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Abstract

Spatial networks organize and structure human social, economic, and cultural

systems. The analysis of network structure depends on the development of
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measures and models of networks, which in turn rely on mathematical graph

theory. Key concepts and definitions from graph theory are reviewed and used

to develop a variety of graph structural measures, which can be used to

investigate local and global network structure. Particular emphasis is placed

on high-level network structural features of centrality, cohesive subgraphs, and

structural equivalence. Widely used models for spatial networks are introduced

and discussed. Pointers to empirical research on real-world spatial networks

are provided.

64.1 Introduction

It has become commonplace to think of ourselves as inhabitants of a “networked

world.” The most obvious contemporary manifestation is the Internet, augmented in

recent years by web 2.0 technologies that enable online social networks and by

mobile technologies which maintain those connections even while people move

through global transport networks from city to city and continent to continent. If

“[t]he most profound technologies are those that disappear” (Weiser 1991, p. 94),

then the Internet is by any measure profound, so much so that we only notice it – it

only becomes visible – when it is unavailable. Of course, most networks are much

older and more obviously geographical than the Internet. Significant infrastructure

from transport systems and telecommunications to the supply of electricity and

water is in the form of networks. Arguably, when it comes to understanding

the aggregate geographies of the human world, whether from a social, economic,

or cultural perspective, it is networks which structure, constitute, and organize

those patterns.

Manuel Castells (1996) foresaw (but only just!) this development in his The Rise
of the Network Society. Castells suggests that the network society alters social,

economic, and cultural relationships, creating a global “space of flows” not directly

associated with any particular location on the Earth’s surface. Less radically, other

scholars have argued that a key determinant of the relative importance of world

cities is not their geographical location per se but their location in economic,

transport, social, and cultural networks. For example, Taylor et al. (2011), using

network measures, rank the relative importance of cities to argue that London is an

“alpha++” city outranking many more populous cities such as Tokyo (alpha+),

Seoul (alpha), or Los Angeles (alpha). What makes London rank above other

cities is not its particular individual characteristics or geographical location, but

its position in relation to other cities, in other words its position in multiple

overlapping networks of relationships between cities worldwide.

However, we are getting ahead of ourselves. Whether or not we consider

a network analysis of world cities (or anything else) to be informative, before we

can deploy such methods, we must define terms and develop measures. As in any

field of quantitative study we need measures to enable repeatable descriptions of the

objects of study and models to allow us to determine if the measurements we make

of empirical cases are interesting. In the next section, basic concepts, definitions,
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and measures from graph theory are introduced. There follows a consideration of

higher-level concepts of graph structure and associated measures. Throughout these

sections pertinent aspects of spatial networks are discussed. Following from this,

we introduce some models for spatial networks and comment on their properties.

We then consider some significant findings from the rapidly growing literature

applying these methods to real spatial networks. The article ends with some

pointers to possible future directions.

Note that we do not consider here the numerous problems in computer science,

operations research, and transport analysis (particularly traffic assignment and

related problems) which are closely associated with the analysis of spatial net-

works. Interested readers should consult reference works in these fields and related

chapters in this major reference work.

64.2 Spatial Networks and Graphs

In their stimulating and still relevant text Network Analysis in Geography, Haggett
and Chorley (1969) follow Kansky (1963) in moving quickly from considering

spatial networks to the analysis of mathematical graphs. Real spatial networks are

complicated physical entities, with numerous elements, themselves often complex

entities, such as multilane highways or airports with several runways (see Fischer

2004 for how these complications may be handled in a GIS setting). Our primary

interest in the analysis of spatial networks lies in understanding how the network

as a whole structures connectivity so as to centralize some locations, marginalize

others, and, in general, differently position locations with respect to one another. It

makes sense to strip away the messy complication of real spatial networks and work

with the simpler, abstract representation of a mathematical graph.

We therefore begin with definitions from graph theory, which provides

a foundation for the analysis of networks. A graph is a mathematical abstraction

which can represent any set of elements somehow related to one another. Wilson

(1996) provides a succinct introduction to the key terms and concepts discussed

below. More advanced references delve into this field of discrete mathematics

(Gross and Yellen 2006), which is fundamental to computer science (see, e.g.,

Jungnickel 1999), and is increasingly considered fundamental across all the

sciences (Newman 2010).

64.2.1 Basic Definitions

A graphG consists of a finite, nonempty set V ¼ vif g of vertices and a finite nonempty

set E ¼ eif g of distinct, unordered pairs of distinct elements in V, called edges. The
number of elements in V, commonly denoted n, is the degree of G. The number of

edges in E is often denoted m. Figure 64.1 shows a typical small graph with

V ¼ a; b; c; d; e; f; g; hf g, E ¼ ab; bc; cd; cf ; de; dg; dh; eg; fg; ghf g, n ¼ 8,

and m ¼ 10.
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The edge vivj, or eij, is said to join (more commonly link or connect) the vertices

vi and vj, and these vertices are considered adjacent. We say that eij is incident with
vi and vj and that vi is a neighbor of vj. The neighborhood NðviÞ of vi, often written
simply Ni, is the set of vertices adjacent to vi. Two edges incident with the same

vertex are adjacent edges. In Fig. 64.1, Nb ¼ a; cf g, and edges ab and bc are

adjacent.

Given the ubiquity of graphs (or networks), it should come as no surprise

that there is considerable confusion around terminology, with different fields

adopting different terms in various contexts. Vertices are often referred to as

nodes and represent the entities in a network, such as cities, people, cell phone

towers, airports, and railroad stations. Edges are commonly referred to as links or
connections and represent relationships between nodes, such as movements of

goods, services or people, existence of airline routes, and mutual intervisibility.

We can think of graphs as mathematical abstractions of networks which exist in the

real world, in much the same way that variables represent measurements of real

phenomena – this is the distinction between vertices and nodes, edges and links, and

so on. In this section, while introducing formal definitions from graph theory, we

adopt the proper mathematical terms, but elsewhere may return to widely used

synonyms (such as network, node, and link).

The structure G ¼ ðV; EÞ described so far is a simple graph, which has limited

relevance to the representation of complicated real-world networks. We may also

want to include cases where vertices may be joined to themselves by a loop vivi, and
multiple edges may also be allowed if we drop the requirement that edges be

distinct. More significantly, directed graphs (sometimes referred to as digraphs)
consist of a set of vertices V and a set of arcs A or directed edges, each of which

consists of an ordered pair of vertices in V, implying directionality in the relation-

ship between the vertices. This departure from the simple graph allows us to

consider relationships where flows in each direction may be different (or even

nonexistent in one direction), and is obviously an important consideration when we

consider many real-world infrastructure or distribution networks.

Another variant on the simple graph is the weighted graph where each edge has

an associated value or weight often denoted wij, representing some attribute of the

relationship between the vertices it joins. The most obvious attribute of interest in

many geographical applications is the length of the edge, measured either as

a distance or perhaps duration. More generally, edge weights may represent some

a

b

c

d

e

f

g

hFig. 64.1 A typical graph
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cost associated with movement along the edge. Less obviously, but equally appli-

cable, are edge weights that somehow represent the strength of the relationship

between the vertices they join. The volume or value of trade between two countries

and the number of flights daily between two airports are just two examples among

many possibilities. In many cases, weights relating to the strength of a relationship

between the incident vertices will reflect rates of flow or the capacity of the

associated edges.

64.2.2 Vertex Degree, Graph Density, and Local Clustering

Even the limited graph theoretic concepts introduced so far allow us to develop

useful descriptive measures of graph structure. Most obviously, the number of

edges incident with a vertex is its degree denoted degðviÞ or ki. The average vertex
degree is a useful summary measure of graph structure, given by

k ¼ 2m=n (64.1)

since each edge is incident with two vertices. This measure is equivalent to

Kansky’s b index (1963) differing only by a constant multiplier. The degree list
of a graph is the set of vertex degrees often arranged in order of increasing degree.

For the graph in Fig. 64.1, the degree list is 1; 2; 2; 2; 2; 3; 4; 4f g. In large graphs

representing complex real-world networks, it is more useful to examine the degree
distribution of the vertices, an aspect considered in more detail in later sections,

although, as we shall see the degree distributions of many spatial networks are

strongly constrained by their spatial embedding. If all vertices have the same degree

k, it is regular of degree k, or k-regular. In practice, this is unlikely to occur in

spatial networks, but may provide a useful benchmark or null model for assessment

of how regularly structured is an observed network.

For a simple graph with n vertices, the maximum number of edges that could exist

is given by
n
2

� �
¼ nðn� 1Þ=2. Comparing the actual number of edges in the graph

to this maximum provides a measure of how strongly connected the graph is overall,

namely, its density, r ¼ m=
n
2

� �
¼ 2m nðn� 1Þ= . A graph’s density is the fraction

of all possible edges which could exist which actually do exist. The graph in Fig. 64.1
has density 2� 10=ð8� 7Þ ¼ 0:357. Because the number of possible edges in

a graph grows approximately with the square of its degree, whereas in most spatial

networks the number of edges grows roughly linearly with graph degree, most spatial

networks have low density, and only a small proportion of all the possible connec-

tions exist. This generally arises either because of distance decay effects or due to

planarity constraints. We consider both issues in more detail below.

Because of the constraints on overall graph density in spatial networks, it is often

more interesting to consider the local density or clustering of a spatial network.
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This is a measure of how strongly connected the graph is in the neighborhood of

each vertex. The clustering coefficient of a particular vertex is given by

CðviÞ ¼ 2mi

kiðki � 1Þ (64.2)

where mi is the number of edges joining vertices in the neighborhood of vi. This is
a direct localized equivalent to graph density and provides information about

how well connected the network is locally. The distribution of the clustering

coefficient in a network provides useful information about its structure. One

interpretation is that it gives the probability, given that two vertices vj and vk
are neighbors of vi that vj and vk are themselves neighbors. Many spatial networks

exhibit high clustering coefficients compared to nonspatial networks, which is

unsurprising: if two vertices in a spatial network are neighbors, it implies that they

are near one another, and if two vertices share a common neighbor, since they are

probably also near one another, there is a high chance that they will be neighbors

of one another.

64.2.3 Spatial Embedding and Planarity

Thus far, there has been no explicit consideration of the spatial aspect. Where we

are concerned with spatial networks, vertices will have an associated spatial entity,

often conveniently considered to be a point location, but potentially also a more

complex spatial entity such as a region – for example, in a trade network, vertices

may represent regions or countries.

Two types of spatial embedding of a graph are possible. The most obvious

spatial networks are those where both vertices and edges are spatially embedded.

Examples include transport and infrastructure networks, where the graph edges are

physically realized in space, with direct implications for any associated weights or

directional restrictions. Less obviously, spatial embedding of edges imposes

a constraint on the overall network structure, that of planarity. A planar graph is

one which can be drawn in two dimensions with no edges intersecting except at

vertices on which they are both incident. For many infrastructure networks, this is

approximately true, although bridges and tunnels in ground-transport networks are

an obvious (but generally minor) exception. The planarity constraint significantly

alters the overall structure of graphs, and we consider its implications in the

following paragraphs.

A second form of spatial embedding is where vertices have associated

spatial locations, but edges represent nonspatial relationships. An example is

a spatially embedded social network. Individuals in the network have some spatial

location – perhaps their home address – but edges might represent friendship or

acquaintanceship relationships with no corresponding physical realization. A less

obvious example is when the vertices in the graph represent spatially extended

entities – such as metro lines – and edges represent a relationship such as “has an
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interchange with.” Such networks rarely constitute the primary object of analysis,

although they may easily arise as dual graphs in some analyses. In considering

such a network to be a spatial network, we implicitly assume that the distance

between vertices (whether direct Euclidean distance or over intervening spatial

networks – see below) has an effect on the probability of their existence. In other

words, we expect that vertices more remote from one another are less likely to be

joined than those that are closer together.

Where the distinction matters, we will refer below to fully embedded or vertex-

embedded spatial networks, reserving the term spatial networks to refer to networks

of either kind.

The fundamental difference between spatial networks with spatially embedded

edges, which are (approximately) planar, and spatial networks not affected by this

constraint lies in the limits it places on the overall density of the graph both globally

and locally. A fundamental result is Euler’s formula for planar graphs

n� mþ f ¼ 2 (64.3)

where n and m are the number of vertices and edges as before, and f is the number

of faces or regions in the plane which the graph divides the space into. We consider

the overall region in which the graph is embedded as face, so that for the graph in

Fig. 64.1, f ¼ 4, that is, the whole space and the regions cdgf , deg, and dhge.
Euler’s result is easily proved when we consider starting from a graph consisting of

one vertex and no edges, so that n ¼ 1, m ¼ 0, and f ¼ 1 when Eq. (64.3) clearly

holds (see Fig. 64.2). Adding any edge while maintaining planarity, either (i) joins

two existing vertices without intersecting an existing edge, so increasing bothm and

f by one, while leaving n unchanged, or (ii) adds a new vertex and joins it with an

edge, increasing both n and m by one with no change in f . In either case, Eq. (64.3)
remains true.

Euler’s formula has important implications for the possible density of planar

graphs. Since every face requires at least three edges, and each face can share an

edge with at most one other face, we know that m � 3f=2. Combining this result

with Eq. (64.3) we arrive at

m � 3n� 6 (64.4)

Combining this result with Eq. (64.1) tells us that the upper bound on the mean

degree of a planar graph is k � 6. Kansky (1963, p. 18) recognizes this in providing

alternative formulations of his g index (equivalent to graph density) for planar and

nonplanar graphs.

Understanding this result, it is much easier to understand why area maps are

so distinctively structured and why the Voronoi tessellation and associated

Delaunay triangulation exhibit such characteristic structure. Since the spatial

network constructed from the adjacency relations of a set of polygonal regions

must necessarily be planar, the mean number of neighbors of each region cannot

exceed 6. In graph terms, this bound on the number of edges in a planar graph
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and thus on many spatial networks, means that almost all spatially embedded

networks are sparse, with m � n2 and r / 1=n as n ! 1. In terms of local

clustering, planarity also implies that any vertex with ki > 4 must have Ci < 1

since it is impossible for any graph of more than four vertices to be fully connected.

64.2.4 Shortest Paths, Distances, and Network Efficiencies

A particular sequence of edges v0v1; v1v2; . . . ; vr�1vrf g forms a walk of length r.
If the vertices in a walk are distinct, then it is a path, and a path that begins and ends
at the same vertex forms a cycle. The distance between vertices vi and vj, dij is the
length of the shortest path among the set of all possible paths between vi and vj. Any
one path between vi and vj of length dij is a geodesic. The largest distance between
any two vertices is the diameter of the graph.

In a directed graph, walks may only proceed in the direction of constituent arcs.

In a weighted digraph, the length of a path is generalized from the above definitions

by summing the weight of its constituent edges, and the distance between two

vertices is the length of the shortest path, as before. Given that the weights

associated with the arcs in each direction between any two vertices are not neces-

sarily the same (that is, wij 6¼ wji), there is no guarantee that the distances between

vertices in a directed graph will be symmetric. Note also that where graph weights

do not represent a “traversal cost,” such as when they represent link capacities or

trade volumes, numbers of people, or other similar measures, then it does not make

sense to accumulate edge weights in this way.

The (graph) distances between any two nodes or between all pairs of nodes in

a spatial network are of considerable interest, particularly in how they compare to

the corresponding straight line (Euclidean) distances between the corresponding

node locations. If a network provides a path between two nodes whose distance is

close to the straight line distance, then the network is efficient for that particular

journey. On the other hand, if the network requires a much longer and more

circuitous path to be taken between two locations, it is inefficient. A measure of

the network efficiency for a single particular path is the route factor defined by

Black (see 2003), following Nordbeck (1964) as

n    n
m    m + 1
f     f + 1

n    n
m    m + 1
f    f + 1

Fig. 64.2 How a planar

graph grows as edges are

added. Either the number of

faces f (upper path) or the
number of vertices n (lower

path) must increase, but not

both
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Qij ¼ dGðvi; vjÞ
dEðvi; vjÞ (64.5)

where dG and dE are graph-based and Euclidean distances, respectively, between

locations i and j. We can average this quantity over a particular node

Qi ¼ 1

n

X
j

Qij (64.6)

or over the whole network

Q ¼ 1

nðn� 1Þ
X
j 6¼i

Qij (64.7)

The route factor provides one perspective on the efficiency of a network

as-built. Another perspective is to consider how cheaply a set of locations might

be connected. A tree is a graph which includes no cycles, in which n ¼ mþ 1.

The minimum spanning tree of a set of vertices is the tree which minimizes the

total weight of the edges in the tree, and when the weights relate to the cost of

providing the associated node-to-node links, it represents the cheapest way to

connect every node to every other. However, such a network is unlikely to be

efficient from the point of view of a user of the network as measured using the

route factor, since it will certainly involve many very circuitous shortest paths

(see Fig. 64.3). Such a network is also vulnerable to failure, since losing just one

edge will leave it disconnected. In practice, real networks will have more edges

than the minimum spanning tree.

Fig. 64.3 The minimum

spanning tree of a set of points
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64.3 Higher-Order Structure in Networks

The measures we have considered so far generally focus on the overall structure of

a network in a general way or on the structure at a particular location. Summary

measures or distributional properties of these measures are generally useful, but

they often fail to reveal structural aspects of networks which arise out of the totality

of all the spatial relationships in the network. In this section, we briefly consider

measures of such higher-order structure.

64.3.1 Network Centrality

Consideration of distance in networks leads naturally to questions of the most

accessible or central locations in the network. An obvious approach is to calculate

the mean distance from a node to every other node in the network:

di ¼ 1

n

X
j

dij (64.8)

where dij is the graph distance between vertices vi and vj as previously defined.

Using this centrality measure, the most central node in a network is that with the

minimum di. While this is an obvious measure of network centrality, there are many

alternatives. One which has received considerable attention in recent years, because

of its close relationship to movement on the network and to how subregions of

the graph are connected to one another (see below) is betweenness centrality. The
betweenness centrality of a vertex vi is the proportion of the shortest paths between
all other pairs of vertices vj 6¼ vk in which vi appears. If gjkðviÞ is the number of

shortest paths from vj to vk in which vi appears, and gjk the total number of shortest

paths from vj to vk, then

cbetween ¼
X
j 6¼k

gjkðviÞ
gjk

(64.9)

This measure has the nice property that it can be readily extended to edges also,

simply being the proportion of all shortest paths on which each edge lies.

Betweenness centrality provides an indication of the extent to which each

vertex or edge has the potential to control movement or communication in

the graph, assuming that there is “everywhere-to-everywhere” movement in the

system. This measure is directly related to approaches that rely on random walk

models. The most central vertices and edges measured in this way are those which

will experience the most traffic when a population of random walkers move

around the system.
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64.3.2 Network Modules or Subgraphs

A class of measures which remains difficult to define precisely, but which has

a clear intuitive interpretation, has recently come to the fore, as researchers attempt

to determine how a network can be broken into cohesive subgraphs or regions, now

most often referred to as communities. Fortunato (2010) provides a comprehensive

overview of developments in this field. The general definition of a community is

that the member vertices of a community are more strongly connected to one

another within the community, than they are to vertices outside the community.

This definition is not very precise, however. To take it to the extreme, we could

argue that any joined pair of vertices are more closely connected to one another than

they are on average to the rest of the graph (unless the graph is fully connected).

A less extreme definition is to consider as communities, small, fully connected

subgraphs or cliques (from their origins in social network analysis, see Wassermann

and Faust 1994), but due to spatial constraints, cliques are unlikely in fully

embedded spatial networks and so unlikely to be useful.

We obviously need a more flexible definition. Many have been suggested in the

social networks literature (see Wassermann and Faust 1994, pp. 257–267), but most

suffer from serious computational challenges in identifying them in graphs of any

size, because of the exponential growth in the number of subsets of the vertex set V as

graphs get larger. An important breakthrough has been in the development of more

computationally tractable methods, beginning with the Girvan-Newman algorithm

(Girvan and Newman 2002). Many of these methods are based on heuristic

approaches, which successively remove edges of low betweenness centrality while

repeatedly recalculating some measure of the quality of the resulting graph decom-

position. Other methods aim to identify hierarchically nested communities and can

consequently deal with very large networks with millions of nodes. Fortunato (2010)

provides comprehensive details and references. It is notable that none of these

methods are explicitly spatial, although where edge existence and/or weight is

dependent on spatial proximity, this should not be a cause for concern.

The net result of these considerations is that the current working definition of a

graph community is a circular one: graph communities are those subgraphs in a graph

identified by a community-detection algorithm. This places considerable importance

on the analyst’s ability to meaningfully interpret any communities so identified,

a situation analogous with that in the cluster analysis of multivariate statistical data.

Vertex centrality and community structure for a typical spatial network are

illustrated in Fig. 64.4. In Fig. 64.4a vertex centrality calculated from the total

path length from each vertex to every other while considering the Euclidean length

of the graph edges is shown, with the darkest shaded vertices the most central.

As is often the case, the most central vertices are those that are most geographically

central to the network, as we might expect. By contrast, in Fig. 64.4b the

betweenness centrality based only on the network topology is shown. Because, in

topological terms, the vertices to the west of the central part of this network provide

a shortcut around the densely packed central region, these vertices are highlighted
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by this centrality measure. Finally, Fig. 64.4c shows a possible community structure

in this network where seven distinct regions in the network have been identified

based on their mutual connectivity.

64.3.3 Structural Equivalence

A final graph structural characteristic likely to be of interest is the concept of

structural equivalence among vertices or edges. This concept is easily grasped, but

precise definitions are mathematically challenging and detection of structurally equiv-

alent sets of vertices remains difficult. The idea is that vertices that are structurally

equivalent have similar relationships to the rest of the graph as one another, an idea

whose origins lie in social network analysis where structural equivalence is related to

social roles (Lorrain and White 1971). Graph communities are a special case of

structurally equivalent vertices, which share the property of being in the same

community. In a transport network, we might expect major junctions on arterial routes

to constitute an equivalence class. However, pinning down how this concept can be

realized in practice has proved difficult, and detection of structurally equivalent

(or more usefully structurally similar) sets of vertices is computationally challenging –

consider that while community detection can assume that the subgraphs of interest

are connected subsets of the graph, no such assumption can be made for structural

equivalence classes. While the concept of structural equivalence is an attractive one

for the analysis of spatial networks, progress in this area remains rather limited.

64.4 Generating Networks: Spatial Network Models

While measures of network structure are important tools in improving our

understanding of spatial networks, it is equally important to develop models for

a b c

Fig. 64.4 Centrality and network communities illustrated. See text for details
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network formation. This was recognized by Haggett and Chorley in their coverage

of [network] “Growth and Transformation” (1969, pp. 261–318), an extensive

chapter and a very modern treatment. A recent review paper (Barthélemy 2011)

provides a useful overview of many different spatial network models. Here we

briefly review some of the available models and consider their general properties.

An important null model for any network is the Erd€os–Rényi (E–R) model

(see Erd€os and Rényi 1960), which has been much studied. The E–R graph is

generated as follows: create a set of n vertices, then consider every possible pair of

vertices, and with probability p join them with an edge. Many of the expected

properties of E–R graphs are well known. Of particular interest are the expected

mean clustering coefficient and mean path length of vertices in the graph, once

the network is sufficiently dense to be connected with no isolated clusters, an event

which happens quite suddenly close to p ¼ ln n=n. The expected clustering coeffi-

cient Ch i is given by p since p is the probability that any two vertices will be

connected, and so is also the likely proportion of the neighbors of any vertex that

will be connected. The expected shortest path length dh i in the E–R graph is

approximated by ln n= ln k.

64.4.1 Spatial Networks From Point Patterns

Perhaps the most obvious way to generate a spatial network is to begin with a point

pattern and then to apply some geometric rules by which points are connected to

one another (or not). This geometric graphmodel admits considerable variety in the

outcomes depending on both the underlying point pattern and on the geometric

rules applied. It also has the property that if we make the “rule” for joining nodes

independent of the distance between them, then it is equivalent to the E–R random

graph. More reasonable rules will be familiar from the construction of spatial

weights matrices (see, e.g., pages 200–205 in O’Sullivan and Unwin 2010).

A distance criterion where two nodes are joined if they are closer together than some

threshold distance. In Fig. 64.5a nodes nearer than 5 units apart are connected.

A nearest neighbor criterion where each node is joined to its nearest k neighbors. In
Fig. 64.5b each node is joined to its 4 nearest neighbors.

An attribute-distance rule where depending on some attribute of the nodes and their

separation distance they are joined or not. The simplest form of this rule is where

the attribute is a radius of influence ri, and nodes i and j are joined if ri þ rj < R
where R is a threshold distance An example is shown in Fig. 64.5c. Such a simple

rule might be meaningful in the context of trees in a forest influencing one

another, but in regional science, a more likely formulation will be based on an

interaction measure such as mimjd
�a
ij where the m values represent activity or

population at each location and a is a constant controlling the rate at which likely
connection falls away with distance.

A pure geometric rule such as those governing the Delaunay triangulation or closely
related Gabriel graphs (see Okabe et al. 2000) shown in Fig. 64.5d, e,

respectively.
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A global rule such as that governing construction of the minimum spanning tree,

where the edges are those which together connect the network with the minimum

total path length. An example is shown in Fig. 64.5f.

As is clear from Fig. 64.5, the various geometric rules produce quite different

networks. An important distinction is that the Delaunay, Gabriel, and minimum

spanning trees are planar, whereas the other networks are not. At the same time that

they do no guarantee planarity, the distance and distance-attribute models may also

leave some nodes unconnected. It is unusual for real-world spatial networks to

leave isolated regions, and so it may be that hybrid models where a distance

criterion is applied subject to a connectivity and/or planarity requirement are

more reasonable in some cases. One approach is to start with a network substrate,

such as the minimum spanning tree or Gabriel graph, and add additional edges

according to a distance criterion.

a b c

d e f

Fig. 64.5 Examples of geometric networks as described in the text. The region is 40 units east–

west and 60 north–south, and the point pattern is inhomogeneous Poisson with greater intensity at

the center of the region. Point symbols in (c) are scaled so that if the circles of two points intersect,
they are joined in the network
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64.4.2 Spatial Small Worlds

Small-world networks are so-called after the commonly encountered apparent

contradiction in social networks that while they are locally highly connected

(i.e., they have high clustering coefficients), they also have globally short paths

(i.e., the mean path length is low). It is apparent that this result does not hold for

graphs generated by the E–R model. As noted, E–R graphs become connected when

p ¼ ln n=n when k ’ ln n. For a network with 1; 000 nodes, this gives us

Ch i ¼ p ¼ 0:00691, k ’ 6:91, and dh i ’ 3:57. Increasing n to 106 reduces Ch i to
1:38� 10�5 while dh i only increases to 5:26. Clearly, although E–R networks are

small worlds with short path lengths, they do not have the high local connectivity

that makes this property in social networks surprising.

Watts and Strogatz (1998) presented an alternative network model that is both

highly clustered locally, yet has short mean path lengths. Their approach is to start

with a regular lattice and “rewire” it by breaking links and reconnecting them to other

nodes selected at random from anywhere in the network. They show that only small

numbers of rewiring events are necessary to dramatically reduce the mean path length

in a lattice. Although Watts and Strogatz present their work for one-dimensional

lattices, the basic idea is readily extended to more realistic spatial settings.

In two dimensions, a regular lattice is a grid of nodes with each node connected to

its four nearest neighbors. The expected path length between any two nodes selected

at random scales with n1=2, and, in general in aD-dimensional lattice path lengths will

scale with n1=D. Spatial small-world models, rather than rewire the lattice, typically

introduce additional “shortcut” links with the probability of the shortcuts dependent

on the distance between the vertices they join. The probability that a shortcut eij exists
might be proportional to d�d

ij where d is a parameter chosen in a particular case. As d
is increased while holding constant the overall number of additional links added, the

networks produced by models of this kind transition from random to small-world to

regular lattice properties. This is readily understood in qualitative terms. For low

values of d, any length shortcut is equally likely – in effect, nodes are undifferentiated
from one another – and the network has distance properties similar to a random

network. High values of d heavily penalize the provision of longer shortcuts, leaving
the lattice’s overall n1=D distance-scaling property intact. Many transportation net-

works lie somewhere on this continuum, depending on how we incorporate shortcuts

such as urban orbital highways, high-speed rail links, and airline routes into the more

densely connected local transport network.

64.4.3 Growing Spatial Networks: Preferential Attachment

The examples above apply a connection or rewiring rule to a preexisting set of

nodes. Arguably, a more realistic approach is to grow a spatial network from an

initial individual node, by progressive addition of new nodes and edges, according

to some rules governing how new nodes are attached to existing ones. Once again,

the baseline case is a nonspatial network growth model known as the preferential
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attachment model, attributable to Albert et al. (1999), which has spawned a large

literature on “scale-free” networks (see Caldarelli 2007). The basic idea is that

nodes are added to a network and attach themselves preferentially to those nodes

that already have larger numbers of connections. The resulting networks have

heavy-tailed distributions of vertex degrees meaning that a small number of very

strongly connected nodes dominate the network structure.

Planar networks clearly cannot exhibit such characteristics, and physical con-

straints in most spatial networks prevent an unrestricted preference for attachment

to the most well-connected existing nodes. Preferential attachment models that

consider space, require each new node to have a spatial location, and the probability

of attachment to existing nodes is then a function of both the degree of existing

nodes and the distance between the new node and the existing nodes; this is similar

to the attribute-distance geometric models considered previously, but with progres-

sive addition of nodes rather than an all-at-once calculation. Models of this general

structure often produce the hub-and-spoke structures characteristic of many distri-

bution networks. Again, as with spatial small-world networks, the rate at which the

probability of a connection decays with distance is important in determining overall

characteristics of the resulting networks.

64.4.4 Dual Graphs: New Graphs from Old

An important idea for models of networks is the dual transformation, whereby an

initial graph is transformed to a new graph by switching between nodes and edges

or (in a planar graph) between faces and nodes. The line graph LðGÞ of G is the

graph whose vertices correspond to the edges of G and where two vertices are

joined when their corresponding edges are adjacent. This dual transformation is

shown in Fig. 64.6 and as in the case illustrated results in a denser graph with more

variety in the vertex degree distribution than the original “primal” graph. The line

graph dual transformation is often applied to the more obvious primal network

representation of a system, such as the road intersection and segment network,

because the richer structure provides more opportunities for insight into key

features of the network. Figure 64.6b–d shows a simple example. In a planar

graph, a similar dual transformation entails treating each face of the graph as vertex

in a new graph, and joining those vertices whose faces are adjacent in the original

graph. This is the relationship between the familiar Voronoi tessellation and the

Delaunay triangulation (see Okabe et al. 2000).

64.4.5 Matrix and Adjacency List Representation of Graphs

Before closing the discussion of network analysis measures and models, it is

important to note that even simple analysis of graphs requires careful consideration

of how they are stored for computational purposes. There are two distinct

approaches, which is preferable being largely a function of the graph density.
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An obvious approach, given its close relationship to spatial weights matrices, is

the graph adjacency matrix AðGÞ ¼ aij where aij ¼ 1 if the edge eij exists and 0

otherwise. The row order of A is unimportant, but the row and column ordering

must be the same. The incidence matrix B is an alternative matrix representation

that records the incidence of edges and vertices and is an n� m matrix where

bij ¼ 1 if ej is incident with vi, and 0 otherwise. A useful relationship between the

incidence matrix and adjacency matrix is that

BBT ¼ A� (64.10)

whereA� is the adjacencymatrix, modified such that the elements in the main diagonal

are equal to the degree of the corresponding vertex. Another useful transformation is

that the adjacency matrix AðLÞ of the line graph of G is given by BTB� 2Im where B
is the incidence matrix of G as defined above and Im is the m� m identity matrix.

However, many spatial networks have very low densities. This makes adjacency

matrices an inefficient representation because many 0 entries are stored even

though they record no useful information. Therefore, an adjacency list representa-
tion is often more appropriate and simply consists of a list of all the edges in the

graph. Depending on the implementation details, it may also be necessary for

vertices to be explicitly listed, or for the number of vertices in the graph to be

stored, before the edges are listed. Appropriate modifications of such data structures

can readily accommodate directed or weighted graphs.

Many tools and software platforms used for the analysis of graph data make use

of both matrix and adjacency list representations, and, given the sparseness of many

a

b c d

Fig. 64.6 Different graphs from the same network: (a) the line graph dual transformation, white
squares and gray lines are the original graph and black circles and dashed lines are the line graph;
(b) a primal graph for a road network; (c) line graph from the same road network; and (d) named

road graph from the same road network
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spatial networks, it is important that an efficient sparse matrix implementation

be available. For many analyses, the ability to quickly convert back and forth

between (dense or sparse) matrix and adjacency list representations is necessary

for efficient analysis.

64.5 Properties of Real-World Spatial Networks

Armed with the measures and models introduced above, it is possible to investigate

the properties of real-world spatial networks. This remains an active area of

research in many fields, and we restrict the discussion in this section to pointing

to interesting examples and useful review materials, which enable a rapid

introduction to specific fields.

64.5.1 Road Networks

Road networks are the most immediately obvious network encountered in everyday

life. The primal representation of a road network, where vertices are the road

intersections and edges are the road segments between them, generally exhibits

rather uninteresting structure. Across large areas of a given city, the road network

approximates to a two-dimensional lattice, and the range of vertex degrees is

limited by geometry: it is unusual for road junctions to connect more than five or

six road segments. However, when we range across larger scales, the road hierarchy

in most regions introduces shortcuts in the form of highways with limited

connections to the lattice of local roads. Spatial small-world networks capture

this structure relatively well.

More interesting features of road networks may emerge when the primal repre-

sentation is converted to the line graph dual or when named roads are treated as the
units of analysis (i.e., the vertices in the graph) and intersections between named

roads are the graph edges. Either of these transformations admits greater variety in

the vertex degree distribution, and can enable the topologically most central roads

to be identified, which may be of greater interest than more traditional approaches

in some cases (see Jiang 2006). Perhaps the most interesting work in this area has

been recent efforts to model a variety of urban street networks using rather simple

models based on the preferential attachment principle but taking spatial constraints

into account (Courtat et al. 2011).

64.5.2 Transport Networks

Transport networks cover a wide range of modes other than road-based. Relative to

road networks, the most obvious feature of other modes is their point-to-point or

station-connection structure. These features introduce greater potential for

departures from planarity, particularly when airline networks and shipping routes
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are considered. In analysis of an extensive database of world airline routes, Barrat

et al. (2004) demonstrate that this network has many interesting properties, includ-

ing small-world characteristics, and distinctive scales related to regional and global

service areas. This paper and others focusing on airline networks and the various

findings in this area are well covered in the spatial networks review paper by

Barthélemy (2011, pp. 13–17).

A comprehensive overview of developments in the analysis of all kinds of

transport networks is provided by Rodrigue et al. (2009) where coverage extends

beyond the more structural forms of analysis discussed in this chapter to cover how

transport networks structure the regional and global economy and how they impact

urban mobility and related issues of transport policy and planning. The grounding

of earlier work in real-world histories provides a striking contrast with recent work

in a journal special issue “Evolution of Transportation Network Infrastructure” (see

Levinson 2009) where more exploratory analyses of different network growth

models are highlighted.

64.5.3 Other Spatially Embedded Networks

It is appropriate given its importance in inspiring much of the recent explosion in

work on networks to point to work on the Internet. This is representative of a wide

range of work on infrastructure networks of all kinds. It is easy to forget that the

Internet relies like other networks on physical plant of various kinds and that

considerations such as efficiency of service provision, costs of installation,

and vulnerability to disruption are critical concerns for the Internet backbone

as they are for other infrastructure such as electricity and water supply.

A comprehensive overview of network analysis work on the Internet is provided

by Pastor-Satorras and Vespignani (2004). More geographically grounded perspec-

tives that focus attention on the spatial embedding of Internet infrastructure focus

on how the structure of the Internet relates to local geographical factors and to other

infrastructure networks, often showing that places that are well connected by

airlines, roads, and other systems tend also to be well provided with Internet

connectivity (Malecki 2002). Once again, the interplay between exploratory

analysis of overall structure and more grounded approaches is critical to progress

in understanding in this field.

Finally, we briefly consider spatially embedded social networks, perhaps the

fundamental building block of all the other networks considered. An excellent

overview of how space and social networks may be mutually reinforcing and how

these effects can be modeled is provided by Butts and Acton (2011). They strongly

argue for the benefits of analysis that attends to both network aspects and spatial

aspects. Among the most promising areas for future development in this field are

coevolutionary networks (Gross and Blasius 2008) where network structures and

the attributes of nodes and edges mutually influence one another over time, and the

wide-ranging study of how processes such as disease spread or the diffusion of

ideas occur on networks (see Newman 2010, pp. 627–676).

64 Spatial Network Analysis 1271



64.6 Conclusions

Many, perhaps most, features of the human world can be considered to be

embedded in space and networked to one another at various spatial scales either

(more or less) permanently or in constantly changing ways. This chapter has

deliberately focused on basic concepts and models that are useful for the analysis

of such networks, particularly emphasizing the rapid growth of ideas in the recently

emerged “science of networks.” While much of this material has been developed in

statistical physics and allied fields, it is apparent that the insights yielded by these

approaches build on much earlier work on networks in geography and regional

science, extending it and applying fundamental ideas to larger and more dynamic

networks than before. Even so, claims that work in these areas heralds a new dawn

for the social sciences (see, e.g., Watts 2007) seem overdone. On the contrary, it is

probable that the best and most insightful work will continue to demand the

application of measures, methods, and models from network science reviewed

here, in combination with detailed, well-grounded empirical research on the

development and structure of networks in specific contexts in space and time.
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