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Abstract

This chapter provides a selective survey of the main developments related to

the study of regional convergence. We discuss the methodological issues at stake

and show how a number of techniques applied in cross-country studies have

been adapted to the study of regional convergence. In doing this, we focus on

the two main strands of growth econometrics: the regression approach where
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predictions from formal neoclassical and other growth theories have been tested

using cross-sectional and panel data and the distribution approach, which typi-

cally examines the entire distribution of output per capita across regions. In each

case, we show how the analysis of regions rather than countries emphasizes the

need to take proper account of spatial interaction effects.

16.1 Introduction

Given the persistent disparities in aggregate growth rates between countries and

even within countries, the question whether incomes are converging across regions

has received a lot of attention in the last two decades. From a theoretical point of

view, regional growth modeling has been largely motivated by work done at the

cross-country level, notably by Barro (1991), Barro and Sala-i-Martin (1995), and

Mankiw et al. (1992), who developed empirical models based on the Solow-Swan

economic growth model. These neoclassical models have as a major prediction the

convergence of countries or regions to an equilibrium at which growth settles down

to a constant rate, referred to as the steady state. Set against this are numerous

variants on the basic theory and more radical departures from neoclassical princi-

ples, which allow non-convergent outcomes.

This chapter provides an overview of the main developments related to the study

of regional convergence. We discuss the methodological issues at stake and show

how a number of techniques applied in cross-country studies have been adapted to

the study of regional convergence. In doing this, we focus on the two main strands

of growth econometrics: the regression approach where predictions from formal

neoclassical and other growth theories have been tested using cross-sectional and

panel data and the distribution approach, which examines the entire distribution of

regions. In each case, we show how the analysis of regions rather than countries

emphasizes the need to take proper account of spatial interaction effects.

The chapter is organized as follows. In Sect. 16.2, we present a simple theoretical

framework for two regions describing the neoclassical growth model. Section 16.3

provides a survey on the regression approach based on the concept of b-convergence
and its spatial extensions. Section 16.4 examines the distribution dynamics

approach together with exploratory spatial data analysis techniques. Section 16.5

concludes.

16.2 Growth Regressions: From Theory to Empirics

Consider two regions, each of which is governed by the same production technol-

ogy, although there are differences between the regions, which lead them to

separate parallel growth paths. The production technology can be described as

Yjt ¼ Ka
jtðAtHjtÞb (16.1)
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in which Yjt is the level of output (GDP) in region j at time t, Kjt denotes the level of

capital in region j at time t, At is labor augmenting technology (total factor

productivity), and Hjt is the level of skilled labor. Dividing variables on both

sides by AtHjt, we have output and capital per unit of effective labor:

~yjt ¼ ~kajt (16.2)

where ~yjt ¼ Yjt At= Hjt and ~kjt ¼ Kjt At= Hjt. In writing this, we assume that aþ b ¼ 1,

that is, constant returns to scale, with capital’s share of income equal to a and

augmented labor’s equal to 1 � a, with diminishing returns to capital and aug-

mented labor.

Consider now the dynamics entailed by this model. First, we assume that

technology A grows at the constant rate g and raw labor L grows at the rate n1 in
region 1 and n2 in region 2. For the moment, this is the only difference assumed

between the regions. Second, assume that skilled labor H is determined by the years

of schooling (c) and the rate of return per year of schooling ðfÞ that raw labor

experiences. The product cf determines the rate at which raw labor turns into

skilled labor. Finally, the level of capital K is determined by the investment rate I
and the depreciation rate d of existing capital, with investment equal to a share s of
output Y. We capture the dynamics with the following system:

At ¼ At�1 ð1þ gÞ
Ljt ¼ Ljt�1 ð1þ njÞ
Hjt ¼ Ljt ð1þ fcÞ
Kjt ¼ Ijt�1 ð1� dÞKjt�1

Ijt ¼ sYjt

(16.3)

Figure 16.1 shows the evolution of the system based on some assumptions (for

visual effect rather than realism) about initial values and parameters a, g, n1, n2, cf,
d, and s. We assume that g ¼ 0.025, s ¼ 0.5, A ¼ 110, K ¼ 88.875, L ¼ 20, Y ¼ 90,

c ¼ 9, f ¼ 0.1, a¼ 0.333, d ¼ 0.025, n1 ¼ 0.01, and n2 ¼ 0.1. While both regions

start from the same position, they move onto different steady-state paths of growth

in output per worker as a result of their differing labor force growth rates.

Convergence to equilibrium is determined by the fundamental assumption of the

neoclassical growth model that there are diminishing returns. To show this, con-

sider the derivative of output per unit of effective labor with respect to capital per

unit of effective labor:

@~yjt

@ ~kjt
¼ a~ka�1

jt > 0; lim
~k!0

@~yjt

@ ~kjt

" #
¼ 1; lim

~k!1

@~yjt

@ ~kjt

" #
¼ 0

@2~yjt

@ ~k2jt
¼ ða� 1Þa~ka�2

jt < 0

(16.4)
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The first derivative is positive but goes to 0 as ~kjt ! 1, indicating that although

the marginal product of capital is positive, capital deepening in the form of

additional amounts of capital produces a diminishing rate of return (these are the

Inada conditions).

The steady state to which the economy evolves is determined by the fact that

although increasing income produces increasing investment, as shown by Ijt ¼ sYjt,
there is a simultaneously occurring increase over time in aggregate depreciation,

the most obvious component of which is due to capital depreciation, but

which also depends on the growth in the effective number of workers.

Moreover, while depreciation per effective worker is linear in capital per effective

worker, investment is nonlinear, reflecting the diminishing marginal product of

capital. This is shown in Fig. 16.2, which is the outcomes if we run our model

and plot investment sYjt= AtHjt

� �
(solid line) and depreciation per effective

worker nj þ gþ d
� �

Kjt= AtHjt

� �
(dotted line) against capital per effective worker

Kjt= AtHjt

� �
using the data for region j ¼ 1. Figure 16.2 shows that at low levels of

capital per effective worker, investment is at a higher level than “depreciation.”

However, with diminishing returns, the gap between the investment and deprecia-

tion schedule narrows progressively to the point where all savings are absorbed

offsetting the effects of depreciation and effective labor force growth. Beyond

this point, although additional income would generate additional savings and

investment, the curvilinear savings schedule is now below the linear depreciation

schedule, and the change in capital per effective worker becomes negative, and so

the system moves back in the direction of falling income toward the equilibrium

point. Thus, we have a stable equilibrium at which investment is just sufficient to

balance the effects of depreciation and effective labor force growth and maintain

the level of capital per effective worker.
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Figure 16.3 plots the same data but with income per effective worker Yjt= AtHjt

� �
as the horizontal axis. Thus, using the data for region 1, this identifies the stable

equilibrium point for income per effective worker as 2.86. Figure 16.4 is the

equivalent data for the second region. Here, we see the effect of faster labor

force growth, which produces a lower equilibrium point at about 1.81.

Figure 16.5 plots the two components of the right-hand side of the equation

showing how capital per effective worker evolves, which is equal to

_~kt ¼ s~yt � ðnþ d þ gÞ~kt (16.5)
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where
_~kt is the derivative of ~kt with respect to time. From this, it is possible to obtain

the equilibrium point equal to
_~kt ¼ 0, so that as we have shown graphically

s~yt ¼ ðnþ d þ gÞ~kt. Figure 16.5 shows the evolution of
_~kt identifying our two

equilibrium income per effective worker points at which
_~kt ¼ 0 for our two regions.

It follows that at equilibrium

s~y�j ¼ ðnj þ d þ gÞ~k�j (16.6)
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Hence,

s~k�aj ¼ ðnj þ d þ gÞ~k�j

~k�j ¼
s

nj þ d þ g

� � 1
1�a (16.7)

and the equilibrium output per effective worker is

~y�j ¼ ~k�aj ¼ s

nj þ d þ g

� � a
1�a

(16.8)

This means that equilibrium output is

Y�
jt ¼

s

nj þ d þ g

� � a
1�a

AtHjt (16.9)

and equilibrium output per worker is

Y�
jt

Ljt
¼ s

nj þ d þ g

� � a
1�a AtHjt

Ljt
(16.10)

Hence we have

ln y�jt ¼ lnAt þ a
1� a

ln s� a
1� a

ln nj þ d þ g
� �þ ln

Hjt

Hjt

� �
(16.11)

Equation (16.11) provides the equilibrium level of output per worker as traced by

the broken lines of Fig. 16.1 for our two regions. It shows a steady growth, at rate g, but
with different levels at any one point in time on account of the different labor force

growth rates. In terms of output per unit of effective labor, we have seen fromFig. 16.5

and earlier that this converges to a constant 2.86 for region 1 and 1.81 for region 2.

Following Eq. (16.10), the evolution toward this steady state is given by the constant

ln
Y�
jt

AtHjt

� �
¼ a

1� a
ln s

a
1� a

ln nj þ d þ g
� �

(16.12)

This is illustrated by Fig. 16.6.

We have given a highly stylized account of the determinants of regional growth,

with regional differences existing purely as a consequence of differences in the rate

of growth of labor. Thus, we have assumed that depreciation, returns to scale, the

rate of technical progress, initial levels of technology, skilled labor, capital, and

the savings rate are equal across our regions. Nevertheless, we see that this simple
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difference has consequences for the equilibria to which each region converges and

the rate of convergence.

There is much interest in estimating convergence rates. As a result of linearizing

the steady-state dynamics using a Taylor series expansion, we find that, approxi-

mately, the growth of output per effective worker is given by the gap between log

level of output per effective worker and the log equilibrium level, thus

@ lnð~yjtÞ
@t

¼ �ð1� aÞðnj þ d þ gÞðlnð~yjtÞ � lnð~y�jtÞÞ (16.13)

where the rate of convergence is bj ¼ 1� að Þ nj þ d þ g
� �

. Note that for the

parameters values in our example, b1 ¼ 0.04 and b2 ¼ 0.1, which compares with

b¼ 0.02 (the so-called 2 percent rule) suggested by Barro and Sala-i-Martin (1995)

which has in fact been observed in many growth studies. Integrating and writing in

per worker terms, we obtain

1

T
ln

Yjt
Ljt

� �
¼ k � 1

T
e�bjT ln

Yjt�T

Ljt�T

� �
(16.14)

With large bjT the left-hand side is equal to k, which is proportional to the

equilibrium level of output per worker.

One interesting prediction from the neoclassical growth model is the phenom-

enon of “catching up.” Consider two regions starting from different levels of output

per worker. If we keep the equilibrium growth path for each the same for simplicity,

then we find that there is faster growth in the initially poorer region. However, the

prediction is more complex when both starting level and equilibrium path are

different, as is more likely in the real world, as a result, for example, of a lower

level of capital endowment and faster labor force growth rate. In our simulation,
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the initially poorer country experiences a short-lived spurt of possibly faster growth

at the outset, but over the longer term, we see growth moving sooner onto the

equilibrium growth path entailing a lower equilibrium level of output per worker

(obtained by setting K ¼ 1 and n2 ¼ 0.4). Figure 16.7 illustrates this outcome.

It should be noted that in the neoclassical growth model described above, there is

no explicitly modeled spatial interaction between the regions, although the common

growth rate of technology g may be interpreted as implying perfect diffusion of

technological change across the regions. The model also assumes that the invest-

ment share of output is fixed over time. Once regional differences in investment

behavior, innovation diffusion, and interregional migration are taken into account,

the extent of catching up will strongly depend on the strength of these types of

spatial interaction (see Nijkamp and Poot 1998).

16.3 Estimating the Rate of Convergence

In this section, we review the main econometric issues associated with the estima-

tion of the rate of convergence.

The debate on convergence has given rise to numerous empirical studies with

often contradictory results due, partially, because various conceptions of conver-

gence were tested and because various methodological approaches and procedures

of tests have been used (cross section, panel data, temporal series, etc.). The first

developments concern the idea of convergence-catching up, which is associated

with the concept of b-convergence. This is based on the relationship between initial
output and subsequent growth.

There are however two main approaches allowing the test of this hypothesis:

absolute b-convergence and conditional b-convergence. Take again Eq. (16.11),

which gives the equilibrium output per worker. This level depends upon several
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parameters y ¼ g; n; c;f; d; s; að Þ If all elements of y are similar for all regions,

which then only differ by their initial effective per worker capital, then there is

absolute b-convergence. If some elements of y differ between regions, as was the

case in our simulations, then there is conditional b-convergence.

16.3.1 Unconditional and Conditional b-Convergence

Consider first the simplifying case where all regions are structurally identical and

have access to the same technology. They differ only by their initial conditions. In

this case, they converge toward the same steady state and have the same growth rate

at steady state. It is only in this case that poor regions grow faster than rich ones and

eventually catch them up in the long run.

When cross-sectional data are available for two periods, initial period 0 and final

period T, then Barro and Sala-i-Martin (1995) show that the hypothesis of this

assumption of unconditional b-convergence is usually tested using the following

model:

1

T
ln

yiT
yi0

� �
¼ aþ b lnðyi0Þ þ ui ui ! iidð0; s2uÞ (16.15)

where i ¼ 1,. . .N, N is the number of regions in the sample; YiT is the per capita

output (measured, for instance, by income or per capita GDP) for region i at time t,
t ¼ 0 or T; 1=Tð Þ: log yiT=yi0ð Þ is the average growth rate of per capita output

between the two dates; and a and b are the unknown parameters to be estimated.

There is unconditional b-convergence if b is negative and significant. The rate of

convergence between regions can then be estimated as g ¼ � ln 1þ Tbð Þ=T.
Consider now the case of regions with different steady states. Then, as we

showed before, the growth rate of a region is positively related to the distance

that separates it from its own steady state. This is the concept of conditional

b-convergence. In order to test for this assumption, it is necessary to hold constant

the steady states specific to each region. This may done by adding in Eq. (16.15)

explanatory variables that control the heterogeneity of the long-term path:

1

T
ln

yiT
yi0

� �
¼ aþ b lnðyi0Þ þ gXi þ ui ui ! iidð0; s2uÞ (16.16)

Where Xi is the vector of variables adjusting for the steady state of region i. As
before, there is conditional b-convergence if b is negative and significant. The

additional variables can be divided in two groups. On the one hand, state variables

in accordance with the Solow-Swan model or some version of it must be intro-

duced. As in Eq. (16.11), these are physical capital, human capital, and population

growth rate. On the other hand, empirical studies often include numerous control

variables, the expected effects of which correspond to their influence on the

position of the steady state. For instance, Durlauf et al. (2005) identify 145 potential

300 J. Le Gallo and B. Fingleton



growth determinants. This concept of convergence is compatible with a high degree

of inequality if the regional steady states are very different. The question then is

why the steady states of some regions remain so low.

16.3.2 Space and Growth

While lots of papers analyzing convergence at subnational scales initially employed

techniques used in cross-country analysis, there is recognition that countries and

regions are not interchangeable. Indeed, regions usually display a greater deal of

openness, and various forms of regional interdependencies exist. Consequently,

a vast strand of the regional science literature has made use of spatial econometric

techniques and specifications to analyze regional convergence. We briefly review

here some of the main issues at stake.

One major issue associated with the spatial dimension of the data is spatial

autocorrelation in the error terms. Indeed, in the cross-sectional context, units are

spatially organized and the iid assumption usually imposed in convergence speci-

fications is overly restrictive. Various specifications are appropriate to control for

spatial dependence; we present here the most commonly used. Consider Eq. (16.16)

in matrix form such as y ¼ Xgþ u where y is a vector containing the observations

of average regional growth rates and X is the matrix containing the observations on

all explanatory variables: constant term, initial income, and all the other control

variables – and u is the vector of error terms.

In the spatial lag model, a spatially lagged variableWy is added as an additional

explanatory variable:

y ¼ rWyþ Xgþ u (16.17)

whereW is the spatial weight matrix and r is the spatial autoregressive parameter. The

error term u is iid. The spatial lagWy is always endogenous so that this specification
should be estimated using maximum likelihood or instrumental variables. Particular

attention should be given to the interpretation of the coefficients in this model as they

only include the direct marginal effects of an increase in the associated explanatory

variables, excluding all indirect induced effects (LeSage and Pace 2009 and

▶Chap. 77, “Interpreting Spatial Econometric Models” in this handbook).

The spatial error model is a special case of a nonspherical error covariance

matrix in which the spatial error process is based on a parametric relation between

a location and its neighbors. In the spatial autoregressive specification, the error

vector u takes the form

u ¼ lWuþ e (16.18)

where e is iid and l is the spatial autoregressive parameter. Conversely, the moving

average specification can be expressed as

u ¼ gWeþ e (16.19)
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Both models can be estimated using maximum likelihood or generalized method

of moments. The two specifications differ in the terms of the range of spatial

dependence in the variance-covariance matrix and of the diffusion process they

imply. In particular, in the first case, the spillovers are global: a random shock in

one observation impacts upon the income of all the regions in the sample. In the

second case, the spillovers remain local: a shock in location i only affects the

regions directly interacting with i, that is, the regions j for which wij 6¼ 0.

In the convergence context, both models have been extensively used to capture

regional interdependence (Rey and Le Gallo 2009). Interestingly, some cross-country

studies also acknowledge the need of taking spatial dependence into account and

hence use spatial econometric techniques. Models incorporating spatial lags of the

dependent and independent variables (spatial Durbin model) or higher-order spatial

models have also been suggested (for a recent review, see Fischer and Wang 2011).

As the spatial Durbin model encompasses the spatial lag and the spatial error model,

it can be used as a basis for specification search (see ▶Chap. 27, “Classical

Contributions: Von Th€unen, Weber, Christaller, L€osch” in this handbook for more

details on specification search in cross-sectional spatial models).

Finally, note that a recent trend of the literature consists in providing sound

theoretical foundations for the inclusion of spatial dependence in b-convergence
models. For instance, Ertur and Koch (2007) show how a spatial Durbin model

version of the b-convergence model can be obtained from a theoretical growth

model with Arrow-Romer externalities and spatial externalities that imply inter-

economy technology interdependence. Likewise Fingleton and Lopez-Bazo (2006)

introduce substantive spatial externalities in the neoclassical convergence equation

and show how this leads to a different steady-state level of output per unit of

effective labor than would otherwise occur.

16.3.3 Econometric Issues

Although the conditional b-convergence approach has given rise to hundreds of

studies, it has also been widely criticized.

16.3.3.1 Endogeneity of Explanatory Variables
In a regression setup, error terms are often correlated with the explanatory vari-

ables, leading to endogeneity and inconsistent estimates. In b-convergence models,

there are numerous sources of endogeneity.

The first source of correlation between errors and some explanatory variables is

simultaneity: some explanatory variables are not exogenous, they are determined

simultaneously with growth rates, and thus they may affect growth but also depend

on growth. For instance, given the Solow-Swan framework, state variables such as

investment, initial per capita GDP, or human capital are equilibrium outcomes, as

are regional growth rates. More generally, the causality versus the correlation issue

is a prevalent one in growth econometrics. On the one hand, this implies biased

estimation. On the other hand, this calls into question the interpretation of regres-

sion results and the extent to which these variables affect the steady-state levels.
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Finding appropriate instruments, that is, variables that are correlated with the

endogenous explanatory variables but uncorrelated with, or orthogonal to, the

error terms, is a difficult task. Indeed, appropriate instrumental variables are rarely

available. Since growth can be explained by numerous determinants, it is difficult to

identify instruments that are correlated with the endogenous variables and yet can

legitimately be eliminated from the regression. Moreover, as the effect of some

variables on growth may be delayed, using lagged explanatory variables as their

exogenous instruments is not optimal either.

The second source of correlation between errors and explanatory variables is

measurement errors or errors in variables. This is of particular concern in growth

regressions. Indeed, many countries build databases in which the accuracy of the

variables is undoubtedly measured with error, and also in many cases, pragmatic

decisions have to be made to use a variable that is only a proxy of a true variable.

When the initial per capita GDP is mismeasured, the attenuation bias tends to bias

the estimates of b in favor of the b-convergence hypothesis. For instance, Temple

(1998) argues that the famous result of conditional convergence of economies at

a rate of 2 % per year could be entirely due to measurement error.

Correcting for this is not an easy task and is further complicated in the presence

of spatial error autocorrelation. Indeed, Le Gallo and Fingleton (2012), using Monte

Carlo simulations, show that OLS and instrumental variable estimation, which do

not take into account spatial error autocorrelation, outperforms GMM-based and

ML estimation. These results would indicate that measurement error plus

a disturbance process involving spatial dependence is best accommodated by an

estimation method that ignores spatial dependence. Clearly, the interaction between

spatial autocorrelation and measurement errors, which are both easy to find

in b-convergence models, should be further investigated.

The third source of correlation between errors and explanatory variables is

omitted variables. In practice, it is unlikely that researchers are able to find all the

variables controlling for the differences in steady states between regions. Hence,

the error term in conditional b-convergence models will probably contain a number

of omitted variables correlated with the included regressors, though if in the

unlikely event they are orthogonal to the included regressors, then there is no

problem. Trying to solve this by increasing the number of explanatory variables

typically runs into the problem of simultaneity and possibly multicollinearity. Note

that LeSage and Fischer (2008) have shown that the existence of omitted explan-

atory variables exhibiting nonzero covariance with variables included in the model

yields a data-generating process for a growth regression that includes both an

endogenous spatial lag and exogenous spatial lags (spatial Durbin growth model).

16.3.3.2 Robustness of Explanatory Variables
This critique relates to the choice of control variables and is linked to the lack of

robustness of conditional b-convergence regression models. Indeed, the finding of

conditional b-convergence and the subsequent estimation of the convergence rate is

dependent upon a specific choice for the set of control variables. The lack of

consensus about the most important growth determinants amplifies this problem:
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if most regressors included in the empirical analysis are found to be statistically

significant in some specification, it means that there are as many growth theories as

the number of significant regressors and that it is impossible to distinguish between

them. This is referred to as the problem of observational equivalence of competing

theories, which is common in macroeconomic analysis generally.

Confronted by the variety of explanatory variables available for use in these

regressions, Levine and Revelt (1992) employ extreme bound analysis, which

consists of estimating the upper and the lower extreme bounds of a coefficient of

a variable of interest across a range of different model specifications. The variable

is considered to be robust if the coefficients at these extreme bounds are significant

and if they maintain their signs and statistical significance across a diverse range of

other included variables. Using this approach, they show that most variables tested

turn out to be insignificant given additional control variables.

This approach has been criticized as being excessively conservative. More

recently, the use of model averaging and Bayesian model averaging has been

advocated in order to guide in the choice of control variables (Fernandez et al.

2001; Sala-i-Martin et al. 2004). In a spatial context, an additional source of

uncertainty pertains to the choice of the spatial weights matrix. A Bayesian

model averaging approach for selecting appropriate explanatory variables together

with an appropriate spatial weights matrix has been suggested by LeSage and

Fischer (2008). An alternative is to explain the variation in results by means of

meta-analysis (Abreu et al. 2005).

16.3.4 Panel Estimation

If unmodeled region-specific unobserved effects on output levels are present, this

implies a link between the error terms and initial output per capita. In order to

correct for this, a number of researchers advocate convergence analysis via the use

of panel data (Islam 1995). We have a choice as to how we model the individual

effects: fixed effects, essentially dummy variables, one per region, or random

effects, in which the individual-specific (region) effect is captured as a random

variable. The setup of fixed effects models follows on naturally from the pure cross-

sectional growth models considered thus far, typically having the form

ln yit ¼ gt þ a lnðyit�tÞ þ X0
itbþ ai þ uit t ¼ 2; . . . ; T

uit ! iidð0; s2uÞ
(16.20)

which can be written as a growth equation as follows:

D ln yit ¼ gt þ ða� 1Þ lnðyit�tÞ þ X0
itbþ ai þ uit t ¼ 2; . . . ; T

D ln yit ¼ ln yit � ln yit�t

uit ! iidð0; s2uÞ
(16.21)
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where growth D ln yit is measured between period t and some previous period t� t
(usually t � 5 years to avoid business cycle effects). In this approach, all the

unobserved time-invariant regional heterogeneity is captured by individual-specific

effects, denoted by ai. Following Eq. (16.11), the matrix X includes other possibly

time-varying factors affecting growth. In addition, growth depends on the start-

of-period level lnðyit�tÞ, so the estimate of the coefficient a gives the rate of

convergence. The term gt represents time (dummy variable) effects that are constant

across locations.

The presence of the lagged dependent variable together with the time-invariant

effect ai in Eq. (16.20) renders OLS inconsistent even when the transient distur-

bances uit are not serially correlated. The most obvious way to fix this is to first

difference the data, so that the individual-specific (fixed or random) effects are

eliminated. Thus, our differenced specification is

D ln yit ¼ Dgt þ aD lnðyit�tÞ þ DX0
itbþ Duit t ¼ 3; . . . ; T (16.22)

While the convergence parameter a is identified in Eq. (16.20), eliminating the

time-invariant individual-specific effects does not solve the problem of inconsistent

and biased parameter estimation via OLS because the lagged dependent variable is

correlated with uit, and there is also potential endogeneity of other regressors

(including measurement error), omitted variables and spatial dependence. Rather,

the reason to first difference is to create instruments that are not correlated with the

individual effects.

With regard to spatial dependence, this can exist as a result of direct

autoregressive interaction across space of the dependent variable, as a consequence

of a spatial error process, or both. A good, comprehensive summary for static

spatial panel models is provided in Chap. 12 of Pirotte (2011). If we add

a spatially lagged dependent variable to the difference equation we obtain:

D ln yit ¼ Dgt þ aD lnðyit�tÞ þ rDWN ln yit þ DX0
itbþ Duit (16.23)

The variable DWN ln yit is also endogenous, as in the pure cross-section case.

While difference-GMM estimation may appear to be appropriate, by using lagged

levels of variables as instruments, it does typically create a weak instrument

problem. One estimator that can potentially deal with these problems is the system

GMM estimator (Arellano and Bond 1991; Bond et al. 2001); this estimates

Eq. (16.23) combining both the difference equation and the corresponding levels

equation, with lagged first differences as instruments for the levels equation, and

lagged levels for the equation in first differences. One should however use this

cautiously because, using all available lags of variables as instruments, this esti-

mator in particular presents significant practical problems relating to overfitting and

thus failure to purge endogeneity. The solution seems to restrict the number of lags

employed as internally generated instruments so as to clearly satisfy the relevant

diagnostics, but one may still have use external instruments in order to obtain the
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necessary instrument orthogonality for consistent estimation. For the additional

moments conditions associated with the levels equation to be orthogonal, it is

sufficient for the variables to be mean stationary, having controlled for common

time effects gt.
The other form of spatial dependence in panel models involves the disturbances.

Pirotte (2011) classifies static spatial panel models according to whether the spatial

disturbance process is autoregressive (SAR), or a moving average process (SMA),

and whether the individual effects are considered to be fixed (deterministic or FE),

or random effects (RE). If the random individual effects are not spatially

autocorrelated, but the transient component of the compound error is, then he refers

to the model as RE-SAR or RE-SMA. If the spatial error process applies in the same

way to both transient and individual error components, so that the spatial process is

at the level of the compound errors and not its individual components, then this is

referred to as SAR-RE or SMA-RE, according to whether we are considering an

autoregressive or moving average specification. If however the individual effects

are fixed, and spatial effects are restricted to the transient errors, then the model is

referred to as FE-SAR or FE-SMA according to whether we have an autoregressive

or moving average process.

Accordingly, introducing the RE-SAR (or the FE-SAR) specification to our

levels model gives

ln yit ¼ gt þ a lnðyit�tÞ þ X0
itbþ ai þ uit

uit ¼ lMNuit þ xit
(16.24)

where MN is an (N � N) matrix specific to time t, where N is the number of regions

(and thereforeMN has similar properties toWN) and ai are random (or fixed) effects.

The two forms of interactions can also be combined and one might even extend the

spatial dependence in the error to include both the transient errors and the individual

effects to give the spatial autoregressive equivalent of SAR-RE:

ln yit ¼ gt þ a lnðyit�tÞ þ rWN ln yit þ X0
itbþ cit

cit ¼ ai þ uit

cit ¼ lMNcit þ xit
xit � iidð0; s2xÞ

(16.25)

Alternatively, the equivalent of SMA-RE entails the moving average error

process involving both individual and transient errors (Fingleton 2008) with

cit ¼ lMNxit þ xit.
With spatially dependent (moving average or autoregressive) errors combined

with an endogenous spatially autoregressive spatial lag, the GMM approach typi-

cally has several stages, first one uses instrumental variables, assuming no spatial

error process, to obtain consistent estimates of the residuals. These then become the

basis for GMM estimates of the error process parameters. Finally, the data are
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purged of the error dependence and consistent estimates obtained via instrumental

variables in the final stage. Overall, with these more complex models, it is evident

that methods based on GMM are the most versatile because they can handle

multiple endogeneity and are robust to alternative error distributions, issues that

are problematic under maximum likelihood.

16.3.5 Multiple Regimes and Convergence Clubs

As we have shown above, b < 0 is consistent with the assumptions of the neoclas-

sical growth model. However, this condition is also potentially consistent with

economic alternatives, such as endogenous growth models or models with poverty

traps. For instance, Azariadis and Drazen (1990) develop an endogenous growth

model characterized by the possibility of multiple, locally stable steady-state

equilibria. Which of these different equilibria a region will be converging to

depends on the range to which its initial conditions belong? In other words there

are convergence clubs, that is, groups of economies whose initial conditions are

near enough to make group members converge toward the same long-term equilib-

rium. From an empirical point of view, the existence of convergence clubs can be

inferred from the fact that while absolute b-convergence is frequently rejected for

large samples of countries and regions, it is usually accepted for more restricted

samples of economies belonging to the same geographical area.

While the Arariadis-Drazen model does not exhibit convergence since different

initial conditions lead to different steady states, Bernard and Durlauf (1996) show

that the data generated by this model will not necessarily lead to the finding that

b � 0. Therefore, tests for b-convergence have low power against the alternative

hypothesis of multiple steady states. The problem is then to distinguish evidence of

club convergence from that of conditional convergence.

From an econometric point of view, the existence of multiple equilibria is

characterized by parameter heterogeneity in convergence regressions. A vast

range of techniques has been used in order to detect convergence clubs. Some use

a priori criteria to define club members, such as belonging to the same geographical

zone or having similar initial incomes. Durlauf and Johnson (1995) use regression

trees (CART algorithm) where initial income and literacy rates are used to detect

the convergence clubs. In the context of regional data, a number of authors have

made use of exploratory spatial data analysis (ESDA) to detect spatial regimes in

the data. In particular, Moran scatter plots and Getis-Ord statistics facilitate the

detection of spatial clusters of high values of regional incomes and spatial clusters

of low values of regional incomes. The hypothesis of b-convergence is then tested

on each group (see, for instance, Ertur et al. 2006).

At the extreme, rather than partitioning the sample into regimes based on some

structural characteristics, parameter heterogeneity might also be region

specific. For instance, in Eq. (16.15), region-specific parameters ai and bi must be

estimated. While varying coefficient models might be used for that purpose (see

▶Chap. 73, “Geographically Weighted Regression” in this handbook for
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a presentation of these models), we note that for regional samples, similarities in

legal and social institutions, as well as culture and language, might create spatially

local uniformity in economic structures. This leads to situations where convergence

rates are similar for regions located nearby in space. In order to capture this

combination of parameter heterogeneity and local similarity, spatial autoregressive

local estimation (SALE) model has been suggested by Pace and LeSage (2004).

16.4 Sigma-Convergence and Distribution Approach to
Convergence

We now turn to alternative concepts of convergence that have been used in the

literature on regional growth.

16.4.1 s-Convergence

In this approach, convergence is linked to the study of the dynamic evolution of

some indicator of dispersion of output per capita between regions. The focus is then

on whether this indicator increases or decreases over time. Two indicators of cross-

sectional dispersion are commonly used: the standard deviation of log income or the

coefficient of variation coefficient of this distribution.

Specifically, the test of s-convergence consists of comparing an indicator of

dispersion, computed at the end of the period, to the value of this indicator

computed at the beginning of the period. There is s-convergence if this indicator

decreases over time. Formal tests using regression specifications have also been

suggested by Carre and Klomp (1997) and Egger and Pfaffermayr (2009).

It is possible to show that b-convergence is a necessary but not a sufficient

condition to s-convergence. The point of departure is the absolute b-convergence
equation where the dependent variable is the cumulated growth rate:

lnðyiT=yi0Þ ¼ aþ b lnðyi0Þ þ ui (16.26)

This equation is rewritten as

lnðyiTÞ ¼ aþ ð1þ bÞ lnðyi0Þ þ ui (16.27)

By taking the variance of each term in this equation, we have

V lnðyiTÞ½ � ¼ ð1þ bÞ2V lnðyi0Þ½ � þ VðuiÞ, from which it is easy to show that

VR ¼ V lnðyiTÞ½ �
V lnðyi0Þ½ � ¼

ð1þ bÞ2
R2

(16.28)

where R2 is the multiple correlation coefficient associated with Eq. (16.27).
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From this, it is evident that b-convergence (b < 0) is a necessary but not

a sufficient condition for s-convergence (VR < 1). In fact, the final result depends

upon two opposite effects. The first is the existence of b-convergence implying

mean reversion. The second is linked to the existence of specific shocks to which

the regions are submitted and that permanently generate per capita output disper-

sion. s-convergence is the result of these two mechanisms and exists if the

beneficial effects of mean reversion dominate the negative effects of perturbations

affecting the regions.

This concept has been subject to a number of criticisms, the first of which

obviously concerns the dependence of s-convergence on the initial date. Second,

it only focuses on the second moment of the distribution and is not informative

about other moments that may be of interest, such as skewness or kurtosis. Third,

interpreting measures of dispersion is not straightforward when distributions are not

unimodal, and it is often the case that we encounter multimodality and twin-

peakedness in practice. Fourth, it is subject to a spatial identification problem.

Indeed, given a map of N incomes with a sample variance s2 then there are N!
spatial permutations on the map that would have the same sample variance.

Finally, Quah (1993) forcefully argues that it does not provide meaningful

information about income dynamics nor about the mobility of regions within

a distribution. For instance, if two regions exchange their relative position between

the initial and final date while the gap between the two remains unchanged, then the

standard error of this distribution is constant over the period even if the situation of

the two regions has changed radically.

16.4.2 Studying the Evolution of the Cross-Sectional Distributions

In the light of these criticisms, Quah (1993, 1996) argues that the cross-sectional

distributions of income should be considered in their entirety rather than just

computing one synthetic indicator such as dispersion. Indeed, with regard to

s-convergence, it tells us nothing about distribution dynamics. Rather, the evalu-

ation of distribution dynamics can be accomplished on the basis of two criteria: the

study of the evolution of income level distributions and analysis of the position of

the regions or groups of regions within distributions.

Concerning the first point, the method consists of comparing the cross-sectional

distributions of regional income at different points in time and evaluating the

degree to which the location and shape of these distributions changes.

One possibility is to estimate, using nonparametric smoothing methods, such as

kernel estimates, the density function of income for the sample, and examining the

changes in the form of this density. For instance, Fig. 16.8 represents two possible

ways in which the distribution might evolve over time, each representing two types of

convergence. If, given the initial distribution, the regions in the sample evolve toward

a tighter distribution, then there is global convergence of all regions toward the same

level of income. On the contrary, if the distribution becomes bimodal or multimodal,

then the regions converge toward different levels, which is symptomatic of different
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convergence clubs. In order to go beyond simple visual impression, tests for

multimodality can also be undertaken (Henderson et al. 2008).

It is also possible to estimate cross-sectional distribution densities using mixture

models, which are weighted sums of component distributions. In this case, one can

say that convergence occurs when the distributions are better approximated over

time by a small number of components, while multiple components are an indica-

tion of multiple regional steady states. The number of components can be evaluated

using a bootstrap LR test.

Concerning the second point on the position of the regions or groups of regions

within the distributions, we observe that shape dynamics does not directly address

this issue. Nonetheless, it may be of interest to study whether, for a given time

period, the regions have changed their relative position in the income distribution,

that is, which regions move up and down in this distribution.

One method that allows detection of the movements of the regions from one

period to another consists of estimating transition matrices or Markov chains. These

are constructed using a discretization of the distribution of income into several classes

(using for instance quartiles or quintiles of the distribution). Transition matrices allow

one to estimate the probabilities of passage from one income class to another, or of

remaining in the same income class, over time. If the probabilities of passage from

one class to another are high, then mobility is high. If the probability of staying in the

same class is high, then mobility is low. By extension, it is possible to detect whether

the level of income is tending toward homogeneity or, on the contrary, if distinct

groupings of regions with different incomes are emerging and being maintained over

time. Formal mobility indices may also be computed, while the ergodic distribution,

Global convergence

Initial distribution

Convergence clubs

Fig. 16.8 Density functions for three different convergence issues
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that is the long-term distribution, allows one to see the type of convergence mech-

anism that is at work. Concentration of the frequencies in the median class would

imply convergence to the mean, while concentration of the frequencies in several of

the classes, that is, a multimodal limit distribution, may be interpreted as a tendency

toward stratification into different convergence clubs.

In order to operationalize this, some strong assumptions are usually made, such

as stationarity of transition probabilities and a first-order process. Formally, denote

Ft as the cross-sectional distribution of income at time t relative to the sample

average. A set of K different GDP classes is defined. If the frequency of the

distribution follows a first-order stationary Markov process, then the (K� 1) vector

Ft, indicating the frequency of the regions in each class at time t, is described by the
following equation:

Ftþ1 ¼ MFt (16.29)

where M is the (K � K) transition probability matrix representing the transition

between the two distributions. If the transition probabilities are stationary, that is, if

the probabilities between two classes are time invariant, then

Ftþs ¼ MsFt (16.30)

The ergodic distribution of Ft is approached as s tends toward infinity in

Eq. (16.30). Such a distribution exists if the Markov chain is regular, that is, if
and only if for some N, MN has no zero entries. In this case, the transition

probability matrix converges to a limiting matrix M* of rank 1. The existence of

an ergodic distribution, F* is then characterized by

F�M ¼ F� (16.31)

Each row of Mt tends to the limit distribution as t ! 1. According to

Eq. (16.31), this limit distribution is therefore given by the eigenvector associated

with the unit eigenvalue of M. The estimation of the transition matrix is based on

maximum likelihood estimation.

As indicated, strong assumptions must usually be made to estimate such transi-

tion matrices. Moreover, the results are sensitive to the number and size of the

groups of observations used to discretize the data. In fact, discretization of the state

space may significantly alter the probabilistic properties of the data.

To overcome this problem of sensitivity of the results to the discretization,

stochastic kernels have been suggested. They are the continuous counterpart

of transition probability matrices. Formally, if fXðtÞ is the regional income density

for n regions in period t, then the evolution of the cross-sectional distribution is

modeled as

fXðtþsÞ ¼
ð1
�1

Mt;s fXðtÞdx (16.32)
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where Mt;s is the stochastic kernel representing where points in fXðtÞ move to in

fXðtþsÞ. The estimation of this kernel may be based on an estimate of the conditional

distribution. In order to explore the transitional dynamics provided by this

approach, three-dimensional representations and two-dimensional contour plots

are used. For example, polarization or convergence clubs in the per capita GDP

distribution are reflected in peaks in the 3D kernel or by concentrated values in the

contour plot. Fischer and Stumpner (2008) introduce three-dimensional stacked

conditional density plots and highest density regions plot for the visualization of the

transition function.

16.4.3 Distribution Dynamics and Space

As in the confirmatory econometric analysis of growth and convergence, the spatial

dimension of the data invalidates some of the restrictive assumptions regarding

random sampling on which s-convergence and distribution dynamics rest. We

briefly consider in this section how this impacts on the measures of convergence

and distribution dynamics. First, we note that the concepts of convergence that

have been developed in the preceding sections must be adjusted to take into account

spatial autocorrelation in the data. Secondly, we observe that much work has been

done in exploratory spatial data analysis (ESDA) and Exploratory Space-Time Data

Analysis (ESTDA), and their application to convergence and growth analysis has

led to interesting new insights.

Regarding the first point, consider the s-convergence measure presented earlier.

We have already pointed out that it is uninformative with regard to the morphology of

the distribution and the degree of intradistributional mobility. Moreover, in a spatial

context, the presence of spatial dependence complicates the interpretation of, and

inference based on, this concept. For instance, Rey and Dev (2006) show that the

sample variance also reflects the level and structure of spatial dependence in the data.

This should be purged in order to correctly interpret this concept of convergence.

Similarly, spatial autocorrelation has been incorporated into measures of

intradistributional dynamics. In the case of discrete Markov chains, Rey (2001)

extends the approach by estimating transition matrices subject to the spatial lag of

the income values for each region. This allows one to analyze how the spatial

environment affects the transition probabilities of a region through the income

distribution. It is usually found that the probabilities of a given region staying in the

same class or of moving up one class are ameliorated when the region is surrounded

by other wealthy regions.

Spatial autocorrelation must also be considered when analyzing the shapes of per

capita GDP distributions and when estimating stochastic kernels. This is done using

regional conditioning, that is, basing density function and kernel estimation on

a region’s income expressed relative to its geographical neighbors. A formal

inferential framework to test hypotheses about distribution dynamics in the pres-

ence of spatial effects still needs to be developed however.
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Regarding the second point, traditional convergence measures can be usefully

augmented by the different ESDA and ESTDA measures. First, the classical

Moran’s I statistics is naturally used to assess the level of spatial dependence in

the income series and its evolution over time.

Second, local measures of spatial autocorrelation can also be used. In particular,

local spatial instability is studied by means of the Moran scatterplot, which plots the

spatial lag of standardized income against the original values. The four different

quadrants of the scatterplot correspond to the four types of local spatial association

between a region and its neighbors: HH denotes a region with a high value

surrounded by other regions with high values and LH indicates a low value region

that is surrounded by regions with high values, etc. Quadrants HH and LL (resp. LH

and HL) refer to positive (resp. negative) spatial autocorrelation indicating local

spatial clustering of similar (resp. dissimilar) values. This approach has been used

extensively to analyze the evolution of the spatial distribution of income in several

regional samples. Whenever these Moran scatterplots are constructed for several

years, Rey (2001) has suggested using the discrete Markov methodology: in any

period, there are four possible states: HH, LL, LH, and HL so that between any two

periods, 16 different spatial transitions are possible, which can be summarized by

a transition probability matrix.

16.5 Conclusions

We have reviewed alternative approaches to regional growth and convergence

empirics, focusing on the various methodological problems and solutions that

have been offered in the literature. Clearly, there is no obvious consensus regarding

the most appropriate approach, or modeling strategy, or even whether convergence

is actually a real phenomenon, or simply a feature of the theoretical model that has

been the dominant one in the literature, the neoclassical growth model.

There is a point at which some of these approaches do give comparable

conclusions, however. Indeed, we can obtain estimates of the time it will take

for economies to converge both from the neoclassical growth model and from

the Markov chain approach. According to Fingleton (1999), for the regions of

the EU, the time needed to achieve neoclassical (conditional) convergence will

be of the order of 200–300 years. This is simply due to diminishing returns to

capital setting in very slowly, that is, effectively a is close to 1 in the model of

Sect. 16.2. Under the Markov model, convergence to the ergodic distribution

should, it is estimated, take a similar amount of time, at least 300 years. Of

course, the latter is stochastic convergence, implying constant probabilities of

different income states but allowing movement of regions across income states.

It is evident that, for the EU at least, convergence of some sort, if it occurs at all,

will not be a rapid phenomenon and be characterized by distributed income

levels rather than the homogeneity associated with unconditional neoclassical

convergence.
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