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Abstract

As the number, volume and resolution of spatio-temporal datasets increases,

traditional statistical methods for dealing with such data are becoming

overwhelmed. Nevertheless, the spatio-temporal data are rich sources of
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information and knowledge, waiting to be discovered. The field of spatio-

temporal data mining (STDM) emerged out of a need to create effective and

efficient techniques in order to turn the massive data into meaningful informa-

tion and knowledge. This chapter reviews the state of the art in STDM research

and applications, with emphasis placed on three key areas, including spatio-

temporal prediction and forecasting, spatio-temporal clustering and spatio-

temporal visualization. The future direction and research challenges of STDM

are discussed at the end of this chapter.

60.1 Introduction

With automatic sensor networks and crowd sourcing now being used extensively to

monitor a diverse range of phenomena, the amount of data being collected with

both spatial and temporal dimensions has increased dramatically. Data collected at

two or more locations and times make up space-time series, examples of which

include daily temperature series at meteorological stations, monthly crime rates of

world capital cities and daily traffic flow on urban roads. These space-time series

are massive and continually growing. Spatio-temporal data mining (STDM) is the

extraction of unknown and implicit knowledge, structures, relationships, or patterns

from these massive datasets. STDM techniques and tasks include spatio-temporal

forecasting, spatio-temporal association rule mining, spatio-temporal sequential

pattern mining and spatio-temporal clustering and classification, amongst others

(Miller and Han 2009). More recently, spatio-temporal visualization has become

another hot topic for STDM as we begin to explore new ways of representing

spatio-temporal data that go beyond the static map.

Early research efforts on spatio-temporal forecasting focused on adapting

existing statistical regression models from the fields of time series analysis, spatial

analysis and econometrics to deal with spatio-temporal data. Such models are

typically geared towards teasing scarce information from homogenous datasets

and have been overwhelmed by the increasing volume and diversity of spatio-

temporal data that is now being collected. Increasingly, researchers and practi-

tioners are turning towards less conventional techniques, often with their roots in

the machine learning and data mining communities, that are better equipped to deal

with the heterogeneous, nonlinear and mutli-scale properties of large scale spatio-

temporal datasets. For instance, methods such as artificial neural networks (ANNs)

and support vector machines (SVMs) are now being successfully applied to spatio-

temporal forecasting problems.

The association (or co-location) rule mining is to infer the presence of spatial

features in the neighbourhood of other spatial features (Shekhar et al. 2011). They

are spatial extensions of association rules, which were developed by the retail

industry to examine the behavior of consumers. A spatio-temporal co-location

rule implies a strong association between locations A and B that if the attributes

of A take some specific value at a point in time, then with a certain probability, at

the same point in time, the attributes of B will take some specific value. A related
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STDM task is mixed drove co-occurrence pattern (MDCOP) mining. MDCOPs are

subsets of two or more different object types whose instances are often located

close to one another in space and time (Shekhar et al. 2011). The drawback of these

methods is that only contemporaneous associations are considered so they do not

account for the evolution of a spatial process over time.

A logical extension to association mining is to analyze spatio-temporal sequential

patterns. This involves finding sequences of events (an ordered list of item sets) that

occur frequently in spatio-temporal datasets. Sequential pattern mining algorithms

were also first introduced to extract patterns from customer transaction databases.

A spatio-temporal sequential pattern means that if at some point in time and space,

the attributes in A take some specific value, then with a certain probability at some

later point in time, attributes at B will take some specific value. Sequential pattern

mining implicitly incorporates the notion of spatio-temporal dependence; that the

events at one location at one time can have some causal influence on the events at

another location at a subsequent time. A similar concept to sequential patterns are

cascading spatio-temporal patterns, which are ordered subsets of events that are

located close together and occur in a cascading sequence (Shekhar et al. 2011).

Clustering involves grouping unlabeled objects that share similar characteristics.

The goal is to maximize the intraclass similarity and minimize the interclass

similarity. Clustering can be used for classification, segmentation and outlier

detection, and here clustering is a general term for all these tasks. Widely used

spatial clustering techniques e.g., K-means and K-medoids, have been extended to

spatio-temporal clustering problems. Designing an effective spatio-temporal clus-

tering algorithm is a difficult task because it must account for the dynamics of

a phenomenon in space and time. For instance, when clustering moving objects,

a cluster may change its spatial location from one time step to the next but still

be the same spatio-temporal cluster. Rules for capturing this type of behavior are

difficult to encode in algorithms.

Mining interesting patterns, rules and structures from spatio-temporal data is

only part of the task of STDM. The results are not useful if they are not easily

understood. For instance, finding a spatio-temporal cluster in a patient register

dataset is not useful in itself. On the other hand, confirming this spatio-temporal

cluster as a disease outbreak and visualizing it using a platform that epidemiologists

and medical professionals can understand is very useful indeed. As a result, space-

time visualization has emerged as another important facet of STDM. It explores the

patterns hidden in the large data sets by using advanced visualization and animation

techniques. This includes conventional 2D maps as well as newly developed 3D

space-time cube methods, which can show hotspots and isosurfaces of spatio-

temporal phenomena. Integration of data exploration, analysis and visualization

in a single platform takes this one step further. The STARS platform (space-time

analysis of regional systems, Rey and Janikas 2010) is an excellent example of this

that allows exploratory and explanatory analysis and visualization of regional data

with spatio-temporal extent. However, despite significant progress, how to visual-

ize large volumes of data in real time and to best make use of the third dimension

are problems that are yet to be adequately solved.
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This chapter is organized around three main tasks of STDM; space-time model-

ing and prediction, space-time clustering and space-time visualization. In the

following section, we review spatio-temporal autocorrelation and its implications

for space-time modeling. Section 60.3 is devoted to space-time modeling and

prediction, by either statistical (parametric) approaches or machine learning

(non-parametric) approaches. Section 60.4 gives a brief review of space-time

clustering and outlier detection, and is followed by an introduction to space-time

visualization in Sect. 60.5. The final section summarizes the directions of future

research in STDM.

60.2 Spatio-Temporal Autocorrelation

An observation from nature is that near things tend to be more similar than distant

things both in space and in time. For instance, the weather tomorrow is more likely

to be similar to today’s weather than the weather a week ago, or a month ago and so

on. Similarly the weather 1 mile away is likely to be more similar than the weather

10 miles away or 100 miles away. These phenomena are referred to respectively as

temporal and spatial dependence. The presence of dependence in spatial and

temporal data violates the stationarity assumption of classic statistical models

such as ordinary least squares (OLS) and necessitates the use of specialized

modeling and forecasting techniques. Testing for dependence is typically accom-

plished using an autocorrelation analysis. Autocorrelation is the cross-correlation of

a signal with itself and can be measured in temporal data using the temporal

autocorrelation function (ACF, Box and Jenkins 1970) or in spatial data using an

index such as the familiar Moran coefficient.

These measures are global, implying a degree of fixity in the level of autocorre-

lation across the space/time such that it can be described by a single parameter.

However, this is often unrealistic. Many time series exhibit nonlinear characteristics

that make stationarization difficult. Similarly, spatial data often exhibit structural

instability over space, which is referred to as heterogeneity. Heterogeneity has two

distinct aspects; structural instability as expressed by changing functional forms or

varying parameters, and heteroskedasticity that leads to error terms with non-constant

variance (Anselin 1988). Ignoring it can have serious consequences including biased

parameter estimates, misleading significance levels and poor predictive power.

Anselin (1988) provides some methods for testing for heterogeneity. Additionally,

a number of local indicators of spatial association (LISA) have been devised. These

include a local variant of Moran’s I and Getis and Ord’s Gi and G�i statistics, which

measure the extent to which high and low values are clustered together.

Although sharing many commonalities in techniques and concepts, the fields of

time series analysis and spatial analysis have largely developed separately from one

another. The behavior of a variable over space differs from its behavior in time.

Time has a clear ordering of past, present and future while space does not and

because of this ordering isotropy has no meaning in the space-time context. In time,

measurements can only be taken on one side of the axis; hence estimation involves
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extrapolation rather than interpolation. Temporal data also has other characteristics,

such as periodicity, that are not common in spatial data and scales of measurement

also differ between space and time and are not directly comparable.

When a variable Z is observed over time at two or more locations, it is

both a spatial series and a time series and can be referred to as a space-time series

z ¼ z s; tð Þjs 2 S; t 2 Tf g in spatial domain S and temporal interval T. A space-time

series may exhibit spatio-temporal dependence which describes its evolution over

space and time. If the spatio-temporal dependence in a dataset can be modeled then

one essentially has predictive information. A number of indices have been devised

to this end including space-time (semi) variograms (Heuvelink and Griffith 2010) as

well as space-time eigenvector filtering (Griffith 2010). Two indices are described

here, the space-time autocorrelation function (ST-ACF), that measures global

space-time autocorrelation, and the cross-correlation function (CCF), that measures

local space-time autocorrelation between two locations. These indices are exten-

sions of the temporal autocorrelation function and are selected as they are easily

interpretable and have a practical application in established space-time modeling

frameworks.

60.2.1 The Global Measure

The ST-ACF measures the N2 cross-covariances between all possible pairs of

locations lagged in both time and space (Pfeifer and Deutsch 1980). Given the

weighted lth order spatial neighbours of any spatial location at time t and the

weighted Kth order spatial neighbors of the same spatial location s time lags in

the future, the space-time cross-covariance can be given as:

glkðsÞ ¼ E
WðlÞzðtÞ� �0

WðkÞz tþ sð Þ� �

N

( )

(60.1)

Where N is the number of spatial locations, WðlÞ and WðkÞ are the N � N spatial

weight matrices at spatial orders l and k, ZðtÞ is the N � 1 vector of observations z at
time t, z tþ sð Þ is the N � 1 vector of observations z at time ðtþ sÞ and the symbol 0
denotes matrix transposition. Based on Eq. (60.1), the ST-ACF can be defined as:

rlkðsÞ ¼
glkðsÞ

gllð0Þgkkð0Þ½ �12
(60.2)

ST-ACF has been used in STARIMA to calibrate the order of moving average

(MA), which define the range of spatial neighbourhoods which contribute to the

current location at a specific time lag (Pfeifer and Deutsch 1980). The MA orders

are fixed globally both spatially and temporally and a single parameter is estimated

for it in practical application such as in Kamarianakis and Prastacos (2005), and

Cheng et al. (2011b).
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60.2.2 The Local Measure

The cross correlation function (CCF) (see, for example, Box and Jenkins 1970)

treats two time series as a bivariate stochastic process and measures the cross

covariance coefficients between each series at specified lags. It provides

a measure of the similarity between two time series. The CCF is useful if one has

reason to believe that the level of autocorrelation in a spatio-temporal dataset is not

fixed in time and space. Given two time series X and Y, the CCF at lag k is given as:

rxyðkÞ ¼
E xt � mxð Þ ytþk � my

� �� �

sxsy
k ¼ 0;�1;�2;� � � � (60.3)

The CCF measures cross-correlations in both directions, as denoted by subscript

k, therefore the temporal lag at which the CCF peaks can be used to determine

a transfer function between two series. This is, however, dependent on sufficient

spatial and temporal resolution in the data. A peak at lag zero indicates that the

current resolution does not capture the direction of influence of one location on

another, but the series behave very similarly at the same time (Cheng et al. 2011a).

As examples, the global and local measures of road network in central London are

shown in Figs. 60.1 and 60.2.

60.3 Space-Time Forecasting and Prediction

Space-time models must account for the combined problems of spatial and tempo-

ral data mentioned in the preceding sections. Uptake of space-time models has

traditionally been limited by the scarcity of large scale spatio-temporal datasets

(Griffith 2010). This is a situation that has been reversed over recent decades and

we are now inundated with data and require methods to deal with them quickly and

effectively. The models that are currently applied to space-time data can be broadly

divided into two categories; statistical (parametric) methods and machine learning

(non-parametric) methods. These are described in turn in the following subsections.

60.3.1 Statistical (Parametric) Models

The state of the art in statistical modeling of spatio-temporal processes represents

the outcome of several decades of cross-pollination of research between the fields

of time series analysis, spatial statistics and econometrics. Some of the methods

commonly used in the literature include space-time autoregressive integrated mov-

ing average (STARIMA) models (Pfeifer and Deutsch 1980) and variants, multiple

ARIMA models, space-time geostatistical models (Heuvelink and Griffith 2010),

spatial panel data models (Elhorst 2003), geographically and temporally weighted

regression (Huang et al. 2010) and eigenvector spatial filtering (Griffith 2010).
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60.3.1.1 Space-Time Autoregressive Integrated Moving Average
Space-time autoregressive integrated moving average (STARIMA) is a family of

models that extend the ARIMA time series model to space-time data (Pfeifer and

Deutsch 1980). STARIMA explicitly takes into account the spatial structure in the

data through the use of a spatial weight matrix. The general STARIMA model
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expresses an observation of a spatial process as a weighted linear combination of

past observations and errors lagged in both space and time. A fitted STARIMA

model is usually described as a STARIMA (p,d,q) model, where p indicates the

autoregressive order, d is the order of differencing and q is the moving average

order. The application of STARIMAmodels has been fairly limited in the literature,

with examples existing in traffic prediction (Kamarianakis and Prastacos 2005) and

temperature forecasting (Cheng et al. 2011b).

Some important special cases of the STARIMA model should be noted; when

d ¼ 0 the model reduces to a STARMA model, furthermore, a STARMA model

with q ¼ 0 is a STAR model and with p ¼ 0 is a STMA model. Although the

STARIMA model family accounts for spatio-temporal autocorrelation, it has not

yet been adequately adapted to deal with spatial heterogeneity and parameter

estimates are global. The implication of this is that the space-time process must

be stationary (or made stationary through differencing/transformation) for

STARIMA modeling to be effective.

60.3.1.2 Spatial Panel Data Models
Panel data is a term used in the econometrics literature for multi-dimensional data.

A panel contains observations on multiple phenomena (cross-sections) over multi-

ple time periods. When panel data include a spatial component they are referred to

as spatial panel data. Although the term describes the data itself, there are a range of

models that have been developed to work with spatial panel data that originate

specifically from spatial econometrics that are referred to as spatial panel data

models. Methodologically, they are often very similar to those encountered in the

spatial statistics literature.

Aspatial panel data models are modified to account for spatial dependence in one

of two ways; either with a spatial autoregressive process in the error term; a spatial

error model (equivalent to a spatial moving average), or with a spatially

autoregressive dependent variable; a spatial lag model (Elhorst 2003). In their

standard form, spatial panel data models are global models and do not account

for spatial heterogeneity and, as in the spatial statistics literature, this has become

a focus of research in recent years. Elhorst (2003) defined a set of spatial panel data

models that account for heterogeneity in different ways. The uptake of spatial panel

data models has been much more widespread than those mentioned in Sect. 60.3.1

and there have been applications in liquor demand prediction and US state tax

competition, amongst many others.

60.3.1.3 Space-Time GWR
Recently, there has been a great deal of interest in extending geographically

weighted regression (GWR) to the temporal dimension. In their geographically

and temporally weighted regression (GTWR) model, Huang et al. (2010) incorpo-

rate both the spatial and temporal dimensions into the weight matrix to account for

spatial and temporal nonstationarity. The technique was applied to a case study of

residential housing sales in the city of Calgary from 2002 to 2004 and found to

outperform GWR and temporally weighted regression (TWR) as well as OLS.
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60.3.1.4 Space-Time Geostatistics
Space-time geostatistics is concerned with deriving space-time covariance structures

and semivariograms for the purpose of space-time interpolation and forecasting. The

aim is to build a process that mimics some patterns of the observed spatiotemporal

variability, without necessarily following the underlying governing equations

(Kyriakidis and Journel 1999). The first step usually involves separating the deter-

ministic component m u; tð Þ of space time coordinates u and t. Following this,

a covariance structure is fitted to the residuals. The simplest approach is to separate

space and time and consider the space-time covariance to be either a sum (zonal

anisotropy model) or product (separable model) of separate spatial and temporal

covariance functions. Although simple to implement, these models have the disad-

vantage that they do not consider space-time interaction. They assume a fixed

temporal pattern across locations and a fixed spatial pattern across time. Additionally,

it is not straightforward to separate the component structures from the experimental

covariances. For example, an experimental spatial covariance will be influenced by

temporal variability resulting from the time instant at which the data was measured.

The second approach is to model a joint space-time covariance structure. This

approach is generally accepted to be more appropriate. Combinations of the two

approaches have also been described in the literature (Heuvelink and Griffith 2010).

Once an appropriate space-time covariance structure has been defined, one can use

standard Kriging techniques for interpolation and prediction; Space-time

geostatistical techniques are best applied to stationary space-time processes. Highly

nonstationary spatio-temporal relationships require a very complicated space-time

covariance structure to be modelled for accurate prediction to be possible. Despite

being spatio-temporal in nature, the main function of space-time geostatistical

models is space-time interpolation and they encounter problems in forecasting

scenarios where extrapolation is required (Heuvelink and Griffith 2010).

60.3.2 Machine Learning (Non-parametric) Approaches

In parallel to the development of statistical space-time models, there was

a multidisciplinary explosion of interest in non-parametric machine learning

methods, and many of these have been successfully adapted to work with spatio-

temporal data due to their innate ability to model complex nonlinear relationships.

There is a wide range of machine learning algorithms available, in this section we

focus on two of the most popular; the artificial neural network and the support

vector machine.

60.3.2.1 Artificial Neural Networks
Artificial Neural Networks (ANNs) are a family of non-parametric methods for

function approximation that have been shown to be very powerful tools in many

application domains (see Fischer 2006 for example), often dealing with complex

real world sensor data. They were initially inspired by the observation that biolog-

ical learning is governed by a complex set of interconnected neurons. The key
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concept is that, although individual neurons may be simple in structure, their

interconnections allow them to perform complex tasks such as pattern recognition

and classification.

Since its inception, the term ANN has become an umbrella term for a broad class

of flexible non-linear models for regression and classification with a range of

different architectures. ANNs have been widely applied in spatial and temporal

analysis. Kanevski et al. (2009) have applied various types of ANN to spatial and

environmental modeling problems including radial basis function neural networks

(RBFNN), general regression neural networks (GRNN), probabilistic neural net-

works (PNN) and neural network residual Kriging (NNRK) models and have

gained excellent results. The authors note that the strength of ANNs is that they

learn from empirical data and can be used in cases where the modeled phenomena

are hidden, non-evident or not very well described. This makes them particularly

useful in modeling the complex dependency structures present in space-time data

that cannot be described theoretically. Hsieh (2009) also provides a good review of

ANN methods applied to spatial problems.

60.3.2.2 Support Vector Machines
Another widely used machine learning technique is the support vector machine

(SVM, SVR in the regression case). SVMs are a set of supervised learning methods

originally devised for classification tasks that are based on the principles of

statistical learning theory (Vapnik 1999). SVMs make use of a hypothesis space

of linear functions in a high dimensional feature space, trained with a learning

algorithm from optimization theory. The key to their strong performance is that the

learning task is formulated as a convex optimization problem meaning that, for

a given set of parameters, the solution is globally optimal provided one can be

found. Therefore, SVMs avoid the problem of getting stuck in local minima which

are traditionally associated with ANNs. This has led to SVMs outperforming most

other systems in a wide variety of applications within a few years of their

introduction.

SVMs have been successfully used to model time series in a number of application

areas including financial time series and traffic flow prediction. Compared to time

series analysis, the uptake of SVM in the spatial sciences was initially slow but has

seen a rapid increase in popularity in the past 5 years or so. The book “Machine

Learning for Spatial Environmental Data” (Kanevski et al. 2009) provides a good

introduction to some of the machine learning methods currently being used to model

spatial data. Recently, SVMs have been applied to spatio-temporal avalanche fore-

casting (Pozdnoukhov et al. 2011). The approach involves incorporating the outputs

of simple physics based and statistical approaches to interpolate meteorological and

snowpack related data over a digital elevation model of the region. The decision

boundary is used to discriminate between safe and dangerous conditions.

60.3.2.3 Other Methods
ANNs and SVMs are two methods that are widespread in temporal and spatial

analysis, however, the field of machine learning is huge and a comprehensive
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review is beyond the scope of this chapter. Various other methods have been used

including nearest neighbour regression, kernel (ridge) regression, Gaussian

processes, self-organizing maps (SOM), principal components analysis (PCA)

and regression trees, which are introduced in Hsieh (2009). This list is non-

exhaustive and readers are also referred to the text of Kanevski et al. (2009) for

detailed introduction in the context of spatial data.

60.3.3 Summary

In this section, the complex, nonlinear, non-stationary properties of spatio-temporal

data and their implications for space-time models were outlined. The question is

which model should one choose for a given spatio-temporal dataset? The answer to

this depends on the data. In the literature, space-time analysis is typically applied to

data with low spatial and/or temporal resolution which is acquired after the event.

In the tradition of spatial analysis, the practical use of such data is to elicit causal

relationships between variables that can give some valuable insights into the

underlying processes. In this case, the use of parametric statistical models may be

preferable because of their explanatory power and interpretability.

However, these days, more and more data sources are becoming available in

(near) real time at high spatial and temporal resolutions. Extracting meaningful

relationships from such data is a task that is secondary to forecasting and it is likely

that machine learning approaches, with their greater flexibility, will play an ever

increasing role. Generally, machine learning methods have a wider field of applica-

tion than traditional geostatistics due to their ability to deal with multi-dimensional

nonlinear data. They are also well suited to dealing with large databases and long

periods of observation. In particular, the SVM approach is favorable because it avoids

the curse of dimensionality faced by other methods. One of the future research

directions in this area lies in improving the interpretability of the structure and output

of machine learning algorithms. Another way is to use a hybrid framework with both

statistical and machine learning approaches (Cheng et al. 2011b).

60.4 Space-Time Clustering

60.4.1 Introduction

Another very important task of STDM is to extract meaningful patterns and

relationships from massive spatio-temporal data that are not necessarily explicit.

In this situation, we may wish to search for structure in the dataset without an

apriori hypothesis. Hypotheses can be then be formed and refined aposteriori from

the results. This is known as unsupervised learning. One of the most important

unsupervised learning tasks in STDM is clustering. This involves grouping space-

time series into clusters, where the similarity of data within a cluster and the dissim-

ilarity between the clusters are high. Clustering can also be used to detect outliers.
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A spatial outlier is a spatially referenced object whose thematic attribute values are

significantly different from those of other spatially referenced objects in its spatial

neighborhood. It represents an object that is significantly different from its neigh-

borhoods even though it may not be significantly different from the entire popula-

tion. A spatial-temporal outlier is a spatial-temporal object whose thematic attribute

values are significantly different from those of other spatially and temporally

referenced objects in its spatial or/and temporal neighborhoods. Identification of

ST-outliers can lead to the discovery of unexpected, interesting, and implicit

knowledge, such as local instability or deformation (Cheng and Li 2006). Nowa-

days spatial and spatio-temporal clustering has been widely used to understand the

spatial patterns hidden in spatial databases with applications in epidemic studies,

crime hotspot analysis and social networks.

The three domains of space-time series data can be used to define the similarity

between observations for clustering. The first is the thematic domain, where the

attributes define the characteristics of the object. The second is the spatial domain,

which is used to describe the location of the object. Finally, the temporal domain is

used to store the timing of the object. These domains are used to answer the questions

what, where and when respectively. Initial research on clustering focused on the

thematic domain, with methods such as k-means, k-medoids and their variants being

popular. Research into clustering using the spatial domain gained popularity in the

early twenty-first century. Initial research on spatial clustering has focused on point

data. Popular algorithms such as DBSCAN and BIRCH are the outputs of this

research area. The spatial distance or the spatial density derived from the spatial

locations of the points is considered for clustering. Clustering has also been

conducted by combining spatial adjacency with thematic domains or by combining

the spatial distance with the thematic distance. Temporal-thematic clustering is

mainly applied to group time series data, in order to know whether customers are

changing over time, or to determine if credit card fraud transactions change over time.

Very few algorithms consider the spatial, temporal and thematic attributes

seamlessly and simultaneously in the clustering. Capturing the dynamicity in the

data is the most difficult challenge in spatio-temporal clustering, which is the reason

that traditional clustering algorithms, in which the clustering is carried out on

a cross-section of the phenomenon, cannot be directly applied to spatio-temporal

phenomena. The arbitrarily chosen temporal intervals may not capture the real

dynamics of the phenomena since they only consider the thematic values at the

same time, which cannot capture the influence of flow (i.e., time-lag phenomena).

It is only recently that this has been attempted. We pay particular attention to

spatio-temporal scan statistics, a method that has shown promising performance in

a range of STDM tasks such as health, crime and transport studies.

60.4.2 Spatio-Temporal Scan Statistics

Spatio-temporal scan statistics (STSS) is a clustering technique that was originally

devised to detect disease outbreaks (Neill 2008). The goal is to automatically detect
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regions of space that are “anomalous,” “unexpected,” or otherwise “interesting.”

Spatial and temporal proximities are exploited by scanning the entire study area via

overlapping space-time regions (STRs). Each STR represents a possible disease

outbreak with a geometrical shape which is either a cylinder or rectangular prism.

The base corresponds to the spatial dimension and the height corresponds to the

temporal dimension. The dimensions of the STR are adjustable parameters. For

instance, the maximum spatial dimension (e.g., the circular base of a cylindrical

STR) can represent the maximum possible boundary of an outbreak, and the

height of the STR could be the maximum allowable time to detect the outbreak.

The dimensions of the STR are allowed to vary in order to detect outbreaks of

varying sizes.

The initial proposition of STSS is based on the comparison of the disease rates

inside and outside of a STR. If the disease rate inside the STR is significantly higher

than outside the STR, then a possible disease outbreak is detected. However, this

does not take into account the temporal variations (e.g., seasonal trends), which are

inherent in epidemiological data. More recently, an expectation based approach was

proposed to accommodate the temporal trend, where the observed value of an STR

is compared with its expected value based upon historical data. Based on the

statistical distribution that the data is assumed to follow, comparison is made via

a likelihood ratio score function. If a STR has a likelihood ratio score bigger than 1,

the STR is a potential disease outbreak. To reduce the false-alarm rate (reporting

a disease outbreak where in reality there is no outbreak), the significance of the

potential STRs is further tested via Monte Carlo simulation. If the STR is found to

be significant at this stage, then a disease outbreak is recorded (Neill 2008)

STSS has the significant drawback that the entire study region has to be scanned,

which is computationally intensive and limits the method’s scalability. Although

previous research has shown that this problem can be tackled via efficient spatial-

indexing methods. The assumption that a disease outbreak is a regular geometrical

shape is also not realistic (e.g., disease might have spread via the river, thus

affecting the people near the river bed) and remains as a limitation of the method.

This problem might be tackled by generating irregularly shaped STRs.

60.5 Space-Time Visualization

Representing a phenomenon that evolves over space and time has emerged as

a contentious issue within the GIS community. The contentious issue comes from

the fact that most geographic phenomena change over time; for example, forest

fires, storms, water contamination and also traffic congestion, but representing time

on a map is still difficult. It is because GIS has its roots in mapping, which originally

was designed to represent static phenomena, not dynamic process. Geographic

visualization enhances traditional cartography by providing dynamic and interac-

tive maps. Many new techniques on visualizing time on maps have been proposed.

These techniques can be divided into three broad types: (static) 2D and 3D maps,

and animation.
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60.5.1 2D maps

There are various ways to represent time on static 2D maps, either as a single static

map or multiple snap shots. Since all time steps are shown at the same time, the

map-readers don’t need to retain events temporarily in their minds thus preventing

lapses of certain critical information. However, this technique can only present

a few time steps at a time due to the limitation of the available map media

(computer screen, paper, etc.).

This section will discuss some interesting static map techniques. The techniques

are divided according to the type of data to be presented: geometric change of

spatial objects (movement, size, shape, etc.), attribute change of spatial objects, and

travel time.

60.5.1.1 Representing Geometric Change of Spatial Objects
Monmonier (1990) presents movement of spatial objects by drawing movement

paths or pinpoints of objects on a 2D plane. Arrows are added to represent

directions of movements. This technique is called a “dance map” since it is similar

to a diagram of foot paths in a ballroom dance. Dance maps can display both

discrete and continuous movement. When data are captured at fixed time intervals,

a dance map can display the rate of movement (or rate of change) very well. Color

or variety in sizes of objects can be added to the map, but the number of objects is

limited by occlusion.

Another visualization technique presented by Monmonier (1990) is the chess
map (map series). Each map contains a snap shot representing a time slice. A series

of maps are laid out continuously in the manner of a chess board for users to

compare events between time slices, allowing the comparison of many different

time slices at a single sitting. The disadvantage of chess maps is that a large space is

required to present multiple maps at the same time. In addition, the users must

determine by themselves as to how the changes occurred, and at which time slices.

60.5.1.2 Representing Thematic Attribute Change of Spatial Objects
A change map shows changes or differences against a reference time period, as

an absolute value or percentage, such as population increase every 10 years

compared with 1990 (Monmonier 1990). The change map is good for representing

quantitative attributes. Readers do not have to calculate the amount of change by

themselves.

Another way to show the change is to add “small charts on maps” to visualize

time series data on maps. The advantage of small charts on maps is that map readers

are informed of the locations of the data on the maps as well as how their attributes

change over time. However, when plotting many charts simultaneously, the base

map can become overcrowded. Moreover, the charts can be easily overlapped when

the data locations are very close to one another. An example of small charts on

maps is given in Andrienko and Andrienko (2007).
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Visual variables (colors, sizes, texture) can be applied to represent variation in

attributes at different locations. The classic example of this technique is Minard’s

map showing Napoleon’s doomed campaign to Moscow in 1869. Time was

displayed as an axis on the map (parallel to the axis of the geographical position),

and the number of remaining soldiers was shown by the thickness of the lines.

Another good example is spatial treemaps (Slingsby et al. 2010) that represent

traffic variables (traffic speed and traffic volume) of areas of London. Each grid cell

on the map represents a borough. The level of brightness of each cell on spatial

treemaps is used to represent the value of a traffic variable (speed and volume).

Time is also mapped onto small cells within each area. This technique allows the

visualization of a large number of time points, since it exploits every pixel on the

map to represent data.

Rank Clock has recently been used to visualize the dynamics of city size changes

(http://www.bartlett.ucl.ac.uk/casa/pdf/paper152.pdf), where the time is arranged

as a clock, the thematic attribute (the size of the city) shows as a dot along the time

line. By linking all the dots of a spatial unit over time, the trajectory of rank change

is shown.

2D Space-time coloured pixels is widely used to study patterns of traffic con-

gestion in space-time. It was used to display data from loop detectors. The space-

time coloured pixels consists of two axes: a device position axis and a time axis.

Each pixel represents the magnitude of traffic parameter, in colours, measured from

a monitoring device at a particular time. Any anomaly of the detectors can also be

shown easily by this approach.

60.5.1.3 Travel Time
The previous two subsections use time as a reference for other types of data

(changes in geometry and in attributes of spatial objects). Here we pay special

attention for travel time representation since time itself is the data to be represented

and special techniques are developed for this purpose. There are two techniques that

are used to present travel time on maps.

A cartogram is a map that distorts geographic space on maps to represent

attributes of spatial data. For example, the tube map of London arrange all

the tube lines in six zones in order to show the distance to the centre of London

(Zone 1), which is not the exact physical (geometric) locations of the tube lines and

stations. Using this technique, travel time on transportation networks can be

represented using distance on a map, an example of which is the travel time tube

map that distorts real geographic layout of tube lines in London in order to show

travel time between stations.

The “isochrone” is another technique that is employed to represent travel time.

Isochrones are similar to contour lines on a map, but an isochrone line connects

points of equal travel time from a given origin (Brunsdon et al. 2007). The

isochrone is a great alternative to the cartogram as it does not distort the under-

lying map.
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60.5.2 3D Visualization

60.5.2.1 3D Space-Time Cube
The 3D space-time cube (or, alternatively, space-time aquarium) was proposed by

Hagerstand (1970). A 3D space-time cube consists of two dimensions of geographic

locations on a horizontal plane, and a time dimension in the vertical plane (or axis).

The space-time cube is normally applied to represent trajectories of objects in 3D

space-time dimension, or “space-time paths.” Trajectories are normally from GPS

data nowadays, and they are represented as lines in the 3D space-time.

3D space-time cube has two main limitations. Firstly, the 3D display makes it

difficult to refer space-time paths to geo-locations and time. Secondly, the space-

time cube has difficulty in displaying large amounts of data. However, interactive

techniques can be used to reduce cluttering when displaying a large amount of data.

With interactive functions, users can decide which data to display and can zoom

and rotate the cube on its axes. Data aggregation (such as generalized space-time

path) can also improve visualization on 3D space-time cube.

60.5.2.2 3D Isosurface
An isosurface is a three-dimensional analog of an isoline. It is a surface that

represents points of a constant value (e.g., pressure, temperature, velocity, density)

within a volume of space. Isosurface has been employed in various applications such

as medical imaging, fluid dynamics, astrophysics, chemistry and quantummechanics.

Isosurfaces are popularly used to visualize volumetric datasets, which consist of a 3D

location with one scalar or vector attribute. The data sets are structured as (x,y,z,v),

where (x,y,z) are the spatial coordinates and v is an attribute. The 3D isosurface has

also been applied to visualize incident data, which are structured as (x,y,t), where

(x,y) are two dimensional spatial coordinates and t is the time when the incident

occurred (Brunsdon et al. 2007). Isosurfaces have great potential to show the

development of space-time processes such as congestion on the traffic network.

60.5.2.3 3D Wall Map
The 3D wall map is a 2D road map with an additional time dimension to display

change. Each layer represents the situation at a time. Cheng et al. (2010) employed

the technique to represent travel delay during the morning peak in central London at

four consecutive Mondays in October 2009. The layout of the link map represents

the real geographical layout of the road network. The colours between layers

represent the unit journey time (minutes per kilometre), with yellow and red colours

showing the highly congested areas (travel time more than 5 min per kilometre)

(Fig. 60.3).

60.5.3 Animated Maps

The first computer based animation map was created by Tobler in 1970

(Tobler 1970). He used 3D animated maps to display simulated urban growth data
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in the Detroit region of the US. However, animated maps were not widely used for

many years due to the difficulty in distributing and playing back large data files.

However, with improvements in computing power and internet technology over the

past three decades, animation maps have become a very active area of research and

are now distributed widely on the internet. Weather maps and traffic maps are two of

the many examples.

An animated map has two outstanding advantages. The first one is that an

animation map can be used as an alternative to a static map. It can be employed

to emphasize key attributes by using, for example, blinking symbols “to attract

attention to a certain location on the map” (Kraak and Klomp 1995). The second

advantage is that it provides additional visual variables called “dynamic variables”

such as “duration,” “rate of change,” “order of change,” “frequency,” “display

time,” and synchronization (MacEachren et al. 2004).

60.5.4 Visual Analytics: The Current Visualization Trend

Visual analytics is an outgrowth of the field of scientific and information visuali-

zation. It refers to “the science of analytical reasoning facilitated by interactive

visual interfaces” (Thomas and Cook 2005). The emergence of visual analytics has

been driven by the fact that we have no proper tools to leverage large amounts of

data. Visual analytics is an iterative process that involves information gathering,

data pre-processing, knowledge representation, and decision making. Normally,

unknown data are visualized in order to give a basic view of that data, then users

will use their perception (intuition) to gain further insights from the images
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Fig. 60.3 Wall map of travel delay (mins/km) of outbound roads during the morning peak on

5,12,19,26 October 2009 (Cheng et al. 2011a)
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produced by visualization. The insights generated by this human perception are

then transformed into knowledge. After users have gained certain knowledge, they

can generate hypotheses that will be used to carry out further analysis using

available data analysis and exploration techniques. The results from analytical

process will be visualized for presentation, and further gain in knowledge.

Visual analytics is much more than simple visualization. It can rather be seen as

an integral approach to combining visualization with human factors, and data

analysis (Keim et al. 2008). Visual analytics is becoming more important to

many disciplines including scientific research, business enterprise, and other areas

that face problems of overwhelming avalanche of data. GIS, also, is now facing this

massive data problem. The concept of visual analytics was introduced into GIS,

namely “Geovisual Analytics”. Geovisual analytics has its specific focus on space

and time; posing different specific research problems, and demands special

approaches in solving generic research problems of Visual Analytics.

60.6 Conclusions

Since the concept of knowledge discovery from databases (KDD) was proposed in

1988, tremendous progress has been made in data mining and spatial data mining

(Miller and Han 2009; Shekhar et al. 2011). STDM is only possible based upon the

progress in those areas, along with GIS and geocomputation. This chapter intro-

duces the fundamentals of STDM, which consists of space-time prediction, clus-

tering and visualization.

As for space-time prediction, we have discussed the statistical (parametric)

models, including families of STARIMA models, space-time geostatistical models,

spatial panel data models, and space-time GWR. The challenge in statistical models

lies in the non-stationary and non-linearity of space-time data. How to calibrate the

spatio-temporal autocorrelations in the models is the bottleneck of statistical

approaches. For low spatio/temporal resolution data, use of parametric statistical

models may be preferable because of their explanatory power and interpretability.

Due to their ability to deal with multi-dimensional nonlinear data machine learning

methods are becoming more popular for large datasets. We have briefly introduced

artificial neural networks (ANNs), support vector machines (SVMs), and other

methods (Kernel-based approach and self-organized maps) for space-time analysis.

However, the interpretability of machine learning is low, and a hybrid framework

with both statistical and machine learning approaches might be helpful for this.

Space-time clustering can be used to extract meaningful patterns (clusters) in the

data. It can also be used to detect outliers or emerging phenomena (epidemic

outbreak or traffic congestion). Considering the spatial, temporal and thematic

attributes seamlessly and simultaneously, and the dynamicity in the data is the

most difficult challenge in spatio-temporal clustering. Spatio-temporal scan statis-

tics (STSS) sheds lights on this aspect, though efforts are needed to improve

computation efficiency and to reduce the false alarm rate.
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Space-time visualization explores the patterns hidden in the large data sets by

using advanced visualization and animation techniques. This includes conventional

static 2D maps as well as newly developed 3D wall maps and isosurface, which

shows the hotspots in space-time. Recently “Visual Analytics” and “Geovisual

Analytics” have emerged as an iterative process (or tools) that involves information

gathering, data pre-processing, knowledge representation/visualization, and deci-

sion making. Still, real-time visualization of dynamic processes is still very chal-

lenging due to large volume and high dimensions of the data. For examples,

methods are needed to show the evolution and dissipation of crime or traffic

congestion in space and time simultaneously.

However, the field of STDM is far from mature, and further research is needed in

the following areas:

a. New methods and theory are needed for mining crowd sources such as data

contributed by citizens and volunteers. These are often extremely noisy, biased,

and nonstationary. One example of such data is the trajectory data obtained from

smart phones or other sensors. This area is relevant to the recent development of

citizen sciences and VGI in particular.

b. Theory and methods need to be developed to extract meaningful patterns from

those individual sensors and put them under the framework of networks and

network complexity such as transport and social-networks made up of those

individual. Under network, the interaction and dynamic flows should be consid-

ered in mining spatio-temporal patterns. This aspect is relevant to complexity

theory and network dynamics in particular.

c. STDM for emergency and tipping points detection, leading to the generation of,

actionable knowledge, i.e., finding the emergent patterns and tipping points of

economic crises and disease epidemics. It is important to find outliers, but more

important is finding the critical points before the system breaks down so that

mitigating action can be taken to avoid the worst scenarios such as traffic

congestion and epidemic transmission.

d. Another challenge of STDM is how to calibrate, explain and validate the

knowledge extracted. A good example of this is the calibration of spatial

(or spatio-temporal) autocorrelation. Higher order spatial autocorrelation

models have been developed, but the pitfalls have also been found (LeSage

and Pace 2011). Nonstationarity and autocorrelation is fundamental to our

observation (or our empirical test) of reality, it is hard to prove that the higher

order autocorrelation comes from the first to the second, then to the third; or from

the first to the third directly, which makes the explanation unconvincing. Fur-

thermore, validation is difficult – so far Monte Carlo simulation is the main tool

for simulation, which is also based upon a statistical distribution, which is hardly

provable. This makes machining learning more promising in future STDM.

e. Technically, grid computation and cloud computation allow data mining to be

implemented at multiple computer sources. Even so, when the data volume is

increased, the capacity of software and hardware is still limited. How to scale the

algorithm to larger networks will always be a challenge for data mining given the
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increase of data volume is far quicker than the improvement in the performance

of data processors.

Please notice that the content of this chapter is mainly around spatial data in point,

line and lattices, but not on image data, which is another broad area of research. Also,

due to the limit of length, we do not include the progress on space-time simulation,

which includes agent-based modeling (ABM) and cellular automata (CA). ABM has

been used across many disciplines to demonstrate the impact of individual decisions

and choices on the nature of a system (Gilbert 2007). Such examples include the

individual behavior of birds in flocks, ants in colonies and people in crowds – all

entities are acting independently yet contribute to a larger body. There is great

potential within ABM to replicate and predict system changes over space and time.

In (Manley et al. 2011), the agent-based simulation has demonstrated the link

between individual choice and behavior in abnormal conditions with the formation

and movement of urban road congestion. CA is a discrete model studied in comput-

ability theory, mathematics, physics, complexity science, theoretical biology and

microstructure modeling. It consists of a regular grid of cells, each in one of

a finite number of states, such as “On” and “Off.” It has been widely used in urban

planning and landuse change modeling.
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