

Lecture Notes in Computer Science 6906
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Jose M. Alcaraz Calero
Laurence T. Yang Félix Gómez Mármol
Luis Javier García Villalba
Andy Xiaolin Li Yan Wang (Eds.)

Autonomic and
Trusted Computing
8th International Conference, ATC 2011
Banff, Canada, September 2-4, 2011
Proceedings

13

Volume Editors

Jose M. Alcaraz Calero
Hewlett-Packard Laboratories, Stroke Gifford, BS34 8QZ, UK
E-mail: jose-maria.alcaraz-calero@hp.com

Laurence T. Yang
St. Francis Xavier University, Antigonish, NS, B2G 2W5, Canada
E-mail: ltyang@stfx.ca

Félix Gómez Mármol
NEC Laboratories Europe, 69115 Heidelberg, Germany
E-mail: felix.gomez-marmol@neclab.eu

Luis Javier García Villalba
Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
E-mail: javiergv@fdi.ucm.es

Andy Xiaolin Li
University of Florida, Gainesville, FL 32611-6200, USA
E-mail: andyli@ece.ufl.edu

Yan Wang
Macquarie University, Sydney, NSW 2109, Australia
E-mail: yan.wang@mq.edu.au

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-23495-8 e-ISBN 978-3-642-23496-5
DOI 10.1007/978-3-642-23496-5
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011935115

CR Subject Classification (1998): D.2, C.2, D.4, H.3-4, K.6

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the proceedings of ATC 2011, The 8th International Con-
ference on Autonomic and Trusted Computing: Bringing Safe, Self-* and Organic
Computing Systems into Reality. The conference was held in Banff, Canada, dur-
ing September 2–4, 2011, and was organized by St. Francis Xavier University in
cooperation with the 13th IEEE International Conference on High Performance
Computing and Communications (HPCC 2011) and the 8th International Con-
ference on Ubiquitous Intelligence and Computing (UIC 2011).

Nowadays, systems are becoming more and more complex in terms of het-
erogeneity, size, functional requirements, design and architecture. Autonomic
computing (AC) focuses on achieving self-manageable computing and commu-
nication systems. Such systems aim to perform an autonomic management of
the maximum functionality of the systems without human intervention or guid-
ance making easier the system management tasks. Autonomic systems may also
be trustworthy to avoid the risk of losing control and retain confidence that
the system will not fail. Trusted computing (TC) aims at making computing
and communication systems predictable, controllable, dependable, secure, pri-
vate and protected and definitively trustworthy.

ATC 2011 provided a forum for scientists and engineers in academia and
industry to exchange ideas and experiences in developing AC/TC communica-
tions and systems, theories, models and architectures, services and applications.
We believe that all of the presented papers not only provided novel ideas, new
results and state-of-the-art techniques in this field, but also stimulated future
research activities in the area. In addition to the 17 accepted refereed papers,
the proceedings include Gregorio Martinez’s keynote addressing the “Enhancing
OpenID Through a Reputation Framework.”

We would like to take this opportunity to thank numerous people whose
work made this conference possible and ensured its high quality. We would like
to thank all Program Committee members and external reviewers for their excel-
lent job in the paper review process. We wish to thank the authors of submitted
papers as they contributed to the conference technical program. Thanks to the
Advisory Committee for their continuous advice. We are also in debt to the
Publicity Chairs for advertising the conference, to the Local Organizing Com-
mittee for managing all conference organization-related tasks, and to the St.
Francis Xavier University for organizing the conference. We are also grateful
to Chunsheng Zhu for his hard work on managing the conference website and

VI Preface

submission and review management system. Finally, we would like to thank the
Steering Committee for their undoubtable effort in orchestrating all the people
involved in making this conference a successful event.

September 2011 Jose M. Alcaraz Calero
Laurence T. Yang

Felix Gomez Marmol
Luis Javier Garćıa Villalba

Andy Xiaolin Li
Yan Wang

Organization

The 8th Internation Conference on Autonomic and Trusted Computing (ATC
2011) was organized by St. Francis Xavier University in Banff , Canada, Septem-
ber 2–4, 2011, in cooperation with the 13th IEEE International Conference on
High Performance Computing and Communications (HPCC 2011) and the 8th
International Conference on Ubiquitous Intelligence and Computing (UIC 2011).
ATC 2011 was technically sponsored by the IEEE Technical Committee on Scal-
able Computing (TCSC).

Executive Committee

Honorary Chair

Christian Muller-Schloer University of Hannover, Germany

General Chairs
Mazin Yousif IBM, Canada
Manish Parashar Rutgers University, USA
Gero Mühl University of Rostock, Germany

Program Chairs

Andy Xiaolin Li University of Florida, USA
Yan Wang Macquarie University, Australia
Jörg Hähner University of Hannover, Germany

Program Vice-Chairs

Jose M. Alcaraz Calero Hewlett-Packard Labs, UK
Felix Gomez Marmol NEC Europe, Germany
Luis Javier Garćıa Villalba UCM , Spain

Workshop Chairs

Xiaodong Lin University of Ontario, Canada
Naixue Xiong Georgia State University, USA

Steering Committee

Laurence T. Yang (Chair) St. Francis Xavier University, Canada
Jianhua Ma (Chair) Hosei University, Japan
Theo Ungerer University of Augsburg, Germany
Jadwiga Indulska University of Queensland, Australia
Daqing Zhang Institute TELECOM SudParis, France
Hai Jin Huazhong University of Science and

Technology, China

VIII Organization

Executive Committee (cont.)

Advisory Committee

Hartmut Schmeck (Chair) Karlsruhe Institute of Technology, Germany
Jeffrey J.P. Tsai University of Illinois at Chicago, USA
Chin-Chen Chang Feng Chia University, Taiwan
Jean Camp Indiana University, USA
Jurgen Branke University of Warwick, UK
Raouf Boutaba University of Waterloo, Canada
Wolfgang Reif University of Augsburg, Germany
Zhong Chen Peking University, China
Tadashi Dohi Hiroshima University, Japan
Tharam Dillon Curtin University of Technology, Australia

Publicity Chairs

Damien Sauveron University of Limoges, France
Xingang Liu Yonsei University, Korea
Mianxiong Dong University of Aizu, Japan
Hao Chen University of Florida, USA
Jiehan Zhou University of Toronto, Canada
Agustinus Borgy Waluyo Monash University, Australia
Senol Z. Erdogan Maltepe University, Turkey
Carlos Westphall Federal University of St. Catarina, Brazil
Wenbin Jiang Huazhong University of Science and

Technology, China

Panel Chairs
Zhen Liu Nokia Research Center, China
Srinivas Sampalli Dalhousie University, Canada

Award Chairs
Chunming Rong University of Stavanger, Norway
Sajid Hussain Fisk University, USA

International Liaison Chairs
Zhong Chen Peking University, China
Junzhou Luo Southeast University, China
Roy Sterritt University of Ulster at Jordanstown, UK
Bin Xiao Hong Kong Polytechnic University,

Hong Kong
Hui-Huang Hsu Tamkang University, Taiwan
Juan Gonzalez Nieto Queensland University of Technology,

Australia

Organization IX

Industrial Liaison Chairs
Nagula Sangary RIM, Canada
Martin Gilje Jaatun SINTEF, Norway

Local Chairs
Alice Ying Huang St. Francis Xavier University, Canada
Shizheng Jiang St. Francis Xavier University, Canada
Andy Yongwen Pan St. Francis Xavier University, Canada

Web Chair

Chunsheng Zhu St. Francis Xavier University, Canada

Program Committee

Mohamed Ahmed University College of London, UK
Dave Bakken Washington State University, USA
Patricia Arias Cabarcos Carlos III University, Spain
Julio César Hernández-Castro University of Portsmouth, UK
Alva L. Couch Tufts University, USA
Nigel Edwards Hewlett-Packard Lab, UK
M. Carmen Fernandez Gago University of Malaga, Spain
Antonio Maña Gomez University of Malaga, Spain
Luis Miguel Vaquero Gonzalez Telefonica R&D, Spain
Nathan Griffiths University of Warwich, UK
Jinhua Guo University of Michigan at Dearborn, USA
Peter Gutman University of Auckland, New Zealand
Sy-Yen Kuo National Taiwan University, Taiwan
Miroslaw Kutylowski Wroclaw University of Technology, Poland
Mario Lischka NEC Laboratories Europe, Germany
Jorge Lobo IBM Research, USA
Esteban Egea Lopez Polytechnic University of Cartagena, Spain
Pedro Peris-López Delft University of Technology,

The Netherlands
Fermin Galán Márquez Telefonica I+D, Spain
Florina Almenarez Mendoza Carlos III University, Spain
Martin Middendorf University of Leipzig, Germany
Marco Cassassa Mont Hewlett-Packard Lab, UK
Frank Ormeier Otto von Güricke University, Germany
Manuel Gil Perez University of Murcia, Spain
Ronald Petrlic University of Paderborn, Germany
Andrea di Pietro University of Pisa, Italy
Maŕıa Naya-Plasencia FNHW, Switzerland
Ruben Rios del Pozo University of Malaga, Spain
Dhiraj K. Pradhan University of Bristol, UK

X Organization

Program Committee (cont.)

Jason Reid Queensland University of Technology,
Australia

Isaac Agudo Ruiz University of Malaga, Spain
Khaled Hamed Salah Khalifa University of Science, United Arab

Emirates
Martin Serrano Waterford Institute of Technology, Ireland
Kuei-Ping Shih Tamkang University, Taiwan
Christoph Sorge University of Paderborn, Germany
Stella Spagna University of Pisa, Italy
Juan E. Tapiador University of York, UK
Juergen Teich University of Erlangen-Nürnberg, Germany
Fatih Turkmen University of Trento, Italy
Osman Ugus Hamburg University of Applied Sciences,

Germany
Theo Ungerer University of Augsburg, Germany
Guilin Wang University of Wollongong, Australia
Huaxiong Wang Nanyang Technological University, Singapore
Jun Wei Chinese Academy of Sciences, China
Dirk Westhoff Hamburg University of Applied Sciences,

Germany
Rolf Würz University of Bochum, Germany
Dong Xiang Tsinghua University, China
Yang Xiang Deakin University, Australia
Zheng Yan Aalto University, Finland
Baoliu Ye Nanjing University, China
Lu Zhang Peking University, China
Huanyu Zhao Oklahoma State University, USA
Deqing Zou Huazhong University of Science and

Technology, China

Table of Contents

Keynote Speech

Enhancing OpenID through a Reputation Framework 1
Félix Gómez Mármol, Marcus Quintino Kuhnen, and
Gregorio Mart́ınez Pérez

Autonomic Architectures, Models and Systems

Concept of a Reflex Manager to Enhance the Planner Component of
an Autonomic/Organic System . 19

Julia Schmitt, Michael Roth, Rolf Kiefhaber, Florian Kluge, and
Theo Ungerer

Safe Runtime Validation of Behavioral Adaptations in Autonomic
Software . 31

Tariq M. King, Andrew A. Allen, Rodolfo Cruz, and Peter J. Clarke

A Configurable Environment Simulation Tool for Embedded
Software . 47

Yuying Wang, Xingshe Zhou, Yunwei Dong, and Sha Liu

An Adaptive Management Mechanism for Resource Scheduling in
Multiple Virtual Machine System . 60

Jian Wan, Laurence T. Yang, Yunfa Li, Xianghua Xu, and
Naixue Xiong

Virtualization with Automated Services Catalog for Providing
Integrated Information Technology Infrastructure . 75

Robson de Oliveira Albuquerque, Luis Javier Garćıa Villalba,
Osmar Ribeiro Torres, and Flavio Elias Gomes de Deus

Research on Modeling and Analysis of CPS . 92
Zhang Yu, Dong Yunwei, Zhang Fan, and Zhang Yunfeng

Autonomic Communications

Towards a Protocol for Autonomic Covert Communication 106
Wanqi Li and Guanglei He

Autonomous Online Expansion Technology for Wireless Sensor Network
Based Manufacturing System . 118

Md. Emdadul Haque, Fan Wei, Takehiro Gouda, Xiaodong Lu, and
Kinji Mori

XII Table of Contents

Self-organized Message Scheduling for Asynchronous Distributed
Embedded Systems . 132

Tobias Ziermann, Zoran Salcic, and Jürgen Teich

Trusted and Secure Computing

Hierarchical-CPK-Based Trusted Computing Cryptography Scheme 149
Fajiang Yu, Tong Li, Yang Lin, and Huanguo Zhang

Facilitating the Use of TPM Technologies Using the Serenity
Framework . 164

Antonio Muñoz and Antonio Maña

Spam Detection on Twitter Using Traditional Classifiers 175
M. McCord and M. Chuah

True Trustworthy Elections: Remote Electronic Voting Using Trusted
Computing . 187

Matt Smart and Eike Ritter

Reliable, Secure and Trust Applications

A Survey of Security Issues in Trust and Reputation Systems for
E-Commerce . 203

Stefan Spitz and York Tüchelmann

Copyright Protection in P2P Networks by False Pieces Pollution 215
Chun-Hsin Wang and Chuang-Yang Chiu

Detection and Classification of Different Botnet C&C Channels 228
Gregory Fedynyshyn, Mooi Choo Chuah, and Gang Tan

A Method for Constructing Fault Trees from AADL Models 243
Yue Li, Yi-an Zhu, Chun-yan Ma, and Meng Xu

Author Index . 259

Enhancing OpenID through a Reputation

Framework

Félix Gómez Mármol1, Marcus Quintino Kuhnen1,
and Gregorio Mart́ınez Pérez2,�

1 NEC Laboratories Europe, Kurfürsten-Anlage 36, 69115 Heidelberg, Germany
felix.gomez-marmol@neclab.eu, marcus.kuhnen@neclab.eu

2 Departamento de Ingenieŕıa de la Información y las Comunicaciones,
University of Murcia, 30100 Murcia, Spain

gregorio@um.es

Abstract. OpenID is an open standard providing a decentralised au-
thentication mechanism to end users. It is based on a unique URL
(Uniform Resource Locator) or XRI (Extensible Resource Identifier) as
identifier of the user. This fact of using a single identifier confers this
approach an interesting added-value when users want to get access to
different services in the Internet, since users do not need to create a new
account on every website they are visiting. However, OpenID providers
are usually also being used as a point to store certain personal attributes
of the end users, which might be of interest for any service provider
willing to make profit from collecting that personal information. The
definition of a reputation management solution integrated as part of the
OpenID protocol can help users to determine whether certain service
provider is more or less reliable before interacting with it and transfer-
ring their private information. This paper is providing the definition of
a reputation framework that can be applied to the OpenID SSO (Single
Sign-On) standard solution. It also defines how the protocol itself can
be enhanced so OpenID providers can collect (and provide) recommen-
dations from (to) users regarding different service providers and thus
enhancing the users’ experience when using OpenID.

Keywords: Single sign on, Reputation, OpenID, Web services, Identity
management.

1 Introduction

Providing effective authentication solutions is a key part to successfully deploy
any service provider nowadays. That implies as a minimum to identify individuals
in that provider and to control the access to the different resources and services
being provided by it.

Even if these authentication approaches can be based on well-known tech-
nologies such as login/password, smart cards, digital certificates or biometric in-
formation, among others, it is usually happening that different service providers
� Corresponding author. Tel.: +34 868 887646, Fax: +34 868 884151.

J.M. Alcaraz Calero et al. (Eds.): ATC 2011, LNCS 6906, pp. 1–18, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

2 F. Gómez Mármol, M. Quintino Kuhnen, and G. Mart́ınez Pérez

belonging to different companies or organizations are managing their own identi-
fiers and mechanisms to authenticate their users. This is leading to users creating
new accounts on almost every website they use and even in certain cases avoiding
websites because they should be creating yet another identifier (e.g., username
and password).

OpenID [1] is an open technology standard that provides a solution to this
problem. As such it is defined as a mechanism allowing the use of a single ac-
count to sign in to different service providers. In this proposal, the user only
has to enable her current existing account for OpenID access and then provide
any OpenID-enabled service her unique OpenID identifier. With this identifier
the service provider sends the user to the OpenID provider so she can be au-
thenticated there and then get access (after successfully authenticated) to the
service.

The wide use of this approach as well as the information that certain service
providers are requesting from the users are making OpenID providers the right
place to store certain private attributes of the end user. Those attributes are
also needed when taking certain decisions in the service provider so the access
can be provided (or denied) to particular resources. Such access may depend on
the role of the user, the domain where she is coming from, her age, etc.

However, as this private information is directly exchanged between the
OpenID provider and the service provider via a set of OpenID extensions and the
user is not having direct control on this exchange under certain circumstances,
there is a clear need to extend the OpenID standard to provide more control on
such exchange. Several approaches can be considered, being reputation manage-
ment a promising option. It can provide end users with certain key information
before starting an OpenID authentication process (and attribute release) with
an unknown service. Users can then decide whether they are willing to exchange
this personal information with that service or not, based on the interactions
that other users had in the past, i.e., based on the reputation that this service
provider is having among different users.

This paper is providing a detailed definition of a reputation framework de-
signed to be integrated with OpenID. Moreover, it is describing how the OpenID
protocol can be enhanced so the OpenID provider can collect recommendations
from different users on a given service provider based on their interactions with
it. Our work also describes how these recommendations can be aggregated ap-
propriately and provided to the user before she starts interacting with a service.

The remainder of the article is organized as follows. Section 2 provides a com-
mon nomenclature as wells as the description of the particular problem being
addressed as part of this research work. Then, in section 3 we describe both the
functional and non-functional requirements for developing a reputation frame-
work, while in section 4 the OpenID protocol enhancement needed to deal with
this reputation framework is presented. Section 5 shows the reputation frame-
work itself, which has been designed for enhancing the users’ experience using
the OpenID technology. Later, section 6 provides the main references and related
works, while in 7 the main conclusions and lines of future work are described.

Enhancing OpenID through a Reputation Framework 3

2 Problem Statement

For consistency throughout the remainder of the paper, we present next a basic
glossary of the terms used within the OpenID environment:

– User or end-user: The entity that wants to assert a particular identity.
– Identifier or OpenID: The URL or XRI chosen by the end-user to name

the end-user’s identity (for instance, http://felixgm.myopenid.com).
– Identity provider or OpenID provider (IdP or OP): A service that

specializes in registering OpenID URLs or XRIs and providing OpenID au-
thentication (and possibly other identity services).

– Relying party (RP or SP): The site that wants to verify the end-user’s
identifier; other terms include “service provider” or the now obsolete “con-
sumer”.

Once we have defined the meaning of those terms and the role of each player,
figure 1 depicts an overview of how the OpenID protocol works. Let’s say Alice
wants to watch a film online, so she accesses the service provider (relying party)
offering such service. However, the film that Alice wants to watch contains ex-
plicit violent scenes and she must therefore prove she is an adult in order to get
access to it.

Then, instead of registering and creating a new account in such RP, Alice
wants to use her existing OpenID already registered in a certain OP. Thus,
Alice is redirected to the OP she has indicated and logs in. Hence, the RP has
access to Alice’s identity information stored in the specified OP (like for instance,
age, e-mail, credit card, etc) and, after checking she is an adult, the RP actually
provides the requested film.

Fig. 1. Scenario definition: single sign-on through OpenID

4 F. Gómez Mármol, M. Quintino Kuhnen, and G. Mart́ınez Pérez

Nevertheless, despite its several advantages, based on a market survey [2], 97%
of the users today in the Internet would like their OpenID providers to offer a
way of assisting them with trustworthy information about the relying parties
(services that they use). Such reputation information would lead to smarter
and more accurate decisions from users when deciding which relying parties to
interact with, while preventing them from having transactions with malicious or
fraudulent RP, which would be, in turn, identified and isolated.

Spiteful relying parties might misbehave and misuse users’ personal infor-
mation like e-mail address for spamming, or credit card number for charging
unexpected expenses, amongst many other dishonest operations. Therefore it is
crucial to promptly and accurately detect their unreliable behavior and share
this information in the form of a low reputation value within the community, in
order to warn other (maybe unwary) users.

3 Requirements Analysis

This section identifies the functional as well as non-functional requirements for
developing the envisioned reputation framework for the OpenID SSO system. As
in any other study of this category, the requirements represent a list of trade-offs
that have to be analyzed and evaluated when building such a system. First, we
address the functional requirements that are relevant to the framework. These
are:

1. Majority Rating Evaluation: Since we want to aggregate possible rating
values of the users of the services for calculating the reputation of the rely-
ing parties, our framework should provide reputation information about the
relying parties, based on the majority of the raters.

2. Time awareness: Not only the majority has to be considered, but the
framework should consider as well that old ratings should be treated as less
important than new ones. Therefore the framework should consider the in-
stant when the recommendation ratings were provided to the relying parties.

3. Incorrectness awareness: The framework should consider the possible
incorrect feedbacks provided by either malicious users [3] or simply users
that by mistake provide wrong rating values to the relying parties.

4. Users’ preferences awareness: The framework should provide a mecha-
nism that allows users to look for services based on their preferences. That
means, the framework should provide a mechanism where the users can ex-
press their preferences with regard to the provision of each service.

5. Privacy/anonymity: The framework should provide a mechanism allow-
ing users to rate service providers anonymously. Only the OpenID provider
should know about the digital identity of the user. This should be protected
from the relying parties which receive the recommendation information. We
believe such mechanism will give an extra incentive to the users for provid-
ing feedback information about the relying parties that they have interacted
with.

Enhancing OpenID through a Reputation Framework 5

Moreover, we foresee the following non-functional requirements as the most rele-
vant in order to provide a reliable reputation framework on top of a SSO system
like OpenID.

1. Scalability: When designing the system, we have to take care of the rate
of recommendation inputs and queries made on the system. A centralized or
distributed solution might have different implications regarding scalability
issues. It is therefore important to bear in mind the potential bottlenecks of
the architecture that might also constitute a single point of failure.

2. Reliability of the transaction: We believe that, for certain specific situ-
ations (like those with a very high frequency of transactions), a reputation
system might not provide a 100% reliable transactional support for users’
recommendations input. It should rather consist of a best-effort solution
based on messages to be exchanged between the different peers. We foresee
a high load of interactions; therefore, a 100% reliable transactional support
might give additional delay or even block the system.

3. Performance: On the one hand, we claim that best effort mechanisms like
the exchange of messages are appropriated for such a system. On the other
hand, we think that the system should have a high performance. Thus, it
should support a lot of applications requests at high rates. For example, a
popular OpenID provider, which is accessed by a lot of users, will also have to
communicate with other OpenID providers in order to exchange reputation
information with them. Such exchange of information needs to have a high
performance because otherwise the user experience will be degraded. Hence,
this performance requirement fits with the reliability requirement that claims
that the transaction should be message best effort based.

4. Reputation model: The system should support different reputation mod-
els, since we believe those models will be improved, due to lot of research
happening in this area. Therefore, it is important for the framework to be
able to support different reputation models on the fly through a reputation
model plug-in framework.

5. Portability of data exchange: The framework should allow data describ-
ing the reputation information of the relying parties to be exchanged across
the different trust management frameworks. At the current state of the art,
there is no protocol between OpenID providers allowing the exchange of in-
formation between them. Therefore, the framework requires a protocol and
a standardized model for reputation data that can be exchanged between
OpenID parties [4].

6. Compliance with laws and regulations: Since these SSO protocols might
deal with very sensitive and private users’ information, any enhancement over
them must keep the compliance with current related laws and regulations.
Moreover, such compliance with regulations will improve the users’ percep-
tion of security in the system and, therefore, their willingness to adopt it.

6 F. Gómez Mármol, M. Quintino Kuhnen, and G. Mart́ınez Pérez

4 OpenID Enhancement

Figure 2 represents the sequence diagram corresponding to the regular operation
of the OpenID protocol.

Fig. 2. OpenID protocol: sequence diagram

The main aim of our work is to enhance such protocol so that the specified
OpenID provider is able to collect recommendations about the selected RP, and
aggregate them appropriately in order to provide the user with a useful and
reliable reputation score about the RP.

Thus, figure 3 shows an enhanced flow mechanism of an OpenID based SSO
system. The principal goal of the reputation framework is depicted in step 9.4
of the sequence diagram. In this particular step, the framework gives the user of
such a system the possibility to receive reputation information about the relying
party that he/she is accessing.

Enhancing OpenID through a Reputation Framework 7

Furthermore, once the service has been actually delivered, the user has the
opportunity to evaluate the RP and provide her feedback to the OP (step 14.4).
Such information will be in turn used by forthcoming users, to keep the most
updated reputation value reflecting the current behavior of the RP.

Fig. 3. OpenID protocol enhancement: sequence diagram

8 F. Gómez Mármol, M. Quintino Kuhnen, and G. Mart́ınez Pérez

5 Reputation Framework

This section shows the reputation framework designed for enhancing the OpenID
users’ experience when accessing a relying party. It will describe each one of the
components [5] constituting the whole architecture.

5.1 Gathering Recommendations

The first issue to solve when the specified OP wants to compute the reputation
of the selected RP is to find those other OpenID providers that might have
information (i.e., recommendations) about that concrete RP. To this end, we
have designed the next subscription/notification mechanism.

Dynamic Publish/Subscribe Mechanism. As soon as one of the end users
of an OP wants to access a certain RP for the first time (the OP has never had
any transaction with such RP in the past), then the OP sends a subscription
request to that RP. Every RP keeps a list with the most recent OPs that have
had an interaction with each of them (and therefore might have recommenda-
tions/opinions to provide about such RPs).

Thus, the RP will notify all the OP providers subscribed to it when this list
of potential recommenders is updated. However, in order to avoid an excessive
flooding and overhead, such notification will take place with a certain frequency.
Moreover, this frequency will dynamically change throughout the time.

Hence, this list of OP providers will be sent to the subscribed OPs only when
it contains Δ (Delta) new entries. The actual value of Δ will determine the real
frequency of the notifications. Thus for instance a value of Δ = 1 would mean
that every time a new OP is inserted in the list, such list would be sent to all
the subscribed OPs. A value of Δ = 10, for instance, would mean that such list
of OPs would not be sent to the subscribers until 10 new entries are inserted in
the list.

In order to dynamically adapt such value to avoid unnecessarily flooding the
system with non-needed messages, while keeping subscribers updated when such
information is really necessary, we have thought of the following mechanism (as
shown in Figure 4). Every time a user accesses a certain RP through her OP,
the value of Δ would decrease, increasing this way the frequency of notifications,
since more users are interested in such RP and therefore the OP needs to have
the most up-to-date information as possible. However, if nobody requests the
services of such RP, the associated Δ would increase (decreasing the frequency
of notifications), since the OP then does not need to be continuously updated
with the latest sources of recommendations for such RP.

Additionally, Δ would be bounded by a minimum value (to avoid an exces-
sively high frequency of notifications). On the other hand, it should also have a
maximum value. This value, when reached, should cause the OP to remove the
subscription to that RP, since any of the users of such OP is no longer interested
in such RP (see Figure 4).

Enhancing OpenID through a Reputation Framework 9

Fig. 4. Dynamic updating of Δ

User-Tailored Recommendations. In order to accomplish with the users’
preferences awareness requirement described in section 3 and to provide cus-
tomized and user-tailored reputation information, each query for recommenda-
tions issued by the OP comes with the preferences of the end-user (in an anony-
mous way) related to the provision of the final service (with regards to price,
quality of service, delivery time, etc).

Thus, a higher weight (ωuser,UOPi,j) will be given to those recommenda-
tions (RecUOPi,j (RP)) coming from a user (UOPi,j) whose service preferences
(PrefUOPi,j) match with the end-user ones (Prefuser), since both share predilec-
tions or priorities and therefore the opinions of the former might be very valuable
for the latter.

ωuser,UOPi,j = f1(Prefuser , P refUOPi,j)

Weighing Aggregated Recommendations. As to fulfill the incorrectness
awareness requirement (see section 3), when querying the OpenID providers
for recommendations about the RP, the queerer provides a weight factor, ωOPi ,
representing how much reliable the information given by other OpenID providers
is. Depending on this weight factor, the OpenID providers can treat information
provided more or less relevant for the overall calculation of the relying party
reputation.

This weight factor ωOPi should be calculated based on the difference between
the end-users’ final satisfaction with the received service and the aggregated
recommendation provided by each OpenID provider.

ωOPi = f2(Satuser , RecOPi(RP))

10 F. Gómez Mármol, M. Quintino Kuhnen, and G. Mart́ınez Pérez

Forgetting Factor. Time awareness requirement shown in section 3 entails
assigning a higher weight to most recent transactions (and, consequently, their
corresponding users’ recommendations), in contrast to older ones, which might
be considered less important. Thus, we are able to more accurately predict
the actual current behavior of the given RP. Therefore, each recommendation
(RecUOPi,j (RP)) is additionally given a weight (ωt,RecUOPi,j

(RP)) which is ob-
tained as follows:

ωt,RecUOPi,j
(RP) = f3(t, time(RecUOPi,j (RP)))

where t is the current instant of time, while time(Rec) is a function returning
the time when recommendation Rec was provided.

5.2 Dynamically Interchangeable Reputation Computation Engine

So once the designed OP receives all the recommendation information from other
OpenID providers (step 9.2 in Figure 3), it has to aggregate it properly in order
to compute the final reputation value for the relying party RepOP (RP).

This reputation computation component should take several elements into
account when calculating such score, namely: the recommendations of other end-
users belonging to other OpenID providers (RecUOPi,j (RP)), the weight given
to each of those recommendations based on the matching of users’ preferences
(ωuser,UOPi,j), the weight associated to each OP, measuring the reliability of its
recommendations (ωOPi) and the so called forgetting factor (ωt,RecUOPi,j

(RP)).

RepOP (RP) = h(ωOPi , ωuser,UOPi,j , ωt,RecUOPi,j
(RP), RecUOPi,j (RP))

As an example of a possible generic definition of function h in order to compute
reputation scores, we can consider the following one:

RepOP (RP) = (1)

n⊕

i=1

⎛

⎝ωOPi ⊗
⎛

⎝
NOPi⊕

j=1

(
ωuser,UOPi,j � ωt,RecUOPi,j

(RP) � RecUOPi,j (RP)
)
⎞

⎠

⎞

⎠

where n is the number of OpenID providers giving recommendations, NOPi is
the number of users providing recommendations under OPi, ⊕ is an aggregation
operation, and ⊗ and � are multiplicative operations that should be specified.

Yet, despite the example of reputation computation shown in equation (1), the
reputation calculation engine of our reputation framework should be designed
in such a way that it supports multiple reputation computational models. Those
computation models should be exchanged easily so that the framework can adapt
to different scenarios on the fly, based on current conditions or circumstances
(computation or network resources, storage resources, number of feedbacks, etc),
as shown in Figure 5.

Enhancing OpenID through a Reputation Framework 11

Fig. 5. Dynamically interchangeable reputation computation engine

The framework would therefore seamlessly select the optimal reputation com-
putation engine depending on the current conditions of the system, with the aim
of adapting to those dynamic circumstances and to provide the user with the
more accurate reputation scores at every time, without degrading the perfor-
mance of the system or the user’s experience.

5.3 Performing the Transaction: e-Receipt

Once the selected OP has calculated the reputation score about the RP (step
9.3 in Figure 3), it shows the end-user a login page together with this reputation
value (step 9.4 in Figure 3). In case the user decides to trust the RP according
to its reputation, such RP is authorized to access the user’s identity informa-
tion stored in the chosen OP required in order to actually perform the service
provision.

Thereafter, the service is actually provided by the RP to the end-user (step
14.1 in Figure 3). However, in order to prevent certain kind of attacks [3] (as
we will see later), together with the service, the RP also provides a digitally
signed electronic receipt [6] to the end-user, as a proof of service delivery. This
e-receipt is a cryptographically generated token issued by the RP, with a unique
identifier, that permits to track a specific performed transaction.

12 F. Gómez Mármol, M. Quintino Kuhnen, and G. Mart́ınez Pérez

5.4 Collecting Users’ Feedback

The last step consists of the user providing his/her final recommendation about
the service received from the RP. To this end, the e-receipt received together
with the service is then forwarded by the user to the selected OpenID provider
(step 14.2 in Figure 3), proving this way that the transaction with the RP
actually took place at the end. By doing like this, we avoid the possibility of
a (malicious) user submitting recommendations about a RP with whom he/she
did not actually have a transaction.

Having received the e-receipt from the user, the chosen OP shows a page to
the user for introducing his/her satisfaction with the service provision made by
the RP (step 14.3 in Figure 3). There are several alternatives to trigger this
feedback webpage, namely: through an e-mail set by the OP to the user, when
the user logs out, or next time the user logs in, amongst others.

Messaging Middleware for the Recommendations Database. The frame-
work should also consider that many users of the same OP might try to submit
their recommendations simultaneously, leading therefore to a performance as
well as scalability issue which could damage the users’ experience (as seen in
section 3).

To tackle this problem, we propose to add a messaging layer (see Figure 6),
located between the OpenID provider and the recommendations database, which
is able to accept messages in an asynchronous way. Thus, the recommendations
inputs should be sent to the messaging middleware without waiting for an ac-
knowledgement in order to mitigate the blocking time caused by the network
round trip time delay and the connection to the database.

Fig. 6. Messaging Middleware for the Recommendations Database

Enhancing OpenID through a Reputation Framework 13

Sampling Transactions. Moreover, in those scenarios where the number of
transactions is highly frequent, it might not be feasible to track all of them,
especially if there are limited or constrained resources. For those specific cases, a
sampling mechanism could be implemented (as shown in Figure 7). This mech-
anism would consist of not recording absolutely all the transactions performed,
but a sample of them. We would obviously face here a trade-off between scala-
bility and accuracy of our proposal (the more frequent the sampling, the more
accurate, and vice versa).

Fig. 7. Sampling transactions

5.5 General Overview

As a summary, next we present the steps to be followed by our proposal, as
depicted in Figure 8.

1. Alice wants to watch a film at RP1
2. Alice is redirected to OP1 in order to log-in and therefore share her Open

ID with RP1
(a) If OP1 is not subscribed to RP1, OP1 sends a subscription request to

RP1.
i. RP1 replies with the list of OPs that have interacted with RP1

(b) If OP1 was already subscribed to RP1, then RP1 decreases the value of
Δ associated to OP1

3. OP1 has the list of other OPs that have interacted with RP1 (either because
it was previously subscribed and already got it, or because it obtained it in
step 2.(a).i). Therefore, OP1 sends a request to each of those OPs, asking for
their respective recommendations about RP1. It also sends “anonymously”
the preferences of the end-user (Alice in this example)

14 F. Gómez Mármol, M. Quintino Kuhnen, and G. Mart́ınez Pérez

4. Each queried OP replies with a tailored recommendation based on the re-
ceived preferences of the end-user

5. OP1 collects and aggregates all the received recommendations
6. OP1 applies the selected reputation computation mechanism and provides a

final reputation score about RP1 to Alice
7. Alice then decides, based on such reputation value, whether to trust the RP1

and go on with the process, or finish/cancel here the whole transaction
8. If Alice trusts the RP1, then her profile is shared and sent from OP1 to RP1,

where she is now logged-in.
9. RP1 provides the service to Alice, together with an electronic receipt. The

RP1 also updates his list of recommenders, including OP1. If applicable,
according to the current value of Δ, the OpenID providers subscribed to
RP1 are notified with the updated list of recommenders.

10. Alice assesses her satisfaction with the received service and provides a recom-
mendation about RP1 in her OP1, presenting the electronic receipt obtained
in step 9.

11. OP1 updates its data base of recommendations about RP1
12. OP1 updates its reliability weights associated to other OPs

Fig. 8. General overview of the reputation framework

Enhancing OpenID through a Reputation Framework 15

6 Related Work

Reputation management systems for distributed and heterogeneous environ-
ments have been studied since a while [7,8,9]. Moreover, reputation frameworks
have been proposed in different contexts, e.g., P2P file sharing [10,11,12,13] and
reputation enabled Service oriented frameworks [14,15,16,17]. Thereafter, the
next trends that we could analyze is the application of reputation frameworks
for enhancing authentication systems and the proposal of distributed reputation
frameworks. This section describes in more detail the work done in this specific
area and contextualizes our work within this field.

The TRIMS framework [18] applies a trust and reputation model aiming to
guarantee an acceptable level of security when deciding if a service in a different
domain is reliable for receiving user’s personal data. That means, it applies
reputation techniques for enhancing the privacy of the users when exchanging
attributes between services, in a multi-domain scenario. Each domain relies on its
own past experiences with the other domain being evaluated. Those experiences
are weighted in order to give more or less importance on the final result.

Following the idea of the TRIMS framework, AttributeTrust Framework [19]
deals with the trust of relying parties when requesting user’s attributes during
internet transactions. They address the problem by aggregating user’s attribute
in defined Attribute Providers and then perform policy based trust negotiations
for evaluating trust in the attributes. They proposed a reputation model for
calculating confidence values that result from confidence paths leading from the
relying party to the attribute providers. The reputation models is resistant to
the common attacks known in reputation systems.

[20] introduces a flexible reputation system framework to augment explicit
authorization in a web application. The authors argue that explicit authoriza-
tion frameworks implemented with access control lists (ACL), capabilities, or
roles (RBAC) require a such high overhead to the administrators for manually
granting the user’s specific privileges, and therefore cannot scale for internet
type of applications. The framework supports multiple computation models for
reputation. However, different from our framework, its focus and design choices
targets reputation calculations for human subjects. For example, the framework
helps to decide which users’ identifiers should a service provider support. More-
over, it is a centralized framework and also does not consider opinions of other
users because of the complexity that user’s opinions bring to the system. It is
an objective reputation system based on measurements.

[21] proposes a distributed reputation and trust management framework where
trust brokers exchange and collect information data about services. By doing so,
individual users only need to ask their brokers for accessing reputation infor-
mation. They claim that because of the distributed nature of the brokers it
impossible to collect the information of all brokers. In the authors’ vision, every
user would have a online trust broker, which would collect reputation informa-
tion for them. The personal brokers are then hierarchically organized for the
information distribution. The approach is based on a global database that has
information about all servers. Therefore, there is a centralized component in this

16 F. Gómez Mármol, M. Quintino Kuhnen, and G. Mart́ınez Pérez

distributed approach that can also bring a single point of failure and all the other
drawbacks common to centralized systems.

Analyzing the above cited works, we came to the conclusion that to the best
of our knowledge, there is no related work targeting a distributed reputation
framework applied on top of the Single Sign On OpenID protocol that can pro-
vide to the users reputation information about the relying parties prior to their
interaction. We claim that such distributed framework on top of the OpenID
protocol can enhance the user experience when dealing with SSO in the inter-
net. What we achieve here is a single framework providing SSO and reputation
information at the same time.

7 Conclusions and Future Work

In the current Internet there are many service providers, being most of them
intended to provide appropriate services while some others are not so well in-
tended. In this context, it is interesting for any end user to have mechanisms to
determine how trustworthy a particular service provider is, so she can decide if
she wants to interact with it or not. It is particularly interesting if this service is
requesting some personal information of her (email address, bank account, age,
etc.) before granting access to any of the resources the service provider has.

This is a problem that should be addressed before starting the interaction with
the system, i.e., before sending the end user attributes to the service provider. To
this end, IdM solutions need to be adapted with particular mechanisms enabling
the provision of certain meta-information to the user on the particular service
provider being accessed.

One of the SSO-enabled IdM solutions most widely developed nowadays is
OpenID. A lot of service providers and certain key IdM providers are including
this standard solution as part of the authentication and basic access control
services provided to their end users. However, OpenID in its current definition
can be used by a malicious service provider to gain access to the private attributes
of users and make profit with them.

To provide end users with valuable reputation information on the different
service providers, this paper is defining a reputation framework and how it can
be applied to an extended version of the OpenID protocol. In this way, this
paper is describing a solution helping to mitigate this problem. It is based on
the idea that users can provide a recommendation level on a particular service
and it is later being aggregated by the OpenID provider and provided to any
other potential user that might be interested to interact with the same service
provider in the future. With this help, authors are provided with a mechanism
intended to increase their level of satisfaction with the OpenID system.

As future work we are currently working on the implementation of this solution
as well as on performing experiments in different scenarios. Moreover, we are also
analysing different reputation computation models, so the different pros and cons
can be determined.

Enhancing OpenID through a Reputation Framework 17

Acknowledgment. This work has been partially funded by the project “Secure
Management of Information across multiple Stakeholders (SEMIRAMIS)” CIP-
ICT PSP-2009-3 250453, within the EC Seven Framework Programme (FP7),
by the SEISCIENTOS project “Providing adaptive ubiquitous services in vehic-
ular contexts” (TIN2008-06441-C02) funded by the Spanish Ministry of Science
and Innovation, and by a Séneca Foundation grant within the Human Resources
Research Training Program 2007 (code 15779/PD/10). Thanks also to the Fund-
ing Program for Research Groups of Excellence granted by the Séneca Foun-
dation with code 04552/GERM/06. Authors would also like to thank Makoto
Hatakeyama for his helpful comments.

References

1. Recordon, D., Reed, D.: OpenID 2.0: a platform for user-centric identity manage-
ment. In: Proceedings of the Second ACM Workshop on Digital Identity Manage-
ment, DIM 2006, pp. 11–16 (2006)

2. Sakimura, N.: Coping with information asymmetry. In: Identity Management Con-
ference, SESSION G: Managing Risk & Reducing Online Fraud Using New Security
Technologies, pp. 1–14. OASIS, Washington, US (2010)

3. Mármol, F.G., Pérez, G.M.: Security Threats Scenarios in Trust and Reputation
Models for Distributed Systems. Elsevier Computers & Security 28(7), 545–556
(2009)

4. OASIS. Open reputation management systems (ORMS) (2008),
http://www.oasis-open.org/committees/orms

5. Mármol, F.G., Pérez, G.M.: Towards Pre-Standardization of Trust and Reputa-
tion Models for Distributed and Heterogeneous Systems. Computer Standards &
Interfaces 32(4), 185–196 (2010)

6. Piotrowski, T.: E-receipt verification system and method. US Patent, US 0120607
A1 (June 2003), http://www.freepatentsonline.com/20030120607.pdf

7. Mármol, F.G., Pérez, G.M.: Providing Trust in Wireless Sensor Networks using a
Bio-Inspired Technique. Telecommunication Systems Journal 46(2), 163–180 (2011)

8. Mármol, F.G., Maŕın-Blázquez, J.G., Pérez, G.M.: Linguistic Fuzzy Logic Enhance-
ment of a Trust Mechanism for Distributed Networks. In: Proceedings of the Third
IEEE International Symposium on Trust, Security and Privacy for Emerging Ap-
plications (TSP 2010), Bradford, UK, pp. 838–845 (2010)

9. Omar, M., Challal, Y., Bouabdallah, A.: Reliable and fully distributed trust model
for mobile ad hoc networks. Computers and Security 28(3-4), 199–214 (2009)

10. Mármol, F.G., Pérez, G.M., Skarmeta, A.F.G.: TACS, a Trust Model for P2P Net-
works. Wireless Personal Communications, Special Issue on Information Security
and data protection in Future Generation Communication and Networking 51(1),
153–164 (2009)

11. Wang, Y., Tao, Y., Yu, P., Xu, F., Lü, J.: A Trust Evolution Model for P2P
Networks. In: Xiao, B., Yang, L.T., Ma, J., Muller-Schloer, C., Hua, Y. (eds.)
ATC 2007. LNCS, vol. 4610, pp. 216–225. Springer, Heidelberg (2007)

12. Huang, C., Hu, H., Wang, Z.: A Dynamic Trust Model Based on Feedback Control
Mechanism for P2P Applications. In: Yang, L.T., Jin, H., Ma, J., Ungerer, T. (eds.)
ATC 2006. LNCS, vol. 4158, pp. 312–321. Springer, Heidelberg (2006)

http://www.oasis-open.org/committees/orms
http://www.freepatentsonline.com/20030120607.pdf

18 F. Gómez Mármol, M. Quintino Kuhnen, and G. Mart́ınez Pérez

13. Marti, S., Garćıa-Molina, H.: Identity crisis: anonymity vs reputation in P2P sys-
tems. In: Proceedings for the Third International Conference on Peer-to-Peer Com-
puting (P2P 2003) Linköping, Sweden, pp. 134–141 (September 2003)

14. Bansal, S.K., Bansal, A., Blake, M.: Trust-based dynamic web service composi-
tion using social network analysis. In: IEEE International Workshop on Business
Applications for Social Network Analysis (BASNA 2010) (December 2010)

15. Hang, C.-W., Singh, M.P.: Selecting trustworthy service in service-oriented en-
vironments. In: The 12th AAMAS Workshop on Trust in Agent Societies (May
2009)

16. Malik, Z., Bouguettaya, A.: Reputation bootstrapping for trust establishment
among web services. IEEE Internet Computing 13, 40–47 (2009)

17. Paradesi, S., Doshi, P., Swaika, S.: Integrating behavioral trust in web service
compositions. In: Proceedings of the 2009 IEEE International Conference on Web
Services, ICWS 2009, pp. 453–460 (2009)

18. Mármol, F.G., Girao, J., Pérez, G.M.: TRIMS, a Privacy-aware Trust and Rep-
utation Model for Identity Management Systems. Elsevier Computer Networks
Journal 54(16), 2899–2912 (2010)

19. Mohan, A., Blough, D.M.: AttributeTrust - a framework for evaluating trust in
aggregated attributes via a reputation system. In: Proceedings of the 2008 Sixth
Annual Conference on Privacy, Security and Trust, pp. 201–212 (2008)

20. Windley, P.J., Daley, D., Cutler, B., Tew, K.: Using reputation to augment explicit
authorization. In: Proceedings of the 2007 ACM workshop on Digital identity man-
agement, DIM 2007, pp. 72–81 (2007)

21. Lin, K.-J., Lu, H., Yu, T., Tai, C.-e.: A reputation and trust management broker
framework for web applications. In: nternational Conference on e-Technology, e-
Commerce, and e-Services, pp. 262–269. IEEE Computer Society, Los Alamitos
(2005)

Concept of a Reflex Manager to Enhance the

Planner Component of an Autonomic/Organic
System

Julia Schmitt, Michael Roth, Rolf Kiefhaber, Florian Kluge, and Theo Ungerer

Department of Computer Science
University of Augsburg

D-86159 Augsburg, Germany
{schmitt,roth,kiefhaber,kluge,ungerer}@informatik.uni-augsburg.de

Abstract. The administration of complex distributed systems is com-
plex and therefore time-consuming. It becomes crucial to evolve tech-
niques to speed up reaction times and support embedded nodes. Higher
mammals use reflexes to ensure fast reactions in critical situations. This
paper devolves this behavior to the organic middleware OC�. Within this
middleware an Automated Planner is used to administrate a distributed
system. A new component called Reflex Manager is responsible to store
its solutions. If the system reaches a state, that is similar to an already
known one, the Reflex Manager uses its knowledge to quickly provide a
solution. Conflicts between plans from the planner and the Reflex Man-
ager are resolved by comparing and switching plans. Finally we discuss
possible generalizations of our ideas.

1 Introduction

Embedded devices are hidden in many everyday items, having the ability to
communicate with each other. Together with classical devices like PCs they
form distributed systems with a large number of participating components. The
administration of such complex systems with heterogeneous participants is very
difficult and time-consuming. The Autonomic Computing [5] and the Organic
Computing (OC [1]) initiatives aim to solve this problem by applying the self-x
features self-optimization, self-configuration, self-healing and self-protection to
such systems.

The problem of controlling complex systems can also be seen as a planning
problem. The system is in an initial state at the beginning and shall be in a goal
state after some time. But planning can be very time-consuming.

Also in nature many processes are very time-consuming. But some things
happen really fast. If a deer recognizes an unpleasant noise it will run away
immediately. Another example is the human reaction. A person can reflect on a
particular problem for hours. But if he stumbles and falls he puts up his hands
within milliseconds to protect himself. This behavior originates from reflexes.

J.M. Alcaraz Calero et al. (Eds.): ATC 2011, LNCS 6906, pp. 19–30, 2011.
� Springer-Verlag Berlin Heidelberg 2011

20 J. Schmitt et al.

Natural reflexes happen without thinking about the problem or planning the
solution. Evolving this technique on computing systems leads to artificial re-
flexes. The system can therefore react faster to a problem. To show how this ap-
proach can be applied we illustrate it on our OC� middleware [17]. OC� features
an Organic Manager that runs on each node of a distributed system. Within the
Organic Manager we use an Automated Planner to implement self-configuration,
self-optimization and self-healing [19]. In this paper we will present as part of
the Organic Manager the concept of a Reflex Manager that integrates natural
reflexes into the middleware to speed up reaction times of the Organic Manager.
Additionally the Reflex Manager can replace the planner on resource-restricted
nodes without planning capabilities. It stores plans from the planner and can
reuse them if a similar problem occurs.

In section 2 we discuss similar approaches. We briefly introduce our middle-
ware OC� in section 3. In section 4 we give a closer look to the planning step in
OC�. The Reflex Manager and its functionality is presented in section 5. Section
6 addresses the execution of plans. Potential generalizations and limitations of
our approach are discussed in section 7. Section 8 summarizes the paper and
gives an outlook to future work.

2 Related Work

Automated planning and nature-like behavior are wide research areas, however
realizations within a middleware are rare. Nevertheless some middleware systems
exist which feature organic behavior.

Mamei and Zambonelli developed the TOTA approach [9]. They realize self-
organization by supporting adaptive and uncoupled interactions between agents.
TOTA uses tuple-based communication. Messages have rules determining their
propagation over the network.

CARISMA [12] realizes self-configuration and self-optimization with an em-
phasis on real-time capability. It is a service-oriented middleware. Based on local
information each service needs to provide a quality rating for a given job. The
middleware decides which service executes a job by using an auction system. It
also starts or shuts down service agents.

The Artificial Hormone System (AHS) middleware [21] is designed for em-
bedded environments. It is inspired by the hormone system of higher mammals.
The AHS middleware concentrates on mapping tasks to processing elements.
Hormones are realized as messages. Each processing element calculates a value
to rate its fitness for executing a task. The element with the highest value receives
the task. If more tasks have to be distributed this procedure is repeated.

ORCA [10] is an organic robot control architecture. ORCA is based on a hier-
archical system architecture including several control units. It aims to improve
the system behavior and adapts to malfunctions without a formal model. ORCA
uses supervised learning to control the self-organization of the system.

Within the CAR-SoC project [8] a two-layered approach is used to control
hardware and software components of embedded control units in a car. Each

Concept of a Reflex Manager 21

component accommodates a possibly partial MAPE [7] cycle with simple rules
in the planning stage. On top of these modules one global MAPE cycle is im-
plemented. In the planning stage it uses classifiers to choose an action. It does
not create or learn chains of actions.

Our work focuses on general purpose systems, that do not provide real-time
capabilities like CARISMA, ORCA and partly AHS. Additionally we do not ex-
pect every service to care for the self-x features itself or to provide functionalities
to the middleware like a quality rating. In AHS and TOTA many additional mes-
sages are created. We try to reduce network traffic to support components with
restricted resources. In CARISMA and AHS each task is assigned separately.
Distributing multiple tasks at once is not regarded.

ORCA uses a training set to train the control unit and does not learn from
the running system. Our system can execute multiple actions and our Reflex
Manager learns at runtime. Especially if the system reaches already known states
we want to execute a solution without repeating the whole process of finding a
solution.

We use our Reflex Manager to store plans and use them if a similar system
state occurs. Unlike plan reuse proposed by Nebel and Koehler [11] we do not
manipulate existing plans.

There exists a variety of bio-inspired approaches to realize self-x properties.
Trumler [20] developed a self-optimization algorithm which is inspired by the hu-
man hormone system. A self-protection algorithm based on the immune system
was introduced by Pietzowski et al. [13]. Iwasaki et al. [6] proposed an adap-
tive routing algorithm by mimicking enzymatic feedback mechanisms in the cell.
They optimize the communication in the network to reduce delay time. Each
of this and many other approaches only focus on few self-x properties without
regarding relations between them. In OC� we use an automated planner to re-
alize self-optimization, self-configuration and self-healing at once. More details
on OC� can be found in [17,19].

An approach consisting of two stages is presented within the Organic Control
of Traffic Lights project [16,14]. A Learning Classifier System (LCS) [4] chooses
actions online to control traffic light signals. As second stage an evolutionary
algorithm on some powerful nodes creates offline new classifiers and evaluates
them in a simulated environment. Our Reflex Manager works on the running
system and not offline. Additionally in LCS only a single action is chosen to be
executed while in our approach a plan can consist of more than one action.

3 OC� and the Organic Manager

OC� [17] is an organic middleware which is enhanced by an Organic Manager
per node. The Reflex Manager extends our Organic Manager. Figure 1 shows
the basic architecture of an OC� node. The main middleware functionalities are
implemented by the left part. Seen from the Organic Manager on the right it is
a system under observation and control (SuOC) [15].

Applications are separated into services, which can be distributed over the
network. EventMessages are used to communicate between services. The Event

22 J. Schmitt et al.

Fig. 1. OC� architecture

Dispatcher finds the accurate recipient of a message.Without affecting the sender
or receiver of the message, data can be piggy-backed on messages by monitors.
The Transport Connector delivers the messages to the target node. It can sup-
port different communication platforms. Each node stores monitor information
about the system and passes it to the Information Pool Manager. The manager
is responsible for deciding whether monitored data is stored in the Informa-
tion Pool. The Information Pool Manager also triggers the Event Manager. The
main objective of the Event Manager is to transform the raw information into
facts. From these compacted facts the Fact Base is created. The Event Man-
ager triggers the Planner Manager and the Reflex Manager. A user can create
User-Defined Objectives to add goals to the planner. The Planner Base contains
basic data for the planner. A High-Level Planner creates plans if triggered by
the Planner Manager.

We developed a Reflex Manager to reuse plans created by the planner. Plans
are stored in the Reflex Base. If the exact or a similar problem reoccurs the
stored plan is surpassed to the Actuator. The Actuator executes plans it receives
from the Reflex Manager and the Planner Manager. It can handle unequal plans
by comparing and switching between them if necessary. It can use the Connector
Service to communicate with the middleware.

4 Planning in OC�

We use the Organic Manager to realize three self-x features. In the following
we will explain the general meaning [7] of each one and how we realize them in
OC�.

– Self-configuration: When a new component, e.g. a node, joins the system,
it will configure itself automatically. It will do this by following high-level

Concept of a Reflex Manager 23

policies. In our context, a component is a node running OC�. After starting
such a node it establishes all basic and desired services by itself. A user or
service can define desired services by adding objectives. These objectives are
added to the planner.

– Self-optimization: During runtime all nodes try to make themselves more
efficient, so the whole system can achieve a better state. Within OC� we
focus on reaching a balanced workload.

– Self-healing: When failures occur, a valid state will be reached again after
a short time. In OC� we can detect the breakdown of a node and consider
this as a failure [18]. Then the Organic Manager will lead the system to a
valid state.

We decided to combine these three self-x properties into the Organic Manager,
as they are strongly related to each other. Each of them works by starting,
stopping or relocating a service. So they can use the same actions.

An Automated Planner automatically finds a sequence of actions, leading
from an initial state to a goal state. We use JavaFF [3], where a heuristically
guided forward search is used to create a plan. We use the Planning Domain
Definition Language (PDDL) [2] to describe the input and output of planners
as it has become a de facto standard language for describing planning tasks.
The effects of an action can be used to model side-effects and hence are already
known when creating a plan.

In OC� we use information about the own node, the network and each service
for planning. Each one has a set of values to describe its state. We translate these
values into PDDL. The planner can take three actions: It can start, stop and
relocate a service. A service can be started or stopped on the local node or on
a networked node. This is important for the self-configuration and self-healing.
A service can only be relocated from the local node to a networked node. Each
node has the goal to reach a workload similar to other nodes. This leads to a self-
optimized system. We implemented two different planning models and evaluated
them in [19].

5 Reflex Manager

To store plans from the Automated Planner the Reflex Manager needs an ap-
propriate storing structure. We decided to use a key/value-structure where the
plans are the values. The key represents the initial state of the system, given by
the facts from the Event Manager. We want to stay flexible, e.g. if a new service
is introduced at runtime. To describe the state of the system we use a variable
set of keywords. Each keyword has a vector of values to describe the monitored
information. The name of a service can e.g. serve as a keyword. Its vector con-
sists of the number of instances running locally, system wide and whether the
service is relocatable. Another keyword is dedicated to the local node. Among
other values the vector contains the workload of the local node. In general these
structure can be described as follows:

24 J. Schmitt et al.

– k ∈ K a keyword for one vector from a set of keywords K
– sk ∈ R

nk a vector of nk real numbers for each keyword k
– S = {sk|k ∈ K} a state of the system, stored by the Reflex Manager
– C = {ck|k ∈ K} the current state of the system

To compare stored and current states we introduce the following metrics.

|S − C| = r +
∑

k∈S∩C

√√√√
nk∑

i

(sk,i − ck,i)2 (1)

The second metric uses a weighting factor λk,i ∈ R that assigns a vector λk ∈
R

nk with k ∈ K to each keyword.

|S − C|λ = r +
∑

k∈S∩C

√√√√
nk∑

i

λk,i(sk,i − ck,i)2 (2)

The value r >= 0 increases the distances between S and C. If the keywords of
the compared states match exactly r = 0 . Otherwise there are some possibilities
to choose r, depending on the used strategy:

– r = 0 if an extra keyword in S or C is insignificant
– r = ∞ if an extra keyword leads to a completely different state
– r =

∑
k∈(S\C∪C\S) α One extra keyword increases the difference by a fixed

value α > 0

To compare the metrics and show the influence of r we will use an example.
Let’s assume the following vectors are possible:

vlocalNode = (workload, number relocatable services)

vnetwork = (average workload, workload change)

vService = (accumulated number, number running locally, relocatable)

The Reflex Manager stored two states: S and S̃. The current state is C.

C = {clocalNode = (60, 8), cnetwork = (50, 0.1),

cServiceA = (20, 5, 1), cServiceB = (10, 8, 1)}
S = {slocalNode = (50, 8), snetwork = (40, 0.2),

sServiceA = (20, 5, 1), sServiceB = (10, 8, 1)}
S̃ = {slocalNode = (60, 8), snetwork = (48, 0.2),

sServiceA = (10, 0, 1), sServiceC = (6, 6, 0)}
The state S differs from state C slightly regarding the workload of the local

node and the average load. The state S̃ has no measurements regarding ServiceB,
instead it has information about ServiceC. Additionally only 10 instances of
ServiceA are running.

Concept of a Reflex Manager 25

Before comparing the results of the metrics, we need to set the λ values in the
weighted metric. They are used to rate the influence of one particular difference
on the whole result.

λlocalNode = (0.3, 1)

λnetwork = (0.3, 1)

λService = (1, 1, 1)

α = 10

By using these values for λ we weaken the influence of the workload distance.
Table 1 shows the difference between the stored and the measured state using
both metrics. When using the metric in formula (1) and r = 0, state S̃ is chosen,
although state S fits better. But with the weighted metric state S is closer to
C than S̃. If r = ∞ system states with different keywords will never be similar.
There can be many service types and therefore keywords. In this case many
stored states will be useless when compared to the measured state C as the
keywords are not equal. A better alternative is to add a fixed value for each not
matching keyword as done in the last row of table 1.

Table 1. Example: Distance between states by using two metrics

|C − S| |C − S̃| |C − S|λ |C − S̃|λ
r = 0 200.01 129.01 60.0.1 126, 21
r = ∞ 200.01 ∞ 60.0.1 ∞
r =

∑
k∈S\C∪C\S α 200.01 149.01 60.0.1 146, 21

We decided not to store every new plan for state S. Instead we store plans, if
no plan for a similar state exists already.

6 Actuator

The actuator receives plans from the Reflex Manager and the Planner. We can
distinguish three cases

1. The Planner surpassed a plan first.
2. The Reflex Manager was first and the plan is already executed.
3. The Reflex Manager was first and the plan is partly executed.

In the first case it is most likely that the Reflex Manager had no plan for the
current situation. Thus the Actuator can just execute the plan. In the second
case the plan from the Reflex Manager is already executed. We do not expect the
Actuator to do a rollback as this would provide additional programming effort
and is in general not possible. Instead the problem is solved in the next planning
cycle.

26 J. Schmitt et al.

Fig. 2. Comparing plans

Our main focus is to resolve the following situation arising from the third
case: The Reflex Manager and the Automated Planner are triggered. The Reflex
Manager is faster and sends a plan R to the Actuator. The Actuator executes
the plan. Then it gets a plan P from the Automated Planner. The Actuator
stops the execution and compares the plans. Each plan consists of actions from
an action set A. We can see R and P as an ordered set of actions. Action r1 to rn
have already been executed. Lets assume there are three actions A = {a, b, c}.

In the best case the actions already executed match exactly the first n ac-
tions of the plan P from the planner as indicated in figure 2. This means
r1 = p1, . . . , rn = pn. In this case we can directly switch to plan P and exe-
cute the actions pn+1,

If no conditional effects are used, another case can be resolved. A conditional
effect is e.g. the following phrase:

when(raining) (cloudy = true)

If no conditional effects are used the following problem can be resolved. The
already executed actions match the first actions from P , but have another or-
der as shown in figure 3. Each action {r1, . . . , rn} matches to one element of
{p1, . . . , pn}.

In this case the second and third actions from plan R are permuted in plan
P . As both are valid plans we can deduce two facts:

– The effect of action b does not destroy the precondition of action c because
of plan R.

– The effect of action c does not destroy the precondition of action b because
of plan P .

The order of these two action is obviously not fixed. So the Actuator can switch
to plan P .

In both examples the Actuator stopped after executing action rn. If the plan
P came later and rn+1 also already would have been executed, the plan could
not be switched. The Actuator would then execute plan R.

Concept of a Reflex Manager 27

Fig. 3. Permuted actions

Especially the storing of long plans, or plans created in complex planning
environments can lead to increased reaction times. Lets assume plan R has 50
actions and it needed 10 seconds to create it. Even if the initial state does not
match the current state perfectly, its execution will lead the system to a better
state. Then only few actions are necessary to reach the goal state.

7 Discussion

Although we showed our approach by using OC� a generalization of our idea is
possible. We will discuss the possibilities and limitations of the approach in the
following. The general idea of storing plans and reuse them in similar situations
is especially promising when the generation of a plan needs much time and
resources. Nevertheless our approach needs memory space to store the plans.

For the Reflex Manager the plans do not need to be produced by an automated
planner. The plans can also be generated by other tools. The only limitation is
that the system state must be transformable into the structure which is described
in section 5. The key, which is used by the Reflex Manager to store plans, is very
flexible. The keywords and its corresponding vectors can be chosen freely. States
can consist of different keywords and the keywords don’t need to be identical.
If an automated planner is used then the PDDL objects can serve as keywords
and the corresponding PDDL predicates and functions as values.

As long as the initial state can be coded this way, the metrics presented in
section 5 can be applied. We use the metrics to measure the similarity between
two states. So we can execute plans which were created for similar states. De-
pending on the underlying problem it may not be useful to execute a plan which
was not created for the exact same state. In this case the metric in formula (1)
can be used together with a threshold of 0. Then only plans are chosen which
were created for the exact same system state. If plans for similar but not equal
initial states can be applied, better results can be achieved by using the second
metric (formula (2)).

28 J. Schmitt et al.

The Actuator is designed for plans consisting of a chain of sequential actions.
In OC� this is a total ordered plan from the Planner or Reflex Manager. Planning
tools which create plans each consisting of only a single action are not suited
for our approach. Beside this the switching between plans with equal actions at
the beginning should be possible. If the actions are in a different order then the
plans can only be switched if no conditional effects are used.

8 Summary and Outlook

In this paper we presented a nature inspired approach to speed up planning times
and support embedded nodes. To administrate a large distributed system we use
an Automated Planner. The Reflex Manager stores plans from the planner. The
Reflex Manager uses a set of vectors and keywords to store the initial system
states. It compares the current state with stored ones and chooses a plan if a
similar state is already known. We showed two metrics to compare states. The
first one is based on the Euclidean distance. The second metric can weaken or
strengthen the influence of particular differences on the whole result. The weights
need to be specified at design time. The results of the second metric reflects the
similarity between states more accurately than the results from the first metric.
The idea of our Reflex Manager can be generalized as long as the system state
can be coded in our key structure.

The Actuator executes plans from the Reflex Manager and the Planner Man-
ager. If it gets a plan from the planner while processing one from the Reflex
Manager it will stop and compare the plans. If possible it will switch to the plan
from the Planner Manager. The concept of our Actuator needs a chain of actions
forming a plan to be generalizable.

When using the second metric the weighting parameter λ needs to be known.
We will investigate techniques to learn λ at runtime. We plan to evaluate our
approach and to measure the speed up of reaction times.

The Reflex Manager compares plans by using a metric. Afterwards it decides
if a stored plan is sent to the Actuator. We will investigate possible choices of a
threshold value to decide if a state is similar enough to send the corresponding
plan to the Actuator. We plan to compare fixed and adaptive thresholds and
different possibilities to learn the threshold.

References

1. Organic Computing Initiative (2011), http://www.organic-computing.de/spp
2. Ghallab, M., Nationale, E., Aeronautiques, C., Isi, C.K., Penberthy, S., Smith,

D.E., Sun, Y., Weld, D.: PDDL - The Planning Domain Definition Language.
Technical report (1998)

3. Hoffmann, J., Nebel, B.: The FF planning system: Fast plan generation through
heuristic search. Journal of Artificial Intelligence Research 14, 253–302 (2001)

http://www.organic-computing.de/spp

Concept of a Reflex Manager 29

4. Holland, J.H.: Adaptation in natural and artificial systems. MIT Press, Cambridge
(1975)

5. Horn, P.: Autonomic Computing: IBMs Perspective on the State of Information
Technology, also known as IBM’s Autonomic Computing Manifesto. IBM Corpo-
ration, 1–39 (2001)

6. Iwasaki, A., Nozoe, T., Kawauchi, T., Okamoto, M.: Design of Bio-inspired Fault-
tolerant Adaptive Routing Based on Enzymatic Feedback Control in the Cell:
Towards Averaging Load Balance in the Network. In: Frontiers in the Convergence
of Bioscience and Information Technologies, FBIT (2007)

7. Kephart, J.O., Chess, D.M.: The Vision of Autonomic Computing. IEEE Com-
puter 36(1), 41–50 (2003)

8. Kluge, F., Uhrig, S., Mische, J., Ungerer, T.: A Two-Layered Management Archi-
tecture for Building Adaptive Real-Time Systems. In: Brinkschulte, U., Givargis,
T., Russo, S. (eds.) SEUS 2008. LNCS, vol. 5287, pp. 126–137. Springer, Heidelberg
(2008)

9. Mamei, M., Zambonelli, F.: Spatial computing: The TOTA approach. In: Babaoğlu,
Ö., Jelasity, M., Montresor, A., Fetzer, C., Leonardi, S., van Moorsel, A., van Steen,
M. (eds.) SELF-STAR 2004. LNCS, vol. 3460, pp. 307–324. Springer, Heidelberg
(2005)

10. Mösch, F., Litza, M., Auf, A., Maehle, E., Großpietsch, K., Brockmann, W.: ORCA
– towards an organic robotic control architecture. In: de Meer, H., Sterbenz, J.P.G.
(eds.) IWSOS 2006. LNCS, vol. 4124, pp. 251–253. Springer, Heidelberg (2006)

11. Nebel, B., Koehler, J.: Plan Reuse versus Plan Generation: A Theoretical and
Empirical Analysis. Artif. Intell. 76, 427–454 (1995)

12. Nickschas, M., Brinkschulte, U.: CARISMA - A Service-Oriented, Real-Time Or-
ganic Middleware Architecture. Journal of Software 4(7), 654–663 (2009)

13. Pietzowski, A., Satzger, B., Trumler, W., Ungerer, T.: Using Positive and Negative
Selection from Immunology for Detection of Anomalies in a Self-Protecting Mid-
dleware. In: Hochberger, C., Liskowsky, R. (eds.) INFORMATIK 2006 – Informatik
für Menschen, GI edn., Bonn, Germany. Lecture Notes in Informatics, vol. P-93,
pp. 161–168. Köllen Verlag (2006)

14. Prothmann, H., Rochner, F., Tomforde, S., Branke, J., Müller-Schloer, C.,
Schmeck, H.: Organic control of traffic lights. In: Rong, C., Jaatun, M.G., Sandnes,
F.E., Yang, L.T., Ma, J. (eds.) ATC 2008. LNCS, vol. 5060, pp. 219–233. Springer,
Heidelberg (2008)

15. Richter, U., Mnif, M., Branke, J., Müller-Schloer, C., Schmeck, H.: Towards a
generic observer/controller architecture for Organic Computing. In: GI Jahresta-
gung (1), pp. 112–119 (2006)

16. Rochner, F., Prothmann, H., Branke, J., Müller-Schloer, C., Schmeck, H.: An Or-
ganic Architecture for Traffic Light Controllers. In: Informatik 2006 – Informatik
für Menschen. Lecture Notes in Informatics (LNI), vol. P-93, pp. 120–127. Köllen
Verlag (2006)

17. Roth, M., Schmitt, J., Kiefhaber, R., Kluge, F., Ungerer, T.: Organic Computing
Middleware for Ubiquitous Environments. In: Organic Computing - A Paradigm
Shift for Complex Systems, pp. 339–351. Springer, Basel (2011)

18. Satzger, B., Pietzowski, A., Trumler, W., Ungerer, T.: A Lazy Monitoring Ap-
proach for Heartbeat-Style Failure Detectors. In: International Conference on
Availability, Reliability and Security, pp. 404–409 (2008)

19. Schmitt, J., Roth, M., Kiefhaber, R., Kluge, F., Ungerer, T.: Using an Automated
Planner to Control an Organic Middleware. In: Fifth International Conference on
Self-Adaptive and Self-Organizing Systems (accepted for publication, 2011)

30 J. Schmitt et al.

20. Trumler, W.: Organic Ubiquitous Middleware. PhD thesis, Universität Augsburg,
Germamy (2006)

21. von Renteln, A., Brinkschulte, U.: Implementing and Evaluating the AHS Or-
ganic Middleware - A First Approach. In: 13th IEEE International Sympo-
sium on Object/Component/Service-Oriented Real-Time Distributed Computing
(ISORC), pp. 163–169 (May 2010)

Safe Runtime Validation of Behavioral

Adaptations in Autonomic Software

Tariq M. King1, Andrew A. Allen2, Rodolfo Cruz2, and Peter J. Clarke2

1 Department of Computer Science
North Dakota State University, Fargo, ND 58108, USA

tariq.king@ndsu.edu
2 School of Computing and Information Sciences

Florida International University, Miami FL 33199, USA
{aalle004,rcruz002,clarkep}@cis.fiu.edu

Abstract. Although runtime validation and verification are critical for
ensuring reliability in autonomic software, research in these areas contin-
ues to lag behind other aspects of system development. Few researchers
have tackled the problem of testing autonomic software at runtime, and
the current state-of-the-art only addresses localized validation of self-
adaptive changes. Such approaches fall short because they cannot reveal
faults which may occur at different levels of the system. In this paper,
we describe an approach that enables system-wide runtime testing of
behavioral adaptations in autonomic software. Our approach applies a
dependency-based test order strategy at runtime to facilitate integration
and system-level regression testing in autonomic software. Since valida-
tion occurs on-line during system operations, we perform testing as part
of a safe approach to adaptation. To investigate the feasibility of our
approach, we apply it to an autonomic communication virtual machine.

Keywords: Validation, Self-Testing, Autonomic Software, Adaptation.

1 Introduction

Autonomic computing (AC) describes systems that manage themselves in re-
sponse to changing environmental conditions [9]. The popularity of the AC
paradigm has led to an increase in the development of systems that can self-
configure, self-optimize, self-protect, and self-heal [7,9]. These self-* features are
typically implemented as Monitor-Analyze-Plan-Execute (MAPE) loops in auto-
nomic managers (AMs). AMs monitor the state of managed computing resources,
and analyze the observed state information to determine if corrective action is
required. When undesirable conditions are observed, the AM formulates and ex-
ecutes a plan to remedy the situation. There are two levels of AMs: Touchpoint
– directly manage computing resources through sensor and effector interfaces,
and Orchestrating – coordinate the behavior of multiple AMs [7].

Some self-* changes may involve adapting or updating system components
at runtime, a process referred to as dynamic software adaptation [24]. Dynamic

J.M. Alcaraz Calero et al. (Eds.): ATC 2011, LNCS 6906, pp. 31–46, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

32 T.M. King et al.

adaptation in autonomic software raises concerns regarding reliability, since new
faults may be introduced into the system by runtime changes. Runtime validation
and verification are therefore expected to play a key role in AC systems. However,
a 2009 survey on the research landscape of self-adaptive software stated that
“testing and assurance are probably the least focused phases in engineering self-
adaptive software” [18]. Although this has improved slightly within the last two
years, it is evident that research on testing autonomic software continues to lag
behind other areas.

Few researchers have tackled the problem of runtime testing in autonomic
software [3,10]. King et al. [10] introduce an implicit self-test characteristic into
autonomic software, referred to as Autonomic Self-Testing (AST). Under AST,
the existing MAPE implementation is used to define test managers (TMs), which
monitor, intercept, and validate the change requests of autonomic managers.
TMs can operate according to two strategies: Replication with Validation (RV) –
tests autonomic changes using copies of managed resources; and Safe Adaptation
with Validation (SAV) – tests autonomic changes in-place, directly on managed
resources. Until now, investigation into AST has concentrated on developing
and evaluating prototypes that implement localized runtime testing, according
to the RV strategy [11,15,20]. Developing these prototypes revealed that RV is
a viable AC runtime testing technique, which can be employed when copies of
managed resources are easily obtainable for testing purposes [15,20]. Details on
the approach by Da Costa et al. [3] are provided in the related work section.

In this paper, we extend previous work on AST by overcoming two of its
current limitations. Firstly, we address the need for system-wide validation in
autonomic software through the description of a runtime integration testing ap-
proach. Our approach views the autonomic system as a set of interconnected,
Self-Testable Autonomic Components (STACs), and emphasizes operational in-
tegrity during the runtime testing process. Secondly, we investigate AST of a
real-world autonomic application for which it is expensive to maintain test copies
of managed resources. Our application motivates the need for SAV and system-
wide AST, and is used as a platform for investigating their feasibility. The rest
of this paper is organized as follows: Section 2 provides related work. Section 3
describes our testing approach. Section 4 presents a detailed design for STACs.
Section 5 discusses the prototype, and in Section 6 we conclude the paper.

2 Related Work

Runtime validation and verification as an integral feature of autonomic software
has received little attention in the research literature [3,10,25,26]. The approach
described by Da Costa et al. [3] is most closely related to our work. It presents the
Java Self-Adaptive Agent Framework + Test (JAAF+T). JAAF+T incorporates
runtime validation into adaptation agents by directly modifying their MAPE
control loops to include a test activity [3]. Self-testing under JAAF+T is localized
within agents, and as described is not feasible at the integration and system
levels. Furthermore, the authors do not address how the integrity of system
operations is enforced during the self-test activity.

Safe Runtime Validation of Behavioral Adaptations in Autonomic Software 33

Stevens et al. [20] developed a prototype of an autonomic container to demon-
strate the idea of runtime testing in autonomic software. An autonomic container
is a data structure with self-configuring and self-testing capabilities. The pur-
pose of developing the application was to provide a simplistic, lightweight model
of how autonomic software operates, and use it to investigate the Replication
with Validation (RV) strategy [10]. Ramirez et al. [15] later extended the auto-
nomic container, and applied it to the problem of short-term job scheduling for
an operating system. Like its predecessor, the self-test design of the autonomic
job scheduler was based on the RV strategy. To the best of our knowledge, the
autonomic communication virtual machine presented in this paper is the first
prototype to implement Safe Adaptation with Validation (SAV) [10].

Zhang et al. [25] proposed modular model checking for runtime verification
of adaptive systems. They harness a finite state machine to check transitions
between variations points in the software. To address the problem of state space
explosion, they confine model checking to those aspects of the system affected
by the change. In a similar fashion, we use dependency analysis to reduce the
number of test cases that need to be re-run after an adaptive change. The work
by Zhao et al. [26] presents a model-based runtime verification technique that
can be applied to autonomic systems. More specifically, their approach targets
component-based, self-optimizing systems that dynamically exchange compo-
nents. The on-line model checker by Zhao et al. [26] is interleaved with the
execution of the autonomic system, and shares technical challenges with our
work. In general, model checking may offer a viable alternative to the research
problem in cases where runtime verification is preferred over testing.

3 Testing Approach

Autonomic software may be viewed as a set of composable, interacting, auto-
nomic components that provide localized self-management through sensors and
effectors, while being environmentally aware and connected via a system-wide
control loop [16]. The component-based perspective of autonomic software is
widely accepted and cited in the literature [12,14]. Furthermore, the increasing
trend towards Service-Oriented Architectures, Web and Grid Services, and Cloud
Computing suggests that the component-based paradigm represents a pragmatic
approach for building these next-generation software systems.

In this section, we describe an approach that facilitates system-wide validation
of behavioral adaptations in component-based autonomic software. The bound-
aries of self-testing are delineated by analyzing dependency relationships between
the adaptable components and other components in the system. Any component
that invokes an adaptable component is considered to be within the firewall of
change, and is therefore made self-testable. We now provide an overview of our
approach, and describe its major steps through a workflow, algorithm, and state-
based model.

34 T.M. King et al.

Adaptive System Configuration

A

Delta Components

Sensor
Autonomic Manager

Environment

(1.0)

(2.1)

Monitor
State

Reconfigure

(2.0.) Select
Replacements

Intercept Adaptation(3.0)

G H

(5.0)

Coordinate
Self-Tests

Adaptation
Policy

/ (4.1) Setup Validation /

(4.2)

test

Stubbed Components

S4 S6

STAC1

D

test

STAC4

B

test

STAC2
C

STAC3

E

test

STAC5
F

test

STAC6

test

S1 S2 S3

S5

Test Manager
Validation Policy

Select stubs(4.0)

Accept or Reject

Fig. 1. System-Wide Validation of Behavioral Adaptations using STACs

3.1 Overview

Our approach views the adaptive portion of the autonomic software as a set of
self-testable autonomic components (STACs). STACs encapsulate the dynami-
cally replaceable baseline components of the system, which represent the soft-
ware services being managed (e.g., a local service, web service, or off-the-shelf
component). If an autonomic change replaces a baseline component with a delta
component that has never been used within the context of the application, self-
testing is performed as part of its integration into the system.

Figure 1 presents our system-wide architectural perspective for autonomic
software using STACs. Our architecture focuses on validation scenarios in which
a baseline component is replaced by some delta component that conforms to the
same service interface. Such behavioral adaptations are frequently realized in
the implementations of adaptive software, and are directly supported by many
component-based software development frameworks [22]. Boxes A through F in
Figure 1 represent six baseline components of the autonomic software, which
have been made self-testable by enclosing them in STAC1 through STAC6. The
arcs labeled test denote the ability of each STAC to perform runtime testing on
the application services of its baseline component. Predefined test cases for the
application services are be stored within the STAC. Delta components (bottom-
left of Figure 1) are represented by a set of components that are dynamically
discoverable via a service registry or knowledge repository.

The workflow of our testing approach, as relates to Figure 1, is described
as follows (starting from the top-left): An Orchestrating Autonomic Manager
(AM) continuously monitors the system environment (1.0) and analyzes its
state according to a predefined adaptation policy. In response to environmental
changes, the AM selects the replacement components (2.0), and dynamically
reconfigures the system (2.1). If runtime validation is required, an Orchestrating
Test Manager (TM) intercepts adaptation and generates a test plan (3.0). The
TM then selects any stubs (4.0) that may be required for testing, and passes
them to the AM in a request to set up the validation process (4.1). Lastly, the

Safe Runtime Validation of Behavioral Adaptations in Autonomic Software 35

TM coordinates a series of self-tests (4.2) using the STACs, and evaluates the
results to determine if the adaptive change should be accepted or rejected (5.0).

We have refined the self-test coordination activity, identified in workflow step
4.2, into Algorithm A.1. Our algorithm incorporates a graph-based integration
test order strategy [2].

Algorithm A.1. Self-Test Coordination using STACs

For each delta component Di being integrated:

1. Replace the baseline component targeted in the adaptation with Di.
2. If Di calls other components, replace the callees with stubbed components;

and invoke a self-test on Di.
3. Generate an integration test order (ITO) for Di to minimize the number of

stub re-configurations required during Di’s integration.
4. Use the ITO from Step 3 to invoke a series of adaptations and self-tests until

all of the previously replaced callee components have been integrated.
5. Perform dependency analysis to identify the components that call Di; and

invoke self-tests on them in reverse topological order.

3.2 Illustrative Example

To illustrate the behavior of the algorithm, we now apply it to an adaptation
scenario. Our scenario involves the baseline component C from STAC3 in Figure 1
being replaced by the delta component H. In this case the algorithm produces
the following list of actions:

Action 0. Replace C in STAC3 with H
Action 1. Replace E in STAC5 with S5
Action 2. Replace F in STAC6 with S6
Action 3. Execute STAC3.selftest
Action 4. Replace S5 in STAC5 with E
Action 5. Execute STAC3.selftest
Action 6. Replace S6 in STAC6 with F
Action 7. Execute STAC3.selftest
Action 8. Execute STAC2.selftest
Action 9. Execute STAC1.selftest

During Action 0 the system replaces the baseline component C with the delta
component H, and the self-testing process is initiated. Actions 1–3 set up and
execute self-tests on H using stubs S5 and S6. The stubbed configuration allows
the behavior of H to be validated in isolation, as depicted by the arc labeled
Unit and the stereotypes labeled <<stubbed>> in Figure 2a. Actions 4 and 5
remove the S5 stub and validate the interactions between H and one of its actual
dependents E (Figure 2b). Similarly, Actions 6 and 7 realize an integration test
between H and its dependent F through replacement of the stub S6 (Figure 2c).
At this point the system has reached its target configuration. Actions 8 and 9

36 T.M. King et al.

A
STAC1

B
STAC2

STAC3

S6
STAC6

D
STAC4

S5
STAC5

<<blocked>>

H

<<blocked>>

<<blocked>>

Unit

STAC3

S6
STAC6

D
STAC4

E
STAC5

H

Integration

STAC3

F
STAC6

D
STAC4

E
STAC5

H

System

(a) (c)(b)

A
STAC1

B
STAC2

STAC3

F
STAC6

D
STAC4

E
STAC5

H

<<blocked>>

Firewall

(d)

<<stubbed>> <<stubbed>> <<stubbed>>

A
STAC1

B

<<blocked>>

<<blocked>>

STAC2

A
STAC1

B

<<blocked>>

<<blocked>>

STAC2

Fig. 2. Illustrative Example of Unit, Integration, System, and Firewall Self-Tests

conclude the self-testing process with the firewall regression test phase which
validates each caller component affected by H’s integration. This involves first
performing a self-test on component B (Figure 2d), and then component A. The
stereotype <<blocked>> in Figure 2 indicates the partial disablement of caller
components for the purpose of runtime safety.

3.3 State-Based Model for SAV

Recall that Safe Adaptation with Validation (SAV) tests adaptive changes to
autonomic software in-place, during the adaptation process [10]. The strategy
is based on the idea of safe adaptation [24], which ensures that the adaptation
process does not violate dependencies between components, nor interrupt critical
communication channels. Figure 3 presents a state-based model for our system-
wide testing approach according to SAV. It extends the model by Zhang et al.
[24] with: (1) test setup activities via a refinement of the resetting, safe, and
adapted states; and (2) test invocation, execution, and evaluation activities by
adding a new validating state.

Before SAV begins, the system is in the running state where all components
are fully operational. An Orchestrating TM then sends a reset command to an
Orchestrating AM, which moves the system into the resetting state. During
the reset, the system is in partial operation as the AM disables functions asso-
ciated with the adaptation target (AT), and stubbed dependencies (SD). Upon
completion, the system is in a safe state where the adaptation target is replaced
by the delta component, and the system begins adapting for unit tests.

Once all callees of the delta component have been stubbed, the system transi-
tions to the ready for unit tests state. The TM then sends a test command
and the system enters the validating state, where test cases are executed. If
unit testing is successful, the system moves to the adapting for integration
tests state. Stubbed callees are replaced by actual callees one at a time, with a
test command issued after each replacement. In other words, the system alter-
nates between adapting for integration tests and validating, until the
interactions of callees with the delta component have been tested.

After reaching the target configuration, the system moves from validating to
the ready for firewall tests state. The TM then invokes the final set of test

Safe Runtime Validation of Behavioral Adaptations in Autonomic Software 37

safe (adapting)

do: adapt
adapted

(blocked)

ready for
integration tests

ready for
unit tests

ready for
firewall tests

adapting for integration tests

do: setup integration testing

adapting for unit test

do: setup unit testing

(blocked) [final adaptation valid] /
send test done

receive test
/

[adaptation complete] /
send adapt done

[intermediate adaptation valid] /

send test done

resuming

do: resume

(in partial operation)
[accept change] /

running

(in full operation)

resetting

do: disable AT and SD

(in partial operation)

re
ce

iv
e

 re
se
t

/

[reset complete] /

send reset
done

[resumption complete] /

send resume done

[rollback] /

[adaptation complete] /

send adapt
done

validating

do: self-test

(blocked)

{Functions that call Adaptation Target}

{Functions that call Stubbed Dependencies}

AT

SD

Start

Fig. 3. State-Based Model for Safe Adaptation with Validation

commands. If the firewall tests pass, the delta component is accepted and the
system enters a resuming state. During resumption, the AT and SD functions
are unblocked and then the system returns to a fully operational running state.
At any point during unit, integration, system, or firewall regression testing, the
TM can reject the adaptive change and rollback to the previous configuration
(dotted transition in Figure 3).

4 Self-Testable Autonomic Components

In this section we formalize the notion of a self-testable autonomic component
(STAC), and provide a detailed design to support STAC development. As de-
picted in Figure 4, a STAC is defined by a 5-tuple (T, A, R, I, K) where:

T is a finite set of test managers which are responsible for validating self-
management changes to resource R

A is a finite set of autonomic managers, disjoint from T , which perform self-
management of resource R

R is a computational or informational resource which provides application-
specific services to its clients

I is a finite set of interfaces for client services (IS), self-management (IA),
runtime testing (IT), and maintenance (IM)

K is a knowledge repository containing artifacts such as policies (KP), test
cases (KT), and test logs (KL)

38 T.M. King et al.

Service Interface

Resource (R)

Autonomic
Managers (A)

Test
Managers (T)

Test Interface Autonomic Interface
IT IA

IM

IS

AdministratorOther STACs

Policies
Test Cases
Test Logs

STAC

Maintenance Interface

Client

PT PA

Knowledge Source
(K)

Fig. 4. Elements of a Self-Testable Autonomic Component

4.1 Managers

A reusable design of the test managers (T) and autonomic managers (A) is
shown in Figure 5. Both types of managers use a generic design that extends the
work in King et al. [11] by: (1) incorporating safety mechanisms for suspending
and resuming managers; (2) adding support for updating the internal knowledge
via an external knowledge source, and (3) abstracting common logic out of the
monitor, analyze, plan, execute (MAPE) functions.

The GenericManager class, shown at the top-right of Figure 5, is the main
controller class that coordinates the manager’s activities. The generic manager
may invoke an internal knowledge component or an external knowledge source, as
indicated by the interfaces InternalKnowledge and KnowledgeSource respec-
tively. The key operations provided by the generic manager include: activate
– sets a specified behavioral policy p as being active in the internal knowledge;
manage – starts or resumes the MAPE functions; suspend – temporarily pauses
the MAPE functions for safety or synchronization purposes; and update – re-
trieves new or updated behavioral policies from an external knowledge source.

The template parameter Touchpoint, represented by the dotted boxes in Fig-
ure 5, is a place-holder for the class that implements the self-management or
self-test interface used by the manager. Instantiation of the GenericManager
requires the fully qualified class name of this Touchpoint class, and the name of
the sensor method that will be used to poll the managed resource. The package
edu.fiu.strg.STAC.manager.mape in Figure 5 shows the detailed class design
of the MAPE functions of the generic manager. Each function derives from the
abstract class AbstractFunction, which implements common behaviors such as:
(1) initialization, suspension and resumption of the function; and (2) access to
data shared among the functions.

Function independence is achieved through programming language support
for multi-threading, as indicated by specialization of the Thread library (top-
left of Figure 5). Once a MAPE object is initialized, its control thread con-

Safe Runtime Validation of Behavioral Adaptations in Autonomic Software 39

edu.fiu.strg.STAC.manager.mape

+doFunction()

iKnowledge : InternalKnowledge
suspended : Boolean

AbstractFunction

Touchpoint

sensorObject : Object
sensorMethod : Method

Monitor

+generateChangeRequest()
Analyzer

+generateChangePlan()
Planner

+effectorObject() : Object

Executer

+Thread(in threadGroup, in name)

Thread <<library>>

+startAll() : void
+joinAll() : void
+hasAllSuspended() : Boolean

MAPEGroup

Touchpoint

+ThreadGroup(in name)

ThreadGroup <<library>>

1

1

1 1

1 1

1

1

1

1
«interface»

InternalKnowledge

+activate(in policy) : void
+manage() : void
+suspend() : void
+stop() : void
+update() : void

GenericManager

Touchpoint

«interface»
KnowledgeSource

Fig. 5. Extended Design of Generic Manager with Runtime Safety Mechanisms

tinuously invokes a function-specific implementation of the abstract method
doFunction(). For example, a monitor’s doFunction implements state polling
of managed resources, while an analyze doFunction compares that state against
symptom information. The boolean variable suspended in AbstractFunction
denotes whether or not the function has been temporarily paused. Access to data
shared by the functions is through the variable iKnowledge, which implements
the InternalKnowledge interface.

The concrete MAPE implementation is represented by Monitor, Analyzer,
Planner, and Executer classes (center of Figure 5). Both the Monitor and
Executer incorporate reflection-oriented programming techniques to avoid hard-
coding the qualified method names of sensors and effectors. Sensors and effectors
can therefore be updated at runtime, which allows them to be made consistent
with the resource even after structural adaptations. All MAPE threads within
the manager can be manipulated as a single unit. The class labeled MAPEGroup
in Figure 5 contains the synchronization logic for initializing, suspending, and
resuming a collection of MAPE threads. Some programming languages provide
built-in support for thread grouping and synchronization, as indicated by the
ThreadGroup library.

4.2 Internal Knowledge

Figure 6a shows the design of the internal knowledge of the generic manager. The
KnowledgeData class (top-center) realizes the interface InternalKnowledge,
which is used by the MAPE functions to access shared data. The key attributes
of the KnowledgeData class are: touchData – holds the current state information
of the resource R captured by the monitor function; symptoms – represents a set
of conditional relations used by the analyze function to determine if R is in an
undesirable state; and changePlans – contains an action, or sequence of actions,
generated by the plan function in order to transition R back to a desired state.

Individual symptoms are defined by the conjunction of relations between dif-
ferent state variables and corresponding values. As shown at the left of Fig-
ure 6a, a Symptom is composed of one or more StateMapping objects. Each

40 T.M. King et al.

+suspend() : void
+resume() : void
-saveState() : void
-restoreState() : void

-isSuspended : Boolean
-stateData : Stack

AbstractResource

+getObjectA() : InterfaceA
+setObjectA(in obj : InterfaceA) : void
+...()

-objectA : InterfaceA
-objectB : InterfaceB
-...

Resource

-sid : String
ChangeRequest

-pid : String
ChangePlan

+isRecognized() : Boolean
-enabled : Boolean

Symptom

-variable : String
-operator : String
-value : String

StateMapping

-effector : String
Action

-value : String
-type : String

Parameter
triggers addresses

1

1..*

1..*

1

0..*
1

0..*
1

1

1..*

InternalKnowledge

-touchData : Touchpoint
-symptoms : Map
-changePlans : Map
-requestQueue : BlockingQueue
-planQueue : BlockingQueue
-dataLocked : Boolean
-suspended : Boolean

KnowledgeData
Touchpoint

1

1..*

(a) (b)

Fig. 6. (a) Design of Internal Knowledge, and (b) Managed Resources

StateMapping consists of: (1) attributes that hold information on a single state
variable and an associated value, and (2) a relational operator. The method
isRecognized() of the Symptom class computes the truth value of each State-
Mapping, and returns the conjunction of the results to indicate whether or not
the managed resource is in an undesired state.

Recognition of a symptom triggers the generation of a ChangeRequest object.
Change requests contain a symptom identifier sid that is used to lookup a
ChangePlan to address the problem. Each ChangePlan is composed of one or
more Action objects, which provides the name of the effector method and an
optional Parameter list. Two queues, requestQueue and planQueue, have been
incorporated into the KnowledgeData class to hold change requests and change
plans respectively. These blocking queues use producer-consumer relationships
to facilitate safe communication among the MAPE functions.

4.3 Resource

Our detailed design of the resource R considers two scenarios: (1) developers are
required to build R from scratch and/or have full access to modify its source
code; and (2) a commercial off-the-shelf (COTS) component, whose source code
is unavailable, is to be used as the primary basis for developing R.

Developing R with Code Access. Figure 6b provides a detailed class de-
sign for R when there are no limitations with respect to source code accessibility.
Each managed resource derives from the class labeled AbstractResource in Fig-
ure 6b. This abstract class provides access control mechanisms at the resource-
level to address our safety goal. These include the operations: suspend, resume,
saveState, and restoreState.

State visibility and controllability are addressed by requiring that getters and
setters be provided for all of R’s private and protected variables. These include
variables of both primitive and non-primitive data types. Although intrusive,
this requirement ensures that test case pre- and post- conditions associated with

Safe Runtime Validation of Behavioral Adaptations in Autonomic Software 41

object state can be setup and verified. To further improve the testability of R,
our design emphasizes the use of dependency injection [22]. This mandates that
all non-primitive data within R be declared as references to interfaces, rather
than implementation classes (e.g., objects A and B in Figure 6b). Following such a
design heuristic decouples the interface of each object in R from its source code,
thereby allowing mock object implementations (stubs) to be easily swapped in
and out of R during runtime testing.

Developing R without Code Access. In the scenario where R is a COTS
component, the adapter design pattern can be used to facilitate the implementa-
tion of the safety mechanisms specified in Figure 6b. This would involve building
a wrapper class that adds suspend and resume operations to the component’s
existing functionality. Care should be taken when developing the wrapper so
that new errors are not introduced into R during this activity.

Using COTS can impede both the manageability and testability of R since
there is usually no way to break encapsulation, and gain access to the com-
ponent’s private or protected members. However, the complementary strategy
presented by Rocha and Martins [17] can be used to improve testability of com-
ponents when source code is not available. Their approach injects built-in test
mechanisms directly into intermediate code of the COT. Other approaches for
improving the runtime testability of COTS exist in the literature, and may be
applicable to R in this scenario.

4.4 Test Interface

A class diagram of the self-test support design is shown in Figure 7. Three
categories of automated testing tools have been modeled for use in STACs, rep-
resented by the interfaces: ExecutionCollector – applies test cases to the re-
source to produce item pass/fail results; (2) CoverageCollector – instruments
the source code and calculates line and branch coverage during test execution;
and (3) PerformanceCollector – computes the total elapsed time taken to
perform test runs.

The class SelfTestSupport realizes the collector interfaces, and is used to
store the results of testing via the attribute testResults. After testing com-
pletes, this data structure can be queried by TMs to gather information such as
the number of test failures; total elapsed time for testing; and the percentage of
line and branch coverage. TMs can then store this information in their internal
knowledge as test logs, and evaluate them against the predefined test policies.
The SourceMap class is used to configure the self-test implementation by provid-
ing information on managed resources, including the location of related source
code modules and automated test scripts.

5 Prototype

To investigate the feasibility of the ideas presented in this paper, we have applied
system-wide AST to a self-configuring and self-healing Communication Virtual

42 T.M. King et al.

+instrument(in srcPath) : void
+generateCoverReport() : void
+getStatementCoverage() : Double
+getBranchCoverage() : Double

«interface»
CoverageCollector

+getElapsedTime(in tid) : Double

«interface»
PerformanceCollector

+setExecToolLib(in path) : void
+setAuxToolLib(in path) : void
+cleanUp() : void
+compile() : void
+execute(in rid, in tid) : void

«interface»
ExecutionCollector

+execute(in testSet, in rid, in testType) : void
+wasSuccessfulTest(in tid) : Boolean
+getNumberFailures(in testSet) : Integer
+getTotalElapsedTime(in testSet) : Double
+getStatementCoverage() : Double
+getBranchCoverage() : Double

-testResults
-covCollector : CoverageCollector
-perfCollector : PerformanceCollector

SelfTestSupport
implements

implements

+SourceMap(in srcMapPath) : void
+getTestCaseSrc(in tid) : String
+getResourceSrc(in rid) : String

-srcMapPath : String
SourceMap

Fig. 7. Test Interface and Implementation

Machine (CVM) [4]. CVM is a model-driven platform for realizing user-centric
communication services, and is the result of a collaboration between FIU SCIS
and Miami Children’s Hospital in the domain of healthcare.

5.1 Application Description

Allen et al. [1] leverage autonomic computing, and open-platform communication
APIs, in the provision of a comprehensive set of communication services for
CVM. Figure 8 shows the Network Communication Broker (NCB) layer of CVM.
Through a series of dynamic adaptations, NCB self-configures to use multiple
communication frameworks such as Skype, Smack, and Native NCB [8,19,23]
(bottom-right). An NCB management layer exposes the communication services
to its clients via a network independent API (top of Figure 8).

A layer of Touchpoint AMs directly manages these communication services
and is responsible for dynamically adapting these components in the network
configuration. An Orchestrating AM, labeled OAMCommunication, coordinates
the Touchpoint AMs, and analyzes user requests stored in a call queue to de-
termine if self-management is required. Requests for self-management can have
two general forms: (1) a user’s explicit request for communication that is not
supported by the current configuration, thereby requiring self-configuration; and
(2) the occurrence of other erroneous events such as failure of a communication
service, thereby requiring self-healing.

5.2 Setup and Experimentation

Using the approach and supporting designs described in Sections 3 and 4, we
incorporated self-testing into the NCB layer of CVM. A test manager (TM)
was implemented at the orchestrating-level to monitor change requests gener-
ated by OAMCommunication. Change requests requiring dynamic adaptation were
validated in-place by a Touchpoint TM, after disabling caller functions in the
Communication Services Manager and Touchpoint AMs to ensure safety. The
automated tools JUnit and Cobertura were used to support the testing process

Safe Runtime Validation of Behavioral Adaptations in Autonomic Software 43

Managed Resources

«subsystem»
Skype

«subsystem»
Native

«subsystem»
Smack

SkypeAdapter

«subsystem»
OAMCommunication

«subsystem»
TAMCommSC

«subsystem»
TAMCommSH

Touchpoint AMsOrchestrating AMsKnowledge Sources

NewAdapter

Communication Services Manager (CSM)

«subsystem»
NewFramework

SmackAdapter

Network Communication Broker Manager (NCBM)

NCB Interface

KS Interface

«subsystem»
CallQueuing

«subsystem»
Autonomic

«subsystem»
EventHandling

«interface»
NCBBridge

Fig. 8. Network Communication Broker (NCB) Layer of CVM

[5,6]. A total of 41 JUnit tests were developed to validate self-adaptations in the
NCB, along with the necessary test drivers and stubs. Cobertura was set up to
instrument the NCB implementation for statement and branch coverage.

Experiments were conducted using the CVM platform in order to gain in-
sights into the benefits and challenges associated with the proposed approach.
The experiments were designed to facilitate the observation and measurement
of the: (1) effectiveness of self-tests in detecting faults and exercising the CVM
implementation, and (2) impact of runtime testing on the processing and tim-
ing characteristics of the application. The Eclipse Test and Performance Tools
Platform (TPTP) was used for timing test executions and measuring thread
utilization during self-testing [21].

A mutation analysis technique was incorporated into the experimental design.
This involved generating 39 faulty delta components by planting artificial de-
fects into the interface and/or implementation of: (1) Skype, representing a pro-
prietary closed-source component, and (2) Smack, representing an open-source
component. 15 of the mutants were created manually, while the remaining 24
were generated automatically using MuJava [13]. A driver was written to sim-
ulate the environmental conditions necessary to induce self-configuration and
self-healing of CVM using the mutant components, at which point self-testing
would occur to produce the results.

5.3 Results

For the fault detection experiments 35 out of the 39 mutants were detected,
producing a mutation score of 89.7%. Self-testing achieved 63% statement cov-
erage and 57% branch coverage of the NCB’s implementation. In addition, there

44 T.M. King et al.

50

60

70

80

90

ak
en

by
A

M
/T

M
Th

re
ad

s

Ti

0

10

20

30

40

1 2 3 4 5

%
Ex

ec
ut

io
n

Ti
m

e
Ta

Run Number

Timeout

Naïve

Fig. 9. Thread Utilization of Test Managers in CVM

was 100% method coverage of the communication service interfaces. Figure 9
provides the manager thread performance results of five experimental runs us-
ing two variants of the NCB. One variant uses a naive monitoring scheme that
polls resources continuously, and the other applies a timeout based monitoring
scheme that polls resource intermittently every 250ms. The data for the exper-
imental runs were collected during a 2-way Skype AV to a 3-way Smack AV
self-configuration.

5.4 Discussion

The findings of our prototype experimentation suggest that both system-wide
AST and SAV are feasible. In particular, mutation analysis revealed highly fa-
vorable scores, with multiple test failures being produced at the integration and
system-levels. Self-testing in the NCB successfully detected a cross section of
bad mutants, and exercised a significant portion of the program structure.

As indicated by Figure 9, the initial runtime interleaving of the CVM and its
self-testing process was highly biased in favor of testing. This led to observable
degradation of the core CVM services, especially during the establishment of
communication connections. However, introducing a small timeout into the TM
threads of the NCB significantly improved the performance of the core CVM
services. The timeout reduced the biased interleaving from a range of 85-65% to
35-20%, which was acceptable to CVM users.

Using safety mechanisms to debug the self-testing CVM was instrumental
to the success of the project. Debugging and off-line testing of the NCB layer
relied heavily on the use of suspend and resume operations within AMs and
TMs. Developing self-tests for the NCB was a significant challenge due to its
large size and complexity. Some tests required making asynchronous calls to the
underlying communication frameworks. However, most open-source testing tools
do not support asynchronous testing, which meant that we had to implement
additional programs for this purpose.

Safe Runtime Validation of Behavioral Adaptations in Autonomic Software 45

Selecting and tailoring open-source testing tools for use in autonomic software
presented additional difficulties, including: (1) locating trustworthy information
on tool features and configuration procedures; (2) filtering tools that would not
be suitable for the problem being tackled due to their reliance on external de-
pendencies, e.g., Apache ANT, and (3) determining which report formats would
be most appropriate for automatically extracting results in a uniform manner,
e.g., CSV, XML, HTML. Threats to the validity of the investigation include
performance error due to the instrumentation overhead, and the lack of similar
studies for verifying experimental results.

6 Conclusion

Dynamically adaptive behavior in autonomic software requires rigorous offline
and on-line testing. To narrow the gap between on-line testing and other ad-
vances in autonomic computing, we presented a system-wide approach for vali-
dating behavioral adaptations in autonomic software at runtime. Emphasis was
placed on enabling on-line testing at different levels of the autonomic system, as
well as maintaining operational integrity at runtime via built-in safety mecha-
nisms. A prototype of a self-testing autonomic communication virtual machine
was presented, and used to discuss the feasibility, challenges and benefits of
the proposed approach. Future work calls for controlled experimentation of the
self-testing CVM, and investigating runtime testing of structural adaptations.

Acknowledgments. The authors would like to thank Alain E. Ramirez for his
contribution to this research. This work was supported in part by the NSF under
grant IIS-0552555.

References

1. Allen, A.A., Wu, Y., Clarke, P.J., King, T.M., Deng, Y.: An autonomic framework
for user-centric communication services. In: CASCON 2009, pp. 203–215. ACM
Press, New York (2009)

2. Briand, L.C., Labiche, Y., Wang, Y.: An investigation of graph-based class inte-
gration test order strategies. IEEE Trans. Software Eng. 29(7), 594–607 (2003)

3. Da Costa, A.D., Nunes, C., Da Silva, V.T., Fonseca, B., De Lucena, C.J.P.:
JAAF+T: a framework to implement self-adaptive agents that apply self-test. In:
SAC 2010, pp. 928–935. ACM, New York (2010)

4. Deng, Y., Sadjadi, S.M., Clarke, P.J., Hristidis, V., Rangaswami, R., Wang, Y.:
CVM-a communication virtual machine. J. Syst. Softw. 81(10), 1640–1662 (2008)

5. Doliner, M., Lukasik, G., Thomerson, J.: Cobertura 1.9 (2002),
http://cobertura.sourceforge.net/ (June 2011)

6. Gamma, E., Beck, K.: JUnit 3.8.1 (2005), http://www.junit.org/ (June 2011)
7. IBM Autonomic Computing Architecture Team: An architectural blueprint for

autonomic computing. Tech. rep., IBM, Hawthorne, NY (June 2006)
8. Jive Software: Smack API (November 2008),

http://www.igniterealtime.org/projects/smack/ (June 2011)

http://cobertura.sourceforge.net/
http://www.junit.org/
http://www.igniterealtime.org/projects/smack/

46 T.M. King et al.

9. Kephart, J., Chess, D.: The vision of autonomic computing. Computer 36(1), 41–52
(2003)

10. King, T.M., Babich, D., Alava, J., Stevens, R., Clarke, P.J.: Towards self-testing
in autonomic computing systems. In: ISADS 2007, pp. 51–58. IEEE Computer
Society Press, Washington, DC, USA (2007)

11. King, T.M., Ramirez, A., Clarke, P.J., Quinones-Morales, B.: A reusable object-
oriented design to support self-testable autonomic software. In: SAC 2008, pp.
1664–1669. ACM, New York (2008)

12. Liu, H., Parashar, M., Hariri, S.: A component-based programming model for au-
tonomic applications. In: ICAC 2004, pp. 10–17. IEEE, Los Alamitos (2004)

13. Ma, Y.S., Kwon, Y.R., Offutt, J.: Mu Java 3 (November 2008),
http://cs.gmu.edu/~offutt/mujava/ (June 2011)

14. Patouni, E., Alonistioti, N.: A framework for the deployment of self-managing and
self-configuring components in autonomic environments. In: WOWMOM 2006, pp.
480–484. IEEE Computer Society, Washington, DC, USA (2006)

15. Ramirez, A., Morales, B., King, T.M.: A self-testing autonomic job scheduler. In:
ACM-SE 46, pp. 304–309. ACM Press, New York (2008)

16. van Renesse, R., Birman, K.P.: Autonomic Computing – A System-Wide Perspec-
tive. In: Parashar, M., Hariri, S. (eds.), Taylor & Francis, Inc., Bristol (2007)

17. Rocha, C.R., Martins, E.: A strategy to improve component testability without
source code. In: SOQUA/TECOS, pp. 47–62 (2004)

18. Salehie, M., Tahvildari, L.: Self-adaptive software: Landscape and research chal-
lenges. ACM Trans. Auton. Adapt. Syst. 4(2), 1–42 (2009)

19. Skype Limited: Skype API (February 2007),
https://developer.skype.com/ (June 2011)

20. Stevens, R., Parsons, B., King, T.M.: A self-testing autonomic container. In: ACM-
SE 45, pp. 1–6. ACM Press, New York (2007)

21. The Eclipse Foundation: Test and Performance Tools Platform (November 2001),
http://www.eclipse.org/tptp/ (June 2011)

22. Walls, C., Breidenbach, R.: Spring in Action. Manning Publications Co., Greenwich
(2005)

23. Zhang, C., Sadjadi, S.M., Sun, W., Rangaswami, R., Deng, Y.: A user-centric
network communication broker for multimedia collaborative computing, pp. 1–5
(November 2006)

24. Zhang, J., Cheng, B.H.C., Yang, Z., McKinley, P.K.: Enabling safe dynamic
component-based software adaptation. In: WADS, pp. 194–211 (2004)

25. Zhang, J., Goldsby, H.J., Cheng, B.H.: Modular verification of dynamically adap-
tive systems. In: AOSD 2009, pp. 161–172. ACM, New York (2009)

26. Zhao, Y., Kardos, M., Oberthür, S., Rammig, F.J.: Comprehensive verification
framework for dependability of self-optimizing systems. In: Peled, D.A., Tsay,
Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707, pp. 39–53. Springer, Heidelberg (2005)

http://cs.gmu.edu/~offutt/mujava/
https://developer.skype.com/
http://www.eclipse.org/tptp/

A Configurable Environment Simulation Tool for

Embedded Software

Yuying Wang, Xingshe Zhou, Yunwei Dong, and Sha Liu

College of Computer Science, Northwestern Polytechnical University,
Xi’an 710072, P.R. China
wangyy@nwpu.edu.cn

Abstract. Simulation platform is one of the most important tools for
embedded software. For the diversity of embedded environment, it hap-
pens that one simulation model developed under a specific platform need
to be transplant to another platform when the environment changes. This
paper aims to make a brief study of the design and realization method
of a configurable environment simulation tool for embedded software.
Some kinds of interactive environment models are realized by S-function,
which could be integrated into embedded software model for simulation.
A configurable simulation monitor interface are designed so that needed
monitor interface could be build easily for different user requirement. To
improve the effect of simulation data acquisition, a new simulation mon-
itor method is presented. The simulation result shows that this method
is feasible and effective. By integrated the modeling function of Mat-
lab/Simulink, This tool could support the whole stage of modeling, sim-
ulation and monitoring for embedded software.

Keywords: Simulation tool, Embedded system, Environment simula-
tion, Configurable monitor software.

1 Introduction

Recent years, embedded system becomes one of the most important synthetic
technical which has great impact on the evolution of people and the whole so-
ciety. With the increasingly system size and complexity, the cost on embedded
system verification raised sharply. The issues of how to guarantee the quality of
embedded software within tight time and low cost in the procedure of system
development becomes a major problem need to be faced.

Computer simulation can be used to reduce the expense and length of the
design cycle of embedded software before prototype construction begins. The
simulation method has been successfully applied into some practical industrial
processing control systems to make good profit both economically and socially.
At the early age of model driven embedded software development stage, the real
target environment has not coming to be use or hardly be able to use, a similar
simulation environment need to be offered so as the model based software could
be valid as early as possible. Especially for the embedded system which usually

J.M. Alcaraz Calero et al. (Eds.): ATC 2011, LNCS 6906, pp. 47–59, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

48 Y. Wang et al.

has strong interaction with outside environment for monitor and control, and
will be used in difference fields. It will be hard to build multi-simulation envi-
ronments for them to ensure the functionality and performance. An environment
simulation tool is such necessary to support the simulation of embedded software.
Environment models could simulate different embedded software environment by
model building and integration.

The major functions should be supported by a simulation tool are [1]: spec-
ification for model description and their processing; execution and control of
simulation application; analyzing, display and documentation for simulation re-
sults; and saving, searching and management for models, testing programs and
data. An integrative simulation tool takes many advantages in the whole embed-
ded software simulation process. It is not only the modeling and simulation of
various projects can be operated by means of the developed simulation platform,
but visualizing, monitoring and analysis can also be supported friendly.

This paper aims to make a brief study of the design and realization method
of an integrative simulation platform MDES (Model Driven Embedded software
Simulation tool), especially the environment simulation model and configurable
interface development. We extend the Matlab/Simulink model lib with a set of
environment model. To enhance the flexibility of monitor, we use the configura-
tion technical to customize the simulation monitor interface. The communication
configure, interface configure, simulation running, monitoring and result analysis
are integrated into MDES under the support of modeling function of Simulink.
The problem existed in traditional data acquisition method was analyzed and a
new method of improving the data missing and repeating problems are presented
and realized.

The rest of this paper is structured as follows. In Section 2 we summarized the
related work of embedded system simulation platform design. Section 3 describes
the approach taken for simulation tool, including the function design, architec-
ture design and description of simulation process. A new simulation monitor
method is presented in detail in Section 4. Finally conclusions are drawn and
our future work is discussed in Section 5.

2 Related Works

There have been significant focus on this area recently and previous work includes
several kinds of platform. A framework for modeling, simulation and automatic
code generation of sensor network applications was presented in [2], which based
on MathWorks tools and the application developer can configure the connec-
tivity of the sensor network nodes and can perform behavioral simulation and
functional verification of the application. After modeling and simulation, this
framework can generate the complete application code for several target oper-
ating systems from the simulated model. Hugh H. T. Liu [3] presented an in-
teractive design and simulation platform for flight vehicle systems development
which adopts the co-simulation integration concept and enables the component
design ”plug-and-play” in a systems simulation environment. The smooth in-
teractive design and simulation is achieved by an adaptive ”connect-and-play”

A Configurable Environment Simulation Tool for Embedded Software 49

capability. The EODiSP [4] is a generic platform to support the development and
operation of distributed simulations and implements the subset of HLA services
required to support data-driven simulations by allow the simulation packages
to interact together over a possibly distributed network. A real-time simulation
approach with rapid prototyping for digital electronic engine control is proposed
in [5] and an ECU-in-the-loop real-time simulation platform with this approach
is developed.

While model based simulation platform gives people a quite feasible approach
for the design, reusability and composition of models, [6,7,8] gives the examples
of how simulation can be integrated in a MDA-based approach in order to allow
quick development and simulation. Some methods of coupling UML model and
Simulink model for consistent simulation are on researching in [9,10].

3 Our Approach

The environment simulation tool MDES is specifically aimed at supporting the
development of UAV flight control simulation missions but is more generally
suitable for simulators that are built by integrating simulation packages which
interact by sending data to, and receiving data from each other or from sen-
sors/actors etc.

3.1 Function Design

It’s a two-step process in embedded system simulation. First, you create a graph-
ical model of the system to be simulated, using the model editor. The model de-
picts the time-dependent mathematical relationships among the system’s inputs,
states, and outputs. Then, you use the model simulation function to simulate the
behavior of the system over a specified time span. The MDES are designed as
such a two stages supported simulator. The architecture of the simulation tool
showed as Fig. 1.

The visual modeling, code generation and platform specific compile and link
presented in Fig. 1 are established by the support of Matlab/Simulink. Although
this paper focuses on environment simulation, model description is still an im-
portant function should be supported by simulation tool. So we use the method
of imparting the graphical user interface-based modeling capabilities of Simulink.
There are two kinds of model included in the model library, algorithm models
and plant models. The algorithm models are encapsulation control algorithms
offered by Simulink. The plant models are data communication and hardware
platform related model supplied by MDES used to integrated with algorithm
model for environment simulation. The major functions designed in MDES are:

– Simulation Engine
The simulation engine is responsible for communication methods configura-
tion and simulation control. MDES could support RS-232 COM port com-
munication and UDP network connection for data collection. To enhance the

50 Y. Wang et al.

Fig. 1. Simulation platform architecture

real-time ability and degree of accuracy, simulation model download and sim-
ulation process control use network connection and simulation data acquisi-
tion use serial port communication by default. Simulation control progresses
the simulation time, tracks of the entire simulation state and provides the
front end to users. The controls in the configurable monitor interface could be
bond conveniently with specified data channel of I/O card in model (*.mld)
by parameters configure for simulation results perceiving directly.

– Interactive Environment Models
Generally embedded software runs in complex physical environment. The
simulation platform needs to offer the ability of building reusable models
that can be composed into other simulation environment. So the require-
ments for modeling of outside environment should also be described in the
model. The plant models aims at building the I/O board driver models and
signal source models, are implemented as C based S-Function [11] and im-
ported in Simulink as block diagram. When simulation function is changed
or environment is altered, instead of rebuilding a new simulation model, we
just need to rebuild the changed parts and reuse the rests. Another advan-
tage is that the plant models can be distributed as stand-alone files or be
used as Simulink files.

– Simulation Monitor Interface Configuration
Usually the simulation tools used in different environment, different data
type and data channel number need to be monitored and showed by appro-
priate display method for easily understand. A configurable monitored inter-
face is an effectual method for such application. MDES provides the function
for users to configure the simulation monitor interface flexibly by dragging,
position and parameters setting. The interface customized by configuration
function could be saved as a formatted file. When loading a configured file,

A Configurable Environment Simulation Tool for Embedded Software 51

the corresponding interface will display and specified parameters will be set
as saved.

– Simulation Step Control
Simulation could be executed by simulation step control. The simulation
process is based on xPC and the implementation of step control such as
simulation model loading, download, simulation begin, pause and stop are
based on Matlab API engine lib.

– Data Acquisition and Visualization
The simulation results produced by running a simulation instance should
be send back to the monitor computer from simulation machine. By bond-
ing display controllers with specified data channel, different data could be
showed visualization as instrument board, curve graph and so on.

– Simulation Result Saving and Analyzing
The simulation results should be saved as data file for later analyzing. Besides
results saving, MDES also could alert when the simulation result showed
crossed the line for warning.

By supporting the environment models for graphics simulation modeling, con-
figurable simulation interface building and process control, MDES gives a inte-
grate simulation modeling and control environment. The strength of this solution
lies in the scope and capability of the development process and a high degree
flexibility.

3.2 Architecture Design

The simulation platform could be divided into three hierarchy use the view
of function implementation showed as Fig. 2. The bottom layer is simulation
machine with simulation module instance and communication module instance
running on. Which could be seems as running support layout. The top layer
facing to users provide simulation configuration interface application service.
The functions provided by middle layer, simulation control and monitors could be
called on the application service layer by simulation interface configured by users
themselves according to specified simulation application. Each layer account for
relatively independent function, so as to its implementation.

Simulation machine in bottom layer running the user defined module instances
and communication module instance. Under the support of the control module,
Matlab engine assemble the module and generate C code by RTW to get user
define module instance. The needed module lib by modeling are provided by
Simulink model lib and I/O driver model lib of MDES, we call it integrated
environment models, included the source data models and I/O card models.

The configuration interface of simulation tool is an independent subsystem in
charge of user interaction. There are two step when embedded software simulate,
first, configure a monitor interface, second, running the simulation. The first part
supported by the configuration interface of the simulation tool. Different monitor
controllers are provided as NI Labview controllers and could be used directly by
dragging and parameters setting to get a specific monitor interface. We aim at

52 Y. Wang et al.

applying the idea of configuration programmable skill to generate the monitor
interface according to the requirement of a specific simulation task, which takes
the advantages of flexible of display controller, easily to change and available for
further development.

The middle layer showed in Fig 2 implement function of control and monitor.
Control module integrates the interface of Matlab for modeling. User defined
modules are further development *.mdl module defined by user from Simulink.
Communication modules are generate from I/O board module implement as
S-function charge for data transform, which provided by MDES. The monitor
module take charge of receiving data from simulation computer and send the data
to bonded display controller which set by configuration interface for monitoring
and analyzing. Multi-thread programming was used here for high performance.
There are four sub-modules in this part: data acquisition module, data buffer
module, data display module and channel configuration. The communication
module instances created from located in the bottom layer are used to cooperate
with data acquisition module for I/O transform.

Fig. 2. Simulation platform architecture

- Data acquisition module: reading data from serial port and send to data
buffering module.

- Data buffering module: Data buffering and decoding are treated here. In
decoding function first transform the character and data, then sort out a
group of data from serial port for different display controller.

- Data display module: Display the data as graphic visualization, like figure
and curve to user. The controller API provided by NI company are used in
function of display thread.

A Configurable Environment Simulation Tool for Embedded Software 53

- Channel configuration module: The channel configuration is related with the
configuring of monitor interface. It used to set a source data of a communi-
cation module for a display controller according to specific correspondence
principle.

- Communication module instance: A communication module is a model after
compiling, and a communication module instance is a executive target file
after compiling. It implemented as S-function in Simulink, used for the com-
munication of host machine and simulate machine. In the stage of modeling
the communication module are composted into the environment model to
connect with output data. When simulation running, it take concerted ac-
tion with other modules in monitor part to improved the inefficient problem
of usual method. The communication module will send the data come from
simulator to data acquisition module by serial port initiatively. By adjust
some parameters in Send Block of xPC Target Library for RS232 to get this
improvement.

3.3 Simulation Process

A complete process of model driven embedded software simulation are:

- Simulation model developing: Building the embedded software/environment
model according to the requirement. The embedded software runs on target
machine to execute the control task. To building a model for it, the models
in Simulink model lib need to be used. The environment models are used
to simulate the outside environment when embedded software running, in
hardware in loop simulation, these data may be provided by sensors and get
by AD card. So the integrated environment model are added into the model
lib for easily environment model building.

- Model compile and download: The simulation model, *.mdl will be convert
to .c file and .h file by auto code generation. After C/C++ compiler the
executive file of xPC target will be get. By calling the simulation engine, the
executive file will be down loaded to xPC target to run the simulation. The
down load could be fulfils by Simulink outside mode as well as simulation
control in MDES. Simulation could also be pause or stop on the progress for
further observation.

- Simulation monitor: The configuration monitor interface in MDES is very
flexible in application. A new monitor interface could be generate easily on
demand, or a previous monitor interface could be used if satisfy the needs
The source data could be set here by bonding a display controller with a
specific data channel of the simulation model. The simulation data transfer
to the display controller will be showed graphically. Interim result also could
be saved for further analyze. A monitor interface generated by MDES is
show in Fig. 3.

54 Y. Wang et al.

Fig. 3. A monitor interface generated by MDES

4 Simulation Monitor Method Design

xPC Target is essentially an real time operating system for the execution of con-
trol loop running on a second computer, allows a perfect real-time execution of
the compiled model for rapid control prototyping, hardware-in-the-loop (HIL)
simulation. To satisfy the requirement of simulation test bed, the monitor sys-
tem should support some basic function such as parameter configure, simulation
control, data saving and real time display. For the target machine could not save
the interim result when simulation running, to save the simulation data real time
dynamically become a major task of monitor system and responsible for getting
precise simulation result and offer correct data for simulation analyzer.

There are three methods usually used for data transfer in xPC based monitor
system: use Matlab API, use Matlab command line or use Simulink interact
object. A common ground among these methods is they all adopt the C/S mode
in implementation. The monitor computer served as a client, send request to
server by Matlab API, command line or Simulink interact object. The simulation
computer, xPC target, served as server handle the received request for parameter
configure, simulation control, data acquisition, saving and display, showed as Fig.
4. About these tasks server handled, the simulation computer could response the
request from monitor computer in time for parameter configure and simulation
control for they have no much data need to transfer, so C/S mode have the
ability to support these function. But for data acquisition, there are problem
exit when using C/S mode.

4.1 Problem Description

The problem exit in data real time dynamic display when using C/S mode,
showed as Fig. 5. In the coordinate, X-axis represents time, Y-axis represents the
simple value. t1 · · · t6 is the time the client (monitor computer) send the simple

A Configurable Environment Simulation Tool for Embedded Software 55

Fig. 4. Data transfer in xPC based simulation system

request to server (simulation computer). For the monitor usually build based on
a normal system without real time ability, it could not give the guarantee to send
the simple request with fix simple period. So the reality time of t1 · · · t6 will be
some of random. The result of this random is that the sampled data send back
to the client also shows uneven distribution, which takes disadvantages for data
analyzing. For example, the simulation period T < T2, the client send request
to the server on time t1 and t2 separately, but the server produce three data
(simulation result) during this period. So the second data will be missed. In case
of the simulation period T > T2, the twice requests on time t1 and t2 from client
will get same simple data, named data repeat sample.

Fig. 5. Data collection in C/S method

Aim at the above problem, we put forward a new method and implement it
in simulation monitor of MDES.

4.2 Solution of Simulation Monitor

The simulation monitor module could be divided into two part, monitor and
simulation, connect with each other by Ethernet or by serial port. Logically
the monitor module is composed by two level, Driver level and application level.

56 Y. Wang et al.

The driver lever take the charge of interact with simulation module, send control
command to simulation machine, collect the simulation result from it and decode
data. The application level offers monitor function to users, including simulation
control, parameter adjusting, data display and saving. The simulation module
is composed by server, user define models and communication module. Server is
an interactive module supported by xPC environment used to accept the con-
trol parameter adjusting commands. User defined models are simulation models
user defined according to the reality requirement. Communication models are
Simulink models designed in MDES for data collection. The monitor module
adopt the multi-thread programming methods and include a couple of threads:
simulation control thread, parameter adjusting thread, result display thread,
data saving thread, data decoding thread and data acquisition thread. The com-
munication models are designed according to S-function standard of Simulink.
Data display performance is improvement obviously in out method. The relative
modules include:

– Communication Models
Embedded software usually runs under special environment and need com-
munication models to act as environment to support its simulation. By add
the model into user defined simulation models and bond the needed signal
with communication model, compile the whole model as an integrate model
and generate the model instance. When running the simulation, the data
connected with communication model will be acquainted and transferred to
monitor computer. We use the code format “A#B#C#D\r\n” in this pa-
per, ABCD represent the data need to transfer, “#” used to separate each
data channel. By using it multiple data channels could be transfer in one
data package. “\r\n” represents the end of a data package.

– Data Acquisition Thread
The defect described above is caused by the time between the simulator and
the monitor out of synchronism. So we use the method of sending data initia-
tively instead of C/S mode in data acquisition. In our improved method, the
simulation computer sends sample data to monitor computer by communica-
tion model, showed as 6. So the sample period do not depend on the request
period of the monitor computer, but depends on the period of the simula-
tion. For the simulation computer build on the real time system with fixed
simulation period, the distribution of the simple data could be uniformity
with the period. As a result, the frequency of simulator and monitor do not
need to match to achieve data consistency. The problem of repeat simple and
data missing could be avoided. The procedure of data acquisition is: First,
the thread check if there are data comes by function WaitForSingleObject(),
if true, check the integrality of the data. Then, put the whole data pack-
age into data buffer (character “\r\n” means the end of a data package).
Check if the user stop the monitor, if not, returns to check the serial port
to inquire until the monitor stop, this thread exit. The data buffering used
to save sample data for data acquisition thread. As a shared memory, the
data decoding thread also use it to get data. To assure the synchronization

A Configurable Environment Simulation Tool for Embedded Software 57

of data input and output, the data buffer is protected by critical section of
Windows Compared with Mutex, Event and Semaphorewhich also support
by windows for thread synchronization, Critical Section runs under running
situation and has better efficiency.

Fig. 6. Data collection in C/S method

– Data Decoding Thread
The origin data will be get out by data decoding thread first, then decode
according to the code rule used in communication model and send to dis-
play thread. So the task in this thread is buffer reading and data decoding.
Buffer reading needs to assure the synchronization by Critical Section the
same as data acquisition thread. Data decoding divide the data package into
separate part by character “#” and save them as the same sequence as in
data package.

– Result Display Thread
The monitor data should be displayed by controllers. Virtual instrument is an
important tool for data analyze. MDES integrate the NI virtual instrument
by Active X to generated display interface. To show the data dynamically
and timely, the data should be update from time to time. Each controller
on monitor interface has a buffer; the data decoding thread separate the
data package and send them to their corresponding controller buffer. Result
display thread will check every buffer sequent for update and refresh the
display interface.

4.3 Simulation Monitor Result

Here we use a simple example to show the effect of our simulation monitor
method. We set simulation frequency as 100HZ, simulation 1 sec. The simulation
monitor result showed as Fig. 7. The line C1 is draw according to data getting
from C/S simulation mode, C2 is the raw data of the simulation machine. The

58 Y. Wang et al.

dotted line C3 is the curve draw use the data in our improvement method.
Compare these three curve we can see that C2 and C3 are well conformed, but
C1 missed some data and the wave form are distorted. The simulation monitor
result shows that our method are pretty effect in simulation data acquisition.

Fig. 7. Curve Comparation

5 Conclusions and Future Works

An integrated system modeling and simulation tool is present in this paper. The
modeling function is achieved by the support of Matlab/Simulink and RTW.
We build a lib of I/O driver models to support environment simulation. The
I/O driver models includes A/D, D/A, DI, DO and CAN, all implemented as
S-function added into model lib of Simulink. The I/O driver could be composed
into the embedded software environment simulation model to act as data in-
put/output of outside environment. The I/O driver could be reused in different
simulation systems and so improve the convenience of hardware- in-loop simula-
tion. The monitor function is offered by a configurable interface and data process
modules under it. Usually a simulation tool is designed for a specific simulation
application and hard to use in other area. In our design the monitor interface
could be customized easily by configuration.

We analyze the problem exits in traditional simulation monitor method. Be-
cause the monitor do not based on real time system, simulation data is likely
to be resend or be missed. In MDES C/S mode is not adopted as before, the
simulator will send the result to monitor actively to make sure the correctness
of the simulation result.

Further research work will be on the direction of Cyber Physical System (CPS)
simulation method. The characteristic of CPS simulation should be studied and
improvement method based on regularly simulation need to be put forward on.
One promising area is the co-simulation of discrete model (such as UML, SysML)
and continue model (such as Simulink). Simulation model transformation is also
another way for efficient system modeling and simulation.

A Configurable Environment Simulation Tool for Embedded Software 59

Acknowledgement. This paper is supported by the National Natural Sci-
ence Foundation of China under Grant No.60736017 and the National High-
Technology Research and Development Program of China under Grant No.
2011AA010101.

References

1. Liao, Y., Liang, J., Yao, X.: Real-time Simulation Theory and Supporting Tech-
nology. Press of National University of Defense Technology, China (2002)

2. Mozumdar, M., Gregoretti, F., Lavagno, L., Vanzago, L., Olivieri, S.: A framework
for modeling, simulation and automatic code generation of sensor network appli-
cation. In: 5th Annual IEEE Communications Society Conference on Sensor, Mesh
and Ad Hoc Communications and Networks, pp. 515–522 (June 2008)

3. Liu, H.T., Berndt, H.: Interactive design and simulation platform for flight vehicle
systems development. Journal of Aerospace Computing Information and Commu-
nication 3, 550–561 (2006)

4. Birrer, I., Carnicero-Dominguez, B., Egli, M., Fuchs, J., Pasetti, A.: Eodisp - an
open and distributed simulation platform. In: Proceedings of the 9th Internation
Workshop on Simulation for European Space Programmes (November 2006)

5. Lu, J., Qing Guo, Y., Quan Wang, H.: Rapid prototyping real-time simulation
platform for digital electronic engine control. In: 2nd International Symposium on
Systems and Control in Aerospace and Astronautics, pp. 1–5 (2008)

6. DeAntoni, J., Babau, J.P.: A mda-based approach for real time embedded sys-
tems simulation. In: 9th IEEE International Symposium on Distributed Simulation
and Real-Time Applications, pp. 257–264. IEEE Computer Society, Los Alamitos
(2005)

7. Monperrus, M., Long, B., Champeau, J., Hoeltzener, B., Marchalot, G., Jézéquel,
J.-M.: Model-driven Architecture of a Maritime Surveillance System Simulator.
Systems Engineering 13(3), 290–297 (2010)

8. Haouzi, H.E.: Models simulation and interoperability using mda and hla. Comput-
ing Research Repository abs/cs/060 (2006)

9. Farkas, T., Neumann, C., Hinnerichs, A.: An integrative approach for embedded
software design with uml and simulink. In: 33rd Annual IEEE International Con-
ference on Computer Software and Applications, vol. 2, pp. 516–521 (2009)

10. Sjöstedt, C.J., Shi, J., Törngren, M., Servat, D., Chen, D., Ahlsten, V., Lönn,
H.: Mapping simulink to uml in the design of embedded systems: Investigating
scenarios and transformations (2008)

11. Mathworks: S-functions. Website (2010),
http://www.mathworks.com/help/toolbox/simulink/slref/sfunction.html

http://www.mathworks.com/help/toolbox/simulink/slref/sfunction.html

J.M. Alcaraz Calero et al. (Eds.): ATC 2011, LNCS 6906, pp. 60–74, 2011.
© Springer-Verlag Berlin Heidelberg 2011

An Adaptive Management Mechanism for Resource
Scheduling in Multiple Virtual Machine System

Jian Wan1, Laurence T. Yang2, Yunfa Li1, Xianghua Xu1,
and Naixue Xiong3

1 Grid and Service Computing Lab, School of Computer Science and Technology,
Hangzhou Dianzi University, 310018, Hangzhou, China

{wanjian,yunfali,xhxu}@hdu.edu.cn
2 Department of Computer Science

St. Francis Xavier University, Antigonish, NS, B2G 2W5, Canada
ltyang@stfx.ca

3 Department of Computer Science, IS&T on Virtual Computing Lab
Georgia State University, Georgia, 30303, USA

xiongnaixue@gmail.com

Abstract. With the growth of hardware and software resources, the manage-
ment of resource scheduling is becoming more and more difficult in multiple
virtual machine system. It has become a very difficult problem that how to
schedule the system resource and improve the service performance of resource.
In order to solve this problem, we propose an adaptive management mechanism
for resource scheduling. In the management mechanism, we first propose an
adaptive management model for resource scheduling. Then, we present a genet-
ic simulated annealing to resolve the management model. On the basis of the
model and the algorithm, we design a management module. All these constitute
an adaptive management mechanism for resource scheduling in multiple virtual
machine system. In order to justify the feasibility and availability of the adap-
tive management mechanism for resource scheduling, a series of experiments
have been done. The results show that it is feasible to adaptively manage and
schedule the system resources and ensure the quality of service of resources in
multiple virtual machine system.

1 Introduction

With the development of computer technology, the virtual machine has become a very
important research topic. By using the virtualization technology, a computer system
can aggregate a lot of data resources, software resources and hardware resources and
make these resources to provide service for different tasks. Moreover, the virtualiza-
tion technology can separate hardware and software management and provide a lot of
useful features, which include performance isolation [1], server consolidation and live
migration [2]. In addition, the virtualization technology can also provide secure and
portable environment for some modern computing systems [3]. Therefore, the new
computing theorem and model that the virtual technology embodies has been applied
widely.

 An Adaptive Management Mechanism for Resource Scheduling 61

With the development of virtual machine technology, more and more hardware and
software resources can be integrated into virtual machine. Thus, the existing virtuali-
zation technology can’t be satisfied with the requirement of development of virtual
machine system. In the case, people begin to explore a new system structure for vari-
ous applications about virtual machine.

Because the virtualization technology can carve some individual physical machine
into multiple virtual containers, people begin to build some multiple virtual machine
systems for various applications [4] [5]. In these multiple machine systems, their ar-
chitectures are same and divide into four levels, namely the multiple computers level,
the multiple virtual machine monitors level, the single mapping management system
level and the application system level. In general, the multiple computers level is
made up of all kinds of hardware. They include: CPU, storage, network card and so
on. In the multiple virtual machine monitors level, there is some virtual machine mon-
itors. Each virtual machine monitor is managed and scheduled by the single image
management system. The main function of each virtual machine monitor includes:
managing its local physical machine safely, providing isolation between the virtual
machine monitors and executing the commands that the single image management
system sends to it. In the single image management system level, there is a single
image management system. Its function includes: enabling each virtual machine to
share the corresponding physical machine safely, providing isolation between the
different virtual machines, providing some different strategies for virtual machine to
access hardware resources, controlling all virtual machine monitors and managing the
central datum. In the application system level, there are some different applications
which can be run on the corresponding virtual machines.

Because there are a lot of advantages by using the multiple virtual machine system,
the scale that people need the multiple virtual machine system is more and more large.
However, with the rapid growth of virtual machine system, the management of all
kinds of hardware and software resources is becoming more and more difficult.
Moreover, the utilization ration and the service performance of resource scheduling
will reduce with the growth of the scale of computer system. Thus, there are two in-
consistent factors between how to expand the scale of the computer system and how
to manage resource and improve the utilization ration of resource scheduling.

In order to solve this problem, we propose an adaptive management mechanism for
resource scheduling in multiple virtual machine system. In the adaptive management
mechanism, we first propose an adaptive management model for resource scheduling.
Then, we present a genetic simulated annealing algorithm to resolve adaptive man-
agement model. On the basis of the model and the algorithm, we design a manage-
ment module. All these constitute an adaptive management mechanism for resource
scheduling.

The rest of this paper is organized as follows: we discuss the related works in sec-
tion 2. In section 3, we propose an adaptive management mechanism for resource
scheduling in multiple virtual machine system. In section 4, a series of experiments
are done and the results are analyzed. Finally, the conclusions are drawn in section 5.

62 J. Wan et al.

2 Related Works

In traditional virtual machine system, system resources are managed and controlled
by a virtual machine monitor [6]. Each virtual machine schedules corresponding sys-
tem resources for different tasks by using some resource scheduling algorithms,
which are provided by a virtual machine monitor. With the development of virtual
machine system, the service performance of resource begins to be widely concerned.
In order to improve the service performance of resource, a lot of resource scheduling
algorithms and performance analysis methods of service are presented and make a
great progress in the aspect. These algorithms and methods can be simply shown as
follows.

Lottery scheduling [7] provides a more disciplined proportional sharing approach
than fair-share schedulers. Each client receives a number of tickets proportional to its
share. A lottery scheduler then randomly picks a ticket and schedules the client that
owns this ticket to receive a CPU slice.

In a deadline-based scheduling system, such as Atropos [8], the processes declare
future CPU needs to the system: the process can express a required CPU reservation
and CPU needs per time period. Thus, the scheduler uses real time-algorithms to en-
sure time guarantees. The problem of scheduling periodic tasks with hard deadlines is
well researched in the literature for real-time applications.

The borrowed virtual time (BVT) scheduling algorithm is proposed by Duda et al
[9]. The essential of this algorithm is fair-share scheduler based on the concept of
virtual time, dispatching the runnable virtual machine (VM) with the smallest virtual
time first. Moreover, the algorithm provides low-latency support for real-time and
interactive applications by allowing latency sensitive clients to “warp” back in virtual
time to gain scheduling priority. The client effectively “borrows” virtual time from its
future CPU allocation.

The Simple Earliest Deadline First (SEDF) scheduling algorithm is presented by
Govindan et al [10]. In this algorithm, each domain specifies its CPU requirements.
After all runnable domains receive their CPU share, SEDF will distribute this slack
time fairly manner. In fact, the time granularity in the definition of the period impacts
scheduler fairness.

The Credit Scheduling algorithm is described in [11]. It is Xen’s latest proportional
share scheduler featuring automatic load balancing of virtual CPUs across physical
CPUs on an SMP host. Before a CPU goes idle, it will consider other CPUs in order
to find any runnable virtual CPU (VCPU). This approach guarantees that no CPU
idles when there is runnable work in the system.

In [12], Menon et al present a diagnosing performance overhead method about re-
source scheduling in the xen virtual machine environment. In this method, a toolkit is
used to analyze performance overheads incurred by networking applications running
in Xen VMs. The toolkit enables coordinated profiling of multiple VMs in a system to
obtain the distribution of hardware events such as clock cycles and cache and TLB
misses.

In [13], the authors analyze and compare the CPU schedulers in the Xen virtual
machine monitor (VMM) [14] in the context of traditional workload managers. They

 An Adaptive Management Mechanism for Resource Scheduling 63

use the open source Xen virtual machine monitor to perform a comparative evaluation
of three different CPU schedulers for virtual machines and analyze the impact of the
CPU scheduler and resource allocation on application performance.

In [15], the authors present a novel virtual I/O scheduler (VIOS) that provides ab-
solute performance virtualization by being fair in sharing I/O system resources among
operating systems and their applications, and provides performance isolation in the
face of variations in the characteristics of I/O streams. In the scheduler, the VIOS
controls the coarse-grain allocation of disk time to the different operating system
instances and the output scheduler may determine the fine-grain interleaving of re-
quests from the corresponding operating systems to the storage system.

Though the above methods and management mechanisms are very powerful tools
for correspondingly application in the traditional virtual machine system, they will
still confront a lot of difficulties for resource scheduling in multiple virtual machine
system because the resource scheduling mechanism of multiple virtual machine sys-
tem is different with the virtual machine system. Moreover, the above methods and
the management mechanisms don’t consider the dynamic conditions of system re-
sources. In addition, the above methods and mechanisms do not present any method
to migrate a virtual machine resource for corresponding tasks. In order to overcome
these disadvantages, we present an adaptive management mechanism for resource
scheduling in multiple virtual machine system.

3 Adaptive Management Mechanism

In general, each virtual machine first submits tasks to the single image management
system level in a multiple virtual machine system. Then, the single image manage-
ment system begins to control and schedule corresponding virtual machine monitor
and physical resources for these tasks. At last, these physical resources provide cor-
responding service for tasks in term of certain control mechanisms and management
strategies.

Based on the service processes of multiple virtual machine system, we propose an
adaptive management mechanism for resource scheduling. In the management me-
chanism, we first present an adaptive management model for resource scheduling and
then propose a genetic simulated annealing algorithm to resolve adaptive management
model. At last, we design a management module for resource scheduling in multiple
virtual machine system.

3.1 Adaptive Management Model

In a multiple virtual machine system, the type and the total number of physical re-
sources usually are steady. And the total number of physical resources that all virtual
machines can schedule in any time is less than the total number of system resources.
If we use Ri to denote the ith physical resource, m to denote the total number of physi-
cal resources and R to denote the set of physical resources, we can get R={R1, R2, R3,
…, Rm}. Similarly, if we use vmi to denote the ith virtual machine, n to denote the total

64 J. Wan et al.

number virtual machine and VM to denote the set of virtual machine in the multiple
virtual machine system, we can get VM={vm1, vm2, vm3, …, vmn}.

In a multiple virtual machine system, physical resources need to be managed by the
single image management system level and the corresponding virtual machine monitor.
When some tasks are submitted to different virtual machines, these virtual machines
need to schedule corresponding physical resource for these different virtual machines.
Moreover, when the tasks that a virtual machine is submitted are too much, the virtual
machine may be migrated. Therefore, a management model is needed for these differ-
ent tasks in the multiple virtual machine system.

In order to conveniently describe the adaptive management model in multiple vir-
tual machine system, some notation and definitions are used in the rest of this paper
and these notation and definitions are summarized here.

M the total number of physical machines in the multiple virtual machine system
Ri the physical resource of the ith physical machine
vi→Rj the ith virtual machine schedule physical resource Rj
t0 the beginning time that tasks are processed
ti the ith time that tasks are processed
qi(t0) the number that tasks begin to be processed in the ith virtual machine

)t(iλ the rate that the ith virtual machine submits tasks to the single image man-

agement system and the corresponding virtual machine monitor at the time t

)t(ui the rate that the ith virtual machine gets services, which is managed and

controlled by the single image management system and the corresponding virtual
machine monitor at the time t

x+ a non-negative, which is an abbreviation for max(x; 0).

In the multiple virtual machine system, we assume that each virtual machine can
schedule the system resource in term of the corresponding request order. Using a
combination of online measurement, prediction and adaptive management, we can
dynamically determine the resource share that each virtual machine can schedule,
which is based on the response time and the task number that each virtual machine
submits.

Considering multiple virtual machines can submit tasks to the multiple virtual ma-
chine system and the multiple virtual machine system can provide service for the
corresponding tasks, we can assume that the mode that different virtual machines
submit tasks may be parallel and the service mode that different virtual machine may
also be parallel. Moreover, the service mode that each virtual machine gets is the First
Input First Out mode for the same type tasks.

In general, each task that a virtual machine submits is serviced by multiple hard-
ware and software resources, such as the CPU, NIC, disk, etc. But there are the single
image management system and multiple virtual machine monitors, all these resources
may be regard as a coordinate entirety. The resources that each virtual machine sche-
dule will be a part of the whole system resources.

In the multiple virtual machine system, if the tasks that a virtual machine system
submits are heavy, the virtual machine may be migrated. Therefore, there are two
main factors, which decides a virtual machine should be migrated or not. One is the

 An Adaptive Management Mechanism for Resource Scheduling 65

rate that the virtual machine submits tasks and the other is the rate that the virtual
machine gets services. If the values of)t(iλ and)t(ui

 are constant, the amount of

tasks at time t is given by

+−−+=)]tt(*))t(u)t(()t(q[)t(q 0ii0ii λ (1)

Intuitively, in each virtual machine, the amount of tasks at the time t is the sum of
the initial number and the amount task arriving in this interval minus the amount of
task serviced in this duration. Since the queue length is non-negative, we use qi(t) to
denote the amount of tasks at any time t in the ith virtual machine.

Depending on the particular values of qi(t0), the rate that the ith virtual machine
submits tasks)t(iλ and the rate that the ith virtual machine gets services)t(ui , the

amount of tasks qi(t) may become overload or zero at the time t for the ith virtual ma-
chine. To understand the overload periods and the zero time of virtual machine, we
consider the following scenarios, based on the assumption of constant)t(iλ and

)t(ui

(1). the amount of tasks growth: If)t(iλ <)t(ui , then the amount of tasks will in-

crease with the growth of service time t-t0. Thus, the tasks that the ith virtual machine
need to process may be overload in a certain time.

(2). the amount of tasks depletion: if)t(iλ >)t(ui , then the amount of tasks will

decrease with the growth of service time t-t0. Thus, the tasks lied in the waiting queue
may be zero in a certain time for the ith virtual machine.

(3). the amount of tasks stabilization: if)t(iλ =)t(ui , then the amount of tasks

will remain fixed (=qi(t0)) during the service time phase. Hence, it is impossible that
the load may be overload or zero for the ith virtual machine.

Since the type and the total number of physical resources usually are steady in the
multiple machine system, we can use C to denote the total of physical resources.
Thus, we can get the following equation

C=R1+R2+R3, …, +Rm (2)

If we use iδ to denote the percent that the ith virtual machine can schedule the sys-

tem resources, then we can get the following equation

Ci= iδ *C (3)

In the multiple virtual machine system, in order to ensure the quality of service of
system, two conditions should be taken into account. One is that the loads of each
physical machine keep balance as much as possible and the other is the total number
of virtual machine migration keep the minimum as much as possible. Based on the
two conditions, we use the optimal theory to present a theoretical model for the adap-
tive management of resource scheduling in the multiple virtual machine system. The
theoretical model can be described as follows:

66 J. Wan et al.

∑
=

−=
n

1i
i)C*C(max)f(δδ , st

)t(qi ≤ ()0i tq (4)

10 i ≤≤ δ (5)

10
n

1i
i ≤≤∑

=
δ (6)

Here, Equation (4) denotes that the amount of tasks at time t is no more than that of
tasks at the initiate state, which need to be processed by the ith virtual machine. This
equation indicates that the ith virtual machine doesn’t need to be migrated. Equation
(5) denotes that the amount of physical resources that the ith virtual machine can sche-
dule is no more than the total of the multiple virtual machine system. Equation (6)
denotes that the total of physical resources that all virtual machines can schedule is no
more than the total of the multiple virtual machine system.

In fact, the above theoretical model is an objective function. It is also a multi-
objective optimization question. The aim that the objective function is presented here
includes two factors. One is to keep the minimum of physical resources that all virtual
machine can schedule and the other is to keep the minimum that virtual machine need
to be migrated. Because the total of virtual machine and physical machine are limited,
it is a NP-hard problem that how to resolve the optimal result.

3.2 Genetic Simulated Annealing Algorithm

At present, people usually use the genetic algorithm and the annealing algorithm to
resolve the above similar optimal problem. In the genetic algorithm, the biology evo-
lution theory is often adopted. And people usually use the selection strategy and the
content strategy of nature to resolve the optimal problem. In the genetic algorithm, the
search ability of algorithm is strong for the overall search process and is weak for the
local search process. In the annealing algorithm, two circulation programs are used to
resolve the optimal problem, which is based on some limited conditions. In the an-
nealing algorithm, the search ability of algorithm is weak for the overall search
process and is strong for the local search process. Therefore, the two algorithms have
respective advantage and disadvantage.

Considering the states of resource scheduling in the multiple virtual machine and
the characteristics of the above two algorithm, we present a genetic simulated anneal-
ing algorithm to resolve the above optimal problem. The basic principle of the genetic
simulated annealing algorithm is: First, we randomly choose a group initial solution,
namely a group initial value. Then, we begin to search the optimal solution in the
global scope of domain. At last, we repeated execute the search process till the results
are satisfied with the termination conditions. By using some selecting methods, we

 An Adaptive Management Mechanism for Resource Scheduling 67

ensure the optimal result. The genetic simulated annealing algorithm can be described
as follows:

Step 1: Make sure the virtual machine set V={v1, v2, v3, …, vn} and the physical re-
sources R={R1, R2, R3, …, Rm}

Step 2: Make sure the initial value of tasks that each virtual machine submits qi(t0),
(i=1,2,3,…,n)

Step 3: Make sure the rate)t(iλ that the ith virtual machine submits tasks to the

single image management system and the corresponding virtual machine monitor at
the time t (i=1,2,3,…,n)

Step 4: Make sure the rate)t(ui that the rate that the ith virtual machine gets ser-

vices, which is managed and controlled by the single image management system and
the corresponding virtual machine monitor at the time t, (i=1,2,3,…,n)

Step 5: randomly choose a group initial value δ ={ n321 ,...,, δδδδ }

Step 6: Calculate qi(t) at the time t (i=1,2,3,…,n)
Step 7: If qi(t) ≤ qi(t0), then { go to Step 10} Else {go to Step 8}

Step 8: Randomly choose an initial value 0ρ , an infinitely small number ε , and

k=0
Step 9: If k n≤ Then { n/k1−←α ;

αρρ ∗←+ k1k ;

kkk ρδδ −←Δ ;

If 10 k ≤Δ≤ δ Then {
k

*
k δδ Δ← } Else {

k
*
k δδ ← }

},...,,...{ n1k
*
k

*
1

* δδδδδ +←

)(f)(f)(f *δδδ −←Δ

If 0)(f >Δ δ Then { *δδ ←

If ερρ <−+ k1k
 Then { go to Step 10 } Else { 1kk +← , go to Step 8}

}
}

Else { *δδ ← ,go to Step 10 }
Step 10: Output δ ={ n321 ,...,, δδδδ }

Step 11: End

3.3 Management Module

Based on the service processes of multiple virtual machine system and the above pro-
posed adaptive management model, we build a management module for resource
scheduling in multiple virtual machine system. The structure of the management
module is shown as Fig. 1

In the management module, there are four submodules, namely monitor submodule,
allocator submodule, scheduler submodule, manager submodule. The main function of
monitor submodule includes: monitoring the running state of each virtual machine

68 J. Wan et al.

monitor, feedback the information that each virtual machine monitor monitors, monitor-
ing the running state of each physical machine, feedback the information that each vir-
tual machine schedules physical resources, transferring the monitoring information to
the manager submodule, and receiving the monitoring command from the manager
submodule. The main function of allocator submodule includes: receiving the allotting
command about tasks from the manager submodule, transferring the allotting command
to corresponding physical machines, and allotting tasks to corresponding physical ma-
chines. The main function of scheduler submodule includes: receiving the scheduling
command about system resources from the manager sbumodule, transferring the sche-
duling command to corresponding physical machines, and scheduling corresponding
physical machines for tasks. The main function of manager submodule includes: receiv-
ing the monitoring information that the monitor submodule transmits, transferring the
monitoring command to the monitor submodule, transferring the allotting command to
the allocator submodule, counting the allotting state of tasks about each physical ma-
chine, computing the scheduling state of system resources, transferring the scheduling
command to the scheduler submodule.

Fig. 1. The management module for resource scheduling

In the manager submodule, when the multiple virtual machine system begins to
compute the scheduling state of system resources, our proposed adaptive management
model and the genetic simulated annealing algorithm are used. By using the adaptive
management model, the genetic simulated annealing algorithm and our built man-
agement module, the multiple virtual machine system can get the optimal results of
resource scheduling and can schedule corresponding system resources for tasks.

 An Adaptive Management Mechanism for Resource Scheduling 69

4 Experiments and Results Analysis

In order to validate the efficiency of our proposed adaptive management mechanism
for resource scheduling in multiple virtual machine system, we first do a series of
experiments. In these experiments, we use the open source of Xen, the virtualization
technology to construct a multiple virtual machine system. Then, we will analyze the
results of experiments. The processes can be described as follows.

4.1 A Series of Experiments

In our constructed multiple virtual machine system, there are some management me-
chanisms and methods for resource scheduling. The management mechanisms and
methods include our proposed adaptive management mechanism, the load balancing
mechanism [16], the credit scheduling algorithm [11]. The image management system
can respectively use these algorithms and mechanisms to schedule the physical ma-
chine and provide service for tasks.

In our experiments, there are six physical machines ((R1, R2, R3, R4, R5 and R6) and
each physical machine only has two same processors. Moreover, the hardware and the
software configurations of each physical machine are same. And the operation system
that each physical machine used is windows XP. In addition, we use the multiple vir-
tual machine system to built eight virtual machines and three virtual machine monitors.
Each physical machine is respectively managed by a virtual machine monitor and each
virtual machine monitor can schedule the corresponding resources for one or more
virtual machines. Moreover, all virtual machine monitors are managed or scheduled by
the single image management system in our experiments. The eight virtual machines
are named vm1, vm2, vm3, vm4, vm5, vm6, vm7 and vm8, respectively. Similarly, the three
virtual machine monitors are respectively named VMM1, VMM2 and VMM3.

In our experiments, the task that each virtual machine submits is to resolve the in-
verse matrix for an invertible matrix. The invertible matrix is a 5 order matrix. In the
experiments, the rate that each virtual machine submits task to the single image man-
agement system may be different each other and the rate that each virtual machine
submits task will be equality in different time phase. The rate that each virtual ma-
chine submits tasks to the single image management system is 24 times/second, 29
times/second, 19 times/second, 32 times/second, 30 times/second, 21 times/second,
19 times/second and 29 times/second, respectively. In addition, the percent that each
virtual machine can schedule the physical resources of the multiple virtual machine
system in the initiate state is 10%, 15%, 10%, 15%, 15%, 10%, 10% and 15%, respec-
tively. Moreover, the process that each virtual machine submits task keep same in
order to research the service state of physical machines in different resource schedul-
ing algorithms and mechanisms.

By using the statistical method, we can get the rate that each physical machine
provides service for the tasks in the three resource scheduling algorithms and mechan-
isms, respectively. The results are shown as Fig. 2, Fig. 3, Fig. 4, Fig. 5, Fig. 6, Fig.7,
respectively.

70 J. Wan et al.

0 20 40 60 80 100 120

28

30

32

34

36

38

40

42

44

R
at

e
(t

im
es

/s
ec

on
d)

Time (second)

 Adaptive management
 Credit scheduling
 Load balancing

Fig. 2. The rate that the R1 physical machine provide services in different scheduling
algorithms and mechanisms

0 20 40 60 80 100 120

28

30

32

34

36

38

40

R
at

e
(T

im
es

/s
ec

on
d)

Time (Second)

 Adaptive management
 Credit scheduling
 Load balancing

Fig. 3. The rate that the R2 physical machine provide services in different scheduling
algorithms and mechanisms

0 20 40 60 80 100 120

30

32

34

36

38

40

42

R
at

e
(t

im
es

/s
ec

on
d)

Time (second)

 Adaptive management
 credit scheduling
 load balancing

Fig. 4. The rate that the R3 physical machine provide services in different scheduling
algorithms and mechanisms

 An Adaptive Management Mechanism for Resource Scheduling 71

0 20 40 60 80 100 120

33

34

35

R
at

e
(t

im
es

/s
ec

on
d)

Time (second)

 Adaptive management
 Credit scheduling
Load balancing

Fig. 5. The rate that the R4 physical machine provide services in different scheduling
algorithms and mechanisms

0 20 40 60 80 100 120
33.0

33.5

34.0

34.5

35.0

35.5

36.0

36.5

R
at

e
(t

im
es

/s
ec

on
d)

Time (second)

 Adaptive management
 Credit scheduling
 Load balancing

Fig. 6. The rate that the R5 physical machine provide services in different scheduling
algorithms and mechanisms

0 20 40 60 80 100 120

15

20

25

30

35

R
at

e
(t

im
es

/s
ec

on
d)

Time (second)

 Adaptive management
Credit scheduling
Load balancing

Fig. 7. The rate that the R6 physical machine provide services in different scheduling
algorithms and mechanisms

72 J. Wan et al.

Based on the results of experiments, we can get the even rate that each physical
machine provide service for tasks in the three resource scheduling algorithms and
mechanisms. The results are shown as Table 1.

Table 1. The even rate that each physical machine provide services for tasks in the three
resource scheduling algorithms and mechanisms

 Adaptive

Management

(Time/Second)

Credit

scheduling

(Time/Second)

Load balancing

(Time/Second)

R1 38.944 36.5 34.588

R2 34.14 31.594 36.524

R3 36.116 34.456 34.482

R4 34.37 33.31 33.752

R5 35.34 34.334 33.702

R6 27.09 25.806 21.032

Similarly, we can also get the mean square deviation of rate that each physical ma-
chine provides service in the three resource scheduling algorithms and mechanisms.
The result are shown as Table 2

Table 2. The mean square deviation of rate that each physical machine provides services in the
three resource scheduling algorithms and mechanisms

Adaptive

Management

Credit

Scheduling

Load Balancing

R1 0.74782 1.43875 2.96803

R2 0.71239 1.51776 0.73444

R3 0.58643 0.90143 1.58212

R4 0.11547 0.14216 0.16424

R5 0.10607 0.13285 0.15777

R6 1.14373 2.11494 3.87330

4.2 Results Analysis

In this section, we will analyze the results of our experiments. In order to describe the
analyzing process conveniently, we use TAdaptive, TCredit and TLoad to denote the even
rate that the multiple virtual machine system provides services for tasks in the three
resource scheduling algorithms and mechanisms, respectively. Then, we can get:

TAdaptive =38.944+34.14+36.116+34.37+35.34+27.09=206 (times/second)
TCredit =36.5+31.594+34.456+33.31+34.334+25.806=196 (times/second)
TLoad =34.588+36.524+34.482+33.752+33.702+21.032=194 (times/second)

Because TAdaptive > TCredit > TLoad, the even rate that the multiple virtual machine sys-
tem provides services for tasks in our proposed control mechanism is faster than that
in the other two scheduling algorithms. This indicates: the rate that the multiple

 An Adaptive Management Mechanism for Resource Scheduling 73

virtual machine system provides services for tasks in our proposed control mechanism
is faster than that in the other two scheduling algorithms.

If we use DAdaptive, DCredit and DLoad to denote the mean square deviation of the rate
that the multiple virtual machine system provides service in the three resource sche-
duling algorithms and mechanisms, respectively. Then, we can get:

DAdaptive=(0.74782+0.71239+0.58643+0.11547+0.10607+1.14373)/6= 0.56865
DCredit=(1.43875+1.51776+0.90143+0.14216+0.13285+2.11494)/6 = 1.04132
DLoad=(2.96803+0.73444+1.58212+0.16424+0.15777+3.87330)/6= 1.57998

Because DLoad > DCredit > DAdaptive, the mean square deviation of rate that the mul-
tiple virtual machine system provides service in our proposed adaptive management
mechanism for resource scheduling is smaller than that in the other two scheduling
algorithms. This indicates: the stability that the multiple virtual machine system pro-
vides services for tasks in our proposed adaptive management mechanism is better
than that in the other two scheduling algorithms.

Based on the above analyses for our experiment results, we can find our proposed
adaptive management mechanism is efficient and is better than that in the other two
scheduling algorithms in multiple virtual machine system.

5 Conclusions

With the development of computer technology, the resource scheduling management
has been become a very important research topic in multiple virtual machine system.
In order to ensure the utilization ration and the service performance of resource sche-
duling, we first propose an adaptive management model for resource scheduling.
Then, we present a genetic simulated annealing algorithm to resolve adaptive man-
agement model. On the basis of the model and the algorithm, we design a manage-
ment module. All these constitute an adaptive management mechanism for resource
scheduling in multiple virtual machine system. In order to justify the feasibility and
availability of the adaptive management mechanism for resource scheduling, a series
of experiments have been done. The results show that it is feasible to adaptively man-
age and schedule the system resources and ensure the quality of service of resources
in multiple virtual machine system.

Acknowledgment. This paper is supported by National Basic 973 Research Program
of China under grant No.2007CB310900, National Science Foundation of China un-
der grant No. 60873023, 60973029, Zhejiang Provincial Natural Science Foundation
of China under Grant No. Y1090297 and Y6090312, Startup Foundation of School
Grant No. KYS055608103.

References

1. Creasy, R.J.: The Origin of the VM/370 Time-Sharing System. IBM Journal of Research
and Development 25(5), 483–490 (1981)

74 J. Wan et al.

2. Kallahalla, M., Uysal, M., Swaminathan, R., Lowell, D., Wray, M., Christian, T., Edwards,
N., Dalton, C., Gittler, F.: SoftUDC: A Software-Based Data Center for Utility Compu-
ting. IEEE Computer 37(11), 46–54 (2004)

3. Sugerman, J., Venkitachalam, G., Lim, B.H.: Virtualizing I/O Devices on VMware
Workstation’s Hosted Virtual Machine Monitor. In: Proceeding of USENIX Annual Tech-
nical Conference, pp. 1–4. USENIX, Boston (2001)

4. Li, Y.F., Xu, X.H., Wan, J., Li, W.Q.: A Real-Time Scheduling Mechanism of Resource
for Multiple Virtual Machine System. In: The 5rd ChinaGrid Annual Conference (China-
Grid 2010), pp. 137–143. IEEE Computer Society, Zhongshan (2010)

5. Li, Y.F., Xu, X.H., Wan, J., Li, W.Q.: A Control Mechanism about Quality of Service for
Resource Scheduling in Multiple Virtual Machine System. In: The First Workshop on En-
gineering and Numerical Computation (ENC 2010), pp. 1362–1368. IEEE Computer So-
ciety, Wuhan (2010)

6. Smith, J.E., Nair, R.: The Architecture of Virtual Machines. IEEE Computer 38(5), 32–38
(2005)

7. Waldspurger, C.A.: Lottery and Stride Scheduling: Flexible Proportional-share Resource
Management. Technical report, Cambridge, MA, USA (1995)

8. Leslie, I.M., Mcauley, D., Black, R., Roscoe, T., Barham, P.T., Evers, D., Fairbairns, R.,
Hyden, E.: The Design and Implementation of an Operating System to Support Distributed
Multimedia Applications. IEEE Journal of Selected Areas in Communications 14(7),
1280–1297 (1996)

9. Lin, B., Dinda, P.A.: Towards Scheduling Virtual Machines Based on Direct User Input.
In: The first International Workshop on Virtualization Technology in Distributed Compu-
ting, p. 6. IEEE Press, USA (2006)

10. Korotaev, K.: Hierarchical CPU Schedulers for Multiprocessor Systems, Fair CPU Sche-
duling and Processes Isolation. In: IEEE International Conference on Cluster Computing,
p. 1. IEEE Press, Los Alamitos (2005)

11. An, J.F., Fan, X.Y., Zhang, S.B., Wang, D.H.: An Efficient Verification Method for Mi-
croprocessors Based on the Virtual Machine. In: Yang, L.T., Zhou, X.-s., Zhao, W., Wu,
Z., Zhu, Y., Lin, M. (eds.) ICESS 2005. LNCS, vol. 3820, pp. 514–521. Springer, Heidel-
berg (2005)

12. Menon, A., Santos, J.R., Turner, Y., Janakiraman, G.J., Zwaenepoel, W.: Diagnosing Per-
formance Overheads in the Xen Virtual Machine Environment. In: Proceedings of the 1st
International Conference on Virtual Execution Environments (VEE 2005), Chicago, IL,
USA, pp. 13–23 (2005)

13. Cherkasova, L., Gupta, D., Vahdat, A.: Comparison of the Three CPU Schedulers in Xen.
SIGMETRICS Performance Evaluation Review 25(2), 42–51 (2007)

14. Willmann, P., Shafer, J., Carr, D., Menon, A., Rixner, S., Cox, A.L., Zwaenepoel, W.:
pConcurrent Direct Network Access for Virtual Machine Monitors. In: Proceedings of the
IEEE 13th International Symposium on High Performance Computer Architecture, pp.
306–317. IEEE Press, Washington, DC, USA (2007)

15. Seelam, S.R., Teller, P.J.: Virtual I/O Scheduler: A Scheduler of Schedulers for Perfor-
mance Virtualization. In: Proceedings of the 3rd International Conference on Virtual Ex-
ecution Environments (VEE 2007), pp. 105–115. ACM Press, San Diego (2007)

16. Zhao, M., Zhang, J., Figueiredo, R.J.: Distributed File System Virtualization Techniques
Supporting On-Demand Virtual Machine Environments for Grid Computing. Cluster
Computing 9(1), 45–56 (2006)

J.M. Alcaraz Calero et al. (Eds.): ATC 2011, LNCS 6906, pp. 75–91, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Virtualization with Automated Services Catalog for
Providing Integrated Information Technology

Infrastructure

Robson de Oliveira Albuquerque1,2, Luis Javier García Villalba1,
Osmar Ribeiro Torres2, and Flavio Elias Gomes de Deus2

1 Group of Analysis, Security and Systems (GASS)
Department of Software Engineering and Artificial Intelligence (DISIA)

School of Computer Science, Office 431
Universidad Complutense de Madrid (UCM)
Calle Profesor José García Santesmases s/n
Ciudad Universitaria, 28040 Madrid, Spain
{robson,javiergv}@fdi.ucm.es

2 Department of Electrical Engineering (ENE)
Universidade de Brasília (UnB)

Asa Norte – Brasilia, D. F., Brazil
robson@redes.unb.br, osmar@oi.net.br, flavio@nmi.unb.br

Abstract. This paper proposes a service catalog service integrated with virtua-
lized systems aiming at the possibility of raising and automating the availability
in an IT (Information Technology) infrastructure. This paper demonstrates that
aligning the server virtualization concepts and infrastructure management tools
is possible to have gains in time and costs when compared to systems without
automated service catalog. The main results presented illustrates that the use of
a virtualized environment, with a standard services catalog and specific tools
for infrastructure management, provides a time saving, reducing the request in-
terval to a new server from several days to a few hours.

1 Introduction

Organizations considered leaders in its industries are no longer purely focused on
costs, but they have also become companies focused in value.The present panorama
forces them to aspire, at the same time, in one hand for the gain of productivity and
efficiency, and on the other hand, for an increase in the area of capacity of Informa-
tion Technology (IT) in meeting the new demands of business strategy [1].

The agile, reliable and precise obtaining of technological resources might meet the
demands of the two challenges proposed. It is evident that the servers infrastructure
(hardware, software and IT services) used need to evolve in order to sustain the tech-
nological innovations by leveraging IT resources (for IT resources, it is considered the
servers infrastructure, involving hardware and software).

It is taken into account the need of integration amongst the various concepts and
technologies involved to support an IT service. For this paper, the definition of “IT
service” used is presented by Galup et al [1], where it is related to one or more IT

76 R. de Oliveira Albuquerque et al.

systems that enable a business process, taking into account that an IT system is a
combination of hardware, software, facilities, processes and people. This article pro-
poses the development of an automated catalog of services, integrating it with an
infrastructure management tool and servers virtualization platforms.

The integration of servers virtualization tools with an infrastructure management
tooland the services catalog aim at some objectives. First, standardizing the requests
for new operational resources, such as servers, basic software and applications.
Second, automating the availability of the requested resources as soon as they are
approved. Third, reducing the time of availability of a new server, and at last, mini-
mizing operational costs with specialized labor.

Currently, the time required to deliver an IT service depends directly on the stages
of request, approval, acquisition, and installation of hardware/software exclusive to
serve only one set of applications or systems.

Infrastructure management tools and an adequate control of the entire IT infrastruc-
ture can help reduce costs. Companies may losemoney without a services catalog,
since its users do not know which IT services are supported by the IT department in
terms of virtualization. Besides that, without a well-defined configuration manage-
ment process, there is also an underutilization of IT resources.

Many companies utilize services from the IT area that cannot be interrupted. Thus,
servers are required to remain connected full time and to be responsible for supporting
a given service, for instance, a financial transaction server.

Therefore, in the same company there might have various computers with underuti-
lized resources. An alternative solution to this problem is the use of virtualization [2]
to group diverse services and other applications that need to be available in parallel.

With virtualization it is possible to consolidate and isolate different virtual ma-
chines, multiple operating systems (O.S.), thus uniting various logical servers on a
single physical device [3], as illustrated in Figure 1.

The major contribution of this article isthe development of the System of Requests
Registration of IT Infrastructure (SRRITI),which was created in order to integrate the
concepts of three technologies: servers virtualization tools, infrastructure management
tool and the services catalog. As an additional contribution, we can highlight the pres-
entation of some results on simulation tests, proving the gains of this work.

In order to present the System of Requests Registration of IT Infrastructure
(SRRITI), its contribution, its functionalities and concepts involved, this paper is
organized as follows: in section II the concepts analyzed in the proposed work are
presented. In section III the proposal of a service catalog for virtual servers is dis-
played and the environment is described. In section IV, the tests and results are intro-
duced, and in section V the conclusions and future work are presented.

2 Bibliographic Review

Up to the present moment, proposals for servers virtualization [4], with an infrastruc-
ture management tool [5], and a services catalog [1], have been treated as independent
concepts and do not serve the purpose of integration and cost reduction sought in this
work.

 Virtualization with Automated Services Catalog 77

According to [7] the major software is licensed for one single CPU, that is, the user
has the right to use the software in one single system. When the discussion comes to
large enterprise the situation is much worse because the need is to use software in
more CPU at the same time but the demand for hardware varies.

When it is considered the time and cost of hardware and software, virtualization
became an alternative for companies interested in providing system infrastructure
without having to add more physical devices.

The System of Requests Registration of IT Infrastructure (SRRITI) proposes the
integration between the previous concepts to serve its purposes.

A more detailed description of these concepts can be found in the following sec-
tions.

2.1 Virtual Machines

A virtual machine (VM) can be defined as an efficient and isolated duplicate of a real
machine. In other words, it is an isolated copy of a physical system and this copy is
fully protected.The term virtual machine has been described in the 1960s from one
term of operating system, or a software abstraction that sees a physical system (real
machine) [2].

The heart of the system, known as virtual machine monitor (VMM), runs directly
on hardware. It implements the multiprogramming, thus providing not one, but mul-
tiple virtual machines to the next layer located above, as it is shown in Figure 1. In-
deed, they are exact copies of the hardware [7].

Fig. 1. A Physical Machine with 4 Virtual Machines

78 R. de Oliveira Albuquerque et al.

By running multiple instances of virtual machines on the same hardware, an effi-
cient use of its processing power is also provided. In data centers, the reduction of
physical machines means reduced costs for physical infrastructure such as space,
power, cabling, cooling, support and maintenance of various systems [4].

There are four main architectures for virtualization in modern computing that allow
the illusion of isolated systems: emulators, full virtualization, paravirtualization and
virtualization in operating system level [8].

For this article, the full virtualization was chosen in virtue of the support for im-
plementation given by nearly all virtualization software suppliers which were re-
searched and cited.

2.2 Tools for Virtualization

Any person who currently uses a computer knows that there is something called oper-
ating system, which somehow controls the diverse devices composing it. The classical
definition for operating system is a software layer inserted between the hardware and
the applications that perform tasks for the users, and whose goal is to make the use of
computers at the same time, more efficient and convenient [6].

There are commercial solutions, free software, integrated to operating systems, etc.
It would be impossible and outside the scope of this article, to comment on all of
them, therefore, we chose to present only the ones which are currently market leaders:
VMware[9], Xen [8], QEMU[10] and Virtual Box[11]. Besides them, there is Micro-
soft’s answer to the worldwide movement of virtualization [12].

2.3 Data Center Environment Management Tools

If a company wants to make the most of the process of computerization, organization-
al innovations are needed to sustain the technological innovations [13].

Tools that manage the virtualized environment (virtual machine motors), and also
enable the management of the data center environment as a whole, are being devel-
oped. These machines can be either physical or virtual, amongst these initiatives, the
ones researched were: Cobber[14], Puppet [15] and BladeLogic [5].

The tool BladeLogic was integrated into the service catalog developed in this work
in order to enable the automation of availability tasks of a new server. This tool was
chosen because of its differentiated amount of resources in relation to the other two
competing tools surveyed.

2.4 Services Catalog

The IT services catalog is a menu offered by the information technology department
to users of this corporation [16].

The catalog has all the services offered, software and corporate systems that can be
installed and supported, avoiding users to request something that is not supported by
the IT department.

 Virtualization with Automated Services Catalog 79

With the increasing dependency of organizations in relation to Information Tech-
nology (IT), the importance of IT Service Management becomes larger every day. It
is an excellent opportunity for IT to demonstrate its value and ability to leverage and
bring innovation to business processes. But this is not a simple task.It demands clarity
of focus and attention of the IT area [1].

2.5 Related Work

In [18] there is a discussion that agrees with the importance of a service catalog.
When the infrastructure comes to a cloud environment it becomes important to for-
mally represent knowledge in a services catalog. The focus is to enable automatic
answering of user requests and sharing of building blocks across service offerings. In
their work is proposed an ontology-driven methodology for formal modeling of the
service offerings and associated processes.

[19] presents a model to support decision making for investments in IT services
and affirms that it contributes to IT service portfolio management. Their work analyz-
es business impacts and investment options considering a Service Level Agreement
(SLA) policy.

Discussion about the integration of multiple virtualized management tools for en-
terprise is discussed in [20]. It points that enterprise systems are in direction of the
cloud and thus presents a strategy for accomplishing the migration process. It also
considers the importance of integrated system management in user environment pers-
pective.

When automation comes to the point of view regarding technology, [21] presents a
large discussion of the subject. It presents reviews, benefits, domains and levels of
application. One of the main contributions of the work presented is that automation
inspires creative work and develops newer solutions. Than concludes the work with
several emerging trends in collaborative control and automation, and risks to antic-
ipate and eliminate situations where automation cannot be forget.

3 Proposal of the System of Requests Registration of IT
Infrastructure

This section is divided in small parts to describe the main characteristics and functio-
nalities of SRRITI.

3.1 System Persistent Layer

In order to collect users’ information in a standardized way, the SRRITI was devel-
oped. The System provides its users with the hardware and software settings sup-
ported by the IT department. The whole system was developed using HTML and PHP
pages and the support of a database as persistence layer.Table 1resumes the main
tables and its characteristics.

80 R. de Oliveira Albuquerque et al.

Table 1. Resume of System Persistence Layer

NAME DESCRIPTION
1.tb_usuarios Storage system users’ information such as profile and user

identification.

2.tb_servidor_fisico Table for the physical server pool that may support virtua-
lized environment

3.tb_servidor_logico Its main function is to standardize the names of the systems
and main OS available for virtualization.

4.tb_requisicoes

Main system tableandstoresinformationaboutuser requests
and status.

5.tb_hardware_processad
or

Stores information about physical infrastructure total number
of available processors.

6.tb_hardware_capacidad
e_disco

Disk size related to physical available capacity.

7.tb_hardware_memoria Memory size related to physical available capacity

8.tb_hardware_placa_red
e

Stores the network interfaces speed to the virtualized hard-
ware.

9.tb_software_sistema_op
eracional

This table stores the OS that has been previously prepared for
installationusing a data center management tool.

10.tb_software_backup

Maintains the backup software that has been previously pre-
pared to be installed for backing up a virtualized system.

11.tb_software_monitorac
ao

Maintains the monitoring software that has been previously
prepared to be installed for the virtualized system.

12.tb_software_automaca
o

Stores the automation software for the selected virtualized
system.

13.tb_software_servidor_
http

This table stores software for HTTP servers that are available
for installation in a virtualized environment.

14.tb_software_transferen
cia_arquivos

It maintains software for file transfer servers that are availa-
ble for installation in a virtualized environment.

15.tb_software_banco_de
_dados

Stores software for Database servers that are available for
installation in a virtualized environment.

3.2 System Logics

The project was designed segmenting administration functions, registration of re-
quests, and approval of registered requests. According to the user’s credentials, he or
she is redirected to the screen functionalities, in agreement with his/her previously
registered profile.

 Virtualization with Automated Services Catalog 81

Once the request is registered in the system, there must be an approval of the soli-
citation before it can be provided. The consultation to a request and its subsequent
approval is accessed by users who have the approver profile or administrator.

At the moment of approval of a new server request, the files, which will interface
with the virtualization tool in order to create the new server, are generated in disk.
The files of interface with the infrastructure management tool are also created in order
to install the operating system, and the previously registered applications. At this point it
is chosen the physical machine where the virtual machine will be created. Figure 2 de-
monstrates the flow of a new request. Moreover, it is also possible to provision a physi-
cal machine without any virtualization feature within the developed system.

Fig. 2. Flowchart of a New Request

All the files created have the request number to which they are associated; there-
fore, it is possible to run more than one provisioning at the same time.

3.3 System Basic Caractheristics and Functions

SRRITI was developed using PHP with Apache HTTP Web Server and MySQL as
database server. The system divides the user profile based in three main modules: 1)
user requests, where users perform its system requests; 2) system approval, where
system requests are approved following enterprise process policy by IT department;
3) the SRRITI administration, which is conducted by IT specialists in virtualization
and system data center management.

The developed system has a lot of input screens where users can perform its ac-
tions based on its profile. As an example, Figure 3 shows one of the screens of
SRRITI. There it is presented the registration of a new request from a server. On this
screen, certain items are available: processor, disk capacity, memory size, speed of
network card, operating system, monitoring software, backup software, automation
software, software for transferring files and database software.

The main advantage of SRRITI is that in concentrates the user requests in one
point of control and thus reduces de process complexity of requesting a new virtua-
lized system.

It is important to consider that the automation of IT infrastructure is recommended
for large enterprises with a heterogeneous and complex computing park. There are no
well-known reports regarding the minimum number of servers or database, or even

82 R. de Oliveira Albuquerque et al.

operating systems that suggest the minimum amount of the related items cited above
should be automated.

Fig. 3. Screen of Registration of Requests of the System SRRITI

3.4 System Main Outputs

Once the user completes a request for a virtualized service and has the IT department
approval, SRRITIautomatically generates scripts to be directly executed in the data
center management tool. SRRITIsystem files outputs are based in well-known stan-
dards as XML and BAT files, which are easily interpreted and may be imported and
integrated in most systems and tools using common programing language.
Figure 4 shows a XML output example.

Fig. 4. XML Output of an User System Request

 Virtualization with Automated Services Catalog 83

Also there are other XMLs inputs to the system, for instance, system name, system
mac-address, system profile, system OS, etc. Each of them depends of the user re-
quest and availability of the IT infrastructure. Once the creation of a new virtualized
environment is allowed by IT personal, SRRITI reads the XMLs files as data input
than connects to the data center management tool and pass the new virtualized system
parameters to be created. The whole process is automated using specific commands
depending on the data center management tools. Figure 5 shows one type of com-
mand that can be executed.

Fig. 5. System Command for Creating a Virtualized System

4 Tests and Results

The testing environment was built seeking to clarify the following questions:

a) Is it viable to automate the availability of a new server from a service request?
b) Is it possible to develop and integrate a services catalog with hypervisors and IT

infrastructure management tools, enabling a reduction in the time availability of a new
server and also reducing the operating system installation time?

c) How much can the operating cost be reduced by using the integration of con-
cepts and tools presented?

SRRITI was tested as a response to the questions presented.

4.1 Testing Environment

For this article the VMware ESX Server 4, which is the base software for creating
virtual data center, was used. The ESX server is a virtual machine monitor that virtua-
lizes hardware resources like processor, memory, storage and networking. Thus, the
ESX Server allows a physical server to be partitioned into several isolated and secure
virtual machines and, each one is seen as a physical machine in a conventional net-
work infrastructure.

Tests for the creation of virtual machines were performed. Following this, the in-
stallation of the operating systems RedHat Enterprise Linux 5.0 update 1 and Win-
dows Server 2003, with various configurations of central processing unit (CPU) and
variation of Random Access Memory (RAM), took place.

All the tests were performed by booting only a VM at a time in order to avoid any
kind of interference in the tests due to the amount of memory allocated in some other
virtual machine.

84 R. de Oliveira Albuquerque et al.

Fig. 6. Manual Installation of RedHat Enterprise Linux 5.0 update 1

The graphs of this paper are organized as follows: on the left side, it is shown the
time spent for installation in the format hours: minutes: seconds (h:m:s). At the bot-
tom of each graph, the number of processors (cores: from 1P to 4P) of the virtual
machine created, and the amount of RAM in GB (from 0,5 to 4) allocated to each
machine, respectively, are presented.

Fig. 7. Automated Installation of RedHat Enterprise Linux 5.0 update 1

Manual Installation of the O.S. Redhat 5.0

0:00:00

0:02:53

0:05:46

0:08:38

0:11:31

0:14:24

0:17:17

0:20:10

0:23:02

0:25:55

0:28:48

1P 2P 3P 4P 1P 2P 3P 4P 1P 2P 3P 4P 1P 2P 3P 4P 1P 2P 3P 4P

0,5 0,5 0,5 0,5 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4

Number of Virtualized Processors Cores and RAM in GB

Time

Automated Installation of the O.S. RedHat 5.0

0:00:00
0:00:43
0:01:26
0:02:10
0:02:53
0:03:36
0:04:19
0:05:02
0:05:46
0:06:29
0:07:12

1P 2P 3P 4P 1P 2P 3P 4P 1P 2P 3P 4P 1P 2P 3P 4P 1P 2P 3P 4P

0,5 0,5 0,5 0,5 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4

Number of Virtualized Processors Cores and RAM in GB

Time

 Virtualization with Automated Services Catalog 85

Figure 6 illustrates the results obtained in the tests of the manual installation of the
operating system, RedHat Enterprise Linux 5.0 update 1. Figure 7 presents the results
obtained in the automated installation tests of the operating system RedHat Enterprise
Linux 5.0 update 1 utilizing SRRITI.

Fig. 8. Manual Installation of the O.S. Windows Server 2003

Figure 8 shows the results obtained in the manual testing of installation of Win-
dows Server 2003 operating system. Figure 9 illustrates the results obtained in the
automated test of installation of Windows Server 2003 operating system.

Fig. 9. Automated Installation of the O.S. Windows Server 2003

As shown in Figures 6 through 9 the numbers of processors are not changed be-
cause the objective of these tests was to compare the time that the same machine with

86 R. de Oliveira Albuquerque et al.

the same characteristics would take to perform the process of installation of the vir-
tualized environment in a manual fashion compared to an automated fashion provided
by SRRITI.

4.2 Comparison of Results

Technology can be used for automating operations. The objective is to replace the
effort and provide the human qualification via technologies that allow the same
processes to be executed at a lower cost, under control and continuity.

Fig. 10. Comparison of the Manual Installation x the Automated - O.S. Redhat Enterprise Li-
nux 5.0 update 1

Fig. 11. Comparison of the Manual Installation x the Automated - O.S. Windows Server 2003

Automating a process, which is executed manually, initially, aims at reducing the
possibility of human error and, in the background, increasing the productivity by

 Virtualization with Automated Services Catalog 87

making available a good or service. This can be verified comparing graphs of results
in Figures 10 and 11. They show that an automated process has better time results that
a manual installation process.

In addition, information concerning time spent with installation; number of proces-
sors (cores) of the virtual machine created; amount of RAM in GB; and the method
used for installation manual (M) versus automated (A) are also described.

The system SRRITI proposed in this paper, confirms these concepts.The productiv-
ity gain ranged from 57.56% for the scenario of two processors and 2 GB of RAM in
the worst case, to 82.30% for the installation of the operating system RedHat Enter-
prise Linux, including three processors and 0.5 GB RAM, as it is presented in Figure
10.

In relation to the operating system Windows Server 2003, the productivity gain
ranged from 10.38% for the scenario of one processor and 3 GB RAM, representing
the worst case, to 70.91% in a scenario of four processors and 2 GB RAM, which was
the best case as illustrated in Figure 11.

4.3 Comparative Analysis of Costs Estimate

In the case of a large telecommunications enterprise studied in this paper, after ana-
lyzing the whole process that is used to make an virtualized system available (Figure
12), it was observed that the process takes 46 days from the user request up to the
deploy of the user request. Considering an 8-hour workday, it is possible to conclude
that from the request to its proper availability, 368 working hours are required in or-
der to provide a new server. These are reference values, which were obtained through
the analysis of the studied process which are also listed in Table 2.

Fig. 12. The Process of a Large Telecommunications Company in Order to Make a Server
Available

Based on a salary survey [17], in Table 2, the average salary of a support analyst is
presented (expressed in Brazilian currency, reals). The final amount was divided by
the total working days within a month, and then this value was divided by the total of
working hours. These calculations are needed to reach the analyst’s value of one hour
of work.

Table 2. Amount of Time Demanded for the Availability of a New Server without Virtualiza-
tion

Reference
Value

Description

46 Workdays in order to make a new server available
8 Daily work hours

368 Total of hours needed for creating a new server

88 R. de Oliveira Albuquerque et al.

In Table 3 the value of an analyst’s hour of work is presented. This value is multip-
lied by the total of hours needed for creating a new server. The final amount
represents how much it costs for a company to create a new server using only specia-
lized labor.

Table 3. Cost of one Hour of Work of a Support Analyst

Reference
Value

Description

R$4616,48 Average salary of a senior Linux support analyst.
22 Total of workdays in a commercial month.
R$209,84 Valueof a workday.
R$ 26,23 Value of one hour of work of a Linux support analyst.

Table 4 presents a financial analysis utilizing non-automated virtualization infra-

structure.

Table 4. Cost for a Company with Specialized Labor to Create a New Server without Virtuali-
zation

Reference
Value

Description

368 Total of hours needed to make a new server available
R$26,23 Value of a support analyst’s hour of work
RS
9.652,64

Total cost of an analyst working for 46 days

In Table 5 a financial analysis using virtualization and the automated process inte-

grated with the services catalog are shown, also the amount of time needed in order to
make a new server available through the system SRRITI, which was developed and
presented in this paper.

Table 5. Financial Analysis of the Cost utilizing Virtualization

Reference
Value

Description

48

Total of hours needed in order to make a new server
available with virtualization

RS 26,23 Value of a support analyst’s hour of work
RS
1259,04

Total cost in order to make a new server available

The approval of request may be responsible for the time increase in making a new

server available, and for this reason, it was considered the worst case: two workdays
or 16 hours were necessary for the new server to become available. This analysis is
resumed in Table 6.

In order to solve this matter, a set of physical servers with available resources to
enable the creation of virtual machines is demanded.

 Virtualization with Automated Services Catalog 89

Table 6. Financial Analysis of the Cost of the Automated Process Integrated with the Services
Catalog

Reference
value

Description

16 Total of hours needed to make a new server available
RS 26,23 Value of a support analyst’s hour of work
RS 419,68 Total cost in order to make a new server available

5 Conclusions

Automating a process for a few executions can be more financially costly and onerous
in amount of time than executing the proceeding manually. However, after a defined
number of repetitions in each specific environment, the time invested, and, conse-
quently, the capital allocated, are to compensate the time spent on automating the
task.

The automated process reduced the amount of time demanded for the availability
of a new server in virtue of the standardization of requests. With the standardization
of the requests, it was possible to automate the delivery of required resources as soon
as they were approved. This fact reduced the costs with specialized labor.

Table 7 presents data on the reduction of time and operating costs achieved
through the utilization of the System of Requests Registration of IT Infrastructure
(SRRITI). Comparing the time to deliver a new server with virtualization to SRRITI,
there was a time reduction of 66.67% with the use of the system SRRITI.

Table 7. Comparative analysis of time and cost

Scenario Time
(in work hours)

Cost (in
Reais R$)

Percentagegain
(*)

WithoutVirtualization 368 9,652.64 --
WithVirtualization 48 1,259.04 66.67
Via the system SRRITI 16 419.68 95.65

(*) The percentage gain considers the time column in relation to the system SRRITI.

With the integration of concepts presented in this paper (virtualization, infrastruc-

ture management and services catalog), and through SRRITI it was possible to ob-
serve the gains offered and their true contribution to the standardization and automa-
tion of IT services. The reduction of time and costs also adds essential value to the
System of Requests Registration of IT Infrastructure.

5.1 Future Work

As future work, new studies regarding trust, virtualization, cloud and service catalog
may be necessary in order to provide more availability do users in mixed environ-
ments.

Trust and security [22], [23] [24] have become crucial to guarantee the healthy de-
velopment of cloud platforms. Most studies tries to provide solutions for concerns

90 R. de Oliveira Albuquerque et al.

such as the lack of privacy and protection. These characteristics are important to
guarantee security and author rights.

When trust comes to discussion, it is also important to consider that there is no
common trust and reputation consensus in distributed environment, for example, to
guarantee that a pool of servers are trustworthy in the same service catalog. That
makes trust and reputation analysis fully dependent of specific variables and the defi-
nitions of the environment that it is attached to.

In the cloud the situation gets more complicated because it is necessary to employ
trusts model in cloud environments to guarantee users security and privacy.

Acknowledgements. This work was supported by the Ministerio de Ciencia e Inno-
vación (MICINN, Spain) through Project TEC2010-18894/TCM and the Ministerio
de Industria, Turismo y Comercio (MITyC, Spain) through Project AVANZA
COMPETITIVIDAD I+D+I TSI-020100-2010-482.

References

1. Galup, S.D., Dattero, R., Quan, J.J., Conger, S.: An overview of IT service management.
Communications of the ACM - Security in the Browser CACM Homepage table of con-
tents archive 52(5), 124–127 (2009); ISSN: 0001-0782 EISSN: 1557-7317

2. Poniatowski, M.: Foundations of Green IT: Consolidation, Virtualization, Efficiency, and
ROI in the Data Center. Prentice Hall, Englewood Cliffs (2009); ISBN: 0-13-704375-9

3. Benevenuto, F., Fernandes, C., Santos, M., Almeida, V.A.F., Almeida, J.M., Janakiraman,
G.J., Santos, J.R.: Performance Models for Virtualized Applications. In: ISPA Workshops
Conference Proceedings, pp. 427–439 (2006)

4. Carlsson, N., Arlitt, M.: Towards more effective utilization of computer systems. In: Pro-
ceeding of the Second Joint WOSP/SIPEW International Conference on Performance En-
gineering. ACM, New York (2011); ISBN: 978-1-4503-0519-8

5. BMC. BMC Service Automation The next step in the evolution of Business Service Man-
agement. BMC Software (2009),
http://documents.bmc.com/products/documents/10/45/91045/9104
5.pdf (accessed on January 05, 2010)

6. Stallings, W.: Operating Systems: Internals and Design Principles, 5th edn. Prentice Hall,
Englewood Cliffs (2005); ISBN-10: 0131479547

7. Tanenbaum, A.S.: Modern Operating Systems, 3/E. Prentice Hall, Englewood Cliffs
(2008); ISBN-10: 0136006639. ISBN-13: 9780136006633

8. Govindan, S., Choi, J., Nath, A.R., Das, A., Urgaonkar, B., Sivasubramaniam, A.: Xen and
Co.: Communication-Aware CPU Management in Consolidated Xen-Based Hosting Plat-
forms. IEEE Transactions on Computers, 1111–1125 (August 2009)

9. VMWARE. VMware ESX e VMware ESXi. VmWare (2010),
http://www.vmware.com/files/br/pdf/products/VMW_09Q1_BRO_ESX
_ESXi_BR_A4_P6_R2.pdf (access January 20, 2010)

10. Becker, M.: Qemu/systemc cosimulation at differet abstraction levels.University of Pader-
born/C-LAB. Fuerstenallee 11, 33102 Paderborn,
http://adt.cs.upb.de/quf/quf2011_proceedings.pdf#page=13
(access January 25, 2010)

 Virtualization with Automated Services Catalog 91

11. Virtualbox. VirtualBox. VirtualBox (2010),
http://www.virtualbox.org/wiki/VirtualBox_architecture
(access January 22, 2010)

12. Microsoft. Microsoft Virtual Server. Microsoft (2010),
http://www.microsoft.com/windowsserversystem/virtualserver/
(access January 25, 2010)

13. Lundvall, B.-Å.: National Systems of Innovation: Toward a Theory of Innovation and In-
teractive Learning. The Anthem Other Canon Series. Paperback (January 1, 2010)

14. COBBLER. Cobbler. cobbler (2010),
https://fedorahosted.org/cobbler/ (access March 05, 2010)

15. PUPPETLABS. Introducing Puppet. Puppetlabs (2009),
http://www.puppetlabs.com/puppet/introduction/
(access September 01, 2010)

16. Curtis, D., Brittain, K:. Document the IT Service Portfolio Before Creating the IT Service
Catalog. Gartner Research. ID Number: G00163200 (January 2009),
http://confluence.arizona.edu/confluence/download/attachment
s/2459667/document_the_it_service_port_163200+%282%29.pdf

17. Info Magazine. Brazilian Salary Resarch. RH Info Human Resource Consulting (2010),
http://www.rhinfo.com.br/sal-ti.htm (access November 05, 2010)

18. Deng, Y., Head, M., Kochut, A., Munson, J., Sailer, A., Shaikh, H.: An ontology based
approach for cloud services catalog management. In: Maglio, P.P., Weske, M., Yang, J.,
Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6470, pp. 680–681. Springer, Heidelberg
(2010)

19. Queiroz, M., Moura, A., Sauvé, J., Bartolini, C., Hickey, M.: A model for decision support
in business-driven IT service portfolio management using SLA-dependent criteria and un-
der uncertainty. In: Proceedings of the International Conference on Management of Emer-
gent Digital EcoSystems. ACM, New York (2009)

20. Ezaki, Y., Hitoshi, M.: Integrated Management of Virtualized Infrastructure That Supports
Cloud Computing: ServerView Resource Orchestrator. Fujitsu Science Technology Jour-
nal (2011),
http://www.fujitsu.com/downloads/MAG/vol47-2/paper18.pdf

21. Nof, S.Y.: Automation: What It Means to Us Around the World. Springer Handbook of
Automation, pp. 13–52. Springer, Heidelberg (2009)

22. Wang, H.-z., Huang, L.-s.: An improved trusted cloud computing platform model based on
DAA and Privacy CA scheme. In: IEEE International Conference on Computer Applica-
tion and System Modeling, ICCASM 2010 (2010); ISBN: 978-1-4244-7235-2

23. Shen, Z., Li, L., Yan, F., Wu, X.: Cloud Computing System Based on Trusted Computing
Platform. In: IEEE International Conference on Intelligent Computation Technology and
Automation (ICICTA), China, vol. 1, pp. 942–945 (2010)

24. Li, X.-Y., Zhou, L.-T., Shi, Y., Guo, Y.: A Trusted Computing Environment Model in
Cloud Architecture. In: Proceedings of the Ninth International Conference on Machine
Learning and Cybernetics, Qingdao, China, pp. 11–14 (July 2010); ISBN: 978-1-4244-
6526-2

J.M. Alcaraz Calero et al. (Eds.): ATC 2011, LNCS 6906, pp. 92–105, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Research on Modeling and Analysis of CPS*

Zhang Yu, Dong Yunwei, Zhang Fan, and Zhang Yunfeng

School of Computer Science and Technology, Northwestern Polytechnical University,
710072 Xi’an, China

yuzhang.nwpu@gmail.com, {yunweidong,zhangfan}@nwpu.edu.cn,
yfzhang_nwpu@163.com

Abstract. Cyber-Physical Systems (CPS) are physical and engineered systems
whose operations are integrated, monitored, and controlled by embedded com-
putational cores that are often distributed and reconfigurable online. Due to the
criticality of CPS, high-confidence CPS are critical to the infrastructure of our
society. We research on modeling and analysis of CPS. We propose a hierar-
chical and compositional modeling approach based on AADL to solve the tight
coupling between physical and cyber world. We extend AADL by annex and
separate the component abstraction of CPS model into three categories. And we
propose basic transformation rules to translate the CPS model into the networks
of timed automata. Then we use model checker UPPAAL to analysis system
qualities. We present a case study about analysis of automatic collision avoid-
ance system derived from vehicle in the end.

Keywords: CPS, AADL, networks of timed automata.

1 Introduction

As computers become ever-faster and communication bandwidth ever-cheaper, com-
puting and communication capabilities will be embedded in all types of objects and
structures in the physical environment. Such systems that bridge the cyber-world of
computing and communications with the physical world are called CPS [1].

CPS is integrations of computation with physical processes. Embedded computers
and networks monitor and control the physical processes, usually with feedback loops
where physical processes affect computations and vice versa [2]. The cyber and phys-
ical components of CPS cooperatively deliver system functionalities and jointly con-
tribute to properties such as temporal correctness, real-time response, and energy
conservation. CPS engineering must account for the interacting and interdependent
behaviors of both types of components to provide system-level property guarantees.
CPS is a new research direction in recent years, but as its scientific and technological
importance as well as its potential impact on grand challenges in a number of critical,
CPS have received increasing attention from industry to academia.

With the increasing non-function attributes (security, safety and reliability) re-
quirements of embedded system, MDA (Model Driven Architecture) which allow

* This paper is supported by the National Science Foundation of China (No.60736017) and

National High-Tech Research and Development Plan of China (No. 2011AA010101).

 Research on Modeling and Analysis of CPS 93

detecting problems with these non-functional properties early on are becoming more
and more popular. Karsai [3] proposes a model-integrated development approach that
addresses the development needs of such CPS through the pervasive use of models. A
complete model-based view is proposed that covers all aspects of the hardware and
software components, as well as their interactions. Jensen [4] decomposes MBD into
ten fundamental steps and introduces an iterative design process. Both of the model-
ing approaches in their report are only a preview. Various formal languages have been
proposed for specifying embedded systems, e.g., LOTOS [5], Co-design Finite State
Machines (CFSMs) [6], and Petri-net based languages such as PRES [7]. Models in
these languages are verified directly or indirectly (via translation). AADL [8] (Archi-
tecture Analysis and Design Language) is a modeling language which supports MDA
to analysis architecture of systems with respect to the non-functional properties. But
AADL is a modeling language for embedded software system and lack of capacity to
specify physical process.

Well-known tools for analysis hybrid systems include UPPAAL [9], HyTech [10],
Kronos [11], etc. The performance of UPPAAL is much better than other tools like
HyTech, and Kronos in time and space [12]. UPPAAL is a model checker for real-time
systems, based on constraint-solving and on-the-fly techniques, developed jointly by
Uppsala University and Aalborg University. It is appropriate for systems that can be
modeled as a collection of non-deterministic processes with finite control structure and
real-valued clocks, communicating through channels or shared variables.

The next section provides an overview of AADL and timed automata. Section 3
gives a detailed modeling technology to define a component-based architectural for
CPS. Section 4 presents research on analysis of CPS. Section 5 presents a case study
to the analysis of automatic collision avoidance system derived from vehicle. Section
6 summarizes our work and prospect.

2 AADL and Timed Automata

2.1 Overview of AADL

In November 2004, the Society of Automotive Engineers (SAE) released the aero-
space standard AS5506, named AADL. The AADL is a modeling language that sup-
ports early and repeated analyses of a system’s architecture with respect to perfor-
mance-critical properties through an extendable notation, a tool framework, and pre-
cisely defined semantics [13].

The language employs formal modeling concepts for the description and analysis
of application system architectures in terms of distinct components and their interac-
tions. It includes abstractions of software, computational hardware, and system com-
ponents for (a) specifying and analyzing real-time embedded and high dependability
systems, complex systems, and specialized performance capability systems and (b)
mapping of software onto computational hardware elements.

The AADL is especially effective for model-based analysis and specification of
complex real-time embedded systems. The component abstractions of AADL are
shown in Fig.1.

94 Z. Yu et al.

Fig. 1. Component Abstraction of the AADL

AADL annex enables a user to extend the AADL, allowing the incorporation of
specialized notations within a standard AADL model. For example, a formal language
that enables an analysis of a critical aspect of a system (e.g., reliability analysis, secu-
rity, or behavior) can be included within an AADL specification. In addition, AADL
mode represents an operational mode state, which manifests itself as a configuration
of contained components, connections, and mode-specific property value associations.
When multiple modes are declared for a component, a mode transition behavior speci-
fies possible runtime passage which events cause a mode switch and the new mode.

2.2 Overview of Timed Automata

Timed automata [14] were introduced as a formal notation to model the behavior of
real-time systems. Its definition provides a simple, and yet general, way to annotate
state-transition graphs with timing constraints using finitely many real-valued clock
variables. Automated analysis of timed automata relies on the construction of a finite
quotient of the infinite space of clock valuations.

Clock Constraints & Clock Interpretations
An atomic constraint compares a clock value with a time constant, and a clock con-
straint is a conjunction of atomic constraint. Any value from Q, the set of nonnegative
rational, can be used as a time constant. Formally, for a set X of clock variables, the
set Φ(x) of clock constraintsφis defined by the grammar

φ:=x≤c | c≤x |x＜c | c＜x |φ1∧φ2 , (1)

where x is a clock in X and c is a constant in Q.
A clock interpretation v for a set X of clocks assigns a real value to each clock: that

is, it is a mapping from X to the set R of nonnegative real. We say that a clock inter-

 Research on Modeling and Analysis of CPS 95

pretation v for X satisfies a clock constraint φ over X if φ evaluates to true accord-
ing to the values given by v.

Timed automata
Timed automata T is six tuples <S，S0

，A，X， I，E>，where

S is a finite set of locations,
S0 ⊆ S is a set of initial locations,
A is a finite set of labels,
X is a finite set of clocks,

I is a mapping that labels each locations in S with some clock constraint in Φ(x),
and E ⊆ S × A × 2X ×Φ(x) × S is the set of switches. A switch <s， a，φ,

λ， s‘> represents a transition from location s to location s’ on symbol a. φ is a clock
constraint over X that specifies when the switch is enabled, and the set λ ⊆ X gives
the clocks to be reset with this switch.

The semantics of a timed automation A is defined by associating a transition sys-
tem SA with it. A state of SA is a pair (s, v) such that s is a location of A and v is a
clock interpretation for X such that v satisfies the invariant I(s). There are two types
of transitions in SA: State can change due to elapse of time; State can change due to a
location switch.

3 Modeling

Due to the inherent and ever-growing complexities of CPS, modeling technologies
must be scalable. And the modeling technology must specify the intellectual heart of
CPS: tight coupling between physical and cyber process. We adopt a hierarchical and
compositional approach to model CPS. The core of this approach is based on AADL.

We extend AADL by annex. The component abstraction of CPS is shown in Fig.2.
The component abstraction of the CPS model is separated into three categories: cyber
component, physical component and interactive component. Below we will detail the
three components.

3.1 Cyber Component

The cyber component are represented by AADL. AADL is used to model and analyze
the software and hardware architecture of embedded systems. The main modeling
notion of AADL is component.

Within the AADL, a component is characterized by its identity (a unique name and
runtime essence), possible interfaces with other components, distinguishing properties
(critical characteristics of a component within its architectural context), and subcom-
ponents and their interactions. Components can be a software application or an execu-
tion platform. The cyber components include: thread, thread group, process, data,
subprogram, processor, memory, bus and system [8].

96 Z. Yu et al.

Fig. 2. Component Abstraction of CPS

3.2 Physical Component

Physical process is mainly represented by differential equation. The most important
problem in the research of modeling and analysis of CPS is not the union of cyber and
physical problems, but rather their tight coupling between physical and cyber world.
We use agent-based technique to model the physical process [15, 16].

Fig. 3. Physical Agent-Based model

 Research on Modeling and Analysis of CPS 97

A Physical Component P is five tuples <S，R， I，C，A>，where S is a finite set of
states, R is a finite set of rules, I is a finite set of reasoning functions, C is a finite set
of communication and control, A is a set of actions. The physical agent-based model
is shown in Fig.3.

The autonomy and adaptivity of agents enables them to capture the cyber abstrac-
tions and interfaces [17]. According to the "stimulate - response" model, the work
process of Physical_Agent is from sensory information to output action, namely
“judge condition - generate action". According to the information from outside and
reaction rules, it selects the best action, and then performs the action and updates the
content of knowledge base according to the action of environmental impact.

For example, we model vehicle. We focus on velocity and position for a vehicle.
Changes in position or velocity are governed by Newton’s laws which are reaction
rules. The position of a vehicle in space, therefore, is represented by function of the
form f: R → R. Functions of this form are known as continuous signals. Velocity and
position are the integral of acceleration, given by

⎪
⎪

⎩

⎪
⎪

⎨

⎧

+=>∀

+=>∀

∫

∫

ττ

ττ

dxxtxt

dxxtxt

t

t

0

0

)()0()(,0

)()0()(,0

&

&&&&

 ， (2)

where x represents position, x& represents velocity, x&& is the second derivative of x
with respect to time (the acceleration).

By utilizing the extension capabilities of AADL, we build CPS annex. The CPS
annex can be used to define physical agent-based model and properties of components
facilitating analysis of the architecture.

3.3 Interactive Component

The interactive components are represented by the AADL component device. The
device component can be viewed as a unit in the environment that is accessed or con-
trolled by the cyber and physical component.

Device abstractions represent entities that interface with the external environment
of an application system. The interactive components include sensor and actuator.
Sensor gathers information from physical process. And the actuators according to
computing result to affect the physical process. Through the interactive component,
we can represent the closed-loop interactions between physical and cyber process.

Therefore, Our CPS model include three types of component: cyber component,
physical component and interactive component. Components interact exclusively
through defined interfaces. A component interface consists of directional flow through:
data ports, event data ports, event ports for asynchronous events, synchronous subpro-
gram calls and explicit access to data components. Within the architectural for CPS,
property sets can be declared that include new properties for components and other

98 Z. Yu et al.

modeling elements. So the CPS model can define the interaction of distributed software
components, the networks that bind them together, and the interaction via sensors and
actuators with physical dynamics.

4 Analysis with Timed Automata Network

Based on the component-based architectural for CPS, we research on analysis of CPS.
We propose an approach based on networks of timed automata. According to trans-
formation rules, we translate the CPS model to the networks of timed automata. And
then use model checker UPPAAL to analysis system qualities. The analysis process is
shown in Fig.4.

Fig. 4. Analysis Process of CPS

We mainly focus on the early prediction and analysis of critical system qualities—
such as safety, security, and reliability. The analysis is based on component and at the
architectural design level. Timed automata network is a set of timed automata {T1

||…||Tn}. Several timed automata are run in parallel and synchronised with one anoth-
er. Those timed automata are interacted each other via channel or shared variables as
a whole.

Suppose that as in section 2, state machines T1 and T2 are given by the six tuples,

T1 = <ST1，S0
 T1，A T1，X ， IT1，E T1> ， (3)

T2 = <ST2，S0
 T2，A T2，X， IT2，E T2> ， (4)

Then the networks of timed automata T is given by

T = T1 || T2 = <ST，S0
T，AT，X， IT，E T> ， (5)

 Research on Modeling and Analysis of CPS 99

where ST = ST1 × ST2,
S0

 T = (S0
T1，S0

T2),
AT = (AT1 ，AT2),
IT = (IT1 ， IT2),

E T:
2

'
1

)(,,
21

'
1

)(,,
1

T||T T||T

TT
11

11

⎯⎯⎯⎯ →⎯
⎯⎯⎯⎯ →⎯
TT

TT

xxA

xxA

φ

φ

,

'
21

)(,,
21

'
2

)(,,
2

T||T T||T

TT
22

22

⎯⎯⎯⎯ →⎯
⎯⎯⎯⎯ →⎯

TT

TT

xxA

xxA

φ

φ

,

'
2

'
121

'
22

'
11

T||T T||T

TT,TT
21

21

⎯⎯⎯ →⎯
⎯→⎯⎯→⎯

TT

TT

AA

AA

U
,

'
2

'
121

'
22

'
11

T||T T||T

TT,TT

⎯→⎯
⎯→⎯⎯→⎯

x

xx

.

4.1 Transformation Rules

We translate the CPS model into the timed automata to analysis non-functional prop-
erties of CPS systems. There are three types of component: cyber component, physi-
cal component and interactive component. Components interact exclusively through
defined interfaces. And Interactions among components are specified explicitly. Two
complementary approaches are identified [2]: cyberizing the physical (CtP) means to
endow physical subsystems with cyber-like abstractions and interfaces; and physica-
lizing the cyber (PtC) means to endow software and network components with ab-
stractions and interfaces that represent their dynamics in time. And we take the cybe-
rizing the physical approach. So we analyze connection relationship between compo-
nents by the following transformation rules.

Rule 1: Map the cyber component to the timed automata based on AADL mode.
Rule 2: Map the physical component to the timed automata based on physical

reaction rules.
Rule 3: Map the interactive component to channel or shared variable.
Rule 4: The two categories (cyber component and interactive component) with

physical component must be alternative in a timed automaton. Map them to different
timed automata in timed automata network.

Rule 5: Map constraint (timing requirements such as period, worst-case execution
time, arrival rates and deadlines) between ports in cyber component and interactive
component to jump guard in timed automata.

4.2 Analysis with UPPAAL

Based on transformation rules, we can build timed automata network. And then we
can analyze the networks of timed automata instead of CPS model. The networks of
timed automata can capture discrete continuous changes with differential equations.

100 Z. Yu et al.

So we can use UPPAAL to analyze networks of timed automata. By the tool, we
analyze all possible executions which include all states and state transitions. Now we
can take two basic analysis algorithms: reachability analysis and loop detection.

Reachability analysis checks safety property. It checks whether something (bad)
happen or not. Loop detection checks liveness property. Liveness property means
something (good) must happen/should be repeated.

We can use requirement specification language of UPPAAL (shown in Table 1) to
check system qualities [9]. Below is Requirement Specification BNF-grammar.

Prop::= 'A[]' Expression | 'E<>' Expression | 'E[]' Expression | A<> Expres-
sion | Expression --> Expression .

(6)

Table 1. Requirement Specification Language of UPPAAL

Name Property Equivalent Property

Possibly E<> P
Invariantly A[]P not E<> not P

Potentially always E[]P

Eventually A<>P not E[] not P

Leads to P-->Q A[] (P imply A<>Q)

UPPAAL supports powerful checking functions. Through the tool, we can find the
early prediction and analysis of critical system qualities efficiently.

5 Case Study

In this paper we present a case study in the application of our approach to the analysis
of ACAS (Automatic Collision Avoidance System) derived from vehicle.

ACAS is aimed at prevent collisions and improve vehicle safety. In ACAS, vehicle
measures distance of roadblock over range radar to allow itself to track vehicle and
predict possible collisions. Here we simplified the scene. Vehicle is driven in a one-
way street. And we only consider dangerous ahead. VSC compares the distance be-
tween safe braking and roadblock to make samrt instructions, such as emergency
brake for safety precaution. The Architecture of ACAS is shown in Fig.5.

The Architecture of ACAS contains three subsystems: Vehicle_System, Ve-
hicle_Speed_Control_System and Warning_System.

Vehicle_System represents physical vehicle. As we focus on velocity and position
for a vehicle, Vehicle_System describe changes in position or velocity which is based
on Newton’s laws (see equation 2).

 Research on Modeling and Analysis of CPS 101

Fig. 5. The Architecture of ACAS

Vehicle_Speed_Control_System implements core function. It collects the physical
information from sensor (Ranging Sensor and Speed Meter), compute this information,
and then generate feedback control to affect vehicle through actuator (Brake). The
process P_VSC contains three threads: Ranging_Computer, Vehicle_Speed_Control
and VSC_Params. Ranging_Computer calculates and analyzes current situation based
on physical information. Vehicle_Speed_Control controls Brake according to instruc-
tion from Ranging_Computer. VSC_Params receives the driver input parameters from
Warning_System and updates the internal data structures of this process accordingly.

The Warning_System implements the interactivity between driver and ACAS. It
considers the driver factor. The driver can shutdown ACAS manually.

Based on our basic transformation rules, we build timed automata network. There
are five timed automata in the network: DS, PV, VSC, PVSC and WS. DS and PV
represent physical process. And the other three automata represent cyber process. DS,
which is shown in Fig.6, specifies distance of roadblock and uses shared variable L to
trace the distance. PV, which is shown in Fig.7, specifies velocity of vehicle and uses
shared variable V to trace the velocity. WS, which is shown in Fig.8, represents
Warning_System and uses shared variable ip to trace driver input. VSC, which is
shown in Fig.9, represents result status of Vehicle_Speed_Control. PVSC, which is
shown in Fig.10, represents P_VSC. Each related timed automata are connected by
channel or shared variable. PV uses channel ac, dc and done to indicate the vehicle is
accelerating, slow or halt. PVSC uses shared variables emer and channel ec to inform
whether take emergency brake or not.

Fig. 6. Modeling the Distance between Safe Braking and Roadblock(DS). The location in this
timed automaton represents distance state, such as da representation of 50 meters. It uses shared
variable L to record the distance.

102 Z. Yu et al.

Fig. 7. Modeling the Physical Vehicle (PV). The location in this timed automaton represents
velocity of vehicle, such as sh representation of 21 meters per second. It uses shared variable V
to record the velocity.

Fig. 8. Modeling the Warning_System(WS). The location in this timed automaton represents
the Warning_System’s on/off state. It uses shared variable ip to record driver input.

Fig. 9. Modeling the Vehicle_Speed_Control(VSC). The location in this timed automaton
represents the result status of Vehicle_Speed_Control. There are three states: Brake state, Up-
shift state and Emer state. The transition between locations is mainly based on timed automaton
PV through channel.

 Research on Modeling and Analysis of CPS 103

Fig. 10. Modeling the P_VSC (PVSC). The location in this timed automaton represents the
state of vehicle speed control. There are five major states: Critical state, Danger state, Slight
state, Safe state and Stop state. The function, calculate(), is used to estimate the vehicle safety
conditions. The timed automaton controls vehicle by channel ec. It collects the distance of
roadblock and velocity of vehicle by shared variable L and V.

Fig. 11. Result of Analysis with UPPAAL. This shows that the ACAS doesn’t deadlock and the
location in the timed automata network is reachable.

104 Z. Yu et al.

And then we analyze the reachability and the deadlock of the ACAS. The analysis
result is shown in Fig.11. From the analysis results, it is clear that the ACAS doesn’t
deadlock. States contained in each of them can be reachable. So the properties which
we concern are satisfied. We assure the ACAS is trustworthy according our analysis.

6 Conclusion and Future Work

The paper proposed a modeling and analysis approach to assure the high-confidence
CPS. We adopt a hierarchical and compositional modeling approach based on AADL
to solve the inherent multi-semantics nature between physical and cyber process. We
research on analysis approach based on networks of timed automata. According to our
basic transformation rules, we translate the CPS model to the networks of timed au-
tomata. And then use model checker UPPAAL to analysis system qualities. We
present a case study to prove the feasibility of the approach.

The combination of AADL, timed automata, and UPPAAL is a natural, realistic
approach to analysis CSP for some non-functional properties. Our experiment verifies
our approach how well the combination worked for CPS. Due to the inherent and
ever-growing complexities of CPS, modeling and analysis technologies must be scal-
able. Major challenges that must be addressed in order to achieve scalable CPS analy-
sis include: (1) how to design for effective analysis; (2) how to cope with the inherent
multi-semantics nature of the cyber and physical components. Therefore, we plan to
research compositional verification to effectively reduce the verification complexities
and reuse the verification efforts when possible. We will further perform more expe-
riments with more subtle situations. Moreover, we will enhance the ability of specifi-
cation definition of CPS and consider the timing semantics of CPS.

References

1. Lee, E.A.: Computing Foundations and Practice for Cyber-Physical Systems: A Prelimi-
nary Report,
http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-
72.html

2. Lee, E.A.: CPS Foundations. In: DAC 2010, Anaheim, California, USA, June 13-18
(2010)

3. Karsai, G., Sztipanovits, J.: Model-integrated development of cyber-physical systems. In:
Brinkschulte, U., Givargis, T., Russo, S. (eds.) SEUS 2008. LNCS, vol. 5287, pp. 46–54.
Springer, Heidelberg (2008)

4. Jensen, J.C.: Elements of Model-Based Design,
http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-
19.html

5. Van Eijk, P., Diaz, M. (eds.): Formal Description Technique Lotos: Results of the Esprit
Sedos Project. Elsevier, Amsterdam (1989)

6. Balarin, F., Hsieh, H., Jurecska, A., Lavagno, L., Sangiovanni-Vincentelli, A.L.: Formal
verification of embedded systems based on CFSM networks. In: DAC (1996)

 Research on Modeling and Analysis of CPS 105

7. Cortes, L.A., Eles, P., Peng, Z.: Formal coverification of embedded systems using model
checking. In: EUROMICRO (2000)

8. SAE Aerospace. SAE AS5506: Architecture Analysis and Design Language (AADL),
Version 1.0 (2004)

9. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. International Journal on Soft-
ware Tools for Technology Transfer 1(1-2), 134–152 (1997)

10. Henzinger, T.A., Ho, P.-H., Howard, W.-T.: Hytech: A model checker for hybrid systems.
International Journal on Software Tools for Technology Transfer 1(1-2) (1997)

11. Yovine, S.: Kronos: A verification tool for real-time systems. International Journal on
Software Tools for Technology Transfer 1(1-2), 123–133 (1997)

12. Hua, G., Lei, Z., Xiyong, Z.: UPRAAL-a Tool Suit for Automatic Verification of Real-
time Systems. Control and Automation Publication Group 22(5-3), 52–54 (2006)

13. Feiler, P.H., Gluch, D.P., Hudak, J.J.: The Architecture Analysis & Design Language
(AADL): An Introduction. International Society of Automotive Engineers, USA (2006)

14. Alur, R., Dill, D.L.: A theory of Timed Automata. Theoretieal Computer Science 126,
183–235 (1994)

15. Rinaldi, S.M.: Modeling and simulating critical infrastructures and their interdependencies.
In: Proceeding of the 37th Annual Hawaii International Conference on System Sciences
(2004)

16. Lin, J., Sedigh, S., Miller, A.: A General Framework for Quantitative Modeling of Depen-
dability in Cyber-Physical Systems: A Proposal for Doctoral Research. In: The 33rd An-
nual IEEE International Computer Software and Applications Conference (2009)

17. Macal, C.M., North, M.J.: Tutorial on agent-based modeling and simulation. In: Proceed-
ing of the 37th Winter Simulation Conference, WSC 2005 (2005)

J.M. Alcaraz Calero et al. (Eds.): ATC 2011, LNCS 6906, pp. 106–117, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Towards a Protocol for Autonomic Covert
Communication

Wanqi Li and Guanglei He

Computer Science and Engineering Department, Sichuan University Jinjiang College,
620860 Penshan, China

vanchi.lee.7@gmail.com, guanglei@gmail.com

Abstract. The complexity of covert communication management is the main
barrier towards the massive application of covert communication. In this paper,
a protocol for autonomic covert communication is proposed to deal with the
management complexity of covert communication system, and the
environmental changes in the course of covert communication. Simulation
results are provided to illustrate the self-star properties of the proposed scheme.

Keywords: Covert communication, autonomic computing, evolution, batch
steganography, protocol.

1 Introduction

Encrypted communication focuses on keeping the content of communication
meaningless to unauthorized parties, while covert communication aims to conceal the
very existence of communication using steganographic or watermarking schemes, so
that the adversary can’t find an evident target to attack. In the course of covert
communication, the message is sent through the host channel by hiding it within the
cover signal, and extracted by the target recipient with a shared key. Since covert
communication won’t change the throughput of the host communication channel, and
the alteration on the cover signal is of small amount, the secret information is
expected to be invisible both spatially and statistically.

In covert communication, message is embedded in the redundancy of cover signal.
Despite the fact that almost all digital media are suitable for covert communication,
digital image is the standard choice because of its ubiquitous presence and abundant
redundancy. However, information hiding would inevitably disturb the statistical
features of the cover image because of the Markov type property of the image pixels,
and the experience has told us that the statistical distortion caused by the embedding
process will eventually leak the presence of the hidden information [1-12]. The main
concerns of steganography are undetectability and capacity, while watermarking pays
more attention to removal resistance. These two classes of information hiding
schemes can be selected accordingly to handle different types of communication
circumstances.

 Towards a Protocol for Autonomic Covert Communication 107

Cover and stego objects are frequently represented by feature vectors in the process
of steganography and steganalysis, where the feature values are supposed to be
connected with detectability [1-3, 11-19]. The embedding impact (or distortion) is
defined in regard to the distance between the stego object (a point in the feature
space) and the cloud of cover objects. The game of modern steganography is for the
hider to minimize the embedding impact and for the warden (the adversary aiming at
destroying the hidden data) to try her or his best to distinguish stego objects from the
innocent [20]. Though there’re remarkable attempts to give quantitative definitions of
stego security [21-22], a steganographic scheme is considered secure if the warden
can detect the stego object no better than random guessing. Since the distributions of
cover and stego objects in the feature space are highly dependent on the cover source,
the stego scheme applied, the setting of the stego scheme and the embedding rate (the
ratio of bits embedded and bits sent), it is essential for the hider to choose appropriate
parameters considering the current circumstance, in order to achieve the desired
degree of robustness of the covert communication system. A system is called robust if
it can resist against the uncertainties of environmental changes.

However, figuring out the appropriate parameters for a covert communication system
under different circumstances is a very sophisticated task even for an expert with related
background, not to mention when it comes to an ordinary user. And it is the complexity
of covert communication management that blocks the way towards massive application
of covert communication. The complexity of covert communication management is
mainly caused by the subtle dependences between different components of the system,
rather than the scale of the software. In fact, the software of steganography or
watermarking is usually quite uncomplicated. There’re simply too many choices to
make for the system given too little information. Furthermore, most parameters can’t be
determined until the run time because of their dependencies on the actual
communication environment, and many parameters need to be adjusted constantly in
regard to the environmental changes.

In this paper, an autonomic covert communication system is introduced to deal
with the complexity of covert communication management. Self-management
property is essential for the system to adapt to the environmental changes of covert
communication. The management of communication system is described as an
evolutionary process on the way of improving the survivability of the system in
AORTA (AutonOmic network control and mAnagement system) introduced in [23].
The proposed covet communication system in this paper also adopts the basic idea of
“natural select” on the way to “survive” in regard to the environmental changes.

The problem of designing practical covert communication system is evidently related
to batch steganography and pooled steganalysis [9-11], because communication is
usually expected to be mutual and constant rather than one-way and one-off. But since
its first introduction in [9] 2003, very inadequate attention has been paid to this subject
with regard to its importance for massive application. The author believes that the main
reason for this inaction is that designing robust autonomic covert communication system
is a mission that could only be achieved with participants from both the fields of
autonomic computing and information hiding.

108 W. Li and G. He

Fig. 1. High-level diagram of a steganography algorithm

The aim of this paper is to give a tentative discussion of the problem of designing

efficient, reliable and application-friendly covert communication system of self-*
properties [24] and the result is a basic protocol for autonomic covert communication.
In the next section, the problem of autonomic covert communication is formally
described. A basic protocol for autonomic covert communication is introduced in
Section 3. Simulation results are provided in Section 4. Conclusions and an outline for
future work are given in Section 5.

2 Problem Formulation

In this paper, a cover object refers to an object originally generated by the cover
source, whether or not there’s embedded message in it. A packet refers to a stego
object with certain amount of hidden information. Since discussions in this paper are
not confined to any specific stego scheme, a packet is considered as the basic unit of
communication, rather than stego elements like pixels. For readers unfamiliar with
steganography and steganalysis, introductions and reviews of the related topics can be
found in [1, 4, 12, 25-26].

2.1 Covert Communication

In order to avoid causing abnormal throughput of the host channel, at least one cover
source is required for the sender to conduct covert communication. The sender is
supposed to be able to hide information in the “innocent” cover objects generated by
the source, i.e. for each source, the sender occupies at least one applicable stego or
watermarking scheme.

Denote a cover object as x and the ith cover source as Xi. Then x is an instance of
the random variable Xi. Let ()xθπ be the feature vector of object x in the feature space,

which is dependent on the stego settingθ . Since we don’t have any assumption about
the involved stego schemes, we’ll simply say that 0θ θ= if there’s no hidden message

in the object, and 1θ θ= otherwise, where 0θ is the null stego setting and 1θ is the stego

setting for a specific stego scheme. The null stego setting 0θ corresponds to the

original cover object, while 1θ describes the stego scheme, penalty function, coding

 Towards a Protocol for Autonomic Covert Communication 109

algorithm, embedding operation, embedding rectification method and all the related
parameters used to embed the message [1-3, 9, 13-19, 32]. A high-level diagram of a
steganography algorithm is shown in fig. 1. Detailed discussion of each component in
fig. 1 is beyond the scope of this paper. The basic object considered in this work, as
mentioned above, is the output of the stego algorithm, which we call a packet. In this
paper, the only thing we need to know about the embedding process is that the stego
setting 1θ contains all the necessary specifications of a steganographic algorithm,

which dictates the statistical features of the generated stego object.
With the above notations, the problem of steganalysis can be formulated in the

form of statistical hypothesis testing with a feature vector ()xθπ :

0 0

1 1

: (no embedded message)

: , 0 (there is embedded message)

H

H r

θ θ
θ θ

=
= >

. (1)

A warden is said to be active if she or he is always trying to remove the hidden
message in the suspected objects. In the later part of this paper, an active warden is
assumed to have full access to all packets through the host channel.

Since the embedded message might be removed or destroyed by the warden, the
information channel (IC) of covert communication is not reliable. To implement reliable
communication over unreliable channel, certain kind of feedback mechanism is
required. Define the rate of successful transmission (RST) as ACK sentp c c= ,

where ACKc is the number of acknowledged packets and sentc is the number of packets

sent. The RST p is expected to have inverse ratio with the embedding rate r, which is
defined as bits embedded bits sentr = , because the more bits embedded, the more

likely the warden would notice the statistical distortion of the stego object [9-10, 12,
22]. In addition to embedding rate, RST is also affected by the stego setting 1θ ,

characteristics of the corresponding source Xi, and the warden’s ability of detection. The
bandwidth of the covert communication channel is defined as B rpN= , where N is the

number of bits sent through the host channel per unit time. A sender’s task is to choose
appropriate stego setting 1θ from the set Θ of all candidate stego settings and control the

embedding rate r for available sources with the aim of improving the bandwidth B.
Note that the content of the embedded message is supposed to be protected by

mechanisms under Kerckhoffs’s principle, so that the warden is incapable of
extracting the embedded information without the secret key, which makes her or him
a passive attacker [10-11, 21-22].

2.2 Communication Environment and Uncertainties

The external communication environment consists of two parts: the set of all available
sources iX ⊂ X and the unknown warden. Unfortunately, both of them are uncertain

(stochastic) entities and their statistical features might change instantly without a
warning. The available sources are dictated by the host channel and its traffics are
very hard to predict. The warden’s behavior is largely unknown. We address the
warden’s problem [10], which is described by (1), in three different cases:

110 W. Li and G. He

• 0θ and 1θ are completely known. This means that the stego scheme in consideration

is public. Examples fit situation can be found in [4-8, 12].
• 0θ and 1θ are partially known. This means that a large training set is available to be

used to estimate the stego settings. Steganalysis schemes under this category can
be found in [2-3, 9, 12].

• 0θ and 1θ are completely unknown. Clustering techniques are used to attack this

problem in [11].

There are two options for the warden to remove the hidden message in a suspect
packet. One is to remove the hidden message by altering the packet. The first option is
enough to most steganographic schemes. But when it comes to the message embedded
by watermarking scheme, which is of strong removal resistance, the warden might
have to destroy the hidden message along with the cover object. In either case, the
recipient is not supposed to receive the secret message.

By collecting available stego schemes and cover-stego object pairs, the warden can
adjust the feature set and train the classifier accordingly towards better detection
accuracy. Thus if the sender is using fixed sources and stego settings, sooner or later,
the warden will find a leak. An archetypal illustration of this situation can be found in
Fridrich’s report of last year’s BOSS competition [2-3, 13, 27]. So for the sake of
robustness, we also expect the interior environment, i.e. the set Θ of all candidate
stego settings, is unpredictable for the warden, which means the process of stego
setting selection should observe stochastic from the outside.

2.3 Evolution and Optimization

The distribution of cover objects in the feature space is determined by the cover
source and the feature set applied. It is the stego setting and embedding rate that
dictate the distance from the stego object to the cloud of cover objects in the feature
space, which is directly related to the detection rate (chance that a stego object is
detected). The only way for the sender to improve the bandwidth is to find the optimal
stego settings and rates for different sources and cover objects.

As described above, if the secret message is successfully extracted by the recipient,
the sender is supposed to receive some kind of feedback. Based on the feedback
information, the system will update the corresponding RST and other records
describing the external environment. All these records are used to evaluate the
“survivability” of different stego settings under the current circumstance. To improve
the expected bandwidth, survivable stego settings with higher embedding rate will be
selected by the system. So in effect, the bandwidth will be gradually optimized as the
system is adapting to the environment. The set Θ of all applicable candidate stego
settings shall be maintained continually so that when a stego setting is found invalid
against the warden’s detection, it can be removed from the candidate list. Sometimes
an updated version of a scheme or a new scheme is needed. The embedding rates for
different sources and stego settings also need to be constantly adjusted in regard to the
environment. The result of the constant optimization of the system is the continual
evolution towards the adaptation to the changing environment.

 Towards a Protocol for Autonomic Covert Communication 111

Fig. 2. Structure of an autonomic element

2.4 Autonomic Covert Communication System

The evolutionary process described above is very similar to the process of natural
selection. Each candidate stego setting is assigned a survival value w.r.t. the
knowledge acquired from the environment. Only the stego settings with acceptable
survival value will be selected. Because the actual evaluation rule and evolution
strategy might be distinct for different applications, we avoid giving any specific
description about them for the reason of generality.

IBM’s “Autonomic Computing” framework [24] is used as a reference model to
sketch our basic idea. As shown in fig. 2, the managed element parasites on the host
channel. The autonomic manager is responsible to control the embedding and
extraction process, and optimize the system according to the environment information
acquired from the feedbacks. The warden is not presented in this diagram, because it’s
not what the autonomic manager can observe directly. Environmental model describes
the way the autonomic manager perceives the environment, and it could be extremely
simple when the IC is assumed to be secure and reliable; or extremely sophisticated
when the IC is unreliable and the topology of the autonomic communication network
is very complicated and dynamic [28-29]. Evaluation rule is used to assign survival
values to all stego settings in Θ . Different evaluation rule shall be selected for
different goals like maximizing the bandwidth and minimizing the packet losses.
Strategies of the autonomic manager describe the system’s different specifications in
response to user’s high-level instructions. Finally, actions are all the operations that
can be performed by the autonomic element to achieve different goals.

In the next section, a basic protocol for autonomic covert communication based on
this framework is introduced.

3 Autonomic Covert Communication Protocol

Write iX ⊂ X the ith source of the sender, where i S∈ and S is the index set of all

available sources. Write ijθ the jth stego setting for source iX , where ij ∈ Θ and iΘ is

the index set of all valid stego settings for source iX .

112 W. Li and G. He

3.1 Initialization

In the initialization process, a table is built for each available source. Each item in one
of these tables corresponds to a valid stego setting ijθ and has the following fields:

• Index number of the stego setting.
• Stego setting: description about the stego scheme and the related parameters.
• Embedding rate.
• Rate of successful transmission (RST).

All valid stego setting for a given source are listed in this table, initially with pre-
defined initial embedding rates and RSTs p(i, j) = 1 for all i and j. After initialization,
r(i, j) and p(i, j) will be constantly updated by the mechanisms described in the later
part of this section.

A connection is established before any meaningful message is sent. The main
purpose of connection establishment is to make sure that the recipient side is capable
of extracting the message embedded by the sender.

3.2 Packet Transfer and Feedback

To achieve reliable covert communication, there’re three requirements that must be
guaranteed by the packet transfer process: 1) no transferred data bits are corrupted; 2)
no data bits are lost; 3) all data bits are delivered in the order which they are sent.
Note that all the data bits in discussion are the bits representing the secret message.
Even if the cover object is corrupted during the transmission process, the extracted
message still might be correct for robust stego schemes. The following mechanisms
are needed to implement reliable covert communication over unreliable channel:

• Error detection: checksum or error-correcting code is used to detect and possibly
correct the bit errors of the data extracted by the recipient.

• Feedback: the recipient is responsible to notify the sender if the message is
successfully extracted.

• Loss detection: a packet is considered lost if the sender has been waiting long
enough for the acknowledgement message.

• Retransmission: a packet that is received in error or lost will be retransmitted by
the sender.

• Ordered buffering: the received packets are ordered according to their sequence
number before delivered to the user.

The problem of reliable data transfer is a well-studied subject. Introductions of the
related algorithms can be found in [30]. To implement the above mechanisms, the
following information is required to be contained in a packet:

• Stego setting that can be used to extract the hidden message.
• Number of bits embedded.
• Sequence number.
• Checksum for the embedded message.
• Content of the message (might be encrypted).

 Towards a Protocol for Autonomic Covert Communication 113

Note that all the above fields are supposed to be protected under Kerckhoffs’s
principle, which means that the warden shall be incapable of extracting any useful
information unless she or he has the key.

We won’t provide any specification of the feedback message in this paper because
of the lack of a model for covert communication environment. A further discussion
about the warder’s behavior is needed in the future.

3.3 Evaluation and Optimization

The algorithm of lottery scheduling [31] is used to perform stego setting selection and
provide the unpredictability described in Section 2. An example of the ticket function
generating the ticket value for the jth stego setting of source i is:

(,) (,)
(,)

()

r i j p i j
t i j

Z i
= , (2)

where () (,) (,)jZ i r i j p i j= ∑ is the normalizing factor. This definition of ticket

function allows the stego settings with higher rate and RST to have better chance to
be selected, which will result in a better expected bandwidth. However, under
different circumstances, we might want to weight the rate and RST differently. In that
case, a more sophisticated ticket function is required. Note that the ticket value here is
equivalent to the survival value described in Section 2 and the ticket function
corresponds to the evaluation rule.

Every time a packet is sent or acknowledged, the corresponding RST will be
updated. In order to optimize the bandwidth, the rates of different stego settings shall
be adjusted accordingly. But again, we won’t provide any specification of the rate
control algorithm here for the exactly same reason mentioned earlier. Nonetheless, we
believe that a properly modified version of the ubiquitous additive-increase,
multiplicative-decrease (AIMD) algorithm from the TCP congestion control will
suffice for most situations.

3.4 Knowledge Acquisition and Environmental Adaptation

With the increase of knowledge about the communication environment, steganalysis
schemes can be applied to find the leakage of the system so that defensive
mechanisms can be used to protect the system. In this subsection, we briefly introduce
three possible ways for the system take advantage of the accumulated knowledge
about the warden in order to adapt to the changing environment.

Fig. 3. Diagram of the proposed protocol

114 W. Li and G. He

The feature set used by the warden is usually of high dimension, but the
importance of different features can be measured by methods like Fisher’s Linear
Discriminant [13]. Thus the most distinguishable features between the lost packets
and successfully transferred packets can be extracted from the previous records. This
process is called feature selection in [13]. The selected features represent our
knowledge about the characteristics of the warden. These features provide a guideline
for the system to improve the undetectability by performing embedding impact
minimization [13-19].

Another approach to take advantage of the accumulated information about the
warden is clustering analysis. Maximum Mean Discrepancy (MMD) is used in [11]
along with clustering algorithms to distinguish the guilty sources from the innocent.
With the result provided by this method, we can avoid hiding information in cover
object that falls into the guilty region (area where most packet losses happen), and
improve the RSTs.

Distinct from the above evasive defending strategies, there is a more aggressive
measure that can be taken. Once the characteristics of the warden are learned, inverse
additive noise [33] can be introduced to the stego object for fake features, which will
break the premises of the warden about the information channel and eventually
invalidate the warden’s steganalysis detector.

In order to improve the survivability of the system, all these three adaptation
strategies take advantage of the accumulated information about the warden by either
preserving the critical features of the stego object or faking them.

The diagram of the proposed protocol is shown in fig. 3.

3.5 Topics Unspecified

The problem of addressing is not mentioned in this paper, because the way the data
propagate via the covert communication channel is application-dependent and the
covert communication system is, but a parasite system over the host channel. The
situation is the same when it comes to routing. There’re just simply too many factors
so dependent on the host channel that any specification about them might badly
restrict the generality of the proposed scheme. However, we believe that, in the future,
the uncertainties and diversities of the communication environment can be properly
handled with ideas from the fields related to autonomic networking [23-24, 28].

0 10 20 30 40 50 60 70 80 90 100
0.06

0.08

0.1

0.12

0.14

0.16

0.18

Time

B
an

dw
id

th

case 1
case 2

Fig. 4. Bandwidth of the covert channel measured at different time

 Towards a Protocol for Autonomic Covert Communication 115

0 10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Time

B
an

dw
id

th

Fig. 5. Bandwidth when there’s only one stego setting available

4 Simulation Results

The proposed protocol is experimented by unicasting under simulated environments
in three different cases. The stego settings and the corresponding steganalysis detector
used in the experiment are decided with references to [1-8, 12, 32-33]. The simulation
results are shown in fig. 4 and fig. 5.

In the first case (shown by the blue line in fig. 4), the sender is assumed to have
initially 10 valid stego settings for each of the 10 available sources. This experiment
aims to illustrate the adaptability of the system by the gradually optimized bandwidth
over time.

The initial condition of the second case (shown by the green line in fig. 4) is the
same with case one. But later in this case, the steganalysis detector is updated in
regard to the previous stego traffics collected by the warden, which means the most
selected stego settings before the update would now become the most vulnerable. This
explains the sudden shrinkage of bandwidth in the point where the update happens.
The later recovered bandwidth is not as good as the previous, because the stego
settings used after the update are among the secondary choices before the update. This
case tells us that the system has to keep up with the warden’s improvement, or else
the bandwidth will get worth as a result of the warden’s growing experience.

In the last case, the sender has only one source and one valid stego setting. Based
on the accumulated knowledge about the warden, inverse additive noise is introduced
to provide fake features, in order to invalidate the warden’s detector. In fig. 5, the blue
line represents the bandwidth when the system doesn’t have any environmental
adaptation behavior, while the green line represents the bandwidth where inverse
additive noise is introduced to defend the system against the warden’s detection.
Obviously, the undetectability of the packet is effectively improved after the fake
features are introduced.

5 Conclusions and Future Work

Covert communication aims to conceal the very existence of the communication, so
that the adversary wouldn’t have any evident target to attack. Since invisibility is vital

116 W. Li and G. He

to the covert communication system, the system is expected to be self-manageable
without any human intervention. In this paper, a protocol for autonomic covert
communication is proposed in order to deal with the complexity of covert
communication management. The proposed covet communication system adopts the
basic idea of “natural select” on the way to “survive” against different environmental
changes. The simulation results given in Section 4 illustrate some of the self-*
properties of the proposed system. Nonetheless, as an early step towards the goal of
building autonomic covert communication system, many important issues are
unspecified.

The author believes that the goal of building robust covert communication system
can only be achieved with participants from both the fields of information hiding and
autonomic computing. A pragmatic model of the warden’s behavior would be crucial
for the autonomic element to make the right decisions in the future. Stronger learning
algorithms are also needed to improve the adaptability of the system.

Reference

1. Fridrich, J., Pevný, T., Kodovský, J.: Statistically undetectable jpeg steganography: dead
ends challenges, and opportunities. In: MM&Sec, pp. 3–14 (2007)

2. Fridrich, J., Kodovsk, J., Goljan, M., Holub, V.: Breaking HUGO: the Process Discovery.
In: Information Hiding (to appear, 2011)

3. Fridrich, J., Kodovsk, V., Holub, M.: Steganalysis of content-adaptive steganography in
spatial domain. In: 13th Information Hiding Conference, Prague, Czech Republic, May 18-
20 (2011)

4. Provos, N., Honeyman, P.: Hide and Seek: An Introduction to Steganography. IEEE
Security & Privacy, 32–44 (2003)

5. Ker, A.D.: Steganalysis of LSB Matching in Grayscale Images. IEEE Signal Processing
Letters 12(6), 441–444 (2005)

6. Ker, A.D.: Resampling and the Detection of LSB Matching in Color Bitmaps. In: Security,
Steganography, and Watermarking of Multimedia Contents, pp. 1–15 (2005)

7. Harmsen, J.J., Bowers, K.D., Pearlman, W.A.: Fast Additive Noise Steganalysis. In:
Security, Steganography, and Watermarking of Multimedia Contents, pp. 489–495 (2004)

8. Fridrich, J., Goljan, M., Hogea, D.: Steganalysis of JPEG images: Breaking the F5
algorithm. In: Petitcolas, F.A.P. (ed.) IH 2002. LNCS, vol. 2578, pp. 310–323. Springer,
Heidelberg (2003)

9. Ker, A.D.: Batch steganography and pooled steganalysis. In: Camenisch, J.L., Collberg,
C.S., Johnson, N.F., Sallee, P. (eds.) IH 2006. LNCS, vol. 4437, pp. 265–281. Springer,
Heidelberg (2007)

10. Trivedi, S., Chandramouli, R.: Active steganalysis of sequential steganography. In: Delp
III, E.J., Wong, P.W. (eds.) Proc. of SPIE Security and Watermarking of Multimedia
Contents, vol. 5020, pp. 123–130 (2003)

11. Ker, A.D., Pevný, T.: A new paradigm for steganalysis via clustering. In: Proc. SPIE
Media Watermarking, Security, and Forensics XIII, vol. 7880, pp. 0U01-0U13. SPIE, CA
(2011)

12. Wu, S.-Z., Zhang, X.P., Wei-Ming, Z.: Recent Advances in Image-Based Steganalysis
Research. Chinese Journal of Computers 32(7), 1247–1263 (2009)

 Towards a Protocol for Autonomic Covert Communication 117

13. Pevný, T., Filler, T., Bas, P.: Using high-dimensional image models to perform highly
undetectable steganography. In: Böhme, R., Fong, P.W.L., Safavi-Naini, R. (eds.) IH 2010.
LNCS, vol. 6387, pp. 161–177. Springer, Heidelberg (2010)

14. Fridrich, J., Filler, T.: Practical Methods for Minimizing Embedding Impact Steganogra-
phy. In: Security, Steganography, and Watermarking of Multimedia Contents IX, San Jose,
CA, vol. 6505, pp. 2–3 (2007)

15. Fridrich, J., Goljan, M., Soukal, D.: Wet paper codes with improved embedding efficiency.
IEEE Transactions on Information Forensics and Security, 102–110 (2006)

16. Fridrich, J., Goljan, M., Lisonek, P., Soukal, D.: Writing on wet paper. In: Security,
Steganography, and Watermarking of Multimedia Contents, pp. 328–340 (2005)

17. Filler, T., Judas, J., Fridrich, J.: Minimizing embedding impact in steganography using
trellis-coded quantization. In: Media Forensics and Security (2010)

18. Filler, T., Fridrich, J.: Gibbs Construction in Steganography. IEEE Trans. on Info.
Forensics and Security 5(4), 705–720 (2010)

19. Filler, T., Judas, J., Fridrich, J.: Minimizing Additive Distortion in Steganography Using
Syndrome-Trellis Codes. In: Media Forensics and Security (to appear, 2011)

20. Simmons, G.J.: The Prisoners’ Problem and the Subliminal Channel. In: CRYPTO 1983,
pp. 51–67 (1983)

21. Cachin, C.: An information-theoretic model for steganography. In: Aucsmith, D. (ed.) IH
1998. LNCS, vol. 1525, pp. 306–318. Springer, Heidelberg (1998)

22. Chandramouli, R., Memon, N.: Steganography Capacity: A Steganalysis Perspective. In:
Proc. SPIE, Security and Watermarking of Multimedia Contents, Santa Clara, CA, USA,
vol. 5020, pp. 173–177 (2003)

23. Tizghadam, A., Leon-Garcia, A.: AORTA: Autonomic Network Control and Management
System. In: IEEE Conference on Computer Communications Workshops, INFOCOM, pp.
1–4 (2008)

24. Kephart, J.O., Chess, D.M.: The Vision of Autonomic Computing. IEEE Computer, 41–50
(2003)

25. Morkel, T., Eloff, J., Olivier, M.: An Overview of Image Steganography. In: Proceedings
of the Fifth Annual Information Security South Africa Conference (ISSA 2005), Sandton,
South Africa (2005)

26. Westfeld, A.: F5-A steganographic algorithm. In: Moskowitz, I.S. (ed.) IH 2001. LNCS,
vol. 2137, pp. 289–302. Springer, Heidelberg (2001)

27. Filler, T.: Pevný, T, Bas, P.: BOSS (July 2010),
http://boss.gipsa-lab.grenobleinp.fr/BOSSRank/

28. Jelger, C., Tschudin, C.F., Schmid, S., Leduc, G.: Basic Abstractions for an Autonomic
Network Architecture. In: WOWMOM, pp. 1–6 (2007)

29. Mortier, R., Kiciman, E.: Autonomic network management: some pragmatic
considerations. In: Proceedings of the 2006 SIGCOMM Workshop on internet Network
Management, INM 2006, Pisa, Italy, September 11 - 15, pp. 89–93. ACM Press, New
York (2006)

30. Kurose, J., Ross, K.: Computer Networking: A top-down approach 4e. Addison-Wesley,
Reading (2007)

31. Waldspurger, C.A., Weihl, W.E.: Lottery Scheduling: Flexible Proportional-Share Re-
source Management. In: Proc. OSDI, pp. 1–11 (1994)

32. Wanqi, L.: A Network-Flow-Based Method for Embedding Rectification (to appear)
33. Wanqi, L.: Defensive Steganography: A Novel Way against Steganalysis (to appear)

J.M. Alcaraz Calero et al. (Eds.): ATC 2011, LNCS 6906, pp. 118–131, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Autonomous Online Expansion Technology for Wireless
Sensor Network Based Manufacturing System

Md. Emdadul Haque, Fan Wei, Takehiro Gouda, Xiaodong Lu, and Kinji Mori

Department of Computer Science
Tokyo Institute of Technology

2-12-1 Oookayama, Meguro-Ku, Tokyo, Japan
{haque,wei,gouda,lu}@mori.cs.titech.ac.jp,

mori@cs.titech.ac.jp.com

Abstract. Wireless sensor networks (WSNs) is an attractive data collection pa-
radigm for indoor and outdoor monitoring environment. In WSN based manufac-
turing system environment sensor addition, relocation and reorganization are ne-
cessary with the addition or modification of production lines. This sensor addi-
tion or relocation sometime increases the sensor density in some areas of the
network. In high sensor density area new sensors cannot connect the network
due to the capacity constraints of the network. For the environment this paper
proposes a two layers autonomous decentralized heterogeneous wireless sensor
network architecture. The first layer consists of sensors and the second layer
consists of routers. Each sensor is connected with a router and each router is
connected with sensors and routers. This paper proposes a technology to make a
group of local routers (which is called as community) for switching connected
sensors by the routers of the high density areas of the network. A router of a high
sensor density area initiates the community construction for switching a con-
nected sensor to another router in the community, if new sensor wants to join the
router. The switching is possible if the connected sensor is under the communi-
cation range of the other router of low density area. Sometime the community is
necessary to expand or shrink based on situation. This paper introduces the
community technology to achieve online expansion of the network. The simula-
tion results show the effectiveness of the proposed technology.

Keywords: Autonomous decentralized system, sensor switching, online expan-
sion, wireless sensor networks.

1 Introduction

The recently advances in wireless communication and the embedded system have
made economically feasible to produce low-cost, low power sensor nodes to deploy
in the environment for collecting data about the physical phenomena. These sensor
nodes are massively deployed in indoor or outdoor environment to collect data about
the physical phenomena. There are many potential applications of wireless sensor
networks: target tracking [1], traffic management [2], emergency navigation [3], sur-
veillance [4], factory monitoring [5], and so on.

 Autonomous Online Expansion Technology 119

In order to assure quality production of different kinds of products the factory sys-
tem needs efficient monitoring and controlling of the environment. In order to satisfy
these system requirements a large number of sensors are necessary to install in the
environment. Since the user requirements change over time, the system needs to reor-
ganize the production lines and sensors as well. These sensors addition, relocation or
reorganization sometime increases the sensor density in some areas of the network.
For resource constraints network some sensors of the high density areas cannot con-
nect the network. As a result online expansion is one of the main problems for the
system.

Since the homogenous ad hoc sensor networks have poor fundamental performance
limits and scalability [6], [7] and the target environment is an indoor manufacturing
plant, a heterogeneous architecture is suitable for the system. A two layer Autonom-
ous Decentralized Wireless Sensor Network (ADWSN) architecture is proposed based
on autonomous decentralized system [9] for the environment. The first layer consists
of sensors and the second layer consists of routers. Each sensor is connected with
router and each router is connected with sensors and routers. The routers have high
capacity and can maintain connectivity with a number of sensors. Although routers
have high capacity they can maintain connectivity with fixed number of sensors due
to processing, memory etc. constraints. The routers make group which is called as a
community [9], [10] (considering similar organization of a human community) for
switching a connected sensor by sharing information in the community.

In this paper we assume a decentralized system where each router has a lot of func-
tions, for example, data aggregation, data forwarding, controlling some processes of
the system etc. Only some aggregated data are sent to gateway and the rest are used
by the router to control that part of the manufacturing system. To control the system
the router needs timely information from sensors. So, we assume each router has a
capacity to maintain connectivity with a fixed number of sensors.

If a router connects the maximum possible number of sensors (which we call the
capacity of the router) that router cannot allow any new sensor to connect with it. In
that case we call the router as a full router. A full router initiates a community with
local routers to switch a connected sensor to a free router (if a router is not full then it
is a free router) in the community, when a new sensor wants to join the router. All
routers in the community cooperate by sharing information to help the full router for
the sensor switching. A sensor connected with a router can be switched to another free
router, if the sensor (which we call as common sensor) is under the communication of
the router. Community has no head or leader node (as like human community) and
the community members cooperate with each other for sharing free spaces of free
routers.

One of the assumptions in this paper is that the topology of the network changes
dynamically. So, the number of connected sensors of the routers changes over time.
Sometime in a community it might happen that there is no free router to switch a sen-
sor for a full router. In that situation the community expansion is necessary for the
online expansion. Note that in some cases the expansion is not possible due to lack of

120 M.E. Haque et al.

common sensors. Similarly community shrinking is also necessary for a big commu-
nity or unused part of a community. As a result this paper proposes a community
reconstruction technology to resize the community. The reconstruction technology
consists of community expansion and shrinking technologies. The contributions of
this paper are to introduce the community technologies in wireless sensor networks
for online expansion.

The rest of this paper is organized as follows. In the next section we describe some
related works. Section 3 describes the proposed system architecture. Section 4 de-
scribes the community construction and the coordination technologies. Section 5
presents the community reconstruction technology that includes community expan-
sion and shrinking technologies. Section 6 presents simulation results. We conclude
this paper in Section 7.

2 Related Works

There have been some research efforts found in the manufacturing industry to im-
prove the quality of products for example [5], [11], [12], [13], [14] considering quali-
ty, design issues etc.

Heterogeneous architectures have been proposed by many researchers [15], [16],
[17], [18], [19], [20] using mostly clustering concept. Most of existing works on clus-
tering technique select a head based on degree of connectivity [19], [20] randomiza-
tion [17], cluster ID [18] etc. However, most of existing works do not consider the
load balancing among the clusters.

A load balanced clustering technique is found in [21]. In the paper the authors pro-
posed a algorithm to increase the lifetime of the network. In the algorithm the authors
distributed the sensor nodes among several gateways as a centralized manner during
network initialization time. The paper shows with simulation that the algorithm can
balance the sensor load among the gateways efficiently for a static network.

In [22] another algorithm is discussed on load balanced clustering issue that also
described load balancing during network initialization time. The algorithm is pro-
posed to enhance the scalability of the network with multiple gateways. In the algo-
rithm the authors assume that each gateway knows the overall topology of the static
network. In the paper they show that the load balancing problem is optimally solvable
in polynomial time if all sensors have uniform traffic load.

However, most of the published papers discuss the load balancing issue from static
network point of view. Most of them consider the election of a cluster head and some
of then considers the sensor load balancing issue. The papers that consider the sensor
load switching are mostly centralized algorithm for static network. All the algorithms
are applicable for network initialization time load balancing. In the network the gate-
way or powerful nodes and only dedicated to data aggression, data forwarding etc. but
not for partial control of the system. As a result we proposed a new technology for
online expansion of a dynamic network (considering the capacity limits of router
nodes for timeliness).

 Autonomous Online Expansion Technology 121

3 The Architecture

The proposed architecture is shown in Fig. 1. The architecture consists of two physi-
cally different types of nodes: a large number of sensors and less number of routers.
Routers are generally placed under the ceiling of the roof of the manufacturing plant
and formed a mesh network among each other. Sensors are arranged as a one-hop star
topology around the routers. The routers in the architecture form the community to
share free spaces for online expansion in production manufacturing system. To con-
trol the production process actuators are connected with routers. The routers control
the actuators based on local information. Sometime clients also connect to the routers
with PDA to monitor the plant.

Fig. 1. The proposed architecture

The network consists of different kinds of sensors to measure various physical
phenomena such as temperature, humidity, pressure, light, presence or absence of
certain kinds of chemical or objects etc. It wakes up asynchronously due to limited
battery power and can not directly access to other sensors. We assume some sensors
are mobile and most of the others are fixed.

Routers are always wake up because of AC power. The main functions of router
are data aggregation, forwarding message, maintaining connectivity with sensors,
information sharing in the community, controlling the processes etc. For quality of
monitoring or controlling the manufacturing plant each router needs timely informa-
tion from sensors. As a result we assume each router can maintain connectivity with
limited number of sensors due to the constraints of processing, memory capacity etc.
The number of sensors connected to a router at a particular time is called the sensor
load of the router. The maximum number of sensors a router can maintain connectivi-
ty is called the capacity of the router.

The capacity also includes processing loads for actuators, clients, message for-
warding etc. For simplicity, in this paper we consider only sensor processing load.

Router

Sensor
Actuator

PDA
Connection

Router network

GW

Gateway GW

122 M.E. Haque et al.

The main assumption of this paper is that each router knows its capacity. If a router is
connected with maximum possible number of sensors, we call the router as a fully
loaded router or full router. On the other hand a router not fully loaded is called free
capacity router or free router or resource available router.

4 Community Technology

This paper proposes a group of autonomous routers as a community to achieve the
online expansion of the network. There are several ways to make the community for
example; a router can make a community with all routers within h hop. The problem
of this method is defining the value of h. If h is very small then the community may
not satisfy the sensor switching, as a result it needs to increase h and proceed again
(i.e., successive construction). That causes a lot of messages and time consuming as
well. In this paper we propose a contentious community construction technology.

4.1 The Community Construction Technology

A full router starts the community construction based on the space request message
from an unconnected sensor. Note that at first a new sensor sends a joining request
message to join the network. All routers in its communication range reply with con-
nected sensors list, list of sensors under the communication range etc. If all routers in
the range are full, the sensor sends a spaces request message to the routers one by one
until it gets the connectivity. A full router that receives a space request message starts
the community construction. The router constructs the community to make free space
for the unconnected sensor.

A full router starts the community construction by sending a community formation
request message to all of its neighbor routers. Suppose, at a specific time m new sen-
sors want to join with a router Ri. The router Ri sends a community formation request
message as Request (Ri, NRi, SRi, SCRi, ComID, m) after setting a timeout. That means
Ri needs to switch m sensors (generally m = 1, but in some case m > 1 is also possible)
to other routers to allow the joining of the m new sensors. Where NRi is the neighbor
routers list, SRi is the connected sensors list, SCRi is the list of sensors under the com-
munication range and ComID is the id of the community. Note that assigning a unique
community id is out of the scope of this paper. A neighbor router Rj introduces some
delay and forwards the message, if it has no free capacity and at least a common sen-
sor that is connected with the request sender. Before forwarding the message each
router introduces some delay so that the message could not flood the whole network.

Suppose Rj has f (f < m) free capacity and r sensors in its communication range that
are connected with Ri. Rj joins the community and forwards the message after insert-
ing its neighbor routers list, connected sensors list, list of sensors under the communi-
cation range as Request (Rj, NRi ∪ NRj, SRi ∪ SRj, SCRi ∪ SCRj, r – f, m), if r > f. Rj also
sends a reply message to Ri as Reply (Rj, LSj, Xj), where LSj is the list of sensors under
its communication range that can receive from Ri, Xj is the list of neighbor routers, list
of connected sensors, list of sensors under the communication range of all routers as

 Autonomous Online Expansion Technology 123

received in the request message including that of Rj. If m ≤ r ≤ f then Rj does not for-
ward the request message. If Rj has at least a sensor in its communication range that is
connected with request sender Ri then Rj joins the community, otherwise it does not
join the community.

If router Rj has common sensors i.e., r > 0 but no free capacity i.e., f = 0, then the
router forwards the message as Request (Rj, NRi ∪ NRj, SRi ∪ SRj, SCRi ∪ SCRj, r, m). If
the router Rj has enough free capacity to satisfy the complete request i.e., f ≥ r ≥ m,
then the router sends a suppression message to stop the community expansion. Since
we propose the continuous community construction technology, a step is necessary to
stop the community expansion. The suppression message is used to stop the commu-
nity expansion. All routers which forward the request message also forward the sup-
pression message without delay. At the same time the router sends a reply message as
Reply (Rj, LSj, Xj). Table I summarizes the actions of routers based on different values
of the parameters r, f and m. Fig. 2 shows a community which is constructed by R3,
where the shaded circular node indicates the unconnected sensor and capacity of each
router is 3. In the community construction R3 first sends the community construction
request message. R4, R7, R8 join the community since they have common sensor. R8
sends a community suppression message since it has free space. But suppose before
receiving the suppression message R4 forwards the community construction request
message. So finally the community consists of routers R1, R3, R4, R5, R7, R8.

Table 1. Router Action Table

Values of parameters Action
f = 0, r > 0 Forward
f ≥ 0, r = 0 No action
f > 0, r > 0, f < m, r > f Reply and forward
f > 0, r > 0, f < m, r < f Reply
f ≥ r ≥ m Reply and suppress

The reply messages traverse only through the path to the initiator router. When the

initiator router receives sufficient reply messages from routers or timeout expires
then it sends a suppression message to stop the community expansion. A router that
receives the suppression message forwards the message without delay. If a router has
sufficient free capacity and common sensors that router can also send the suppression
message (as discuss in previous paragraph). Since the request message forwards with
delay and the suppression message forwards without delay, the suppression message
catches the request message after certain time. That means when a router receives a
suppression message before forwarding the request message it stops forwarding the
request message. In this way the community is confined in a limited area of the net-
work. After the community construction the community initiator router switches sen-
sors to free routers that will discuss in next subsection.

In some case the community construction automatically stop or partially stop in
some directions due to unavailable of common sensors. For the following condition

124 M.E. Haque et al.

the community construction request message of the initiator router Ri can not be for-
warded for expansion.

φ=)(UI
j

RjRi SCS (1)

That means one router is in one community which is an extreme case of the com-
munity construction and that is unlikely for high density sensor network. In that case
the router cannot connect the new sensor.

Since in the community construction process each router introduces some delay,
the construction takes some time. For every similar case it is not suitable for a router
to construct the community and after sensor switching vanish the community. As a
result after the community construction we want to preserve the community for future
use by the routers of the community. If a full router of an existing community needs
to switch some sensors it initiates community coordination in the existing community.

Fig. 2. A community constructed by router R3

If a router receives more than one community construction request message then
the router joins the first message received router’s community. That means if two
routers start the community construction at the same time in an area, then there will
be two separate communities.

4.2 Community Coordination Technology

A router can switch a connected sensor to another neighbor router if the sensor is
under the communication of the neighbor router. More specifically, a router Ri can
switch a sensor to a neighbor router Rj with at least one free space if:

 and (2)

R5

R4 R7

R6

R1

R2
R8

R3

Communication link

Rij NR ∈ φ≠RjRi SCS I

 Autonomous Online Expansion Technology 125

To switch a sensor each router use sequence of operations. The router first sends a
request message to the neighbor router providing the sensor id. The receiver router
sends a positive acknowledgement if that router has at least a free space. After receiv-
ing the acknowledgement the sender router disconnects the connected sensor and
informs the sensor to reconnect the neighbor router that id is also given to the sensor.

Similarly multi-hop sensor switching is also possible. Suppose a router Ri wants to
switch a sensor to a n-hop neighbor router Rk through the path Ri, … Rk. For multi-
hope sensor switching the receiver router should have at least a free space and on the
path all adjacent ordered pair routers have to satisfy the following condition:

 for all l ≥ i and m ≤ k (3)

To switch a sensor Ri sends a sequence of instruction for a sequence of reconnec-
tion to all the routers on the path. If all routers on the path send positive acknowled-
gement, Ri disconnects its sensor, connects new sensor and informs Ri-1 to connect the
disconnected sensor. Similarly all routers on the path do the same operation. Fig. 3
shows an example where router R3 switches its sensors to router R8 and after that it
connects the new sensor.

Fig. 3. The community after sensor switching

After the community construction the full router find the sensor switching path by
exploring a breadth first search tree. To explore the tree the router uses the reply mes-
sages received during the community construction phase. In the tree each node indi-
cates the router and edge indicates that parent node has a connected sensor under the
communication range of child node. A community initiator router expands the tree
based on received message during the community construction time.

An existing community member (in any time after the community construction) use
coordination to switch a sensor within the community. If a full router of a community
wants to switch a sensor, it initiates the community coordination in the community by
sending a coordination request message as Coord (Ri, NRi, SRi, SCRi, 1, 1). In this case

}{ φ≠∈ I RmRlRlm SCSandNR

R5

R4 R7

R6

R1

R2
R8

R3

126 M.E. Haque et al.

the neighbor routers in the same community act same as shown in Table 1. The excep-
tion is that for forwarding the coordination request message routers do not introduce
any delay or send the suppression message. That means the coordination request mes-
sage flooded over only within community without delay. Note that a full router of a
community starts the coordination for sensor switching when it receives a space re-
quest message from an unconnected sensor. The coordination initiator router also finds
a free router for sensor switching using a breadth first search tree exploration after
receiving the reply messages.

If a community can not satisfy the sensor load switching request of a full router
and the community has a boundary community then the router initiate community to
community sensor switching. If a boundary router of the community has a common
sensor with the coordination initiator route then the router sends a request message to
switch a sensor to the boundary community. Note that the boundary router has the
information about the boundary community. The boundary router of the first commu-
nity sends a request message to switch a sensor to the boundary router of the second
community. The boundary router of the second community initiates (if that is a full
router) the community coordination for receiving a sensor from the router. If the
boundary router of second community router can switch a sensor then it replies to the
boundary router of the first community. The boundary router of the first community
sends a reply message to the coordination initiator router and switches sensor accor-
dingly.

5 Community Reconstruction Technology

If a community has no free space or load switching path, then the community needs to
expand. A full router first initiates community coordination to switch a sensor. If the
coordination fails, it starts the expansion process. It generally takes more time if we
expand the community in separate phase. In this paper we propose coordination and
expansion in same phase.

5.1 Community Expansion Technology

If a boundary router receives a coordination request message and can not satisfy the
sensor switching that router starts the expansion process. A boundary full router starts
the expansion by sending an expansion request message. A router which receives the
request message introduces some delay (similar to community construction) and for-
wards the message if the router has no free space but the common sensor. The coordi-
nation message forwards in the community without delay but the expansion request
message forwards with delay. The router that starts the community expansion sends
the suppression message, if the router receives sufficient reply messages. The router
that has enough free capacity and common sensors can also send the suppression mes-
sage similarly to community construction. Note that the suppression message for-
wards over only the expanded part of the community.

 Autonomous Online Expansion Technology 127

In some cases it is also possible that the present community can satisfy the request
but some routers expand the community during the coordination time. Fig. 4 shows
the situation, where router R4, R7, R8 starts the community expansion. In the mean
time suppose router R3 finishes the sensor switching with R1. After the community
expansion R4, R7 send reply messages to the initiator router. The initiator then sends a
reply message to inform that the sensor switching is already finished. The boundary
router then dissolves the expanded part of the community because the new part is not
necessary. Note that R5, R6 leaves the community when R4, R7 initiate the shrinking of
the expanded part. If we do the coordination and expansion in separate phases, the
coordination initiator needs more time for sensor switching when sensor switching is
not possible in the community.

Fig. 4. A community that expand by router R4 and R7

5.2 Community Shrinking Technology

We propose the community shrinking technology to shrink the unnecessary part of the
community. The shrinking decreases the number of messages in the community. The
community expansion process includes a part of community shrinking process. But
sometime more shrinking is necessary. Suppose the initial community is big and some
boundary free routers do not receive any coordination request message for a long
time. The similarly situation may happen in expanded part of the community. In this
paper we propose the community shrinking in two situations. The first shrinking dur-
ing the community expansion time that we have already discussed in the previous
subsection and second shrinking is based on common sensor or others quantity.

If all the common sensors of a boundary router leave the network then the boun-
dary router leaves the community. For another kind of community shrinking each
router stores historical data about last coordination request message receiving time (t).
If t is greater than certain threshold then a boundary free router leaves the community.

R5

R4 R7

R6

R1

R2

R8

R3

128 M.E. Haque et al.

The route leaves the community by assigning a null community id and informs all the
neighbor routers. After receiving the message the neighbor routers may leave the
community based on the same statistics. Note that the routers that receive the com-
munity leaving message become the boundary router.

6 Simulation Result

We have implemented our proposed technology with 30 routers and different number
of sensors distributed in a 50m×50m×3m area. Routers are randomly distributed un-
der the ceiling of the manufacturing system and sensors are distributed in lower half
of the plant area. We simulate different setups with number of sensors 200, 250 and
260. We set sensor communication range = 10m, router communication range = 25m
and capacity of each router is 10. Community construction request message forward-
ing delay is 30ms. Each sensor generates 1 packet/sec, each packet length is 200bytes
and radio bandwidth is 100kbps. We assume 10% of sensors are mobile in the plant
area in a straight line of 5m/min speed. Fig. 5 shows the number of connected sensors
with and without the community technology. The figure shows that the number of
connected sensors with the community is always much higher than without the com-
munity.

To simulate a dynamic network we consider during the network operation time,
sensor joining and leaving rate (from the first simulation setup of 200 sensors) are 15
and 5 per min respectively. The simulation time = 5 min. Fig. 6 shows the number of
connected sensors in the network with the community construction and reconstruction
technologies for t = 1 min and without the community. The figure shows that commu-
nity technology also increases the number of connected sensors significantly for a
dynamic network.

���

���

���

���

���

���

���

���

��� ��� ���

�	
���

�
�
��
�
��
�
�
�
�
�
�
	�

��
�
�
�
�
��

����������		�
���

�������		�
���

Fig. 5. No. of connected sensor for different network setups

 Autonomous Online Expansion Technology 129

���

���

���

���

���

���

���

��� ��� ��� ��� ��� ���

	
��
�����
��

�
�
��
�
��
�
�
�
�
�
�
	�

��
�
�
�
�
��

����
����
�������

������
�������

Fig. 6. Comparison of connected sensor for a dynamic network

We also find the effect of community reconstruction technology for the dynamic
network. Fig. 7 shows the numbers of connected sensors with and without the com-
munity reconstruction technology. Note that without reconstruction when a full router
fails to switch a sensor in the community, it can not connect any new sensor.

���

���

���

���

���

���

���

��� ��� ��� ��� ��� ���

	
��
�����
��

�
�
��
�
��
�
�
�
�
�
�
	�

��
�
�
�
�
��

���������	
������
����

������	
������
����

Fig. 7. Comparison of connected sensor for dynamic network

We also find the average sensor connection time with preserving the community
for future coordination and without preserving the community. In this case we use the
same simulation setup that varies the topology over time. The result shows that the
average sensor connection time little bit improve by preserving the community for
future coordination as shown in Fig. 8.

130 M.E. Haque et al.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6

������������	�

�
�
�
��
�
�
�
�
	

�
�
	
�
�
�
�
�
	
�
��
�
�
��
�
�
�
�

����������	
�������

������	����������	
�������

Fig. 8. No. of connected sensors with and without the reconstruction technology

7 Conclusions

This paper discusses about the community construction and reconstruction technolo-
gies in wireless sensor networks for online expansion. The community is constructed
by a full router which needs to switch its connected sensors. The community helps to
connect more sensors by utilizing the free spaces or free routers in community. To
utilize the free spaces of a community, the community routers share information.
After sharing information a full router finds free routers and the paths to switch one or
more sensors to other routers. If the community has lack of free routers in the com-
munity then the community routers expand the community.

With the proposed community construction and reconstruction technologies the
number of sensors can be increased in the network; as a result online expansion can
be achieved for the system. Without such kinds of community technology the free
spaces of router can not be utilized to expand the network.

References

1. The 29 Palms Experiment: Tracking Vehicles with a UAV-Delivered Sensor Network,
http://www.eecs.berkeley.edu/pister/29PalmsOI03

2. Hsieh, T.T.: Using Sensor Networks for Highway and Traffic Applications. IEEE Poten-
tials 23(2), 13–16 (2004)

3. Tseng, Y.C., Pan, M.S., Tsai, Y.Y.: Wireless Sensor Networks for Emergency Navigation.
Computer 39(7), 55–62 (2006)

4. Kahn, J.M., Katz, R.H., Pister, K.S.J.: Mobile networking for ’smart dust’. In: Proc. 5th
IEEE/ACM MOBICOM, pp. 271–278 (August 1999)

5. Connolly, M., O’Reilly, F.: Sensor networks and food Industry. In: Workshop on Real-
World Wireless Sensor Networks, Stockholm, Sweden (2005)

6. Lee, J.J., Krishnamachari, B., Kuo, C.C.J.: Impact of Heterogeneous Deployment on Life-
time Sensing Coverage in Sensor Networks. In: IEEE SECON (2004)

 Autonomous Online Expansion Technology 131

7. Du, X., Guizani, M., Xiao, Y., Chen, H.H.: Two Tier Secure Routing Protocol for Hetero-
geneous Sensor Networks. IEEE Transactions on Wireless Communications 6(9), 3395–
3401 (2007)

8. Mori, K., Shiibashi, A.: Trend of autonomous decentralized system technologies and their
application in IC card ticket system. IEICE Trans. on Comm. E92-B(2), 445–460 (2009)

9. Ragab, K., Kaji, N., Mori, K.: ACIS: A Large-scale autonomous decentralized community
communication infrastructure. IEICE Trans. on Info. and Sys. E87-D(4), 937–946 (2004)

10. Mahmood, K., Lu, X., Horikoshi, Y., Mori, K.: Autonomous pull-push community con-
struction technology for high-assurance. IEICE Trans. on Info. and Sys. E92-D(10), 1836–
1846 (2009)

11. Wentworth, S.M.: Microbial sensor tags. IFT (The Institute of Food Engineering) Annual
Meeting Book of Abstracts, Chicago, Illinois, USA (July 2003)

12. Ong, K.G., Puckett, L.G., Sharma, Loiselle, B.V., Grimes, M., Bachas, C.A., Leonidas, G.:
Wireless passive resonant-circuit sensors for monitoring food quality. In: Proceeding of
SPIE–The International Society for Optical Engineering, Boston, MA, USA, vol. 4575, pp.
150–159 (October 2001)

13. MEMS come to Oz wine industry. Electronic News (June 2004)
14. Anastasi, G., Farruggia, O., Re, G.L., Ortolani, M.: Monitoring high-quality wine produc-

tion using wireless sensor networks. In: Proceeding of the 42nd Hawaii International Con-
ference on System Sciences, Hawaii, pp. 1–7 (January 2009)

15. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y.: Wireless Sensor Networks: A Survey.
Computer Networks 38, 393–422 (2002)

16. Cerpa, A., Estrin, D.: ASCENT: Adaptive Self-Configuring Sensor Networks Topologies.
In: Proc. INFOCOM 2002, New York (June 2002)

17. Rabiner Heinzelman, W., Chandrakasan, A., Balakrishnan, H.: Energy-Efficient Commu-
nication Protocols for Wireless Microsensor Networks. In: Proc. Hawaii Intl Conf. on Sys-
tem Sciences (HICSS 2000) (January 2000)

18. Baker, D.J., Emphemides, A.: A Distributed Algorithm for Organizing Mobile Radio Tele-
communication Networks. In: Proc. Intl. Conf. in Distributed Computer Systems (April
1981)

19. Gerla, M., Tsai, J.T.C.: Multicluster, Mobile, Multimedia Radio Network. ACM/Baltzer
Journal of Wireless Networks 1, 255–265 (1995)

20. Parekh, A.K.: Selecting Routers in Ad-Hoc Wireless Networks. In: Proc. SBT/IEEE Intl.
Telecommunications Symposium (August 1994)

21. Gupta, G., Younis, M.: Load-Balanced Clustering of Wireless Sensor Networks. In: ICC
2003 (2003)

22. Low, C.P., Fang, C., Ng, J.M., Ang, Y.H.: Load-Balanced Clustering Algorithms for Wire-
less Sensor Networks. In: ICC 2007 (2007)

Self-organized Message Scheduling for
Asynchronous Distributed Embedded Systems

Tobias Ziermann1,�, Zoran Salcic2, and Jürgen Teich1

1 University of Erlangen-Nuremberg, Germany
{tobias.ziermann,teich}@informatik.uni-erlangen.de

2 The University of Auckland, New Zealand

Abstract. A growing number of control systems are distributed and
based on the use of a communication bus. The distributed nodes exe-
cute periodic tasks, which access the bus by releasing the messages using
a priority-based mechanism with the goal of minimal message response
times. Instead of randomly accessing the bus, a dynamic scheduling of
messages technique based on adaptation of time offsets between message
releases is used. The presented algorithm, called DynOAA, is execut-
ing on each node of the distributed system. It takes into account the
current traffic on the bus and tries to avoid simultaneous release of mes-
sages by different nodes, hence reduces the likelihood of conflicts and
need for repeated release. In this paper, we first address single bus (seg-
ment) systems and then extend the model and the offset adaptation
algorithm to systems that use multiple buses (segments) connected by
a communication gateway. A rating function based on the average of
maximum response times is used to analyze DynOAA for the case of
CAN-bus systems based on bit-accurate simulations. Experiments show
the robustness of the algorithm (1) in case of fully asynchronous systems,
(2) ability to deal with systems that change their configuration (add or
remove message release nodes) dynamically and (3) model systems con-
taining multiple bus segments connected by a gateway. The approach is
also applicable to other priority-based bus systems.

1 Introduction

In this paper, we target distributed control embedded systems based on the use
of multiple computing nodes connected by a communication bus. Typical appli-
cations include automotive systems, industrial automation, home automation,
healthcare systems and robotics. The common characteristic of such applica-
tions is that the communication over the bus is triggered periodically and the
amount of data exchanged is relatively small. However, the time between send-
ing data from the source node to receiving it on the destination node, called
� This work was supported in part by the German Research Foundation (DFG) under

contract TE 163/15-1.

J.M. Alcaraz Calero et al. (Eds.): ATC 2011, LNCS 6906, pp. 132–148, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Self-organized Message Scheduling 133

message response time, is crucial and subject to real-time constraints. An ex-
ample of communication bus and protocol perfectly suited for this task is the
Controller Area Network (CAN) [1]. In this paper, we will focus on CAN, but the
methods introduced are in principle suited for any priority-based communication
protocol.

The design of the communication system in distributed control systems is a
very complex task, which is very often performed using hand-based procedures,
which is error prone, and time consuming when needed to repeat because of
the change of system configuration and requirements. The use of automated
methods and tools is a better option, but fails if the design is faced with large
design space, which increases the computational complexity of the task, hence
making design tools effectively unusable. Also, the use of design tools is based
on the assumption that all design parameters and inputs are known in advance,
which most often is not the case. For example, message release offsets [7], an
efficient technique to reduce response times of the communication bus, can be
calculated in advance, but the assumption that their statically calculated values
will be the best throughout system operation results in a pessimistic solution,
with non-optimal use of the system bus. We want to avoid these disadvantages
of offline methods by considering the current traffic situation and adapt online.

We recently proposed [12] a solution of dynamically adapting the message re-
lease offsets by individual nodes (and software tasks) of the distributed system,
which resulted in the reduced message response times for CAN-based systems.
Compared to our initial work, this paper presents several new contributions: (1)
The formal model is refined and extended to systems with multiple bus seg-
ments. (2) The rating function of the schedule is further improved to allow a
better comparison between schedules of different approaches and scenarios. (3)
We loosen the assumption that the monitoring period of DynOAA is synchro-
nized and demonstrate that it has only little influence on the performance of the
method. (4) We conducted experiments which incorporate dynamic changes of
the system configuration during run-time and show the robustness of DynOAA.
(5) The behavior of the system is experimentally analyzed for the case that
only a fraction of all nodes apply DynOAA. Finally, (6) first preliminary results
for using DynOAA on systems with multiple bus segments are obtained and
reported.

The rest of the paper is organized as follows. In Section 2, we define the
problem and position our work in the context of related work. Section 3 gives
the details of the proposed dynamic adaptation method, the dynamic offset
adaptation algorithm (DynOAA), and illustrates its operation for single-segment
systems. Section 4 further extends DynOAA to allow the use in multi-segment
systems and evaluates it by the developed simulator. Conclusions and future
work are given in Section 5.

134 T. Ziermann, Z. Salcic, and J. Teich

2 Problem Definition and Related Work

In this section, we outline the assumptions for the modeling of CAN-based sys-
tems and position our work to the existing related work. The measure of perfor-
mance in the form of a rating function is also introduced.

2.1 Context

The CAN specification [1] defines the data link layer and roughly describes
the physical layer of the ISO/OSI-Model. At the data link layer, a message-
oriented approach is chosen. Four different types of frames are used to transfer
messages: Data frames, Remote Transmit Request frames, Overload frames and
Error frames. The most important is the data frame that is used for data ex-
change. Each data frame has its unique identifier. This 11 bit long identifier
defines the message priority by which the bus access is granted. Bus arbitration
is done by Carrier Sense Multiple Access with Bitwise Arbitration (CSMA/BA).
The method of bitwise arbitration can be described as follows: Each node that
would like to have access to the bus, starts sending its message as soon as the bus
is idle for the time of 3 bits. Every sent bit is also watched. When the sent bit
differs from the watched one, then a message with higher priority is also sending
and transmission is stopped. After sending the identifier, only the message with
the highest priority is left and has exclusive bus access.

The major advantage of using CAN is that its huge popularity, particularly
in the automotive sector, which allows mass production of the CAN controllers
and their integration with the microprocessors used in the computation nodes,
resulting in very cheap solutions. Another advantage is availability of software
built for the CAN infrastructure [9], which is the result of many years of use of
CAN. On the other hand, a big disadvantage is the limited maximal data rate of
1 Mbit/s, which is the relic of the early conception of the bus, and significantly
limits its application domain. From this reason, other communication buses such
as Flexray [6] and real-time Ethernet [5], have been proposed. However, the
introduction of new buses is related to a significantly increased cost to design
and manufacturing of new computation nodes, which includes both hardware
and software which already exist for CAN-based systems. Our work therefore
goes in the other direction, where we are trying to breathe new life into CAN-
based systems by allowing better use of the available data rate and increasing
the performance of systems built on the CAN bus without changes of the system
infrastructure.

The main problem caused by the limited bandwidth is the increase in re-
sponse times, defined as the time between attempts to release the message to
the time when actual message transfer begins, especially when the workload of
the system increases (typically above 50%). This increase is caused by simultane-
ous attempts of multiple tasks to access the bus and release a message. Several
approaches try to optimize the scheduling of messages on CAN by adjusting
the priority of the messages. One way is to divide the message streams into
different categories and schedule them with known scheduling techniques such

Self-organized Message Scheduling 135

as earliest deadline first [13,4]. Another way is to use fuzzy logic to select the
priority [2]. The different priorities are established by using several bits from the
identifier. This has the disadvantage that the number of available identifiers is
reduced from 2048 to 32 and 128, respectively. Already in current automotive
applications more than 128 identifiers are needed, which makes this suggestion
infeasible.

Therefore, we are using a different, less interfering, approach: If tasks send
messages periodically, which is most often the case in distributed control sys-
tems, simultaneous access can be avoided by adding an appropriate offset to a
message release time. An approach that assigns statically calculated fixed offsets
of messages that are assumed to be synchronous by using off-line heuristics is
proposed in [8]. Although the approach results in better response times, it does
not take into account the dynamics of the system operation and resulting traffic.
Instead, the approach is based on a-priori given, static assumptions. Addition-
ally, it doesn’t consider the asynchronous nature of the nodes (and tasks) that
communicate over CAN bus, which is caused by each node running on its own
clock. Because of different clocks and clock drifts, the optimal offsets ideally
should change dynamically and adapt to the changing conditions on the bus.
This is further supported by the fact that the start of the tasks is not synchro-
nized, resulting in additional randomization of initial offsets. In order to solve
this, the dynamic offset adaptation algorithm (DynOAA) has been proposed
[12] recently as the solution to the changes of the recent bus traffic, resulting in
better response times and also in an increased level of scheduling fairness.

2.2 System Model

The system we are targeting can be described by a set of nodes communicating
over the bus as shown in Fig. 1. One or more tasks on each node may initiate a
communication, i.e. release messages.

Fig. 1. CAN-Bus based system model

136 T. Ziermann, Z. Salcic, and J. Teich

In our model, we abstract the tasks by considering only the mechanism used
to release messages called a stream. A stream si can be characterized by a tuple
(Ti, Oi) with 0 ≤ Oi ≤ T i, that is, by a period Ti (time between any two
consecutive messages generated by stream si) and an offset Oi. The offset is
relative to a global time reference. It can therefore drift over time, because the
local time reference can differ from the global one. The hyper-period P is the
least common multiple of all periods lcm{T1, T2, ..., Tk}. Assuming a synchronous
system, the schedule is finally periodic with the hyper-period. A scenario consists
of k streams. We assume the priorities are set by the designer, typically according
to the stream period so that a rate monotonic scheduling is achieved.

A message mi is a single release or CAN frame of the stream. The time
between a message release and the start of its uninterrupted transfer over the bus
is the response time of the message. We don’t add the constant non-preemptive
time to transfer the message to the response time, because then a response
time of zero is always the best possible case for every message independent
of its length. This will simplify later comparisons between different schedules.
In Fig. 1, for example, the response time of message m2 is three time slots,
because it is delayed by the running message m1. The worst case response time
WCRTi(b, e) of a stream i during a certain time interval starting at time b
and ending at time e is the largest response time of all messages of the stream
recorded during that time interval. For example, an analytical approach would
calculate WCRTi(0,∞).

Fig. 2. System model for a multi-segment Controller Area Network

In this paper, we extend this model by allowing m buses connected by a
gateway. Each stream is connected to exactly one bus and can send messages
to one or multiple buses, as depicted in Figure 2. Therefore, a multi-segment
stream s′i is characterized by a tuple (Ti, Oi, Bi, Di), that is additionally by a
source bus Bi, it is connected to and a set of destination buses Di. The response
times of a multi-segment stream are the times between a message release and
the start of its uninterrupted transfer on the destination buses. The worst case
response time is, analog to the single-segment case, the largest of these response
times. A message that is transmitted on a different bus then the source bus will
be called a routed message. For the gateway, we make the following assumptions:

Self-organized Message Scheduling 137

– The gateway is central, so it is connected to every bus. It has to be ensured
that all connection requirements of the streams are fulfilled. Delays caused
by computational load on the gateway are neglected. This is a reasonable
assumption, because the operation speed of the gateway is multiples of the
communication protocol.

– The gateway uses priority-based transmission with unlimited buffers. This
means, in contrast to a first-in-first-out strategy, when several routed mes-
sages are pending for transmission, the message with the highest priority
will get transmitted.

– A routed message will be pending as soon as the complete message on the
source bus has been transmitted.

In our model, we assume discrete time with a minimal system time resolution
defined a priori. All stream characteristic times are multiples of this minimal
time resolution.

2.3 Rating Approach

In [12] a new metric for comparison of schedules in the form of a rating function
is introduced and used to show the advantage of an online approach. We will
use this as a basis for comparison. In this paper, we extend the definition by
dividing the rating function by the number k of streams that release messages,
thus enabling comparisons of schedules for different number of streams. It is
defined as follows:

r(t) =

∑k
i=1

WCRTi(t−P,t)
Ti

k
(1)

In words, the rating represents the average of all streams maximum response
time during the last hyper-period relative to the stream’s period. In the case of
multi-segment CAN systems, we distinguish between two cases: (1) if the whole
system is rated, the WCRTs as described in Section 2.2 are considered and (2)
for comparison of a single segment in a multi-segment system, the modification
of the rating is explained in Section 4.

3 Single-Segment Scheduling

In our approach, we exploit the dynamic adaptation of message release offsets
over time as the traffic on the CAN bus changes. Because it cannot be assumed
that there is a single global observer that knows the complete system status and
operation, the decisions to change offsets are based on traffic monitoring carried
by the individual streams. The algorithm, as well as examples of its operation,
are presented in Section 3.1. The robustness to an asynchronous and a changing
system are shown in Section 3.3 and 3.4, respectively.

138 T. Ziermann, Z. Salcic, and J. Teich

Fig. 3. DynOAA illustration - timing diagram and busy_idle_list on a single node

3.1 DynOAA

The dynamic offset adaptation algorithm (DynOAA) [12] is run on each node
independently and periodically. For the sake of completeness, we will illustrate
the operation of DynOAA in short as shown in Figure 3. In the upper part of
the figure, on the top of the time line, the periodically released messages of the
stream are indicated by small arrows. The larger arrows on the bottom of the
time line indicate the instances when the adaptations start or when DynOAA is
run.

Before the adaptation takes place, the bus is monitored by each stream for
a time interval being equal to the maximum period of all streams. A list, from
now on called busy_idle_list, is created. An example of it is shown in the lower
part of Figure 3. It contains for each time slot during the monitoring interval an
idle element if the bus is idle and a busy element if the bus is busy. The length
of a time slot is the transmission time of one bit. From the busy_idle_list,
we can find the longest idle time and longest busy time (LBT), which are the
maximum continuous intervals when the bus was idle or busy, respectively. The
variable time_since_last denotes the amount of time passed between the current
time and the time the last message was released for this particular stream. This
value is needed to calculate when the next message would be released. The
next_position is the time that indicates when in the next cycle a message should
be scheduled. It is chosen in the middle of the longest idle time interval. The
next message of the stream is then delayed, i.e., the offset is adjusted, so that a
message is released at the time specified by next_position.

In distributed systems, all streams are considered independent from each
other. If more than one stream starts to execute the adaptation simultaneously,
there is a high probability that the value of next_position at more than one
stream will be identical. Instead of spreading, the message release times would
in that case be clustered around the same time instance. Therefore, we need to
ensure only one stream is adapting its offsets at the same time. Ensuring that
only one node is adapting is achieved if all nodes make the decision whether
to adapt or not based on a unique criterion based on the same information,
the traffic on the bus in this case. The criterion we use is to select the stream

Self-organized Message Scheduling 139

belonging to the first busy slot of the LBT. The idea is that this stream causes
the biggest delay, because it potentially could have delayed all subsequent mes-
sages in the busy period and therefore should be moved first. If there are more
than one LBT of equal length, the first one is chosen. If the monitoring phases
of all nodes are synchronized, this mechanism ensures that all nodes elect the
same stream for adaptation.

The algorithm is best explained on the example from Figure 3. A stream with
a period of 12 time slots (ts) is considered. The transmission of one message is
assumed to take one ts. The algorithm passes through two phases. In the first
phase, monitoring, the busy-idle list in the lower part of Figure 3 is created. The
first message of the LBT belongs to the stream under consideration. Therefore,
in the second phase, it will adapt, i.e., the next release will be delayed. In order
to calculate the needed delay, the next position is determined first by choosing
the middle of the longest idle time, which is in this case 16 ts. The delay is then
calculated as:

delay = (next_position + time_since_last)mod period

= (16 ts + 12 ts)mod 12 ts

= 4 ts

The delay causes the move of the releases of this stream in the next hyper period
by additional 4 ts. For the messages at positions 1 to 4 this means, if they were
delayed, then their response time is reduced.

3.2 Evaluation

In order to evaluate the quality of our approach, we developed and used our
own CAN bus simulator. The reason for this was that no available simulator can
describe scenarios we needed and extract the required properties. Our simulator
is event-driven with the simulation step size being equal to the transmission time
of one CAN bit. The full CAN protocol is reproduced by assuming worst-case
bit-stuffing. We can only simulate the synchronous case, where all nodes have the
same time base. This means if the offsets are fixed, the schedule repeats after
time equal to the hyper-period. The asynchronous case is simulated by using
different random initial offsets. The simulation assumes the error-free case. Our
simulation engine is comparable to RTaW-Sim[11]. Although RTaW-Sim offers
more functionality, such as error insertion and clock drift, and runs much faster,
it does not provide provisions to change offsets at run-time that is needed to test
DynOAA.

The scenarios used for our experiments consist of synthetic scenarios automat-
ically generated by Netcarbench [3] and are typical for the automotive domain
with a bus load that can be freely adjusted. A bus speed of 125 kbit/s is assumed.
Typical for practical implementations is that there are not to many different pe-
riods (e.g., 5 - 10) that are mostly multiples of each other. This results in a small
hyper period. In the example scenarios, it is always 2 seconds, which is also the
largest period.

140 T. Ziermann, Z. Salcic, and J. Teich

Figure 6 shows the rating function of Eq. 1 over time for different scenarios.
The experiments were always run for 10 different random offset initializations.
The continuous lines in the plots represent the average of these 10 runs, while
the vertical error bars indicate the maximum and minimum value of the rating
function at that instance of time. We can see that it converges very fast to a
stable value. The plot also shows that we are always improving significantly
compared to the non-adaptive case which is represented by the rating values at
time zero.

3.3 Asynchronous Monitoring

In Section 3.2, we assumed the monitoring intervals were synchronized. How-
ever, in an distributed system, the monitoring intervals of the streams are asyn-
chronous, so choosing the adapting stream gets more difficult. We cannot guar-
antee anymore that exactly one stream is adapting, as is shown in the example
in Figure 4. In the example, the monitoring phase of the two streams overlap in
such a way that the longest idle time is the same, but the longest busy period
is different. Therefore, streams 1 and 2 would schedule their messages simulta-
neously. Nevertheless, given the monitoring phases have the same length, the
maximal number of streams scheduled to the same idle time is two. This means
the effect is not severe as the experiments in the following text will show.

Fig. 4. Example where asynchronous
adaptation leads to scheduling of two
stream to the same position

Fig. 5. Example where the adaptation
stops because no stream is first of the first
longest busy period

Another problem with asynchronous monitoring occurs when there are several
longest busy periods with the same length. If the streams always choose the first
LBT, it can lead to a stop of adaptation, because no stream will adapt. How this
can happen is shown in the example in Figure 5. On the one hand, this problem
can be simply avoided by choosing randomly the LBT that is considered. On
the other hand, if the monitoring periods are synchronous, the random selection
can cause that several streams adapt simultaneously to the same position.

In Figure 7, the rating over time for a scenario with 50% load is depicted.
The meaning of the error bars is similar to the one described for Figure 6.
Table 1 shows the average rating values for cases from Figure 7. The results for

Self-organized Message Scheduling 141

0 200 400 600 800 1000 1200 1400
0

0.005

0.01

0.015

0.02

0.025

time (min)

ra
tin

g
fu

nc
tio

n

90% load; 269 streams
80% load; 254 streams
70% load; 202 streams
60% load; 173 streams
50% load; 145 streams

Fig. 6. Rating function as a function of
time for different application and load sce-
narios

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1
x 10

−3

time (min)

ra
tin

g
fu

nc
tio

n

synchronous monitoring, first LBT

synchronous monitoring, random LBT

asynchronous monitoring, random LBT

Fig. 7. Rating function as a function of
time, comparing synchronous to asyn-
chronous monitoring and choosing the
first LBT to choosing a random LBT for
deciding which stream adapts

asynchronous monitoring, and choosing which stream to adapt based on a ran-
dom LBT are not displayed, because, as described above, the adaptation in the
simulation gets stuck. As expected, the setup with synchronous monitoring and
choosing which stream to adapt based on the first LBT performs best. However,
the difference in performance is negligible considering the variation within the
results. Results with other scenarios, not shown here, reveal a similar behavior,
leading to the conclusion that DynOAA also works well for asynchronous moni-
toring, which would be the case in a real distributed system. The experiments in
the rest of the paper are always run with asynchronous monitoring and random
LBT.

Table 1. Average rating value over the whole simulation time for the scenario in
Figure 7

synchronous monitoring, first LBT 2.0011 · 10−4

synchronous monitoring, random LBT 2.3788 · 10−4

asynchronous monitoring, random LBT 2.5792 · 10−4

3.4 Adaptation in Dynamically Changing Systems

In this work, we model the first time the dynamic changes of the system config-
uration by allowing addition and removal of streams during system operation.
At this stage, only preliminary simulation runs are performed which indicate
behavior of the system when the configuration of the system changes. We start

142 T. Ziermann, Z. Salcic, and J. Teich

with the system operation with a fixed number of streams. When a stream
is removed from the system, the response times of the remaining streams will
either decrease or stay the same, depending on whether the removed stream
delayed the transmission of another stream or not. Similarly, when a stream
is added, the response times of the other streams increases or stays the same
depending on whether the added stream delays another stream or not. The goal
of the adaptation, keeping the response times as short as possible, is achieved
by adapting the offsets dynamically and finding a new set of offsets for the
current scenario that does not depend on the set of offsets for the case before
the change of system configuration. We demonstrate this behavior by running
DynOAA for different initial offset assignments and comparing the rating value
after the system has converged. The results of experiments in Figure 6 (see
Section 3.2) show exactly that, because the system converges to a certain rating
value depending on the used scenario and not on the initial offset assignment.

0 50 100 150 200 250 300 350
0

0.5

1

1.5

2

2.5

3
x 10

−3

increased traffic
 to 70% load

decreased traffic
 to 50% load

time (min)

ra
tin

g
fu

nc
tio

n

Fig. 8. Rating function as a function of
time for a scenario in which at time 100
min, 64 streams are added such that the
load increased from 50% to 70%. At time
200 min, these streams are removed again.

0 50 100 150 200 250 300 350
0

0.5

1

1.5

2

2.5

3
x 10

−3

increasing
traffic increased traffic

 to 70% load

decreasing
traffic

decreased traffic
 to 50% load

time (min)

ra
tin

g
fu

nc
tio

n

Fig. 9. Rating function as a function of
time for a scenario in which at time 100
min, 64 streams are added one every
minute such that at time 164 min, the
load is increased from 50% to 70%. At
time 200 min, these streams are removed
again one every minute.

Because the adaptation is constantly performed, the rating value fluctuates
even when the system is not changing configuration. Therefore, the reaction on
adding or removing one stream will not be obvious. However, we can show the
system reaction when several streams are added or removed. In Figure 8, we show
the scenario in which 64 streams are abruptly added to the system at time 100
min, and then removed at time 200 min. Corresponding system load increased
from 50% to 70% and back to 50%, respectively. Figure 9 illustrates the system
behavior when the change was not abrupt, but rather gradual. From time 100
min, 64 streams are added to the system at the rate of one stream per minute,

Self-organized Message Scheduling 143

and then after time 200 min the streams are removed from the system, one
stream per minute. It is obvious that the DynOAA adapts offsets and stabilizes
the value of the rating function in each case for each new configuration. Further
analysis of dynamic system configuration changes is part of our future work.

4 Multi-segment Scheduling

Data rate limitations of CAN can be overcome in some applications by using
multi-segment systems. In this paper, we present the case of the system where
the segments are connected through a single gateway. Firstly, multiple segments
can help to increase the capacity of priority-based communicating embedded
systems. Secondly, even though DynOAA reduces the message response times to
a minimum for a given load, the multi-segment approach can potentially reduce
the load of the individual segments and thus reduce the message response times
further. We consider a simple case where a single segment is split into up to
five segments. Gains can be expected if the inter-segment communication is not
too intensive. Finally, the reason for a multi-segment approach can be purely
practical. For example, in the development of large distributed systems, which
consist of multiple application domains, the systems are designed by multiple
teams whose efforts cluster around individual domains implemented on single-
segment system. The integration of the overall system becomes easier if it only
requires connection of multiple segments via a gateway.

4.1 Partial Adaptation

An obstacle for applying DynOAA to multi-segment systems is that the current
traffic information for the whole system is no longer available to each node,
because a certain fraction of messages is routed by the gateway. This means
that the nodes change their offsets based only on information on local traffic of
the segment they are connected to. Section 4.2 will demonstrate the influence of
this on the system performance.

Another problem in multi-segment case is that it is not possible to influence
the release of all messages on a segment directly. For example, messages received
from the streams of the other bus segments are not aware of the traffic situa-
tion on the receiving bus segment and cannot perform correct adaptation. The
knowledge of the full traffic situation would be possible by using the gateway
to collect the traffic information and transmit (broadcast) it to all nodes on
all segments, but it would result in additional overhead and require additional
bandwidth. Therefore, this option is left out in our work.

Based on the above analysis, our decision was to first analyze the case in which
only a part of the streams, belonging to the messages on one segment, perform
DynOAA and adapt their offsets, while the others are not doing that, and we call
this partial adaptation. This type of behavior can then be extrapolated to the
multi-segment systems directly. The problem with the partial adaptation is that
the DynOAA can select a stream that does not adapt as one that should adapt,

144 T. Ziermann, Z. Salcic, and J. Teich

and the intended goals would not be achieved. In the case of our synchronous
simulation, it even can lead to complete stop of the adaptation. However, a slight
modification of the DynOAA corrects the algorithm operation and makes it
suitable for the partial adaptation case. The solution is outlined in the following
paragraphs.

During traffic monitoring, in addition to the information whether a slot is
busy or idle, we record the information whether the busy slot is allocated by an
adapting or non-adapting stream in the annotated busy_idle_list. This infor-
mation can be provided by using an indicator (flag) associated with the current
message with two possible values, adapting or non-adapting. This indicator could
be statically assigned to each message stream at design time, but the flexibility
of dynamic adaptation and self-organization would be lost in that case. There-
fore, we propose to use the last (least significant) bit of the CAN identifier to
assign a priority to the stream to indicate whether it is adapting or not. This
has the additional advantage that there is no need to keep the list of all streams
and at the same time allows flexible insertion and removal of nodes from the
system. The penalty for the adopted approach is that the number of available
identifiers is halved. In our opinion, this is not a big disadvantage because the
number of still available identifiers is large enough to cover the needs of real dis-
tributed systems. The number of available identifiers becomes 2032/2 = 1016,
which is large enough to represent real-life systems. For example, in the current
VW Golf VI (2010 model), 49 nodes with an average of 140 streams are used
[10]. In addition, due to the limited capacity of the CAN bus, the number of
needed identifiers will most probably not grow.

Fig. 10. Example of an annotated busy_idle_list, storing for each time slot during
monitoring whether it is idle or busy by an adapting or non-adapting stream

From the annotated busy_idle_list, each node again calculates the longest
idle time and longest busy time (LBT). The longest idle time is determined
similar to the description given in Section 3.1. As for the LBT, we choose the
maximum continuous interval in which the bus was busy starting with an adapt-
ing busy slot. This way we ensure that the first slot of the LBT belongs to an
adapting stream and, therefore, the adaptation is done. This stream also rep-
resents the adapting stream that potentially delays most other streams. In the
example in Figure 10, even though the second busy time has four adapting busy
slots, the first slot of the first busy time, i.e., here LBT, potentially delays four
time slots, while the first one of the second busy time only delays three slots.
Therefore, it is better to adapt the first, as it is chosen by the algorithm. In

Self-organized Message Scheduling 145

0 20 40 60 80 100 120 140
0

1

2

3

4

5

6
x 10

−3

time (min)

ra
tin

g
fu

nc
tio

n

0% adapt

25% adapt

50% adapt

75% adapt

100% adapt

Fig. 11. Rating function as a function
of time for different fractions of streams
adapting for a scenario with 50% load

0 20 40 60 80 100 120 140
1

2

3

4

5

6

7

8

9
x 10

−3

time (min)

ra
tin

g
fu

nc
tio

n

0% adapt

25% adapt

50% adapt

75% adapt

100% adapt

Fig. 12. Rating function as a function
of time for different fractions of streams
adapting for a scenario with 70% load

Figure 11 and 12, it is shown how the enhanced DynOAA performs for differ-
ent numbers of adapting streams (and nodes) expressed as a fraction of total
number of streams. The experiments carried out for this case are similar to the
experiments from Figure 4. For the 50% load scenario, if none of the streams
are adapting, the rating value in average is constant at 0.00376. If 50% of the
streams are adapting, the rating value converges to an average of 0.00124. This
is less than a half of the value of for the non-adapting ones:

0.00124 <
0.00376

2
= 0.00188.

For the 70% load scenario, this observation is strengthened further. The per-
formance difference between all (100%) adapting and 75% adapting streams is
very small. In addition, the experiments show that the time needed to converge
to a stable state depends on the number of streams that are adapting. The
converged state is reached faster if fewer streams are adapting.

4.2 Multi-segment Systems

The conditions to run DynOAA on multi-segment systems, by allowing some
messages no to adapt, have been outlined and established in Section 4.1. In the
multi-segment system case, the routed messages are simply considered as non-
adapting messages. In order to evaluate the performance of DynOAA for multi-
segment networks, we first generated single-segment scenarios by Netcarbench [2]
and then provided additional information on the source and destination segments
for each message stream, given a number of segments in the system.

We performed a number of experiments to analyze the performance of multi-
segment systems using our rating function in Eq. 1. All the results should be
considered as preliminary and a work in progress. These experiments were per-
formed under certain conditions and assumptions which are outlined below. We

146 T. Ziermann, Z. Salcic, and J. Teich

first assumed that the source segment of each stream is assigned by uniformly
distributing all the streams to the available segments. The destination segment
is characterized by two parameters, percentage of routed and percentage of re-
ceived segments. The first parameter specifies the percentage of streams that are
routed at all, i.e., whether the destination bus is different than the source bus.
The second parameter specifies the percentage of segments, from all available
segments, which are included in the destination segment set. Which stream is
routed and which segment is chosen as the destination is determined randomly,
excluding the case when the source and destination segment are the same. For
example, for the case of eight streams in the system with four segments with 50%
routed and 25% received messages, two streams are assigned to each segment.
One of these two streams has one other segment as its destination.

0 10 20 30 40 50 60 70
0

0.005

0.01

0.015

0.02

0.025

time (min)

ra
tin

g
fu

nc
tio

n

0% routed

25% routed

50% routed

75% routed

100% routed

Fig. 13. Rating function as a function of
time for a scenario with two segments
with different fractions of streams routed
to the other segments

0 5 10 15 20 25
0

0.005

0.01

0.015

0.02

0.025

0.03

time (min)

ra
tin

g
fu

nc
tio

n

0% routed

25% routed

50% routed

75% routed

100% routed

Fig. 14. Rating function as a function of
time for a scenario with 4 segments with
different fractions of streams routed to the
other segments

For the experiments presented in this section, the streams of the scenario with
80% load from Section 3.2 are used. The received parameter is set to 50%. In
Figure 13 and 14, it is shown how the enhanced DynOAA performs for different
multi-segment scenarios. The experiments carried out for this case are similar
to the experiments presented in Figure 4. These experiments show that when
using DynOAA for the multi-segment systems, the rating value decreases,i.e.,
performance improves compared to random chosen values, as denoted by the
value at time zero.

The experiments shown in Figure 15 are done under assumption of the same
workload on each segment, because all streams from the initial set at every
segment are either directly scheduled or are routed streams. First, it has to
be noted that the rating value is increasing with the number of segments for
DynOAA at the converged state, as well as for randomly set offsets at time zero.
Also, it can be noted that the decrease of the rating value is most likely due
to the increased routing and not the result of degradation of performance of

Self-organized Message Scheduling 147

0 5 10 15 20 25 30
0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

time (min)

ra
tin

g
fu

nc
tio

n

5 segments

4 segments

3 segments

2 segments

Fig. 15. Rating function as a function of time for scenarios with 2 to 5 segments with
100% routed and 100% received

DynOAA, which uses information local to the segment on which it performs.
However, more experiments are needed in future to validate these assumptions.

5 Conclusions and Future Work

Self-organization through dynamic adaptation of message scheduling is a promis-
ing way of giving a new life to the existing communication buses used for dis-
tributed embedded systems in applications such as automotive or industrial
control. We specifically target communication buses, which use priority-based
scheduling schemes. The main idea of adapting message offsets in bus-based sys-
tems and avoidance of conflicts by simultaneous release of multiple messages
has been refined into the algorithm for dynamic offset adaptation, DynOAA.
The algorithm is first developed and analyzed for single-bus systems in which
all streams adapt the offsets dynamically, and then further enhanced for the
case when only certain nodes are adapting. It is shown that by allowing par-
tial adaptation it is possible to use DynOAA also for multi-segment systems in
which all segments, consisting of one bus, are homogeneous (the same bus type)
and use a single central gateway for their interconnection. The results of exper-
iments run by using a newly developed bit-accurate simulator that incorporates
DynOAA and its variations show significant improvement of performance over
existing, static scheduling approaches. In particular, the proposed approach re-
sults in significantly shorter response times of messages and allows therefore in
consequence a much higher utilization of the bus (in our case CAN bus), thus
extending applicability of the existing bus technology. The price paid for adap-
tation is relatively small additional work that has to be performed on the side of
system nodes. Our future work includes a closer analysis of the stability of the
adaptation process, implementation and its analysis of DynOAA on real micro-
processor platforms and further extension of the multi-segment approach with a
more realistic model of the gateway.

148 T. Ziermann, Z. Salcic, and J. Teich

References

1. CAN Specification 2.0 B. Robert Bosch GmbH, Stuttgart, Germany (1991)
2. Bai, T., Hu, L., Wu, Z., Yang, G.: Flexible fuzzy priority scheduling of the CAN

bus. Asian Journal of Control 7(4), 401–413 (2005)
3. Braun, C., Havet, L., Navet, N.: NETCARBENCH: A benchmark for techniques

and tools used in the design of automotive communication systems. In: 7th IFAC
International Conference on Fieldbuses and Networks in Industrial and Embedded
Systems. Citeseer (2007)

4. Di Natale, M.: Scheduling the can bus with earliest deadline techniques. In: Pro-
ceedings of the 21st IEEE Real-Time Systems Symposium, pp. 259–268 (2000)

5. Felser, M.: Real-time ethernet - industry prospective. Proceedings of the
IEEE 93(6), 1118–1129 (2005)

6. FlexRay Consortium. FlexRay Communications Systems - Protocol Specification
v3.0 (2009), http://www.flexray.com

7. Goossens, J.: Scheduling of offset free systems. Real-Time Systems 24(2), 239–258
(2003)

8. Grenier, M., Havet, L., Navet, N.: Pushing the limits of CAN-scheduling frames
with offsets provides a major performance boost. In: Proc. of the 4th European
Congress Embedded Real Time Software (ERTS 2008). Citeseer, Toulouse (2008)

9. Pfeiffer, O., Ayre, A., Keydel, C.: Embedded networking with CAN and CANopen.
Copperhill Media (2008)

10. Racu, R.: The role of timing analysis in automotive network design. In: Talk, 4th
Symtavision News Conference on Timing Analysis, Braunschweig, Germany (2010)

11. RTaW-Sim. Real-time at Work CAN Simulator,
http://www.realtimeatwork.com/

12. Ziermann, T., Salcic, Z., Teich, J.: DynOAA - Dynamic Offset Adaptation Algo-
rithm for Improving Response Times of CAN Systems. In: Proceedings of Design,
Automation and Test in Europe (DATE 2011), March 14-18. IEEE Computer So-
ciety, Grenoble (2011)

13. Zuberi, K.M., Shin, K.G.: Non-preemptive scheduling of messages on controller
area network for real-time control applications. In: Rtas, p. 240. IEEE Computer
Society, Los Alamitos (1995)

 http://www.flexray.com
http://www.realtimeatwork.com/

Hierarchical-CPK-Based Trusted Computing

Cryptography Scheme�

Fajiang Yu1,2, Tong Li2, Yang Lin2, and Huanguo Zhang1,2

1 School of Computer, Wuhan University, Wuhan, Hubei, 430072, P.R. China
fjyu@whu.edu.cn

2 Key Laboratory of Aerospace Information Security and Trusted Computing,
Ministry of Education in China

Abstract. PKI-based trusted computing platform (TCP) requires plat-
form users to apply for multiple Platform Identity Key (PIK) certificates
to provide remote attestation, users must pay the fee of digital certifi-
cates, which increases users’ economic burdens and leads there is hardly
any TCP has really performed the core function of trusted computing,
platform remote attestation, so the application of TCP is not very wide.
This paper presents a trusted computing cryptography scheme based on
Hierarchical Combined Public Key (HCPK), which can reduce the risk
of single Private Key Generator (PKG), and let the verifier authenticate
TCP directly without third party, so platform users do not need to apply
additional digital certificates. This scheme can reduce users’ cost of using
TCP, and encourage the development of TCP application.

Keywords: Trusted Computing, Combined Public Key (CPK), Hier-
archical Combined Public Key (HCPK), Trusted Cryptography Module
(TCM).

1 Introduction

Platform remote attestation is one of core functions of trusted computing [1,2].
Before platform providing remote attestation to a verifier, platform users must
apply for Attestation Identity Key (AIK) certificate from privacy CA based on
Endorsement Key (EK) in Trusted Platform Module (TPM). Because of high
cost of PKI CA construction and operation, users should pay some adminis-
tration fees of AIK certificates. For protecting the privacy of platform identity,
users need apply for multiple AIK certificates for different applications, which
further increases users’ economic burdens. So there is hardly any TCP has really
performed the core function of trusted computing, platform remote attestation,
and the application of TCP is not very wide.

� This work is supported by the National Natural Science Foundation of China, Grant
No: 60673071, 60970115, 91018008, and the Fundamental Research Funds for the
Central Universities in China, Grant No: 3101044.

J.M. Alcaraz Calero et al. (Eds.): ATC 2011, LNCS 6906, pp. 149–163, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

150 F. Yu et al.

For reducing the dependence on privacy CA, Trusted Computing Group
(TCG) added one method named Direct Anonymous Attestation (DAA) in TPM
1.2 specifications. DAA employs the methods including Camenisch Lysyanskaya
(CL) signature, zero knowledge proof based on discrete logarithm, Fiat Shamir
heuristics, group signature and etc. When using DAA, a verifier can affirm that
one requesting platform is a host of one real TPM, the verifier can not obtain real
identity information about TPM. DAA needs to provide zero knowledge proof at
least for three times during one process of identity authentication, which leads
low efficiency and implementation complexity. There is few practical applications
of DAA.

Being aware of the importance of trusted computing which is a basic security
solution for computing platform, as early as in 2006, China Cryptography Ad-
ministration began to collect correlative institutions for writing Trusted Comput-
ing Platform Cryptography Scheme and Technology Specification of Cryptographic
Support Platform for Trusted Computing. China Cryptography Administration
released Functionality and Interface Specification of Cryptographic Support Plat-
form for Trusted Computing in 2007, which requires Trusted Cryptography Mod-
ule (TCM, corresponding to TPM) to use state public key cryptographic algorithm
SM2 based on elliptic curves (ECC) of China. There is also some difference be-
tween the subscription process of Platform Identity Key (PIK, corresponding to
AIK) certificate and normal certificate, so users can not apply for PIK certificate
from current CAs which has supported SM2, and we never see that one privacy
CA for TCM is in operation.

In 2003, Identity-Based Combined Public Key (IBCPK, CPK called for short)
is presented by one famous cryptography expert of China, Nan Xianghao, in a
profile to network security techniques [3] for the first time. CPK suffered conspir-
acy attack and private key collision [4,5], some solutions has been given out [6,7],
and CPK also has been developed from version 1.0 to 5.0 [8,9,10,11]. In CPK,
Entity’s identity name just is public key, there is no need of online database for
managing public keys. CPK can form very large key space based on small scale
of key seed matrix, directly distribute public key seed matrix to entities, and
the entity can be authenticated directly without third party. Comparing with
Identity-Based Encryption (IBE) [12,13] based on bilinear map, CPK has high
efficiency performance.

This paper presents a trusted computing cryptography scheme based on CPK,
which can let the verifier authenticate TCP directly without third party, platform
users do not need to apply additional digital certificates. This scheme can reduce
users’ cost of using TCP, and encourage the development of TCP application.
ECC has been implemented in TCM, and CPK is presented by Chinese expert
for the first time, which have created good conditions for our research.

2 PKI-Based Trusted Computing Cryptography Scheme

PKI-based TCM key architecture is shown as Figure 1. The manufacture gener-
ates an EK during manufacturing stage of TCM. EK is an asymmetric key pair

Hierarchical-CPK-Based Trusted Computing Cryptography Scheme 151

which is stored in the non-volatile protected storage area in the TCM. EK also
can be regenerated by the user before obtaining platform ownership. One TCM
only have just one EK during its life cycle. Before using TCP, users must take
ownership of the platform at first. When taking ownership, TCM generates a
Storage Root Key (SRK), which is used to protect users’ storage key, sign key,
seal key and etc.

Trusted Computing Platform

TCM

SRK EK

user
storage

key

Storage

… PIK… PIK
user
sign
key

user

storage

key

user
sign
key

…

user
bind
key

user
seal
key

…

…

Privacy CA

PIK Certificate

PIK Certificate

.

.

.

Fig. 1. PKI-based TCM key architecture

Platform remote attestation is one of core functions of trusted computing, at
first the platform should prove its identity is trusted. In order to protect privacy,
the platform doesn’t directly use EK to sign for identity authentication. Users
have to request TCM to generate PIK, and apply for PIK certificate from private
CA based on EK. The privacy of corresponding relationship between EK and
PIK is protected by privacy CA. PIK private key is also protected by SRK.
Users should ask TCM to generate different PIKs and apply for different PIK
certificates for different applications. Then one TCM and its host platform may
have multiple PIKs. Thus, users can use different PIK for identity authentication
in different situations, in order to protect the privacy of platform identity.

The procedures of generating of PIK, applying for, signing and activating PIK
certificate are shown as Figure 2.

1. Platform user sends a command MakeIdentity to TCM via TCM Service
Module (TSM). TCM generates a PIK and encrypt private part of PIK
with SRK. Then TCM use private key of PIK to sign the digest value of
public key of private CA and public part of PIK, the signature is PIKSign =
Sign(PIKPri, H(CAKPub ‖ PIKPub)). TCM returns public part of PIK PIKPub

and PIKSign.

152 F. Yu et al.

TSM

TCM

TCP⑴

⑵

EK

PIK PIK...

SRK

Privacy CA

TCM
Manufacturer

Platform
Manufacturer

Evaluation

Institute

Credential
query &

verification

CAK

EK

PIK PIK...

⑸

⑹

⑶

⑷

user

owner
auth

Fig. 2. Procedures of generating of PIK, applying for, signing and activating PIK
certificate

2. Platform user sends a request CollateIdentityRequest to TSM for getting
EK certificate CertEK and property certificate for TCM and its host platform
from evaluation institute and manufacturer PtyCredTCM, PtyCredTCP.

3. Platform user sends the message including PIKPub, PIKSign, CertEK,
PtyCredTCM, PtyCredTCP to private CA and applies for PIK certificate.

4. Privacy CA verifies PtyCredTCPPtyCredTCMCertEK, then it will use PIKPub to
verify PIKSign. After these two verifications, privacy CA generates and signs
PIK certificate CertPIK, then randomly generates a symmetric key sessionKey
and use it to encrypt CertPIK to get EncCertPIK = AEnc(sessionKey,
CertPIK). Finally, it use the public key of EK to encrypt the digest of
sessionKey and public part of PIK to get EncSPK = SEnc(EKPub, sessionKey ‖
H(PIKPub)). Private CA sends EncCertPIK, EncSPK to TCP.

5. Platform user sends a request ActiveIdentity to TCM via TSM. TCM
use the private key of EK to decrypt EncSPK, sessionKey ‖ H(PIKPub) =
SDec(EKPri, EncSPK). We can determine whether sessionKey decrypted is
right by judging the correctness of H(PIKPub), while only the valid TCP can
get the correct sessionKey. TCM returns sessionKey.

6. Platform user sends a request RecoverTCMIdentity to TSM, TSM uses
sessionKey to decrypt EncCredPIK, and gets PIK certificate CertPIK = ADec
(sessionKey, EncCertPIK).

3 CPK Introduction

The mathematical base of CPK is the following ECC combination theorem [4]:

Theorem 1 (ECC Combination Theorem). ECC parameters are 〈p, a, b,
G, n〉, that is given one elliptic curve E based on the selected finite field Fp:
y2 ≡ (x3 + ax + b)(mod p). G is the generator of one additive cyclic sub-group
of points on E. n is the order of this group. If there are h(h ∈ Z, 1 < h < n)
ECC key pairs: (d1, Q1), (d2, Q2), . . . , (dh, Qh), the summary of these h private

Hierarchical-CPK-Based Trusted Computing Cryptography Scheme 153

keys is denoted as d, the summary of these h public keys is denoted as Q, that is
d =

(
Σi=1,2,...,hdi

)
mod n, Q = Σi=1,2,...,hQi, then (d, Q) also is one ECC key

pair.

Proof (of ECC Combination Theorem).
Because (d1, Q1), (d2, Q2), . . . , (dh, Qh) are ECC key pairs, then

Q1 = d1G, Q2 = d2G, . . . , Qh = dhG
Q = d1G + d2G + . . . + dhG
Q =

(
(d1 + d2 + . . . + dh)(mod n)

)
G = dG

So (d, Q) is a ECC key pair.

The basic components of CPK include private key seed matrix (dij)m×h, public
key seed matrix (Qij)m×h, the mapping function set F , and the algorithm of
combining public and private key AlgKG [8]:

1. Private Key Seed Matrix (dij)m×h

(dij)m×h =

⎛

⎜⎜⎜⎝

d11 d12 . . . d1h

d21 d22 . . . d2h

...
...

...
...

dm1 dm2 . . . dmh

⎞

⎟⎟⎟⎠

where h, dij , di′j′ ∈ Z, 1 < h, dij , di′j′ < n, i, i′ ∈ Zm, j, j′ ∈ Zh. Only under
the condition i = i′ and j = j′, dij = di′j′ , otherwise dij 	= di′j′ . (dij)m×h is
just stored in Private Key Generator (PKG) as a secret.

2. Public Key Seed Matrix (Qij)m×h

(Qij)m×h =

⎛

⎜⎜⎜⎝

Q11 Q12 . . . Q1h

Q21 Q22 . . . Q2h

...
...

...
...

Qm1 Qm2 . . . Qmh

⎞

⎟⎟⎟⎠

where Qij = dijG, i ∈ Zm, j ∈ Zh. (Qij)m×h is public to all entities.
3. Mapping Function Set F = {f1, f2, . . . , fh}

fi : {0, 1}l
→ {1, 2, . . . , m}, in ∈ Zh

where l is the length of entity identity defined by the system. F is public.
4. Algorithm of Combining Public and Private Key AlgKG

CPK directly uses entity identity IDE as public key, the combined public or
private key pair (dE, QE) is:

dE =
(
Σi=1,2,...,hdrii

)
mod n, QE = Σi=1,2,...,hQrii, ri = fi(IDE)

AlgKG is public.

154 F. Yu et al.

The CPK component mentioned above is the basic component defined by
CPK1.0. In CPK1.0, one entity’s private key dE is a linear combination of ele-
ments in private key seed matrix. Because the mapping function set F is public,
E can write a linear equation dE = (dr11 + dr22 + . . . + drhh) mod n based on its
identity. If there are m × h entities launching a conspiracy attack, then m × h
linear equations can be wrote. If these m×h equations are linearly independent,
then m × h unknown variants can be worked out, that is the all elements in
private key seed matrix (dij)m×h.

The conspiracy attack on CPK1.0 need not work out all seed private key.
Suppose there are two entities E1 and E2, their private keys are dE1 and dE2 , their
public keys are QE1 and QE2 respectively. dE1 conspires with dE2 , that is dE1 is
combined with dE2 linearly: dAtk = (aAtkdE1 + bAtkdE2) mod n, QE1 is combined
with QE2 linearly: QAtk = aAtkQE1 + bAtkQE2 . Try to select IDTry ∈ {0, 1}l, and
compute QTry = Σi=1,2,...,hQrii, ri = fi(IDTry). If QTry = QAtk, then this is a
successful conspiracy attack. (dAtk, QAtk) is a valid key pair, and it can pretend
to be a valid entity, but dAtk is not generated by PKG.

In order to resist the conspiracy attack and keep the character of CPK,
CPK5.0 [11] adds separation private key sequence (Sdi)k and separation pub-
lic key sequence (SQi)k, i ∈ {1, 2, . . . , k}, k is the number of separation keys,
SQi = SdiG. (Sdi)k is stored in PKG as a secret. (SQi)k is public. Some
functions also are added into the mapping function set: F = {f1, f2, . . . , fh} +
{fS1, fS2 , . . . , fSt}, t ∈ Z, 1 < t < k:

fSi : {0, 1}l
→ {1, 2, . . . , k}, i ∈ {1, 2, . . . , t}

The combined private and public key in CPK5.0 are:

CPriKE =
(
dE + Σi=c1,c2,...,ctSdi

)
mod n

CPubKE = QE + Σi=c1,c2,...,ctSQi, ci = fSi(IDE)

By using the separation key sequence, CPK5.0 multiplies the difficulty of con-
spiracy attack.

CPK also has the possibility of key collision. Document [6,7] have presented
an optimized scheme of CPK seed matrix to avoid key collision.

4 HCPK-Based Trusted Computing Cryptography
Scheme

4.1 Motivation for HCPK

In the CPK cryptosystemall private keys can be generated by PKG. If PKG is
attacked, all private keys will be leaked out, PKG is at a high risk. CPK can form
very large key space based on small scale of key seed matrix, so in theory the
flatting management of CPK keys can be implemented, that is all the private
keys can be generated by one PKG. But in practice, PKG should verify the
identity of every entity, then generates and distributes private key, when PKG

Hierarchical-CPK-Based Trusted Computing Cryptography Scheme 155

is in a large network application system, the single PKG might became a bottle
neck. If there are too many entities, it is hard for PKG to distribute private key
into each entity in a security controlled environment.

In order to disperse security risk and work load of single PKG, this paper
presents a Hierarchical CPK architecture (HCPK) by referring HIBE [14]. In
HCPK, every PKG of each layer has its own private key seed matrix. If some
PKG at some level is attacked, its private key seed is leaked out, only the entities
belonged to this PKG will be affected, the security of other entities are still
guaranteed. Even root PKG is attacked, the entities’ private keys won’t be leaked
out. PKG at every level only needs to verify the identities of the entities belong
to the PKG and its next level PKG, generate and distribute the corresponding
private keys. In HCPK, the work load of root PKG is distributed to other low
level PKGs, the private key distribution can be done locally under a security
environment.

4.2 Hierarchical Combined Public Key (HCPK)

To have a clear understanding, we describe HCPK based on CPK1.0, the con-
struction of HCPK based on CPK5.0 can use the method similarly.

1. Setup
(a) Given one elliptic curve E based on the selected finite field Fp: y2 ≡

(x3 + ax + b)(mod p), G is the generator of one additive cyclic sub-
group of points on E, n is the order of this group. ECC parameters are
〈p, a, b, G, n〉, which are public.

(b) Building mapping function set: F = {f1, f2, . . . , fhmax}, fi : {0, 1}l
→
Zm, i ∈ Zhmax , where hmax is the maximum number of columns in all
PKG public and private key seed matrixes, 1 < hmax < n, l is the length
of entity identity IDE. F is public.

(c) Choosing one HASH function: H : {0, 1}∗
→ Zp. H is public.
(d) PKGk builds private key seed matrix. PKGk represents the PKG at level

k, k � 0, PKG0 represents root PKG. There is only one root PKG in
every HCPK system. PKGk builds private key seed matrix (dk

ij)m×hk
,

where hk ∈ Z, 1 < hk < hmax, d
k
ij , d

k
i′j′ ∈ Z, 1 < dk

ij , d
k
i′j′ < n, i, i′ ∈

{1, 2, . . . , m}, j, j′ ∈ {1, 2, . . . , hk}. Only under the condition i = i′ and
j = j′, dk

ij = dk
i′j′ , otherwise dk

ij 	= dk
i′j′ . (dk

ij)m×hk
is just stored in PKGk

as a secret.
(e) PKGk builds public key seed matrix (Qk

ij)m×hk
, where Qk

ij = dk
ijG, i ∈

{1, 2, . . . , m}, j ∈ {1, 2, . . . , hk}. (Qk
ij)m×hk

is public.
2. Extract

Et represents a entity at level t, t � 1, Et may be the PKG at level t. The
identity tuple of Et is: (ID1, ID2, . . . , IDt), where ID1, ID2, , IDt−1 are the
identities of Et’s ancestor PKGs at level 1, 2, , t − 1 respectively. IDt is the
identity of Et. (ID1, ID2, . . . , IDt) is public. The parent PKG of Et PKGt−1

compute:

dEt =
(
dt−1 + Σi=1,2,...,ht−1d

t−1
rii

)
mod n, ri = fi(IDt)

156 F. Yu et al.

where dt−1 is the private key of PKGt−1. If t = 1, then PKGt−1 is PKG0

and dt−1 = 0. dEt is stored in Et as a secret.
3. Sign

Signature and verification schemes are based on the algorithms in docu-
ment[15].
Entity Et signs message m with the private key dEt :
(a) Compute h = H(m);
(b) Choose a random r ∈ [1, n − 1];
(c) Compute (xr, yr) = rG;
(d) Compute u = (h + xr) mod n, if u = 0 or u + r = 0, then goto (b);
(e) Compute v =

(
(1 + dEt)−1 · (r − u · dEt)

)
mod n, if v = 0 then goto (b);

(f) The signature is σ = (u, v).
4. Verify

Verify the signature σ = (u, v) of m signed by Et, the identity tuple of Et is
(ID1, ID2, . . . , IDt):
(a) Compute QEt = Σk=1,2,...,t

(
Σi=1,2,...,hk−1Q

k−1
rk

i i

)
, rk

i = fi(IDk);
(b) Compute h = H(m);
(c) Compute t = (u + v) mod n;
(d) Compute (xr, yr) = vG + tQEt ;
(e) Compute u′ = (h + xr) mod n;
(f) If u = u′, then the signature is right.

4.3 Application of HCPK in Trusted Computing

According to TCM production, evaluation and application, a four levels HCPK
can be used in trusted computing, as is shown in Figure 3. Under the root PKG
authenticated by China Cryptography Administration, every TCM manufac-
turer and enterprise user build their own PKGs, and individual users can use
manufacturer PKG directly.

The scale of public and private key seed matrix in root PKG, manufacturer
PKG and enterprise PKG is determined by the amount of their subaltern PKGs
and TCMs respectively. Root PKG only needs to generate and distribute pri-
vate keys for manufacturer PKGs, the security of private keys distribution can be

Root PKG

Manufacturer

PKG

Manufacturer

PKG

Manufacturer

PKG
… …

Enterprise

PKG

Enterprise

PKG

Enterprise

PKG
… …

… …

… …

TCM TCM TCM

TCM TCM TCM

Fig. 3. Trusted Computing HCPK

Hierarchical-CPK-Based Trusted Computing Cryptography Scheme 157

guaranteed more easily, and the work load also are reduced. Similarly, manufac-
turer PKG generates and distributes private keys for enterprise PKGs or TCMs,
enterprise PKG generates and distributes private keys for TCMs, which also can
be done in a local controlled security environment. During identity verification
of TCM host platform, identity tuple (IDMan, IDEnt, IDTCM) or (IDMan, IDTCM)
should be used, where IDMan, IDEnt, IDTCM are the identity of manufacturer
PKG, enterprise PKG and TCM respectively.

If one enterprise PKG is attacked and its private key seed matrix is leaked
out, only the TCMs belonged to the enterprise are affected, since other manu-
facturer PKGs have their own private key seed matrixes. Even if the root PKG
has been attacked, it will not completely expose all TCMs’ private keys, be-
cause manufacturer PKGs, enterprise PKGs have their own private key seed
matrixes.

During platform identification, the TCM on Access Request Platform (ARP)
uses its own PIK private key to sign given PCR values. The verifier receives the
signature, according to identification tuple (IDMan1, IDEnt1, IDTCM), it is able to
compute the corresponding ECC public key of PIK private key, and complete
identity verification consequently.

4.4 TCM Key Architecture Based on HCPK

Within the architecture of HCPK, PIK private key is directly generated by
manufacturer PKG or enterprise PKG based on TCM identity IDTCM. Platform
users need not apply for PIK public key certificate based on EK. There is no
need for a privacy CA to maintain the database of PIK certificate, because the
identity tuple (IDMan, IDEnt, IDTCM) or (IDMan, IDTCM) just is the PIK public
key.

PKI-based platform can have multiple PIKs and the corresponding certifi-
cates, in order to protect the privacy of platform identity. To ensure the security
of private key distribution and using, CPK-based PIK private key are usually
directly loaded into TCM by PKG in one controlled and security environment.
With the limited memory capacity, TCM fails to save multiple PIK private keys.
It also is unable to generate PIK dynamically for CPK-based platform, because
the security of CPK private key online distribution can not be guaranteed easily.
So there is only one PIK on CPK-based platform. Compared with PKI-based
platform, CPK-based platform has a more simplified TCM key architecture,
which is shown in Figure 4. The anonymity of platform identity can be ensured
by TCM ring signature.

In order to authenticate TCP directly without third party, there also are CPK
parameters including public key seed matrix stored in TCM.

158 F. Yu et al.

Trusted Computing Platform

TCM

SRK
PIK

private key

Storage

… user signature keyuser storage key

…user signature key user storage key

…user seal key user bind key

CPK

parameter

…

Fig. 4. HCPK-based TCM key architecture

4.5 Cross-Domain Platform Identity Authentication Based on
HCPK

CPK usually loads CPK parameters into all entities in one security domain, for
authenticate TCP directly without third party and online database. Because
PKG is at high security risk, different institutes or organizations will establish
their own PKGs. However in some application scenarios, ARP and the verifier
may belong to different security domains, which needs cross-domain remote au-
thentication and resource access. Since each security domain has its own PKG,
different PKG usually has different CPK parameters, so it is unable to do cross-
domain authentication directly.

Within the architecture of HCPK, considering the most typical situation of
cross-domain attestation, ARP and verifier belong to different enterprise PKGs,
and this two enterprise PKGs belong to different manufacturer PKGs. Even ARP
and verifier belong to different security domains, but they belong to a same root
PKG, sharing same CPK parameters, which is shown in Figure 5, it is able to
do cross-domain attestation directly.

5 Security Analysis

Security analysis of CPK resistance against conspiracy attack and private key
collision caused by mapping function are out of the scope of this paper, we just
analyse the security of HCPK-based trusted computing cryptography scheme,
that is the security of platform identity authentication with PIK private key
based on HCPK. This paper also does not care the security problems caused
by specific implementations, and just analyses the security of HCPK signature
scheme based on Computation Diffie-Hellman Problem (CDHP) in random ora-
cle model.

Hierarchical-CPK-Based Trusted Computing Cryptography Scheme 159

PIK

private key

TCM

ARP

Enterprise PKG1

Security Domain 1

cross-domain
identity

authentication

Manufacturer PKG1

Root PKG

CPK

parameters

Verifier

Enterprise PKG2

Security Domain 2

Manufacturer PKG2

CPK

Parameters

Fig. 5. Cross-domain platform identity authentication based on HCPK

Computation Diffie-HellmanProblem (CDHP): There is an additive cyclic
sub-group of points on one elliptic curve in a finite field FP , G is the generator of
the group, n is the order of the group. Given (G, aG, bG), a, b ∈ Zn, compute abG.

5.1 Attack Model and Security Definition

The most general known notion of security of an ID-based signature scheme is
Existential Forgery on Adaptively Chosen Message and ID Attacks (EF-ACM-
IA) presented in document [16]. CPK is a ID-based cryptography scheme, the
model of EF-ACM-IA on HCPK is (the adversary algorithm is denoted as A,
the challenger playing the following game against A is denoted as C):

1. C runs Setup of HCPK system, and gives returned system parameters to A;
2. A issues the following queries as he wants:

(a) Mapping function query. A gives an identity name ID, C computes
fi(ID), i = 1, 2, . . . ,
hmax, and returns the result to A;

(b) HASH function query. A gives a message m, C computes H(m), and
returns the result to A;

(c) Extract query. A gives an identity tuple (ID1, ID2, . . . , IDt), C runs
Extract, and returns the result, a private key dt, to A;

(d) Sign query. A gives a private key dt and a message m, C runs Sign, and
returns the result, a signature σ , to A;

3. A outputs
(
(ID1, ID2, . . . , IDt), m, σ

)
, where (ID1, ID2, . . . , IDt) and m are

not equal to the inputs of any query to Extract and Sign, respectively. A

wins the game if σ is a valid signature of m for (ID1, ID2, . . . , IDt).

Definition 1. If no polynomial time algorithm A has non-negligible probability
advantage of winning above game, then HCPK signature scheme is secure under
EF-ACM-IA.

160 F. Yu et al.

5.2 Security Proof

First we modify the above game of EF-ACM-IA on HCPK as Existential Forgery
on Adaptively Chosen Message and Given ID Attacks (EF-ACM-GIA): Given
an identity tuple (ID1, ID2, . . . , IDt) in step (1), C returns system parameters
to A together with (ID1, ID2, . . . , IDt). In step (3), A must output the given
(ID1, ID2, . . . , IDt) together with corresponding message m and signature σ as
its final result.

Referring Lemma 1 in document [16], the following Lemma 1 can be obtained:

Lemma 1. If there is an algorithm A0 which can win the game of EF-ACM-
IA to HCPK signature scheme with polynomial running time t0 and probability
advantage ε0, then there is an algorithm A1 which can win the game of EF-ACM-
GIA with polynomial running time t1 � t0 and probability advantage ε1 � ε0 ·(1−
1/n)/q

F
, where q

F
is the maximum number of queries to mapping function asked

by A0. The numbers of queries to mapping function, HASH function, Extract
and Sign asked by A1 are the same as those of A0.

Lemma 2. If there is an algorithm A1 which can win the game of EF-ACM-
GIA with polynomial running time t1 and probability advantage ε1 � 10(q

S
+

1)(q
S

+ q
H

)/n, then CDHP can be solved by an algorithm A2 with polynomial
running time t2 � 23q

H
t1/ε1 and probability advantage ε2 � 1/9, where q

H
, q

S

are the maximum number of queries to HASH function and Sign asked by A1

respectively.

Proof (Lemma 2).
The algorithm A1 can be viewed as an adversary with adaptively chosen mes-

sage attack to the non-ID-based scheme obtained by fixing an ID in HCPK-based
signature scheme. So we can refer correlative lemma or theorem in document [17].

Lemma 4 in document [17]. Let A be a Probabilistic Polynomial
Time (PPT) Turing machine whose input only consists of public data.
The number of queries that A can ask to the random oracle and the
number of queries that A can ask to the signer are denoted as qR and
q

S
respectively. Assume that, within a time bound t, A produce, with

probability ε � 10(q
S
+1)(q

S
+q

R
)/n, a valid signature (m, r, h, σ). If the

triples (r, h, σ) can be simulated without knowing the secret key, with an
indistinguishable distribution probability, then, a replay of the attacker
A, where interactions with the singer are simulated, outputs two valid
signatures (m, r, h, σ) and (m, r, h′, σ′), such that h 	= h′, within time
t′ � 23q

R
t/ε and with probability ε′ � 1/9.

The signature value of HCPK signature scheme σ = (u, v), so the two valid
signatures are

(
m, r, h, (u, v)

)
and

(
m, r, h′, (u′, v′)

)
.

Since u = (h + xr) mod n and v =
(
(1 + dEt)−1 · (r − u · dEt)

)
mod n, so

u − h ≡ xr(mod n), vG + (u + v)QEt = rG

Hierarchical-CPK-Based Trusted Computing Cryptography Scheme 161

Similarly, u′ − h′ ≡ xr(mod n), v′G + (u′ + v′)QEt = rG, then
{

u − h ≡ u′ − h′(mod n) ⇔ (u − h)QEt = (u′ − h′)QEt (1)
vG + (u + v)QEt = v′G + (u′ + v′)QEt (2)

Compute (2) − (1): (v − v′ + h − h′) · dEtG = (v′ − v)G
Suppose a = v − v′ + h − h′, b = dEt , then abG = (v′ − v)G. That is we have

known G, aG = (v − v′ + h − h′)G and bG = QEt , we can compute abG, and
CDHP can be solved, so Lemma 2 has been proved.

Combining Lemma 1 and 2, we can get Theorem 2.

Theorem 2. If there is an algorithm A0 which can win the game of EF-ACM-
IA to HCPK signature scheme with polynomial running time t0 and probability
advantage ε0 � 10(q

S
+ 1)(q

S
+ q

H
)q

F
)/(n − 1), then CDHP can be solved by

an algorithm A2 with polynomial running time t2 � 23qHqF t0/(ε0(1− 1/n)) and
probability advantage ε2 � 1/9, where q

F
, q

H
, q

S
are the maximum number of

queries to mapping function, HASH function and Sign asked by A0 respectively.

Because there is no probabilistic polynomial time algorithm which can solve
CDHP up to now, there is no algorithm A0 which can win the game of EF-ACM-
IA to HCPK signature scheme with polynomial running time and non-negligible
probability advantage, and HCPK signature scheme satisfies the requirements
in Definition 1.

6 Performance Analysis

This paper analyses the performance of HCPK-based TCM cryptography scheme
compared with PKI-based scheme. Because of limited resources, TCM has high
performance requirement of cryptography scheme. This paper mainly analyses
the calculation performance on TCM of the two cryptography schemes, and
does not analyse the performance of PKI-based TPM cryptography scheme,
because TPM uses RSA algorithm, TCM uses ECC algorithm, it is uneasy about
comparing the performance of RSA with ECC directly.

The differences between HCPK and PKI-based cryptography scheme mainly
are in PIK generation and signature signing. Because signature verification can
be done on the host, this paper does not analyze the performance difference in
PIK signature verification.

HCPK-based PIK private key is generated by parent PKG of TCM, and is
distributed and loaded into TCM directly, there is no need for TCM to do any
calculation.

PKI-based PIK creation includes generating of PIK, applying for, signing and
activating PIK certificate. PIK is generated by TCM, the time spent is denoted
as TKeyGen. TCM uses PIK private key to sign the digest of privacy CA public
key and PIK public key, the time spent is denoted as THash + TSign. TCM also
needs to use EK private key for decrypting to get the session key for encrypting

162 F. Yu et al.

PKI certificate, the time spent is denoted as TSDec. PKI-based TCM may crate
multiple PIKs, so it will multiply the time spent.

The time spent by HCPK-based TCM for signing PCR value with PIK private
key is the same as PKI-based TCM, denoted as TSign. For using PIK in PKI-
based TCM, PIK must be loaded into TCM by using command TCM LoadKey
firstly, the time spent is denoted as TLdKey.

The comparison of TCM performance between HCPK-based cryptography
scheme and PKI-based scheme is shown in Table 1.

Table 1. Comparison of TCM perforamnce between HCPK-based scheme and PKI-
based scheme

time spent on PIK creation time spent on PIK signing

HCPK-based scheme 0 TSign

PKI-based scheme x(TKeyGen + THash + TSign + TSDec) TLdKey + TSign

We can see from Table 1 that HCPK-based cryptography scheme has a great
advantage of TCM performance compared with PKI-based scheme.

In addition, some TCM commands about EK and PIK can be reduced in
HCPK-based TCM, such as TCM CreateEndorsementKeyPair,
TCM CreateRevocableEK, TCM RevokeTrust, TCM ReadPubEK,
TCM MakeIdentity, TCM ActivateIdentity and etc, which also can save TCM stor-
age space, simplify TCM implementation, and improve the performance of TCM.

7 Conclusion and Future Work

PKI-based TCP requires platform users to apply for multi PIK certificates, the
annual fee of one certificate is about 8 $, so users of PKI-based TCP must pay
8x $ one year. HCPK-based TCP can reduce the risk of single PKG, and let
the verifier authenticate TCP directly without third party, platform users do
not need pay any fee for applying additional digital certificates. HCPK-based
trusted computing cryptography scheme also can be implemented without any
modification of current TCM hardware. So HCPK-based TCP can reduce users’
cost of using TCP. HCPK-based trusted computing cryptography scheme can
simplify TCM key architecture, and authenticate cross-domain platform identity.
This paper has proved that HCPK signature scheme is secure under EF-ACM-
IA in random oracle model. Comparing with PKI-based scheme, HCPK-based
cryptography scheme has obvious advantage in the performance of TCM. HCPK
and PKI-based platforms can authenticate each other, and HCPK-based cryp-
tography scheme also can be implemented on TPM.Next.

In future, we will consider how to protect the anonymity of PIK private key
and platform identity based on HCPK, and design a platform remote attestation
protocol based HCPK, which can directly authenticate cross-domain platform
without third party, and protect the privacy of platform component information.

Hierarchical-CPK-Based Trusted Computing Cryptography Scheme 163

References

1. Shen, C., Zhang, H., Wang, H., et al.: Research and development of trusted com-
puting. Science China: Information Science 40(2), 139–166 (2010) (in chinese)

2. Shen, C., Zhang, H., Feng, D., et al.: Survey of information security. Science China:
Information Science 37(2), 1–22 (2007) (in chinese)

3. Nan, X., Chen, Z.: A profile to network security techniques. National Defense
Industry Press, Beijing (2003) (in chinese)

4. Chen, H., Guan, Z.: Explanation of some questions about CPK. China Information
Security 9, 47–49 (2007) (in chinese)

5. Wang, G., Wang, M., Wu, D., et al.: Analysis of the CPK random collision prob-
ability. China Information Security 11, 87–88 (2008) (in chinese)

6. Rong, K., Li, Y.: A optimized scheme of the CPK seed matrix. Journal of Computer
Engineering and Applications 42(24), 120–121 (2006) (in chinese)

7. Xing, H.: Research and applications of the key technologies of combined public
key. Engineering master dissertation of National University of Defense Technology
(2009) (in Chinese)

8. Nan, X.: Identity authentication based on CPK. National Defense Industry Press,
Beijing (2006) (in Chinese)

9. Nan, X.: CPK-crypotosystem and cyber security. National Defense Industry Press,
Beiing (2008) (in Chinese)

10. Nan, X.: Cyber security technical framework — Trusting system based on identity
authentication. Electronic Industry Press, Beijing (2010)

11. Nan, X.: Combined Public Key (CPK) Cryptosystem Standard (v5.0). Network &
computer security (2010) (in Chinese)

12. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

13. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

14. Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002)

15. China Cryptography Administration. State Public Key Cryptographic Algorithm
SM2 Based on Elliptic Curves (December 2010) (in Chinese),
http://www.oscca.gov.cn/UpFile/2010122214822692.pdf (March 2011)

16. Cha, J.C., Cheon, J.H.: An identity-based signature from gap diffie-hellman groups.
In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 18–30. Springer, Heidel-
berg (2002)

17. Pointcheval, D., Stern, J.: Security Arguments for Digital Signatures and Blind
Signatures. Journal of Cryptology 13(3), 361–396 (2000)

http://www.oscca.gov.cn/UpFile/2010122214822692.pdf

J.M. Alcaraz Calero et al. (Eds.): ATC 2011, LNCS 6906, pp. 164–174, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Facilitating the Use of TPM Technologies Using the
Serenity Framework

Antonio Muñoz and Antonio Maña

Computer Science Department
University of Málaga

{amunoz,amg}@lcc.uma.es

Abstract. Trusted platform modules (TPMs) specification is highly complex
and therefore the deployment of TPM –based security solutions is equally
complicated and difficult; although they can provide a wide range of security
functionalities. In order to make TPM technology available to system engi-
neers without their needing to have in-depth knowledge of trusted computing
specifications we propose, in this paper, to develop an approach using securi-
ty patterns to specify TPM-based security solutions. Ideally suited to produc-
ing precise specifications of TPM –based solutions for certain security goals
are the refined notions of security patterns developed in the SERENITY re-
search project.

1 Introduction

Security patterns, described informally using either plain text or semi formal languag-
es with graphical visualisations, have successfully been used to describe security
solutions in such a way as to make them available to system engineers who are not
necessarily experts in security engineering [1,2,5,6,7,8,10]. In the SERENITY re-
search project [9] the notion of security patterns has been extended to concrete speci-
fications of re-usable security mechanisms for AmI (ambient intellligence) systems.
Also included is information on the properties satisfied and context conditions. The
Trusted Computing Group [3] specifies the trusted computing platform (TPM) and so
these types of security solutions have proven to be particularly useful for describing
security solutions reliant on TPMs. Usually because of the complexity of their stan-
dard, only experts on trusted computing are able to develop TPM-based solutions for
non trivial requirements. One way to make TPM-based solutions available for wide-
scale use in software development is to describe re-usable solutions in terms of securi-
ty patterns. As most of the complexity is in the selection of TPM commands and the
details of the calls to a particular security service this makes high-level patterns using
plain text less suitable. So in this paper we use a fairly simple example of a TPM-
based security solution to demonstrate and motivate the refined notion of security
patterns developed in SERENITY. Also developed in SERENITY are more complex
security patterns are studied for example certified migration keys to control the migra-
tion of data between a set of platforms.

 Facilitating the Use of TPM Technologies Using the Serenity Framework 165

One area where the need for confidentiality and mechanisms to protect data confi-
dentiality is amply demonstrated is in the field of medicine as the following scenario
shows. A patient continues their treatment at home whilst still being monitored by
their medical centre. Let us imagine that following a doctor’s visit the patient requires
a prescription to be filled but cannot go to the pharmacy and therefore the doctor
issues an electronic prescription which he sends to the medical centre. Once it reach-
es the centre it is dealt with by a social worker who is responsible for getting it filled
and delivering it to the patient. The prescription is therefore stored in the social work-
er’s PDA (personal digital assistant used to denote any portable device able to per-
form this task) and sent from there to the pharmacy’s PC. Obviously the patient’s
details are confidential with only those authorised able to access the prescription; in
this case the doctor, relevant staff at the medical centre, the social worker and natural-
ly the pharmacist. Imagine a case where the social worker loses their PDA, there are
mechanisms in place to protect confidentiality; as there are for data transfer via the
Internet. Possible solutions are;

• Access control provided by the device’s operating system
• Software encryption
• A device protected by a TPM (Trusted Platform Module) to encrypt data and

bind it to the TPM.

At first glance the first two mechanisms would be suitable for preventing attacks
“from outside” but imagine the attacker actually has the device in their possestion,
they could gain access to the whole device and therefore study the encryption applica-
tion to find out the decryption key or password and then apply it to all manner of
attacks. We therefore find the third solution, relying as it does on a TPM to be the
most effective, as the owner of the device does not provide an advantage to a possible
attacker. They find themselves powerless to attack a TPM as we will go on to show.

2 Introduction to TPM Technology

A TPM is usually implemented as a chip integrated into the hardware of a platform
(such as a PC, a laptop, a PDA, a mobile phone). A TPM owns shielded locations (i.e.
no other instance but the TPM itself can access the storage inside the TPM) and pro-
tected functionality (the functions computed inside the TPM can not be tampered
with). The TPM can be accessed directly via TPM commands or via higher layer
application interfaces (the Trusted Software Stack, TSS). The TPM offers two main
basic mechanisms: it can be used to prove the configuration of the platform it is inte-
grated in and applications that are running on the platform, and it can protect data on
the platform (such as cryptographic keys). For realizing these mechanisms, the TPM
contains a crypto co-processor, a hash and an HMAC algorithm, a key generator, etc.
In order to prove a certain platform configuration, all parts that are engaged in the
boot process of the platform (BIOS, master boot record, etc) are measured (i.e. some
integrity measurement hash value is computed), and the final result of the accumu-
lated hash values is stored inside the TPM in a so-called Platform Configuration Reg-
ister (PCR).

166 A. Muñoz and A. Maña

An entity that wants to verify that the platform is in a certain configuration requires
the TPM to sign the content of the PCR using a so-called Attestation Identity Key
(AIK), a key particularly generated for this purpose. The verifier checks the signature
and compares the PCR values to some reference values. Equality of the values proves
that the platform is in the desired state. Finally, in order to verify the trustworthiness
of an AIK’s signature, the AIK has to be accompanied by a certificate issued by a
trusted Certification Authority, a so-called Privacy CA (P-CA). Note that an AIK
does not prove the identity of the TPM owner.

Keys generated and used by the TPM have different properties, some (so-called
non-migratable keys) can not be used outside the TPM that generated them, some
(like AIKs) can only be used for specific functions. Particularly interesting is that
keys can be tied to PCR values (by specifying PCR number and value in the key’s
public data). This has the effect that such a key will only be used by the TPM if the
platform (or an application) configuration is in a certain state (i.e. if the PCR the key
is tied to, contains a specific value). In order to prove the properties of a particular
key, for example to prove that a certain key is tied to specific PCR values, the TPM
can be used to generate a certificate for this key by signing the key properties using an
AIK.

To request a TPM to use a key (e.g. for decryption), the key’s authorisation value
has to be presented to the TPM. This together with the fact that the TPM specification
requires a TPM to prevent dictionary attacks provides the property that only entities
knowing the key’s authorisation value can use the key.

Non-migratable keys are especially useful for preventing unauthorised access to
some data stored on the platform. Binding such a key to specific PCR values and
using it to encrypt the data to be protected achieves two properties: the data can not be
decrypted on any other platform (because the key is non-migratable), and the data can
only be decrypted when the specified PCR contains the specified value (i.e. when the
platform is in a specific secure configuration and is not manipulated).

3 An Introduction to the Serenity Framework

This section gives an overview of the Project Framework. The main objective of
Serenity is to provide a framework for the automated treatment of security and depen-
dability issues in AmI scenarios. For this purpose the project is two-folded: (i) captur-
ing the specific expertise of the security engineers in order to make it available for
automated processing, and (ii) providing run-time support for the use and the monitor-
ing of these security and dependability mechanisms. These two cornerstones have
been deployed by means of:

• A set of S\D modeling artefacts (S\D artifacts, for short), used to model secu-
rity and dependability solutions (S&D solutions) at different levels of ab-
straction. S&D solutions are isolated components that provide security
and/or dependability services to applications. The use of different levels of
abstraction responds to the need of different phases of the software develop-
ment process. These artefacts are supported by an infrastructure created for

 Facilitating the Use of TPM Technologies Using the Serenity Framework 167

the development and the validation of S&D solutions. This infrastructure in-
cludes concepts, processes and tools used by security experts for the creation
of new S&D solutions ready for automatic processing.

• A development framework. Under the name of Serenity Development-time
Framework (SDF) there is an infrastructure that supports the development of
secure applications. These secure applications, called Serenity-aware appli-
cations, are supported by S&D solutions, consequently, they include refer-
ences to the aforementioned S&D artefacts.

• A run-time framework, called Serenity Run-time Framework (SRF). The
SRF provides support to applications at run-time, by managing S&D solu-
tions and by monitoring the systems' context. A further description of the
SRF can be found at [4].

Once infrastructural pieces have been described, the rest of this section explains how
to use S&D modelling artefacts to bridge the gap between abstract S&D solutions and
actual implementations of these S&D solutions. Interested readers could refer to Sec-
tion 3 in order to find information on how the SRF supports applications at run-time.

Back to the abstractions, five main artefacts are provided to achieve a logical
way to represent S&D solutions in the Serenity project: S&DClasses, S&DPatterns,
IntegrationSchemes, S&DImplementations and ExecutableComponents. These artefacts,
depicted in figure 1, represent S&DSolutions using semantic descriptions at different
levels of abstraction. The main reason for using different artefacts, each one address-
ing an abstraction level, is that, by doing this, it is possible to cover the complete life
cycle of secure applications, especially at development and run-time phases.

• S&DClasses represent abstractions of a set of S&DPatterns, characterized for
providing the same S&D Properties and complying with a common interface.
This is one of the most interesting artefacts to be used at development time by
system developers. The main purpose of this artefact is to facilitate the dynam-
ic substitution of S&D solutions at run-time, while facilitating the development
process. Applications request S&D Solutions to the SRF to fulfill a set of S&D
requirements. Usually, these requirements are hard coded by means of calls to
S&DClasses or S&DPatterns interfaces. At run-time all S&DPatterns (and
their respective S&DImplementations, described below) belonging to the same
S&DClass, will be selectable by the SRF automatically.

• S&DPatterns are precise descriptions of abstract S&D solutions. These de-
scriptions contain all the information necessary for the selection, instantiation,
adaptation, and dynamic application of the solution represented by the
S&DPattern. S&DPatterns describe the security pattern's functionalities and
how to use them in a structured way. The most interesting elements of the
S&DPattern structure are: (i) The pattern interface, describing the functionali-
ties provided and how to use them; (ii) references to the S&DClasses the
S&DPattern belongs to; and (iii) the ClassAdaptor, describing how to adapt
the S&DPattern interface to the S&DClass interface. S&DPatterns represents
monolithic isolated S&D solutions, but a special type of S&D artefact called
\textit{Integration Scheme (IS)} also exists, which consists on an S&D solu-
tion at the same level than S&DPatterns. They represent S&D solutions

168 A. Muñoz and A. Maña

that are built by means of combining other S&DPatterns. At Serenity-aware
application development time, Integration Schemes are used similarly as
S&DPatterns are. However, they differ in their development process, pre-
sented in \cite{Antonio2006}. All along this paper we use the notion of
S&DPatterns to refer to S&DPatterns and Integration Schemes indistinctly.

• S&DImplementations are specification of the components that realize the
S&D solutions. S&DImplementations are not real implementations but their
representation/description. An S&DImplementation describes an implemen-
tation of an S&DPattern and, thus, a S&DPattern may have more than one
S&DImplementation.

• Finally, ExecutableComponents are real implementations of the
S&DImplementations. These elements are not used at development time, but
they are the realization of the selected S&D solution at run-time. An Execu-
tableComponent works as a stand-alone executable S&D solution ready to
provide its services to applications. They are software, and sometimes hard-
ware, components.

Every S&D solution provides at least one security property. Every S&DPattern (and
every Integration Scheme) refer to an S&D solution. On the contrary, every S&D
solution can be represented by one or more S&DPatterns and/or Integration Scheme.
Each S&DPattern is implemented by means of at least one S&DImplementation.
Finally, there is an ExecutableComponent entity for each S&DImplementation.
While, S&DClasses are the most abstract level entities to represent S&D solutions,
ExecutableComponents, being software components, are the lowest abstraction level
way to represent an S&D solution. For the representation of S&D solutions, following
the Serenity approach, developers need to count on, at least, one artefact for every
level of the hierarchy.

To sum up, S&DClasses, S&DPatterns and S&DImplementations are develop-
ment-time oriented artefacts, while ExecutableComponents are especially suitable
for run-time. Serenity-aware applications include references to development-time
artefacts. Depending on the artefact level of abstraction, at run-time, the SRF has
more/less flexibility to select S&D S&D S&D S&D solutions. In other words, this
approach enables the creation of open architectures where, at run-time, the SRF com-
pletes by applying the ExecutableComponents that implements the S&D solutions
fixed at development-time. The main purpose of introducing this approach is to facili-
tate the dynamic substitution of S&D solutions at run-time while facilitating the
development process.

4 Using TPM Functionalities to Prevent Unauthorized Access to
Data

Returning to our previous example of the electronic prescription. Assuming that the
PDA is protected by TPM, our solution uses TPM functionality to prevent unautho-
rised access to the patient's details (in this case their prescription). This is carried out
in

 Facilitating the Use of TPM Technologies Using the Serenity Framework 169

three stages. Firstly a public key, with given properties, is requested from the social
worker (or rather their TPM) by the medical centre. Among these properties is that the
key shall be non-migratable, bound to the TPM of the social worker's PDA, and
should have certain PCR values (ensuring it hasn't been tampered with). A TPM gen-
erated certificate proves the key's properties. Then the medical centre encrypts the
patient's prescription using that key and the resulting ciphertext is sent to the social
worker's PDA, where finally the prescription is decrypted and sent to the pharmacy
using the key's authorisation data. In the following paragraphs we explain in more
detail how the key's properties ensure none other than the social worker can carry out
the decryption.

4.1 Phases 1 and 2 – Setup and Encryption

First, the medical centre requires a key from the social worker’s PDA that is non-
migratable and bound to specific PCR values. The following message sequence chart
(msc) shows the subsequent communication between their PDA and the PDA’s TPM
for generating this key. The actions are as follows:

1. The PDA starts an object specific authorisation session OSAP.
2. With TPM CreateWrapKey the social worker’s PDA requires the TPM to gener-

ate a command contains the key’s usage authorisation data (we do not discuss here
where the key’s authorisation data comes from, it can for example be presented them
or by their PDA).

3. The TPM generates keyA and returns the key blob.
4. The PDA then requests its TPM to generate a certificate for keyA:
 • It starts an object independent authorization protocol with TPM

 OIAP.
 • Then it loads keyA into the TPM.
 • It starts another OIAP session.
 • It loads an AIK into the TPM.
 • With TPM CertifyKey it then lets the TPM generate a certificate

 for keyA using the AIK. (Again we do not discuss where the AIK’s
 authorization data comes from.)

 • The TPM returns the certificate.

The social worker’s PDA now sends this certificate and the AIK certificate issued by
the P-CA to the medical centre which in turn verifies the certificates and checks in
particular that the requested key has the required properties (non-migratable,bound to
specific PCR values). The medical centre then uses the public part of the key to en-
crypt the patient’s prescription and sends the ciphertext to the social worker’s PDA.
This ensures confidentiality of the patient’s data during communication between the
centre and the PDA.

170 A. Muñoz and A. Maña

Fig. 1. Phases 1 and 2 setup and encryption

4.2 Phase 3 – Data Retrieval

The encrypted description is stored on the PDA. When the social worker wants to
transfer the prescription to the pharmacy it needs to be decrypted which has to be
done by the TPM. The following figure describes the necessary commands exchanged
between the PDA and the PDA’s TPM. Again, we do not discuss which entity pro-
vides key authorisation data necessary for the process.

1. Social worker’s PDA starts an OIAP session.
2. The PDA then loads keyA into the TPM.
3. With TPM UnBind the PDA lets the TPM decrypt the prescription using the pri-

vate part of keyA.
4. TPM A checks that the PCR values for PDA A correspond to those that the key

is tied to and then uses the key to decrypt the prescription blob.
5. TPM A returns the prescription, which can then be forwarded by the PDA to the

pharmacy.

The key’s properties prevent unauthorised access to the patient’s data during storage
on the PDA: Since the key is non-migratable, only the PDA’s TPM can decrypt the
data. Binding the key to specific PCR values ensures that the TPM only decrypts the
data while the PDA is not being manipulated. Finally, assuming that the social worker
does not reveal the key authorisation data to anybody, the key will only be used by the
TPM after authorisation is given by the social worker.

 Facilitating the Use of TPM Technologies Using the Serenity Framework 171

Fig. 2. Phase 3 decryption

5 Capturing the TPM Solution

Security patterns represent a suitable means to make TPM functionality available to
application developers. However, in order for patterns to serve our purposes, we need
them to contain at least the following information:

1. the security requirement it addresses (in our case to prevent unauthorised ac-

cess to data sent to and then stored on a TPM protected device);
2. the assumptions on the environment that need to hold, both before and during

the operation (for example, the TPM has to be active);
3. the roles of the entities involved (in our case these are the medical centre and

the PDA);
4. the precise services offered by the pattern for each of the roles;
5. the parameters that must be instantiated;
6. any additional information that may help in the selection and application of

the pattern; and
7. information regarding the pattern itself (source, version, certificates, etc).

With this information, application developers can decide whether the security re-
quirements fulfilled by the pattern match the ones needed by the application and
whether the environment the application shall run in meets the assumptions specified
in the pattern.

5.1 SERENITY Patterns

In the project SERENITY, security and dependability (S&D) patterns are described
using a specification language that meets the requirements listed above. These pat-
terns especially support applications that run in unpredictable and dynamic contexts.
To this end, SERENITY patterns are described using three modelling artefacts:

• The first SERENITY artefact is called S&D Class. S&D Classes provide
homogeneous mechanisms to access S&D services and allow developers to
delay the decision about the most appropriate solution until runtime, when
the information required to make a sound decision (about the context, type
and capabilities of other parties, etc.) is available. In our case, developers

172 A. Muñoz and A. Maña

can use the S&D Class (“SimpleConfidentialStorage.cen.eu”) that repre-
sents confidentiality services and includes a high-level interface (with func-
tion calls such as SetupConfidentialStorage, AcceptConfidentialStorage,
StoreConfidential, etc) which hides the complexity of the TPM technology.

• The second of the SERENITY artefacts, called S&D Pattern, is used to rep-
resent abstract solutions such as authentication protocols, encryption
algorithms, or TPM functionality. The main purpose of this artefact is to
guarantee the interoperability of different implementations of a solution.
S&D patterns achieving the same requirement can refer to the same S&D
Class. All patterns belonging to one S&D Class provide compatible inter-
faces which enables their dynamical selection and use. Patterns contain all
the information necessary to select solutions appropriately addressing cer-
tain security requirements. The pattern specifying our example solution
contains, among other details, an interface section with all function calls
that the solution uses (in particular it contains all TPM command calls).
Furthermore a so-called “Interface Adaptor” specifies how each of the
Class function calls is translated to a sequence of pattern function calls. In
our case, the Interface Adaptor contains for example the following:

RetrieveConfidential(d,c) ::= {TPM_OIAP, TPM-LoadKey2(kA),

TPM_UnBind(kA,Ciphertext,d)}

• The third artefact provided by SERENITY is the S&D Implementation,
which represents specific realisations of an S&D Solution. All S&D Im-
plementations of an S&D Pattern must conform directly to the interface,
monitoring capabilities, and any other aspect described in the S&D Pat-
tern. However, they also have differences, such as the specific context
conditions that are required, performance, target platform, programming
language or any other feature not fixed by the pattern. Implementations
that realise the TPM pattern can for example defer in the platform they
shall run on and in the platform’s operating system. These three artefacts
provide a precise description of S&D Solutions that supports both devel-
opment time and runtime processes. All SERENITY artefacts are stored
in a SERENITY library and thus made available to application develop-
ers. Selection of the artefacts and their integration into applications is
supported by the SERENITY Runtime Framework (SRF), a suite of tools
to support the automated management of S&D Solutions based on our
modelling artefacts [4].

5.2 SERENITY Operation

One interesting aspect to remark on is the use of the previously described artefacts.
Let us illustrate it using our scenario. The developers of the healthcare system identi-
fy the requirement that patient data needs to be confidential not only during transmis-
sions but also when stored in the social worker’s PDA. After searching some availa-
ble SERENITY online libraries, they identify the S&D Class SimpleConfidentialSto-
rage.cen.eu as fulfilling this requirement adequately. Hence the class’s function calls

 Facilitating the Use of TPM Technologies Using the Serenity Framework 173

are integrated into the application. Now the application developers have two choices:
to select an appropriate pattern and implementation of the class and integrate it into
the application during development time, or to leave this decision open. They decide
to delegate the pattern and implementation selection to the SERENITY Runtime
Framework (SRF) of the PDA. At runtime, in order to realise the services of the S&D
Class, the SRF identifies the best available S&D Implementation and its correspond-
ing S&D Pattern, according to the current context and the preconditions included in
both artefacts. In our case, the best option is an implementation of the “TPMConfi-
dentialStorage.serenity-project.org” S&D Pattern, which uses the TPM-based solution
described in section 4.

The SRF activates the solution (which may require initialization steps as described
in the artefacts) and provides a reference to it to the healthcare application. The SRF
uses the Interface Adaptor provided by the S&D Pattern to translate the calls made by
the application to the calls provided by the selected solution. In this way the health-
care applications can transparently access the S&D services it needs without knowing
in advance which specific solution is use to provide them.

6 Conclusions and Future Work

In this paper we have aimed to show how complex technologies such as TPM can be
used at both runtime and development and how security patterns, especially
SERENITY, can facilitate the use of these technologies and devices. Currently we
are focusing on three main lines of research: the development of the SERENITY
Runtime Framework, the universality and flexibility of modelling artefacts' structure
and contents, and finally, for producing the information contained in the pattern the
necessary mechanisms and tools.

Acknowledgment. The work in this paper was partly co-sponsored by the EC
Framework Programme as part of the ICT PASSIVE project (http://ict-passive.eu/)
and the "Advanced Security Service cERTificate for SOA " ASSERT4SOA project
(http://www.assert4soa.eu/).

References

1. Fernandez, E.: Security patterns. In: Procs. of the Eigth International Symposium on Sys-
tem and Information Security, SSI 2006, Keynote talk, Sao Jose dos Campos, Brazil (No-
vember 2006)

2. Fernandez, E., Rouyi, P.: A pattern language for security models. In: Pattern Languages of
Program Design, PLoP 2001 (2001)

3. T. C. Group. TCG TPM Specification 1.2 (2006),
http://www.trustedcomputing.org

4. Gallego, B., Serrano, D., Muñoz, A., Maña, A.: Security Patterns, towards a further level.
In: The International Conference of Security and Cryptography, SECRYPT 2009, pp. 349–
356 (2009)

5. Romanosky, S.: Security design patterns part 1, v1.4 (2001)

174 A. Muñoz and A. Maña

6. Armenteros, A., Muñoz, A., Maña, A., Serrano, D.: Security and Dependability in Am-
bient Intelligence scenarios: The communication prototype. In: International Conference
on Enterprise Information Systems (2009)

7. Schumacher, M., Fernandez, E., Hybertson, D., Buschmann, F., Sommerlad, P.: Security
Patterns - Integrating Security and Systems Engineering. John Wiley Sons, Chichester
(2005)

8. Schumacher, M., Roedig, U.: Security engineering with patterns. Springer, Heidelberg
(2001)

9. SERENITY. System engineering for security and dependability. IST project, funded by the
EC (2006), http://www.serenityproject.org/

10. Wassermann, R., Cheng, B.: Security patterns. Technical Report MSU-CSE-03-23, De-
partment of Computer Science, Michigan State University (August 2003)

J.M. Alcaraz Calero et al. (Eds.): ATC 2011, LNCS 6906, pp. 175–186, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Spam Detection on Twitter Using Traditional Classifiers

M. McCord and M. Chuah

Computer Science & Engineering Department,
Lehigh University,

Bethlehem, PA 18015, USA
{mpm308,chuah@cse}@lehigh.edu

Abstract. Social networking sites have become very popular in recent years. Us-
ers use them to find new friends, updates their existing friends with their latest
thoughts and activities. Among these sites, Twitter is the fastest growing site. Its
popularity also attracts many spammers to infiltrate legitimate users’ accounts
with a large amount of spam messages. In this paper, we discuss some user-based
and content-based features that are different between spammers and legitimate us-
ers. Then, we use these features to facilitate spam detection. Using the API me-
thods provided by Twitter, we crawled active Twitter users, their follow-
ers/following information and their most recent 100 tweets. Then, we evaluated
our detection scheme based on the suggested user and content-based features. Our
results show that among the four classifiers we evaluated, the Random Forest
classifier produces the best results. Our spam detector can achieve 95.7% preci-
sion and 95.7% F-measure using the Random Forest classifier.

Keywords: Social network security, spam detection, machine learning.

1 Introduction

Online social networking sites such as Facebook, LinkedIn and Twitter allow millions
of users to meet new people, stay in touch with friends, establish professional
connections and more. According to the report in [9], Twitter is the fastest growing
social networking site among all the social networking sites. Twitter provides a
micro-blogging service to users where users can post their messages, called tweets.
Each tweet is limited to 140 characters and only text and HTTP links can be included
in the tweets. Such tweet exchanges allow friends/colleagues to communicate and
stay connected.

Twitter users have different levels of awareness with respect to security threats
hidden in social networking sites. For example, a previous study has showed that 45%
of users on a social networking site readily click on links posted by any friend in their
friendlists’ accounts, even though they may not know that person in real life [11].
Thus, spammers are attracted to use Twitter as a tool to send unsolicited messages to
legitimate users, post malicious links, and hijack trending topics. Spam is becoming
an increasing problem on Twitter as well as on other online social networking sites. A
study shows that more than 3% of the messages are spam on Twitter [1,2,15]. Even
the trending topics, which are the most tweeted-about-topics on Twitter, were

176 M. McCord and M. Chuah

attacked by spammers. A trending-topic attack reported in [3] forced Twitter to
temporarily disable the trending topics so as to remove the offensive terms.

To deal with increasing threats from spammers, Twitter provides several ways for
users to report spam. A user can report a spam by clicking on the “report as spam”
link in their home page on Twitter. The reports are investigated by Twitter and the
accounts being reported will be suspended if they are found to be spam. Another
publicly available method is to post a tweet in the “@spam @username” format
where @username mentions a spam account. However, even this service is also
abused by spammers. Some Twitter applications also allow users to flag possible
spammers. Additional methods and applications to reduce Twitter spam are described
in [4]. Twitter also puts efforts into closing suspicious accounts, and filtering out
malicious tweets. However, some legitimate Twitter users complain that their
accounts were mistakenly suspended by Twitter’s cleaning efforts [5]. All these ad
hoc methods depend on users to identify spam manually based on their own
experience. We need some tools that can automatically identify spammers. In
addition, we need more accurate but efficient spam detection methods to avoid
causing inconvenience to legitimate users.

In this paper, we first study the differences between the tweets published by
spammers and legitimate users. Our goal is to identify useful features that can be used in
traditional machine learning schemes to automatically distinguish between spamming
and legitimate accounts. The major contributions of this paper are as follows:

• We propose using user-based features and content-based features to facilitate
spam detection

• We compare the performance of four traditional classifiers, namely Random
Forest, Support Vector Machine, Naïve Bayesian and K-Nearest Neighbor
classifiers, in their abilities to distinguish suspicious users from normal ones.

• We developed a prototype to evaluate the detection scheme based on our
suggested features. The results show that our spam detection system has a
95.7% precision and 95.7% F-measure using the Random Forest Classifier.

The rest of the paper is organized as follows. In Section 2, we give some background
about the Twitter site, and discuss related work. In Section 3, we discuss the various
user-based and content-based features we proposed. In Section 4, we describe the
characteristics of these user-based and content-based features based on the dataset we
have collected. In Section 5, we first describe how our spam detection method works.
Then, we report our evaluation results. We conclude in Section 6.

2 Background and Related Work

2.1 The Twitter Social Network

Twitter is a social networking site just like Facebook and MySpace except that it only
provides a microblogging service where users can send short messages (referred to as
tweets) that appear on their friends’ pages. A Twitter user is only identified by a
username and optionally by a real name. A Twitter user can start “following” another

 Spam Detection on Twitter Using Traditional Classifiers 177

user X. Consequently, that user receives user X’s tweets on her own page. User X
who is “followed” can follow back if she so desires. Tweets can be grouped using
hashtags which are popular words, beginning with a “#” character. Hashtags allow
users to efficiently search tweets based on topics of interest. When a user likes some-
one’s tweet, she can “retweet” that message. As a result, that message is shown to all
her followers. A user can decide to protect her profile. By doing so, any user who
wants to follow that private user needs her permission. Twitter is the fastest growing
social networking site with a reported growth rate of 660% in 2009 [9].

2.2 Related Work

Since social networks are strongly based on the notion of a network of trust, the ex-
ploitation of this trust might lead to significant consequences. In 2008, an experiment
showed that 41% of the Facebook users who were contacted acknowledged a friend
request from a random person [10]. L. Bilge et al [11] show that after an attacker has
entered the network of trust of a victim, the victim will likely click on any link con-
tained in the messages posted, irrespective of whether she knows the attacker in real
life or not. Another interesting finding by researchers [12] is that phishing attempts
are more likely to succeed if the attacker uses stolen information from victims’ friends
in social networks to craft their phishing emails. For example, phishing emails from
shoppybag were often sent from a user’s friendlist and hence a user is often tricked
into believing that such emails come from trusted friends and hence willingly pro-
vides login information of his/her personal email account. In [13], the authors created
a popular hashtag on Twitter and observed how spammers started to use it in their
messages. They discuss some features that might distinguish spammers from legiti-
mate users e.g. node degree and frequency of messages. However, merely using sim-
ple features like node degree and frequency of messages may not be enough since
there are some young Twitter users or TV anchors that post many messages.

A larger spam study was reported in [14]. The authors in [14] generate honey pro-
files to lure spammers into interacting with them. They create 300 profiles each on
popular social networking sites like Facebook, Twitter and MySpace. Their 900 ho-
ney profiles attract 4250 friends request (mostly on Facebook) but 361 out of 397
friend requests on Twitter were from spammers. They later suggested using features
like the percentage of tweets with URLs, message similarity, total messages sent,
number of friends for spam detection. Their detection scheme based on the Random
Forest classifier can produce a false positive rate of 2.5% and a false negative rate of
3% on their Twitter dataset.

In [15], the authors propose using graph-based and content-based features to detect
spammers. The graph-based features they use include the number of followers, the
number of friends (the number of people you are following) and a reputation score
which is defined as the ratio between the number of followers over the total sum of
the number of followers and the number of people a user is following. The conjecture
is that if the number of followers is small compared to the amount of people you are
following, the reputation is small and hence the probability is high that the associated
account is spam. The content-based features they use include (a) content similarity,

178 M. McCord and M. Chuah

(b) number of tweets that contain HTTP links in the most recent 20 tweets, (c) the
number of tweets that contain the “@” symbols in a user’s 20 most recent tweets, (d)
the number of tweets that contain the “#” hashtag symbol. Using a Bayesian classifier,
the author found that out of the 392 users that are classified as spammers, 348 are
really spam accounts and 44 users are false positives so the precision of his spam
detection scheme is 89%.

3 User-Based and Content-Based Features

In this section, we discuss the features we extract from each Twitter user account for
the purpose of spam detection. The features extracted can be categorized into (i) user-
based features and content-based features. User-based features are based on a user’s
relationships e.g. those whom a user follow (referred to as friends), and those who
follow a user (referred to as followers) or user behaviors e.g. the time periods and the
frequencies when a user tweets.

3.1 User-Based Features

In Twitter, you can build your own social network by following friends and allowing
others to follow you. Spam accounts try to follow large amount of users to gain their
attention. The Twitter’s spam and abuse policy [6] says that, “if you have a small
number of followers compared to the amount of people you are following”, then it
may be considered as a spam account. Three user-based features, namely the number
of friends, the number of followers, and the reputation of a user are computed for
spam detection in [15]. The reputation of a user is defined in [15] as

)()(

)(
)(

jnjn

jn
jR

Oi

i

+
= (1)

where ni(j) represents the number of followers user j has and no(j) represents the
number of friends (“following”) user j has. However, in our work, we only use the
number of followers and the number of “following” as part of our user-based features.

3.1.1 Distribution of Tweets over 24-Hour Period
In addition, we define statistics that are based on the percentage distribution of tweets
in each of the 8 3-hour periods within a day (e.g. 1st time slot is from 0-3hr, 2nd is from
3-6 hr, etc) posted by a user. Our conjecture is that spammers tend to be most active
during the early morning hours while regular users will tweet much less during typical
sleeping hours. We compute these 8 statistics based on the local time associated with
the location reported in a user’s profile.

3.2 Content-Based Features

For content-based features, we use some obvious features e.g. the average length of a
tweet. Additional content-based features are described in subsequent subsections.

 Spam Detection on Twitter Using Traditional Classifiers 179

3.2.1 Number of URLs
Since Twitter only allows a message with a maximum length of 140 characters, many
URLs included in tweets are shortened URLS. Spammers often include shortened
URLs in their tweets to entice legitimate users to access them. Twitter filters out
the URLs linked to known malicious sites. However, shortened URLs can hide the
source URLs and obscure the malicious sites behind them. While Twitter does not
check these shorten URLs for malware, any user’s updates that consist mainly of links
are considered spam according to Twitter’s policy. In [15], the authors use the percen-
tage of tweets containing HTTP links in the user’s 20 most recent tweets. If a tweet
contains the sequence of characters “http;// or www., this tweet is considered contain-
ing a HTTP link. In our work, we use the number of HTTP links that are contained in
a user’s 100 most recent tweets.

3.2.2 Replies/Mentions
A user is identified by a unique username and can be referred to using the @username
format in tweets on Twitter. Each user can send a reply message to another user using
the @username+message format where @username is the message receiver. Each
user can reply to anyone on Twitter whether they are his friends/followers or not. He
can also mention another @username anywhere in his tweet, rather than just at the
beginning. Twitter automatically collects all tweets containing a username in the
@username format in his replies tab. The reply and mention features are designed to
help users track conversation and discover each other on Twitter.

However, spammers often abuse this feature by including many @usernames as
unsolicited replies or mentions in their tweets. If a user includes too many rep-
lies/mentions in his tweets, Twitter will consider that account as suspicious. The
number of replies and mentions in a user account is measured by the number of tweets
containing the @symbol in the user’s 20 most recent tweets in [15]. However, we
used a feature that measures the total number of replies/mentions in the most 100
recent tweets for each user.

3.2.3 Keywords/Wordweight
Since we observe that the contents in spammers’ tweets contain similar words, we
define two metrics to help identify spammers. First, we created a list of spam words
that are often found in spammers’ tweets and the associated probabilities of these
words, and a list of popular words in legitimate tweets and the associated probabilities
of these words. Our two defined metrics using this information are: (a) the keywords
metric which counts the average number of spam words found in the 100 most recent
tweets. For example, if we find a total of 50 spam words in the 100 most recent
tweets, the keyword metric of that user will be 50/100, (b) the word weight metric
which is defined as the difference between the sum of weighted probabilities of spam
words and the sum of weighted probabilities of legitimate words found in a user’s
tweets. Assume that the word “hello” appears in a user’s tweet and the weight of the
word “hello” in the spamword list is 0.2 while the weight of that same word “hello” in
the regular word list is 0.1, then the wordweight based on this word “hello” will be
0.2-0.1=0.1. The final wordweight is the sum of the weights for all words from the
spamword and regular word lists that can be found in a user’s tweets.

180 M. McCord and M. Chuah

3.2.4 Retweets/Tweetlen
Twitter allows users to retweet tweets generated by other users. All retweets start with
the symbol @RT. The number of retweets in the 20-100 most recent tweets of a user
is also used as one of the content-based features in our spam detection system. The
average tweet length is also used as a content feature.

3.2.5 Hashtags
Trending topics are the most-mentioned terms on Twitter at that moment, this week or
this month. Users can use the hashtag, which is the #symbol followed by a term de-
scribing or naming the topics, to a tweet. If there are many tweets containing the same
term, the term will become a trending topic. Spammers often post many unrelated
tweets that contain the trending topics to lure legitimate users to read their tweets.
Twitter considers an account as spam “if a user posts multiple unrelated updates to a
topic using the # symbol”. The number of tweets which contains the symbol “#” in a
user’s 100 most recent tweets is used as one of the content-based features in [15].
However, in our work, we count the total number of hashtags in the 100 most recent
tweets of each user.

4 Analysis of Collected Data

To evaluate the detection method, we randomly pick about 1000 Twitter user ac-
counts and manually label them to two classes: spam and non-spam. Each user ac-
count is manually evaluated by reading the 20, 50, 100 most recent tweets posted by
the user and checking the number of followers and following in his/her user profile
page. Then, we extracted all the relevant user-based and content-based features that
we have described in Section 3. Since we observe that we get better classification
results with the most 100 tweets, we only report the results we get with the most 100
tweets. Fig 1(a) to (1d) show the characteristics of the user-based features, namely (a)
the number of followers, (b) the number of “following” (or friends as defined in [15]),
(c) the reputation, and (d) average posting percentage over a 24-hour period. Feature
(c) is not used in our detection scheme. We merely include it so that we can compare
the characteristics of our dataset with those used by the author in [15]. As we can see
form Fig 1(a) the number of followers for legitimate users can be very large but the
number of followers for each spammer is typically smaller than that of an average
legitimate user. Specifically, the average number of followers for spammers is 4435.7
while that for legitimate users is 7293.1 for our dataset.

From Fig 1(b), we see that the number of “following” for spammers is higher than
that for legitimate users. The average number of “following” for spammers is 3535.2
while it is only 1107.7 for legitimate users. Fig 1(c) shows that unlike the plot of
reputation (defined in Eqn (1) in Section 3.1) shown in [15], our plots show that the
reputation of spammers span a similar range to what is observed for legitimate users
and hence reputation metric may not be useful in helping us identify spammers in our
dataset. Fig 1(d) shows the average posting percentage over the eight 3-hour interval
within a day. The plot clearly shows that normal users tend to tweet during late after-
noon while spammers tend to tweet mostly during the early hours.

 Spam Detection on Twitter Using Traditional Classifiers 181

 (a) # of Followers (b) # of Following

 (c) Reputation (d) Avg Posting Percentage(per 3 hr freqs)

Fig. 1. User-Based Features of Spammers/Legitimate Users

 (a) Avg # of URLs (b) Users/Mentions

 (c) # of Hashtags (d) Wordweight

Fig. 2. Characteristics of Content-Based Features of Spammers/Legitimate Users

182 M. McCord and M. Chuah

Figs 2(a)-2(d) show the differences between the content-based features of spam-
mers/legitimate users. In Fig 2(a), we see that spammers tend to have an average of 1
link in each of their tweets. As for user mentions shown in Fig 2(b), there are some
normal users that carry more user mentions in their tweets. From Fig 2(c), we see that
spammers use much more hashtags than normal users. The plot in Fig 2(d) shows that
the wordweight for a spammer is usually higher than that of a regular user.

5 Spam Detection and Evaluations

5.1 Spam Detection

Based on the above identified features, we proceed to use traditional classifiers to
help detect spammers. In this work, several classic classification algorithms such as
Random Forest, Naïve Bayesian, Support Vector Machines, and K-nearest neighbors
are compared. The Random Forest classifier [19] is known to be effective in giving
estimates of what variables are important in the classification. This classifier also has
methods for balancing error in class population unbalanced data sets.

The naïve Bayesian classifier is based on the well-known Bayes theorem. The big
assumption of the naïve Bayesian classifier is that the features are conditionally inde-
pendent, although research shows that it is surprisingly effective in practice without
the unrealistic independence assumption [7]. To classify a data record, the posterior
probability is computed for each class [15]:

)(

)|()(
)|(1

XP

YXPYP
XYP i

d
i=∏= (2)

Since P(X) is a normalized factor which is equal for all classes, only the numerator
needs to be maximized in order to do the classification for the Naïve Bayesian classifier.

The Support Vector Machine method we used is the SMO scheme implemented in
the WEKA tool. This SMO scheme, designed by J.C. Platt [16], uses a sequential mi-
nimal optimization algorithm to train a support vector classifier using polynomial or
RBF kernels. The SMO classifier has been shown to outperform Naives Bayesian clas-
sifier in email categorization in [17] when the number of features increases. The K-
Nearest Neighbor method implemented in the WEKA tool is the IBK classifier [18].

5.2 Evaluations

We used the standard metrics for measuring the usefulness of our detection scheme
that uses our chosen user and content-based features. The typical confusion matrix
for our spam detection system is shown below

 Spam Detection on Twitter Using Traditional Classifiers 183

where a represents the number of spams that were correctly classified, b represents the
number of spams that were falsely classified as non-spam, c represents the number of
non-spam messages that were falsely classified as spam, and d represents the number of
non-spam users that were correctly classified. The following measures are used: preci-
sion, recall, and F-measure where the precision is P=a/(a+c), the recall is R=a/(a+b), and
the F-measure is defined as F=2PR/(P+R). We have results based on the most recent
20,50 and 100 tweets. Here, we only report the results for the most recent 100 tweets.
Our results using the most recent 100 tweets are tabulated in Table 1.

Table 1. Classification Results Using User-Based & Content-Based features (most recent 100
tweets)

Classifier Precision Recall F-measure
RandForest 0.957 0.957 0.957
SMO 0.935 0.931 0.932
NaiveBayes 0.916 0.914 0.915
Ibk(KNN equivalent) 0.928 0.928 0.928

Unlike the results reported in [15], we see that the Random Forest classifier pro-
duces the best results, followed by the SMO, Naïve Bayesian and K-NN neighbor
classifiers. The good performance of the Random Forest Classifier is not surprising
since this classifier can deal with imbalanced data sets (we have data for more regular
users than spammers). SMO also has relatively good performance. Naïve Bayesian
classifier performs poorer may be because the 100 tweets/user statistics may be noisi-
er than the dataset in [15]. Comparing our results with those reported in [15], we be-
lieve that even though we did not use the content similarity feature, our wordweight
feature and the percentages of tweet distribution over the 3-hour intervals help our
detector to achieve good results.

In Fig 3, we plot the classification results using only user-based features. In Fig 4,
we plot the classification results using both user-based and content-based features

Fig. 3. Classification Resutls Using Only User-Based Features with Traditional Classifiers

184 M. McCord and M. Chuah

Fig. 4. Classification Results Using Both User & Content-Based Features with Traditional
Classifiers

Fig. 5. Classification Results Using Both User-Based & Content-Based Features but without
the 3-hour interval statistic with Traditional Classifiers

while in Fig 5, we plot the classification results using all features in Fig 4 except the 8
3-hour interval related tweet distribution features. Comparing Fig 3 with Figs 4 & 5,
one can clearly see the benefits of adding the content-based features.

Fig 6 shows the classification results using the features that the researchers de-
scribe in [15] with our dataset while Fig 7 shows the classification results using the
features that the researchers describe in [14]. Recall that we use wordweight to re-
place the pairwise content similarity metric. Our results reported in Fig 5 are slightly
better than those in Figs 6 & 7. For example, the overall accuracy is only 93.5% with
the features suggested in [15], 94.4% with the features suggested in [14] while with
our features, we get 95.7% (all with the Random Forest Classifier). Out of the 258
spammers, our detector can correctly classify 240 spammers. Thus, our recall is 93%.
Using the features suggested in [14], we can only identify 229 spammers while using
the features suggested in [15], we can only identify 230 spammers (89% similar to
what they report in their paper).

 Spam Detection on Twitter Using Traditional Classifiers 185

Fig. 6. Classification Results using features suggested in [15]

75.0%

80.0%

85.0%

90.0%

95.0%

100.0%

Overall Precision Recall F-measure

Tweet Classification Accuracy

SMO (Support Vector
Machine)

NaiveBayes (Moment Space
equivelant)

Ibk (K-nearest-neighbor
equivelant)

Random Forest

Fig. 7. Classification Results using features suggested in [14]

6 Conclusion

In this paper, we have suggested some user-based and content-based features that can
be used to distinguish between spammers and legitimate users on Twitter, a popular
online social networking site. These suggested features are influenced by Twitter
spam policies and our observations of spammers’ behaviors. Then, we use these fea-
tures to help identify spammers. We evaluate the usefulness of these features in
spammer detection using traditional classifiers like Random Forest, Naïve Bayesian,
Support Vector Machine, K-NN neighbor schemes using the Twitter dataset we have
collected. Our results show that the Random Forest classifier gives the best perfor-
mance. Using this classifier, our suggested features can achieve 95.7% precision and
95.7% F-measure. Based on our dataset, our features provide slightly better classifica-
tion results when compared to those suggested in [14] or [15]. Our next step is to
evaluate our detection scheme using larger Twitter dataset as well as possibly wall-
post datasets from other online networking sites like Facebook. We also hope to in-
clude the content similarity metric in our near future work.

186 M. McCord and M. Chuah

References

1. Mowbray, M.: The Twittering Machine. In: Proceedings of the 6th International Confe-
rence on Web Information and Technologies (April 2010)

2. Analytics, P.: Twitter study (August 2009),
http://www.peranalytics.com/blog/wp-
content/uploads/2010/05/Twitter-Study-August-2009.pdf

3. CNET. 4 chan may be behind attack on twitter (2009),
http://news.cnet.com/8301-13515_3-10279618-26.html

4. How to; 5 Top methods & applications to reduce Twitter Spam,
http://blog.thoughtpick.com/2009/07/how-to-5-top-methods-
applications-to-reduce-twitter-spam.html

5. Twitter, Restoring accidentally suspended accounts (2009a),
http://status.twitter.com/post/136164828/restoring-
accidentally-suspended-accounts

6. Twitter. The twitter rules (2009b),
http://status.twitter.com/post/136164828/restoring-
accidentally-suspended-accounts

7. Rish, I.: An empirical study of the naïve bayes classifier. In: Proeedings of IJCAI Work-
shop on Empirical Methods in Artificial Intelligence (2005)

8. Forman, G.: An extensive empirical study of feature selection metrics for text classifica-
tion. J. Mach. Learn. Res. 3, 1289–1305 (2003)

9. Compete site comparison,
http://siteanalytics.compete.com/facebookcom+myspace.com+twi
tter.com/

10. Sophos facebook id probe (2008),
http://www.sophos.com/pressoffice/news/articles/2007/08/face
book.html

11. Bilge, L., et al.: All your contacts are belong to us: automated identifty theft attacks on so-
cial networks. In: Proceedings of ACM World Wide Web Conference (2009)

12. Jagatic, T.N., et al.: Social Phishing. Communications of ACM 50(10), 94–100 (2007)
13. Yardi, S., et al.: Detecting Spam in a Twitter Network. First Monday 15(1) (2010)
14. Stringhini, G., Kruegel, C., Vigna, G.: Detecting Spammers on Social Networks. In: Pro-

ceedings of ACM ACSAS 2010 (December 2010)
15. Wang, A.H.: Don’t Follow me: Twitter Spam Detection. In: Proceedings of 5th Interna-

tional Conference on Security and Cryptography (July 2010)
16. Platt, J.: Sequential Minimal Optimization: A fast algorithm for training support vector

machines. In: Schoelkopf, B., et al. (eds.) Advanced in Kernel Methods – Support Vector
Learning. MIT Press, Cambridge

17. Berger, H., Kohle, M., Merkl, D.: On the impact of document representation on classifier
performance in email categorization. In: Proceedings of the 4th International Conference
on Information Systems Technology and IST Applications (May 2005)

18. Aha, D., Kibler, D.: Instance-based Learning Algorithms. Machine Learning 6, 37–66
19. Breiman, L.: Random Forests. Machine Learning 45(1) (October 2001)

True Trustworthy Elections: Remote Electronic

Voting Using Trusted Computing

Matt Smart and Eike Ritter

School of Computer Science
University of Birmingham

{m.j.smart,e.ritter}@cs.bham.ac.uk

Abstract. We present a new remote, coercion-resistant electronic vot-
ing protocol which satisfies a number of properties previously considered
contradictory. We introduce trusted computing as a method of ensuring
the trustworthiness of remote voters, and provide an extension to our
protocol allowing revocable anonymity, on the grounds of it being a legal
requirement in the United Kingdom.

1 Introduction

One of the driving factors for electronic elections is remote voting—the notion
that a voter can vote from any location. Achieving this whilst also achieving
coercion resistance (i.e., allowing the voter to vote in the presence of a coercer,
without being able to prove how they are voting, or whether their vote is valid)
is very difficult, especially when also considering voter anonymity: not only do
the authorities need to be convinced that each voter is running the correct voting
protocol, but the voters must also be convinced that the authorities are behaving
correctly.

It is very important that revocable anonymity in electronic voting—the ability
to link a ballot back to its voter—be given adequate consideration. In the UK,
it is a legal requirement that it should be possible for the election authorities to
link a ballot to its voter [6, p. 106]. Only we currently consider this notion [30].

In this paper, we present a protocol which uses trusted computing to achieve
assurances as to the state of the voter’s (remote) machine, whilst also permitting
revocable anonymity, and satisfying the other standard requirements of e-voting
protocols. We use the Direct Anonymous Attestation (DAA) protocol [8] to
provide a mechanism for cryptographically assuring the authorities of the state
of a remote platform (run by a voter), whilst also assuring the voter that her vote
is counted anonymously. No remote voting protocol has considered the state of
a voting machine before, though the notion has been suggested at a high level,
without implementation detail [9], and some ‘polling station’-type protocols (not
suitable for remote voting) exist [13]. Arguably, if a voter’s machine can be made
to display false statements to a voter, then there is simply no point in making
the rest of the protocol secure: the user’s machine is the ‘weak link’ in the
chain. Indeed, if the voter’s machine is compromised by a trojan (or such), then
irrespective of the protocol being implemented, any remote voting protocol is

J.M. Alcaraz Calero et al. (Eds.): ATC 2011, LNCS 6906, pp. 187–202, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

188 M. Smart and E. Ritter

inherently insecure. Use of the Trusted Platform Module (TPM) mitigates this
risk.

1.1 Related Work

No work besides our own [30] provides revocable anonymity in electronic vot-
ing. Only a small amount of work provides coercion-resistant, remote electronic
voting. Civitas [10] is a good example, based on the JCJ voting protocol [20].
However, it does not seem scalable—every encrypted vote requires several ex-
pensive plaintext equivalence tests, and credential generation requires the voter
to contact every tallier. This complexity suggests that further modification to
include revocable anonymity would be unwise.

Further, despite a discussion of using trusted computing and Direct Anony-
mous Attestation for peer-to-peer networks [4], and preliminary discussions of
trusted computing in electronic voting [2,9,3,19], we found very few actual pro-
tocols: [13] give a protocol which uses the TPM to provide trustworthy ‘polling
station’ DRE (Direct Recording Electronic voting) machines. Whilst their so-
lution is interesting, we are interested in remote voting only, and find that the
amount of trust placed in a number of entities by the authors is too high: the
election authority, tallying authority and precinct judge all need to be fully
trusted, and nothing is done to mitigate the possibility of a voter visiting the
DRE machine multiple times in an election. The use of a single Platform Vote
Ballot (PVB) key to sign the vote storage area also introduces a weak point for
the security of all votes on a single DRE. [32] presents a discussion and high level,
basic protocol for remote voting using the TPM. [25,26] also present high-level
discussions of in-person polling station voting protocols using trusted hardware.
It should be noted that the work of [25] is not receipt-free, and that of [26] places
complete trust in the authorities.

Many electronic voting protocols [29,14,20] rely on anonymous channels, or
anonymous and untappable channels [23], to satisfy some security properties. In
our work, we require an anonymous channel in the voting phase. Many protocols
use mix networks for this [10,27,29,7,17], which provide effective anonymity as
long as at least one participant in the mix is honest. We deliberately do not spec-
ify the method of implementation for our anonymous channel, but suggest that
a Tor/Onion Routing network [12], or any other protocol allowing bidirectional
anonymous communication would be suitable.

We, like many previous protocols, use probabilistic homomorphic encryption
and re-encryption to ensure universal verifiability and unlinkability of ballots
(through decryption of a product of encrypted votes) [5,11,20,10], which natu-
rally lends itself to threshold cryptography, affording us a greater level of assur-
ance against corrupted talliers. These protocols require, for remote voting, that
the voter is not observed at the “very moment of voting” [22].

We note that any protocol providing a list of voters’ identities with encrypted
ballots could provide revocable anonymity, given the collusion of all parties
needed to perform decryption. However, such a list clearly evidences the fact
that a voter has voted successfully. [20] and implementations thereof [10] involve

True Trustworthy Elections: Remote Electronic Voting 189

talliers only keeping a list of votes at the end of the election (discarding the
previous stage’s encrypted credentials), thus severing the direct link between
voter and vote. Not only does the protocol itself use several inefficient, expen-
sive Plaintext Equivalence Tests throughout, but revocation of anonymity would
require a further PET between the credential supplied with a vote and every cre-
dential on the voter list, followed by a collusion with the registrar. [22] would
allow for revocation, but subject to collusion of the administrator, the entire
mix and n talliers. The nature of usage of the bulletin board in the protocol also
suggests that full coercion-resistance is not possible, as the fact that Alice has
voted is plainly visible. Prêt à Voter [27] and similar schemes do not offer revoca-
tion at all, since Alice’s choice of ballot paper is random, and as any identifying
information is destroyed (by Alice), she cannot be linked to her ballot.

Revocable anonymity is a concept which has been considered at great length
in other fields, such as digital cash [18,21]. In digital cash, it is particularly
important that it should be possible to both link an electronic coin to the person
who spent it once the transaction has occurred, and link a person’s identity to
all coins available to him. One manner in which this can be done is to encode
an encrypted copy of the coin owner’s identity into every coin. Requiring two or
more parties to perform encryption, including a judge [18], ensures that a user’s
anonymity will not be revoked unless there is sufficient legal cause. In our work,
we protect the voter’s identity using a similar mechanism.

In [30], we present a coercion-free remote electronic voting protocol which
permits the voter to vote anonymously, whilst maintaining coercion-resistance
and voter verifiability, and the ability to revoke her anonymity should the need
arise. One of the shortcomings of the protocol is that it requires a certain level
of trust in the first set of talliers (viz., that T1 does not reveal the link between
a ballot and its reencryption, only encrypts Alice’s identity correctly, and only
posts valid ballots to the bulletin board), in order to assure that collaboration
between both tallier sets could result in Alice being linked to her ballot only with
the cooperation of a judge. The authors also assumed that the platform the Alice
voted from was always trustworthy (as is common in remote voting).

It is possible to reduce the amount of trust required in the talliers if we reduce
the amount of information that needs to be kept private. [30] also makes no use
of Trusted Computing or the TPM: this limits the amount of trust that can be
placed in any remote client. In our work, we present a new approach, which uses
the TPM to enhance the trustworthiness of clients, further reducing the need for
trust in the talliers.

1.2 Our Contribution

In this work, we introduce the first practical work on a remote electronic voting
protocol which uses trusted computing (specifically, the TPM and Direct Anony-
mous Attestation protocol). As we have already mentioned, a number of existing
works discuss the applicability of trusted computing and the TPM to electronic
voting. We are the first to extend this to remote electronic voting whilst also
providing a detailed protocol to do so, leading to several contributions:

190 M. Smart and E. Ritter

– A remote voting protocol allowing authorities to be convinced of the state
of the voter’s machine, and allowing anonymity revocation via the TPM

– A protocol allowing Alice to remain anonymous, whilst satisfying her eligi-
bility to vote via a novel use of the DAA protocol

– An extension to the protocol allowing a voter to be traced to her vote, should
the legal need arise, but only with the co-operation of a judge.

Protocol Schema. We present a three-phase protocol, where voters do not
need to synchronise between phases. In the first phase, our legitimate voter,
Alice, registers in person to vote, In the next phase, she and her trusted plat-
form module (TPM) execute the DAA Join protocol [8] and receive a certificate
proving her eligibility to vote (the certificate is split into three parts, divided
between Alice and her TPM).

In the final phase, Alice and her TPM execute the DAA Sign protocol in order
to complete her vote, which is sent as an ElGamal encryption with a proof of its
validity. Voting authorities execute the DAA Verify protocol, after which Alice’s
vote is re-encrypted, and she receives back a designated verifier proof of that
re-encryption. Should Alice need to, she can request assistance from the Judge.

1.3 Structure

In §2, we define a number of preliminaries, and a number of primitives we make
use of. In §3, we give the participants, trust model and threat model for our
work. In §4 we present our protocol, and we give a brief list of the requirements
that we have satisfied in §5. Finally we conclude.

2 Preliminaries

In this paper, we assume the availability of the following cryptographic prim-
itives and protocols. Note that, like many papers in the field which adopt a
standard Dolev-Yao model, we make the assumption that the cryptography in
the primitives below is perfect.

2.1 Trusted Computing

A trusted computer is one that, through the use of a trusted platform module
(TPM), and other technologies such as memory curtaining, sealed storage and
remote attestation, removes reliance on the end user to prove that his computer
is secure. The benefits of its use for remote applications requiring secure infor-
mation flow and data handling are clear.

In the field of remote electronic voting (that is, voting from any internet-
connected terminal), for example, we might require that a user can only vote
from a machine that is running the correct voting software, for obvious reasons.

True Trustworthy Elections: Remote Electronic Voting 191

We could do this by providing each voter with a bootable operating system ‘live
CD’-type disc1.

However, we naturally still require that the voter using the trusted machine
remains anonymous, whilst still being able to demonstrate that the machine she
is voting from is trustworthy.

For brevity we do not elaborate on the structure of, or commands of the TPM
here. The reader is directed to [31] for further information. For our purposes, it
is sufficient to state that actions performed by the TPM are trustworthy.

Direct Anonymous Attestation. Attestation in our context is the notion
that some verifier wishes to be convinced that Alice is using a machine which
contains a valid, permitted TPM. Later, this TPM can prove that Alice’s machine
is running the correct software, while allowing Alice to remain anonymous.

Direct Anonymous Attestation (DAA) is the solution currently built into the
TPM specification. The protocol is complex, and we advise that the uninitiated
reader consult [8] for a full explanation. On a high level, DAA is split into three
sub-protocols: join, sign and verify. In the join protocol, a host and a TPM gain
attestation (a Camenisch-Lysyanskaya signature) on a secret value, chosen by
the TPM, demonstrating that the host’s machine contains a valid TPM.

In the sign protocol, the host and TPM use a proof of knowledge of this
attestation to anonymously prove that they gained this verification, possibly
attesting to the state of their machine in the process, and producing a DAA
Signature on some message (generally a key). This signature is verified in the
final stage of the protocol.

2.2 Threshold ElGamal Cryptosystem

For encryption of actual votes, we use an exponential ElGamal encryption
scheme under a q-order multiplicative subgroup Gq = 〈g〉 of Z∗

p, generated by
an element g ∈ Z

∗
p, where p and q are suitably large primes, and q|(p − 1). All

agents a in the protocol have a private key sa of which only they have knowl-
edge. Each agent has a corresponding public key ha = gsa where g is a known
generator of the subgroup. Public keys are common knowledge to all users. We
detail in §4 how votes are encrypted, but also note that we use {m}k to denote
encryption of m under key k, where the encryption scheme is unimportant. In
parts of our protocol, we use a (t, n)-threshold decryption scheme analogous to
that of [11], such that a majority t out of n key-share holders would have to
collude to decrypt. For brevity we do not discuss this here.

We have selected our cryptosystem for the voting section of our protocol be-
cause of the ease of tallying that a multiplicative homomorphic cryptosystem
provides. The use of an exponential encryption scheme permits simple tally-
ing, but requires the solving of a discrete logarithm. Of course, this becomes
1 We note that, as suggested by [13], security of any protocol that obtains software and

private keys from removable media is vulnerable to compromise. This issue can be
mitigated by having the TPM compare a publicly known signed hash of the intended
executable code with a hash the TPM itself generates. In fact, the user could make
this comparison.

192 M. Smart and E. Ritter

more difficult with increasing exponent size. With modern computing power
and methods such as the Index Calculus and Baby-step Giant-step algorithms
for computation of discrete logarithms, we do not see this to be an issue, but
it would also be possible to hold several smaller ‘regional’ elections, rather than
one large election, with our protocol to alleviate this problem. We also note that
alternative threshold cryptosystems, such as that of Paillier [24], could be used
for very large, country-wide elections.

2.3 Threshold Signature Scheme

In order to ensure that eligibility and uniqueness are always satisfied in our pro-
tocol, we employ a (t, n)−threshold signature scheme during the voting phase of
the protocol. A threshold signature scheme works in a similar way to a threshold
decryption scheme: of n possible talliers, t must collude to generate a signature
on a message. The scheme that we adopt is not of great consequence, but the one
used by [15] has good verification properties and fits in well with the exponential
ElGamal cryptosystem that we use.

2.4 Anonymous Channel

Due to the nature of our protocol, we require an anonymous, bidirectional chan-
nel, so that Alice can both send her vote anonymously, and receive proofs of her
vote having been counted. We note that standard mix networks are not designed
to receive replies, but onion routing-based networks are [12].

2.5 Strong Designated Verifier Signature Scheme

We adopt the designated verifier signature scheme of [28] due to its efficient
nature, but others would be acceptable. We use designated verifier signatures
to enable a prover (Bob, or any one of the first-round talliers in our case) to
prove a statement to a verifier (Alice) by proving the validity of a signature.
However, Alice is unable to prove the signature’s validity to anyone else, on the
grounds that she could have produced it herself [28, p. 43]. For brevity we do
not discuss the scheme here, but direct the reader to [28] instead. We denote
by DVSigna→b(m) a designated verifier signature on a message m produced by
party a and intended for reading by party b.

2.6 Proof of Equality of Discrete Logarithms

In order to prevent an attack in our voting scheme (voting for several candidates
or for one candidate multiple times with the same ballot), we require that the
voter demonstrates to a verifier that her vote is of the correct form (without
revealing what the vote is).

A voter’s vote is of the form (x, y) = (gα, hα
Tv

gMi−1
) where α ∈R Zq, M is the

maximum number of voters and i represents the position in the list of candidates
of the voter’s chosen candidate. Alice needs to prove, in zero knowledge, that she
is sending to the bulletin board some value for y where the exponent of g is in

True Trustworthy Elections: Remote Electronic Voting 193

{M0, . . . , ML−1} where L is the number of candidates. If we did not have such
a proof, any voter could spoil the election by adding spurious coefficients to the
exponent, thereby voting several times.

We adopt our Generalised Proof of Equality of Discrete Logarithms (G-
PEQDL) scheme [30, pp. 43-44] in order for Alice to provide such a proof (with
the small change that the challenge value c is formed using Alice’s TPM’s public
AIK, rather than hAlice), and refer the reader to this paper.

2.7 Designated Verifier Re-encryption Proofs

The properties of the ElGamal encryption scheme allow re-encryption (randomi-
sation) of ciphertexts. Given a ciphertext (x, y), another agent is able to generate
a re-encryption (xf , yf) = (xgβ , yhβ), where β ∈R Z

∗
q .

In our protocol, we use an ElGamal re-encryption to preserve the voter’s
anonymity. However, the voter needs to have some conviction that her vote has
been counted (individual verifiability). We achieve this via a Designated Verifier
Re-encryption Proof (DVRP) based on a fresh keypair that Alice selects: such
a proof convinces Alice that a given re-encrypted ciphertext is equivalent to
that she generated, whilst not convincing any third party. We adopt the scheme
used by [22,16], such that the prover, P (the agent that does the re-encryption)
demonstrates to Alice that (xf , yf) is equivalent to (x, y) in such a manner that
the original message is not revealed, and this proof cannot convince any other
entity. The reader is directed to the above papers for more details.

3 Protocol Model

3.1 Participants

Our protocol is modelled with four kinds of participants. All participants are
able to communicate via a network, which is not untappable.

– Voters. The protocol allows M voters vi ∈ {v0, v1, . . . , vM−1} to vote. Alice
is an honest voter who wishes to vote anonymously. She can vote an unlimited
number of times, but must be able to vote once unobserved.

– Administrator. The (in-person) administrator A is a single entity, respon-
sible for ensuring that Alice receives a random number of paper validity cards
containing validity tokens δj . We expand upon this in the next section. A
is responsible for identifying Alice, but not for determining her eligibility to
vote.

– Registrar. The registrar R is a single agent, possessing a secret key sR.
Note that we assume a bottleneck will not occur here, but we could equally
use a group of identical registrar agents to mitigate such a problem.
The registrar is responsible for ensuring, via the DAA Join protocol, that
Alice is eligible to vote, and has not attempted to register already. The reg-
istrar will send Alice a voter group membership certificate, with which she
can prove to the talliers that her vote is permitted.

194 M. Smart and E. Ritter

– Talliers. The talliers, T = {T1, . . . ,Tn}, are a group of agents (disjoint from
R) who authorise the addition of each submitted ballot to the bulletin board,
via the DAA sign and verify protocols. Each tallier has a copy of a secret key
sT, with which he determines the validity of votes, and a share of a secret
key sTv , with which he collaborates with a quorum of T in order to decrypt
the end tally, once the election is finished. These keys are unrelated—we use
them to ensure that no single tallier has access to an individual vote. T are
also responsible for re-encrypting votes, and sending proof of this to Alice.

3.2 Trust Model

We make the following assumptions in our protocol:

1. The TPM and the manufacturers of the TPM (the root of trust), are trusted
to behave as intended by the protocol

2. All parties trust that T will not reveal the link between a ballot (x, y) and
its re-encryption (xf , yf)

3. All voters trust that the validity of any given δ value will not be revealed by
A, except to members of T via a designated verifier signature

4. All parties trust that each voter will only be permitted to submit one validity
card to the secured box for each election

5. All parties trust that R will not issue group membership certificates to inel-
igible voters, and will only do so once for eligible voters

6. All participants trust that the Judge will only authorise revocation of
anonymity in appropriate circumstances

7. Alice trusts the Judge to honestly state whether votes have been counted

3.3 Threat Model

We now consider the potential threats that could affect our protocol, based on
the attacker’s capabilities. We address how these threats are managed in §4.
Note that, as mentioned earlier, we assume perfect cryptography.
In our protocol, the attacker can assume the role of any entity, except the Judge
or A. He is able to corrupt up to t − 1 talliers where collusion is required to
decrypt messages (and t is the threshold size for that quorum). All channels are
public (the mix network is tappable, but anonymous), so the attacker can:

1. Read and intercept messages
2. Decrypt and read any message m, subject to having the correct decryption

key s for an encrypted message (gα, gαsm)
3. Inject bad ballots in the voting phase, and spurious messages generally
4. Temporarily block messages (although we assume resilient channels for live-

ness)

True Trustworthy Elections: Remote Electronic Voting 195

4 Protocol

Our protocol has three stages. Diagrams, where necessary, are given in Figures 1,
2 and 3. We use a number of TPM commands in our protocol: these are denoted
as such. We do not modify the TPM API in any way.

In-Person Registration (Fig 1). In order to begin voting, Alice first has to
apply in person to vote, with the administrator A. This can be at any point before
the election. Once her identity is confirmed by A, Alice is observed selecting a
number, r, of validity cards from a box. r is generated randomly by A when
Alice’s identity is confirmed. These cards are pieces of paper with a perforation
down the middle, and the same value δj : j ∈ {0, . . . , r − 1} printed on each
side. Alice selects (mentally) one of the cards, whose δ value, δA, will denote her
intended vote. She separates the card along the perforation, and places half of it
into a secure box, retaining the other half. The bin must be designed to accept
only one card per voter. Note that Alice does not need to bring any device (viz.,
the machine containing her TPM) with her: she merely needs to select cards.

With the remaining cards, Alice separates each card and places one half of
each card into a shredder. Again, we must ensure that Alice destroys half of each
validity card that she has not chosen to denote her intended vote.

Alice leaves in-person registration with several halves of validity cards. She
has a mental note of which is valid (and could, in fact, discard or hide that one),
but cannot prove which is valid to any observer. As she took a random number
of cards, an observer cannot force her to vote once with every card she selected.
Note that only A has access to the secure box, and that the voter has no way to
prove how many cards she selected.

129af3

674a3c

a7cd39

571fb1

129af3

674a3c

571fb1

a7cd39

129af3

674a3c

571fb1

a7cd39
a7cd39

571fb1

674a3c

Shredder/Bin

“Valid” Box

Voter vi

129af3

.

.

.
.
.
.

.

.

.

Selected Validity Card

Discarded Validity Cards

Fig. 1. In Person Registration

We note that our approach to voter registration is unconventional for a remote
voting scheme. However, it removes the unrealistic requirement for an electronic
untappable channel to the administrator (like that suggested by [10]), instead
using a physical registration in which the voter can take part at any time before
the election. This approach is clearly also more “user-friendly”. Our design con-
siderably reduces the trust we need to place in A (he now only knows which δ
values are valid, not for whom, so we need only ensure that he does not release
this information).

196 M. Smart and E. Ritter

Join. Alice and her TPM, TPMAlice, execute the DAA Join protocol: this is as
with the DAA Join protocol [8], and so we do not provide a diagram to represent
it. The only change that we make is that, before issuing a certificate to a voter,
the registrar R must ensure that said voter is eligible to vote. The communi-
cation channel with R does not need to be anonymous. We however adopt the
requirement of [8] that the channel must be ‘authentic’ between TPMAlice and R:
i.e., the registrar must be sure that it is communicating with the correct TPM.
Such authenticity can be achieved using the TPM’s endorsement key (EK) for
initial communications [8].

The product of the Join protocol is a membership certificate generated by
R. With this certificate, Alice can prove that she is a member of the group of
legitimate voters, and is therefore allowed to vote. She will have registered using
a unique pseudonym, and will use a different pseudonym to vote, making her
registration and voting unlinkable. We refer to [8] for more detail.

Voting (Fig 2). The protocol by which Alice and her TPM vote is shown in
Figure 2. If we assume that Alice can be tracked by an attacker with a global
view of the network (and thus, the ability to see the IP address Alice votes from),
then we must use an anonymous channel to preserve Alice’s coercion-resistance
and privacy.

First, we begin with an execution of the DAA Sign protocol (denoted as such
in Figure 2—again, we omit the detail of the DAA Sign protocol for brevity, and
refer the reader to [8] instead).

The outcome of the Sign protocol is a signature σ which convinces the talliers
T that Alice’s machine contains a TPM, and that she is a certified, eligible
member of the voters group. Alice’s TPM generates an attestation identity key
AIKAlice which is sent to T as part of the DAA signature, and will be used to
prove authenticity of later messages. Note that this AIK is not linkable to Alice
in any way, and the communication with T is similarly unlinkable [8].

With the Sign protocol complete, T can then query Alice’s TPM as to the state
of her machine. To do this, any member Ti of T begins an encrypted transport
session between itself and Alice’s TPM directly (note that Alice does not see the
result of any transactions that occur here). Ti selects a challenge nonce cv, and
requests a hash of the current state of the TPM’s registers, using the command
TPM QUOTE, and including the challenge. The TPM responds with the appropriate
data. If Ti is satisfied that the machine is in the correct state, it requests that
the TPM create a new keypair, bound to the correct TPM register (PCR) states.
This means that, when a decryption is needed using this key, it can only occur
if the TPM’s PCRs are in the correct state. We denote the handle of this key as
kA, and note that the key is asymmetric, the private part being accessible only
to the TPM.

Next, Alice generates a fresh ElGamal keypair, (sv, hv = gsv). She then sends
a message votetoken to T. votetoken contains Alice’s vote, in the form of an
exponential ElGamal encryption (x, y) = (gα, hα

Tv
gMi−1

), where she is selecting
the ith candidate, her chosen δA value (should she be voting according to her
own wishes) or any other δ value (if she is being coerced), the public part of the

True Trustworthy Elections: Remote Electronic Voting 197

aforementioned key hv, and the G-PEQDL proof that her vote is for one valid
candidate only. The tallier Tk that receives Alice’s vote now checks whether it
was sent under coercion. To do this, he sends δ, signT(δ) to A. A checks whether
the δ value received is in the secure box, and if so, sends a correct designated
verifier signature of the value, DVSignA→Tk

(δ). If the δ value is not found in the
box (meaning Alice sent a vote under coercion), an incorrect designated verifier
signature is returned to T. Again, only Tk can determine this, and cannot prove
this fact to an observer.

Once Alice’s vote is determined to be non-coerced, her G-PEQDL proof is
checked by Tk. If this is invalid, her vote is discarded. If the G-PEQDL is correct,
Alice’s vote is re-encrypted using a re-encryption factor β ∈R Zq. If her vote was
not coerced, Alice is sent a tuple of designated verifier proofs of re-encryption
(DVRPs), produced using the public key hv Alice generated earlier. One of these
is valid for Alice’s re-encrypted vote; the others are valid for other votes already
on the bulletin board2. Each DVRP is separately encrypted using the public
part of the key kA which Alice’s TPM generated. This means that Alice is free to
have her machine generate re-encryption proofs herself (the nature of the proof
is such that the entity for whom the proof is designated can use her private
key—sv in this case—to generate further DVRPs), to fool coercers.

The re-encrypted (xf , yf) is sent to a threshold of talliers in T, along with
the re-encryption factor and the G-PEQDL proof. If that threshold agree, they
jointly generate a signature on (xf , yf), and the vote and its signature are placed
on the bulletin board.

If Alice’s vote was coerced, she is sent several DVRPs as before. However,
this time, Tk produces DVRPs based on re-encryptions of votes on the bulletin
board that were not Alice’s. Note that the DVRPs Alice receives use a key which
she freshly generated (to prevent her being identified). Each DVRP is encrypted
with a key for which only Alice’s TPM has the private part. As a consequence,
Alice needs to load the correct key into the TPM (using TPM LoadKey2), and
then requests the TPM to decrypt each DVRP ciphertext, using TPM UnSeal.

At this point, it should be noted that the keypair kA generated by the TPM
was bound to a certain set of PCR states. If this set of states is not in place at
the time of DVRP decryption with TPM UnSeal, decryption cannot occur. This
ensures not only that Alice still uses the same TPM, but also that no rogue
software is executed after Alice casts her vote.

Alice can then check to see if any one of the DVRPs represent valid re-
encryptions, checking the bulletin board. Note that every re-encryption will be
on the bulletin board, but only Alice can be convinced that any vote is hers. If
she does not find her vote, Alice may contact the Judge, who will contact T. The
Judge may further allow Alice to vote again, under his supervision.

When voting is complete, the product of all encrypted votes is calculated by
T as (X, Y) = (

∏l
j=1 xfj ,

∏l
j=1 yfj). This product is calculable by any observer.

2 Vote submissions are batched so that there are always enough votes on the bulletin
board to do this: talliers can agree a policy beforehand as to how the first few votes
are posted.

198 M. Smart and E. Ritter

The final tally is calculated by a quorum (size t) of T colluding to decrypt this
product, giving gr1M0+r2M1+...+rLML−1

, and r1, . . . , rL as the final tally. Note
that since every vote is threshold-signed on the bulletin board, observers are
convinced that every vote is genuine.

Encrypted Transport Session

TPM Quote(...,externalData=cv ,...)

TPM CreateWrapKey(binding,PCR INFO,kA,...)

δA

Verify G-PEQDL

Verify sig and registers

If δA valid:

DVSignA→T(δA)

Post to BB

(xf , yf) = (xgβ, yhβ)

Get threshold signature

anon. channel

counttoken‡

votetoken†

DVRPi

k times:

Generate fresh keypair

(sv, hv = gsv)

‡ : counttoken = 〈kA, {DVRP0}kA
, . . . , {DVRPk}kA

〉, one valid for hv if δA correct

† : votetoken = 〈(x, y) = (gα, hα
Tv

gMi−1
), G − PEQDL, hv , δA〉

TPM LoadKey2(kA ,...)

DAA Sign

TPMAlice Alice Talliers (T) Administrator (A)

σ – signature on AIKAlice

New cv challenge

Verify σ on AIKAlice
Check if this pseudonym
has voted

TPM UnSeal({DVRPi}kA
,...,kA)

Fig. 2. The Voting Protocol vote1 (without revocable anonymity). Ellipses suggest
standard uses of unchanged TPM commands: only salient parameters are given.

Anonymity Revocation (Fig 3). In [30], we introduced the notion of re-
vocable anonymity in electronic voting: i.e., that a voter could be linked to his
ballot when this link was authorised by a Judge. Being able to link a voter to
his/her ballot is a legal requirement in the United Kingdom.

The changes that we make to the protocol in Figure 2 in order to provide
revocable anonymity are quite simple. We begin with a small change to the
registration protocol. Once the DAA Join part of the protocol is complete, the
registrar R sends Alice an encryption of her ID with the Judge’s public key,
id = {id}Judge. R also sends a signature of this encryption, SignR(id) to Alice.

The voting protocol completes the DAA Sign protocol as before. Alice then
sends the encryption and signature thereof to T, who verify the signature and
store the ciphertext. She then extends a TPM PCR with the value of id using
TPM Extend (this is equivalent to hashing the current value of the chosen register,
concatenated with id). T can ensure Alice has done this, by ensuring that the
value received from TPM Quote is that which would be expected for a correct
machine state concatenated with the encrypted ID value.

True Trustworthy Elections: Remote Electronic Voting 199

Voting then proceeds as normal: Alice’s identity is re-encrypted by T and
printed on the bulletin board next to her vote. Should revocation be required, a
member Tk of T sends the tuple id to the Judge, along with appropriate evidence
justifying revocation. The Judge is then free to revoke Alice’s anonymity and take
further action against her. Note that in order to preserve Alice’s anonymity, we
add a trust requirement that R does not collude with T to reveal Alice’s identity,
and always provides the correct identity for a voter (since R is trusted to perform
the DAA Join protocol correctly, this is not a large increase in trust). Note that
Alice could later contact the Judge to determine whether her anonymity had been
revoked or not. This does not, to us, constitute full auditability, as Alice needs
to contact a third party to audit her vote. We discuss approaches to achieving
auditable revocable anonymity in the conclusion.

AliceTPMAlice Talliers (T) Administrator (A)

Encrypted Transport Session

TPM Quote(...,cv ,...)

TPM CreateWrapKey(binding,PCR INFO,kA,...)

TPM Extend({id}Judge) Verify signature, store

{id}Judge, SignR({id}Judge)

Generate fresh keypair

votetoken†
δA

counttoken‡

Verify sig and registers

If δA valid:

DVSignA→T(δA)

(xf , yf) = (xgβ , yhβ)

Re-encrypt id → id
′

Get threshold signature

anon. channel

DVRPi

Verify G-PEQDL

k times:

Post (xf , yf , id
′
), sig to BB

† : votetoken = 〈(x, y) = (gα, hα
Tv

gMi−1
), G − PEQDL, δA, hv〉

(sv , hv = gsv)

TPM UnSeal({DVRPi}kA
. . .)

Fig. 3. Changes to the Voting Protocol vote2 (with revocable anonymity)

5 Protocol Properties

For brevity, we do not go into detail about the properties achieved by this pro-
tocol (we aim to include a detailed, formal verification in a future version of this
work). The protocol satisfies the following requirements:

– Coercion-Resistance. Voters cannot prove how they are voting, even if in-
teracting with the voter during voting. The protocol prevents a coercer from
determining even if a voter has voted, even when the coercer is physically
present

– Verifiability. The protocol allows voters to determine that their vote was
counted (individual verifiability), and allows all observers to determine that

200 M. Smart and E. Ritter

the tally accurately represents all cast votes (universal verifiability). The
ability to verify that one’s vote is counted as cast is generally considered
contradictory to one’s vote being private (voter privacy) and being unable
to prove how one is voting (coercion-resistance).

– Fairness. No-one gains any information about the tally until the end of the
voting process.

– Voter Privacy. No participant can link a voter to their ballot, unless the
revocation protocol has been invoked:
• Revocable Anonymity. An authorised entity (or collection thereof)

can link a voter to her ballot.
– Remote Voting. Voters are not restricted by physical location, providing

they have a computer with a TPM and Internet access.

6 Conclusions and Future Work

We have presented an electronic voting protocol providing what the first scheme
that uses trusted computing to guarantee the security of the remote voter’s ma-
chine, whilst also allowing the voter coercion-free remote voting and verifiability,
as well as legitimate-voter privacy, and enabling authorities to revoke a voter’s
anonymity under certain circumstances. Further, the remote nature of our proto-
col allows voters to cast their votes from any computer with a TPM even with a
physically present coercer, providing they can vote unobserved once (a minimal
requirement, as otherwise a coercer could always simulate the voter, or trivially
suppress her ability to vote).

In the form described in protocol vote2, our protocol does not permit genuine
auditable revocable anonymity. In an ideal scenario, we would like to supply T

with a ‘sealed envelope’ containing Alice’s identity. If the envelope is opened, Alice
can see this later. A simple solution involves Alice remaining online throughout
the election, her own TPM encrypting and decrypting her identity. In this man-
ner, the TPM would know when Alice’s identity was traced, and could inform
Alice. If Alice wished for her vote to be counted, she would leave her machine
on, rather than risk her TPM being unreachable. Of course, the problem is that
a rogue Alice would rather risk turning her machine off and having her vote un-
counted than being imprisoned for voting fraud. For us, this is not an acceptable
implementation of auditability, and hence we leave this to future work. We note
that preliminary work on the ‘digital sealed envelope’ problem has been recently
considered by [1]. Our next step will be to build a prototype implementation of
this work in Java, beginning with a TPM simulator.

References

1. Ables, K., Ryan, M.D.: Escrowed data and the digital envelope. In: Acquisti, A.,
Smith, S.W., Sadeghi, A.-R. (eds.) TRUST 2010. LNCS, vol. 6101, pp. 246–256.
Springer, Heidelberg (2010)

True Trustworthy Elections: Remote Electronic Voting 201

2. Alkassar, A., Sadeghi, A.R., Schultz, S., Volkamer, M.: Towards Trustworthy On-
line Voting. In: Proceedings WISSec 2006 (2006)

3. Arbaugh, W.A.: The Real Risk of Digital Voting? Computer 37(12), 124–125 (2004)

4. Balfe, S., Lakhani, A.D., Paterson, K.G.: Trusted Computing: Providing Security
for Peer-to-Peer Networks. In: Proceedings of Fifth IEEE Conference on Peer-to-
Peer Computing, pp. 117–124. IEEE, Los Alamitos (2005)

5. Benaloh, J., Tuinstra, D.: Receipt-Free Secret-Ballot Elections (Extended Ab-
stract). In: Proceedings of 26th ACM Symposium on the Theory of Computing,
pp. 544–553. ACM, Montreal (1994)

6. Blackburn, R.: The Electoral System in Britain. Macmillan, London (1995)

7. Boneh, D., Golle, P.: Almost Entirely Correct Mixing with Applications to Voting.
In: Proceedings of CCS 2002, pp. 68–77. ACM, Washington DC (2002)

8. Brickell, E., Camenisch, J., Chen, L.: Direct Anonymous Attestation. In: Proceed-
ings of CCS 2004, pp. 132–145. ACM, New York (2004)

9. Challener, D., Yoder, K., Catherman, R., Safford, D., Doorn, L.V.: A Practical
Guide to Trusted Computing. IBM Press, Boston (2008)

10. Clarkson, M.R., Chong, S., Myers, A.C.: Civitas: Toward a Secure Voting System.
In: Proceedings of 2008 IEEE Symposium on Security and Privacy, pp. 354–368.
IEEE, Los Alamitos (2008)

11. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient
multi-authority election scheme. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 103–118. Springer, Heidelberg (1997)

12. Dingledine, R., Mathewson, N., Syverson, P.: Tor: the second-generation onion
router. In: SSYM 2004: Proceedings of 13th USENIX Security Symposium, pp.
21–38. USENIX Association (2004)

13. Fink, R.A., Sherman, A.T., Carback, R.: TPM meets DRE: reducing the trust
base for electronic voting using trusted platform modules. IEEE Transactions on
Information Forensics and Security 4(4), 628–637 (2009)

14. Fujioka, A., Okamoto, T., Ohta, K.: A Practical Secret voting Scheme for Large
Scale Elections. In: Zheng, Y., Seberry, J. (eds.) AUSCRYPT 1992. LNCS, vol. 718,
pp. 244–251. Springer, Heidelberg (1993)

15. Harn, L.: Group-Oriented (t, n) Threshold Digital Signature Scheme and Digital
Multisignature. In: IEE Proceedings—Computers and Digital Techniques, vol. 141,
pp. 307–313 (1994)

16. Hirt, M., Sako, K.: Efficient receipt-free voting based on homomorphic encryption.
In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 539–556. Springer,
Heidelberg (2000)

17. Jakobsson, M., Juels, A., Rivest, R.L.: Making Mix Nets Robust for Electronic
Voting by Randomised Partial Checking. In: Proceedings of 11th USENIX Security
Symposium, pp. 339–353. USENIX Assoc., Berkeley (2002)

18. Jakobsson, M., Yung, M.: Revokable and Versatile Electronic Money (Extended
Abstract). In: Proceedings of CCS 1996, pp. 76–87. ACM Press, New York (1996)

19. Jorba, A.R., Ruiz, J.A.O., Brown, P.: Advanced Security to Enable Trustwor-
thy Electronic Voting. In: Proceedings of Third European Conference on E-
Government, EJEG, Dublin, Ireland (2003)

20. Juels, A., Catalano, D., Jakobsson, M.: Coercion-Resistant Electronic Elections.
In: Proceedings WPES 2005, pp. 61–70. ACM, New York (2005)

21. Kügler, D., Vogt, H.: Off-line Payments with Auditable Tracing. In: Blaze, M. (ed.)
FC 2002. LNCS, vol. 2357, pp. 269–281. Springer, Heidelberg (2003)

202 M. Smart and E. Ritter

22. Lee, B., Boyd, C., Kim, K., Yang, J., Yoo, S.: Providing receipt-freeness in
mixnet-based voting protocols. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS,
vol. 2971, pp. 245–258. Springer, Heidelberg (2004)

23. Okamoto, T.: Receipt-Free Electronic Voting Schemes for Large Scale Elections.
In: Christianson, B., Lomas, M. (eds.) Security Protocols 1997. LNCS, vol. 1361,
pp. 25–35. Springer, Heidelberg (1998)

24. Paillier, P.: Public-Key Cryptosystems Based on Discrete Logarithms Residues. In:
Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, p. 223. Springer, Heidelberg
(1999)

25. Paul, N., Tanenbaum, A.S.: Trustworthy Voting: From Machine to System. Com-
puter 42(5), 35–41 (2009)

26. Rössler, T., Leitold, H., Posch, R.: E-Voting: A Scalable Approach using XML and
Hardware Security Modules. In: Proceedings of 2005 IEEE International Confer-
ence on e-Technology, e-Commerce and e-Service, pp. 480–485. IEEE, Los Alamitos
(2005)

27. Ryan, P.Y., Schneider, S.: Prêt à voter with re-encryption mixes. In: Gollmann,
D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS, vol. 4189, pp. 313–326.
Springer, Heidelberg (2006)

28. Saeednia, S., Kremer, S., Markowitch, O.: An Efficient Strong Designated Verifier
Signature Scheme. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971,
pp. 40–54. Springer, Heidelberg (2004)

29. Sako, K., Kilian, J.: Receipt-free mix-type voting scheme. In: Guillou, L.C.,
Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 393–403.
Springer, Heidelberg (1995)

30. Smart, M., Ritter, E.: Remote electronic voting with revocable anonymity. In:
Prakash, A., Sen Gupta, I. (eds.) ICISS 2009. LNCS, vol. 5905, pp. 39–54. Springer,
Heidelberg (2009)

31. TCG: Trusted Computing Group: TPM Main: Parts 2 and 3, Version 1.2, Revision
116 (March 2011), http://bit.ly/camUwE

32. Volkamer, M., Alkassar, A., Sadeghi, A.R., Schulz, S.: Enabling the Application of
Open Systems like PCs for Online Voting. In: Proceedings of the 2006 Workshop
on Frontiers in Electronic Elections, FEE 2006 (2006)

http://bit.ly/camUwE

A Survey of Security Issues in Trust and

Reputation Systems for E-Commerce

Stefan Spitz and York Tüchelmann

Department of Electrical Engineering and Information Sciences
Research Group Integrated Information Systems

Ruhr-University Bochum, Germany
{stefan.spitz,york.tuechelmann}@iis.ruhr-uni-bochum.de

Abstract. Trust and reputation systems are always subject to attacks
if an adversary can gain a benefit in doing so. The list of different attacks
against them is extensive. Attacks like bad mouthing, newcomer, sybil,
collusion and many more are subject to current research. Some of them
present methods that allow to detect adversarial behaviour, hence pro-
viding protection against attacks. However, smart adversaries will adapt
their behaviour strategies to the existing protection mechanisms and by-
pass some of the security methods.

In this paper, we discuss the options available to adversaries for
achieving their goal: Gaining a benefit. For this, we analyse the well-
known attacks and propose security methods which provide resistance
or immunity against them at any time, hence independently from the
cleverness or strategy of adversaries. Our second focus is to elaborate
on the problem of reliably identifying an adversary amongst transacting
participants and its influence on possible security methods.

Keywords: Trust model, adversary, security methods.

1 Introduction

Today’s trust and reputation systems are widely used in the field of ecommerce.
These systems are based on trust and reputation models with diverse mathe-
matical approaches. The management of memberships and presentation of trust
and reputation relations is usually the task of a trusted third party (TTP) in
centralized systems. In the absence of a TTP, each member is responsible for
managing the trust and reputation presentation by itself. This situation occurs
in fully decentralized systems.

Rating based models represent the most commonly used basis for trust and
reputation systems. They are used in ecommerce platforms such as eBay, amazon
and many other online market or product review sites. More refined approaches
such as Bayesian probability, fuzzy logic or models based on discrete values do
exist, but have not yet been included widely in commercial systems. This is
probably due to the fact that these models are too inconvenient to use for the
average customer. One approach to lessen this inconvenience is given by Ries
[10] providing a visualization for these customers.

J.M. Alcaraz Calero et al. (Eds.): ATC 2011, LNCS 6906, pp. 203–214, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

204 S. Spitz and Y. Tüchelmann

Some researchers [15], [3], [4], [14] included methods in their models to detect
adversarial behaviour which did provide some form of protection against one
or several attacks influencing the reputation of other members. These methods
are based on discounting. Here, opinions of members which do not match the
predominant opinion within the trust system are either ignored or reduced in
their significance.

In our opinion, this should not happen because it is almost impossible to ver-
ify whether the discounted opinion is from an adversary or honest member. For
example, in [15] fair ratings for flat panel tv’s were used as basis for the evalu-
ation. 50 adversaries were tasked to boost two flat panel ratings while reducing
the rating of two others. The results showed, that the adversaries were identified
and their influence on the ratings was neglegible. The problem is, that in another
scenario the previous adversaries might now be honest raters. The result will be
the exact same if we just switch the description ”honest rater” with ”adversary”.
Now, honest raters will be identified as adversaries.

Many security methods only work if the assumption is correct about who the
adversary and who the honest member is. Consider two members, each rating a
product. The rating of member A is high, stating that all expectations are met
or surpassed. Member B gives a low rating, stating that the product is faulty and
has a bad quality. If previous ratings of other members were high, then member
B’s rating could be considered malicious. With low previous ratings, member
A might be identified as an adversary, damaging the reputation of the product
or manufacturer. However, both members’ ratings could be justified. Member A
received a product which was perfectly fine, while member B was less lucky. The
product had several manufactoring errors.

Without information about the complete transaction, communication and
evaluation process, a correct decision about which member is the adversary is
almost impossible. It is due to this problem that we advise that all opinions
should be accepted as given. In this paper, we identify security methods which
do accept all opinions without reducing their influence based on assumptions
regarding malicious behavior.

2 Adversarial Goals

The prime goal of an adversary is to gain a benefit. Without benefit, there is no
intention to attack members of a trust and reputation system or the system as
a whole. This benefit can be diverse, depending on the intention of the adver-
sary. We will analyse two main adversarial goals with different benefits for the
adversary.

2.1 Exploit Victim

The most obvious adversarial goal is the exploitation of another member, the
victim PV ic. The benefit for an adversary PAdv in exploiting PV ic depends on
the application the trust system is used for. In the field of online auctioning,

A Survey of Security Issues in Trust and Reputation Systems 205

the goal might be to convince PV ic in buying something from PAdv. As soon as
the money transfer is executed, PAdv disappears without sending the auctioned
item. As provider of a cloud or grid, PAdv builds a high reputation first and
collects as much information as possible regarding the jobs from the customers.
Then PAdv sells these informations to other companies with a high profit.

Of course, many more possibilities to gain a benefit exist like first selling
products using high quality resources to build up the reputation, then substitute
the high quality resources with less expensive ones.

2.2 Destroy Victim Reputation

The incentive behind the destruction of a victim’s reputation is given, if the
victim offers the same goods as the adversary. This adversarial goal targets the
competitors with the intention to lessen their reputation, consequently luring
customers to PAdv’s store. The effect of a good or bad reputation on sales in
ecommerce is assessed in several papers ([2,1,8,9]). To negatively influence the
victim’s reputation, PAdv needs to sow discontent among the victim’s customers
throughout the trust system. That is, distributing false accusations about the
victim’s products. If done right, the reputation of the competitor slowly de-
clines and finally presenting PAdv as a viable, and of course more trustworthy
alternative.

In the upcoming sections we will identify means to pursue these goals. We
do this by analysing attacks against trust and reputation systems as well as
identifying protection mechanisms countering these attacks.

3 Attack Strategies

For the threat analysis of well-known attacks we need an adversarial model that
defines which tools are available for achieving the adversarial goal.

– An adversary is a valid member of the system and only has access to tools
or functions which are available for any other member as well.

– A third party is not able to distinguish between an adversary and a honest
member if the adversary did not already misuse the system to gain a benefit.

– The opinion of a member, be it an adversary or not, can’t be questioned
without full access to all aspects of the regarding transaction including the
evaluation process of a transaction.

– The communication channels between members are secure. Messages can not
be modified, redirected or intercepted.

– Adversaries may cooperate with each other to increase the effect of an attack
(collusion).

In a nutshell, an adversary is just like any other member of the trust and repu-
tation system but with a hidden agenda.

In the following, we introduce the attacks against trust and reputation systems
and analyse to which degree they help in achieving the adversarial goals.

206 S. Spitz and Y. Tüchelmann

3.1 Bad Mouthing (BM)

The bad mouthing attack is used to influence the reputation of another member
Pi. Independently from the outcome of a transaction between Pi and PAdv, a
trust value is assigned by the adversary which aids in attaining the adversarial
goal. This goal could be to either increase or descrease the reputation of Pi. In
the first case, Pi could be a colluding adversary while being the victim in the
second case. This unjustifiable opinion about the transaction is then distributed
to other members in the trust system.

Opinions are usually deemed to be subjective which makes is extremely hard
to identify an unfair opinion. Without access to all informations and influencing
factors regarding the transaction and the evaluation process, noticing this attack
reliably is impossible without further mechanisms in place.

3.2 Ballot-Stuffing (BS)

During a ballot-stuffing attack [7], a single adversary votes more often than al-
lowed. In a trust and reputation system, this means distributing multiple opin-
ions about the same member, even though no or only a single transaction between
Pi and PAdv took place. The value of the distributed opinion can vary, depending
on the intention of the adversary.

The ballot-stuffing attack is a stronger version of the bad mouthing attack,
due to the increased number of distributed opinions. If no countermeasures are
present, the influence on the reputation of Pi is only limited by the number of
opinions PAdv can distribute to other members.

3.3 Sybil (SY)

A trust and reputation system allowing the creation of member accounts without
identity verification is prone to the sybil attack [5]. The adversary is able to create
several valid member accounts, which are under full control of PAdv. If realizable,
the need for colluding adversaries is no longer given. The adversary can create
an own set of colluding adversaries which aid in achieving the adversarial goal.

3.4 Newcomer (NC)

A new member in a trust and reputation system, which did not yet transacted
with another member is a newcomer. No records about the new member exist
in the trust system. This is an ideal re-entry situation for any adversary which
currently is subject to a bad reputation. By simply closing the current account
and creating a new one, the previously bad reputation is cleared. This attack
is most efficient in trust systems where the initial trust value of a newcomer
is sufficiently high to be eligible to transact with other members. As soon as
the adversary’s trust level drops below the initial value of a newcomer, a new
account is created.

A Survey of Security Issues in Trust and Reputation Systems 207

3.5 On-Off (O2)

The on-off attack is a behaviour strategy against the trust model’s computation
algorithm. This attack exploits the model’s computation of a member’s repu-
tation in a way that an adversary behaves bad and good alternatively while
maintaining an average, unsuspicious level of trust. While behaving bad, the
adversary tries to benefit as much as possible. With good behaviour during a
transaction, i.e. providing a good service or high quality products, the adversary
increases his reputation which took a hit during the bad behaviour phase. Trust
models, where a bad transaction is compensated by a good transaction, are es-
pecially susceptible to this kind of attack. Here, an adversary can exploit his
victim during a transaction with high benefit, while compensating the resulting
bad opinion using a transaction with low benefit.

3.6 Conflicting Behaviour (CB)

The conflicting behaviour attack [12] is a modified version of the on-off attack.
An adversary executing this attack strategy behaves inconsistent towards several
members within the trust and reputation system. While transactions to member
subset S1 are performed well, transactions to another subset S2 are performed
bad. Consequently, members from S1 distribute good opinions regarding the
adversary, while members from S2 distribute bad opinions. Members from sub-
set S1 then receive bad opinions about the adversary, which do not match the
own opinion (and vice versa). This attack poses a threat, if recommendation
reputation is used in the trust model.

Recommendation Reputation is based on distributed opinions and the future
behaviour of a member. If the opinions and the behaviour regarding a target
member are consistent, the opinion distributing member’s recommendation rep-
utation rises, otherwise declines. The degree of the recommendation reputation
influences the weight of the opinions. The higher the recommendation reputation
of a member, the higher the weight of the member’s opinion.

The conflicting behaviour strategy aims at reducing the recommendation rep-
utation of members. In an ideal state for the adversary, the reputation recom-
mendation of member subset S1 perceived by subset S2 is low. If this state is
reached, another adversary joins the attack. Previously, this adversary behaved
correct to all members. If members are exploited by our new adversary PAdv,
the exploitation of members in subset S1 is nearly unnoticable in S2 (and vice
versa) because opinions from S1 have minimal impact on the reputation of PAdv

in S2.

4 Security Methods

We now discuss possible security methods for the aforementioned attacks and
exploits. For this, we assume that the opinions from seemingly honest members
are as influential as opinions from possible adversaries. This assumption is made,

208 S. Spitz and Y. Tüchelmann

because (as stated in Section 1) we think that it is impossible to reliably identify
adversaries only by analysing their distributed opinions.

Therefore, each distributed opinion influences the reputation of a member in
the same manner. The rough estimate is, that the influencial power is about

1∑
collected opinions .
The precise analysis of an opinion’s influence needs to be based on the mech-

anisms of the underlying trust model. For example, if opinions are weighted, a
higher or lower influence is possible. Due to the numerous trust models we will
use our rough estimate and refer to the influential power of a member’s opinion
as IP with IP ∈ N+, where IP = 1 represents the influence of a single opinion,
distributed within a trust and reputation system. For example, a system, which
is immune to the sybil attack will have an IP (SY) = 1. This means that any
member, including adversaries, can influence the reputation of a target member
only with an influential power of 1 opinion.

We will state the IP of opinions in regard to the existance and absence of
security methods.

4.1 Identity Verification

Identity verification allows a trust and reputation system to verify the identity
of members. It is a very strong countermeasure, providing the trust and repu-
tation system with immunity against the sybil attack and the newcomer attack.
Sybils can no longer be created by the adversary, as is true for more than one
account associated with an identity. This immunity is, however, bound to a cer-
tain requirement. The digital certificates which are used to verify the identity of
members need to be issued by a certified authority (CA) such as VeriSign (USA)
or AuthentiDate (Germany) with the following requirement. During the process
of creating the certificate, the certified person has to provide a passport to verify
the real identity. Hence, the real identity of a member is bound to the digital
certificate and verifiable by contacting the certified authority. Certificates, which
are not bound to the verification of the certified person’s real identity, provide
only minimal resistance against aforementioned attacks. An adversary could use
fake names or aliases to obtain several certificates which are used to create new
member accounts. Self-signed certificates are one example for insufficient pro-
tection against sybil or newcomer attacks.

The use of ID verification is not free. The costs for issuing a certificate varies,
depending on the CA. The verification process has to be included in the sys-
tem, resulting in additional costs and account maintenance. This could lead to
customers being put off by the extensive account creation process, reverting to
alternative systems without certificates.

However, the system will be immune to both the sybil and newcomer attack
(IP (SY) = IP (NC) = 1), as long as an adversary has no means to obtain
faked passports. Without identity verification, an adversary can gain access to an
unlimited number of fake accounts, hence the influential power of one adversary
is, in theory, unlimited (IP (SY) = IP (NC) = x), with x = number of fake
accounts controlled/created by an adversary.

A Survey of Security Issues in Trust and Reputation Systems 209

4.2 Member or Transaction Specific Opinion

Trust models like the one used in the eBay system are based on transaction
specific opinions. Each transaction within the trust and reputation system is
evaluated and the resulting opinion is distributed. In such a system, the reputa-
tion of a member is based on the total of all opinions regarding transactions with
this member. A monitoring instance is neccessary to prohibit the distribution
of opinions which are not related to real transactions. Otherwise, the number of
distributed opinions is theoretically unlimited, resulting in IP (BS) = x, with
x = the number of unjustly distributed opinions by the adversary.

The security issue of transaction specific opinions is, that a weaker type of
ballot-stuffing is possible even if a monitoring instance is present. Adversaries
which cooperate to increase the partner’s reputation transact with each other
several times. An opinion is distributed for each transaction, but without a
provided service. Except transaction fees (if used), no costs arise for the involved
adversaries in these empty transactions.

If the reputation of a member is not based on the number of transactions
but on the current opinions of members regarding the target member, ballot
stuffing is no longer possible. In this case, only one opinion from each member
is considered in the reputation computation process. The influence, which an
adversary can exert on the reputation of the victim, is reduced to that of a bad
mouthing attack, hence IP (BS) = 1.

Aging and Signatures. The effect of member specific opinions against a negative
badmouthing attack (reducing another member’s reputation) can be increased
if opinions are aged as presented in [11]. Instead of using the arrival rate of
experiences such as [6], [13] or [14] for the application of the aging factor, time
slots are used which continuously age them independently from the arrival rate.
This method can easily be used for distributed opinions of members. Current
opinions excert a stronger influence on the reputation of a certain member than
old opinions. If a transaction is made, the evaluating member can now update
his current opinion and distribute it to other members.

An additional technique needs to be used to reduce the effect of a negative
badmouthing attack. The transaction between two members needs to be signed
by both parties before being evaluated. In this case, the member distributing the
updated opinion is able to prove that a transaction took place. Otherwise, this
member would be able to continuously update the distributed opinions even if
there was no new transaction that justifies the update. Without prove of a new
transaction, the current opinion will now age over time. With this, the full influ-
ence of a negative badmouthing attack against another member is present only
for the time length of the first time slot (i.e. 1 week). A positive badmouthing
attack, on the other hand, is not limited by this because the two members can
collude and sign a non-existing transaction as often a needed.

210 S. Spitz and Y. Tüchelmann

4.3 Recommendation Reputation

A trust model that utilizes the recommendation reputation is susceptible to the
conflicting behaviour attack. Hence, without this trust modelling aspect, the
conflicting behaviour attack can not be used. So, the recommendation reputa-
tion, as used in [12], is not a security method against attacks, but a security
risk. In the mentioned model, the recommendation reputation is used to weight
opinions against each other. As described in 3.6, an adversary can exploit this
trust modelling aspect to sow recommendation distrust among the members of
the trust system.

However, recommendation reputation can be used differently to identify dis-
crepancies in distributed opinions. If repeated discrepancies between distributed
opinions about a target member and the real behavior appear, a third authority
is informed to examine and monitor the involved members. This includes the
target member as well as the members, which distributed the discrepant opin-
ions. In one case, the adversary might be the target member trying to exploit
someone, which is why distributed positive opinions do not match the current
behaviour. The opinion distributing members could be adversaries as well, try-
ing to damage the reputation of the target member. If future transactions are
to be monitored by a third authority, the adversary might be identified.

Recommendation reputation is no bad idea, but should be used as watchdog.
This allows for identifying discrepant behavior or opinions within the system
without influencing the weight of opinions in regard to the reputation of other
members. In this case, the influence of the conflicting behaviour attack on opin-
ions is non-existance, hence IP (CB) = 1.

4.4 Weighted Transaction Influence

Every transaction represents some form of value for the requestor and service
provider. The higher the value of a transaction, the more influential the outcome
should be. This weighting of a transaction result provides resistance against
exploitation. The adversary can no longer increase the own reputation by using
low-value transactions as fast as without weighted transactions. The low-value
transactions exert a reduced influence on the adversary’s reputation value, with
high-value transactions exerting an increased influence. Moreover, an adversary
that exploits a victim with a high-value transaction will be confronted with a
strong negative impact on the own reputation.

Ideally, the influence of low-value transactions is balanced against high-value
transactions. That is, for example, the processing of 10 positive transactions
with value of −1 for the adversary (hence +1 for the victim) is balanced against
1 negative transaction with value of +10 for the adversary (−10 for the victim).
If the adversary has to partake in 10 positive transactions before being able to
exploit the requestor with a bad transaction, then in our example, the adversary
has an effective transaction value of 0. If this transaction value translates into
a net profit of 0 USD, adversaries will be discouraged to exploit a victim, like
performed during the on-off attack.

A Survey of Security Issues in Trust and Reputation Systems 211

The resistance against exploitation is only given, if two conditions are met.
First, a trust and reputation system is used which monitors all transactions. In a
system without monitoring instance, each member needs to have a database stor-
ing the received opinions about other members as well as own experiences with
previous transaction partners. Received opinions, be they member or transaction
specific, need to be weighted equally because the weighted transaction influence
is based on the knowledge about the value of transactions. A member receiving
an opinion about another member does not have this knowledge. Even if dis-
tributed opinions include the value of the transactions that they are based on,
one can not be sure that the provided transaction values are correct. Adversaries
could easily fake the value of transactions without a monitoring instance. It is
therefore advisable to only use a weighted transaction influence if a monitoring
instance is present. In this case, all transactions can be weighted against each
other to compute a meaningful reputation.

Second, adversaries have no means to easily increase their reputation with
the help of sybils, ballot stuffing or colluding adversaries. If any of these were
possible, an adversary could partake in several empty but high value transactions
with the transaction partner. Now, increasing the reputation is done even faster
and with less transactions. Therefore, the use of a weighted transaction influence
is only advisable, if the sybil attack as well as ballot stuffing is not possible.
Furthermore, member based opinions should be used, to limit the influence of
colluding adversaries performing empty high value transactions.

4.5 Opinion Discounting

Some trust model authors identified the problem of bad mouthing and included
a method to prevent this attack from being successfull. This method, mostly
referred to as discounting, ignores opinions which do not comply to the predomi-
nant opinion. In a nutshell, if 9 out of 10 members state, that the target member
is trustworthy, the 10’th member’s opinion is ignored if stating, that the target
member is not trustworthy. Some authors reduce the impact of discounting by
not ignoring but reducing the influence of differing opinions. At first glance, dis-
counting seems like a good method to prevent the bad mouthing attack, hence
counteracting the adversaries goal to destroy the victim’s reputation.

At second glance, using this method is outright irresponsible. This method
allows an adversary to exploit a victim without fear of repercussions. The adver-
sary behaves correct to all members except the victim, hence all but the victim
state, that the adversary is trustworthy. Due to discounting, the victim’s opinion
is ignored or reduced in it’s influence.

Except for discounting, there currently seems to be no real countermeasure to
bad mouthing. All methods use some form of censorship regarding the opinion
of members. But without reliable means to distinguish between fair and unfair
opinions, all have to be accepted as provided. Otherwise it is likely, that opinions
of honest members are ignored as well.

212 S. Spitz and Y. Tüchelmann

4.6 Transaction Fee

The transaction fee, already mentioned in 4.2, is assigned to each successfully
executed transaction between a service provider and requestor. The commercial
aspect aside, the purpose regarding the security of the trust and reputation sys-
tem is to reduce the intention of an adversary to use ballot stuffing or empty
transactions. With a transaction fee in place, an adversary has to pay for in-
fluencing the reputation of a target member. If the costs of a good reputation
exceed the expected profit made by exploiting a victim, the adversary is probably
seeking other ways to influence the reputation of a target member.

The downside of transaction fees is, that honest members have to pay as well.
The eBay trust system uses transaction fees, but they seem negligible considering
a protection against empty transactions (see selling fees [16]). Consequently,
the transaction fees need to have significance (be higher) for protecting against
empty transactions or ballot stuffing. A high transaction fee would most likely
discourage adversaries, but also honest service providers to offer their services,
or they lead to increased prices which include the transaction fee. Here, one
could argument that this is the fee for a secure trust system, but members could
deliberate about whether to use another, less costly system. Transaction fees can
be used to provide resistance against ballot stuffing and empty transactions. The
negative side effect is, that these fees can also influence the prices of provided
services and ultimately can lead to a decline in active memberships.

5 Reducing the Security Issues

A trust system without security methods is like a big playground for adversaries.
The more security methods are in place, the more effort an adversary has to make
to exploit a victim. In this section, we propose a combination of the aforemen-
tioned security methods reducing the number of attacks that can be performed
efficiently against a member of a trust and reputation system. Table 1 shows
the effect of the discussed security methods based on the influential power of a
single adversary in regard to the influence on another member’s reputation.

Table 1. Effect of Security Methods

IP(Attack Method) No protection ID Ver. Opinion based ID + Opinion

IP(BS) n n 1 1
IP(SY) m 1 m 1
IP(NC) o 1 o 1

IP(SY+BS) m· n n m 1

Here, n represents the number of ratings that a single adversary is able to
sumbit. The number of created sybils is denoted as m, while o is the number of
times a single adversary can change to a new account.

A Survey of Security Issues in Trust and Reputation Systems 213

The use of identity verification provides the system with immunity to the
sybil and newcomer attack, hence IP (SY) = IP (NC) = 1. The inclusion of
identity verification has no influence on the underlying trust model, hence it is
usable in conjunction with any trust model. Member specific opinions provide an
immunity against ballot stuffing, since each member, including adversaries, can
only distribute the most current opinion for each target member. This results
in IP (BS) = 1. However, member specific opinions do influence the choice of
the trust model. Trust models such as the beta reputation system [6] or eBay’s
system are based on transaction specific opinions and can not be used without
modifications.

Even with immunity to the ballot stuffing, newcomer and sybil attack, adver-
saries can still exploit other members. One of the possible strategies is the on-off
attack. This exploitation strategy aims at gaining the trust of the victim to allow
for a profitable exploitation. The strategy is similar to a playbook and the profit
is the difference between the cost of achieving a high reputation, and the profit
made by exploiting the victim due to the high reputation. By combining the
weighted transaction influence and the transaction fee, the costs for achieving
and retaining a high reputation rise. This results in less profit for the adversary.
Sadly, this method is only feasible for a centralized trust and reputation system
(see 4.4).

If the transaction fee and weighted transaction influence are bound to the
transaction value, colluding adversaries can no longer use empty transactions
to increase each other’s reputation for free. A low-cost transaction of 1 dollar
still has a minimal transaction fee, but also minimal influence on the reputation.
Ideally, there is no difference between n 1 dollar transactions and a single n
dollar transaction regarding the reputation influence and costs.

The combination of above mentioned security methods provides immunity
or resistance against adversaries that want to influence the reputation of other
members in addition to a reduced incentive to exploit them.

6 Conclusion

Trust and reputation systems are used to provide meaningful predictions about
the future behaviour of participating members. These systems have to provide
methods to protect against attacks, otherwise adversaries could easily manip-
ulate reputation values or exploit their victims. In this paper, several security
methods were introduced and discussed. We have shown, that it is very important
to analyse all aspects of possible security methods, because a countermeasure to
one attack can easily lead to a weakness against another attack.

The combination of verifiable identities, member specific opinions, transaction
fees and weighted transaction influences will protect honest members from adver-
saries. Problems arise, if not all of these security methods can be included in the
trust system. Especially ID verification is a strong security method, but costly
to implement and maintain. And without ID verification trust and reputation

214 S. Spitz and Y. Tüchelmann

systems are still vulnerable to the sybil and newcomer attack. Hence, our future
research effort will be to identify other means to protect against adversarial
behaviour in the absence of a TTP - i.e. in fully decentralized systems.

References

1. Anderson, S., Friedman, D., Milam, G., Singh, N.: Seller strategies on ebay. In:
Industrial Organization 0412004, EconWPA (December 2004)

2. Brown, J., Morgan, J.: Reputation in online markets: Some negative feedback
(February 2006)

3. Buchegger, S., Le Boudec, J-Y.: A robust reputation system for mobile ad-hoc
networks. Technical report, Proceedings of P2PEcon (2003)

4. Dellarocas, C.: Immunizing online reputation reporting systems against unfair rat-
ings and discriminatory behavior. In: EC 2000: Proceedings of the 2nd ACM Con-
ference on Electronic Commerce, pp. 150–157. ACM, New York (2000)

5. Douceur, J.R.: The sybil attack. In: Druschel, P., Kaashoek, M.F., Rowstron, A.
(eds.) IPTPS 2002. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg (2002)

6. Jøsang, A., Ismail, R.: The beta reputation system. In: Proceedings of the 15th
Bled Electronic Commerce Conference (2002)

7. Kerr, R.C.: Toward Secure Trust and Reputation Systems for Electronic Market-
places. PhD thesis, University of Waterloo, Diploma Thesis (2007)

8. Kotha, S., Rajgopal, S., Rindova, V.: Reputation building and performance: An
empirical analysis of the top-50 pure internet firms. European Management Jour-
nal 19(6), 571–586 (2001)

9. Melnik, M.I., Alm, J.: Does a seller’s ecommerce reputation matter? evidence from
ebay auctions. Journal of Industrial Economics 50(3), 337–349 (2002)

10. Ries, S.: Extending bayesian trust models regarding context-dependence and user
friendly representation. In: SAC 2009: Proceedings of the 2009 ACM Symposium
on Applied Computing, pp. 1294–1301. ACM, New York (2009)

11. Spitz, S., Tüchelmann, Y.: A trust model considering the aspects of time. In:
The 2nd International Conference on Computer and Electrical Engineering (2009);
ISBN: 978-1-4244-5365-8

12. Sun, Y.L., Han, Z., Yu, W., Ray Liu, K.J.: A trust evaluation framework in dis-
tributed networks: Vulnerability analysis and defense against attacks. In: IEEE
INFOCOM, pp. 230–236 (2006)

13. Wang, Y., Vassileva, J.: Bayesian network-based trust model. In: WI 2003: Pro-
ceedings of the 2003 IEEE/WIC International Conference on Web Intelligence, p.
372. IEEE Computer Society, Washington, DC, USA (2003)

14. Whitby, A., Jøsang, A., Indulska, J.: Filtering out unfair ratings in bayesian rep-
utation systems (2004)

15. Yang, Y., Sun, Y.L., Kay, S., Yang, Q.: Defending online reputation systems against
collaborative unfair raters through signal modeling and trust. In: SAC 2009: Pro-
ceedings of the 2009 ACM Symposium on Applied Computing, pp. 1308–1315.
ACM, New York (2009)

16. Fees for selling on ebay. Ebay Homepage (2011)

Copyright Protection in P2P Networks by False Pieces
Pollution�

Chun-Hsin Wang and Chuang-Yang Chiu

Department of Computer Science and Information Engineering
Chung Hua University, Hsinchu, Taiwan 30012, R.O.C.

chwang@chu.edu.tw

Abstract. In P2P networks, the typical methods of protecting copyright files are
to distribute false files with similar key words, the same file size and so on as the
copyright files or publish volumes of error messages to declare the location of
nonexistent copyright files. These ways lead to the difficulty in getting the copy-
right files for abnormal users. But these methods does not work in P2P networks
such as eMule and BitTorrent with commentaries on the shared files because
users can sift the true files from the false files or error location of the shared files
by the commentaries. In this paper, a new technology of copyright protection by
polluting pieces of files is proposed. We distribute false pieces with the same au-
thentication keys as normal pieces but their contents are different, which is called
the false pieces with authentication collision. The abnormal users will keep shar-
ing the false pieces of copyright files they have since the false pieces can not be
identified. People may have fun to download the copyright files but they can not
get the correct copyright files. Due to high cost of finding authentication collision
for false pieces, the way of embedding the found authentication collisions in the
copyright files is also proposed. Extend simulations show approximately 100 %
protection of copyright files can be reached when the associated false pieces are
distributed early in time once the sharing of copyright files happened.

Keywords: Copyright protection, P2P networks, false pieces pollution.

1 Introduction

Peer-to-Peer (P2P) technology is widely applied to integrate the resources of network
nodes for network applications such as grid computing, files sharing, and so on. One of
most popular P2P applications is file-sharing system, which is a good and simple way to
share files in internet. The report [1] in 2004 shows that P2P file-sharing traffic occupied
more than 60% in the USA and 80% in Asia are in a tier-1 ISP. It is out of control that
users share the copyright files by P2P file-sharing system such as KaZaA [2], eMule [3],
BitTorrent [4], and so on. The illegal sharing of copyright files in P2P systems results in
huge finical lost. The Envisional research [5] reveals that 23.76% of internet traffic was
estimated to be infringing due to the illegal sharing of copyrighted works. According the
BASCAP research [6] of International Chamber of Commerce (ICC), the total global

� This research is supported by the National Science Council, Taiwan, R.O.C., under grant NSC
99-2221-E-216-017-.

J.M. Alcaraz Calero et al. (Eds.): ATC 2011, LNCS 6906, pp. 215–227, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

216 C.-H. Wang and C.-Y. Chiu

economic and social impact of counterfeiting and piracy is 775 billion every year. ICC
also predicts that these cost will reach 1.7 trillion by 2015 and put 2.5 million jobs at
risk each year. How to protect copyright files from the P2P file-sharing systems is worth
receiving much attention.

The difficulty of copyright protection is that no limits can be imposed on using P2P
file-sharing systems for users. To protect the copyright files, the main idea proposed in
the literatures is trying to interfere with the process of getting the copyright files in P2P
file-sharing system. We classify them into three categories as follow.

– Decoy: In [7]-[8], the way of protection is to publish some false files which their
names, file size, file types are similar with the copyright files. By keyword search-
ing, users may confuse how to choose the correct copyright files from the searching
result. The decision whether the selected files are correct or not will be delayed till
the downloaded files are tested. This kind of protection method is referred to as
”decoy”. The companies [9] and [10] provide this kind of services for copyright
protection.

– Index poisoning: In [11] and [12], the volumes of false indexes are published to
make users finding wrong addresses where the copyright files does not exist. Users
have to spend much time for communication to peers which they have no copyright
files. The difficulty of getting correct copyright files is increasing.

– Unauthenticated false blocks: In [13-15], they try to protect the copyright files by
sharing the false blocks. In BitTorrent-like systems, the shared file is composed of
pieces and each piece can be divided into blocks. The blocks can be shared without
any authentication, whereas pieces can be distributed only when they are authenti-
cated by a SHA-1hash function [16]. By sharing false blocks, peers may get wrong
pieces containing false block(s). But wrong pieces can be checked by authentica-
tion and then being discarded. Since blocks can not be identified, peers may retrieve
wrong pieces again and again. To overcome this problem, the BitTorrent system re-
trieve all of blocks composed of a wrong piece from the same peer. Therefore peers
can sure which peers are sharing false blocks finally. In [15], they report that the
pollution of false blocks may postpone the time of getting the copyright files for
peers but it can not stop the distribution of correct copyright files.

The first two classes of copyright protection described as above are trying to pollute
the searching result. Since users can not distinguish which published information of the
shared files are correct from the polluted searching result, they may pay much time to
get the correct copyright files by trial and error. To filter bogus information which in-
terferes with the copyright file sharing, the correct published information of the shared
files is declared in communities [17] or forums from web sites, which can provide with
commentaries on the shared files or reputation for peers. It does not work to protect the
copyright files by publishing some false index information or false similar files of copy-
right files in these web sites. Because users can sift the true files from the false files or
error location of the shared files by commentaries or reputation. We referred to this kind
of searching for the published files-sharing information from communities as ”search-
ing from communities”. Since the published files-sharing information by searching from
communities can be verified, the performance of copyright protection for the first two
methods will be seriously decreasing, even useless. Besides, the third class of copyright

Copyright Protection in P2P Networks by False Pieces Pollution 217

protection by distributing unauthenticated false blocks also can not prohibit the sharing
of copyright files. Therefore, we have to reconsider how to protect the copyright files in
P2P files-sharing system.

In this paper, a new protection mechanism for copyright files by polluting pieces
composed of files is proposed. The main idea is to distribute false pieces with the same
authentication key as normal pieces but their contents are different, which is called the
false pieces with authentication collision. The abnormal users will keep sharing the false
pieces of copyright files since the false pieces can not be identified. As a result, user may
have fun to download the copyright files but they can not get the correct copyright files
finally. To the best of our knowledge, we are the first to propose false pieces pollution
for copyright protection. The idea is simple and effective.

The authenticated key usually are generated by well-known hash functions such as
MD4 [18], MD5, SHA-1, and so on. That is the false piece and normal piece have to
be hash collision. In cryptographic theory, there exists collisions in these hash func-
tions and it’s hard to find hash collisions. But Wang et. al made a big evolution of hash
collision since their publications [19] in 2004. There are many hash functions are bro-
ken one after another such as MD4, MD5, HAVAL-128/192/224/256, RIPEMD, and
SHA [20-25]. The need of cost and time for creating (or preparing) false pieces depend
on what hash functions are used to generate authentication keys.

Consider high cost of finding hash collisions, the way of embedding the found hash
collision(s) into the copyright files is proposed. The size of copyright files, the number
of false pieces, and the number of nodes used to distribute the false pieces are simulated
to study the performance of copyright protection. The timing of starting to distribute
false pieces is also studied. Extend simulations show approximately 100 % protection
of copyright files can be reached when the associated false pieces are distributed early
in time once the sharing of copyright files happened.

The rest of paper is organized as follows. The preliminary is described in the next
section. The methods of copyright protection by false pieces pollution are described in
Section 3. Section 4 shows the extended simulation results. Finally, some concluding
remarks and future work are given in Section 5.

2 Preliminary

In this paper, we focus on how to prepare false pieces associated with their normal
pieces to pollute the sharing file instead of breaking hash functions. We only sum-
marize results of finding collisions for hash functions adopted by some popular P2P
applications such as eMule, BitTorrent, and so on.

1. MD4 is an early-appeared hash function and available on modern computers. Under
the consideration of time to execute the hash function, MD4 is adopted by eMule
for authentication. Wang et al. [19,20] propose a collision attack on MD4 with a
success probability 2−2 to 2−6. In 2005, Y. Naito [21] et al. improve the collision
attack based on Wang’s method with probability almost 1 (7/8) and the average
complexity is upper bound by three times MD4 hash operations. In summary, the
collision on MD4 can be found easily for modern computers.

218 C.-H. Wang and C.-Y. Chiu

2. SHA-1 is a strength version of MD4 and widely used for hash function. It is adopted
by BitTorrent for pieces authentication. Although SHA-1 has still not been broken,
recently many new collision attacks on it have been devised. The SHA-1 collision
can be found in 263 hash operations([22,23]). It is the fact that even supercomputer
can’t find the SHA-1 collision in practical time. But Satoh Akashi [24] propose a
custom hardware architecture which can find a real SHA-1 collision in 127 days.
The cost of building the hardware system needs $10 million. In [25], the method on
the SHA-1 attacking hardware is improved, SHA-1 can be broken with a 1 million
budget in 22 days.

3. There are many projects(ex. [26,27]) toward finding collisions for various hash
functions. We try to make use the found collisions to protect the copyright files.

Next we introduce the operation how does share files in P2P networks briefly. The
publisher of sharing file is referred to as initial seeder. A peer which has not finished to
get the whole sharing file is denoted ”leecher”. Leechers will become seeders when they
own the whole sharing file. A joining node(i.e. leecher) will get a list of peers from the
tracking server(s) in centralized P2P system or from other peer(s) in distributed DHT-
based P2P system. The peers in the list are referred to as the local peers of the leecher.
Then leecher will communicate with its local peers and exchange the information which
pieces (or blocks) of the sharing file they have. Therefore, the distribution of pieces in
its local peers can be statistical. To avoid the absent of the rarest piece, leechers will
request the rarest piece first according to their statistical distribution in local peers. This
is what is called the rarest-piece-first policy [28]. For example, leechers in eMule-like
and BitTorrent P2P systems flow the rarest-piece-first policy.

3 Protection by False Pieces Pollution

In most of P2P applications, only the authenticated pieces will be shared continuously
by peers. To realize the protection by false pieces pollution, the first thing we have to do
is how to prepare the false pieces composed of the files and then make the false pieces
spreading fast and widely in time. We discuss these two things as follows.

3.1 Preparation of False Pieces

According to the degree to what cost and time of finding hash collision is, three ways
of preparing false pieces for polluting the sharing files are provided as follows.

1. Since MD4 hash collisions can be found easily with 3 times MD4 hash operations,
the false pieces for MD4 hash function can be computed in time with high proba-
bility (7/8).

2. For SHA-1 hash function, the false pieces of the copyright files can be prepared
in advance. Although the hardware cost of finding collisions is $1 million at least,
the cost is much less than the loss of illegal P2P distribution. In addition, note the
built custom hardware system can be reused to find hash collisions again and again.
It is worth investing $1 million to build the hardware system of finding collisions
to protect the copyright files. Some pollution companies like [9] and [10] may

Copyright Protection in P2P Networks by False Pieces Pollution 219

set up this kind of hardware system to service the owner of copyright files for
preparing false pieces. Therefore the difficulty of preparing false pieces for SHA-1
hash function can be reduced considerably.

3. The third way of preparing false pieces is to embed the found collisions in the
copyright files. The set of collisions, say Sc, can be collected from the projects (ex.
[26,27]) or hardware system in [25]. One collision in Sc contains a pair of messages
at least. One message of a collision is used to be the false piece and another message
is as the normal piece which will be embedded in the copyright file. The copyright
file is encrypted by normal piece by symmetric encryption and then the normal
piece is inserted in the encrypted copyright file at random boundary between any
two pieces. To increase the degree of pollution, more than one normal pieces can
be embedded into the copyright file. A simple way to approach this is to divided
copyright file into several parts and one normal piece is used to encrypt each part
of copyright file respectively. Beside that, the encrypted files can be designed to
automatically decrypt by the embedded normal piece(s) when they are accessed. In
this way, the copyright file can not be accessed once the embedded normal piece(s)
is (are) polluted by the false piece(s).

Note the first two methods of preparing false pieces can be applied to any kind of
sharing files because the original files are not needed to be changed. The third method
is especially suitable to be applied to the class of execution files. Before the execution
file with copyright is released, the found normal piece(s) could be embedded in it by the
third method described as above. The protection of copyright files can be approached
by spreading the prepared false pieces in P2P system.

3.2 Methods of Spreading False Pieces

If the false pieces of the file people want to download can be spread fast and wide in
time, the probability of getting polluted files with false piece(s) will be increasing. To
spread the false pieces, the owner of copyright files can setup one or more PC-based
stations to be the peer(s) by joining the P2P systems which are found to distribute the
copyright files illegally. We refer these stations to as guardians. Due to the complexity
and cost of finding a collision such as SHA-1 is too complex to compute a collision in
time, the guardians should prepare the false pieces in advance for BitTorrent. But the
guardians can prepare the false pieces easily for eMule because they adopt MD4 hash
function. The methods of spreading false pieces are considered as follows.

– Timing to start spreading false piece(s): The timing of guardians to start spreading
false pieces will affect the performance of copyright protection. This method is to
spread false piece(s) in different times by guardian. We investigate the effect of
two different times when the guardian joins the P2P system on the performance of
copyright protection. The first is the timing at the beginning when the copyright file
is illegally shared and the second is at few hours after the copyright file is shared.
The subscription of RSS news [17] and key words monitoring softwares ([7,11])
can help guardian to know the time when the copyright files are sharing and then
start spreading false piece(s).

220 C.-H. Wang and C.-Y. Chiu

– Multiple IDs of a guardian: The guardian can join the P2P system more than once
to get multiple IDs of peers. That is one guardian can spread more than one false
pieces. This method is used to observe the effect of multiple IDs on copyright
protection.

– The number of false pieces: This method is trying to increase the pollution by
spreading number of false pieces. It is expected that the performance of copyright
protection will be affected by how many number of false pieces are distributed to
pollute the copyright files.

4 Simulation Results

The size of a piece for eMule is fixed to be 9.28MB. In our simulation, we assume
the size of a piece for eMule is 10MB for convenience to divide the sharing file into
integer number of pieces. The size of a piece for BitTorrent is 2 to the power. It can be
configured by BitTorrent software automatically or by user manually. The default size
of piece for BitTorrent is set to be 256 KBs. The default of uploading bandwidth is
256 kbps, which is the uploading bandwidth of ADSL in Taiwan popularly. The delay
of sending one piece from one peer to another peer in the network is variant for many
reasons such as the size of pieces, traffic load, and so on. We simply assume the end-to-
end delays are to form an exponentiation distribution. Three different mean end-to-end
delays are adopted to be observed the effect of pollution, namely 30 seconds, 60 seconds
and 120 seconds. The default mean end-to-end delay is 30 seconds.

The peers are supposed to join the P2P system in Poisson distribution after the initial
seeder have published the shared file. The mean of joining rate is 96 peers per hour.
According the report in [17], peers which finish downloading the shared file will stay
in P2P system for 24 hours and then leave. To simulate the worse situation of spreading
false pieces, only fifty percentage of peers which own the error shared file are sup-
posed to stay in P2P system. For each data point in our experiment, 30 sample runs are
executed. Each sample run is starting by an initial seeder till the time when there are
3000 seeders which have finished downloading the shared file. The pollution ratio is
defined as the average percentage of polluted seeders which own the false piece(s). It is
measured to evaluate the performance of our proposed methods.

The number of local peers for a peer is set by the P2P software automatically or user
manually. It is usually 50 or 100. A peer can ask more other peers to be its local peers
from tracker server(s) when the wanted pieces are absent in its local peers. We simply
set the number of local peers to be 100.

In our simulation, we assume the guardian can receive normal piece in eMule and
then find its collision for MD4 hash function in time with 7/8 probability [21]. Due to
the high complexity and cost of finding a collision for SHA-1, the guardian is supposed
to prepare only one false piece in advance for BitTorrent. One guardian with one default
ID is supposed to execute the pollution. The time of guardian joining the P2P system
to start spreading false piece(s) is denoted ”GJT” (Guardian Joining Time), it is relative
to the starting time when the shared file is published in P2P system. The time unit of it
is hour. GJT = 0 means that the guardian almost starts spreading false piece(s) at the
same time when the shared file is published.

Copyright Protection in P2P Networks by False Pieces Pollution 221

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

70

80

90

100

Simulation Time (Hours)

Po
llu

tio
n

Ra
tio

 (%
)

eMule(MD4), GJT=0, Piece Size=10MB
eMule(MD4), GJT=2, Piece Size=10MB

Fig. 1. GJT=0 versus GJT=2 in eMule

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

70

80

90

100

Simulation Time (Hours)

Po
llu

tio
n

Ra
tio

 (%
)

BitTorrent(SHA−1), GJT=0, Piece Size=1MB
BitTorrent(SHA−1), GJT=0, Piece Size=256KB
BitTorrent(SHA−1), GJT=2, Piece Size=1MB
BitTorrent(SHA−1), GJT=2, Piece Size=256KB

Fig. 2. GJT=0 versus GJT=2 in BitTorrent

Fig. 1 and Fig. 2 show the effect of times to start spreading false pieces. The shared
file size is 100 MBs. With the piece size of 10 MBs, the shared file is composed of
10 pieces in eMule. In BitTorrent, it can be composed of 100 and 400 pieces with the
piece size of 1 MBs and 256 KBs respectively. From these two figures, we can see that
the pollution ratio almost approaches to 100% when GJT=0, whatever the eMule or
BitTorrent is. It reveals that guardian can simple pollute the shared file for protection
when the time to start spreading false piece is as soon as possible. This is because the
false piece provided by guardian plus the same normal piece in the initial seeder will
not be the rarest piece when only a guardian joins the P2P system. The pieces except
that false piece in the initial seeder will become rarest pieces. It results in that the
peers joining after the guardian will ask normal pieces except the prepared false piece
from the initial seeder by the rule of rarest-piece-first. The initial seeder is always busy
sharing the normal and rarest pieces and therefore its uploading bandwidth is occupied.
The joining peers will get the false piece from the guardian with high probability and

222 C.-H. Wang and C.-Y. Chiu

0 500 1000 1500 2000 2500 3000
0

2

4

6

8

10

12

14

16

18

20

22

Number of Seeders

Po
llu

tio
n

Ra
tio

 (%
)

eMule(MD4), Piece Size=10MB, 30secs
eMule(MD4), Piece Size=10MB, 60secs
eMule(MD4), Piece Size=10MB, 120secs

Fig. 3. The effect of network delay in eMule

0 500 1000 1500 2000 2500 3000
0

10

20

30

40

50

60

70

80

Number of Seeders

Po
llu

tio
n

Ra
tio

 (%
)

BitTorrent(SHA−1), Piece Size=1MB, 30secs
BitTorrent(SHA−1), Piece Size=1MB, 60secs
BitTorrent(SHA−1), Piece Size=1MB, 120secs

Fig. 4. The effect of network delay in BitTorrent, size of piece=1MB

keep spreading the false piece. If the guardian joins two hours after the shared file is
published(i.e., GJT = 2), peers in the system have already gotten normal pieces from
initial seeder or others peers. It will reduce the probability of spreading the false piece
in the system seriously.

From Fig. 2, we can also observe that the performance with piece size of 256 KBs is
better than it with piece size of 1MBs in BitTorrent when GJT = 2. This is because a
large number of pieces will extend the time to spread all of normal pieces to other peers.
There may exist some pieces which are not shared with any one peers or some pieces are
only distributed to a few of peers when GJT = 2. The false piece provided at GJT=2
by guardian may have the probability to be the same with one of these rare pieces in
initial seeder or other few peers. Therefore, the false piece still have high probability to
be distributed to the upcoming peers. Simulation shows it has more than 75% pollution
ratio.

Copyright Protection in P2P Networks by False Pieces Pollution 223

0 500 1000 1500 2000 2500 3000
55

60

65

70

75

80

85

90

Number of Seeders

Po
llu

tio
n

Ra
tio

 (%
)

BitTorrent(SHA−1), Piece Size=256KB, 30secs
BitTorrent(SHA−1), Piece Size=256KB, 60secs
BitTorrent(SHA−1), Piece Size=256KB, 120secs

Fig. 5. The effect of network delay in BitTorrent, size of piece=256kB

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

70

80

90

100

Simulation Time (Hours)

Po
llu

tio
n

Ra
tio

 (%
)

eMule(MD4), File Size=100MB
eMule(MD4), File Size=300MB

Fig. 6. The effect of file size in eMule

Next, we want to investigate the effect of pollution by the network traffic. To observe
how the pollution is when pieces of the shared file have been distributed for a period
time, we set GJT = 2 instead of GJT = 0. Three different mean end-to-end delays
are adopted, namely 30 seconds, 60 seconds and 120 seconds. From Fig. 3 to Fig. 5, we
can see that the pollution ratio for small size of pieces is much better than it for large
size of pieces under the same network delay. The result is consistent with it in Figure 2.
In addition, the pollution ratio for long end-to-end delay (60 and 120 seconds) is better
than small end-to-end delay (30 seconds) in eMule and BitTorrent.

Note there exist some variations of pollution ratios for network delay 60 and 120
seconds in Fig. 5. It can be explained that the performance of pollution depends on
how many peers have owned the normal piece being polluted and the time needed to
spread pieces over peers. Since long network delay may take long time of spreading
pieces, the number of peers owned the normal piece being polluted for end-to-end delay
120 seconds is less than it for end-to-end delay 60 seconds at two hours after system

224 C.-H. Wang and C.-Y. Chiu

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

70

80

Simulation Time (Hours)

Po
llu

tio
n

Ra
tio

 (%
)

BitTorrent(SHA−1), File Size=100MB
BitTorrent(SHA−1), File Size=300MB

Fig. 7. The effect of file size in BitTorrent

initialization. Therefore, the false piece have high probability of being distributed to
the peers without that normal piece in the environment with long end-to-end delay.
The pollution ratio for end-to-end delay 120 seconds is better than it for end-to-end
delay 60 seconds in the beginning when GJT = 2. But the growing of pollution ratio
for end-to-end delay 60 seconds is faster than it for end-to-end delay 120 seconds due
to the short time needed to spread the false piece for end-to-end delay 60 seconds.
From Fig. 5, we can observe that the pollution ratio for end-to-end delay 60 seconds
is gradually increasing, over and then equal to it for end-to-end delay 120 seconds.
It’s worthy noting that the pollution ratio can be larger than 85% even the pollution is
starting at two hours after the shared files is published.

Fig. 6 and Fig. 7 show how the file size of the shared file does affect the pollution
ratio. The size of piece is 10M bits for eMule and 1M bits for BitTorrent. The two
different file sizes, 100MB and 300MB, are used to observe the effect on pollution ratio
when GJT = 2. The simulation result shows that large file size has better performance
in eMule and BitTorrent. Because large file is composed of more number of pieces
comparing with the small file. A large number of pieces will extend the time to spread
all of normal pieces from initial seeder to other peers. As the same reason described in
Fig. 2, the false piece still has high probability to be distributed to the upcoming peers.
Simulation shows it has more than 75% pollution ratio.

The guardian can join the P2P system more than once to get multiple IDs of peers.
Fig. 8 shows the effect of pollution ratio on multiple IDs of a guardian in eMule. The
shared file size equals 300MB and GJT = 5. One guardian with two IDs may spread
the same false pieces to two peers. It’s reasonable that a guardian with two IDs has
better performance than a guardian with one ID. But the pollution ratio is less than 40%
even the guardian with two IDs. This is because the time of starting pollution is too late.
There are many peers owned the normal piece we want to pollute at 5 hours after the
shared files is published by the initial seeder.

Fig. 9 shows the effect of pollution on multiple IDs of a guardian and multiple false
pieces in BitTorrent. The shared file size equals 300MB, size of piece is 1MB and
GJT = 5. The guardian with two IDs, distributing two different false pieces, has better

Copyright Protection in P2P Networks by False Pieces Pollution 225

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

40

Simulation Time (Hours)

Po
llu

tio
n

Ra
tio

 (%
)

Guardian=1
Guardians=2

Fig. 8. Multiple IDs of a guardian in eMule.

5 10 15 20 25 30 35
0

10

20

30

40

50

60

70

80

Simulation Time (Hours)

Po
llu

tio
n

Ra
tio

 (%
)

Guardian=1, False Piece=1
Guardian=1, False Pieces=2
Guardians=2, False Piece=1
Guardians=2, False Pieces=2

Fig. 9. Multiple IDs of a guardian and false pieces in BitTorrent.

performance than the others. Form Fig. 9, we can also find that the pollution ratio for the
guardian with one ID and two different false pieces is better than it for the guardian with
two IDs but one false piece. The main difference is that two different false pieces are
distributed in the former but only one false piece is spreaded in the later. The guardian
with two IDs and one false piece means that there exists two guardians for spreading
the same false piece in the system. Since the shared file can be polluted by one of two
different false pieces, the guardian with one ID and two different false pieces has better
performance than the guardian with two IDs and one false piece.

5 Conclusion and Future Work

Typical methods of copyright protection by polluting the searching result does not
work in modern P2P networks. A new method of copyright protection by false pieces

226 C.-H. Wang and C.-Y. Chiu

pollution is proposed in this work. It’s simple and effective because only one guardian
distributing one false piece is needed and has good performance. The subscription of
RSS news and key words monitoring softwares can help guardian to know the time
when the copyright files are sharing and then start spreading false piece(s). Extend sim-
ulations show approximately 100 % protection of copyright files can be reached when
the associated false pieces are distributed early in time once the sharing of copyright
files happened. In future, the guardian will be implemented and real experiment on
copyright protection will be tested in internet. The copyright protection for different
types of files such as multimedia files will be developed.

References

1. CacheLogic Research: The True Picture of P2P File Sharing,
http://www.readwriteweb.com/archives/p2p_growth_trend_watch.
php

2. Offical KaZaA homepage, http://www.kazaa.com
3. Official eMule homepage, http://www.emule-project.net/
4. Official BitTorrent homepage, http://www.bittorrent.org/
5. Envisional Research,

http://documents.envisional.com/docs/Envisional-Internet_
Usage-Jan2011.pdf

6. BASCAP Research,
http://www.iccwbo.org/uploadedFiles/BASCAP/Pages/
Global%20Impacts%20-%20Final.pdf

7. Liang, J., Kumar, R., Xi, Y., Ross, K.W.: Pollution in P2P file sharing systems. In: Proc.
IEEE INFOCOM 2005, Miami, FL (March 2005)

8. Christin, N., Weigend, A.S., Chuang, J.: Content Availability, Pollution and Poisoining in File
Sharing Peer-to-Peer Networks. In: ACM Conference on Electronic Commerce, Vancouver,
Canada (June 2005)

9. Viralg, a digital copyrights protecting company (February 2009),
http://www.viralg.com/

10. MediaDefender (February 2009), http://www.mediadefender.com/
11. Liang, J., Naoumov, N., Ross, K.W.: The Index Poisoning Attack in P2P File Sharing Sys-

tems. In: INFOCOM 2006 25th IEEE International Conference on Computer Communica-
tions, Barcelona, Spain (April 2006)

12. Sun, X., Torres, R., Rao, S.: DDoS Attacks by Subverting Membership Management in P2P
Systems. In: 3rd IEEE Workshop on Secure Network Protocols, Beijing, China (October
2007)

13. Liogkas, N., Nelson, R., Kohler, E., Zhang, L.: Exploiting BitTorrent For Fun (But Not
Profit). In: Proc. 5th Itl. Workshop on Peer-to-Peer Systems (IPTPS), Santa Barbara, CA,
USA (February 2006)

14. Locher, T., Moor, P., Schmid, S., Wattenhofer, R.: Free Riding in BitTorrent is Cheap. In:
Fifth Workshop on Hot Topics in Networks. ACM, Irvine (2006)

15. Dhungel, P., Wu, D., Schonhorst, B., Ross, K.W.: A Measurement Study of Attacks on Bit-
Torrent Leechers. In: Proc. 7th Itl. Workshop on Peer-to-Peer Systems (IPTPS), Tampa Bay,
Florida, USA (February 2008)

16. RFC3174, SHA-1, http://tools.ietf.org/html/rfc3174

http://www.readwriteweb.com/archives/p2p_growth_trend_watch.php
http://www.readwriteweb.com/archives/p2p_growth_trend_watch.php
http://www.kazaa.com
http://www.emule-project.net/
http://www.bittorrent.org/
http://documents.envisional.com/docs/Envisional-Internet_Usage-Jan2011.pdf
http://documents.envisional.com/docs/Envisional-Internet_Usage-Jan2011.pdf
http://www.iccwbo.org/uploadedFiles/BASCAP/Pages/Global%20Impacts%20-%20Final.pdf
http://www.iccwbo.org/uploadedFiles/BASCAP/Pages/Global%20Impacts%20-%20Final.pdf
http://www.viralg.com/
 http://www.mediadefender.com/
http://tools.ietf.org/html/rfc3174

Copyright Protection in P2P Networks by False Pieces Pollution 227

17. Andrade, N., Mowbray, M., Lima, A., Wagner, G., Ripeanu, M.: Influences on Cooperation
in BitTorrent Communities. In: ACM SIGCOMM 2005 Workshops, Philadelphia, PA, USA
(August 2005)

18. RFC1320, MD4, http://tools.ietf.org/html/rfc1320
19. Wang, X., Lai, X., Yu, H.: Collisions for Hash Functions MD4, MD5, HAVAL-128 and

PIREMD, rump session. In: CRYPTO 2004 (2004) (e-Print)
20. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the hash functions MD4 and

RIPEMD. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 1–18. Springer,
Heidelberg (2005)

21. Naito, Y., Sasaki, Y., Kunihiro, N., Ohta, K.: Improved Collision Attack on MD4. Cryptology
ePrint Archive, Report 2005/151 (2005)

22. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

23. Cochran, M.: Notes on the Wang et al. 263 SHA-1 Differential Path. Cryptology ePrint
Archive, Report 2007/474 (December 2007)

24. Satoh, A.: Hardware Architecture and Cost Estimates for Breaking SHA-1, pp. 259–273.
Springer, Heidelberg (2005)

25. Akashi, S.: Study on Architecture and Cost Estimates for SHA-1 Attacking Hardware. Trans-
actions of Information Processing Society of Japan, 2182–2193 (2006)

26. SHA-1 Collision Search Graz, http://boinc.iaik.tugraz.at/
27. www.iaik.tugraz.at/content/research/krypto/sha1/
28. Mathieu, F., Reynier, J.: Missing Piece Issue and Upload Strategies in Flashcrowds and P2P-

assisted Filesharing. In: Proceedings of the Advanced International Conference on Telecom-
munications and International Conference on Internet and Web Applications and Services
(AICT/ICIW 2006). IEEE, Los Alamitos (2006)

http://tools.ietf.org/html/rfc1320
http://boinc.iaik.tugraz.at/
www.iaik.tugraz.at/content/research/krypto/sha1/

Detection and Classification of Different Botnet

C&C Channels

Gregory Fedynyshyn1, Mooi Choo Chuah2, and Gang Tan2,�

1 Lehigh University. Bethlehem, PA 18015, USA
gef209@lehigh.edu

2 {chuah,gtan}@cse.lehigh.edu

Abstract. Unlike other types of malware, botnets are characterized by
their command and control (C&C) channels, through which a central
authority, the botmaster, may use the infected computer to carry out
malicious activities. Given the damage botnets are capable of causing,
detection and mitigation of botnet threats are imperative. In this pa-
per, we present a host-based method for detecting and differentiating
different types of botnet infections based on their C&C styles, e.g., IRC-
based, HTTP-based, or peer-to-peer (P2P) based. Our ability to detect
and classify botnet C&C channels shows that there is an inherent simi-
larity in C&C structures for different types of bots and that the network
characteristics of botnet C&C traffic is inherently different from legiti-
mate network traffic. The best performance of our detection system has
an overall accuracy of 0.929 and a false positive rate of 0.078.

Keywords: Botnet detection, network security, host-based intrusion de-
tection system.

1 Introduction

Botnets are organized networks of infected (zombie) machines running bot code,
categorized by their use of a command and control (C&C) channel. Through the
C&C channel, a central authority (i.e., the botmaster) may issue commands to
his army of zombie machines and essentially take full control over the infected
machines. These networked armies of zombie machines are typically used to
carry out an array of malicious activities, including, but not limited to, engaging
in spam campaigns, stealing personal or financial information, participating in
click-fraud campaigns, initiating distributed denial of service (DDoS) attacks,
and propagating bot code to other vulnerable machines. Due to the vast amounts
of damage botnets can cause, detecting and mitigating infections are imperative.

� The authors would like to thank Alex Lanstein of FireEye for all around, general
assistance, and Dezhao Song and Xu Li of Lehigh University for help in collecting
some botnet data.

J.M. Alcaraz Calero et al. (Eds.): ATC 2011, LNCS 6906, pp. 228–242, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Detection and Classification of Different Botnet C&C Channels 229

1.1 Background: C&C Channel Types and Fast Flux

Current botnet C&C channels follow a general model: first, a botmaster must is-
sue a command to the botnet; second, the botnet performs activities in response
to the command; and third, the botnet sends the results of performing its ac-
tivities back to the botmaster. There are 3 types of C&C channels, namely (a)
Internet Relay Chat(IRC)-Based C&C channels which use a push-based model,
where the botmaster pushes new commands to the botnet, which then responds
directly to the commands, (b) HTTP-based C&C channels which use a pull-based
model where bots periodically poll the C&C server to request new commands,
(c) Peer-to-peer (P2P) based C&C channels where peer-to-peer communication
is used to proxy commands or to locate a C&C server. P2P-based C&C has the
advantage of not having a single point of failure which is inherent to IRC-based
and HTTP-based bots.

Many botnets use a DNS technique called fast flux to hide their central C&C
server. The idea behind fast flux is to use an ever-changing array of compro-
mised hosts to proxy messages between the central C&C server and the botnet.
The botmaster continually changes the proxy to which a domain name points
and bots find the C&C proxy by looking up the domain name instead of using
hard-coded, static IP addresses. In the event a proxy is taken down, the central
C&C server will remain intact and continue to issue commands through different
proxies, adding a layer of resiliency and stealth to the botnet.

1.2 Botnet Detection Approaches

Most botnet intrusion detection systems (IDS) fall into three categories: host-
based, network-based, and a hybrid of the two. Host-based systems, such as
[1,2,3] focus on detecting bot infections on an individual host and typically
use signature- or behavior-based methods to correlate network traffic or system
events with known bot signatures or behavioral information. While host-based
IDS’s are able to detect single bot infections, some knowledge of the bot’s behav-
ior must be known in advance. Host-based approaches also benefit from being
easy to deploy and from empowering the end-user directly.

Network-based methods, such as [4,5,6,7], attempt to detect bot infections
by correlating similar behaviors among several different hosts on the monitored
network. Network-based methods do not need prior knowledge of bot signatures
or behavioral information as they rely on the intuition that hosts infected by the
same bot will behave very similarly to one another whereas uninfected hosts will
exhibit different network characteristics from one another. While network-based
intrusion detection systems (IDS) may not require prior knowledge of a bot’s
behavioral patterns, they do require that multiple hosts in the same network
become infected for the intrusion to be detectable. In addition, network-based
approaches may require additional cooperation of the network administrator and
care must be taken to protect the privacy of the network users.

230 G. Fedynyshyn, M.C. Chuah, and G. Tan

1.3 Contributions

We adopt a host-based IDS in this paper. Our contributions to the field are:

1. Our system detects not only bot infections independent of packet payload
content, but also types of C&C channels, as knowing the type helps with
deploying appropriate defenses. To identify botnets and their types, our sys-
tem identifies persistent connections (similar to [3]), however, unlike [3] our
system can distinguish the type of C&C channel.

2. A domain-based approach is used to undermine the effectiveness of fast flux
obfuscation techniques. The domain-based approach groups conversations
using full domain names rather than IP addresses, allowing us to deobfuscate
fast flux botnets.

3. A binary classifier to identify IRC-based traffic instead of examining packet
payload content (which consumes much processing power and is not viable
for encrypted IRC traffic) or using popular IRC port numbers (which may
miss IRC traffic on non-popular IRC ports).

Our preliminary evaluation shows that there is a similarity inherent in the
traffic produced in botnet C&C communications that is different from legitimate
network traffic. Additionally, we show that each C&C style shares similarity
across multiple botnet families. This inherent similarity implies that that, unlike
many host-based IDS’s, our model has the potential to discover infections of
previously unknown bots.

The rest of the paper is organized as follows. In Section 2, we discuss related
work. In Section 3, we discuss hypotheses, objectives, and the architecture of our
IDS framework. In Section 4, we present the evaluation of our approach with
the results presented in section 5. In Section 6, we provide some discussions of
why our approach works and in Section 7, we conclude by discussing work that
we intend to carry out in the near future.

2 Related Work

Much work has been done on botnet intrusion detection. Many IDS’s make use
of the observation that the characteristics of botnet network traffic differ greatly
from those of normal network traffic. Many botnet detection systems rely on
anomaly detection to discover bot infections. Anomaly detection simply aims to
detect significant deviations from normal behavior and is typically applied to
network behavior, such as the characteristics of network connections, or system-
level behavior, such as CPU usage or modifications to the file system. The main
advantage of anomaly detection is that it is good at discovering new infections,
as infections are likely to cause changes in the monitored activity no matter what
shape they take.

There are different types of botnet detection methods, e.g. host-based or
network-based systems. The host-based IDS presented in [1] uses anomaly detec-
tion on aggregate network features to identify a deviation from normal activity.

Detection and Classification of Different Botnet C&C Channels 231

Once identified, a snapshot of the network traffic surrounding the anomaly is
taken. Using the intuition that snapshots containing similar anomalies are likely
multiple instances of a bot responding to the same botmaster command, the
packet payloads leading up to the anomaly are searched for common content to
find the command. Once a suitable representation of the command is found, the
IDS can build a profile which can then be used to detect future occurrences of
the command/response pair. One drawback to this IDS is its need to examine
packet payloads. Many current-day botnets use encryption to obfuscate their
C&C messages. If the botnet uses a complex encryption algorithm for its C&C
channel, this approach will not find any commonality in packet payloads con-
taining botmaster commands.

Another host-based IDS presented by Giroire et al. [3] is based on the intuition
that bots must contact their C&C server regularly to receive commands from the
botmaster. Thus, unlike transient connections, the connections to C&C channels
will appear to be persistent. This IDS first builds a whitelist of legitimate desti-
nations that the monitored host contacts persistently. If any new connection is
observed that exhibits high enough temporal persistence, an alarm is raised. If
this connection is legitimate, a user can simply add it to the whitelist, otherwise,
the connection is assumed to be malicious and is blocked. The success of such a
system relies on the assumption that the whitelist is easy to maintain and that
it does not need to be updated frequently. The system presented in this paper
also uses the notion of observing persistent connections to detect botnet C&C
channels.

The network-based IDS, BotSniffer [5] exploits the spacial and temporal simi-
larity of botnet activity to differentiate between botnet network traffic and legit-
imate network traffic. The inspiration behind BotSniffer is that each bot in the
network will receive a similar or identical command at similar times, and then
perform similar activities in response to the command at similar times. Potential
C&C messages are limited to incoming IRC and HTTP packets. Bot responses
are categorized into two types: message responses, such as sending a message
to an IRC chat room, and activity responses, such as scanning the network or
sending spam emails. Botnet detection works as follows: if at any point in time
a group of hosts is observed to be performing similar activities in response to
similar messages from the same server, they likely belong to the same botnet.

Similar to BotSniffer, BotMiner is a network-based IDS [6]. BotMiner catego-
rizes network activity into communication activity that corresponds to potential
C&C communication and malicious activity that corresponds to scanning, spam-
ming, or binary download events. BotMiner clusters hosts according to similar
communication activities and according to similar malicious activities, then per-
forms cross-cluster analysis to identify hosts that share both similar communi-
cation and malicious activities. While the BotMiner IDS had impressive results,
it still falls prey to the same problem most network-based detection schemes do:
that multiple hosts in the monitored network must be infected to be detected
by BotMiner.

232 G. Fedynyshyn, M.C. Chuah, and G. Tan

3 Methodology

The goal of our host-based IDS is to be able to detect the presence of botnet
C&C traffic on the monitored host, as well as classify the style of C&C commu-
nication the bot is using, be it IRC, HTTP, or P2P. Furthermore, our detection
system is completely independent of the content of the C&C messages, i.e., we
do not examine packet payloads. The ability to locate and classify botnet C&C
connections depends on a few hypotheses:

1. Botnet C&C communication can be differentiated from botnet non-C&C
communication.

2. Botnet C&C communication can be differentiated from legitimate commu-
nication.

3. The characteristics of different styles of C&C are similar across different
botnet families.

We will use the term conversation to refer to all network packets transmitted
between two unique hosts, based on full domain name when available, otherwise
IP address. We use full domain name to undermine fast flux techniques. As a
botnet C&C channel may use several different servers in a fast flux network to
perform the same service of issuing commands to the bot, we wish to capture
the full C&C conversation, which an IP addressed based approach would fail
to do. Unless otherwise noted, we will refer to a conversation as being between
the monitored host and some destination host. We will also present the results
when IP addresses are used rather than domain names to define conversations at
the end of Section 5 for comparison. We use the observation that while humans
and bots alike may connect to a vast quantity of different destination addresses
during the course of any given day, the number of connections that exhibit long-
term, continual two-way traffic is relatively small. We also use the observation
that a bot must be in continual contact with its botmaster to effectively be a
member of a botnet. Thus, the C&C channel must appear as a conversation that
exhibits continual two-way network traffic over the course of time.

Instead of examining features of aggregate network activity on the monitored
host, we examine features on a per-conversation basis. We begin by dividing the
network traffic for each conversation into time slots of length t. Within each time
slot, we track the total number of bytes and packets sent, the total number of
bytes and packets received, the protocol and the ports used in the conversation.
We then generate instances with which to train the classifier by examining sta-
tistical features contained within an observation window that is n time slots in
length. Thus, the network features as calculated across the time slots in each
observation window generate a single instance of a conversation. Note that a
conversation that lasts longer than n time slots will generate more than one
instance. Let W be the observation window such that W = {si, si+1, ..., si+n−1}
where si is the network traffic contained in time slot i. Figure 1 shows an exam-
ple of the relationship between time slots to the observation window where the
observation window consists of twelve time slots.

Detection and Classification of Different Botnet C&C Channels 233

Fig. 1. Example showing time slots and observation window

3.1 Data Collection

In this section, we describe the data collection process. As we will eventually be
training a classifier, we need a good set of network traces which are comprised
of legitimate traffic as well as a set of network traces comprised of botnet traffic.

Normal Traces: To collect data with legitimate network traffic, we used a
libpcap-based packet capture program to capture all network traffic on four
hosts for a combined total of 29 days. We do not want to promiscuously capture
network traffic for two reasons. First, we are implementing a host-based IDS, so
we do not want to look at the network activity of other hosts on the network.
Second, we know that the machines used to generate normal network activity
are clean of malware but cannot be certain about other hosts on the network. An
IDS is useless if it is not robust enough to work on any given host. To that end,
we ensured our normal traces covered a wide range of legitimate activity, such as
instant messaging, email communications, web browsing, video streaming, SSH,
IRC, etc.

Botnet Traces: Collecting botnet traffic is a more challenging affair. Our re-
quirements for running bot samples are: to make sure that the generated traffic
is typical of the specific bot and to make sure the bot does not damage any other
hosts on the network. To tackle the first requirement, we ran our bot samples on
a virtual machine running Windows XP SP2 and recorded network traffic using
a libpcap-based capture program. Virtual machines can be easily reverted back
to their pre-infection state, which established a clean baseline from which to run
the bot samples. As the host machine running the virtual Windows XP system
is on the Lehigh University campus network, it is important to make sure it will
not cause any damage to the network. For example, many botnets infect new
users through worms and OS exploits, so outgoing traffic on known exploit ports
was blocked. We believe that our measures were sufficient in avoiding any dam-
age to the Lehigh University campus network. Table 1 shows a summary of the
network data collected. In many cases, data for botnet families were generated
using different variants of the bot. Botnet family identification was performed
using the open source ClamAV antivirus tool [8].

234 G. Fedynyshyn, M.C. Chuah, and G. Tan

Table 1. Summary of data collected

Trace Type C&C Type Number of Variants Total Length

Normal NA NA 29 days

Ircbot IRC 4 8 days

Agobot IRC 3 18 days

Rustock HTTP 2 5 days

Storm HTTP 4 17 days

Bobax HTTP 4 5 days

Waledac P2P 2 6 days

UDP Storm P2P 1 6 days

3.2 Data Processing

We define persistence in terms of the number of time slots in the observation
window in which two-way communication occurs divided by the total number of
time slots in the observation window. For example, if two-way communication is
only observed in half of the time slots in the observation window, the persistence
of the conversation in that particular observation window is 0.5.

Figure 2 provides a graphical representation of the steps taken to create in-
stances which can then be sent to the Botnet Classifier for botnet detection:

1. Collect network traffic
2. Split network trace into conversations
3. Divide conversations into observation windows and extract feature values to

create instances
4. Filter out impersistent instances
5. Pass final instance set to Botnet Classifier

Only instances that pass the persistence test are retained. For each retained in-
stance, we compute the following features across the time slots contained within
the instance:

– Standard deviation of bytes sent / byte received
– Standard deviation of packets sent / packets received
– Standard deviation of bytes sent / packets sent
– Standard deviation of bytes received / packets received
– Standard deviation of the number of source ports used
– Standard deviation of the number of destination ports used
– Average number of bytes sent
– Average number of bytes received
– Average number of packets sent
– Average number of packets received
– Average number of TCP packets transmitted
– Average number of UDP packets transmitted

Detection and Classification of Different Botnet C&C Channels 235

Network Trace

Conversation 1

Conversation 2

.

.

.

1. Collect Network
Traffic

2. Split into
 Conversations

3. Extract features to
generate instances

4. Filter out impersistent
 instances

.

.

.

Instance 1

Instance 2

Instance 3

Instance 4

Instance 5

Instance 1

Instance 3

Instance 4

Instance 5

Instance 1

Instance 2

Instance 3

Instance 4

.

.

.

5. Pass final instance set
to Botnet Classifier

.

.

.

Fig. 2. Instance generation steps

– Average number of IRC packets transmitted
– Persistence value

Furthermore, let p be the persistence threshold. If the persistence value calcu-
lated for an instance of a conversation is less than the persistence threshold, the
instance is considered to be transient, and therefore not a likely candidate for
a potential C&C channel. A conversation that persists over time may produce
some instances that do not exceed the persistence threshold. Such a situation
may arise from a user shutting down her machine or losing her Internet connec-
tion. Thus, we decide to filter out these impersistent instances as they do not
accurately reflect the true behavior of the conversation that our botnet classifier
is concerned with.

Through experimentation, we found that t = 600 seconds (10 minutes), n = 24
time slots (4 hours), and p = 0.6 produces the best results. As our data clearly
spans more than 4 hours, we can make use of a sliding observation window to
generate multiple instances for a single conversation. Defining instances based on
observation windows has some benefits. Conversations can theoretically persist
indefinitely. Instead of having to store statistics regarding entire conversations
in computer memory, we only need to keep track of a handful of observation
windows. In addition, were there a situation where a legitimate site becomes
hijacked and used for malicious purposes, the observation window would soon
slide past the time slots encompassing the legitimate traffic and be able to detect
the new, malicious behavior.

There are two approaches we can take when determining how far to slide the
observation window, W , to generate the next instance: slide W a single time
slot or slide W n time slots, such that no observation windows overlap. For an
online IDS, it would make the most sense to slide W by one time slot at a time
as overall detection time would decrease. On the other hand, sliding W by n
time slots at a time ensures that there is no overlap from one instance to the
next. Overlapping instances may skew the accuracy of the classifier favorably,
so we present results based on a non-overlapping sliding observation window.
Using a non-overlapping observation window with t = 600 seconds and n = 24
time slots, a 24-hour long conversation can generate at most 6 instances. Using

236 G. Fedynyshyn, M.C. Chuah, and G. Tan

an overlapping observation window with the same values for t and n, a 24-hour
long conversation can generate at most 20 instances.

Table 2 shows the number of instances generated from the persistent con-
versations using the domain-based approach. Note the relatively low number of
persistent conversations found in each trace compared to the overall number of
conversations. As Table 2 shows, the number of persistent conversations in both
normal and botnet traces is immensely smaller than the total number of conver-
sations. By filtering out all transient conversations, we are left only with likely
C&C conversations. In addition, by disregarding impersistent connections, we
drastically cut down the amount of network traffic we need to analyze, leading
to a more computationally efficient model.

During our evaluation, we split our 89 total days network traffic such that
half (44 days) is used to build the training set and the other half (45 days) is
used to build the testing set, where there is no overlap between the training and
testing data. The number of instances generated for both training and testing
are also shown in Table 2.

Table 2. Summary of instance generation

Trace Type Total Convs Persistent Convs Training Instances Testing Instances

Normal 8,662 98 95 128

Ircbot 377 31 57 89

Agobot 32 4 17 10

Rustock 181 7 15 21

Storm 433 18 12 155

Bobax 42,307 24 40 51

Waledac 705 16 60 59

UDP Storm 1341 126 116 194

3.3 IRC Binary Classifier

Calculating the value of the average number IRC packets requires that we know
which conversations are IRC sessions and which are not. While typical IRC
servers are run on ports in the 6667-6669 range, many botnets use other ports
for IRC servers as a way to obfuscate their presence. We did indeed notice
this behavior with several of the bot samples we ran, with one contacting an
IRC server on port 65520. One can examine packet payload content for strings
common to IRC sessions, however any approach that examines packet payload
content would fail if the IRC session is encrypted. Thus, we need a scheme for
detecting IRC sessions that satisfies the following criteria:

1. Must be port independent
2. Must be packet payload-content independent
3. Must be accurate

Detection and Classification of Different Botnet C&C Channels 237

Our solution was to build a binary classifier to determine whether a conversation
is an IRC session or not. The IRC binary classifier should not be confused with
the botnet classifier, as its aim is to distinguish IRC sessions from non-IRC
session regardless of whether they belong to a bot or a legitimate user. To build
the IRC classifier:

1. Make a copy of our training and testing sets
2. Manually examined our network traces to locate IRC conversations
3. Manually remove encrypted conversations (i.e., unsure if IRC)
4. Set the class label of the instances corresponding to IRC conversations to be

”IRC”
5. Set the class label of the instances not corresponding to IRC conversations

to be ”Non-IRC”

While manually examining network traces to locate IRC conversations is an ex-
pensive process, it only needs to be done once to build an appropriate training
set for building the classifier. We found a J48 classifier to perform best at de-
tecting IRC sessions. We performed sensitivity analysis on our full feature set to
find a reduced feature set for the IRC classifier that gave the best performance:

– Standard deviation of bytes received / packets received
– Standard deviation of the number of source ports used
– Average number of bytes received
– Average number of packets sent
– Average number of packets received
– Average number of UDP packets transmitted

A single conversation can generate several instances according to our scheme,
meaning that it is possible that our IRC binary classifier could classify some
instances of a conversation as being IRC traffic and some instances as not being
IRC traffic. Such a result is not reflected in reality as IRC sessions will continue
to be IRC sessions. Rather than labeling single instances, we decided to label
entire conversations as being IRC or not. Our approach begins by classifying the
instances in each conversation as being instances of IRC traffic or non-IRC traffic.
If the majority of instances in a conversation are labeled as being IRC traffic,
we consider the entire conversation to be an IRC session and update all of its
instances to be considered IRC instances. Similarly, if the majority of instances
in a conversation are labeled as non-IRC instances, the entire conversation is
considered not to be an IRC session and all of its instances are updated to reflect
this. Figure 3 illustrates our IRC binary classification process. The results of our
IRC binary classifier are presented in Table 3. For the IRC binary classifier,
accuracy is defined as the number of correctly classified conversations divided
by the total number of conversations. Using the IRC binary classifier, we are able
to differentiate IRC sessions from non-IRC sessions with an accuracy of 0.977.
Now that we can be fairly confident about which conversations are IRC sessions,
we are able to determine the value of the ”average number of IRC packets”
feature.

238 G. Fedynyshyn, M.C. Chuah, and G. Tan

Table 3. Results of IRC Classifier on conversations

Classified as → NON-IRC IRC

Non-IRC 151 2

IRC 2 17

IRC Classifier

IRC

Non-IRC

Conversation 2

W1 W2 W3 W4 W5

Conversation 1

W1 W2 W3 W4 W5

Conversation 2

W1 W2 W3 W4 W5

Conversation 1

W1 W2 W3 W4 W5

1. Extract feature values
for each observation window

(i.e, instance)

2. Label instances as belonging
to IRC conversations

3. Label conversations as IRC
by majority vote of their

instances

Conversation 1 (IRC)

W1 W2 W3 W4 W5

Conversation 2 (Non-IRC)

W1 W2 W3 W4 W5

Fig. 3. Classification of IRC conversations: domain-based

4 Evaluation

We used the Weka Machine Learning Java library [9] to build our classifiers.
During the training phase, all generated instances (see Table 2) are labeled with
one of four class values indicating the type of C&C channel used: NORMAL,
IRC, HTTP, P2P. Labeling is based on prior knowledge of the bots used to
generate network traces. We examined the effectiveness of the two best perform-
ing classifiers, a J48 classifier and a Random Forest classifier [9]. As there was
no overlap in destination hosts for persistent conversations between normal and
botnet traces, testing the classifier on the generated test instances is equivalent
to overlaying botnet traces on top of normal traces because the data processing
stage would separate the individual conversations from the merged traces.

In addition, we performed sensitivity analysis on our feature set to select
reduced subsets of features that produced the best overall accuracy. Trying all
possible combinations of features from our total fourteen-feature set, the best
set of features for the J48 classifier was found to be:

– Standard deviation of packets sent / packets received
– Average number of bytes sent
– Average number of bytes received
– Average number of TCP packets transmitted
– Average number of UDP packets transmitted
– Average number of IRC packets transmitted
– Persistence value

Detection and Classification of Different Botnet C&C Channels 239

Similarly, the best feature set for the Random Forest classifier was found to
be:

– Standard deviation of bytes sent / bytes received
– Standard deviation of the number of source ports used
– Average number of bytes sent
– Average number of bytes received
– Average number of packets sent
– Average number of UDP packets transmitted
– Average number of IRC packets transmitted
– Persistence value

5 Results

Accuracy is defined as the number of instances correctly classified divided by
the total number of instances. False positive rate is defined as the number of
instances of legitimate traffic classified as botnet traffic divided by the total
number of instances of legitimate traffic. The results of running the classifiers on
the reduced feature sets are shown for both the J48 classifier and the Random
Forest classifier in Table 4. The J48 classifier had an overall accuracy of 0.926
with a false positive rate of 0.188. The Random Forest classifier had an overall
accuracy of 0.929 with a false positive rate of 0.078.

Table 4. Results of Botnet Classifiers: domain-based

J48 Random Forest

Classified as → NORMAL IRC HTTP P2P NORMAL IRC HTTP P2P

Normal 104 0 21 3 118 0 5 5

IRC 0 99 0 0 0 99 0 0

HTTP 21 1 201 4 32 1 189 5

P2P 2 0 0 251 2 0 0 251

In the results we presented in Table 4, we chose to classify individual instances
of conversations rather than entire conversations since we are hoping to produce
an online detection system eventually. With an observation window of 4 hours
long, our online IDS would potentially be able to detect the presence of a bot
within 4 hours of the initial infection. However, it is more intuitive to think of
botnet C&C detection in terms of detecting entire C&C conversations. Thus,
we also report the accuracy rate of our detection method for classifying entire
conversations using a majority vote of the classification results for the instances
generated from a conversation. Our results for both the domain-based approach
as well as the IP-based approach are shown in Table 5. On a per-conversation
basis, accuracy is defined as the number of correctly classified conversations

240 G. Fedynyshyn, M.C. Chuah, and G. Tan

divided by the total number of conversations. False positive rate is defined as the
total number of normal conversations classified as botnet conversations divided
by the total number of normal conversations. For the domain-based approach,
the J48 classifier correctly classified 169 out of a total of 181 conversations and
the Random Forest classifier correctly classified 171 of 181 conversations. On a
per-conversation level, the J48 classifier had an accuracy of 0.934 and a false
positive rate of 0.173 and the Random Forest classifier had an accuracy of 0.945
and a false positive rate of 0.038.

Whereas the domain-based approach found a total of 19 IRC botnet conver-
sations, the IP-based approach found 30. However, in many cases, multiple IP
addresses of IRC servers corresponded to a single domain name. Though only
19 persistent connections to domain names were found in the domain-based ap-
proach for IRC-based botnets, they accounted for a total of 48 IP addresses,
meaning that the IP-based approach missed 18 of the IP addresses associated
with the IRC C&C channels. Thus, the results presented in Table 5 are adjusted
to include the missed IP addresses. The IP-based approach only found 30 of 38
IP addresses associated with HTTP C&C channels. Both the P2P-based bots did
not demonstrate multiple IP addresses associated with a single domain name.
While the IP-based approach missed 8 IP addresses associated with persistent
conversations to domain names for the instances generated from legitimate traf-
fic, it does not make sense to count those additional IP addresses as misclassified
when calculating false positives, as a missed conversation can not raise an alarm.
Therefore, the number of normal conversations found by the IP-based approach
is left at 48 in Table 5. The per-conversation accuracy of the J48 classifier using
the IP-based approach is 0.752 with a false positive rate of 0.200 and the accu-
racy of the Random Forest classifier using the IP-based approach is 0.771 with
a false positive rate of 0.042. Compared to the per-conversational accuracy and
false positive rate achieved using the domain-based approach, it is clear that the
IP-based approach has poorer performance.

Table 5. Results of Botnet Classifiers (entire conversations)

Domain-based IP-based

J48 Random Forest J48 Random Forest

Conversations Total Correct Total Correct Total Correct Total Correct

Normal 52 43 52 50 48 40 48 46

IRC 19 19 19 19 48 24 48 23

HTTP 34 31 34 26 38 24 38 23

P2P 76 76 76 76 76 76 76 76

Total 181 169 181 171 218 164 218 168

Detection and Classification of Different Botnet C&C Channels 241

6 Discussion

We describe three hypotheses at the beginning of Section III that have to be true
in order for our approach to work. The results we have presented in the previous
section have shown that botnet C&C communication can be differentiated from
botnet non-C&C traffic through the use of a persistence metric. The intuition
that botnet traffic follows an inherent command-response pattern such that it
can be differentiated from normal, legitimate traffic was shown to be true, as
our classifiers were able to successfully distinguish between normal and botnet
traffic. Furthermore, the thought that the characteristics of C&C styles across
different botnet families would still contain inherent similarities was also shown
to be true, as both of our classifiers were able to successfully differentiate the
different C&C styles across multiple variants of bots in the same botnet fam-
ily, and across bots from different bot families. We have also shown that, while
IP-based approaches to botnet detection may appear to produce decent results,
they run both the risk of missing connections to malicious IP addresses as well
as the risk of not capturing the entire behavior of a C&C conversation in the
presence of fast flux DNS techniques.

Ultimately, the Random Forest classifier produced the best results in terms
of accuracy and false positive rate. For an online IDS, one could either prompt
the user when a suspicious conversation is detected, asking her whether or not
she wants to block the connection or could automatically block the connection.
A high false positive rate would either annoy the user by raising prompts too
frequently or would block legitimate connections, leading to further user annoy-
ance. Thus, minimizing the false positive rate is imperative. Sometimes, a botnet
conversation may not be detected when it first appears in an observation window
but it is very likely that it will be detected in subsequent windows. We hope to
quantify the detection time in the near future. As a single, persistent conversa-
tion will generate multiple classifiable instances as time progresses, even if the
bot infection is not detected in the first observation window, it could certainly
be detected in a future observation window. Furthermore, many bot samples
initiated several persistent conversations. To successfully detect a bot infection,
we only really need to discover one of the persistent conversations. To this end,
our IDS was able to detect every bot infection even if it misclassified some of
the instances generated from the multitude of bot conversations.

7 Concluding Remarks

Botnets are serious threats to computer networks. Malicious activities such as
sending spam, stealing personal or financial information etc can be launched
by botnets. In this paper, we present a host-based method for detecting and
differentiating different types of botnet infections e.g. IRC-based, HTTP-based
or P2P based bots. Our method includes a few unique features, namely (a)
the ability to correctly identify the C&C style, (b) a binary IRC classifier that
allows identification of IRC traffic without payload inspection, and (c) a domain-
based approach that helps to deal with fast flux obfuscation techniques which

242 G. Fedynyshyn, M.C. Chuah, and G. Tan

are becoming more popular in botnet traffic that has been identified in recent
months. Our detection scheme can achieve an accuracy of 0.929 with a false
positive rate of 0.078 and a false negative rate of 0.033 using the Random Forest
classifier. In the near future, we would like to extend our work to detect botnet
infections on mobile devices as the growing popularity of smartphones is making
them a growing target for hackers to exploit.

References

1. Wurzinger, P., Bilge, L.: Automatically Generating Models for Botnet Detection.
In: European Symposium on Research in Computer Security (2009)

2. Vokorokos, L., Balaz, A., Chovanec, M.: Intrusion Detection System Using Self
Organizing Map. Acta Electrotechnica et Informatica (2006)

3. Giroire, F., Chandrashekar, J., Taft, N., Schooler, E., Papaginnaki, D.: Exploit-
ing Temporal Persistence to Detect Covert Botnet Channels. Recent Advances in
Intrusion Detection (2009)

4. Ramachandran, A., Mundada, Y., Tariq, M.B., Feamster, N.: Securing Enterprise
Networks Using Traffic Tainting. Special Interest Group on Data Communication
(2008)

5. Gu, G., Zhang, J., Lee, W.: BotSniffer: Detecting Botnet Command and Control
Channels in Network Traffic. Network and Distributed System Security (2007)

6. Gu, G., Perdisci, R., Zhang, J., Lee, W.: BotMiner: Clustering Analysis of Network
Traffic for Protocol- and Structure-Independent Botnet Detection. In: Proceedings
of the 17th Conference on Security Symposium (2008)

7. Chang, S., Daniels, T.: P2P Botnet Detection using Behavior Clustering & Statis-
tical Test

8. Clam AntiVirus, http://www.clamav.net
9. Weka 3 Data Mining and Machine Learning Software,

http://www.cs.waikato.ac.nz/ml/weka/

10. John, J., Moshchuk, A., Gribble, S., Krishnamurthy, A.: Studying Spamming Bot-
nets Using Botlab. Network Systems Design and Implementation (2009)

11. Zeng, Y., Hu, X., Shin, K.: Detection of Botnets Using Combined Host- and
Network-Level Information. In: International Conference on Dependable Systems
& Networks (2008)

12. Stewart, J.: Inside the Storm: Protocols and Encryption of the Storm Bot-
net (2008), http://www.blackhat.com/presentations/bh-usa-08/Stewart/BH_

US_08_Stewart_Protocols_of_the_Storm.pdf

13. Pitsillidis, A., Levchenko, K., Kreibich, C., Kanich, C., Voelker, G., Paxson, V.,
Weaver, N., Savage, S.: Botnet Judo: Fighting Spam with Itself. Network and
Distributed System Security (2009)

14. Porras, P., Saidi, H., Yegneswaran, V.: A Multi-perspective Analysis of the Storm
(Peacomm) Worm (2007), http://www.cyber-ta.org/pubs/StormWorm/report

15. Holz, T., Steiner, M., Dahl, F., Biersack, E., Freiling, F.: Measurements and Miti-
gation of Peer-to-Peer-based Botnets: A Case Study on Storm Worm. In: USENIX
Workshop on Large-Scale Exploits and Emergent Threats (2008)

http://www.clamav.net
http://www.cs.waikato.ac.nz/ml/weka/
http://www.blackhat.com/presentations/bh-usa-08/Stewart/BH_US_08_Stewart_Protocols_of_the_Storm.pdf
http://www.blackhat.com/presentations/bh-usa-08/Stewart/BH_US_08_Stewart_Protocols_of_the_Storm.pdf
http://www.cyber-ta.org/pubs/StormWorm/report

J.M. Alcaraz Calero et al. (Eds.): ATC 2011, LNCS 6906, pp. 243–258, 2011.
© Springer-Verlag Berlin Heidelberg 2011

A Method for Constructing Fault Trees
from AADL Models

Yue Li1, Yi-an Zhu1, Chun-yan Ma2, and Meng Xu2

1 School of Computer Science,
Northwestern Polytechnical University, Xian, P.R.C

2 School of Software and Microelectronics,
Northwestern Polytechnical University, Xian, P.R.C

rogerlee0201@gmail.com

Abstract. System safety analysis based on fault tree has been widely used for
providing assurance to the stringent safety requirement of safety-critical sys-
tems. Generating fault trees from models described in AADL, a promising stan-
dard language for modeling complicated embedded system, would realize the
automation of system safety analysis which is traditionally performed manually.
This paper proposes a whole method for constructing fault trees from AADL
models, whose main idea is to extract fault information from AADL models by
dynamically tracing the possible fault sources of the specified fault objective,
store them into a proposed database structure, and then construct fault trees
based on the extracted fault information in the database structure. Further, the
challenge posed by the common problems of deadlock and fault tree sharing is
resolved by one algorithm called Sharing_Label in our method. We prove the
correctness of the whole method theoretically.

1 Introduction

Safety-critical systems are those whose failure would result in loss of life, significant
property damage, or damage to the environment. System safety analysis provides
assurance that the system satisfies certain safety constrains even in the presence of
certain component failures. Safety engineers traditionally perform analysis manually
based on information synthesized from informal design models and requirements
documents. Unfortunately, these safety analyses are highly subjective and dependent
on the skills of the engineers [1]. Fault tree is one of the most common techniques
widely used in safety-critical systems by safety engineers. However, different engi-
neers will often produce fault trees for the same system that differ in substantive ways
[2]; moreover, constructing a fault tree is labor-intensive and time-consuming. Con-
sequently, how to build fault trees for a safety-critical system effectively and consis-
tently has become a vitally attractive and significant issue.

The key to resolve the foregoing problem depends on whether we can find a formal
or standard model, on the basis of which we could construct fault trees that represent
the components and their interactions in the context of the safety-critical system

244 Y. Li et al.

architecture. This problem remains unresolved until 2004, when SAE (society of
automotive engineers) released AADL (Architecture Analysis & Design Language) as
a standard [3], which has inherent support for describing, binding various system
components and modeling, analyzing the whole system in both functional and non-
functional requirements through the core language. However, AADL itself provides
no fault information to support the safety description of systems. Accordingly, AADL
Error Model Annex [4] is published by SAE to complement the AADL standard with
capabilities for dependability modeling through applying specification of error anno-
tations on the original AADL architecture model. AADL and its error model annex
can be regarded as appropriate formal models of most safety-critical systems, from
which safety engineers could construct fault trees with consistency and effectiveness.
By making full analysis of the fault trees built from AADL models of the system,
safety engineers can modify and improve the reliability of the system in the early
design stage of development progress iteratively.

Dehlinger et al. [5] proposes to construct DFT (Dynamic Fault Tree) from AADL
models to solve the temporal sequence problem; nevertheless, DFT has much more
complicated structures and the qualitative analysis results of the DFT would be ques-
tioned because there exists no definite qualitative analysis method towards DFT. This
paper suggests using static fault tree with Priority-AND gate described in fault tree
handbook [6] born with the capability to address the temporal sequence problem, for
its simple structure and the relevant effective qualitative analysis methods [9-10].
Joshi et al. [2] describes a systematic approach to build static fault trees from AADL
models in the view of system architecture; however, no detailed algorithm has been
described in their paper. Their approach computes all the possible fault paths from
AADL models with no necessity to identify any fault objective in advance. Accor-
dingly, any fault tree with specified fault objective as its root node would be con-
structed directly through the computed fault paths. Commendably, the approach con-
siders the reuse of the computed fault paths; however, when minor changes occur in
AADL models, the construction of fault trees is forced to be executed again to
achieve the correct and instant fault information no matter how complicated and time-
consuming it would be. Besides, Guard_In, Guard_Out and Derived_State_Mapping
attributes in AADL error models, regarded as the critical factors that determine the
direction of fault propagation, are of significance discussed in [2,5], yet neither paper
provides the detailed algorithm about the important attributes. In addition, Joshi et al.
[2] concisely discusses the possible problems of deadlock and fault tree sharing when
constructing fault trees from complicated AADL models; nevertheless, no algorithm
has been described to address the two problems simultaneously. This paper proposes a
whole detailed method to construct fault trees from AADL models, and describes
some detailed algorithms to solve all the problems mentioned above.

The rest of the paper is organized as follows: Sect. 2 introduces the background
about AADL and AADL error model. We present our method in Sect. 3 and explain
the method through an example in Sect. 4. Correctness of the method is analyzed in
Sect. 5. Finally, Sect. 6 concludes the paper.

 A Method for Constructing Fault Trees from AADL Models 245

2 Background

In this section, we will introduce a system example SimAADLSystem and its error
model annex SimBasic, also the reference case in Sect. 4, to illustrate certain concepts
about AADL and its associated error model respectively.

The SimAADLSystem is a simple system consists of both simple hardware and
software components (see Fig. 1). SimHardware.Impl is the implementation of hard-
ware component SimHardware consisting of two processors Pr1, Pr2 and one bus
DataBus which connects Pr1 and Pr2. The software component in SimAADLSystem
is composed of two processes P1, P2 and two logical connections Conn1, Conn2; data
is transmitted through Conn1 from the data port Output in P1 to the data port Input in
P2, and vice versa with Conn2. The processes of software are bound to the processors
of hardware, and the logical connections of software are bound to the bus of hard-
ware. AADL mainly describes the structure, rather than the fault propagation mechan-
ism which is the duty of error model.

Fig. 1. Snippet of a simple system in AADL

AADL error model mainly describes the fault information of systems. There are
two implementations of error model SimBasic: SimBasic.Hardware and SimBas-
ic.Software, which are defined in SimErrorLib error model library as shown in Fig. 2.
SimBasic defines one initial error state which is also the initial state of certain com-
ponent, two error states that possibly triggered by error event or error propagation,
two error events and two propagations, prop1 and prop2 both of which can be re-
garded as in or out propagation at one time. In propagation is the propagation thrown
from other components, and out propagation is the one that would be propagated to
other components. Error model implementation describes the possible actions of fault
information defined in error model. Take SimBasic.Hardware as example, assume
that the component associated with SimBasic.Hardware error model implementation
is in the initial state err_free currently, it would turn to error state failure1 when the
error event fail1 occurs.

system SimHardware system implementation SimAADLSystem.Impl
end SimHardware; subcomponents
system implementation SimHardware.Impl HW: SimHardware.Impl;

subcomponents SW: SimSoftware.Impl;
Pr1: processor SimProcessor.Impl; properties
Pr2: processor SimProcessor.Impl; Actual_Processor_Binding =>
DataBus: bus SimBus.Impl; reference HW.Pr1 applies to SW.P1;

Connections Actual_Processor_Binding =>
bus access DataBus -> Pr1.DataBus; reference HW.Pr2 applies to SW.P2;
bus access DataBus -> Pr2.DataBus; Actual_Connection_Binding =>

end SimHardware; reference HW.DataBus applies to SW.Conn1;
system implementation SimSoftware.Impl Actual_Connection_Binding =>

subcomponents reference HW.DataBus applies to SW.Conn2;
P1: process SimProcess.Impl; end SimAADLSystem.Impl;
P2: process SimProcess.Impl;

connections
Conn1: data port P1.Output -> P2.Input;
Conn2: data port P2.Output -> P1.Input;

end SimSoftware.Impl;

246 Y. Li et al.

Fig. 2. Specifications of AADL error model

Error model implementation can not work without associating itself to certain sys-
tem component as shown in Fig. 3. The annex error_model block is defined in normal
AADL component implementation, and the Model attribute associates the error model
implementation with component. Now the component SimSoftware.Impl has its own
error model information described in SimBasic.Software. Attribute such as De-
rived_State_Mapping, Guard_In and Guard_Out may alter the error propagation
information defined in error model implementation.

Fig. 3. Associations of AADL error model

Take the component SimSoftware.Impl into consideration, only when one subcom-
ponent of the component, either P1 or P2, is in error state failure1, will SimSoft-
ware.Impl be in error state failure1 which is originally caused by the temporal com-
bination of error state err_free and error event fail1 due to the function of De-
rived_State_Mapping. Likewise, the in propagation prop1 would be thrown when the
connection or component connected with data port Input is in error state failure2 due
to Guard_In, and the out propagations would be masked if the in propagation prop1
from data port Input is detected due to Guard_Out.

system implementation SimSoftware.Impl process implementation SimProcess.Impl
annex error_model {** annex error_model {**
Model => SimErrorLib::SimBasic.Software; Model => SimErrorLib::SimBasic.Software;
Model_Hierarchy => Derived; Guard_In => mask when Input[err_free],
Derived_State_Mapping => prop1 when Input[failure2],
err_free when P1[err_free] and P2[err_free]; prop2 when Input[failure1]
failure1 when P1[failure1] or P2[failure1]; applies to Input;
failure2 when P2[failure2]; Guard_Out => mask when Input[prop1]

report => failure2; **} applies to Output; **}
end SimSoftware.Impl; end SimProcess;
processor implementation SimProcessor.Impl
annex error_model {**

Model => SimErrorLib::SimBasic.Hardware;**}
end SimProcessor.Impl;

package SimErrorLib error model implementation SimBasic.Software
public annex error_model {** transitions
error model SimBasic err_free – [fail1] -> failure1;
feature err_free – [fail2] -> failure2;

err_free : initial error state; failure1 – [in prop2] -> failure2;
failure1, failure2 : error state; failure1 – [in prop1, out prop1] -> failure1;
fail1, fail2 : error event; failure2 – [in prop2, out prop2] -> failure2;
prop1, prop2 : in out propagation; end SimBasic.Software; **}
end SimBasic; end SimErrorLib;

error model implementation SimBasic.Hardware
transitions

err_free – [fail1] -> failure1;
err_free – [fail2] -> failure2;
failure1 – [fail2] -> failure2;
failure1 – [in prop1, out prop1] -> failure1;
failure2 – [in prop2, out prop2] -> failure2;

end SimBasic.Hardware;

 A Method for Constructing Fault Trees from AADL Models 247

3 Method

3.1 The Overall Method

The overall method for constructing fault trees from AADL models can be divided
into two phases as follows:

Phase I. Extract fault information from AADL and its associated error models, and
store the extracted fault information into the database structure (see Sect. 3.2) by
using algorithm Trace_Route (see Fig. 5). Since certain attributes such as Guard_In,
Guard_Out, and Derived_State_Mapping have influence on the direction and content
of fault paths, and the logical function of each attribute is independent, the attribute
algorithms Guard_Out, Derived_State_Mapping and Guard_In (see Fig. 6, 7 and 8
respectively) are proposed to assist the implementation of Trace_Route algorithm.

Phase II. Construct fault trees by iterating and organizing fault information stored in
database structure. Since the construction principle itself is simple due to the concise
mapping rules (see Sect. 3.6), the key step of this phase depends on the strategy of
addressing problems of deadlock and fault tree sharing which are the common phe-
nomena of generating fault trees. Accordingly, Sharing_Label algorithm is proposed
to resolve the problems of deadlock and fault tree sharing simultaneously.

3.2 Database Structure

We propose a database structure to store the fault information extracted from AADL
error model as shown in Fig. 4. All State information of component is stored in Er-
rorModel. The State of component stores the possible Paths that might cause the
State. Path is composed of State and Condition, and the temporal sequence between
State and Condition indicates the logical relationship of Priority-AND in fault trees.

Fig. 4. Class diagram of database structure

Path associates MinItem_OR to resolve the ineffectiveness of paths in the original
error model, which is caused by attribute Derived_State_Mapping. Propagation stores

248 Y. Li et al.

the information of MinItem_OR which indicates all the logical combination that might
cause the Propagation. MinItem_OR stores the set information of TempItem, and the
relationship between TempItem implies the logical relationship of OR which indicates
all the probable combinations causing the MinItem_OR. The set information of
SrcStatus_AND is stored in TempItem, and the relationship between SrcStatus_AND
implies the logical relationship of AND which indicates the status that only all the
SrcStatus_AND in set occur simultaneously could trigger one TempItem. InitialState
represents the initial state of component which is beneficial to locate the end of search
path quickly. CompStatus stores the information about the state of component and the
component itself to locate the source of fault through Derived_State_Mapping. The
combinations of features or component and the relevant state or propagation informa-
tion are stored in WinStatus.

3.3 Related Definitions

Definition 1 (feature). Feature is the interaction point between components in AADL
models which may be any one of the following: data port, event port, event data port,
provide data access, require data access and server subprogram call.

Definition 2 (matching rule of name). In propagation of one component has the
same name with the out propagation that causes it. The association way to search the
same name of propagations is known as the matching rule of name.

Definition 3 (SI, SSI). Divide all the conditions after keyword in AADL error model
into combinations split by logical operator OR. The set of combinations is called the
Set of Simple Item (SSI). Each combination split by logical operator OR is called
Simple Item (SI) and the SI consists of conditions which is in form of fea-
ture[propagation or state] and split by logical operator AND.

Definition 4 (constraint of “when others”). When conditions that may cause the
specified error state or propagation are not in the combinations of conditions before
keyword when others, the other combinations should be considered. The rule above is
known as constraint of “when others”.

3.4 Trace_Route Algorithm

The objective of algorithm Trace_Route is to find the fault paths which cause the top
event (the root node of fault tree and also the specified error state in AADL error
model) dynamically. Since the transfer of fault among components is delivered by
error propagations and each propagation is triggered by the error state of the compo-
nent involved, according to error propagations, trace towards the reasons of each error
state in fault paths step by step until only the initial error states and error event re-
main, would extract all the possible fault paths from AADL models. The fault infor-
mation stored in database structure after executing algorithm Trace_Route shown in
Fig. 5 is the reason of causing the occurrence of specified top event.

 A Method for Constructing Fault Trees from AADL Models 249

Fig. 5. Algorithm Tace_Route

3.5 Attribute Algorithms

Each attribute algorithm could independently alter the fault paths that are to be ex-
tracted. Attribute Guard_Out makes regulation about which error propagation could
go out of a component and where it goes. Algorithm 2 as illustrated in Fig. 6 de-
scribes the approach to find the error state or propagation that triggers the target prop-
agation through the specified feature. Constraint of “when others” defined in Sect. 3.3
is a critical issue in all attribute algorithms. As shown in Fig. 6 and 7, algorithm 2 and
3 have the same process strategy when considering the constraint of “when others”,
because both algorithms have the similar application background and

Algorithm 1. Trace_Route
Input: AADL models and its error models. Output: modified database structure
1： assure error state S and its associated component or connection Comp of top event according to

keyword report in error model;
2： if Derived_State_Mapping in Comp //CompBD as Comp here
3： execute algorithm Derived_State_Mapping;
4： else find source path P cause S from implementation of error model and fill information of P in

Path;
5： if InitialState in P
6: turn to step 2;
7: if Propagation in P {
8: if Comp has bounded component or connection CompBD {
9: find propagation prop of CompDB according to matching rule of name and find the error state

S that causes prop;
10: turn to step 2; }
11: for each feature F of features in Comp
12： if Guard_In applies to F
13: execute algorithm Guard_In and turn to step 15; }
14: turn to step 28;
15: capture component or connection Comp associated with F according to AADL models;
16: if Comp is a connection {
17: if direction of Comp points to component with F {
18: if Comp has error model
19: capture the error model of Comp and name Comp as Cpt;
20: else capture the component Cpt of the other side of Comp and its associated error model;
21: if F not executed by algorithm Guard_In
22: capture the name of propagation in Cpt according to the matching rule of name;
23: else turn to step 25;
24: } else stop trace of current path and turn to step 28; }
25: capture feature Fr connected with Cpt;
26: if Guard_Out applies to Fr
27: execute algorithm Guard_Out;
28: if switch of loop or recursion has InitialState or Propagation
29: turn to step 2;
30: else; //no execution here, just go to next loop or judgment switch //under recursion that has not

been iterated.
31: if no InitialState and Propagation exist
32: end;

250 Y. Li et al.

logical meaning, which is also the reason why Theorem 1 in Sect. 5 uses the same
analysis method and test data to analyze the coverage rate of fault paths.

The responsibility of attribute Derived_State_Mapping is to define the fault infor-
mation of subcomponents or connected components which differ from that in original
error model. Algorithm 3 (see Fig. 7) provides the mapping rule to extract fault in-
formation under attribute Derived_State_Mapping.

The duty of attribute Guard_In is to guard the features of components and deter-
mine which error propagation could enter the component. In Fig. 8, algorithm 4
judges whether the specified in propagation could continue the fault path or just ter-
minate in current component. The code statement in step 14 means that only when
propagation reaches the feature applied by Guard_In could the combination condition
be triggered, and the propagation might have any identity. The statement “only fea-
ture” in step 17 limits the matching rule, which means the feature alone that exists in
SSI, would mask the specified in propagation.

Fig. 6. Algorithm Guard_Out

Algorithm 2. Guard_Out.
Input: WinStatus in current Path. Output: modified database structure
1： capture feature and status with propagation or error state;
2： if feature not after keyword applies to
3： execute as matching rule of name, then turn to step 27;
4： if status is an error state {
5： if status exists in condition mask
6: set WinStatus as null, then turn to step 27;
7: else set combination with current component and status to WinStatus and turn to step 27;
8: } else { if status not matches any propagation in Guard_Out
9: set WinStatus as null, then turn to step 27;
10: else capture condition C after keyword when corresponded with status; }
11: if C equals keyword others {
12： split conditions above others into SSI;
13: combine each feature and subcomponent declared in current component with error state and

propagation of corresponding feature or subcomponent as a form of Input[prop2];
14: initial a set tempSet and store each combination in it;
15: for each combination comb in tempSet {
16: for each SI in SSI {
17: if SI equals comb
18: delete comb from tempSet; }}
19: add comb of tempSet to TempItem;
20: associate TempItem with MinItem_OR, MinItem_OR with Path;
21: set combination with current component and status to WinStatus and turn to step 27
22: } else { split C into SSI;
23: add logical AND item of each SI to SrcStatus_AND;
24: add logical OR item of SSI to TempItem;
25: associate SrcStatus_AND with TempItem, TempItem with MinItem_OR and MinItem_OR

with Path respectively;
26: set combination with current component and status to WinStatus; }
27: end

 A Method for Constructing Fault Trees from AADL Models 251

Fig. 7. Algorithm Derived_State_Mapping

Fig. 8. Algorithm Guard_In

Algorithm 3. Derived_State_Mapping.
Input: specified component and its state S. Output: database structure with filled Path
1： if S in Derived_State_Mapping
2： capture condition C after keyword when corresponded with S ;
3： else turn to step 18;
4： if C equals keyword others {
5： split conditions above others into SSI;
6: combine each feature and subcomponent declared in current component with error state and

propagation of corresponding feature or subcomponent as a form of Iput[prop2];
7: initial a set tempSet and store each combination in it;
8: for each combination comb in tempSet {
9: for each SI in SSI {
10: if SI equals comb
11: delete comb from tempSet; }}
12: add comb of tempSet to TempItem;
13: associate TempItem with MinItem_OR, MinItem_OR with Path;
14: } else { split C into SSI;
15: add logical AND item of each SI to SrcStatus_AND;
16: add logical OR item of SSI to TempItem;
17: associate SrcStatus_AND with TempItem, TempItem with MinItem_OR and MinItem_OR

with Path respectively; }
18: end

Algorithm 4. Guard_In.
Input: in propagation inprop. Output: modified database structure
1： if inprop exists in list of propagation in Guard_In {
2： capture feature after keyword applies to;
3： capture condition C after keyword when corresponded with inprop;
4： if C equals keyword others
5： split conditions above others into SSI and turn to step 17;
6: else split C into SSI;
7: } else turn to step 21;
8: for each SI in SSI {
9: if feature not exists in SI
10: turn to step 14;
11: else { add logical AND item of SI to SrcStatus_AND;associate SrcStatus_AND with TempItem,
12: TempItem with MinItem_OR and MinItem_OR with Path respectively; }
13: } turn to step 21;
14: add feature to SrcStatus_AND without fixed propagation;
15: add logical AND item of current SI to SrcStatus_AND;
16: associate SrcStatus_AND with TempItem, TempItem with MinItem_OR and MinItem_OR with

Path respectively;
17: if SI with only feature exists in SSI
18: turn to step 21;
19: else { add feature to SrcStatus_AND without fixed propagation;
20: associate SrcStatus_AND with TempItem, TempItem with MinItem_OR and MinItem_OR with

Path respectively; }
21: end

252 Y. Li et al.

3.6 Construction of Fault Trees from Database Structure

The principle of construction is simple: first, target the top event presented as State
in database structure, and then successively depth-first traverse the Path that
causes State and Propagation, the TempItem that causes Propagation, and the SrcSta-
tus_AND that causes TempItem (SrcStatus_AND or TempItem may store the new
information of State that should be further traversed) until only Event and InitialState
of database structure remain. When traversing each State or Event, construct the cor-
responding fault node with the same identity. The logical gate among fault nodes
depends on the logical relation such as AND, OR and Priority-AND among defined
classes as described in Sect.3.2.

Fig. 9. Algorithm Sharing_Label

Algorithm Sharing_Label serves to address the problems of deadlock and fault tree
sharing when generating fault trees. Algorithm 5 as described in Fig. 9 utilizes a stack
to record the visited nodes to detect deadlock, attaches labels to mark the deadlock
node and uses a set to store the complete fault trees to be shared. The subtree under
the deadlock node has no necessary to be cut down, because when algorithm encoun-
ters the deadlock node at the first time, it would ignore the subtree below the deadlock
node. Codes from step 4 to 5 and 18 to 22 ensure the completeness of each fault tree
stored in set, which enable the sharable feature of fault tree by removing the label of
its node.

Algorithm 5. Sharing_Label
Input: database structure. Output: fault tree
1： push top event as root node into stack S and initial a set as Set;
2： construct the first child node of specified node through iterating database structure;
3： define current node as N;
4: if N is a leaf node //InitialState or Event
5： turn to step 19;
6: if N not in S
7: push N into S;
8: if N in Set
9: turn to step 12;
10: else turn to step 2;
11: capture the reference Ref of N;
12: for each child node CN of Ref {
13: if CN has no label and CN in S
14: set label to CN;
15: if CN has label and CN not in S
16: remove label from CN; }
17: substitute Ref for N and replace N in S by Ref;
18: if N has brother node
19: turn to step 3;
20: else while S is not empty {
21: pop top node of S and add it to Set;
22: turn to step 18; }
23: end

 A Method for Constructing Fault Trees from AADL Models 253

4 Example

This section illustrates the whole method in the context of an application introduced
in Sect. 2. The AADL models of the example are descried in Fig. 1, 2 and 3.

4.1 Extraction of Fault Information from AADL Models

The top event of fault tree is the error state failure2 of SimSoftware P2 marked after
keyword report as shown in Fig. 3. Before finding fault paths that might trigger fail-
ure2 of SimSoftware, we should store the identity information of top event in State of
database structure. Algorithm 3 firstly finds the rules defined in attribute De-
rived_State_Mapping of SimSoftware, which indicates that the subcomponent P2 of
SimSoftware at the error state failure2 would trigger the specified top event, shown in
Fig. 3. Secondly, it adds failure2 of P2 into MinItem_OR of Path directly because the
Path of State has no error event. Error model SimBasic.Software described in Fig. 2
shows that it would trigger failure2 of P2 in the following two situations: when P2 at
state err_free and then event fail2 occurs; and when P2 at state failure1 and then prop-
agation prop2 occurs. Therefore, add err_free:fail2 and failure1:prop2 as CompStatus
to TempItems of MinItem_OR respectively, then initial State with its Path according
to the information of CompStatus. Currently, the State of P2:failure2 should include
two Paths: one associates State err_free and Event fail2, and the other associates State
failure1 and Propagation prop2. Since the error model of SimProcess declares
attribute Guard_In, as requirement of algorithm 1, we should refer the rules in
Guard_In before tracing the fault sources of prop2. As defined in Guard_In, the in
propagation prop2 is transferred from the other side of connection with feature Input,
as described in Fig. 1. Besides, attribute Guard_Out of P1 fails to mask or change the
propagation path according to algorithm 2, therefore failure 1 of P1 constitutes one of
the causes of prop2. In addition, P2 is also bounded by Pr2 and hence another cause
of prop2 would be the out propagation of Pr2. After tracing the causes of every non-
initial State and Propagation and storing the identity information of them to the data-
base structure as the way illustrated above, the fault information of triggering the top
event failure2 of component SimSoftware would be extracted completely.

4.2 Construction of Fault Tree from Extracted Fault Information

After the process presented in Sect. 4.1, all fault information of triggering failure 2 of
SimSoftware has been stored in database structure. Building fault nodes and associat-
ing logical gates among nodes from the fault information of database structure through
the rule described in Sect. 3.6 would finish the task of construction. We will illustrate
the construction of fault node with state failure2 of Pr2 in this example. Find the State
in database structure with identity of Pr2:failure2, and then iterate the collection of
Path in State. There are two Paths with TempItem including failure1:fail2 and
err_free:fail2 both as a form of CompStatus respectively. Accordingly, build one fault
node with identity of failure2 and one basic event node with identity of fail2, combine
the two nodes by a Priority-AND gate and then associate the gate to one temp node A
which serves as a connecting link with no practical sense. Likewise, another temp node

254 Y. Li et al.

B with basic initial node err_free and basic event node fail2 would be combined by an
OR-gate with the temp node A as the child nodes of fault node failure2 of Pr2. The
fault tree with a top event of SimSoftware:failure2 is shown in Fig. 10. The case is too
simple to involve deadlock and fault tree sharing; therefore this section would not
apply algorithm 5 in this example.

Fig. 10. Algorithm Sharing_Label

5 Correctness Analysis

The objective of the method for constructing fault trees from AADL models is to
extract fault information from AADL models, process and organize them in a form of
fault tree. Consequently, the problems that whether the fault information is extracted
adequately from AADL models and whether the process of generating fault trees
based on the fault information is correct constitute the key point.

The Algorithm Trace_Route serves to extract fault information from AADL mod-
els. Because the detailed rule of tracing fault sources of the specified error state is
based on the attribute algorithms which might alter the direction and content of fault
paths, the correctness of Trace_Route depends on the quality of three attribute algo-
rithms. The three algorithms without constraint of “when others” (as defined in Sect.
3.3) can accurately cover all the paths which cause the specified error state according
to the finite logical combinations. However, processing the constraint of “when
others” precisely would introduce NOT-gate to fault tree, and the possible logical
combinations related to others would be sizable and complicated. Three attribute
algorithms under constraint of “when others” find the fault paths in simplification

 A Method for Constructing Fault Trees from AADL Models 255

through simplified method of Boolean algebra and their own features, which reduces
the accuracy by expanding search coverage; nevertheless, none of the three attribute
algorithms omits the possible fault paths as proved in Theorem 1 and 2.

Theorem 1. Algorithm 2 and algorithm 3 are able to cover all the fault paths under
the constraint of “when others”.

Proof. The combination number of algorithm output is denoted as M. Let N be the
number of all SI in SSI (defined in Sect. 3.3) before keyword others. Define Lj as the
number of item with logical AND in current SI denoted as j. If current combination i
in j, then define the value of Kij as 0, otherwise the value of Kij is 1. Let C1 be the
number of feature and subcomponent (algorithm 2 without subcomponent). Let C2 be
the number of error state and propagation that have ability to trigger the feature and
subcomponent. Define P1 as the difference of percentage between results of algorithm
and the ideal circumstance which satisfies the following equation:

()∑ ∑ ⋅
= =

=
M

i

N

j

ccP
1 1

Lj+Kij

2111

If there is no logical AND item in every SI before keyword others when computing
P1, combine the combination of algorithm output with the logical OR item before
keyword others by logical AND operation, which replaces the originally empty item
of logical AND. The combinations with high probability in practical applications and
the corresponding value of P1 are listed in Table 1. The accuracy difference values
(D-value) are all equal or greater than zero, which means the fault paths are all con-
tained in the results of algorithm by expanding the search coverage.

Table 1. Accuracy of algorithm 2 and 3 under constraint of “when others”

No.
Feature
number

State
number

Combina-
tion number

AND items before
keyword “others”

OR items before
keyword“others”

Accuracy
D-value:P1

1 2 1 2 A∩B - 0.500

2 2 1 2 - A|B 0.250

3 2 2 4 - A1|… 0.281

4 2 2 4 - (A1,A2)|… 0.313

5 2 2 4 A1∩A2 ,A1∩B1 B2 0.281

6 2 2 4 A1∩A2 ,A1∩B1,A1∩B2 - 0.297

7 2 2 4 A1∩A2 B1|B2 0.141

8 2 2 4 A1∩A2 B1,B2 0.125

9 2 2 4 A1∩A2 - 0.156

10 2 2 4 A1∩A2∩B1 - 0.051

11 2

2

2 4 A1∩A2∩B1 B2 0.047

12 2 4 A1∩A2∩B1∩B2 - 0.016

13 3

3

2 6 A1∩B1∩C1 - 0.016

14 2 6 - A1|… 0.139

256 Y. Li et al.

Theorem 2. Algorithm 4 are able to cover all the fault paths under the constraint of
“when others”.

Proof. The number of feature after keyword applies to is denoted as M. Let N be the
number of all SI in SSI (defined in Sect. 3.3) before keyword others. Define Lj as the
number of item with logical AND in current SI denoted as j. If current combination i
in j, then let the value of Kij be 0, otherwise let the value of Kij be 1. Let C be the
number of feature. If there exists SI in SSI that only has the current feature, let the
value of Wi be 0, otherwise let the value of Wi be 1. Define P2 as the difference of
percentage between results of algorithm and the ideal circumstance which satisfies the
following equation:

()∑ ∑
= =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅=

M

i

N

j
iWP

1 1

Lj+Kij

c12

If there is no logical AND item in each SI before keyword others when computing
P1, combine every feature after keyword applies to with the logical OR item before
others by logical AND operation respectively, which replaces the original empty item
of logical AND. The combinations with high probability in practical applications and
the corresponding value of P2 are listed in Table 2. The accuracy difference values
(D-value) are all equal or greater than zero, which means the fault paths are all con-
tained in the results of algorithm.

Table 2. Accuracy of algorithm 4 under constraint of “when others”

No.
Feature
number

items after keyword
“applies to”

AND items before
keyword “others”

OR items before
keyword “others”

Accuracy
D-value:P2

1 2 A,B A∩B - 0.500

2 2 A|B A∩B - 0.250

3 2 A - B 0.250

4 2 A - A 0.000

5 3 A|B A∩B - 0.111

6 3 C A∩B - 0.037

7 3 A,C A∩B∩C - 0.074

8 3 C A∩B C 0.000

9 3 A|B|C A∩B∩C - 0.037

10 3 A|B|C - A,B,C 0.000

11 3

3

A,C A∩B - 0.148

12 A,C A∩B C 0.111

13 3

3

A|B A∩B C 0.222

14 B,C - A 0.222

As demonstrated in Theorem 1 and 2, all possible fault paths would be extracted
even in the constraint of “when others”, one condition that might omit fault informa-
tion with a high probability; moreover, algorithm 1 traces the fault sources strictly
through the precise description of propagation relationship among AADL components

 A Method for Constructing Fault Trees from AADL Models 257

as shown in Sect. 3.4. So the method ensures the correctness of extraction of fault
information from AADL models.

Because the relationship between fault node and the extracted fault information
stored in database structure is one-to-one (see Sect. 3.6), the process of mapping fault
information to fault node of fault tree would be correct. The factors that influence the
correctness of generating fault trees from fault information are limited to the problems
of deadlock and fault tree sharing in the construction.

Theorem 3. By using algorithm 5, the problems of deadlock and sharing fault trees
would be resolved simultaneously.

Proof. Algorithm 5 adopts the strategy that it defines a set to store the complete fault
trees or subtrees, and detects deadlock before sharing the tree with the same identity
in set. As a result, all the possible locations of deadlock collision between the sharing
fault tree and the fault tree under construction would be detected. Algorithm 5 avoids
directly removing the node by attaching a label to the deadlock node, which keeps the
completeness of sharing fault tree in set and has benefit for reuse of fault tree. When it
finds a node in sharing tree with label and the node is not in the visited stack, the
algorithm would remove the label from the node because the node may be a deadlock
node before but not a deadlock node in the current path under construction; When it
finds a node in sharing tree without label but the node is in the visited stack, the algo-
rithm would attach a label to the node to show the fact that the node is a deadlock
node currently, which avoid the possibility of implicit new deadlock. Since algorithm
5 can both remove the new deadlock nodes and avoid reusing the old deadlock nodes,
it resolves the only two difficulties of keeping correctness, considering both deadlock
and sharing fault trees.

6 Conclusion

This paper describes a method in detail for constructing fault trees from AADL mod-
els and proves the correctness of the whole method theoretically. The method is espe-
cially appropriate to be used in the early design stage of AADL models which needs
to be modified frequently for system safety analysis based on fault tree.

References

1. Joshi, A., Whalen, M., Heimdahl, M.: Model-based safety analysis final report. NASA
contractor report, NASA/CR-2006-213953 (2006)

2. Joshi, A., Vestal, S., Binns, P.: Automatic Generation of Static Fault Trees from AADL
Models. Presented at Workshop on Architecting Dependable Systems of The 37th Annual
IEEE/IFIP Int. Conference on Dependable Systems and Networks, Edinburgh, UK (2007)

3. SAE-AS5506. Architecture Analysis and Design Language. SAE (November 2004)
4. SAE-AS5506/1. Architecture Analysis and Design Language Annex vol. 1. SAE (2006)

258 Y. Li et al.

5. Dehlinger, J., Dugan, J.B.: Analyzing Dynamic Fault Trees Derived from Model-Based
System Architectures. Nuclear Engineering and Technology: An International Journal of
the Korean Nuclear Society 40(5), 365–374 (2008)

6. Haasl, D.F., Roberts, N.H., Vesely, W.E., Goldberg, F.F.: Fault Tree Handbook, Systems
and Reliability Research, Office of Nuclear Regulatory Commission, Washington, DC
(1981)

7. Sun, H., Hauptman, M., Lutz, R.R.: Integrating Product-Line Fault Tree Analysis into
AADLModels. In: Tenth IEEE Int. Symp. on High Assurance Systems Engineering
(HASE 2007), pp. 15–22. IEEE Computer Society, Los Alamitos (2007)

8. Feiler, P.H., Rugina, A.-E.: Dependability Modeling with the Architecture Analysis and
Design Language (AADL).Technical report, CMU/SEI-2007-TN-043 (2007)

9. Walker, M., Papadopoulos, Y.: Synthesis and analysis of temporal fault trees with
PANDORA: The time of Priority AND gates. Hybrid Systems 2 (June 2008)

10. Walker, M., Papadopoulos, Y.: Qualitative temporal analysis: Towards a full implementa-
tion of the Fault Tree Handbook, Control Engineering Practice (November 2008) (in press)
(available online)

Author Index

Allen, Andrew A. 31

Chiu, Chuang-Yang 215
Chuah, Mooi Choo 175, 228
Clarke, Peter J. 31
Cruz, Rodolfo 31

de Oliveira Albuquerque, Robson 75
Dong, Yunwei 47

Elias Gomes de Deus, Flavio 75

Fan, Zhang 92
Fedynyshyn, Gregory 228

Garćıa Villalba, Luis Javier 75
Gómez Mármol, Félix 1
Gouda, Takehiro 118

Haque, Md. Emdadul 118
He, Guanglei 106

Kiefhaber, Rolf 19
King, Tariq M. 31
Kluge, Florian 19

Li, Tong 149
Li, Wanqi 106
Li, Yue 243
Li, Yunfa 60
Lin, Yang 149
Liu, Sha 47
Lu, Xiaodong 118

Ma, Chun-yan 243
Maña, Antonio 164
Mart́ınez Pérez, Gregorio 1
McCord, M. 175

Mori, Kinji 118
Muñoz, Antonio 164

Quintino Kuhnen, Marcus 1

Ribeiro Torres, Osmar 75
Ritter, Eike 187
Roth, Michael 19

Salcic, Zoran 132
Schmitt, Julia 19
Smart, Matt 187
Spitz, Stefan 203

Tan, Gang 228
Teich, Jürgen 132
Tüchelmann, York 203

Ungerer, Theo 19

Wan, Jian 60
Wang, Chun-Hsin 215
Wang, Yuying 47
Wei, Fan 118

Xiong, Naixue 60
Xu, Meng 243
Xu, Xianghua 60

Yang, Laurence T. 60
Yu, Fajiang 149
Yu, Zhang 92
Yunfeng, Zhang 92
Yunwei, Dong 92

Zhang, Huanguo 149
Zhou, Xingshe 47
Zhu, Yi-an 243
Ziermann, Tobias 132

	Title
	Preface
	Organization
	Table of Contents
	Keynote Speech
	Enhancing OpenID through a Reputation Framework
	Introduction
	Problem Statement
	Requirements Analysis
	OpenID Enhancement
	Reputation Framework
	Gathering Recommendations
	Dynamically Interchangeable Reputation Computation Engine
	Performing the Transaction: e-Receipt
	Collecting Users' Feedback
	General Overview

	Related Work
	Conclusions and Future Work
	References

	Autonomic Architectures, Models and Systems
	Concept of a Reflex Manager to Enhance the Planner Component of an Autonomic/Organic System
	Introduction
	Related Work
	OCµ and the Organic Manager
	Planning in OCµ
	Reflex Manager
	Actuator
	Discussion
	Summary and Outlook
	References

	Safe Runtime Validation of Behavioral Adaptations in Autonomic Software
	Introduction
	Related Work
	Testing Approach
	Overview
	Illustrative Example
	State-Based Model for SAV

	Self-Testable Autonomic Components
	Managers
	Internal Knowledge
	Resource
	Test Interface

	Prototype
	Application Description
	Setup and Experimentation
	Results
	Discussion

	Conclusion
	References

	A Configurable Environment Simulation Tool for Embedded Software
	Introduction
	Related Works
	Our Approach
	Function Design
	Architecture Design
	Simulation Process

	Simulation Monitor Method Design
	Problem Description
	Solution of Simulation Monitor
	Simulation Monitor Result

	Conclusions and Future Works
	References

	An Adaptive Management Mechanism for Resource Scheduling in Multiple Virtual Machine System
	Introduction
	Related Works
	Adaptive Management Mechanism
	Adaptive Management Model
	Genetic Simulated Annealing Algorithm
	Management Module

	Experiments and Results Analysis
	A Series of Experiments
	Results Analysis

	Conclusions
	References

	Virtualization with Automated Services Catalog for Providing Integrated Information Technology Infrastructure
	Introduction
	Bibliographic Review
	Virtual Machines
	Tools for Virtualization
	Data Center Environment Management Tools
	Services Catalog
	Related Work

	Proposal of the System of Requests Registration of IT Infrastructure
	System Persistent Layer
	System Logics
	System Basic Caractheristics and Functions
	System Main Outputs

	Tests and Results
	Testing Environment
	Comparison of Results
	Comparative Analysis of Costs Estimate

	Conclusions
	Future Work

	References

	Research on Modeling and Analysis of CPS
	Introduction
	AADL and Timed Automata
	Overview of AADL
	Overview of Timed Automata

	Modeling
	Cyber Component
	Physical Component
	Interactive Component

	Analysis with Timed Automata Network
	Transformation Rules
	Analysis with UPPAAL

	Case Study
	Conclusion and Future Work
	References

	Autonomic Communications
	Towards a Protocol for Autonomic Covert Communication
	Introduction
	Problem Formulation
	Covert Communication
	Communication Environment and Uncertainties
	Evolution and Optimization
	Autonomic Covert Communication System

	Autonomic Covert Communication Protocol
	Initialization
	Packet Transfer and Feedback
	Evaluation and Optimization
	Knowledge Acquisition and Environmental Adaptation
	Topics Unspecified

	Simulation Results
	Conclusions and Future Work
	Reference

	Autonomous Online Expansion Technology for Wireless Sensor Network Based Manufacturing System
	Introduction
	Related Works
	The Architecture
	Community Technology
	The Community Construction Technology
	Community Coordination Technology

	Community Reconstruction Technology
	Community Expansion Technology
	Community Shrinking Technology

	Simulation Result
	Conclusions
	References

	Self-organized Message Scheduling for Asynchronous Distributed Embedded Systems
	Introduction
	Problem Definition and Related Work
	Context
	System Model
	Rating Approach

	Single-Segment Scheduling
	DynOAA
	Evaluation
	Asynchronous Monitoring
	Adaptation in Dynamically Changing Systems

	Multi-segment Scheduling
	Partial Adaptation
	Multi-segment Systems

	Conclusions and Future Work
	References

	Trusted and Secure Computing
	Hierarchical-CPK-Based Trusted Computing Cryptography Scheme
	Introduction
	PKI-Based Trusted Computing Cryptography Scheme
	CPK Introduction
	HCPK-Based Trusted Computing Cryptography Scheme
	Motivation for HCPK
	Hierarchical Combined Public Key (HCPK)
	Application of HCPK in Trusted Computing
	TCM Key Architecture Based on HCPK
	Cross-Domain Platform Identity Authentication Based on HCPK

	Security Analysis
	Attack Model and Security Definition
	Security Proof

	Performance Analysis
	Conclusion and Future Work
	References

	Facilitating the Use of TPM Technologies Using the Serenity Framework
	Introduction
	Introduction to TPM Technology
	An Introduction to the Serenity Framework
	Using TPM Functionalities to Prevent Unauthorized Access to Data
	Phases 1 and 2 – Setup and Encryption
	Phase 3 – Data Retrieval

	Capturing the TPM Solution
	SERENITY Patterns
	SERENITY Operation

	Conclusions and Future Work
	References

	Spam Detection on Twitter Using Traditional Classifiers
	Introduction
	Background and Related Work
	The Twitter Social Network
	Related Work

	User-Based and Content-Based Features
	User-Based Features
	Content-Based Features

	Analysis of Collected Data
	Spam Detection and Evaluations
	Spam Detection
	Evaluations

	Conclusion
	References

	True Trustworthy Elections: Remote Electronic Voting Using Trusted Computing
	Introduction
	Related Work
	Our Contribution
	Structure

	Preliminaries
	Trusted Computing
	Threshold ElGamal Cryptosystem
	Threshold Signature Scheme
	Anonymous Channel
	Strong Designated Verifier Signature Scheme
	Proof of Equality of Discrete Logarithms
	Designated Verifier Re-encryption Proofs

	Protocol Model
	Participants
	Trust Model
	Threat Model

	Protocol
	Protocol Properties
	Conclusions and Future Work
	References

	Reliable, Secure and Trust Applications
	A Survey of Security Issues in Trust and Reputation Systems for E-Commerce
	Introduction
	Adversarial Goals
	Exploit Victim
	Destroy Victim Reputation

	Attack Strategies
	Bad Mouthing (BM)
	Ballot-Stuffing (BS)
	Sybil (SY)
	Newcomer (NC)
	On-Off (O2)
	Conflicting Behaviour (CB)

	Security Methods
	Identity Verification
	Member or Transaction Specific Opinion
	Recommendation Reputation
	Weighted Transaction Influence
	Opinion Discounting
	Transaction Fee

	Reducing the Security Issues
	Conclusion
	References

	Copyright Protection in P2P Networks by False Pieces Pollution
	Introduction
	Preliminary
	Protection by False Pieces Pollution
	Preparation of False Pieces
	Methods of Spreading False Pieces

	Simulation Results
	Conclusion and Future Work
	References

	Detection and Classification of Different Botnet C&C Channels
	Introduction
	Background: C&C Channel Types and Fast Flux
	Botnet Detection Approaches
	Contributions

	Related Work
	Methodology
	Data Collection
	Data Processing
	IRC Binary Classifier

	Evaluation
	Results
	Discussion
	Concluding Remarks
	References

	A Method for Constructing Fault Trees from AADL Models
	Introduction
	Background
	Method
	The Overall Method
	Database Structure
	Related Definitions
	Trace_Route Algorithm
	Attribute Algorithms
	Construction of Fault Trees from Database Structure

	Example
	Extraction of Fault Information from AADL Models
	Construction of Fault Tree from Extracted Fault Information

	Correctness Analysis
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

