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Abstract

Spatial interaction or gravity models have been used in regional science to model

flows that take many forms, for example, population migration, commodity

flows, traffic flows, and knowledge flows, all of which reflect movements

between origin and destination regions. This chapter focuses on spatial

autoregressive extensions to the conventional least-squares gravity models that

relax the assumption of independence between flows. These models, proposed

by LeSage and Pace (2008, Spatial econometric modeling of origin-destination

flows. J Reg Sci 48(5):941–967, 2009), define spatial dependence in this type of

setting to mean that larger observed flows from an origin region A to
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a destination region Z are accompanied by (i) larger flows from regions nearby

the origin A to the destination Z, say regions B and C that are neighbors to region

A, which they label origin dependence; (ii) larger flows from the origin region A
to regions neighboring the destination region Z, say regions X and Y, which
they label destination dependence; and (iii) larger flows from regions that are

neighbors to the origin (B and C) to regions that are neighbors to the destination
(X and Y), which they label origin-destination dependence. Spatial spillovers in

these models can take the form of spillovers to both regions/observations

neighboring the origin or destination in the dyadic relationships that characterize

origin-destination flows as well as network effects that impact all other regions

in the network. We set forth a simulation approach for these models that can be

used to produce scalar expressions for the various types of spillover impacts that

arise from changes in the explanatory variables of the model.

83.1 Introduction to Gravity or Spatial Interaction Models

Gravity models have often been used to explain origin-destination (OD) flows that

arise in regional science such as trade, transportation, and migration. In the regional

science literature, the gravity model has been labeled a spatial interaction model

(Sen and Smith 1995) because the regional interaction is directly proportional to the

product of regional size measures. In the case of interregional commodity flows, the

measure of regional size is typically gross regional product or regional income. The

model predicts more interaction in the form of commodity flows between regions of

similar (economic) size than regions dissimilar in size. For the case of migration

flows, population would be a logical measure of regional size, and in other contexts

such as knowledge flows between regions, LeSage, Fischer, and Scherngell

(2007) use regional knowledge stocks measured by patents to reflect size.

Theoretical motivations for spatial interaction modeling are numerous, for

example, Wilson (1967) and Roy (2004) provide a macroeconomic statistical

equilibrium development, Smith (1975) and Sen and Smith (1995) rely on

a microeconomic choice-theoretic approach, and Fischer (2002) and Fischer and

Reismann (2002) take a neural network approach that treats spatial interaction

models as universal function approximations.

Historically, motivations for these models took the view that spatial interaction

implies movement of entities, and that this has little to do with spatial association

(Getis 1991). These models attempt to explain variation in observed flows between

origin and destination regions using (i) origin-specific attributes that characterize

the ability of the origins to generate outflows, (ii) destination-specific attributes that

attract inflows, and (iii) variables reflecting the spatial separation of origin and

destination regions. The traditional assumption was that including separation vari-
ables (such as distance, borders, language, and cultural differences between

regions) should fully account for observed spatial dependence in flows. Curry

(1972) was an earlier dissenter from this view, advancing a theoretical motivation

for the presence of spatial dependence in flows after conditioning on conventional
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variables, and Griffith and Jones (1980) reported spatial correlation in residuals of

conventional spatial interaction models. The notion that use of distance functions in

conventional spatial interaction models effectively captures spatial dependence in

the interregional flows being analyzed was further challenged by Porojan (2001)

for the case of international trade flows, and Lee and Pace (2005) for retail

sales. Both studies reported residuals from conventional models that exhibited

spatial dependence. Despite these findings, most applied work continued to assume

independence between flow observations relying on conventional least-squares

models to explain observed variation in flows. One exception is Bolduc, Laferriere,

and Santarossa (1992) who explicitly model the disturbances using a spatial

autoregressive process.

LeSage and Pace (2008) define spatial dependence in a spatial interaction setting

to mean that larger observed flows from an origin region A to a destination region Z
are accompanied by (i) larger flows from regions nearby the origin A to the

destination Z, say regions B and C that are neighbors to region A, which they

label origin dependence; (ii) larger flows from the origin region A to regions

neighboring the destination region Z, say regions X and Y, which they label

destination dependence; and (iii) larger flows from regions that are neighbors to

the origin (B and C) to regions that are neighbors to the destination (X and Y), which
they label origin-destination dependence. Using this definition of spatial depen-

dence, modeling of spatial dependence in regional flows requires a spatial

autoregressive specification.

LeSage and Pace (2008) show how to produce maximum likelihood estimates

for a spatial autoregressive specification of the spatial interaction model. This

model includes spatial lags of the dependent variable similar to conventional spatial

autoregressive models in an effort to directly model spatial dependence in flows.

Fischer and Griffith (2008) use the approach introduced by LeSage and Pace (2008)

to include spatial lags for the model disturbances. LeSage and Pace (2009) show

how to produce Bayesian Markov Chain Monte Carlo estimates for their spatial

econometric variant of the spatial interaction model. While the motivation provided

by LeSage and Pace (2008) for the spatial econometric approach to spatial inter-

action modeling is purely econometric, Behrens, Ertur, and Koch (2012) provide

a theoretical justification for such models.

Section 83.2 introduces the conventional spatial interaction model that assumes

independence between observed flows and relies on ordinary least-squares estima-

tion methods.

In Sect. 83.3, we introduce the spatial autoregressive extension of LeSage and

Pace (2008). Section 83.4 discusses a number of problems that arise in applied

modeling of regional flows that can invalidate use of maximum likelihood (or

Bayesian) estimation of the model from LeSage and Pace (2008). These problems

provide fertile ground for future research in spatial interaction modeling.

While the focus in LeSage and Pace (2008, 2009) was on maximum likelihood

and Bayesian estimation of spatial autoregressive interaction models, there is also

a need to consider how estimates from these models should be properly interpreted.

The subject of interpreting estimates from independent and spatial autoregressive
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spatial interaction models is taken up in Sect. 83.5. We set forth a simulation

approach for these models that can be used to produce scalar expressions for the

various types of spillover impacts that arise from changes in the explanatory vari-

ables of the model. Spatial spillovers in these models can take the form of spillovers

to both regions/observations neighboring the origin or destination in the dyadic flow

relationships that characterize origin-destination flows as well as network effects

that impact all other regions in the network. We also make the point that interpre-

tation of estimates from conventional independent spatial interaction models may

be improved using this approach.

83.2 Gravity or Spatial Interaction Models Based on
Independence

Regression models attempt to explain variation in the n2 flows between the n
regions in a closed network of regional flows. The n � n flow matrix Y is converted

to an n2� 1 vector by stacking columns. The flowmatrix might be arranged so the i,
jth element reflects a flow from region j to region i, which has been labeled an

origin-centric flow arrangement by LeSage and Pace (2008). Many trade models

rely on the convention that the i, jth element of the flowmatrix represents a flow from

region i to j, which would be a destination-centric arrangement of the flows. If we let

yo denote the origin-centric vector of flows and yd a vector created by stacking

columns from a destination-centric arrangement, there is a vec-permutation matrix

P that can be used to relate these two different orderings. Specifically, Pyo ¼ yd, and
using properties of permutation matrices, yo ¼ P�1yd ¼ P0yd.

A regression model that has been labeled a gravity model captures the

notion that the size of the two regions and the distance between them are

important factors that determine the magnitude of flows between regions. For

example, if one starts with the standard gravity model (c.f., Eq. (6.4) in Sen and

Smith 1995) shown in Eq. (83.1) and applies a log transformation, the regression in

Eq. (83.2) arises.

mði; jÞ ¼ CXoðiÞXdðjÞHði; jÞ (83.1)

In Eq. (83.1), m(i,j) represents the expected flows from region i to region j
(assuming a destination-centric flow matrix), while Xd(i), Xo(j) denote sizes of the
destination and origin and G(i,j) represents resistance or deterrence to flows

between the origin and destination, typically modeled using some function of

distance between regions i and j. To facilitate the log transformation, Xo(i) can be

specified using XoðiÞbo and similarly, XdðjÞ ¼ XdðjÞbd , while H(i,j) is some

function of distance between regions i and j, for which we might use a power

function, D(i,j)g, where D(i,j) is the distance between regions i and j.
A point made by LeSage and Pace (2009) is that conventional work with these

models has relied on mathematics emphasizing dyads i, j which has severe limita-

tions for thinking about flows in the context of a network. Spatial dependence
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reflects relationships between observations, and is typically modeled using vectors

and spatial weight matrices to express relations between observations. LeSage and

Pace (2008) use the matrix/vector representation of the log-transformed dyad expres-

sion in Eq. (83.1) shown in Eq. (83.2), which more closely mirrors notation from

conventional regression modeling. It should also be noted that another population

formulation directly models flows as: Fði; jÞ ¼ exp
PR

k¼1 bk logXkij

� �
þ eij, where

the disturbance term is additive. This produces a Poisson model suitable for flows

taking the form of counts and requires maximum likelihood estimation (Gourieroux

et al. 1984).

y ¼ ain2 þ Xobo þ Xdbd þ ggþ e (83.2)

In Eq. (83.2), y is an n2 � 1 vector of (logged) flows constructed by stacking the

columns of the n � n flow matrix Y, where we will assume a destination-centric

organization throughout this chapter. Similarly, applying the log transformation to

the n� nmatrix of distances D(i,j) between the n destination and origin regions and
stacking the columns results in a vector of logged distances g, with associated

coefficient g. LeSage and Pace (2008) show that Xo ¼ in � X, where X is an n � R
matrix of characteristics for the n regions,

N
represents a Kronecker product, and in

is an n � 1 vector of ones. In the simplest case, X might represent a vector with the

appropriate size measure for each region, but without loss of generality this may be

amatrix containingR characteristics of the regions that are thought to explain variation

in flows.We note that this represents a general case where the same set of explanatory

variables is used for both origins and destinations. A special case might involve

selection of a subset of variables in the matrix X for use as origin characteristics, and

another subset of variables for the destination characteristics. However, the general

case maybe the preferred approach to specification, since inclusion of additional

unimportant explanatory variables does not bias least-squares estimates, whereas

exclusion of important explanatory variables can result in omitted variables bias.

The Kronecker product repeats the same values of the n regions in a strategic

fashion to create a vector (or matrix) of sizes associated with each origin region,

hence use of the notation Xo to represent these explanatory variables reflecting

origin characteristics. Ultimately, use of Kronecker products in conjunction with

matrix algebra allowed LeSage and Pace (2008) to express simple estimators that

avoid storing multiple copies of the same numerical values, which is computation-

ally inefficient. The matrix/vector Xd ¼ X � in arranges the n regional characteris-

tics to match the vector y, producing explanatory variables associated with each

destination region. The vectors bo and bd are R � 1 parameter vectors associated

with the origin and destination region characteristics, respectively. The scalar

parameter g reflects the effect of the vector of logged distances g on flows, which

is traditionally thought to be negative. The parameter a denotes the constant term

parameter, and the n2 � 1 vector e represents zero mean, constant variance, zero

covariance disturbances, consistent with the Gauss-Markov least-squares assump-

tions. We note that the assumption of normally distributed disturbances consistent

with least-squares implies that the dependent variable flows are also normally
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distributed. This is not consistent with some flows which represent count data, for

example, counts of persons migrating or commuters traveling from one region to

another. However, the log transformation may help to produce more normally

distributed flows. We will have more to say about this issue in Sect. 83.4, where

problems that affect maximum likelihood estimation of spatial interaction models

are discussed.

LeSage and Pace (2008) note that the algebra of Kronecker products can be

used to avoid the need to form n2 � R matrices Xo, Xd which require a great deal

of computer storage involving repeated numerical values. This can be seen by

examining the (2R + 2) � (2R + 2) moment matrix formed using:

Z ¼ in2 Xo Xd gð Þ shown in Eq. (83.3), where we use G to represent the n � n
matrix of logged distances.

Z0Z ¼
n2 0k 0k i

0
nGin

0
0
k nX0X 0

0
k0k X0Gin

0
0
k 0

0
k0k nX0X X0Gin

i
0
nGin i

0
nG

0X i
0
nG

0X trðG2Þ

0
BB@

1
CCA (83.3)

Similarly, the matrix product Z0y involving the matrix Z0 of dimension

(2R + 2) � n2 and the n2 � 1 vector of flows can be formed as shown in

Eq. (83.4), where tr denotes the trace operator.

Z0vecðYÞ ¼
i2n
X

0
o

X
0
d

g0

0
BB@

1
CCA y ¼

i
0
nYin
X0Yin
X0Y0in
trðGYÞ

0
BB@

1
CCA (83.4)

This allows calculation of the parameter estimates d¼ (a bo bd g)0 using only the
n� Rmatrix X, the n� n flow matrix Y, and the n� nmatrix of logged distances G
that appear in Z0Z and Z0y, as shown in Eq. (83.5).

d̂ ¼ ð1=n2ÞZ0Z
� ��1ð1=n2ÞZ0y (83.5)

Interpretation of the estimates bo, bd has followed that used in typical regression,
where these parameters reflect the influence (positive or negative) of changes in

origin and destination characteristics on the magnitude of flows. Since the model

has been log-transformed, these estimates can be interpreted as elasticities.

A negative estimate for the rth destination characteristic indicates that this reduces

flows to the destination, whereas a positive coefficient points to a factor that

increases flows to the destination. A similar interpretation applies to the coefficients

bo, which measure the positive or negative influence of origin characteristics on

flows. We will have more to say about this approach to interpreting the coefficients

bo, bd later. The coefficient g should be negative, consistent with the notion that

(logged) distance acts as a friction to reduce flows.
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83.3 Spatial Autoregressive Interaction Models

Intuitively, changes to the characteristics of a single region i will impact both

inflows and outflows to all other regions engaged or connected with region i as
either an origin or destination. For example, a (ceteris paribus) decrease in taxes in

region i would lead to inflows of population to this region from (potentially) all

other regions and a decrease in outflows of population to (potentially) all other

regions.

LeSage and Pace (2008) suggest that flows across networks involving origins

and destinations are likely to exhibit spatial dependence. They define spatial

dependence in this type of setting to mean that larger observed flows from

an origin region A to a destination region Z are accompanied by (i) larger

flows from regions nearby the origin A to the destination Z, say regions B and C
that are neighbors to region A, which they label origin dependence; (ii) larger

flows from the origin region A to regions neighboring the destination region Z, say
regions X and Y, which they label destination dependence; and (iii) larger flows

from regions that are neighbors to the origin (B and C) to regions that are

neighbors to the destination (X and Y), which they label origin-destination

dependence.

Casual observation of migration flows in a network of counties is consistent with

this type of observation. If there are a large number of migrants moving away from

a county A (say a county near the Detroit metropolitan area), we would expect to see

migrants also moving away from other counties B and C near Detroit (presumably

due to unfavorable labor market conditions). Similarly, if a large number of

migrants are moving into a county Z (say a county in the Austin metropolitan

area), we would expect to see migrants also moving into other counties X and Y in

the Austin metropolitan area (presumably because of favorable labor market

conditions).

LeSage and Pace (2008, 2009) propose a spatial regression extension of the

independent empirical gravity model from Eq. (83.2) shown in Eq. (83.6).

Ay ¼ ain2 þ Xobo þ Xdbd þ ggþ e

A ¼ In2 � roWoð Þ In2 � rdWdð Þ
¼ In2 � roWo � rdWd þ rwWwð Þ

Wo ¼ In �W

Wd ¼ W � In

Ww ¼ Wo �Wd ¼ Wd �Wo ¼ W �W

(83.6)

The term A can be viewed as a spatial filter that captures origin-based depen-

dence, destination-based dependence, and origin-destination-based dependence.

(The filter implies a restriction that rw ¼ �rord. This restriction need not be

imposed during estimation, so we address the more general case here and allow

for an unrestricted parameter rw.) The model and associated data generating

83 Spatial Econometric OD-Flow Models 1659



process (DGP) for the spatial autoregressive interaction model take the forms

shown in Eqs. (83.7) and (83.8), respectively, where we rely on the earlier defini-

tions of Z and d.

y ¼ roWoyþ rdWdyþ rwWwyþ Zdþ e (83.7)

y ¼ In2 � roWo � rdWd þ rwWwð Þ�1ðZdþ eÞ (83.8)

The spatial lag formed by the matrix product Wdy extracts flows from

neighbors to each destination region in the vector of origin-destination flow

dyads to form a linear combination of flows from neighboring destinations. In the

case where the n � n spatial weight matrix W represents a fixed number, say m, of
equally weighted nearest neighbors, the spatial lag vector would contain an

average of flows from the m neighboring destinations. The matrix W is a conven-

tional (row-normalized) spatial weight matrix of the type used in cross-sectional

regressions involving n regions. This spatial lag captures destination-based depen-

dence, with the parameter rd measuring the strength of destination-based

dependence.

A similar interpretation applies to the spatial lag formed by the product Woy,
which reflects a linear combination of flows from regions neighboring the

origin, again for each origin-destination dyad in the flow vector. The scalar

parameter ro reflects the strength of origin-based dependence. The spatial lag Wwy
forms a linear combination of flows from neighbors to the origin and flows from

neighbors to the destination, and the parameter rw represents the magnitude of this

type of dependence.

The stability restrictions for the spatial dependence parameters require that

1/lmin < ro + rd + rw < 1, where lmin is the minimum eigenvalue of the matrix

W. In practice, values of �1 are often used to replace 1/lmin, since this avoids the

need to calculate the minimum eigenvalue of the matrix W.

LeSage and Pace (2008) provide details concerning maximum likelihood esti-

mation for the spatial autoregressive interaction model, and LeSage and Pace

(2009) set forth a Bayesian MCMC estimation scheme. Both of these exploit the

computationally efficient moment matrices involving the sample data expressed

using the smaller dimension matrices.

83.4 Problems That Arise in Applied Modeling of Flows

Maximum likelihood estimation methods require that the disturbances in the model

follow a normal distribution, which implies that the dependent variable flows

are also normally distributed. As already noted, many flows are more properly

viewed as count data magnitudes, for example, flows of population or commuters

migrating or traveling between regions. There are limitations to the ability of the

log transformation to convert count data to a form consistent with a normal
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distribution, especially when a large number of flows between regions take on zero

values. For a flow matrix involving small regions, there are likely to be a large

number of zero flow magnitudes. For example, migration flows between US

counties in the contiguous states over a 5-year period exhibit zeros for over 90 %

of the county-to-county flows. A solution for problems involving large numbers of

zero flows as well as small flows would be development of Poisson variants of the

spatial autoregressive spatial interaction model. Some work has been done in this

area. Lambert, Brown, and Florax (2010) set forth a two-stage estimation procedure

for a spatial autoregressive Poisson model, that is one not representing a spatial

interaction model. LeSage, Fischer, and Scherngell (2007) introduce spatially

structured origin and destination effects in a Poisson model involving counts of

interregional patent citations, but their model does not involve spatial lags of the

dependent variable. LeSage and Llano (2006) introduce a Tobit variant of a model

that contains spatially structured origin and destination effects parameters, which

can address cases involving smaller numbers of zero flows. Ranjan and Tobias

(2007) also use a Tobit approach but rely on semi-parametric origin and destination

effects parameters. The use of Tobit models is an attempt to address a common

practice where practitioners modify the dependent variable vector using: ln(1 + y)
to accommodate the log transformation. Since this transformation ignores the

mixed discrete/continuous nature of the flow distribution, it should lead to down-

ward bias in the coefficient estimates for the model. An appropriate approach to

addressing the problem of a large number of zero flows as well as small flows and

the count nature of many flows remains an area for future research.

Another factor contributing to non-normality in flow magnitudes is the presence

of large flows within regions, those located on the main diagonal of the flow matrix,

relative to smaller flows between regions, those on the off-diagonal elements. Since

the objective of spatial interaction modeling is typically a model that explains

variation in interregional flows, practitioners often view intraregional flows as

a nuisance. Some common practices are (i) to simply set observed intraregional

flows to zero values (Tiefelsdorf 2003; Fischer et al. 2006) and (ii) introduce

dummy variables for these observations (Behrens et al. 2012). For the case of the

independence model, these approaches are fine, but they can have adverse impacts

on spatial autoregressive interaction models. Inclusion of zero magnitudes for

intraregional flows in a model that includes spatial lags such as Woy, Wdy will

produce aberrant observations when these flows become part of the linear combi-

nation of neighboring values to the origin or destination.

LeSage and Pace (2008) propose using a separate set of explanatory variables in

the spatial autoregressive interaction specification to deal with large flow magni-

tudes on the main diagonal of the flow matrix. This separate model is embedded

into the specification by adjusting the explanatory variables matrices Xo, Xd and the

intercept vector in to have zero values for the n observations associated with the

main diagonal elements (intraregional flows) of the flow matrix. They then intro-

duce an additional explanatory variables matrix containing only n nonzero obser-

vations, those associated with intraregional flows that were set to zero in the
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matrices Xo, Xd. In addition, new intercept vectors are introduced: one that contains

zeros for observations associated with intraregional flows and ones for all others,

and a second that contains ones for only the intraregional flow observations.

This approach allows nonzero intraregional flows to be included in the depen-

dent variable vector y which is used to form the spatial lagsWoy,Wdy,Wwy. The part

of flow variation associated with the large diagonal elements is explained by the

embedded model variables allowing the coefficient estimates associated with the

adjusted explanatory variables to more accurately characterize variation in

interregional flows. LeSage and Fischer (2010) provide an example of the improve-

ment that arises from this approach.

Assuming the problems of zero flows and the count nature of some flow

magnitudes can be solved for the case of the spatial autoregressive spatial interac-

tion model, there is still the issue of how to properly interpret estimates from this

model.

83.5 Interpreting Spatial Interaction Models

A first point to note is that we should not interpret the coefficient estimates bd, bo
and g as if they were least-squares estimates that reflect partial derivative changes in

the dependent variable associated with changes in the explanatory variables.

LeSage and Pace (2009) point out that this mistaken approach to spatial

autoregressive (SAR) models has been used in much of the past spatial economet-

rics literature.

We present a method that can be used to relate changes in characteristics of

a single region i to flows across the n� n network of flows between the n regions for
the case of the spatial autoregressive interaction model. This issue has not been

tackled in the literature, yet it is essential for interpreting the coefficient estimates

bo, bd in the spatial autoregressive interaction model.

83.5.1 A Numerical Illustration for the Nonspatial Gravity Model

Prior to setting forth our method for quantifying how changes in the rth character-

istic of region i impact flows, we provide a simple numerical illustration to fix ideas.

Using the DGP in Eq. (83.8), we generated a set of flows using n ¼ 8 regions with

bd ¼ 1, bo ¼ 0.5, d ¼ �0.5, rd ¼ 0.4, ro ¼ 0.4, and rw ¼ �po � rd ¼ �0.16. No

disturbance term was used, and the single vector x0 ¼ (40 30 20 10 7 10 15 25) was

used, so we have the case where R ¼ 1. A set of n latitude and longitude coordinates
(both equal to 1, 2, . . ., 8) were used to produce an n2 vector of (logged) distances g
and the associated spatial weight matrix W based on two nearest (distanced) neigh-

bors. The systematic order of the latitude-longitude coordinates produces regions

configured to lie on a line, with a simplified spatial weight matrix configuration. For

example, region 3 has regions 2 and 4 as the two nearest neighbors, region 4 has
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regions 3 and 5 as the two neighbors, and so on. This greatly simplifies things relative

to real-world data. The weight matrix for our example is shown in Eq. (83.9).

W ¼

0:0 0:5 0:5 0:0 0:0 0:0 0:0 0:0
0:5 0:0 0:5 0:0 0:0 0:0 0:0 0:0
0:0 0:5 0:0 0:5 0:0 0:0 0:0 0:0
0:0 0:0 0:5 0:0 0:5 0:0 0:0 0:0
0:0 0:0 0:0 0:5 0:0 0:5 0:0 0:0
0:0 0:0 0:0 0:0 0:5 0:0 0:5 0:0
0:0 0:0 0:0 0:0 0:0 0:5 0:0 0:5
0:0 0:0 0:0 0:0 0:0 0:5 0:5 0:0

0
BBBBBBBBBB@

1
CCCCCCCCCCA

(83.9)

A discrete change in each element/region i¼ 1, . . ., 8 of the vector x of one unit was
made and the discrete changes arising in the n � n flow matrix as a result of these

perturbationswere recorded. For each change in the value xi for a single region i, a new
flow matrix was generated and subtracted from the original flow matrix to illustrate

how changes in the characteristics of a single region impact the matrix of flows.

An important point to note here is that unlike the conventional spatial

autoregressive model where the matrix X contains characteristics for each of the

n regions, the matrices Xo, Xd in the spatial autoregressive interaction model

strategically repeats values of the n � R matrix X to form n2 � R matrices

Xo ¼ in � X; Xd ¼ X � in. An implication is that when we change the character-

istic/element of a single region i (which we denote using xi), it produces a set of

changes in n elements of the matrix Xo and changes in n elements of the matrix Xd.

Together, this set of 2n altered values in the matrices Xo, Xd produce the change in

flows that results from changing characteristics of the ith region, that is xi + 1. This

has computational implications for how we calculate the effects arising from

changes in the explanatory variables of this model. Unlike the conventional SAR

model, we do not need to calculate changes in each of the n2 elements of the vectors

Xo and Xd to produce scalar summary measures of the impact of these changes on

the flows. Although this approach is valid, it requires more computational effort.

Instead we can consider only n changes in each observation i of the matrix/vector X
as producing a total derivative response. There will be a vector of n2 � 1 responses

in the flows (which can be viewed as a change in the n � n flows matrix Y) arising
from a change in a single characteristic of the ith region, xi. This single element

total derivative change works through a series of 2n associated changes that arise in
the n2 � R model explanatory variables Xo, Xd.

Intuitively, increasing a single region i’s characteristic (say the size of region xi)
means this region will (i) attract more inflows as a destination from all n regions

(including itself which takes the form of more intraregional flows within region i)
and (ii) produce increased outflows to all n regions (including itself). This facet of

changes in the characteristic of a single region is what accounts for the model

repeating the same altered value of xi (the new size for region i) n times in the

vector/matrix Xo, and n times in Xd. Given this, it is computationally inefficient to

consider conventional partial derivatives that would independently change each of
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the n2 elements in Xo or Xd and examine their impact on the flow matrix. Changes to

individual elements of Xo and Xd need not be considered given the structure of the

model (and associated data generating process).

Theremay be appliedmodeling situationswhere different explanatory variables are

used to model the origin and destination characteristics of the regions that are thought

to be important for explaining variation in flows. In these situations, the argument used

above regarding changes to a single explanatory variable xi for each region will not be
valid. The more computationally inefficient approach of using conventional partial

derivatives that would independently change each of the n2 elements in Xo and Xd

would need to be used in order to examine the impact of these changes on the flow

matrix. We discuss this type of situation when providing a numerical illustration.

Results showing the changes in the n� n flowmatrix associated with a change in

the third region’s characteristic, x3, by one unit for the case of the independent

(nonspatial) gravity model in Eq. (83.2) are shown in Eq. (83.10). These were

produced by setting ro ¼ rd ¼ rw ¼ 0 in the spatial gravity model from Eq. (83.8),

which results in the independent gravity model from Eq. (83.2).

DY=Dx3 ¼

0:00 0:00 1:00 0:00 0:00 0:00 0:00 0:00
0:00 0:00 1:00 0:00 0:00 0:00 0:00 0:00
0:50 0:50 1:50 0:50 0:50 0:50 0:50 0:50
0:00 0:00 1:00 0:00 0:00 0:00 0:00 0:00
0:00 0:00 1:00 0:00 0:00 0:00 0:00 0:00
0:00 0:00 1:00 0:00 0:00 0:00 0:00 0:00
0:00 0:00 1:00 0:00 0:00 0:00 0:00 0:00
0:00 0:00 1:00 0:00 0:00 0:00 0:00 0:00

0
BBBBBBBBBB@

1
CCCCCCCCCCA

(83.10)

The role of the independence assumption is clear in Eq. (83.10), where we see

from row 3 that the change of outflows from region 3 to all other regions equals 0.5,

which is the value of the coefficient bo in our example. Similarly, column 3 exhibits

identical changes in inflows to region 3, taking the value 1 of the coefficient bd in
our example. The diagonal (3,3) element reflects a response equal to bo + bd, the
sum of the changes in flows into and out of region 3, reflecting the change in

intraregional flows arising from the change in x3. We have only 2n nonzero changes
in flows by virtue of the independence assumption. All changes involving flows into

and out of regions other than region 3 are zero.

Our method for producing scalar summary measures of the impacts arising from

changes in characteristics of the regions involves averaging over the cumulative

flow impacts associated with changes in all regions, i ¼ 1, . . ., n, analogous to the

approach taken by LeSage and Pace (2009) for the conventional SAR model. Doing

this produces
Pn

i¼1 ðDY=DxiÞ, a cumulative total effects (TE) matrix shown in

Eq. (83.11), which is the sum of n ¼ 8 different changed flow matrices of the type

shown in Eq. (83.10) for the case where i¼ 3. This matrix (TE) can be decomposed

into flow matrices reflecting origin effects (OE), destination effects (DE), network
effects (NE), and intraregional effects (IE) arising from changing a single charac-

teristic in all regions by one unit.
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TE ¼

1:5 1:5 1:5 1:5 1:5 1:5 1:5 1:5
1:5 1:5 1:5 1:5 1:5 1:5 1:5 1:5
1:5 1:5 1:5 1:5 1:5 1:5 1:5 1:5
1:5 1:5 1:5 1:5 1:5 1:5 1:5 1:5
1:5 1:5 1:5 1:5 1:5 1:5 1:5 1:5
1:5 1:5 1:5 1:5 1:5 1:5 1:5 1:5
1:5 1:5 1:5 1:5 1:5 1:5 1:5 1:5
1:5 1:5 1:5 1:5 1:5 1:5 1:5 1:5

0
BBBBBBBBBB@

1
CCCCCCCCCCA

(83.11)

The matrix of cumulative intraregional effects can be constructed using the main

diagonal elements of the TE matrix, IEði; iÞ ¼ Pn
i¼1 ðDYði;iÞ=DxiÞ. The matrix of

(cumulative) intraregional effects is shown in Eq. (83.12), where we see that these are

identical and equal to the value of the coefficients bo + bd from our example. These

are located on the main diagonal which reflects changes in intraregional flows.

IE ¼

1:5 0:0 0:0 0:0 0:0 0:0 0:0 0:0
0:0 1:5 0:0 0:0 0:0 0:0 0:0 0:0
0:0 0:0 1:5 0:0 0:0 0:0 0:0 0:0
0:0 0:0 0:0 1:5 0:0 0:0 0:0 0:0
0:0 0:0 0:0 0:0 1:5 0:0 0:0 0:0
0:0 0:0 0:0 0:0 0:0 1:5 0:0 0:0
0:0 0:0 0:0 0:0 0:0 0:0 1:5 0:0
0:0 0:0 0:0 0:0 0:0 0:0 0:0 1:5

0
BBBBBBBBBB@

1
CCCCCCCCCCA

(83.12)

The matrix of (cumulative) origin effects can be constructed using the ith row of the

flow changes matrix excluding the intraregional effect from the diagonal element.

Specifically, OEði; :Þ ¼ Pn
i¼1 ðDYði;:Þ=DxiÞ � IEði; iÞ, where we use OE(i, .) and

DY(i,.) to denote the ith row of the OE matrix and flow changes matrix DY. The result
is shown inEq. (83.13),wherewe see that these are identical and equal to the value of the

coefficient bo from our example. The main diagonal is zero since this reflects changes

in intraregional flows which we have excluded from our definition of origin effects.

OE ¼

0:0 0:5 0:5 0:5 0:5 0:5 0:5 0:5
0:5 0:0 0:5 0:5 0:5 0:5 0:5 0:5
0:5 0:5 0:0 0:5 0:5 0:5 0:5 0:5
0:5 0:5 0:5 0:0 0:5 0:5 0:5 0:5
0:5 0:5 0:5 0:5 0:0 0:5 0:5 0:5
0:5 0:5 0:5 0:5 0:5 0:0 0:5 0:5
0:5 0:5 0:5 0:5 0:5 0:5 0:0 0:5
0:5 0:5 0:5 0:5 0:5 0:5 0:5 0:0

0
BBBBBBBBBB@

1
CCCCCCCCCCA

(83.13)

The matrix DE of (cumulative) destination effects is based on using the ith
column of the flow changes matrix, excluding the intraregional effect from the

diagonal element. Of course, the OE and DE definitions would reverse if we were
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relying on an origin-centric flow matrix instead of the destination-centric one.

Specifically, DEð:; iÞ ¼ Pn
i¼1 ðDYð:;iÞ=DxiÞ � IEði; iÞ, where we use DE(., i) and

DY(.,i) to denote the ith column of the DE matrix and flow changes matrix DY.
The result is shown in Eq. (83.14), where we see that these are identical and equal to

the value of the coefficient bd from our example. Again, the main diagonal is zero

since this reflects changes in intraregional flows which we have excluded from our

definition of destination effects.

DE ¼

0:0 1:0 1:0 1:0 1:0 1:0 1:0 1:0
1:0 0:0 1:0 1:0 1:0 1:0 1:0 1:0
1:0 1:0 0:0 1:0 1:0 1:0 1:0 1:0
1:0 1:0 1:0 0:0 1:0 1:0 1:0 1:0
1:0 1:0 1:0 1:0 0:0 1:0 1:0 1:0
1:0 1:0 1:0 1:0 1:0 0:0 1:0 1:0
1:0 1:0 1:0 1:0 1:0 1:0 0:0 1:0
1:0 1:0 1:0 1:0 1:0 1:0 1:0 0:0

0
BBBBBBBBBB@

1
CCCCCCCCCCA

(83.14)

The matrix of cumulative network effects represents all flow changes that spill-

over on regions other than the origin and destination region whose characteristics

were changed. This can be constructed by subtraction: TE � IE � OE � DE ¼ NE.
For the nonspatial gravity model, the cumulative network effects matrix NE contains

all zeros, since this model does not allow for spillovers to regions not involving origin

and destination regions by virtue of the independence assumption. Scalar summary

measures of the total effects as well as the decomposition into origin, destination,

intraregional, and network effects can be constructed using averages of the (matrices)

of cumulated changes in flows. This is accomplished by averaging over row-sums

and then column-sums, which follows the approach taken by LeSage and Pace

(2009) for the SAR model. This produces the results shown in the first column of

Table 83.1. (One can also average over column-sums and then row-sums to produce

identical results as noted by LeSage and Pace (2009).)

Applying our decomposition with this computationally inefficient approach would

lead to scalar summary measures for the impact of changing all elements in the vector

Xo presented in the second column of Table 83.1. Similarly, our decomposition with

this approach would lead to scalar summary measures for the impact of (indepen-

dently) changing each element in the vector Xd shown in the third column of

Table 83.1. The sum of these two sets of scalar summary effects estimates

constructed using independent changes in all elements of Xo and Xd shown in the

fourth column of Table 83.1 equals the result shown in the first column. We will see

that this is also the case for the spatial autoregressive variant of the gravity model.

An important point to note is that this approach differs from the conventional

interpretation of nonspatial gravity models where the coefficient bo is interpreted as
a partial derivative reflecting the impact of changes in origin characteristics and bd
that is associated with changing destination characteristics. Although the conven-

tional approach that used the coefficient sum bo + bd as a measure of the total effect

on flows arising from changes in origin and destination characteristics would
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produce a correct inference, the appropriate decomposition into origin, destination,

and intraregional effects has been missing from this literature.

Another point is that one can use changes in each element of the n2 � 1 vectors Xo

andXd to arrive at the same scalar summarymeasures as shown in Table 83.1. However,

thiswould require that we sequence through changes in n2 individual elements ofXo and

also n2 elements of Xd, recording the change in the n� nmatrix of flows that arise from

this sequence of 2n2 changes, which is computationally muchmore difficult. We would

also need to aggregate the changes in flows arising from changes in both Xo and Xd to

produce final results. To avoid this, we can exploit the special structure of the n2 � R
matrices Xo, Xd as they relate to the underlying n � Rmatrix X.

As noted above, there could be applied modeling situations where practitioners

choose to include a specific characteristic only in the Xo or Xd vector, but not in both.

As an example, consider a model for commuting-to-work flows. The number of

residents might be used as a size measure for origin regions whereas the number of

business establishmentsmight be used as a sizemeasure for the destination regions. In

this case, it might be more appropriate for interpretative purposes to report separately

scalar effects summaries arising from the calculations involving changing all elements

in the vector Xo and Xd. We will have more to say about this in the next section.

83.5.2 A Numerical Illustration for the Spatial Gravity Model

Using the same numerical values set forth in the previous section, but setting

ro ¼ rd ¼ 0.4 and rw ¼ �rord ¼ �0.16, we carried out the same experiment

where each value of xi, i¼ 1, . . ., 8 was changed by one unit. The resulting changes
in the flow matrix were recorded, with the total flow effects arising from the change

in x3 shown in Eq. (83.15).

DY=Dx3 ¼

0:688 0:688 2:064 0:612 0:309 0:246 0:233 0:233
0:688 0:688 2:064 0:612 0:309 0:246 0:233 0:233
1:376 1:376 2:752 1:300 0:997 0:934 0:921 0:921
0:650 0:650 2:026 0:574 0:271 0:208 0:195 0:195
0:498 0:498 1:875 0:423 0:119 0:056 0:044 0:044
0:467 0:467 1:843 0:391 0:088 0:025 0:012 0:012
0:460 0:460 1:837 0:385 0:082 0:018 0:006 0:006
0:460 0:460 1:837 0:385 0:082 0:018 0:006 0:006

0
BBBBBBBBBB@

1
CCCCCCCCCCA

(83.15)

Table 83.1 Scalar summary measures of effects for the nonspatial model from a change in the

(single) characteristic x averaged over all regions i ¼ 1, . . ., 8

Dxi DXo,i DXd,i DXo,i + DXd,i

Origin effects 0.4375 0.4375 0.0000 0.4375

Destination effects 0.8750 0.0000 0.8750 0.8750

Intraregional effects 0.1875 0.0625 0.1250 0.1875

Network effects 0.0000 0.0000 0.0000 0.0000

Total effects 1.5000 0.5000 1.0000 1.5000
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One difference between this spatial model result and the nonspatial model is the

presence of network effects, shown by the nonzero elements in rows and columns

other than 3. This means that a change in say the attractiveness of region 3 impacts

flows throughout the network. Of course, the largest impacts reside in the 3rd row

and column, since the change in attractiveness of region 3 has the largest impact on

flows into and out of region 3 from all other regions. The magnitude of impact

declines as we move further from the (3,3) element in the up/down or left/right

direction in column and row 3. This arises due to decay with higher-order neighbors

typical of spatial autoregressive processes. We see a similar pattern for elements not

in the third row and column, where the change in flows decline in magnitude for

elements further away from the (3,3) element. This reflects a decline in the

magnitude of network spillovers with an increase in the number of paths through

which the flows must pass.

It is also important to note that the interpretation of partial derivatives in cross-

sectional spatial models such as this is that these reflect a long-run, steady-state

equilibrium. The estimated changes in flows would be those that arise in response to

the increased attractiveness of region 3 as we move to a new steady-state equilib-

rium. For example, we would conclude that changes in the attractiveness of region 3

would produce these changes in flows throughout the network, reflecting the level

of flows we would expect to see in a new steady-state equilibrium.

Applying our approach for calculating scalar summary measures of the impacts

arising from changes in characteristics of the regions described in the previous

section we arrive at TE ¼ Pn
i¼1 ðDY=DxiÞ, shown in Eq. (83.16). The most obvious

facet of the cumulative TEmatrix is that the effects are much larger than in the case of

the nonspatial gravity model. An examination of the components’ (IE, OE, DE, NE)
decomposition shows the source of these differences in effects on flows arising

from changes in regional characteristics. A similarity with the nonspatial model TE
matrix is that total effects are identical for all observations/regions, which is always

the case for SAR models. This is because the spatial weight matrixW has row-sums

of unity (see Elhorst 2010).

TE ¼

4:166 4:166 4:166 4:166 4:166 4:166 4:166 4:166
4:166 4:166 4:166 4:166 4:166 4:166 4:166 4:166
4:166 4:166 4:166 4:166 4:166 4:166 4:166 4:166
4:166 4:166 4:166 4:166 4:166 4:166 4:166 4:166
4:166 4:166 4:166 4:166 4:166 4:166 4:166 4:166
4:166 4:166 4:166 4:166 4:166 4:166 4:166 4:166
4:166 4:166 4:166 4:166 4:166 4:166 4:166 4:166
4:166 4:166 4:166 4:166 4:166 4:166 4:166 4:166

0
BBBBBBBBBB@

1
CCCCCCCCCCA

(83.16)

The cumulative intraregional effects matrix is shown in Eq. (83.17), where we

see that the values are not equal to bo + bd as in the nonspatial model. They are

also not equal to the diagonal elements from the cumulative TE matrix. This is

because there are feedback loops that arise in spatial models, where impacts on

neighbors work their way back to the own region. To see this, consider that spatial
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autoregressive models rely on a data generating process: y ¼ (In � rW)�1(Xb + e),
where the matrix inverse can be expressed as an infinite series: In + rW + r2W2 +

r3W3 + . . .. The matrix W has zeros on the main diagonal, but the matrices

W2, W3, . . . do not. This is because by virtue of the definition of a second-order

neighbor reflected by the matrix W2, region i is a second-order neighbor to itself,

a neighbor to a neighboring region. The feedback effects on intraregional flows

account for some of the difference between the value of 4.166 for the main diagonal

of the TE matrix in the spatial model and the nonspatial model, where we found

a value of 1.5.

IE ¼

2:632 0:000 0:000 0:000 0:000 0:000 0:000 0:000
0:000 2:747 0:000 0:000 0:000 0:000 0:000 0:000
0:000 0:000 2:752 0:000 0:000 0:000 0:000 0:000
0:000 0:000 0:000 2:728 0:000 0:000 0:000 0:000
0:000 0:000 0:000 0:000 2:728 0:000 0:000 0:000
0:000 0:000 0:000 0:000 0:000 2:752 0:000 0:000
0:000 0:000 0:000 0:000 0:000 0:000 2:747 0:000
0:000 0:000 0:000 0:000 0:000 0:000 0:000 2:632

0
BBBBBBBBBB@

1
CCCCCCCCCCA

(83.17)

The nonzero network effects (NE) account for the remaining differences, as can

be seen from the diagonal of the matrix for these cumulative effects, shown in

Eq. (83.18). (The values from the diagonal of NE and IE do not exactly equal those

of TE because digits were truncated when forming the matrices for presentation.)

Nonzero network effects also feedback onto intraregional flows, and these account

for a large part of the difference between the spatial and nonspatial model effects

estimates. An important point to keep in mind is that variation in all of the effects

estimates over the regions might be greater than in our simple example, where the

spatial configuration of the regions represents one of the simplest. The magnitudes

of network effects will depend on the spatial configuration of the regions involved,

with regions that have more links to other regions experiencing larger network

effects relative to regions that are relatively more isolated with less links to other

regions.

NE ¼

1:533 0:869 1:148 1:406 1:456 1:451 1:456 1:533
0:869 1:419 0:804 1:303 1:404 1:410 1:417 1:494
0:996 0:767 1:414 0:855 1:310 1:388 1:411 1:489
1:398 1:289 0:847 1:437 0:868 1:302 1:397 1:480
1:480 1:397 1:302 0:868 1:437 0:847 1:289 1:398
1:489 1:411 1:388 1:310 0:855 1:414 0:767 0:996
1:494 1:417 1:410 1:404 1:303 0:804 1:419 0:869
1:533 1:456 1:451 1:456 1:406 1:148 0:869 1:533

0
BBBBBBBBBB@

1
CCCCCCCCCCA

(83.18)

The cumulative OE and DE matrices for the spatial model are shown in

Eqs. (83.19) and (83.20), where we also see values that differ over the regions
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and exhibit magnitudes greater than the 0.5 and 1.0 values representing coefficients

bo, bd from the nonspatial model. As in the other cases, these reflect changes in flows

arising from interactions modeled by origin-, destination-, and origin-destination

dependence in the spatial gravity model. Intuitively, changing the characteristics of

a single region will impact inflows to and outflows from that region, but also impact

flows to regions neighboring the origin and impact flows to regions neighboring

destination regions, and impact flows from regions neighboring the origin to regions

neighboring the destination.

OE ¼

0:000 1:243 0:954 0:893 0:880 0:878 0:877 0:877
1:358 0:000 1:298 0:995 0:932 0:919 0:916 0:916
1:376 1:376 0:000 1:300 0:997 0:934 0:921 0:921
1:005 1:005 1:292 0:000 1:289 0:989 0:929 0:929
0:929 0:929 0:989 1:289 0:000 1:292 1:005 1:005
0:921 0:921 0:934 0:997 1:300 0:000 1:376 1:376
0:916 0:916 0:919 0:932 0:995 1:298 0:000 1:358
0:877 0:877 0:878 0:880 0:893 0:954 1:243 0:000

0
BBBBBBBBBB@

1
CCCCCCCCCCA

(83.19)

DE ¼

0:000 2:053 2:064 1:867 1:829 1:837 1:832 1:755
1:938 0:000 2:064 1:867 1:829 1:837 1:832 1:755
1:793 2:022 0:000 2:010 1:859 1:843 1:833 1:755
1:763 1:871 2:026 0:000 2:009 1:875 1:840 1:756
1:756 1:840 1:875 2:009 0:000 2:026 1:871 1:763
1:755 1:833 1:843 1:859 2:010 0:000 2:022 1:793
1:755 1:832 1:837 1:829 1:867 2:064 0:000 1:938
1:755 1:832 1:837 1:829 1:867 2:064 2:053 0:000

0
BBBBBBBBBB@

1
CCCCCCCCCCA

(83.20)

Using the same approach set forth in the previous section to produce scalar

summary measures of the total effects, as well as the decomposition into origin,

destination, intraregional, and network effects by averaging the matrices produced

the results given in the second column of Table 83.2.

The third and fourth columns show results based on calculating flow matrix

responses to changes in each element of the n2 � 1 vectors Xo, Xd, which were

added to produce the fifth column. In this case where a single characteristics vector

x was used to form Xo and Xd, these equal the scalar summary effects produced by

considering only n changes in elements of xi.
Consider again the example involving commuting-to-work flows, where the

number of residents is used as a size measure for origin regions and the number of

business establishments as a size measure for the destination regions, so Xo and Xd

are distinct. Interpreting results for this type of model would require reporting

both columns three and four from Table 83.2. Summing these two different scalar

summary measures would make less sense in this situation, since changes in Xo do

not imply changes in Xd and vice versa. This would lead to a slight change in

interpretation, where changes in Xo (residents at the origin) lead to an origin,

destination, intraregional, network, and total effects on flows, as do changes in Xd
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(business establishments at the destination). This type of model specification

could be viewed as an a priori zero restriction on the coefficient for the charac-

teristic residents at the destination as well as a zero restriction on the coefficient

for business establishments at the origin. It should be possible to include the

full set of explanatory variables (residents and business establishments) in the

set of model characteristics for both origins and destinations and then test

the validity of the a priori zero restrictions. This would involve a test for signif-

icant differences between the full and nested model scalar summary effects

estimates. If there are no differences in conclusions regarding the size and

significance of the scalar summaries, then the restrictions are consistent with the

sample data.

83.6 Conclusion

Recently introduced spatial autoregressive extensions of the spatial interaction

model hold a great deal of promise for regional modeling of flows. However,

there are still a great many obstacles to the wide use of these models in applied

situations. First, these models require flow magnitudes that can be transformed to

reflect a normal distribution. This is not the case for flowmatrices containing a large

number of zero values, large diagonal elements reflecting intraregional flows, or

count magnitudes. There is a need for future research regarding implementation of

a spatial autoregressive Poisson interaction model.

Beyond the issue of estimating model parameters, there is also a need to carefully

consider how these parameters are interpreted. In the case of the independent spatial

interaction model, changes in characteristics of a single region can exert impacts on

inflows from all other regions, outflows to all other regions, as well as intraregional

flows. These impacts can be measured by considering rows and columns of the flow

matrix. We set forth a proposal for calculating scalar measures of impact that average

over changes applied to a single explanatory variable (regional characteristic) for all

regions. The approach allows separation of row/column and diagonal element

impacts arising in the flow matrix, which we label origin, destination, and

intraregional effects. Past applications of regression-based spatial interaction models

that assume flows are spatially independent seem to have overlooked this aspect of the

partial derivative impacts associated with changes in characteristics of regions.

Table 83.2 Scalar summary measures of effects for the spatial interaction model arising from

a change in a single characteristic x averaged over all regions i ¼ 1, . . ., 8

Dxi DXo,i DXd,i DXo,i + DXd,i

Origin effects 0.9129 0.7920 0.1209 0.9129

Destination effects 1.6445 0.0605 1.5840 1.6445

Intraregional effects 0.3394 0.1131 0.2263 0.3394

Network effects 1.2698 0.4233 0.8466 1.2698

Total effects 4.1667 1.3889 2.7778 4.1667
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For the case of the spatial autoregressive interaction model, interpretation of the

model estimates in terms of their partial derivative impacts on flows is more

complicated.

Changes to a single region’s characteristics can impact not only inflows from

all other regions, outflows to all other regions, and intraregional flows, but also

all other flows in the flow matrix. These impacts can be measured using changes

taking place in rows, columns, and the diagonal and off-diagonal elements of the

flow matrix as a result of a change to a single region’s characteristic. We

propose a scheme for calculating scalar summary measures for these impacts

that we label origin, destination, intraregional, and network effects.

Specifics regarding simulation of the partial derivative impact estimates based

on the estimated distribution for the model parameters were not discussed here.

This would require using the estimated variance-covariance matrix for the model

parameters to generate draws for each model parameter. These could be used in

conjunction with the approach proposed here to produce a distribution of the scalar

estimates for the various types of impacts. These empirically derived distributions

could serve as the basis for inference regarding significance of the various types of

impacts.
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