that these queries can be expressed
in MDA, as evidenced in Section 4.

Characterizing an Analytical SQL Query by Means of MDA: We start
by characterizing each analytical SQL query by means of MDA (see Section 4).
This Multidimensional Algebraic Characterization (MAC from now on) forms
a tree (like in the relational algebra, due to binary operators -such as union
or drill-across, see Section 4-). The leafs are tuples directly retrieved from the
database (i.e., the materialized data) and thus, we refer to them as raw data.
Note that there is a MD schema associated with each operation of this algebraic
characterization, in the sense that we know which attributes (either factual or
dimensional) are in the output (further details about the MD operators can be
found in Section 4). However, this characterization is not intended to be executed
but to keep track of the knowledge captured in analytical queries from a MD
point of view. Indeed, it is a characterization giving MD sense to the query.

Example 2. The MAC of query Q1 given in the previous example will express the
roll-up (to the state and year levels), the projection over the measure (cs quantity)
and the selection (of the product with code ’1’).

Normalizing the MAC: Once the query has been characterized according
to MDA our next step aims at normalizing the MAC with the objective of
facilitating its comparison. To do so, it is compulsory to store each MAC in a
normalized form. In our approach we benefit again from the algebraic structure
proposed, and we use a set of equivalence rules (based on those of the relational
algebra) to pull the MD operators up the algebraic structure, and produce a
Normalized MAC (NMAC from now on).

Identifying Sessions: Finally, this characterization will be exploited in our
last step, in which we are interested in discovering and characterizing analytical
sessions. Up to now, current methods focus on isolated queries, which are ana-
lyzed on their own without considering the logical connection analytical queries
from the same session do have. However, it is well-known that analytical sessions
are formed of related queries capturing the reasoning flow during the analytical
session [8]. Accordingly, we propose to represent those queries logically connected
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by means of a single structure capturing the whole session. We call bridging to
the process aimed at identifying how similar two NMACs are. We consider that
two queries Q1, Q2 could be coalesced in the same session if we only need to add
MD operators to obtain Q2’s output from Q1’s NMAC. In other words, bridging
is the process of producing the same result as Q2 by adding operators to Q1’s
NMAC (thus, we are bridging from Q1 to Q2). Based on the length of the bridge
found, we can decide whether it makes sense or not to consider both queries in
the same session.

Example 3. Consider the scenario introduced in Example 1. Query Q1 can be
bridged with query Q2. Indeed, it can be detected that it corresponds to a drill-
down from the year level to the month level. Furthermore, Q2 can be in turn
bridged with Q3 since it corresponds to adding a selection over region. The three
queries thus, should be characterized as a single session.

By iteration, we eventually obtain the whole session. Otherwise, if two queries are
not similar enough as to belong to the same session, we restart the process trying
to bridge the next query in the log (i.e., identify the start of a new session). We
believe that capturing a whole analytical session provides a richer framework
than working with isolate queries, as logical connections between queries are
otherwise lost. Our contributions can be summarized as follows:

– In order to facilitate query management, we characterize each analytical SQL
query as a MD query by means of the MDA, in what we call MAC.

– Next, we aim at normalizing each MAC obtained in order to facilitate its
management in future steps, and obtaining its NMAC.

– Then, we bridge consecutive NMACs in order to produce a single structure
for each analytical session performed.

This novel approach to describe sessions can be further exploited for diverse
decisional tasks such as: (i) recommend queries to the user, (ii) create / tune
the logical and physical schema and (iii) produce a MD schema. For example,
MAC and bridging will be of particular interest for recommending analytical
queries to the user analyzing a database or a data warehouse. To the best of
our knowledge, there exists no database query recommendation technique that
can construct a recommended query on-the-fly. Using the information extracted
by bridging will enable recommending an OLAP operation to be applied to the
user’s current query (and therefore, potentially recommending queries that never
happened in the log). Regarding conceptual MD design, this task could also ben-
efit from NMACs. Following the idea in [16], this knowledge can be used to
generate user-oriented MD schemas from non-MD DBs analytical logs and thus,
we may, for example, decide if investing in MD technology is interesting or not
for our organization. Indeed, MD DBs can benefit from analytical queries avail-
able beforehand in order to find the facts, dimensions and granularity that better
suit our needs. The structural part of NMACs corresponds to the data cube the
user is interested in. Thus, we could collapse in the same schema those queries
whose structural part coincides. This is much more likely to happen after the
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normalization process, since it guarantees that all operations there are needed
to align data and not just for presentation, as discussed in Section 5. Finally,
queries are one of the most relevant inputs for physical design / tuning, and
knowing them in detail facilitates the resolution of physical design by proposing
efficient algorithms. For example, novel approaches exploit similarities between
queries to generate optimized query plans. However, instead of using common
intermediate results (which can be identified in our approach), common execu-
tion plans are used. Furthermore, queries are considered in isolation, although
analytical queries are known to have strong logical connections. Our approach
allows to tackle this problem at the session level, and inter and intra similarities
can be identified between queries of each session, and exploit this information
accordingly.

3 Related Work

Management of queries issued on data is rather limited in current DBMS. Most
proposals are related to relational databases, which are transaction instead of
query-oriented. As stressed in [10], these capabilities are reduced to query-by-
example, graphical tools for composing queries, and query logging aimed at
physical tuning. More elaborated management was not needed as operational
systems mainly issue canned (i.e., known in advance) queries.

To our knowledge, only two works go beyond and propose a framework to
manage the knowledge captured in the issued analytical queries (i.e., the DBMS
log) to support query recommendation [3,4] or query completion [11] for in-
teractive analysis of relational sources. The first approach follows the idea of
recommender systems in the exploration of Web data. In this framework, the
queries of a past user can serve as a guide for a new user if both have a similar
querying behaviour (thus, they are interested in the same data). To do so, the
authors present two approaches. The first one, presented in [4], keeps track of
a matrix capturing all the tuples retrieved by each query. Later, by means of
a distance function they compute how similar two queries are. In their second
approach [3], given the time-consuming task of generating these matrixes and
compare them, the authors extend their previous work to incorporate two rec-
ommendation engines, a tuple-based one that recommends queries that touch
similar parts of the database, and a query fragment-based one that recommends
structurally similar queries (i.e., a syntactical approach).

Similarly, [11] presents an approach to autocomplete SQL queries while the
user writes them. The idea is slightly different but it follows a similar approach.
The authors create a directed graph from SQL fragments (i.e., a syntactical ap-
proach). Two SQL fragments found in the same query are linked in the built
graph. This graph is built in such a way that it guarantees any arbitrary navi-
gation on the graph produces a compilable SQL query.

Finally, although capturing and exploiting this kind of knowledge should be
a must for any decisional system, this issue has not been properly addressed
for MD DBs and OLAP either. To our knowledge, the only works proposing
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Fig. 2. Conceptual exemplification of the MDA operators

to exploit the issued queries for tackling other processes within the decisional
database lifecycle are [6,7]. These works propose an approach for recommending
MDX queries for MD DBs. There, the authors keep track of the tuples retrieved
by each query and compute a distance function on it, in order to eventually
compute their similarity. A possible reason for the lack of efforts on this topic is
that we do not benefit from a standard MD language and algebra to query MD
DBs. For the same reason, physical tuning depends on the underlying technology
used to implement the database.

Our approach in this paper differs from all these as we do not deal with
single SQL queries but with characterizations capturing the behaviour of the
user all over an analytical session. Also, we take advantage of the well-known
MD paradigm to characterize the input SQL queries and facilitate our task.

4 Obtaining the MAC of an SQL Query

In this section, we define a MAC using MDA. First, though, we set a MD no-
tation and terminology. Multidimensionality is based on the fact / dimension
dichotomy. The fact, or subject of analysis is placed in the n-dimensional space
produced by the analysis dimensions. We consider a dimension to contain an
aggregation hierarchy of levels representing different granularities (or levels of
detail) to study data, and a level to contain descriptors (i.e., level attributes).
We differentiate between identifier descriptors (univocally identifying each in-
stance of a level) and non-identifier. In turn, a fact contains analysis indicators
known as measures (which, in turn, can be regarded as fact attributes). A level
of detail for each dimension produces a certain data granularity or data cube,
in which place the measures. Finally, we denote by base of the space a minimal
set of levels identifying univocally a certain data granularity (this definition is
equivalent to group by set in [8]).

4.1 The Multidimensional Algebra

MDA was proven to be closed, complete (regarding the cube-query in [12]) and
minimal (see [2]), and consists of the following operators (we suggest to check
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Figure 2, where dots and triangles represent measures in a cell, for grasping
their intuition). All the operators are unary (i.e., apply within a cube) except
for drill-across and set operators, which operate over two cubes.

– Selection (σpcube): By means of a logic predicate p compound of clauses
over descriptors (of the kind descriptor operator constant ; e.g., age >= 5 ),
this operator allows to choose the subset of points of interest out of the whole
n-dimensional space. As a side note, MDA allows selections over descriptors
even if they are not selected to identify the MD space.

– Roll-up (γ leveli → levelj
f(measure1),...,f(measuren)cube): It groups data instances in the

cube based on an aggregation hierarchy. This operator modifies the granu-
larity of data by means of a many-to-one relationship which relates instances
of two levels in the same dimension, corresponding to a part-whole relation-
ship. As argued in [9] about drill-down (i.e., the counterpart of roll-up, rep-
resented with the same formalization but with a one-to-many relationship
between leveli and levelj), it can only be applied if we previously performed
a roll-up and did not lose the correspondences between instances.

– Projection (πmeasure1,...,measurencube): It selects a subset of measures.
– ChangeBase (χbase1→base2cube): This operator reallocates exactly the same

instances of a cube into a new n-dimensional space with exactly the same
number of points, by means of a one-to-one relationship. Actually, it allows
to replace the current base by one of the alternatives, if more than one set
of dimensions identifying the data instances (i.e., alternative bases) exist.

– Drill-across (cube1 �	 cube2): This operator fuses the measures in two cubes
related by means of a one-to-one relationship. The n-dimensional space re-
mains exactly the same, only the instances placed on it change.

– Set Operations (cube1Θcube2): These operators allow to operate two cubes
if both are defined over the same n-dimensional space. We consider union
(∪), difference (\) and intersection (∩). Nevertheless, from here on we focus
on union, since the same considerations can be applied to the others. Also,
we assume a perfect data cleaning and ETL phase (if the same cell appears
in two different cubes, the values coincide). As a side note, the MDA union
allows to unite two different cubes whenever they have the same schema.

The expressive power of this algebra is thoroughly discussed in [2]. Briefly, it fully
matches the well-known cube-query pattern presented in [12]. For this reason, it
is assumed to be expressive enough for capturing analytical efforts.

4.2 Formulating an SQL Query as a MAC

In [15], we shown how MD operators can be expressed in terms of restricted
operators of the relational algebra. We take advantage of this work to identify
the MDA operators, given an SQL query. First, we briefly refresh the relationship
between both algebras and later, we discuss how to formulate the MAC of an
SQL query. Without loss of generality, we denote by raw data (over which apply
the MDA operators) the universal relationship of the tables in the FROM.
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Reference Operator “Selection” “Projection” “Join” “Union” “Group by” “Aggregation”
Selection �Descs

Projection �Measures

Roll-up �Descsid
�Measures

Drill-across �Descsid
�Descsid

Add Dim. �Descsid
changeBase Remove Dim. �Descsid

Alter Base �Descsid
�Descsid

Union �

Fig. 3. Comparison table between the relational and MD algebras

Table 3 summarizes the mapping between both sets of algebraic operators.
Note that we are considering the extended operators of the relational algebra as
in [5]. We use the following notation in the table: �measures if the MD operator is
equivalent to the relational one but it can be only applied over measures, �descs if
the MD operator must be applied over descriptors and finally, �descsid

if it can be
only applied over level identifiers. Consequently, a � without restrictions means
both operators are equivalent without additional restrictions. If the translation
of a MD operator combines more than one relational operator, both appear
ticked in the same row.

It is important to state also the constraints of the MD model that affect the
usage of these operations:

1. Fact/Dimension dichotomy must be preserved, which is reflected in that
descriptors and measures are disjoint.

2. Summarizability necessary conditions (as in [13]) must be preserved, which
is reflected in the multiplicities of relationships used in the operations as
follows:
(a) Roll-up: leveli → levelj must be one-to-many (or many-to-one, if it

actually corresponds to a drill-down operation).
(b) ChangeBase: base1 → base2 must be one-to-one.
(c) Drill-across: cube1 � cube2 must be one-to-one.

The first item can be easily validated, whereas testing the cardinalities in the
second one is reduced to discover functional dependencies among the set of at-
tributes involved in the relationship, by sampling the relational source. Note that
we are able to formulate the MAC by directly applying this result (we address
the reader to [15] for a detailed justification of this table). In short, The query
result is represented as the tree root, the source tables (i.e., raw data) as the
leafs and the SQL query is decomposed as a set of MDA operators. If an SQL
query cannot be fully formulated in terms of MDA operators it means that, ac-
cording to MDA, it does not make MD sense and thus, it should be discarded.
For example, given an analytical SQL query, any relational selection found in
the WHERE clause must be read as a MD selection, and the attribute involved
in such selection is known to play a dimensional role in our MAC interpretation.
Similarly for the rest of operators described in the table.
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Example 4. Consider Q1 from Example 1. The MAC of this query is (where raw
data is the universal relation for catalog sales × store dim × date dim,
i.e., tables in the FROM):

γdate→year
sum(cs quantity)(γ

store→state
sum(cs quantity)(πcs quantity(σcs product=′1′(raw data))))

Example 5. Consider now query Q4, which unites two cubes with the total sales
by customer state and month, for year 1999, for the south-east and south-west
regions:
SELECT d_month_seq as month, state, SUM(cs_quantity) AS sales
FROM catalog_sales, date_dim, customer_dim
WHERE cs_sold_date_sk = d_date_ski AND cs_customer_id = c_customer_id AND d_year = 1999

AND region = ’SE’
GROUP BY d_month_seq, state
UNION
SELECT d_month_seq as month, state, SUM(cs_quantity) AS sales
FROM catalog_sales, date_dim, customer_dim
WHERE cs_sold_date_sk = d_date_ski AND cs_customer_id = c_customer_id AND d_year = 1999

AND region = ’SW’
GROUP BY d_month_seq, state;

The MAC of this query is:
(σregion=′SE′(γdate→month

sum(cs quantity)(γ
customer→state
sum(cs quantity)(πcs quantity(σyear=1999(

raw data))))))
∪
(σregion=′SW ′(γdate→month

sum(cs quantity)(γ
customer→state
sum(cs quantity)(πcs quantity(σyear=1999(

raw data))))))

4.3 Interpreting the MAC

A MAC represents the MD counterpart of the analytical SQL statement ana-
lyzed. By definition, a MAC is a tree-shaped structure. Like in the relational
algebra, this is because of binary operators. The grammar capturing its seman-
tics is as follows (χ, σ, π, γ, ∪, �	 represent the MDA operators; see Sec. 4.1):

MAC → rawData NP | (MAC ∪ MAC)NP | (MAC �� MAC)NP Q → CB S R P
NP → Q | Q NP CB → ∅ | χCB S → ∅ | σS R → ∅ | γR P → ∅ | πP

From now on, we will talk about the root-side and the leaf-side of the MAC.
The tree leafs are raw data (i.e., with no transformations). Furthermore, we
call a navigation path (NP from here on) to any partially ordered set of unary
operations consecutive within the tree. These NPs can be thought as data ma-
nipulation to produce the desired presentation or alignment (i.e., the data cube
MD space -changeBases-, slicers -selections-, data granularity produced -roll-
ups- and subset of measures shown -projections-), whereas nodes collapsing two
branches (from here on, we simply refer to the input NPs of binary operators
as branches) are generating a new set of tuples (if desired, we may keep manip-
ulating the result with a new NP). Thus, note that a single MAC can contain
more than one NP.

Indeed, data might need to be aligned before being able to collapse them. For
example, we may need to roll-up to the same granularity level before uniting
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Operator Projection Roll-up Selection ChangeBase
Projection × � � �
Roll-up � ∼ ∼ ∼
Selection � � � ∼
ChangeBase � ∼ ∼ �
Drill-across � ↗↖ ↗↖ ↗↖
Union ↗↖ ↗↖ ↗↖ ↗↖

Fig. 4. MDA equivalence rules

or drilling-across data from two different cubes (i.e., align the input branches
of binary operators to produce the one-to-one relationship demanded by union
and drill-across).

Example 6. Consider the MAC given in Example 5. It contains two NP, namely:
σregion=′SE′(γdate→month

sum(cs quantity)(γ
customer→state
sum(cs quantity)(πcs quantity(σyear=1999(

raw data)))))
and

σregion=′SW ′(γdate→month
sum(cs quantity)(γ

customer→state
sum(cs quantity)(πcs quantity(σyear=1999(

raw data)))))

Finally, we talk about the pivotal node as the tree node dividing the MAC
into two well-differentiated layers: the structural layer and the presentation layer
(i.e., the first binary ancestor of the root). In other words, the pivotal node
identifies the set of tuples (i.e., the structural part) over which we only apply
unary operations (i.e., a NP representing how data is presented to the user). In
Example 5, the pivotal node is the union, because in this case it represents the
structural part. We do not have presentation layer in this case, since it is also
the root.

5 Normalizing the MAC

Once we have formulated the MAC for a given statement, we aim at normalizing
it. In our approach we benefit from the algebraic structure proposed, and we use
a set of equivalence rules to pull the MD operators up the algebraic structure.
Thus, the MDA equivalence rules (shown in Table 4) are an immediate conse-
quence of considering the MDA operator semantics over the relational algebra
equivalence rules (explained in [5]) and considering the constraints introduced
in Section 4.2. The meaning of each cell in the table is the following: if the
MDA operator in the column can be pulled up1 the operator in the row, the
cell is ticked (“�”). If there is a conflict, the cell is crossed (“×”). Like in the
relational algebra equivalence rules, a “∼” denotes a partial conflict: the opera-
tor can be pulled up whenever the row operator does not remove the attribute
needed by the column operator. For example, a selection can only be pulled up
a roll-up if the attribute used to select is not rolled-up. Finally, a “↗↖” refers

1 We recall that a MAC is a tree-shaped structure and consequently, we talk about
pulling up an operator through the structure.
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to binary operators. A unary operator can be pulled up the binary operator if it
appears in both branches as explained below. For example, we can only pull up a
projection through a union if the same measures are projected in both branches.
Note that we assume well-formedness of MAC in the sense that no attribute is
used in an operation if it is not present in the output schema of the previous
operation(s).

The final aim of normalization is to distinguish between operators producing
the set of tuples retrieved by the query (i.e., the structural layer) and operators
manipulating these tuples before being presented to the user (i.e., the presenta-
tion layer). However, as discussed in Section 4, MACs can contain more than one
NP (some of them interleaved in the structural layer for aligning binary opera-
tors), although only the root-most NP (i.e., the one amid the pivotal and root
nodes) represents the presentation layer. Thus, we normalize MACs by pulling
operators in the NPs of the structural part to the presentation layer (i.e., to the
MAC root-side), and we do so by applying Table 4. If an operator remains stuck
in the structural part after normalization then, it is needed for retrieving tuples
rather than for presentation purposes.

Interestingly, note that, unlike the relational algebra logical optimization that
aims at pushing operators as much as possible to the leafs, we aim at pulling
MDA unary operators towards the root. Moreover, we find more ticks in Table 4
than we would find if using the relational equivalence rules and, when something
needs to be checked, it is much easier, because in MDA we introduce additional
constrains that simplify these rules. For example, we know that the relational
selection can be pulled up a projection if the attribute involved in the selection
is not projected out by the projection. Furthermore, we know that the MDA
projection can only be applied to measures, whereas selection only makes sense
over descriptors. Consequently, the MDA projection and selection can always
be swapped in a MAC, as the set of attributes involved in each operator will
always be disjoint (see Section 4 for further details). In the general case, special
difficulties arise dealing with the relational group by (basis of roll-up, OLAP
key operator). Interestingly, we want to remark the gain when dealing with our
restricted group by (i.e., roll-up) instead of the generic one, whose difficulty is
discussed in depth in [5] (where it is explicitly said that no law is stated) and
specially in [19] (where the whole work is devoted to analyze all possibilities
between join and group-by).

The normalization algorithm is just a postorder traversal of the MAC, con-
sidering that the nodes to visit are NPs and binary operations (thus, being a
postorder algorithm, for each binary operator, it first visits its branches and
later the binary operator itself). We then deal with these two kinds of nodes in
a different way:

a) For each NP we visit, for each unary operator it contains (from root-side
to leafs-side), we pull it up in the direction of the root as much as possi-
ble within the NP, following the rules in the white and light gray cells of
Table 4.
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b) Next, for each binary operator we visit, if both left and right branches are
non-empty NPs and some operation coincides in their topmost Qs (see the
grammar in Section 4.3), which can be pulled up through its successors in
Q according to the light and dark gray cells of Table 4, the unary operator
is pulled up from both and added once at the leafs-side of the parent NP
of the binary operator. Note that, every binary operator will always have
a parent NP (in the trivial case, the one containing the root node). Only
exception, according to Table 4, is that it is not necessary that a projection
must coincide at both branches of a drill-across to be pulled up.

As a result of this algorithm, we say that a NMAC is a MAC with the following
properties:

i) Many NP can appear in a MAC. NPs stuck in the structural part are
needed for aligning the inputs of binary operators (and not for presentation
purposes).

ii) Many Q may appear at each NP, but the minimum number would be
generated, each potentially containing χ, σ and γ, in this order.

iii) π can only appear in the topmost Q of every NP, and following the order
imposed by the containment of attributes.

Furthermore, we force a partial order aimed at facilitating the NPs comparison
during next step, as follows:

i) γ in Q will be sorted by dimension and then aggregation level.
ii) σ in Q will follow the inverse order the user posed them.
iii) χ in Q will follow the inverse order the user posed them.

Example 7. The MAC in Example 5 is not in normal form, since properties (i)
(many operations can be pulled up through the union), (ii) (operations in the
NPs are not sorted properly) and (iii) (the projections are not in the topmost
position) do not hold. Following an postorder traversal, we would first visit both
NPs (case (a)), which would be sorted to result in:

πcs quantity(γcustomer→state
sum(cs quantity)(γ

date→month
sum(cs quantity)(σyear=1999(σregion=′SE′(

raw data)))))
and

πcs quantity(γcustomer→state
sum(cs quantity)(γ

date→month
sum(cs quantity)(σyear=1999(σregion=′SW ′(

raw data)))))
Afterwards, we would visit their parent (i.e. ∪, case (b)), yielding the following:

πcs quantity(γcustomer→state
sum(cs quantity)(γ

date→month
sum(cs quantity)(σyear=1999(

σregion=′SE′(raw data) ∪ σregion=′SW ′(raw data)))))

Finally, we should normalize the presentation layer, but it already is.

6 Bridging NMACs

Working with algebraic expressions under normal form makes it easier to detect
if, syntactically, two expressions are similar to each other. In our context, similar
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NMACs may be considered logically related from an analytical point of view,
and if two NMACs are close enough to each other, they are considered to belong
to the same analytical session. In that case, they are coalesced into a session
and both NMACs are logically related by annotating their bridging operators.
Formally, given two NMACs n1, n2, we say we can bridge them if by means of
some MDA operators (the bridging operators), we can transform the output of
n1 into that of n2.

In our current approach we only analyze those queries whose structural part
coincide by comparing their presentation layers (both concepts have been pre-
viously introduced in Section 5). Let P1 and P2 be the presentation layer of n1

and n2, respectively, and CS1 and CS2 their cube schemas. A cube schema is
a MD interpretation of the output produced by each query. According to the
MDA semantics, we can characterize it as follows (see Section 4.3): (i) the set
of measures (i.e., data) shown to the user; (ii) the set of dimensional attributes
selected to produce the MD space at a certain granularity level and (iii) the set
of slicers applied. Now, we take advantage of the MDA minimality (operators
cannot be derived by composition) and closeness (their output is a cube) proper-
ties. Since MDA is close and every operator has its inverse, by definition, we can
transform CS1 into CS2 by means of a finite set of MDA operators (in the worst
case, it would entail to undo all the operators that lead to CS1 and redo those
in CS2). Furthermore, given its minimal property, we know which operators can
be applied in order to align each cube schema feature. In other words, we can
split the comparison of P1 and P2 into smaller comparisons regarding the cube
schema part affected by the MDA operators:

i) Measures: Let m11, . . . , m1n and m21, . . . , m2t the list of measures in
CS1 and CS2, respectively.
– If m11, . . . , m1n and m21, . . . , m2t coincide nothing has to be done.
– ∀ m1i ∈ CS1, s.t. m1i /∈ CS2 the corresponding projection disregarding

m1i is annotated in the bridge between n1 and n2.
– ∀ m2i ∈ CS2, s.t. m2i /∈ CS1 the corresponding drill-across is annotated

to add m2i to the output schema.
ii) MD space: First, we analyze the relationships between the MD spaces in

CS1 and CS2.
– If CS1 and CS2 are exactly the same, nothing has to be done.
– Else, for each one-to-many or many-to-one relationship identified be-

tween CS1 and CS2 we need to modify the output granularity accord-
ingly (see Section 4). If a one-to-many relationship is identified, a proper
drill-down operator is annotated in the bridge. Else, in case of a many-
to-one relationship, the corresponding roll-up is added.

– In any other case, given that the structural part of n1 and n2 coincide, a
1-1 relationship, as a whole, should be identified between CS1 and CS2.
Thus, we need to navigate from the MD space in CS1 to the alternative
space in CS2 (see Section 4) and the corresponding changeBase is added
to the bridge.

iii) Slicers: Being p1 and p2 the conjunction of predicates in the selections of
n1 and n2, respectively.
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– If p1 ≡ p2 nothing has to be done.
– Else if p1 � p2, the proper union(s) is (are) added to the bridge.
– Else if p1 	 p2, a selection(s) is (are) added.
– Else a union(s) (to undo p1) and a selection(s) (to carry out p2) are

added.

Again, note that this algorithm is sound thanks to the MDA properties, which
allow us to undo and redo complementary operators (i.e., projection Vs. drill-
across, union Vs. selection, roll-up Vs. drill-down and changeBase Vs. change-
Base) to produce CS2 from CS1. The produced bridge is then evaluated to decide
whether n1 and n2 are similar enough, if so we consider both NMACs to belong
to the same session. It is out of our current objectives to provide an empirical
function to identify when two NMACs are similar enough as to be coalesced in
the same session, as it is an application-dependent task. As result, both NMACs
are stored in an ordered structure (i.e., a list of NMACs) representing the ses-
sion and we annotate their relationship with the bridging operators NPb (to keep
track of their logical connection). Finally, we use the last NMAC to keep looking
for other queries in the session, whereas the annotated bridging is kept in order
to exploit it in future tasks such as query recommendation.

Example 8. Consider Q2 introduced in Example 1. Its NMAC is:

πcs quantity(γdate→month
sum(cs quantity)(γ

store→state
sum(cs quantity)(σcs product=′1′(raw data))))

This query can be bridged with Q1 (whose MAC is given in Example 4,
which happens to be already normalized), and, as explained in the motivation
example, their cube schemas are exactly the same except for their MD spaces,
among which we can identify a many-to-one relationship (from year to month).
Thus, a drill-down is annotated as the bridge from Q1 to Q2. In this case, it is
clear they are close enough and thus, both NMACs are stored in the same session
s. Semantically, the annotated bridge means that Q2’s output can be obtained
by bridging Q1’s NMAC with the annotated drill-down (this is represented in
the MAC below, where the drill-down is represented by the left-most operator):

γyear→month
sum(cs quantity)(πcs quantity(γdate→year

sum(cs quantity)(γ
store→state
sum(cs quantity)(σcs product=′1′(

raw data)))))

7 Conclusions

We have presented a novel approach to capture analytical SQL queries in a
structured way (i.e., a MAC) based on MD algebra. First, we have shown how
to normalize MACs in order to compute the similarity between queries in the
log and bridge them to obtain the whole session.

This paper mainly sets a new research line for our next future. Specifically,
we aim at exploiting the foundations introduced by producing novel solutions
for query recommendation, physical tuning and MD design. Furthermore, this
framework can also be useful for testing if the way a relational database is
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used is compliant with the data warehouse and OLAP practices and thus, to
which extent it is worth investing in such technology. We also plan to carry
out empirical studies to determine how close two NMACs must be in order
to be considered part of the same session. Finally, the implementation of this
framework is currently under work.
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Abstract. MapReduce is a programming paradigm for effective processing of 
large datasets in distributed environments, using the map and reduce functions. 
The map process creates (key, value) pairs, while the reduce phase aggregates 
same-key values. In other words, a MapReduce application defines and reduces 
one set of values for each key, which means that the user only knows one 
aspect of the key. Advanced OLAP applications however, require multiple sets 
to be defined and reduced for the same key, not necessarily mutually disjoint. 
The challenge is to extend MapReduce to support this in a syntactically simple 
and computationally efficient way. We propose an extension to the classic 
MapReduce model, called Tagged MapReduce, where data is represented as 
(key, value, tag) triplets. Users map triplets and reducing takes place for each 
key and for each tag. For example, given a set of pages, one may want to count 
words’ occurrences per page type. The page type is represented by the tag. 
While the classic MapReduce can handle this class of queries, it requires effort 
and possibly advanced programming skills for efficient implementations. For 
example, should the tag form a compound object with the key or the value? Our 
formalism makes it simpler for the programmer to use and easier for the system 
to identify and apply efficient algorithms. 

Keywords: MapReduce, On-Line Analytical Processing, Data Analysis. 

1   Introduction 

During the last few years, the data analysis community has invested heavily to a new 
paradigm, called MapReduce. Startups and established companies (Aster Data, 
Greenplum, Netezza, Oracle, Teradata, [1],[2],[3],[4]) alike developed and marketed 
data management products incorporating some version of MapReduce, by offering a 
simple SQL interface and hiding the complexity of the physical cluster, such as in 
Pig-Latin [5]. The fact that MapReduce is a programming paradigm rather than a new 
operator within an algebraic framework, created a big controversy within the database 
community [6],[7]. Parallel database management systems (PDBMS) have good 
performance on structured data, deployed on a small number of nodes (a few dozen), 
which have to be homogenous [8]. On the other hand, MapReduce provides a simple 
model for analyzing data, is flexible, scalable and fault tolerant on unstructured data 
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[9]. In addition, large data-intensive organizations, such as Google, Yahoo and 
Microsoft, need to analyze large datasets in a rapid, ad hoc way, without deploying 
complex, expensive PDBMS. Finally, many real world data analysis tasks inherently 
deal with unstructured data, stored in clusters of servers with different processing 
capabilities and possibly in different storage systems [9]. As a result, Yahoo (Hadoop, 
[11]), Google (MapReduce, [10]) and Microsoft (Dryad, [12]) have developed 
frameworks to support MapReduce.  

As pointed out by DeWitt and Stonebraker [6], MapReduce lacks many of the 
features that have proven invaluable for structured data analysis. Due to that fact 
many research papers propose MapReduce extensions to allow additional data 
analysis capabilities, keeping its flexibility, scalability, and fault-tolerance. Pig-Latin  
[5] is a new language that combines the best of both worlds: high-level declarative 
querying in the spirit of SQL and low-level, procedural programming of MapReduce. 
Map-Reduce-Merge [13] joins multiple datasets in a MapReduce fashion. 
SQL/MapReduce [1] provides an inherently parallel User Defined Function (UDF) 
that exploits the MapReduce model’s parallelism. HadoopDB [8] uses MapReduce as 
the communication layer above multiple nodes running single-node DBMS instances. 

In this paper, we identify a useful and frequent class of analytical queries that 
require the definition and reduction of multiple value sets for each key. This is 
roughly the equivalent of defining multiple SQL group-by queries on the same 
grouping attributes and then joining the results to bring all same-key aggregates to 
one row. These queries involve many useful examples of data analytics, such as 
trends, cumulative aggregates, standard pivoting and others. One can approach these 
queries as multiple MapReduce jobs over the same keys. The reduced sets can or 
cannot be overlapping, sharing some work. This has recently been identified in MR-
Share[14]. One issue in this approach is how to express these queries at a high level 
language (declarative or semi-declarative), so MR-Share can be exploited. Pig-Latin 
or ASSET [15] syntax seem sufficient. Another approach is to extend the MapReduce 
framework so mapping phase produces triplets instead of pairs, adding a “tag” 
constituent, denoting the set the value belongs to. Since we did not want to change the 
underlying engine (Hadoop), the tag can become part either of the key or the value 
during evaluation, based on some reasoning/optimization performed at the high-level 
language. One can think this approach as producing a multi-column MapReduce in 
one shot. All these issues are discussed in Section 3.  

The primary contribution of our work is to describe Tagged MapReduce and 
implement it on top of Hadoop. While the proposed implementation may not be the 
most efficient, it shows a good performance improvement over traditional 
MapReduce evaluation of our query examples. The goal is to demonstrate that simple, 
intuitive extensions can allow advanced analysis at minimal cost. Section 2 provides 
background information and discusses related work. Section 3 motivates this work 
through a simple web log analysis application. In Section 4, we describe our 
implementation over Hadoop: users can create triplets (key, value, tag) through an 
extended map function, which become either ((key, tag), value) or (key, (tag, value)) 
pairs for standard MapReduce execution – the user can select which way to go. Recall 
that the user can be the optimizer of a high level language. Section 5 presents some 
preliminary experimental results. We conclude and discuss future work in Section 6. 
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2   Background and Related Work 

In this section we briefly discuss MapReduce, Hadoop framework, ASSET and Pig 
Latin syntaxes, which we used for our work. 

2.1   MapReduce Overview 

MapReduce is a new programming paradigm used by Google in its search engines 
and other data-intensive applications running on clusters of cheap PCs. The main 
purpose is to perform simple data analysis on top of large unstructured or semi-
structured datasets. The main features of MapReduce are the following: (a) guarantees 
fault tolerance and automatic failure recovery by restarting the failed tasks [9],[16], 
(b) provides a simple programming interface, by letting users write two simple 
functions, Map and Reduce [9], (c) allows task and data parallelism [9], [16], (d) 
exhibits excellent performance and scalability, even on top of commodity machines 
[9], [16], and (e) it is storage independent and can process data without first loading it 
into a database [9]. 

2.2   Hadoop Framework 

Hadoop consists of two main components: the Hadoop’s Distributed File System 
(HDFS) and the Hadoop MapReduce [11]. The HDFS uses the namenode and the 
datanodes in order to manage its data files and the operations that are executed over 
the files (store, read, write and replicate), while MapReduce uses the other two 
components of Hadoop’s architecture, the jobtracker and the tasktrackers, in order to 
schedule and execute the user’s applications. 

2.3   Pig Latin and ASSET Queries 

Pig Latin[5] is a new language that is designed to fit in a sweet spot between the 
declaration style of SQL, and the low-level, procedural style of MapReduce. 
However, the MapReduce paradigm leads to a great deal of custom user code that is 
hard to maintain and reuse. The above reasons, give a great picture of what 
characteristics of the two worlds have been integrated in Pig Latin. A Pig Latin 
program is a sequence of steps (operations), much like in a programming language, 
each of which carries out a single data transformation. At the same time, the 
transformations carried out in each step are fairly high-level, e.g. filtering, grouping 
and aggregation, much like in the SQL. The use of relational algebra style primitives, 
e.g. GROUP, FILTER, allows traditional database optimizations to be carried out. 
Lastly, Pig Latin is fully implemented by Pig system that uses Hadoop, in order to 
transform Pig Latin programs to MapReduce jobs. 

Associated Sets (ASSET) queries were based on the work of multi-feature queries 
and grouping variables [17, 18, 19, 20]. Grouping variables can be used to compute 
multiple features of group-by queries [17], by defining and aggregating for each 
group-by value (or key) multiple, successive and correlated (if necessary) relation 
subsets in one query block. The definition of subset Xi could involve the key and the 
aggregates of X1, X2, …, Xi-1 subsets. Grouping variables can be efficiently evaluated 
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and succinctly represented in relational algebra [21]. This simple concept can 
represent a wide range of useful and practical analytics. The claim in that framework 
was similar to Pig-Latin’s: looping over groups is important to complex analytics 
formulation. The work on grouping variables has influenced Oracle’s Analytic 
Functions [22] and the standardization of ANSI SQL (OLAP Amendment). 
Implementations of it have been studied in the context of telecom 
applications,medical informatics, finance and others (a survey can be found in [20]). 

2.4   Related Work 

Our work was motivated, to some degree, by Map-Reduce-Merge [13], in which the 
user may perform complex analytic tasks by joining multiple datasets. At [13], an 
additional operation (joining) is described, which is supported by the DBMS. In this 
model, a MapReduce job is executed for each dataset creating [key, value] pairs and 
one merge function to join these pairs creating the final output. Moreover, Map-
Reduce-Merge processes only relational data as the merge function expresses basic 
relational algebra operators (joins) through MapReduce. Our work is also related to 
MRShare [14], which merges MapReduce jobs coming from different queries in order 
to save processing time and money. In the MRShare framework a meta-map function 
merges the similar or identical map functions from the different jobs resulting in less 
data to be produced after the map phase, and furthermore to multiple query 
optimization (MPO). Chatziantoniou et. al in [15] mention a plethora of OLAP 
queries that could benefit from a MapReduce implementation, but cannot be 
expressed as MapReduce jobs (e.g. pivoting, hierarchical comparisons, complex 
comparisons, trends, correlated aggregation, etc. [20]). In this paper, we deal with a 
practical and useful class of data analysis tasks that could be computed via a single 
MapReduce job, if multiple subsets for the same key could be defined and 
subsequently reduced. 

3   Motivation 

Let us consider a common web application in which data analysis is applied over a set 
of log files. Each log file has two columns, the first represents the URL and the 
second the timestamp. Some common queries that can be applied over a set of these 
log files are the following: 
 
Q1. For each URL, for each of the twelve months, count the cumulative total for that 

month, i.e. for month m, we want to count the total hits in months <= m. With 
this query we can identify trends and growth of specific URLs. This is a simple 
cumulative query.  

Q2. For each URL, count the hits for each day (or for each month). With this query, 
one can determine the daily (or monthly) traffic of the URL. This is a simple 
pivoting query. 

 
Let’s have a closer look at Query Q1. A straightforward MapReduce 

implementation would create for each (url, month) source pair, (12-month+1) pairs in 
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the form ((u, i), 1), i=month, month+1, … , 12 – materializing in effect a join 
followed by a group by in traditional relational algebra – reducing then by using a 
simple count. Alternatively, one could create for each (url, month) source pair, (12-
month+1) pairs in the form (u, (i, 1)), i=month, month+1, … , 12, i.e. month is stored 
with the value this time. This implementation would not change the number of the 
generated pairs, but it would change the size of the per-key value set (since now the 
number of the keys is much smaller) and the implementation of the reduce method (a 
switch statement is necessary and 12 different counters must be maintained.) A more 
experienced programmer would note that he could avoid the implicit join by utilizing 
two successive MapReduce jobs: the first one would simply count the hits per (url, 
month) and the second one would use this input to sum the counts per (url, month) – 
once again, the second MapReduce invocation would create (12-month+1) pairs for 
each ((url, month), cnt) input pair. However, a forth, more efficient, implementation 
exists: create for each (url, month) input pair a (url, (month, 1)) pair and push the per 
month computation to the reduce phase. The performance of these approaches is 
shown in Figure 1, using Hadoop on a single-node implementation and a data set of 
100MB and around 52K distinct URLs. There is almost one order of magnitude 
performance improvement between the third and the first approach. 

 

Fig. 1. Different implementations of Query example Q1 

In different query examples and/or value distributions over (key, tag) pairs, the first 
or the second approach may be better, as Section 5 discusses. This suggests that the 
tag constituent should become a first class citizen, as significant as key and value 
elements, and not be hidden within map and reduce implementations. Given a high 
level declarative approach, such as Pig-Latin or ASSET, this analysis can be carried 
out by the optimizer.  In this paper, we propose an extended Map and Reduce 
interface, called TaggedMap and TaggedReduce, something that could also be 
utilized by a high level language. In TaggedMap method the user maps triplets instead 
of pairs (i.e. map(key, tag, value)) and in TaggedReduce method the user reduces a 
value set for each key and for each tag.   

Since our implementation is on top of Hadoop (future work involves altering 
Hadoop’s engine), we preprocess the specification of these functions to form 
appropriate and correct specifications of standard map and reduce functions for both 
alternatives – when the tag value is appended either to the key or the value. The  
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selection is currently hardcoded, however current work tries to embed some reasoning 
on the preprocessing phase. Under certain syntactic criteria, the preprocessor can 
identify special cases (similar to “Optimized” case in Figure 1) and do some rewriting 
on the final map and reduce methods. These cases mainly involve overlapping value 
sets for each tag, as in Query example Q1. Figure 2 shows the architecture of Tagged 
MapReduce implementation. 

 

Fig. 2. Tagged MapReduce Implementation 

We claim that Tagged MapReduce interface: (a) is simpler and more intuitive for 
the programmer to use for a practical and useful class of complex analytics, and (b) 
allows identification of efficient MapReduce implementations. 

4   Implementation 

This section describes our implementation over Hadoop in order to support the new 
extended framework. We have used Hadoop’s MapReduce framework version 0.20.1. 
As mentioned in Section 3, we have also created two new interfaces for Map and 
Reduce, called TaggedMap and TaggedReduce. We describe the extended interface, 
the preprocessor and the tagging techniques.  

4.1   TaggedMap and TaggedReduce 

Both TaggedMap and TaggedReduce interfaces are implemented on top of Hadoop, 
and are transformed into standard MapReduce implementations through the 
preprocessor. Similarly to standard Map, in the TaggedMap, the user has to define the 
key, tag and value parameters for a specific task using the collect method, which now 
takes three arguments instead of two. 

In TaggedReduce, similarly to standard Reduce, one iterator over the values is 
provided. The reduce function is called for each key and for each tag and user defined 
logic is applied to reduce the values. The collect(key, tag, value) function, with value 
being the aggregating result of the input values, is also called to write the reduced 
triplets to the final output. After defining the TaggedMap and the TaggedReduce 
functions, the preprocessor chooses whether the tag will be attached to the key or tag 
as the following section discusses. The number of tags must be known a-priori (an 
input parameter to the preprocessor.) 
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4.2   Implementation Alternatives 

The two alternatives involve attaching the tag either to the key or the value part to 
form a compound object. Both of these techniques can be directly implemented in 
Hadoop’s standard MapReduce, however it is not a trivial task for the inexperienced 
programmer. Keys have to be “writable” and “writableComparable”. The “writable” 
interface is responsible for serialization and deserialization of the keys and 
“writableComparable” interface is responsible for comparing the keys to each other. 
When the key part of a (key, value) pair is a composite object, the user has to 
implement these interfaces each time. In our platform, this is automatically done 
during the transformation process, if tag is attached to the key. 

Once again, when the tag is attached to the value, the user has to create a composite 
(tag, value) object. The inexperienced programmer may be tempted to use the hashmap 
data type provided by Hadoop to represent values of different types (i.e. tags) but this 
comes with a heavy performance penalty as Section 5 shows. We have chosen to 
implement it as a (tag, value) object, which requires changes to several interfaces. Once 
again, this is automatically generated during the transformation process.  

One can think of an altered Hadoop that provides several alternatives in both cases 
and the preprocessor chooses the one with the least cost.  

4.3   Transformation to Hadoop’s MapReduce 

The preprocessor is the component that analyzes TaggedMap and TaggedReduce 
specifications and generates the appropriate rewrites to standard MapReduce, as 
described in the previous section. Currently, the choice whether to assign the tag to 
the key or to the value is hardcoded, but the system has been designed in such a way 
so external information can be read in - such as histogram information on keys and 
tags, if available.  

When the tag is attached to the key to form a compound object, i.e. (key, tag, value) 
becomes ((key, tag), value) for evaluation, little has to be done: the main body of code in 
both TaggedMap and TaggedReduce becomes the main body to standard Map and 
Reduce specifications, using the first implementation, described in Section 4.2.   

When the tag is attached to the value to form a compound object, i.e. (key, tag, 
value) becomes (key, (tag, value)) for evaluation, the main body of TaggedReduce 
has to be parsed and become a large switch statement based on the tag. All variables 
have to be replicated with different labels within the switch statement. Tags in our 
system can only be integers and the number of distinct tags has to be known a-priori 
(currently is a constant within TaggedReduce method.)  
 
Example 4.1 Let us consider Query Q1.  The main body of TaggedMap looks like: 

           for(int i=month; i<=12;i++) 

                output.collect(URL, month, 1); 
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while TaggedReduce will be: 

    while(values.hasNext()) 

      sum += value.next().get(); 

    output.collect(URL, tag.next(), sum); 

There are 12 tags, 1 to 12.  
 
When the ((key, tag), value) implementation is used, then the main body of 

standard Map and Reduce methods becomes respectively as below: 

     for(int i=month; i<=12;i++) 

       output.collect(new KeyTagWritable(URL, month), 1); 

and: 

     while(values.hasNext()) 

       sum += value.next().get(); 

     output.collect(key, sum); 
 

When the (key, (tag, value)) implementation is used, then the main body of 
standard Map and Reduce methods becomes respectively as below: 

    for(int i=month; i<=12;i++) 

      output.collect(URL, new TagValueWritable(i,1)); 

and: 

    while(values.hasNext()){ 

      TagValueWritable value = values.next();  

      switch(value.getTag()){ 

        case 1: sum1 += value.getValue(); break; 

        case 2: sum2 += value.getValue(); break; 

        ... 

        case 12: sum12 += value.getValue(); break; 

     } 

    } 

    output.collect(key, new TagValueWritable(1,sum1)); 

    output.collect(key, new TagValueWritable(2,sum2)); 

    ... 

    output.collect(key, new TagValueWritable(12,sum12));  
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4.2   Optimizations 

In our current work we consider optimization techniques along three axis: choosing 
between key and value to attach the tag, efficient implementations of Section 4.2 
alternatives and efficient rewrites, as those discussed in Motivating Section.  

The first question is when the tag should be attached to the key and when to the 
value part. In Section 5, we argue that this decision depends on query “pattern”, the 
number of distinct keys, tags and the size of the value set. In the presence of system 
statistics, such as histograms, one could apply heuristics to answer this question.  

The second challenge is to have several choices for ((key, tag), value) and (key, 
(tag, value)) implementation alternatives, as discussed in Section 4.2. Once again, this 
may depend on the number of distinct keys and tags and the size of the value sets, but 
also on the type of the tag and the key. For example, instead of having composite key 
objects like KeyTagWritable(key, tag), one can concatenate key and tag to 
form a new key and automatically generate the appropriate code to manage this. 

Finally, the third challenge has to do with efficient rewrites, such as (c) and (d) for 
Query Q1 in Figure 1 of Section 3. Such rewrites can lead to orders of magnitude 
performance improvement, since they avoid the implicit join present in these queries. 
This can be done easily (more or less) at a high level language such as SQL, but it is 
not trivial within a procedural language.  

5   Experiments 

The main goal of our experiments was to validate our argument that different query 
patterns and value distributions dictate different implementation strategies in terms of 
tagging. In short, we show that there are cases where tag should be attached to the key 
part of (key, value) pairs of standard MapReduce and cases where tag should be 
attached to the value part of (key, value) pairs. In addition, we show that naïve 
implementations may carry a severe performance penalty.  

5.1   Experimental Setting 

Both query examples have been tested in small instances of the Amazon EC2 [23] 
with 1.7GB of memory, 1 virtual core and 32-bit platform. Our dataset was a 20GB 
log file we created and consists of URLs and timestamps. 

We ran query examples Q1 and Q2 in small-sized clusters and benchmarked their 
execution times as the number of nodes increased from 8 to 16. For each node, a map 
and a reduce task was invoked, resulting the number of map tasks and the number of 
reduce tasks to equal the number of nodes. Query example Q1 was applied in a log 
file of 52.000 distinct URLs. Query example Q2 was applied in two log files with 
different data distributions; (a) the first log consisted of 52.000 distinct URLs and the 
analysis was conducted on a “per month” basis, and (b) the second log consisted of 
only 100 distinct URLs and the analysis was conducted on a “per day” basis. 

We have also tested both query examples with the naïve hash-map implementation 
of Hadoop (in order to attach tag to the value part of (key, value) pairs)) and 
compared the execution times with our implementation (forming a composite value 
object). The queries were only tested on a 12-node cluster in this case. 
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5.2   Results  

Figure 3 and Figure 4 illustrate the performance of query examples Q1 and Q2, when 
Tagged MapReduce implementations are applied. Thus, when executing cumulative 
tasks an implementation with value being a composite object is more efficient; 
however, when executing pivoting queries the efficiency of the framework depends 
on the input data distribution, i.e. the number of distinct keys and tags. So, when the 
number of tags is relatively small and the number of distinct keys is large (Query Q2 
(a)) the implementation with tag attached to the value is better in terms of execution 
time. But as the number of tags is increasing and the number of distinct keys is 
decreasing (Query Q2 (b)) the implementation, in which tag is attached to the key 
proves to be more efficient. The exact execution times for both versions of Query Q2 
are demonstrated in Table 1. 

 

Fig. 3. Different implementations on Query example Q1 

 

Fig. 4. Different implementations on Query example Q2 with (a) 52.000 distinct URLs and (b) 
100 distinct URLs 

Table 1. Execution times for different versions of Query example Q2 

 Tag in key 
(a)            (b) 

Tag in value 
     (a)            (b) 

8 nodes 10538 5132 5132 5560 
12 nodes 7205 2687 2936 2800 
16 nodes 5514 2292 2574 2355 

Figure 5 demonstrates the normalized execution times when the (key, (tag, value)) 
approach is implemented through the hashmap data structure, natively supported by 
Hadoop. This also indicates, that although tag can be relatively easily attached to the 
value using Hadoop, performance is always an issue.  
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Fig. 5. Tagged MapReduce implementations vs. standard MapReduce hash-map implementation 

6   Conclusions and Future Work 

In this paper we have proposed an extension of MapReduce, called Tagged MapReduce. 
We argued that complex data analysis requires multiple aggregates to be computed for a 
key and this should be supported by a third constituent in the MapReduce framework for 
usability and efficiency reasons. We described our implementation on top of Hadoop and 
showed that for different query patterns and (key, tag) value distributions performance 
may vary significantly on various implementation strategies. 

Future work focuses around optimization issues, as those delineated in Section 4.4, 
especially query rewriting. The set of Multiple-Feature queries [17] is an important 
subclass of OLAP queries, which had a significant influence on systems, languages 
and theory. We would like to explore efficient MapReduce implementations on this 
set. 
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Abstract. Nowadays, streams of data can be continuously generated by
sensors in various real-life applications such as environment surveillance.
Partially due to the inherited limitation of the sensors, data in these
streams can be uncertain. To discover useful knowledge in the form of
frequent patterns from streams of uncertain data, a few algorithms have
been developed. They mostly use the sliding window model for processing
and mining data streams. However, for some applications, other stream
processing models such as the time-fading model are more appropriate.
In this paper, we propose mining algorithms that use the time-fading
model to discover frequent patterns from streams of uncertain data.

Keywords: Knowledge discovery, data mining techniques, data streams,
frequent itemsets, probabilistic data.

1 Introduction

Frequent pattern mining [2] helps discovers implicit, previously unknown, and
potentially useful knowledge in the form of frequently occurring sets of items
that are embedded in the data. For example, it finds from shopping market
basket data those sets of popular merchandise items, which in turn helps reveal
shopper behaviour.

Nowadays, the automation of measurements and data collection is produc-
ing tremendously huge volumes of data. For instance, the development and in-
creasing use of a large number of sensors (e.g., electromagnetic, mechanical, and
thermal sensors) for various real-life applications (e.g., environment surveillance,
manufacture systems) have led to data streams [5,7,19]. To discover useful knowl-
edge from these streaming data, several mining algorithms [4,6,9] have been pro-
posed. In general, mining frequent patterns from dynamic data streams [11,13]
is more challenging than mining from traditional static transaction databases
due to the following characteristics of data streams:

1. Data streams are continuous and unbounded. As such, we no longer have the
luxury to scan the streams multiple times. Once the streams flow through,
we lose them. We need some techniques to capture important contents of
the streams. For instance, sliding windows capture the contents of a fixed
number (w) of batches (i.e., w most recent batches) in the streams. Alterna-
tively, landmark windows capture contents of all batches after the landmark

A. Cuzzocrea and U. Dayal (Eds.): DaWaK 2011, LNCS 6862, pp. 252–264, 2011.
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(i.e., sizes of windows keep increasing with the number of batches). Similarly,
time-fading windows also capture contents of all the batches but weight re-
cent data heavier than older data (i.e., monotonically decreasing weights
from recent to older data).

2. Data in the streams are not necessarily uniformly distributed. As such, a cur-
rently infrequent pattern may become frequent in the future and vice versa.
We have to be careful not to prune infrequent patterns too early; otherwise,
we may not be able to get complete information such as frequencies of some
patterns (as it is impossible to recall those pruned patterns).

Many existing mining algorithms discover frequent patterns from precise data
(in either static databases [8,12] or dynamic data streams [10,20]), in which users
definitely know whether an item is present in, or absent from, a transaction in
the data. However, there are situations in which users are uncertain about the
presence or absence of items. For example, due to dynamic errors (e.g., inher-
ited measurement inaccuracies, sampling frequency), streaming data collected
by sensors may be uncertain. As such, users may highly suspect but cannot
guarantee that an item x is present in a transaction ti. The uncertainty of such
suspicion can be expressed in terms of existential probability P (x, ti) ∈ (0, 1],
which indicates the likelihood of x being present in ti in probabilistic data. With
this notion, every item in ti in (static databases or dynamic streams of) precise
data can be viewed as an item with a 100% likelihood of being present in ti.
A challenge of handling these uncertain data is the huge number of “possible
worlds” (e.g., there are two “possible worlds” for an item x in ti: (i) x ∈ ti and
(ii) x �∈ ti). Given q independent items in all transactions, there are O(2q) “pos-
sible worlds” [14].

In past few years, several mining algorithms have been proposed to dis-
cover frequent patterns from uncertain data. However, most of them (e.g., UF-
growth [17], UH-Mine [1], U-Eclat [3], UV-Eclat [18]) mine frequent patterns
from static databases—but not dynamic streams—of uncertain data. For the al-
gorithms that mine from data streams (e.g., UF-streaming [15]), they use sliding
windows. While the use of sliding windows is useful for situations where users are
interested in discovering frequent patterns from a fixed-size time window (e.g.,
frequent patterns observed in the last 24 hours), there are also other situations
where users are interested in a variable-size time window capturing all histor-
ical data (with or without stronger preference on recent data than older one).
In these situations, other window models (e.g., time-fading or landmark model)
are needed. Hence, a logical question is: How to discover frequent patterns from
dynamic streams of uncertain data when using the time-fading model?

In response to this questions, we conducted a feasibility study [16], which
showed that alternatives to sliding windows can be used for mining streams
of uncertain data. Hence, in this DaWaK 2011 paper, we propose algorithms
for discovering useful knowledge from streams of uncertain data using the time-
fading and landmark models. Our key contributions are (i) the proposal and
maintenance of a tree structure in capturing the frequent patterns discovered
from batches of transaction in dynamic streams when using the time-fading and
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landmark models, (ii) the design of tree-based stream mining algorithms that use
such a tree structure for discovering and storing frequent patterns—especially
the algorithm that does not require the traversal and update of all tree nodes,
and (iii) analytical evaluation of these algorithms.

This paper is organized as follows. The next section gives some background
information that is relevant to the remainder of this paper. In Section 3, we
introduce our mining algorithms that use the time-fading or landmark models
to discover frequent patterns from streams of uncertain data. Analytical and
experimental results are shown in Sections 4 and 5. Finally, Section 6 presents
the conclusions.

2 Background and Related Work

In this section, we provide background information about mining frequent pat-
terns from static databases of uncertain data and using the sliding window model
to mine frequent patterns from dynamic streams of uncertain data.

2.1 Mining from Static Databases of Uncertain Data

Among the algorithms that mine frequent patterns from static databases of
uncertain data (e.g., UF-growth [17], UH-Mine [1], U-Eclat [3], UV-Eclat [18]),
the tree-based UF-growth algorithm is used in UF-streaming for stream mining
(Section 2.2). To discover frequent patterns, UF-growth constructs a UF-tree to
capture contents of uncertain data. Each tree node keeps an item x, its existential
probability P (x, ti), and its occurrence count. The UF-tree is constructed in a
similar fashion to that of the FP-tree [12] except that nodes in the UF-tree are
merged and shared only if they represent the same x and P (x, ti). Once the UF-
tree is constructed, UF-growth extracts appropriate tree paths to mine frequent
patterns using the “possible world” interpretation [14]. A pattern is frequent
if its expected support ≥ user-specified minsup threshold. When items within
a pattern X are independent, the expected support of X in the database DB
can be computed by summing (over all transactions t1, ..., t|DB|) the product (of
existential probabilities of items within X):

expSup(X, DB) =
|DB|∑
i=1

( ∏
x∈X

P (x, ti)

)
. (1)

Note that, while UF-growth discovers frequent patterns from uncertain data, it
mines from static databases (instead of dynamic data streams).

2.2 Mining from Uncertain Data Streams with Sliding Windows

Unlike UF-growth [17] (which does not handle data streams) or FP-streaming
[10] (which does not handle uncertain data), the UF-streaming algorithm [15]
mines frequent patterns from uncertain data streams by using a fixed-size sliding
window of w recent batches. UF-streaming first calls UF-growth (Section 2.1) to
find “frequent” patterns from the current batch of transactions in the streams
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(using preMinsup as the threshold). A pattern is “frequent” (i.e., subfrequent)
if its expected support ≥ preMinsup. Note that, although users are interested
in truly frequent patterns (i.e., patterns with expected support ≥ minsup >
preMinsup), preMinsup is used in attempt to avoid pruning a pattern too early
because data in the continuous streams are not necessarily uniformly distributed.

UF-streaming then stores the mined “frequent” patterns and their expected
support values in a tree structure, in which each tree node X keeps a list of
w support values. When a new batch flows in, the window slides and support
values shift so that the “frequent” patterns (and their expected support values)
mined from the newest batch are inserted into the window and those represent-
ing the oldest batch in the window are deleted. This process is repeated for
each batch in the stream. The expected support of any frequent pattern X can
be computed by summing all w expected supports of X (one for each batch in
the sliding window). Let expSup(X, Bi) denote the expected support of X in
Batch Bi. Then, at time T , the expected support of X in the current sliding win-
dow containing w batches of uncertain data in Batches BT−w+1, ..., BT inclusive
can be computed as follows:

expSup
(
X,∪T

i=T−w+1Bi

)
=

T∑
i=T−w+1

expSup(X, Bi). (2)

3 Our Proposed Algorithms

In this section, we propose our algorithms—called TUF-streaming—that use
the t ime-fading model in an uncertain data environment to mine “f requent”
patterns from streaming data.

3.1 A Naive Algorithm: TUF-Streaming(Naive)

Among the three commonly used models for processing streams (i.e., sliding win-
dow, landmark, and time-fading models), the landmark window keeps all batches
after the landmark (i.e., keeps an increasing number of batches). Similarly, the
time-fading window also keeps an increasing number of batches, but it weights
older data lighter than recent data (i.e., monotonically decreasing weights from
current to older data). From that perspective, the landmark window can be con-
sidered as a special case of the time-fading window in which all batches have the
same weight.

Inspired by UF-streaming (which uses sliding windows), we propose TUF-
streaming(Naive) that uses time-fading windows. The key steps of the algo-
rithm can be described as follows. First, for each batch Bi of uncertain data in
the stream, our algorithm applies UF-growth with preMinsup to find “frequent”
patterns (i.e., patterns with expected support ≥ preMinsup from a batch). Then,
it stores the mined “frequent” patterns and their expected support values in a
tree structure called UF-stream, in which each tree node corresponding to a
pattern X keeps a list of support values. Note that the time-fading window does
not slide. Instead, it grows. This mining process and UF-stream insertion process
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a[1.7] b[1.8]

c[1.44]

d[0.86]

d[1.08]

c[1.6]

d[0.96]

d[1.3] a[1.7,2.0]

d[0,1.0]

b[1.8,1.0]

c[1.44,0.8]

d[0.86,0]

d[1.08,0]

c[1.6,0.9]

d[0.96,0]

d[1.3,1.0]

(a) After mining B1. (b) After mining B2.

a[1.7,2.0,1.0]

d[0,1.0,0]

b[1.8,1.0,1.8]

c[1.44,0.8,0]

d[0.86,0,0]

d[1.08,0,1.44]

c[1.6,0.9,0.9]

d[0.96,0,0]

d[1.3,1.0,1.9]

(c) After mining B3.

Fig. 1. The UF-stream structures for the TUF-streaming(Naive) algorithm

are repeated for each batch in the stream of uncertain data. Let expSup(X, Bi)
denote the expected support of X in Bi. Then, at time T , the expected support
of X mined from the time-fading model can be computed by summing over all
batches the expected supports of X (weighted by the time-fading factor α, where
0 ≤ α ≤ 1):

expSup
(
X,∪T

i=1Bi

)
=

T∑
i=1

(
expSup(X, Bi)× αT−i

)
, (3)

Example 1. Consider the following stream of uncertain data:

Batches Transactions Contents

t1 {a:0.7, d:0.1, e:0.4}
B1 t2 {a:1.0, b:0.9, c:0.8, d:0.6}

t3 {b:0.9, c:0.8, d:0.6}
t4 {a:1.0, c:0.1, d:0.7}

B2 t5 {a:1.0, d:0.3, e:0.1}
t6 {b:1.0, c:0.8}
t7 {a:1.0, c:0.9, d:0.3}

B3 t8 {b:0.9, d:0.8}
t9 {b:0.9, d:0.8, e:0.7}

Here, each transaction contains items and their corresponding existential probabilities,
e.g., P (a, t1)=0.7. Let the user-specified minsup threshold be 1.0. When using the time-
fading model, TUF-streaming(Naive) applies UF-growth to B1 in the uncertain data
stream using preMinsup < minsup (say, preMinsup=0.8) and finds “frequent” patterns
{a}, {b}, {b, c}, {b, c, d}, {b, d}, {c}, {c, d} & {d} with their corresponding expected sup-
port of 1.7, 1.8, 1.44, 0.86, 1.08, 1.6, 0.96 & 1.3. These patterns and their expected
support values are then stored in the UF-stream structure as shown in Fig. 1(a). Each
node in UF-stream keeps an item and a list of expected support values. So far, each list
is of length 1 (e.g., c:[1.44] on the branch 〈b[1.8], c[1.44], d:[0.86]〉 represents “frequent”
pattern {b, c} with an expected support of 1.44).

Next, when the second batch B2 arrives, TUF-streaming(Naive) applies a similar
procedure: Call UF-growth to find “frequent” patterns {a}, {a, d}, {b}, {b, c}, {c} & {d}
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with expected support values of 2.0, 1.0, 1.0, 0.8, 0.9 & 1.0, respectively. Then, the
algorithm appends each expected support value to the list of the appropriate tree node
in UF-stream. The resulting UF-stream, as shown in Fig. 1(b), consists of nine nodes
(due to the addition of the node d[0,1.0] representing the new pattern {a, d} having an
expected support of 1.0 in B2 but infrequent in B1). Note that the list in each node
now consists of two expected support values. Expected support of any pattern X can
be computed using Equation (3) based on the expected support values stored in the
list of X. For instance, let the time-fading factor α be 0.9, then expSup({b, c}, B1∪B2)
= 1.44α + 0.8 ≈ 2.10.

Similarly, when subsequent batches arrive, TUF-streaming(Naive) applies a similar
procedure. Fig. 1(c) shows the resulting UF-stream structure after processing B3. At
that time, expSup({b, c}, B1 ∪ B2 ∪ B3) = 1.44α2 + 0.8α + 0 ≈ 1.89. �	

Note that, when α=1, Equation (3) can be simplified to become the following,
which computes the expected support of X mined from the landmark model by
summing all expected supports of X (after the landmark B1):

expSup
(
X,∪T

i=1Bi

)
=

T∑
i=1

expSup(X, Bi). (4)

Example 2. Let us revisit Example 1, but use the landmark model. Then, the key differ-
ence is that TUF-streaming(Naive) uses a different equation—namely, Equation (4)—
for computing expected support. As the contents (e.g., expected support of every pat-
tern for each batch) of UF-stream are the same as those shown in Fig. 1, the expected
support values of “frequent” patterns mined from B1 are the same as those in Exam-
ple 1. However, the expected support values of “frequent” patterns mined from Bi (for
i ≥ 2) are different. For instance, expSup({b, c}, B1 ∪B2) = 1.44 + 0.8 = 2.24 (cf. 2.10
in Example 1), and expSup({b, c}, B1∪B2∪B3) = 1.44 + 0.8 + 0 = 2.24 (cf. 1.89). �	

3.2 A Space-Saving Algorithm: TUF-Streaming(Space)

Although TUF-streaming(Naive) finds all “frequent” patterns, it may require a
large amount of space. As data streams are continuous and unbounded, storing
the expected support value of X for each batch in the streams can be impractical
because it could lead to a potentially infinite list for each node. A careful analysis
on Equation (3) reveals that the expected support of X is the sum of weighted
expected support of X over all batches. Unlike the sliding window model (which
requires the deletion of the oldest batch), the fading-time model does not require
the deletion of any old batches. Instead, it assigns lighter weights to old batches
than recent batches. As a special case, for the landmark model, the algorithm as-
signs the same weights to all batches (regardless whether they are old or recent).
Hence, we propose a space-saving algorithm called TUF-streaming(Space),
which does not need to keep track of the details for each batch. We rewrite
Equation (3) in a recursive form as follows:

expSup
(
X,∪T

i=1Bi

)
=

[
expSup

(
X,∪T−1

i=1 Bi

)
× α

]
+ expSup(X, BT ). (5)

By doing so, the algorithm keeps only a single value—i.e., expSup(X,∪T
i=1Bi)

—instead of a potentially infinite list of expSup(X, Bi).



258 C.K.-S. Leung and F. Jiang

a:1.7 b:1.8

c:1.44

d:0.86

d:1.08

c:1.6

d:0.96

d:1.3 a:3.53

d:1.0

b:2.62

c:2.10

d:0.77

d:0.97

c:2.34

d:0.86

d:2.17 a:4.18

d:0.9

b:4.16

c:1.89

d:0.70

d:2.31

c:3.01

d:0.78

d:3.85

(a) After mining B1. (b) After mining B2. (c) After mining B3.

Fig. 2. The UF-stream structures for the TUF-streaming(Space) algorithm

Example 3. Let us revisit Example 1. When using the time-fading model, our TUF-
streaming(Space) algorithm uses Equation (5) to compute expected support values.
For instance, Fig. 2(a) shows the expected support values stored in UF-stream after
mining “frequent” patterns from B1. They are identical to those shown in Fig. 1(a).

Afterwards (say, after mining Bi for i ≥ 2), instead of appending the expected
support values of “frequent” patterns mined from Bi, the algorithm modified the stored
value. For instance, after mining B2, instead of storing [1.44, 0.8] for {b, c} as in Fig. 1(b)
for TUF-streaming(Naive), TUF-streaming(Space) stores their sum 1.44α+0.8 ≈ 2.10
as expSup({b, c}, B1 ∪ B2) in Fig. 2(b). Similarly, after mining B3, instead of storing
[1.44, 0.8, 0] as in Fig. 1(c) for TUF-streaming(Naive), TUF-streaming(Space) stores
their sum (1.44α + 0.8)α + 0 ≈ 1.89 as expSup({b, c}, B1 ∪ B2 ∪ B3) in Fig. 2(c). �	

3.3 A Time-Saving Algorithm: TUF-Streaming(Time)

TUF-streaming(Space) greatly reduces the amount of space required from a
potentially infinite list of expected support values to a much more realistic and
practical requirement of storing only a single expected support value in each node
in UF-stream. However, as observed from the recursive formula shown in Equa-
tion (5), the expected support of any pattern X up to time T directly depends
on the expected support of X up to time T −1. As such, TUF-streaming(Space)
needs to visit every node in UF-stream after mining each batch (even if the cor-
responding pattern is not “frequent” in that batch) in order to compute expected
support for “frequent” patterns. On the one hand, such a requirement may incur
a long runtime. On the other hand, if one were to skip nodes in some batches,
then the resulting expected support may not be correct. See Example 4.

Example 4. Let us revisit Example 3. Fig. 2 shows that {b, d} is “frequent” with
expSup({b, d}, B1) = 1.08. We know that {b, d} does not appear in B2, but it is “fre-
quent” is B3 with expSup({b, d}, B3) = 1.44. If after mining B2, we decide to skip the
node corresponding to {b, d}, then the expected support value stored in UF-stream
would remain unchanged (i.e., at 1.08). Then, after mining B3, we decide to visit and
update the node for {b, d}, then the expected support value stored in UF-stream would
become 1.08α + 1.44 = 2.52 (cf. the correct expected support of 2.31). The problem was
caused by skipping this node after mining B2 (even though {b, d} is not “frequent”).
The skip led to the missing multiplication of α. �	

To solve the above problem, we propose a time-saving algorithm called TUF-
streaming(Time), which does not need to visit every node in UF-stream after
mining each batch. With this algorithm, the number of nodes visited at each
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a:1:1.7 b:1:1.8
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d:1:1.08
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d:1:1.3 a:2:3.53
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d:1:0.86

d:1:1.08
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d:1:0.96

d:3:3.85

(a) After mining B1. (b) After mining B2. (c) After mining B3.

Fig. 3. The UF-stream structures for the TUF-streaming(Time) algorithm

batch is proportional to the number of “frequent” patterns mined from that
batch. In other words, it visits only those nodes representing patterns that are
“frequent” in that batch. It is possible due to our analytical results, which reveal
that Equation (5) can be written as follows:

expSup
(
X,∪T

i=1Bi

)
=

[
expSup

(
X,∪LV

i=1Bi

)
× αT−LV

]
+ expSup(X, BT ), (6)

where LV is an additional field stored in each node of UF-stream to indicate the
batch number of last visit of the node.
Example 5. Let us revisit Example 3. When using TUF-streaming(Time), although
each node in UF-stream contains an additional “last visit” field (i.e., requires slightly
more space), we no longer need to visit every node in UF-stream after mining a batch
(i.e., takes less time). This is a space-time tradeoff.

Our TUF-streaming(Time) uses the “last visit” field in Equation (6) for computing
expected support values to be stored in UF-stream for the time-fading model. Un-
like TUF-streaming(Space) that visits every node, TUF-streaming(Time) visits only
“frequent” nodes. After mining B1, the algorithm visits and stores eight expected
support values (i.e., 1.7, 1.8, 1.44, 0.86, 1.08, 1.6, 0.96 & 1.3 for “frequent” patterns
{a}, {b}, {b, c}, {b, c, d}, {b, d}, {c}, {c, d} & {d}, respectively) in UF-stream. The “last
visit” fields for all these eight nodes are “1”, indicating that they were last visited in
Batch B1. For example, the node d:1:0.86 shown in Fig. 3(a) indicates that {b, c, d}
with expected support of 0.86 was last visited in Batch B1.

Then, for B2, only six patterns are “frequent”: {a}, {a, d}, {b}, {b, c}, {c} & {d}.
TUF-streaming(Time) only visits and updates these six nodes. For instance, it visits
the node for {b, c} and updates its expected support (to 2.10) by multiplying the old
expSup({b, c}, B1)=1.44 by α and then adding expSup({b, c}, B2)=0.8 to the product:
1.44α + 0.8 ≈ 2.10. It results in c:2:2.10 as shown in Fig. 3(b). For patterns that
are not “frequent” (e.g., expSup({b, d}, B2)=0), the algorithm delays visiting to that
node. It explains why the node {b, d} is represented as d:1:1.08, which means {b, d}
with expected support of 1.08 was last visited & updated at Batch B1.

After mining B3, TUF-streaming(Time) visits and updates four nodes, including
{b, d}. As shown in Fig. 3(c), the node is represented as d:3:2.31, which indicates that
expSup({b, d}, B1 ∪ B2 ∪ B3) = 1.08×α3−1 + expSup({b, d}, B3) = 1.08α2 + 1.44
≈ 2.31. By doing so, TUF-streaming(Time) visits nodes only for “frequent” patterns
mined in a batch. It requires less runtime than TUF-streaming(Space), which visits
every node in UF-stream. �	

3.4 An Enhancement Algorithm for the Landmark Model:
TUF-Streaming(Space&Time)

Among the algorithms that we have proposed so far for mining “frequent” patterns
fromstreams of uncertain datawith the time-fadingmodel,TUF-streaming(Space)
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requires less space, but it needs to visit every node in UF-stream.Conversely,TUF-
streaming(Time) requires less time, but it needs an additional field for every node
in UF-stream. It is a space-time tradeoff. However, when dealing with the special
case where α=1 (i.e., landmark model), we can get the benefits of both worlds. A
careful analysis on Equation (6) reveals that, when α=1, we can rewrite the equa-
tion to become the following:

expSup
(
X,∪T

i=1Bi

)
= expSup

(
X,∪LV

i=1Bi

)
+ expSup(X, BT ), (7)

where LV is the batch number in which X was last visited (i.e., when X was “fre-
quent”). Note that, between T and the last visit LV of X , the expected support
of X remains changed, i.e., expSup

(
X,∪LV

i=1Bi

)
= ... = expSup

(
X,∪T−1

i=1 Bi

)
. As

such, we propose an enhancement called TUF-streaming(Space&Time). It
visits only nodes corresponding to “frequent” patterns mined from each batch,
and it does not need to keep track of when they were last visited.

4 Analytical Evaluation

In this paper, we proposed four TUF-streaming algorithms for discovering “fre-
quent” patterns from streams of uncertain data when using the time-fading and
landmark models. In this section, let |FPi| denote the number of “frequent”
patterns mined from Batch Bi. When using the time-fading model, the TUF-
streaming(Naive) algorithm requires the largest amount of space as it requires
w × | ∪i FPi| expected support values to be stored in UF-stream (where w is
the number of batches mined so far). In contrast, TUF-streaming(Space) re-
quires the least amount of space because each node only stores a single value
(i.e., a total of | ∪i FPi| values), whereas TUF-streaming(Time) requires slightly
more space than TUF-streaming(Space) because each node needs to keep the
“last visit” field in addition to the usual expected support value for each “fre-
quent” pattern (i.e., a total of | ∪i 2FPi| values). However, it is bounded (cf.
an unbounded or potentially infinite list of expected support values in TUF-
streaming(Naive)). Moreover, such a slight increase in space usually pays off
as it reduces the runtime. Same comments apply to the landmark model, with
an additional observation that TUF-streaming(Space&Time) requires the same
amount of space as TUF-streaming(Space).

As for the runtime for the time-fading model, both TUF-streaming(Naive) and
TUF-streaming(Space) are required to visit every node in UF-stream regardless
whether or not the corresponding pattern is “frequent”, i.e., visit |∪i FPi| nodes
for each of w batches for a total of w× | ∪i FPi| visits (e.g., visited 26 nodes for
Fig. 1 or Fig. 2). In contrast, TUF-streaming(Time) only visits those nodes cor-
responding to “frequent” patterns, and it requires

∑
i |FPi| visits (e.g., visited

19 nodes for Fig. 3). Again, same comments apply to the landmark model, except
that they require less runtimes than the time-fading model due to simpler calcu-
lation. Similar to simplification of Equation (3) to Equation (4), computation of
expected support values become simpler when α=1 (for the landmark model) be-
cause the terms

[
expSup

(
X,∪T−1

i=1 Bi

)
× α

]
and

[
expSup

(
X,∪LV

i=1Bi

)
× αT−LV

]
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in Equations (5) and (6) can be simplified to become expSup
(
X,∪T−1

i=1 Bi

)
and

expSup
(
X,∪LV

i=1Bi

)
, respectively. Moreover, our TUF-streaming(Space&Time)

also only visits those nodes corresponding to “frequent” patterns but may re-
quire less runtime than TUF-streaming(Time) due to the absence of the “last
visit” field.

5 Experimental Evaluation

Different datasets, which included IBM synthetic data and UCI real data, were
used for experimental evaluation. For instance, we used an IBM synthetic data
with 1M records with an average transaction length of 10 items and a domain
of 1,000 items. We assigned an existential probability from the range (0,1] to
every item in each transaction. We set each batch to be 5,000 transactions (for a
maximum of w=200 batches). The reported figures are based on the average of
multiple runs in a time-sharing environment using an 800 MHz machine. Runtime
includes CPU and I/Os for mining of “frequent” patterns and maintenance of
the UF-stream structure. We evaluated different aspects of our four proposed
algorithms, which were implemented in C.

First, we evaluated the functionality of our proposed algorithms. When us-
ing the time-fading model, TUF-streaming(Naive), TUF-streaming(Space) and
TUF-streaming(Time) all gave the same collection of frequent patterns. Sim-
ilarly, when using the landmark model, these three algorithms gave the same
collection of frequent patterns as TUF-streaming(Space&Time). However, their
runtimes varied.

In terms of runtime, when the number of batches (w) increased, the run-
time increased. See Fig. 4(a) for the time-fading model. Among the three al-
gorithms, TUF-streaming(Naive) and TUF-streaming(Space) took almost the
same amount of time. The former appended the expected support values of
“frequent” patterns discovered from a new batch whenever the batch was pro-
cessed and mined, whereas the latter took slightly more time to update the
expected support due to multiplication and addition. Both algorithms visited all
nodes in UF-stream. In contrast, after mining each batch, TUF-streaming(Time)
took less runtime because they visited only nodes corresponding to the patterns
discovered from that batch. For example, TUF-streaming(Naive) and TUF-
streaming(Space) visited an average of about 22K nodes per batch, whereas
TUF-streaming(Time) visited about 35K nodes for the entire mining process.
For the landmark model, the trends were very similar. The only difference was
that runtimes of the landmark models were slightly shorter as they did not in-
volve the computation of α. Moreover, TUF-streaming(Space&Time) required
shorter runtime than TUF-streaming(Time) for the landmark model.

We also varied minsup values. Fig. 4(b) shows that, when minsup increased,
the number of expected support values stored in the UF-stream structure de-
creased for all algorithms because the number of “frequent” patterns mined from
the stream decreased.

Next, we evaluated the memory consumption of our algorithms. Fig. 4(c)
shows that, when the number of batches increased, the number of expected
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Fig. 4. Experimental results of our proposed TUF-streaming algorithms

support values stored in UF-stream increased. For TUF-streaming(Naive)
increased almost linearly as the list of expected support values in each node
increased proportional to the number of batches. Moreover, as data are not nec-
essarily uniformly distributed, different patterns can be discovered from different
batches. These add a few patterns to the collection of patterns to be kept in UF-
stream. In contrast, as TUF-streaming(Space) only kept a single value for each
node, its memory consumption was independent of the number of batches. TUF-
streaming(Time) for time-fading models occupied twice the amount of space as
TUF-streaming(Space) due to the extra “last visit” field in each node. When us-
ing landmark models, TUF-streaming(Space&Time) required the same amount
of space as TUF-streaming(Time).

Furthermore, we also tested the effect of the distribution of item existential
probability. When items took on a few distinct existential probability values,
UF-trees used in UF-growth became smaller. Regardless of the size of UF-trees,
the number of “frequent” patterns returned by UF-growth (i.e., the number of
nodes kept in the UF-stream structure) was not different significantly. Hence, as
shown in Fig. 4(d), the runtimes for the algorithms were very similar.
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6 Conclusions

In this paper, we proposed tree-based mining algorithms that can be used for
mining frequent patterns from dynamic streams of uncertain data with both
time-fading and landmark models. All algorithms apply UF-growth with pre-
Minsup to find “frequent” patterns. The mined patterns are then stored in the
UF-stream structure together with their expected support values. Then, when
the next batch of streaming transactions flows in, the algorithms update the
UF-stream structure differently. The naive algorithm keeps a potentially infinite
list of expected support values for each node in UF-stream. The space-saving
algorithm reduces the memory consumption by keeping only a single value for
each node. The time-saving algorithm visits only those nodes corresponding to
“frequent” patterns. In addition, we also proposed an enhancement algorithm
that reduces both space and time consumption for the landmark model. Ana-
lytical and experimental results showed the space and time effectiveness of our
TUF-streaming algorithms when using the time-fading and/or landmark models
for mining frequent patterns from streams of uncertain data.
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Abstract. Since the introduction of FP-growth using FP-tree there has
been a lot of research into extending its usage to data stream or incremen-
tal mining. Most incremental mining adapts the Apriori algorithm. How-
ever, we believe that using a tree based approach would increase perfor-
mance as compared to the candidate generation and testing mechanism
used in Apriori. Despite this FP-tree still requires two scans through a
dataset. In this paper we present a novel tree structure called Single Pass
Ordered Tree SPO-Tree that captures information with a single scan for
incremental mining. All items in a transaction are inserted/sorted based
on their frequency. The tree is reorganized dynamically when necessary.
SPO-Tree allows for easy maintenance in an incremental or data stream
environment.

Keywords: Incremental Mining, Frequent Pattern Mining,FP-Growth.

1 Introduction

Frequent pattern mining is an important area in data mining and knowledge
discovery. Frequent Pattern Tree (FP-Tree) based Frequent Pattern Growth (FP-
Growth) mining proposed by Han et al. [1] was an efficient technique to mine
frequent patterns based on using a single prefix-tree. Since the introduction of
FP-Tree, a large number of research has been carried out to solve the frequent
pattern mining problem more efficiently. The main benefit of applying FP-tree
was the performance gain due to the compact nature of the data structure.
As frequent patterns can be generated by traversing the prefix-tree, this avoids
multiple (more than two times) scanning of the dataset. Prefix-tree enables fast
computation for the support of all the frequent patterns as well.

With the growing importance of data streams, incremental data mining has
become an active area of research with many challenging problems. A data
stream is an unbounded sequence of data elements generated at a rapid rate
and requires a dynamic environment for collecting data. Some examples of data
stream environments include web click streams, network analysis, and sensor
network. Incremental data mining algorithms perform knowledge updating in-
crementally to amend and strengthen what was previously discovered. Incremen-
tal data mining algorithms incorporate dataset updates without having to mine
the entire dataset again.
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Examples of some incremental mining techniques include the FUP algorithm
[2], the adaptive algorithm [3], and IncSpan [4]. The collective idea in these
approaches is that previously mined information should be utilized to reduce
maintenance costs. In these approaches, intermediate results, such as frequent
patterns, are stored and checked against newly added transactions. This reduces
the computation time for maintenance. The algorithms mentioned above are
Apriori-based [5] techniques, that depend on a “generate and test” mechanism.
Whereas, many of the conventional prefix-tree data mining algorithms cannot
handle large and growing data sets, as they require two dataset scans.

The key contribution of this work is proposing and developing a novel tree
structure for maintaining frequent patterns in an incremental dataset. We pro-
pose a novel tree structure called SPO-Tree (Single Pass Ordered Tree) for in-
cremental mining. The tree captures the content of the transactions dataset in
a single pass. The main benefit of this is when a transaction is inserted, deleted
or modified, our approach would not require a rescan of the entire dataset.

The rest of the paper is organized as follows. In the next section, we look at
previous work in the area. Section 3 introduces our work for SPO-Tree. Our ex-
perimental results are presented in Section 4. Finally we summarize our research
contributions in Section 5 and outline directions for future work.

2 Related Work

In this section we discuss four existing FP-tree based algorithms that handle
stream mining, namely (i) FELINE algorithms with the CATS tree, (ii) the
AFPIM algorithm, (iii) CanTree algorithms, and (iv) CP-Tree.

Cheung and Zaiane [6] proposed the Compressed and Arranged Transaction
Sequence tree (CATS) for interactive mining. The CATS tree stems from the
idea of using FP-tree to improve storage compression. The aim of the work was
to build a compact tree representation. This proposed technique requires one
pass through the dataset to build the tree. New transactions are added at the
root level. At each level, items of the new transaction are compared with children
(or descendant) nodes, the transaction is then merged with the node with the
highest frequency level. The remainder of the transaction is then added to the
merged nodes. This process is repeated recursively until all common items are
found. Any remaining items of the transaction are added as a new branch in the
last merged node. If the frequency of a node becomes higher than its ancestors,
then it has to swap with the ancestors to ensure that its frequency is lower or
equal to the frequencies of its ancestors. In CATS we are required to find the
right path for each of the new transaction to merge in. It also requires swaps
and merges of nodes during the updates, as the nodes in CATS tree are locally
sorted.

Example CATS Tree. Consider the dataset in Table 1. Figure 1 shows the
resulting CATS tree after each transaction is added. Here we highlight some of
the important steps. From the insertion of transactions t1 to t2, common items in
both transactions {a, b, e} are merged into the existing tree. In this step, item e
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Table 1. Example of Dataset

TID Transactions

t1 {a,b,c,d,e}
t2 {a,f,b,e}
t3 {b}
t4 {d,a,b}
t5 {a,c,b}
t6 {c,b,a,e}
t7 {a,b,d}
t8 {a,b,d}

is swapped with its ancestors c and d. Since there are no further common items,
the remaining item in t2, f is added as a new branch of e. When t3 arrives, item
b is swapped with item a and moved up. The rest of the transactions are inserted
in the same manner.

{}

a:1

b:1

c:1

d:1

e:1

{}

a:2

b:2

e:2

c:1

d:1

f:1

{}

b:3

a:2

e:2

c:1

d:1

f:1

{}

b:4

a:3

e:2

c:1

d:1

f:1

d:1

{}

b:5

a:4

e:2

c:1

d:1

f:1

d:1 c:1

{}

b:6

a:5

e:3

c:2

d:1

f:1

d:1 c:1

{}

b:7

a:6

e:3

c:2

d:1

f:1

d:2 c:1

{}

b:8

a:7

e:3

c:2

d:1

f:1

d:3 c:1

Fig. 1. CATS tree after each transaction is added

Leung et al. [7] proposed the Canonical-Ordered Tree for stream mining. This
algorithm is designed so that it only requires one dataset scan. In CanTree,
items are arranged in some canonical order, which can be determined by the
user prior to the mining process or runtime during the mining process. The
items are arranged according to a prefixed tree structure, thus unaffected by the
item frequency. CanTree generates compact trees if and only if the majority of
the transactions contain a common pattern-base in canonical order. Otherwise,
it may generate skewed trees with too many branches and hence with too many
nodes. Despite taking less time for tree construction, it requires more memory
and more time for extracting frequent patterns from the generated tree.

Example CanTree Tree. Figure 2 shows the resulting CanTree tree after each
transaction is added. Like CATS tree this technique keeps track of all items. In
this tree, items are inserted in some form of canonical order (lexicographical or
arrival). Items in t1 are sorted in alphabetical order. The subsequent transactions
are sorted in the same manner. In this step, item e is swapped with its ancestors
c and d. Since there are no further common items the remaining item in t2 which
is item f , is added as a new branch to e. When t3 arrives, item b is swapped
with item a and moved up. The rest of the transactions are inserted in the same
manner.
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{}

a:1
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e:1

{}

a:2

b:2
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e:1

f:1

{}

a:2

b:2

c:1

d:1

e:1

e:1
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{}
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b:4
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f:1

d:1

b:1
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b:1

Fig. 2. CanTree in lexicographic order

Tanbeer et al. [8] proposed a tree structure, called CP-tree that constructs
a compact prefixed structure. CP-tree has a frequency descending structure by
capturing part by part data from the dataset and dynamically restructuring
itself. The construction operation consists of two phases: insertion phase and
restructuring phase. Insertion phase inserts transaction(s) into CP-tree according
to current sorted order of the item list and updates frequency based on the item
list. Restructuring phase rearranges the list according to frequency-descending
order of items and restructures the tree nodes according to the new ordered item
list. The two phases are executed consecutively.

TID 1-4
{}

a:3

b:3

c:1

d:1

e:1

e:1

f:1

d:1

b:1

Restructure
{}
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e:1

c:1

e:1

f:1

TID 5-6
{}

b:6

a:5

d:2

e:1

c:1

e:2

f:1 c:1

c:1

Restructure
{}

b:6

a:5

c:3

d:1

e:1

e:2

f:1

d:1 e:1

TID 7-8
{}

b:8

a:7

c:3

d:1

e:1

e:2

f:1

d:3 e:1

Restructure
{}

b:8

a:7

d:4

c:1

e:1

c:2

e:2

f:1

e:1

Fig. 3. CP Tree

Example CP Tree. Figure 3 shows the resulting CP-tree after each transaction
is added. In this example, we show that restructuring is carried out at the end
of every block. In the insertion phase the transactions are inserted in the same
way as CanTree following the item-appearance order. In the restructuring phase,
at first the items in the tree are rearranged in descending order, which is I =
{b, a, d, e, c, f} then the tree is restructured to that particular order. In the next
insertion phase, items are inserted in the same order as in I. The restructuring
phase is carried out as per the previous phases. All subsequent insertion and
restructuring phases are carried in a similar fashion. The authors showed that
CP-tree outperformed CanTree with a dense dataset. Despite CP-Tree taking a
longer tree construction time, it outperformed the CanTree during the mining
phase as it produced a more compact tree.

Koh and Shieh [9] developed the Adjusting FP-tree for Incremental Mining
(AFPIM) algorithm. This algorithm uses the notion of FP-tree, whereby only
the frequent items are kept in the tree. In this algorithm, an item is frequent if
its support is no less than a threshold called preMinsup, which is lower than the
usual minsup threshold. The frequent items are arranged in descending order
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of their frequency. Any insertion, deletion, or modification of transactions may
affect the frequency of the items, and ordering of the items. As a correction step,
the AFPIM algorithm reorders the tree using bubble sort. This may be compu-
tationally intensive when applied to all the branches affected by the change in
item frequency. Incremental updating of items may also lead to the introduction
of new items, which occurs when an infrequent item becomes frequent in the
updated dataset. When faced with this scenario, the AFPIM algorithm has to
rescan the entire dataset to build a new FP-tree.

Another area of incremental mining is data stream mining [10,11]. We believe
that we can transform our work to fit into the data stream framework as well.

3 Single Pass Ordered Tree (SPO-Tree)

The following is a formal definition of association rules. Let I = {i1, i2, . . . , in},
be a set of items. A set x = {ij, ...ik} ⊆ I where j ≤ k and 1 ≤ j, k ≤ n is called
an itemset. A transaction is T = (tid, Y ) where tid is the transaction id and Y is
an itemset. If X ⊆ Y is an itemset, then X occurs in T . A transactional dataset
D over I is a set of transactions and |D| is the number of transactions in the
dataset. The support of an itemset X is the portion of transaction in the dataset
that contains X , supp(X) = count(X,D

|D| . An itemset is frequent if its support is
no less than a user given support threshold called minsup. An association rule
is an implication of the form X → Y , where X, Y ⊂ D, and X ∩ Y = ∅.

In this section we will discuss the preliminaries and the step-by-step construc-
tion of our SPO-tree. The SPO-tree has two phases:

Tree Construction Phase: This phase can be broken down into two addi-
tional phases, Insertion Phase and Reorganization phase. In the Insertion
phase, items in a transaction are inserted into the tree based on a descend-
ing order of frequency. The tree is reorganized once the proportion of the
edit distance of items in the sorted order changes above a certain threshold
as shown in Equation 2.

Tree Mining Phase: The tree mining phase follows the FP-Growth mining
technique. Once the SPO-Tree is constructed we use FP-growth to mine
patterns with support above a user defined minsup. FP-Growth is used in
the mining phase in both the CP-Tree and CanTree approaches.

Figure 4 to 6 is a step-by-step example of the SPO-tree mechanism. Figure 4
shows the resulting tree after transactions t1 to t3 are added. The main difference
between our technique and previous techniques, is that each transaction is sorted
based on the order of frequency (and the order of appearance if the item has the
same support) before insertion into the dataset.

In Figure 4, there are 3 tables. In the second and third table, the first two
columns so the items sorted according to frequency based on the current inserted
transaction, and the last column shows the edit distance, d, between the sorted
order based on the current transaction tn and its previous transaction tn−1. Here
tn−1 represents the merged result of the previous n−1 transactions. In calculating
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t1

a:1
b:1
c:1
d:1
e:1

{}
a:1

b:1

c:1

d:1

e:1

t1 t2 d

a:1 a:2
b:1 b:2

c:1 e:2 +2

d:1 c:1 −1

e:1 d:1 −1

f:1

{}
a:2

b:2

c:1

d:1

e:1

e:1

f:1

t2 t3 d

a:2 b:3 +1

b:2 a:2 −1

e:2 e:2 +2
c:1 c:1 −1
d:1 d:1 −1
f:1 f:1

{}
a:2

b:2

c:1

d:1

e:1

e:1

f:1

b:1

Fig. 4. Insertion of t1 to t3

total edit distance

max dist
=

6

24

= 0.25

In this example, re-
sorting of the tree
is carried out in the
next step as 0.25 is
greater or equal to
a minimum edited
distance proportion
set at 0.20.

{}
b:3

a:2

e:2

c:1

d:1

f:1

t3 t4 d

b:3 b:4
a:2 a:3
e:2 e:2

c:1 d:2 +1

d:1 c:1 −1

f:1 f:1

{}
b:4

a:3

e:2

c:1

d:1

f:1

d:1

t4 t5 d

b:4 b:5
a:3 a:4
e:2 e:2
d:2 d:2 +1
c:1 c:2 −1
f:1 f:1

{}
b:5

a:4

e:2

c:1

d:1

f:1

d:1 c:1

Fig. 5. Insertion of t4 to t5 with resorting

the edit distance we consider the shift of the items upwards as positive edit
distance and downwards as negative edit distance. In this example in transaction
t1 item e was in the position 5 and in t2 item e moved up to position 3.

Given the ordering of items should remain fairly stable after the initial set
of transactions is inserted. We believe that in some cases this would reduce the
overall number of tree branches that need to be sorted as compared to CP-tree.

Figure 5 shows the resorting of a tree after the insertion of t3. A tree is sorted
once the fraction of the total absolute edit distance per total maximum edit
distance is above a defined minimum edit distance. In this example this is set to
0.20. The resorting phase is prompted if:∑n

i abs(d)∑n
i max(i− 1, n− i)

≥ minimum edit distance (1)

Here n is the number of items, and d is the edit distance. In this example the
total absolute edit distance is 6 (1+1+2+1+1), and the total maximum distance
is 24 (5+4+3+3+4+5).

Table 2 shows how the maximum total edit distance is derived. From the table
we notice that if we had 9 items the total maximum edit distance would be 56
and if we had 5 items the total edit distance would be 16. This is equivalent to
the calculations of triangular numbers plus quarter squares. We can rewrite the
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Table 2. Example of Calculating Total Maximum Edit Distance

Items 1 2 3 4 5 6 7 8 9 10

d0 9
d1 8 8
d2 7 7 7
d3 6 6 6 6
d4 5 5 5 5 5
d6 4 4 4 4 4 5
d7 3 3 3 3 4 5 6
d8 2 2 2 3 4 5 6 7
d9 1 1 2 3 4 5 6 7 8
d10 0 1 2 3 4 5 6 7 8 9∑

d 0 2 5 10 16 24 33 44 56 70

total maximum distance as:
n∑
i

max(i− 1, n− i) =
i(i− 1)

2
+ floor

( i2

4
)

(2)

Following the sorting phase the edit distance, d, for the items are reset to 0.
The subsequent transactions t4, and t5 are inserted as usual following the sorted
frequency and appearance.

t5 t6 d

b:5 b:6
a:4 a:5
e:2 e:3

d:2 c:3 0

c:2 d:2 0

f:1 f:1

{}
b:6

a:5

e:3

c:2

d:1

f:1

d:1 c:1

t6 t7 d

b:6 b:7
a:5 a:6
e:3 e:3
c:3 c:3 0
d:2 d:3 0
f:1 f:1

{}
b:7

a:6

e:3

c:2

d:1

f:1

d:2 c:1

t7 t8 d

b:7 b:8
a:6 a:7

e:3 d:4 +1

c:3 e:3 −1

d:3 c:3 −1

f:1 f:1

{}
b:7

a:6

e:3

c:2

d:1

f:1

d:3 c:1

Fig. 6. Insertion of t6 to t8

Figure 6 shows the insertion of transactions t6 to t8. The reorganizing phase
is carried out when required. It does carry out an additional reorganizing phase
at the end of each block of transactions.

4 Experimental Results

In the experiments, we tested our program on real-world and synthetic datasets.
The programs were written in Microsoft Visual C++, and run on Window 7
operating system on an Intel core 2 Duo machine in a time sharing environment
with 4GB of main memory. In all experiments, runtime excludes I/O cost.
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4.1 Real-World Datasets

We divided the testing into two sections which includes BMS-POS dataset [12]
and several datasets from the UCI repository [13]. Using BMS-POS we carried
out an in depth analysis of the performance of SPO-Tree versus CP-Tree. We
later ran the SPO-Tree, CP-Tree, and CanTree on several different UCI datasets
to examine the efficiency of the algorithms across a range of different datasets.

BMS-POS Dataset. Here we tested our SPO-tree against CP-tree using the
BMS-POS dataset. In this experiment we divide the transactions in to the origi-
nal datasets, and update portion of the dataset. Here we divided BMS-POS into
10 datasets with the initial block of 51,500 and an update of 50,000 subsequent
blocks. In the first experiment we compare the tree construction time and the
number of nodes produced by SP-Tree as compared to CP-Tree.

Fig. 7. Execution time for BMS-POS during Tree Construction Phase

Figure 7 shows the time for tree construction BMS-POS using CP-Tree and
SPO-Tree. Results shows that the overall restructuring efficiency notably in-
creases as the dataset size increases. For CP-Tree we chose to use a range of the
user given fixed slot for restructuring from 6,250 to 50,000. The largest fixed slot
was fixed at 50,000 as the incremental blocks used were of size 50,000. We use a
minimum edit distance of 0.10 for SPO-Tree.

Table 3 shows the number of nodes in the tree. As the number of nodes
increases the time taken to mine will also inadvertently increase. From the table,
both SPO-Tree and CP-Tree produces a similar number of nodes. On average
SPO-Tree was faster than CP-Tree by 7.4% (minimum 1.1% to maximum 13.3%).

From Table 3 we note the number of nodes generated by the two techniques
remains fairly close, but SPO-Tree is constructed more efficiently (as shown in
Figure 7). In the last block where BMS-POS dataset has 515,000 transactions,
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Table 3. Comparison based on Number of Nodes in BMS-POS

Num Trans SPO-Tree CP-Tree
50000 25000 12500 6250

51500 208206 208196 208196 208196 208196
103000 381125 381152 381152 381152 381152
154500 545770 545794 545794 545794 545794
206000 698270 698292 698292 698292 698292
257500 811726 811726 811726 811726 811726
309000 924217 924175 924175 924175 924175
360500 1033709 1033639 1033639 1033639 1033694
412000 1204442 1204465 1204465 1204465 1204426
463500 1406072 1406124 1406124 1406124 1406029
515000 1593508 1593516 1593516 1593516 1593520

Fig. 8. Execution time by varying minsup

the tree is reorganized seven times, whereas for CP-Tree it is reorganized 10
times for a user-given fixed slot of 50,000 and it is reorganized 62 times for a
user given fixed slot of 6,250.

Next we tested how minsup value affects the runtime of the algorithms. Fig-
ure 8 shows the runtime for the SPO-Tree versus CP-Tree. We chose to mine
CP-tree using a user-given fixed slot of 50,000. We noticed that when minsup
decreases the runtime increased but overall the SPO-tree was still more efficient
than CP-Tree.

UCI Datasets. We also compared the execution of CP-Tree, CanTree, and SPO-
Tree. Table 4 shows the results of execution time for these three algorithms. In
these experiments there are on average nine restructuring phases for each of the
datasets in CP-Tree. Overall the tree construction time for CanTree is faster than
CP-Tree or SPO-Tree.We use a minimum edit distance of 0.10 for SPO-Tree. How-
ever both CP-Tree and SPO-tree produce a more compact representation of the
tree, thus reducing the tree mining time. From the experiments we can glean that
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Table 4. Comparison based on Execution Time(s)

Dataset CanTree CP-Tree SPO-Tree

Cons-
truction Mining Total

Cons-
truction

Mining Total
Cons-

truction
Mining Total

Soybean 0.0 806.0 806.0 0.1 28.6 28.6 0.0 28.1 28.2

Mushroom 0.2 3.6 3.8 0.7 3.1 3.9 0.4 3.2 3.6

Adult 0.6 5.5 6.1 1.2 5.3 6.6 0.7 5.3 6.1

Accidents 3.3 70.4 73.8 16.4 62.5 79.0 5.8 62.9 68.8

Chess 0.2 1624.0 1624.3 0.9 543.0 543.9 0.6 534.6 535.2

Connect-4 2.1 10073.1 10075.3 11.5 669.8 681.3 4.5 657.8 662.4

Table 5. Comparison based on Number of Nodes in Tree

Dataset CanTree CP-Tree SPO-Tree

Mushroom 45704 27165 27021
Adult 71554 56242 56242
Soybean 8336 4405 4390
Accidents 1742760 1393793 1392590
Chess 52074 38609 38610
Connect-4 812529 359969 359292

SPO-tree is faster than CP-Tree. The difference in time becomes more prominent
as the density within a datasets increases. From the datasets below Soybean and
Mushroom can be considered as the less dense datasets, and Connect-4 can be
considered as a denser dataset.

Table 5 shows the number of nodes in each tree. Overall SPO-Tree does pro-
duce a more compact tree than CanTree and CP-Tree. As the bottleneck in all
these algorithms is the reordering of the tree, we SPO-tree only carries out a
reordering when necessary and a quick final resort before mining. It allows us to
have a compact representation without incurring a large reordering overhead.

4.2 Synthetic Datasets

We used datasets generated by the program developed at IBM Almaden Research
Center. In these experiments, we varied the (a) average length of the transactions
and (2) number of unique items in the dataset. In both these experiments the
CP-Tree block size was chosen, to replicate the number of organization phases
of the SPO-Tree.

In the first experiment, we test the effect of varying the average length of
the transactions. Figure 9 shows the total time taken by SPO-Tree and CP-Tree
when the average transactions is varied. In this experiment we chose to use the
minimum edit distance of 0.10, and the average block size of 2,000 for CP-Tree.

In the second experiment, we test the effect of varying the number of unique
items. Figure 10 shows the total time taken by SPO-Tree and CP-Tree when
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Fig. 9. Varying the average size of the
transaction

Fig. 10. Varying the number of Items

the unique item is varied. In this experiment we chose to use the minimum edit
distance of 0.10, and the average of block size 500 for CP-Tree.

During the implementation of both SPO-Tree and CP-Tree we cached the re-
sult of the comparison, so that sorting uses a faster comparison. When managing
the header-list for the tree we kept a pointer to the list node, so that removing
and adding elements from/to the list is O(1). A copy of the program can be
found at: http://www.cs.auckland.ac.nz/~yunsing/SPO-Tree.html.

5 Conclusions and Future Work

A major contribution of SPO-Tree is that it builds an efficient single pass tree
structure for FP-tree based incremental mining. The tree captures the content
of the dataset and rearranges it into a more compact representation.

By exploiting the properties in SPO-tree, it can be easily transformed to fit
into a data stream environment. In our future work, we will be exploring the
possibility of using SPO-Tree in data streams. We will also be adding an addi-
tional momentum parameter for each of the items, which will prevent resorting
of the branches tree according to the current frequency as every transaction is
processed, it will only resort the tree branches according to the current frequency
once the momentum inertia threshold is surpassed.
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Abstract. Most association rule mining techniques concentrate on finding fre-
quent rules. However, rare association rules are in some cases more interesting
than frequent association rules since rare rules represent unexpected or unknown
associations. All current algorithms for rare association rule mining use an Apri-
ori level-wise approach which has computationally expensive candidate genera-
tion and pruning steps. We propose RP-Tree, a method for mining a subset of
rare association rules using a tree structure, and an information gain component
that helps to identify the more interesting association rules. Empirical evaluation
using a range of real world datasets shows that RP-Tree itemset and rule gener-
ation is more time efficient than modified versions of FP-Growth and ARIMA,
and discovers 92-100% of all the interesting rare association rules.

Keywords: Rare Pattern Mining, FP-Growth, Information Gain.

1 Introduction

Association rule mining techniques are used to extract useful information from databases.
The set of association rules that can be extracted from a database can be divided using a
support threshold into frequent and rare association rules. Both frequent and rare associ-
ation rules present different information about the database from which they are found,
since frequent rules focus on patterns that occur frequently, while rare rules focus on
patterns that occur infrequently. In many domains, events that occur frequently may be
less interesting than events that occur rarely, since frequent patterns represent the known
and expected while rare patterns may represent unexpected or previously unknown as-
sociations, which is useful to domain experts. For example, in the area of medicine, the
expected, frequent responses to medications are less interesting than exceptional, rare
responses which may indicate adverse reactions or drug interactions.

Algorithms such as Apriori [1] can be used to find both frequent and rare association
rules, but the latter requires the minimum support threshold to be set to a low value.
However this may cause a combinatorial explosion of itemsets as the number of patterns
that meet minimum support becomes insurmountable. Given n items, the number of
possible itemsets is 2n − 1.

There are three possible types of rare itemsets: first, itemsets which consist of rare
items only; second, itemsets which consist of both rare and frequent items; and third,
itemsets which consist of only frequent items which fall below the minimum support
threshold. We refer to itemsets of the first and second types as rare-item itemsets. Rare-
item itemsets are generally more interesting than itemsets of the third type, which we
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call non-rare-item itemsets. This is because frequent items occur commonly in the
database, and there may be many non-rare-item itemsets that do not represent any in-
teresting connection between items since the items only occurred together by chance.
Empricial evidence for the claim that rare-item itemsets are more interesting is given
in the results in Section 4. For now, we will illustrate this with the following simple
example.

Suppose a database of patient symptoms contains the rare itemsets “1:{elevated heart
rate, fever, skin bruises, low blood pressure}” and “2:{muscle pain, tinnitus, sneezing,
heartburn}”, where all items other than “low blood pressure” are frequent items. Item-
set 1 is a rare-item itemset, and itemset 2 is a non-rare-item itemset. Itemset 1 contains
a subset of the symptoms of sepsis, will produce a rule such as “{elevated heart rate,
fever, skin bruises} → low blood pressure” that highlights the association between the
different three former symptoms with low blood pressure, which is a symptom of se-
vere sepsis. However, rules generated from itemset 2, such as ”{muscle pain, tinnitus,
heartburn}→ sneezing” does not give any useful information, since all these symptoms
are individually common, and have simply occured together by chance.

The key contribution of the paper is a novel algorithm called RP-Tree that finds rare-
item itemsets using a tree structure. Unlike previous level-wise approaches, RP-Tree
does not need to generate and test all plausable combinations of rare itemsets, which
is more efficient. We empirically show that RP-Tree finds rare itemsets and association
rules more effciently than existing algorithms, and identifies 92-100% of rare associ-
ation rules that meet a confidence and lift threshold. The second contribution of this
paper is an extension to RP-Tree that reduces the number of uninteresting association
rules generated by excluding items that are poor at predicting the occurrence of rare
items. To our knowledge, RP-Tree is the first rare association rule mining algorithm
that uses a tree structure.

The paper is organized as follows. In Section 2 we look at previous work in the area
of rare association rule mining. In Section 3 we present basic concepts and definitions
for rare association rule mining and discuss our novel RP-Tree approach. Section 4
describes the experimental results. Finally, Section 5 concludes the paper.

2 Related Work

Current rare itemset mining approaches are based on level-wise exploration of the
search space similar to the Apriori algorithm [1]. In Apriori, k-itemsets (itemsets of
cardinality k) are used to generate k + 1-itemsets, which are then pruned using the
downward closure property. Apriori terminates when there are no new k + 1-itemsets
remaining after pruning. Rarity, AfRIM, ARIMA and Apriori-Inverse are four algo-
rithms that detect rare itemsets. They all use level-wise exploration similar to Apriori.

Troiano et al. [2] notes that rare itemsets are at the top of the search space, so that
bottom-up algorithms must first search through many layers of frequent itemsets. To
avoid this, Troiano et al. proposed the Rarity algorithm that begins by identifying the
longest transaction within the database and uses them to perform a top-down search for
rare itemsets, thereby avoiding the lower layers that only contain frequent itemsets.

In Rarity, potentially rare itemsets (candidates) are pruned in two different ways.
Firstly, all k-itemset candidates that are the subset of any of the frequent k + 1-itemsets
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are removed as a candidate, since they must be frequent according to the downward
closure property. Secondly, the remaining candidates have their supports calculated,
and only those that have a support below the threshold are used to generate the k − 1-
candidates. The candidates with supports above the threshold are used to prune k − 1-
candidates in the next iteration.

Adda et al. [3] proposed AfRIM that uses a top-down approach similar to Rarity. Rare
itemset search in AfRIM begins with the itemset that contains all items found in the
database. Candidate generation occurs by finding common k-itemset subsets between
all combinations of rare k+1-itemset pairs in the previous level. Candidates are pruned
in a similar way to the Rarity algorithm. Note that AfRIM examines itemsets that have
zero support, which may be inefficient.

Szathmary et al. [4] proposed two algorithms that together can mine rare itemsets. As
part of those two algorithms, Szathmary et al. defines three types of itemsets: minimal
generators (MG), which are itemsets with a lower support than its subsets; minimal rare
generators (MRG), which are itemsets with non-zero support and whose subsets are all
frequent; and minimal zero generators (MZG), which are itemsets with zero support and
whose subsets all have non-zero support. The first algorithm, MRG-Exp, finds all MRG
by using MGs for candidate generation in each layer in a bottom up fashion. The MRGs
represent a border that separates the frequent and rare itemsets in the search space.
All itemsets above this border must be rare according to the antimonotonic property.
The second algorithm, ARIMA, uses these MRGs to generate the complete set of rare
itemsets. This is done by merging two k-itemsets with k − 1 items in common into
a k + 1-itemset. ARIMA stops the search for non-zero rare itemsets when the MZG
border is reached, since above that there are only zero rare itemsets.

Apriori-Inverse [5] proposed by Koh et al. is used to mine perfectly rare itemsets,
which are itemsets that only consist of items below a maximum support threshold (max-
Sup). Apriori-Inverse is similar to Apriori, except that at initialisation, only 1-itemsets
that fall below maxSup are used for generating 2-itemsets. Since Apriori-Inverse in-
verts the downward-closure property of Apriori, all rare itemsets generated must have
a support below maxSup. In addition, itemsets must also meet an absolute minimum
support, for example 5, in order for them to be used for candidate generation. Since
the set of perfectly rare-rules may only be a small subset of rare itemsets, Koh et al.
also proposed several modifications that allow Apriori-Inverse to find near-perfect rare
itemsets. The methods are based on increasing maxSup during itemset generation, but
using the original maxSup during rule generation.

All of the above algorithms use the fundamental Apriori approach, which has poten-
tially expensive candidate generation and pruning steps. In addition, these algorithms
attempt to identify all rare itemsets, and as a result spend a significant amount of time
searching for non-rare-item itemsets. However, we will show that these non-rare-item
itemsets do not tend to give us interesting rare association rules.

The proposed RP-Tree algorithm is an improvement over these existing algorithms
in three ways. Firstly, RP-Tree avoids the expensive itemset generation and pruning
steps by using a tree data structure, based on FP-Tree, to find rare patterns. Secondly,
RP-Tree focusses on rare-item itemsets which generate interesting rules and does not
spend time looking for uninteresting non-rare-item itemsets. Thirdly, RP-Tree is based
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on FP-Growth, which is efficient at finding long patterns, since the task is divided into
a series of searches for short patterns. This is especially beneficial since rare patterns
tend to be longer than frequent patterns.

3 Rare Pattern Tree Mining

In this section we first discuss basic concepts and the definition of rare-item itemsets.
We then describe our proposed RP-Tree algorithm and present a simple example. Fi-
nally we describe the modification to RP-Tree using an information gain threshold.

3.1 Basic Concept: Rare Itemsets

Let the set of items I = {i1, i2, ...im}, and the transactional databaseD = {t1, t2, ...tn}
where every t ⊆ I. An association rule is an implication X → Y such that X ∪ Y ⊆ I
and X∩Y = ∅. X is the antecedent and Y is the consequent of the rule. The support of
X → Y inD is the proportion of transactions inD that contains X∪Y . The confidence
of X → Y is the proportion of transactions in D containing X that also contains Y .
The lift of X → Y is confidence(X → Y ) / support (Y ).

The minRareSup threshold is a noise filter, whereby items that are below this thresh-
old are considered as noise. An itemset is a rare itemset if it has support less than
the minimum frequent support threshold (minFreqSup) but above or equal to the min-
imum rare support threshold (minRareSup). As mentioned in Section 1, rare itemsets
can be divided into types: rare-item itemsets which refers to itemsets that consist of only
rare items and itemsets that consist of both rare and frequent items; and non-rare-item
itemsets which consist of only frequent items which fall below the minimum support
threshold.

For instance, suppose there were 4 items {a, b, c, x}with supports a = 0.80, b = 0.30,
c = 0.50, and x = 0.12, with minFreqSup = 0.15 and minRareSup = 0.05. If the itemset
{a, b, c} had a support of 0.09, then this itemset would be a non-rare-item itemset ((1)
above) since all items are frequent, and its support lies between minFreqSup and min-
RareSup. The itemset {a, x} would be a rare-item itemset ((2) above) assuming that the
support of {a, x} > 0.05, since the itemset includes the rare item x.

Formally, an itemset X is a rare itemset iff

support(X) < minFreqSup, support(X) ≥ minRareSup

An itemset X is a non-rare-item itemset iff

∀x ∈ X, support(x) ≥ minFreqSup, support(X) < minFreqSup

An itemset X is a rare-item itemset iff

∃x ∈ X, support(x) < minFreqSup, support(X) < minFreqSup
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3.2 RP-Tree Algorithm

FP-Growth, proposed by Han et al. [6] is a frequent itemset mining algorithm which
uses a frequent-pattern tree (FP-Tree) to store a set of database transactions and reduces
the required number of database scans to 2. The first scan is used to find the set of items
in the database with support over the minimum frequent support threshold; the second
is used to construct the initial FP-tree.

The RP-Tree algorithm, shown in Algorithm 1, is a modification of the FP-Growth
algorithm. RP-Tree performs one database scan to count item support, similar to FP-
Growth. During the second scan, RP-Tree uses only the transactions which include at
least one rare item to build the initial tree, and prunes the others, since transactions that
only have non-rare items cannot contribute to the support of any rare-item itemset. For
example, if {x, y, z} was the set of rare items for a given database, minRareSup and
minFreqSup, a transaction will have to contain at least one of x, y or z to avoid being
pruned.

Note that the ordering of items in each transaction during insertion into the initial
tree is according to the item frequency of the original database (and not the database
with pruned transactions). This is because rare items in the reduced database may have
higher supports than frequent items. If item frequencies of the reduced database were
used for transaction item ordering, a frequent item may become the child of a rare item,
which invalidates property 1 below.

Using this initial tree, RP-Tree constructs conditional pattern bases and conditional
trees for each rare item only. Each conditional tree and the corresponding rare item are
then used as arguments for FP-Growth (simplified version shown in Algorithm 2). The
threshold used to prune items from the conditional trees is minRareSup. The union of
the results from each of these calls to FP-Growth is a set of itemsets that each contain a
rare-item, or rare-item itemsets.

The result of RP-Tree is the complete set of rare-item itemsets. This is because:

1. Rare-items will never be the ancestor of a non-rare item in the initial tree due to the
tree construction process.

2. All itemsets that involve a particular item a can be found by examining all nodes
of a and the nodes of all items that have a lower support than a in the initial tree.

Since RP-Tree examines all rare-item nodes in the initial tree, and all nodes that have
a lower support than a rare-item are themselves rare items, RP-Tree must find all rare-
item itemsets.

RP-Tree Example. Applying RP-Tree to database D in Table 1, the support ordered
list of all items is 〈(a:7), (i:6), (b:5), (c:4), (l:4), (d:3), (f :3), (e:2), (g:2), (h:1), (j:1),
(k:1), (m:1)〉. Using minFreqSup = 4 and minRareSup = 1, only the items {d, f, e, g}
are rare, and included in rareItems.

During construction of the initial RP-Tree, only transactions 1, 3, 4, 5, and 6 are
used, since the remaining transactions do not contain any rare items and cannot con-
tribute to any of the result itemsets. In addition, since the support of items h, j, k and m
falls below minRareSup, these items are ignored during RP-Tree construction. The ini-
tial tree constructed using FP-Growth, which only ignores items that fall below min-
RareSup, will use all transactions, as shown in Figure 1. This tree has 8 additional
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Algorithm 1. RP-Tree
1: Input: D, minRareSup,minFreqSup;
2: Output: results; // Set of rare-item itemsets

3: Initialisation:
4: allItems ← {all unique items in D};
5: countSupport(allItems); // First scan of database
6: rareItems ← {i ∈ allItems | i.supp ≥ minRareSup ∧ i.supp < minFreqSup};
7: rareItemTrans ← {t ∈ D | ∃r · r ∈ rareItems∧ r ∈ t};
8: tree ← constructTree(rareItemTrans); // Second scan of database

9: Mining:
10: results = ∅;
11: for item a in tree do
12: if a ∈ rareItems then
13: construct a’s conditional pattern-base and then a’s conditional FP-Tree Treea;
14: results ← results ∪ FP-Growth(Treea, a);
15: end if
16: end for
17: return results;

Algorithm 2. FP-Growth (without single prefix path optimisation)
1: Input: tree, α;
2: Output: results; // All itemsets generated from tree

3: results ← ∅;
4: for item a in tree do do
5: generate pattern β ← a ∪ α with support = a.support;
6: results ← results ∪ β
7: construct βs conditional pattern-base and then β’s conditional FP-tree treeβ;
8: if Treeβ �= ∅ then
9: results ← results ∪ FP-Growth(treeβ, β);

10: end if
11: end for
12: return results;

nodes compared to the tree built using RP-Tree from the reduced transaction set (shown
in Figure 2(a)). The additional nodes are frequent items that correspond to transactions
pruned by RP-Tree. To find the rare-item itemsets, the initial RP-Tree is used to build
conditional pattern bases and conditional RP-Trees for each rare item {d, f, e, g}. The
conditional tree for item g is shown in Figure 2(b). Each of the conditional RP-Trees
and the conditional item are then used as parameters for the FP-Growth algorithm, for
example, FP-Growth(Treeg, g).
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Table 1. Transaction database D

TID Transactions
1 {a, b, c, d, f}
2 {a, c}
3 {a, c, d, f, g}
4 {a, b, e, h}

TID Transactions
5 {a, c, e, f}
6 {a, b, d, g}
7 {i, b, c, l, j}
8 {a, i, l}

TID Transactions
9 {i, l, k}

10 {i, b, l}
11 {i, m}
12 {i}

null

a : 7

b : 3

c : 1

d : 1

f : 1

d : 1

g : 1

e : 1

c : 3

d : 1

f : 1

g : 1

f : 1

e : 1

i : 1

l : 1

i : 5

b : 2

c : 1

l : 1

l : 1

l : 1

rare item node

frequent item node

Fig. 1. Pattern tree constructed from database D using FP-Tree

null

a : 5

b : 3

c : 1

d : 1

f : 1

d : 1

g : 1

e : 1

c : 2

d : 1

f : 1

g : 1

f : 1

e : 1

(a) Initial tree constructed from D

null

a : 2

d : 2

b : 1 c : 1

f : 1

(b) Conditional tree, Treeg

rare item node

frequent item node

Fig. 2. Pattern trees constructed from database D using RP-Tree

3.3 RP-Tree with Information Gain

Rules that predict the occurrence of rare-items are more interesting than rules that pre-
dict the occurrence of frequent items. To identify these rules, RP-Tree has been ex-
tended using an information gain component (RP-Tree-IG) to remove frequent items
that are not good predictors of rare items. This is done by treating rare items as classi-
fications and each frequent item as a separate attribute. Transactions that contain more
than one rare item (and class) are converted into multiple transactions during the infor-
mation gain calculation so that the transaction contains only 1 rare item. For example,
{a, b, d, e}, where d and e are rare, is split into {a, b, d} and {a, b, e}.
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Information gain [7] is calculated as: IG(X) = Entropy(Y ) − Entropy(Y | X)
where Y is the set of rare items, and X is a frequent item. Frequent items that do not
have an information gain higher than a pre-defined threshold are not used for itemset
generation. Specifically, line 11 in Algorithm 1 and line 4 in Algorithm 2 becomes:

for item a ∈ tree where IG(a) ≥ minIG

where minIG is the minimum information gain threshold an item must meet to be used
for generating itemsets. Using the previous example, the classes Y are {d, f, e, g}, and
attributes X are {{a}, {b}, {c}}. The information gain of c is IG(c) = 1.971−1.842 =
0.129 bits. If, for example, minIG = 0.1, then c would be used for generating itemsets.

4 Experimental Results

In our experiments we compared the performance of ARIMA, FP-Growth, and RP-
Tree with and without the information gain component. We also generated rules from
these itemsets and compared the quality of these rules using the seven interest measures
examined in [8]: χ2, lift, confidence (all and max), coherence, cosine and Kulczynski
(abbreviated to kulc). The equations for calculating these measures are shown in Table
2. All algorithms were implemented in Java and executed on an Intel Core 2 Duo 2.33
GHz machine with 4GB of RAM running Windows 7.

In these experiments ARIMA and FP-Growth were modified in order to obtain com-
parable results within a reasonable time. The ARIMA algorithm was modified in two
ways. Firstly, the absolute minimum support (corresponding to minRareSup in RP-
Tree) may now be greater than 1. An itemset must meet this support threshold to be
included in the result. This is necessary to allow the removal of noisy itemsets, and to
allow ARIMA to finish in a reasonable time without setting minFreqSup to an extremely
low value. Secondly, candidate support count is done by building a tree structure with
candidates from each level, which is more efficient than iterating through each itemset
for each transaction. The FP-Growth algorithm was modified to find rare itemsets by
generating all itemsets that meet minRareSup, then removing all itemsets that exceed
minFreqSup.

Experiments comparing RP-Tree and RP-Tree-IG with Rarity and AfRIM have been
omitted since they use a level-wise approach similar to ARIMA, and their performance
compared to ARIMA has already been reported in detail in [2] and [3]. It is sufficient
to note that AfRIM and Rarity can perform several orders of magnitude faster than
ARIMA under specific conditions, such as a low number of rare itemsets, or when
there is a small number of items. However, in general, AfRIM performs 2-3 times faster,
while Rarity performs about 30 times faster than ARIMA.

Nine datasets from UCI Repository [9] were used in the experiments: Connect-4,
Congressional Voting Records (Voting), Primary Tumor (Tumor), Zoo, Teaching Assis-
tant Evaluation (Teaching), Flags, Adult, Dermatology and Soybean Large (Soybean).

4.1 Itemset Generation Performance

In this section we compare the time taken for itemset generation for ARIMA, FP-
Growth, RP-Tree and RP-Tree-IG. We use the same minFreqSup and minRareSup
threshold across all experiments.
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Table 2. Rule Interest Measures [8]

Measure Definition

χ2 ∑ (observed−expected)2

expected

Lift(X → Y ) sup(X∪Y )
sup(X)sup(Y )

AllConf (X → Y ) sup(X∪Y )
max(sup(X),sup(Y ))

MaxConf (X → Y ) max{ sup(X∪Y )
sup(X) , sup(X∪Y )

sup(Y ) }
Coherence(X → Y ) sup(X∪Y )

sup(X)+sup(Y )−sup(X∪Y )

Cosine(X → Y ) sup(X∪Y )√
sup(X)sup(Y )

Kulc(X → Y )
sup(X∪Y )

2 ( 1
sup(X) + 1

sup(Y ) )

Table 3. Time taken for itemset generation

ARIMA FP-Growth RP-Tree RP-Tree-IG

Dataset Itemsets Time (s) Rel. time Itemsets Time (s) Rel. time Itemsets Time (s) Rel. time Itemsets Time (s) Rel. time
Connect-4 46428 292.53 32.30 46428 9.06 1.00 35494 8.72 0.963 57 2.58 0.285
Voting 1437652 1099.35 230.86 1437652 4.76 1.00 225634 0.87 0.184 16 0.56 0.119
Tumor 1111993 699.12 178.53 1111993 3.92 1.00 309698 0.94 0.239 17 0.15 0.039
Zoo 484139 496.12 194.94 484139 2.55 1.00 117934 0.87 0.343 6 0.05 0.019
Teaching 281 0.38 4.28 281 0.09 1.00 118 0.10 1.067 12 0.05 0.573
Flags 233533 962.66 372.55 233533 2.58 1.00 185 0.33 0.129 8 0.01 0.004
Adult 72658 340.60 47.37 72658 7.19 1.00 57463 6.45 0.898 50 3.65 0.508
Dermatology - - - 4.90E+08 1419.537 1.00 9.12E+07 265.206 0.187 2.37E+06 270.562 0.191
Soybean - - - 1.67E+08 1184.961 1.00 4.34E+06 15.902 0.013 1.40E+05 14.913 0.013

Table 3 shows, for each dataset, the number of itemsets generated, the absolute time
taken for each algorithm. The relative time compared to FP-Growth is also given, with
relative time for FP-Growth is set to 1.0. The differences in the number of itemsets are
due to the types of rare itemsets each algorithm can generate. ARIMA and FP-Growth
both generate the complete set of rare itemsets, RP-Tree generates only rare-item item-
sets, and RP-Tree-IG generates rare-item itemsets using items that meet an information
gain threshold. Note that the results for ARIMA for the Dermatology and Soybean
datasets have been excluded since execution did not complete within 2 hours. The run-
time for ARIMA is more than 32 times longer than FP-Growth in all datasets except
Teaching. This is due to the Teaching dataset being a fairly small dataset, and overhead
takes up a large proportion of the time taken. Realistically, most real world datasets
would be of a reasonable size and the overhead is negligible. We also see that time
taken for RP-Tree-IG is consistently less than that of RP-Tree, which is in turn less than
FP-Growth. The time taken for ARIMA is significantly longer than FP-Tree due to the
computationally expensive candidate generation and pruning steps. The differences in
time taken for RP-Tree and RP-Tree-IG are the result of pruning transactions without
any rare items, and pruning itemsets without any rare items above the minIG thresh-
old, respectively. Transaction pruning reduces the size of the initial tree generated, and
reduces the amount of computation required and the number of rare itemsets found.

4.2 Changes in Rule Quality

Rules were generated from the itemsets found using ARIMA/FP-Growth (both of which
generate the complete set of rare itemsets), RP-Tree and RP-Tree-IG. For all algorithms,
parameters are: minFreqSup = 15% and minRareSup = 5. For RP-Tree with information



286 S. Tsang, Y.S. Koh, and G. Dobbie

Table 4. UCI Datasets

FP-Growth without single prefix path optimisation (removing frequent patterns)

Dataset Itemsets Rules Time (s) Support Conf χ2 Lift AllConf Coherence Cosine Kulc MaxConf
Connect-4 9.55E+05 243 1317 19.374 0.999 911.416 49.296 0.014 0.014 0.097 0.507 0.999
Voting 2.11E+06 46 425 56.935 0.918 56.094 1.918 0.273 0.267 0.50 0.596 0.918
Tumor 3.40E+06 26858 489 18.099 0.939 12.643 1.686 0.097 0.096 0.281 0.518 0.939
Zoo 6.49E+05 102932 59 11.497 0.951 16.157 2.283 0.272 0.266 0.483 0.611 0.951
Teaching 281 53 <1 6.849 0.992 19.608 3.408 0.170 0.170 0.347 0.581 0.992
Flags 1.50E+08 137133 25394 6.546 0.997 4.064 1.619 0.054 0.054 0.224 0.526 0.997
Adult 1.88E+06 83 1640 1822.120 0.944 2427.051 4.345 0.090 0.088 0.204 0.517 0.944
Dermatology 4.90E+08 29613244 186224 34.352 0.938 10.964 1.375 0.132 0.131 0.343 0.535 0.938
Soybean 1.67E+08 47519598 64834 40.013 1.000 21.678 1.471 0.192 0.192 0.435 0.596 1.000

RP-Tree

Dataset Itemsets Rules Time (s) Support Conf χ2 Lift AllConf Coherence Cosine Kulc MaxConf
Connect-4 8.96E+05 243 1270 19.374 0.999 911.416 49.296 0.014 0.014 0.097 0.507 0.999
Voting 3.38E+05 46 46 56.935 0.918 56.094 1.918 0.273 0.267 0.500 0.596 0.918
Tumor 1.41E+05 26858 154 18.099 0.939 12.643 1.686 0.097 0.096 0.281 0.518 0.939
Zoo 1.79E+05 102932 15 11.497 0.951 16.157 2.283 0.272 0.266 0.483 0.611 0.951
Teaching 118 49 <1 6.673 1.000 20.319 3.506 0.172 0.172 0.347 0.586 1.000
Flags 4.69E+07 137048 6517 6.533 0.997 4.061 1.619 0.054 0.054 0.223 0.526 0.997
Adult 1.85E+06 80 1614 1623.950 0.945 2513.977 4.469 0.087 0.085 0.197 0.516 0.945
Dermatology 9.12E+07 29593672 26005 34.340 0.938 10.966 1.376 0.132 0.131 0.343 0.535 0.938
Soybean 4.34E+06 47368525 1150 40.000 1.000 21.704 1.472 0.192 0.192 0.435 0.596 1.000

RP-Tree with Information Gain (minIG = 0.25)

Dataset Itemsets Rules Time (s) Support Conf χ2 Lift AllConf Coherence Cosine Kulc MaxConf
Connect-4 10803 0 3 n/a n/a n/a n/a n/a n/a n/a n/a n/a
Voting 613987 46 11 56.935 0.918 56.094 1.918 0.273 0.267 0.5 0.596 0.918
Tumor 500 2 < 1 9.000 1.000 15.487 2.748 0.071 0.071 0.266 0.536 1.000
Zoo 47364 1140 1 12.039 0.960 24.611 2.808 0.348 0.342 0.551 0.654 0.960
Teaching 51 8 <1 7.125 1.000 58.796 8.138 0.416 0.416 0.591 0.708 1.000
Flags 8167 12 <1 11.750 0.993 41.297 4.245 0.261 0.259 0.49 0.627 0.993
Adult 19397 7 2 1151.286 0.958 1070.297 2.029 0.047 0.047 0.184 0.502 0.958
Dermatology 615585 63869 14 39.003 0.961 13.887 1.336 0.148 0.147 0.37 0.554 0.961
Soybean 292424 257477 8 40.000 1.000 28.510 1.620 0.211 0.211 0.457 0.606 1.000

gain minIG is set to 0.25. Only rules that met the minimum confidence of 0.9 and lift
of 1.0 were included for analysis. Table 4 shows the number of rules retained for each
dataset and algorithm, the average support and confidence, and the average values for
each of the seven measures listed in Table 2.

For the Connect-4 and Adult datasets, FP-Growth and RP-Tree found a very similar
number of itemsets. For the remaining seven datasets, RP-Tree generated significantly
fewer itemsets compared to FP-Growth, ranging from 42.0% for Adult to 2.60% for
Soybean. However, the number of rules that met the confidence and lift thresholds were
either identical or very similar. This shows that the set of rare itemsets that are ignored
by RP-Tree does not tend to be interesting, since these itemsets do not generate rules
that meet both the confidence and lift thresholds. Since fewer itemsets are generated by
RP-Tree compared to FP-Growth, the time required for rule generation is also less: for
example, time taken for rule generation for RP-Tree for the soybean dataset is reduced
to 1.8% of that for FP-Growth, while the number of association rules retained is 99.7%
of FP-Growth. Overall the time taken for RP-Tree is lower than FP-Growth.

The Information Gain component for RP-Tree results in far fewer rules than RP-
Tree for all datasets except Voting, with no change, and tends to generate rules that are
of higher quality. For five datasets (Zoo, Teaching, Flags, Soybean and Dermatology)
there are increases in most of the seven interest measures. However, for one dataset
(Adult), the measures decreased. There were no rules generated at all for Connect-4. The
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reduction in the number of rules is due to the minIG threshold reducing the number of
items that can participate in itemsets. Overall, the information gain component tends to
selectively retain rules that are more interesting according to the seven interest measures.

Case Study. From the Teaching dataset, FP-Growth, RP-Tree and RP-Tree-IG gener-
ated 53 rules, 49 rules, and 8 rules respectively. The interest measures of the 4 additional
rules generated by FP-Growth from non-rare-item itemsets are shown in Table 5. Rules
1 and 2 have lower than average values for confidence and all interest measures. Rules
3 and 4 have lower values for confidence, lift, kulc and maxConf; and higher values for
χ2, allConf, coherence and cosine. 8 association rules were generated using RP-Tree-
IG. Of the 8 rules, 6 had higher than average values for confidence and all 7 interest
measures compared to FP-Growth, while the remaining 2 had lower values.

From the Adult dataset, FP-Growth, RP-Tree and RP-Tree-IG generated 83 rules, 80
rules and 7 rules respectively. The 3 additional rules generated by FP-Growth had lower
than average values for confidence, χ2, lift and maxConf; and higher values for allConf,
coherence, cosine and kulc, as shown in Table 5 . The 7 rules generated all had several
measures that were lower than the average compared to FP-Growth.

The omission of non-rare-item itemsets by RP-Tree only has a small effect on the
number and quality of association rules generated compared to FP-Growth, since the
additional rules are of average quality and are few in number compared to the overall
number of rules generated.

Table 5. Non-rare-item itemsets generated by FP-Growth

Dataset Rule ID Confidence χ2 Lift AllConf Coherence Cosine Kulc MaxConf

Teaching

1 0.900 0.585 1.114 0.074 0.073 0.258 0.487 0.900
2 0.900 0.227 1.062 0.070 0.070 0.252 0.485 0.900
3 0.900 21.385 3.315 0.220 0.214 0.444 0.560 0.900
4 0.900 21.385 3.315 0.220 0.214 0.444 0.560 0.900

Adult
1 0.928 88.662 1.034 0.160 0.158 0.386 0.544 0.928
2 0.908 208.679 1.062 0.170 0.168 0.393 0.539 0.908
3 0.915 29.765 1.019 0.164 0.161 0.387 0.539 0.915

5 Conclusions and Future Work

We present a new method for finding rare association rules in large databases. To our
knowledge, this is the first algorithm that uses a tree structure to mine rare itemsets.
Our algorithm finds a subset of all rare itemsets, which we call rare-item itemsets. We
evaluated our method by comparing the quality of association rules generated against
those generated using the FP-Growth algorithm from 9 datasets. We found that, in the
majority of cases, RP-Tree generated far fewer itemsets for some datasets compared
to FP-Growth. This meant that rule generation took much less time for RP-Tree than
FP-Growth. However, at the same time, there was very little reduction in the number
of rules that met the minimum confidence and lift thresholds. This shows that rare-item
itemsets are more interesting since they contribute to almost all the rules that pass the
thresholds, and the omission of non-rare-item itemsets by RP-Tree does not reduce rule
quality, and in most cases, improves the overall rule quality in the set.
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In our future work, we intend to find other ways of focusing on more potentially
interesting association rules, such as rules that contain only rare items as the consequent.
In addition, we intend to investigate the effect of the minRareSup on the quality of rules
generated by RP-Tree, and to find ways of dealing with noise and removing coincidental
non-rare-item itemsets.
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Co-clustering with Augmented Data Matrix
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Abstract. Clustering plays an important role in data mining as many
applications use it as a preprocessing step for data analysis. Traditional
clustering focuses on the grouping of similar objects, while two-way co-
clustering can group dyadic data (objects as well as their attributes)
simultaneously. Most co-clustering research focuses on single correla-
tion data, but there might be other possible descriptions of dyadic data
that could improve co-clustering performance. In this research, we ex-
tend ITCC (Information Theoretic Co-Clustering) to the problem of co-
clustering with augmented matrix. We proposed CCAM (Co-Clustering
with Augmented Data Matrix) to include this augmented data for bet-
ter co-clustering. We apply CCAM in the analysis of on-line advertising,
where both ads and users must be clustered. The key data that connect
ads and users are the user-ad link matrix, which identifies the ads that
each user has linked; both ads and users also have their feature data, i.e.
the augmented data matrix. To evaluate the proposed method, we use
two measures: classification accuracy and K-L divergence. The experi-
ment is done using the advertisements and user data from Morgenstern,
a financial social website that focuses on the advertisement agency. The
experiment results show that CCAM provides better performance than
ITCC since it consider the use of augmented data during clustering.

1 Introduction

Co-clustering, the process of clustering dyadic data, has been a hot topic with
many concern in the past decade. Co-clustering can be applied to various data
mining applications, for example, in text mining to identify similar documents
and their interplay with word clusters, in social recommendation systems to
create recommendation systems that predict user movie ratings based on the
co-clustering relationship between user groups and movie clusters [1], in bioin-
formatics to find the relationships between genes and data features. However, in
addition to the dyadic data, we might also have other descriptions, called aug-
mented data that could be important in clustering. For example, in addition to
user-movie click through data in user-movie recommendation systems, we may
also have user profiles and movie descriptions; in text mining, documents might
have author descriptions and publisher information. In this paper, we consider
the problem of co-clustering with augmented data.

This study was motivated by a cooperation with the Umatch website, which
runs an online advertising service called Ad$Mart. Similar to Google’s AdSense,

A. Cuzzocrea and U. Dayal (Eds.): DaWaK 2011, LNCS 6862, pp. 289–300, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Ad$Mart share ads profit with users who put links on their webspace. The
idea is that an advertiser pays a low cost for its products to be shown on the
user’s self-portrait (i.e. the member’s webspace), while the platform provider
shares advertising profits with the registered members who link to the ads on
their web space to endorse the product. Note that the profit is shared based
on the activity scores of the registered member, not based on CPC (cost per
click) of the readers. Since Ad$Mart services is built on a community entry
focused on financial management and monetization, the website also provide risk
preference analysis (through Lohas lifestyle survey) to support their members
in activities such as financial Olympia, world-wide asset allocation, and other
professional competitions. Thus, in addition to user-ad link data, the system
also bears two augmented matrices: user profiles and advertisement features. The
goal of Ad$Mart is to create a triple-win commercial platform for the advertisers,
registered users and platform provider.

To fully utilize augmenteddata,weproposed a newmethod calledCo-Clustering
with Augmented data Matrix (CCAM). We extent the ITCC (Information The-
oretic Co-Clustering) algorithm [5] to consider not only the correlation matrix
p(A, U) between ads and users, but also the row (ads) description matrix and col-
umn (users) description matrix. We treat these three normalized non-negativema-
trices as a joint probability distribution p(A, U), p(A, S) and p(U, L), then define a
unified information theoretic formulation for this task. The ads descriptions con-
strain the user clusters, as well as the user descriptions constrain the ads clusters.
The objective of ITCC is to minimize the loss function in the mutual information
between the two random variables of the three matrices simultaneously.

In addition to formulate the CCAM problem and algorithms, we also pro-
pose two evaluation methods for the co-clustering task: the classification-based
evaluation and the mutual information based evaluation. The former uses the
F-measure of classification models to indicate the performance of a clustering.
Since the data does not have manual labels as answers for classification veri-
fication, we use clustering result as the target labels for building classification
models. The second evaluation method exploits the nature of co-clustering by
measuring the mutual information between user groups and ad clusters.

The rest of this paper is organized as follows. In Section 2, we give an overview
of related works. The problem will be defined in Section 3. Our algorithm will
be stated in Section 4. In Section 5, we present our experiments and evaluations.
Section 6 concludes the paper and gives some directions for future research.

2 Related Work

Clustering is a kind of data mining technique that could be used to group the sim-
ilar objects, and has much application such as user-based web search [15], collab-
orative filtering [3], and market-basket data analysis. However, the relationship
between row and column are not fully considered in the one-way clustering algo-
rithm. For this reason, the two-way co-clustering issue has been arisen to group
the dyadic data simultaneously. There are mainly three classes of Co-clustering
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issues: ITCC (Information Theoretic Co-Clustering), MFCC (Matrix Factoriza-
tion Co-Clustering) and MOCC (Model-based Overlapping Co-Clustering).

Co-clustering based on information theory has been concerned since 2000.
Slonim (2000) et al. [14] start the research on Information Theoretic Co-Clustering
(ITCC) where they proposed the concept of document clustering based on word
cluster via information theory. Dhillon (2003) et al. [5] proposed the ITCC al-
gorithm by minimizing the difference in mutual information (between document
and word) before and after clustering and decomposing the objective function
based on the K-L divergence, they design a co-clustering algorithm based on it-
erative assignment of documents and words to the best cluster. Banerjee et al. [2]
extended the ITCC and suggested a generalized maximum entropy co-clustering
approach by appealing to the minimum of Bregman information principle.

MFCC (Matrix Factorization Co-Clustering) method has been proposed by
Long et al. (2005) [9] where they suggested using the block value decomposition
to factorize the correlation matrix into three approximation matrix, and solved
the co-clustering problem by optimization method. Ding et al. (2005) [6] gave a
similar co-clustering approach based on nonnegative matrix factorization. Later,
they add the idea of orthogonal constrain to optimize the nonnegative matrix
factorization problem [7], and reach better co-clustering performance.

MOCC (Model-based Overlapping Co-Clustering) [11] solves the co-clustering
problem by assuming that topic model to capture the correlation between the
dyadic data. Shafiei et al. [12] proposed a generative model for text documents
based on a series connection of two Latent Dirichlet Allocation (LDA) models,
in which one controls the row cluster generation and the other select the column
cluster based on row cluster. The model is able to group both words and doc-
uments simultaneously. Shan and Banerjee [13] used a similar architecture and
design Bayesian co-clustering method.

In addition to research on co-clustering algorithms, there are also researches
on applications of co-clustering. Dai et al. [4] proposed a co-clustering based
classification algorithm to classify out-domain data. They assume that in-domain
data and out-domain data share the similar distribution and propagate the class
structure from in-domain data to out-domain data via transfer learning. Chen
et al. [3] extend Ding’s MFCC algorithm to help the collaborative filtering to
predict ratings in recommendation systems. Li et al. [8] presented a novel cross-
domain collaborative filtering method which consider the co-clustering result
as the codebook, and transfer knowledge from rating matrix in one domain to
remedy the sparsity of the rating matrix in a target domain.

While the goal of this paper is also a form of co-clustering, we have two addi-
tional matrices that are different from those appearing in the previous work. In
the next section, we will give more detailed descriptions of our problem definition
and algorithms.

3 Problem Definition

Let A, U, S, and L be discrete random variables such that A denotes the ads,
ranging from {a1, . . . , am}, U represents the users, ranging from {u1, . . . , un}, S
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denotes the ad features, which have been discretized and ranged from {s1, . . . , sr}
and L denotes the possible answers to the user Lohas questionnaire, ranging from
{t1, . . . , tv}. Let p(A, U)denote the joint probability distribution of the ad-user
link matrix as an m × n matrix, p(A, S) represent the joint distribution of the
ad feature matrix as an m× r matrix, and p(U, L) indicate the joint probability
distribution of the user Lohas matrix as an n× v matrix.

We are interested in simultaneously clustering or quantizing A into k disjoint
or hard clusters and U into l disjoint or hard clusters. Let the k clusters of A be
written as {â1, . . . , âk}, and the l clusters of U be written as {û1, . . . , ûl}. Our
goal is to find CA and CU which map each ad ai / user uj to some ad cluster
CA(ai) / user group CU (uj), respectively.

CA : {a1, . . . , am} −→ {â1, . . . , âk}
CU : {u1, . . . , un} −→ {û1, . . . , ûl}

(1)

For simplicity, we will write Â = CA(A) and Û = CU (U) where Â and Û
are random variables that are deterministic functions of A and U, respectively.
To measure the quality of co-clustering, we refer the characteristic of mutual
information. Let X and Y be random variable sets with a joint distribution
p(x, y) and marginal distribution p(x) and p(y). The mutual information I(X ; Y )
is defined as

I(X ; Y ) =
∑

x

∑
y

p(x, y) log
p(x, y)

p(x)p(y)
(2)

Mutual information is a measure of the dependency between random variables.
It is always non-negative, and it is zero if and only if the variables are statistically
independent. The idea is that the higher the mutual information does, the better
the clustering result is. Therefore, we can measure the quality of a co-clustering
(Â, Û) by maximizing its mutual information I(Â; Û), which is equivalent to
minimizing

I(A; U)− I(Â; Û) (3)

since I(A; U) is fixed. This form of loss function is the same as that used in [5].
Now to incorporate ad augmented data, we maximize the mutual information
I(Â; Ŝ) between ad cluster and ad feature after co-clustering, which is equivalent
to minimizing the mutual information loss as follows.

I(A; S)− I(Â; S) (4)

Similarity, we incorporate user augmented data by maximizing the mutual in-
formation between user group and their profile data I(Û ; L), which is equivalent
to minimizing the loss in mutual information after co-clustering as

I(U ; L)− I(Û ; L) (5)

Combining Eq. (3), (4) and (5), the loss function of co-clustering with augmented
data matrix can be defined as follow. Due to space limitation, we only show the
necessary proof in this paper.
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Definition 1. For a fixed co-clustering (Â, Û), we would like to minimize

f(Â, Û) = [I(A; U)−I(Â; Û)]+λ·[I(A; S)−I(Â; S)]+ϕ·[I(U ; L)−I(Û ; L)] (6)

subject to constraints on the number of desired row and column clusters, where λ
and ϕ are the trade-off parameter that balances the effect to ad clusters or user
groups.

Lemma 1. For a fixed co-clustering (Â, Û), we can re-write the loss in mutual
information as K-L divergence or relative entropy measure as

f(Â, Û) = D(p(A, U)‖q(A, U))+ λ ·D(p(A, S)‖q(A, S))+ ϕ ·D(p(U, L)‖q(U, L))
(7)

where q(A, U), q(A, S) and q(U, L) are the distributions of the form

q(a, u) = p(â, û)p(a | â)p(u | û), where â = CA(a) and û = CU (u) (8)
q(a, s) = p(â, s)p(a | â), where â = CA(a) (9)
q(u, l) = p(û, l)p(u | û), where û = CU (u) (10)

4 Co-clustering with Augmented Data Matrix Algorithm

In this section, we give a description of co-clustering with augmented data, which
minimizes the objective function of Eq.(6). The objective function is a multiple
function and is hard to optimize. Therefore, our goal is to simplify the optimiza-
tion. Lemmas 2 represents alternative approaches, which allow us to reduce the
divergence values iteratively.

Lemma 2

D(p(A, U)‖q(A, U)) =
∑

â∈Â

∑
a∈â

p(a)D(p(U |a)‖q(U |â))

=
∑

û∈Û

∑
u∈û

p(u)D(p(A|u)‖q(A|û)) (11)

D(p(A, S)‖q(A, S)) =
∑
â∈Â

∑
a∈â

p(a)D(p(S|a)‖q(S|â)) (12)

D(p(U, L)‖q(U, L)) =
∑
û∈Û

∑
u∈û

p(u)D(p(L|u)‖q(L|û)) (13)

Proof. Since Eq. (11) is proved in [5], we focus on the rest two equations.

D(p(A, S)‖q(A, S))
=

∑
â∈Â

∑
a∈â

∑
s∈S

p(a, s) log p(a,s)
q(a,s) =

∑
â∈Â

∑
a∈â

∑
s∈S

p(a, s) log p(a,s)
p(â,s)p(a|â)

=
∑

â∈Â

∑
a∈â

∑
s∈S

p(a, s) log p(a)p(s|a)

p(s|â)p(â) p(a)
p(̂a)

=
∑

â∈Â

∑
a∈â

∑
s∈S

p(a)p(s|a) log p(s|a)
p(s|â)

=
∑

â∈Â

∑
a∈â

p(a)
∑
s∈S

p(s|a) log p(s|a)
q(s|â) =

∑
â∈Â

∑
a∈â

p(a)D(p(S|a)‖q(S|â))

(14)



294 M.-L. Wu, C.-H. Chang, and R.-Z. Liu

Similarly, we could use the same argument to prove Eq.(13).

D(p(U, L)‖q(U, L))
=

∑
û∈Û

∑
u∈Û

∑
l∈L

p(u, l) log p(u,l)
q(u,l) =

∑
û∈Û

∑
u∈Û

∑
l∈L

p(u, l) log p(u,l)

p(û,l)p(u|l̂)

=
∑

û∈Û

∑
u∈û

∑
l∈L

p(u, l) log p(u)p(l|u)

p(l|û)p(û) p(u)
p(û)

=
∑

û∈Û

∑
u∈û

∑
l∈L

p(u)p(l|u) log p(l|u)
p(l|û)

=
∑

û∈Û

∑
u∈û

p(y)
∑
l∈L

p(l|u) log p(l|u)
q(l|û) =

∑
û∈Û

∑
u∈û

p(u)D(p(L|u)‖q(L|û))

(15)

Algorithm 1. Co-Clustering with Augmented data Matrix (CCAM) Algorithm
Inputs:

The joint probability distribution p(A,U), p(A,S),and p(U, L), k is the desired
number of row clusters and l is the desired number of column clusters. Initial
co-clustering (C

(0)
A , C

(0)
U ).

Initialization:
Set iteration t=0, and compute the joint probability distribution q(t)(A,U),
q(t)(A,S), and q(t)(U, L) based on (8), (9) and (10), respectively.

Outputs:
The partition function (C

(t)
A and C

(t)
U )

while f (t)(Â, Û) − f (t+2)(Â, Û) is greater than (10−3) do
1. Compute row clusters: For each row a, find its new cluster index by

C
(t+1)
A (a) = argmin

â

{p(a)D(p(U |a)‖q(t)(U |â))+λ·p(a)D(p(S|a)‖q(t)(S|â))} (16)

2. Update the probability distribution q(t+1)(A, U) and q(t+1)(A,S) based on

C
(t+1)
A and C

(t+1)
U , where C

(t+1)
U = C

(t)
U and q(t+1)(U, L) = q(t)(U, L).

3. Compute column clusters: For each column u, find its new cluster index by

C
(t+2)
U (u) = argmin

û

{p(u)D(p(A|u)‖q(t)(A|û)) + ϕ · p(u)D(p(L|u)‖q(t)(L|û))}

(17)

4. Update the probability distribution q(t+2)(A,U) and q(t+2)(U, L) based on

C
(t+2)
U and C

(t+2)
A , where C

(t+2)
A = C

(t+1)
A and q(t+2)(A, S) = q(t+1)(A,S).

end while

Based on Lemmas 2, the co-clustering with augmented data matrix algorithm
is derived. This algorithms starts with an initial co-clustering (C(0)

A , C
(0)
U ) and it-

eratively refines it to obtain a sequence of co-clustering: (C(1)
A , C

(1)
U ), (C(2)

A , C
(2)
U ),

. . . (C(t)
A , C

(t)
U ).

As shown in Algorithm 1, the algorithm chooses the best ad cluster for each
ad to minimize the multiplication of the marginal probability p(a) with the
linear combination of D(p(U |a)‖q(t)(U |â)) and D(p(S|a)‖q(t+1)(S|â)) in each
t+1 iteration. Similarly, the algorithm selects the best user group for each user
to minimize the multiplication of the marginal q(u) with the linear combination
of D(p(A|u)‖q(t+1)(A|û)) and D(p(L|u)‖q(t+1)(L|û)) in each t+2 iteration. Both
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minimizations can reduce the global objective function value. The algorithm
keeps iterating Step 1 through 4 until some desired convergence condition is
met, which is shown in Theorem 1, guarantees convergence.

Theorem 1 The CCAM algorithm could monotonically decreases the objective
function Eq.(6). Since

f (t)(Â, Û) ≥ f (t+1)(Â, Û) (18)

Proof Let Φ = ϕ ·D(p(U, L)‖q(t+1)(U, L)). For t = 1, 3, · · · , 2T + 1.

f (t)(Â, Û)

= D(p(A,U)‖q(t)(A, U)) + λ · D(p(A, S)‖q(t)(A,S)) + Φ

=
∑

â∈C
(t)
A

∑
a∈â

〈p(a)
∑

û∈C
(t)
U

∑
u∈û

p(u|a) ·log p(u|a)

q(t)(u|â)
+λ · p(a)

∑
s∈S

log p(s|a)

q(t)(s|â)
〉 + Φ

≥
∑

â∈C
(t)
A

∑
a∈â

〈p(a)
∑

û∈C
(t)
U

∑
u∈û

p(u|a) · log p(u|a)

q(t)(u|C(t+1)
A

(a))
+ λ · p(a)

∑
s∈S

log p(s|a)

q(t)(s|C(t+1)
A

(a))
〉

+Φ = D(p(A,U)‖q(t+1)(A,U)) + λ · D(p(A, S)‖q(t+1)(A, S)) + Φ

= f (t+1)(Â, Û)

The inequality follows from Step 1 since Ct+1
A (a) is choosen to minimize the

objective function. By using an identical argument, we can prove Eq.(18) for
t=2,4,· · ·, 2T+2. Let Λ = λ ·D(p(A, S)‖q(t+1)(A, S)).

f (t)(Â, Û)

= D(p(A,U)‖q(t)(A, U)) + ϕ · D(p(U,L)‖q(t+1)(U,L)) + Λ

=
∑

û∈C
(t)
U

∑
u∈û

〈p(u)
∑

â∈C
(t)
A

∑
a∈â

p(a|u) · log p(a|u)

q(t)(a|û)
+ϕ · p(u)

∑
l∈L

log p(l|u)

q(t+1)(l|û)
〉 + Λ

≥
∑

û∈C
(t)
U

∑
u∈û

〈p(u)
∑

â∈C
(t)
A

∑
a∈â

p(a|u) · log p(a|u)

q(t)(a|C(t+1)
U

(u))
+ ϕ · p(u)

∑
l∈L

log p(l|u)

q(t)(l|C(t+1)
U

(u))
〉

+Λ = D(p(A,U)‖q(t+1)(A,U)) + ϕ · D(p(U, L)‖q(t+1)(U, L)) + Λ

= f (t+1)(Â, Û)

We use the same threshold 10−3 in order for comparison between CCAM and
ITCC. Regarding to the computational complexity, suppose the total number of
ad-user co-occurrences is N. For each iteration, updating CA takes O(|A| · N)
since updating CU takes O((|A|+ |U |) ·N). The number of iterations is T, which
is based on the convergence of f (t)(Â, Û) − f (t+2)(Â, Û). Therefore, the total
computational complexity is O((|A| + |U |) ·N · T ).

5 Experiments Result and Evaluation

5.1 Data Description

The data used in our experiment belongs to the category of online contextual ad-
vertising. The data comes from Ad$Mart which is an online ad service launched
by a finance social web site called Umatch. The goal of Ad$Mart is to create
a triple-win commercial platform for advertisers, registered users and platform
provider. The idea is similar to AdSense where an advertiser pays a low cost for
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their products to be shown on the website, while the platform provider shares
advertising profits with the registered members who link the ads on their web
space to endorse the product. The difference is that AdSense automatically allo-
cates ads for webpages while Ad$Mart requires users to link ads by themselves.
Also the ads that are scheduled for display are ranked by their ad amounts (M)
one day early for linking.

The Ad$Mart data to be analyzed include three data matrix: the ad-by-user
link matrix, the ad feature matrix and the user Lohas matrix. The ad-by-user
link data contains the number of ad links for each user during 09/01/2009 to
03/31/2010. Since each ad has its own display schedule (from several days to sev-
eral weeks), we need discretization steps to categorize the various ad amounts
(M), user links (N), and rank orders (O) such that the ad feature matrix rep-
resents a joint distribution of the ads and some categories. Here, we use the
Sturges rule [10] to discretize M, N and O into 10 intervals.

As for user Lohas matrix, it contains choices of users to 24 survey questions
about their preference to life styles. Since each question has discrete (from 2 to
10) possible answers, we can directly use them to represent the categories for the
joint distribution. The number of users who are involved in Ad$Mart is 9,866
and the number of users who also played the Lohas game is 2,124 users. Also,
there are 530 ads, which have been displayed in the relevant period.
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Fig. 1. Evaluation of ad clustering

5.2 Comparison and Evaluation Methods

Cluster evaluation is usually done with classification accuracy based on ground
truth. Since there are no predefined categories in our data (both for ads and
users), we have to design an alternative way for the evaluation. In this paper, we
use the clustering result of the combined ad data (ad-by-user link matrix and ad
feature matrix) as the target labels for ad clustering; and similarly, the clustering
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result of the combined user data (user-by-ad link matrix and user Lohas data)
is used as the target labels for user clustering. We then apply classification
algorithm on ad data to test the F-measure of 10-fold cross validation as the
baseline. Similarly, we will also have the F-measure of the 10-fold cross validation
for user classification as baseline.

Now to examine the effectiveness of co-clustering, we reduce the columns of
ad-by-user link matrix to a smaller ad-by-user group matrix. The reduced data is
then added to our ad data for classification. Likewise, we can reduce the columns
of the user-by-ad link matrix to a smaller user-by-ad cluster matrix based on the
co-clustering and add it to the user data for classification. If the co-clustering is
well produced, we could somehow improve the classification performance both
for ad data and user data.

In a way, co-clustering with augmented data is confined by two additional
matrixes when maximizing the mutual information between ad clusters and user
groups, while single matrix co-clustering like ITCC directly optimizes the mu-
tual information between ad clusters and user groups. Theoretically, ITCC would
gain high mutual information than CCAM and baseline from co-clustering. How-
ever, in this paper, we will show that CCAM perform closely with ITCC and
outperform baseline, but CCAM is better in classification. In this paper, we also
implement ITCC as a comparison and evaluate the effectiveness of co-clustering
in terms of classification performance and mutual information of the ad clusters
and user groups.

5.3 Classification Based Evaluation

In this paper, we apply decision tree to build classification models and conduct
10-fold cross validation to evaluate the F-measure of the new ad data and user
data which are generated from co-clustering result as described above. We com-
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Fig. 2. Evaluation of user grouping
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pare CCAM with ITCC as well as the baseline approach which use the original
ad data and user data for classification.

We try different values of K (from K=2 to 5) and examine the performance.
For a given K, We use heuristic method to tune parameter λ and ϕ based on
classification performance. We first fix λ and try various ϕ from 0.2 to 1.0. The
average F-measure of ad classification and user classification does not change
with various ϕ. We suspect the reason to be the null values of many users.
Therefore, we fix ϕ = 1.0 and try various λ from 0.2 to 1.0. The best performance
can be achieved when λ = 0.6 for K=2, 4, λ=0.8, for K=3, and λ=0.2, ϕ=1.0
for K=5. Fig. 1 reveals that CCAM is better than ITCC and baseline in terms
of ad classification. Similarly, Fig. 2 shows that CCAM outperforms ITCC and
baseline in terms of user classification. By proper tuning of the parameters, we
can obtain better classification result than ITCC.
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Fig. 3. Mutual information

5.4 Mutual Information Based Evaluation

In order to calculate the mutual information I(Â; Û) of different co-clustering
results, we reduce the number of rows and columns based on the result of ad
cluster Â and user group Û to generate ad-cluster by user-group joint probability
matrix p(Â, Û).

p(â, û) =
∑
a∈â

∑
u∈û

p(a, u) (19)

We compare different clustering result from CCAM, ITCC and baseline to con-
struct the corresponding p(Â, Û). After we get p(Â, Û), we can calculate the
mutual information I(Â; Û). For various number of clusters, ITCC performs the
best because ITCC is optimized purely based on the p(A, U) as shown in Fig. 3.
However, CCAM has performance very close to ITCC and outperforms baseline
significantly.
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6 Conclusion

Co-clustering issue has been arisen in the past decade. In a way, the problem is to
achieve the dual goals of row clustering and column clustering. Although many
co-clustering researches have been proposed for two-dimensional data matrix,
we sometimes have additional data for the rows and columns. Therefore in this
paper, we propose a novel co-clustering algorithm, CCAM to simultaneously
co-cluster the dyadic data with two augmented data matrix. We use a linear
combination of the mutual information for the three matrixes as the objective
function and iteratively update the nearest cluster for each ad and user based
on the deduced theorem.

To evaluate the effectiveness of co-clustering with augmented matrix, we
present two evaluation methods, classification based evaluation and mutual in-
formation based evaluation. In average, CCAM could achieve better performance
than ITCC with proper tuning on the parameters. Meanwhile, CCAM also
present a comparable performance in the mutual information evaluation.
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Abstract. Classification modeling is one of the methods commonly employed 
for predictive data mining. Ensemble classification is concerned with the 
creation of many base models which are combined into one model for purposes 
of increasing classification performance. This paper reports on a study which 
was conducted to establish whether the use of information in the confusion 
matrix of a single classification model could be used as a basis for the design of 
ensemble base models that provide high predictive performance. Positive-
versus-negative (pVn) classification was studied as a method of base model 
design. Confusion graphs were used as input to an algorithm that determines the 
classes for each base model. Experiments were conducted to compare the levels 
of diversity provided by all-classes-at-once (ACA) and pVn base models using 
a statistical measure of dis-similarity. Experiments were also conducted to 
compare the performance of pVn ensembles, ACA ensembles, and single k-
class models using classification trees and multi-layer perceptron artificial 
neural networks.  The experimental results demonstrated that even though ACA 
base models provide a higher level of diversity than pVn base models, the 
diversity does result in higher predictive performance. The experimental results 
also demonstrated that pVn ensemble models can provide predictive 
performance that is higher than that of single k-class models and ACA 
ensemble models. 

Keywords: ensemble classification, pVn classification, confusion matrix, 
confusion graph, predictive data mining, data mining, artificial neural networks, 
classification trees. 

1   Introduction 

Predictive data mining is concerned with the creation of classification and regression 
models [1]. A classification model predicts the values of a qualitative variable while a 
regression model predicts the values of a quantitative variable. Ensemble 
classification [2], also known as model aggregation [3], is the process of constructing 
several base models which are then combined into one model for prediction. The use 
of ensemble classification has been studied by many researchers for example [4], [5], 
[6], [7] who have largely concentrated on modeling from small datasets. Typically a 
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large number of base models (e.g. 30) are used for the ensemble [3] in order to 
provide a high level of diversity among the base models. Diversity is essential for 
ensemble base model design since diverse base models do not make correlated errors 
[5], [7]. The studies reported in this paper were aimed at the design of ensemble base 
models from large datasets. Information contained in a confusion matrix for a single 
k-class model was used as a basis for base model design. The base models that are 
discussed are called positive-versus-negative (pVn) base models [8]. A large dataset 
of 494022 training and 311029 test instances was pre-processed and used for the 
experiments. A confusion graph which is derived from a confusion matrix was used 
as a basis for the design of pVn base models. It is demonstrated in this paper that pVn 
models of high performance can be obtained for classification tree and artificial 
neural network models when confusion matrix information is used as a basis for 
ensemble base model design. It is further demonstrated that, even though ACA base 
models provided higher levels of diversity, their predictive performance was lower 
than that of pVn base models for the dataset used for the experiments. The rest of the 
paper is organised as follows: Section 2 provides background to the studies reported 
in this paper. Section 3 provides a discussion of the methods used for ensemble model 
design and implementation. Section 4 provides a discussion of the experimental 
methods. Section 5 presents the experimental results to compare pVn and ACA 
ensemble model performance. Section 6 concludes the paper. 

2   Background 

All the methods employed for ensemble model design aim to achieve diversity and 
competence for the base models in order to achieve high levels of predictive 
performance [4], [5], [6], [8], [9], [10], [11]. Base models which make un-correlated 
errors are said to be diverse. A base model with high predictive performance is highly 
competent. Dietterich [12] has discussed five general categories of ensemble 
construction methods. The first category is Bayesian averaging. This involves the 
creation of all possible models from the training data and then combining the model 
predictions through Bayesian averaging. Dietterich [12] has observed that the purpose 
of Bayesian averaging is to reduce the uncertainty in the prediction, especially when 
the training set size is small. The second category of ensemble construction methods 
involves the manipulation of the training set instances in order to create many training 
sets that are then used to create ensemble base models. Bootstrap aggregation [3] is 
one method in this category. This method involves the creation of many training sets 
obtained through bootstrap sampling from a small dataset. Each bootstrapped training 
set is then used to construct one base model for the ensemble. Boosting [13] is a 
second method that falls in this category. Freund and Schapire [13] have implemented 
boosted ensemble base models by sequentially selecting instances that are difficult to 
predict for the current base model and assigning these instances a higher weighting 
for the next training set that is used in the sequence of base model creation. 

The third category involves the manipulation of the input features of the dataset. 
Here, a different subset of the input features is used for the construction of each base 
model. Random forests [14] and decision tree forests [10] are examples of this 
approach. The fourth category involves the injection of randomness in the structure of 
the base models. Base models of artificial neural network (ANN) ensembles are 
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commonly constructed using a different set of synaptic weights for each base model 
in order to inject randomness in the ensemble [5], [15].  Kwok and Carter [4] have 
studied the creation of classification tree base models where the selection of the 
feature used for splitting a classification tree node is randomised in order to obtain 
different tree structures across the ensemble. The fifth category of ensemble creation 
involves the manipulation of the target function. This manipulation is commonly 
achieved through problem decomposition of a multiclass (k-class)  prediction task into 
many one-class or two-class prediction tasks. Each one-class or two-class task is 
encoded as an binary classification problem. One-versus-all (OVA) classification 
[16], [17] involves the creation of k binary classifiers where each binary classifier is 

trained to predict the thj class in contrast to all the other 1−k  classes combined. 
Pairwise (PW) classification [7], [18] involves the creation of 21 /)k(k −  binary 

classifiers where each binary classifier is trained to predict the thi  class in contrast to 

the thj  class for all possible combinations of i and j, ji ≠ .  

Error correcting output code (ECOC) classification [19] also involves the 
binarisation of a multiclass prediction task. Binary strings called codewords are 
assigned to each class and used as a basis for the definition of new functions kb,..,b1  

to be learned by the binary classifiers. Each binary classifier (base model) is trained to 
learn (how to predict) one of the bit positions in the codewords. Prediction of a new 
instance involves the generation of a bitstring by the k base models (one bit per 
model). The class predicted by the ensemble is that class whose codeword is nearest 
(in Hamming distance) to the codeword generated by the ensemble. Bishop [15] and 
Jacobs et al. [20] have discussed learning problems for which the target function for 
classification has a different form in different regions of the instance space. Jacobs et 
al. [20] have proposed an ensemble modeling approach, called mixture of experts, 
where many ANN models are generated in the training process with each model 
having expertise in prediction for one region of the instance space. 

The method of pVn base model design using a confusion graph derived from a 
confusion matrix, as presented in this paper, falls in the category of target function 
manipulation. The method is related to the mixture of experts method since base 
models are created to be experts in predicting a subset of classes that a single k-class 
model has difficulty in separating. In this respect, the method is also a boosting 
method [1], [13], since the main objective of base model design is to concentrate on 
those aspects of the prediction task that are most difficult to model. Bishop [15] has 
observed that the expert models for the mixture of experts method can be identified 
during the training process as is done by Jacob et al [20], or the expert models may be 
designed manually if the prediction problem has an obvious decomposition. It is 
demonstrated in this paper that the information in a confusion matrix of a single k-
class model provides an obvious method for the manual decomposition of a k-class 
prediction task into a set of expert base models.  

3   Ensemble Base Model Design from Confusion Matrices 

It was stated in section 2 that pVn modeling combines the benefits of the mixture of 
experts model and the boosting approach to modeling, both of which are known to 
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improve predictive performance. This section provides a discussion of how confusion 
graphs can be used to design pVn ensemble base models, the algorithm used for 
selecting the classes for the pVn base models, and the method for combining pVn 
base model predictions. 

3.1   Confusion Graphs and pVn Base Models 

Positive-versus-negative (pVn) classification is concerned with the design of base 
models for multiclass prediction tasks for which the number of classes k (categories 
for the class variable) is more than three. pVn base model design is based on the 
analysis of the confusion graph of a single k-class (k > 3) model in order to determine 
the classes that should be included in each base model. Consider the confusion matrix 
of fig. 1 for a simple 4-class classification model. For purposes of simplicity, the 
leading diagonal cell counts are not shown. The off-diagonal confusion matrix cells 
with blank entries have zero counts.  The graph on the right is called a confusion 
graph [8]. A confusion graph consists of nodes which represent the classes for the 
prediction task and arcs (edges) which represent class confusion.  An arc )c,c( ji  

represents the fact that in the confusion matrix CM  the cell )c,c(CM ji has a non-zero 

count. The absence of an arc between two classes ic  and jc   in a confusion graph 

may be interpreted to mean that classes ic  and jc  do not share a decision boundary in 

the instance space [8].  
 
 

 

Fig. 1. Confusion matrix and confusion graph for a hypothetical classifier 

Boosting [1], [13] is a statistical method used to direct the greatest modeling effort 
towards those regions of the instance space where correct prediction is most difficult. 
The boosting technique may be extended to ensemble base model design by creating 
base models which specialise in predicting only the classes which share decision 
boundaries (are adjacent) in the instance space, and provide a large amount of training 
data for those classes in the model. Such base models are called positive-Versus-
negative (pVn) base models [8]. In a pVn base model, the classes which are adjacent 
are the positive classes. Any class which shares a decision boundary with one of the 
positive classes is called a negative class [8]. As an example, for fig. 1, models M13, 
M24 and M12 would be used as base models. M13 has class C1 and C3 as positive 
classes and C2 as the negative class. M24 has classes C2 and C4 as positive classes  
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Fig. 2. Algorithm for class selection for  pVn base models: adapted from Lutu [8] 

and class C1 as the negative class. M12 has classes C1 and C2 as positive classes and 
classes C3 and C4 as the negative classes. Each base model can predict one of its 
positive classes or class ‘other’ when presented with a test or query instance. The 
design of pVn base models is made possible when the confusion matrix for the single 
k-class model has off-diagonal cells with zero counts. Lutu [8] has called this the 
sparse confusion matrix property. 

Lutu [8] has proposed an algorithm for determining the pVn base models from a 
confusion graph. A summarised version the algorithm is given in fig. 2. The essence 
of the algorithm in fig. 2 is to identify the pVn base models, the positive classes (p-
classes), and the negative classes (n-classes) for each pVn base model. The method 
used to determine the number of training instance for each class that is used in a base 
model is discussed in section 4.2.   

3.2   Combination of Base Model Predictions 

In general, a probabilistic classifier outputs predictions for a query instance qx as a 

set of probabilistic scores { kf,...,f,f 21 } where if  is the posterior probability that 

instance qx  belongs to class ic  [11], [15], [21], [28], [30]. For a stand-alone (single 

k-class) classifier, the final prediction is typically of the form 

)f,c(prediction *
i

*
i=      (1) 

where *
if  is the largest value in { kf,...,f,f 21 } and *

ic  is the predicted class with the 

score *
if . Several classifier fusion methods for ensemble predictions have been 

proposed in the literature e.g. [11], [21]. These methods provide different ways of 

I. Analyse the confusion graph as follows: 
A.  Remove all arcs with a very low connectivity value (e.g. connectivity = 1, for one test set) 
B.  If  each node is fully connected to all the other  nodes then delete the weakest  outgoing link  
      (the outgoing arc  with the smallest weight) for each node. 
II. Make a copy of the confusion graph 
III. Process the confusion graph: 
Repeat 
       A. Select node with the lowest connectivity. Call it selnode. (break ties randomly) and  
            create a set whose elements are all  the nodes connected to selnode. Add selnode to 
           the set. Call the set a p-set. 
      B: Remove selnode from the graph  and all arcs that connect selnode to each of  the nodes   
           in the p-set from the graph 
 Until there are no arcs left in the graph. 
     C. For each p-set of nodes created in step A, if the p-set is a  proper subset of another p-set,  
          delete the p-set. 
    D. Assign the classes in each of the remaining  p-sets as the  positive classes for one model. 
    E.  For each model, create a set of nodes  for the negative classes for the model. Call this the 
         n-set. For each positive class in the model, add to the n-set, all classes that have an arc to  
         the class node, but are not in the p-set for the model. 
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combining the scores { kf,...,f,f 21 } produced by the ensemble base models, in order 

to determine the prediction by the ensemble. One classifier fusion method called the 
max rule [11], [21] computes the probabilistic score for each class as 

}f,..,f,fmax{f L
iii

comb
i

21=    (2) 

where j
if is the score for class ic  that is assigned by base model j, and L is the 

number of base models. The max rule selects the class with the best score defined as 

}f,...,f,fmax{f comb
k

combcombcomb
best 21=   (3) 

The methods adopted for the combination of pVn base model predictions assumes 
that each base model provides a prediction in the form of equation (1). Recall from 
section 3.1 that a pVn base model can predict one of the classes it is designed to 
predict or the class 'other'. The algorithm of fig. 3 was used to select the best 
prediction for a pVn ensemble. The net effect of applying equation (1) and the 
algorithm of fig. 3 is equivalent to the application of the max rule. 

 
 

 

Fig. 3. Algorithm for combining pVn base model predictions  

4   Experimental Methods 

Experiments were conducted to establish whether ensemble base models designed on 
the basis of a confusion matrix for a single k-class model provide a high level of 
predictive performance compared to ACA ensemble models. The dataset, data pre-
processing and algorithms used for the experiments are presented in this section. The 
preliminary experiments to generate the confusion matrices and confusion graphs are 
discussed. The base model designs for the dataset for each algorithm are presented. 
The methods for performance evaluation are also presented.  

4.1   Datasets and Algorithms for the Experiments 

The KDD Cup 1999 dataset available from the UCI KDD Archive [22] was used for 
the experiments. The KDD Cup 1999 dataset consists of two datasets: a training 
dataset and a test dataset. The small version of the training dataset with 494,022 
instances was used for the experiments. The test dataset consists of 311,029 instances. 
The training and test datasets have 41 features. The KDD Cup 1999 dataset is a 

1. If all pVn base models predict the class  ‘other’, then the ensemble prediction is  ‘none’ 

2. If only one pVn base model predicts a class  ic , and all the other pVn base models predict  

     other, then the ensemble prediction is ic  

3. If more than one pVn base model predicts a class ic , then select the class ic  which is  

     predicted with the largest value of if . 

4. If there is a tie on if between winning classes then break the tie randomly 
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common benchmark for the evaluation of intrusion detection systems (IDS). The 
training and test dataset consist of a wide variety of computer network intrusions 
(attack types) simulated for a military environment. The training dataset has 23 
classes (attack types) while the test dataset has 40 classes. The test set instances that 
belong to classes that do not appear in the training dataset were removed for the 
experiments. The 23 classes were grouped into five categories that were treated as the 
classes for prediction. The classes are: NORMAL, DOS, PROBE, R2L, and U2R. 
Shin and Lee [23] have used the same categories as the prediction task classes. 
Further pre-processing was conducted to balance the distribution of the attack types as 
recommended by Laskov et al. [24]. The final datasets used for the experiments had 
51930 training instances and 70539 test instances [8]. Random samples for training, 
validation and test data were taken from the datasets using sequential random 
sampling. Selection of the relevant features for classification was done using the 
decision rule based method of feature selection proposed by Lutu [8] and Lutu and 
Engelbrecht [25]. The See5 classification tree algorithm [26], [27] and the SPSSTM 
Statistics 17.0 multilayer perceptron (MLP) procedure for artificial neural networks 
[15] were used for the experiments. 

4.2   Preliminary Experiments for Confusion Matrix and Confusion Graph 
Creation 

The first step for the experimental studies was to create See5 and MLP ANN single k-
class models and generate the corresponding confusion matrices. Both models  
were created from the same training set of 4000 instances with an equal class 
distribution. Additionally, a validation set of 2000 instances was used for the MLP 
ANN model. The single k-class models were then tested on the same five test sets of 
size 350 instances and the resulting confusion matrices for each model were 
combined into one matrix. The confusion matrices for the single k-class models are 
shown in table 1.  

Table 1. Confusion matrices for See5 and MLP ANN single 5-class models 

Single 
model 

Actual 
class 

Predicted class 
NORMAL  DOS PROBE R2L U2R 

 
 
See5 

NORMAL    1 30 11 1 

DOS 32   15 10   

PROBE 4 17     198 

R2L 185   8   20 

U2R 70 10       

 
 
MLP ANN 

 NORMAL  DOS PROBE R2L U2R 
NORMAL   1  1 1 

DOS 9  87 2   

PROBE 3 42   27  

R2L 144  6 2  5 

U2R 142 4   56  
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Fig. 4. Confusion graphs for (a) See5 single 5-class model (b) MLP ANN 

Both matrices have the sparsity property and are therefore suitable for pVn 
modeling. The algorithm of fig. 2 was used to process the confusion graphs derived 
from the confusion matrices of table 1. Fig. 4 shows the confusion graphs after the 
application of steps I-A and I-B of the algorithm.  Application of the steps III-A 
through III-E of the algorithm to the See5 and MP ANN confusion graphs resulted in 
the identification of the pVn base models shown in table 2. Each base model is 
identified by the positive classes it is designed to predict. The training set size for 
each pVn base model used in the experiments is also shown in table 2. In order to 
balance the ratio of instances between each positive class and the negative class the 
instance proportions were set to 80% for all positive instances and 20% for the 
negative instances. The training set sizes for the MNDP, MNDR and MDPR base 
models were set to 4000 instances. The training set sizes for the MNRU and MNPU 
base models were reduced to 1900 instances to avoid excessive bootstrapping of the 
U2R instances. 

The base model design for the ACA ensembles used in the experiments is also 
given in table 2. The three base models are ACA1, ACA2 and ACA3. The ACA1 for 
See5 and ACA1 for MLP ANN are also the single k-class models used as a basis for 
pVn base model design. Each ACA base model was created from a training set of 
4000 instances with an equal class distribution. 

Table 2. Base model design for See5 and MLP ANN pVn and ACA base models 

Base models  
for: 

Base model 
name 

Base model classes Training set 
size positive classes  negative classes 

 
See5 pVn 
ensemble 

MNRU NORMAL, R2L, U2R DOS, PROBE 1900 

MNDP NORMAL,DOS, PROBE R2L, U2R 4000 

MNPU NORMAL, PROBE, U2R DOS,R2L 1900 
MLP ANN  
pVn 
ensemble 

MNRU NORMAL, R2L, U2R DOS,  PROBE 1900 

MNDR NORMAL, DOS, R2L PROBE, U2R 4000 

MDPR DOS, PROBE, R2L NORMAL, U2R 4000 
See5 and  
MLP ANN 
ACA 
ensembles 

ACA1 all classes not applicable 4000 

ACA2 all classes not applicable 4000 

ACA3 all classes not applicable 4000 
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4.3   Methods for Performance Evaluation 

It was stated in section 2 that base model diversity and competence are known to 
result in performance gains for ensemble models. Several measures of diversity have 
been reported in the literature. Pairwise diversity measures are concerned with 
measuring the diversity between all possible pairings of base models in an ensemble 
[7], [11]. The measures are derived from the counts in a 2x2 contingency table which 
records the performance of a pair of base models on a test set of n instances. The four 
counts (frequencies) stored in the contingency table are: wwwrrwrr n,n,n,n . These 

counts respectively indicate the number of instances for which both models make the 
correct prediction ( rrn ), the number of instances on which only one base model 

makes the correct prediction ( rwn and wrn ), and the number of instances on which 

both models make the wrong prediction ( wwn ). The disagreement measure between 

two base models im and jm is defined as [7], [10], [11] 

n

nn
Disagr wrrw

j,i

+
=     (4) 

This measure, which was used for the experiments on diversity, is related to the 
Sokal and Michener measure of similarity j,iSM  as j,ij,i SMDisagr −= 1  [1].  

Fawcett [28], [29] has provided a definition which distinguishes between discrete 
and probabilistic classifiers.  A discrete classifier assigns class labels to test or query 
instances based on a fixed score value (operating point) for determining class 
membership. A probabilistic classifier, on the other hand, assigns probabilistic scores 
for each class  ic  and can operate at different operating points. Predictive performance 

for discrete classification was measured in terms of mean accuracy and mean true 
positive rate (TPRATE) for each class. Two performance improvement measures 
namely BAacc accuracyaccuracy)B,A(Diff −= measuring the difference in accuracy, 

and BAtpr TPRATETPRATE)B,A(Diff −=  measuring the difference in class TPRATE 

values, were used to compare the predictive performance of the ensemble models. 
Receiver Operating Characteristic (ROC) analysis is commonly used to analyse the 

predictive performance of probabilistic classifiers under different operating conditions 
[28], [29], [30]. A ROC curve graphically depicts the relationship between the true 
positive rate (TPRATE) and the miss rate or false positive rate (FPRATE) of a 2-class 
probabilistic classifier for different operating conditions. Two important statistics 
used in ROC analysis are the Area Under the Curve (AUC) and the Gini 
concentration coefficient [21], [28], [29], [30], [31]. The AUC and the Gini 
concentration coefficient are related statistics and take values in the interval [0.0,1.0]. 
Hand and Till [30] have identified the following relationship between the AUC and 
the Gini concentration coefficient: )..AUC(Gini 502 −= x A probabilistic classifier 

has practical value if it has an AUC greater than 0.5 and a Gini concentration 
coefficient greater than 0. Given two classifiers, the classifier with the higher values 
of the AUC and Gini concentration coefficient provides a higher level of predictive 
performance. ROC analysis for a k-class (k>2) classifier requires the computation of 
the Volume Under the Surface (VUS) statistic [28], [29],[30]. The VUS may be 
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estimated by computing the mean AUC of all the one-versus-rest probabilistic 
classifiers [28], [29]. The pVn ensemble models were compared with single k-class 
models and ACA ensemble models using one-versus-rest ROC analysis.  

5   Experimental Results 

The experiments to determine the level predictive performance of pVn ensembles and the 
performance results are presented in this section. The pVn base model designs of table 2 
were used to create See5 and MLP ANN pVn base models which were combined into 
ensemble models using the algorithm in table 2. The ACA base model designs described 
in table 2 were used to create base models for the See5 ACA ensemble and MPL ANN 
ensemble. Each ACA ensemble was made up of three base models: ACA1, ACA2 and 
ACA3, which were combined using the max rule. Experiments were conducted to 
compare the level of diversity of pVn and ACA base models. Experiments were also 
conducted to compare the predictive performance of single, pVn ensemble and ACA 
ensemble models on discrete and probabilistic classification. 

5.1   Analysis of Base Model Diversity and Competence 

The disagreement measure presented in section 4.3 was used as a basis for measuring 
base model diversity. Diversity was measured on a class-by-class basis since a pVn 
base model does not predict all classes. Table 3 provides the disagreement measure 
results for the pVn and ACA base models using ten test sets. The results indicate that 
both the See5 and MLP ANN ACA base models provide higher levels of diversity 
compared to the pVn base models. Base model competence was measured in terms of 
the true positive rate on the positive classes for the pVn base models in order to 
facilitate comparison between the pVn and ACA base models. The results of table 4 
indicate that for both the See5 and MLP ANN algorithms, two out of three pVn base 
models have higher TRATE values on the positive classes combined compared to the 
ACA base models. 

Table 3. pVn and ACA base model diversity 

Ensemble 
model 
(base models) 

 
 
class 

mean 
Disagri,j  
 for class 

Ensemble 
model 
(base models) 

 
 
class 

mean 
Disagri,j  
for class 

See5 pVn 
 
(MNRU, 
MNDP, 
MNPU) 

NORMAL 0.05 See5 ACA 
 
(ACA1, ACA2, 
ACA3) 

NORMAL 0.07 
PROBE 0.02 PROBE 0.40 
U2R 0.55 U2R 0.00 
DOS 0.00 DOS 0.11 
R2L 0.00 R2L 0.01 

MLP 
ANN pVn 
 
(MNRU, MNDR, 
MDPR) 

NORMAL 0.03 MLP ANN 
ACA 
 
(ACA1, ACA2, 
ACA3) 

NORMAL 0.01 
DOS 0.08 DOS 0.11 
R2L 0.08 R2L 0.11 
PROBE 0.00 PROBE 0.14 
U2R 0.00 U2R 0.10 
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Table 4. pVn and ACA base model competence 

 
Ensemble  
model 

 
Base 
model 
name 
 

 
p classes 
for pVn 
model 

Mean 
TPRATE% 
on p classes 
for pVn 
model 

Mean TPRATE% on same classes as 
pVn,  for ACA  base model:  
ACA1 
(the single 
model) 

ACA2 ACA3 

See5 
pVn 
 

MNRU NORMAL, 
 R2L, U2R 

77.4 ± 2.6 67.0 ± 1.6 66.9 ±1.7 69.7  ± 1.5 

MNDP NORMAL, 
DOS,PROBE 

91.1 ± 1.9 68.1 ± 1.7 86.3 ±1.7 89.9  ± 1.3 

MNPU NORMAL, 
PROBE,U2R 

74.8 ± 0.4 66.5 ± 1.3 84.9 ±1.2 87.8  ± 0.8 

MLP ANN 
pVn 

MNRU NORMAL, 
 R2L, U2R 

62.4 ± 2.1 63.1 ± 2.2 65.6 ±1.7 63.7 ± 1.6 

MNDR NORMAL, 
 DOS, R2L 

81.6 ± 2.1 72.5 ± 3.3 70.6±2.3 75.2 ± 2.3 

MDPR DOS,  
PROBE, R2L 

79.7 ± 3.4 65.6 ± 5.9 67.5±2.0 72.1 ± 2.2 

5.2   Evaluation of Performance for Discrete Classification 

The pVn and ACA ensemble models were compared on predictive performance using 
the accuracy and class true positive rate (TPRATE) measures. Student’s paired 
samples t-test, the )B,A(Diff acc and )B,A(Diff tpr  measures were used to establish 

whether the pVn ensemble models provide significantly higher predictive 
performance compared to ACA ensembles.  

Table 5. Statistical tests to compare See5 ACA and pVn ensemble models  

Group name,  mean accuracy%, 
TPRATE% for 10  test sets  
See5 ensembles 

 
Student’s paired t-test (9 df) 

Performance 
improvement  
Diffacc(A,B)% 
or 
Difftpr(A,B)% 

Group A 
pVn ensemble 

Group B 
ACA 
ensemble 

95% CI of 
mean 
difference 

p value 
(2 tail) 

Group A 
better than 
Group B? 

All classes-A 
(79.0 ± 2.1) 

All classes-B 
(77.1± 1.2) 

 
[-0.4, 4.2] 

 
0.092 

 
yes 

 
1.9 

NORMAL-A 
(98.1 ± 0.6) 

NORMAL-B 
(95.1 ± 1.3) 

 
[1.7, 4.3] 

 
0.001 

 
yes 3.0 

DOS-A 
(68.4 ± 6.5) 

DOS-S 
(82.0± 3.8) 

 
[-18.6,-8.6] 

 
0.000 

 
no -13.6 

PROBE-A 
(97.0 ± 1.0) 

PROBE-B 
(93.6± 1.7) 

 
[1.5, 5.3] 

 
0.003 

 
yes 3.4 

R2L-A 
(54.1 ± 6.9) 

R2L-B 
(37.4 ± 3.5) 

 
[9.6, 23.8] 

 
0.000 

 
yes 16.7 

U2R-A 
(77.1 ± 0.0) 

U2R-B 
(77.1± 0.0) 

no  
variance 

no  
variance 

 
same 

 
0.0 
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Table 6. Statistical tests to compare MLP ANN  ACA and pVn ensemble models  

Group name,  mean accuracy%, 
TPRATE% for 10  test sets 
MLP ANN ensembles 

 
Student’s paired t-test (9 df) 

 
Performance 
improvement  
Diffacc(A,B)% 
or 
Difftpr(A,B)% 

Group A 
pVn 
ensemble  

Group B 
ACA 
ensemble  

95% CI of 
mean 
difference 

p value 
(2 tail) 

Group A 
better than 
Group B? 

All classes-A 
(75.2 ± 1.2) 

All classes-B 
(69.2 ± 2.1) 

 
[3.2, 8.8] 

 
0.001 

 
yes 6.0 

NORMAL-A 
(98.4 ± 1.0) 

NORMAL-B 
(98.0± 1.2) 

 
[-0.3, 1.0] 

 
0.193 

 
no 0.4 

DOS-A 
(94.7 ± 2.7) 

DOS-B 
(62.5± 5.7) 

 
[24.4, 39.2] 

 
0.000 

 
yes 32.2 

PROBE-A 
(95.3 ± 2.4) 

PROBE-B 
(89.4 ± 1.7) 

 
[3.4, 8.3] 

 
0.000 

 
yes 5.9 

R2L-A 
(52.9 ± 4.5) 

R2L-B 
52.3 ± 6.0) 

 
[-5.9, 7.1] 

 
0.840 

 
no 0.6 

U2R-A 
(34.6 ± 7.3) 

U2R-B 
(43.5 ± 0.7) 

 
[-17.4,-0.4] 

 
0.042 

 
no -8.9 

 
Table 5 shows the results of the statistical tests to compare the predictive 

performance of the See5 models. The results of Student’s paired t-tests for the See5 
models indicate that the pVn ensemble model performance is slightly higher than that 
of the ACA ensemble. The )B,A(Diff tpr  measure indicates statistically significant 

increases in the TPRATE for three of the classes range between 3.0% and 16.7%. The 
)B,A(Diff acc measure indicates a marginal accuracy increase of 1.9%. The test results 

for the MLP ANN are given in table 6. The results indicate that the pVn ensemble 
model performance is higher than that of the ACA ensemble model. The 

)B,A(Diff tpr  measure indicates statistically significant increases in the TPRATE for 

two of the classes are respectively 5.9% and 32.2%. The )B,A(Diff acc measure 

indicates an accuracy increase of 6.0%. 

5.3   Evaluation of Performance for Probabilistic Classification 

ROC analysis was conducted to compare one ACA base model (the single 5-class 
model), the pVn ensemble and the ACA ensemble. Figures 5 and 6 provide a graphic 
representation of the ROC analysis results based on the Gini concentration 
coefficient.  

The See5 pVn ensemble provides a marked improvement on the R2L class 
compared to the ACA ensemble. The mean Gini values indicate that both the See5 
pVn and ACA ensemble models provide performance improvements compared to a 
single 5-class model. However, both the See5 pVn and ACA ensemble provide the 
same level of performance on average. The MLP ANN pVn ensemble provides a 
large improvement on the DOD class compared to the ACA ensemble. The mean Gini 
values  indicate that both the MLP ANN pVn and ACA ensemble models provide 
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performance improvements compared to a single 5-class model. Additionally, the 
MLP ANN pVn ensemble provides a higher level of performance compared to the 
ACA ensemble. 

Gini concentration coefficients for See5 models

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NORMAL DOS PROBE R2L U2R Model-mean

Positive class for one-versus-rest classifier

Gini-single

Gini-ACA

Gini-pVn

 

Fig. 5. ROC analysis results for the See5 single and ensemble models 

Gini concentration coefficients for MLP ANN models
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Fig. 6. ROC analysis results for the MLP ANN single and ensemble models 

6   Conclusions 

The objectives of the research reported in this paper were to establish whether the use 
of information in the confusion matrix of a single classification model could be used 
as a basis for the design of ensemble base models that provide high predictive 
performance. Positive-Versus-negative (pVn) classification was studied as a method 
of base model design using a large dataset. Confusion graphs derived from confusion 
matrices were used as input to an algorithm that determines the classes for each base 
model in an ensemble. Experimental results on the KDD Cup 1999 dataset using the 
See5 classification tree algorithm and a multilayer perceptron artificial neural network 
demonstrated firstly, that ACA ensemble base models exhibit higher levels of 



314 P.E.N. Lutu 

diversity compared to pVn base models. Secondly, the pVn base models have a higher 
level of competence (predictive performance). Thirdly, for both discrete and 
probabilistic classification, pVn ensembles can provide higher levels of predictive 
performance compared to ACA ensembles.  
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Abstract. We focus on extensions to the pairwise similarity calcula-
tion of information networks. By considering both in- and out-link re-
lationships, we propose Additive- and Multiplicative-SimRank to calcu-
late the similarity score. Then we discuss the loop/cycles problem of
information networks and propose a method to address this problem.
Our extensive experimental results conducted on eight food web data
sets show that our approach performs significantly better than earlier
approaches.

1 Introduction

In order to study the patterns and processes of information systems, computing
pairwise similarity in an information network is a fundamental problem. Food
web, a kind of information network, represents the predator-prey relationship
between species within an ecosystem. Consider the following example from the
food web.

Example 1.(Motivation).The dodos lived peacefully on Mauritius Island for sev-
eral hundred years. Because of poaching by the humans and killing by the animals
(such as pigs, rats and cats), that have been introduced into the island by sailors,
the Dodo bird died off extremely quickly. About 1681, the last Dodo bird died.
After about three hundred years, in 1973, Tambalacoque, also called dodo tree,
was dying out. There are only about 13 trees left in the island. Scientists found
that the dodo tree’s seed should pass through the digestive system of dodo before
they germinated. Therefore, in order to aid the seed in germination, scientists
used turkeys to erode the nutshell of the dodo tree seed. In this case, the humans
saved the dodo tree, but the turkey, similar to the cats, rats and pigs, which have
been introduced into this island may also spoil the balance of the ecosystem. Some
failed examples, such as Austrian Rabbit and Xisha Islands’ cat, are also alarm-
ing. Therefore, there is an interesting question, “If one species get extinct in an
ecosystem and we want to introduce a new species into this ecosystem to keep
the balance, what kinds of species should we introduce?”

The answer is that we should introduce the species that has “similar food
habit” in this ecosystem. In this example, turkey and dodo birds are very sim-
ilar, because they both eat similar foods, such as the seed of the dodo tree and

A. Cuzzocrea and U. Dayal (Eds.): DaWaK 2011, LNCS 6862, pp. 316–329, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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they both have similar natural enemies. In this example, the prey relationship
and is-preyed relationship are used to define the similarity score between two
species. Based on this observation, a number of approaches have been proposed
to quantify similarity between species in a food web. The most widely used
approaches in the former research work [11] [12] [15] are the Jaccardian simi-
larity functions. The intuition behind Jaccardian similarity function is that two
species are similar, if they share many similar food web neighbors and the to-
tal number of their neighbors is less. The Sjaccard(a, b) [11] equation is shown
below:

Sjaccard(a, b) =
(
|n(a) ∩ n(b)|
|n(a) ∪ n(b)|

)
(1)

where n(a) and n(b) is the neighbors of species a and b. |n(a)∩n(b)| is the total
number of prey and predator species that species a and b have in common and
|n(a) ∪ n(b)| is the total number of prey and predators of species a and b.

2.crayfish

6.small frogs5.salamander

8.ducks7.gruiformes

4.lizards

1.fishing spider
3.apple snail

Fig. 1. Segment of CYPWET
data set [1]

Table 1. Similarity Score

Jaccard SimRank
S(1, 2) 0 0.36
S(2, 3) 0 0.36
S(4, 5) 0.25 0.43
S(5, 6) 0.25 0.43
S(7, 8) 0.33 0

However, earlier research only considers the direct relationship in the infor-
mation network. Considering the example in Figure 1, we want to calculate the
similarity between fishing spider and crayfish. However, according to the direct
relationship, shown in Table 1, the similarity between these two species is zero,
although these two species have some relationship from theirs indirect predator
– gruiformes. This example shows that when we consider the similarity between
two species in the food web, we also need to consider the indirect relationship
between species of other types related to them. This problem is addressed by
the SimRank algorithm [6] in which the similarity between two objects is re-
cursively defined as the average similarity between two objects. However, this
similarity definition only considers the one directional relationship for the infor-
mation network. In Figure 1, SimRank only considers the is-preyed relationship
(their predators), but the species’ similar prey also contribute to their similarity
relationship.

The other major problem is that many real-life information networks contains
cycles. Food web, for example, includes many cannibals that create loops and
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cycles. For example, in figure 1, salamander is a cannibal and they prey the other
salamanders for food. These loops in the food web also influence the value of
similarity scores.

The main contributions of this are:

• Based on relationship of topical structures in information networks, two sim-
ilarity algorithms, Additive-SimRank and Multiplicative-SimRank, are proposed
to address this problem. We also prove that the proposed algorithms converge
by theoretical analysis.
• We discuss the loops and cycles problem in the information networks and

propose a method to handle them.
• Extensive experiments are conducted to evaluate the accuracy of the pro-

posed algorithms. Additive-SimRank is shown to have higher accuracy as
compared with other methods.

Roadmap: The rest of this paper is organized as follows: We introduce the
related work in section 2 and define the graph model in section 3. SimRank is
overviewed in section 4. Two similarity measures for information network and the
cycle problem are discussed in section 5. Our experimental analysis is reported
in section 6 and conclusions are in section 7.

2 Related Work

We categorize existing work related to our study into three classes: species ag-
gregation, link-Based similarity calculation, and random walk on graph.

Species Aggregation: Setting a new criterion for searching community food
web data, Martineze [11] [12] was the first researcher to systematically ana-
lyze the effects of variable species aggregation on the network structure of food
webs. There are different indices used to quantify similarity between objects
and the Jaccard index is probably the best known and widely used in food web
research [11] [12] [15]. Martineze used an Additive-Jaccard index to determine
the similarity between species in Little Rock Lake and then used the average-
linkage-cluster to aggregate taxonomies. However, these methods do not consider
the potential relationship between each species.

Link-Based Similarity Calculation: The earliest research work for similarity
calculation based on link analysis focuses on the citation patterns of scientific
papers. The most common measures are co-citation [13] and co-coupling [7].
Co-citation indicates that if two documents are often cited together by other
documents, they may have the same topic. The meaning of co-coupling for sci-
entific papers is that if two papers cite many papers in common, they may
focus on the same topic. However, all these methods compute similarity only by
considering their immediate neighbors. In contrast, SimRank [6] considers the
entire relationship graph to determine similarity between two nodes. Because of
the high time complexity (O(n4)) of this approach, many papers [4] [14] [3] [10]
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have focused on performance improvement; however a few have focused on the
accuracy improvement of SimRank. In this paper, our focus is on extending Sim-
Rank approach by considering bidirectional relationships and cycles to improve
the accuracy of the original SimRank approach.

Random Walks on Graphs: Theoretical basis of our work uses hit times for
two surfers walking randomly on the graph. We mainly refer to research about
expected f-meeting distance theory [6]. Other research, such as random walk
theory [8] and Markov Model [9] also help understand our research.

3 Graph Model

The food web data can be represented as a directed graph, G(V, E), which con-
sists of a set of nodes V representing species and a set of directed edges E
representing the relationships between species. For example, Figure 1 is a re-
lationship graph that describes the predatory relationship in the marshes and
sloughs. In this graph, a directed edge < p, q > from species p to species q
corresponds to a predator relationship. I(v) denotes the set of predators prey-
ing on species v, which is also the in-link neighbors of species v and O(v)
denotes the set preyed-by species v, which is also the out-link neighbors of
species v.

4 Overview of SimRank

SimRank [6] is a method for measuring link-based similarity between objects in
a graph that models the object-to-object relationships in a particular domain.
The intuition behind SimRank score is that two objects are similar if they link
to similar objects. This intuition also indicates that SimRank calculation needs
to be recursive.

Below, we present the formula to compute SimRank. Given a graph G(V, E)
consisting of a set of nodes V and a set of links E, the SimRank similar-
ity between objects a and b, denoted as S(a, b), is computed, recursively, as
follows:

S(a, b) =
{

1 if (a = b)
c

|I(a)||I(b)|
∑ |I(a)|

i=1
∑ |I(b)|

j=1 S(Ii(a), Ij(b)) if (a 
= b) (2)

where c is a constant decay factor, 0 < c < 1; I(a) is the set of in-neighbor
nodes of a and Ii(a) is the ith in-neighbor node of a. |I(a)| is the number of
neighbors of node a. In case that I(a) or I(b) is an empty set, S(a, b) is defined
as zero.

A solution to SimRank equation (2) can be reached by iteration to a fixed-
point. For each iteration k, let Sk(., .) be an iteration similarity function and
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Sk(a, b) be the iterative similarity score of pair (a, b) on iteration k. The iteration

process is started with S0 (S0(a, b) =
{

0 if (a �= b)
1 if (a = b) ). To calculate Sk+1(a, b)

from Sk(a, b), we use the following equation:

Sk+1(a, b) =
c

|I(a)||I(b)|

|I(a)|∑
i=1

|I(b)|∑
j=1

Sk(Ii(a), Ij(b)) (3)

In equation (3), 1/|I(a)| is a single step probability of walking from node a to
a node in I(a). Therefore we can use Backward Transfer Probability Matrix
(BT PageRank) to capture the single step probability in a Markov Chain. Thus,
SimRank algorithm can be described by matrix calculation. S0 = E, where E is
an identity matrix. Equation (3) can be rewritten as:

Sk(a, b) = c

|I(a)|∑
i=1

|I(b)|∑
j=1

BTaIi(a)BTbIj(b)Sk−1(Ii(a), Ij(b)) (4)

Although the convergence of iterative SimRank algorithm can be guaranteed
in theory, practical computation uses a tolerance factor ε to control the number of
iterations such that a finite number of iterations are performed. It is recommend
to set ε = 0.001, the same as in PageRank. Specifically, the terminating condition
of the iteration is as follows:

max(|Sk(a, b)− Sk−1(a, b)|/|Sk−1(a, b)|) ≤ ε (5)

It indicates that the iteration stops if the maximal change rate of similarity
value between two iterations for all node pairs is smaller than the threshold
ε.

5 Extending the Similarity Measure

In this section, we first describe our analysis of the information network. Then,
we describe our topological similarity definition on the network. Finally, we
discuss the loops problem on the network.

5.1 Topological Similarity

If we want to compare the similarity between dodo and turkey on the Mauritius
Island, we need to answer the following questions:

1. Do dodo bird and turkey eat similar food? If turkey does not eat dodo tree’s
seed, we do not need to introduce turkey into this ecosystem, because turkey
doesn’t have the similar role as the dodo bird in this ecosystem.
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2. Do dodo bird and turkey have similar natural enemies? If turkey does not
have similar natural enemies as the dodo bird or do not have natural enemies,
the dodo bird’s natural enemies may not find enough food and also become
extinct; or turkeys may proliferate and break the biological balance.

Thus, we can identify two intuitions for defining similarity for the food web.

Intuition 1: Two species are similar, if they are preyed by similar species.

Intuition 2: Two species are similar, if they prey similar species.

Let us look at Table 1 again. Surprisingly, SimRank doesn’t produce a sim-
ilarity score for the pair “gruiforms”-“ducks”, although these two species have
the same classification (avifauna) and prey the same species salamander. The
problem for SimRank is that SimRank only considers is-preyed relationship on
the food web, but the other important prey relationship is not considered for
similarity calculation.

Considering both relationships for the food web, similarity score should com-
bine the similarity from both relationships. Thus we can add is-preyed relation-
ship similarity score and prey relationship similarity score together and use the
parameter γ to adjust the contribution of these two relationships for the total
score. We call this the additive method. Thus, we propose the following formula
for calculating the similarity score:

S(a, b) =

{
1 if (a = b)

γ c
|I(a)||I(b)|

∑ |I(a)|
i=1

∑ |I(b)|
j=1 S(Ii(a), Ij(b)) +

(1 − γ) c
|O(a)||O(b)|

∑ |O(a)|
i=1

∑ |O(b)|
j=1 S(Oi(a), Oj(b)) if (a 
= b)

(6)

where c is a constant decay factor, 0 < c < 1; I(a) is the set of predators
of species a and Ii(a) is the ith predators of a. |I(a)| is the number of preda-
tor of node a. O(a) is the set of prey of species a and Oi(a) is the ith prey
of a. |O(a)| is the number of prey of node a. γ is a constant parameter that
use to adjust the different effect of the is-preyed and prey relationships,
0 ≤ γ ≤ 1.

On the other hand, another way to extend SimRank is that we can multi-
ply the is-preyed and prey relationship similarities. This product score can also
describe the relationship similarity score. This method is called as the multi-
plicative method. Then, we have the following formula to calculate the similarity
score.

S(a, b) =

{
1 if (a = b)

c
|I(a)||I(b)|

∑ |I(a)|
i=1

∑ |I(b)|
j=1 S(Ii(a), Ij(b)) ×

c
|O(a)||O(b)|

∑ |O(a)|
i=1

∑ |O(b)|
j=1 S(Oi(a), Oj(b)) if (a 
= b)

(7)

where parameter definitions are the same as that of the Additive case.
Algorithm 1 outlines Additive-SimRank computation. It takes in 4 arguments.

The first two arguments inherit from the original SimRank algorithm: the decay
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Algorithm 1. Additive-SimRank

Require:
Decay Factor, c;
Tolerance Factor, ε;
Backward Transfer Probability Matrix BT (the backward probability of moving
from state i to their j);
Forward Transfer Probability Matrix FT (the forward probability of moving from
state i to state j in one step);

Ensure:
Similarity Matrix, Sk;

1: k ← 1;
2: S0 ← identity;
3: while(Max(|Sk(a, b) − Sk−1(a, b)|/|Sk−1(a, b)|) > ε))
4: k ← k+1;
5: Sk−1 ← Sk;
6: for each element Sk(a, b)

7: Sk(a, b) ← γc
∑|I(a)|

i=1

∑|I(b)|
j=1 BTaIi(a)BTbIi(b)Sk−1(Ii(a), Ij(b)) + (1 −

γ)c
∑|I(a)|

i=1

∑|I(b)|
j=1 FTaIi(a)FTbIi(b)Sk−1(Ii(a), Ij(b));

8: end for;
9: end while;

10: return Sk;

factor c gives the rate of decay as similarity flows across edges in a graph and
tolerance factor γ is to control the number of iterations as discussed in section 4.
The last parameter is Forward Transfer Probability Matrix FT . As we can see
from equation 6, 1/|O(a)| is a single step probability of walking from node a to
a node in O(a). Thus, we use the Forward Transfer Probability Matrix FT [9] to
calculate the similarity score in our algorithm. On the food web, FT matrix is the
transfer matrix of prey relationship. The last parameter is Backward Transfer
Probability Matrix BT . As we can also see from equation 6, 1/|I(a)| is a single
step probability of walking from node a to a node in I(a). Thus, we use the
Backward Transfer Probability Matrix BT [9] to calculate the similarity score in
our algorithm. On the food web, BT matrix is the transfer matrix of is-preyed
relationship.

Additive-SimRank algorithm first initializes variables (lines 1-2). In line 4, the
algorithm will stop if the ending condition is equation 5 will satisfied. The algo-
rithm then uses Equation 6 to calculate the similarity score. Although the worst
time and space complexity of Additive-SimRank is the same as the SimRank, its
accuracy of Additive-SimRank is higher than original SimRank as it considers
the both relationship of the graph.

The Multiplicative-SimRank algorithm is the same as the previous algorithm
except for step 7 where Equation 7 is used. The theoretical foundations of
Additive-SimRank and Multiplicative-SimRank are discussed below.
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Forward and Backward Random Walk Model: Since BT and FT in al-
gorithm 1 (and its counterpart for multiplicative-SimRank) can be considered
as a single step backward and forward transfer matrix of a Markov Chain, the
iteration similarity calculation process of equations 6 and 7 can be explained
using two random surfers walking forward and backward. Consider two surfers
start from two nodes on the graph and they walk from one node to the other
nodes step by step. In each step, they will walk one step backward or for-
ward, respectively, and calculate the meeting possibility for these two surfers.
The final result of these two methods can be translated into the possibility
of two random surfers meeting with each other by considering both forward
and backward random walking. For equations 6 and 7, we use different meth-
ods to combine these meeting possibilities for each step. In equation 6, we
add these meeting possibilities of forward and backward walking and use γ
to adjust the proportion of these backward and forward meeting possibilities.
In equation 7, we directly multiply the forward and backward meeting score.
Since SimRank only considers backward random walk, it is a special case of our
method. In equation 6, if γ is set to 1, the equation is the same as the SimRank
function.

Theorem 1. The Additive-simrank and multiplicative-simrank similarity
S(a, b) for any node pair (a, b) will converge to a fixed value.

Proof. See [2] for proof.

5.2 Dealing with Loops in the Network

The other problem of some information networks is that there could be a number
of cycles or loops in the network. For example, food web contains frequent canni-
balism that induces loops (e.g., salamander in Figure 1). In the dry season, 14%
of salamanders’ food comes from killing other salamanders. Another example is
of steatoda spiders and latrodectus spiders. These two spiders eat each other.
Table 2 shows the number of cycles in the real world food web [1]. As we can
see, cycles are quite common in the food web.

k

k

smsn

s1

Fig. 2. Representative graph
with a loop/cycle

Table 2. Statistics in Food Web
Data sets

Data set Vertex Edge Cycles
CYPWET 68 554 15
CYPDRY 68 545 15
BAYWET 125 1969 21
BAYDRY 125 1938 21

MANGWET 94 1339 8
MANGDRY 94 1340 8
GRAMWET 66 793 10
GRAMDRY 66 793 11
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However, these cycles on the food web graph will affect the species’ similarity
score. Let us look at the similarity score between two species “fishing spider”,
“salamander” and “fishing spider”, “apple snail”. Table 3 tabulates these simi-
larity score for figure 1. As we can see S(fishing spider, salamander) is slightly
higher than S(fishing spider, apple snail). However, in the biological field, fish-
ing spider and apple snail are classified as macro invertebrates but salamander
is classified as herpetofauna. In fact, “fishing spider” and “salamander” are not
in the same classification. Similarly, other information networks, such as the web
page graphs and paper citation graphs, also has cycles. For example, in the ci-
tation graph, the same author can write two papers that are cross-referenced.
We can also actually prove the following theorem for the similarity calculation
in the presence of loops in a graph.

Table 3. Additive-SimRank results for fig-
ure 1(with cycles)(γ= 0.75, c = 0.8)

1 2 3 4 5 6 7 8
1 1 0.09 0.03 0.002 0.03 0.002 0 0
2 0.09 1 0.09 0.065 0.18 0.065 0 0
3 0.03 0.09 1 0.002 0.03 0.002 0 0
4 0.002 0.06 0.002 1 0.21 0.08 0.007 0.007
5 0.03 0.18 0.03 0.21 1 0.21 0.154 0.15
6 0.002 0.06 0.002 0.08 0.21 1 0.007 0.007
7 0 0 0 0.006 0.15 0.007 1 0.157
8 0 0 0 0.006 0.15 0.007 0.157 1

Table 4. AAdditive-SimRank results for
figure 1(no cycles)(γ= 0.75, c = 0.8)

1 2 3 4 5 6 7 8
1 1 0.09 0.03 0.002 0.03 0.002 0 0
2 0.09 1 0.09 0.065 0.18 0.065 0 0
3 0.03 0.09 1 0.002 0.03 0.002 0 0
4 0.002 0.06 0.002 1 0.21 0.08 0.007 0.007
5 0.03 0.18 0.03 0.21 1 0.21 0.154 0.15
6 0.002 0.06 0.002 0.08 0.21 1 0.007 0.007
7 0 0 0 0.006 0.15 0.007 1 0.157
8 0 0 0 0.006 0.15 0.007 0.157 1

Theorem 2. Consider one graph G with a cycle l and a line q. Figure 2 shows
such a graph as G. Let l(sn, sm) denote a sequence of cycle vertices sn, si+1, ..., sm.
Let q(s1, sn) denote a sequence of line vertices s1, si+1, , sn. sn is the crossing
point between cycle l and line q. Let length(p) denote the length of path p, and
length(l) = length(q) = k. Then, S(s1, sn) = ck and S(sn, sm) = 0.

Proof. See [2] for proof.

This theorem provides us two insights about SimRank scores and why they are
not intuitively right for the networks that contain loops. First, s1 is at the bot-
tom of food web in Figure 2 and in normal cases it is the primary species, such
as periphyton, utricularia, and so on. However, sn is the top consumer, such
as bobcat, panther and so forth. However, according to theorem 1, these two
species s1 and sn has a great similarity between each other. Secondly, sm is
another species in the cycle. In this food web graph, this species is also the top
level consumer. However, according to theorem 1, the pair s1 and sn have higher
similarity score then the pair sm and sn. This implies that bobcat and periphy-
ton are more similar than bobcat and panther. That does not match with our
intuition. Based on this example, we can address the problem of SimRank scores.
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In fact, the same problem also exists in Additive-SimRank and Multiplicative-
SimRank. Thus, before we calculate the similarity score on the food web, we
will delete all the relationships in the cycle. Table 4 shows the similarity re-
sult when cycles are deleted from the food web. The similarity score of the
pair “fishing spider” and “salamander” is equal to 0 and in fact those two
species are not in the same classification. Clearly, this result matches better with
our intuition.

6 Experimental Evaluation

Data Sets: Our experiments use the data sets shown in Table 2. Please re-
fer to [1] for details regarding these data sets. Before we calculate the simi-
larity score, we delete all the cycle in these data sets. These eight data sets
come from four areas. CYPWET and CYPDRY data sets are collected from
295,000 hectare wetlands of the big cypress natural preserve in southwest Florida.
BAYWET and BAYDRY data sets are collected from a triangular, tropical la-
goon/bay. MANGWET and MANGDRY data sets are from the huge mangrove
belt along the seaward edge of the Everglades. GRAMWET and GRAMDRY
data sets are from the historical Everglades system. In each area, the food
web data is collected for different seasons. For example, CYPWET indicates
that this data set is collected in wet season and CYPDRY is for the dry
season.

Table 5. Classification of for food web data sets

Data Set C.1 C.2 C.3 C.4 C.5 C.6 C.7 C.8
CYPWET 12 2 16 5 10 3 3 17
CYPDRY 12 2 16 5 10 3 3 17
BAYWET 14 12 2 26 4 48 3 16
BAYDRY 14 12 2 26 4 48 3 16

MANGWET 5 6 12 21 5 22 3 20
MANGDRY 5 6 12 21 5 22 3 20
GRAMWET 4 2 10 8 10 21 3 0
GRAMDRY 4 2 10 8 10 21 3 0

1Note: The species in these data sets have been divided into eight classes by their different roles in

ecosystem, such as primary producers, micro fauna, mammals, macro invertebrates, herpetofauna,

fishes, detritus and avifauna, which are marked from C.1 to C.8.

Table 5 shows that these species data sets are manually divided into eight
classes.These classes will be used as the standard/baseline to evaluate the accu-
racy of our algorithms.

All our experiments are conducted on a PC with a 3.0 GHz Intel Core 2 Duo
Processor, 2GB memory, running windows XP Professional. All algorithms are
implemented in Java.
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6.1 Evaluation Metric

In our food web data sets, there are predefined class labels for these species. For
a species on the food web, these algorithms will return a ranked list of relative
species. For each species in the list, if this species’ label is the same as species
s1, we think these two species are closely related and give a grade 2 (stress the
related species); otherwise we associate grade 0. Then, we use the normalized
discount cumulative gain (NDCG) [5] to evaluate the performance of this sim-
ilarity ranking list. While evaluating a similarity ranking list, NDCG follows
one principle. The lower ranking position of a species is less valuable for the
researcher, because the researchers take great care about species more related to
species s1. According to this principle, the NDCG score of a similarity ranking
list at position n is calculated as follows. N(n) = Zn

∑n
j=1

2r(j)−1
log(1+j) , where r(j)

is the rating of the jth species in the similarity ranked list and the normalization
constant Zn is chosen so that a prefect order gets NDCG value 1. For exam-
ple, we will calculate the NDCG@10 score for the species “Living sediment” in
data set CYPWET because for “living sediment” there is only one species in
the micro fauna classification. Thus, Zn order is 2,0,0,0,0,0,0,0,0,0. We calculate
NDCG within 10 related species for each species in each data set and get the
average score to evaluate the validity of our experiments.

6.2 Experimental Results

Parameter Study: Two parameters, c and γ affect the accuracy of similarity
scores directly. These two parameters are application dependent. We want to
study the available parameters for the food web data.

First, we discuss the parameter γ for Additive-SimRank. This parameter is
used to decide the importance of two relationships: is-preyed and prey for ac-
curacy. In this experiment, we fix the damping factor c to 0.8 and vary γ from
0 to 1. Figure 3 shows that when γ is equal to 0.75, Additive-SimRank will re-
ceive the highest accuracy. Interestingly, the is-preyed relationship is much more
important to decide the species classification.

Second, we determine the damping factor c for these three link-based similar-
ity algorithms. In this experiment, we fix γ = 0.75 and vary c from 0.05 to 0.95. In

Fig. 3. Parameter γ for Additive-
SimRank Fig. 4. Parameter c
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Fig. 5. Segmentation of CYPWET data
set [1] Fig. 6. NDCG@1 to

NDCG@19

Table 6. Case study for species “Roots”

Multi.-Jaccard Additive-Jaccard Multi.-SimRank Additive-SimRank SimRank
Null Apple Snail Null Cypress Wood Cypress Wood
Null Crayfish Null HW Wood HW Wood
Null Prawn Null Vine Leaves Vine Leaves
Null Aquatic Invertebrates Null Cypress Leaves Cypress Leaves
Null Vertebrate Det. Null Vertebrate Det. Epiphytes
Null Ter. Invertebrates Null Epiphytes Vertebrate Det.
Null Refractory Det. Null Float. vegetation Float. vegetation
Null Liable Det. Null Macrophytes Macrophytes
Null Null Null Phytoplankton Living POC
Null Null Null Living POC Living sediment

fact, the effect of damping factor c is not very obvious. Figure 4 shows that when
c = 0.8, 0.1 and 0.95, Additive-SimRank, SimRank and Multiplicative-SimRank
will receive the highest scores. Thus, for the rest of the experiments, γ is set to
0.75 for Additive-SimRank and c is set to 0.8, 0.1 and 0.95 for Additive-SimRank,
SimRank and Multiplicative-SimRank, respectively.

Accuracy Analysis: In these experiments, we compare the accuracy among
Multiplicative-Jaccard [15], Additive-Jaccard [15], Multiplicative -SimRank,
Additive-SimRank andSimRank. Using the rule of additive and multiplicative
methods, it is easy to design Multiplicative-Jaccard and Additive-Jaccard algo-
rithm. Figure 5 shows the accuracy of these eight methods for food web data sets.
We can see Multiplicative-Jaccard and Multiplicative-SimRank have the lowest
accuracy. Because SimRank and Additive-SimRank consider the potential link-
age information, these two algorithms are much better than Additive-Jaccard
algorithm. Because Additive-SimRank considers both is-preyed and prey rela-
tionship, it reaches the best accuracy. Figure 6 plots the results of NDCG@1 to
NDCG@19 for the each algorithm.

Considering the case study, we analyze the top ten similar species for the
species “Roots” in CYPWET food web. We study the is-preyed relationship of
species “Roots” and because “Roots” is the primary producer, it does not have
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prey relationship. The result is shown in table 6. Because multiplicative method
is the product of two relationships’ similarity score, Multiplicative-Jaccard and
Multiplicative-SimRank can’t produce any similar species for “Roots”. On the
other hand, Additive-Jaccard only considers the direct relationship, thus it only
searches about eight species for “Roots” but no species are primary producers.
The result of SimRank, containing seven primary producers, is also very good,
but Additive-SimRank searches eight primary producers, which is slightly higher
than SimRank.

7 Conclusions

In this paper, considering both prey (out-link) and is-preyed relationship
(in-link) on the food web, we propose Additive- and Multiplicative-SimRank to
calculate the similarity scores. Then, we also discuss the loop problem on the
network and propose a method to address this problem. The experimental results
conducted on eight food web data sets show that Additive-SimRank outperforms
the other approaches with γ equal to 0.75 (receives the highest score in the food
web). In addition, our methods are also applicable for other information networks
that have similar characteristics.

References

1. South florida ecosystems, http://www.cbl.umces.edu/atlss/ATLSS.html
2. Cai, Y., Chakarvarthy, S.: Extension to Pairwise Similiarity calculation in Infor-

mation Networks. Technical Report TR CSE-2010-4, UT arlington. University of
Texas, Arlington (May 2010)

3. Cai, Y., Cong, G., Jia, X., Liu, H., He, J., Lu, J., Du, X.: Efficient algorithm for
computing link-based similarity in real world networks. In: Proceedings of the 2009
Ninth IEEE International Conference on Data Mining, pp. 734–739 (2009)

4. Fogaras, D., Rcz, B.: Scaling link-based similarity search. In: Proceedings of the
14th International Conference on World Wide Web, pp. 641–650 (2005)

5. Jarvelin, K., Keklinen, J.: Cumulated gain-based evaluation of ir techniques. ACM
Transactions on Information Systems 20(4), 422–446 (2002)

6. Jeh, G., Widom, J.: Simrank: a measure of structural-context similarity. In:
Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 538–543 (2002)

7. Kessler, M.M.: Bibliographic coupling between scientific papers. American Docu-
mentation 14(1), 10–25 (1969)

8. Lovsz, L.: Random walks on graphs: A survey. Bolyai Society Mathematical Stud-
ies 2, 1–46 (1991)

9. Langville, A.N., Meyer, C.D.: Deeper inside pagerank. Internet Mathematics 1(3),
335–380 (2004)

10. Lizorkin, D., Velikhov, P., Grinev, M., Turdakov, D.: Accuracy estimate and op-
timization techniques for simrank computation. The VLDB Journal The Interna-
tional Journal on Very Large Data Bases 19(1), 45–66 (2010)

11. Martinez, N.D.: Artifacts or attributes? effects of resolution on the little rock lake
food web. Ecological Monographs 61(4), 367–392 (1991)

http://www.cbl.umces.edu/atlss/ATLSS.html


Pairwise Similarity Calculation of Information Networks 329

12. Martinez, N.D.: Effect of scale on food web structure. Science 260(5105), 242–243
(1993)

13. Small, H.: Co-citation in the scientific literature: A new measure of the relationship
between two documents. Journal of the American Society for Information Science 2,
28–31 (1974)

14. Yin, X., Han, J., Yu, P.S.: Linkclus: efficient clustering via heterogeneous semantic
links. In: Proceedings of the 32nd International Conference on Very Large Data
Bases, pp. 427–438 (2006)

15. Yodzis, P., Winemiller, K.O.: In search of operational trophospecies in a tropical
aquatic food web. Oikos 87, 327–340 (1999)



Feature Selection with Mutual Information for

Uncertain Data

Gauthier Doquire
 and Michel Verleysen
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Abstract. In many real-world situations, the data cannot be assumed
to be precise. Indeed uncertain data are often encountered, due for exam-
ple to the imprecision of measurement devices or to continuously moving
objects for which the exact position is impossible to obtain. One way
to model this uncertainty is to represent each data value as a probabil-
ity distribution function; recent works show that adequately taking the
uncertainty into account generally leads to improved classification per-
formances. Working with such a representation, this paper proposes to
achieve feature selection based on mutual information. Experiments on
8 UCI data sets show that the proposed approach is effective to select
relevant features.

Keywords: Uncertain data, feature selection, mutual information.

1 Introduction

Nowadays, many machine learning and data mining applications have to cope
with data that are inherently uncertain. This uncertainty can be caused by many
different factors. As an example, measurement errors from unprecise devices or
sensors with a too low resolution typically produce uncertain data. Moreover, in
some applications involving continuously moving devices, the exact location of
the objects is not always available or is not transmitted precisely due to privacy
reasons. Eventually, data quantization or averaging from multiple measurements
also lead to uncertainty.

All these reasons explain the recent interest in the development of data mining
tools for uncertain data such as classification [1,2,3], clustering [4,5,6,7] or outlier
detection [8] to name a few. [9] gives a nice overview on recent developments
about uncertain data

A convenient way to model the uncertainty of the data is to represent any
value in the data set as an uncertainty region and to define a probability density
function (pdf) over it. Using this approach, [1,2] showed that adequately taking
the uncertainty into account leads to better classification performances for the
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Fig. 1. Examples of modelling of the uncertainty on data with uniform (left) and
Gaussian (right) pdf. The curves describe the pdf of the actual values given the observed
values (shown by big dots).

decision tree and the Naive Bayes classifiers compared to the case where the
values are used directly. In particular, choosing a Gaussian pdf centered in the
value and with a well-chosen variance led to very satisfactory results. That is
the reason why the same strategy is adopted throughout this paper. However,
the proposed methodology can easily be extended to the uniform distribution
or to uncertain data described by samples drawn from an underlying unknown
distribution. Figure 1 illustrates the modelling of the uncertainty on data with
uniform and Gaussian pdf. In this work, the problem of feature selection with
uncertain data is considered; it is, to the best of our knowledge, the first time
this problem is adressed. Feature selection is a very important preprocessing
step for many pattern recognition problems, including classification. Its goal is
to determine which (small) subset of features is the most relevant for a given
task. Its benefits for classification can be numerous. First, it helps understand-
ing the problem and interpreting the model by determining which factors really
influence the output to be predicted. This is of crucial importance for many
industrial and medical applications. As an example, in the context of microar-
ray data, feature selection can help discovering a small set of genes linked to a
particular disease or pathology. Secondly it generally leads to improved classi-
fication performances by removing irrelevant and/or redundant features and by
preventing the classification models to suffer from the curse of dimensionality.
By decreasing the number of features considered, feature selection also makes
the classifiers faster. Eventually, it has also practical advantages in terms of
data acquisition and warehousing. Indeed, useless features do not need to be
gathered and stored anymore. See [10] for a detailed introduction on feature
selection.

The proposed approach is based on the well-known mutual information (MI)
criterion [11], which has already been used successfully in many feature selection
algorithms. A methodology to estimate MI with uncertain data is proposed and
used to rank features according to their dependance to the class labels vector.
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The rest of the paper is organized as follows. Section 2 recalls some concepts
about MI and its estimation for classical data. Section 3 presents the proposed MI
estimator for uncertain data. Section 4 is dedicated to the experimental results
and Section 5 concludes the work and gives some future research perspectives.

2 Mutual Information

This section first introduces some basic notions on MI and then shows how it
can be estimated since it generally cannot be computed exactly.

2.1 Basic Notions

MI, first introduced by Shannon in 1948 [11], is a quantity describing the amount
of information two random variables carry about each other. It is symmetric, i.e.
I(X ; Y ) = I(Y ; X) and able to detect non-linear relationships between variables.
This last property has made MI a very popular criterion for feature selection
[12,13,14,15] since other widely used criteria such as the correlation coefficient
can only handle linear dependencies.

Formally, the MI of a pair of random variables X and Y can be defined by
means of the pdf of X , Y and the joint variable (X, Y ), respectively denoted as
fX , fY and fX,Y :

I(X ; Y ) =
∫ ∫

fX,Y (x, y) log
fX,Y (x, y)

fX(x)fY (y)
dx dy. (1)

This definition can also be seen as the Kullback-Leibler divergence between the
product of distributions fX×fY and the joint distribution fX,Y . If the variables
are independent, then fX,Y = fX × fY and I(X ; Y ) = 0.

MI can also be expressed in terms of entropy, another information theoretic
quantity. The entropy of a random variable is a measure of the uncertainty one
has about the values taken by this variable. It is also defined in terms of pdf:

h(X) = −
∫

fX(x) log fX(x)dx. (2)

The MI is equal to:
I(X ; Y ) = h(Y )− h(Y |X) (3)

where h(Y |X) is the conditional entropy of Y given X , corresponding to the
uncertainty about Y when X is known. Following (3), MI can be seen as the
reduction of uncertainty about Y brought by the knowledge of X and is thus a
natural criterion for feature selection assuming that Y is an output we want to
predict from X , a set of possibly multivariate data points. In (3), if X and Y
are independent, h(Y |X) = h(Y ) and again I(X ; Y ) = 0.
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2.2 Estimation

As detailed previously, the MI is entirely determined by the marginal pdf fX

and fY and the joint pdf fX,Y . However, in practice, these pdf are not known,
meaning that the MI has to be estimated from the data set.

Traditionally, the entropy is first estimated by histograms or kernel-based es-
timators before the MI is computed according for instance to (1). This approach
is followed in this paper, where a Parzen-window [16] density estimator is used.

Consider x1 . . . xN , N i.i.d. samples drawn from the distribution f . The esti-
mated pdf is given by:

f̂(x) =
1

Nb

N∑
i=1

k

(
x− xi

b

)
(4)

where k is a kernel and b is called the bandwidth. The most popular choice for
k is the Gaussian kernel with zero mean and unit variance:

k(x) =
1√
2π

e−0.5x2
. (5)

The value of the bandwidth b, which acts as a smoothing parameter, is of
crucial importance for the quality of the estimation. In this work, it is chosen
according to the popular Silverman rule [17] for one-dimensional data points:

bj = 1.06σjN (6)

where σj denotes the standard deviation along the jth dimension of the data
set. In the next section, it will be shown how this estimator can be adapted to
handle the uncertain data case.

It is worth noting that such density estimators should only be used with low-
dimensional data. Indeed, when the dimensionality increases, histograms and
kernel based estimators suffer from the curse of dimensionality and from the
empty space phenomenon. This phenomenon denotes the fact that the number
of points needed to sample a space at a given precision grows exponentially
with the dimension of the space [18]. Thus, when working in a high-dimensional
space, most of the boxes of an histogram are likely to be empty and the estimated
density to be innacurate. Kernel-based estimators are generally smoother but are
also dramatically affected by these problems.

One possible way to alleviate the curse of dimensionality is to use nearest-
neighbors based MI estimators which do not directly estimate the pdf and are
thus expected to be more robust in high-dimensional spaces [19,20].

3 MI Estimation with Uncertain Data

This section shows how the MI can be estimated from uncertain data by using
the previously described kernel-based density estimator.
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This paper considers classification problems; Given a data set X containing
N samples described by d attributes, the goal is to predict the class (a discrete
value) of these samples based on previously observed input/output pairs. This
means that the MI I(X ; Y ) has to be estimated between continuous (X) and
discrete (Y ) random variables, the latter corresponding to the classes we want
to predict.

More precisely, we are interested in evaluating I(Xj ; Y ) for j = 1 . . . d, where
Xj denotes the jth attribute or feature of X . The pdf of this jth attribute is
denoted by fXj .

Assume that Y takes k different values y1 . . . yk, each yi being represented by
ni samples (

∑
i ni = N); Denote by p̂(yi) the probability that Y = yi, estimated

by ni

N . All that is needed to estimate the MI by (3) is:

ĥ(Y ) = −
k∑

i=1

p̂(yi) log p̂(yi) (7)

and

ĥ(Y |Xj) = −
∫

Xj

f̂Xj (x)
k∑

i=1

f̂Yi|Xj
(yi|x) log f̂Yi|Xj

(yi|x)dx. (8)

Equation (7) is the discrete version of (2) and f̂Yi|Xj
is the estimated density of

the ith class conditional to the jth feature. As (7) will be equal for all features,
it can be omitted when comparing the individual MI of the features.

According to the Bayes theorem, it is possible the rewrite f̂Yi|Xj
(yi|x) as:

f̂Yi|Xj
(yi|x) =

f̂Xj |Yi
(x|yi)p̂(yi)

f̂Xj (x)
. (9)

We have then:

ĥ(Y |Xj) = −
∫

Xj

f̂Xj (x)
k∑

i=1

f̂Xj |Yi
(x|yi)p̂(yi)

f̂Xj (x)

log
f̂Xj |Yi

(x|yi)p̂(yi)

f̂Xj (x)
dx.

(10)

This last equation implies that the MI can be entirely determined by the pdf of
the variable Xj , possibly limited to the points with a particular class label yi.
In the following, we show how this pdf can be estimated.

Recall that Xj = [xj1 . . . xjN ] is described by Gaussian pdf to model the
uncertainty in the data, i.e. xj1 ∼ N(μj1, σj1) . . . xjN ∼ N(μjN , σjN ). μji is the
observed value for the jth dimension of the ith sample and σji is the variance
that is determined by the user, following the confidence he has on the precision
of the data.
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A quite natural approach is to consider the expected value of the kernel k [1].
More precisely, (4) is replaced with

f̂(x) =
1

Nb

N∑
i=1

E

[
k

(
x− xi

b

)]
. (11)

The following developments then hold:

f̂Xj (x) =
1

Nb

N∑
i=1

∫
xji

k

(
xji − x

b

)
1√

2πσji

e
−0.5

(
xji−μji

σji

)2

dxji

=
1

Nb

N∑
i=1

∫
xji

1√
2π

e
−0.5

(
xji−x

b

)2 1√
2πσji

e
−0.5

(
xji−μji

σji

)2

dxji

=
1
N

N∑
i=1

∫
xji

1√
2πb

e
−0.5

(
xji−x

b

)2 1√
2πσji

e
−0.5

(
μji−xji

σji

)2

dxji.

(12)

Moreover, it is well-known that the convolution of two Gaussian distributions
f ∼ N(μf , σf ) and g ∼ N(μg, σg) is another Gaussian distribution c ∼ N(μf +

μg,
√

σ2
f + σ2

g). Stated otherwise:

f ∗ g =
∫

τ

1√
2πσf

e
−0.5

(
τ−μf

σf

)2 1√
2πσg

e
−0.5

(
t−τ−μg

σg

)2

dτ

=
1√

2π(σ2
f + σ2

g)
e
−0.5

(t−(μf +μg))2

σ2
f
+σ2

g .

(13)

By setting τ = xji, σf = b, σg = σji, t = μji, μf = x and μg = 0, the connection
between (13) and the last line of (12) is obvious. Combining these two equations,
it comes:

f̂Xj (x) =
1
N

N∑
i=1

1√
2π(σ2

ji + b2)
e
−0.5

(x−μji)
2

σ2
ji

+b2 . (14)

With a way to estimate the pdf f̂Xj (x), using (3), (8) and (9), it is now possible to
estimate the MI between each feature Xj and the output vector Y . As already
stated, evaluating the conditional pdf fXj |Yi

is done exactly the same way as
for fXj , except that only the samples having the output yi are included in the
computation of (14). The technical details for the numerical integration in (8)
are given in the next section.

It is obvious that the developments presented in this section assuming a Gaus-
sian pdf can be adapted to handle other models of uncertainty. For instance, a
uniform pdf could be considered instead. This would mean that we believe ev-
ery observed value has been drawn from a domain of possible values, all having
the same probability. In contrast, the Gaussian pdf implies that the observed
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value is actually the most probable even if some imprecisions are possible. If one
wishes to model the uncertainty on xji by a uniform pdf on the domain [a; b]
(a < b), then in (12), fxji(xji) is equal to the constant 1

b−a . The estimation of
the density then resumes to the integration of a Gaussian function evaluated
between a and b. See again Figure 1 for an illustration of the differences between
both approaches.

Another way of specifiying the uncertainty is to represent each point by numer-
ous samples drawn from its distribution. The expectation in (11) then becomes
a sum where each sample contributes to the estimation with an importance
weighted by its probability. However, in [1], this approach is shown to be much
more time-consuming than the Gaussian pdf based approach, without leading to
better classification performances. It is thus not investigated in the present work
even if it can be helpful when ones wants to consider a distribution for which
(12) has no closed-form solution.

4 Methodology and Experiments

To assess the effectiveness of the proposed feature selection procedure, experi-
ments are carried out on eight data sets from the UCI machine learning reposi-
tory [21]. They consist of values obtained through measurements, and have been
shown to benefit well from taking their uncertainty into account [1,2].

The first part of this section describes exactly how the uncertainty is handled
in this paper; technical details about the integration in (8) are also given. Ex-
perimental results obtained on the data sets are then presented and commented.

4.1 Methodology

The MI is first evaluated between each feature of the training set and the output
vector: the features are then ranked according to this score. The number of
selected features should either be set a priori or should be determined by cross-
validation procedures on an independent validation set.

The uncertainty on the data set is modelled by a Gaussian pdf with the mean
equal to the observed value and the standard deviation defined following [1,2].
If minj and maxj are respectively the minimum and maximum values taken by
the feature Xj , then the standard deviation is σj = 0.25 (maxj −minj) w %. It
is the same for all xji and w is a parameter representing the level of uncertainty
we have about the values of Xj . The rationale behind this choice is thus that
the uncertainty about a variable is proportional to the size of the range of values
taken by this variable. In other words, the more the observed values for a given
variable are close, the more the uncertainty about these values will be considered
as small. The values of w chosen in this paper are those already adopted in [1]
and/or [2] (except for the Parkinson data set which has not been used in these
references). Indeed, even if the two classifiers introduced in these works are very
different, both achieve the best performances on the same data sets with very
similar values of w.
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Table 1. Description of the datasests used in the experiments

Name Samples Features Classes w

glass 214 9 4 3
iris 150 4 3 20
wine 178 13 3 1

segment 2310 18 7 4
waveform 5000 21 3 3
satellite 6435 36 2 6

pageBlock 5473 10 5 1
parkinson 195 22 2 5

Moreover, the accuracy of these classifiers generally reaches a peak at the
optimal value of w, meaning that if this value is slightly increased or decreased,
the performances of the classifiers degrade [1,2]. Those observations conjecture
the fact that the considered data sets do contain errors and have an intrinsic
optimal value of w (at least for the Gaussian pdf). The data sets are described
in Table 1 which also gives the corresponding value of w.

The integral in (8) is evaluated numerically using the simple trapeze rule. It
consists in interpolating the function piecewise linearly by using its values in a
certain number of points. To this end, 1000 equally spaced points are sampled
between amin and amax. amin < minj is the value for which a Gaussian pdf with
unit variance and mean minj equals 10−3. amax > maxj is the value for which a
Gaussian pdf with unit variance and mean maxj equals 10−3. It is worth noting
that the bandwidth in (14) has to be adapted to each individual feature and to
the fact that the density can be conditioned to a class label.

4.2 Experimental Results

Figure 2 shows the classification error rate (the percentage of misclassified sam-
ples) as a function of the number of selected features for the Naive Bayes classifier
adapted to uncertain data [1] and the first six data sets. For comparison, the
error rate is also shown when no uncertainty is taken into account (neither in
the feature selection process nor in the classification). Eventually, to show the
interest of considering the uncertainty for feature selection, the error rate when
uncertainty is only considered in the classification step is also presented.

The reported results are obtained through a 10-fold cross validation procedure.
This means that the dataset is first randomly divided into ten disjoint equally
sized sets of samples. Then each set is successively used to test the performances
of a classifier built on the nine other sets. The ten error rates obtained this way
are eventually averaged. In this paper, no additional validation set is needed
since there is no parameter to tune.

The interest of the proposed feature selection method is obvious for the con-
sidered data sets. Indeed, the first observation is that in each case, it is possible
to reduce the classification error by considering only a subset of the original
features. In particular for the glass, iris and segment data sets, at least half the
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glass iris

wine segment

waveform satellite

Fig. 2. Classification error rate of a Naive Bayes classifier as a function of the number
of selected features for six data sets. (+) Uncertainty in the feature selection and the
classification; (.) Uncertainty only in the classification; (∗) No uncertainty.
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pageBlock parkinson

Fig. 3. Classification error rate of a Naive Bayes classifier as a function of the number
of selected features for two data sets. (+) Uncertainty in the feature selection and the
classification; (.) Uncertainty only in the classification; (∗) No uncertainty; (–) Same
as (+) with normalized data.

features can be discarded without decreasing the original accuracy. In the satel-
lite data set, more than a third of the features can be removed without harming
the classifier performances.

Then, it clearly appears that considering the uncertainty allows us to increase
the performances of both the feature selection and the classification. For the 6
data sets, lower error rates are obtained with the proposed approach than when
no uncertainty at all is considered (except for the satellite data set where equal
error rates are achieved). Moreover, taking the uncertainty into account only
in the classification step (and not for feature selection) nevers allows to reach
better performances than with the suggested methodology.

When applying the same methodology to the parkinson and pageBlock data
sets, the results obtained at the first were not so encouraging. The reason is
that some features in those data sets have very different ranges of values. The
entropy (8) of features with a larger range of values is likely to be higher than
for features with a smaller range of values which could bias the MI estimation
procedure. As an example, the entropy of a Gaussian variable with variance σ2

is given by 0.5 log(2πeσ2) and thus increases with the dispersion of the data. To
circumvent this issue, each feature Xj was normalized by removing its mean and
dividing it by its standard deviation σXj before the feature selection step. To
account for this normalization the parameter w controling the uncertainty for
each feature was adapted to w × σXj .

Figure 3 confirms that the suggested normalization helps improving the fea-
ture selection with uncertainty for the two data sets. It is also the case for feature
selection without taking the uncertainty into account but the results are not dis-
played for clarity reasons, since they are inferior to those obtained considering
the uncertainty. With the normalization, the best results are again achieved by
the proposed methodology. In particular, for the Parkinson data set, the error
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rate is reduced by more than 10% with only the first two features. When applied
to the six first data sets, the normalization leads to very similar results than
those presented in Figure 2.

5 Conclusions

This paper is concerned with the important problem of feature selection for
classification problems, in the specific context of uncertain data. To this end, it
is proposed to rank the features according to their MI with the class labels vector,
a widely used criterion for feature selection. The current work is motivated by
recent papers showing that properly taking the uncertainty of the data into
account generally increases the precision of classifiers.

Following these works, the uncertainty on the data is handled by representing
the values in the data set as an uncertainty region and to define a pdf over
theses regions. In this work, Gaussian pdf are considered while it is shown how
the developments could be easily extended to the uniform distribution or to an
arbitrary distribution defined by a collection of samples drawn from it.

A method to evaluate the MI between each uncertain feature and the output is
then introduced. It is based on the traditionnal kernel density estimation which
is adapted to handle points described as pdf. More precisely, the expected value
of the kernel estimator is determined by exploiting the fact that a convolution
between Gaussian pdf is still a Gaussian pdf with known mean and variance. A
convenient way to numerically evaluate the entropy and thus the corresponding
MI is also proposed.

Experimental results on eight UCI databases containing uncertainty show that
the proposed approach is effectively able to select relevant features. Indeed, for all
data sets, the classification performances can be improved by removing irrelevant
features. Moreover, the advantage of considering the inhenrent uncertainty of the
data for both feature selection and classification is clearly established. It is also
shown how the normalization can help improving the feature selection when
some features have large differences in their range value, harming the estimation
of the entropy and consequently the estimation of MI.

Future work could be focused on the development of MI estimation algorithms
for two uncertain continuous vectors. This would be helpful for feature selection
in regression problems (problems with a continuous output to predict). It would
also allow one to consider the redundancy between features. Indeed, only the
relevance (measured by the MI) is considered as a criterion for feature selection
in the present work. Taking the redundancy into account could lead to improved
performances, especially if one works with highly redundant data such as in near
infra-red spectra analysis [14].
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Abstract. Link prediction in social networks such as collaboration net-
works and friendship networks have recently attracted a great deal of
attention. There have been numerous attempts to address this problem
through diverse approaches. In the present paper, we focus on the tem-
poral behavior of the link strength, particularly the relationship between
the time stamps of interactions or links and the temporal behavior of
link strength and how link strength affects future link evolution. Most
of the previous studies neglected the impact of time stamps of the inter-
actions and of the links on link evolution. The gap between the current
time and the time stamps of the interactions or links is also important
to link evolution. In the present paper, we introduced a new time aware
index, referred to as time score, that captures the important aspects of
time stamps of interactions and the temporality of the link strengths.
We apply time score to two social network data sets, namely, a coau-
thorship network data set and a Facebook friendship network data set.
The results reveal a significant improvement in predicting future links.

Keywords: Link prediction, Time stamps, Temporal behavior, Social
networks.

1 Introduction

Link prediction is introduced in [9] as inferring which new interactions are likely
to occur in the near future in a given network. If we are given a snapshot of a
network at time tc, the goal is to predict links that are likely to occur at a future
time tf . The information of the structure of the given network and the features
of nodes and edges can be used to predict future links.

Link prediction in social networks has become an important task in network
science because of the potential benefit to users of social networking services as
well as to various organizations and researchers. Online social networking services
can provide their users with more accurate service and more precise recommen-
dations or suggestions. Therefore, users of these services can efficiently find their
friends, colleagues, or people whom they wish to meet [10]. Organizations such
as security agencies and business organizations will be able to find more accurate
information regarding unseen relationships among people or organizations and
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so may operate more effectively. Researchers can find other individuals in the
same research field, experts, and research organizations [15,19,13,7]. However,
highly structured massive real-world networks involving heterogeneous entities
with complex associations have added new challenges to link prediction research.
Supervised and unsupervised learning methods have been used in previous stud-
ies with different frameworks for link prediction but machine learning approaches
remain an immense challenge [4]. Machine learning methods are difficult to ap-
ply because of the complexity and size of the networks as well as the temporal
behaviors of the links in the networks.

This temporality can be caused by various factors depending on the nature
of the network. The factors that cause the temporal behavior of the links and
how these factors can be effectively used for link prediction in networks must be
determined. To our knowledge, this scenario has not been discussed sufficiently
in the context of link prediction. The links are strong for a certain period of time,
but then become weaker and fade. Such link behavior increases the complexity
of link prediction because stronger links have a greater influence over link evo-
lution than weaker links. The main contribution of the present study is finding
the impact of the relationship between the time stamps of the interactions and
the link strength for future links. Therefore, we herein introduce a new index to
incorporate the impact of the time stamps of the interactions and the gap be-
tween the current time and the time stamps. We use the newly proposed index
in conjunction with supervised machine learning methods in order to predict
links in network data sets.

The remainder of the present paper is organized as follows. In Section 2,
we discuss related studies and discuss the importance of time awareness for
link prediction. In Section 3, we introduce a method of link prediction and the
newly proposed index. In Section 4, we present experimental results and discuss
possible improvements to the proposed index. Section 5 presents conclusions and
discusses future research.

2 Related Research

In this section, we review research related to link prediction as well as background
information on link prediction. The increasing number of studies related to link
prediction in the recent literature reveals the growing interest and importance
of link prediction. Diverse approaches, including machine learning approaches
and probabilistic approaches, have been proposed to address the problem of link
prediction.

Link prediction is a type of link mining, which is a newly emerging research
field under data mining, and presents new challenges to machine learning tech-
nologies [5]. Feature construction and collective classification using a learned
model is a prominent feature of machine learning. A support vector machine
(SVM) was used in combination with the structural features of networks in-
troduced in [9] for link prediction in coauthorship networks [13,7]. Later, the
introduction of features such as keyword match count for paper topics and ab-
stracts [15,19], in combination with decision trees, provided more accurate link
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predictions in coauthorship networks. These previous studies have proved the
consistency and effectiveness of decision trees and SVM [3] in link prediction
task. However, sparse real-world networks have presented additional difficulties
in machine learning approaches due to the huge imbalance between possible links
and actual links can be observed in these networks. The authors of a previous
study [10] interpret the problem of link prediction as a problem in class imbal-
ance between possible links and actual links. They used SMOT [2], which is a
widely accepted sampling strategy to overcome imbalance.

Probabilistic approaches basically estimate the likelihoods of the future pos-
sible links. Among recent studies, the local probabilistic model was used in [18]
to estimate the cooccurrence probability of a node with other nodes within a
local proximity of the node. However, possible links with nodes that are not in
the defined proximity are still missing. The probabilistic graph created using the
structural features introduced in [9] was used in [8] to estimate the probabilities
of future links in a network. However, few of the above studies considered the
temporal behaviors of the links in the networks. For example, when matching
semantic similarities, matching abstract keywords [15], would be more effective if
higher weights are assigned to keywords in more recent publications. The random
walk [10] would be more effective if the random walker were to choose its path
not only according to the path weight but also using the link strength, which
varies over time. Recently, the time-aware maximum entropy [16] introduced
in order to assign higher weights to more recent collaborations, as compared
to older collaborations, in coauthorship networks. Although, the impact of the
time stamps on the temporality of the links was discussed, the importance of the
gap between the current time and the time stamps of interactions or links has
not been discussed sufficiently. These observations inspired us to investigate the
temporal behavior of the links. Therefore, we focused on finding a relationship
between the time stamps of interactions or links and the temporal behaviors of
the links and how this relationship affects future link evolution.

3 Supervised Learning Method for Predicting Links

As discussed above, link prediction deals with predicting future possible links in
a given network. Most of the approaches discussed in Section 2 use structural
features of networks and the features of the nodes and edges for link prediction.
For example, in a coauthorship network, the nodes are authors, and the edges
represent the publications by these authors. In online friendship networks such
as Facebook, the nodes become users, and the links represent the relationships
between them. In both cases, similarities between nodes and structural features
of the networks can be used to predict future links. For example, the number of
common neighbors of a node pair and Jaccard’s coefficient [11] can be computed.
Once these features are calculated for a particular node pair, we have a vector
of values referred to as a feature vector [13], which may be correlated with the
future possible link between that node pair.

In a supervised learning approach, we use the feature vectors of each node
pair to learn a model that can then be used to predict the appearance of future
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Table 1. Feature listing

Feature Formula With TS Without TS

Adamic/Adar
∑

vkεΓ (vi)
⋂

Γ (vj)
1

log|Γ (vk)| � �
Jaccard’s coefficient

|Γ (vi)
⋂

Γ (vj)|
|Γ (vi)

⋃
Γ (vj)| � �

Preferential attachment |Γ (vi)|.|Γ (vj)| � �
Common neighbors |Γ (vi)

⋂
Γ (vj)| � �

Time score
∑

c
Hmβk

|t1−t2|+1
� -

links. In other words, once we compute the feature vectors for each node pair, we
obtain a set of feature vectors for node pairs that are already linked and another
set of feature vectors for node pairs that are not linked. The goal is to find the
feature vectors of unlinked node pairs that are likely to be linked in the future
using feature vectors of already linked node pairs. To this end, we train a Weka
[6] implementation of a supervised machine learning decision tree algorithm, J48
[14] with default parameters, using the training set, which is defined as the set
of feature vectors that correspond to linked node pairs, to find feature vectors of
unlinked node pairs that are likely to become linked in the future from the test
set, which is defined as the set of feature vectors of unlinked node pairs.

3.1 Features Used for Link Prediction

We used two different combinations of features in the proposed machine learning
approach for link prediction. One set was used as the baseline combination, and
the other set includes the new index introduced herein. Table 1 lists the details
of the features used in the experiments of the present study. In the formulas, vi,
vj , and vk denote nodes, and Γ (vi) and Γ (vj) denote the sets of neighbors of
vi and vj , respectively. According to the present feature selection, we excluded
self links and considered undirected networks. The descriptions of the existing
features used in our experiments are shown below, and, in Section 3.2, we discuss
the new feature time score introduced herein.

Adamic/Adar. [1] This measure indicates that if a node pair has a common
neighbor that is not common to several nodes, then the similarity of that
particular node pair is higher than that of node pairs having neighbors that
are common to several other nodes. This measure assigns higher weights to
common neighbors that are not common to several other nodes.

Jaccard’s coefficient. [11] Normalized measure of common neighbors.
Common neighbors. Number of common neighbors of a pair of nodes.
Preferential attachment. [12] This measure indicates that new links are more

likely to be formed with higher degree nodes, or nodes that are popular in
the network.
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3.2 New Index for Time Aware Link Prediction

The features discussed in Section 3.1 are based solely on common neighbors,
but do not consider the temporal behavior of these common neighbors. The
strengths of links with common neighbors vary over time. In the context of
social networks, the effectiveness of the common neighbors depends not only on
the cooccurrence frequency, or number of common neighbors, but also on how
long the neighbors have been in contact. The time stamps of the interactions
are useful in finding such information. This information provides a far better
view of the importance of common neighbors than considering only the number
of common neighbors. Therefore, we introduced a new method to incorporate
the effectiveness of common neighbors and their temporality. To this end, we
designed a new index based on the following concepts.

1. The strength of a link varies over time. If the nodes at the ends of a link
have not interacted with each other for long time with respect to the current
time, then the link becomes weaker. Therefore, we represent the weight of a
link in terms of its strength over time using damping factor β and k, which
is the difference between the current time and the time stamp of the most
recent interaction of a common neighbor with its sharing nodes. The term
βk increases as k decreases.

2. If the two nodes have interacted with their common neighbors in closer prox-
imity of time, then the common neighbors are more effective. In other words,
if the difference between the time stamps of the most recent interactions of
common neighbors having the node pair for which we want to predict linkage
is small, then the link is more likely to occur in the future. Taking the most
recent time stamps is similar to assuming a Markov property of the inter-
actions. In this case, we assigned higher weights to common neighbors that
have interacted recently with their sharing nodes. Hence, we use the term
|t1 − t2| + 1, where t1 and t2 are the time stamps of the most recent inter-
actions of the common neighbor with its sharing nodes. This term becomes
larger when the difference between t1 and t2 becomes larger. Therefore, we
use the reciprocal of this term to assign weights to common neighbors. The
addition of one in the term is in order to avoid the time score from becoming
infinite when the two time stamps are equal.

Combining the above considerations, we introduced a new index to combine time
awareness for link prediction. This concept is illustrated in Figure 1. Vertices
a and b have common neighbor c. Here, t1 is the most recent time stamp of
the interactions between a and b, and t2 is the most recent time stamp of the
interactions between b and c. Moreover, k is the difference between the current
time tc and the most recent time stamp from t1 and t2.

Time Score (definition). For a network N = (v,e) with a set of nodes v and
edges e, the time score (TS) for a pair of nodes a and b that has n common
neighbors is defined as follows:
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c

a b

Time

t1 2

c

t

tt1 t2

t1 2t-

Fig. 1. Vertices a and b have common neighbor c. Here, t1 is the most recent time
stamp of the interactions between a and c, and t2 is the most recent time stamp of the
interactions between b and c. The current time is denoted as tc.

TS =
∑

n

Hmβk

|t1 − t2|+ 1
(1)

where Hm is the harmonic mean of the cooccurrence frequencies of a and b with
a common neighbor that cooccurred at time t1 with a and t2 with b.

k = current time−max(t1, t2) (2)

0 < β < 1; β is a damping factor. (3)

In addition, the number of interactions or cooccurrences of a node pair also
important in determining link strength. Therefore, we used the harmonic mean
of the cooccurrence frequencies of each common neighbor with its sharing nodes.
Typically, the harmonic mean is appropriate for situations in which an average
of rates is desired. In the present case, we use the cooccurrence frequency, or the
number of user interactions, as the rates. Compiling all, the new index time score
can be used as a feature, which is basically assigned a weight for future possible
links. For example, let us assume that two authors, a and b, have common
neighbor c. If a and c have published two papers in 2005 and 2006, then b and c
have published one paper in 2008. If the current year is assumed to be 2011, then
the weight for future possible link ab can be calculated as follows. The harmonic
mean Hm(x1, ..., xn) of n numbers xi (where i = 1, ..., n) is the number Hm

defined as follows:
1

Hm
=

1
n

n∑
i=1

1
xi

. (4)

Hence,

Hm =
2

1
2 + 1

1

= 1.3333. (5)
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In this case, k = 2011-2008 = 3, because the latest time stamp is 2008, and the
current year is 2011. The number of common neighbors, n, is 1, and we used
β = 0.5.

TS =
(

0.53

|2008− 2006|+ 1

)
∗ 1.3333 ≈ 0.05555 (6)

4 Experimental Evaluation

In order to test the effectiveness of the proposed method, we performed exper-
iments using two real-world social network data sets, one from the Facebook
friendship network and the other from a coauthorship network extracted from
condensed matter physics publication data found in e-print archives 1. These
real-world networks are very sparse, and so the rate of positive examples is very
low. On average, the percentages of positive examples in Facebook data and
coauthorship data are 0.05% and 0.08%, respectively. We used the SMOT over-
sampling algorithm [2] in these experiments. After oversampling, the percentages
of positive examples in Facebook data and coauthorship data are 0.3% and 0.5%
respectively. The other important consideration is the unit of time measurement.
This unit can be years, days, or hours, depending on the data set. We set β ac-
cording to the time measurement in order assign higher weights to interactions
that occurred more recently. The performance metrics are precision, recall, and
F-measure, which are defined as follows:

Precision =
|TP |

|TP |+ |FP | , (7)

Recall =
|TP |

|TP |+ |FN | , (8)

F -measure =
2 ∗ Precision ∗Recall

Precision + Recall
, (9)

where |TP |, |FP |, and |FN | represent True Positives, False Positives, and False
Negatives, respectively.

4.1 Experiment Using Facebook Data

We used the Facebook data from [17], which are collected from the regional
Facebook network for New Orleans. This data set consists of links between the
users and the time stamp of link establishment and the user interactions in
terms of wall posts and the time stamps of the wall posts. The wall post data
was collected for 60,290 users who are connected by 1,545,686 links. We extracted
a snapshot of the data from October 2007 to January 2009.

Supervised machine learning algorithms require data in the form of training
and testing data. From the Facebook network data, we constructed training

1 http://arxiv.org/
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Table 2. Statistics of the networks

Prediction month
Training data Test data
Nodes Edges Nodes Edges

2009 Jan 28370 106106 31832 123650
2008 Dec 25427 92990 28370 106106
2008 Nov 22732 80848 25427 92990
2008 Oct 20476 71792 22732 80848
2008 Sep 18339 63392 20476 71792
2008 Aug 17268 60718 18339 63392
2008 Jul 16381 58546 17268 60718
2008 Jun 15705 56014 16381 58546
2008 May 14762 50732 15705 56014
2008 Apr 13998 48238 14762 50732
2008 Mar 13732 47986 13998 48238
2008 Feb 13733 50248 13732 47986

data and testing data using four consecutive months. User interactions, i.e., wall
postings between users during the first three months are given, and the target is
to predict the links in following month. In other words, if we start from time t, the
wall postings from t to t+2 are given, and the links that appear during t+3 is the
target of prediction. For example, in order to predict links formed during January
2009, we train the decision tree algorithm using the data from September 2008 to
December 2008 and test the data from October 2008 to January 2009. Features
are computed using the network data from September 2008 to November 2008,
and the links that emerged during December 2008 are considered to be the
positive examples for training data. Then, the trained model was tested using the
features calculated for the data from October 2008 to December 2008 in order to
predict the links that emerged during January 2009. Table 2 shows the statistics
of the networks that were created to predict the links during each month. In the
Facebook data, the frequency of the wall postings between users is considered as
the cooccurrence frequency of each node pair that is already connected. In this
data set, the time stamps of the links are created using the Linux time stamp of
the wall postings. We converted these time stamps to days. Therefore, the time
stamp of a link represents the day of the most recent interaction between two
users. Thus, in this experiment, we measured the time in days. We set β to be
0.85.

Results and Discussion: The left-hand side of Figure 2 compares the results
obtained with and without the proposed index. In the comparison of Facebook
performance shown in Figure 2, the performance metrics show a notable im-
provement using the new index, as compared to the base methods from June
2008 to January 2009. Based on the wall posts data, and, as mentioned in [17],
rapid growth of the wall posts occurs from June 2008 to January 2009. This
increment makes the network more active and most of the existing links become
stronger. The stronger links have a greater influence on the future link evolution.
Therefore, the use of time score yields better results than the base methods. This
observation further emphasizes that the new index is more sensitive to the tem-
poral behavior of user interactions. However, according to [17], from February
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2008 to May 2008, there is no increase or decrease in the wall postings. Thus,
the strengths of the links do not exhibit temporal variations in behavior in the
network during this period. Therefore, the performance metrics exhibit slightly
lower values for the new index than for the base method. In the Facebook friend-
ship network, the friends of a user can see the wall postings of that user if the
user chooses share with his/her friends. Thus, users who have that particular
user as a common neighbor, while having no other relationship, can become
friends through each other’s postings. A sudden increase in wall postings indi-
cates that more people interact with each other and become friends. Therefore,
recent interactions and interactions happen in closely have a greater influence on
link evolution. Furthermore, the results depend on the duration of data collec-
tion and the region of the network. In particular, the Facebook network exhibits
different patterns depending on the time, the major events that occur during
the period of data collection, and the region of the network. Therefore, data col-
lected during different time periods and in different regions of the network must
be used during testing. The use of the newly proposed index increased the preci-
sion by 6% on average. The improvements in recall and F-measure are indicated
by the comparisons of Facebook recall and Facebook F-measure in Figure 2. On
average, the recall and F-measure increased by 2% and 5%, respectively.

4.2 Experiment with Coauthorship Data

The undirected coauthorship network was extracted from the available publi-
cations in cond-mat archive2. This data set contains the data of 123,198 pub-
lications on condensed matter physics from 1997 to 2010. The data for four
consecutive years were used to create the training data and testing data. For
example, in order to predict the set of links that emerged in 2010, we used the
data of the coauthor network from 2007 to 2009 to calculate the features of the
test set. The data for 2009 (considered as the training set) and the features were
calculated using the coauthor network from 2006 to 2008. The coauthorship net-
works created in this manner are very sparse: on average, 0.0015% of the possible
links appear in each network. In this data set, the unit of time measurement is
years. The time stamp for an interaction between a pair of authors represents
the year of publication of the coauthored paper. Hence, the time stamp of a link
indicates the year of most recent publication by a pair of authors. A damping
factor of β = 0.5 was used in this experiment.

Results and Discussion: A comparison of the performance metrics of this
experiment is shown in the right-hand side of Figure 2. The improvements in
precision, recall, and F-measure show the impact of the newly proposed index
in link prediction in the coauthorship network that evolves primarily over recent
collaborations. In 2003, we observe an exception in the Condmat precision com-
parison graph, whereas in all other years the results obtained using the newly
proposed index are better than the results for the base method. All three perfor-
mance metrics indicate significant improvements according to a Student t-test
2 http://arxiv.org/archive/cond-mat/
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Fig. 2. Comparisons of performance metrics for the Facebook and coauthorship data

with p = 5%. The average improvement in precision is 14%. The results for re-
call and F-measure indicate consistent improvement in every year; the average
improvements are 11% and 13%, respectively.

The scientific collaborations are time-sensitive. In other words, researchers
prefer to explore evolving topics through new collaborations. To this end, re-
searchers tend to find associates or experts through their most recent collab-
orations. This increase the temporality of the links among the researchers. On
the other hand, the temporality in coauthorship networks has several causes. For
example, researchers tend to change research fields according to current research
trends and occasionally change institutes or universities. In such situations, the
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geographical locations of the researchers and current research trends become
important factors in predicting links in coauthorship networks. Therefore, it is
necessary to investigate other factors that cause temporal variations in the be-
haviors of the links.

5 Conclusion and Future Research

In the present paper, we introduced a new time aware index for link predic-
tion in social networks using a supervised machine learning approach. We found
that the time stamps of interactions are crucial factors for link evolution. The
primary focus of the present study was the impact of the relationship between
the temporal behavior of link strength and the time stamps of interactions and
links for link evolution, which had not previously been discussed sufficiently. In
particular, we focused on the temporal behavior of common neighbors in terms
of link strength. We examined the proposed method using two real-world data
sets. The improvements in performance metrics indicated by the experimental
results verify the effectiveness of the newly proposed index.

In the future, we will extend the proposed method to any node pair in a
network. Moreover, we will focus on the development of a method by which
to estimate β according to the network and the time measure. We used two
different values of β in the experiments of the present study. Exploring other
factors of temporal behaviors of networks is one of the primary goals of our
future research. Some of these factors are network specific. Therefore, the use
of temporal behaviors for link prediction is a challenging task. Furthermore, we
intend to demonstrate that the proposed method is applicable to a wide range of
algorithms that have been used for link prediction, such as flow-based algorithms
and statistical modeling approaches.
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Abstract. Computing scalar products amongst private vectors in a se-
cure manner is a frequent operation in privacy-preserving data min-
ing algorithms, especially when data is vertically partitioned on many
parties. Existing secure scalar product protocols based on cryptography
are costly, particularly when they are performed repeatedly in privacy-
preserving data mining algorithms. To address this issue, we propose
an efficient cacheable secure scalar product protocol called CSSP that is
built upon a homomorphic multiplicative cryptosystem. CSSP allows one
to reuse the already cached data and thus, it greatly reduces the running
time of any privacy-preserving data mining algorithms that adopt it. We
also conduct experiments on real-life datasets to show the efficiency of
the protocol.

1 Introduction

With the proliferation of the Internet and the advent of cheap storage devices,
data has been collected and stored in many sites. In the last decade, there has
been growing interest in privacy-preserving data mining (PPDM). PPDM al-
lows multi-parties to collaborate without disclosing their sensitive data. One of
the common approaches is to use cryptographic protocols to pass private data
in encrypted form among parties. Although this method demands high com-
putational overheads, it achieves more accurate results than the randomization
approach [1].

When data is vertically distributed among multiple parties, many PPDM al-
gorithms require scalar product operations on private data vectors. To date,
various secure scalar product (SSP) protocols have been proposed to solve spe-
cific data mining algorithms [3,4,7,13,20]. As pointed out by Yang et al. [17],
high computational overheads have become a major performance bottleneck of
SSP protocols. As executing SSP protocols on large datasets incurs high costs,
the practicality of PPDM in real applications suffers. Until the efficiency of SSP
protocols is substantially improved, PPDM based on cryptographic approach
remains a theoretical domain with very limited impact on real-world problems.

We observe that many conventional data mining algorithms execute iterative
data computations where intermediate results are produced in one iteration and
used in subsequent iterations. Naturally, their privacy-preserving versions also run

A. Cuzzocrea and U. Dayal (Eds.): DaWaK 2011, LNCS 6862, pp. 354–366, 2011.
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Table 1. Private datasets
of Alice & Bob

A1 A2 A3 B1 B2 B3

1 1 0 0 1 0
1 0 0 1 0 0
0 0 0 0 1 1
1 1 0 1 1 0
1 0 1 1 0 0

Table 2. Apriori Algorithm

Iteration 1 Iteration 2 Iteration 3

Itemset Support Itemset Support Itemset Support

{A1} 4 {A1, A2} 2 {A1, A2, B2} 2
{A2} 2 {A1, B1} 3
{A3} 1 {A1, B2} 2
{B1} 3 {A2, B1} 1
{B2} 3 {A2, B2} 2
{B3} 1 {B1, B2} 1

Highlighted itemsets are eliminated in the next itera-
tion due to low support counts.

iteratively. Privacy-preserving association rule mining (PPARM) algorithm pro-
posed by Vaidya and Clifton [13] is an example. The algorithm is based on the idea
of filtering out infrequent dataset iteratively. Similarly, privacy-preserving deci-
sion tree induction (PPID3) [14] is another typical iterative PPDM algorithm.

Consider the discovery of frequent itemsets in ARM that involves two parties.
As illustrated in Table 1, we assume that Alice holds private attributes A1, A2, A3

and Bob holds B1, B2, B3. We also assume that the Apriori algorithm is used
with a support threshold of 2. As shown in Table 2, during the second iteration,
Alice and Bob exchange data in order to determine the frequency of 2-itemsets
{A1, B1}, {A1, B2}, {A2, B1}, and {A2, B2}. Support counts may be securely
computed using any SSP protocols. For instance, to jointly and securely deter-
mine the support of 2-itemset {A1, B1}, Alice encrypts A1 using an encryption
scheme and sends the ciphertext via a communication network to Bob. Bob then
performs some secure computations on the received data and his own data. To-
gether, they both derive the support value of {A1, B1}. In the same way, they
determine the support of the remaining 2-itemsets.

This process is repeated in a similar manner in subsequent iterations where
frequent 3-itemsets or higher itemsets are discovered. We note that some of Al-
ice’s encryption operations are performed on the same data in the next iteration,
as in the second iteration. For instance, to determine the support of 3-itemsets
{A1, A2, B1}, Alice needs to encrypt vectors A1 ·A2. We note that vectors A1 and
A2 have been encrypted individually in the previous iteration. To significantly re-
duce additional costly cryptographic operations, we seek to derive Encpk(A1 ·A2)
directly based on the results computed in the second iteration (i.e., Encpk(A1)
and Encpk(A2)), where Encpk(X) denotes the encrypted value of X using key pk.

To generalize the problem, if one is able to design an SSP protocol such
that Alice need not encrypt the same data that has been encrypted before in
previous iterations, and simply use the already encrypted data in subsequent
iterations, the computation and network communication costs of the protocol
can be reduced. The extent of this reduction can be significant, depending on
how frequent subsequent iterations require data from earlier iterations. This
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observation motivates us to design an SSP protocol with the desirable feature of
reusing intermediate results. Our contribution in this paper is a new SSP protocol
called cacheable secure scalar product (CSSP) that supports intermediate result
caching.

The rest of this paper is organized as follows. The background will be discussed
in the next section. In Section 3, we use Goethals et al.’s popular SSP protocol
[7] as an example and examine why intermediate result caching may not be
applicable. The CSSP protocol and its security issues are discussed in Section 4.
We conduct experiments to evaluate the efficiency of CSSP protocol in Section 5.
The last section concludes the paper with a summary.

2 Preliminaries

2.1 Homomorphic Public-key Cryptosystems

For any two plaintexts m1 and m2, a public key cryptosystem is said to have
the homomorphic additive property if it satisfies:

Encpk(m1, r1)× Encpk(m2, r2) = Encpk(m1 + m2, f̂(r1, r2)) (1)

where Encpk(m, r) is the encrypted value of plaintext m using public key pk with
a random number r, and f̂ is a function in polynomial execution time. Based
on the homomorphic additive property, we are able to simulate encryption by
multiplying two plaintexts:

Encpk(m× n, r1) = (Encpk(m, r2))n (2)

This pseudo multiplication is the underlying rationale for many existing SSP
protocols. Some of the cryptosystems that support this property are those by
Paillier [11] and Okamoto-Uchiyama [10].

On the other hand, a cryptosystem is said to have the homomorphic multi-
plicative property if it satisfies:

Encpk(m1, r1)× Encpk(m2, r2) = Encpk(m1 ×m2, ĝ(r1, r2)) (3)

where ĝ is a function in polynomial execution time. RSA [12] and ElGamal [5]
cryptosystems have this property.

2.2 Semi-honest Model

In a distributed environment where multiple parties follow and execute secure
protocols to perform privacy-preserving data mining, we make assumptions in
the way each party abides by the steps of the protocols. A commonly adopted
model is the semi-honest one where every party strictly follows and executes
the specified protocol and provides the correct input data when executing the
protocol. However, after they have completed executing the protocol, every party
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may attempt to discover as much additional information as possible from the
intermediate results received from other parties during protocol execution and
its own private data. The semi-honest party model [8] is widely accepted and
applied in many PPDM protocols due to its simplicity as generally each party
does not wish to collaborate with any malicious parties for risk of compromising
data privacy.

2.3 Related Work

We review various work related to multi-party secure scalar product protocols.
Du et al. [3,4] applied a commodity server (CS) as a computation model in which
participants need help from a semi-trusted third party. However, finding such a
semi-trusted third party is not easy. Based on the 1-out-of-N Oblivious Transfer
protocol [9], Du and Atallah [2] proposed an SSP protocol as an alternative
solution to securely compute scalar product. Vaidya and Clifton [13] proposed
another SSP protocol based on matrix operations. However, both are insecure
according to Goethals et al. [7]. To address this problem, Goethals et al. [7]
proposed an SSP protocol built on a homomorphic additive cryptosystem.

Zhan et al. [19] proposed an SSP protocol using homomorphic additive prop-
erty of a cryptosystem. This protocol does not preserve fairness among parties
in general as the final result is held only by the initial party. Furthermore,
Zhong [20] also proposed several cryptographic SSP protocols to deal with ver-
tically and horizontally partitioned data. The efficiency of this protocol is rela-
tively low as extra cryptographic computations and vector permute operations
are involved. However, none of the above mentioned SSP protocols that fully
utilize intermediate results and thus, increase overall system performance.

To address the practical limitations of PPDM systems, Vaidya and Clifton [15]
discussed the feasibility of applying the secure set intersection cardinality method
to increase the performance of PPARM protocols. However, this method is not
applicable to a wide range of protocols other than PPARM. Zhai et al. [18]
proposed to improve the performance of several secure protocols such as privacy-
preserving k-means, PPARM, PPID3, etc., via a result caching approach. They
discussed the caching capability only at the PPDM algorithm level and not at
the SSP level. It is also not clear how to apply caching in PPDM. In this paper,
we apply result caching at a lower level to further increase system performance
on boolean vectors.

3 Caching Analysis of Proposed SSP Protocols

We first review a popular SSP protocol that is dedicated to binary inputs, pro-
posed by Goethals et al. [7] in Section 3.1. We choose this protocol since it is
secure and provides fairness between parties [7]. We then attempt to incorpo-
rate result caching into the protocol in order to improve its efficiency. Using an
illustration involving boolean vectors, we argue in Section 3.2 that the caching
concept cannot be successfully applied due to limitations of the adopted cryp-
tosystem. For simplicity, we use Encpk(m) instead of Encpk(m, r) in this section.
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3.1 Goethals et al.’s SSP Protocol

Protocol 1 illustrates Goethals et al.’s protocol [7]. It exploits the homomorphic
additive property of a suitable cryptosystem (e.g., Paillier cryptosystem [11]) to
accomplish operations of data computation in encrypted form; i.e., preserving
data privacy. After the initial setup in Step 1, Alice encrypts her vector elements
xi (Step 2) and sends it to Bob (Step 3). In Step 4, Bob incorporates the neces-
sary computations on Alice’s encrypted data ci and his own data yi in encrypted
form by pseudo multiplication (Equation (2)), generating a new vector d as a
result. Each element of the vector d is equivalent to the encrypted form of xi ·yi.
In Step 7, Bob applies the homomorphic additive property of the cryptosystem
on the vectors to obtain the encrypted form of the scalar product

∑n
i=1(xi · yi).

Using Steps 8 and 9, each party produces and keeps a portion of the result.
Herein, Decsk(C) denotes the decrypted value of ciphertext C using decryption
key sk.

3.2 Caching Analysis of Goethals et al.’s Protocol

In this section, we address how to apply caching to Goethals et al.’s protocol. Let
us consider the following scenario. Suppose Alice holds two n-dimensional binary
vectors xa = [xa1, xa2, . . . xan] and xb = [xb1, xb2, . . . xbn], and Bob holds two
n-dimensional binary vectors ya = [ya1, ya2, . . . yan] and yb = [yb1, yb2, . . . ybn].
While Bob receives ciphertexts from Alice in Step 5 of Protocol 1, he may cache
vector c for future use. After they have computed the scalar product of xa · ya

or xb · yb using the protocol, they both hold a share of the final result, as the
protocol dictates. During the execution of the protocol, Bob cached encrypted
values ca and cb where

ca = [Encpk(xa1), Encpk(xa2), . . . Encpk(xan)] (4a)
cb = [Encpk(xb1), Encpk(xb2), . . . Encpk(xbn)] (4b)

Suppose the data mining algorithm further requires Alice and Bob to securely
compute the scalar product of all four vectors xa·xb·ya·yb =

∑n
i=1(xaixbiyaiybi).

In PPARM, the value of xa · xb · ya · yb corresponds to the support value of
itemset {Xa, Xb, Ya, Yb}. In PPID3, this value helps to compute the information
gain or entropy.

Steps 6–8 of Protocol 1 make use of the homomorphic additive property of the
cryptosystem adopted in the protocol. The encryption scheme was earlier used
to encrypt xij , where i ∈ {a, b} and j ∈ [1, n]. From the homomorphic additive
property, we know that:

Encpk(xa · xb · ya · yb) = (((Encpk(xa))xb)ya)yb (5)

From Equation 5, we see that if Bob wants to compute the scalar product of
all four vectors, he must receive (Encpk(xa))xb from Alice. It is clear that Bob
cannot make use of cached ciphertexts here.

The implication of this example is that the protocol uses encrypted data
repeatedly, and it is known that cryptographic operations can be very costly.
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Protocol 1. Goethals et al.’s SSP Protocol.
Input: Binary vectors x = [x1, x2, . . . xn], y = [y1, y2, . . . yn] held by Alice and Bob
respectively.

Output: Alice and Bob get outputs SA and SB respectively so that SA + SB ≡ x · y.

1: Setup phase: Alice generates a homomorphic additive public-key cryptosystem with
private key sk and public key pk and release pk to Bob.

2: for i = 1 to n do
3: Alice generates a random number ri and computes ci = Encpk(xi, ri).
4: end for
5: Alice sends vector c = [c1, c2, . . . cn] to Bob.
6: Bob generates a vector d = [d1, d2, . . . dn] where di = cyi

i for all i ∈ [1, n].
7: Bob sets w =

∏n
i=1 di.

8: Bob generates a random plaintext SB and a random nonce r′; and sends w′ =
w · Encpk(−SB, r′) to Alice.

9: Alice computes SA = Decsk(w
′) = x · y − SB.

However, many intermediate results such as Enc(xa) and Enc(xb) cannot be
reused to further derive Enc(xa ·xb). Hence, to increase efficiency in subsequent
iterations, we propose a new SSP protocol that is applicable to intermediate
results caching in the next section.

4 The Cacheable Secure Scalar Product Protocol

In this section, we propose a cacheable secure scalar product (CSSP) protocol that
fully supports caching, as illustrated in Protocol 2. The protocol is dedicated to
binary vectors as they are widely used in many data mining protocols such as
PPARM, PPID3, etc. and all categorical data can be converted into binary data.

4.1 The Correctness

Using the homomorphic multiplicative property, we have:

SA =
m+n∑
i=1

hi =
m+n∑
i=1

Decsk(gi) =
n∑

i=1

Decsk(ei) +
m∑

i=1

Decsk(fi)

=
n∑

i=1

(xi · yi) +
m∑

i=1

si = x · y + SB.

Thus, the CSSP protocol is correct.

4.2 Caching Analysis

Let consider the example in Section 3.2 again. Alice and Bob want to compute the
scalar product of four vectors: xa, xb, ya, yb in which ciphertexts ca of xa and cb

of xb have been cached on Bob’s site. Using homomorphic multiplicative property
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Protocol 2. The Cacheable Secure Scalar Product Protocol.
Input: Alice and Bob have private binary vectors x = [x1, x2, . . . xn], y =
[y1, y2, . . . yn], respectively. They agree to adopt a homomorphic multiplicative public-
key cryptosystem. Private key sk is held by Alice; public key pk is known to both
parties.

Output: Shares SA and SB held by Alice and Bob respectively where SA + (−SB) =
x · y yields the scalar product value.

1: for i = 1 to n do
2: Alice generates a random number ri and encrypts xi as ci = Encpk(xi, ri).
3: Bob generates a random number r′i and encrypts yi as di = Encpk(yi, r

′
i).

4: end for
5: Alice sends vector c = [c1, c2, . . . cn] to Bob. Bob cache c for future uses.
6: for i = 1 to n do
7: Bob computes ei = ci · di.
8: end for
9: Bob generates a random number m. He then generates a random binary vector

s = [s1, s2, . . . sm] and uses SB =
∑m

i=1 si as his secret share.
10: for i = 1 to m do
11: Bob generates a random number r̃i and encrypts si as: fi = Encpk(si, r̃i).
12: end for
13: Bob constructs vector g = [e1, e2, . . . en, f1, f2, . . . fm].
14: Bob permutes the elements of vector g to get g = [g1, g2, . . . gm+n].
15: Bob sends g back to Alice.
16: for k = 1 to m + n do
17: Alice decrypts gk using sk: hk = Decsk(gk).
18: end for
19: Alice obtains her secret share SA =

∑m+n
i=1 hi.

of a cryptosystem, he can compute encrypted vector e in Step 7 of Protocol 2
without any help from Alice: e = Encpk(xa) ·Encpk(xb) ·Encpk(ya) · Encpk(yb) =
ca · cb · Encpk(ya) · Encpk(yb). To generalize, we can conclude that CSSP allows
Bob to reuse any already cached ciphertext to calculate scalar products.

4.3 Security Analysis

We now analyze the security of our protocol.

Cryptosystem. Throughout the execution of the protocol, only n random ci-
phertexts are known by Bob in Step 5. It is impossible for Bob to gain any
knowledge of Alice’s vectors if the adopted cryptosystem is secure. In later it-
erations, Bob uses the cached vector from previous iterations to perform the
computations in the protocol. This requires homomorphic multiplication among
several encrypted vectors. During the entire process, Bob is not able to retrieve
any valuable information from Alice’s inputs. Thus, data privacy of Alice is well
preserved. However, permanent reuse of ciphertexts can be a security threat
and is against the spirit of probabilistic encryptions. To limit data leakage from
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reuse of ciphertexts, we suggest that any PPDM algorithm that adopts the CSSP
protocol only allows a ciphertext to be reused a random number of times, after
which the caching data expires and must be encrypted again from the plaintext.
By this way, it is unpredictable how many times a ciphertext is reused, and thus,
CSSP is used in a secure manner.

Random Shares. It is possible that after Alice obtains the scalar product by
decrypting vector g and summing up all the elements, she may refuse to release
the results or deliberately release incorrect values to Bob. To prevent Alice from
behaving like this, before sending vector g back to Alice in Step 15, Bob generates
a random binary vector s and encrypts it as vector f . He computes his random
share SB in Step 9. Since Bob also holds a share, fairness of the final result
between the two parties is achieved. Moreover, the additional vector f serves
the purpose of masking the original data passed back to Alice. By appending
vector f to vector e, together with the permutation in Step 14, Bob introduces
“uncertainty” and “noise” into the original data. Therefore, he is able to prevent
any privacy leakage or data pattern revelation to Alice.

Permutation. Re-arranging any elements in a sequence does not change their
summation. However, such a randomization process would confuse the other
party and makes it difficult to figure out any input data. If Bob chooses a random
permutation function properly in Step 14, the resulting vector should contain
elements which have been reshuffled randomly. As this protocol focuses on im-
proving the efficiency of PPARM and PPID3 algorithms, the data seen by Alice
are limited to binary data only. It is quite impossible to discover any data pat-
tern from Bob’s input, especially with a sufficiently large database input. Thus,
the permutation process ensures that the private data of Bob is protected.

The dimension m of the appended vector f is highly related to data privacy.
Certainly, a greater m value results in a higher level of security. In general, m
could be set by the user accordingly. However, in the case when a party has
predictable data patterns, a low dimensional vector f may compromise data
privacy. For example, if Bob’s input vector contains very few 1’s, a vector f
with a large dimension is preferred. Therefore, we suggest that m value is a
large number (e.g. m ≥ n) to avoid any data privacy breaches.

Theorem 1. Assume that the public-key cryptosystem used in Protocol 2 is se-
mantically secure. The CSSP protocol is secure in the semi-honest model.

Proof. Bob see only n random ciphertexts received from Alice. Because the cryp-
tosystem is semantically secure, he cannot guess the original plaintexts. Alice’s
data privacy is thus guaranteed.

Before sending the final result vector back to Alice, Bob generates a random
binary vector f , appending to e and permuting vector g. Alice can decrypt
vector g, but she is unable to disclose Bob’s data. Therefore, Bob’s data privacy
is also promised. �
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4.4 Complexity Analysis

Estimated communication complexity. The drawback of CSSP is the com-
munication cost: Alice sends n ciphertexts to Bob and Bob sends m + n cipher-
texts to Alice while Goethals et al.’s protocol needs to send only n ciphertexts.
However, as stated in [17] and [15], communication overhead is a very small
portion compared with computation cost. Moreover, using intermediate caching
technique, our protocol significantly reduces the number of ciphertexts to be
sent.

Estimated computation complexity. Alice and Bob need n encryption oper-
ations in Steps 2–3. It costs Bob more m encryption operations in Steps 10–12.
Alice requires m + n decryption operations in Steps 16–18. Hence, the protocol
needs m+n encryptions and m+n decryptions. The complexity of the protocol
is O(m + n).

Overall complexity. Since the CSSP protocol is not designed to compute a
single scalar product, its efficiency surpasses that of Goethals et al.’s protocol
when both are embedded into iterative PPDM algorithms thanks to its caching
capability as theoretically shown in Section 3.2 and will be empirically illustrated
in Section 5.

4.5 Extension to Multi-party Environment

Now, we consider a scenario in which multiple parties wish to compute the scalar
product of their private vectors. For simplicity, we only present the three-party
version of CSSP in Protocol 3. However, the protocol can be easily extended to
a multi-party environment. The correctness and security of this protocol can be
proven similarly to those of the two-party version.

5 Empirical Evaluations

We conducted our experiments with multi-parties connected via a LAN con-
nection. We used Java on the Windows XP environment and TCP/IP model
for communication. Each party has a system with hardware configuration: Intel
Core 2 Duo 2.33GHz and 2GB of memory.

To demonstrate efficiency of CSSP over Goethals et al.’s protocol, we in turn
used two protocols to compute support counts of itemsets in PPARM algorithm
proposed by Vaidya and Clifton [13]. We performed experiments on two cat-
egorical datasets: “Nursery” and “Adult”, both of which are available at the
UCI repository [6]. The former has 9 attributes and 12, 960 tuples. The latter
consists of 14 attributes and 48, 842 tuples. We first converted all categorical
data to strictly binary data to get two datasets of 28 and 91 binary attributes,
respectively. “Nursery” dataset is then vertically partitioned for 3 parties with
10, 10, and 8 attributes respectively. “Adult” dataset is vertically partitioned
for 5 parties with 18, 18, 18, 18, and 19 attributes respectively.
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Protocol 3. The Multi-Party CSSP Protocol.

Input: Alice holds vector x = [x1, x2, . . . , xn]. Bob holds vector y = [y1, y2, . . . , yn].
Carol holds vector z = [z1, z2, . . . , zn]. They agree to adopt a homomorphic multiplica-
tive public-key cryptosystem with public key pk, private key sk. Private key sk is held
by Alice; pk is known to three parties.

Output: Shares SA, SB and SC held by Alice, Bob and Carol respectively, where
SA + (−SB) + (−SC) = x · y · z.

1: for i = 1 to n do
2: Alice generates a random number r1i and encrypts xi as ci = Encpk(xi, r1i).
3: end for
4: Alice sends c = [c1, c2, . . . , cn] to Bob.
5: Bob generates a new vector d = [d1, d2, . . . , dn] where di = ci · Encpk(yi, r2i), r2i is

a random number, for all i ∈ [1, n] and forwards it to Carol.
6: Carol generates a new vector e = [e1, e2, . . . , en] where ei = di · Encpk(zi, r3i),r3i is

a random number, for all i ∈ [1, n].
7: Carol generates a random binary vector u = [u1, u2, . . . , up], where p is a random

number selected by Carol. She uses SC =
∑p

i=1 ui as her secret share.
8: Carol encrypts vector u as vector u′:

u′ = [u′
1, u

′
2, . . . u

′
p] = [Encpk(u1, r

′
31), Encpk(u2, r

′
32), . . . , Encpk(up, r′3p)] where r′3i is

a random number, for all i ∈ [1, p].
9: Carol constructs vector f = [e1, e2, . . . en, u′

1, u
′
2, . . . u

′
p].

10: Carol permutes the elements of vector f to get f = [f1, f2, . . . fn+p]. She then
sends vector f to Bob.

11: Bob generates a random binary vector v = [v1, v2, . . . , vq ], where q is a random
number selected by Bob. He uses SB =

∑q
i=1 vi as his secret share.

12: Bob encrypts vector v as vector v′:
v′ = [v′

1, v
′
2, . . . v

′
q] = [Encpk(v1, r

′
21), Encpk(v2, r

′
22), . . . , Encpk(vq, r

′
2q)] where r′2i is a

random number, for all i ∈ [1, q].
13: Bob constructs vector g = [f1, f2, . . . fn+p, v′

1, v
′
2, . . . v

′
q].

14: Bob permutes the elements of vector g to get g = [g1, g2, . . . gn+p+q]. She then
sends vector g to Alice.

15: for k = 1 to n + p + q do
16: Alice decrypts gk using sk: hk = Decsk(gk).
17: end for
18: Alice obtains her secret share SA =

∑m+n
i=1 hi.

We used 512 and 1,024 bit keys for both ElGamal cryptosystem in CSSP
and Paillier one in Goethals et al.’s protocol. We also set value m in CSSP to
the number of tuples, i.e. m = n. The correctness of the results is verified
by Weka version 3.5 [16]. The total running time in all experiments includes
communication time.

Figure 1 and Figure 2 illustrate the effects of varying the number of input
records on the total running time. The records used are selected randomly and
uniformly from “Nurse” and “Adult” dataset, respectively. We set the Minimum
Support Threshold (MST) of the PPARM algorithm to 4% herein. From the
figures, we may conclude that as the number of records increases, the CSSP
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Fig. 1. Number of input records vs. to-
tal running time. “Nursery” dataset on 3
vertical parties. MST = 4%.

Fig. 2. Number of input records vs. total
running time. “Adult” dataset on 5 verti-
cal parties. MST = 4%.

Fig. 3. Threshold percentages vs. total
running time. “Nursery” dataset on 3 ver-
tical parties with 12, 960 records.

Fig. 4. Threshold percentages vs. total
running time. “Adult” dataset on 5 verti-
cal parties with 48, 842 records.

protocol with caching is much more efficient than Goethals et al.’s protocol. The
more the number of input records is, the more number of encryption/decryption
operations per vector is required. This explains the linear correlation between
the total running time and the different number of input records as shown in
the figures. As the CSSP protocol is able to fully use the already cached data,
the number of cryptographic operations is much lower than that of Goethals et
al.’s one. Experiments have shown that CSSP’s total running time is 5–7 times
less than that of Goethals et al.’s protocol.

Figure 3 and Figure 4 demonstrate the total running time versus different
threshold values. As shown in the figures, the caching efficiency of our protocol
is reduced when MST increases. When MST is high, we are less able to find
frequent itemsets satisfying the threshold. Hence, the algorithm may terminate
in fewer iterations. As a result, the total processing time is reduced. However,
caching still helps to improve the efficiency of the CSSP protocol compared to
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Goethals et al.’s one. In summary, the efficiency ratio of the CSSP protocol over
Goethals et al.’s protocol is greatly increased for large input datasets, and the
improvements are more effective at low threshold settings.

6 Conclusion

We have presented a new cacheable secure scalar product protocol called CSSP
using the homomorphic multiplicative property of a public-key cryptosystem.
CSSP allows to reuse encrypted data to compute scalar products of vectors. We
have shown the correctness and proven the security of the protocol in the semi-
honest model. The empirical results showed that when the protocol is properly
applied to data mining algorithms, cryptographic computation overheads are
much reduced. Since the SSP protocol is a common building block in PPDM,
CSSP can be applied to solve many of the associated problems. Moreover, CSSP
can be easily extended to multi-party settings.
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Abstract. Administering service-oriented architecture (SOA) systems could 
require sophisticated rules to decide for instance whether to add or remove 
servers and when. Rule construction often necessitates experts to study patterns 
that contribute to changes or events. This is a time consuming and error-prone 
process for complex software systems. In this paper we test the feasibility of 
automating this process by mining historical data such as past service requests 
(in time series) and server change events that the administrator committed. We 
propose a new method to relate frequent patterns in a given time series to 
changes recorded in the event's history. We implemented and tested our method 
on a simulation system for SOA applications. First, we use Euclidean distance, 
DTW, and FastDTW to identify frequent patterns in a time series that represents 
performance metric of a SOA simulation system. Then, we calculate the 
confidence and support of frequent patterns that contribute to changes to 
identify a set of rules for automating changes. We tested rules that are generated 
using the proposed method in a training set on a testing set. The average 
accuracy of generated rules for the change event “remove” exceeded 80% in 
our experiments.  

Keywords: time series, rule creation, DTW, frequent patterns, data mining. 

1   Introduction 

Predicting infrastructure changes is an interesting and ubiquitous task in the 
management of Service-Oriented Architectures (SOAs). These systems are quite 
complex as they integrate a multitude of services deployed over a large number of 
servers distributed over a broad network. Their behavior is usually governed by 
Service-Levels Agreements (SLAs) and the fundamental problem in managing their 
infrastructure is to meet these SLAs with the minimum possible infrastructure. With 
that goal, assuming an original satisfying infrastructure has been provisioned, the 
problem becomes to predict changes in the environment that can lead this 
infrastructure to fail (either by not meeting the SLAs or by being overly provisioned) 
and to change the infrastructure to avoid these failures. The management of SOA 
infrastructure is usually the responsibility of system administrators who, based on 
their experience, recognize trends in the SOA performance profile that are indicative 
of infrastructure changes.  

In this paper we try to automate this process by mining available historical data of 
SOA behavioral profiles in order to extract rules for predicting two different types of 
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appropriate changes to the provisioned infrastructure: (a) additions of new servers, in 
order to avoid imminent SLA failures and (b) removals of servers in order to mitigate 
over-provisioning. To achieve this goal, we examine different time series analysis 
methods to identify frequent patterns in the SOA behavioral profile and we try to find 
correlations between the mined frequent patterns and the expert administrator changes 
to the SOA infrastructure.  

Time series analysis methods have received substantial attention by data-mining 
research during the last decade. These methods have been applied to different 
domains such as medicine [2], telemedicine [3], biology [4], and weather prediction 
[5]. Time series data consists of a set of time-stamped data points where the temporal 
relationship plays an important role in the dataset [7]. In most cases, traditional data 
mining methods are not appropriate for time series analysis as the ordering of data 
points is often ignored with standard methods [8]. Research in time series data mining 
can be divided in the following general categories: clustering (unsupervised discovery 
of groups of similar time series based on a distance measure) [19, 36], classification 
(selecting a class in which a given time series belongs) [20], anomaly detection 
(finding all subsequences in a given time series that do not match a pre-defined 
behavior/pattern) [36], summarization (presenting an extremely long time series 
preserving its "essential features") [1], and indexing (finding similar time series in a 
database to a given time series based on a distance measure) [17, 18]. An in depth 
review of time series analysis research is provided in [6].  

In this paper we propose a method that automates taking corrective action in 
complex systems through off-line analysis of historical data. The ultimate goal is to 
derive a set of rules that can automate the simpler administrative tasks for complex 
software systems through application of time series analysis methods to available 
historical data of the system. The main contributions of this paper are as follows:  

 We develop a method for identifying the correlation between frequent patterns 
and events (changes/actions) and finding actionable rules in a SOA application 
configuration tool.  

 We apply different time series analysis methods to find frequent patterns (kth-
motifs) through a comprehensive set of experiments. 

 We demonstrate through a set of experiments and a case study that the proposed 
method is an effective solution for classification of changes/actions in a complex 
software system.  

The remainder of this paper is organized into four more sections. Section 2 
describes an overview of the related work. Section 3 reviews background, and 
definitions that are used through out the paper. Section 4 describes our methodology, 
including both the tool and data generation strategy we use in our evaluation and our 
approach to identifying frequent patterns. Section 5 presents experimental results and 
a discussion of the proposed method. Section 6 concludes the paper. 

2   Related Work 

Sequence mining [28] and episode mining [30] both try to mine iterative patterns – 
patterns that are repeated a substantial number of times in a sequence. Sequential 
pattern mining has been applied to different domains such as detecting plan failures 
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[35], and identifying network alarm patterns [32]. Many sequence mining algorithms 
are based on ideas proposed for discovery of association rules [33, 34]. A 
comprehensive survey on association rules can be found in [27]. 

Sequence mining has also been applied to software engineering problems. Mining 
history of software execution runs is utilized to detect frequent repetitive series that 
represent features of a classifier for identifying candidate software specification [29] 
and capturing software failures [31].  

Pradhan and Prabhakaran loosely divided research works in mining predictive rules 
from time series into supervised, and unsupervised methods [21]. Unsupervised 
methods aim to extract rules from series, and time series is the only input to the rule 
mining algorithms in this category. The rules should be informative, representative of 
data, specific to some extend and interesting for human expert [22]. Many methods in 
this category count the number of admissible antecedent and consequent in the dataset 
[23, 24]. Unlike unsupervised methods, the goal in supervised methods is to generate 
rules for predicting known rule targets (e.g. specific events). These methods use the 
information about the events that is provided along with the time series to identify 
rules based on the historical data before events [26]. Our proposed method falls in this 
category. We identify frequent patterns using time series distance measures and find 
changes/events that occur after them. We then choose top rules using confidence and 
support measures. 

3   Preliminaries 

In this section we give an overview of time series distance measures that we use. We 
also review the definitions that will be used through out the paper.  

3.1   Definitions  

Definition 1. A time series Point P={v1, ... , vd} is a data point with real values for d 
dimensions.  

Definition 2. A time series T={P1, ... , Pt} is a collection of time series points 
(observations) ordered in time t.  

Definition 3. A window of size m is a sub-sequence of a time series T. A sliding 
window can create a matrix of all possible windows of size m in time series T starting 
from a given time series point in T where row i represents ith window of size m.  

Definition 4. Two time series/windows w1 and w2 are similar iff Dist(w1, w2) < 
maxDist where maxDist is a predefined threshold.  

Definition 5. Time series motifs are approximate repeat subsequences in a longer time 
series data [1]. The distance of two time series (or windows of time series) D(Ti,Tj) 
can be calculated using different distance measures. Identification of motifs is useful 
in higher-level reasoning and analysis of subject behavior during a short or long 
period of time. Note there is no point in searching for similar sub-sequences (patterns) 
in a time series that is not normalized [6]; therefore time series are normalized before 
finding the similarities. 
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Definition 6. A kth-motif of size m is a motif that appeared k times in a time series T 
where k is greater than a predefined threshold.  

Definition 7. The kth-motif support of a change in a time series that includes a set of 
events/changes in one dimension is the fraction of transactions (a kth-motif followed 
by a change/event) that contain both the given kth-motif and change.  

Definition 8. The kth-motif confidence of a change is the fraction of times that the 
given change appears when the given kth-motif exists over the total number of the 
given kth-motif.  

3.2   Time Series Distance Measures  

As we mentioned above, several different distance measures have been proposed for 
assessing the similarity between two time series. 

Euclidean distance is the most common distance measure in time series [6]. 
Euclidean distance of two time series is defined as the 2-norm distance of the 
respective points. Euclidean distance is an efficient distance measure. It is often 
simplified to be the sum of the squared distance of the ith point in each time series. 
The drawback in using Euclidean distance is its unintuitive and its sensitivity to 
relatively small changes. For example, the Euclidean distance of two identical time 
series, where one of them is slightly shifted along the time axis, is misleadingly large.  

DTW (Dynamic Time Warping) introduces a more intuitive and flexible distance 
measure to address this issue [9]. DTW stretches a time series along its time axis to 
optimally align it with another time series [10]. For two given time series X = {XP1, 
XP2, ..., XP|X|} and Y = {YP1, YP2, ..., YP|Y|} with size of |X| and |Y| respectively, DTW 
constructs a warping matrix (i.e. a cost matrix) for W where W(i, j) starts at (XP1,YP1) 
and ends at (XP|X|, YP|Y|). The warp is the path taken through the matrix between the 
start and end points and the optimal warp has the minimum warp distance. The 
calculation of the DTW measure relies on dynamic programming techniques to find 
the warp path, as the optimal path from (1,1) to (i,j) in the cost matrix will be 
minimum (i.e. Dist(i,j) + min [D(i-1,j), D(i,j-1),D(i-1, j-1)]).  

The time and space complexity of DTW is O(N2) where N=|X|=|Y|. This is 
problematic as the size of time series may be considerable and storing an |X| by |Y| 
matrix is memory intensive. This information must be stored in order to retrieve the 
warp path as the warp distance can be calculated only using two previous columns at 
a time. There are a few approaches to speeding up DTW. One method involves 
putting a constraint on the number of cells evaluated in the cost matrix such as the 
Sakoe-Chuba Band [13] or the Itakura Parrallelogram [14]. These constraints prevent 
pathological warping by imposing global constraints on warp path Wwarp_k = (i,j)k such 
that j-r < i < j+r where r is range of warping. Data abstraction of the cost matrix and 
corresponding reduction of its size [15] is another method. The running time remains 
O(N2) and the distance of two given time series "becomes increasingly inaccurate" 
because of ignoring local variations in the full resolution of matrix. Finally, another 
method involves indexing through application of lower bounding functions to prune 
the number of times that DTW must be run [16]. These methods speed up DTW 
applications including finding similar time series, clustering, and classification. 
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FastDTW exploits two ideas from the above mechanisms for speed-up of DTW, 
data abstraction and constraints, using an iterative multi-level approach [9]. First, 
coarsening: a reduced size cost matrix is produced using an abstracted representation 
of the time series by averaging adjacent points. Coarsening is run several times to 
generate all the resolutions that will be evaluated. Each time coarsening runs it 
reduces the cost matrix size by a factor of two. Second, projection: a warp path is 
calculated in the lower resolution (smaller) cost matrix to determine cells that are part 
of the warp path in the next higher resolution matrix. Third, refinement: an optimal 
warp path is refined and evaluated only in the projected neighborhood cells. The 
complexity of FastDTW is O(N), as the size of warp path grows linearly with the size 
of the given time series. 

4   Methodology  

The fundamental assumption underlying this work is that SOA administrators make 
infrastructure provisioning decisions by inspecting trends in the SOA behavioral 
profiles and by predicting, based on these trends, when the system will start failing its 
SLAs (in which case they add capacity) or when the system is over-provisioned (in 
which case, they reduce capacity). If this is indeed the case, then an analysis of a time 
series of system-behavior observations should reveal kth-motifs correlated with 
infrastructure changes, as the system behavior before the same type of infrastructure 
changes should be similar. Maintaining SLAs is a complex task that may require 
monitoring many trends and parameters. Although in this work we only focus on 
infrastructure management based on the service request time series, this method can 
be applied to other types of frequent patterns in SOA management.    

In this section, we discuss our method for autonomic SOA management based on 
time series analysis, as implied by the above methodological assumption. Section 4.1. 
describes the datasets, which were used to design and test the proposed method. 
Section 4.2. describes our method and algorithm.  

4.1   Data  

Our datasets were created by WSsim – a tool that simulates the run-time behavior of 
SOAs and presents a dashboard of performance-related data to administrators for 
managing the simulated SOA infrastructure [11]. Smit et al. developed a method and 
tool that automatically generates code for a simulator based on the WSDL 
specification of web services and have demonstrated that the simulation behaves quite 
close to the real system. Through the dashboard, the simulator enables administrators 
to identify cost-effective configuration of the simulated SOA in order to achieve 
performance that complies with a SLA without over-provisioning. 

They evaluated their simulation-based approach on TAPoRware (Text Analysis Portal 
for Research) that provides a suite of text-analysis services for researchers and scholars in 
the digital humanities [12]. The TAPoRware services, including word count, keyword  
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concordance, collocates, summarization and part-of-speech tagging, are CPU-intensive 
and have substantial performance challenges, making it an appropriate example of an 
application to be configured and re-configured at run-time.  

WSsim was used to create TaporSim, a simulation of TAPoRware. One of its 
capabilities is creating performance data by generating different types of requests for 
TAPoRware and recording a variety of metrics. TaporSim also allows real-time 
tuning and modification of SOA configuration through a set of changes. Such 
configuration changes are aimed to improve the performance of the SOA application 
and make efficient use of resources based on the load on system. TaporSim records 
queue sizes, number of requests, configuration changes, and response time during the 
simulation. The data is sampled every 5 seconds for all the above parameters and 
stored in a mySQL database.  

We asked an expert developer and user of WSim, not associated in any meaningful 
way with our project, to generate a dataset. He generated a set of requests with 
varying arrival rates and sizes that would require configuration changes to handle 
properly. The changes for this experiment were limited to adding, removing or no 
change to the number of servers that provide services. Then, a system administrator 
monitored the parameters as the simulation ran. He added a server if the queue size is 
increasing to improve system capacity, and removed a server if one or more servers 
were idle (and thus not making efficient use of resources). We asked the administrator 
to make changes based on the queue size information to ensure that queue size is the 
driving parameter that leads to a change in system configuration. We extracted a 
single-dimensional time series from TaporSim representing queue-size time series to 
be our training dataset. The queue size time series includes 1439 data points 
(representing a 7195-second time period). We removed duplicates (i.e. a data point 
that is repeated in the data set) and checked for missing values to make sure that there 
is a numerical value for queue size at each time-stamp and no two data points with the 
same time-stamp. We also generated a change time series that includes changes to the 
system recorded in the training dataset. The change time series for training dataset 
includes 16 add actions (represented by 1) and 14 remove actions (represented by -1). 
Similarly, a testing dataset was generated that includes a queue size time series with 
786 data points (representing a 3930-second time period). The testing dataset change 
time series includes 10 adds and 8 removes.  

4.2   Design of the Proposed Prediction Method  

Our method includes two phases. First, we apply time series analysis techniques to 
find frequent patterns to already available historical data of a complex system. Next, 
we investigate the relationship of detected frequent patterns to changes/actions in the 
system. 

Identification of frequent patterns: We normalize the reference time series (queue-
size is the reference time series in our experiments) to have mean zero and a standard 
deviation of one. Then we use a sliding window to identify the similarity of any two 
time series of window size in the reference time series. In our experiments we used 
three window sizes of 1 minute (12 data points), 2 minutes (24 data points), and 3 
minutes (36 data points). 
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Algorithm 1.  Identifying kth-motifs (frequent patterns)
Input: T = reference time series  
Input parameters: maxDist, distanceMeasure, frequencyThreshold  
Output: kMotifs list  
1  for each sliding window w

i
in T do

2   frequency(w
i
)=0  

3   for each window w
j
 of size w

i
do 

4    if (Dist (w
i
, w

j
, distMeasure) < maxDist) 

5     frequency(w
i
)++ 

6    end if 
7   end for

8   if(frequency(W
i
) > frequencyTreshold)

9     add W
i
 to the list of kMotifs

10  end if 
11  return kMotifs  

12 end for
 

 
We used all three similarity functions discussed in Section 4.2. to find frequent 

patterns (kth-motifs): Euclidean, DTW, FastDTW. Clearly, relaxing the lower bound 
of the requisite similarity between two time series (i.e., increasing maxDist) can result 
in an increase in the number of kth-motifs and the number of occurrences of these kth-
motifs. Application of a lower distance measure can lead to fewer kth-motifs and a 
smaller number of occurrences for a motif. Application of the same maxDist to 
different similarity measures is inappropriate because the distance of two given time 
series using DTW is generally less than their Euclidean distance. 
 
Algorithm 2. Identifying changes after patterns that belong to a change
Input: kMotif_list = list of kMotifs in reference time series 
Input: C = change time series that includes set of changes occurred during reference time series 
period 
Input parameters: changeInterval  
Output: kMotif_C = kMotif_list with number of respective changes for each motif  
1 sort kMotif_list by frequency 
2  for each motif mi in kMotif_list do 

3   for l < change(l).size() do 
4    mi.change(l) = 0 

5  end for
6  for each trend tj in mi do 

7    for change(l) in C do
8    if (tj.getTime – change(l).getTime < changeInterval) 

9      mj.change_l++
10   end if 

11    end for  
12  end for  

13 end for 
14 return kMotif_C  
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Relationship of frequent patterns and changes: We sort the list of kth-motifs by 
their frequency in the reference time series. These kth-motifs have a frequency higher 
than a predefined threshold, which, in our experiment, we vary between 5, 10, and 15. 
A search in change history is performed for every pattern that belongs to a kth-motif to 
reveal if there has been a change within a predefined time period after a given pattern. 
This parameter is set based on the data-sampling rate, and an understanding of time 
interval of changes in the system (we used 85 seconds in our experiments). The 
number of changes for each kth-motif is calculated by a sum of changes after all 
patterns that belong to the given kth-motif. This procedure leads to identification of a 
set of rules with the form X => Y where X is a frequent pattern (kth-motif) and Y is a 
respective change/event occurred after that. Finally, we evaluate rules by calculating 
their respective support and confidence. Algorithm 1 describes our approach to 
identify frequent patterns and Algorithm 2 presents the procedure to identify changes 
made after kth-motifs. 

It is also possible to extract rules by processing only the subsequences before 
change events. This decreases computation complexity, however evaluating rules 
becomes an issue as the frequency of kth-motifs would be different because motifs that 
are not followed by an event are not detected and do not participate in the 
computations for rules evaluation. 

5   Results and Discussion 

5.1   Experiment Setup  

In the first phase, we find frequent patterns in the queue size time series from the 
WSsim training dataset (the reference time series in our experiments) using three 
distance measures: Euclidean distance, DTW, and FastDTW. This process is sensitive 
to the selection of parameters, so we run a total of 27 scenarios for each distance 
measure (81 scenarios in total) by using all possible combinations of three different 
values for three key parameters: window size, maxDist, and minFrequency. maxDist 
(maximum distance) varies based on the distance measure in use, and determines the 
threshold for determining if two windows are the same or not (i.e. part of a motif). We 
define three thresholds for minFrequency, which establishes the minimum number of 
similar patterns required to be considered a kth-motif. For each scenario, we report the 
number of kth-motifs found in the time series based on the given parameters in 
addition to the mean and standard deviation of frequencies of kth-motifs along with the 
execution time for each scenario. Tables 1 through 3 describe our experimental results 
for each set of 27 scenarios and distance measures. One of our goals is to identify 
appropriate parameters for the domain of our experiment, so we include the results in 
their entirety.  
In the second phase, we use the change time series of training dataset to find rules in 
the form of X => Y where X is a kth-motif and Y is a change derived by counting the 
number of changes (add/remove) following all patterns that belong to a kth-motif 
(within 85 seconds). This time interval is based on an expert's opinion that in WSsim 
no two changes will happen in a time interval less than 110 seconds, and that there is  
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Table 1. Frequent patterns (kth-motifs) using Euclidean distance measure 

window-
Size (sec) maxDist 

min-
Frequency 

Number 
of Motifs 

mean 
frequency

stdDev of 
frequency 
of motifs 

time (sec)

90  

0.9  
5  24 8.250 5.354 19.223 
10  5 13.400 1.837 11.446 
15  1 N/A N/A 10.205 

1.0  
5  54 11.685 13.955 19.550 
10  23 16.783 8.364 19.733 
15  8 25.125 3.403 20.593 

1.1  
5  74 17.149 20.724 35.804 
10  61 19.311 17.221 38.701 
15  31 25.419 11.462 32.830 

120  

1.3  
5  2 6.500 0.277 15.704 
10  0 N/A N/A 10.274 
15  0 N/A N/A 9.122 

1.5  
5  52 10.750 12.260 25.695 
10  17 17.118 5.636 24.147 
15  8 22.250 2.394 26.990 

1.7  
5  85 17.376 20.237 47.273 
10  63 21.127 13.200 46.906 
15  48 23.563 10.205 45.908 

180  

2.3  
5  12 6.250 0.600 14.347 
10  0 N/A N/A 9.900 
15  0 N/A N/A 9.593 

2.6  
5  45 11.289 6.690 24.705 
10  27 13.370 3.692 22.666 
15  4 18.500 1.162 22.079 

2.9  
5  62 19.758 14.422 44.910 
10  54 21.537 11.344 44.479 
15  46 22.848 9.866 45.427 

 
 

a variable time lapse between the ideal time for a change to occur and the time when 
the change actually occurs. We evaluate these rules by calculating the confidence and 
support of each rule. Finally we evaluate feasibility of the proposed method by 
applying rules generated using the training dataset to the testing dataset. 

5.2   Frequent Patterns  

Euclidean distance is generally an efficient algorithm to calculate the distance 
between two time series as it relies on only the distance from the nth point in time 
series A to the nth point in time series B. In our experiments Euclidean distance 
executes around two times faster than DTW and FastDTW. However, the distances 
between time series are typically larger since DTW and FastDTW try to find the 
optimal alignment of two given time series. For this reason we had to use higher 
maxDist values for experiments using Euclidean distance compared to maxDist 
values in DTW and FastDTW. 

Unlike our expectation FastDTW was slightly slower than DTW in our experiments 
even though FastDTW is linear to the size of input time series. This happened because 



376 K. Golmohammadi, M. Smit, and O.R. Zaiane 

of the big constant value involved in FastDTW. Furthermore the execution time 
reported for each scenario includes other calculations such as IO operations and 
creating/assigning objects that will be used for confidence/support calculations (these 
operations are fairly similar for all distance measures). The execution time difference 
of DTW and FastDTW does not seem substantial in our experiments. 

Table 2. Frequent patterns (kth-motifs) using DTW 

window-
Size (sec) maxDist min-

Frequency 
Number 
of Motifs 

mean 
frequency

stdDev of 
frequency 
of motifs

time (sec)

90  

0.03  
5  39 10.846 10.453 41.124 
10  13 16.846 5.190 45.653 
15  5 23.600 1.610 44.112 

0.034  
5  61 12.262 16.947 54.156 
10  26 18.077 10.284 53.640 
15  8 29.000 4.185 55.292

0.038  
5  83 13.530 21.889 65.845 
10  39 19.923 13.042 65.455 
15  26 23.500 10.031 64.746 

120  

0.04  
5  13 6.385 0.892 43.567 
10  0 N/A N/A 41.193 
15  0 N/A N/A 42.789 

0.048  
5  55 8.691 5.951 53.439 
10  11 12.545 1.285 54.416 
15  0 N/A N/A 53.436 

0.056  
5  89 12.180 15.289 81.247 
10  48 15.792 9.449 80.772 
15  14 23.143 3.526 80.854 

180  

0.08  
5  31 9.161 4.991 91.183 
10  10 12.400 1.892 92.143 
15  1 18.000 0.000 89.622 

0.1  
5  93 11.409 16.501 114.778 
10  44 15.705 9.679 113.015 
15  16 20.313 6.587 115.650 

0.12  
5  147 13.122 30.854 151.593 
10  72 19.139 19.472 140.985 
15  39 24.231 14.335 140.465 

5.3   Rule Evaluation 

Confidence and support is calculated for each kth-motif (frequent pattern) and 
expected change tuple. Table 4 describes the details of investigating changes after kth-
motifs of a scenario (highlighted grey in Table 2) where distanceMeasure = DTW, 
windowSize = 90 seconds, maxDist = 0.034, and minFrequency = 15. This scenario 
results in 8 kth-motifs with frequency mean and standard deviation of 29.000 and 
4.185 respectively. The results for confidence/support in our dataset are close to zero 
for add actions however the results are promising for remove actions. 

The distance of patterns in kth-motifs before changes must be quite high in a dataset 
to result in values near to 0. We ran a bottom-up experiment to investigate this issue 
by calculating the actual distance among the time windows immediately before  
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Table 3. Frequent patterns (kth-motifs) using FastDTW 

window-
Size (sec) maxDist 

min-
Frequency 

Number 
of Motifs 

mean 
frequency

stdDev of 
frequency 
of motifs 

time (sec)

90  

0.03  
5  28 9.750 7.113 85.568 
10  8 15.125 3.116 76.284 
15  4 18.750 1.438 75.891 

0.034  
5  50 10.580 12.360 85.609 
10  15 17.000 6.287 80.298 
15  5 26.000 1.468 68.668 

0.038  
5  72 11.903 17.036 74.628 
10  32 17.031 10.448 74.870 
15  10 26.100 4.901 77.882 

120  

0.04  
5  4 6.250 0.346 71.001 
10  0 N/A N/A 78.423 
15  0 N/A N/A 70.005 

0.048  
5  41 7.073 2.280 78.974 
10  0 N/A N/A 81.015 
15  0 N/A N/A 80.025 

0.056  
5  68 10.088 9.505 99.894 
10  24 14.208 3.618 105.649 
15  9 17.444 3.618 98.460 

180  

0.08  
5  20 7.350 2.623 107.593 
10  2 11.000 0.000 109.208 
15  0 N/A N/A 108.354 

0.1  
5  63 9.238 8.563 128.869 
10  19 13.000 4.000 125.953 
15  2 21.500 1.067 127.153 

0.12  
5  129 10.798 18.632 153.395 
10  52 15.596 10.156 154.956 
15  18 21.056 5.860 154.897 

Table 4. Confidence and support of kth-motifs of a single scenario 

    ADD  REMOVE  
kth-motif 

index  
Frequency of 

kth-motif  confidence support  confidence Support  

1  39  NA NA 0.949  0.500 
2  35  NA NA 0.971  0.500 
3  34  NA NA 0.912  0.500 
4  33  NA NA 0.970  0.375 
5  33  NA NA 1.000  0.500 
6  24  NA NA 1.000  0.375 
7  18  NA NA 0.944  0.625 
8  16  NA NA 0.938  0.625 

changes (adds and removes). Since we assume that the windows immediately before a 
change should be similar, this experiment tests the distance between the various 
windows. In this experiment we created a list of time series before adds (pre-add 
trends), and a list of time series before removes (pre-remove trends) in the training 
dataset. We then calculated the distance from each trend to all other trends in each 
list. Figure 1 and 2 describe the mean distance and standard deviation of distance of  
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Fig. 1. Euclidean distance of pre-remove trends in training dataset represented 

pre-remove trends and pre-add trends respectively. The results show that the distance 
of pre-add trends are by far higher than distance of pre-remove trends and this 
confirms confidence/support values near to 0 for pre-add patterns in our experiments. 
In these cases we haven’t found kth-motifs that are followed by the event ADD, hence 
confidence and support are not defined for these cases (shown as NA in Table 4). 

Our experiments show that calculating support and confidence of kth-motif is not 
effective for add actions on the datasets that we have, as trends before adds are very 
distant from each other. We also tried relaxing the maxDist measures, but the 
difference between the actual distance of pre-add trends and our maxDists is quite 
high. This means over-relaxing maxDist results in detecting a huge number of kth-
motifs and might lead to over-fitting. 

We evaluated rules generated for remove actions (kth-motifs that belong to remove 
actions) in the training dataset on the testing dataset. We defined accuracy of the 
proposed method in each scenario as the percentage of remove changes that could be 
predicted using the rules generated in that test scenario. We included all scenarios that 
generate rules for the change remove using DTW on the training dataset (Table 2) if 
and only if their minFrequency is equal to 10 or higher and their confidence and  
 

 

Fig. 2. Euclidean distance of pre-add trends in training dataset 
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Table 5. Accuracy of remove rules generated using training dataset in testing dataset 

   Training dataset Testing 
dataset

window-
Size (sec) maxDist 

min-
Frequency 

mean 
confidence

[%]

stdDev of 
confidence 

Mean 
support

[%] 

stdDev of 
support 

accuracy 
[%] 

90 

0.03 
10  0.915 0.116 0.254 0.111 62.5
15  0.948 0.008 0.680 0.048 37.5

 
0.034 

10  0.911 0.423 0.138 0.080 100.0
15 0.960 0.007 0.500 0.063 100.0

0.038 
10  0.876 0.822 0.102 0.057 100.0
15  0.891 0.464 0.164 0.055 100.0

120 
0.048 10  0.830 0.451 0.405 0.188 75.0

0.056 
10  0.811 1.346 0.084 0.054 100.0
15  0.907 0.085 0.347 0.009 100.0

180 

0.08 10  0.947 0.049 0.350 0.365 87.5
 

0.1 
10  0.822 0.669 0.095 0.067 100.0
15  0.844 0.126 0.273 0.163 87.5

0.12 
10  0.784 2.666 0.050 0.063 0.0
15  0.818 0.344 0.115 0.041 100.0

 
 
support is higher than 0.8 and 0.1 respectively. Also a scenario in the training set 
should result in more than 1 frequent pattern (motif) to be considered for evaluation 
on the testing set. Table 5 describes the accuracy of rules for remove action in each 
scenario in addition to their mean and standard deviation of both confidence and 
support. 

Further investigation of the scenario where windowSize is 180, maxDist is 0.12, 
and minFrequency is 10 shows that none of the 72 motifs found in this setup have 
remove support higher than 0.1. Therefore none of the found rules in this scenario 
qualify for prediction on testing dataset, thus the accuracy of remove rules on testing 
set is 0 for this scenario. The average accuracy over all scenarios in table 5 is 82.1 
percent.  

6   Conclusions 

We proposed a new method to identify actionable rules to understand the behavior of 
a system where a frequent pattern (kth-motifs) in a given time series is followed by an 
action/event. First, we identify kth-motifs using different distance measures: Euclidean 
distance, DTW, and FastDTW. We then calculate the support and confidence of each 
kth-motif. We tested rules that are generated using a training dataset on a testing 
dataset from WSsim - an SOA application configuration tool. Our results on WSsim 
dataset shows that our method is effective in learning rules for remove actions and 
reaches an average accuracy of over 80%. Although tuning parameters may produce 
higher accuracies, this may lead to over-fitting. The proposed method can be applied 
to SOA configuration tools to automate administrative tasks such as resource 
management or provide configuration recommendation in a decision support system 
for the administrator. 
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Abstract. Supporting the rotation invariance is crucial to provide more
intuitive matching results in boundary image matching. Computing the
rotation-invariant distance, however, is a very time-consuming process
since it requires a lot of Euclidean distance computations for all possible
rotations. To solve this problem, we propose a novel notion of envelope-
based lower bound, and using the lower bound we reduce the number
of distance computations dramatically. We first present a single enve-
lope approach that constructs a single envelope from a query sequence
and obtains a lower bound of the rotation-invariant distance using the
envelope. This single envelope approach, however, may cause bad per-
formance since it may incur a smaller lower bound due to considering
all possible rotated sequences in a single envelope. To solve this prob-
lem, we present a concept of rotation interval, and using it we generalize
the single envelope lower bound to the multi-envelope lower bound. Ex-
perimental results show that our envelope-based solutions outperform
existing solutions by one to three orders of magnitude.

1 Introduction

Owing to recent advances in computing power and storage devices, similar-
ity search on large time-series databases, called time-series matching [3,5,6,9],
and its applications have been actively studied. In this paper we focus on the
boundary image matching for a large image database. Boundary image match-
ing converts (boundary) images to time-series as shown in Figure 1 [8,10], and it
identifies similar images using the time-series matching techniques [7,8,10,12].

In boundary image matching, supporting the rotation invariance is crucial to
provide more intuitive matching results [7,12].

Definition 1. Given two sequences Q = {q0, . . . , qn−1} and S = {s0, . . . , sn−1},
their rotation-invariant distance RID(Q, S) is defined as Eq. (1).

RID(Q, S) =
n−1
min
j=0

D(Qj , S) =
n−1
min
j=0

√√√√n−1∑
i=0

∣∣q(j+i)%n − si

∣∣2, (1)

where Qj = {qj, qj+1, . . . , qn−1, q0, . . . , qj−2, qj−1}, D(Q, S) is the Euclidean dis-

tance between Q and S, i.e., D(Q, S) =
√∑n−1

i=0 |qi − si|2, and % is the modular
operator. �
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In Definition 1, Qj is obtained from Q by rotating it j times, and we call Qj

the j-rotation sequence of Q. For example, 1-rotation sequence of Q is Q1 =
{q1, . . . , qn−1, q0}, and 5-rotation sequence of Q is Q5 = {q5, . . . , qn−1, . . . , q4}.
As shown in Eq. (1), we get the rotation-invariant distance by considering all
possible j-rotation sequences.

Definition 2. Given a query sequence Q and the user-specified tolerance ε, the
rotation-invariant image matching is the problem of finding all data sequences
whose rotation-invariant distances from Q are less than or equal to ε. �
Definitions 1 and 2 show that, for each data sequence of length n, we need Θ(n)
of Euclidean distance computations (i.e., Θ(n2) of time complexity), and which
is a very time-consuming process for a large number of data sequences [7,12].
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Fig. 1. An example of converting an image to a corresponding time-series by CCD

In this paper we present a novel notion of envelope-based lower bound, and
using the lower bound we significantly reduce the number of rotation-invariant
distance computations that frequently occur in evaluating the rotation-invariant
image matching. To this end, we first present a concept of single envelope as
follows: for a query sequence Q, its single envelope [L, U ] is a high-dimensional
minimum bounding rectangle that bounds all possible j-rotation sequences of
Q, where L (or U) represents a sequence with lowermost (or uppermost) entries
of Oj ’s. We formally prove that the distance between the envelope [L, U ] and a
data sequence S, D([L, U ], S)), is a lower bound of the rotation-invariant dis-
tance RID(Q, S). Thus, if D([L, U ], S) is greater than ε, computing RID(Q, S)
is no more necessary. We note that computing D([L, U ], S) is much simpler than
RID(Q, S). We use this pruning property to reduce the number of RID(Q, S)
computations and eventually to improve the overall matching performance.

The single envelope-based approach, however, has a problem that its lower
bound is not small enough to fully exploit the pruning effect. This is because the
envelope [L, U ] should bound all possible rotation sequences Qj’s, considering
all possible Qj’s produces the larger envelope, and the larger envelope incurs
the smaller lower bound. To solve this problem, we present a concept of rota-
tion interval, and using it we generalize the single envelope lower bound to the
multi-envelope lower bound. We obtain rotation intervals by dividing all rota-
tion sequences, Qj’s, into multiple disjoint groups and construct an envelope for
each interval by considering its own Qj ’s. Since each rotation interval contains
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only a part of rotation sequences, its corresponding envelope is obviously smaller
than a single envelope, and those multiple envelopes eventually produce a tight
lower bound, which exploits the large pruning effect. In this paper we formally
derive the multi-envelope lower bound; based on it, we propose a multi-envelope
matching algorithm. Experimental results show that, compared with existing
algorithms, our envelope-based solutions significantly improve the overall per-
formance by one to three orders of magnitude.

2 Related Work and Existing Algorithms

Time-series matching is the problem of finding data sequences similar to the
given query sequence [2,3,5,6,9]. Boundary image matching [7,8,12,10] handled
in this paper is one of the important applications in these time-series match-
ing solutions. Image matching [4,11], also known as content-based image re-
trieval (CBIR), identifies data images similar to the given query image by using
various features of images. The representative features are colors, textures, and
shapes [11,12]. Among these features, we focus on shape features of an image.
Main considerations of the shape-based image matching are object boundaries
or regions contained in an image [13]. In this paper we use the centroid contour
distance (CCD in short) [7,8,12], which is the simplest method that uses bound-
ary features of an image. As shown in Figure 1, CCD maps a boundary image
to a time-series of length n [8,10]. Using CCD we can map boundary images
to time-series and exploit time-series matching techniques in boundary image
matching.

A few recent works were reported in using time-series of boundary images.
First, using the rotation-invariant property of DFT magnitudes Vlachos et al. [12]
proposed a novel solution to rotation-invariant image matching. Second, Keogh
et al. [7] showed that their tight lower bound LB Keogh [6] could also be used in
rotation-invariant image matching and provided a novel solution for the DTW
distance as well as the Euclidean distance. Third, our previous work [8,10] pro-
posed efficient solutions for noise control or scaling-invariant boundary image
matching. All these solutions, however, focus on reducing the number of candi-
date data sequences through the filtering process, and computing the rotation/
scaling-invariant distances for these filtered candidates is still and inevitably nec-
essary. It means that our solution can be applied to their post-processing part
of computing the rotation-invariant distances, and accordingly, our solution is
orthogonal to the previous solutions.

Algorithm 1 shows a straightforward solution to rotation-invariant image
matching, called RI-Naive. For each data sequence S (Line 2), RI-Naive calculates
the rotation-invariant distance from Q and investigates whether RID(Q, S) is
less than or equal to ε (Lines 3 to 8). We next derive RI-EA by applying the early
abandon [7] to RI-Naive. The early abandon stops the distance computation if
the intermediate distance exceeds the given tolerance, and it is known to re-
duce a large number of multiplications and summations. That is, in computing
D(Qj , S) of RI-Naive (Line 4), the early abandon immediately stops the further
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computation if the intermediate square sum is greater than the squared toler-
ance (i.e.,

∑t
i=0 |q(j+i)%n − si|2 > ε2, t < n). Except using the early abandon,

RI-EA has the same structure of RI-Naive. Existing matching solutions [7,12] use
RI-Naive (or RI-EA) for computing the rotation-invariant distance between query
and data sequences, and their performance can be improved by replacing RI-EA
as our algorithms to be proposed.

Algorithm 1. RI-Naive (query sequence Q, a set S of data sequences, tolerance ε)
1: R := ∅; // R is the result set.
2: for each data sequence S ∈ S do
3: for j := 0 to (n− 1) do // investigate all j-rotation sequences one by one.
4: if D(Qj , S) ≤ ε then // if Qj is similar to S,
5: R := R ∪ {S}; // include S in the result set R.
6: break;
7: end-if
8: end-for
9: end-for

10: return R; // return the result set containing rotation-invariant similar sequences.

3 Single Envelope Lower Bound and Its Matching
Algorithm

A big performance problem of RI-Naive and RI-EA is incurring a large number
of Euclidean distance computations. In particular, for a large number of data
sequences, this higher complexity becomes a critical issue of performance degra-
dation. Thus, in this paper we present an envelope-based lower bound so as to
improve the performance of rotation-invariant image matching. We compute the
envelope-based lower bound as the distance between the envelope of a query
sequence and a data sequence.

Definition 3. Given a query sequence Q, we organize its envelope [L, U ] =
[{l0, . . . , ln−1}, {u0, . . . , un−1}] by Eq. (2) and define the distance between [L, U ]
and a data sequence S, D([L, U ], S), as Eq. (3).

li =
n−1
min
j=0

(ith entry of Qj) =
n−1
min
j=0

q(i+j)%n,

ui =
n−1
max
j=0

(ith entry of Qj) =
n−1
max
j=0

q(i+j)%n, where i = 0, . . . , n− 1. (2)

D([L, U ], S) =

√√√√√√n−1∑
i=0

⎧⎪⎨⎪⎩
|si − ui|2 , if si > ui;
|si − li|2 , if si < li;
0, otherwise.

(3)

Lemma 1 shows the lower bound property of the distance D([L, U ], S).
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Lemma 1. Given a query sequence Q and a data sequence S, D([L, U ], S) is a
lower bound of RID(Q, S). That is, D([L, U ], S) ≤ RID(Q, S) holds.

Proof: The Euclidean distance between Q and S is
√∑n−1

i=0 |qi − si|2. Accord-
ing to Eq. (2), the lowermost and the uppermost sequences L and U are obtained
from the smallest and the largest entries of Q, respectively, and thus, all the en-
tries of Q are resided in between L and U . That is, li ≤ qi ≤ ui holds obviously.
Here we know that if si > ui, |si − qi| ≥ |si − ui| holds by qi ≤ ui; if si < li,
|si − qi| ≥ |si − li| holds by li ≤ qi; otherwise (i.e., li ≤ si ≤ ui), |si − qi| ≥ 0
holds obviously. Thus, D([L, U ], S) obtained by summing |si − ui|2, |si − li|2,
and 0 should be less than or equal to RID(Q, S) obtained by summing |si− qi|2.
Therefore, D([L, U ], S) is a lower bound of RID(Q, S). �
For simplicity, we hereafter denote the lower bound D([L, U ], Q) by LBSE(Q, S),
where SE stands for Single Envelope. By using LBSE(Q, S), we can discard a
large number of data sequences in advance without computing their complex
rotation-invariant distances. That is, if LBSE(Q, S) is greater than ε, we can
conclude that S is not similar to Q without computing their actual rotation-
invariant distance RID(Q, S). Thus, by computing RID(Q, S) only for the case of
LBSE(Q, S) ≤ ε, we can reduce actual rotation-invariant distance computations.
We now propose Algorithm 2, called RI-SE, as a rotation-invariant matching al-
gorithm that exploits LBSE(Q, S) to prune unnecessary distance computations.
Computational complexity of LBSE(Q, S) is merely Θ(n), which is lower than
Θ(n2) of RID(Q, S), and thus, RI-SE can improve the overall matching perfor-
mance if LBSE(Q, S) works well as a lower bound.

RI-SE of Algorithm 2, however, has a problem that, if differences of entries in
Q are large, it may not fully exploit the pruning effect due to the large envelope
[L, U ] (i.e., due to the small LBSE(Q, S)).

Example 1. Figure 2 shows sequences of length 360 converted from boundary
images. Figure 2(a) shows a query sequence Q, its envelope [L, U ], and a data
sequence S. The shaded area in Figure 2(b) represents the rotation-invariant
distance RID(Q, S), and the shaded area in Figure 2(c) represents its single enve-
lope lower bound LBSE(Q, S), which is actually empty. As shown in

Algorithm 2. RI-SE (query sequence Q, a set S of data sequences, tolerance ε)
1: Construct L and U from Q; // organize an envelope [L, U ] from Q.
2: R := ∅; // R is the result set.
3: for each data sequence S ∈ S do
4: if LBSE(Q,S) ≤ ε then // discard S immediately if LBSE(Q, S) > ε
5: if RID(Q,S) ≤ ε then // compute the actual rotation-invariant distance

6: R := R ∪ {S}; // include S in the result
7: end-if
8: end-for
9: end-for

10: return R; // return the result set containing rotation-invariant similar sequences.
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Figure 2(a), the envelope [L, U ] is determined by the maximum and the minimum
among all entries of Q. Thus, [L, U ] might be too large, and accordingly, the lower
bound LBSE(Q, S) computed from [L, U ] might be quite smaller than the ac-
tual rotation-invariant distance RID(Q, S). In Figures 2(b) and 2(c), RID(Q, S)
is 137.8, but LBSE(Q, S) is merely 0, which means that LBSE(Q, S) does not
work as a lower bound of RID(Q, S). �
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Fig. 2. An example of RID(Q,S) and LBSE(Q,S)

4 Multi-envelope Lower Bound and Its Matching
Algorithm

RI-SE makes an envelope by bounding all possible rotation sequences Qj ’s, and
this incurs a smaller lower bound. To overcome this problem, we present a multi-
envelope approach that divides possible j’s into multiple intervals, obtains a local
lower bound from each interval, and finally get a global lower bound from those
local lower bounds. The intuition behind is that a local lower bound of only a
part of Qj’s will be larger than LBSE(Q, S) of all possible Qj’s, and a global
lower bound derived from locals will also be larger than LBSE(Q, S). To explain
the multi-envelope approach, we first generalize the rotation-invariant distance
using a concept of rotation interval.

Definition 4. Let Qa, Qa+1, . . . , Qb be the rotation sequences of a query se-
quence Q, which are obtained by rotating Q by a, a + 1, . . . , b times, respec-
tively. Then, the minimum Euclidean distance from Qa, Qa+1, . . . , Qb to a data
sequence S is defined as the rotation-invariant distance over rotation interval
[a, b], and we denote it by RID(Q[a,b], S). That is, RID(Q[a,b], S) is computed as
Eq. (4).

RID(Q[a,b], S) =
b

min
j=a

D(Qj , S) =
b

min
j=a

√√√√n−1∑
i=0

∣∣q(i+j)%n − si

∣∣2. (4)

We also call [a, b] the rotation interval of RID(Q[a,b], S). �
We now present how to construct an envelope for rotation interval [a, b] in Def-
inition 5 and explain its lower bound property in Lemma 2.
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Definition 5. Given a query sequence Q and a rotation interval [a, b], we orga-
nize L[a,b] =

{
l
[a,b]
0 , . . . , l

[a,b]
n−1

}
and U [a,b] =

{
u

[a,b]
0 , . . . , u

[a,b]
n−1

}
by Eq. (5) and call

this pair [L[a,b], U [a,b]] the envelope of Q over [a, b]. We also define the distance
between [L[a,b], U [a,b]] and a data sequence S as Eq. (6).

l
[a,b]
i =

b
min
j=a

(ith entry of Qj) =
b

min
j=a

q(i+j)%n,

u
[a,b]
i =

b
max
j=a

(ith entry of Qj) =
b

max
j=a

q(i+j)%n, where i = 0, . . . , n− 1. (5)

D([L[a,b], U [a,b]], S) =

√√√√√√√√
n−1∑
i=0

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∣∣∣si − u

[a,b]
i

∣∣∣2 , if si > u
[a,b]
i ;∣∣∣si − l

[a,b]
i

∣∣∣2 , if si < l
[a,b]
i ;

0, otherwise.

(6)

Intuitively speaking, [L[a,b], U [a,b]] is an envelope that bounds Qa, Qa+1, . . . , Qb

only rather than all possible rotation sequences of [L, U ].

Lemma 2. Given a query sequence Q, a data sequence S, and a rotation in-
terval [a, b], D([L[a,b], U [a,b]], S) is a lower bound of RID(Q[a,b], S). That is,
D([L[a,b], U [a,b]], S) ≤ RID(Q[a,b], S) holds.
Proof: We omit the detailed proof since it is the same as Lemma 1. �

Considering a rotation interval ([a, b] in Definition 5) rather than the whole in-
terval ([0, n − 1] in Definition 3) has a big advantage of increasing the lower
bound. This is because [L[a,b], U [a,b]] will be narrower than [L, U ], and accord-
ingly, LB[a,b](Q, S) will be larger than LBSE(Q, S). For simplicity, we hereafter
denote the lower bound D([L[a,b], U [a,b]], S) by LB[a,b](Q, S).

Example 2. In Figure 3, query and data sequences Q and S are the same as
those of Figure 2. The envelope in Figures 2(a) and 2(c) bounds all rotation
sequences in the whole interval [0, 359]; in contrast, the envelope in Figures 3(a)
and 3(c) bounds only 45 rotation sequences in the rotation interval [0, 44]. Figure
3(a) shows a query sequence Q, its envelope over [0, 44], [L[0,44], U [0,44]], and a
data sequence S. The shaded area in Figure 3(b) represents the rotation-invariant
distance over [a, b], RID(Q[0,44], S), and the shaded area in Figure 3(c) represents
its lower bound LB[a,b](Q, S). In Figure 3(a), each entry of L[0,44] (or U [0,44]])
is determined by the minimum (or the maximum) among only 45 entries of Q
rather than whole 360 entries. Thus, [L[0,44], U [0,44]] of Figure 3(a) is narrower
than [L, U ] of Figure 2(a), and LB[0,44](Q, S) is larger than LBSE(Q, S). In this
example, LB[0,44](Q, S) is 81.7 which is quite larger than 0 of LBSE(Q, S). �

Even though LB[a,b](Q, S) is tighter than LBSE(Q, S), we cannot use LB[a,b]

(Q, S) directly in rotation-invariant image matching since it is a lower bound
of RID(Q[a,b], S) but not RID(Q, S). That is, in Example 2, LB[0,44](Q, S) is
larger than LBSE(Q, S) and exploits the pruning effect largely, but we cannot



An Envelope-Based Approach 389

simply replace LBSE(Q, S) as LB[0,44](Q, S) because LB[0,44](Q, S) is a lower
bound of RID(Q[0,44], S) but not RID(Q, S). For example, if RID(Q[0,44], S)
is larger than RID(Q[45,359], S), RID(Q, S) is determined by RID(Q[45,359], S)
rather than RID(Q[0,44], S). To solve this problem, in our multi-envelope ap-
proach, we divide the whole rotation interval into multiple disjoint intervals,
obtain local lower bounds from those intervals, and use their minimum as a
lower bound of the whole interval.

Theorem 1. For query and data sequences Q and S, if the whole interval [0, n−
1] is divided into m disjoint rotation intervals, [a0, b0], [a1, b1], . . . , [am−1, bm−1]
(a0 = 0, ak = bk−1 + 1, bm−1 = n − 1, k = 1, . . . , m − 1), the minimum of
lower bounds obtained from rotation intervals, minm−1

k=0 LB[ak,bk](Q, S), is a lower
bound of RID(Q, S).

Proof: Let Qj be the rotation sequence that shows the minimum distance to
S, i.e., D(Qj , S) = minn−1

i=0 D(Qi, S). Then, by Definition 1, RID(Q, S) =
D(Qj , S) holds. Since the whole interval is divided into disjoint intervals, j
should be included in a rotation interval, and we let this interval be [a, b], i.e., j ∈
[a, b]. Then, RID(Q[a,b], S) = D(Qj , S) = RID(Q, S) holds because RID(Q, S) =
D(Qj , S) and j ∈ [a, b] hold. It means that LB[a,b](Q, S) is a lower bound of
RID(Q, S) as well as RID(Q[a,b], S). Therefore, the minimum of lower bounds
of rotation intervals, minm−1

k=0 LB[ak,bk](Q, S), is a lower bound of RID(Q, S). �

For simplicity, we hereafter denote the lower bound minm−1
k=0 LB[ak,bk](Q, S) by

LBME(Q, S), where ME stands for Multiple Envelopes. As we explained in Ex-
ample 2, a local lower bound LB[a,b](Q, S) is subject to be larger than LBSE(Q, S),
and thus, the global lower bound LBME(Q, S) obtained from those local lower
bounds is also subject to be larger than LBSE(Q, S). Therefore, if we use LBME

(Q, S) instead of LBSE(Q, S), we can prune more unnecessary RID(Q, S) com-
putations. We thus present Algorithm 3, called RI-ME, as an advanced matching
algorithm that exploits LBME(Q, S). Even though computational complexity of
LBME(Q, S) is also Θ(n) as that of LBSE(Q, S), computing LBME(Q, S) is more
complex than LBSE(Q, S). Compared to LBSE(Q, S), however, LBME(Q, S) ex-
ploits the better pruning effect and produces the higher performance.

(a) Time-series  Q/S and Q’s multi-envelope. (b) Rotation-invariant distance                           .( )[0,44] ,RID Q S
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Fig. 3. An example of RID(Q[a,b], S) and its LB[a,b](Q, S)
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Algorithm 3. RI-ME (query sequence Q, a set S of data sequences, tolerance ε)
1: Divide the whole interval [0, n−1] to m rotation intervals [a0, b0], . . . , [am−1, bm−1];

2: Construct [L[ak,bk ], U [ak,bk ]] from Q for each [ak, bk] (k = 0, . . . , m − 1);
3: R := ∅; // R is the result set.
4: for each data sequence S ∈ S do
5: if LBME(Q, S) ≤ ε then // discard S immediately if LBME(Q,S) > ε
6: if RID(Q,S) ≤ ε then // compute the actual rotation-invariant distance

7: R := R ∪ {S}; // include S in the result
8: end-if
9: end-for

10: end-for
11: return R; // return the result set containing rotation-invariant similar sequences.

5 Experimental Evaluation

5.1 Experimental Data and Environment

In the experiments we use two datasets. The first one is the SQUID dataset [1]
that consists of 1,100 images of marine creatures. This dataset is publicly used for
similarity search of images, and we call it SQUID DATA. The second dataset con-
sists of 10,259 images collected from the Web [8,10], and we call it WEB DATA.
In the experiments, we first extract boundary images from original images, and
then convert them to time-series of length 360.

The hardware platform is a SUN Ultra workstation equipped with Ultra-
SPARC IIIi CPU 1.34GHz, 1.0GB RAM, and 80GB hard disk, and its software
platform is Solaris 10 operating system. We compare four algorithms: RI-Naive,
RI-EA, RI-SE, and RI-ME. As the performance metrics, we measure the num-
ber of rotation-invariant distance (RID(Q, S)) computations and the actual wall
clock time. The former is to show how many (unnecessary) distance computa-
tions are pruned by the proposed algorithms; the latter is to show how much
performance is improved by the pruning effect. For RI-ME, we divide the whole
interval into equal-sized rotation intervals. We need to determine the number m
of rotation intervals in RI-ME. In the experiments, we set the number m to 36
since it shows the best performance for all experimental cases. Finding a theo-
retical optimal number m is another challenging issue since it varies by types of
boundary images and lengths of sequences, and we leave it as a further study.

5.2 Experimental Results

Figure 4 shows the experimental result of SQUID DATA, where we measure
the number of RID(Q, S) computations and the actual matching time by vary-
ing the tolerance. As shown in Figure 4(a), our RI-SE and RI-ME significantly
reduce the number of RID(Q, S) computations compared with RI-Naive and
RI-EA. This confirms that our envelope-based approach prunes many unnec-
essary RID(Q, S) computations. In Figure 4(a), RI-Naive and RI-EA show the
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same number of RID(Q, S) computations. This is because RI-EA cannot reduce
the number itself even though it improves the matching performance through
the early abandon (see Figure 4(b)). In Figure 4(a), we note that RI-ME fur-
ther reduces RID(Q, S) computations compared with RI-SE, which means that
LBME(Q, S) is much tighter than LBSE(Q, S), and the pruning effect of RI-ME
is much larger than that of RI-SE.

Figure 4(b) shows that our algorithms significantly reduce the wall clock time
compared with the previous ones. (Note that y axis is a log scale.) The reason
why our RI-SE and RI-ME outperform RI-Naive and RI-EA is in Figure 4(a), where
our algorithms reduce RID(Q, S) computations significantly. Unlike Figure 4(a),
RI-EA outperforms RI-Naive since it exploits the early abandon [7] in computing
RID(Q, S). In all cases of Figure 4(b), however, our RI-SE and RI-ME outperform
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RI-EA as well as RI-Naive. In particular, RI-ME show the best performance since
it exploits the largest pruning effect. In summary, compared with RI-Naive and
RI-EA, our RI-ME reduces the matching time by up to 111.9 and 7.5 times,
respectively.

Figure 5 shows the experimental result of WEB DATA. The overall trend of
Figure 5 is very similar to that of Figure 4. The matching performance is ordered
by RI-Naive, RI-EA, RI-SE and RI-ME. In Figure 5, RI-ME outperforms RI-Naive
and RI-EA by up to 147.7 and 7.4 times, respectively. In summary of Figures
4 and 5, our envelope-based approach improves the performance significantly,
regardless of data types and tolerances.

6 Conclusions

In this paper we proposed an envelope-based approach that significantly im-
proved the matching performance in rotation-invariant boundary image match-
ing. We first presented a single envelope lower bound, and using it we pro-
posed an efficient matching algorithm, called RI-SE. We then introduced a multi-
envelope lower bound by generalizing a single envelope to multiple envelopes.
We explained why the multi-envelope lower bound was tighter than the sin-
gle envelope lower bound, and using it we proposed another matching algo-
rithm, called RI-ME. Experimental results showed that our envelope-based al-
gorithms significantly outperformed existing algorithms. These results indicate
that our envelope-based approach is excellent in handling a large volume of image
databases that require frequent computing of rotation-invariant distances.

Acknowledgement. This research was supported by Basic Science Research
Program through the National Research Foundation of Korea (NRF) funded by
the Ministry of Education, Science and Technology (2010-0002518).
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Abstract. Conventional techniques for detecting outliers address the problem of
finding isolated observations that significantly differ from other observations that
are stored in a database. For example, in the context of health insurance, one
might be interested in finding unusual claims concerning prescribed medicines.
Each claim record may contain information on the prescribed drug (its code),
volume (e.g., the number of pills and their weight), dosing and the price. Finding
outliers in such data can be used for identifying fraud. However, when searching
for fraud, it is more important to analyse data not on the level of single records,
but on the level of single patients, pharmacies or GP’s.

In this paper we present a novel approach for finding outliers in such hierarchi-
cal data. Our method uses standard techniques for measuring outlierness of single
records and then aggregates these measurements to detect outliers in entities that
are higher in the hierarchy. We applied this method to a set of about 40 million
records from a health insurance company to identify suspicious pharmacies.

1 Introduction

The inspiration for this paper comes from a real life fraud detection problem in health
insurance, in the pharmacy domain. The goal of fraud detection in this context is to
identify the most suspicious pharmacies that could possibly be involved in fraudulent
activities, rather than identifying single claims that are suspicious. The main reason for
not focusing on single outliers is that recovering money from single claims is costly,
and that it can harm the relationship between an insurance company and the involved
pharmacy, especially in the case of false positives. On the other hand, if the insurance
company can detect substantial fraud linked to multiple claims of the same pharmacy,
this business relationship is no longer so important and a vigorous money recovery
action can follow.

In contrast to typical approaches for finding single outliers, [6], we propose a novel
method for finding groups of outlying records that belong to the same class. Our method
was successfully applied to a large set of health insurance claims, helping to identify
several pharmacies involved in fraudulent behaviour.

Our method for detecting group outliers works in two stages. In the first stage we
calculate outlier scores of single records. We use here classical methods for outlier
detection that are based on distance measures, [2], or density estimation, [5].

Next, we calculate a statistic to measure the outlierness of each groups of records,
where groups form logical entities. In our case, each entity is formed by all claims
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related to a pharmacy, or a combination of a pharmacy and a type of medication. We
propose four different statistics that are used to define the final outlier score of these
entities: (1) a rank-based statistic, (2) a weighted rank-based statistic, (3) a statistic
based on the binomial distribution, and (4) a statistic that is based on the mean of the
outlier score. These statistics can be applied in different situations to different outlier
scores.

The statistics can be computed over different segments of the data to obtain the final
score. Extra information about outlying entities can be obtained by constructing, for
each entity, a so-called fraud set: a set of suspicious claims from a given entity. A fraud
set is a minimal set of outlying records that should be removed from the whole set in
order to make it “normal” again. Another, very useful instrument for displaying fraud
evidence is a fraud scatter plot. Each point on such a plot represents a single entity; the
x and y coordinates of a point are, respectively, the outlier score of the corresponding
fraud set and the total amount of money involved in this fraud set, fraud amount. The
fraud scatter plot can be used by fraud investigators to decide whether they should
investigate the most likely fraud cases, or to focus on cases that are less suspicious, but
involve high amounts of money.

Our paper is organized as follows. We start with a brief overview of related work.
Then we present two approaches for calculating outlier scores of single records: distance-
based and density-based. In Section 4 we explain four methods for aggregating individual
scores, a procedure for identifying fraud sets, and a method for visualizing results with
help of the fraud scatter plot. Results of our experiments are presented in Section 5, while
the last section contains conclusions and some recommendations for further research.

2 Related Work

There is a lot of literature about methods for detecting single outliers in data. They are
extensively presented in general survey articles on outlier detection techniques: [7], [1],
and [6].

The method described in this paper can be categorised as unsupervised outlier de-
tection. Existing methods for unsupervised outlier detection (a missing label problem)
can be split into the following categories: statistical methods and distance-based meth-
ods, with the later containing the sub-categories of depth-based methods, density-based
methods, and clustering-based methods.

Depth-based methods measure the distance from a point to the center of the data.
Points that have the highest distance are considered outliers. There are several defini-
tions of depth, for example the Mahalanobis Depth, which is equal to the distance to the
Mahalanobis distance to the mean of the data. Because outliers have a big impact on
the location of the mean and the covariance matrix estimate, a robust estimate of these
statistics can be used, [12]. The main disadvantage of depth-based methods is their in-
ability of handling clusters in data – these methods assume that the data form a single
cluster.

Distance-based methods require a distance measure to determine the distance be-
tween two instances. The main idea is that the distance between outlying instances and
their neighbors is bigger than the distance between normal instances and their neigh-
bors, [8].
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Distance-based methods compare distances with respect to the whole dataset. Outlier
score measures that are based on the distances between a specific point and points in its
local neighborhood are called density-based methods. Examples are the Local Outlier
Factor (LOF), [5], the Connectivity-based Outlier Factor (COF), [13], or the Multi-
granularity Deviation Factor (MDEF), [10].

In the statistical community some methods have been investigated to detect multiple
outliers at once. Based on a model fitted on the data, outliers are observations that devi-
ate from the model, or that would deviate if the model were fitted without the observa-
tion (so-called a deletion diagnostic). There are two related issues, called masking and
swamping, that have been investigated in [4]. Masking takes place in a situation when
an outlier would not be revealed by calculating a single deletion diagnostic measure for
each observation, but it would be detected by a multiple deletion diagnostic. The op-
posite situation, swamping, occurs when a pair of observations is declared anomalous
only because one of the two is extreme: the bigger deviating observation swamps the
smaller one.

To our best knowledge, the problem of finding a group of outliers that belong to the
same entity (such as a pharmacy) has not been addressed yet in the existing literature.

3 Outlier Score for Single Records

In this section we present in more depth two approaches for calculating outlier scores for
single records: distance-based and density-based. We start with some definitions and no-
tations. Let D denote a set of n objects (called records or points) and let d denote a dis-
tance measure between these objects. The k-distance of p, denoted as k-distance(p),
is the distance of p to its k-th nearest neighbor. The k-distance neighborhood of p con-
tains every object whose distance from p is not greater than the k-distance(p). These
objects are called the k-th nearest neighbors of p and are denoted by Sk(p).

Distance-Based Scores. Distance-based methods are based on the proximity of points
to each other according to a distance measure. There are several definitions possible
that can be used to identify outliers. These definitions are usually based on the concept
of the k-nearest neighbor, [11]. An object p is called a (k, n) outlier if no more than n-1
other points in the dataset have a higher value of the k-distance than the point p itself.
Note that this is a binary score: the top n points with the highest values of k-distance
are declared as an outlier, while all other observations are considered normal. Another
definition is given in [8], who defines a DB(perc, distance) outlier as follows: an
object p in a dataset D is a DB(perc, distance) outlier if at least fraction perc of the
objects in D lies further from p than distance. In other words, distance can be seen
as a radius around p, and if the percentage of points within this radius is smaller than
(1 − perc), p is declared anomalous. A yet another definition, [2], assigns a weight to
each point p, which is defined as the sum of the k-distance of all points within the
k-distance neighborhood of p. Outliers are those points that have the biggest weight.
There are some small differences between the three definitions given above. The first
definition by [11] does not provide a ranking of the outliers. For the definition by [8]
it may be hard to set the parameters appropriately. The definition of [2] overcomes
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these problems, but is computationally expensive. We used in our experiments this later
definition of the scoring function.

Density-Based Scores. Another scoring function that we used in our experiments is
a modification of the well-known LOF score, [5], which is based on the idea of the
probabilistic distance that is described in [9].

For the explanation of the LOF Score we first need some definitions. Using the same
notation as before, the reachability distance of an object p with respect to an object o is
defined as:

reachDistk(p, o) = max(k−distance(p), distance(o, p)) (1)

This distance measure is used to correct for statistical deviations.
The density of each point is called the local reachability density of an object p. It is

calculated as follows:

lrdk(p) = (

∑
o∈Sk(p) reachDistk(p, o)

|Sk(p)| )−1 (2)

In other words, the density of p is the average reachability distance from its k-
distance neighborhood to the point itself. For sparse regions, the value for lrd will
be low, for dense regions it will be high.

Finally, the local outlier factor of an object p is defined as:

LOFk(p) =

∑
o∈Sk(p)

lrdk(o)
lrdk(p)

|Sk(p)| (3)

In other words, for an object p we compare its own density lrdk(p) with the density
of the points in its k-distance neighborhood. If the densities are approximately equal,
the LOF score will be close to one, if the density of p is relatively low, the LOF score
will be high.

In our experiments we used a modified version of the LOF score, because it turned
out to work better than other methods in detecting single outliers. We used the proba-
bilistic distance, as defined in [9], to determine the reachability distance:

probReachDistk(p, o) = max(pdistk,ϕ(p), distance(o, p)), (4)

where pdistk,ϕ(p) denotes the probabilistic distance of p to its k neighborhood, as
measured within the radius ϕ, i.e., the minimum distance for which ϕk neighbors of p
are covered.

The formulas for calculating the local reachability density and the LOF score re-
main the same. Note that using the probabilistic distance can also be seen as using two
parameters: k1 to determine a context set S which is used to compare densities, and
k2 = ϕk1 to calculate the distances between points and eventually their densities.

4 Statistics per Entity

In this section we address our main problem: detection of groups of outliers that belong
to the same entity. The proposed approach for this problem involves two steps: (1)
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calculation of outlier scores of all records, and (2) calculation of a statistic to measure
the outlierness of each entity. In this section we present four different statistics for
measuring the entity outlierness.

Each of these statistics is used to quantify the difference between two samples: the
set of scores of records belonging to the entity and the set of scores of records that
do not belong to the entity. Most outlier measures do not have a direct probabilistic
interpretation. Also the range of scores strongly depends on the data set, or even on the
scaling of the data set. For some outlier measures only the rank is important, while for
others we are mainly interested in relative values. Furthermore, different kinds of fraud
are possible. In the case of pharmacies, all fraud can be committed in a single claim or
with charges concerning a single patient, but the fraud can also be distributed over many
charges, charging just a little more per claim. This is why different statistics are needed.
We present four different statistics that can be used under different circumstances: a
rank based statistic, a weighted rank based statistic, a statistic based on the binomial
distribution, and a statistic that is the standardised residual. The binomial outlier score
is different from the other three statistics because of the fact that it does not take the
ordering of the outlier scores into account. This statistic works well in combination with
single scores that provide a list of top-n outliers, or that provide a binary outlier score.
The other three statistics mainly differ in robustness against the outlier score values.
The ordering from least robust to most robust is: 1) standardised residual 2) weighted
rank outlier score and 3) rank-based outlier score. The positive aspect of using a robust
score to aggregate per entity, is that it is not affected by a very high score of one single
point thereby declaring the whole entity anomalous. On the other hand, such a single
point with a very high score may also be very interesting, which would favor the use of
a non-robust score.

Additionally, we describe how to incorporate the monetary value that is related to
analysed records in the detection process, and demonstrate how to construct fraud sets.
Finally, we show how a fraud scatter plot can be used to support decisions concerning
further investigation of identified suspicious entities.

4.1 Statistics per Entity

In this section we introduce several statistics to calculate the “outlierness” of an entity
with respect to all other entities. The common idea behind all these statistics involves
measuring the difference between two sets of numbers: a set of scores of all records
from one entity and a set of scores of all other records from remaining entities. More
precisely, let us suppose that our dataset has n records. For each record, we calculate an
outlier score, so we have in total n outlier scores. Let us consider a single entity that we
want to compare to other entities. The set of n scores can be split into X1, . . . , Xn1 and
Y1, . . . , Yn2, where X1, . . . , Xn1 are the scores of records from the entity under con-
sideration, and Y1, . . . , Yn2 are the scores of the remaining records. Now our problem
can be formulated as follows: how to measure the difference between X and Y ? In our
experiments we used the following four methods of comparing X to Y .

Wilcoxon Mann-Whitney test with single outlier score. The first method is based on
the popular, non-parametric two-sample test, called the Mann-Whitney-Wilcoxon rank-
sum test, [3]. It defines the outlierness score of an entity as the p-value that is returned
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by the Mann-Whitney-Wilcoxon test when comparing values of sets X and Y to each
other.

Weighted rank outlier score. The Mann-Whitney-Wilcoxon test uses only ranks of
the scores and not their actual values. However, we can weight the ranks of elements in
X and Y by their values: the bigger the outlier the bigger its impact on the final entity
score. More precisely, we define:

Zij =

{
0 if Xi < Yj

Yj∑ n2
k=1 Yk

if Xi > Yj
(5)

and

U =
n1∑
i=1

n2∑
j=1

Zij (6)

For large n we can assume U to be normally distributed and parameters of this distribu-
tion can be calculated from the vector of the partial sums of the sorted vector Y . Given
these parameters, one can easily find the corresponding p-value.

Binomial outlier score. The calculation of this score starts with calculating the sets of
scores X and Y , as described earlier. Then both sets are combined and sorted. The top p
percentage of scores are viewed as outliers, where p is a pre-specified parameter. Under
this definition of an outlier, the number of outliers that belong to the set X follows a
binomial distribution with expected value n1p and variance n1p(1 − p). The outlier
score of X (relative to p) is now defined as 1 − cpdf(binomial(n1, p), k), where k is
the number of observed outliers in X , i.e., the mass of the right tail of the binomial
distribution with the parameters n1 and p that starts at k.

The value of parameter p is used to determine the percentage of records that are
viewed as outliers. It can be set in different ways. In some cases the value of p is
determined by a domain expert. The choice of p can also be based on the probability
distribution of the outlier score function. One can approximate this distribution by using
a histogram with two bins: one bin for ‘low’ outlier scores, and another one for ‘high’
outlier scores. The observations that fall into the bin of ‘high’ outlier scores are labeled
as outliers, so p is the splitting point between the two bins. We estimate p by minimising
the Kolmogorov-Smirnov distance, [3], between the distribution of the outlier score and
the ‘approximate’ two-bin distribution. Another possibility is to use a heuristic that is
based on the parameter p: for example, take the maximum outlier score per entity for a
range of values for p. The disadvantage of this approach is that the final outlier entity
score cannot be interpreted as a probability anymore.

Standardized residual of outlier score. This measure of entity outlierness is defined
in terms of the average deviation from the mean of the outlier scores that belong to the
given entity. The average standardized residual should follow a normal distribution. The
corresponding p-value – the mass of the tail on the right from the observed value – is
the outlier score.
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4.2 Identifying Fraud Sets

Each approach described above uses a statistic U to describe the deviation of an entity.
Because U follows a normal distribution, we can easily test the hypothesis that the ob-
served value for U is equal to E(U) with significance level α. This hypothesis will be
rejected for the most outlying entities with the highest value of U . Suppose this hypothe-
sis is rejected for an entity with a set of observationsX . We define a fraud set for an entity
X as the minimal set of records that should be removed from X in order to make the null
hypothesis that the observed value of U(X) is equal to E(U(X)) plausible (i.e., not to be
rejected at a given significance level). Because the observations that should be removed
are the ones with the highest outlier score, the fraud set is also the set of observations
that should be investigated first, when checking if the entity is really outlying.

4.3 The Fraud Scatter Plot

Another very useful instrument for displaying fraud evidence is a fraud scatter plot: a
graph of fraud amount versus outlier score of all records in the fraud set. Here, the fraud
amount is defined as the total amount of money that is involved in the observations that
are in the fraud set. The fraud scatter plot can be used by fraud investigators to decide
whether they should investigate the most likely fraud cases, or to focus on cases that are
less suspicious, but involve high amounts of money.

More precisely, for an arbitrary significance level α, the fraud scatter plot contains
points, one per entity, with their x-coordinates being the outlierness score of an entity
(we use the z-score of the observed value of U ), and the y-coordinate being the the
fraud amount.

4.4 Aggregation of Scores for Data Segments

In many applications financial transactions can be split into a number of segments. For
example, claims can be organized into categories that are determined by the type of
medicine involved, and patients allocated to segment per disease type. Each of the four
statistics described earlier can be calculated for each segment and the resulting scores
aggregated on the level of single entities. For the Wilcoxon-Mann-Whitney test and the
statistic based on the binomial distribution, a normal approximation can be obtained (the
other two statistics are already normally distributed). Let si be the z-score of an entity
per segment, and S be

∑n
i=1 si

n , where n is the number of segments. The final outlier
score of an entity is defined as Φ(S), where Φ is the cumulative probability density
function (cpdf) of the standard normal distribution. This aggregation is not needed if
there are no subsegments in the data.

5 Results and Analysis

Now we will describe some results that we obtained when applying our method to
a relatively big set of 40 million records related to claims submitted by pharmacies.
Each record contained information about the pharmacy (pharmacy ID), the prescribed
medicine (type, subtype, product ID), cost, dosage, et cetera. In our research we have
focused on three types of deviations: unusual prescriptions, errors that seem to be typos,
and unusual number of “expensive” patients.
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5.1 Strange Behavior in Prescribing Drugs

A common type of fraud in health insurance is called unbundling: a practice of breaking
what should be a single charge into many smaller charges. The ‘standard’ formula for
a single claim is price = c + p ∗ n, where price is the claim amount, c is a constant
charge per claim, n is the number of units, and p is the price per unit. A pharmacy
can commit unbundling fraud by splitting the charge into two or more charges, thereby
earning the constant amount c twice (or more times). Two other common types of fraud
are: delivering more units than stated on the prescription (and thus increasing turnover),
and charging money for drugs that have never been delivered.
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Fig. 1. Histogram of the Weighted Rank Score Statistic. There are two observations with a score
higher than 25. We can also see that the distribution of the statistic is not completely normal due
to some outliers and due to a peak around zero (these are pharmacies with very few claims).

First we split the data into different segments, one segment per drug type. For each
segment we use the following variables for each patient X : X1: the total number of units
(pills) used by a patient within a year, X2: the total claim amount of a patient within a
year, X3: the number of claims, X4:

∑n
i=1 ai, where n is the number of claims, and ai

is 1 if the patient visited his family doctor within two weeks before the claim, and zero
otherwise.

An outlier in these dimensions indicates strange or fraudulent claim behavior. We
calculate an outlier score for single observations first. For this application we use the
modified LOF Score, as described in Section 3.

For each medicine type we calculated the weighted rank score, where each patient is
assigned to one or more pharmacies. We aggregated all these scores by summing them
up and then standardizing them. The final scores of all pharmacies are shown in Fig. 1.
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Fig. 2. Histograms of the ‘number of pills prescribed’ and the ‘number of claims’ for the drug type
Aspirin. The two histograms below show the distribution of patients of the outlying pharmacy.
The upper two histograms show the distribution of the other pharmacies. From these graphs it
can be concluded that these distributions are different. The number of pills is much lower than
expected, while the number of claims is higher: this is a signal for unbundling fraud.

We compared data from the two most outlying pharmacies with data from the re-
maining pharmacies. For the top outlying pharmacy the distributions of variables X1

(the number of pills) and X3 for the drug type ‘Aspirin’ are given in Figure 2.

5.2 Finding Typos

Sometimes pharmacies make mistakes when entering the number of units that is pre-
scribed, thereby ‘accidentally’ overcharging. We calculated the following z-scores:

– X1: the standardized claim amount,
– X2: the claim amount, standardized at the drug type level,
– X3: the claim amount divided by the total costs of the patient within a year, grouped

at the drug type level and then standardized,
– X4: the claim amount divided by the total costs made by the patient on the same

drug, standardized.

Typos will score high within all dimensions, therefore we used as an outlier score for
a single record the smallest one: score = min(X1, . . . , X4).

Because this score is really designed for detecting ‘top-n’ outliers, the binomial
statistic to aggregate the outlier scores per pharmacy seems to be the most appropriate.
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Fig. 3. The graph on the left shows the fraud scatter plot. The score according to the binomial
statistic is plotted against the money that is involved in the claims. The most interesting pharmacy
is the one in the upper right corner: it has a large deviation and a high fraud amount. The histogram
on the right shows an example of an outlier of this pharmacy for the ‘Glucose Test strip’. The
outlying claim made by this pharmacy is the claim of about 1300 Euros. The pharmacy is outlying
because it has many of such claims.

The value of the parameter p can be found after a few trial-and-error attempts followed
by a manual inspection of found outliers. The fraud scatter plot and an example outlier
are displayed in figure 3.

5.3 Patients with High Claim Costs

Pharmacies may also be delivering more units than stated on the prescription (and thus
charging more money). The difference with a typo is that this time the claim amounts
are not extremely high, but just a little higher than normal.

To discover this type of outliers we split the data into segments, using one drug type
per segment. For each segment we defined the following two variables:

X1: the claim amount,
X2: the claim amount divided by the total costs per patient within a year.
We standardized both dimensions. Because we were interested in global outliers we

used as an entity outlier score the mean distance to the k nearest neighbors, [2]. Next,
we calculated the deviation from the mean statistic per patient per drug type, and ag-
gregated the scores by summing them. Finally, we used the binomial outlier score to
aggregate patient scores on the level of pharmacies. We estimated the parameter p by
approximating the density of the score per patient by a histogram of two bins, see Fig-
ure 4. By inspecting the fraud scatter plot we could conclude that the most interesting
outlier is the pharmacy with the highest amount of fraud. For this pharmacy we plotted
some of its outlying claims within the drug type ‘Erythropoietin’ (a.k.a. Epo), see Fig-
ure 5. It is evident that those claims of this pharmacy are outliers, because of the high
amounts per claim.
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Fig. 4. The graph on the left shows how the cumulative distribution function of the LOF scores
is approximated by a histogram of two bins. The bin sizes of this histogram are determined by
minimizing the Kolmogorov-Smirnov Distance between the cdf and a function with two linear
components. The graph on the right shows the fraud scatter plot. The x-axis shows the deviation
from the expected value of the statistic and the y-axis shows the amount of money that is involved
within the outlying transactions.
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Fig. 5. Scatter plot of some of the outliers of the suspicious pharmacy for the drug ‘Erythro-
poietin’ (Epo). The outliers are the red squares on the right. The claims represented by the red
squares are all delivered by the same pharmacy.
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6 Conclusions and Further Research

We presented a novel approach for finding outlying entities in hierarchical data. Our
method uses standard techniques for measuring outlierness of single records and then
aggregates these measurements to detect outliers in entities that are higher in the hierar-
chy. Our approach turned out to work very well in a practical setup, where many fraud
cases were detected relatively fast.

Further research will address the issue of adding apriori information about entities
(such as pharmacies, hospitals or physicians) into the model. For example, it is well
known that some pharmacies (e.g., internet or mail-order pharmacies) exhibit differ-
ent claim patterns than conventional ones. Discovery and incorporation of this type of
information into our method is a challenging research problem.
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Abstract. Hidden Markov Models (HMMs) are widely used in activity
recognition. Ideally, the current activity should be determined using the
vector of all sensor readings; however, this results in an exponentially
large space of observations. The current fix to this problem is to assume
conditional independence between individual sensors, given an activity,
and factorizing the emission distribution in a naive way. In several cases,
this leads to accuracy loss. We present an intermediate solution, viz., de-
termining a mapping between each activity and conjunctions over a rel-
evant subset of dependent sensors. The approach discovers features that
are conjunctions of sensors and maps them to activities. This does away
the assumption of naive factorization while not ruling out the possibility
of the vector of all the sensor readings being relevant to activities. We
demonstrate through experimental evaluation that our approach prunes
potentially irrelevant subsets of sensor readings and results in significant
accuracy improvements.

Keywords: Activity recognition, Feature induction, Hidden Markov
Model.

1 Introduction

Efficient activity recognition has been a hot topic for researchers since the advent
of Artificial Intelligence. An active application area for activity recognition is
monitoring elderly activities in homes to ensure their well being. To monitor
activities of large number of people living alone in houses and thereby detect
unusual patterns of activities, which are indicators of their health condition,
automatic activity recognition systems are used [1]. In the following paragraph,
we provide a brief overview of a typical activity recognition setting.

A typical minimal intrusive activity recognition setting has on/off sensor de-
vices, which senses user movements or object use, fixed at various locations inside
a house. The nodes send binary (sensed) information to a base station/computer.
A probabilistic model is trained initially using the information from the sensors
and the user annotated information about the activities performed. Later, the
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model is used for predicting activities performed, based on sensor readings. The
Hidden Markov Model (HMM) [5] and the Conditional Random Field (CRF) [6]
are two popular probabilistic models used for activity recognition [4]. Kasteren
et. al. in [4] reported better class accuracy (average percentage of time a class is
predicted correctly) with HMM and better time slice accuracy (fraction of time
slices predicted correctly) with CRF. We, in this paper, use HMM as the base
line approach and investigate the effectiveness of our approach in HMM. We now
give a brief introduction to HMM.

An HMM formulation consists of a hidden variable and an observable/emission
variable at each time step. In activity recognition, the activity at each time
step t is the label/hidden state yt. The joint state of the sensors at each time
step is the observation xt. The hidden state yt at time t is independent of all
other variables given the previous hidden state yt−1 at time t − 1 and the ob-
servable variable xt at time t is independent of other variables given yt. Using
these independence assumptions, we can factorize the joint distribution of the
sequence of observations (X) and labels (Y ) into three factors: the initial state
distribution p(y1), the transition distribution p(yt|yt−1), and the emission dis-
tribution p(xt|yt) [10][5]. There fore, the joint distribution can be expressed as
p(X, Y ) =

∏T
t=1 p(yt|yt−1)p(xt|yt), where p(y1|y0) is used instead of p(y1) to

simplify notation. Parameters for the distributions are learned by maximizing
the joint probability, p(X, Y ), of the paired observation and label sequences in
the training data. During the inference phase, the parameters are used to deter-
mine the sequence of labels that best explains the given sequence of observations.
This is efficiently computed using a dynamic programming algorithm called the
Viterbi Algorithm [11]. We now discuss the limitations of traditional HMM in
the domain of activity recognition.

In a traditional HMM setting for activity recognition, the observation value is
a vector of all the sensor readings in the deployment. Thus there are 2N possible
values for the observation variable in a binary sensor deployment with N sensors,
which is computationally expensive for learning and inference in real world set-
tings. Typical approaches in activity recognition tend to assume independence
between individual sensors given activity to perform naive factorization of the
emission distribution [4]. Since the independence assumption is wrong in most
of the real world problems, the method suffers from accuracy loss in many cases.
More over, the binary sensor values of all the sensors have to be considered for all
the activities in every inference step, which is an overhead in large settings. Now
we provide a brief introduction to the proposed solutions to these limitations.

Since strong assumptions of dependence or independence among entire set of
sensors given activity have their own limitations in activity recognition domain,
we identify the need to find a mapping between activities and their relevant
subsets of dependent sensors. Manual imposition of such a mapping is neither
novel nor feasible in large settings. An efficient feature induction approach that
can automatically capture the mapping between activities and conjunctions of
sensors can be used. Inductive Logic Programming (ILP), a branch of machine
learning, is a learning paradigm capable of learning such mappings or rules.
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Given some background knowledge and a set of facts as examples, ILP systems
derive hypothesis (structure) that entails all the positive examples and none
of the negative examples. It starts with an initial hypothesis and refines it by
searching a lattice of clauses (a partially ordered set of clauses or rules) based
on a scoring function. Typical structure learning systems that do a Branch and
Bound (B&B) search in the lattice of clauses evaluating scores based on positive
and negative examples covered, when used to construct features for HMM in
activity recognition, suffer from accuracy loss as shown in our experiments. In
this paper, we propose and implement a greedy feature induction approach that
adapts the structure of HMM using HMM evaluation on the training set as
scoring function. Our experimental results suggest a performance improvement
over both the traditional HMM and the B&B learning assisted HMM in terms
of accuracy. We also show the statistical significance of our proposed approach
against the traditional approaches.

The rest of the paper is organized as follows. We discuss some related works in
section 2. Section 3 discusses about using feature induction to assist HMM model
construction. Experiments and Results are discussed in section 4. We conclude
our work in section 5.

2 Related Work

In this section, we look into some of the related works in both the area of activity
recognition and feature induction.

Automatic activity recognition has been an active research area in the cur-
rent era of pervasive systems. Various approaches have been proposed. Wilson
experimented with particle filter and context aware recognition for recognizing
ADLs at the MIT Laboratory [1]. Gibson et.al. [2] discussed the idea of clus-
tering sensors for recognizing activities and concluded that trivially imposing
clusters differs from reality. A relational transformation based tagging system
using ILP concepts is proposed in [13]. The approach starts with an initial tag
to all the sequences and then improves by learning a list of transformation rules
which can re-tag based on context information. The approach is purely logical
and not probabilistic. [3] identifies the minimal set of sensors that can jointly
predict all activities in the domain. Binsztok et. al. [14] discussed learning HMM
structure (number of states and allowed transitions) from data for clustering
sequences. An efficient feature induction method for named entity extraction
and noun phrase segmentation tasks using CRFs is presented by McCallum [15].
Landwehr et. al., in [7], construct kernel functions from features induced by an
ILP approach. The search for features is directed by a Support Vector Machine
performance using the current kernel. [9] aims to classifying relational sequences
using relevant patterns discovered from labelled training sequences. Here, the
whole sequence is labelled and not the individual components of the sequence.
Patterns in each dimension of multi dimensional sequences are discovered and a
feature vector is constructed. Then an optimal subset of the features is selected
using a stochastic local search guided by a naive Bayes classifier. TildeCRF, an
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extension to CRF, is introduced in [8] to deal with sequences of logical atoms
and to model arbitrary dependencies in the input space. The potential functions
are represented as weighted sums of relational regression trees.

Many of the learning approaches discussed above suits for general classifica-
tion. However, in the case of sequential, skewed, and sparse activity recognition
data where temporal dependencies dominate over static dependencies, most of
the learning approaches that globally normalize the parameters do not fit well.
We find a solution to this problem by identifying relevant conjunctions of sensors
for each activity as observation for HMM. We then learn conditional probability
values for this emission model and combine it with transition distribution. We
propose feature induction assisted HMM model construction which we discuss
in the following section.

3 Model Construction for Activity Recognition

In this section, we first give a technical explanation to the problem at hand before
we discuss the B&B structure learning assisted HMM model construction and
the feature induction assisted HMM model construction for activity recognition.

In an HMM set-up, the probability distribution of observation given label,
p(xt|yt), is represented as an emission matrix. Here the observation vector is
xt = (x1

t , x
2
t , ..., x

N
t )�, where xi

t represents the value of ith sensor at time t
and N is the number of sensors. Considering the entire set of sensors results
in 2N values for observation xt which is computationally feasible only in small
settings. Often independence is assumed among sensors, given activity, to sim-
plify the representation and computation of p(xt|yt). Conditional probability,
when independence is assumed among sensors, is p(xt|yt) =

∏N
i=1 p(xi

t|yt). This
approach is prone to accuracy loss in many cases where the independence as-
sumption is wrong. To alleviate both the issues, we identify the need to find a
mapping between activities and their relevant conjunctions of dependent sensors.
Our work underlines the notion that if a few dependent sensors in conjunction
with information regarding the previous activity can jointly decide on whether
an activity has happened in the current time, then it is better to consider only
these conjunctions of sensor readings. That is, we avoid the non relevant xis and
use conjunctions of relevant xjs to improve the prediction accuracy. This also
helps to reduce the effect of noise while doing inference.

We propose learning the HMM emission structure that maximizes probabilis-
tic coverage of the training data. In our problem, since there is no ordering among
activities, the model learned should allow all inter state transitions. Therefore,
we learn the structure of emission distribution while preserving all the

(
n
2

)
tran-

sition probabilities. In the next subsection, the B&B structure learning assisted
HMM model construction is discussed.

3.1 B&B Structure Learning Assisted HMM for Activity
Recognition

In this subsection, we explore the idea of using the B&B structure learning
assisted HMM model construction (B&BHMM) for activity recognition.
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As discussed above, we are interested in finding a mapping between activities
and relevant conjunctions of sensors. The mapping can be expressed as relation-
ships of the form “Activity if a particular set of sensors fired”. These type of rules
are called definite clause rules and are represented in the form A ← B, C, . . .
where A, B, C, . . . are binary predicates. Traditional structure learning systems
are capable of discovering rules of the above form. We now analyze the effective-
ness of these systems to construct HMM model for activity recognition.

We hypothesize that traditional structure learning systems that do not do
HMM evaluation while refining rules learned in each step of rule induction will
have reduced impact on the accuracy of prediction. This is because, in traditional
systems, the objective is to logically cover all the positive examples. ILP is one
of the traditional structure learning paradigms that learn first order relations
among entities. For example, Aleph [12] is an ILP system that in each iteration,
selects a positive example, builds the most specific clause based on the example,
searches for a more general clause that has the best score, and removes examples
made redundant by the current clause. Although the current problem does not
require learning complex first order structures, we use Aleph as a benchmark
system for our experiments.

The scores used by traditional systems such as Aleph are largely based on the
number of positive and negative examples covered by the current model. One of
the scoring functions is pos−neg, where pos and neg are the number of positive
and negative examples covered by the clause respectively. Discovery of each of
the clauses leads to the removal of positive examples covered.

Since in real world problems, the support for any emission of an activity and
the support for inter state transitions are much fewer than that for same state
transitions, in learning both the emission and transition dependencies using tra-
ditional systems, rules defining transitions within the same state tend to domi-
nate. Such a model tends to predict fewer inter state transitions, and thus affects
the accuracy of inference. Hence we focus only on the induction of emission rules
and combine them with the set of

(
n
2

)
interstate transitions while learning the

parameters of the model. We first study the applicability of the B&B structure
learning systems to learn emission rules and identify the limitations.

B&B systems, when used for learning emission rules, evaluate each refinement
of clauses using scoring functions based on positive and negative examples. Since
the real world data are vulnerable to noisy information, an exact model is hard
to get. As the examples covered by a refinement are removed in each step, rules
that are learned in subsequent iterations have less confidence than those learned
initially, which leads to a less efficient model. Since the objective of traditional
systems is to logically cover all positive examples with clauses which is different
from the actual objective of building a probabilistic model (HMM), the approach
suffers from accuracy loss significantly. We have experimented with this approach
using Aleph combined with a customized implementation of HMM. Each rule
returned by aleph is a definite rule, which associates a subset of sensors to an
activity. A new attribute (feature) is constructed with each such subset. There-
fore, the number of attributes equals the number of rules learned. The learned
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logical model and the training data are passed to a customized implementation
of HMM for constructing the probabilistic model. Later, the probabilistic model
is used for inference. Our experiments reveal that, HMM with B&B structure
learning for feature construction is less efficient than HMM without structure
learning, except in a few cases. Although of-the-shelf branch and bound struc-
ture learning system assisted HMM gave comparable time slice accuracies in a
few experiments, it gave worse class accuracies in all the experiments. The com-
parison of time slice and average class accuracies are shown in tables 1 and 2
respectively as well as figures 2 and 3 respectively. We now discuss the feature
induction assisted HMM model construction for activity recognition.

3.2 Feature Induction Assisted HMM for Activity Recognition

After analyzing the limitations of branch & bound structure learning using pos−
neg to assist HMM model construction, we propose a greedy hill climbing feature
induction approach wherein we evaluate, in each refinement step, the current
model in an HMM setting. That is, the score which has to be maximized is
an HMM evaluation on the training data. We call this approach the Feature
Induction assisted HMM model construction (FIHMM). The score can be either
time slice accuracy or class accuracy of the current model. Time slice accuracy
is the fraction of time slices when classes (activities) are predicted correctly
and average class accuracy is the average percentage of time a class is classified
correctly as given in the expressions reproduced below from [4].

T imesliceAccuracy :

N∑
n=1

[inferred(n) = true(n)]

N
. (1)

ClassAccuracy :
1
C

C∑
c=1

⎧⎪⎪⎨⎪⎪⎩
Nc∑

n=1
[inferredc(n) = truec(n)]

Nc

⎫⎪⎪⎬⎪⎪⎭ . (2)

where [a = b] is an indicator giving 1 when true and 0 otherwise, N is the total
number of time slices, C is the number of classes and Nc is the number of time
slices for the class c.

In data that are skewed towards some activities, predicting a frequent ac-
tivity for all the time slices gives better time slice accuracy but worse average
class accuracy. Therefore, if the data set is skewed and some critical activities
have less support, we suggest maximizing the average class accuracy. In all other
cases, we suggest maximizing time slice accuracy. This is because the average
class accuracy computation does not consider the size of a particular class and
its maximization leads to a situation where unimportant classes that occur sel-
dom have more impact on the overall efficiency of the model. We pursued both
the cases in different experiments, and the results are given in the experiments
section. Trying a combination of both time slice and average class accuracies is
a future work direction. Leaving the choice of one of these accuracy values to
the user, we now discuss the overall learning algorithm for model construction.
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1. procedure FIHMM MODEL CONSTRUCTION
2. featureSet ← features representing each sensor
3. currentModel ← model trained with featureSet
. 
 Here model is synonymous to HMM model
4. repeat
5. previousModel ← currentModel
6. for each activity i do
7. for each feature j of activity i do
8. modelDel(i, j) ← model trained with jth feature of ith activity dropped
9. for each feature k of activity i do
10. modelAdd(i, j, k) ← model trained with features j and k combined
. to form new feature of activity i
11. end for
12. end for
13. end for
14. currentModel ← arg max {arg max

i,j

modelDel(i, j).accuracy,

. arg max
i,j,k

modelAdd(i, j, k).accuracy}

15. until currentModel.accuracy ≤ previousModel.accuracy
16. return previousModel
17. end procedure

Fig. 1. Feature induction assisted HMM model training for activity recognition

During the training phase, we pursue a greedy hill climbing search in the
lattice to find a model. The pseudo code for our approach is given in Fig. 1.
Initially, the features for each activity are constructed with each of the individual
sensors and an initial model is trained. In every iteration, candidate models are
constructed by removing features of each activity one at a time as shown in
step 8 of the pseudo code. Step 10 constructs new features by combining the
features removed in step 8 with other features of the activity and a new candidate
model is trained. The best scoring model among all the candidate models, if
better than the previous model, is saved. To evaluate a model, an HMM is
constructed from the current emission model and the transition distribution.
Each of the conjunctions discovered forms a column in the emission probability
matrix and the conditional probabilities are learned for these conjunctions given
activity. Further, only those columns that are mapped to an activity have to
be considered during inference. Each iteration either deletes or adds a feature
to the final model based on the HMM evaluation on training data. Unlike in
the traditional approaches, no examples are removed during the iterations. In
each iteration, the existing logical model is refined, probabilistic parameters are
learned and the model is evaluated on the training data. The process is repeated
until convergence. In the next section, we describe our experimental set-up and
report our results.
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4 Experiments and Results

We have implemented all the approaches in java. All our experiments have been
performed on an AMD Athlon 64 bit dual core machine (2.90 GHz) with 2.8 GB
RAM and running Ubuntu 8.04.

We have carried out our experiments on the data set made available by Kasteren
et. al. [4] of the University of Amsterdam. The dataset consists of binary values
reported at each time interval by 14 sensors installed at various locations in a
house. There are 8 activities annotated. The data is marked for each one minute
time slot and there are 40006 instances. In the dataset, some activities occurred
more frequently than others and some activities occurred for a longer duration,
and hence the data is not balanced. The data is represented in four binary for-
mats: raw, change point, last observation, and a combination of change point and
last observation. Interested readers may refer [4] for more details.

We assume the data is complete in our case. Moreover, the use of discrete data
enables us to count the number of occurrences of transitions, observations and
states [5]. We have performed our experiments in a leave one day out manner in a
28 fold cross validation set-up. The performance is evaluated by the average time
slice accuracy and the average class accuracy. We also evaluate the statistical
significance of our claims.

We ran four experiments each on raw, change point, last value and change
point plus last value data. The First experiment is the traditional HMM as sug-
gested in [4]. The second experiment, B&BHMM, uses Aleph to learn emission
rules in the form of definite clauses for each activity. These rules along with the
data are passed to a customized implementation of HMM for probabilistic learn-
ing and inference. The third and fourth experiments are the proposed FIHMM
which inductively learns HMM emission model using HMM evaluation as the
score. The emission model is combined with the

(
n
2

)
inter state transitions and

the probabilities are learned to obtain the complete HMM model. The third ex-
periment optimizes average class accuracy while the fourth experiment optimizes
time slice accuracy. The results are shown in tables 1 and 2. The comparison of
time slice accuracies and class accuracies for all the four approaches in all the
data formats is shown in Fig. 2 and Fig. 3 respectively.

From the results, it can be noted that the average time slice accuracies of
B&BHMM are not better than traditional HMM in any of the data formats ex-
cept raw data and the average class accuracies (average of the class accuracies
obtained from each fold) of B&BHMM are not better than traditional HMM in
any of the data formats. This decline in the accuracies is due to the inappropri-
ate evaluation function used by the branch & bound structure learning systems
while doing refinement of learned clauses. In contrast, the proposed feature in-
duction assisted HMM model construction approach that uses HMM evaluation
as the scoring function performed better than the other two approaches in all
the data formats significantly. The average accuracies of the proposed approach
on training data in all the data formats are given in Table 3.

In raw data format, maximizing class accuracy yielded better class accuracy
but did not yield better time slice accuracy than the B&B learning assisted
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Table 1. Average time slice accuracies in percentage for various data representations
using traditional HMM, B&B learning assisted HMM and proposed approach. Proposed
approach has been used for maximizing class and time slice accuracies.

FIHMM FIHMM
Traditional maximizing maximizing

Data HMM B&BHMM class time slice
accuracy accuracy

raw 50.49 56.94 54.98 71.59

change point 67.14 44.91 82.93 87.07

last value 86.45 33.69 89.67 93.47

change + last 86.55 64.94 91.15 93.57

Table 2. Average class accuracies in percentage for various data representations us-
ing traditional HMM, B&B learning assisted HMM and proposed approach. Proposed
approach has been used for maximizing class and time slice accuracies.

FIHMM FIHMM
Traditional maximizing maximizing

Data HMM B&BHMM class time slice
accuracy accuracy

raw 44.60 27.81 55.11 55.13

change point 61.68 27.21 75.93 68.03

last value 73.47 15.85 74.90 64.44

change + last 76.41 34.87 79.26 76.78

Fig. 2. Comparison of time slice accuracies of traditional HMM, B&BHMM, FIHMM
maximizing class accuracy and FIHMM maximizing time slice accuracy on different
data representations
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Fig. 3. Comparison of class accuracies of traditional HMM, B&BHMM, FIHMM max-
imizing class accuracy and FIHMM maximizing time slice accuracy on different data
representations

Table 3. Average accuracies of proposed approach on training data in percentage

Data

FIHMM maximizing FIHMM maximizing
class accuracy time slice accuracy

Time slice Class Time slice Class
accuracy accuracy accuracy accuracy

raw 64.86 71.06 82.02 61.97

change point 87.59 82.88 93.25 69.13

last value 91.09 83.63 95.76 62.43

change + last 93.14 88.01 96.7 83.79

HMM. This is because the objective function maximized was class accuracy
and not time slice accuracy. For similar reasons, the average class accuracy of
proposed approach maximizing time slice accuracy in last value data is not better
than traditional HMM. Therefore choosing appropriate objective function to
maximize has an effect on the accuracies. The average confusion matrices got
from the proposed approach using class accuracy optimization for each of the
data representations are given in tables 4, 5, 6, 7.

The statistical significance of the performances is analyzed using the Wilcoxon
signed rank test [16]. This non parametric test finds the probability of the null
hypothesis that a pair of algorithms have no significant difference in their me-
dian performance. The test uses signed ranks of absolute values of the differences
in performance after discarding the ties. The probabilities for the actual signed
ranks are determined by exact computation if there are fewer entries or by nor-
mal approximation otherwise. In our experiments, we have evaluated two null
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Table 4. Confusion matrix of FIHMM
for raw data set
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Idle 32 12 7 21 0 4 12 1

Leaving 11 59 4 11 0 0 15 0

Toileting 4 3 64 6 1 4 3 1

Showering 15 3 17 42 0 1 1 0

Sleeping 12 23 1 3 42 0 2 0

Breakfast 14 0 1 0 0 50 3 3

Dinner 9 4 3 0 0 14 9 1

Drink 6 0 0 0 0 12 8 16

Table 5. Confusion matrix of FIHMM
for change data set
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Idle 57 3 4 3 10 4 6 3

Leaving 16 84 0 0 0 0 0 0

Toileting 3 2 73 1 1 5 0 1

Showering 10 0 3 66 0 0 0 0

Sleeping 1 9 1 0 71 0 0 0

Breakfast 13 0 1 0 1 43 6 7

Dinner 13 1 1 1 0 14 8 2

Drink 4 1 5 0 0 6 2 24

Table 6. Confusion matrix of FIHMM
for last value data set
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Idle 26 7 7 11 7 8 8 16

Leaving 1 97 1 1 0 0 0 0

Toileting 11 2 64 3 3 2 0 1

Showering 5 0 7 67 0 0 0 0

Sleeping 0 0 1 0 81 0 0 0

Breakfast 15 0 0 4 0 49 1 3

Dinner 2 1 0 0 1 10 21 4

Drink 3 0 5 0 0 8 4 24

Table 7. Confusion matrix of FIHMM
for change + last data set
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Idle 47 5 4 10 5 3 8 7

Leaving 2 96 1 0 0 0 0 0

Toileting 4 1 74 2 1 3 1 1

Showering 1 1 5 72 0 0 0 0

Sleeping 1 0 1 0 80 0 0 0

Breakfast 14 0 1 0 0 40 11 6

Dinner 9 0 1 2 0 8 19 1

Drink 8 1 0 0 0 5 7 22

hypothesis: 1. The prediction accuracies of the B&BHMM and the traditional
HMM are not different. 2. The prediction accuracy of FIHMM is not different
from traditional HMM and the B&BHMM. The probability values returned, in
our experiments, by Wilcoxon test for time slice accuracy comparison and class
accuracy comparison are shown in Table 8 and 9 respectively. From the tables,
there is little evidence in favour of the null hypothesis for overall results (Tables
8(a),9(a)). From other experiments with different data representations (Tables
8(b−e),9(b−e)), there is enough evidence to reject the null hypothesis. There
are two exceptions. First is the probability for the B&BHMM against the tradi-
tional HMM in the case of time slice accuracy for raw data and the second is the
probability of the proposed approach against the traditional HMM in the case
of class accuracy for change+last data. These values are slightly higher than the
standard significance levels. The second is because of the inherent sparsity in
the data representation. Since the two null hypothesis are rejected, the alternate
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Table 8. Probabilities of observing the
differences in time slice accuracies for dif-
ferent data sets under the null hypoth-
esis that median accuracies of the pair
of approaches being compared are equal.
Two tailed probability estimates of the
null hypothesis being true are shown.

Traditional B&B
HMM HMM

a) Overall
B&BHMM < 0.00006 -
FIHMM < 0.00006 < 0.00006
b) Raw Data
B&BHMM 0.4849 -
FIHMM 0.00012 0.00156
c) Change Point
B&BHMM 0.0009 -
FIHMM 0.00012 < 0.00006
d) Last Value
B&BHMM < 0.00006 -
FIHMM < 0.00006 < 0.00006
e) Change+Last
B&BHMM < 0.00006 -
FIHMM < 0.00006 < 0.00006

Table 9. Probabilities of observing the
differences in average class accuracies for
different data sets under the null hypoth-
esis that median accuracies of the pair
of approaches being compared are equal.
Two tailed probability estimates of the
null hypothesis being true are shown.

Traditional B&B
HMM HMM

a) Overall
B&BHMM < 0.00006 -
FIHMM < 0.00006 < 0.00006
b) Raw Data
B&BHMM 0.0003 -
FIHMM 0.00062 0.00022
c) Change Point
B&BHMM < 0.00006 -
FIHMM 0.00018 < 0.00006
d) Last Value
B&BHMM < 0.00006 -
FIHMM 0.0345 < 0.00006
e) Change+Last
B&BHMM < 0.00006 -
FIHMM 0.09186 < 0.00006

hypothesis are considered proved. There fore, we conclude that the efficiency of
the proposed approach of feature induction assisted HMM model construction
is statistically significant.

The learning part takes an average of three hours. The inference is faster and
converges in fraction of a second. Since the learning is done once and inference
being done more often, this relatively long learning time is not considered to be
affecting the system performance. Moreover, The relatively longer training time
can be justified by the significant accuracy gain and fast inference.

5 Conclusion and Future Work

HMM for activity recognition that has exponential observation space is not fea-
sible in operational settings. Assuming independence among sensors given activ-
ity simplifies computation, but at the cost of accuracy. We have proposed to use
learning methods to find the mappings between activities and relevant subsets of
sensors. We reported the results of using the B&B structure learning system to
assist HMM learning and inference and discussed the limitations. As a solution,
we have proposed and implemented a feature induction assisted HMM model
construction system that maximizes the accuracy of HMM inference on training
data. Our experiments show good improvement over traditional HMM and B&B
learning assisted HMM.
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Applying the approach in other models such as CRF, analysis of actual per-
formance benefit in terms of time and energy savings, parallelizing the learning
process to run in multiple cores for speed up are some of the future works.
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Abstract. Due to the varying and dynamic characteristics of network
traffic, the analysis of traffic flows is of paramount importance for net-
work security, accounting and traffic engineering. The problem of ex-
tracting knowledge from the traffic flows is known as the heavy-hitter
issue. In this context, the main challenge consists in mining the traffic
flows with high accuracy and limited memory consumption. In the aim
of improving the accuracy of heavy-hitters identification while having a
reasonable memory usage, we introduce a novel algorithm called ACL-

Stream. The latter mines the approximate closed frequent patterns over
a stream of packets. Carried out experiments showed that our proposed
algorithm presents better performances compared to those of the pioneer
known algorithms for heavy-hitters extraction over real network traffic
traces.

Keywords: Network Traffic Analysis, Heavy-Hitters, Traffic Flow,
Approximate.

1 Introduction

Recently, data streams possess interesting computational characteristics, such
as unknown or unbounded length, possibly very fast arrival rate, inability to
backtrack over previously arrived items (only one sequential pass over the data
is allowed), and a lack of system control over the order in which the data ar-
rive [1]. In this context, the analysis of network traffic has been one of the primary
applications of data streams. Generally, the main objectives in network monitor-
ing can be summarized under two aspects as follows: (i) understanding traffic
features specially the most frequent ones; and (ii) detecting outburst network
anomalies [11].

For example, given a large-scale campus network or enterprise network, there
always exist a huge amount of network flows which have similar traffic features.
Flows are usually considered to be sequences of packets with a five-tuple of
common values (i.e., protocol, source and destination of IP addresses and port
numbers), and ending after a fixed timeout interval when no packets are ob-
served. In this case, many research works considered that the network traffic
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pattern obey a heavy-tailed distribution [7,14,15], implying a small percentage
of flows consuming a large percentage of bandwidth. The flows which are re-
sponsible for a huge amount of packets are baptized as heavy-hitters [7,15]. The
latter have been shown useful for many applications, such as detecting Denial of
Service (DoS) attacks, warning heavy network users, monitoring traffic trends
and balancing traffic load [15], to cite but a few.

A straightforward approach to detect the heavy-hitters consists of mining
the frequent flows with their corresponding frequency count. Nevertheless, this
simple approach is not applicable for high-speed traffic streams. In fact, the
traffic streams have often a very large number of distinct network packets, which
results in overwhelming and unpredictable memory requirements for flow mining.
As an example, we consider the case of a small enterprise network and a NetFlow
collector that computes the generated traffic flows.The number of flows over a
period of a month is close to 100 million, which corresponds to 2.5 GBytes of
memory for storing 136-bit flow identifiers and 64-bit counters. Consequently,
the large memory requirements hampers the computation of heavy-hitters over
packet streams. In addition, the use of a disk to store a subset of the flow
identifiers and counters severely impacts performances and is unsuitable when
fast processing is required.

In this paper, we investigate another way of computing the heavy-hitters
using limited memory resources. Thus, we introduce a single-pass algorithm,
called ACL-Stream (Approximate CLosed frequent pattern mining over packet
Streams) that provides a condensed representation of heavy-hitters. In this re-
spect, ACL-Stream allows the incremental maintenance of frequent closed pat-
terns as well as the estimation of their frequency counts over a packet stream.
Clearly, it has been shown in [7,14] that, it is unfeasible to find the exact fre-
quency of heavy-hitters using memory resources sub-linear to the number of
distinct traffic patterns. Consequently, memory-efficient algorithms approximate
the heavy-hitters over a packet stream. Through extensive carried out experi-
ments on a real network traffic traces, we show the effectiveness of our proposal
on accuracy, detection ability and memory usage performances.

The remainder of the paper is organized as follows. We scrutinize, in Section 2,
the related work. We define the background used to propose our approach in Sec-
tion 3. In Section 4, we introduce the ACL-Stream algorithm. We also report
the encouraging results of the carried out experiments in Section 5. Finally, we
conclude by resuming the strengths of our contribution and sketching future
research issues.

2 Related Work

Due to its high practical relevance, the topic of flow mining has grasped a lot
of attention in recent years. Generally, within literature, the algorithms, aiming
at the identification of heavy-hitters, are the algorithms of frequent pattern ex-
traction over a stream of packets [15]. Indeed, these algorithms can be roughly
divided into three categories: sampling-based, hash-based and counter-based
algorithms.
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Sampling-based algorithms [2,8,9,10] exploit cyclical sampling to reduce mem-
ory footprint and processing overhead, but their accuracy is limited by a low
sampling rate required to make the sampling operation affordable.

Hash-based algorithms [3,4,5,16] can substantially reduce the storage space
for flow recording and accelerate processing speed. However, they need to find a
balance between compression ratio and accuracy. Moreover, hash functions need
to be carefully chosen in order to avoid collisions.

Counter-based algorithms [6,7,12,14] hold a fixed (or bounded) number of
counters for tracking the size of heavy-hitters. In this context, one of the well
known examples is the LossyCounting (LC) algorithm [12]. In this respect,
it divides the incoming traffic stream into a fixed-size window w = [1/ε], where
ε is an error parameter such that ε ∈ (0, ms) and ms is a user-specified mini-
mum support threshold such that ms ∈ [0, 1]. Querying heavy-hitters consists
of mining patterns whose estimated frequencies exceed (ms− ε) over each win-
dow. Moreover, LC guarantees that the obtained results does not include false
negatives1. Although, the smaller value of ε is the more accurate approximation
is. Thus, it leads to requiring both more memory space and more CPU process-
ing power. In addition, if ε approaches ms, then more false positives2 will be
outputted.

Aiming at improving the LC algorithm in computing network traffic heavy-
hitters, Dimitropoulos et al. [7] proposed the ProbabilisticLossyCounting

(PLC) algorithm. PLC uses a tighter error bound on the estimated sizes of traffic
flows. Consequently, it drastically reduces the required memory and improves the
accuracy of heavy-hitters identification. However, PLC needs to emulate heavy-
tailed distribution at the end of each window, causing a high computational
complexity.

Recently, Zhang et al. introduced an algorithm called WeightedLossy-

Counting (WLC) [15]. WLC is able to identify heavy hitters in a high-speed
weighted data stream with constant update time. Moreover, it employs an or-
dered data structure which is able to provide a fast per-item update speed while
keeping the memory cost relatively low.

Due to its usability and importance, reducing the memory space of frequent
flows still present a thriving and a compelling issue. In this respect, the main
thrust of this paper is to propose a new algorithm, called ACL-Stream, to
mine approximate closed frequent patterns from flows, which can be seen as an
extension of a concise representation of flows to the heavy-hitters identification
search space. The main idea behind our approach comes from the conclusion
drawn from the Data Mining community that focused on the closed frequent
pattern mining over a data stream. In fact, the extraction of the latter requires
less memory. Thus, this fact has been shown to be much suitable for the mining
stream, since it presents the best compactness rates.

1 The false negatives are the patterns considered as frequent on the entire traffic data
and infrequent in window.

2 The false positives are the patterns considered as frequent in the window and infre-
quent on the entire traffic data.



422 I. Brahmi, S. Ben Yahia, and P. Poncelet

3 Approximate Closed Patterns

One of the most known condensed representation of patterns is based on the
concept of closure [13].

Definition 1. A pattern X is a closed pattern if there exists no pattern X’ such
that: (i) X’ is a proper superset of X; and (ii) every packet in a network traffic3

containing X also contains X’. The closure of a the maximal superset of X having
the same support value as that of X.

Table 1. A snapshot of network traffic data

Packet ID Packets

p1 src IP1,protocol

p2 src port,dst port

p3 src port,dst port,src IP1

p4 src port,dst port,src IP1

p5 src port,src IP1,protocol

Example 1. Let Table 1 sketching a set of packets. The set of closed patterns with
their corresponding frequency counts (i.e., supports) is as follows: { (src port:
4); (src IP1: 4); (src port dst port: 3); (src port src IP1: 3); (src IP1 protocol:
2); (src port dst port src IP1: 2); (src port src IP1 protocol: 1)}.

Due to the dynamically characteristic of traffic stream, a pattern may be in-
frequent at some point in a stream but becomes frequent later. Since there are
exponentially many infrequent patterns at any point in a stream, it is infeasible
to keep all infrequent patterns. Suppose we have a pattern X which becomes
frequent after time t. Since X is infrequent before t, its support in the stream
before t is lost. In this respect, to estimate X ’s support before t, the counter-
based algorithm for heavy-hitters mining [7,12,14,15] uses an error parameter, ε.
X is maintained in the window as long as its support is at least ε×N , where N
is the number of packets within the current window. Thus, if X is kept only after
t, then its support before t is at most ε×N . However, the use of small ε results
in a large number of patterns to be processed and maintained. Consequently,
this fact drastically increases the memory consumption and severely degrades
the processing efficiency.

To palliate this drawback, we consider ε as a relaxed minimum support thresh-
old and propose to progressively increase the value of ε for a pattern as it is
retained longer in the window.

Definition 2. The relaxed minimum support threshold is equal to r×ms, where
r(0 ≤ r ≤ 1) is the relaxation rate.

Since all patterns whose support is lower than r ×ms are discarded, we define
the approximate support of a pattern as follows.
3 Network traffic is data in network.
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Definition 3. The approximate support of a pattern X over a time unit t is
defined as

˜SUP (X, t) =
{

0, if sup(X, t) < r × ms;
sup(X, t), otherwise.

4 The ACL-Stream Algorithm

To effectively mine the closed frequent patterns within a packet stream environ-
ment, we propose a novel algorithm, called ACL-Stream, for maintaining the
frequent closed patterns. The main idea behind their extraction is to ensure an
efficient computation of heavy-hitters that reduces the memory requirements.

With the consideration of time and space limitation, the proposed algorithm
uses two in-memory data structures which are called CITable (Closed Incre-
mental Table) and CIList (Closed Identifier List) respectively. In addition, it
employs a hash table, called TempNew, to put the patterns that have to be
updated whenever a new packet arrives. In fact, the rationales behind such in-
memory data structures are: (i) saving storage space; and (ii) reducing the cost
of the incremental maintenance of patterns.

Table 2. Example of CITable

Cid Clos Count

0 {0} 0

1 {src IP1 protocol} 2

2 {src port dst port} 3

3 {src port dst port src IP1} 2

4 {src IP1} 4

5 {src port src IP1 protocol} 1

6 {src port} 4

7 {src port src IP1} 3

Table 3. Example of the CIList

Item cidset

src port {2, 3, 5, 6, 7}
dst port {2, 3}
src IP1 {1, 3, 4, 5, 7}
protocol {1, 5}

The CITable is used to keep track of the evolution of closed patterns. Each
record of the CITable represents the information of a closed pattern. It consists
of three fields: Cid, Clos and Count. Each closed pattern was assigned a unique
closed identifier, called Cid. The Cid field is used to identify closed patterns.
Given a Cid, the ACL-Stream algorithm gets corresponding closed patterns in
the Clos field. The support counts are stores in the Count field.

Example 2. According to the database shown by Table 1, the CITable is sketched
by Table 2.

The CIList is used to maintain the items and their cidsets. It consists of two
fields: the Item field and the cidset field. The cidset of an item X, denoted as
cidset(X), is a set which contains all cids of X’s super closed patterns.
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Algorithm 1. The ACL-Stream algorithm
Input: T , r, ms
Output: Updated CITable

Begin1

w := [1/r × ms];2

Foreach pNew ∈ w do3

//Phase 14

TempNew := (pNew, 0);5

SET({pNew}) = cidset(i1) ∪...∪ cidset(ik);6

Foreach Cid(i) ∈ SET ({pNew}) do7

IR := Null;8

IR := pNew ∩ Clos[i];9

If IR ∈ TempNew then10

If ˜SUP (Clos[i]) > ˜SUP (Clos[z]) then11

replace (IR, i) with (IR, z) in TempNew12

Else13

TempNew := TempNew ∪ (IR, i)14

//Phase 215

Foreach (X, c) ∈ TempNew do16

If X == Clos[c] then17

˜SUP (Clos[c]) := ˜SUP (Clos[c]) + 1;18

Else19

j := j+1;20

CITable := CITable ∪(j, X, ˜SUP (Clos[c]) + 1);21

Foreach i ∈ pNew do22

cidset(i) := cidset(i) ∪ j23

End24

Example 3. According to Table 1 and the CITable shown by Table 2, {src port
dst port} is closed and its Cid is equal to 2. Thus, 2 will be added into cid-
set(src port) and cidset(dst port) respectively. Table 3 illustrates a CIList. It
maintains the items and their corresponding superset cids shown by Table 2.

The pseudo-code of the ACL-Stream algorithm is shown by Algorithm 1. In
this respect, the ACL-Stream algorithm attempts to mine a concise representa-
tion of heavy-hitters that delivers approximate closed frequent flows. Indeed, the
algorithm takes on input a network traffic trace T , a minimum support threshold
ms and a relaxation rate r. It starts by reading a fixed window of packets, w,
such as w = [1/r×ms] (line 2). The window facilitates the continuous monitor-
ing of changes in the stream. Moreover, it can be used to palliate the drawback of
unbounded memory over the packet streams. In addition, whenever a new packet
pNew arrives, the ACL-Stream algorithm consists of two phases. During the
first one, the algorithm finds all patterns that need to be updated with their clo-
sures, and puts them into TempNew (lines 4−13). Within the second phase, the
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ACL-Stream algorithm updates their supports, CITable and CIList (lines
15−22). Consequently, the updated closed patterns can be obtained without
multiple scans of whole search spaces, i.e., by scanning the CITable once.

4.1 Incremental Maintenance over Packet Streams

We assume that pNew denotes a new incoming packet. Torig the original network
traffic, i.e., the network traffic before adding pNew. Tup = Torig∪ pNew is the up-
dated network traffic after adding pNew. ClosTorig(X) and ClosTup(X) represent
the closure of a pattern X within Torig and Tup respectively.

Property 1. Whenever pNew arrives toTorig, then thepatterns ofpNew ∈ClosTorig.

Property 2. Whenever pNew arrives to Torig, if a pattern Y is not a subset of

pNew, then the status of Y will not be changed, i.e., ˜SUP (Y ) remains such as
it is and ClosTorig(Y) = ClosTup(Y).

Property 3. Suppose a pattern IR = pNew ∩ X, X ∈ ClosTorig, IR ∈ Torig. If
IR �= ∅, then IR is a closed pattern in Tup.

In the following, we thoroughly discuss the two phases of the ACL-Stream

algorithm according to the pseudo-code shown by Algorithm 1.

Phase 1: According to Property 1, whenever a pNew arrives it is considered
as closed in Torig. The ACL-Stream algorithm puts pNew into TempNew. The
table TempNew takes the TI field as a key, and the Closure Id field as value.
Initially, ACL-Stream sets the Closure Id of pNew to 0, since its closure is
unknown (line 4). Besides, the ACL-Stream algorithm intersects pNew with its
associated closed patterns. The set of cids of associated closed patterns is defined
as SET({pNew}) = cidset(i1 ) ∪...∪ cidset(ik). Consequently, the algorithm finds
the patterns of pNew that need to be updated (line 5). According to Property
3, the results of the intersection are closed patterns within the updated network
traffic Tup. Suppose IR is the intersection result of pNew and a closed pattern C
having a Cid i ∈ SET({pNew}) (lines 7−8). If IR is not in TempNew, then ACL-

Stream puts (IR, i) into TempNew (lines 12−13). Otherwise, if IR is already in

TempNew with its current Closure Id t, then ACL-Stream compares ˜SUP (C)

and ˜SUP (Q) such that Q is an old closed pattern, already in the CITable with

a Cid z, i.e., ClosTorig[z] =Q (line 9−10). If ˜SUP (C) is greater than ˜SUP (Q),
then ACL-Stream replaces (IR, z), already in TempNew with (IR, i) (line
11). The reason is that the closure of IR has a support greater than any of
its superset’s support (Properties 2 and 3). The intersections of pNew with C
iterates till all cids in SET({pNew}) are processed (line 6). Consequently, the
phase 1 allows the identification of patterns that need to be updated and finds
their closure before the new incoming packet arrives.

Phase 2: The ACL-Stream algorithm gets patterns X with their Closure Id
c from TempNew, and checks that whether X is already in the CITable. If X
is already in the CITable with Cid c, then X is originally a closed in Torig.
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In this case, ACL-Stream directly increases ˜SUP (X) by 1. Otherwise, X is a

new closed pattern after the TempNew arrival. In this case, ˜SUP (X) is equal to
the support of its closure increased by 1 (line 16−17). At the same time, ACL-

Stream assigns to X a new Cid n, puts X into the CITable, and updates
the CIList (lines 19−20). The phase 2 is repeated till all records in TempNew

are processed (line 15). Finally, ACL-Stream comes to end and outputs the
updated CITable. The obtained CITable captures all the information enclosed
in a packet stream.

Example 4. According to Table 1, before that p1 arrives, we have Torig = ∅. The
first record of the CITable is set to (0, 0, 0). Each cidsets in the CIList is set to
∅. As p1 = {src IP1 protocol} arrives, Tup = Torig ∪ p1. The ACL-Stream algo-
rithm puts {src IP1 protocol} into TempNew and sets its Closure Id to 0. Then,
ACL-Stream merges cidset(src IP1) and cidset(protocol) to get SET({src IP1
protocol}), i.e., SET({src IP1 protocol}) = cidset(src IP1) ∪ cidset(protocol) =
∅. Since SET({src IP1 protocol}) is empty, p1 does not need to intersect with
any closed patterns. Therefore, the phase 1 was completed. ACL-Stream goes
to phase 2. Within phase 2, ACL-Stream updates patterns within TempNew by
their Closure Id. Only ({src IP1 protocol}, 0) in TempNew. ACL-Stream finds
a closed pattern whose Cid is 0 from the CITable, Clos[0] ={0}. Since {0} is
not equal to {src IP1 protocol}, then {src IP1 protocol} is a new closed pattern
after the p1 arrival. Hence, ACL-Stream assigns {src IP1 protocol} a new Cid

equal to 1. Then, ACL-Stream determines ˜SUP ({src IP1 protocol}), which

is equal to ˜SUP (Clos[0]) increased by 1. Therefore, ˜SUP ({src IP1 protocol})
is 1. Finally, ACL-Stream updates the CITable and the CIList respectively.
Thus, it inserts (1, {src IP1 protocol}, 1) into the CITable and inserts 1 into
the CIList. Then, it handles p2, p3, p4 and p5 in the same manner. After the
insertion of the packets shown by Table 1, the obtained CITable and CIList

are shown by Table 2 and Table 3, respectively.

Table 4. Example of TempNew whenever p6 arrives

TI Closure id

{src IP1} {4}
{dst port} {2}

{dst port src IP1} {3}

Assume that a new packet p6 = {dst port src IP1} arrives, then ACL-Stream

puts {dst port src IP1} into TempNew, and sets its Closure Id to 0. Moreover,
SET({dst port src IP1}) = cidset(dst port) ∩ cidset(src IP1) = {2, 3} ∩ {1,
3, 4, 5, 7} = {1, 2, 3, 4, 5, 7}, according to Table 3. Thus, ACL-Stream

intersects p6 with the closed patterns whose cids belongs to SET({dst port
src IP1}). Clearly, the first is Clos[1] = {src IP1 protocol} and {dst port src IP1}
∪ {src IP1 protocol} = {src IP1}. Hence, it puts {src IP1} into TempNew and
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sets its Closure Id to 1. Then, it deals with 2, Clos[2] = {src port dst port}
and {dst port src IP1} ∪ {src port dst port} = {dst port}. Consequently, ACL-

Stream puts ({dst port}, 2) into TempNew. It deals with Clos[3] = {src port
dst port src IP1}, i.e., {dst port src IP1} ∪ {src port dst port src IP1}=
{dst port src IP1}. However, {dst port src IP1} is already in TempNew and its

current Closure Id is 0. Additionally, ˜SUP (Clos[3]) is greater than ˜SUP (Clos[0]).
Therefore, ACL-Stream replaces ({dst port src IP1}, 0) with ({dst port src IP1},
3). After dealing with the remaining closed patterns with the same processing
steps, the result of TempNew is shown by Table 4.

5 Experiments

To evaluate the effectiveness and efficiency of our algorithm ACL-Stream, we
carried out extensive experiments. Indeed, we compare our approach with the
pioneering algorithms falling within the detection of heavy-hitters trend, namely,
LC [12], PLC [7] and WLC [15]. All experiments were carried out on a PC
equipped with a 3GHz Pentium IV and 4GB of main memory running under
Linux Fedora Core 6.

During the carried out experiments, we used a real network traffic trace. The
latter is collected from the gateway of a campus network with 1500 users in
China4. Table 5 sketches dataset characteristics used during our experiments.

Table 5. The considered real traffic traces at a glance

Traffic traces

Source Campus network

Date 2009-08-24
16:20-16:35

Packets 49,999,860

Unique flows 4,136,226

During the experiments, we set r = 0.1 and vary ms from 0.1 to 1 such that
ε = 0.1 × ms within LC, PLC and WLC.

5.1 Accuracy Assessment

The accuracy of mining results are measured by the use of two metrics, Precision
and Recall.

Since the approximate algorithms, falling within the detection of heavy-hitters
trend, possibly return false positives, the precision indicates the number of false
positive results [15]. In fact, Figure 1(a) illustrates the precision of ACL-Stream

vs. those respectively of LC, PLC and WLC. We remark that the ACL-Stream

algorithm achieves 100% precision. Although, there is no clear difference between
4 We thank Mr. Q. Rong [14] for providing us with the real network traffic trace.
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Fig. 1. Precision and Recall of ACL-Stream vs. LC, PLC and WLC

the three algorithms LC, PLC and WLC, such that ε = 0.1 × ms. They attain
high precision whenever ms is small. Whereas, their precision drops linearly to
be less than 95% as far as ms increases (i.e., the increase in the error parameter
ε). Thus, the increase of ε, associated to ms, results in worsening the precision
for the three algorithms. On the contrary, Figure 1(b) shows that whenever ms
increases, all algorithms (i.e., ACL-Stream, LC, PLC and WLC) have 100%
recall. This is can be explained by the fact that all algorithms guarantee to
retrieval of all frequent patterns over the packet stream.

The experimental results reveal that the estimation mechanism of the LC,
PLC and WLC algorithms relies on the error parameter ε to control the accuracy.
Compared with these three algorithms, ACL-Stream is much less sensitive to
ε and is able to significantly achieves high accurate approximation results by
increasing ε.

5.2 The Detection Ability

Generally, to evaluate the algorithm’s ability to detect the heavy-hitters, two
interesting metrics are usually of use [14]: the False Positive Ratio (FPR) and
the False Negative Ratio (FPR). Figures 2(a) and 2(b) respectively plot the FPR
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Fig. 2. Detection ability of ACL-Stream vs. LC, PLC and WLC
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and FNR against the minimum support threshold ms, for ACL-Stream, LC,
PLC and WLC.

On the one hand, we remark that both PLC and LC generate many false
positives along with the decrease of ms. Therefore, they are not suitable for
accurate mining of heavy-hitters within high-speed network. For example, if the
minimum support threshold is equal to 0.09%, the FPR of LC can reach values
as high as 1.8. On the other hand, among the four investigated algorithms, PLC
is the most generator of false negatives. Whenever ACL-Stream, LC and WLC
have 0 FNR, PLC has 0.9 FNR. This is due to the probabilistic nature of PLC.
Generally, ACL-Stream exhibits a lower FNR and a lower FPR than the other
algorithms. Thus, we conclude that our algorithm is able to correctly detect
heavy-hitters with few FPR and FNR.

5.3 Memory Consumption and Throughput

Figure 3(a) shows the throughput of ACL-Stream vs. LC, PLC and WLC.
The throughput is measured by the number of packets processed per second
by the algorithms. Indeed, we remark that the result points out the ability
of ACL-Stream to handle high-speed packet streams as it can process up to
45,000 packets per second. For all minimum support thresholds, the throughput
of ACL-Stream is higher than that of LC, WLC and PLC.
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Fig. 3. Throughput and Memory consumption of ACL-Stream vs. LC, PLC and
WLC

Moreover, Figure 3(b) shows that ACL-Stream achieves a roughly constant
memory consumption of no more than 150MB. Considering the four algorithms,
the memory consumption of ACL-Stream is considerably lower than that of
WLC and substantially lower than that of both LC and PLC.

6 Conclusion

In this paper, we focused on the condensed representation of heavy-hitters al-
gorithms to tackle the mentioned above challenges, i.e., large memory require-
ment for heavy-hitters computation. Thus, we introduced a novel stream mining
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algorithm called ACL-Stream. The carried out experimental results showed
the effectiveness of the introduced algorithm and highlighted that the ACL-

Stream presents better performance as well as a good detection ability than
the pioneering algorithm in heavy-hitters identification. The approximate but
high-quality online results, provided by ACL-Stream, are well-suited to detect
heavy-hitters, where the main goal is to identify generic, interesting or unex-
pected patterns.

Future issues for the present work mainly concern: (i) The consideration
of the intrusion detection over on-line packet streams and the mining of closed
frequent patterns from flows for network monitoring; (ii) Study of the extraction
of “generic streaming” association rules based on the ACL-Stream algorithm
for heavy-hitters analysis.
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Abstract. Recent advances in sensor technology have led to a rapid
growth in the availability of accurate, portable and low-cost sensors. In
the Sport and Health Science domains, this has been used to deploy
multiple sensors in a variety of situations in order to monitor participant
and environmental factors of an activity or sport. As these sensors often
output their data in a raw, proprietary or unstructured format, it is diffi-
cult to identify periods of interest, such as events or actions of interest to
the Sport and Exercise Physiologists. In our research, we deploy multiple
sensors on horses and jockeys while they engage in horse-racing train-
ing exercises. The Exercise Physiologists aim to identify events which
contribute most to energy expenditure, and classify both the horse and
jockey movement using basic accelerometer sensors. We propose a meta-
data driven approach to enriching the raw sensor data using a series of
Profiles. This data then forms the basis of user defined algorithms to
detect events using an Event-Condition-Action approach. We provide an
Event Definition interface which is used to construct algorithms based
on sensor measurements both before and after integration. The result en-
ables the end user to express high level queries to meet their information
needs.

1 Introduction

Given the widespread nature of sensor networks and sensor technology, and the
high volumes of data generated on an ongoing basis, it is inevitable that data
warehousing and knowledge discovery will be adopted as key technologies for
end users and domain experts to improve their abilities in data analysis, de-
cision support, and the automatic extraction of knowledge from data. In many
application areas, the volume of data gathered in a single experiment is too great
to extract any meaningful knowledge as end users must manually extract data
from spreadsheets for simple queries. Where database type solutions may have
been used in the past [2], sensor network data management will demand the type
of functionality available in data warehouses [6,8]. The continuous refinement of
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query expressions that is taken for granted in data mining is not possible when
using the raw data generated by sensors. However, the wide range of sensor de-
vices together with the low level nature of data offers new challenges to data
warehouse researchers as they seek to build generic solutions to the issues pro-
vided by sensor networks. Different domains will bring different requirements
and associated issues. In all cases, one feature is common: the significant gap
between the abstract queries of domain specialists and the data which they are
processing. This paper presents a system to narrow this gap in order that spe-
cialist users can fully exploit the data gathered by their sensor networks.

Paper Structure. The paper is structured as follows: in the remainder of this
section, we provide the background which motivates this work and provide a
statement of our contribution; in §2, we provide a discussion on state of the
art; §3 details the profile-based Semantic Enrichment process; in §4, we present
our modular approach to complex event detection; in §5 we present our exper-
iments and an evaluation in terms of high level user queries; and finally in §6,
we conclude the paper.

1.1 Background and Motivation

A recent collaboration with the Irish Turf Club [16], the regulatory body for
horse-racing in Ireland, provided us with an extensive set of data from sensors
deployed on multiple horses and jockeys in training. The sensors include mul-
tiple accelerometers (Actilife GT3X, Crossbow) mounted on a horse simulator
and jockey. These sensors measure: rates of change in direction in uniaxial and
triaxial (x,y,z) planes; a Cosmed K4b2 metabolic system [5] measuring a variety
of physiological factors from the jockeys breathing; a SenseWear [12] armband,
which estimates energy expenditure; and a Garmin GPS system for outdoor tri-
als. Each of these devices has its own format, ranging from plaintext to XML
compliant sensor output.

Depending on the distance that the jockey is racing, there are many different
factors that can predict competitive performance with predictors that can be
physiological, environmental, or equipment specific. By sensing changes in phys-
iological factors, environmental conditions, and equipment and how they affect
each other, it is possible to gain a greater understanding of the demands of both
racing and training. This could potentially allow for the development of targeted
training sessions to investigate aspects of race performance. By capturing race
specific data and comparing it to data generated using the horse simulator, it
may be possible to see if training addresses the needs of racing and competing.
This is not possible without a warehouse-style system that is capable of com-
bining data from each sensor used to monitor the event as well as utilising user
defined information on the event and participant, and measuring over a period
of time.

The sports physiologists involved in this research have identified key events
that must be determined for knowledge acquisition. These events are then in-
corporated into high level queries that extract the new knowledge and are now
described.
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– SimSpeed. This event classifies the speed at which the horse-simulator
moves. It changes the energy demands of jockeys as they try to maintain a
race position under great speeds. It has five movement stages, each represent-
ing change in gait of the horse; walking, trotting, cantering, fast-cantering
and galloping. A combination of GT3X Accelerometer and Activity Profile
are used to identify these stages.

– Energy Expenditure(EE)-Est. Estimates the amount of energy expended
for the amount of time spent in each of the simulator stages. This is a
simplified estimation, used when specialist equipment is not available and is
based on participant anthropometrics and accelerometer data.

– Energy Expenditure(EE)-Calc. Calculates the amount of energy ex-
pended during each of the simulator stages based on physiological data cap-
tured at the same time using other sensors. Data can be more accurately
calculated based on breath-by-breath data from a portable metabolic gas
analysis system (Cosmed K4b2 metabolic system). Data can also be calcu-
lated from existing algorithms on portable heart-rate monitoring systems
(Garmin, Polar, Cardiosport).

– Whipping. During the final stages of a race, jockeys use a hand held whip
to drive the horse to greater speeds. Although jockeys are predominately one
handed they need to be able to do this with both hands under different racing
conditions. Sensing these events is based on three GT3X Accelerometers, one
on each of the jockeys wrists, and another located on the saddle.

– Jockey Pushing Out. Usually occurring towards the end of a race, the
jockey is in dynamic imbalance, positioned in a state of forward propulsion,
crouching in order to minimise wind resistance, and encourage the horse
to maintain speed. This is discovered using information from GT3X Ac-
celerometers located on the chest, and the sacroiliac joint, and by ensuring
the corresponding values are also associated with a level 4 Speed - fast canter.

The advances in sensor technology have resulted in significant changes in the
ways in which scientists can gather data. In the horseracing domain, the focus
is primarily on the health and condition of the horse. However, decreasing the
energy expended by the jockey during the early parts of a race may result in
gaining a competitive edge when pushing out at the end of a race. No standard
way of measuring the energy expenditure of jockeys during horse-racing exists,
and thus, no specialised systems to understand this data are in place. As a
result, the domain experts seek to calculate energy expended and define other
horse-related events from a deployment of multiple sensors. Due to a lack of a
common standard amongst the sensors deployed, a data management framework
for defining events and acquiring knowledge is required.

Contribution. In this paper, we extend the EventSense framework presented
in [3] with a new process to extract knowledge from multiple sensor sources. We
begin with a metadata driven approach to structural and semantic enrichment
using a series of Profiles. We then expand our event detection mechanism to a
3-Tier format: basic event detection; event detection based on results of other
defined events; and events definitions based on data integrated from multiple
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sources and new event definitions. The modular nature of the event definition
allows the end user greater control and flexibility in defining events and thus,
acquiring different forms of knowledge.

2 Related Research

In [15], the authors present the Semantic Sensor Web (SSW), an approach to
annotating sensor data with semantic metadata to improve interoperability and
provide contextual information required for knowledge discovery. They leverage
Sensor Web Enablement (SWE) [14] and Semantic web standards to do so. Meta-
data referring to time, space and theme is included as they extend SWE to have
more expressive information based on ontological (OWL)[17] representations.
Semantics are defined using RDFa [10] with SWRL [11] based rules defined to
deduce new ontological assertations. The resulting rule-based assertations allow
for extended query and reasoning within the sensor domain. While we also use
the SOS[13] and O&M[9] components, our approach is more lightweight, with
our event definitions not requiring substantial knowledge of programming or
complex specification language. In [7], the SSW approach is extended to illus-
trate the advantages of semantic annotation of SOS services, focusing on a deep
analysis of sensor data to discover important environmental events.

The authors of [20] present a framework for sensor data collection, manage-
ment and exchange conforming to the SWE standard. They have deployed their
system for an environmental monitoring purpose, which involves the integration
of multiple sensors. Unlike our approach, context applied to the data is limited
to location, with additional context requiring the development of applications
that access the data. While they support remote access to multiple sensors, it
is not designed to be deployed in an environment with legacy sensors transmit-
ting in various formats, or storing information locally. Their approach contains
no facility for defining rules for detecting events, other than cross-correlation of
multiple sensors measuring similar properties.

In [1], they present an approach to sensor discovery and fusion by semanti-
cally annotating sensor services with terms from a defined ontology representing
an environmental monitoring setup. Their main goal is to aid in the detection
of natural disasters. The sensors used are static and have relationships defined
by the ontology. A Geosensor Discovery Ontology (GDO) is defined, specify-
ing a taxonomy of sensor observations, geographic objects and substances. Like
our approach, they use a lightweight method to provide added meaning, keeping
complexity low in order to maintain usability by end-users from a non-computing
background. Information is discovered based on rules defining semantic require-
ments, location and timepoints. Usability is provided using a GUI. Sensor fusion
is performed by a Joint Server Engine (JSE) which takes user input and trans-
lates it into SOS requests. The data is then merged, removing duplicates and
normalisation is performed during the process. However, the system structure
cannot be altered by the creation of interrelated event definitions to define and
detect more interesting events, a necessary requirement in our system.
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3 Context and Knowledge Representation

In [3], we introduced the EventSense framework with Profiles used to automate
the imposition of structural semantics to raw sensor data. Here, we will show
how the same concept can be easily extended to the new domain of horse rac-
ing. The goal is to demonstrate how basic knowledge is represented and this is
fundamental to our mining activities, presented in the next section.

3.1 Context Data

The task of defining the context is split into two constructs, an Activity Profile
which is built for each activity (such as horse-racing) and consists of standard
information such as the start and end time and the location, and some non-
standard activity specific information. The sports physiologists are interested in
activity-based effects on energy expended by the jockey. This requirement can
involve complex calculations and algorithms to detect these events, as well as
the inclusion of some external contextual information. For instance, knowledge
of the weather at the time of deployment and the terrain is useful information to
determining why performance was not optimal for a certain deployment. While
there exist sensors to identify this information, it is often not feasible to do
so. As a result, a broad range of manually recorded information is observed by
scientists as the deployment of sensors is ongoing. It is this information which
is included in an Activity Profile as optional context. A sample Activity Profile
for an indoor deployment of a jockey on a simulator is shown in Example 1.

Example 1. Sample Activity Profile: Horse-Racing (Simulator)

<HorseRacing-Sim>
<aid>1</aid>
<start_time>12:30:00</start_time>
<end_time>13:30:00</end_time>
<date>2010-03-10</date>
<location>indoor</location>
<jockey>subject1</jockey>
...

</HorseRacing-Sim>

Further knowledge is encoded in a Participant Profile. This information is
primarily anthropometric data measured infrequently by Sport and Exercise
Physiologists as they typically do not alter greatly over time. In addition to
these standard values, common across all domains, domain specific information
is included where necessary, such as a specific multiplier for some algorithm
measuring energy expenditure. In Example 2, we show the anthropometric data
for ’Participant ID (pid) 1’, the EE-Est multiplier figure, and other domain-
based information such as jockey class (trainee). As with the Activity Profile,
queries can be made on this information following integration, and they can by
used as parameters in the formation of event detection rules.

Example 2. Sample Participant Profile: Jockey
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<Jockey>
<pid>1</pid>
<gender>male</gender>
<height>170.6</height>
<weight>68</weight>
<age>22</age>
<BMI>23.53</BMI>
<jockey_type>trainee</jockey_type>
<horse>Sim3</horse>
<horse_weight></horse_weight>
<horse_height>15</horse_height>
...

</Jockey>

3.2 Sensor Representation

A Sensor Profile must be defined for each sensor type, to model the structure
of the sensor data. Each sensor is assigned a Profile detailing the fields cor-
responding to sensor values and instructions to standardise the data format.
This includes information relating to which timing protocol is used, and how
this is converted to a system standard. For example, some sensors record their
timestamps as a fraction of a minute, others in milliseconds. These must be
standardised in order to aid in the process of merging multiple data sources.

Example 3. Sample Sensor Profile: GT3X Accelerometer
<GT3XAccelerometer>

<sid>2</sid>
<time_format>ms</time_format>
<sample_rate>30</sample_rate>
<Granularity_min>0.033333</Granularity_min>
<Granulatity_max>0.033333</Granularity_max>
<field_formats>int, int, int</field_formats>
...

</GT3XAccelerometer>

Example 3 shows a sample Sensor Profile for a GT3X Accelerometer. This
shows the fields recorded, assigns them tag names, and details the sample rate
and timing format used. It provides the basic structure and layout for a sensors
output, but in order to make sense of the information, we must use contex-
tual information. We do this by merging the sensor data with the Activity and
Participant Profile information, discussed next.

3.3 Imposing Context on Sensor Data

The process of merging static context with dynamic sensor data uses a combina-
tion of Java and the XQuery Update Facility [19]. Currently, we perform integra-
tion based on the sensor timestamps and granularity constraints and Contextual
Profile information, but this research is ongoing. Due to the different sampling
rates of devices, there are often many more records for one device over some in-
terval as for another device. For instance, the GT3X Accelerometer monitors the
environment at 30Hz, whereas the Heart Rate monitor samples once per second.
We take the approach of averaging values where appropriate and leaving blank
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spaces where averaged values do not correspond to real world conditions. For
instance, averaging the following and preceding values of Heart Rate is appro-
priate in all experiments. However, averages for accelerometers cannot be used.
We identify these constraints with the Sensor Profile, where the granularity min
and max ensure the system does not create data outside acceptable limits. Our
motivation for this paper was to determine if key events could be accurately
detected, and if these events could be used in query expressions. A more holistic
integration process will be presented as part of future work.

4 Knowledge Acquisition

Knowledge acquisition in EventSense is based on events defined by the specialist
end user events. EventSense provides the ability to build event detection algo-
rithms using sensor data, context profiles, functions and nested events. Events
are modular in nature, and we classify them as Tier 1, 2 or 3 depending on their
structure. The Tier classification corresponds to the inclusion of pre-condition
requirements for some events prior to definition.

– The most basic events are Tier 3, which consist of a single sensor whose
values match a specified condition, and may include Activity and Participant
Profile knowledge.

– A Tier 2 event can contain other events (ie. their results) within its condi-
tion component and therefore, must also explicitly state the pre-condition
required to execute the current event detection. This pre-condition is the
event definition for detecting the property involved in the condition.

– A Tier 1 event definition can include both the results of previous events and
any number of sensor data (i.e. all sensor data available after integration).

The use of a 3-tier system allows us to define a number of relatively basic
events which can be combined to form more complex events. To allow Tier 1
and 2 event definitions, it was necessary to extend our original architecture [3].
It is now possible to specify additional operators, standardise the pre-condition
element, perform integration of information sources and model how events relate
to each other. The remainder of this section details the structure of the basic
event detection module (Tier 3), describes the grammar and operators of the
system and details how we use the results obtained from these modules to build
up more advanced event detection modules (Tier 1 and 2), thus illustrating the
power integrated data can provide the user.

4.1 Pre-integration Event Detection

Tier 3 events, which are the building blocks for more advanced events, are gen-
erally defined to discover a large amount of single-sensor based events on very
large sources of information. For instance, the GT3X Accelerometer accessed in
Example 4 has 108,000 data values for each hour of deployment. Pre-processing
this information to detect some event (a ’fast-cantering’ horse in this case) allows
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subsequent queries for a fast-canter be executed promptly and ensures additional
events (Tier 1 and 2) can be defined using these events. In the example shown,
the GT3X Accelerometer located on the saddle is accessed for each entry, and
the (x,y,z) values are evaluated accordingly. If the condition is satisfied, this
new knowledge is added to the data warehouse, by encoded this value with the
fast-canter tag.

Example 4. Event Definition: Fast-Cantering Horse
<event fast-cantering>

<condition>
<GT3XAccelerometer location="saddle">

<entry>
<x ge 65222>
<y ge 65222>
<z ge 65222>

</entry>
</GT3XAccelerometer>

</condition>
<action>

UPDATE <GT3XAccelerometer location="saddle"><entry> WITH <fast-canter>
</action>

<\event>

4.2 Post-integration Event Detection

Example 5. Event Definition: Left-Handed Whip
<event Left-Handed-Whip>

<precondition>
<event fast-cantering>

</precondition>
<condition>

<GT3XAccelerometer location="LHWrist">
<entry>

<x gt 65655>
<y gt 65655>
<z gt 65655>

</entry>
</GT3XAccelerometer>
<Logical operator= "AND">
<GT3XAccelerometer location="saddle">

<entry><fast-canter></entry>
</GT3XAccelerometer>

</condition>
<action>

UPDATE <GT3XAccelerometer location="LHWrist"><entry> WITH <LHWhip>
</action>

</event>

To demonstrate Tier 2 events, we introduce the event of whipping, as de-
scribed in the Introduction. This event is defined as: all three axes of a GT3X
Accelerometer located on the left or right wrist reaching their upper threshold at
the same time. Both the left and right wrist values are taken for each jockey as
whips are alternated between left and right side towards the end of the race. In
addition, whips occur only when the horse is ’fast-cantering’, and this constraint
is built into the algorithm to improve accuracy.

End users can define this type of knowledge in a step-by-step manner. Firstly,
they define the fast-canter, as shown in Example 4. Then, they define a whip
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occurring on either side (a definition for Left-handed-whip and Right-handed-
whip), and finally a generic whipping definition which combines the results of
left/right whip. Both the left and right whip events involve knowledge previ-
ously discovered by prior events. These are the <fast-canter> tags included
in updates. It is therefore necessary for the left and right whip event definitions
to specify the fast-canter event definition as a pre-condition. This means the
fast-cantering event definition must be defined and executed prior to execut-
ing either the left or right whip event detection. The structure of the left handed
whip event is shown in Example 5. Similarly, in the generic whipping event def-
inition, shown in Example 6, the left and right whip events are pre-conditions.

Example 6. Event Definition: Whipping
<event Whipping>

<precondition>
<event Left-Handed-Whip>
<event Right-Handed-Whip>

</precondition>
<condition>

<GT3XAccelerometer location="LHWrist">
<entry><LHWhip></entry>

</GT3XAccelerometer>
<Logical operator = "OR">
<GT3XAccelerometer location="RHWrist">

<entry><RHWhip></entry>
</GT3XAccelerometer>

</condition>
<action>

UPDATE <GT3XAccelerometer location="saddle"><entry> WITH <whip>
</action>

</event>

The Tier 2 definitions illustrate the combination of event results required
to evaluate more complex events. We extend the functionality of our previous
system to include the NOT and XOR functions, in addition to the AND and
OR previously defined.

Tier 1 events can contain multiple sensor output, each of a different type, and
algorithms can contain functions combining values from these sensors to extract
more complex knowledge. In Example 7, we show a prototype calculation for
energy expenditure (EE-Calc). In this example, data from a Cosmed metabolic
system and an accelerometer are used to compute a new measure and update
an entry with the computed value. This mining process is ongoing: the team of
domain experts are now in a position to refine threshold values as their analytical
procedures progress.

Example 7. Event Definition: Energy Expenditure Calculation (Prototype)
<event EE-Calc>

<precondtion>
<event SimSpeed>
<event fast-cantering>

</precondition>
<condition>

<GT3XAccelerometer location="saddle">
<entry><SimSpeed eq 3></entry>

</GT3XAccelerometer>
<Logical operator= "AND">
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<Cosmed><entry><EEm gt 0></entry></Cosmed>
<Logical operator= "AND">
<FnCalc-EE>

<&result gt 0>
</FnCalc-EE>

</conditon>
<action>

UPDATE <Cosmed><entry><EE-Calc-Sum> WITH <value>&result</value>
</action>

</event>

5 Experiments and Evaluation

Experiments were run on a 2.66GHz Intel Core2 Duo CPU server with 4GB of
RAM. The sensors were deployed on a jockey while on a Horse Simulator, as
shown in Figure 1. As part of our evaluation, we measure query times for iden-
tifying the events pre-defined by the sport scientists. We also measure the time
taken to enrich the information both structurally and with the event-definition
context.

GT3X Accelerometer

COSMED

SenseWear Armband

Crossbow 
Accelerometer

Fig. 1. Indoor Simulator Training

Table 1 shows sample event detection times, run following the execution of
the event definitions. The instances of whipping represent entries matching the
criteria given in the event definition. The numbers correspond to entries, which
in the case of the GT3X Accelerometer is 0.03333 of a second. After experi-
ments, it was discovered that the average duration of a whip is 0.5 seconds (or
15 instances). Analysing a ground-truth for the data concerned (ground truth
analysis was performed using video in as many circumstances as possible), con-
firmed that there were 3 right whip events, and 14 left whip events, as shown in
the query result set.
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Table 1. Sample Event Queries and times

Events Filename Size Values Query Time Results

1 Fast-Cantering GT3Xsaddle.xml 8.12MB 108,009 56ms 13,353

2 Left Whip leftwrist.xml 7.22MB 108,009 51ms 210

3 Right Whip rightwrist.xml 7.08MB 108,009 53ms 45

4 Whipping GT3Xsaddle.xml 8.12MB 108,009 55ms 13,353

Table 2. Sample Enrichment Times

Event Filename Enrichment Time

1 Fast-Cantering GT3Xsaddle.xml 13,450ms

2 Left Whip leftwrist.xml 12,221ms

3 Right Whip rightwrist.xml 11,902ms

4 EE-Est > 90% Cosmed.xml & HeartRate.xml 1,498ms

A prior experimental run resulted in the (incorrect) discovery of 4 right whip
events and 20 left whip events, a total of seven false positives. It was realised that
other jockey movements were identifed to be whip movements. This event detec-
tion evolved to include the use a new fast-cantering constraint. Including this
constraint and the knowledge that a whip can only occur during a fast-canter,
resulted in removing these false positives (one right hand whip, and six left hand
whips). This illustrates how the Sports Physiologists are now in a position to al-
ter their needs using event definition modules to improve accuracy. As the tested
jockeys were trainees, they are not allowed to gallop. For any other jockey, this
event would be replaced with a Gallop event.

For completion, we show a sample of contextual enrichment times in Table 2.
The time is the total accumulated from converting raw sensor data to low-level
structured information and then to high-level event-rich information. As yet,
we have not performed any optimisation on the transformation process, as the
motivation was to enable users to define and detect complex requirements from
semantically poor information. The main evaluation comes from our collabora-
tors who can now define their requirements in the form of events and extract
new knowledge.

6 Conclusions

In this paper, our goal was to reduce the gap between the requirements of our
collaborators and the sensors recording movement data on Horse Simulators.
We extended the EventSense framework with a new process to extract knowl-
edge from multiple sensor sources. We described our metadata driven approach
to structural and semantic enrichment using Sensor and Contextual Profiles.
We then introduced our new event detection mechanism in its 3-Tier format:
basic event detection; event detection based on results of other defined events;
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and events definitions based on data integrated from multiple sources and new
event definitions. The modular nature of the event definition allows the end user
greater control and flexibility in defining events and thus, acquiring different
forms of knowledge. Our experiments have shown how this approach is evaluated
and is providing benefit to the end user. Our current work is based on integra-
tion, utilising the timing and granularity constraints along with synchronisation
techniques and algorithms, to extend the knowledge acquisition capabilities even
further.
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Abstract. Conventional stream mining algorithms focus on single and
stand-alone mining tasks. Given the single-pass nature of data streams,
it makes sense to maximize throughput by performing multiple com-
plementary mining tasks concurrently. We investigate the potential of
concurrent semi-supervised learning on data streams and propose an
incremental algorithm called CSL-Stream (Concurrent Semi–supervised
Learning of Data Streams) that performs clustering and classification at
the same time. Experiments using common synthetic and real datasets
show that CSL-Stream outperforms prominent clustering and classifica-
tion algorithms (D-Stream and SmSCluster) in terms of accuracy, speed
and scalability. The success of CSL-Stream paves the way for a new re-
search direction in understanding latent commonalities among various
data mining tasks in order to exploit the power of concurrent stream
mining.

1 Introduction

Nowadays, large volumes of data streams are generated from various advanced
applications such as informaion/communication networks, real-time surveillance,
and online transactions. These data streams are usually characterized as tempo-
rally ordered, read-once-only, fast-changing, and possibly infinite, compared to
static datasets studied in conventional data mining problems. Although many
studies have been conducted to deal with data streams [2,3,7,8,14], most ex-
isting data stream algorithms focus on single and stand-alone mining. In many
practical applications, it is desirable to concurrently perform multiple types of
mining in order to better exploit data streams. For example, website administra-
tors will be interested to use clickstream data to classify users into specific types
and cluster webpages of similar topics at the same time in order to enhance the
user’s experience. In addition, concurrent mining offers a potential synergy: The
knowledge gained by one mining task may also be useful to other mining tasks.
Unfortunately, there is currently little research on concurrent stream mining.

In order to demonstrate the potential of concurrent stream mining, we pro-
pose a stream mining algorithm called CSL-Stream (Concurrent Semi-supervised
Learning of Stream Data) that concurrently performs clustering and classifica-
tion. We choose to focus on classification and clustering as they share common

A. Cuzzocrea and U. Dayal (Eds.): DaWaK 2011, LNCS 6862, pp. 445–459, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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assumptions that data objects within a cluster (class) are similar and data ob-
jects belonging to different clusters (classes) are dissimilar. In addition, it is
observed that most data objects in a cluster belong to a dominant class, and a
class can be represented by many clusters. Therefore, classifiers can leverage on
clustering to improve its accuracy [16]. For example, webpages within a topic
are most visited by a specific type of users, and a user can be interested in many
topics.

Moreover,CSL-Stream is a semi-supervised algorithmthat is applicable tomany
real applications where only a small portion of data is labeled due to expensive
labeling costs. In order to exploit a valuable limited amount of labeled data, CSL-
Stream maintains a class profile vector for each node in the synopsis tree of the
data stream. The profile vectors play an important role as pivots for the clustering
process. The two mining tasks not only run at the same time, but also mutually
improve each other. The clustering considers class profile vectors to attain high-
purity clustering results. Conversely, the classification benefits clustering models
in achieving high accuracy, and even works well with unlabeled data or outliers.
Finally, CSL-Stream uses an incremental learning approach where the clustering
and classification models are continuously improved to handle concept drifts and
where mining results can be delivered in a timely manner. By re-using informa-
tion from historical models, CSL-Stream requires only constant time to update its
learning models with acceptable memory bounds.

With its impressive experimental results, we hope that CSL-Stream will in-
spire a new research direction in understanding latent commonalities among
various data mining tasks in order to determine the degree of concurrency possi-
ble among them; this requires further research to derive data mining primitives
which represent the entire space of data mining tasks.

The rest of this paper is organized as follows: In the next section, we discuss
related work in stream clustering, classification and semi-supervised learning. We
propose the CSL-Stream algorithm and provide its formal proofs in Section 3.
We perform rigorous experiments to evaluate our algorithm with both real and
synthetic datasets in Section 4. Finally, we conclude the paper in the last section.

2 Related Work

Various algorithms have been recently proposed for stream data clustering, such
as CluStream [2], DenStream [7], and D-Stream [8]. These algorithms adopt an
online-offline scheme where raw stream data is processed to produce summary
statistics in the online component and clustering is performed in the offline com-
ponent using summary statistics. Both CluStream and DenStream store sum-
mary statistics into a collection of micro-clusters. D-Stream views the entire data
space as a finite set of equal-size grids, each of which maintains summary infor-
mation. The different algorithms vary in their online data processing schemes
and offline clustering methods. CluStream applies k-means to perform offline
clustering while DenStream and D-Stream perform DBSCAN-like clustering [9].
Both DenStream and D-Stream apply a fading model and a synopsis removal
scheme to discard outdated data.
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Recent work on data stream classification mainly falls into three categories.
The first category extends the decision tree from traditional classification al-
gorithms to the Hoeffding tree, such as CVFDT [10]. The second category uses
ensemble classifiers and modify them whenever concept drifts appear [15,18]. The
last category is k-NN classification on stream data. An example of k-NN stream
classification is On-Demand Classifier [3] that maintains sets of micro-clusters
with single-class labels and performs classification on demand.

Semi-supervised learning has been proposed to cope with partially labeled
data. Although many semi-supervised learning algorithms have been developed
for traditional data [20], there is still insufficient work for data streams.

Recently, Masud et al. proposed a semi-supervised algorithm for data streams,
called SmSCluster [12]. The algorithm utilizes a cluster-impurity measurement
to construct an ensemble of k-NN classifiers. When a classifier has no knowledge
of a certain class, the algorithm copies the knowledge from another classifier with
an injection procedure in order to reduce the mis-classification rate. However,
SmSCluster suffers from high computational complexity as it performs clustering
based on the k-means algorithm [17,5]. The difficulty in choosing the optimal k
value is an inherent problem of k-means and this is aggravated by the evolving
nature of data streams which inevitably results in more dynamic clusters being
formed.

In 2007, Aggrawal et al. proposed a summarization paradigm for the clus-
tering and classification of data streams [1]. This paradigm can be considered
as a generalization of CluStream [2] and On-Demand Classification [3]. Unfor-
tunately, the classification and clustering algorithms run separately and there
is no mutual relationship between them. The algorithm needs time to process
the offline operations and cannot provide timely results. Moreover, the use of a
pyramidal time window makes it unstable; the micro-structures become larger
and larger over time and this degrades the model’s performance [19].

3 Proposed Method

Figure 1 is an overview of our novel concurrent mining approach. CSL-Stream
stores a dynamic tree structure to capture the entire multi-dimensional space
as well as a statistical synopsis of the data stream. Unlike static grids in D-
Stream [8] that use much memory, our dynamic tree structure requires far less
storage because unnecessary nodes will be pruned and sibling nodes merged. We
apply a fading model to deal with concept drifts; the properties of a tree node
will decrease according to how long the node has not been updated.

The two mining tasks of CSL-Stream, semi-supervised clustering and semi-
supervised classification, are concurrently performed. They leverage on each
other in terms of improving accuracy and speed; the clustering process takes into
account class labels to produce high-quality clusters; the classification process
uses clustering models together with a statistical test to achieve high accuracy
and low running time.

CSL-Stream also employs an incremental learning approach. The system only
needs to update whenever it becomes unstable. To check the system’s stability,
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Fig. 1. Overview of CSL-Stream

we select labeled data during each time interval tp and test them with the clas-
sification model. If the accuracy is too low, we will incrementally update the
clustering models.

3.1 Dynamic Tree Structure

We assume that the input data stream has d dimensions and forms a hyper-space
S. We also assume a discrete time model where the time stamp is labeled by
integers t = 0, 1, 2, . . . , n. A record e of the data stream has a coordinate vector
ex = [x1, x2, . . . , xd], a class label el (0 ≤ el ≤ L; el = 0 if e is unlabeled), and a
time stamp et.

We construct a dynamic tree structure to capture the entire space S with
different levels of granularities as follows. Initially, a tree root at level 0 is created
to hold the entire space S. Then for a tree node at level h, we partition each
dimension into two equal-sized portions, and the tree node is partitioned into 2d

child nodes at level h + 1. We chose 2 as it provides sufficient granularity with
reasonable storage requirements. This partitioning process terminates when it
reaches a pre-defined maximum tree height H . The tree root contains the overall
information of the entire space S. Each tree node at height h stores information
of its subspace at granularity h. A tree node is only created if there are some
instances belonging to it.

Figure 2 is an example of the tree structure with d = 2, H = 2. Figure 2(a)
is a 2-dimensional data stream whose each dimension has a range [0-1]. Each
data instance has a transaction identify, two coordinates [x1, x2], a class label
(1, 2, or 0 if unlabeled), and a time stamp. The tree root is created at level
h = 0, then it is divided into four (2d = 22 = 4) child nodes at level h = 1.
Again, a tree node at level 1 is partitioned into four child nodes at level h = 2,
and the partitioning process stops. Then, a tree node stores information of data
instances belonging to its space. For example, in Figure 2(b), the data instance
tid 02 with coordinates [0.6, 0.2] is stored in the leaf node B at the bottom level
h = 2.

Node Storage. Suppose a tree node C receives m data instances e1, e2, . . . , em.
The following information will be stored in the tree node C:
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TID x1 x2 label 
Time 

stamp 
tid_01 0.1 0.2 0 1
tid_02 0.6 0.2 2 2
tid_03 0.8 0.4 1 3

… … … … … 

root h=0

h=1

h=2
Fading parameter 

X1

X2

(a) (b)

w = 0.9
sum = [0.54, 0.18]
sumsq = [0.324, 0.036] 
classPf = [0, 0, 0.9]

B
C

A

Fig. 2. Synopsis tree for the 2-dimensional data stream with H = 2

1. Node weight w is the sum of weights of all data instances, w =
∑m

i=1 ei
w.

The weight of an instance is set to 1 at its arriving time, and then decreased
over time to reflect its diminishing effect on the mining processes. Details of
the weighting scheme are defined in the next section.

2. A d-dimensional vector sum is the weighted sum of the coordinates of all
data instances, sum =

∑m
i=1 ei

w × ei
x.

3. A d-dimensional vector sumsq is the weighted sum of the squared coordinates
of all data instances, sumsq =

∑m
i=1 ei

w × ei
x
2

4. A (L+1)-dimensional vector classPf stores the class profile of the node. The
lth element is the sum of weights of all data instances that have label l.

Handling Concept Drift. Concept drift occurs in a data stream when there
are changes in the underlying data distribution over time. There are two major
approaches to handle concept drifts for data streams: (1) instance selection, and
(2) instance weighting. The instance selection approach uses a sliding window to
select recently arrived instances while ignoring older instances [11]. In instance
weighting approach, data instances can be weighted according to their age, and
their relevance with regard to the current concept, e.g. fading model [8].

In CSL-Stream, we apply a fading model with an exponential function to set
the weight of a data instance e: ew = f(Δt) = λΔt, where 0 < λ < 1, and Δt
is the time gap between the current time and the arriving time of the instance
e. Figure 2(b) illustrates the fading model. Let us assume that the current time
is 3, and the fading parameter λ is 0.9. The instance e with tid 02 that came at
time stamp 2 has a weight of ew = λ(3−2) = 0.91 = 0.9. As the tree node B only
receives a data instance tid 02, the node B stores the following information:
w = 0.9, sum = 0.9 × [0.6, 0.2] = [0.54, 0.18], sumsq = 0.9 × [0.62, 0.22] =
0.9× [0.36, 0.04] = [0.324, 0.036], and classPf = [0, 0, 0.9] as the instance tid 02
has 2 as its class label .
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Algorithm 1. Online Update

1: initialize tree T
2: while data stream is active do
3: read next data point e
4: C ← T.root
5: while C.height ≤ H do
6: Δt ← t − C.lastUpdateT ime
7: C.w ← C.w×f(Δt)+1
8: C.sum ← C.sum×f(Δt)+ex

9: C.sumsq ← C.sumsq×f(Δt)+(ex)2

10: i ← el;
11: C.classPf [i] ← C.classPf [i]×f(Δt)

+ 1
12: C ← C.getChild(e)

13: if C is NULL then
14: addSubNode(C)
15: end if
16: end while
17: if t = tp then
18: Semi-Clustering()
19: else if (t mod tp = 0) then
20: PruneTree()
21: Incremental Update()
22: else if (user request = true) then
23: Show clustering results
24: Semi-Classification()
25: end if
26: end while

3.2 Online Update

Given an instance e, this online-update process starts from the root and searches
through the tree until the maximum height H is reached. At each height h, we
update the node C that contains e. Then, we move down to search for the child
node of C that contains e and update it. If no such child node exists, we create
a new node.

As shown in Algorithm 1, the online-update process consists of two parts:

1. Top-down updating of the tree node’s information whenever a new instance
arrives (lines 6-16): Firstly, the time gap is calculated. All historical informa-
tion is faded with the exponential function f(#t). The weight and element
i-th of class profile are incremented by 1, while the sum vector and sumsq
vector are added by the coordinates and the squares of coordinates respec-
tively.

2. Periodical pruning of the tree to conserve memory and accelerate the mining
process (line 19): For each time interval tp = $logλ(αL/αH)%, which is the
minimum time required for a node’s density to be changed, CSL-Stream
searches through the tree and deletes all sparse nodes (αL, αH to be defined
in the next section). Next, it searches the tree to find a parent node whose
all child nodes are dense. Then, all child nodes are merged and deleted, and
the parent node contains the sum of their properties.

3.3 Concurrent Semi-supervised Learning

Semi-supervised Clustering. We use the node weight to define different types
of nodes: dense, transitional and sparse nodes. The reachability property of dense
nodes is also defined.
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Algorithm 2. Semi-Clustering

Input:
A list of labeled dense nodes: LDSet
A list of unlabeled dense nodes: UDSet

1: Create a cluster for each node in
LDSet.

2: Extend these clusters sequently with
neighbor nodes in UDSet.

3: Merge any 2 clusters if they have same
labels.

4: Perform DBSCAN clustering for the
remaining nodes in UDSet

5: Remove clusters whose weights are
less than ε

Node Density: The density of a node is a ratio of its weight to its hyper-volume
V(C) (product of d-dimensional lengths). A node at height h is recognized as a
dense node if its density is αH times greater than the average density.

Suppose the volume of the entire data space S is V (S) = 1 and the total
weight of the synopsis tree is wtotal = 1

1−λ according to [8], the average density
is wtotal

V (S) = 1
1−λ . Then, the dense condition for a height-h node with its volume

1
2dh and can be written as w ≥ αH ∗ 1

2dh(1−λ)
= DH . Similarly, node g at height h

is a sparse node if w ≤ αL ∗ 1
2dh(1−λ) = DL, where αL is a parameter to identify

a sparse node. A node is a transitional node if the density of the node is between
DH and DL; i.e., DL < w < DH .

Node Neighborhood: Two nodes are neighbors if their minimum distance or
single-link is less than δ

2H , where δ is a neighbor range parameter. A node Cp

is reachable from Cq if there exists a chain of nodes C1, . . . , Ck, Ck + 1, . . . , Cm,
Cq = C1 and Cp = Cm such that each pair of Ci and Ci + 1 are neighbors.
Moreover, a cluster is defined as a set of density nodes where any pair of two
grids is reachable.

The semi-supervised clustering of CSL-Stream is performed according to Al-
gorithm 2. Initially, the algorithm traverses the tree to get two sets of dense
nodes: a labeled set, LDSet and an unlabeled set, UDSet. Firstly, we create a
cluster for each labeled node (line 1). Next, we extend these clusters step by
step with their neighbor nodes. If the neighbor node does not belong to any
cluster, we put it into the current cluster (line 2). If the neighbor node belongs
to a cluster, we will merge these two clusters if they have the same label (line
3). Then, we continue to build clusters for the remaining nodes in UDSet. We
perform DBSCAN[9] clustering to find the maximum set of remaining reachable
unlabeled dense nodes in the UDSet (lines 4). Finally, we remove clusters whose
weights are less than a threshold value, ε. These clusters are considered as noise.

Semi-supervised Classification. Details of the semi-supervised classification
of CSL-Stream are given in Algorithm 3. The input to Algorithm 3 is a list
of clusters. Each cluster in the list has a class profile array computed by the
sum of class profiles of all its member nodes. For each testing instance, we find
the closest cluster and then do a statistical check to decide whether the distance
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Algorithm 3. Semi-Classification

Input: A test set: testSet
A list of clusters: listCluster

1: while testSet is not empty do
2: e ← testSet.removeFirst()
3: Select the closet cluster, c̃.
4: stDv← c̃.getDeviation()
5: mean← c̃.getMean()

6: dist←calculateDistance(e,mean)
7: if dist < θ ∗ stDv then
8: e.clusterID ← c̃.getClusterID()
9: e.class ← c̃.getDominantClass()

10: else
11: Set e as noise.
12: end if
13: end while

Algorithm 4. Incremental Update

Input: A list of historical clusters:
listClusters
Output: A list of clusters

1: if accuracy ≤ threshold then
2: for all cluster ĉ in listCluster do
3: ĉ.removeSparseNodes()
4: ĉ.checkConsistence()

5: end for
6: Traverse the tree to get a list βdense

of isolated dense nodes.
7: Separate βdense into two sets of la-

beled and unlabeled nodes, LDSet
and UDSet.

8: Semi-Clustering(LDSet,UDSet);
9: end if

between the instance and the cluster’s center is acceptable. The adequate range is
less than θ times of the cluster’s standard deviation (line 7). The cluster’s center

and deviation are computed accordingly μ = sum
w , σ =

√
sumsq

w −
(

sum
w

)2. If the
distance is acceptable, the dominant class of the cluster will be assigned to the
testing sample. Else, the instance will be considered as noise.

Incremental Update. CSL-Stream is an incremental algorithm. It can detect
and update its learning models incrementally whenever a concept drift occurs.

For each time interval tp (Algorithm 1, line 21), we select labeled instances
and test them with the classification model to check the system’s stability. If
the accuracy is greater than a predefined threshold value (experiments reveal
that 0.9 is an appropriate value); the model remains stable, and we can skip
the remaining steps. Else, we need to refine the learning models. CSL-Stream
begins to fine-tune the historical clustering model by checking the consistency of
each cluster. The algorithm removes sparse nodes, that are dense at the previous
learning phase, and splits the cluster if it becomes unconnected or has low purity.

Then, CSL-Stream traverses the tree to get a list of isolated dense nodes
βdense (line 6). After separating βdense into two sets of labeled and unlabeled
dense nodes, it performs the semi-supervised clustering method to derive new
arriving clusters. As the procedure reuses the historical clustering results, the
size of βdense is relatively small. Thus, the running time of the clustering process
is reduced significantly.
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Fig. 3. Examples of the benefits of concurrent semi-learning

Example. Our concurrent approach maximizes computational resources and
exploits advantages of the interplay between clustering and classification. CSL-
Stream’s semi-supervised clustering takes care of data labels by continuously
updating the class profile array of each node. It ensures that two clusters are
merged only if they have the same dominant class, finds the best borders among
clusters. For example, in Figure 3 (a), two clusters with different class labels share
the same border. A stand-alone clustering algorithm will probably incorrectly
consider them as a single cluster. For example, D-Stream will merge the two
clusters as it views the data points at the border as connected due to their
proximity to one another [8]. CSL-Stream does not merge them as they have
different dominant classes, and thus CSL-Stream correctly considers them as
two clusters.

By disregarding unlabeled data, a stand-alone classification may not cap-
ture the classes’ distribution. Using clustering results with unlabeled data, CSL-
Stream can gain knowledge of the classes’ distributions and improve its accuracy.
For example, in Figure 3 (b), a 3-NN classifier wrongly classifies the testing point
because most its neighbors are unlabeled. CSL-Stream selects the label of the
nearest cluster, and correctly classifies the testing point as positive.

3.4 Complexity Analysis

Space Complexity

Lemma 1. If the density threshold to remove sparse node is DL, then the max-
imum number of nodes in the synopsis tree is Nmax−node ≤ & log DL

logλ ' = O(dH)

Proof. In the worst case, we assume that every data point arrives at a different
node and no merging is performed. When a node receives a data point, its weight
is set to 1. We define tmax as the time needed for this node to become sparse
with its weight ≤ DL, and is removed. After tmax time, whenever a data point
arrives, a new tree node created, and another one is deleted. This means that
tmax is the maximum number of tree nodes. We have:

λtmax = DL ⇒ tmax log λ = log DL ⇒ tmax ≤ & log DL

log λ '
We also know that: DL = αL∗V (C)

(1−λ) = αL

(1−λ)2dH for a leaf node. Then,
⇒ tmax ≤ &logλ αL + logλ(1 − λ)− dH logλ 2' = O(dH).
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Table 1. Characteristics of datasets used for evaluation

Name #Instances #Attributes #Classes

RBF 100,000 10 5
HYP 100,000 10 2
LED 100,000 24 3

SHUTTLE 58,000 9 7
KDD’99 494,022 34 5
COVERTYPE 581,012 54 7

Time Complexity. The proposed CSL-Stream has three main operations: up-
dating, clustering and classification. The online updating consists of top-down
updating and periodical pruning. The top-down updating only requires a con-
stant time to update a new data instance and its complexity is O(nH), where
n is the number of instances of the data stream. The running time of the prun-
ing process depends on the number of tree nodes. In the previous section, we
prove that the upper bound of the number of tree nodes is O(dH), so the prun-
ing process’s complexity is O(ndH). The complexity of the clustering depends
on its implementation. If we use R*-trees to implement the synopsis tree, the
searching time for neighbor nodes is O(log(dH)). And the complexity of cluster-
ing operation is O(dHlog(dH)). The running time of the classification operation
depends on the number of clusters, and this number is usually a multiple of the
number of classes. Thus, the classification time can be expected to be O(nL),
where L is the number of classes. In summary, the complexity of the algorithm
is: O(nH + ndH + dHlog(dH) + nL) = O(n(dH + L))

4 Experiments and Analysis

4.1 Experimental Setup

We use both synthetic and real datasets. The three synthetic datasets, Random
RBF generator (RBF), Rotating Hyperplane (HYP), and LED dataset (LED),
are generated from the MOA framework [6]. Concept drifts are generated by
moving 10 centroids at speed 0.001 per instance in the RBF dataset, and chang-
ing 10 attributes at speed 0.001 per instance in the HYP dataset. We also use
the three largest real datasets in the UCI machine learning repository: SHUT-
TLE, KDD’99, and Forest Covertype. Table 1 shows the characteristics of the
six datasets.

In order to illustrate the beneficial mutual relationship between clustering and
classification, we created two variants of CSL-Stream that do not exploit this
relationship as follows.

– Alone-Clustering: This variant of CSL-Stream does not consider class labels
while clustering.

– Alone-Classification: This variant of CSL-Stream finds the nearest tree node
to testing instances and classifies them to the dominant class of the tree node.
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We compare the performance of CSL-Stream to its stand-alone variants, D-
Stream [8], and SmSCluster [12]. The experiments were conducted on a Windows
PC with a Pentium D 3GHz Intel processor and 2GB memory.

For D-Stream and SmSCluster, we use the published default parameter con-
figurations. The chunk size chunk-size is set to 1000 for all datasets. For CSL-
Stream, the dense ratio threshold αH is set to 3.0, the sparse ratio threshold αL

is set to 0.8, and the fading factor λ is set to 0.998 as recommended in D-Stream
[8]. The other parameters of CSL-Stream are set as follows: maximum tree’s
height H = 5, the noise threshold ε = 1, and the statistical range factor θ = 3.

To simulate the data stream environment, we divided each dataset into many
chunks of size chunk-size. These sequential chunks are numbered and their roles
are set as follows: the odd chunks are used for training and the even chunks
are used for testing. We run the experiments 10 times for each dataset and
summarize their running time and performance with their means and standard
deviations into Tables 2, 3.

4.2 Clustering Evaluation

There are some constraints to evaluate the performance of a clustering method
such as cluster homogeneity constraint, cluster completeness constraint, rag bag
constraint, and cluster size vs. quantity constraint. Although many measures
have been proposed (for example, purity, inverse purity, entropy, and F-measure),
most measures can not satisfy all these constraints.

Given a pair of samples, their correctness is defined as 1 if they are in the
same cluster and have the same class label. The BCubed [4] measure computes
the average correctness over the dataset. It has been proven to satisfy all the
above constraints. Thus, we use BCubed to evaluate clustering results in our
experiments. We conducted experiments with the 100%-labeled datasets to assess
the clustering results of CSL-Stream, Alone-Clustering and D-Stream. Table
2 shows the running time as well as B-Cubed comparisons among the three
clustering methods. We observe that CSL-Stream achieves the lowest running

Table 2. Comparison among CSL-Stream, Alone-Clustering and D-Stream. Time is
measured in seconds. For each dataset, the lowest running time is underlined, and the
highest B-Cubed value is boldfaced.

CSL-Stream Alone-Clustering D-Stream
Time B-Cubed Time B-Cubed Time B-Cubed

RBF(10,0.001) 10.64±1.56 37.67±4.93 17.22±1.72 36.27±2.32 17.37±1.36 17.39±2.41

HYP(10,0.001) 13.37±1.23 65.24±10.66 23.67±1.66 57.14±4.01 33.37±1.46 55.54±4.66

LED 53.9±1.68 68.38±11.74 205.61±2.34 19.1±0.58 203.8±2.94 19.3±0.63

SHUTTLE 1.37±0.16 93.46±1.04 1.37±0.16 89.07±1.83 1.45±0.17 88.1±0.93

KDD’99 39.78±0.62 76.89±27.83 38.68±0.84 76.88±27.83 53.79±1.06 73.5±31.24

COVERTYPE 130.24±1.87 26.54±9.68 212.07±2.45 35.11±10.79 152.46±2.67 12.55±5.8
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time and the highest B-Cubed value for many datasets. Comparing with Alone-
Clustering and D-Stream, CSL-Stream takes into account the class labels during
clustering and guarantees that no two clusters with the same label are merged.
Thus, it achieves better B-Cubed results than Alone-Clustering and D-Stream.
Moreover, using the dynamic tree structure, CSL-Stream can adapt quickly to
concept drifts. It is also the fastest method because the pruning process helps to
remove unnecessary tree nodes. Although CSL-Stream has low B-Cubed values
in some datasets, e.g., RBF, HYP, and COVERTYPE as each class has many
clusters in these datasets,CSL-Stream still attains high purity in these cases
(> 90%). Detailed results of other clustering evaluation measures can be found
in our technical report [13].

4.3 Classification Evaluation

We compare the running time and accuracy among CSL-Stream, Alone-
Classification, and SmSCluster [12]. The upper part of Table 3 reports the run-
ning time and accuracy comparisons among the above classification algorithms
when the datasets are fully labeled. It is found that CSL-Stream is the fastest
and the most accurate algorithm for many datasets. CSL-Stream is better than
Alone-Classification in terms of speed and accuracy because it exploits cluster-
ing results for classification. CSL-Stream also takes less time as it only compares
the testing instances to a small number of clusters and is resistant to noise.
SmSCluster suffers a high time complexity and low accuracy with non-spherical
clusters since it is based on the k-Means algorithm.

Furthermore, we measure performances of the above algorithms when unla-
beled data is present. We conduct experiments with the Hyperplane and KDD’99
datasets at different proportions of labeled data instances: 50%, 25% and 10%.

Table 3. Comparison among CSL-Stream, Alone-Classification and SmSCluster. Time
is measured in seconds. For each dataset, the lowest running time is underlined, and
the highest accuracy is boldfaced.

CSL-Stream Alone-Classification SmSCluster
Time Accuracy Time Accuracy Time Accuracy

RBF(10,0.001) 49.29±2.35 71.57±6.37 53.32±3.24 44.57±7.18 41.45±3.35 30.1±12.38

HYP(10,0.001) 15.78±1.68 87.88±1.88 16.17±2.03 70.66±2.09 40.18±2.65 76.05±2.61

LED 34.17±2.16 72.73±1.82 98.85±3.12 10.24±1 85.69±3.87 54.70±3.45

SHUTTLE 2.56±0.35 98.3±0.3 2.64±0.91 98.28±0.31 20.35±2.61 97.50±0.49

KDD’99 83.06±2.47 98.06±8.29 87.57±2.13 98.25±8.24 565.02±3.87 85.33±33.39

COVERTYPE 183.75±3.05 81.63±10.43 194.41±3.46 78.96±9.39 320.65±3.02 49.23±15.42

HYP(10,0.001) 50% 20.08±1.48 81.6±3.61 21.11±2.16 35.97±3.02 37.89±2.14 74.36±2.68

HYP(10,0.001) 25% 17.34±1.32 73.88±4.25 18.65±2.09 18.29±2.1 46.26±2.09 64.36±3.11

HYP(10,0.001) 10% 15.97±1.65 61.18±7.15 17.47±2.05 7.57±1.32 31.56±1.86 61.41±4.50

KDD’99 50% 72.3±2.65 97.08±8.71 77.26±2.35 95±12.11 691.25±2.26 75.33±14.27

KDD’99 25% 72.56±2.69 96.49±9.25 78.12±2.48 92.82±15.47 703.56±2.53 75.03±14.65

KDD’99 10% 79.46±2.13 95.07±11.7 85.44±2.49 90.63±18.89 821.56±2.70 75.25±14.25
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Fig. 4. Number of nodes vs. dimensional-
ity.
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Fig. 5. Running time vs. dimensionality.
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Fig. 6. Number of nodes vs. tree height.
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Fig. 7. Running time vs. tree height.

The lower part of Table 3 shows the running time and the accuracy of the above
classification algorithms. We observe that CSL-Stream and SmSCluster can work
well with partially labeled data. When the percentage of labeled data decreases,
the accuracy of Alone-Classification drops quickly while the accuracy of CSL-
Stream and SmSCluster remains high. It is obvious too that CSL-Stream out-
performs SmSCluster in terms of speed and accuracy. Due to space constraints,
we omit classification results of other datasets which are available in our tech-
nical report [13]. These results also show that CSL-Stream has the best overall
performance.

4.4 Scalability Evaluation

Section 3.4 gives an upper bound for the maximum number of nodes and the run-
ning time of CSL-Stream. Here, we have examined the scalability of CSL-Stream
in terms of the number of nodes and the running time w.r.t dimensionality and
the tree’s height.

We conduct experiments with the KDD’99 dataset to assess the scalability
w.r.t dimensionality d. We set the maximum tree height to 5, and increase d
from 5 to 34 with single steps. With Figures 4 and 5, we can clearly see that
the maximum number of nodes and the running time of CSL-Stream increase
linearly as the dimensionality increases.

To evaluate the scalability w.r.t the maximum tree height H , we select the
first 30K data instances of KDD’99 dataset and set the dimensionality to 34.
We increase H from 3 to 10 with single steps. Figures 6 and 7 show that the
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maximum number of nodes and the running time of CSL-Stream increase linearly
as H increases.

4.5 Sensitivity Analysis

In the experiments, we set the neighborhood range δ = 2, the noise threshold
ε = 1, and the statistical range factor θ = 3. We test the sensitivity of δ, ε, and
θ with the KDD’99 dataset. We add 10% of random noise with a special label
to test the sensitivity of θ. Figure 8 shows the Bcubed values and accuracy of
CSL-Stream with different parameters.
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Fig. 8. Sensitivity analysis

5 Conclusions

We have studied the new problem of concurrent mining for data streams and pro-
posed the CSL-Stream as the first attempt to integrate semi-supervised classifi-
cation and clustering at the same time. We have conducted extensive experiments
to show that CSL-Stream outperforms state-of-the-art data stream algorithms.
CSL-Stream also overcomes a practical problem with partially labeled data.

With the success of CSL-Stream, we intend to perform an in-depth study on
the relationships among basic mining tasks in an attempt to create a framework
of mining primitives which will allow us to easily determine the degree of possible
concurrency among various tasks.
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Abstract. In this paper, we propose an incremental learning algorithm
for ensemble classifier systems. Ensemble learning algorithms combine
the predictions of multiple base models, each of which is learned using a
traditional algorithm.

We propose a new method to update weights of classifiers in the
weighted majority voting scheme under the one-pass incremental learn-
ing situations. This method computes the weights of classifiers and the
distribution of training data following an approach based on the comput-
ing of prequential error that avoids the overflow of internal values used
by the learning algorithm.

Using a prequential approach implies that learned samples are for-
gotten progressively. Forgetting learned concepts could influence the ac-
curacy of the model. However, in the experiments, we verify that the
proposed model can learn incrementally without serious forgetting and
that the performance is not seriously influenced by the used re-weighting
method in comparison with learning models without forgetting.

Experimental results confirm that the proposed incremental ensemble
classifier system yields comparable performance with another learning
ensemble classifier system. Moreover, it can be trained with open-ended
data streams without data overflow.

Keywords: Boosting, ensemble learning, open-ended data streams,
online learning.

1 Introduction

Ensemble methods have been proved to be very effective in improving general-
ization performance compared to the individual base models. Ensemble learning
employs multiple base models, each one using a learning algorithm. The base
learner [1] generates weak hypotheses whose outputs are combined to form a
final prediction. Theoretical and experimental analysis of boosting [2,3] show
that it enhances the generalization performance of ensemble classifier systems.
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Methods for voting classification algorithms, such as Bagging and Boosting,
have been shown to be very successful in improving the accuracy of certain
classifiers for artificial and real-world datasets [4,5,6]. Voting algorithms can be
divided into those that adaptively change the distribution of the training set
based on the performance of previous classifiers, as in boosting methods, and
those that do not, as in Bagging.

Boosting was introduced by Schapire [7] in 1990. It is the most widely used
ensemble learning method introduced in the last twenty years. It was originally
designed for classification problems.

The motivation for boosting is a procedure that combines the output of a suc-
cession of models (weak classifiers) trained on a data set. The outputs are com-
bined using voting for classification or averaging for regression creating a final
prediction model that often has better accuracy than single classifiers algorithms.

AdaBoost is the most popular boosting paradigm [6]. It was originally devel-
oped for two-class problems and it keeps two sets of weights, one on the data,
and one on the weak hypotheses. AdaBoost updates the example weights at each
training round to form a harder problem for the next round. Specifically, the ex-
amples misclassified by a weak learner are given more weight in the training set
for the next weak learner. The goal is to force the weak learner to minimize
expected error over different input distributions. It has been proved that the
boosting enhances the generalization performance of ensemble classifier systems
theoretically and experimentally [3].

In recent real-world applications, data flow continuously from a data stream
at high speed; producing examples over time, usually one at a time. That is
why a learning model is required to have the ability of incremental learning [8].
Originally, the boosting algorithm has been developed mainly in batch mode
which requires the entire training set to be available at once and, sometimes,
random access to the data. However, in more real-world problems, data flow at
high speed continuously and batch models cannot adapt to process data in real
time [9].

Online learning algorithms process each training example once by arrival date,
without the need for storage and reprocessing, and they maintain a current
model that reflects all the training examples seen so far. Such algorithms have
advantages over typical batch algorithms in situations with very large data sets
on secondary storage, for which the multiple passes through the training set
required by most batch algorithms are prohibitively expensive, or when data
flow at high speed from an open-ended data stream.

In [10] some desirable properties required in learning systems for efficient,
high-volume and open-ended data streams are identified:
– Require small constant time per data entry.
– Use fix amount of main memory, without regard to the total examples that

have been seen.
– Built a model using one scan over the examples.
– Produce a model at anytime which is independent from the examples by

arrival date.
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Taken into account these properties, Friedman et al. showed that boosting is
particularly effective when the base models are simple [11]. So, ensemble learning
becomes an interesting approach to fast and light ensemble learning on stream
data [12].

There has been work related to boosting ensembles on data streams. In 2000,
Fern et al. [13] proposed online boosting ensembles, and Street [14] later devel-
oped an ensemble algorithm that builds one classifier per data block indepen-
dently. The type of sequential re-weighting in an online setting, where only one
example is kept at any time, was later proposed in different ways by Oza and
Russell [15,16]. Other approaches to online boosting have been proposed by [17]
and [18].

In this paper, we focus on continuous learning tasks. A new incremental boost-
ing algorithm where newly given training samples are incrementally learned by
all the classifiers based on AdaBoost.M1 is implemented. We present an online
version of boosting based on previous work by [19,15]. They developed an on-
line version of boosting that requires only one pass through the training data.
Our algorithm, like Oza and Russell’s algorithm, has a sequential update for the
weights of the weak hypotheses.

Two principal questions must be considered before implementing a boosting
approach: what incremental learning model should be selected as a classifier,
and how to update the weight function of classifiers in a boosting algorithm. A
great variety of incremental learning models have been constructed to solve the
first question, in neural networks [20,21,22], such as Support Vector Machines
[23], decision trees [24], and so forth. As far as the second question is concerned,
it is quite hard to solve it if we assume a one-pass incremental learning where
training samples are presented only once for a learning purpose and they are
discarded after the learning [8].

Oza’s online boosting algorithm computes the error of weak classifiers follow-
ing a frequency count scheme. However, internal values used by this algorithm in
order to compute the error of weak classifiers are bounded by the number of train-
ing samples seen so far. However, in real environment of open-ended streams,
these values are potentially infinite. This implies data overflow problems in the
implementation of this algorithm.

In this paper, we propose an alternative approach to compute the error of
weak classifiers. It is based on the framework proposed by Gama et al. [25] for
assessing predictive stream learning algorithms. They maintain the use of Pre-
dictive Sequential methods for error estimate called the prequential error. In
these tasks, the prequential error allows us to guide the evolution of the per-
formance of models that evolve over time. Theoretical and experimental results
show that the prequential error estimated using fading factors determines reli-
able estimators. In comparison with sliding windows, fading factors are faster
and memory-less; a desirable specification for streaming applications.

This paper is organized as follows. The next section briefly describes two mod-
els, AdaBoost.M1 and Oza’s boosting learning model, which are the background
of the model developed in this paper. In section 3 we propose a new incremental
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boosting model and we describe the weight function of this model. In section
4 the proposed incremental boosting model is evaluated for several standard
datasets. The last section concludes the paper, resuming the main contributions
of this work and it gives directions of our future work.

2 Theoretical Background

2.1 AdaBoost.M1

AdaBoost is one of the most known ensemble learning algorithms. In this algo-
rithm, a weak classifier is generated by using a set of training samples weighted
by the weight function Dm(i), and the outputs of all classifiers are combined
based on the weighted majority voting.

In algorithm 1, the AdaBoost learning algorithm is shown. It is composed of
a main loop that computes a set of weak hypothesis H = {hm|1 ≤ t ≤ M}
and a last statement that computes the final hypothesis by means of equation
1, which is a weighted majority vote of the M weak hypotheses where log 1

βm
is

the weight assigned to hm.

Algorithm 1. The AdaBoost.M1 algorithm returning hfinal : X → Y

Let:

– A training S set of N samples S = {(x1, y1), . . . , (xN , yN )} with xi ∈ X =
{vectors of attribute values} and labels yi ∈ Y

– A weak learning algorithm WeakLearner
– A number of iterations M ∈ N

1: Let D1(i) = 1/N for all 1 ≤ i ≤ N
2: for m = 1 to M do
3: Call WeakLearner providing it with the distribution Dm and the set S
4: Get back a weak hypothesis hm : X → Y
5: Calculate error of hm: εm =

∑
i:hm(xi) �=yi

Dm(i). If εm ≥ 1
2

then abort this loop
6: Let βm = εm

1−εm

7: Update distribution Dm:

Dm+1(i) =
Dm(i)

Zm
∗

{
βm if hm(xi) = yi

1 otherwise

where Zm is a normalization constant (chosen so that Dm+1 will be a distribu-
tion)

8: end for
9: Final hypothesis:

hfinal(x) = argmax
y∈Y

∑
m:ht(x)=y

log
1

βm
(1)

AdaBoost creates successively “harder” filtered distributions Dt(i). In other
words, AdaBoost concentrates the probability distribution over the training sam-
ple on samples misclassified by weak hypothesis, focusing the learning task more
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and more on the hard part of the learning problem.Specifically, the examples
misclassified by hm−1 are given more weight in the training set for hm so that
the weights of all the misclassified samples constitute half of the total weight of
the training set.

2.2 Online Boosting

Algorithm 2 shows the pseudocode of Oza’s boosting learning model [15]. The
online boosting algorithm described by Oza is designed to correspond to the
batch boosting algorithm. Just as in AdaBoost, it generates a sequence of base
models h1, . . . , hM using weighted training sets so that the training examples
misclassifed by model hm−1 are given half of the total weight for model hm, and
the correctly classified examples are given the remaining half of the weight. The
re-weighting of the samples is carried out by equations 2 and 3 in algorithm 2.

Let us suppose that λc
m is the sum of the di values for the examples that were

classified correctly by the base model at stage m and λw
m is the same sum for

incorrectly classified examples. For the next stage of boosting, the model needs
to scale these two sums to the same value, just as in AdaBoost. Therefore, it
needs to find the factors f c

m and fw
m that scale λc

m and λw
m to half the total

weight, respectively. The sum of all AdaBoost weights is one; therefore the sum
of all the di for this online algorithm is N , which is the number of samples seen
so far. Consequently, factors f c

m and fw
m are computed as follows:

λc
mf c

m = N
2 =⇒ f c

m = N
2λc

m

λw
mfw

m = N
2 =⇒ fw

m = N
2λw

m

3 Updateable Prequential Boosting

Oza’s online boosting algorithm computes the error of the weak classifiers fol-
lowing a frequency count scheme. The error εm is computed by means of the λc

m

and λw
m values. These values are bounded by N that is the number of training

samples seen so far. However, in a real environment of open-ended streams, N is
potentially infinite, so λc

m and λw
m values are unbounded and they could generate

overflow errors when the model is trained from an open-ended stream.
In this paper, we propose an alternative approach to compute the error εm

of the weak classifiers. This approach is based on the predictive sequential (pre-
quential) [26] using fading factor as described by Gama [25]. The prequential
error estimated using fading factor converges fast to holdout estimate, but it is
computed using bound values, so it avoids overflow errors.

Algorithm 3 shows the Updateable Prequential Boosting (UPB) approach
proposed in this paper. This algorithm scales the weight di of a sample si by a
value αt where 0 < α < 1 is the fading factor and t is the number of samples seen
so far since the sample si. The sum of the weights of the samples (λc

m and λm)
is multiplies by α with every new sample. Thus, the weight of the last learned
sample is scaled by a value α0 and the first learned sample is scaled by a value
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Algorithm 2. The Oza’s Online Boosting returning hfinal : X → Y

Let:

– A sample si = (xi, yi) with xi ∈ X = {vectors of attribute values} and label
yi ∈ Y

– A set of weak hypothesis H = {hm|1 ≤ t ≤ M}
– The sum of weights λc

m and λw
m of all the samples correctly and incorrectly classified

by hm

– A weak learning algorithm UpdateWeakLearner
– The number N of samples used to train hm

1: Let d1 = 1
2: for m = 1 to M do
3: Set k according to Poisson(dm)
4: for i = 1 to k do
5: Call UpdateWeakLearner(hm, s) and get back an updated weak hypothesis

hm

6: end for
7: if hm(xi) = yi then
8: Update λc

m = λc
m + dm

9: Let

dm+1 = dm
N

2λc
m

(2)

10: else
11: Update λw

m = λw
m + dm

12: Let

dm+1 = dm
N

2λw
m

(3)

13: end if
14: Compute the error of hm: εm =

λc
m

λc
m+λw

m
. If εm ≥ 1

2
then abort this loop

15: Let βm = εm
1−εm

16: end for
17: Final hypothesis:

hfinal(x) = argmax
y∈Y

∑
m:hm(x)=y

log
1

βm
(4)

αN . The scaling of weights is computed in an online way by equations 5 and 7
in algorithm 3.

For the UPB learning model, the sum of all scaled weights is ω = 1−αN+1

1−α .
Therefore, factors f c

m and fw
m are computed as follows:

λc
mf c

m = ω
2 =⇒ f c

m = ω
2λc

m

λw
mfw

m = ω
2 =⇒ fw

m = ω
2λw

m

These factors are used to scale the weight of every sample in equations 6 and 8
of algorithm 3. Moreover, the sum of all scaled weights ω = λc

m + λw
m converges

to 1
1−α when N approaches infinity. So, λc

m and λw
m values are bounded.



466 J.L. Triviño-Rodriguez, A. Ruiz-Sepúlveda, and R. Morales-Bueno

Algorithm 3. The Updateable Prequential Boosting returning hfinal : X → Y

Let:

– A sample si = (xi, yi) with xi ∈ X = {vectors of attribute values} and label
yi ∈ Y

– A set of weak hypothesis H = {hm|1 ≤ t ≤ M}
– The sum of weights λc

m and λw
m of all the samples correctly and incorrectly classified

by hm. They must be initialized to 0 before the first call to this algorithm
– A weak learning algorithm UpdateWeakLearner
– The prequential fading factor α
– The value pow that store αN+1 where N is the number of samples used to train

hm. It must be initialized to 1.0 before the first call to this algorithm

1: Let d1 = 1
2: for m = 1 to M do
3: Call UpdateWeakLearner(hm, si, dm) and get back an updated weak hypothesis

hm

4: if hm(xi) = yi then
5: Update λm

λc
m = λc

m ∗ α + dm

λw
m = λw

m ∗ α
(5)

6: Let
pow = pow ∗ α
dm+1 = dm

1−pow
2(1−α)λc

m

(6)

7: else
8: Update λm

λc
m = λc

m ∗ α
λw

m = λw
m ∗ α + dm

(7)

9: Let
pow = pow ∗ α
dm+1 = dm

1−pow
2(1−α)λw

m

(8)

10: end if
11: Compute the error of hm: εm =

λc
m

λc
m+λw

m
. If εm ≥ 1

2
then abort this loop

12: Let βm = εm
1−εm

13: end for
14: Final hypothesis:

hfinal(x) = argmax
y∈Y

∑
m:hm(x)=y

log
1

βm
(9)

4 Empirical Evaluation

In this section, we present an experimental evaluation of our approach. The
accuracy of Updateable Prequential Boosting (UPB) is compared with Oza’s
Online Boosting.

We have used several synthetic datasets from the MOA [27] software. In ta-
ble 1, the datasets used to compare these methods are shown. It displays the
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dataset name, the number of attributes including the class attribute and the
configuration of the dataset generator. We have taken 20.000 samples for every
dataset without concept drift. Since datasets have not concept drift, learning
models achieve a stable accuracy after a certain number of samples. So, the dif-
ference between the accuracy of the Oza’s model and the UPB model does not
vary significantly after this point and it is not necessary to use larger datasets
to compare both models. Moreover, with larger datasets, the difference between
the Oza’s model and the UPB model is that the Oza’s model crashes when the
unbounded variable N is out of the range of the data type of the implementation.

Table 1. Information about MOA synthetic datasets used in the experiments

Dataset Attributes Parameters

Agrawal 9 function= 1 ; perturbFraction = 0.05
Hyperplane 10 noisePercentaje = 0
Random RBF 11 numCentroids = 50
Sea concepts 3 function = 1 ; noisePercentaje = 0

In order to implement the Updateable Prequential Boosting (UPB) learning
model, a weak learner is needed. The model used as weak learner by UPB must
implement a fading factor like the α parameter of the UPB model. An Update-
able Decision Stump (UDS) with prequential fading factor has been implemented
and integrated into the Weka software package [28]. In the experiments then we
will use this UDS and the Updateable Naive Bayes (UNB) model of Weka as a
weak learner. Moreover, in order to compare our method with Oza’s Boosting,
we have implemented and integrated this model into Weka.

Both of the tested learning models have a learning parameter that defines the
number of weak learners computed throughout the learning task. We have taken
the same number of weak learners for both model (100 weak learners) in order
to avoid unfair advantage over UPB.

The α fading factor tunes the memory of the model. The weight of a sample
si is scaled by αt where t is the number of samples seen so far since the sample
si. Hence, the weight of a sample decreased exponentially with t. If α is small
then much weight is accumulated in only a few samples from the last of the
stream and the model have not much memory. However, if α is near to 1.0, an
important portion of the total weight is distributed over a greater number of
samples. For example, if α = 0.99, then the 80% of the total weight is only in
the last 160 samples, but if α = 0.999 then the 80% of the total weight is in
the last 1600 samples and, if α = 0.9999, then the 80% of the total weight is in
the last 16000 samples. The optimum value of α depends on the weak learner
and the problem. However, in order to avoid unfair advantages over the Oza’s
algorithm, the fading factor of UPB has not been fully optimized and only the
value of 0.9999 has been taken into account.

The accuracy of Oza’s Boosting and UPB over the datasets has been com-
puted by means of a Test-Then-Train approach. In this approach, each indidual
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Table 2. Average accuracies

Dataset OzaB(UDS) UPB(UDS) OzaB(UNB) UPB(UNB)

Agrawal 0.84 0.82 0.92 0.92
HPlane 0.60 0.57 0.87 0.87
R. RBF 0.78 0.76 0.92 0.92
Sea C. 0.71 0.70 0.94 0.94

sample is used to test the model before it is used for training, and accuracy is
incrementally updated. The results of this test and the standard deviation of the
accuracy throughout the 20.000 iterations of this test are shown in table 2.

Table 2 shows that UPB has the same accuracy as Oza’s Boosting with the
Updateable Naive Bayes as weak learner. Furthermore, with the Updateable
Decision Stump model as weak learner, UPB achieves significantly the same
accuracy as Oza’s Boosting with only an average difference of 2% along the data
stream. Moreover, the sequence of samples correctly classified and incorrectly
classified can be described like a binomial distribution and we can show that
they are not statistically significantly different.

Figures 1 show the Oza’s Boosting and UPB learning curves for described
datasets. Visual inspection confirms that the learning curve of the UPB model is
near the learning curve of Oza’s Boosting and it reflects the main goal achieved
by this paper, since they show that UPB can achieve the same accuracy as
Oza’s Boosting without unbounded internal values. UPB boosting is under Oza’s
Boosting learning curve several times, but we must take into account that the
fading factor of the UPB model has not been optimized for these curves.

� ���� ���� ���� ���� ����� ����� ����� ����� ����� �����

���

���	

���

���	

��


��
	

�

��
����������

��
����������

��������

��������

���
�
�

�
�
�
�
�

�
 

� ���� ���� ���� ���� ����� ����� ����� ����� ����� �����

���

���	

���

���	

��


��
	

�

��
����������

��
����������

��������

��������

���

�
�
�
�
�

�
�

� ���� ���� ���� ���� ����� ����� ����� ����� ����� �����

���

���

��	

���

��


�

��
����������

��
����������

��������

��������

�������
��

 
!
!
"
�

!
�

� ���� ���� ���� ���� ����� ����� ����� ����� ����� �����

���

���

��	

���

��


�

��
����������

��
����������

��������

��������

��
 ������� �

�
�
�
�
 


�
!

Fig. 1. Learning curves of tested models for described datasets
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5 Conclusion

In this paper, we describe an online version of the AdaBoost.M1 boosting al-
gorithm. The described learning model is based in Oza’s online boosting model
but it avoids the use of internal unbound values.

This modified learning model can be applied to task where huge amount of data
come at high speed from a non ended data stream. Examples of these environments
are sensor networks, network activity logging, online video surveillance, etc. In
these environments, models with unbound variables will crash in a short time.

We have shown, through experiments, that our online version of boosting
performs comparably to the model it is based on. This paper compares the
accuracy of the UPB model with Oza’s boosting model over Decision Stumps
and Naive Bayes. This empirical evaluation has shown that the learning curves
of both model are closed or even the learning curve of the UPB model improve
Oza’s model.

Our current empirical work focuses on testing with large, continuously arriving
data streams and a wide variety of weak learners such as hoeffding trees or neural
networks.

Theoretical tasks include the study of how to compute the prequential error
in weak learners.
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Abstract. Very Fast Decision Tree (VFDT) is one of the most popular decision 
tree algorithms in data stream mining. The tree building process is based on the 
principle of the Hoeffding bound to decide on splitting nodes with sufficient 
data statistics at the leaf. The original version of VFDT requires a user-defined 
tie threshold by which a split will be forced to break to control the tree size. It is 
an open problem that the tree size grows tremendously with noise as continuous 
data stream in and the classifier's accuracy drops. In this paper, we propose a 
Moderated VFDT (M-VFDT), which uses an adaptive tie threshold for node 
splitting control by incremental computing. The tree building process is as fast 
as that of the original VFDT. The accuracy of M-VFDT improves significantly 
even under the presence of noise in the data stream. To solve the explosion of 
tree size, which is still an inherent problem in VFDT, we propose two 
lightweight pre-pruning mechanisms for stream mining (post-pruning is not 
appropriate here because of the streaming operation). Experiments are 
conducted to verify the merits of our new methods. M-VFDT with a pruning 
mechanism shows a better performance than the original VFDT at all times. 
Our contribution is a new model that can efficiently achieve a compact decision 
tree and good accuracy as an optimal balance in data stream mining. 

Keywords: Data Stream Mining, Hoeffding Bound, Incremental Pruning. 

1   Introduction 

Since the early 2000s, a new generation of data mining called data stream mining 
(DSM) has received much research attention. DSM requires only one pass on infinite 
streaming data and the decision model is dynamically trained, while the incoming 
new data streams are being received in run-time [1]. Very Fast Decision Tree (VFDT) 
is a well-known decision tree algorithm for DSM [2]. Its underlying principle is a 
dynamic decision tree building process that uses a Hoeffding bound (HB) to 
determine the conversion of a tree leaf to a tree node by accumulating sufficient 
statistics from the new samples. Although VFDT is able to progressively construct a 
decision tree from the unbounded data stream, VFDT suffers from tree size explosion 
and the deterioration of prediction accuracy when the data streams are impaired by 
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noise. Such imperfect data often exists in real life, probably because of unreliable 
communication hardware or temporary data loss due to network traffic fluctuation. 
Although VFDT and its variants have been extensively studied, many models assume 
a perfect data stream and have sub-optimal performance under imperfect data streams.  
In this paper, we devise a new version of VFDT called Moderated VFDT (M-VFDT) 
that can provide sustainable prediction accuracy and regulate the growth of decision 
tree size to a reasonable extent, even in the presence of noise. This is achieved by 
revising the decision tree building process – in particular, the conditional check of 
whether a leaf should be split as a new tree node is modified. The new checking 
condition is made adaptive to the distribution of the incoming data samples, which in 
turn influences the value of the HB that is a key factor in the decision tree 
construction. It is adaptive in the sense that no human intervention is required during 
the data stream mining; we let the incoming data decide on how precisely (or how 
frequently) the tree node splitting should be done, hence the depth of the decision 
tree. Improved accuracy is achieved by an adaptive tie threshold rather than a user-
defined tie threshold, but the tree size is still as big as in VFDT. To solve this 
problem, incremental pruning methods are proposed to complement the adaptive tie 
threshold mechanism for controlling the tree size as well as maintaining the accuracy. 
The result is an optimally compact decision tree that has good prediction accuracy, by 
M-VFDT. This work is significant because the proposed algorithms (adaptive tie 
threshold and pruning) are both lightweight and adaptive and this makes M-VFDT 
favorable in a data stream mining environment. 

This paper is structured as follows. Section 2 introduces a research framework that 
summarizes the background of VFDT, the effect of the tie threshold in tree building 
and the impact of noise in data stream mining. Section 3 presents details of our 
proposed model M-VFDT that consists of the adaptive tie threshold and incremental 
pruning mechanisms. Experimental validation is carried out in the following Section. 
Both synthetic and real-world stream datasets are used to thoroughly test the 
performance of M-VFDT compared to VFDT. The experimental results demonstrate 
that M-VFDT performs better than the original VFDT at all times. The conclusion of 
this study is given in Section 5. 

2   Research Background 

2.1   Very Fast Decision Tree (VFDT)   

The VFDT system [2] constructs a decision tree by using constant memory and 
constant time per sample. It is a pioneering predictive technique that utilizes the 
Hoeffding bound (HB). The tree is built by recursively replacing leaves with decision 
nodes. Sufficient statistics of attribute values are stored in each leaf. Heuristic 
evaluation function is used to determine split attributes converting from leaves to 
nodes. Nodes contain the split attributes and leaves contain only the class labels. The 
leaf represents a class that the sample labels. When a sample enters, it traverses the  
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tree from root to leaf, evaluating the relevant attribute at every single node. After the 
sample reaches a leaf the existing statistics are updated. At this time, the system 
evaluates each possible condition based on attribute values: if the statistics are 
sufficient to support the one test over the other, a leaf is converted to a decision node. 
The decision node contains the number of possible values for the chosen attribute of 
the installed split test. The main elements of VFDT include: firstly, a tree initializing 
process that only has a single leaf at the beginning; secondly, a tree growing process 
that contains a splitting check using the heuristic evaluation function G(.) and the HB. 
VFDT uses information gain as G(.). A flowchart that represents the operation of the 
VFDT algorithm is shown in Figure 1. 

 

Fig. 1. A workflow representing the VFDT algorithm tree building process   

The HB in Equation (1) is used by the necessary number of samples (sample#) to 
ensure control over error in attribute splitting distribution selection. For n independent 
observations of a real-valued random variable r whose range is R, the HB illustrates 
that with confidence level 1-δ, the true mean of r is at least ε−r , where r  is the 
observed mean of samples. For a probability the range R is 1, and for an information 
gain the range R is log2Class#. 

n

R

2
)/1ln(2 δε = . (1)

VFDT makes use of the HB to choose a split attribute as a decision node. Let xa be 
the attribute with the highest G(.), xb be the attribute with the second highest G(.). 

)()( ba xGxGG −=Δ  is the difference between the two top quality attributes. If 
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ε>ΔG  with N samples observed in leaf, while the HB states with probability 1-δ that 
xa is the attribute with highest value in G(.), then the leaf is converted into a decision 
node which splits on xa . However, in some cases the highest and the second highest 
G(.) do not differ greatly, and so the process gets stuck in a tie condition. Resolving 
the tie in detail may slow down the VFDT operation. A user pre-defined threshold τ is 
thus used as an additional splitting condition so that if ∆G is below τ, a split will be 
enforced and it quickly breaks the tie. 

2.2   Effects of Tie Breaking in Hoeffding Trees 

When two candidates of nodes competing to become a splitting node are equally good 
(having almost the same value of information gain), it may take a long time and 
intensive computation to decide between them. This situation not only drains 
significant amounts of computational resources, but the tie-breaking result at the end 
might not always contribute substantially to the overall accuracy of the decision tree 
model. To alleviate this, the research team [3], introduced a tie breaking parameter τ. 
This tie threshold is added as an additional splitting condition in VFDT, so that 
whenever the HB becomes so small that the difference between the best and the 
second best splitting attributions is not obvious, τ comes in as a quick deceive 
parameter to resolve the tie. Using less than τ as a comparing condition, with the 
value of τ arbitrarily chosen and fixed throughout the operation, the candidate node is 
chosen to be split on the current best attribute, regardless of how close the second best 
candidate splitting attribute might be. The percentage of the condition being broken is 
related to the complexity of the problem. It is said that an excessive invocation of tie-
breaking significantly reduces VFDT performance on complex and noise data [6], 
even with the additional condition by the parameter τ. 

Their proposed solution [6] to overcome this detrimental effect is an improved tie -
breaking mechanism, which not only considers the best and the second best splitting 
candidates in terms of heuristic function, but also uses the worst candidate. At the 
same time, an extra parameter is imported, α, which determines how many times 
smaller the gap should be before it is considered as a tie. The attribute splitting 
condition becomes: when α × (G(Xa) – G(Xb)) < (G(Xb) – G(Xc)), the attribution Xa 
shall be split as a node, instead of the original one shown in Figure 1. Obviously, this 
approach uses two extra parameters, α and Xc, which bring extra computation to the 
original algorithm. In this paper, we propose an alternative design of a tie threshold 
parameter that is adaptive and is calculated directly from the mean of the HB, which 
is found to be proportionally related to the input stream samples. 

2.3   Detrimental Effect of Noise in Data Stream    

Noise data is considered a type of irrelevant or meaningless data that does not 
typically reflect the main trends but makes the identification of these trends more 
difficult. Non-informative variables may be potentially random noise in the data 
stream. It is an idealized but useful model, in which such noise variables present no 
information-bearing pattern of regular variation. However, data stream mining cannot 
eliminate those non-informative candidates in preprocessing before starting 
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classification mining, because concept drift may bring the non-informative noise 
variables into informative candidates. Our experiment on VFDT reenacts this 
phenomenon in Figure 2. Evidently, the inclusion of noise data reduces the accuracy 
of VFDT as well as increasing tree size. This consequence is undesirable in decision 
tree classification. There has been an attempt to reduce the effect of noise by using 
supplementary classifiers for predicting missing values in real-time and minimizing 
noise in the important attributes [7]. Such methods still demand extra resources in 
computation. 
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Fig. 2. This experiment demonstrates the detrimental effect of noise data in data stream. 
Experimental dataset is synthetic one-million samples LED dataset, which contains 24 nominal 
attributes and one million sample records. VFDT settings – split confidence δ = 10-7, tie 
threshold τ = 0.05 (small value for smaller tree size), grace period nmin = 200; the split criterion 
is information gain. 

  

Fig. 3. Influence of tie threshold τ to VFDT. The setup is same as that in Figure 2, except for 
the selection of τ. The value of τ varies from 0.1 to 0.5. 

The experimental results in Figure 3 show the influence of different values of τ to 
VFDT accuracy and tree size. The high value of τ gives rise to loose (relaxed) 
attribute splitting conditions, whereby the tree size becomes large. As the tree size 
grows, more rules are generated and the classification conditions become refined, and 
a better VFDT accuracy is, therefore, obtained. However, τ is a user predefined value. 
We are unable to know in advance which value of τ is the best, until all the 
combinations are tried by means of trial and error. To the best of the authors’ 
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knowledge, no in-depth study has yet been conducted on how to find an optimum 
solution amongst a suitable value of τ, tree size and accuracy in VFDTs. This problem 
reduces the applicability of VFDT to real-time applications.  

3   Moderated Very Fast Decision Tree (M-VFDT)  

A new model called Moderated VFDT (M-VFDT) is proposed. It embraces data with 
noise with two additional techniques called adaptive tie threshold and incremental 
pruning to control tree size and improve accuracy.  

3.1   Observation of Hoeffding Bound Fluctuation 

The new technique, namely the Adaptive Tie Threshold, is based on the observation of 
Hoeffding bound fluctuation. The Hoeffding bound (inequality), or Chernoff bound to use 
its alternative name, is widely known as an important probabilistic bound for achieving 
good accuracy of a decision tree in stream mining. In particular, the HB) is used in 
deciding the attribute on which to split. A splitting attribute appears when tree structure 
update conditions meet and the corresponding HB is computed according to Equation 1. In 
terms of the accumulated HB values, the mean and the variance are recorded respectively. 
Under the noise data stream, it is found that HB values and variances fluctuate within a 
range of maximum and minimum values. The fluctuation intensifies with the increase of 
noise. As shown in the group of sub-graphs in Figure 4, the HB values and variances are 
spread out in groups along the y-axis. Under a noise-free environment, the contrasting HB 
values and variances differ very little (Fig. 4a). 

This phenomenon strongly implies that a steady HB is desirable even though it receives 
heavy noise data in the construction of a decision tree. In other words, if we can keep a 
tight hold of the HB fluctuation, the resulting decision tree could be relieved from the ill 
effects of data noise, at least to certain extent. The mathematical property of HB is defined 
as a conservative function and has been used classically in Hoeffding tree induction for 
many years. (HB formulation is simple and works well in stream mining; it depends on the 
desired confidence and the number of observations.) We were inspired to modify the node 
splitting function, based on the mean of HB, instead of modifying the HB formulation. 
Holding on to the mean of HB is equivalent to avoiding the fluctuation of HB values, 
thereby reducing the noise effects. Table 1 shows the HB changing with different noise 
percentages. Clearly, a noise-free data stream produces the lowest HB mean and variance 
during the attribute splitting process. The distributions of the changing HB are represented 
in Figure 4 in the different settings of noise levels. 

Table 1. HB values varying in VFDT (tie0.05) attribute splitting in LED dataset 

Noise % Min. HB Max. HB HB Mean HB Variance 
0 0.049713 0.666833 0.084249 0.003667 
5 0.049862 0.666833 0.102919 0.005114 

10 0.049861 0.666833 0.101125 0.004882 
15 0.04986 0.666833 0.108844 0.006011 
20 0.049872 0.666833 0.103495 0.005086 
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Fig. 4.a. HB distribution in LED dataset NP=0 

 
Fig. 4.b. HB distribution in LED dataset NP=5 

 
Fig. 4.c. HB distribution in LED dataset NP=10 

 
Fig. 4.d. HB distribution in LED dataset NP=15 

Fig. 4. Distribution charts of different noise-included datasets in VFDT (tie=0.05), comparing 
the Hoeffding bound to mean and variance  
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Fig 4.e. HB distribution in LED dataset NP=20 

Fig. 4. (continued) 

3.2   Adaptive Splitting Tie Threshold 

As noted in Section 3.1, HB fluctuation intensifies with the increase of noise, which 
has a detrimental effect on VFDT accuracy. To solve this problem, we modify the 
attribute splitting process by using a dynamic tie threshold τ that restricts the attribute 
splitting as a decision node. Traditionally, τ is a user pre-configured parameter with a 
default value in VFDT. We are not able to know which value of τ is the best until all 
possibilities in an experiment are tried by brute force. Longitudinal testing on 
different values in advance is certainly not favorable in real-time applications. 
Instead, we assign an adaptive tie threshold, equal to the dynamic mean of HB as the 
splitting tie threshold, which controls the node splitting during the tree building 
process. Tie breaking that occurs near the HB mean can effectively narrow the 
variance distribution. The HB mean is calculated dynamically whenever new data 
arrives and HB is updated. It consumes few extra resources as HB would have to be 
computed in any case, as shown in Equation 2. When a new splitting method is 
implemented, τ is updated corresponding to the Hoeffding bound mean value.  
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The new τ is updated when HB is computed each time with the incoming data. 
With this new method in place, M-VFDT has a dynamic τ whose value is no longer 
fixed by a single default number but adapts to the arrival instances and HB means. 
The M-VFDT operation with an adaptive τ is presented in Figure 5. The tree 
initializing process is the same as the original VFDT shown in Figure 1. The main 
modification is in the tree building process as follows:  

 Count(l): sufficient count of splitting-check of examples seen at leaf l 
 HBMean(l): dynamic mean of HB in splitting of examples seen at leaf l 
 HBSum(l): incremental statistic sum of HB in splitting of examples seen at leaf l 
 Prune: the pruning mechanism. Default value is Null, which means un-pruning  
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Fig. 5. M-VFDT algorithm. The adaptive tie threshold is computed in the dotted box.  

3.3   Pruning Mechanisms 

Pruning is an important part of decision tree learning that reduces the tree size by 
removing sections of the tree which provide little power to classify instances. It helps 
to reduce the complexity of a tree model. The pruned sections are often the fallout of 
noisy or erroneous data. By using an adaptive tie threshold for controlling the splitting 
condition, the accuracy of VFDT has significantly improved, as shown in Section 4. 
However, high accuracy comes with a large increase in tree size. To rectify the tree 
size problem, we propose two pruning approaches, the strict pruning mechanism and 
the loose pruning mechanism, each of which reflects a strong and weak pruning 
strength, respectively.  

VFDT collects sufficient statistics to compute the number of instance counts by 
filtering the new instance to a leaf by the current tree model. When the splitting 
condition is satisfied, the attribute splitting approach simply proceeds at various 
points of the tree construction algorithm, without re-scanning the data stream.  

In our pruning mechanisms, a leverage variable is used to identify the observations 
which have a great effect on the outcome of fitting tree models. The leverage point is 
set when a new instance is entering into a leaf, according to the current tree building 
model. It is not absolutely true that all unseen instances can fall into the leaves of the 
current tree. Suppose the count of unseen instances number falling into an existing 
leaf is called a PseudoCount, and the count of unseen instances number not falling 
into a current leaf is RealCount. We therefore let Leverage be the difference of 
RealCount minus PseudoCount. Leverage can be a negative, zero or positive number. 
It is calculated by: Leverage = RealCount – PseudoCount.   

Mechanism 1: Strict Pruning. This pruning mechanism works with dynamic mean 
splitting condition and it is incremental in nature. It keeps a very small tree size by 
sacrificing some accuracy. The pruning condition is simply: Leverage ≤ 0. 
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Strict pruning only considers the horizontal comparison of attribute splitting with 
respect to the current leverage point. It imposes a strict breaking criterion so that the 
pseudo-count falls beyond the true count during the whole tree building process. In 
additional to horizontal comparison, we suggest a vertical comparison of current 
Leverage and the last Leverage estimated at the previous cycle of splitting process. 
The difference of current Leverage and last Leverage is defined as DeltaLeverage, 
where DeltaLeverage = Leverage – LastLeverage. 

Mechanism 2: Loose Pruning. This pruning mechanism encompasses strict pruning, 
adding an optional splitting condition of DeltaLeveage. The pruning condition is: 
Leverage ≤ 0 OR DeltaLeverage ≤ 0. 

The reasons why these two pruning mechanisms are chosen:  

(1) The tree building process of VFDT uses sufficient statistics that count the number 
of instances filtered to a leaf on the current Hoeffding tree (HT). The splitting is 
based on these counts. The filtering process can easily compute the number of 
real counts and pseudo-counts without much extra effort. In strict pruning, if the 
real count becomes smaller than the pseudo-count, it means the performance of 
the current HT is not so adaptive to the new arrival instances (noise induced tree 
branches start building up). It is a strict condition that it shall be pruned during 
tree building, if the Leverage is lower than zero. 

(2) In the loose pruning mechanism, DeltaLeverage is used as a pre-pruning 
condition that compares the current Leverage with its previous one. It examines 
the trend of the built tree’s performance in the nearest two splitting processes. If 
the current Leverage is smaller than its previous one, it means the current HT’s 
performance is declining. In this case, the tree should be pruned by an extra 
splitting node condition where i is the current step of the HT building process. 

4   Experiments  

In this section, a variety of large data streams, with nominal and numeric attributes, 
are used to stress test our proposed model. The M-VFDT with adaptive tie threshold 
and pruning shows consistently better performance than the VFDT that uses a fixed 
default tie threshold. The datasets are both synthetic from a stream generator and 
obtained from live data of real world applications. The characteristics of the 
experimental datasets are given in Table 2. With the same experiment settings as 
those in Figure 3, we estimate the best tie threshold value to be used for VFDT as a 
base comparison to our model by trying different tie threshold values from 0.1 to 0.9.   

Table 2. Characteristics of the experimental datasets 

Dataset Description Type Attr.# Class# Ins# Best Tie 
LedNP10 LED display [4]  Nominal 24 10 1.0×106 0.7 
LedNP20 LED display [4] Nominal  24 10 1.0×106 0.4 

Wave Waveform [4] Numeric  22 3 1.0×106 0.3 
Connect-4 UCI Data [5] Nominal  42 3 67,557 0.6 
Nursery  UCI Data [5] Nominal 9 5 12,960 0.3 
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Fig. 6. Accuracy and tree size comparison of M-VFDT and VFDT in different datasets 
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The results in Figure 6 validate the accuracy and the tree size comparison of these 
two pruning mechanisms on the same experimental dataset. It compares to the 
original VFDT with a stationary tie threshold whose value is found to be the best by 
the brute-force method earlier on. In general, we observe that M-VFDT with strict 
pruning keeps the tree size smallest, but the accuracy is worse than that of others. The 
loose pruning method for M-VFDT yields reasonable accuracy that is on par with 
VFDT, but its tree size is more compact than that of VFDT, although it is still larger 
than the tree by strict pruning. Both strict and loose pruning methods in M-VFDT 
make compromises between accuracy and tree size. This can be explained by the fact 
that a small tree classifies instances coarsely because of the relatively small paths of 
tree branches, and so accuracy is adversely affected. A classifier that can perform 
precisely in classification usually requires a bushy tree with many conditional rules.  

Our current research focus is on how to choose an optimal between the strict and loose 
pruning. Strict pruning has its merits in achieving a small tree size, from which concise 
classification rules can be derived and, generally, they are easily readable. In contrast, the 
loose pruning mechanism, although resulting in a bigger tree size, achieves much higher 
accuracy than that of the strict pruning mechanism. A significant contribution of M-
VFDT is that loose pruning achieves an almost similar level of accuracy as the VFDT 
with the best chosen but stationary value of tie-breaking, and M-VFDT results in a much 
smaller tree size.   

5   Conclusion and Future Work  

We have proposed an improved decision tree algorithm for data stream mining, which 
is called Moderated VFDT or simply M-VFDT. M-VFDT embraces an adaptive tie 
threshold for deciding on splitting nodes whose value is calculated dynamically from 
the mean of the Hoeffding bound. Tie threshold is an important parameter as 
advocated by [6] in speeding up the construction of the decision tree in stream 
mining, however it was assumed to be a stationary default value in most  other 
research works in studying VFDT. With the adaptive tie threshold, the accuracy of M-
VFDT has greatly improved in comparison to the original VFDT. The performance 
improvement by M-VFDT is shown to be more apparent when the data streams are 
infested by noise. This work is important because noise in input data is already known 
to cause very adverse effects both on the accuracy degradation and tree size 
explosion. In addition, we proposed two pre-pruning mechanisms for M-VFDT to 
reduce the tree size and make the classification model compact. Two types of pruning, 
namely strict and loose pruning are proposed; they are both incremental in nature (as 
we know that, in stream mining, post-pruning may not be favorable because the tree is 
continually being updated as data streams in). All of these extra mechanisms, 
including incremental pruning and adaptive tie threshold, are lightweight in 
computation. This makes M-VFDT suitable to a stream mining environment, where 
speed, accuracy and tree size, as it relates to memory constraint, are of concern. 

In the future, we intend to adopt M-VFDT as a core enabling model in different 
case studies of real-time stream mining applications. We also want to extend the 
concepts of adaptive tie threshold and incremental pruning to other variants of VFDT. 
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Furthermore, it will be interesting to find a formula for automatically estimating an 
optimal balance between tree size and accuracy by using some optimization theories. 
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Abstract. A burst, i.e., an unusally high frequency of an event in a
time-window, is interesting in monitoring systems as it often indicates
abnormality. While the detection of bursts is well addressed, the ques-
tion of what “critical” thresholds, on the number of events as well as
on the window size, make a window “unusally bursty” remains a rele-
vant one. The range of possible values for either threshold can be very
large. We formulate finding the combination of critical thresholds as a
2D search problem and design efficient deterministic and randomized
divide-and-conquer heuristics. For both, we show that under some weak
assumptions, the computational overhead in the worst case is logarith-
mic in the sizes of the ranges. Our simulations show that on average, the
randomized heuristic beats its deteministic counterpart in practice.

Keywords: Analytics for temporal data, Massive data analytics.

1 Introduction

A burst is a window in time when an event shows an unusally high frequency of
occurrence, and often indicates a deviation from the norm. E.g., in text streams
from news articles or blogs, an important event like the 9/11 attack caused a
burst of the keywords like “twin towers” or “terror”. A burst in clicks to an online
advertisement might indicate a click fraud [8]. Instrusions over the Internet often
exhibit a bursty traffic pattern [6]. In astrophysics, a Gamma ray burst might
indicate an interesting phenomenon [10,9].

Labelling a window in time as “bursty” calls for at least two thresholds - one
on the number of events (k) and the other on the length of the window (t). We
call a window (k, t)-bursty if at least k events occur in a time window of length
at most t. While the problem of identifying (k, t)-bursty windows, given k and
t, is interesting in itself, knowing the right thresholds is part of the problem.
For a given t, to know what value of k should be termed “unusually high”, we
first need to know typically how many events to expect in a window of length
t. Similarly, for a given k, to know what value of t is “unusually low”, we first
need to know typically how long it takes to generate k events.
� This work was done when this author was an intern at Siemens Corporate Research,
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Before we formally defined the problem of finding the critical thresholds, we
had to quantify the notion of “usual” and “unusual”. We defined a metric called
“coverage”: given a threshold pair (k, t), and a sequence of timestamps of n
events, the coverage Ck,t is the fraction of the n events that were included in
some (k, t)-bursty window. Note that, a single event can be part of more than
one (k, t)-bursty windows. For a given pair (k, t), if we find that Ck,t is quite
close to 1, then actually we are not interested in such a pair (k, t), because that
implies having at least k events in a window of length at most t is not unusual,
and hence should hardly be labelled as a burst. On the other hand, a Ck,t value
quite close to 0 implies having k events in a window of length at most t is not
usual, and hence demands attention.

Note that, this definition ensures Ck,t ∈ [0, 1], and makes Ck,t monotonically
non-increasing in k and non-decreasing in t, properties that we prove and take
advantage of in our algorithms.

We focus on identifying critical pairs (k∗, t∗) such that Ck∗,t∗ is abruptly
different from values of Ck,t for pairs (k, t) which are in the neighborhood of
(k∗, t∗) (and k < k∗) - this implies having k∗ events in a window of length at most
t∗ is not the norm, yet there are some rare situations when this has happened.
Note that, for a given pair (k, t), Ck,t can be computed by making a single pass
over the data, but if the range of possible values for k and t have sizes K and
T respectively, then evaluating Ck,t at every point in the two-dimensional space
would have a computational overhead of O(KT ). Since for most applications, we
hardly have any apriori idea what combination of thresholds are critical, each of
K and T can be rather large, e.g., t might range from a few minutes to a few
hours, depending on the nature of the application, and k might take any value
from 2 to a few thousand.

Our contributions can be summarized as follows:

– We formally define the problem of finding critical threshold pairs that should
label a subsequence of a time series data as unusually bursty. We formulate
it as a two-dimesional search problem.

– We prove monotonicity properties of the coverage function rigorously, and ex-
ploit them to design deteministic and randomized divide-and-conquer heuris-
tics that explore the search space efficiently. Under some weak assumptions,
we show the deterministic heuristic computes Ck,t at O(log K log T ) differ-
ent points, and, under identical assumptions, the randomized heuristic also
computes Ck,t at O(log K log T ) different points on expectation in the worst
case. For lack of space, we only present the claims here - the proofs
can be found in the full version [3].

– We experimentally compared the performance of our deterministic and ran-
domized heuristics with that of a naive algorithm that evaluates Ck,t at at
most, but typically much less than, KT points. Even with some optimiza-
tions of the naive algorithm, the savings made by our heuristics are in the
range of 41% to 97%. Note that although our analysis (Section 6) assumes
we stop after getting the first (k∗, t∗), in our experiment (Section 7), we
continued till we got all possible values of (k∗, t∗).
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2 Related Work

Zhu and Shasha [10] addressed “elastic” burst detection, where they kept a dif-
ferent threshold for each among a number of different window sizes and identified
windows over the time-series when an aggregate function (sum) computed over
the window exceeded the corresponding threshold. Their algorithm builds on the
time series a Shifted (binary) Wavelet Tree (SWT) data structure, which was
generalized in [9] to a faster data structure called Aggregation Pyramid. [9] and
[5] revealed correlated bursts among multiple data streams in stock exchange and
text data.

Kleinberg [1] investigated how keywords in document streams like emails and
news articles show a bursty pattern, and developed a framework in the form of
an infinite-state automata to model bursts in a stream. Kumar et al [2] extended
the ideas of [1] to discover bursts in the hyperlinking among blogs in Blogspace,
which occurs when one author publishes an entry on her blog that increases
the traffic to her blog and stimulates activities in other blogs that focus on the
same topic at the same time. Vlachos et al [4] addressed the problem of burst
detection for search engine queries to detect periodic (e.g., weekly or monthly)
trends. Yuan et al [7] worked on trend detection from high-speed short text
streams

While all these earlier literature have focused on the detection of burts, we
focus on finding the thresholds that define a burst. A heuristic like ours can be
used to learn from historical data what choice of thresholds separates a burst
from a non-burst, and can be used later in a real monitoring system for the same
application to detect bursts, when some other burst-detection algorithm can also
be used.

3 Problem Statement

We have a sequence of events S′ = (e1, e2, ...en). Let te be the timepoint at which
event e occurs, so the correspoding sequence of timestamps is S = (te1 , te2 , ...ten).
Let Nk,t be the number of events that are in some (k, t)-bursty window. As
defined in Section 1, the coverage for the pair (k, t), denoted as Ck,t, is Ck,t =
Nk,t/n. Let Kmin and Kmax be the minimum and maximum possible values
of k, known apriori, and K = Kmax − Kmin. Similarly, let Tmin and Tmax

be the minimum and maximum possible values of t, also known apriori, and
T = Tmax − Tmin.

We focus on the following problem:

Problem 1. Given the sequence S, and a user-given parameter θ > 1, find a set
α = {(k∗, t∗)} such that α ⊂ [Kmin + 1, Kmax]× [Tmin, Tmax], and for any pair
(k∗, t∗) ∈ α, Ck∗−1,t∗

Ck∗,t∗
≥ θ.

We first focus on simpler, one-dimensional versions of the problem. Assuming we
are dealing with a fixed value of the maximum window length t, this becomes
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Problem 2. For a fixed t, and a user-given parameter θ > 1, find a subset K∗ ⊂
[Kmin + 1, Kmax] such that for any k∗ ∈ K∗, Ck∗−1,t

Ck∗,t
≥ θ.

Alternatively, if we deal with a fixed value of the threshold k on the number of
events, this becomes

Problem 3. For a fixed k, and a user-given parameter θ > 1, find a subset T ∗ ∈
[Tmin, Tmax] such that for any t∗ ∈ T ∗, Ck−1,t∗

Ck,t∗
≥ θ.

We observed from our experiments that Ck−1,t

Ck,t
remains close to 1 most of the

time; however, for very few combinations of k and t, it attains values like 2 or 3
or higher - and these are the combinations we are interested in. Since K and T
can be pretty large, searching for the few critical combinations calls for efficient
search heuristics.

4 Monotonicity of the Coverage Function

Note that, Ck,t is a monotonically non-increasing function of k, and a monoton-
ically non-decreasing function of t. Intuitively, the reason is that for a fixed t, as
k increases, (k, t)-bursty windows become rarer in the data; and for a fixed k,
as t increases, it becomes easier to find (k, t)-bursty windows in the same data.
The formal proofs can be found in [3].

5 The Divide-and-Conquer Heuristics

5.1 The One-Dimensional Problem

We first discuss the solution for Problem 2 - the solution to Problem 3 is simi-
lar. Given the sequence S = (te1 , te2 , ...ten), and a given pair (k, t), Ck,t can be
computed on S in a single pass by algorithm 1. A naive approach would be to
invoke algorithm 1 with the pairs (k, t) ∀k ∈ [Kmin + 1, Kmax], and check when
Ck−1,t/Ck,t exceeds θ. This would take O(K) calls to algorithm 1. To cut down
the number of invocations to algorithm 1, we take a simple divide-and-conquer
approach, coupled with backtracking, and exploit the monotonicity of the func-
tion Ck,t discussed in Section 4. We present two variations of the approach - one
deterministic and the other randomized. The intuition is as follows:

Intuition: We split the range K of all possible inputs into two sub-intervals.
We devise a simple test to decide which of the two sub-intervals this value k∗

may lie within. The test is based on the observation that if a sub-interval X =
[ks, ke] contains a k∗ where the coverage function shows an abrupt jump (i.e.,
Ck∗−1,t/Ck∗,t ≥ θ), then the ratio of the coverages evaluated at the two end-
points should also exceed θ (i.e., Cks−1,t/Cke,t ≥ θ) because of the monotonicity
of Ck,t in k. Note that, the reverse is not necessarily true, as Cks−1,t/Cke,t

might exceed θ because there was a gradual change (of factor θ or more) from
ks − 1 to ke (if the interval [ks, ke] is long enough). Thus, the test may return a
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positive result on a sub-interval even if there is no such value k∗ within that sub-
interval. However, we repeat this process iteratively, cutting down the length of
the interval in each iteration - the factor by which it is cut down varies depending
on whether the heuristic is deterministic or randomized. The number of iterations
taken to reduce the original interval of width K to a point is O(log K). Note
that, in the case when there is no such point k∗, the intervals might pass the
test for first few iterations (because of the gradual change from ks to ke), but
then, eventually it will be reduced to some interval for which Cks−1,t/Cke,t will
fall below θ, and hence it will no longer pass the test.

Deterministic vs Randomized Divide-and-Conquer: We always split an
interval of width w into two intervals of length p·w and (1 − p)·w respectively,
where p ∈ (0, 1). For the deterministic heuristic, p is always 1

2 ; whereas for
the randomized one, p is chosen uniformly at random in (0, 1). If both the sub-
intervals pass the test, then for the deterministic heuristic, we probe into the sub-
intervals serially; whereas for the randomized one, we first process the smaller
one. The reasons for probing the smaller sub-interval first are the following

1. If it contains a point k∗, then it can be found in fewer iterations.
2. If it does not contain any point k∗, and passed the test of Lemma 1 falsely,

then, the algorithm would backtrack after few iterations.

Lemma 1. For a fixed t, if a sub-interval X = [ks, ke] contains a point k∗ such
that Ck∗−1,t/Ck∗,t ≥ θ, then Cks−1,t/Cke,t ≥ θ.

The search for t∗ in Problem 3 proceeds similar to the search for k∗ as we ex-
plained above, the difference being that the test on the sub-intervals is performed
using the following lemma. Note the difference: in Lemma 1, the ratio is of cov-
erage at start-point to that at end-point, whereas in Lemma 2, it is the other
way round: the difference arises because of the difference in the natures of the
monotonicities in k and t.

Lemma 2. For a fixed k, if a sub-interval X = [ts, te] contains a point t∗ such
that Ck−1,t∗/Ck,t∗ ≥ θ, then Ck−1,te/Ck,ts ≥ θ.

5.2 The Two-Dimensional Problem

We now advance to the original and more general problem in two dimensions,
i.e., Problem 1. Our algorithm for 2D is an extension of the algorithm for the 1D
problem discussed in Section 5.1 in the sense that it progressively divides the 2D
range of all possible values of k and t, i.e., [Kmin +1, Kmax]× [Tmin, Tmax], into
four sub-ranges/rectangles. For the 2D problem, the pair(s) (k∗, t∗) for which
Ck∗−1,t∗/Ck∗,t∗ exceeds θ will come from one or a few of these four sub-ranges.
We devise a test similar to the one in Section 5.1 to identify which of the four
sub-ranges may include the pair (k∗, t∗); and then probe into that sub-range
in the next iteration, cutting down its size again, and so on. If the range of
possible values for k and t are of unequal length, i.e., if K �= T , then the length
of the range would reduce to unity for the smaller one, and the rest of the search
becomes a 1D search on the other dimension, like the ones in Section 5.1.
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The test for identifying the correct sub-range in our 2D algorithm is based on
the observation in the following lemma.

Lemma 3. If a sub-range X = [ks, ke] × [ts, te] contains a point (k∗, t∗) such
that Ck∗−1,t/Ck∗,t ≥ θ, then Cks−1,te/Cke,ts ≥ θ.

Like the algorithms in Section 5.1 for the 1D problems, here also we have two
variants: one deterministic and the other randomized. If more than one of the
four sub-intervals/rectangles pass the test in Lemma 3, then for the deterministic
algorithm, we probe into them serially, and for the randomized one, we probe
into the rectangles in increasing orders of their areas.

Algorithm 1 computes the coverage Ck,t, given a sequence of timestamps (S =
(te1 , te2 , . . . , ten)), a lower bound k on the number of events and an upper bound t
on the window length. As we have already pointed out, even if a single timestamp
tei is included in multiple (k, t)-bursty windows, its contribution to Nk,t, in the
definition of Ck,t, is only 1. Hence, we maintain a bitmap (b1, b2, . . . , bn) of length
n, one bit for each timestamp in S. We slide a window over S, marking the
starting and ending points of the sliding window by s and f respectively all the
time. Once all the timepoints in a window are “picked up”, we check (in lines 1
and 3) if the number of events in the current window [s, f ], i.e., f−s+1, exceeds
the threshold k. If it does, then all the bits in the sub-sequence (bs, . . . , bf ) of
the bitmap are set to 1 (lines 2 and 4) to indicate that the timepoints indexed
by these bits are part of some bursty window.

Algorithm 2 performs a 1D search over the interval [ks, ke], for a fixed t
(Problem 2), and is called from Algorithm 3 once the range of t-values reduces to
a single point. A 1D search over the interval [ts, te] can be performed similarly,
for a fixed k (Problem 3) (we call it “RandomSearcht*”), and is called from
Algorithm 3 once the range of k-values reduces to a single point. In algorithm 2
and its counterpart for [ts, te], whenever we need to compute Ck,t, we first check
if it has already been computed, in which case, it should exist in a hashtable
with (k|t) being the key; otherwise, we compute it by invoking Algorithm 1, and
store it in the hashtable with key (k|t).

Note that, in lines 2 and 3 of Algorithm 2, r might exceed θ because of a
divison-by-zero error. In case that happens, we will explore the interval only if
Cksmall

s −1,t ≥ 0, because Cksmall
s −1,t = 0 implies Cksmall

e ,t = 0 by the monotonic-
ity, and it is not worth exploring [ksmall

s , ksmall
e ].

Algorithm 3 performs the search over the 2D interval [ks, ke]× [ts, te] to solve
Problem 1. A rectangle is defined as a four-tuple (tl, th, kl, kh), i.e., the set of all
points in the 2D range [tl, th]×[kl, kh], thus the area being (th−tl+1)·(kh−kl+1).
Since the input rectangle is split into only four rectangles, we use insertion sort
in line 2 while sorting them by their areas, which takes O(1) time because the
input size is constant.

The deterministic heuristics are very similar to their randomized counterparts
(algorithms 2 and 3), with the following differences:

– In line 1 of Algorithm 2 and line 1 of Algorithm 3, kq and tq are midpoints
($ks+ke

2 % and $ ts+te

2 %) of the intervals [ks, ke] and [ts, te] respectively.
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– In Algorithm 3, we can do away with the sorting step of line 2, since the
four rectangles would be of (almost) equal length.

Algorithm 1. ComputeCoverage (S = (te1 , te2 , . . . , ten), t, k)
output: Ck,t: the fraction of events that are in some (k, t)-bursty window
n ← |S|;
initialize a bitmap (b1, b2, . . . , bn) to all zeros;
/* sliding window is [s, . . . , f ], s ∈ {1, . . . , n}, f ∈ {1, . . . , n} */

s ← 0, f ← 0;

// Note: tei is the ith timepoint in S.
while (tef < tes + t) ∧ (f < n) do

f ← f + 1;

if tef > tes + t then
f ← f − 1;

while f < n do
nw = f − s + 1;

1 if nw ≥ k then
2 set the bits (bs, . . . , bf ) to 1;

/* Move the window, storing pointers to the previous window */

sp = s, fp = f ;
while (s ≥ sp) ∧ (f ≤ fp) do

s ← s + 1;
while (tef < tes + t) ∧ (f < n) do

f ← f + 1;

if tef > tes + t then
f ← f − 1;

/* If the last point is within the last window, it will be counted.

Otherwise, it is an isolated point and hence not interesting. */

if f = n then
nw ← f − s + 1;

3 if nw ≥ k then
4 set the bits (bs, . . . , bf ) to 1;

Ck,t ←
∑n

j=1 bj/n;

return Ck,t;

6 Complexity Analysis

Let C(K) be the number of calls made to Algorithm 1 from Algorithm 2. We
compute C(K) assuming that in Algorithm 2 and its deterministic equivalent,
only one of the two sub-intervals passes the test of Lemma 1 between lines 2- 3,
so we never probe into the other interval, and we stop as soon as we get the first
k∗ that satisfies our criterion.
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Algorithm 2. RandomSearchk* (S = (te1 , te2 , . . . , ten), t, ks, ke, θ)
if ks = ke then

r ← Cks−1,t/Cks,t;
if (r ≥ θ) ∧ (Cks,t > 0) then

output (ks, t) as a critical threshold pair;

return;

else
/* U([a, b]) returns a number uniformly at random in [a, b] */

1 kq ← U([ks, ke − 1]);

between [ks, kq] and [kq + 1, ke], let [kbig
s , kbig

e ] be the bigger window and
[ksmall

s , ksmall
e ] be the smaller;

rsmall ← Cksmall
s −1,t/Cksmall

e ,t;

2 if (rsmall ≥ θ) ∧ (Cksmall
s −1,t ≥ 0) then

RandomSearchk*(S, t, ksmall
s , ksmall

e , θ);

rbig ← C
k

big
s −1,t

/C
k

big
e ,t

;

3 if (rbig ≥ θ) ∧ (C
k

big
s −1,t

≥ 0) then

RandomSearchk*(S, t, kbig
s , kbig

e , θ);

Algorithm 3. RandomSearch2D (S = (te1 , te2 , . . . , ten), ks, ke, ts, te, θ)
if (ts = te) ∧ (ks = ke) then

r ← Cks−1,te/Cke,ts ;
if (r ≥ θ) ∧ (Cke,ts > 0) then

output (ks, ts) as a critical threshold pair;

return;

else if ts = te then
RandomSearchk*(S, ts, ks, ke, θ);

else if ks = ke then
RandomSearcht*(S, k, ts, te, θ);

else
1 kq ← U([ks, ke − 1]); tq ← U([ts, te − 1]);

let R be an array of rectangles with R[1] = (ts, tq, ks, kq),
R[2] = (tq + 1, te, ks, kq), R[3] = (ts, tq, kq + 1, ke) and
R[4] = (tq + 1, te, kq + 1, ke);

2 sort R in increasing order of areas of the rectangles;
for p = 1 to 4 do

let (tl, th, kl, kh) be the 4-tuple for rectangle R[p];
r ← Ckl−1,th

/Ckh,tl
;

3 if (r ≥ θ) ∧ (Ckl−1,th
≥ 0) then

RandomSearch2D(S, kl, kh, tl, th, θ);
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Theorem 1. For the deterministic counterpart of Algorithm 2, C(K) =
O(log K).

Let C(T ) be the number of calls made to Algorithm 1 for solving Problem 3.
Analogous to Theorem 1, we can claim the following:

Theorem 2. For the deterministic algorithm for solving Problem 3, C(T ) =
O(log T ).

For the two-dimensional version, let C(K, T ) be the number of calls made to
Algorithm 1 for solving Problem 1. For the following theorem, and also for
Theorem 6, we assume that in algorithm 3 and its deterministic counterpart,
only one of the four rectangles pass the test of Lemma 3 in line 3, and we stop
as soon as we get the first (k∗, t∗).

Theorem 3. For the deterministic counterpart of Algorithm 3, C(K, T ) =
O(log K log T ).

Theorem 4. For Algorithm 2, the expected complexity in the worst case is
E[C(K)] = O(ln K).

Analogous to theorem 4, we can claim the following for the complexity C(T ) of
the randomized algorithm for problem 3.

Theorem 5. For the randomized algorithm for problem 3, the expected com-
plexity in the worst case is E[C(T )] = O(ln T ).

Theorem 6. For Algorithm 3, the expected complexity in the worst case is
E[C(K, T )] = O(ln K ln T ).

7 Evaluation

Dataset: We implemented both heuristics and compared them with a naive
algorithm (which also gave us the ground truth to begin with), by running all 3
on a set of logs collected during the operation of large complex equipment sold by
Siemens Healthcare. We chose 32 different types of events that occurred on these
equipment, each event identified by a unique code. Each event code occurred on
multiple (upto 291 different) machines, so we had to take care of some additional
details (which we describe in Section 7 of [3]) while computing Ck,t and finding
the critical thresholds. The event codes had upto 300,000 distinct time points.

Experiments: We implemented our heuristics in Java on a Windows desktop
machine with 2 GB RAM. We set Tmin = 1 minute, Tmax = 100 minutes, Kmin

= 2 and Kmax = 100 for all the event codes. We made the following simple
optimizations to the naive algorithm:

1. For each event code e, C
(e)
k,t for each combination of k and t is computed at

most once, stored in a hashtable with the key being e|k|t, a concatenation of
e, k and t. The stored value of C

(e)
k,t is used in evaluating both C

(e)
k−1,t/C

(e)
k,t

and C
(e)
k,t /C

(e)
k+1,t. We followed the same practice for our heuristics, too.
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2. Once C
(e)
k,t reaches 0 for some k, C

(e)
k,t is not computed for any larger value of

k since it is known that they will be 0 because of the monotonicity property
discussed in Section 4.

The ratios C
(e)
k−1,t/C

(e)
k,t for all possible combinations of k and t, obtained from

the naive algorithm, formed our ground truth. While running our heuristics for
each e, we picked the highest value of C

(e)
k−1,t/C

(e)
k,t , and set θ to that value. We

ran the heuristics for an event code only if θ set in this way was at least 1.5.
For each event code, we ran the randomized heuristic 10 times, each time with
a different seed for the pseudo-random number generator, noted the number
of calls to Algorithm 1 for each, and calculated the mean (NR), the standard
deviation (σ) and the coefficient of variation (CV = σ

NR
).

Our observations about the number of calls to Algorithm 1 by the naive algo-
rithm (NN ), the deterministic heuristic (ND) and the mean for the randomized
one (NR) are as follows:

1. For all but one event code, we found NR < ND. The probable reason is, after
partitioning the original interval, when the four intervals are unequal, if the
smaller interval does not contain (k∗, t∗), then it has less chance of falsely
passing the test of Lemma 3 in line 3 of Algorithm 3. Also, as we discussed
in Subsection 5.1, even if the smaller interval passes the test falsely, we are
more likely to backtrack from it earlier because its sub-intervals have even
less chance of falsely passing the test, and so on. Even for the single event
code where ND beats NR, the latter makes only 0.4% more function calls
than the former. Depending on the event code, NR is 4% to 70% less than
ND.

2. We define the “improvement” by the randomized (IR) and the deterministic
(ID) heuristics as IR = NR

NN
and ID = ND

NN
, which are both plotted in

Figure 2. The improvements are more when NN is close to or more than a
million - the improvement I in those cases is then 3-11%. In other cases, it
is mostly in the range of 40-50%. Hence, the curves for both IR and ID in
Figure 2 show a roughly decreasing pattern as we go from left to right.

3. For 28 out of 32 event codes, the CV ( σ
NR

) for the randomized heuristic is less
than 0.1, which implies a quite stable performance across runs, and hence we
would not need multiple runs (and obtain an average) in a real setting, and
hence would not ruin the savings obtained by exploiting the monotonicity.
In fact, for 22 out of these 28, the CV is less than 0.05. The maximum CV
for any event code is 0.18 only.

4. We show the time taken (in minutes) for 10·NR +ND function calls for each
eventcode in Figure 3. The time taken increased as the number of function
calls increased, which is quite expected. For 16 out of 32 eventcodes, the
time taken for 10·NR +ND function calls was less than 15 minutes, and for
27 out of 32 eventcodes, this time was less than 2 hours. As an example, an
eventcode which took about 19 minutes for 10·NR +ND function calls had
NN = 883, 080, ND = 35, 100 and NR = 24, 655, so the 19 minutes time
plotted in Figure 3 is for 10·24655+ 35100 = 281650 function calls, which is
less than 32% of NN .
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Ruiz-Sepúlveda, Amparo 460



498 Author Index

Santos, Emanuel 136

Schneider, Markus 39

Simitsis, Alkis 80
Siqueira, Thiago Lúıs Lopes 152
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