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Abstract

The modifiable areal unit problem (MAUP) is a serious analytical issue for

analysts using spatial data. The MAUP manifests itself through the instability

of a wide range of statistical results derived from analysis on spatially organized

data. When spatial data are aggregated, the results are conditional on the spatial

scale at which they are conducted, and the configuration of the areal units that

are employed to represent the data. Such uncertainty means that the results of

spatial data where the MAUP has not been considered explicitly should be

treated with caution. Although solutions have been proposed, none have been

applicable in more than a couple of specific cases. As such, it is likely that the

MAUP will never be truly solved. This chapter charts the two related aspects of

the MAUP, the scale and zonation effects, and details the role of spatial

autocorrelation in understanding the processes in the data that lead to the
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statistical nonstationarity. The role of zone design as a tool to enhance analysis

is explored and reference made to analyses that have adopted explicit spatial

frameworks.

59.1 Introduction

A serious problem for analysts of spatial data is that while the phenomena they are

investigating may be continuous, the data available frequently are not, and the areal

units used to present the continuous data are arbitrary compromises designed to suit

a wide range of uses rather than spatial equivalents of the day, month, or year. As

a consequence, statistical analysis of individual data that has been aggregated into

areal units is susceptible to nonstationarity across a wide range of measures. This

problem is known as the modifiable areal unit problem (MAUP), and it has vexed

users of aggregate data for many decades. Countless investigations have demon-

strated that it is unlikely that an analytical solution to the MAUP will be identified,

and those solutions that have been proposed frequently suffer from substantial flaws.

Indeed, as yet, we have neither a full and detailed understanding of the problem nor

the underlying causes. It is unlikely that an analytical solution to the MAUP will ever

be realized due to the wide range of possibilities that arise when the partitioning of

continuous space is implemented as well as the wide range of analytical tasks that

aggregated data are required to perform (for comprehensive overviews of the MAUP,

see Openshaw 1984; Wong 2009). Instead, the MAUP needs to be accounted for

clearly in the research hypothesis that precedes analysis. In the twenty-first century,

spatial data are an increasingly important factor in everyday life. Almost all nations in

the developed world collect and publish data using administrative boundary systems –

areal units. In the United Kingdom, the decennial population census is published

using small, low-level areal units. Small area geographies, for a comprehensive range

of area characteristics such as are available for the British Census, are valuable as the

hidden aspects of the problem are less likely to occur, other things being equal, at fine

levels of granularity than coarse ones. It is also worth noting that the small areal units

of the British Census were designed explicitly drawing on the principles of the

MAUP, promoting, amongst other things, internal homogeneity across a range of

important indicators such as housing tenure. The problem of the MAUP is magnified

by the temporary nature of the areal units and the frequent revisions that are made to

the coverages to reflect changes in population data.

Despite the prevalence of the MAUP in spatial data, it is an issue that is all too

frequently ignored or neglected in geographical analysis. A search in Google Scholar

on the term “modifiable areal unit problem” reveals only 4,160 publications, a low

number when you consider the number of papers that deal with aggregated data in their

analysis (around 400,000). The lack of attention paid to the MAUP has, perhaps, two

underlying causes. Firstly, the readily available nature of many areal unit systems

means that the majority of research using aggregate data adopts areal boundaries that

are generated a priori and an engagement with the creation of areal units is not required.

Secondly, the results of many quantitative studies that employ aggregate data of one
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sort or another rely on the implicit assumption that the MAUP isn’t a significant

problem in order to present valid results. To acknowledge the MAUP, even informally,

would be to question the validity of the analysis conducted and conclusions reached.

Openshaw’s conclusion from almost three decades ago remains as pertinent today as it

was when he wrote it: “this is hardly a satisfactory basis for the application and further

development of spatial analysis techniques in geography” (1984, p. 5).

This chapter explores the problem of the MAUP in the context of spatial data

analysis, outlining the two major aspects of the problem, the scale effect and the

zonation effect. Definitions are provided for both these aspects, and examples are

drawn from the literature to illustrate the problems. Following these two sections,

an overview of the evidence relating to the MAUP is provided.

59.2 MAUP Definitions

There are two aspects to the MAUP known as the scale effect and the zonation effect

(also called the aggregation effect in some literature (for instance Openshaw 1977),

but since the process of aggregation is involved in both scale and zonation decisions,

an important distinction is made here, and the term zonation effect employed). This

section outlines the two aspects with reference to relevant examples and provides the

context for a discussion around empirical results in the following sections.

59.2.1 The Scale Effect

The scale effect arises because of the nested hierarchies within which human society

is arranged and is expressed through the task of choosing the most appropriate scale

for analysis (Arbia 1989) (Fig. 59.1). It is rarely that clear at which spatial scale an

analysis should proceed, and frequently, there are multiple spatial scales at which an

analysis could theoretically be conducted. Drawing on the United Kingdom Census

as an example, output areas (OAs, typically 140 individuals) form the basic spatial

units and can be aggregated into higher-level spatial units, such as wards (usually

a couple of 1,000 individuals) and districts (many 100,000s of individuals).

The “classic” example of the scale effect was published by Gehlke and Biehl

(1934) and used three different datasets including random coin tosses, census data,

and experimental groups of rural counties drawn from the United States (see also

Yule and Kendal 1949). They demonstrated that coefficients from correlation

analyses between, for instance, census data reporting juvenile delinquency and

monthly house rentals tended to increase as the number of areal units representing

the data decreased. Table 59.1 reproduces the results of their correlation analysis.

While the census data may be susceptible to structures within the data that cannot

be observed, which in turn cause the instability of the statistical results, the coin toss

data demonstrated that correlation coefficients changed even when the underlying

data were generated randomly, and each data unit was independent of all others.

From their analysis, Gehlke and Biehl concluded by questioning whether or not
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“a geographical area is an entity possessing traits, or merely one characteristic of

a trait itself” (p. 170). In essence, they urge caution in the treatment of data from

areal units and “that variations in the size of the correlation coefficient seemed

conditioned on the changes in the size of the unit used” (op.cit.).

Exploring the scale effect, Kirby and Taylor (1976) use data on referendum voting

patterns to illustrate the potential pitfalls and identify pockets of the population who

vote differently to the overall outcome for an area. The implication of this finding

being that if analysis is conducted at difference scales it is possible to produce

different area results from a single pattern of individuals voting. Kirby and Taylor

also discuss the dilemma of choice of scale: at a scale that is too small, then it is not

possible to compare data sources from different (modifiable) unit systems. However,

with the scale too large, then much of the more local-level detail within an analysis is

lost through the aggregation process. The scale effect has, therefore, a number of

different elements, including the enhancing or smoothing of spatial processes, akin to

the statistical smoothing of data to remove noise. The nontrivial nature of the scale

effect was emphasized by Openshaw (1984), noting that even a relatively small set of

zones can produce a sizable range of combinations: for instance, combining 1,000

zones into a new system of just 20 groups produces 101260 unique combinations!

59.2.2 The Zonation Effect

Once the scale of the zonal system has been determined, then we can consider how the

space is to be divided up– the zonation effect. The zonation effect occurswhere there are

Fig. 59.1 The scale

problem: The three different

scales could represent

(a) output areas, (b) wards,
and (c) districts

Table 59.1 Correlation coefficients under aggregation using juvenile delinquency and monthly

rentals (from Gehlke and Biehl 1934, p. 169)

Number of areal units Correlation coefficient (r)

252 �0.502

200 �0.569

175 �0.580

150 �0.606

125 �0.662

100 �0.667

50 �0.685

25 �0.763

1160 D. Manley



“any variations in results due to alternative units of analysis where . . . the number of

units, is constant” (OpenshawandTaylor 1979). There are potentially an infinite number

of differentways inwhich a continuous space can be subdivided into discrete areal units.

A diagrammatic interpretation of the zonation problem is presented in Fig. 59.2.

For Openshaw (1984) the zonation effect was by far the greater of the two aspects

of the MAUP, as there is considerably more freedom choosing the delineation of

boundaries than in choosing the number of zones required. The consequence of this

is that “the process of zonation becomes susceptible to the whims of those involved

in the overall aggregation process” (Openshaw and Taylor 1981, p. 61). While this

position may be extreme, it makes the point that there are serious problems with the

arbitrary nature of the many areal units.

Openshaw and Taylor (1979, 1981) conducted one of the largest investigations

into the MAUP. Replicating the earlier work of Gehlke and Biehl, they used

correlation analysis to assess the instability of statistical analysis as

a consequence of the MAUP. In the first instance, they correlated the proportion

of republican voters against the percentage of the population above 65, using the

1970 US Census. To assess the impact of the zonation effect, Openshaw and Taylor

produced correlation coefficients for multiple arrangements of counties in the state

of Iowa. They set the scale constant each time aggregating the base units into six

counties. Table 59.2 reports the results of their analysis.

Openshaw and Taylor (1979) demonstrated that it was possible to obtain highly

changeable correlation coefficients for a single set of data. They went further than

this in the article by attempting to describe the universe of correlation coefficients

that were possible to achieve using the different scales of zonation. For many of the

scales, they claim that the theoretical range of coefficient was from –0.999 to 0.999.

However, this was rarely the case for many of the zonation systems that they devised.

Table 59.2 Correlation coefficients from Openshaw and Taylor (1979, p. 129) showing zonation

effect (adapted)

Number of areal units Correlation coefficient (r)

Six republican-proposed 0.482

Six democratic-proposed 0.627

Six congressional districts 0.265

Six urban/rural regional types 0.862

Six functional regions 0.713

Fig. 59.2 The zonation

problem. Each of these

diagrams demonstrates

a division of a sample space

into five distinct areal units,

yet each could potentially

yield different results
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For instance, using 72 zones the minimum found was –0.579, and the maximum was

0.927. This demonstrates the impact of the zonation effect as differing boundary

choices change the correlation coefficient values.

59.3 Approaches to Understanding

There is a vast body of research that has sought to gain greater understanding about

the MAUP and how it can impact the results of statistical analysis. This section

reviews work that has sought to unpick how the MAUP can lead to different results

in statistical analysis. Starting with the simple examples of uni- and bivariate

analysis, evidence is provided that shows the potential severity of the MAUP.

This is built on by introducing research that has examined the impact of the

MAUP in models that are more explicitly spatial in configuration. Attention is

then paid to the role of spatial autocorrelation and spatial cross-correlation, two of

the fundamental processes that lie behind incidence of the MAUP. Finally, attention

is paid to the process of zonation, or zone design, and the research that has been

undertaken to explore the MAUP from the perspective of the aggregation process.

59.3.1 From Univariate Statistics to Spatial Models

There are many examples of investigations into univariate and bivariate parameter

instability as a consequence of the MAUP. In a recent article that clearly demon-

strates the importance of preserving the availability of small area estimates for

understanding societal processes, Flowerdew (2011) took 2001 Census data for

England and presented an investigation on the severity of the MAUP. While there

are many studies that demonstrate that it is possible to obtain different statistical

results for different spatial scales and configurations, there are fewer studies that

then provide statistical evidence that these differences are significant. Developing

this theme and 18 common variables, Flowerdew demonstrates that even just

using the three standard spatial scales that the data are released at leads to results

with significant statistical differences. Flowerdew uses the Fisher transformation to

standardize the correlation coefficients and concludes that after standardization

the MAUP effect leads to different results in around 60 % of the cases. In general,

under increasing scale aggregation, the increase in correlation coefficient is

a consequence of the data smoothing properties associated with the aggregation

process. As such, the variation between variables tends to decrease as aggregation

increases – the heterogeneity between units will fall as greater number of the

population are combined into single entities and the heterogeneity within
units increases.

There are fewer examples of investigations into the MAUP in multivariate

analysis. However, Fotheringham and Wong (1991) did tackle this problem using

American Census data and demonstrated the problem with a regression model that

related mean family income formultiple unit configurations at various spatial scales.
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As with the work presented above, Fotheringham and Wong demonstrate that

different spatial scales lead to systematic variability in the outcome of the regression

analysis so that for some parameters (percentage elderly and percentage blue collar

workers) the relationship to mean household income becomes more negative.

Conversely, other parameters (percentage of home owners and the percentage of

black residents) become systematically less negative as aggregation increases.

Again, the importance of the MAUP is demonstrated by investigating whether the

differences in the parameters obtained at the different scales and zonal configura-

tions are statistically significant. Fotheringham and Wong use distribution of the

parameter estimates and judge significance using a standard difference means test

with 1.5 standard deviations (the 95% confidence level) as the key cutoff point.

As they conclude, there are “many places[. . .] where the parameter estimates are

significantly different” (1991, p. 1035).

Although the models above consider the MAUP, none of them explicitly incor-

porate the spatial structure of the data. Moving beyond these aspatial models

requires a more complex modeling strategy and the explicit adoption of a spatial

framework. An example of a spatial investigation into the MAUP has been

conducted by Baumann and colleagues (1983). In their work, they investigate

what they term as the scale hypothesis and the aggregation hypothesis (the scale

effect and the zonation effect in other words) with respect to the supply of labor in

multiregional labor markets. Adopting a standard MAUP approach, they suggest

that the way in which the model of labor supply is measured through participation

rates and commuting flows may be affected by the scale at which an analysis is

conducted and the regions through which the multiple labor markets are realized. In

their findings, Baumann and colleagues present a number of interesting outcomes:

firstly, in terms of determining labor participation (the number of males and females

in employment), the effects of scale are relatively small. Thus, there is little

variation in the result as the spatial scale of the analysis is altered. However, in

a model representing commuting patterns, the scale effects are much larger,

a finding which intuitively makes sense as commuting is only realized in the

framework when zone boundaries are crossed. Increasing the scale will, all other

things being equal, reduce the number of boundaries and so the level of commuting.

In surmising their findings, Baumann and colleagues highlight that the spatial

framework that is adopted for an analysis is crucial, and it is “by no means

admissible to ignore possible effects of the choice of a spatial framework in spatial

model building” (p. 67). Finally, they suggest that when seeking out the most

appropriate spatial framework, a range of criteria including model R2, t-values,

and a priori signs should be considered. This might lead the analyst to conclude,

therefore, that the most appropriate spatial framework would be one that leads to

the greatest level of explanation in the final model the best model performance

overall. Within an econometric framework, this is an entirely reasonable assertion.

A major area of interest where the spatial organization of individual units within

and between areas is segregation (see also Poulsen et al. 2011). It is a highly spatial

phenomenon, and there are many examples within the literature where spatial

statistics have been used to attempt to understand the role that the definition of
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the areal units and the scale of analysis can have on the resulting measures. Wong’s

investigation into segregation indices and the MAUP demonstrated that, in general,

as the spatial resolution (scale) increases, the greater the degree of segregation

identified (Wong 2003). As discussed above, the scale process is akin to data

smoothing, so that sharp inconsistencies between smaller units are removed.

Thus, as the areal units become smaller, the potential level of homogeneity within

the areal unit will increase because there are fewer individual data points

represented within each unit (up until the level of the single individual atomistic

unit beyond which it is no longer realistic to decompose and represent a perfectly

homogenous social unit). Using multiple scales of aggregation, Wong demonstrates

that different scales produce different results for the dissimilarity index, D (see

Duncan and Duncan 1955). To understand the impact of the MAUP scale effect,

Wong proposes that the index can be decomposed into regional and local effects

and that the local-level measure demonstrates the deviation of each unit from the

global regional D value. The range of values achieved can give insight into how

much each local unit influences the overall segregation pattern. High values

record areas that deviate substantially from the global regional value, while lower

values demonstrate congruence. Of course, one influence that Wong does not

attempt to cover is the effect of zonation differences. It is clear however that with

a small extension it would be possible to use Wong’s methodology to effectively

assess the impact of altering the boundaries on the resulting segregation outcomes.

A second example using the diversity index, H, is used to highlight that with

modification, it is possible extend the decomposition process to other segregation

measures.

Two further examples of the MAUP impacting on the results of spatial statistical

analysis are provided by the health literature, where research into the MAUP has

been particularly active. The first study investigated the effects of the Dounreay

Nuclear Power Plant in relation to instances of childhood leukemia as part of

a public inquiry into an application to introduce reprocessing facilities (Heasman

et al. 1984). In close proximity to the Dounreay plant were apparently high

incidences of childhood leukemia. To investigate whether or not these represented

significant clusters of leukemia in children, the Scottish Health Service analyzed

data recording all incidences of cancer between 1968 and 1986. The initial results

of the analysis reported that there was a significant excess of cases in the Dounreay

area. However, at the subsequent public inquiry, a number of methodological

weaknesses were identified, amongst which was the issue of boundary definition,

the MAUP. Wilkie (1986) provided details of the methodological problems which

included the potential gerrymandering (manipulation) of the time period studied

and radial distances used to detect the cancer clusters. Creating tight boundaries

around cancer points would have the effect of forcing the mortality rates upward,

creating artificially high results because of the smaller population bases. Similarly,

looking at a different time period, either by cutting the time series data into different

lengths or curtailing the investigation at an earlier time point, would have the effect

of altering the outcomes observed. Further problems arise from the presence of

edge effects (cases appearing near the edge of the study space) and irregularly
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shaped areal units used for the aggregation. Finally, the use of areal units as a means

to imprecisely locate individual incidence data introduced small errors which

cumulatively could result in the erroneous generation of clusters where there

were not any, or vice versa. In conclusion, the findings of the Dounreay analysis

were difficult to evaluate robustly as the choice of radii and time periods for their

study area “are arbitrary” (p. 266). Any clusters of cases in one area and time period

could be eliminated simply through an alternative choice of radii or time periods.

The second of the health examples is provided by Odoi and colleagues (2003). They

were investigating the impact of the MAUP on the spatial distribution of human

giardiasis (a parasitic infection causing diarrhea) in Canada. The study sets out to

explicitly examine the impact of alternative spatial scales on the identification of

infection clusters and whether the most appropriate statistical framework for

assessing the clustering was using global or local statistics. Their analysis demon-

strated that using a fine spatial scale with relatively small units enabled the

detection of clusters that were hidden at the higher spatial scale. They also identi-

fied that local statistical measures provided more clustering detail than the global

measures and as such were more appropriate for the exploratory analysis of patterns

in spatial data.

59.3.2 The Importance of Spatial Autocorrelation

Tobler’s First Law of Geography states that all things are related, but near objects

are more related than distance objects (Tobler 1970). More formally, the degree of

similarity is known as spatial autocorrelation, a concept developed by Michael

Dacey in the 1950s at the University of Washington (see Getis 2010 for

a comprehensive review). Cliff and Ord (1981) make the link between spatial

autocorrelation and the MAUP more explicit, and note that the size of the cells in

the areal unit system is important in determining the strength of the spatial auto-

correlation. All other things being equal, larger areal units will have lower levels of

autocorrelation than smaller ones. In other words, at different spatial scale, different

patterns and degrees of spatial autocorrelation will be present and will impact on the

structure of the data that are being analyzed.

Returning to the work of Fotheringham and Wong (1991) after assessing for the

significance of the changes in parameter estimates, they investigated whether there

was a link between these changes and spatial autocorrelation in the variables

included in the analysis. Their conclusion was that there was little link between

the severity of the MAUP and the degree of spatial autocorrelation in a (pair of)

variable(s). They reinforced this conclusion by citing the examples of the percent-

age of black individuals and the percentage of home owners as displaying regres-

sion parameters that behaved very similarly under aggregation in terms of the

significant change magnitude but that possessed very different spatial autocorrela-

tion structures.

The work of Flowerdew and Green (1994) provides a way into understanding the

properties of data with spatial autocorrelation. Using simulated data, they explore
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the outcomes of multiple realizations of areal units at a given scale. The use of

simulated data was important as it enabled them to analyze data with known spatial

autocorrelation properties in comparison with real data where spatial autocorrela-

tions are not known and may be impacted by other (unmeasured) biases as well.

Green and Flowerdew aggregated their basic grid of raw simulated data into new

areal units in three ways: (a) randomly; (b) systematically, based on the value of one

of the simulated variables; and (c) spatially, by combining spatially contiguous

blocks. The new zones that were constructed aspatially with random aggregation

show no change in the subsequent correlation or regression outcomes (although the

standard error is increased as a consequence of having fewer data points); the

systematic aggregation increases the correlation coefficient but has no effect on

the regression parameter, while spatial aggregation alters both coefficients. In

conclusion, they argue that the effects of spatial autocorrelation may “result from

contiguous processes affecting the distribution of one or more of the variables being

analysed, or the spatial distribution of other variables which have effects on these.”

This explicitly expresses the realization that the variables of areal units may display

linked characteristics.

Developing their work on spatial autocorrelation further, Green and Flowerdew

(1996) and Flowerdew and colleagues (2001) extend their analysis to consider the

impact of spatial autocorrelation between variables as well as within variables,

a phenomenon which they term “cross-correlation.” They define cross-correlation

as the relationship not only between variable X and variable Y at a specific point in

space but also being between X and Y at neighboring points in space. In Green and

Flowerdew (1996), they continue using the simulated data but this time aggregated

into spatially contiguous zones. They then model the relationship between the

simulated X and Y firstly using a standard regression model and then using

a model that incorporates the simulated cross-correlation between X and Y.

Green and Flowerdew call the cross-correlation a regional effect, and they intro-

duce a regional term into the regression model so that there is a regression coeffi-

cient for the local effect and a regression term for the regional effect. Having used

simulated data for an initial exploration, attention is then turned to repeating the

analysis with real data derived from the UK population census. Setting up an

investigating into unemployment and ethnicity, Green and Flowerdew find evi-

dence that confirms their cross-correlation hypothesis and demonstrates the useful-

ness of the local and regional regression approaches. In Flowerdew et al.

(2001) they illustrate the same concept using the example from Fotheringham

and Wong (1991, see above). They theorize that cross-correlation can occur

because the relationship between the “attractiveness of housing (and hence its

value and the likely income of the residents) may depend not just on race and

class in the immediate vicinity but also on such characteristics in neighboring

areas” (Flowerdew et al. 2001, p.91). Within this work is the useful conclusion

that while the presence of spatial autocorrelation is important in determining the

incidence of the scale effect in correlation coefficients, it does not impact on the

regression coefficients. The regression coefficients are altered when cross-

correlation is present between the X and Y variable.
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Arbia (1989) introduced the term “systematic spatial variation” to create a formal

framework to understand the relationship between the MAUP and spatial autocorre-

lation using Cliff and Ord’s work (1981) as a starting point. Using data relating to the

residential location of population organized on a 32 by 32 lattice, Arbia simulated

the MAUP by aggregating the grid into combinations of 16 by 16, 8 by 8, 4 by 4,

and 2 by 2. The results of the investigation demonstrate that with aggregation there is

an increase in the level of variance and that as the level of aggregation increases, the

estimates of the variance of the data become more unreliable as the number of

observations diminishes with fewer degrees of freedom. Arbia concluded the effects

of the MAUP under aggregation were the result of the relationships between near

objects. Building on this finding, Manley et al. (2006) demonstrate that spatial

autocorrelation structures rarely match the boundaries of the zones that have been

used to represent the data and that these differences between the spatial extent of the

autocorrelation is, in part, one of the causes of the MAUP.

Over time, more complex models were applied to the MAUP. For instance,

Amrhein and Flowerdew (1989) investigated the effects of MAUP in relation to

Poisson regression. The results of their analysis demonstrated that within the Poisson

model there is little zonation effect to be found. However, this is not a cause for

celebration by the spatial analyst because a methodology to overcome the MAUP has

been identified: the lack of effect is the consequence of the analytical technique, not

because the results are free from the MAUP. The finding of Amrhein and Flowerdew

is important because they add a new dimension to the MAUP discussion. They

demonstrate that the choice of model for an analysis is just as critical as the zonation

and scale choice itself. This conclusion does not, however, mean that the world of the

analyst dealing with spatial data is bleak as might initially be presumed. Amrhein

(1995) uses the finding above to develop six heuristics for analysts and suggest that

certain statistics and results (for instance, the standard deviation of coefficients, or the

Pearson correlation coefficient) exhibit greater changes due to MAUP (scale) than

other statistical methods (for instance, mean or the variance).

The work investigating spatial autocorrelation, and the related cross-correlation,

has demonstrated that the MAUP is likely to be caused by the interrelated nature of

the spatial variables being represented in the areal units. Thus, when aggregation is

undertaken and the spatial structure of the data has a direct influence on the

resulting zonations the MAUP occurs. Manley et al. (2006) further demonstrated

the complexity of this problem by analyzing British Census data and showing that

spatial autocorrelation rarely coincides with the boundary lines of areal units and

when aggregation is undertaken it frequently incorporates small zones with differ-

ing degrees of spatial autocorrelation.

59.3.3 Exploring the MAUP Through Zone Design

A cursory overview of the statistical investigations into the MAUP would suggest

that the vast majority of effort into explaining the MAUP has been concerned with

the scale effect. In fact, the zonation issue has also been tackled extensively, and in
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some regards, with more success than the scale issue. The zonation issue research

has largely focused on two aspects: how can zonations be created that are appro-

priate to the analytical task and what are the properties of zonation that lead to the

MAUP occurring. The ability to provide multiple realizations of zonal systems

within one analysis space enables the scale effect to be investigated further, as

many different zonations can be derived as scale changes.

If zoning systems are problematic, then it is useful to consider why and how

zoning systems may be (re)designed. The rationale behind is summed up by

Openshaw and Rao (1995): “[t]he new opportunity provided by [the increasing

availability of digital] boundaries is not to demonstrate the universality of MAUP

effects, or to manipulate results by gerrymandering the spatial aggregation used,

but it is to design new zoning systems that may help users recover from MAUP.”

Openshaw (1978) presented two extremes of zone design approaches to illustrate

the problem. A conventional statistical approach within which spatially aggre-

gated data can be viewed as fixed, or a model that assumes that the “undefined

parameters [are] fixed, and the identification of an appropriate zoning system has

to be made in some optimal manner.” The first view is unacceptable due to the

interdependence between the choice of zone and results achieved. From

a statistical standpoint, the second solution is as poor as the first one was from

a geographic perspective, as it could serve to remove the comparability between

studies.

The process of zone design presents a compromise through the creation of the

system that satisfies (or at least suffices) a set of criteria. One ideal outcome for

a good zonal system would be a set of zones that was as simple as possible,

homogenous (against a single or set of variables defined by the user), and compact.

In contrast, Openshaw (1978) increased the complexity of the problem and

suggested that shape (as distinct to compactness) and population size are also

important elements to include. Depending on the task for which the zones are

required, each of these criteria may be made more or less important. One of the

first attempts at automated zone design was undertaken by Stan Openshaw (1978)

with the Automatic Zoning Procedure, implemented in the Automatic Zoning

Program (AZP). In more recent research, the process of zone design has become

integrated with the mainstream literature around Geographical Information Sys-

tems (GIS) and enabled users to define their own zonal units. AZP was extended

and became the Zone Design System (ZDES) and has been employed in a wide

range of zonal scenarios. One prime example is explored in Openshaw and

colleagues (1998) which commented on the first fully automated basic spatial

unit (bsu) design process undertaken for the publication of the 2001 UK Census

data. As Openshaw and colleagues point out, one of the major barriers to successful

zone design is the realization that the problem is not one that can be tackled in

the traditional software programming sense, where a global optimal solution is

identifiable – if there was a global optimal solution, it is not clear how it would be

identified, and in many cases there is no optimal solution. Rather, there is a range of

suitable solutions which present sufficient solutions given the criteria that have

been inputted.
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Other systems have been developed specifically for zonal data analysis and

redesign. An alternative to ZDES, is AZM (Automated Zone Matching). AZM

“[i]mplements zone design on a set of zones described by polygon and arc attribute

tables exported from Arc/Info or generated by users’ own programs. [The program

is designed to optimize] the match between two zonal systems, or the aggregation of

a set of building block zones into output areas with a range of user-controlled design

parameters” (Martin 2003). AZM uses the AZP procedure outlined by Openshaw

(1978) and is conceptually similar. However, unlike ZDES, the AZM program was

not designed specifically for the purpose of zone design. The primary function of

the program is to provide a means to enable two incompatible zone coverages to be

aggregated into a higher-level zone system that enables comparison (Martin 2003).

However, through the input of two identical coverages, it can be used to perform an

aggregation function (Martin (2003)). Nevertheless, the advantages of being able to

control the aggregation process with regard to shape, key variable homogeneity,

and population size mean that it is suited to the design of analytically appropriate

zonal systems. In other words, zonal systems that better reflect the required uses of

data, as opposed to purely “random” aggregations where there is little or no control

over one or all of these factors, are not relevant in the context of research where

desired scales of aggregation are required.

Finally, evidence of the potency of understanding zone design and exploiting it

was presented by Boyle and Alvanides (2004). Using a case study involving the

City of Leeds, and measures of deprivation, they demonstrate that it is possible to

change the ranking of Leeds relative to other cities across the UK by using different

boundary systems. This is of particular importance, as the European Commission

was offering what are termed structural funds to aid the reduction of inequalities at

a local level within member countries. Using the 1998 Index of Local Deprivation

(ILD) based on the 1991 Census, as published, Leeds appeared 56th out of 57 cities.

However, simply by redrawing the boundaries using alternative population thresh-

olds to define the city area, the ranking could be changed to 11th. Applying another

different criteria for the aggregation, whereby the scores were taken for wards, not

local authority districts, enabled a further change in the ranking, making Leeds the

3rd most deprived city in England. The initial ranking of 56th would not have

secured funding while the final ranking of 3rd would ensure a large flow of money

into the city. Both of these examples highlight the potential difficulties, opportuni-

ties, and concerns that research using aggregated data should address.

59.4 Conclusion

This chapter has provided an overview of the modifiable areal unit problem

(MAUP). With the growth of spatially coded data available, the potential for

analysts to be confronted with areal units in analysis is increasing dramatically.

Knowledge of the potential pitfalls of conducting analysis containing areal unit data

is vital when dealing with areal unit data in analysis. This is true both when the areal

units are the objects of the analysis as it is when the areal unit data are included to
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provide context to other sorts of information. In many cases, it is important to

acknowledge the presence of the MAUP in analysis while accepting that the results

may be conditional on the scale and zonation scheme employed.

Previous research has demonstrated that it is unlikely that a global solution to the

MAUPwill ever be found: indeed, to do so is to deny the inherent spatiality of the data

that is under investigation, and the removal of theMAUPwould be to remove the very

object of interest! Previous research has also demonstrated that spatial autocorrelation

and cross-correlation are likely to be very important in understanding the degree and

severity of the MAUP. As such, these are key topics that the (spatial) analyst using

aggregate data should be aware of and acknowledge in their analysis. Therefore, when

dealing with spatially organized data, the analyst must adopt a geographically

informed process of hypothesis formation. Analytical scale should become

a primary factor that is explicitly considered rather than an issue that is implicitly

dealt with and all too frequently assumed away in the name of pragmatism. In many

cases, this will require the analyst to adopt an approach whereby multiple scales

of measurement and analysis should be considered, or a highly rigorous spatial

framework for an analysis constructed. This chapter is all too brief to provide

a comprehensive view of all the work that has been conducted into the MAUP.

Nevertheless, it hopefully sheds sufficient light on the subject and processes to provide

the reader with the means to adopt a more critical and nuanced approach to their

analysis.
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