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Abstract

This chapter provides a selective survey of specification issues in spatial econo-

metrics. We first present the most commonly used spatial specifications in

a cross-sectional setting in the form of linear regression models including

a spatial lag and/or a spatial error term, heteroscedasticity or parameter insta-

bility. Second, we present a set of specification tests that allow checking
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deviations from a standard, that is, nonspatial, regression model. An important

space is devoted to unidirectional, multidirectional, and robust LM tests as they

only require the estimation of the model under the null. Because of the complex

links between spatial autocorrelation and spatial heterogeneity, we give some

attention to the specifications incorporating both aspects and to the associated

specification tests.

76.1 Introduction

In spatial regression models, the observations are collected from points or regions

located in space. These models usually incorporate spatial effects that are com-

monly classified in two categories: spatial autocorrelation and spatial heterogene-
ity. On the one hand, spatial autocorrelation is a special case of cross-sectional

dependence and refers to the coincidence of value similarity with locational sim-

ilarity (Anselin and Bera 1998). Positive spatial autocorrelation means that obser-

vations from one location tend to exhibit values similar to those from nearby

locations, while negative spatial autocorrelation points to the spatial clustering of

dissimilar values. The typical characteristic of spatial autocorrelation is that it is

two dimensional and multidirectional. On the other hand, spatial heterogeneity

pertains to structural relations that vary over space, either in the form of

nonconstant error variances in a regression model (heteroscedasticity) or in the

form of spatially varying regression coefficients.

In recent years, the interest in spatial econometrics, that is, the subset

of econometric methods that deals with the analysis of spatial effects in regression

analysis, has seen an exponential growth in social sciences, leading to the creation of

the Spatial Econometrics Association in 2006 (Arbia 2011). The upsurge in spatial

econometrics has been driven by the recognition of the role of space and spatial/social

interactions in economic theory, the availability of datasets with georeferenced

observations, and the development of geographic information systems and spatial

data analysis softwares. This field has even reached a stage of maturity through

general acceptance as a mainstream methodology, according to Anselin (2010).

In this chapter, we provide a concise overview of the methodological issues

related to the treatment of spatial effects in regression models. Attention here is

given to specification issues, that is, how spatial correlation and spatial heteroge-

neity structures should be incorporated into a regression model and the implications

for specification testing. We do not consider estimation issues, as this is the topic of

other chapters in this volume (see Prucha and Jenish, ▶Chap. 80, “Instrumental

Variables/Method of Moments Estimation”; Mills and Parent, ▶Chap. 79, “Bayes-

ian MCMC Estimation” and Pace, ▶Chap. 78, “Maximum Likelihood Estima-

tion”). We have also limited the review to cross-sectional settings for linear

regression models and do not consider spatial effects in space-time models

(see Elhorst,▶Chap. 82, “Spatial Panel Models”) nor models for limited dependent

variables (see Wang, ▶Chap. 81, “Limited and Censored Dependent Variable

Models”).
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The chapter consists in two sections, starting with a presentation of the specifi-

cation of spatial effects in cross-sectional linear regression models. Next, we

consider specification tests that detect spatial autocorrelation and/or spatial hetero-

geneity. Most attention is devoted to spatial autocorrelation, the distinct nature of

which requires a specialized set of techniques that are not a straightforward exten-

sion of time series methods to two dimensions. On the contrary, the treatment of

spatial heterogeneity does not require specific econometric tools. However, we

underline here the relationships between both effects. The chapter closes with some

concluding remarks.

76.2 Spatial Effects in Cross-Sectional Models

Consider as a point of departure, the classical cross-sectional linear regression

model:

y ¼ Xbþ e (76.1)

where N is the total number of observations, here geographical areas; K is the total

number of unknown parameters to estimate; y is the (N,1) vector of observations on
the dependent variable; X is the (N,K) matrix of observations on the K explanatory

variables; b is the (N,1) vector of unknown parameters to be estimated; and e is the
(N,1) vector of error terms. We also assume that X is a non-stochastic matrix of full

rank K < N.
If the error terms are iid 0; s2INð Þ, where IN is the identity matrix of order N, then

the Ordinary Least Squares (OLS) estimator defined by ~b ¼ X0Xð Þ1X0y is BLUE

(Gauss-Markov theorem). However, the introduction of spatial effects in the linear

regression model implies that some of these assumptions are not met. We first list

the models incorporating some form of spatial autocorrelation and continue with

models with spatial heterogeneity.

76.2.1 Forms of Spatial Autocorrelation in Regression Models

In the presence of spatial autocorrelation, the variance-covariance matrix in

Eq. (76.1) S ¼ E ee0ð Þ contains N variances and NðN � 1Þ=2 off-diagonal parame-

ters following a spatial ordering. These cannot be estimated separately with a cross

section of N observations. Hence, in order to incorporate spatial autocorrelation in

regression models, several possibilities exist. Some aim at imposing some structure

or constraints on the elements of S such that a finite number of parameters

characterizing spatial autocorrelation can be estimated. Others remain

nonparametric. We briefly review these options here.

First, a stochastic process may be specified that determines the form of the

covariance structure. In doing this, spatial lags are incorporated in the regression

model. Spatial lags are obtained as the product of a spatial weights matrix W with
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the vector of observations on a random variable. This matrix is of dimension (N,N)
and specifies the connectivity structure within the observations in the sample. It

has nonzero elements wij in each row i for those columns j that are neighbors of

location j. The elements on the diagonal are equal to 0. The notion of neighbors can
be purely geographic, such as sharing a common border, or can be more general,

such as neighbors in social network space. Spatial autocorrelation is then modeled

by specifying various functional relationships between the vector of observations

of the explained variable y and its spatial lag Wy, a spatially lagged error term We
and/or spatially lagged explanatory variables WX.

Second, the covariance between observations can be specified as a direct and

continuous function of distance. Different specifications have been suggested.

Third, a nonparametric approach can be adopted where the functional form of

the function of distance separating two equations is left unspecified. This can also

accommodate heteroscedasticity of unknown form.

We detail these different possibilities below.

76.2.2 Spatial Lag Model

In this model, labeled SAR model, spatial autocorrelation is incorporated through

a spatial lag of the endogenous variable. The structural model is written as

y ¼ rWyþ Xbþ e

e ! iid 0; s2IN
� � (76.2)

Wy is the endogenous lag variable for the spatial weights matrix W; r is the

spatial autoregressive parameter that indicates the strength of interactions existing

between the observations of y.
In the spatial lag model, observation yi is, in part, explained by the values taken

by y in neighboring observations: Wyð Þi ¼
P

j 6¼i wijyj. Indeed, when W is standard-

ized, each element Wyð Þi is interpreted as a weighted average of the y values for i’s
neighbors. The introduction of Wy allows evaluating the degree of spatial depen-

dence when the impact of other variables is controlled for. When Eq. (76.2) is the

result of a theoretical modeling implying some process of social and spatial

interaction, this parameter measures substantive spatial dependence, that is, the

extent of spatial externalities or spatial diffusion.

Symmetrically, it allows controlling spatial dependence when evaluating the

impact of other explanatory variables. In this case, particular care should be given

to the interpretation of the coefficient estimates (see below).

LeSage and Pace (2009) provide several motivations for regression models

that include a spatial lag. One is a time-dependence motivation: cross-sectional

model relations with a spatial lag may come from economic agents considering

past period behavior of neighboring agents. The presence of a spatial lag has

also been justified with theoretical models involving diffusion, copycatting,
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or spatial externalities. These are the cases of substantive spatial dependence.

It is then the formal representation of the equilibrium outcome of spatial interac-

tion processes.

Note that r is not a conventional correlation coefficient between vector y and its
spatial lag Wy. Indeed, this parameter is not restricted to the range �1 to 1. From

the DGP associated with the SAR model, the log-likelihood function involves

a Jacobian term of the form ln IN � rWj j that constrains the parameter r to be

in the interval 1=wmin; 1=wmax½ � where wmin and wmax are respectively the minimum

and the maximum eigenvalues of W. If the latter is row standardized, then

wmax ¼ 1.

When a spatial lag variable is ignored in the model specification, whereas it is

present in the underlying data generating process, the OLS estimators in the spatial

model Eq. (76.1) are biased and not consistent (omitted variable bias).

This specification has several properties:

76.2.2.1 Multiplier and Diffusion Effects
Assume that the matrix IN � rWð Þ is not singular. In this case, Eq. (76.2) can be

rewritten in the following reduced form:

y ¼ IN � rWð Þ�1Xbþ IN � rWð Þ�1e (76.3)

This model is nonlinear in r and b. It follows from Eq. (76.3) that

EðyÞ ¼ IN � rWð Þ�1Xb. The matrix inverse IN � rWð Þ�1
is a full matrix and not

triangular, as in the time series case where dependence is only one directional.

When rj j<1, this implies an infinite series, the Leontief expansion, involving the

explanatory variables and the error term at all locations:

y ¼ IN þ rW þ r2W2 þ . . .
� �

Xbþ IN þ rW þ r2W2 þ . . .
� �

e (76.4)

This expression allows defining two effects: a multiplier effect affecting the

explanatory variables and a spatial diffusion effect affecting the error terms.

On the one hand, with respect to the explanatory variables, this expression

means that in average, the value of y at one location i is not only explained by

the values of the explanatory variables associated to this location but also by those

associated to all the other locations (neighbors or not) via the inverse spatial

transformation IN � rWð Þ�1
. This spatial multiplier effect decreases with distance,

that is, the powers of W in the series expansion of IN � rWð Þ�1
.

On the other hand, with respect to the error process, this expression means that

a random shock in a location i not only affects the value of y in this location but also
has an impact on the values of y in all the other locations via the same spatial

inverse transformation. This is the diffusion effect, which also declines with

distance.

Both these effects are global in the sense that all locations in the system interact

with each other (Anselin 2003).
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From Eq. (76.3), it also follows that E Wyð Þiei
� � ¼

E W IN � rWð Þ�1e
n o

i
ej

h i
6¼ 0. The spatial lag is therefore always endogenous,

irrespective of the properties of e, so that the estimation of model Eq. (76.2) cannot

be based on OLS but should be performed using maximum likelihood (ML),

instrumental variables (IV), or Bayesian methods.

76.2.2.2 Interpretation of Coefficient Estimates
A consequence of the multiplier effect in the spatial lag model is that particular care

should be taken when interpreting the coefficient estimates (LeSage and Pace,

▶Chap. 77, “Interpreting Spatial Econometric Models” for more details). Indeed,

the impact of a marginal change in one variable Xk on EðyÞ is not equivalent to the

coefficient associated to Xk, noted bk, as in the standard regression model. On

the contrary, it follows from Eq. (76.3) that

@E yið Þ
@Xjk

¼ SkðWÞij (76.5)

where Xjk is the value of Xk at location j and SkðWÞij is the ijth element of the matrix

IN � rWð Þ�1bk. Hence, the impact of a change in an explanatory variable differs

over all observations. Summary measures of these impacts are discussed in LeSage

and Pace (2012).

76.2.2.3 Variance-Covariance Matrix
From Eq. (76.3), we derive the variance-covariance matrix of y:

E yy0ð Þ ¼ IN � rWð Þ�1E ee0ð Þ IN � rW0ð Þ�1
(76.6a)

E yy0ð Þ ¼ s2 IN � rWð Þ�1 IN � rW0ð Þ�1
(76.6b)

This variance-covariance matrix is full, which implies that each location is

correlated with every other location in the system. However, this correlation

decreases with distance.

76.2.2.4 Endogenous Spatial Lag and Heteroscedasticity
Note u ¼ IN � rWð Þ�1e. Its variance-covariance is written as

Eðuu0Þ ¼ s2 IN � rWð Þ�1 IN � rW0ð Þ�1
(76.7)

Equation (76.7) shows that the covariance between each pair of error terms is not

null and decreasing with the order of proximity. Moreover, the elements of the

diagonal of Eðuu0Þ are not constant. This implies error heteroscedasticity of u,
whether or not e is heteroscedastic.
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76.2.3 Cross-Regressive Model: Lagged Exogenous Variable

Another possibility to incorporate spatial autocorrelation in a regression model is to

include one or more exogenous lagged variables in Eq. (76.1):

y ¼ rWyþWZdþ e

e ! iid 0; s2IN
� � (76.8)

Z is a matrix of dimension (N,L) containing L variables that may or not

correspond to the variables included in X; WZ is the matrix of observations for

the exogenous lagged variables with weights matrix W, and d is the (L,1) vector of
spatial parameters indicating the intensity of spatial correlation existing between

the observations in y and those of Z.
In this model, the observation yi is explained by the values taken by the variables

in X in location i and by the variables in Z in neighboring regions. The interactions

in the system hence remain local.
Contrary to the spatial lag model and the models with a spatial error autocorre-

lation (below), the estimation of the cross-regressive model can be based on OLS.

76.2.4 Models with Spatial Error Autocorrelation

Finally, spatial autocorrelation can be incorporated in a regression model by

specifying a spatial process in the error terms. It is therefore a special form of

a nonspherical error variance-covariance matrix with E eiej
� � 6¼ 0 for two locations

i 6¼ j. As such, these models should be estimated using ML, generalized method of

moments (GMM), or Bayesian methods. The different possibilities lead to different

error spatial covariances that differ with respect to the range and extent of spatial

interaction in the model.

76.2.4.1 Spatial Autoregressive Process
The most commonly used specification is a spatial autoregressive process in the

error terms. The structural model can be then written as

y ¼ Xbþ e

e ¼ lWeþ u
(76.9)

The parameter l is the spatial autoregressive coefficient that reflects the

interdependence between the regression residuals; u is the error term such as

u ! iid 0; s2INð Þ. When spatial error autocorrelation is omitted, the OLS estimators

are unbiased, but inefficient estimators and the statistical inference based on OLS

are biased.
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This specification has several properties:

Spatial Diffusion
First, if the matrix IN � lWð Þ is not singular, then model Eq. (76.9) can be rewritten

under the following reduced form:

y ¼ Xbþ IN � lWð Þ�1u (76.10)

This expression leads to a global spatial diffusion effect as in model Eq. (76.3)

but, as EðyÞ ¼ Xb, there is no spatial multiplier effect.

Variance-Covariance Matrix
From Eq. (76.10), we have

E yy0ð Þ ¼ E ee0ð Þ ¼ IN � rWð Þ�1E ee0ð Þ IN � rW0ð Þ�1
(76.11a)

E yy0ð Þ ¼ E ee0ð Þ ¼ s2 IN � rWð Þ�1 IN � rW0ð Þ�1
(76.11b)

Hence, we find, for e and for y, a structure identical to that of the spatial lag

model: this process leads to nonzero error covariance between each pair of obser-

vations, but these covariances decrease with distance. The spatial structure of the

variance-covariance induced by the model with spatial error autocorrelation is

therefore global, since it links all the locations of the system to all others.

Moreover, the error structure induces nonconstant elements of the diagonal of

E ee0ð Þ, which implies heteroscedasticity of the errors e, whether u is heteroscedastic
or not.

Constrained Spatial Durbin Model
Model Eq. (76.9) can be rewritten in a form where both an endogenous spatial

lag and all exogenous spatial lags appear. Indeed, by multiplying both sides of

Eq. (76.10) by IN � lWð Þ and moving the autoregressive term to the right, we

obtain the constrained spatial Durbin model:

y ¼ lWyþ Xb� lWXbþ u (76.12)

This specification shows how the spatial error model is a special case of a spatial

lag model, with additional nonlinear constraints on the parameters. This forms the

basis of a specification test that will be presented below.

Several alternatives have been suggested in the literature even if their applica-

tion is less frequent in the literature.

76.2.4.2 Spatial Moving-Average Process
The spatial moving-average process is specified as

y ¼ Xbþ e

e ¼ gWuþ u
(76.13)
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where g is the moving-average coefficient and u is the error term such as

u ! iid 0; s2INð Þ. Contrary to the previous case, the reduced model does not contain

any inverse matrices since Eq. (76.13) already corresponds to the reduced model.

The variance-covariance matrix resulting from this process is

E ee0ð Þ ¼ s2 IN þ gWð Þ IN þ gW0ð Þ ¼ s2 IN þ g W þW0ð Þ þ g2WW 0� �
(76.14)

In contrast to the variance-covariance matrix associated with the autoregressive

process, Eq. (76.14) is not a full matrix. The nonzero covariances only exist for

first-order (W + W’) and second-order (WW’) neighbors. This process therefore

implies much less overall interaction than the autoregressive model, and the spatial

structure of covariance induced by Eq. (76.14) is only local since it does link all the
locations of system to each other.

Finally, as in the autoregressive case, the elements of the diagonal of Eq. (76.14)

are not constant, implying, as in the previous model, heteroscedasticity in e,
irrespective of the nature of u.

76.2.4.3 Kelejian and Robinson Specification
Kelejian and Robinson (1995) suggest another specification in which the error term

is the sum of two independent terms, one being a smoothing term of neighboring

errors and the other being specific to the location:

e ¼ Wuþ v (76.15)

where u and v are supposed homoscedastic and independent. Then, the variance-

covariance matrix of e is

E ee0ð Þ ¼ s2vIN þ s2uWW0 ¼ s2 IN þ ’WW0½ � (76.16)

where s2u and s
2
v are the variance, respectively, associated with u and v, s

2 ¼ s2v > 0

and ’ ¼ s2u=s
2
v . The spatial interaction implied by Eq. (76.16) is more limited than

in the moving-average model as it only concerns neighbors of the first and second

order contained in the nonzero elements ofWW’. Heteroscedasticity is also implied

in this specification.

76.2.4.4 Direct Representation and Nonparametric Specifications
In this case, the covariance between each pair of error terms is directly specified as

an inverse function of the distance between them: cov ei; ej
� � ¼ s2f y; dij

� �
where dij

is the distance between i and j, s2 is the error variance, and f is the distance function.
This function is a distance decay function that should ensure definite-positive

variance-covariance matrix. This imposes constraints on the functional form, the

parameter space, the metric, and scale used for the distance measure. For instance,

one might use a negative exponential distance decay function:

E ee0ð Þ ¼ s2 IN þ gC½ � (76.17)
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where the off-diagonal elements of C are given by C ¼ e�ydij where y is

a nonnegative scaling parameter. The diagonal elements of C are set to zero.

Contrary to the previous specifications, the direct representation does not induce

heteroscedasticity.

An alternative to parametric specifications is to leave the functional form

unspecified: these are nonparametric models. We then have cov ei; ej
� � ¼ f dij

� �
where dij is a positive and symmetric distance metric. The regularity conditions on

the distance metric have been derived by Conley (1999).

The presence of spatial error autocorrelation is often interpreted as a problem in

the model specification, such as functional form problems or spatial autocorrelation

resulting from a mismatch between the spatial scale of the phenomenon being

studied and the spatial scale at which it is measured.

76.2.5 Spatial Durbin Model

An encompassing specification to the spatial lag model, the spatial cross-regressive

model, and the spatial error model is the unconstrained spatial Durbin model. The

latter contains a spatially lagged endogenous variable and all the spatially lagged

exogenous variables. More specifically, it is written as

y ¼ lWyþ Xbþ lWXdþ u (76.18)

The spatial lag model, the spatial cross-regressive model, and the spatial error

model are found with the appropriate constraints on the parameters, respectively,

H0 : d ¼ 0, H0 : r ¼ d ¼ 0, and H0 : lbþ d ¼ 0.

LeSage and Pace (2009) provide several motivations for a spatial Durbin model.

One is an omitted variable motivation. Indeed, they show that if the linear regres-

sion model Eq. (76.1) is affected by an omitted variables problem and if these

omitted variables are spatially correlated and correlated with the included explan-

atory variables, then unbiased estimates of the coefficients associated with the

endogenous variables X can still be obtained by fitting a spatial Durbin model.

Other motivations detailed in LeSage and Pace (2009) are based on spatial hetero-

geneity and model uncertainty.

76.2.6 Higher-Order Spatial Models

In these models, multiple spatially lagged dependent variables and/or multiple

spatially lagged error terms are included.

For instance, the spatial autoregressive, moving-average SARMA(p,q) process
is as follows:

y ¼ Xbþ r1W1yþ r2W2yþ . . .þ rpWpyþ e

e ¼ l1W1uþ l2W2uþ . . .þ lpWpuþ u
(76.19)
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In general, the weights Wi are associated to the ith order of contiguity. We could

similarly consider a process where the errors follow a spatial autoregressive process

of order q. However, in this case, identification issues may arise (Anselin 1988).

It may be that these high-order processes are the result of a poorly specified

spatial weights matrix rather than a realistic data generating process (Anselin and

Bera 1998). For instance, if the weights matrix of the model underestimates the real

spatial interaction in the data, there will be residual spatial error autocorrelation.

This can lead to the estimation of higher-order processes while only a well-specified

weights matrix should be necessary. These higher-order models are in fact usually

used as alternatives in diagnostic tests. Rejection of the null may then indicate that

a different specification of the weights is necessary.

76.2.7 Heteroscedasticity

Until now, all specifications have assumed iid innovations. However, as we have

seen, the sole presence of spatial autocorrelation induces heteroscedasticity in the

models. In cross-sectional regression, additional heteroscedasticity is also fre-

quently present. For instance, in the spatial autoregressive error model, we can have

y ¼ Xbþ e

e ¼ lWeþ u

u ! iii 0;Oð Þ
(76.20)

In this case, the variance-covariance matrix of e is

E ee0ð Þ ¼ IN � rWð Þ�1O IN � rW0ð Þ�1
(76.21)

Several specifications have been used for O. In a spatial context, a useful one is

that of groupwise heteroscedasticity. When the data are organized into spatial

regimes, one variance is estimated for each regime so that O has a block-diagonal

structure:

O ¼
s21IN1

0 � � � 0

0 s22IN2
� � � 0

..

. ..
. . .

. ..
.

0 0 � � � s22IN2

2
6664

3
7775 (76.22)

where L is the number of regimes, Nl; l ¼ 1 . . . L is the number of observations in

regime l, and INl
; l ¼ 1 . . . L is the identity matrix of dimension Nl.

The variance can also be specified as a function of variables:

s2i ¼ s2f ðz0iaÞ (76.23)
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where s2 is a scale parameter, f is some functional form, and zi is a P; 1ð Þ vector of
variables and ai; i ¼ 1 . . .P are unknown parameters to estimate. For instance, in

a spatial context, Casetti and Can (1999) suggest the DARP (Drift Analysis of

Regression Parameters) model: the variance of the error terms is expanded into

a monotonic function of the observations’ distance from a reference point in an

expansion space:

s2i ¼ eg0þg1hi (76.24)

where hi is the square of the distance between the i
th observation and one reference

point (such as the Central Business District in a city).

The variance-covariance matrix can also be left unspecified as in the nonpara-

metric approach. For instance, Kelejian and Prucha (2007) suggest a nonparametric

heteroscedasticity- and autocorrelation-consistent (HAC) estimator of the variance-

covariance matrix in a spatial context, that is, a SHAC procedure. They assume that

the (N,1) disturbance vectors e of model Eq. (76.1) are generated as follows: e ¼ Rx
where R is a (N,N) non-stochastic matrix whose elements are not known. This

disturbance process allows for general patterns of correlation and heterosce-

dasticity. The asymptotic distribution of the corresponding OLS or instrumental

variable (IV) estimators implies the variance-covariance matrix c ¼ N�1Z0SZ,
where S ¼ sij

� �
denotes the variance-covariance matrix of e. Kelejian and Prucha

(2007) show that the SHAC estimator for its (r,s)th element is

ĉrs ¼ N�1
XN
i¼1

XN
j¼1

xirxjsêiêjK dij=dn
� �

(76.25)

where xir is the i
th element of the rth explanatory variable, êi is the i

th element of the

OLS or IV residual vector, dij is the distance between unit i and unit j, dn is the

bandwidth, and K(.) is the kernel function with the usual properties.

76.2.8 Parameter Instability

Spatial heterogeneity can also manifest by parameter instability, that is, the lack

of constancy in some, or all, of the parameters in the regression model. This

instability has a spatial dimension: the regression coefficients correspond to

a number of distinct spatial regimes. The spatial variability of the coefficients can

be discrete, if systematic differences between regimes are observed. In this case,

model coefficients are allowed to vary between regimes. It can also be continuous

over space.

In the absence of spatial autocorrelation, the case of discrete spatial heteroge-

neity can be readily treated with standard tools such as dummy variables, ANOVA,

or spline functions. Recently, some authors have investigated the possibility of

spatial heterogeneity affecting the spatial lag or spatial error coefficients. In this
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case, the methodology consists in estimating higher-order models where the spatial

matrices pertain to different spatial regimes rather than different order of

contiguities.

Heterogeneity can also be continuous. In this case, rather than partitioning the

cross-sectional sample into regimes, we assume that parameter heterogeneity is

location specific. One possibility is to use geographically weighted regression,
labeled GWR (Fotheringham et al. 2004), which is a locally linear, nonparametric

estimation method. The base model for one location i is

yi ¼
XK
k¼1

bkixki þ ei (76.26)

A different set of parameters is estimated for each observation by using the

values of the characteristics taken by neighboring observations. With respect to

spatial autocorrelation, Pace and LeSage (2004) have pointed out that if spatial

autocorrelation only arises due to inadequately modeled spatial heterogeneity,

GWR can potentially eliminate the problem. However, this is not necessarily

the case when substantive interactions coexist with parameter heterogeneity.

Therefore, Pace and LeSage (2004) have generalized GWR to allow simultaneously

for spatial parameter heterogeneity and spatial autocorrelation: the spatial
autoregressive local estimation (SALE):

UðiÞy ¼ riUðiÞWyþ UðiÞXbi þ UðiÞe (76.27)

where UðiÞ represents a (N,N) diagonal matrix containing distance-based weights

for observation i that assigns the weights of one to the m nearest neighbors to

observation i and weights of zero to all the other observations. The product UðiÞy
then represents a (m,1) subsample of observations on the explained variables

associated with the m observations nearest in location to observation i. The other

products are interpreted in a similar fashion. As m ! N, UðiÞ ! IN , the local

estimates approach the global estimates from the SAR model as the subsample

increases.

76.3 Specification Tests in Spatial Cross-Sectional Models

Ignoring spatial effects when it is present have various effects on the estimates’

properties. It may lead to biased and inconsistent estimates of the model parameters

for an omitted spatial lag or inefficient estimated and biased inference for omitted

spatial error autocorrelation and/or omitted heteroscedasticity. Hence, specification

testing is therefore relevant in applied work and constitutes the topic of this section.

We first present Moran’s I test, where the alternative is an unspecified form of

spatial autocorrelation. Second, we detail the most commonly used tests of spatial

autocorrelation based on maximum likelihood: tests of a single alternative,
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conditional tests, and robust tests. Indeed, as featured in ▶Chap. 80, “Instrumental

Variables/Method of Moments Estimation” and ▶Chap. 78, “Maximum Likeli-

hood Estimation”, there might be some complexities involved in the estimation of

spatial processes, based on nonlinear optimization (maximum likelihood or gener-

alized methods of moments). Consequently, tests based on the Lagrange multiplier
(LM) principle (or score test) have been extensively used in specification testing.

Contrary to Wald (W) or likelihood ratio (LR) tests, they only necessitate the

estimation of the model under the null hypothesis, typically the simple regression

model as in Eq. (76.1). We also briefly present tests based on alternative principles.

Third, some strategies aimed at finding the best specification have been devised,

when the researcher does not have an a priori of the form taken by spatial autocor-

relation. Finally, we outline the complex interactions between spatial autocorrela-

tion and spatial heterogeneity and present how spatial heterogeneity can be tested.

76.3.1 Moran’s I Test

Moran’s I test is a diffuse test as the alternative is not a specified form of spatial

autocorrelation. It is the two-dimensional analog of the test of temporal correlation

in univariate time series for regression residuals (Moran 1950). In matrix notations,

it is formally written as

I ¼ N

S0

e0We

e0e

� �
(76.28)

where e ¼ y� X~b is the vector of OLS regression residuals,W is the spatial weights

matrix, and S0 is a standardization factor equal to the sum of all elements ofW. For

a row-standardized weights matrix W, this element simplifies to 1. The first two

moments under the null were derived by Cliff and Ord (1972):

EðIÞ ¼ trðMWÞ
N � K

(76.29)

VðIÞ ¼
trðMWMW0Þ þ trðMWÞ2 þ trðMWÞ2

n o
ðN � KÞðN � K þ 2Þ � EðIÞ½ �2 (76.30)

where M is the usual symmetric and idempotent matrix : M ¼ IN � X X0Xð Þ�1X0.
Inference is then based on the standardized value: ZðIÞ ¼ I � EðIÞ½ �=VðIÞ. For
normally distributed residuals, ZðIÞ asymptotically follows a centered normal

distribution. Under the null assumption of spatial independence, Moran’s I test is
locally best invariant and is also asymptotically equivalent to a likelihood ratio of

H0 : l ¼ 0 in Eq. (76.9) or of H0 : g ¼ 0 in Eq. (76.13); it therefore shares the

asymptotic properties of these statistics. Moreover, Moran’s I has power against

any alternative of spatial correlation, including a spatial lag alternative.
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In the remainder of the section, we consider tests with a specific alternative, that

is, focused tests, and concentrate on Lagrange multiplier tests that only require the

estimation of the model under the null hypothesis. Some of these tests are unidi-
rectional when the alternative deals with one specific misspecification; others are

multidirectional when the alternative comprises various misspecifications.

76.3.2 Tests of a Single Assumption

76.3.2.1 Spatial Error Autocorrelation
First, consider the case where the error terms follow a spatial autoregressive model

Eq. (76.9): e ¼ lWeþ u. We test H0 : l ¼ 0. The null corresponds to the linear

classical model Eq. (76.1). The multiplier Lagrange statistic can be written the

following way (Anselin 1988):

LMERR ¼ e0We= e0e=Nð Þ½ �2
T

(76.31)

where T ¼ tr W’þWð ÞW½ �, tr is the trace operator, and e is the vector of OLS

regression residuals. This is equivalent to a scaled Moran coefficient. Since there is

only one constraint, under the null, this statistic is asymptotically distributed as

a w2ð1Þ.
The test statistic is the same if we specify as alternative assumption the moving-

average process Eq. (76.13) with the test H0 : g ¼ 0. LMERR is therefore locally

optimal for the two alternatives (autoregressive and moving average). Conse-

quently, when the null is rejected, the test does not provide any indications with

respect to the form of the error process.

Pace and LeSage (2008) argue that the test of spatial error autocorrelation can be

performed using a Hausman test, since under the null (model 1), there are two

consistent estimators differing in efficiency (OLS and ML), and under the alterna-

tive (model 2) only one estimator is efficient (ML).

76.3.2.2 Kelejian-Robinson Specification
For the specification of the error suggested by Kelejian and Robinson (1995),

a Lagrange multiplier test can also be derived following the same principle.

Using notations of model Eq. (76.15), testing the null H0 : ’ ¼ 0 yields a statistic

of the form (Anselin 2001)

KR ¼ e0W0We

e0e=N
� T1

� 	2
2 T2 � T2

1

N

� 	

(76.32)

where T1 ¼ tr WW2ð Þ and T2 ¼ tr WW
0
WW

0� �
. Under the null, this statistic is

asymptotically distributed as a w2ð1Þ.
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76.3.2.3 Common Factor Test
The common factor test allows choosing between a model with spatial error

autocorrelation and a spatial Durbin model. The unconstrained spatial Durbin

model in Eq. (76.18) and the spatial error model in Eq. (76.9) are equivalent if

H0 : lbþ d ¼ 0. This test can be performed with the Lagrange multiplier principle.

The corresponding statistic is asymptotically distributed as a w2ðK � 1Þ.

76.3.2.4 Test of an Endogenous Spatial Lag
In this case, the null hypothesis is H0 : r ¼ 0 in Eq. (76.2). The test statistic is

(Anselin 1988)

LMLAG ¼ e0Wy=ðe0e=NÞ½ �2
D

(76.33)

with D ¼ ðWX~bÞ0MðWX~bÞ=~s2 þ tr W0W þWWð Þ where ~b and ~s2 are the OLS

estimates. This statistic is asymptotically distributed as a w2ð1Þ.

76.3.3 Tests in Presence of Spatial Autocorrelation or Spatial Lag

In specification testing, it is useful to know if the model contains both a spatial error

autocorrelation and an endogenous spatial lag. In this respect, Anselin et al. (1996)

note that LMERR is the test statistic corresponding to H0 : l ¼ 0 when assuming

a correct specification for the rest of the model, that is, r ¼ 0. However, if r 6¼ 0,

this test is not valid anymore, even asymptotically as it is not distributed as

a centered w2. Hence, valid statistical inference necessitates taking account of

a possible endogenous variable when testing spatial error autocorrelation and vice

versa.

Facing this problem, three strategies are possible. First, one can perform a joint
test of the presence of an endogenous spatial lag and a spatial error autocorrelation.
However, if the null is rejected, the exact nature of spatial dependence is not known.

Second, another solution consists in estimating a model with an endogenous spatial

lag and then tests for residual spatial autocorrelation and vice versa. Third, Anselin

et al. (1996) suggest robust tests based on OLS residuals in the simple model but

that are capable of taking account a spatial error autocorrelation when testing

endogenous spatial lag and vice versa.

76.3.3.1 Joint Test
The first approach is the test of the joint null hypothesis H0 : l ¼ r ¼ 0 in a model

containing both a spatial lag and a spatial error:

y ¼ rW1yþ Xbþ e

e ¼ lW2eþ u
(76.34)
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The Lagrange multiplier test is based on the OLS residuals. The test statistic is

(Anselin 1988)

SARMA ¼
~dl

� �2
Dþ ~dr

� �2
T22 � 2~dl ~drT12

h i
DT22 � T2

12

(76.35a)

or

SARMA ¼
~dl
T
þ

~dl � ~dr
� �2
D� T

if W1 ¼ W2 (76.35b)

where ~dl ¼ ðe0WeÞ=ðe0e=nÞ, ~dr ¼ e0Wyð Þ=ðe0e=nÞ, and Tij ¼ tr WiWj þW0
jWj

� �
.

Under the null, SARMA is asymptotically distributed as a w2ð2Þ. If the null is

rejected, the exact nature of spatial dependence is not known. Extensions of these

principles to joint tests in SARMA (p,q) models are derived in Anselin (2001).

76.3.3.2 Conditional Tests
This approach consists in performing a Lagrange multiplier test for a form of spatial

dependence when the other form is not constrained. For instance, we testH0 : l ¼ 0

in presence of r. The null corresponds to the spatial lag model, whereas the

alternative corresponds to Eq. (76.31). The test is then based on the residuals of

model Eq. (76.2) estimated by maximum likelihood. The test statistic is as follows

(Anselin 1988):

LM�
ERR ¼ d̂2r

T22 � T21Að Þ2V̂ r̂ð Þ (76.36)

where T21A ¼ tr W2W1A
�1 þW0

2W1A
�1

� �
, A ¼ IN � r̂W1, r̂ is the maximum like-

lihood estimator of r, and V̂ r̂ð Þ is the estimated variance of r̂ in model Eq. (76.2).

Under the null, this statistic is asymptotically distributed as a w2ð1Þ.
Conversely, we can also H0 : r ¼ 0 in presence of l; the test is then based on the

maximum likelihood ê in the spatial error model Eq. (76.9). The statistic is (Anselin

1988)

LM�
LAG ¼ êB0BW1yð Þ2

Hr � HyrV̂ ŷ
� �

H0
yr

(76.37)

where y ¼ b0; l; s2ð Þ, ŷ is the maximum likelihood estimator of y, B ¼ IN � l̂W1,

and V̂ ŷ
� �

is the estimated variance-covariance matrix of ŷ in model Eq. (76.9). The

other terms are

Hr ¼ tr W2
1

� �þ tr BW1B
�1

� �þ BW1Xb̂
� �0

BW1Xb̂
� �

ŝ2
(76.38)
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Hyr ¼ tr

BXð Þ0BW1Xb̂
ŝ2

tr W2B
�1ð ÞBW1B

�1 þ tr W2W1B
�1ð Þ

0

2
64

3
75 (76.39)

Under the null, this statistic is asymptotically distributed as a w2ð1Þ.

76.3.3.3 Robust Tests
The third approach, suggested by Anselin et al. (1996), consists in using robust tests

to a local misspecification. For instance, LMERR is adjusted so that its asymptotic

distribution remains a centered w2ð1Þ, even in local presence of r. This test can be

done using the OLS residuals of the simple model Eq. (76.1). Assuming W1 ¼ W2,

the modified statistic for the test H0 : l ¼ 0 is

RLMERR ¼
~dl � TD�1 ~dr

� �2
T 1� TDð Þ½ � (76.40)

Similarly, the test statistic of H0 : r ¼ 0 in local presence of l is

RLMLAG ¼
~dl � ~dr

� �2
D� T

(76.41)

76.3.4 Specification Search Strategies

Tests based on Lagrange multiplier have been very popular in applied spatial

econometrics in specification search, as they only require the estimation of the

model under the null, typically, the simple model estimated by OLS. They can be

combined to develop a specific-to-general sequential specification search strategy,

that is, a forward stepwise specification search, whenever no a priori spatial

specification has been chosen.

The first step consists in estimating the simple model Eq. (76.1) by means of

OLS and in performing Moran’s I test and the SARMA test. The rejection of the null

in both cases indicates omitted spatial autocorrelation but not the form taken by this

autocorrelation.

If the null hypothesis is rejected, it may be a sign of model misspecification. For

instance, using a Monte Carlo experiment, McMillen (2003) shows that incorrect

functional forms or omitted variables that are correlated over space might produce

spurious spatial autocorrelation. It may therefore be useful to include in the model,

if possible, additional variables. It can be exogenous additional variables that may

eliminate or reduce spatial dependence, or exogenous spatial lags, corresponding in

total or in part to the initial explanatory variables.

If the addition of exogenous variables has not eliminated spatial autocorrelation,

a model incorporating a spatial lag and/or a spatial error must be estimated.
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The choice between these two forms of spatial dependence can be done by

comparing the significance levels of LMERR Eq. (76.31) and LMLAG Eq. (76.33)

and their robust versions RLMERR Eq. (76.40) and RLMLAG Eq. (76.41): if LMLAG

(resp. LMERR) is more significant than LMERR (resp. LMLAG) and RLMLAG

(resp. RLMERR) is significant but not RLMERR (resp. RLMLAG), a spatial lag (resp.

a spatial error) must be included in the regression model (Anselin and Florax 1995).

Once the spatial lag or the spatial error model has been estimated, three addi-

tional tests can be implemented. On the one hand, for a spatial lag model, LM�
ERR

allows checking whether an additional spatial error is still necessary. On the other

hand, for a spatial error model, LM�
LAG allows checking whether an additional

spatial lag is still necessary. The common factor test allows checking whether the

restriction H0 : lbþ d ¼ 0 is rejected or not. If not, Eq. (76.18) reduces to the

spatial error model Eq. (76.9).

There are several drawbacks with this classical specific-to-general approach.

First, the significance levels of the sequence of tests are unknown. Second, every

test is conditional on arbitrary assumptions that may be tested later. The inference is

then invalid if these assumptions are indeed rejected. As a consequence, the results

of this approach is subject to the order in which the tests are carried out and whether

or not adjustments are made in the significance levels of the sequence of tests.

Alternatively, a general-to-specific search strategy, that is, a forward stepwise

specification search, can be implemented based on the spatial Durbin model

Eq. (76.18) as it encompasses most spatial specifications. Model Eq. (76.18) is

estimated, and testing is performed using Wald statistics or likelihood ratio statis-

tics. Then, the failure to reject the common factor constraints suggests a spatial

error model, while rejection of these constraints suggests a spatial lag model. In the

first case, the significance of the spatial error coefficient is tested; if it is significant,

the final specification is the error model Eq. (76.9); if it is not, the final model is the

simple model Eq. (76.1). Likewise, in the second case, the significance of the spatial

lag coefficient is tested; if it is not significant, the final model selection is the

standard regression model. Simulation experiments performed by Florax et al.

(2003) compare the specific-to-general and the general-to-specific strategies and

provide some evidence of better performances of the forward strategy, in terms of

power and accuracy.

76.3.5 Non-nested Tests

The basis of these specification search strategies above is that the competing models

are nested within a more general model (spatial Durbin model). However, for non-

nested alternatives, other strategies must be devised. For instance, Kelejian and

Piras (2011) have extended the J-test procedure to a spatial framework. The null

hypothesis corresponds to a spatial error-spatial lag model as in Eq. (76.34) with

similar weights, while the alternative hypothesis corresponds to a set of G models

that differ with the model in H0 with respect to the specification of the regressor

matrix, the weighting matrix, the disturbance term, or a combination of these three.
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76.3.6 Spatial Autocorrelation and Spatial Heterogeneity

Spatial autocorrelation and spatial heterogeneity are often both present in regres-

sions. We have already underlined that heteroscedasticity is implied by the pres-

ence of a spatial lag or a spatial error term. More generally, these two effects

entertain complex links. First, there may be observational equivalence between

these two effects in a cross section (Anselin and Bera 1998). Secondly, heterosce-

dasticity and structural instability tests are not reliable in the presence of spatial

autocorrelation. Conversely, spatial autocorrelation tests are affected by heteroske-

dasticity. Thirdly, spatial autocorrelation is sometimes the result of unmodeled

parameter instability. In other words, if space-varying relationships are modeled

within a global regression, the error terms may be spatially autocorrelated. All these

elements suggest that both aspects cannot be considered separately. We briefly

review here some tests that have tackled this issue.

76.3.6.1 Spatial Autocorrelation and Heteroscedasticity
First, a joint test of spatial error autocorrelation and heteroscedasticity consists in

the sum of a Breusch-Pagan test and the LMERR (Anselin 1988). The resulting

statistic is asymptotically distributed as a w2ðPÞ, where P is the number of variables

that affect the variance (Eq. 76.23). Alternatively, Kelejian and Robinson (1998)

derive a joint test for spatial autocorrelation and heteroscedasticity that does not

require the normality assumption for the error terms and the regression model to be

linear.

Conditional tests may also be performed. On the one hand, a Lagrange multiplier

test of spatial autocorrelation in a regression with heteroscedastic error terms may

be derived. Let Ô be the estimated diagonal variance-covariance matrix, then the

heteroscedastic LM statistics becomes (Anselin 1988):

LM ¼
e0Ô

�1
We

� �2

tr WW þW0Ô
�1
WÔ

� �0 (76.42)

where e is the vector of residuals in the heteroscedastic regression. This statistic is

asymptotically distributed as a w2ð1Þ.
On the other hand, a test of heteroscedasticity in a spatial lag model or a spatial

error model can be performed. In the first case, a Breusch-Pagan statistic is

computed on the ML residuals, while in the second case, it is performed on spatially

filtered residuals in the ML estimation.

76.3.6.2 Spatial Autocorrelation and Parameter Instability
In the case of discrete parameter heterogeneity under the form of spatial regimes in

a homoscedastic model, a test of equality of some or all parameters between

regimes can be performed using a standard Chow test. However, when error spatial
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autocorrelation and/or heteroscedastic is present, this must be adjusted. Formally,

without loss of generality, consider a model with two regimes:

y1
y2

� 	
¼ X1 0

0 X2

� 	
b1
b2

� 	
þ e1

e2

� 	
(76.43)

Let e ¼ ½e01 e02� and the variance-covariance matrix: C ¼ Eðee0Þ. The test of

parameter stability is H0 : b1 ¼ b2.
When C ¼ s2O, then the test statistic is (Anselin 1988)

CG ¼ ê0cÔ
�1
êc � ê0LÔ

�1
êL

ŝ2
(76.44)

where êc is the vector of estimated residuals of the constrained model and êL the

vector of estimated residuals of the unconstrained residuals. This statistic is asymp-

totically distributed as a w2ðKÞ, where K is the number of explanatory variables in

the model.

Whenever the break affects the spatial coefficient, Mur et al. (2010) suggest LM

tests. For instance, assume a spatial lag model where a simple break (such a center

vs. periphery) only affects the parameter of spatial dependence:

y ¼ r0Wyþ r1W
�yþ Xbþ e

e ! iid 0; s2IN
� � (76.45)

where r0 is the spatial lag coefficient pertaining to the second regime, r1 represents
the difference between the first regime and the second regime, and W� is a weights
matrix defined as w�

ij ¼ wij if location i or location j belongs to the first regime and

w�
ij ¼ 0 otherwise. Then the LM statistic for the test H0 : r1 ¼ 0 is

LMBREAK
LAG ¼

y0W�~e
~s2

� tr ~A
�1
W�

h i2
ŝ2

(76.46)

where ~e is the vector of residuals of the ML estimation of Eq. (76.2), ~s2 is the

corresponding estimated variance, ~A ¼ IN � ~rW where ~r is the ML estimation in

Eq. (76.2), and ŝ2 is the ML estimated variance corresponding to the linear

restriction of the null. This statistic is asymptotically distributed as a w2ð1Þ.
A spatial error model with a structural break affecting the spatial error parameter is

y ¼ Xbþ e

e ¼ l0Weþ l1W�eþ u

u ! iid 0;s2IN
� � (76.47)
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The LM statistic for the test H0 : l1 ¼ 0 is as follows:

LMBREAK
LAG ¼

~e0W� ~B~e
~s2

� tr ~B
�1
W�

h i2
ŝ2

(76.48)

where ~e is the vector of residuals of the ML estimation of Eq. (76.9), ~s2 is the

corresponding estimated variance, ~B ¼ IN � ~lW where ~l is the ML estimation in

Eq. (76.9), ŝ2 is the ML estimated variance corresponding to the linear restriction of

the null. This statistic is asymptotically distributed as a w2ð1Þ.

76.4 Conclusion

The objective of this chapter was to provide a concise review of specification issues in

spatial econometrics. We focused on the way spatial effects may be incorporated into

regressionmodels and on specification testing.We first presented the most commonly

used spatial specifications in a cross-sectional setting in the form of linear regression

models including a spatial lag and/or a spatial error term, heteroscedasticity, or

parameter instability. Second, we presented a set of specification tests that allow

checking deviations from a standard, that is, nonspatial, regression model. An

important space has been devoted to LM tests as they only require the estimation

of the model under the null. Unidirectional, multidirectional, and robust LM tests are

now in the standard toolbox of spatial econometrics. They are still frequently used in

applied work, even though the technical/numerical difficulties associated to the

estimation of spatial models have become much more tractable, even for very large

samples. Because of the complex links between spatial autocorrelation and spatial

heterogeneity, we have given some attention to the specifications incorporating both

aspects and to the associated specification tests.
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